xref: /linux/drivers/usb/host/xhci.c (revision c5dbf04160005e07e8ca7232a7faa77ab1547ae0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21 
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, timeout_us);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * xhci_handshake_check_state - same as xhci_handshake but takes an additional
86  * exit_state parameter, and bails out with an error immediately when xhc_state
87  * has exit_state flag set.
88  */
89 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
90 		u32 mask, u32 done, int usec, unsigned int exit_state)
91 {
92 	u32	result;
93 	int	ret;
94 
95 	ret = readl_poll_timeout_atomic(ptr, result,
96 				(result & mask) == done ||
97 				result == U32_MAX ||
98 				xhci->xhc_state & exit_state,
99 				1, usec);
100 
101 	if (result == U32_MAX || xhci->xhc_state & exit_state)
102 		return -ENODEV;
103 
104 	return ret;
105 }
106 
107 /*
108  * Disable interrupts and begin the xHCI halting process.
109  */
110 void xhci_quiesce(struct xhci_hcd *xhci)
111 {
112 	u32 halted;
113 	u32 cmd;
114 	u32 mask;
115 
116 	mask = ~(XHCI_IRQS);
117 	halted = readl(&xhci->op_regs->status) & STS_HALT;
118 	if (!halted)
119 		mask &= ~CMD_RUN;
120 
121 	cmd = readl(&xhci->op_regs->command);
122 	cmd &= mask;
123 	writel(cmd, &xhci->op_regs->command);
124 }
125 
126 /*
127  * Force HC into halt state.
128  *
129  * Disable any IRQs and clear the run/stop bit.
130  * HC will complete any current and actively pipelined transactions, and
131  * should halt within 16 ms of the run/stop bit being cleared.
132  * Read HC Halted bit in the status register to see when the HC is finished.
133  */
134 int xhci_halt(struct xhci_hcd *xhci)
135 {
136 	int ret;
137 
138 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
139 	xhci_quiesce(xhci);
140 
141 	ret = xhci_handshake(&xhci->op_regs->status,
142 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
143 	if (ret) {
144 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
145 		return ret;
146 	}
147 
148 	xhci->xhc_state |= XHCI_STATE_HALTED;
149 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
150 
151 	return ret;
152 }
153 
154 /*
155  * Set the run bit and wait for the host to be running.
156  */
157 int xhci_start(struct xhci_hcd *xhci)
158 {
159 	u32 temp;
160 	int ret;
161 
162 	temp = readl(&xhci->op_regs->command);
163 	temp |= (CMD_RUN);
164 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
165 			temp);
166 	writel(temp, &xhci->op_regs->command);
167 
168 	/*
169 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
170 	 * running.
171 	 */
172 	ret = xhci_handshake(&xhci->op_regs->status,
173 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
174 	if (ret == -ETIMEDOUT)
175 		xhci_err(xhci, "Host took too long to start, "
176 				"waited %u microseconds.\n",
177 				XHCI_MAX_HALT_USEC);
178 	if (!ret) {
179 		/* clear state flags. Including dying, halted or removing */
180 		xhci->xhc_state = 0;
181 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
182 	}
183 
184 	return ret;
185 }
186 
187 /*
188  * Reset a halted HC.
189  *
190  * This resets pipelines, timers, counters, state machines, etc.
191  * Transactions will be terminated immediately, and operational registers
192  * will be set to their defaults.
193  */
194 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
195 {
196 	u32 command;
197 	u32 state;
198 	int ret;
199 
200 	state = readl(&xhci->op_regs->status);
201 
202 	if (state == ~(u32)0) {
203 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
204 		return -ENODEV;
205 	}
206 
207 	if ((state & STS_HALT) == 0) {
208 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
209 		return 0;
210 	}
211 
212 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
213 	command = readl(&xhci->op_regs->command);
214 	command |= CMD_RESET;
215 	writel(command, &xhci->op_regs->command);
216 
217 	/* Existing Intel xHCI controllers require a delay of 1 mS,
218 	 * after setting the CMD_RESET bit, and before accessing any
219 	 * HC registers. This allows the HC to complete the
220 	 * reset operation and be ready for HC register access.
221 	 * Without this delay, the subsequent HC register access,
222 	 * may result in a system hang very rarely.
223 	 */
224 	if (xhci->quirks & XHCI_INTEL_HOST)
225 		udelay(1000);
226 
227 	ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
228 				CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
229 	if (ret)
230 		return ret;
231 
232 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
233 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
234 
235 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236 			 "Wait for controller to be ready for doorbell rings");
237 	/*
238 	 * xHCI cannot write to any doorbells or operational registers other
239 	 * than status until the "Controller Not Ready" flag is cleared.
240 	 */
241 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
242 
243 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
244 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
245 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
246 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
247 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
248 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
249 
250 	return ret;
251 }
252 
253 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
254 {
255 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
256 	struct iommu_domain *domain;
257 	int err, i;
258 	u64 val;
259 	u32 intrs;
260 
261 	/*
262 	 * Some Renesas controllers get into a weird state if they are
263 	 * reset while programmed with 64bit addresses (they will preserve
264 	 * the top half of the address in internal, non visible
265 	 * registers). You end up with half the address coming from the
266 	 * kernel, and the other half coming from the firmware. Also,
267 	 * changing the programming leads to extra accesses even if the
268 	 * controller is supposed to be halted. The controller ends up with
269 	 * a fatal fault, and is then ripe for being properly reset.
270 	 *
271 	 * Special care is taken to only apply this if the device is behind
272 	 * an iommu. Doing anything when there is no iommu is definitely
273 	 * unsafe...
274 	 */
275 	domain = iommu_get_domain_for_dev(dev);
276 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
277 	    domain->type == IOMMU_DOMAIN_IDENTITY)
278 		return;
279 
280 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
281 
282 	/* Clear HSEIE so that faults do not get signaled */
283 	val = readl(&xhci->op_regs->command);
284 	val &= ~CMD_HSEIE;
285 	writel(val, &xhci->op_regs->command);
286 
287 	/* Clear HSE (aka FATAL) */
288 	val = readl(&xhci->op_regs->status);
289 	val |= STS_FATAL;
290 	writel(val, &xhci->op_regs->status);
291 
292 	/* Now zero the registers, and brace for impact */
293 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
294 	if (upper_32_bits(val))
295 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
296 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
297 	if (upper_32_bits(val))
298 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
299 
300 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
301 		      ARRAY_SIZE(xhci->run_regs->ir_set));
302 
303 	for (i = 0; i < intrs; i++) {
304 		struct xhci_intr_reg __iomem *ir;
305 
306 		ir = &xhci->run_regs->ir_set[i];
307 		val = xhci_read_64(xhci, &ir->erst_base);
308 		if (upper_32_bits(val))
309 			xhci_write_64(xhci, 0, &ir->erst_base);
310 		val= xhci_read_64(xhci, &ir->erst_dequeue);
311 		if (upper_32_bits(val))
312 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
313 	}
314 
315 	/* Wait for the fault to appear. It will be cleared on reset */
316 	err = xhci_handshake(&xhci->op_regs->status,
317 			     STS_FATAL, STS_FATAL,
318 			     XHCI_MAX_HALT_USEC);
319 	if (!err)
320 		xhci_info(xhci, "Fault detected\n");
321 }
322 
323 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
324 {
325 	u32 iman;
326 
327 	if (!ir || !ir->ir_set)
328 		return -EINVAL;
329 
330 	iman = readl(&ir->ir_set->irq_pending);
331 	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
332 
333 	return 0;
334 }
335 
336 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
337 {
338 	u32 iman;
339 
340 	if (!ir || !ir->ir_set)
341 		return -EINVAL;
342 
343 	iman = readl(&ir->ir_set->irq_pending);
344 	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
345 
346 	return 0;
347 }
348 
349 static void compliance_mode_recovery(struct timer_list *t)
350 {
351 	struct xhci_hcd *xhci;
352 	struct usb_hcd *hcd;
353 	struct xhci_hub *rhub;
354 	u32 temp;
355 	int i;
356 
357 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
358 	rhub = &xhci->usb3_rhub;
359 	hcd = rhub->hcd;
360 
361 	if (!hcd)
362 		return;
363 
364 	for (i = 0; i < rhub->num_ports; i++) {
365 		temp = readl(rhub->ports[i]->addr);
366 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
367 			/*
368 			 * Compliance Mode Detected. Letting USB Core
369 			 * handle the Warm Reset
370 			 */
371 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
372 					"Compliance mode detected->port %d",
373 					i + 1);
374 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
375 					"Attempting compliance mode recovery");
376 
377 			if (hcd->state == HC_STATE_SUSPENDED)
378 				usb_hcd_resume_root_hub(hcd);
379 
380 			usb_hcd_poll_rh_status(hcd);
381 		}
382 	}
383 
384 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
385 		mod_timer(&xhci->comp_mode_recovery_timer,
386 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
387 }
388 
389 /*
390  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
391  * that causes ports behind that hardware to enter compliance mode sometimes.
392  * The quirk creates a timer that polls every 2 seconds the link state of
393  * each host controller's port and recovers it by issuing a Warm reset
394  * if Compliance mode is detected, otherwise the port will become "dead" (no
395  * device connections or disconnections will be detected anymore). Becasue no
396  * status event is generated when entering compliance mode (per xhci spec),
397  * this quirk is needed on systems that have the failing hardware installed.
398  */
399 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
400 {
401 	xhci->port_status_u0 = 0;
402 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
403 		    0);
404 	xhci->comp_mode_recovery_timer.expires = jiffies +
405 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
406 
407 	add_timer(&xhci->comp_mode_recovery_timer);
408 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
409 			"Compliance mode recovery timer initialized");
410 }
411 
412 /*
413  * This function identifies the systems that have installed the SN65LVPE502CP
414  * USB3.0 re-driver and that need the Compliance Mode Quirk.
415  * Systems:
416  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
417  */
418 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
419 {
420 	const char *dmi_product_name, *dmi_sys_vendor;
421 
422 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
423 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
424 	if (!dmi_product_name || !dmi_sys_vendor)
425 		return false;
426 
427 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
428 		return false;
429 
430 	if (strstr(dmi_product_name, "Z420") ||
431 			strstr(dmi_product_name, "Z620") ||
432 			strstr(dmi_product_name, "Z820") ||
433 			strstr(dmi_product_name, "Z1 Workstation"))
434 		return true;
435 
436 	return false;
437 }
438 
439 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
440 {
441 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
442 }
443 
444 
445 /*
446  * Initialize memory for HCD and xHC (one-time init).
447  *
448  * Program the PAGESIZE register, initialize the device context array, create
449  * device contexts (?), set up a command ring segment (or two?), create event
450  * ring (one for now).
451  */
452 static int xhci_init(struct usb_hcd *hcd)
453 {
454 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
455 	int retval;
456 
457 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
458 	spin_lock_init(&xhci->lock);
459 	if (xhci->hci_version == 0x95 && link_quirk) {
460 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461 				"QUIRK: Not clearing Link TRB chain bits.");
462 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
463 	} else {
464 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
465 				"xHCI doesn't need link TRB QUIRK");
466 	}
467 	retval = xhci_mem_init(xhci, GFP_KERNEL);
468 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
469 
470 	/* Initializing Compliance Mode Recovery Data If Needed */
471 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
472 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
473 		compliance_mode_recovery_timer_init(xhci);
474 	}
475 
476 	return retval;
477 }
478 
479 /*-------------------------------------------------------------------------*/
480 
481 static int xhci_run_finished(struct xhci_hcd *xhci)
482 {
483 	struct xhci_interrupter *ir = xhci->interrupter;
484 	unsigned long	flags;
485 	u32		temp;
486 
487 	/*
488 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
489 	 * Protect the short window before host is running with a lock
490 	 */
491 	spin_lock_irqsave(&xhci->lock, flags);
492 
493 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
494 	temp = readl(&xhci->op_regs->command);
495 	temp |= (CMD_EIE);
496 	writel(temp, &xhci->op_regs->command);
497 
498 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
499 	xhci_enable_interrupter(ir);
500 
501 	if (xhci_start(xhci)) {
502 		xhci_halt(xhci);
503 		spin_unlock_irqrestore(&xhci->lock, flags);
504 		return -ENODEV;
505 	}
506 
507 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
508 
509 	if (xhci->quirks & XHCI_NEC_HOST)
510 		xhci_ring_cmd_db(xhci);
511 
512 	spin_unlock_irqrestore(&xhci->lock, flags);
513 
514 	return 0;
515 }
516 
517 /*
518  * Start the HC after it was halted.
519  *
520  * This function is called by the USB core when the HC driver is added.
521  * Its opposite is xhci_stop().
522  *
523  * xhci_init() must be called once before this function can be called.
524  * Reset the HC, enable device slot contexts, program DCBAAP, and
525  * set command ring pointer and event ring pointer.
526  *
527  * Setup MSI-X vectors and enable interrupts.
528  */
529 int xhci_run(struct usb_hcd *hcd)
530 {
531 	u32 temp;
532 	u64 temp_64;
533 	int ret;
534 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
535 	struct xhci_interrupter *ir = xhci->interrupter;
536 	/* Start the xHCI host controller running only after the USB 2.0 roothub
537 	 * is setup.
538 	 */
539 
540 	hcd->uses_new_polling = 1;
541 	if (!usb_hcd_is_primary_hcd(hcd))
542 		return xhci_run_finished(xhci);
543 
544 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
545 
546 	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
547 	temp_64 &= ERST_PTR_MASK;
548 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
549 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
550 
551 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552 			"// Set the interrupt modulation register");
553 	temp = readl(&ir->ir_set->irq_control);
554 	temp &= ~ER_IRQ_INTERVAL_MASK;
555 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
556 	writel(temp, &ir->ir_set->irq_control);
557 
558 	if (xhci->quirks & XHCI_NEC_HOST) {
559 		struct xhci_command *command;
560 
561 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
562 		if (!command)
563 			return -ENOMEM;
564 
565 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
566 				TRB_TYPE(TRB_NEC_GET_FW));
567 		if (ret)
568 			xhci_free_command(xhci, command);
569 	}
570 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
571 			"Finished %s for main hcd", __func__);
572 
573 	xhci_create_dbc_dev(xhci);
574 
575 	xhci_debugfs_init(xhci);
576 
577 	if (xhci_has_one_roothub(xhci))
578 		return xhci_run_finished(xhci);
579 
580 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
581 
582 	return 0;
583 }
584 EXPORT_SYMBOL_GPL(xhci_run);
585 
586 /*
587  * Stop xHCI driver.
588  *
589  * This function is called by the USB core when the HC driver is removed.
590  * Its opposite is xhci_run().
591  *
592  * Disable device contexts, disable IRQs, and quiesce the HC.
593  * Reset the HC, finish any completed transactions, and cleanup memory.
594  */
595 void xhci_stop(struct usb_hcd *hcd)
596 {
597 	u32 temp;
598 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
599 	struct xhci_interrupter *ir = xhci->interrupter;
600 
601 	mutex_lock(&xhci->mutex);
602 
603 	/* Only halt host and free memory after both hcds are removed */
604 	if (!usb_hcd_is_primary_hcd(hcd)) {
605 		mutex_unlock(&xhci->mutex);
606 		return;
607 	}
608 
609 	xhci_remove_dbc_dev(xhci);
610 
611 	spin_lock_irq(&xhci->lock);
612 	xhci->xhc_state |= XHCI_STATE_HALTED;
613 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
614 	xhci_halt(xhci);
615 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
616 	spin_unlock_irq(&xhci->lock);
617 
618 	/* Deleting Compliance Mode Recovery Timer */
619 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
620 			(!(xhci_all_ports_seen_u0(xhci)))) {
621 		del_timer_sync(&xhci->comp_mode_recovery_timer);
622 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
623 				"%s: compliance mode recovery timer deleted",
624 				__func__);
625 	}
626 
627 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
628 		usb_amd_dev_put();
629 
630 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
631 			"// Disabling event ring interrupts");
632 	temp = readl(&xhci->op_regs->status);
633 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
634 	xhci_disable_interrupter(ir);
635 
636 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
637 	xhci_mem_cleanup(xhci);
638 	xhci_debugfs_exit(xhci);
639 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
640 			"xhci_stop completed - status = %x",
641 			readl(&xhci->op_regs->status));
642 	mutex_unlock(&xhci->mutex);
643 }
644 EXPORT_SYMBOL_GPL(xhci_stop);
645 
646 /*
647  * Shutdown HC (not bus-specific)
648  *
649  * This is called when the machine is rebooting or halting.  We assume that the
650  * machine will be powered off, and the HC's internal state will be reset.
651  * Don't bother to free memory.
652  *
653  * This will only ever be called with the main usb_hcd (the USB3 roothub).
654  */
655 void xhci_shutdown(struct usb_hcd *hcd)
656 {
657 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
658 
659 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
660 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
661 
662 	/* Don't poll the roothubs after shutdown. */
663 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
664 			__func__, hcd->self.busnum);
665 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
666 	del_timer_sync(&hcd->rh_timer);
667 
668 	if (xhci->shared_hcd) {
669 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
670 		del_timer_sync(&xhci->shared_hcd->rh_timer);
671 	}
672 
673 	spin_lock_irq(&xhci->lock);
674 	xhci_halt(xhci);
675 
676 	/*
677 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
678 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
679 	 */
680 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
681 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
682 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
683 
684 	spin_unlock_irq(&xhci->lock);
685 
686 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
687 			"xhci_shutdown completed - status = %x",
688 			readl(&xhci->op_regs->status));
689 }
690 EXPORT_SYMBOL_GPL(xhci_shutdown);
691 
692 #ifdef CONFIG_PM
693 static void xhci_save_registers(struct xhci_hcd *xhci)
694 {
695 	struct xhci_interrupter *ir = xhci->interrupter;
696 
697 	xhci->s3.command = readl(&xhci->op_regs->command);
698 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
699 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
700 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
701 
702 	if (!ir)
703 		return;
704 
705 	ir->s3_erst_size = readl(&ir->ir_set->erst_size);
706 	ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
707 	ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
708 	ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
709 	ir->s3_irq_control = readl(&ir->ir_set->irq_control);
710 }
711 
712 static void xhci_restore_registers(struct xhci_hcd *xhci)
713 {
714 	struct xhci_interrupter *ir = xhci->interrupter;
715 
716 	writel(xhci->s3.command, &xhci->op_regs->command);
717 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
718 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
719 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
720 	writel(ir->s3_erst_size, &ir->ir_set->erst_size);
721 	xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
722 	xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
723 	writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
724 	writel(ir->s3_irq_control, &ir->ir_set->irq_control);
725 }
726 
727 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
728 {
729 	u64	val_64;
730 
731 	/* step 2: initialize command ring buffer */
732 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
733 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
734 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
735 				      xhci->cmd_ring->dequeue) &
736 		 (u64) ~CMD_RING_RSVD_BITS) |
737 		xhci->cmd_ring->cycle_state;
738 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
739 			"// Setting command ring address to 0x%llx",
740 			(long unsigned long) val_64);
741 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
742 }
743 
744 /*
745  * The whole command ring must be cleared to zero when we suspend the host.
746  *
747  * The host doesn't save the command ring pointer in the suspend well, so we
748  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
749  * aligned, because of the reserved bits in the command ring dequeue pointer
750  * register.  Therefore, we can't just set the dequeue pointer back in the
751  * middle of the ring (TRBs are 16-byte aligned).
752  */
753 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
754 {
755 	struct xhci_ring *ring;
756 	struct xhci_segment *seg;
757 
758 	ring = xhci->cmd_ring;
759 	seg = ring->deq_seg;
760 	do {
761 		memset(seg->trbs, 0,
762 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
763 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
764 			cpu_to_le32(~TRB_CYCLE);
765 		seg = seg->next;
766 	} while (seg != ring->deq_seg);
767 
768 	/* Reset the software enqueue and dequeue pointers */
769 	ring->deq_seg = ring->first_seg;
770 	ring->dequeue = ring->first_seg->trbs;
771 	ring->enq_seg = ring->deq_seg;
772 	ring->enqueue = ring->dequeue;
773 
774 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
775 	/*
776 	 * Ring is now zeroed, so the HW should look for change of ownership
777 	 * when the cycle bit is set to 1.
778 	 */
779 	ring->cycle_state = 1;
780 
781 	/*
782 	 * Reset the hardware dequeue pointer.
783 	 * Yes, this will need to be re-written after resume, but we're paranoid
784 	 * and want to make sure the hardware doesn't access bogus memory
785 	 * because, say, the BIOS or an SMI started the host without changing
786 	 * the command ring pointers.
787 	 */
788 	xhci_set_cmd_ring_deq(xhci);
789 }
790 
791 /*
792  * Disable port wake bits if do_wakeup is not set.
793  *
794  * Also clear a possible internal port wake state left hanging for ports that
795  * detected termination but never successfully enumerated (trained to 0U).
796  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
797  * at enumeration clears this wake, force one here as well for unconnected ports
798  */
799 
800 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
801 				       struct xhci_hub *rhub,
802 				       bool do_wakeup)
803 {
804 	unsigned long flags;
805 	u32 t1, t2, portsc;
806 	int i;
807 
808 	spin_lock_irqsave(&xhci->lock, flags);
809 
810 	for (i = 0; i < rhub->num_ports; i++) {
811 		portsc = readl(rhub->ports[i]->addr);
812 		t1 = xhci_port_state_to_neutral(portsc);
813 		t2 = t1;
814 
815 		/* clear wake bits if do_wake is not set */
816 		if (!do_wakeup)
817 			t2 &= ~PORT_WAKE_BITS;
818 
819 		/* Don't touch csc bit if connected or connect change is set */
820 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
821 			t2 |= PORT_CSC;
822 
823 		if (t1 != t2) {
824 			writel(t2, rhub->ports[i]->addr);
825 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
826 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
827 		}
828 	}
829 	spin_unlock_irqrestore(&xhci->lock, flags);
830 }
831 
832 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
833 {
834 	struct xhci_port	**ports;
835 	int			port_index;
836 	u32			status;
837 	u32			portsc;
838 
839 	status = readl(&xhci->op_regs->status);
840 	if (status & STS_EINT)
841 		return true;
842 	/*
843 	 * Checking STS_EINT is not enough as there is a lag between a change
844 	 * bit being set and the Port Status Change Event that it generated
845 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
846 	 */
847 
848 	port_index = xhci->usb2_rhub.num_ports;
849 	ports = xhci->usb2_rhub.ports;
850 	while (port_index--) {
851 		portsc = readl(ports[port_index]->addr);
852 		if (portsc & PORT_CHANGE_MASK ||
853 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
854 			return true;
855 	}
856 	port_index = xhci->usb3_rhub.num_ports;
857 	ports = xhci->usb3_rhub.ports;
858 	while (port_index--) {
859 		portsc = readl(ports[port_index]->addr);
860 		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
861 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
862 			return true;
863 	}
864 	return false;
865 }
866 
867 /*
868  * Stop HC (not bus-specific)
869  *
870  * This is called when the machine transition into S3/S4 mode.
871  *
872  */
873 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
874 {
875 	int			rc = 0;
876 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
877 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
878 	u32			command;
879 	u32			res;
880 
881 	if (!hcd->state)
882 		return 0;
883 
884 	if (hcd->state != HC_STATE_SUSPENDED ||
885 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
886 		return -EINVAL;
887 
888 	/* Clear root port wake on bits if wakeup not allowed. */
889 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
890 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
891 
892 	if (!HCD_HW_ACCESSIBLE(hcd))
893 		return 0;
894 
895 	xhci_dbc_suspend(xhci);
896 
897 	/* Don't poll the roothubs on bus suspend. */
898 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
899 		 __func__, hcd->self.busnum);
900 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
901 	del_timer_sync(&hcd->rh_timer);
902 	if (xhci->shared_hcd) {
903 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
904 		del_timer_sync(&xhci->shared_hcd->rh_timer);
905 	}
906 
907 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
908 		usleep_range(1000, 1500);
909 
910 	spin_lock_irq(&xhci->lock);
911 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
912 	if (xhci->shared_hcd)
913 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
914 	/* step 1: stop endpoint */
915 	/* skipped assuming that port suspend has done */
916 
917 	/* step 2: clear Run/Stop bit */
918 	command = readl(&xhci->op_regs->command);
919 	command &= ~CMD_RUN;
920 	writel(command, &xhci->op_regs->command);
921 
922 	/* Some chips from Fresco Logic need an extraordinary delay */
923 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
924 
925 	if (xhci_handshake(&xhci->op_regs->status,
926 		      STS_HALT, STS_HALT, delay)) {
927 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
928 		spin_unlock_irq(&xhci->lock);
929 		return -ETIMEDOUT;
930 	}
931 	xhci_clear_command_ring(xhci);
932 
933 	/* step 3: save registers */
934 	xhci_save_registers(xhci);
935 
936 	/* step 4: set CSS flag */
937 	command = readl(&xhci->op_regs->command);
938 	command |= CMD_CSS;
939 	writel(command, &xhci->op_regs->command);
940 	xhci->broken_suspend = 0;
941 	if (xhci_handshake(&xhci->op_regs->status,
942 				STS_SAVE, 0, 20 * 1000)) {
943 	/*
944 	 * AMD SNPS xHC 3.0 occasionally does not clear the
945 	 * SSS bit of USBSTS and when driver tries to poll
946 	 * to see if the xHC clears BIT(8) which never happens
947 	 * and driver assumes that controller is not responding
948 	 * and times out. To workaround this, its good to check
949 	 * if SRE and HCE bits are not set (as per xhci
950 	 * Section 5.4.2) and bypass the timeout.
951 	 */
952 		res = readl(&xhci->op_regs->status);
953 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
954 		    (((res & STS_SRE) == 0) &&
955 				((res & STS_HCE) == 0))) {
956 			xhci->broken_suspend = 1;
957 		} else {
958 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
959 			spin_unlock_irq(&xhci->lock);
960 			return -ETIMEDOUT;
961 		}
962 	}
963 	spin_unlock_irq(&xhci->lock);
964 
965 	/*
966 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
967 	 * is about to be suspended.
968 	 */
969 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
970 			(!(xhci_all_ports_seen_u0(xhci)))) {
971 		del_timer_sync(&xhci->comp_mode_recovery_timer);
972 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
973 				"%s: compliance mode recovery timer deleted",
974 				__func__);
975 	}
976 
977 	return rc;
978 }
979 EXPORT_SYMBOL_GPL(xhci_suspend);
980 
981 /*
982  * start xHC (not bus-specific)
983  *
984  * This is called when the machine transition from S3/S4 mode.
985  *
986  */
987 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
988 {
989 	bool			hibernated = (msg.event == PM_EVENT_RESTORE);
990 	u32			command, temp = 0;
991 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
992 	int			retval = 0;
993 	bool			comp_timer_running = false;
994 	bool			pending_portevent = false;
995 	bool			suspended_usb3_devs = false;
996 	bool			reinit_xhc = false;
997 
998 	if (!hcd->state)
999 		return 0;
1000 
1001 	/* Wait a bit if either of the roothubs need to settle from the
1002 	 * transition into bus suspend.
1003 	 */
1004 
1005 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1006 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1007 		msleep(100);
1008 
1009 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1010 	if (xhci->shared_hcd)
1011 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1012 
1013 	spin_lock_irq(&xhci->lock);
1014 
1015 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1016 		reinit_xhc = true;
1017 
1018 	if (!reinit_xhc) {
1019 		/*
1020 		 * Some controllers might lose power during suspend, so wait
1021 		 * for controller not ready bit to clear, just as in xHC init.
1022 		 */
1023 		retval = xhci_handshake(&xhci->op_regs->status,
1024 					STS_CNR, 0, 10 * 1000 * 1000);
1025 		if (retval) {
1026 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1027 				  retval);
1028 			spin_unlock_irq(&xhci->lock);
1029 			return retval;
1030 		}
1031 		/* step 1: restore register */
1032 		xhci_restore_registers(xhci);
1033 		/* step 2: initialize command ring buffer */
1034 		xhci_set_cmd_ring_deq(xhci);
1035 		/* step 3: restore state and start state*/
1036 		/* step 3: set CRS flag */
1037 		command = readl(&xhci->op_regs->command);
1038 		command |= CMD_CRS;
1039 		writel(command, &xhci->op_regs->command);
1040 		/*
1041 		 * Some controllers take up to 55+ ms to complete the controller
1042 		 * restore so setting the timeout to 100ms. Xhci specification
1043 		 * doesn't mention any timeout value.
1044 		 */
1045 		if (xhci_handshake(&xhci->op_regs->status,
1046 			      STS_RESTORE, 0, 100 * 1000)) {
1047 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1048 			spin_unlock_irq(&xhci->lock);
1049 			return -ETIMEDOUT;
1050 		}
1051 	}
1052 
1053 	temp = readl(&xhci->op_regs->status);
1054 
1055 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1056 	if ((temp & (STS_SRE | STS_HCE)) &&
1057 	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1058 		reinit_xhc = true;
1059 		if (!xhci->broken_suspend)
1060 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1061 	}
1062 
1063 	if (reinit_xhc) {
1064 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1065 				!(xhci_all_ports_seen_u0(xhci))) {
1066 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1067 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1068 				"Compliance Mode Recovery Timer deleted!");
1069 		}
1070 
1071 		/* Let the USB core know _both_ roothubs lost power. */
1072 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1073 		if (xhci->shared_hcd)
1074 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1075 
1076 		xhci_dbg(xhci, "Stop HCD\n");
1077 		xhci_halt(xhci);
1078 		xhci_zero_64b_regs(xhci);
1079 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1080 		spin_unlock_irq(&xhci->lock);
1081 		if (retval)
1082 			return retval;
1083 
1084 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1085 		temp = readl(&xhci->op_regs->status);
1086 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1087 		xhci_disable_interrupter(xhci->interrupter);
1088 
1089 		xhci_dbg(xhci, "cleaning up memory\n");
1090 		xhci_mem_cleanup(xhci);
1091 		xhci_debugfs_exit(xhci);
1092 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1093 			    readl(&xhci->op_regs->status));
1094 
1095 		/* USB core calls the PCI reinit and start functions twice:
1096 		 * first with the primary HCD, and then with the secondary HCD.
1097 		 * If we don't do the same, the host will never be started.
1098 		 */
1099 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1100 		retval = xhci_init(hcd);
1101 		if (retval)
1102 			return retval;
1103 		comp_timer_running = true;
1104 
1105 		xhci_dbg(xhci, "Start the primary HCD\n");
1106 		retval = xhci_run(hcd);
1107 		if (!retval && xhci->shared_hcd) {
1108 			xhci_dbg(xhci, "Start the secondary HCD\n");
1109 			retval = xhci_run(xhci->shared_hcd);
1110 		}
1111 
1112 		hcd->state = HC_STATE_SUSPENDED;
1113 		if (xhci->shared_hcd)
1114 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1115 		goto done;
1116 	}
1117 
1118 	/* step 4: set Run/Stop bit */
1119 	command = readl(&xhci->op_regs->command);
1120 	command |= CMD_RUN;
1121 	writel(command, &xhci->op_regs->command);
1122 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1123 		  0, 250 * 1000);
1124 
1125 	/* step 5: walk topology and initialize portsc,
1126 	 * portpmsc and portli
1127 	 */
1128 	/* this is done in bus_resume */
1129 
1130 	/* step 6: restart each of the previously
1131 	 * Running endpoints by ringing their doorbells
1132 	 */
1133 
1134 	spin_unlock_irq(&xhci->lock);
1135 
1136 	xhci_dbc_resume(xhci);
1137 
1138  done:
1139 	if (retval == 0) {
1140 		/*
1141 		 * Resume roothubs only if there are pending events.
1142 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1143 		 * the first wake signalling failed, give it that chance if
1144 		 * there are suspended USB 3 devices.
1145 		 */
1146 		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1147 		    xhci->usb3_rhub.bus_state.bus_suspended)
1148 			suspended_usb3_devs = true;
1149 
1150 		pending_portevent = xhci_pending_portevent(xhci);
1151 
1152 		if (suspended_usb3_devs && !pending_portevent &&
1153 		    msg.event == PM_EVENT_AUTO_RESUME) {
1154 			msleep(120);
1155 			pending_portevent = xhci_pending_portevent(xhci);
1156 		}
1157 
1158 		if (pending_portevent) {
1159 			if (xhci->shared_hcd)
1160 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1161 			usb_hcd_resume_root_hub(hcd);
1162 		}
1163 	}
1164 	/*
1165 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1166 	 * be re-initialized Always after a system resume. Ports are subject
1167 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1168 	 * ports have entered previously to U0 before system's suspension.
1169 	 */
1170 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1171 		compliance_mode_recovery_timer_init(xhci);
1172 
1173 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1174 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1175 
1176 	/* Re-enable port polling. */
1177 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1178 		 __func__, hcd->self.busnum);
1179 	if (xhci->shared_hcd) {
1180 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1181 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1182 	}
1183 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1184 	usb_hcd_poll_rh_status(hcd);
1185 
1186 	return retval;
1187 }
1188 EXPORT_SYMBOL_GPL(xhci_resume);
1189 #endif	/* CONFIG_PM */
1190 
1191 /*-------------------------------------------------------------------------*/
1192 
1193 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1194 {
1195 	void *temp;
1196 	int ret = 0;
1197 	unsigned int buf_len;
1198 	enum dma_data_direction dir;
1199 
1200 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1201 	buf_len = urb->transfer_buffer_length;
1202 
1203 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1204 			    dev_to_node(hcd->self.sysdev));
1205 
1206 	if (usb_urb_dir_out(urb))
1207 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1208 				   temp, buf_len, 0);
1209 
1210 	urb->transfer_buffer = temp;
1211 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1212 					   urb->transfer_buffer,
1213 					   urb->transfer_buffer_length,
1214 					   dir);
1215 
1216 	if (dma_mapping_error(hcd->self.sysdev,
1217 			      urb->transfer_dma)) {
1218 		ret = -EAGAIN;
1219 		kfree(temp);
1220 	} else {
1221 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1222 	}
1223 
1224 	return ret;
1225 }
1226 
1227 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1228 					  struct urb *urb)
1229 {
1230 	bool ret = false;
1231 	unsigned int i;
1232 	unsigned int len = 0;
1233 	unsigned int trb_size;
1234 	unsigned int max_pkt;
1235 	struct scatterlist *sg;
1236 	struct scatterlist *tail_sg;
1237 
1238 	tail_sg = urb->sg;
1239 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1240 
1241 	if (!urb->num_sgs)
1242 		return ret;
1243 
1244 	if (urb->dev->speed >= USB_SPEED_SUPER)
1245 		trb_size = TRB_CACHE_SIZE_SS;
1246 	else
1247 		trb_size = TRB_CACHE_SIZE_HS;
1248 
1249 	if (urb->transfer_buffer_length != 0 &&
1250 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1251 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1252 			len = len + sg->length;
1253 			if (i > trb_size - 2) {
1254 				len = len - tail_sg->length;
1255 				if (len < max_pkt) {
1256 					ret = true;
1257 					break;
1258 				}
1259 
1260 				tail_sg = sg_next(tail_sg);
1261 			}
1262 		}
1263 	}
1264 	return ret;
1265 }
1266 
1267 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1268 {
1269 	unsigned int len;
1270 	unsigned int buf_len;
1271 	enum dma_data_direction dir;
1272 
1273 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1274 
1275 	buf_len = urb->transfer_buffer_length;
1276 
1277 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1278 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1279 		dma_unmap_single(hcd->self.sysdev,
1280 				 urb->transfer_dma,
1281 				 urb->transfer_buffer_length,
1282 				 dir);
1283 
1284 	if (usb_urb_dir_in(urb)) {
1285 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1286 					   urb->transfer_buffer,
1287 					   buf_len,
1288 					   0);
1289 		if (len != buf_len) {
1290 			xhci_dbg(hcd_to_xhci(hcd),
1291 				 "Copy from tmp buf to urb sg list failed\n");
1292 			urb->actual_length = len;
1293 		}
1294 	}
1295 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1296 	kfree(urb->transfer_buffer);
1297 	urb->transfer_buffer = NULL;
1298 }
1299 
1300 /*
1301  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1302  * we'll copy the actual data into the TRB address register. This is limited to
1303  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1304  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1305  */
1306 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1307 				gfp_t mem_flags)
1308 {
1309 	struct xhci_hcd *xhci;
1310 
1311 	xhci = hcd_to_xhci(hcd);
1312 
1313 	if (xhci_urb_suitable_for_idt(urb))
1314 		return 0;
1315 
1316 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1317 		if (xhci_urb_temp_buffer_required(hcd, urb))
1318 			return xhci_map_temp_buffer(hcd, urb);
1319 	}
1320 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1321 }
1322 
1323 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1324 {
1325 	struct xhci_hcd *xhci;
1326 	bool unmap_temp_buf = false;
1327 
1328 	xhci = hcd_to_xhci(hcd);
1329 
1330 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1331 		unmap_temp_buf = true;
1332 
1333 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1334 		xhci_unmap_temp_buf(hcd, urb);
1335 	else
1336 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1337 }
1338 
1339 /**
1340  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1341  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1342  * value to right shift 1 for the bitmask.
1343  *
1344  * Index  = (epnum * 2) + direction - 1,
1345  * where direction = 0 for OUT, 1 for IN.
1346  * For control endpoints, the IN index is used (OUT index is unused), so
1347  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1348  */
1349 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1350 {
1351 	unsigned int index;
1352 	if (usb_endpoint_xfer_control(desc))
1353 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1354 	else
1355 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1356 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1357 	return index;
1358 }
1359 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1360 
1361 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1362  * address from the XHCI endpoint index.
1363  */
1364 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1365 {
1366 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1367 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1368 	return direction | number;
1369 }
1370 
1371 /* Find the flag for this endpoint (for use in the control context).  Use the
1372  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1373  * bit 1, etc.
1374  */
1375 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1376 {
1377 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1378 }
1379 
1380 /* Compute the last valid endpoint context index.  Basically, this is the
1381  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1382  * we find the most significant bit set in the added contexts flags.
1383  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1384  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1385  */
1386 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1387 {
1388 	return fls(added_ctxs) - 1;
1389 }
1390 
1391 /* Returns 1 if the arguments are OK;
1392  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1393  */
1394 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1395 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1396 		const char *func) {
1397 	struct xhci_hcd	*xhci;
1398 	struct xhci_virt_device	*virt_dev;
1399 
1400 	if (!hcd || (check_ep && !ep) || !udev) {
1401 		pr_debug("xHCI %s called with invalid args\n", func);
1402 		return -EINVAL;
1403 	}
1404 	if (!udev->parent) {
1405 		pr_debug("xHCI %s called for root hub\n", func);
1406 		return 0;
1407 	}
1408 
1409 	xhci = hcd_to_xhci(hcd);
1410 	if (check_virt_dev) {
1411 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1412 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1413 					func);
1414 			return -EINVAL;
1415 		}
1416 
1417 		virt_dev = xhci->devs[udev->slot_id];
1418 		if (virt_dev->udev != udev) {
1419 			xhci_dbg(xhci, "xHCI %s called with udev and "
1420 					  "virt_dev does not match\n", func);
1421 			return -EINVAL;
1422 		}
1423 	}
1424 
1425 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1426 		return -ENODEV;
1427 
1428 	return 1;
1429 }
1430 
1431 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1432 		struct usb_device *udev, struct xhci_command *command,
1433 		bool ctx_change, bool must_succeed);
1434 
1435 /*
1436  * Full speed devices may have a max packet size greater than 8 bytes, but the
1437  * USB core doesn't know that until it reads the first 8 bytes of the
1438  * descriptor.  If the usb_device's max packet size changes after that point,
1439  * we need to issue an evaluate context command and wait on it.
1440  */
1441 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1442 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1443 {
1444 	struct xhci_container_ctx *out_ctx;
1445 	struct xhci_input_control_ctx *ctrl_ctx;
1446 	struct xhci_ep_ctx *ep_ctx;
1447 	struct xhci_command *command;
1448 	int max_packet_size;
1449 	int hw_max_packet_size;
1450 	int ret = 0;
1451 
1452 	out_ctx = xhci->devs[slot_id]->out_ctx;
1453 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1454 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1455 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1456 	if (hw_max_packet_size != max_packet_size) {
1457 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1458 				"Max Packet Size for ep 0 changed.");
1459 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1460 				"Max packet size in usb_device = %d",
1461 				max_packet_size);
1462 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1463 				"Max packet size in xHCI HW = %d",
1464 				hw_max_packet_size);
1465 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1466 				"Issuing evaluate context command.");
1467 
1468 		/* Set up the input context flags for the command */
1469 		/* FIXME: This won't work if a non-default control endpoint
1470 		 * changes max packet sizes.
1471 		 */
1472 
1473 		command = xhci_alloc_command(xhci, true, mem_flags);
1474 		if (!command)
1475 			return -ENOMEM;
1476 
1477 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1478 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1479 		if (!ctrl_ctx) {
1480 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1481 					__func__);
1482 			ret = -ENOMEM;
1483 			goto command_cleanup;
1484 		}
1485 		/* Set up the modified control endpoint 0 */
1486 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1487 				xhci->devs[slot_id]->out_ctx, ep_index);
1488 
1489 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1490 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1491 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1492 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1493 
1494 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1495 		ctrl_ctx->drop_flags = 0;
1496 
1497 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1498 				true, false);
1499 
1500 		/* Clean up the input context for later use by bandwidth
1501 		 * functions.
1502 		 */
1503 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1504 command_cleanup:
1505 		kfree(command->completion);
1506 		kfree(command);
1507 	}
1508 	return ret;
1509 }
1510 
1511 /*
1512  * non-error returns are a promise to giveback() the urb later
1513  * we drop ownership so next owner (or urb unlink) can get it
1514  */
1515 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1516 {
1517 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1518 	unsigned long flags;
1519 	int ret = 0;
1520 	unsigned int slot_id, ep_index;
1521 	unsigned int *ep_state;
1522 	struct urb_priv	*urb_priv;
1523 	int num_tds;
1524 
1525 	if (!urb)
1526 		return -EINVAL;
1527 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1528 					true, true, __func__);
1529 	if (ret <= 0)
1530 		return ret ? ret : -EINVAL;
1531 
1532 	slot_id = urb->dev->slot_id;
1533 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1534 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1535 
1536 	if (!HCD_HW_ACCESSIBLE(hcd))
1537 		return -ESHUTDOWN;
1538 
1539 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1540 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1541 		return -ENODEV;
1542 	}
1543 
1544 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1545 		num_tds = urb->number_of_packets;
1546 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1547 	    urb->transfer_buffer_length > 0 &&
1548 	    urb->transfer_flags & URB_ZERO_PACKET &&
1549 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1550 		num_tds = 2;
1551 	else
1552 		num_tds = 1;
1553 
1554 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1555 	if (!urb_priv)
1556 		return -ENOMEM;
1557 
1558 	urb_priv->num_tds = num_tds;
1559 	urb_priv->num_tds_done = 0;
1560 	urb->hcpriv = urb_priv;
1561 
1562 	trace_xhci_urb_enqueue(urb);
1563 
1564 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1565 		/* Check to see if the max packet size for the default control
1566 		 * endpoint changed during FS device enumeration
1567 		 */
1568 		if (urb->dev->speed == USB_SPEED_FULL) {
1569 			ret = xhci_check_maxpacket(xhci, slot_id,
1570 					ep_index, urb, mem_flags);
1571 			if (ret < 0) {
1572 				xhci_urb_free_priv(urb_priv);
1573 				urb->hcpriv = NULL;
1574 				return ret;
1575 			}
1576 		}
1577 	}
1578 
1579 	spin_lock_irqsave(&xhci->lock, flags);
1580 
1581 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1582 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1583 			 urb->ep->desc.bEndpointAddress, urb);
1584 		ret = -ESHUTDOWN;
1585 		goto free_priv;
1586 	}
1587 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1588 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1589 			  *ep_state);
1590 		ret = -EINVAL;
1591 		goto free_priv;
1592 	}
1593 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1594 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1595 		ret = -EINVAL;
1596 		goto free_priv;
1597 	}
1598 
1599 	switch (usb_endpoint_type(&urb->ep->desc)) {
1600 
1601 	case USB_ENDPOINT_XFER_CONTROL:
1602 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1603 					 slot_id, ep_index);
1604 		break;
1605 	case USB_ENDPOINT_XFER_BULK:
1606 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1607 					 slot_id, ep_index);
1608 		break;
1609 	case USB_ENDPOINT_XFER_INT:
1610 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1611 				slot_id, ep_index);
1612 		break;
1613 	case USB_ENDPOINT_XFER_ISOC:
1614 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1615 				slot_id, ep_index);
1616 	}
1617 
1618 	if (ret) {
1619 free_priv:
1620 		xhci_urb_free_priv(urb_priv);
1621 		urb->hcpriv = NULL;
1622 	}
1623 	spin_unlock_irqrestore(&xhci->lock, flags);
1624 	return ret;
1625 }
1626 
1627 /*
1628  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1629  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1630  * should pick up where it left off in the TD, unless a Set Transfer Ring
1631  * Dequeue Pointer is issued.
1632  *
1633  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1634  * the ring.  Since the ring is a contiguous structure, they can't be physically
1635  * removed.  Instead, there are two options:
1636  *
1637  *  1) If the HC is in the middle of processing the URB to be canceled, we
1638  *     simply move the ring's dequeue pointer past those TRBs using the Set
1639  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1640  *     when drivers timeout on the last submitted URB and attempt to cancel.
1641  *
1642  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1643  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1644  *     HC will need to invalidate the any TRBs it has cached after the stop
1645  *     endpoint command, as noted in the xHCI 0.95 errata.
1646  *
1647  *  3) The TD may have completed by the time the Stop Endpoint Command
1648  *     completes, so software needs to handle that case too.
1649  *
1650  * This function should protect against the TD enqueueing code ringing the
1651  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1652  * It also needs to account for multiple cancellations on happening at the same
1653  * time for the same endpoint.
1654  *
1655  * Note that this function can be called in any context, or so says
1656  * usb_hcd_unlink_urb()
1657  */
1658 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1659 {
1660 	unsigned long flags;
1661 	int ret, i;
1662 	u32 temp;
1663 	struct xhci_hcd *xhci;
1664 	struct urb_priv	*urb_priv;
1665 	struct xhci_td *td;
1666 	unsigned int ep_index;
1667 	struct xhci_ring *ep_ring;
1668 	struct xhci_virt_ep *ep;
1669 	struct xhci_command *command;
1670 	struct xhci_virt_device *vdev;
1671 
1672 	xhci = hcd_to_xhci(hcd);
1673 	spin_lock_irqsave(&xhci->lock, flags);
1674 
1675 	trace_xhci_urb_dequeue(urb);
1676 
1677 	/* Make sure the URB hasn't completed or been unlinked already */
1678 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1679 	if (ret)
1680 		goto done;
1681 
1682 	/* give back URB now if we can't queue it for cancel */
1683 	vdev = xhci->devs[urb->dev->slot_id];
1684 	urb_priv = urb->hcpriv;
1685 	if (!vdev || !urb_priv)
1686 		goto err_giveback;
1687 
1688 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1689 	ep = &vdev->eps[ep_index];
1690 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1691 	if (!ep || !ep_ring)
1692 		goto err_giveback;
1693 
1694 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1695 	temp = readl(&xhci->op_regs->status);
1696 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1697 		xhci_hc_died(xhci);
1698 		goto done;
1699 	}
1700 
1701 	/*
1702 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1703 	 * make sure none of the ring related pointers in this URB private data
1704 	 * are touched, such as td_list, otherwise we overwrite freed data
1705 	 */
1706 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1707 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1708 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1709 			td = &urb_priv->td[i];
1710 			if (!list_empty(&td->cancelled_td_list))
1711 				list_del_init(&td->cancelled_td_list);
1712 		}
1713 		goto err_giveback;
1714 	}
1715 
1716 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1717 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1718 				"HC halted, freeing TD manually.");
1719 		for (i = urb_priv->num_tds_done;
1720 		     i < urb_priv->num_tds;
1721 		     i++) {
1722 			td = &urb_priv->td[i];
1723 			if (!list_empty(&td->td_list))
1724 				list_del_init(&td->td_list);
1725 			if (!list_empty(&td->cancelled_td_list))
1726 				list_del_init(&td->cancelled_td_list);
1727 		}
1728 		goto err_giveback;
1729 	}
1730 
1731 	i = urb_priv->num_tds_done;
1732 	if (i < urb_priv->num_tds)
1733 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1734 				"Cancel URB %p, dev %s, ep 0x%x, "
1735 				"starting at offset 0x%llx",
1736 				urb, urb->dev->devpath,
1737 				urb->ep->desc.bEndpointAddress,
1738 				(unsigned long long) xhci_trb_virt_to_dma(
1739 					urb_priv->td[i].start_seg,
1740 					urb_priv->td[i].first_trb));
1741 
1742 	for (; i < urb_priv->num_tds; i++) {
1743 		td = &urb_priv->td[i];
1744 		/* TD can already be on cancelled list if ep halted on it */
1745 		if (list_empty(&td->cancelled_td_list)) {
1746 			td->cancel_status = TD_DIRTY;
1747 			list_add_tail(&td->cancelled_td_list,
1748 				      &ep->cancelled_td_list);
1749 		}
1750 	}
1751 
1752 	/* Queue a stop endpoint command, but only if this is
1753 	 * the first cancellation to be handled.
1754 	 */
1755 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1756 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1757 		if (!command) {
1758 			ret = -ENOMEM;
1759 			goto done;
1760 		}
1761 		ep->ep_state |= EP_STOP_CMD_PENDING;
1762 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1763 					 ep_index, 0);
1764 		xhci_ring_cmd_db(xhci);
1765 	}
1766 done:
1767 	spin_unlock_irqrestore(&xhci->lock, flags);
1768 	return ret;
1769 
1770 err_giveback:
1771 	if (urb_priv)
1772 		xhci_urb_free_priv(urb_priv);
1773 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1774 	spin_unlock_irqrestore(&xhci->lock, flags);
1775 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1776 	return ret;
1777 }
1778 
1779 /* Drop an endpoint from a new bandwidth configuration for this device.
1780  * Only one call to this function is allowed per endpoint before
1781  * check_bandwidth() or reset_bandwidth() must be called.
1782  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1783  * add the endpoint to the schedule with possibly new parameters denoted by a
1784  * different endpoint descriptor in usb_host_endpoint.
1785  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1786  * not allowed.
1787  *
1788  * The USB core will not allow URBs to be queued to an endpoint that is being
1789  * disabled, so there's no need for mutual exclusion to protect
1790  * the xhci->devs[slot_id] structure.
1791  */
1792 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1793 		       struct usb_host_endpoint *ep)
1794 {
1795 	struct xhci_hcd *xhci;
1796 	struct xhci_container_ctx *in_ctx, *out_ctx;
1797 	struct xhci_input_control_ctx *ctrl_ctx;
1798 	unsigned int ep_index;
1799 	struct xhci_ep_ctx *ep_ctx;
1800 	u32 drop_flag;
1801 	u32 new_add_flags, new_drop_flags;
1802 	int ret;
1803 
1804 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1805 	if (ret <= 0)
1806 		return ret;
1807 	xhci = hcd_to_xhci(hcd);
1808 	if (xhci->xhc_state & XHCI_STATE_DYING)
1809 		return -ENODEV;
1810 
1811 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1812 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1813 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1814 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1815 				__func__, drop_flag);
1816 		return 0;
1817 	}
1818 
1819 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1820 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1821 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1822 	if (!ctrl_ctx) {
1823 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1824 				__func__);
1825 		return 0;
1826 	}
1827 
1828 	ep_index = xhci_get_endpoint_index(&ep->desc);
1829 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1830 	/* If the HC already knows the endpoint is disabled,
1831 	 * or the HCD has noted it is disabled, ignore this request
1832 	 */
1833 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1834 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1835 	    xhci_get_endpoint_flag(&ep->desc)) {
1836 		/* Do not warn when called after a usb_device_reset */
1837 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1838 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1839 				  __func__, ep);
1840 		return 0;
1841 	}
1842 
1843 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1844 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1845 
1846 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1847 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1848 
1849 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1850 
1851 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1852 
1853 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1854 			(unsigned int) ep->desc.bEndpointAddress,
1855 			udev->slot_id,
1856 			(unsigned int) new_drop_flags,
1857 			(unsigned int) new_add_flags);
1858 	return 0;
1859 }
1860 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1861 
1862 /* Add an endpoint to a new possible bandwidth configuration for this device.
1863  * Only one call to this function is allowed per endpoint before
1864  * check_bandwidth() or reset_bandwidth() must be called.
1865  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1866  * add the endpoint to the schedule with possibly new parameters denoted by a
1867  * different endpoint descriptor in usb_host_endpoint.
1868  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1869  * not allowed.
1870  *
1871  * The USB core will not allow URBs to be queued to an endpoint until the
1872  * configuration or alt setting is installed in the device, so there's no need
1873  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1874  */
1875 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1876 		      struct usb_host_endpoint *ep)
1877 {
1878 	struct xhci_hcd *xhci;
1879 	struct xhci_container_ctx *in_ctx;
1880 	unsigned int ep_index;
1881 	struct xhci_input_control_ctx *ctrl_ctx;
1882 	struct xhci_ep_ctx *ep_ctx;
1883 	u32 added_ctxs;
1884 	u32 new_add_flags, new_drop_flags;
1885 	struct xhci_virt_device *virt_dev;
1886 	int ret = 0;
1887 
1888 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1889 	if (ret <= 0) {
1890 		/* So we won't queue a reset ep command for a root hub */
1891 		ep->hcpriv = NULL;
1892 		return ret;
1893 	}
1894 	xhci = hcd_to_xhci(hcd);
1895 	if (xhci->xhc_state & XHCI_STATE_DYING)
1896 		return -ENODEV;
1897 
1898 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1899 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1900 		/* FIXME when we have to issue an evaluate endpoint command to
1901 		 * deal with ep0 max packet size changing once we get the
1902 		 * descriptors
1903 		 */
1904 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1905 				__func__, added_ctxs);
1906 		return 0;
1907 	}
1908 
1909 	virt_dev = xhci->devs[udev->slot_id];
1910 	in_ctx = virt_dev->in_ctx;
1911 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1912 	if (!ctrl_ctx) {
1913 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1914 				__func__);
1915 		return 0;
1916 	}
1917 
1918 	ep_index = xhci_get_endpoint_index(&ep->desc);
1919 	/* If this endpoint is already in use, and the upper layers are trying
1920 	 * to add it again without dropping it, reject the addition.
1921 	 */
1922 	if (virt_dev->eps[ep_index].ring &&
1923 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1924 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1925 				"without dropping it.\n",
1926 				(unsigned int) ep->desc.bEndpointAddress);
1927 		return -EINVAL;
1928 	}
1929 
1930 	/* If the HCD has already noted the endpoint is enabled,
1931 	 * ignore this request.
1932 	 */
1933 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1934 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1935 				__func__, ep);
1936 		return 0;
1937 	}
1938 
1939 	/*
1940 	 * Configuration and alternate setting changes must be done in
1941 	 * process context, not interrupt context (or so documenation
1942 	 * for usb_set_interface() and usb_set_configuration() claim).
1943 	 */
1944 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1945 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1946 				__func__, ep->desc.bEndpointAddress);
1947 		return -ENOMEM;
1948 	}
1949 
1950 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1951 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1952 
1953 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1954 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1955 	 * this re-adds a new state for the endpoint from the new endpoint
1956 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1957 	 * drop flags alone.
1958 	 */
1959 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1960 
1961 	/* Store the usb_device pointer for later use */
1962 	ep->hcpriv = udev;
1963 
1964 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1965 	trace_xhci_add_endpoint(ep_ctx);
1966 
1967 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1968 			(unsigned int) ep->desc.bEndpointAddress,
1969 			udev->slot_id,
1970 			(unsigned int) new_drop_flags,
1971 			(unsigned int) new_add_flags);
1972 	return 0;
1973 }
1974 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1975 
1976 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1977 {
1978 	struct xhci_input_control_ctx *ctrl_ctx;
1979 	struct xhci_ep_ctx *ep_ctx;
1980 	struct xhci_slot_ctx *slot_ctx;
1981 	int i;
1982 
1983 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1984 	if (!ctrl_ctx) {
1985 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1986 				__func__);
1987 		return;
1988 	}
1989 
1990 	/* When a device's add flag and drop flag are zero, any subsequent
1991 	 * configure endpoint command will leave that endpoint's state
1992 	 * untouched.  Make sure we don't leave any old state in the input
1993 	 * endpoint contexts.
1994 	 */
1995 	ctrl_ctx->drop_flags = 0;
1996 	ctrl_ctx->add_flags = 0;
1997 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1998 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1999 	/* Endpoint 0 is always valid */
2000 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2001 	for (i = 1; i < 31; i++) {
2002 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2003 		ep_ctx->ep_info = 0;
2004 		ep_ctx->ep_info2 = 0;
2005 		ep_ctx->deq = 0;
2006 		ep_ctx->tx_info = 0;
2007 	}
2008 }
2009 
2010 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2011 		struct usb_device *udev, u32 *cmd_status)
2012 {
2013 	int ret;
2014 
2015 	switch (*cmd_status) {
2016 	case COMP_COMMAND_ABORTED:
2017 	case COMP_COMMAND_RING_STOPPED:
2018 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2019 		ret = -ETIME;
2020 		break;
2021 	case COMP_RESOURCE_ERROR:
2022 		dev_warn(&udev->dev,
2023 			 "Not enough host controller resources for new device state.\n");
2024 		ret = -ENOMEM;
2025 		/* FIXME: can we allocate more resources for the HC? */
2026 		break;
2027 	case COMP_BANDWIDTH_ERROR:
2028 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2029 		dev_warn(&udev->dev,
2030 			 "Not enough bandwidth for new device state.\n");
2031 		ret = -ENOSPC;
2032 		/* FIXME: can we go back to the old state? */
2033 		break;
2034 	case COMP_TRB_ERROR:
2035 		/* the HCD set up something wrong */
2036 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2037 				"add flag = 1, "
2038 				"and endpoint is not disabled.\n");
2039 		ret = -EINVAL;
2040 		break;
2041 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2042 		dev_warn(&udev->dev,
2043 			 "ERROR: Incompatible device for endpoint configure command.\n");
2044 		ret = -ENODEV;
2045 		break;
2046 	case COMP_SUCCESS:
2047 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2048 				"Successful Endpoint Configure command");
2049 		ret = 0;
2050 		break;
2051 	default:
2052 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2053 				*cmd_status);
2054 		ret = -EINVAL;
2055 		break;
2056 	}
2057 	return ret;
2058 }
2059 
2060 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2061 		struct usb_device *udev, u32 *cmd_status)
2062 {
2063 	int ret;
2064 
2065 	switch (*cmd_status) {
2066 	case COMP_COMMAND_ABORTED:
2067 	case COMP_COMMAND_RING_STOPPED:
2068 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2069 		ret = -ETIME;
2070 		break;
2071 	case COMP_PARAMETER_ERROR:
2072 		dev_warn(&udev->dev,
2073 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2074 		ret = -EINVAL;
2075 		break;
2076 	case COMP_SLOT_NOT_ENABLED_ERROR:
2077 		dev_warn(&udev->dev,
2078 			"WARN: slot not enabled for evaluate context command.\n");
2079 		ret = -EINVAL;
2080 		break;
2081 	case COMP_CONTEXT_STATE_ERROR:
2082 		dev_warn(&udev->dev,
2083 			"WARN: invalid context state for evaluate context command.\n");
2084 		ret = -EINVAL;
2085 		break;
2086 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2087 		dev_warn(&udev->dev,
2088 			"ERROR: Incompatible device for evaluate context command.\n");
2089 		ret = -ENODEV;
2090 		break;
2091 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2092 		/* Max Exit Latency too large error */
2093 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2094 		ret = -EINVAL;
2095 		break;
2096 	case COMP_SUCCESS:
2097 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2098 				"Successful evaluate context command");
2099 		ret = 0;
2100 		break;
2101 	default:
2102 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2103 			*cmd_status);
2104 		ret = -EINVAL;
2105 		break;
2106 	}
2107 	return ret;
2108 }
2109 
2110 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2111 		struct xhci_input_control_ctx *ctrl_ctx)
2112 {
2113 	u32 valid_add_flags;
2114 	u32 valid_drop_flags;
2115 
2116 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2117 	 * (bit 1).  The default control endpoint is added during the Address
2118 	 * Device command and is never removed until the slot is disabled.
2119 	 */
2120 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2121 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2122 
2123 	/* Use hweight32 to count the number of ones in the add flags, or
2124 	 * number of endpoints added.  Don't count endpoints that are changed
2125 	 * (both added and dropped).
2126 	 */
2127 	return hweight32(valid_add_flags) -
2128 		hweight32(valid_add_flags & valid_drop_flags);
2129 }
2130 
2131 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2132 		struct xhci_input_control_ctx *ctrl_ctx)
2133 {
2134 	u32 valid_add_flags;
2135 	u32 valid_drop_flags;
2136 
2137 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2138 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2139 
2140 	return hweight32(valid_drop_flags) -
2141 		hweight32(valid_add_flags & valid_drop_flags);
2142 }
2143 
2144 /*
2145  * We need to reserve the new number of endpoints before the configure endpoint
2146  * command completes.  We can't subtract the dropped endpoints from the number
2147  * of active endpoints until the command completes because we can oversubscribe
2148  * the host in this case:
2149  *
2150  *  - the first configure endpoint command drops more endpoints than it adds
2151  *  - a second configure endpoint command that adds more endpoints is queued
2152  *  - the first configure endpoint command fails, so the config is unchanged
2153  *  - the second command may succeed, even though there isn't enough resources
2154  *
2155  * Must be called with xhci->lock held.
2156  */
2157 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2158 		struct xhci_input_control_ctx *ctrl_ctx)
2159 {
2160 	u32 added_eps;
2161 
2162 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2163 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2164 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2165 				"Not enough ep ctxs: "
2166 				"%u active, need to add %u, limit is %u.",
2167 				xhci->num_active_eps, added_eps,
2168 				xhci->limit_active_eps);
2169 		return -ENOMEM;
2170 	}
2171 	xhci->num_active_eps += added_eps;
2172 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2173 			"Adding %u ep ctxs, %u now active.", added_eps,
2174 			xhci->num_active_eps);
2175 	return 0;
2176 }
2177 
2178 /*
2179  * The configure endpoint was failed by the xHC for some other reason, so we
2180  * need to revert the resources that failed configuration would have used.
2181  *
2182  * Must be called with xhci->lock held.
2183  */
2184 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2185 		struct xhci_input_control_ctx *ctrl_ctx)
2186 {
2187 	u32 num_failed_eps;
2188 
2189 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2190 	xhci->num_active_eps -= num_failed_eps;
2191 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2192 			"Removing %u failed ep ctxs, %u now active.",
2193 			num_failed_eps,
2194 			xhci->num_active_eps);
2195 }
2196 
2197 /*
2198  * Now that the command has completed, clean up the active endpoint count by
2199  * subtracting out the endpoints that were dropped (but not changed).
2200  *
2201  * Must be called with xhci->lock held.
2202  */
2203 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2204 		struct xhci_input_control_ctx *ctrl_ctx)
2205 {
2206 	u32 num_dropped_eps;
2207 
2208 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2209 	xhci->num_active_eps -= num_dropped_eps;
2210 	if (num_dropped_eps)
2211 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2212 				"Removing %u dropped ep ctxs, %u now active.",
2213 				num_dropped_eps,
2214 				xhci->num_active_eps);
2215 }
2216 
2217 static unsigned int xhci_get_block_size(struct usb_device *udev)
2218 {
2219 	switch (udev->speed) {
2220 	case USB_SPEED_LOW:
2221 	case USB_SPEED_FULL:
2222 		return FS_BLOCK;
2223 	case USB_SPEED_HIGH:
2224 		return HS_BLOCK;
2225 	case USB_SPEED_SUPER:
2226 	case USB_SPEED_SUPER_PLUS:
2227 		return SS_BLOCK;
2228 	case USB_SPEED_UNKNOWN:
2229 	default:
2230 		/* Should never happen */
2231 		return 1;
2232 	}
2233 }
2234 
2235 static unsigned int
2236 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2237 {
2238 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2239 		return LS_OVERHEAD;
2240 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2241 		return FS_OVERHEAD;
2242 	return HS_OVERHEAD;
2243 }
2244 
2245 /* If we are changing a LS/FS device under a HS hub,
2246  * make sure (if we are activating a new TT) that the HS bus has enough
2247  * bandwidth for this new TT.
2248  */
2249 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2250 		struct xhci_virt_device *virt_dev,
2251 		int old_active_eps)
2252 {
2253 	struct xhci_interval_bw_table *bw_table;
2254 	struct xhci_tt_bw_info *tt_info;
2255 
2256 	/* Find the bandwidth table for the root port this TT is attached to. */
2257 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2258 	tt_info = virt_dev->tt_info;
2259 	/* If this TT already had active endpoints, the bandwidth for this TT
2260 	 * has already been added.  Removing all periodic endpoints (and thus
2261 	 * making the TT enactive) will only decrease the bandwidth used.
2262 	 */
2263 	if (old_active_eps)
2264 		return 0;
2265 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2266 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2267 			return -ENOMEM;
2268 		return 0;
2269 	}
2270 	/* Not sure why we would have no new active endpoints...
2271 	 *
2272 	 * Maybe because of an Evaluate Context change for a hub update or a
2273 	 * control endpoint 0 max packet size change?
2274 	 * FIXME: skip the bandwidth calculation in that case.
2275 	 */
2276 	return 0;
2277 }
2278 
2279 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2280 		struct xhci_virt_device *virt_dev)
2281 {
2282 	unsigned int bw_reserved;
2283 
2284 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2285 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2286 		return -ENOMEM;
2287 
2288 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2289 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2290 		return -ENOMEM;
2291 
2292 	return 0;
2293 }
2294 
2295 /*
2296  * This algorithm is a very conservative estimate of the worst-case scheduling
2297  * scenario for any one interval.  The hardware dynamically schedules the
2298  * packets, so we can't tell which microframe could be the limiting factor in
2299  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2300  *
2301  * Obviously, we can't solve an NP complete problem to find the minimum worst
2302  * case scenario.  Instead, we come up with an estimate that is no less than
2303  * the worst case bandwidth used for any one microframe, but may be an
2304  * over-estimate.
2305  *
2306  * We walk the requirements for each endpoint by interval, starting with the
2307  * smallest interval, and place packets in the schedule where there is only one
2308  * possible way to schedule packets for that interval.  In order to simplify
2309  * this algorithm, we record the largest max packet size for each interval, and
2310  * assume all packets will be that size.
2311  *
2312  * For interval 0, we obviously must schedule all packets for each interval.
2313  * The bandwidth for interval 0 is just the amount of data to be transmitted
2314  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2315  * the number of packets).
2316  *
2317  * For interval 1, we have two possible microframes to schedule those packets
2318  * in.  For this algorithm, if we can schedule the same number of packets for
2319  * each possible scheduling opportunity (each microframe), we will do so.  The
2320  * remaining number of packets will be saved to be transmitted in the gaps in
2321  * the next interval's scheduling sequence.
2322  *
2323  * As we move those remaining packets to be scheduled with interval 2 packets,
2324  * we have to double the number of remaining packets to transmit.  This is
2325  * because the intervals are actually powers of 2, and we would be transmitting
2326  * the previous interval's packets twice in this interval.  We also have to be
2327  * sure that when we look at the largest max packet size for this interval, we
2328  * also look at the largest max packet size for the remaining packets and take
2329  * the greater of the two.
2330  *
2331  * The algorithm continues to evenly distribute packets in each scheduling
2332  * opportunity, and push the remaining packets out, until we get to the last
2333  * interval.  Then those packets and their associated overhead are just added
2334  * to the bandwidth used.
2335  */
2336 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2337 		struct xhci_virt_device *virt_dev,
2338 		int old_active_eps)
2339 {
2340 	unsigned int bw_reserved;
2341 	unsigned int max_bandwidth;
2342 	unsigned int bw_used;
2343 	unsigned int block_size;
2344 	struct xhci_interval_bw_table *bw_table;
2345 	unsigned int packet_size = 0;
2346 	unsigned int overhead = 0;
2347 	unsigned int packets_transmitted = 0;
2348 	unsigned int packets_remaining = 0;
2349 	unsigned int i;
2350 
2351 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2352 		return xhci_check_ss_bw(xhci, virt_dev);
2353 
2354 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2355 		max_bandwidth = HS_BW_LIMIT;
2356 		/* Convert percent of bus BW reserved to blocks reserved */
2357 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2358 	} else {
2359 		max_bandwidth = FS_BW_LIMIT;
2360 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2361 	}
2362 
2363 	bw_table = virt_dev->bw_table;
2364 	/* We need to translate the max packet size and max ESIT payloads into
2365 	 * the units the hardware uses.
2366 	 */
2367 	block_size = xhci_get_block_size(virt_dev->udev);
2368 
2369 	/* If we are manipulating a LS/FS device under a HS hub, double check
2370 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2371 	 */
2372 	if (virt_dev->tt_info) {
2373 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2374 				"Recalculating BW for rootport %u",
2375 				virt_dev->real_port);
2376 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2377 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2378 					"newly activated TT.\n");
2379 			return -ENOMEM;
2380 		}
2381 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2382 				"Recalculating BW for TT slot %u port %u",
2383 				virt_dev->tt_info->slot_id,
2384 				virt_dev->tt_info->ttport);
2385 	} else {
2386 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2387 				"Recalculating BW for rootport %u",
2388 				virt_dev->real_port);
2389 	}
2390 
2391 	/* Add in how much bandwidth will be used for interval zero, or the
2392 	 * rounded max ESIT payload + number of packets * largest overhead.
2393 	 */
2394 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2395 		bw_table->interval_bw[0].num_packets *
2396 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2397 
2398 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2399 		unsigned int bw_added;
2400 		unsigned int largest_mps;
2401 		unsigned int interval_overhead;
2402 
2403 		/*
2404 		 * How many packets could we transmit in this interval?
2405 		 * If packets didn't fit in the previous interval, we will need
2406 		 * to transmit that many packets twice within this interval.
2407 		 */
2408 		packets_remaining = 2 * packets_remaining +
2409 			bw_table->interval_bw[i].num_packets;
2410 
2411 		/* Find the largest max packet size of this or the previous
2412 		 * interval.
2413 		 */
2414 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2415 			largest_mps = 0;
2416 		else {
2417 			struct xhci_virt_ep *virt_ep;
2418 			struct list_head *ep_entry;
2419 
2420 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2421 			virt_ep = list_entry(ep_entry,
2422 					struct xhci_virt_ep, bw_endpoint_list);
2423 			/* Convert to blocks, rounding up */
2424 			largest_mps = DIV_ROUND_UP(
2425 					virt_ep->bw_info.max_packet_size,
2426 					block_size);
2427 		}
2428 		if (largest_mps > packet_size)
2429 			packet_size = largest_mps;
2430 
2431 		/* Use the larger overhead of this or the previous interval. */
2432 		interval_overhead = xhci_get_largest_overhead(
2433 				&bw_table->interval_bw[i]);
2434 		if (interval_overhead > overhead)
2435 			overhead = interval_overhead;
2436 
2437 		/* How many packets can we evenly distribute across
2438 		 * (1 << (i + 1)) possible scheduling opportunities?
2439 		 */
2440 		packets_transmitted = packets_remaining >> (i + 1);
2441 
2442 		/* Add in the bandwidth used for those scheduled packets */
2443 		bw_added = packets_transmitted * (overhead + packet_size);
2444 
2445 		/* How many packets do we have remaining to transmit? */
2446 		packets_remaining = packets_remaining % (1 << (i + 1));
2447 
2448 		/* What largest max packet size should those packets have? */
2449 		/* If we've transmitted all packets, don't carry over the
2450 		 * largest packet size.
2451 		 */
2452 		if (packets_remaining == 0) {
2453 			packet_size = 0;
2454 			overhead = 0;
2455 		} else if (packets_transmitted > 0) {
2456 			/* Otherwise if we do have remaining packets, and we've
2457 			 * scheduled some packets in this interval, take the
2458 			 * largest max packet size from endpoints with this
2459 			 * interval.
2460 			 */
2461 			packet_size = largest_mps;
2462 			overhead = interval_overhead;
2463 		}
2464 		/* Otherwise carry over packet_size and overhead from the last
2465 		 * time we had a remainder.
2466 		 */
2467 		bw_used += bw_added;
2468 		if (bw_used > max_bandwidth) {
2469 			xhci_warn(xhci, "Not enough bandwidth. "
2470 					"Proposed: %u, Max: %u\n",
2471 				bw_used, max_bandwidth);
2472 			return -ENOMEM;
2473 		}
2474 	}
2475 	/*
2476 	 * Ok, we know we have some packets left over after even-handedly
2477 	 * scheduling interval 15.  We don't know which microframes they will
2478 	 * fit into, so we over-schedule and say they will be scheduled every
2479 	 * microframe.
2480 	 */
2481 	if (packets_remaining > 0)
2482 		bw_used += overhead + packet_size;
2483 
2484 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2485 		unsigned int port_index = virt_dev->real_port - 1;
2486 
2487 		/* OK, we're manipulating a HS device attached to a
2488 		 * root port bandwidth domain.  Include the number of active TTs
2489 		 * in the bandwidth used.
2490 		 */
2491 		bw_used += TT_HS_OVERHEAD *
2492 			xhci->rh_bw[port_index].num_active_tts;
2493 	}
2494 
2495 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2496 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2497 		"Available: %u " "percent",
2498 		bw_used, max_bandwidth, bw_reserved,
2499 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2500 		max_bandwidth);
2501 
2502 	bw_used += bw_reserved;
2503 	if (bw_used > max_bandwidth) {
2504 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2505 				bw_used, max_bandwidth);
2506 		return -ENOMEM;
2507 	}
2508 
2509 	bw_table->bw_used = bw_used;
2510 	return 0;
2511 }
2512 
2513 static bool xhci_is_async_ep(unsigned int ep_type)
2514 {
2515 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2516 					ep_type != ISOC_IN_EP &&
2517 					ep_type != INT_IN_EP);
2518 }
2519 
2520 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2521 {
2522 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2523 }
2524 
2525 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2526 {
2527 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2528 
2529 	if (ep_bw->ep_interval == 0)
2530 		return SS_OVERHEAD_BURST +
2531 			(ep_bw->mult * ep_bw->num_packets *
2532 					(SS_OVERHEAD + mps));
2533 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2534 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2535 				1 << ep_bw->ep_interval);
2536 
2537 }
2538 
2539 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2540 		struct xhci_bw_info *ep_bw,
2541 		struct xhci_interval_bw_table *bw_table,
2542 		struct usb_device *udev,
2543 		struct xhci_virt_ep *virt_ep,
2544 		struct xhci_tt_bw_info *tt_info)
2545 {
2546 	struct xhci_interval_bw	*interval_bw;
2547 	int normalized_interval;
2548 
2549 	if (xhci_is_async_ep(ep_bw->type))
2550 		return;
2551 
2552 	if (udev->speed >= USB_SPEED_SUPER) {
2553 		if (xhci_is_sync_in_ep(ep_bw->type))
2554 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2555 				xhci_get_ss_bw_consumed(ep_bw);
2556 		else
2557 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2558 				xhci_get_ss_bw_consumed(ep_bw);
2559 		return;
2560 	}
2561 
2562 	/* SuperSpeed endpoints never get added to intervals in the table, so
2563 	 * this check is only valid for HS/FS/LS devices.
2564 	 */
2565 	if (list_empty(&virt_ep->bw_endpoint_list))
2566 		return;
2567 	/* For LS/FS devices, we need to translate the interval expressed in
2568 	 * microframes to frames.
2569 	 */
2570 	if (udev->speed == USB_SPEED_HIGH)
2571 		normalized_interval = ep_bw->ep_interval;
2572 	else
2573 		normalized_interval = ep_bw->ep_interval - 3;
2574 
2575 	if (normalized_interval == 0)
2576 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2577 	interval_bw = &bw_table->interval_bw[normalized_interval];
2578 	interval_bw->num_packets -= ep_bw->num_packets;
2579 	switch (udev->speed) {
2580 	case USB_SPEED_LOW:
2581 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2582 		break;
2583 	case USB_SPEED_FULL:
2584 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2585 		break;
2586 	case USB_SPEED_HIGH:
2587 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2588 		break;
2589 	default:
2590 		/* Should never happen because only LS/FS/HS endpoints will get
2591 		 * added to the endpoint list.
2592 		 */
2593 		return;
2594 	}
2595 	if (tt_info)
2596 		tt_info->active_eps -= 1;
2597 	list_del_init(&virt_ep->bw_endpoint_list);
2598 }
2599 
2600 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2601 		struct xhci_bw_info *ep_bw,
2602 		struct xhci_interval_bw_table *bw_table,
2603 		struct usb_device *udev,
2604 		struct xhci_virt_ep *virt_ep,
2605 		struct xhci_tt_bw_info *tt_info)
2606 {
2607 	struct xhci_interval_bw	*interval_bw;
2608 	struct xhci_virt_ep *smaller_ep;
2609 	int normalized_interval;
2610 
2611 	if (xhci_is_async_ep(ep_bw->type))
2612 		return;
2613 
2614 	if (udev->speed == USB_SPEED_SUPER) {
2615 		if (xhci_is_sync_in_ep(ep_bw->type))
2616 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2617 				xhci_get_ss_bw_consumed(ep_bw);
2618 		else
2619 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2620 				xhci_get_ss_bw_consumed(ep_bw);
2621 		return;
2622 	}
2623 
2624 	/* For LS/FS devices, we need to translate the interval expressed in
2625 	 * microframes to frames.
2626 	 */
2627 	if (udev->speed == USB_SPEED_HIGH)
2628 		normalized_interval = ep_bw->ep_interval;
2629 	else
2630 		normalized_interval = ep_bw->ep_interval - 3;
2631 
2632 	if (normalized_interval == 0)
2633 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2634 	interval_bw = &bw_table->interval_bw[normalized_interval];
2635 	interval_bw->num_packets += ep_bw->num_packets;
2636 	switch (udev->speed) {
2637 	case USB_SPEED_LOW:
2638 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2639 		break;
2640 	case USB_SPEED_FULL:
2641 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2642 		break;
2643 	case USB_SPEED_HIGH:
2644 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2645 		break;
2646 	default:
2647 		/* Should never happen because only LS/FS/HS endpoints will get
2648 		 * added to the endpoint list.
2649 		 */
2650 		return;
2651 	}
2652 
2653 	if (tt_info)
2654 		tt_info->active_eps += 1;
2655 	/* Insert the endpoint into the list, largest max packet size first. */
2656 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2657 			bw_endpoint_list) {
2658 		if (ep_bw->max_packet_size >=
2659 				smaller_ep->bw_info.max_packet_size) {
2660 			/* Add the new ep before the smaller endpoint */
2661 			list_add_tail(&virt_ep->bw_endpoint_list,
2662 					&smaller_ep->bw_endpoint_list);
2663 			return;
2664 		}
2665 	}
2666 	/* Add the new endpoint at the end of the list. */
2667 	list_add_tail(&virt_ep->bw_endpoint_list,
2668 			&interval_bw->endpoints);
2669 }
2670 
2671 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2672 		struct xhci_virt_device *virt_dev,
2673 		int old_active_eps)
2674 {
2675 	struct xhci_root_port_bw_info *rh_bw_info;
2676 	if (!virt_dev->tt_info)
2677 		return;
2678 
2679 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2680 	if (old_active_eps == 0 &&
2681 				virt_dev->tt_info->active_eps != 0) {
2682 		rh_bw_info->num_active_tts += 1;
2683 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2684 	} else if (old_active_eps != 0 &&
2685 				virt_dev->tt_info->active_eps == 0) {
2686 		rh_bw_info->num_active_tts -= 1;
2687 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2688 	}
2689 }
2690 
2691 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2692 		struct xhci_virt_device *virt_dev,
2693 		struct xhci_container_ctx *in_ctx)
2694 {
2695 	struct xhci_bw_info ep_bw_info[31];
2696 	int i;
2697 	struct xhci_input_control_ctx *ctrl_ctx;
2698 	int old_active_eps = 0;
2699 
2700 	if (virt_dev->tt_info)
2701 		old_active_eps = virt_dev->tt_info->active_eps;
2702 
2703 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2704 	if (!ctrl_ctx) {
2705 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2706 				__func__);
2707 		return -ENOMEM;
2708 	}
2709 
2710 	for (i = 0; i < 31; i++) {
2711 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2712 			continue;
2713 
2714 		/* Make a copy of the BW info in case we need to revert this */
2715 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2716 				sizeof(ep_bw_info[i]));
2717 		/* Drop the endpoint from the interval table if the endpoint is
2718 		 * being dropped or changed.
2719 		 */
2720 		if (EP_IS_DROPPED(ctrl_ctx, i))
2721 			xhci_drop_ep_from_interval_table(xhci,
2722 					&virt_dev->eps[i].bw_info,
2723 					virt_dev->bw_table,
2724 					virt_dev->udev,
2725 					&virt_dev->eps[i],
2726 					virt_dev->tt_info);
2727 	}
2728 	/* Overwrite the information stored in the endpoints' bw_info */
2729 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2730 	for (i = 0; i < 31; i++) {
2731 		/* Add any changed or added endpoints to the interval table */
2732 		if (EP_IS_ADDED(ctrl_ctx, i))
2733 			xhci_add_ep_to_interval_table(xhci,
2734 					&virt_dev->eps[i].bw_info,
2735 					virt_dev->bw_table,
2736 					virt_dev->udev,
2737 					&virt_dev->eps[i],
2738 					virt_dev->tt_info);
2739 	}
2740 
2741 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2742 		/* Ok, this fits in the bandwidth we have.
2743 		 * Update the number of active TTs.
2744 		 */
2745 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2746 		return 0;
2747 	}
2748 
2749 	/* We don't have enough bandwidth for this, revert the stored info. */
2750 	for (i = 0; i < 31; i++) {
2751 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2752 			continue;
2753 
2754 		/* Drop the new copies of any added or changed endpoints from
2755 		 * the interval table.
2756 		 */
2757 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2758 			xhci_drop_ep_from_interval_table(xhci,
2759 					&virt_dev->eps[i].bw_info,
2760 					virt_dev->bw_table,
2761 					virt_dev->udev,
2762 					&virt_dev->eps[i],
2763 					virt_dev->tt_info);
2764 		}
2765 		/* Revert the endpoint back to its old information */
2766 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2767 				sizeof(ep_bw_info[i]));
2768 		/* Add any changed or dropped endpoints back into the table */
2769 		if (EP_IS_DROPPED(ctrl_ctx, i))
2770 			xhci_add_ep_to_interval_table(xhci,
2771 					&virt_dev->eps[i].bw_info,
2772 					virt_dev->bw_table,
2773 					virt_dev->udev,
2774 					&virt_dev->eps[i],
2775 					virt_dev->tt_info);
2776 	}
2777 	return -ENOMEM;
2778 }
2779 
2780 
2781 /* Issue a configure endpoint command or evaluate context command
2782  * and wait for it to finish.
2783  */
2784 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2785 		struct usb_device *udev,
2786 		struct xhci_command *command,
2787 		bool ctx_change, bool must_succeed)
2788 {
2789 	int ret;
2790 	unsigned long flags;
2791 	struct xhci_input_control_ctx *ctrl_ctx;
2792 	struct xhci_virt_device *virt_dev;
2793 	struct xhci_slot_ctx *slot_ctx;
2794 
2795 	if (!command)
2796 		return -EINVAL;
2797 
2798 	spin_lock_irqsave(&xhci->lock, flags);
2799 
2800 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2801 		spin_unlock_irqrestore(&xhci->lock, flags);
2802 		return -ESHUTDOWN;
2803 	}
2804 
2805 	virt_dev = xhci->devs[udev->slot_id];
2806 
2807 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2808 	if (!ctrl_ctx) {
2809 		spin_unlock_irqrestore(&xhci->lock, flags);
2810 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2811 				__func__);
2812 		return -ENOMEM;
2813 	}
2814 
2815 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2816 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2817 		spin_unlock_irqrestore(&xhci->lock, flags);
2818 		xhci_warn(xhci, "Not enough host resources, "
2819 				"active endpoint contexts = %u\n",
2820 				xhci->num_active_eps);
2821 		return -ENOMEM;
2822 	}
2823 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2824 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2825 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2826 			xhci_free_host_resources(xhci, ctrl_ctx);
2827 		spin_unlock_irqrestore(&xhci->lock, flags);
2828 		xhci_warn(xhci, "Not enough bandwidth\n");
2829 		return -ENOMEM;
2830 	}
2831 
2832 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2833 
2834 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2835 	trace_xhci_configure_endpoint(slot_ctx);
2836 
2837 	if (!ctx_change)
2838 		ret = xhci_queue_configure_endpoint(xhci, command,
2839 				command->in_ctx->dma,
2840 				udev->slot_id, must_succeed);
2841 	else
2842 		ret = xhci_queue_evaluate_context(xhci, command,
2843 				command->in_ctx->dma,
2844 				udev->slot_id, must_succeed);
2845 	if (ret < 0) {
2846 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2847 			xhci_free_host_resources(xhci, ctrl_ctx);
2848 		spin_unlock_irqrestore(&xhci->lock, flags);
2849 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2850 				"FIXME allocate a new ring segment");
2851 		return -ENOMEM;
2852 	}
2853 	xhci_ring_cmd_db(xhci);
2854 	spin_unlock_irqrestore(&xhci->lock, flags);
2855 
2856 	/* Wait for the configure endpoint command to complete */
2857 	wait_for_completion(command->completion);
2858 
2859 	if (!ctx_change)
2860 		ret = xhci_configure_endpoint_result(xhci, udev,
2861 						     &command->status);
2862 	else
2863 		ret = xhci_evaluate_context_result(xhci, udev,
2864 						   &command->status);
2865 
2866 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2867 		spin_lock_irqsave(&xhci->lock, flags);
2868 		/* If the command failed, remove the reserved resources.
2869 		 * Otherwise, clean up the estimate to include dropped eps.
2870 		 */
2871 		if (ret)
2872 			xhci_free_host_resources(xhci, ctrl_ctx);
2873 		else
2874 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2875 		spin_unlock_irqrestore(&xhci->lock, flags);
2876 	}
2877 	return ret;
2878 }
2879 
2880 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2881 	struct xhci_virt_device *vdev, int i)
2882 {
2883 	struct xhci_virt_ep *ep = &vdev->eps[i];
2884 
2885 	if (ep->ep_state & EP_HAS_STREAMS) {
2886 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2887 				xhci_get_endpoint_address(i));
2888 		xhci_free_stream_info(xhci, ep->stream_info);
2889 		ep->stream_info = NULL;
2890 		ep->ep_state &= ~EP_HAS_STREAMS;
2891 	}
2892 }
2893 
2894 /* Called after one or more calls to xhci_add_endpoint() or
2895  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2896  * to call xhci_reset_bandwidth().
2897  *
2898  * Since we are in the middle of changing either configuration or
2899  * installing a new alt setting, the USB core won't allow URBs to be
2900  * enqueued for any endpoint on the old config or interface.  Nothing
2901  * else should be touching the xhci->devs[slot_id] structure, so we
2902  * don't need to take the xhci->lock for manipulating that.
2903  */
2904 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2905 {
2906 	int i;
2907 	int ret = 0;
2908 	struct xhci_hcd *xhci;
2909 	struct xhci_virt_device	*virt_dev;
2910 	struct xhci_input_control_ctx *ctrl_ctx;
2911 	struct xhci_slot_ctx *slot_ctx;
2912 	struct xhci_command *command;
2913 
2914 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2915 	if (ret <= 0)
2916 		return ret;
2917 	xhci = hcd_to_xhci(hcd);
2918 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2919 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2920 		return -ENODEV;
2921 
2922 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2923 	virt_dev = xhci->devs[udev->slot_id];
2924 
2925 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2926 	if (!command)
2927 		return -ENOMEM;
2928 
2929 	command->in_ctx = virt_dev->in_ctx;
2930 
2931 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2932 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2933 	if (!ctrl_ctx) {
2934 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2935 				__func__);
2936 		ret = -ENOMEM;
2937 		goto command_cleanup;
2938 	}
2939 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2940 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2941 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2942 
2943 	/* Don't issue the command if there's no endpoints to update. */
2944 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2945 	    ctrl_ctx->drop_flags == 0) {
2946 		ret = 0;
2947 		goto command_cleanup;
2948 	}
2949 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2950 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2951 	for (i = 31; i >= 1; i--) {
2952 		__le32 le32 = cpu_to_le32(BIT(i));
2953 
2954 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2955 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2956 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2957 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2958 			break;
2959 		}
2960 	}
2961 
2962 	ret = xhci_configure_endpoint(xhci, udev, command,
2963 			false, false);
2964 	if (ret)
2965 		/* Callee should call reset_bandwidth() */
2966 		goto command_cleanup;
2967 
2968 	/* Free any rings that were dropped, but not changed. */
2969 	for (i = 1; i < 31; i++) {
2970 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2971 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2972 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2973 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2974 		}
2975 	}
2976 	xhci_zero_in_ctx(xhci, virt_dev);
2977 	/*
2978 	 * Install any rings for completely new endpoints or changed endpoints,
2979 	 * and free any old rings from changed endpoints.
2980 	 */
2981 	for (i = 1; i < 31; i++) {
2982 		if (!virt_dev->eps[i].new_ring)
2983 			continue;
2984 		/* Only free the old ring if it exists.
2985 		 * It may not if this is the first add of an endpoint.
2986 		 */
2987 		if (virt_dev->eps[i].ring) {
2988 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2989 		}
2990 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2991 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2992 		virt_dev->eps[i].new_ring = NULL;
2993 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2994 	}
2995 command_cleanup:
2996 	kfree(command->completion);
2997 	kfree(command);
2998 
2999 	return ret;
3000 }
3001 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3002 
3003 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3004 {
3005 	struct xhci_hcd *xhci;
3006 	struct xhci_virt_device	*virt_dev;
3007 	int i, ret;
3008 
3009 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3010 	if (ret <= 0)
3011 		return;
3012 	xhci = hcd_to_xhci(hcd);
3013 
3014 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3015 	virt_dev = xhci->devs[udev->slot_id];
3016 	/* Free any rings allocated for added endpoints */
3017 	for (i = 0; i < 31; i++) {
3018 		if (virt_dev->eps[i].new_ring) {
3019 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3020 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3021 			virt_dev->eps[i].new_ring = NULL;
3022 		}
3023 	}
3024 	xhci_zero_in_ctx(xhci, virt_dev);
3025 }
3026 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3027 
3028 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3029 		struct xhci_container_ctx *in_ctx,
3030 		struct xhci_container_ctx *out_ctx,
3031 		struct xhci_input_control_ctx *ctrl_ctx,
3032 		u32 add_flags, u32 drop_flags)
3033 {
3034 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3035 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3036 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3037 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3038 }
3039 
3040 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3041 				  struct usb_host_endpoint *host_ep)
3042 {
3043 	struct xhci_hcd		*xhci;
3044 	struct xhci_virt_device	*vdev;
3045 	struct xhci_virt_ep	*ep;
3046 	struct usb_device	*udev;
3047 	unsigned long		flags;
3048 	unsigned int		ep_index;
3049 
3050 	xhci = hcd_to_xhci(hcd);
3051 rescan:
3052 	spin_lock_irqsave(&xhci->lock, flags);
3053 
3054 	udev = (struct usb_device *)host_ep->hcpriv;
3055 	if (!udev || !udev->slot_id)
3056 		goto done;
3057 
3058 	vdev = xhci->devs[udev->slot_id];
3059 	if (!vdev)
3060 		goto done;
3061 
3062 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3063 	ep = &vdev->eps[ep_index];
3064 
3065 	/* wait for hub_tt_work to finish clearing hub TT */
3066 	if (ep->ep_state & EP_CLEARING_TT) {
3067 		spin_unlock_irqrestore(&xhci->lock, flags);
3068 		schedule_timeout_uninterruptible(1);
3069 		goto rescan;
3070 	}
3071 
3072 	if (ep->ep_state)
3073 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3074 			 ep->ep_state);
3075 done:
3076 	host_ep->hcpriv = NULL;
3077 	spin_unlock_irqrestore(&xhci->lock, flags);
3078 }
3079 
3080 /*
3081  * Called after usb core issues a clear halt control message.
3082  * The host side of the halt should already be cleared by a reset endpoint
3083  * command issued when the STALL event was received.
3084  *
3085  * The reset endpoint command may only be issued to endpoints in the halted
3086  * state. For software that wishes to reset the data toggle or sequence number
3087  * of an endpoint that isn't in the halted state this function will issue a
3088  * configure endpoint command with the Drop and Add bits set for the target
3089  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3090  */
3091 
3092 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3093 		struct usb_host_endpoint *host_ep)
3094 {
3095 	struct xhci_hcd *xhci;
3096 	struct usb_device *udev;
3097 	struct xhci_virt_device *vdev;
3098 	struct xhci_virt_ep *ep;
3099 	struct xhci_input_control_ctx *ctrl_ctx;
3100 	struct xhci_command *stop_cmd, *cfg_cmd;
3101 	unsigned int ep_index;
3102 	unsigned long flags;
3103 	u32 ep_flag;
3104 	int err;
3105 
3106 	xhci = hcd_to_xhci(hcd);
3107 	if (!host_ep->hcpriv)
3108 		return;
3109 	udev = (struct usb_device *) host_ep->hcpriv;
3110 	vdev = xhci->devs[udev->slot_id];
3111 
3112 	/*
3113 	 * vdev may be lost due to xHC restore error and re-initialization
3114 	 * during S3/S4 resume. A new vdev will be allocated later by
3115 	 * xhci_discover_or_reset_device()
3116 	 */
3117 	if (!udev->slot_id || !vdev)
3118 		return;
3119 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3120 	ep = &vdev->eps[ep_index];
3121 
3122 	/* Bail out if toggle is already being cleared by a endpoint reset */
3123 	spin_lock_irqsave(&xhci->lock, flags);
3124 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3125 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3126 		spin_unlock_irqrestore(&xhci->lock, flags);
3127 		return;
3128 	}
3129 	spin_unlock_irqrestore(&xhci->lock, flags);
3130 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3131 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3132 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3133 		return;
3134 
3135 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3136 
3137 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3138 		return;
3139 
3140 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3141 	if (!stop_cmd)
3142 		return;
3143 
3144 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3145 	if (!cfg_cmd)
3146 		goto cleanup;
3147 
3148 	spin_lock_irqsave(&xhci->lock, flags);
3149 
3150 	/* block queuing new trbs and ringing ep doorbell */
3151 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3152 
3153 	/*
3154 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3155 	 * Driver is required to synchronously cancel all transfer request.
3156 	 * Stop the endpoint to force xHC to update the output context
3157 	 */
3158 
3159 	if (!list_empty(&ep->ring->td_list)) {
3160 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3161 		spin_unlock_irqrestore(&xhci->lock, flags);
3162 		xhci_free_command(xhci, cfg_cmd);
3163 		goto cleanup;
3164 	}
3165 
3166 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3167 					ep_index, 0);
3168 	if (err < 0) {
3169 		spin_unlock_irqrestore(&xhci->lock, flags);
3170 		xhci_free_command(xhci, cfg_cmd);
3171 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3172 				__func__, err);
3173 		goto cleanup;
3174 	}
3175 
3176 	xhci_ring_cmd_db(xhci);
3177 	spin_unlock_irqrestore(&xhci->lock, flags);
3178 
3179 	wait_for_completion(stop_cmd->completion);
3180 
3181 	spin_lock_irqsave(&xhci->lock, flags);
3182 
3183 	/* config ep command clears toggle if add and drop ep flags are set */
3184 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3185 	if (!ctrl_ctx) {
3186 		spin_unlock_irqrestore(&xhci->lock, flags);
3187 		xhci_free_command(xhci, cfg_cmd);
3188 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3189 				__func__);
3190 		goto cleanup;
3191 	}
3192 
3193 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3194 					   ctrl_ctx, ep_flag, ep_flag);
3195 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3196 
3197 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3198 				      udev->slot_id, false);
3199 	if (err < 0) {
3200 		spin_unlock_irqrestore(&xhci->lock, flags);
3201 		xhci_free_command(xhci, cfg_cmd);
3202 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3203 				__func__, err);
3204 		goto cleanup;
3205 	}
3206 
3207 	xhci_ring_cmd_db(xhci);
3208 	spin_unlock_irqrestore(&xhci->lock, flags);
3209 
3210 	wait_for_completion(cfg_cmd->completion);
3211 
3212 	xhci_free_command(xhci, cfg_cmd);
3213 cleanup:
3214 	xhci_free_command(xhci, stop_cmd);
3215 	spin_lock_irqsave(&xhci->lock, flags);
3216 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3217 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3218 	spin_unlock_irqrestore(&xhci->lock, flags);
3219 }
3220 
3221 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3222 		struct usb_device *udev, struct usb_host_endpoint *ep,
3223 		unsigned int slot_id)
3224 {
3225 	int ret;
3226 	unsigned int ep_index;
3227 	unsigned int ep_state;
3228 
3229 	if (!ep)
3230 		return -EINVAL;
3231 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3232 	if (ret <= 0)
3233 		return ret ? ret : -EINVAL;
3234 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3235 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3236 				" descriptor for ep 0x%x does not support streams\n",
3237 				ep->desc.bEndpointAddress);
3238 		return -EINVAL;
3239 	}
3240 
3241 	ep_index = xhci_get_endpoint_index(&ep->desc);
3242 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3243 	if (ep_state & EP_HAS_STREAMS ||
3244 			ep_state & EP_GETTING_STREAMS) {
3245 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3246 				"already has streams set up.\n",
3247 				ep->desc.bEndpointAddress);
3248 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3249 				"dynamic stream context array reallocation.\n");
3250 		return -EINVAL;
3251 	}
3252 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3253 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3254 				"endpoint 0x%x; URBs are pending.\n",
3255 				ep->desc.bEndpointAddress);
3256 		return -EINVAL;
3257 	}
3258 	return 0;
3259 }
3260 
3261 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3262 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3263 {
3264 	unsigned int max_streams;
3265 
3266 	/* The stream context array size must be a power of two */
3267 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3268 	/*
3269 	 * Find out how many primary stream array entries the host controller
3270 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3271 	 * level page entries), but that's an optional feature for xHCI host
3272 	 * controllers. xHCs must support at least 4 stream IDs.
3273 	 */
3274 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3275 	if (*num_stream_ctxs > max_streams) {
3276 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3277 				max_streams);
3278 		*num_stream_ctxs = max_streams;
3279 		*num_streams = max_streams;
3280 	}
3281 }
3282 
3283 /* Returns an error code if one of the endpoint already has streams.
3284  * This does not change any data structures, it only checks and gathers
3285  * information.
3286  */
3287 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3288 		struct usb_device *udev,
3289 		struct usb_host_endpoint **eps, unsigned int num_eps,
3290 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3291 {
3292 	unsigned int max_streams;
3293 	unsigned int endpoint_flag;
3294 	int i;
3295 	int ret;
3296 
3297 	for (i = 0; i < num_eps; i++) {
3298 		ret = xhci_check_streams_endpoint(xhci, udev,
3299 				eps[i], udev->slot_id);
3300 		if (ret < 0)
3301 			return ret;
3302 
3303 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3304 		if (max_streams < (*num_streams - 1)) {
3305 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3306 					eps[i]->desc.bEndpointAddress,
3307 					max_streams);
3308 			*num_streams = max_streams+1;
3309 		}
3310 
3311 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3312 		if (*changed_ep_bitmask & endpoint_flag)
3313 			return -EINVAL;
3314 		*changed_ep_bitmask |= endpoint_flag;
3315 	}
3316 	return 0;
3317 }
3318 
3319 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3320 		struct usb_device *udev,
3321 		struct usb_host_endpoint **eps, unsigned int num_eps)
3322 {
3323 	u32 changed_ep_bitmask = 0;
3324 	unsigned int slot_id;
3325 	unsigned int ep_index;
3326 	unsigned int ep_state;
3327 	int i;
3328 
3329 	slot_id = udev->slot_id;
3330 	if (!xhci->devs[slot_id])
3331 		return 0;
3332 
3333 	for (i = 0; i < num_eps; i++) {
3334 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3335 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3336 		/* Are streams already being freed for the endpoint? */
3337 		if (ep_state & EP_GETTING_NO_STREAMS) {
3338 			xhci_warn(xhci, "WARN Can't disable streams for "
3339 					"endpoint 0x%x, "
3340 					"streams are being disabled already\n",
3341 					eps[i]->desc.bEndpointAddress);
3342 			return 0;
3343 		}
3344 		/* Are there actually any streams to free? */
3345 		if (!(ep_state & EP_HAS_STREAMS) &&
3346 				!(ep_state & EP_GETTING_STREAMS)) {
3347 			xhci_warn(xhci, "WARN Can't disable streams for "
3348 					"endpoint 0x%x, "
3349 					"streams are already disabled!\n",
3350 					eps[i]->desc.bEndpointAddress);
3351 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3352 					"with non-streams endpoint\n");
3353 			return 0;
3354 		}
3355 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3356 	}
3357 	return changed_ep_bitmask;
3358 }
3359 
3360 /*
3361  * The USB device drivers use this function (through the HCD interface in USB
3362  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3363  * coordinate mass storage command queueing across multiple endpoints (basically
3364  * a stream ID == a task ID).
3365  *
3366  * Setting up streams involves allocating the same size stream context array
3367  * for each endpoint and issuing a configure endpoint command for all endpoints.
3368  *
3369  * Don't allow the call to succeed if one endpoint only supports one stream
3370  * (which means it doesn't support streams at all).
3371  *
3372  * Drivers may get less stream IDs than they asked for, if the host controller
3373  * hardware or endpoints claim they can't support the number of requested
3374  * stream IDs.
3375  */
3376 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3377 		struct usb_host_endpoint **eps, unsigned int num_eps,
3378 		unsigned int num_streams, gfp_t mem_flags)
3379 {
3380 	int i, ret;
3381 	struct xhci_hcd *xhci;
3382 	struct xhci_virt_device *vdev;
3383 	struct xhci_command *config_cmd;
3384 	struct xhci_input_control_ctx *ctrl_ctx;
3385 	unsigned int ep_index;
3386 	unsigned int num_stream_ctxs;
3387 	unsigned int max_packet;
3388 	unsigned long flags;
3389 	u32 changed_ep_bitmask = 0;
3390 
3391 	if (!eps)
3392 		return -EINVAL;
3393 
3394 	/* Add one to the number of streams requested to account for
3395 	 * stream 0 that is reserved for xHCI usage.
3396 	 */
3397 	num_streams += 1;
3398 	xhci = hcd_to_xhci(hcd);
3399 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3400 			num_streams);
3401 
3402 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3403 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3404 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3405 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3406 		return -ENOSYS;
3407 	}
3408 
3409 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3410 	if (!config_cmd)
3411 		return -ENOMEM;
3412 
3413 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3414 	if (!ctrl_ctx) {
3415 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3416 				__func__);
3417 		xhci_free_command(xhci, config_cmd);
3418 		return -ENOMEM;
3419 	}
3420 
3421 	/* Check to make sure all endpoints are not already configured for
3422 	 * streams.  While we're at it, find the maximum number of streams that
3423 	 * all the endpoints will support and check for duplicate endpoints.
3424 	 */
3425 	spin_lock_irqsave(&xhci->lock, flags);
3426 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3427 			num_eps, &num_streams, &changed_ep_bitmask);
3428 	if (ret < 0) {
3429 		xhci_free_command(xhci, config_cmd);
3430 		spin_unlock_irqrestore(&xhci->lock, flags);
3431 		return ret;
3432 	}
3433 	if (num_streams <= 1) {
3434 		xhci_warn(xhci, "WARN: endpoints can't handle "
3435 				"more than one stream.\n");
3436 		xhci_free_command(xhci, config_cmd);
3437 		spin_unlock_irqrestore(&xhci->lock, flags);
3438 		return -EINVAL;
3439 	}
3440 	vdev = xhci->devs[udev->slot_id];
3441 	/* Mark each endpoint as being in transition, so
3442 	 * xhci_urb_enqueue() will reject all URBs.
3443 	 */
3444 	for (i = 0; i < num_eps; i++) {
3445 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3446 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3447 	}
3448 	spin_unlock_irqrestore(&xhci->lock, flags);
3449 
3450 	/* Setup internal data structures and allocate HW data structures for
3451 	 * streams (but don't install the HW structures in the input context
3452 	 * until we're sure all memory allocation succeeded).
3453 	 */
3454 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3455 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3456 			num_stream_ctxs, num_streams);
3457 
3458 	for (i = 0; i < num_eps; i++) {
3459 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3460 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3461 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3462 				num_stream_ctxs,
3463 				num_streams,
3464 				max_packet, mem_flags);
3465 		if (!vdev->eps[ep_index].stream_info)
3466 			goto cleanup;
3467 		/* Set maxPstreams in endpoint context and update deq ptr to
3468 		 * point to stream context array. FIXME
3469 		 */
3470 	}
3471 
3472 	/* Set up the input context for a configure endpoint command. */
3473 	for (i = 0; i < num_eps; i++) {
3474 		struct xhci_ep_ctx *ep_ctx;
3475 
3476 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3477 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3478 
3479 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3480 				vdev->out_ctx, ep_index);
3481 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3482 				vdev->eps[ep_index].stream_info);
3483 	}
3484 	/* Tell the HW to drop its old copy of the endpoint context info
3485 	 * and add the updated copy from the input context.
3486 	 */
3487 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3488 			vdev->out_ctx, ctrl_ctx,
3489 			changed_ep_bitmask, changed_ep_bitmask);
3490 
3491 	/* Issue and wait for the configure endpoint command */
3492 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3493 			false, false);
3494 
3495 	/* xHC rejected the configure endpoint command for some reason, so we
3496 	 * leave the old ring intact and free our internal streams data
3497 	 * structure.
3498 	 */
3499 	if (ret < 0)
3500 		goto cleanup;
3501 
3502 	spin_lock_irqsave(&xhci->lock, flags);
3503 	for (i = 0; i < num_eps; i++) {
3504 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3505 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3506 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3507 			 udev->slot_id, ep_index);
3508 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3509 	}
3510 	xhci_free_command(xhci, config_cmd);
3511 	spin_unlock_irqrestore(&xhci->lock, flags);
3512 
3513 	for (i = 0; i < num_eps; i++) {
3514 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3515 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3516 	}
3517 	/* Subtract 1 for stream 0, which drivers can't use */
3518 	return num_streams - 1;
3519 
3520 cleanup:
3521 	/* If it didn't work, free the streams! */
3522 	for (i = 0; i < num_eps; i++) {
3523 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3524 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3525 		vdev->eps[ep_index].stream_info = NULL;
3526 		/* FIXME Unset maxPstreams in endpoint context and
3527 		 * update deq ptr to point to normal string ring.
3528 		 */
3529 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3530 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3531 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3532 	}
3533 	xhci_free_command(xhci, config_cmd);
3534 	return -ENOMEM;
3535 }
3536 
3537 /* Transition the endpoint from using streams to being a "normal" endpoint
3538  * without streams.
3539  *
3540  * Modify the endpoint context state, submit a configure endpoint command,
3541  * and free all endpoint rings for streams if that completes successfully.
3542  */
3543 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3544 		struct usb_host_endpoint **eps, unsigned int num_eps,
3545 		gfp_t mem_flags)
3546 {
3547 	int i, ret;
3548 	struct xhci_hcd *xhci;
3549 	struct xhci_virt_device *vdev;
3550 	struct xhci_command *command;
3551 	struct xhci_input_control_ctx *ctrl_ctx;
3552 	unsigned int ep_index;
3553 	unsigned long flags;
3554 	u32 changed_ep_bitmask;
3555 
3556 	xhci = hcd_to_xhci(hcd);
3557 	vdev = xhci->devs[udev->slot_id];
3558 
3559 	/* Set up a configure endpoint command to remove the streams rings */
3560 	spin_lock_irqsave(&xhci->lock, flags);
3561 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3562 			udev, eps, num_eps);
3563 	if (changed_ep_bitmask == 0) {
3564 		spin_unlock_irqrestore(&xhci->lock, flags);
3565 		return -EINVAL;
3566 	}
3567 
3568 	/* Use the xhci_command structure from the first endpoint.  We may have
3569 	 * allocated too many, but the driver may call xhci_free_streams() for
3570 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3571 	 */
3572 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3573 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3574 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3575 	if (!ctrl_ctx) {
3576 		spin_unlock_irqrestore(&xhci->lock, flags);
3577 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3578 				__func__);
3579 		return -EINVAL;
3580 	}
3581 
3582 	for (i = 0; i < num_eps; i++) {
3583 		struct xhci_ep_ctx *ep_ctx;
3584 
3585 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3586 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3587 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3588 			EP_GETTING_NO_STREAMS;
3589 
3590 		xhci_endpoint_copy(xhci, command->in_ctx,
3591 				vdev->out_ctx, ep_index);
3592 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3593 				&vdev->eps[ep_index]);
3594 	}
3595 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3596 			vdev->out_ctx, ctrl_ctx,
3597 			changed_ep_bitmask, changed_ep_bitmask);
3598 	spin_unlock_irqrestore(&xhci->lock, flags);
3599 
3600 	/* Issue and wait for the configure endpoint command,
3601 	 * which must succeed.
3602 	 */
3603 	ret = xhci_configure_endpoint(xhci, udev, command,
3604 			false, true);
3605 
3606 	/* xHC rejected the configure endpoint command for some reason, so we
3607 	 * leave the streams rings intact.
3608 	 */
3609 	if (ret < 0)
3610 		return ret;
3611 
3612 	spin_lock_irqsave(&xhci->lock, flags);
3613 	for (i = 0; i < num_eps; i++) {
3614 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3615 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3616 		vdev->eps[ep_index].stream_info = NULL;
3617 		/* FIXME Unset maxPstreams in endpoint context and
3618 		 * update deq ptr to point to normal string ring.
3619 		 */
3620 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3621 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3622 	}
3623 	spin_unlock_irqrestore(&xhci->lock, flags);
3624 
3625 	return 0;
3626 }
3627 
3628 /*
3629  * Deletes endpoint resources for endpoints that were active before a Reset
3630  * Device command, or a Disable Slot command.  The Reset Device command leaves
3631  * the control endpoint intact, whereas the Disable Slot command deletes it.
3632  *
3633  * Must be called with xhci->lock held.
3634  */
3635 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3636 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3637 {
3638 	int i;
3639 	unsigned int num_dropped_eps = 0;
3640 	unsigned int drop_flags = 0;
3641 
3642 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3643 		if (virt_dev->eps[i].ring) {
3644 			drop_flags |= 1 << i;
3645 			num_dropped_eps++;
3646 		}
3647 	}
3648 	xhci->num_active_eps -= num_dropped_eps;
3649 	if (num_dropped_eps)
3650 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3651 				"Dropped %u ep ctxs, flags = 0x%x, "
3652 				"%u now active.",
3653 				num_dropped_eps, drop_flags,
3654 				xhci->num_active_eps);
3655 }
3656 
3657 /*
3658  * This submits a Reset Device Command, which will set the device state to 0,
3659  * set the device address to 0, and disable all the endpoints except the default
3660  * control endpoint.  The USB core should come back and call
3661  * xhci_address_device(), and then re-set up the configuration.  If this is
3662  * called because of a usb_reset_and_verify_device(), then the old alternate
3663  * settings will be re-installed through the normal bandwidth allocation
3664  * functions.
3665  *
3666  * Wait for the Reset Device command to finish.  Remove all structures
3667  * associated with the endpoints that were disabled.  Clear the input device
3668  * structure? Reset the control endpoint 0 max packet size?
3669  *
3670  * If the virt_dev to be reset does not exist or does not match the udev,
3671  * it means the device is lost, possibly due to the xHC restore error and
3672  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3673  * re-allocate the device.
3674  */
3675 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3676 		struct usb_device *udev)
3677 {
3678 	int ret, i;
3679 	unsigned long flags;
3680 	struct xhci_hcd *xhci;
3681 	unsigned int slot_id;
3682 	struct xhci_virt_device *virt_dev;
3683 	struct xhci_command *reset_device_cmd;
3684 	struct xhci_slot_ctx *slot_ctx;
3685 	int old_active_eps = 0;
3686 
3687 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3688 	if (ret <= 0)
3689 		return ret;
3690 	xhci = hcd_to_xhci(hcd);
3691 	slot_id = udev->slot_id;
3692 	virt_dev = xhci->devs[slot_id];
3693 	if (!virt_dev) {
3694 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3695 				"not exist. Re-allocate the device\n", slot_id);
3696 		ret = xhci_alloc_dev(hcd, udev);
3697 		if (ret == 1)
3698 			return 0;
3699 		else
3700 			return -EINVAL;
3701 	}
3702 
3703 	if (virt_dev->tt_info)
3704 		old_active_eps = virt_dev->tt_info->active_eps;
3705 
3706 	if (virt_dev->udev != udev) {
3707 		/* If the virt_dev and the udev does not match, this virt_dev
3708 		 * may belong to another udev.
3709 		 * Re-allocate the device.
3710 		 */
3711 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3712 				"not match the udev. Re-allocate the device\n",
3713 				slot_id);
3714 		ret = xhci_alloc_dev(hcd, udev);
3715 		if (ret == 1)
3716 			return 0;
3717 		else
3718 			return -EINVAL;
3719 	}
3720 
3721 	/* If device is not setup, there is no point in resetting it */
3722 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3723 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3724 						SLOT_STATE_DISABLED)
3725 		return 0;
3726 
3727 	trace_xhci_discover_or_reset_device(slot_ctx);
3728 
3729 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3730 	/* Allocate the command structure that holds the struct completion.
3731 	 * Assume we're in process context, since the normal device reset
3732 	 * process has to wait for the device anyway.  Storage devices are
3733 	 * reset as part of error handling, so use GFP_NOIO instead of
3734 	 * GFP_KERNEL.
3735 	 */
3736 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3737 	if (!reset_device_cmd) {
3738 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3739 		return -ENOMEM;
3740 	}
3741 
3742 	/* Attempt to submit the Reset Device command to the command ring */
3743 	spin_lock_irqsave(&xhci->lock, flags);
3744 
3745 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3746 	if (ret) {
3747 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3748 		spin_unlock_irqrestore(&xhci->lock, flags);
3749 		goto command_cleanup;
3750 	}
3751 	xhci_ring_cmd_db(xhci);
3752 	spin_unlock_irqrestore(&xhci->lock, flags);
3753 
3754 	/* Wait for the Reset Device command to finish */
3755 	wait_for_completion(reset_device_cmd->completion);
3756 
3757 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3758 	 * unless we tried to reset a slot ID that wasn't enabled,
3759 	 * or the device wasn't in the addressed or configured state.
3760 	 */
3761 	ret = reset_device_cmd->status;
3762 	switch (ret) {
3763 	case COMP_COMMAND_ABORTED:
3764 	case COMP_COMMAND_RING_STOPPED:
3765 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3766 		ret = -ETIME;
3767 		goto command_cleanup;
3768 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3769 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3770 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3771 				slot_id,
3772 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3773 		xhci_dbg(xhci, "Not freeing device rings.\n");
3774 		/* Don't treat this as an error.  May change my mind later. */
3775 		ret = 0;
3776 		goto command_cleanup;
3777 	case COMP_SUCCESS:
3778 		xhci_dbg(xhci, "Successful reset device command.\n");
3779 		break;
3780 	default:
3781 		if (xhci_is_vendor_info_code(xhci, ret))
3782 			break;
3783 		xhci_warn(xhci, "Unknown completion code %u for "
3784 				"reset device command.\n", ret);
3785 		ret = -EINVAL;
3786 		goto command_cleanup;
3787 	}
3788 
3789 	/* Free up host controller endpoint resources */
3790 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3791 		spin_lock_irqsave(&xhci->lock, flags);
3792 		/* Don't delete the default control endpoint resources */
3793 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3794 		spin_unlock_irqrestore(&xhci->lock, flags);
3795 	}
3796 
3797 	/* Everything but endpoint 0 is disabled, so free the rings. */
3798 	for (i = 1; i < 31; i++) {
3799 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3800 
3801 		if (ep->ep_state & EP_HAS_STREAMS) {
3802 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3803 					xhci_get_endpoint_address(i));
3804 			xhci_free_stream_info(xhci, ep->stream_info);
3805 			ep->stream_info = NULL;
3806 			ep->ep_state &= ~EP_HAS_STREAMS;
3807 		}
3808 
3809 		if (ep->ring) {
3810 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3811 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3812 		}
3813 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3814 			xhci_drop_ep_from_interval_table(xhci,
3815 					&virt_dev->eps[i].bw_info,
3816 					virt_dev->bw_table,
3817 					udev,
3818 					&virt_dev->eps[i],
3819 					virt_dev->tt_info);
3820 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3821 	}
3822 	/* If necessary, update the number of active TTs on this root port */
3823 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3824 	virt_dev->flags = 0;
3825 	ret = 0;
3826 
3827 command_cleanup:
3828 	xhci_free_command(xhci, reset_device_cmd);
3829 	return ret;
3830 }
3831 
3832 /*
3833  * At this point, the struct usb_device is about to go away, the device has
3834  * disconnected, and all traffic has been stopped and the endpoints have been
3835  * disabled.  Free any HC data structures associated with that device.
3836  */
3837 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3838 {
3839 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3840 	struct xhci_virt_device *virt_dev;
3841 	struct xhci_slot_ctx *slot_ctx;
3842 	unsigned long flags;
3843 	int i, ret;
3844 
3845 	/*
3846 	 * We called pm_runtime_get_noresume when the device was attached.
3847 	 * Decrement the counter here to allow controller to runtime suspend
3848 	 * if no devices remain.
3849 	 */
3850 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3851 		pm_runtime_put_noidle(hcd->self.controller);
3852 
3853 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3854 	/* If the host is halted due to driver unload, we still need to free the
3855 	 * device.
3856 	 */
3857 	if (ret <= 0 && ret != -ENODEV)
3858 		return;
3859 
3860 	virt_dev = xhci->devs[udev->slot_id];
3861 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3862 	trace_xhci_free_dev(slot_ctx);
3863 
3864 	/* Stop any wayward timer functions (which may grab the lock) */
3865 	for (i = 0; i < 31; i++)
3866 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3867 	virt_dev->udev = NULL;
3868 	xhci_disable_slot(xhci, udev->slot_id);
3869 
3870 	spin_lock_irqsave(&xhci->lock, flags);
3871 	xhci_free_virt_device(xhci, udev->slot_id);
3872 	spin_unlock_irqrestore(&xhci->lock, flags);
3873 
3874 }
3875 
3876 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3877 {
3878 	struct xhci_command *command;
3879 	unsigned long flags;
3880 	u32 state;
3881 	int ret;
3882 
3883 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3884 	if (!command)
3885 		return -ENOMEM;
3886 
3887 	xhci_debugfs_remove_slot(xhci, slot_id);
3888 
3889 	spin_lock_irqsave(&xhci->lock, flags);
3890 	/* Don't disable the slot if the host controller is dead. */
3891 	state = readl(&xhci->op_regs->status);
3892 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3893 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3894 		spin_unlock_irqrestore(&xhci->lock, flags);
3895 		kfree(command);
3896 		return -ENODEV;
3897 	}
3898 
3899 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3900 				slot_id);
3901 	if (ret) {
3902 		spin_unlock_irqrestore(&xhci->lock, flags);
3903 		kfree(command);
3904 		return ret;
3905 	}
3906 	xhci_ring_cmd_db(xhci);
3907 	spin_unlock_irqrestore(&xhci->lock, flags);
3908 
3909 	wait_for_completion(command->completion);
3910 
3911 	if (command->status != COMP_SUCCESS)
3912 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3913 			  slot_id, command->status);
3914 
3915 	xhci_free_command(xhci, command);
3916 
3917 	return 0;
3918 }
3919 
3920 /*
3921  * Checks if we have enough host controller resources for the default control
3922  * endpoint.
3923  *
3924  * Must be called with xhci->lock held.
3925  */
3926 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3927 {
3928 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3929 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3930 				"Not enough ep ctxs: "
3931 				"%u active, need to add 1, limit is %u.",
3932 				xhci->num_active_eps, xhci->limit_active_eps);
3933 		return -ENOMEM;
3934 	}
3935 	xhci->num_active_eps += 1;
3936 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3937 			"Adding 1 ep ctx, %u now active.",
3938 			xhci->num_active_eps);
3939 	return 0;
3940 }
3941 
3942 
3943 /*
3944  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3945  * timed out, or allocating memory failed.  Returns 1 on success.
3946  */
3947 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3948 {
3949 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3950 	struct xhci_virt_device *vdev;
3951 	struct xhci_slot_ctx *slot_ctx;
3952 	unsigned long flags;
3953 	int ret, slot_id;
3954 	struct xhci_command *command;
3955 
3956 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3957 	if (!command)
3958 		return 0;
3959 
3960 	spin_lock_irqsave(&xhci->lock, flags);
3961 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3962 	if (ret) {
3963 		spin_unlock_irqrestore(&xhci->lock, flags);
3964 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3965 		xhci_free_command(xhci, command);
3966 		return 0;
3967 	}
3968 	xhci_ring_cmd_db(xhci);
3969 	spin_unlock_irqrestore(&xhci->lock, flags);
3970 
3971 	wait_for_completion(command->completion);
3972 	slot_id = command->slot_id;
3973 
3974 	if (!slot_id || command->status != COMP_SUCCESS) {
3975 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
3976 			 xhci_trb_comp_code_string(command->status));
3977 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3978 				HCS_MAX_SLOTS(
3979 					readl(&xhci->cap_regs->hcs_params1)));
3980 		xhci_free_command(xhci, command);
3981 		return 0;
3982 	}
3983 
3984 	xhci_free_command(xhci, command);
3985 
3986 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3987 		spin_lock_irqsave(&xhci->lock, flags);
3988 		ret = xhci_reserve_host_control_ep_resources(xhci);
3989 		if (ret) {
3990 			spin_unlock_irqrestore(&xhci->lock, flags);
3991 			xhci_warn(xhci, "Not enough host resources, "
3992 					"active endpoint contexts = %u\n",
3993 					xhci->num_active_eps);
3994 			goto disable_slot;
3995 		}
3996 		spin_unlock_irqrestore(&xhci->lock, flags);
3997 	}
3998 	/* Use GFP_NOIO, since this function can be called from
3999 	 * xhci_discover_or_reset_device(), which may be called as part of
4000 	 * mass storage driver error handling.
4001 	 */
4002 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4003 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4004 		goto disable_slot;
4005 	}
4006 	vdev = xhci->devs[slot_id];
4007 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4008 	trace_xhci_alloc_dev(slot_ctx);
4009 
4010 	udev->slot_id = slot_id;
4011 
4012 	xhci_debugfs_create_slot(xhci, slot_id);
4013 
4014 	/*
4015 	 * If resetting upon resume, we can't put the controller into runtime
4016 	 * suspend if there is a device attached.
4017 	 */
4018 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4019 		pm_runtime_get_noresume(hcd->self.controller);
4020 
4021 	/* Is this a LS or FS device under a HS hub? */
4022 	/* Hub or peripherial? */
4023 	return 1;
4024 
4025 disable_slot:
4026 	xhci_disable_slot(xhci, udev->slot_id);
4027 	xhci_free_virt_device(xhci, udev->slot_id);
4028 
4029 	return 0;
4030 }
4031 
4032 /*
4033  * Issue an Address Device command and optionally send a corresponding
4034  * SetAddress request to the device.
4035  */
4036 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4037 			     enum xhci_setup_dev setup)
4038 {
4039 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4040 	unsigned long flags;
4041 	struct xhci_virt_device *virt_dev;
4042 	int ret = 0;
4043 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4044 	struct xhci_slot_ctx *slot_ctx;
4045 	struct xhci_input_control_ctx *ctrl_ctx;
4046 	u64 temp_64;
4047 	struct xhci_command *command = NULL;
4048 
4049 	mutex_lock(&xhci->mutex);
4050 
4051 	if (xhci->xhc_state) {	/* dying, removing or halted */
4052 		ret = -ESHUTDOWN;
4053 		goto out;
4054 	}
4055 
4056 	if (!udev->slot_id) {
4057 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4058 				"Bad Slot ID %d", udev->slot_id);
4059 		ret = -EINVAL;
4060 		goto out;
4061 	}
4062 
4063 	virt_dev = xhci->devs[udev->slot_id];
4064 
4065 	if (WARN_ON(!virt_dev)) {
4066 		/*
4067 		 * In plug/unplug torture test with an NEC controller,
4068 		 * a zero-dereference was observed once due to virt_dev = 0.
4069 		 * Print useful debug rather than crash if it is observed again!
4070 		 */
4071 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4072 			udev->slot_id);
4073 		ret = -EINVAL;
4074 		goto out;
4075 	}
4076 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4077 	trace_xhci_setup_device_slot(slot_ctx);
4078 
4079 	if (setup == SETUP_CONTEXT_ONLY) {
4080 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4081 		    SLOT_STATE_DEFAULT) {
4082 			xhci_dbg(xhci, "Slot already in default state\n");
4083 			goto out;
4084 		}
4085 	}
4086 
4087 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4088 	if (!command) {
4089 		ret = -ENOMEM;
4090 		goto out;
4091 	}
4092 
4093 	command->in_ctx = virt_dev->in_ctx;
4094 
4095 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4096 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4097 	if (!ctrl_ctx) {
4098 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4099 				__func__);
4100 		ret = -EINVAL;
4101 		goto out;
4102 	}
4103 	/*
4104 	 * If this is the first Set Address since device plug-in or
4105 	 * virt_device realloaction after a resume with an xHCI power loss,
4106 	 * then set up the slot context.
4107 	 */
4108 	if (!slot_ctx->dev_info)
4109 		xhci_setup_addressable_virt_dev(xhci, udev);
4110 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4111 	else
4112 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4113 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4114 	ctrl_ctx->drop_flags = 0;
4115 
4116 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4117 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4118 
4119 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4120 	spin_lock_irqsave(&xhci->lock, flags);
4121 	trace_xhci_setup_device(virt_dev);
4122 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4123 					udev->slot_id, setup);
4124 	if (ret) {
4125 		spin_unlock_irqrestore(&xhci->lock, flags);
4126 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4127 				"FIXME: allocate a command ring segment");
4128 		goto out;
4129 	}
4130 	xhci_ring_cmd_db(xhci);
4131 	spin_unlock_irqrestore(&xhci->lock, flags);
4132 
4133 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4134 	wait_for_completion(command->completion);
4135 
4136 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4137 	 * the SetAddress() "recovery interval" required by USB and aborting the
4138 	 * command on a timeout.
4139 	 */
4140 	switch (command->status) {
4141 	case COMP_COMMAND_ABORTED:
4142 	case COMP_COMMAND_RING_STOPPED:
4143 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4144 		ret = -ETIME;
4145 		break;
4146 	case COMP_CONTEXT_STATE_ERROR:
4147 	case COMP_SLOT_NOT_ENABLED_ERROR:
4148 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4149 			 act, udev->slot_id);
4150 		ret = -EINVAL;
4151 		break;
4152 	case COMP_USB_TRANSACTION_ERROR:
4153 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4154 
4155 		mutex_unlock(&xhci->mutex);
4156 		ret = xhci_disable_slot(xhci, udev->slot_id);
4157 		xhci_free_virt_device(xhci, udev->slot_id);
4158 		if (!ret)
4159 			xhci_alloc_dev(hcd, udev);
4160 		kfree(command->completion);
4161 		kfree(command);
4162 		return -EPROTO;
4163 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4164 		dev_warn(&udev->dev,
4165 			 "ERROR: Incompatible device for setup %s command\n", act);
4166 		ret = -ENODEV;
4167 		break;
4168 	case COMP_SUCCESS:
4169 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4170 			       "Successful setup %s command", act);
4171 		break;
4172 	default:
4173 		xhci_err(xhci,
4174 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4175 			 act, command->status);
4176 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4177 		ret = -EINVAL;
4178 		break;
4179 	}
4180 	if (ret)
4181 		goto out;
4182 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4183 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4184 			"Op regs DCBAA ptr = %#016llx", temp_64);
4185 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4186 		"Slot ID %d dcbaa entry @%p = %#016llx",
4187 		udev->slot_id,
4188 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4189 		(unsigned long long)
4190 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4191 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4192 			"Output Context DMA address = %#08llx",
4193 			(unsigned long long)virt_dev->out_ctx->dma);
4194 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4195 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4196 	/*
4197 	 * USB core uses address 1 for the roothubs, so we add one to the
4198 	 * address given back to us by the HC.
4199 	 */
4200 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4201 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4202 	/* Zero the input context control for later use */
4203 	ctrl_ctx->add_flags = 0;
4204 	ctrl_ctx->drop_flags = 0;
4205 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4206 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4207 
4208 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4209 		       "Internal device address = %d",
4210 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4211 out:
4212 	mutex_unlock(&xhci->mutex);
4213 	if (command) {
4214 		kfree(command->completion);
4215 		kfree(command);
4216 	}
4217 	return ret;
4218 }
4219 
4220 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4221 {
4222 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4223 }
4224 
4225 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4226 {
4227 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4228 }
4229 
4230 /*
4231  * Transfer the port index into real index in the HW port status
4232  * registers. Caculate offset between the port's PORTSC register
4233  * and port status base. Divide the number of per port register
4234  * to get the real index. The raw port number bases 1.
4235  */
4236 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4237 {
4238 	struct xhci_hub *rhub;
4239 
4240 	rhub = xhci_get_rhub(hcd);
4241 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4242 }
4243 
4244 /*
4245  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4246  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4247  */
4248 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4249 			struct usb_device *udev, u16 max_exit_latency)
4250 {
4251 	struct xhci_virt_device *virt_dev;
4252 	struct xhci_command *command;
4253 	struct xhci_input_control_ctx *ctrl_ctx;
4254 	struct xhci_slot_ctx *slot_ctx;
4255 	unsigned long flags;
4256 	int ret;
4257 
4258 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4259 	if (!command)
4260 		return -ENOMEM;
4261 
4262 	spin_lock_irqsave(&xhci->lock, flags);
4263 
4264 	virt_dev = xhci->devs[udev->slot_id];
4265 
4266 	/*
4267 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4268 	 * xHC was re-initialized. Exit latency will be set later after
4269 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4270 	 */
4271 
4272 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4273 		spin_unlock_irqrestore(&xhci->lock, flags);
4274 		xhci_free_command(xhci, command);
4275 		return 0;
4276 	}
4277 
4278 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4279 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4280 	if (!ctrl_ctx) {
4281 		spin_unlock_irqrestore(&xhci->lock, flags);
4282 		xhci_free_command(xhci, command);
4283 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4284 				__func__);
4285 		return -ENOMEM;
4286 	}
4287 
4288 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4289 	spin_unlock_irqrestore(&xhci->lock, flags);
4290 
4291 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4292 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4293 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4294 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4295 	slot_ctx->dev_state = 0;
4296 
4297 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4298 			"Set up evaluate context for LPM MEL change.");
4299 
4300 	/* Issue and wait for the evaluate context command. */
4301 	ret = xhci_configure_endpoint(xhci, udev, command,
4302 			true, true);
4303 
4304 	if (!ret) {
4305 		spin_lock_irqsave(&xhci->lock, flags);
4306 		virt_dev->current_mel = max_exit_latency;
4307 		spin_unlock_irqrestore(&xhci->lock, flags);
4308 	}
4309 
4310 	xhci_free_command(xhci, command);
4311 
4312 	return ret;
4313 }
4314 
4315 #ifdef CONFIG_PM
4316 
4317 /* BESL to HIRD Encoding array for USB2 LPM */
4318 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4319 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4320 
4321 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4322 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4323 					struct usb_device *udev)
4324 {
4325 	int u2del, besl, besl_host;
4326 	int besl_device = 0;
4327 	u32 field;
4328 
4329 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4330 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4331 
4332 	if (field & USB_BESL_SUPPORT) {
4333 		for (besl_host = 0; besl_host < 16; besl_host++) {
4334 			if (xhci_besl_encoding[besl_host] >= u2del)
4335 				break;
4336 		}
4337 		/* Use baseline BESL value as default */
4338 		if (field & USB_BESL_BASELINE_VALID)
4339 			besl_device = USB_GET_BESL_BASELINE(field);
4340 		else if (field & USB_BESL_DEEP_VALID)
4341 			besl_device = USB_GET_BESL_DEEP(field);
4342 	} else {
4343 		if (u2del <= 50)
4344 			besl_host = 0;
4345 		else
4346 			besl_host = (u2del - 51) / 75 + 1;
4347 	}
4348 
4349 	besl = besl_host + besl_device;
4350 	if (besl > 15)
4351 		besl = 15;
4352 
4353 	return besl;
4354 }
4355 
4356 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4357 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4358 {
4359 	u32 field;
4360 	int l1;
4361 	int besld = 0;
4362 	int hirdm = 0;
4363 
4364 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4365 
4366 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4367 	l1 = udev->l1_params.timeout / 256;
4368 
4369 	/* device has preferred BESLD */
4370 	if (field & USB_BESL_DEEP_VALID) {
4371 		besld = USB_GET_BESL_DEEP(field);
4372 		hirdm = 1;
4373 	}
4374 
4375 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4376 }
4377 
4378 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4379 			struct usb_device *udev, int enable)
4380 {
4381 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4382 	struct xhci_port **ports;
4383 	__le32 __iomem	*pm_addr, *hlpm_addr;
4384 	u32		pm_val, hlpm_val, field;
4385 	unsigned int	port_num;
4386 	unsigned long	flags;
4387 	int		hird, exit_latency;
4388 	int		ret;
4389 
4390 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4391 		return -EPERM;
4392 
4393 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4394 			!udev->lpm_capable)
4395 		return -EPERM;
4396 
4397 	if (!udev->parent || udev->parent->parent ||
4398 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4399 		return -EPERM;
4400 
4401 	if (udev->usb2_hw_lpm_capable != 1)
4402 		return -EPERM;
4403 
4404 	spin_lock_irqsave(&xhci->lock, flags);
4405 
4406 	ports = xhci->usb2_rhub.ports;
4407 	port_num = udev->portnum - 1;
4408 	pm_addr = ports[port_num]->addr + PORTPMSC;
4409 	pm_val = readl(pm_addr);
4410 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4411 
4412 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4413 			enable ? "enable" : "disable", port_num + 1);
4414 
4415 	if (enable) {
4416 		/* Host supports BESL timeout instead of HIRD */
4417 		if (udev->usb2_hw_lpm_besl_capable) {
4418 			/* if device doesn't have a preferred BESL value use a
4419 			 * default one which works with mixed HIRD and BESL
4420 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4421 			 */
4422 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4423 			if ((field & USB_BESL_SUPPORT) &&
4424 			    (field & USB_BESL_BASELINE_VALID))
4425 				hird = USB_GET_BESL_BASELINE(field);
4426 			else
4427 				hird = udev->l1_params.besl;
4428 
4429 			exit_latency = xhci_besl_encoding[hird];
4430 			spin_unlock_irqrestore(&xhci->lock, flags);
4431 
4432 			ret = xhci_change_max_exit_latency(xhci, udev,
4433 							   exit_latency);
4434 			if (ret < 0)
4435 				return ret;
4436 			spin_lock_irqsave(&xhci->lock, flags);
4437 
4438 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4439 			writel(hlpm_val, hlpm_addr);
4440 			/* flush write */
4441 			readl(hlpm_addr);
4442 		} else {
4443 			hird = xhci_calculate_hird_besl(xhci, udev);
4444 		}
4445 
4446 		pm_val &= ~PORT_HIRD_MASK;
4447 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4448 		writel(pm_val, pm_addr);
4449 		pm_val = readl(pm_addr);
4450 		pm_val |= PORT_HLE;
4451 		writel(pm_val, pm_addr);
4452 		/* flush write */
4453 		readl(pm_addr);
4454 	} else {
4455 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4456 		writel(pm_val, pm_addr);
4457 		/* flush write */
4458 		readl(pm_addr);
4459 		if (udev->usb2_hw_lpm_besl_capable) {
4460 			spin_unlock_irqrestore(&xhci->lock, flags);
4461 			xhci_change_max_exit_latency(xhci, udev, 0);
4462 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4463 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4464 					   100, 10000);
4465 			return 0;
4466 		}
4467 	}
4468 
4469 	spin_unlock_irqrestore(&xhci->lock, flags);
4470 	return 0;
4471 }
4472 
4473 /* check if a usb2 port supports a given extened capability protocol
4474  * only USB2 ports extended protocol capability values are cached.
4475  * Return 1 if capability is supported
4476  */
4477 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4478 					   unsigned capability)
4479 {
4480 	u32 port_offset, port_count;
4481 	int i;
4482 
4483 	for (i = 0; i < xhci->num_ext_caps; i++) {
4484 		if (xhci->ext_caps[i] & capability) {
4485 			/* port offsets starts at 1 */
4486 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4487 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4488 			if (port >= port_offset &&
4489 			    port < port_offset + port_count)
4490 				return 1;
4491 		}
4492 	}
4493 	return 0;
4494 }
4495 
4496 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4497 {
4498 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4499 	int		portnum = udev->portnum - 1;
4500 
4501 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4502 		return 0;
4503 
4504 	/* we only support lpm for non-hub device connected to root hub yet */
4505 	if (!udev->parent || udev->parent->parent ||
4506 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4507 		return 0;
4508 
4509 	if (xhci->hw_lpm_support == 1 &&
4510 			xhci_check_usb2_port_capability(
4511 				xhci, portnum, XHCI_HLC)) {
4512 		udev->usb2_hw_lpm_capable = 1;
4513 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4514 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4515 		if (xhci_check_usb2_port_capability(xhci, portnum,
4516 					XHCI_BLC))
4517 			udev->usb2_hw_lpm_besl_capable = 1;
4518 	}
4519 
4520 	return 0;
4521 }
4522 
4523 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4524 
4525 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4526 static unsigned long long xhci_service_interval_to_ns(
4527 		struct usb_endpoint_descriptor *desc)
4528 {
4529 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4530 }
4531 
4532 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4533 		enum usb3_link_state state)
4534 {
4535 	unsigned long long sel;
4536 	unsigned long long pel;
4537 	unsigned int max_sel_pel;
4538 	char *state_name;
4539 
4540 	switch (state) {
4541 	case USB3_LPM_U1:
4542 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4543 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4544 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4545 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4546 		state_name = "U1";
4547 		break;
4548 	case USB3_LPM_U2:
4549 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4550 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4551 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4552 		state_name = "U2";
4553 		break;
4554 	default:
4555 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4556 				__func__);
4557 		return USB3_LPM_DISABLED;
4558 	}
4559 
4560 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4561 		return USB3_LPM_DEVICE_INITIATED;
4562 
4563 	if (sel > max_sel_pel)
4564 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4565 				"due to long SEL %llu ms\n",
4566 				state_name, sel);
4567 	else
4568 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4569 				"due to long PEL %llu ms\n",
4570 				state_name, pel);
4571 	return USB3_LPM_DISABLED;
4572 }
4573 
4574 /* The U1 timeout should be the maximum of the following values:
4575  *  - For control endpoints, U1 system exit latency (SEL) * 3
4576  *  - For bulk endpoints, U1 SEL * 5
4577  *  - For interrupt endpoints:
4578  *    - Notification EPs, U1 SEL * 3
4579  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4580  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4581  */
4582 static unsigned long long xhci_calculate_intel_u1_timeout(
4583 		struct usb_device *udev,
4584 		struct usb_endpoint_descriptor *desc)
4585 {
4586 	unsigned long long timeout_ns;
4587 	int ep_type;
4588 	int intr_type;
4589 
4590 	ep_type = usb_endpoint_type(desc);
4591 	switch (ep_type) {
4592 	case USB_ENDPOINT_XFER_CONTROL:
4593 		timeout_ns = udev->u1_params.sel * 3;
4594 		break;
4595 	case USB_ENDPOINT_XFER_BULK:
4596 		timeout_ns = udev->u1_params.sel * 5;
4597 		break;
4598 	case USB_ENDPOINT_XFER_INT:
4599 		intr_type = usb_endpoint_interrupt_type(desc);
4600 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4601 			timeout_ns = udev->u1_params.sel * 3;
4602 			break;
4603 		}
4604 		/* Otherwise the calculation is the same as isoc eps */
4605 		fallthrough;
4606 	case USB_ENDPOINT_XFER_ISOC:
4607 		timeout_ns = xhci_service_interval_to_ns(desc);
4608 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4609 		if (timeout_ns < udev->u1_params.sel * 2)
4610 			timeout_ns = udev->u1_params.sel * 2;
4611 		break;
4612 	default:
4613 		return 0;
4614 	}
4615 
4616 	return timeout_ns;
4617 }
4618 
4619 /* Returns the hub-encoded U1 timeout value. */
4620 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4621 		struct usb_device *udev,
4622 		struct usb_endpoint_descriptor *desc)
4623 {
4624 	unsigned long long timeout_ns;
4625 
4626 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4627 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4628 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4629 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4630 			return USB3_LPM_DISABLED;
4631 		}
4632 	}
4633 
4634 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4635 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4636 	else
4637 		timeout_ns = udev->u1_params.sel;
4638 
4639 	/* The U1 timeout is encoded in 1us intervals.
4640 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4641 	 */
4642 	if (timeout_ns == USB3_LPM_DISABLED)
4643 		timeout_ns = 1;
4644 	else
4645 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4646 
4647 	/* If the necessary timeout value is bigger than what we can set in the
4648 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4649 	 */
4650 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4651 		return timeout_ns;
4652 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4653 			"due to long timeout %llu ms\n", timeout_ns);
4654 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4655 }
4656 
4657 /* The U2 timeout should be the maximum of:
4658  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4659  *  - largest bInterval of any active periodic endpoint (to avoid going
4660  *    into lower power link states between intervals).
4661  *  - the U2 Exit Latency of the device
4662  */
4663 static unsigned long long xhci_calculate_intel_u2_timeout(
4664 		struct usb_device *udev,
4665 		struct usb_endpoint_descriptor *desc)
4666 {
4667 	unsigned long long timeout_ns;
4668 	unsigned long long u2_del_ns;
4669 
4670 	timeout_ns = 10 * 1000 * 1000;
4671 
4672 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4673 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4674 		timeout_ns = xhci_service_interval_to_ns(desc);
4675 
4676 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4677 	if (u2_del_ns > timeout_ns)
4678 		timeout_ns = u2_del_ns;
4679 
4680 	return timeout_ns;
4681 }
4682 
4683 /* Returns the hub-encoded U2 timeout value. */
4684 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4685 		struct usb_device *udev,
4686 		struct usb_endpoint_descriptor *desc)
4687 {
4688 	unsigned long long timeout_ns;
4689 
4690 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4691 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4692 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4693 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4694 			return USB3_LPM_DISABLED;
4695 		}
4696 	}
4697 
4698 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4699 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4700 	else
4701 		timeout_ns = udev->u2_params.sel;
4702 
4703 	/* The U2 timeout is encoded in 256us intervals */
4704 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4705 	/* If the necessary timeout value is bigger than what we can set in the
4706 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4707 	 */
4708 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4709 		return timeout_ns;
4710 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4711 			"due to long timeout %llu ms\n", timeout_ns);
4712 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4713 }
4714 
4715 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4716 		struct usb_device *udev,
4717 		struct usb_endpoint_descriptor *desc,
4718 		enum usb3_link_state state,
4719 		u16 *timeout)
4720 {
4721 	if (state == USB3_LPM_U1)
4722 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4723 	else if (state == USB3_LPM_U2)
4724 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4725 
4726 	return USB3_LPM_DISABLED;
4727 }
4728 
4729 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4730 		struct usb_device *udev,
4731 		struct usb_endpoint_descriptor *desc,
4732 		enum usb3_link_state state,
4733 		u16 *timeout)
4734 {
4735 	u16 alt_timeout;
4736 
4737 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4738 		desc, state, timeout);
4739 
4740 	/* If we found we can't enable hub-initiated LPM, and
4741 	 * the U1 or U2 exit latency was too high to allow
4742 	 * device-initiated LPM as well, then we will disable LPM
4743 	 * for this device, so stop searching any further.
4744 	 */
4745 	if (alt_timeout == USB3_LPM_DISABLED) {
4746 		*timeout = alt_timeout;
4747 		return -E2BIG;
4748 	}
4749 	if (alt_timeout > *timeout)
4750 		*timeout = alt_timeout;
4751 	return 0;
4752 }
4753 
4754 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4755 		struct usb_device *udev,
4756 		struct usb_host_interface *alt,
4757 		enum usb3_link_state state,
4758 		u16 *timeout)
4759 {
4760 	int j;
4761 
4762 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4763 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4764 					&alt->endpoint[j].desc, state, timeout))
4765 			return -E2BIG;
4766 	}
4767 	return 0;
4768 }
4769 
4770 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4771 		struct usb_device *udev,
4772 		enum usb3_link_state state)
4773 {
4774 	struct usb_device *parent = udev->parent;
4775 	int tier = 1; /* roothub is tier1 */
4776 
4777 	while (parent) {
4778 		parent = parent->parent;
4779 		tier++;
4780 	}
4781 
4782 	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4783 		goto fail;
4784 	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4785 		goto fail;
4786 
4787 	return 0;
4788 fail:
4789 	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4790 			tier);
4791 	return -E2BIG;
4792 }
4793 
4794 /* Returns the U1 or U2 timeout that should be enabled.
4795  * If the tier check or timeout setting functions return with a non-zero exit
4796  * code, that means the timeout value has been finalized and we shouldn't look
4797  * at any more endpoints.
4798  */
4799 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4800 			struct usb_device *udev, enum usb3_link_state state)
4801 {
4802 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4803 	struct usb_host_config *config;
4804 	char *state_name;
4805 	int i;
4806 	u16 timeout = USB3_LPM_DISABLED;
4807 
4808 	if (state == USB3_LPM_U1)
4809 		state_name = "U1";
4810 	else if (state == USB3_LPM_U2)
4811 		state_name = "U2";
4812 	else {
4813 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4814 				state);
4815 		return timeout;
4816 	}
4817 
4818 	/* Gather some information about the currently installed configuration
4819 	 * and alternate interface settings.
4820 	 */
4821 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4822 			state, &timeout))
4823 		return timeout;
4824 
4825 	config = udev->actconfig;
4826 	if (!config)
4827 		return timeout;
4828 
4829 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4830 		struct usb_driver *driver;
4831 		struct usb_interface *intf = config->interface[i];
4832 
4833 		if (!intf)
4834 			continue;
4835 
4836 		/* Check if any currently bound drivers want hub-initiated LPM
4837 		 * disabled.
4838 		 */
4839 		if (intf->dev.driver) {
4840 			driver = to_usb_driver(intf->dev.driver);
4841 			if (driver && driver->disable_hub_initiated_lpm) {
4842 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4843 					state_name, driver->name);
4844 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4845 								      state);
4846 				if (timeout == USB3_LPM_DISABLED)
4847 					return timeout;
4848 			}
4849 		}
4850 
4851 		/* Not sure how this could happen... */
4852 		if (!intf->cur_altsetting)
4853 			continue;
4854 
4855 		if (xhci_update_timeout_for_interface(xhci, udev,
4856 					intf->cur_altsetting,
4857 					state, &timeout))
4858 			return timeout;
4859 	}
4860 	return timeout;
4861 }
4862 
4863 static int calculate_max_exit_latency(struct usb_device *udev,
4864 		enum usb3_link_state state_changed,
4865 		u16 hub_encoded_timeout)
4866 {
4867 	unsigned long long u1_mel_us = 0;
4868 	unsigned long long u2_mel_us = 0;
4869 	unsigned long long mel_us = 0;
4870 	bool disabling_u1;
4871 	bool disabling_u2;
4872 	bool enabling_u1;
4873 	bool enabling_u2;
4874 
4875 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4876 			hub_encoded_timeout == USB3_LPM_DISABLED);
4877 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4878 			hub_encoded_timeout == USB3_LPM_DISABLED);
4879 
4880 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4881 			hub_encoded_timeout != USB3_LPM_DISABLED);
4882 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4883 			hub_encoded_timeout != USB3_LPM_DISABLED);
4884 
4885 	/* If U1 was already enabled and we're not disabling it,
4886 	 * or we're going to enable U1, account for the U1 max exit latency.
4887 	 */
4888 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4889 			enabling_u1)
4890 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4891 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4892 			enabling_u2)
4893 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4894 
4895 	mel_us = max(u1_mel_us, u2_mel_us);
4896 
4897 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4898 	if (mel_us > MAX_EXIT) {
4899 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4900 				"is too big.\n", mel_us);
4901 		return -E2BIG;
4902 	}
4903 	return mel_us;
4904 }
4905 
4906 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4907 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4908 			struct usb_device *udev, enum usb3_link_state state)
4909 {
4910 	struct xhci_hcd	*xhci;
4911 	struct xhci_port *port;
4912 	u16 hub_encoded_timeout;
4913 	int mel;
4914 	int ret;
4915 
4916 	xhci = hcd_to_xhci(hcd);
4917 	/* The LPM timeout values are pretty host-controller specific, so don't
4918 	 * enable hub-initiated timeouts unless the vendor has provided
4919 	 * information about their timeout algorithm.
4920 	 */
4921 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4922 			!xhci->devs[udev->slot_id])
4923 		return USB3_LPM_DISABLED;
4924 
4925 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4926 		return USB3_LPM_DISABLED;
4927 
4928 	/* If connected to root port then check port can handle lpm */
4929 	if (udev->parent && !udev->parent->parent) {
4930 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4931 		if (port->lpm_incapable)
4932 			return USB3_LPM_DISABLED;
4933 	}
4934 
4935 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4936 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4937 	if (mel < 0) {
4938 		/* Max Exit Latency is too big, disable LPM. */
4939 		hub_encoded_timeout = USB3_LPM_DISABLED;
4940 		mel = 0;
4941 	}
4942 
4943 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4944 	if (ret)
4945 		return ret;
4946 	return hub_encoded_timeout;
4947 }
4948 
4949 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4950 			struct usb_device *udev, enum usb3_link_state state)
4951 {
4952 	struct xhci_hcd	*xhci;
4953 	u16 mel;
4954 
4955 	xhci = hcd_to_xhci(hcd);
4956 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4957 			!xhci->devs[udev->slot_id])
4958 		return 0;
4959 
4960 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4961 	return xhci_change_max_exit_latency(xhci, udev, mel);
4962 }
4963 #else /* CONFIG_PM */
4964 
4965 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4966 				struct usb_device *udev, int enable)
4967 {
4968 	return 0;
4969 }
4970 
4971 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4972 {
4973 	return 0;
4974 }
4975 
4976 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4977 			struct usb_device *udev, enum usb3_link_state state)
4978 {
4979 	return USB3_LPM_DISABLED;
4980 }
4981 
4982 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4983 			struct usb_device *udev, enum usb3_link_state state)
4984 {
4985 	return 0;
4986 }
4987 #endif	/* CONFIG_PM */
4988 
4989 /*-------------------------------------------------------------------------*/
4990 
4991 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4992  * internal data structures for the device.
4993  */
4994 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4995 			struct usb_tt *tt, gfp_t mem_flags)
4996 {
4997 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4998 	struct xhci_virt_device *vdev;
4999 	struct xhci_command *config_cmd;
5000 	struct xhci_input_control_ctx *ctrl_ctx;
5001 	struct xhci_slot_ctx *slot_ctx;
5002 	unsigned long flags;
5003 	unsigned think_time;
5004 	int ret;
5005 
5006 	/* Ignore root hubs */
5007 	if (!hdev->parent)
5008 		return 0;
5009 
5010 	vdev = xhci->devs[hdev->slot_id];
5011 	if (!vdev) {
5012 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5013 		return -EINVAL;
5014 	}
5015 
5016 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5017 	if (!config_cmd)
5018 		return -ENOMEM;
5019 
5020 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5021 	if (!ctrl_ctx) {
5022 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5023 				__func__);
5024 		xhci_free_command(xhci, config_cmd);
5025 		return -ENOMEM;
5026 	}
5027 
5028 	spin_lock_irqsave(&xhci->lock, flags);
5029 	if (hdev->speed == USB_SPEED_HIGH &&
5030 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5031 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5032 		xhci_free_command(xhci, config_cmd);
5033 		spin_unlock_irqrestore(&xhci->lock, flags);
5034 		return -ENOMEM;
5035 	}
5036 
5037 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5038 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5039 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5040 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5041 	/*
5042 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5043 	 * but it may be already set to 1 when setup an xHCI virtual
5044 	 * device, so clear it anyway.
5045 	 */
5046 	if (tt->multi)
5047 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5048 	else if (hdev->speed == USB_SPEED_FULL)
5049 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5050 
5051 	if (xhci->hci_version > 0x95) {
5052 		xhci_dbg(xhci, "xHCI version %x needs hub "
5053 				"TT think time and number of ports\n",
5054 				(unsigned int) xhci->hci_version);
5055 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5056 		/* Set TT think time - convert from ns to FS bit times.
5057 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5058 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5059 		 *
5060 		 * xHCI 1.0: this field shall be 0 if the device is not a
5061 		 * High-spped hub.
5062 		 */
5063 		think_time = tt->think_time;
5064 		if (think_time != 0)
5065 			think_time = (think_time / 666) - 1;
5066 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5067 			slot_ctx->tt_info |=
5068 				cpu_to_le32(TT_THINK_TIME(think_time));
5069 	} else {
5070 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5071 				"TT think time or number of ports\n",
5072 				(unsigned int) xhci->hci_version);
5073 	}
5074 	slot_ctx->dev_state = 0;
5075 	spin_unlock_irqrestore(&xhci->lock, flags);
5076 
5077 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5078 			(xhci->hci_version > 0x95) ?
5079 			"configure endpoint" : "evaluate context");
5080 
5081 	/* Issue and wait for the configure endpoint or
5082 	 * evaluate context command.
5083 	 */
5084 	if (xhci->hci_version > 0x95)
5085 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5086 				false, false);
5087 	else
5088 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5089 				true, false);
5090 
5091 	xhci_free_command(xhci, config_cmd);
5092 	return ret;
5093 }
5094 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5095 
5096 static int xhci_get_frame(struct usb_hcd *hcd)
5097 {
5098 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5099 	/* EHCI mods by the periodic size.  Why? */
5100 	return readl(&xhci->run_regs->microframe_index) >> 3;
5101 }
5102 
5103 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5104 {
5105 	xhci->usb2_rhub.hcd = hcd;
5106 	hcd->speed = HCD_USB2;
5107 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5108 	/*
5109 	 * USB 2.0 roothub under xHCI has an integrated TT,
5110 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5111 	 * companion controller.
5112 	 */
5113 	hcd->has_tt = 1;
5114 }
5115 
5116 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5117 {
5118 	unsigned int minor_rev;
5119 
5120 	/*
5121 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5122 	 * should return 0x31 for sbrn, or that the minor revision
5123 	 * is a two digit BCD containig minor and sub-minor numbers.
5124 	 * This was later clarified in xHCI 1.2.
5125 	 *
5126 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5127 	 * minor revision set to 0x1 instead of 0x10.
5128 	 */
5129 	if (xhci->usb3_rhub.min_rev == 0x1)
5130 		minor_rev = 1;
5131 	else
5132 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5133 
5134 	switch (minor_rev) {
5135 	case 2:
5136 		hcd->speed = HCD_USB32;
5137 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5138 		hcd->self.root_hub->rx_lanes = 2;
5139 		hcd->self.root_hub->tx_lanes = 2;
5140 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5141 		break;
5142 	case 1:
5143 		hcd->speed = HCD_USB31;
5144 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5145 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5146 		break;
5147 	}
5148 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5149 		  minor_rev, minor_rev ? "Enhanced " : "");
5150 
5151 	xhci->usb3_rhub.hcd = hcd;
5152 }
5153 
5154 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5155 {
5156 	struct xhci_hcd		*xhci;
5157 	/*
5158 	 * TODO: Check with DWC3 clients for sysdev according to
5159 	 * quirks
5160 	 */
5161 	struct device		*dev = hcd->self.sysdev;
5162 	int			retval;
5163 
5164 	/* Accept arbitrarily long scatter-gather lists */
5165 	hcd->self.sg_tablesize = ~0;
5166 
5167 	/* support to build packet from discontinuous buffers */
5168 	hcd->self.no_sg_constraint = 1;
5169 
5170 	/* XHCI controllers don't stop the ep queue on short packets :| */
5171 	hcd->self.no_stop_on_short = 1;
5172 
5173 	xhci = hcd_to_xhci(hcd);
5174 
5175 	if (!usb_hcd_is_primary_hcd(hcd)) {
5176 		xhci_hcd_init_usb3_data(xhci, hcd);
5177 		return 0;
5178 	}
5179 
5180 	mutex_init(&xhci->mutex);
5181 	xhci->main_hcd = hcd;
5182 	xhci->cap_regs = hcd->regs;
5183 	xhci->op_regs = hcd->regs +
5184 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5185 	xhci->run_regs = hcd->regs +
5186 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5187 	/* Cache read-only capability registers */
5188 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5189 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5190 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5191 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5192 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5193 	if (xhci->hci_version > 0x100)
5194 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5195 
5196 	/* xhci-plat or xhci-pci might have set max_interrupters already */
5197 	if ((!xhci->max_interrupters) ||
5198 	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5199 		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5200 
5201 	xhci->quirks |= quirks;
5202 
5203 	if (get_quirks)
5204 		get_quirks(dev, xhci);
5205 
5206 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5207 	 * success event after a short transfer. This quirk will ignore such
5208 	 * spurious event.
5209 	 */
5210 	if (xhci->hci_version > 0x96)
5211 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5212 
5213 	/* Make sure the HC is halted. */
5214 	retval = xhci_halt(xhci);
5215 	if (retval)
5216 		return retval;
5217 
5218 	xhci_zero_64b_regs(xhci);
5219 
5220 	xhci_dbg(xhci, "Resetting HCD\n");
5221 	/* Reset the internal HC memory state and registers. */
5222 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5223 	if (retval)
5224 		return retval;
5225 	xhci_dbg(xhci, "Reset complete\n");
5226 
5227 	/*
5228 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5229 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5230 	 * address memory pointers actually. So, this driver clears the AC64
5231 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5232 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5233 	 */
5234 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5235 		xhci->hcc_params &= ~BIT(0);
5236 
5237 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5238 	 * if xHC supports 64-bit addressing */
5239 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5240 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5241 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5242 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5243 	} else {
5244 		/*
5245 		 * This is to avoid error in cases where a 32-bit USB
5246 		 * controller is used on a 64-bit capable system.
5247 		 */
5248 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5249 		if (retval)
5250 			return retval;
5251 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5252 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5253 	}
5254 
5255 	xhci_dbg(xhci, "Calling HCD init\n");
5256 	/* Initialize HCD and host controller data structures. */
5257 	retval = xhci_init(hcd);
5258 	if (retval)
5259 		return retval;
5260 	xhci_dbg(xhci, "Called HCD init\n");
5261 
5262 	if (xhci_hcd_is_usb3(hcd))
5263 		xhci_hcd_init_usb3_data(xhci, hcd);
5264 	else
5265 		xhci_hcd_init_usb2_data(xhci, hcd);
5266 
5267 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5268 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5269 
5270 	return 0;
5271 }
5272 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5273 
5274 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5275 		struct usb_host_endpoint *ep)
5276 {
5277 	struct xhci_hcd *xhci;
5278 	struct usb_device *udev;
5279 	unsigned int slot_id;
5280 	unsigned int ep_index;
5281 	unsigned long flags;
5282 
5283 	xhci = hcd_to_xhci(hcd);
5284 
5285 	spin_lock_irqsave(&xhci->lock, flags);
5286 	udev = (struct usb_device *)ep->hcpriv;
5287 	slot_id = udev->slot_id;
5288 	ep_index = xhci_get_endpoint_index(&ep->desc);
5289 
5290 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5291 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5292 	spin_unlock_irqrestore(&xhci->lock, flags);
5293 }
5294 
5295 static const struct hc_driver xhci_hc_driver = {
5296 	.description =		"xhci-hcd",
5297 	.product_desc =		"xHCI Host Controller",
5298 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5299 
5300 	/*
5301 	 * generic hardware linkage
5302 	 */
5303 	.irq =			xhci_irq,
5304 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5305 				HCD_BH,
5306 
5307 	/*
5308 	 * basic lifecycle operations
5309 	 */
5310 	.reset =		NULL, /* set in xhci_init_driver() */
5311 	.start =		xhci_run,
5312 	.stop =			xhci_stop,
5313 	.shutdown =		xhci_shutdown,
5314 
5315 	/*
5316 	 * managing i/o requests and associated device resources
5317 	 */
5318 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5319 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5320 	.urb_enqueue =		xhci_urb_enqueue,
5321 	.urb_dequeue =		xhci_urb_dequeue,
5322 	.alloc_dev =		xhci_alloc_dev,
5323 	.free_dev =		xhci_free_dev,
5324 	.alloc_streams =	xhci_alloc_streams,
5325 	.free_streams =		xhci_free_streams,
5326 	.add_endpoint =		xhci_add_endpoint,
5327 	.drop_endpoint =	xhci_drop_endpoint,
5328 	.endpoint_disable =	xhci_endpoint_disable,
5329 	.endpoint_reset =	xhci_endpoint_reset,
5330 	.check_bandwidth =	xhci_check_bandwidth,
5331 	.reset_bandwidth =	xhci_reset_bandwidth,
5332 	.address_device =	xhci_address_device,
5333 	.enable_device =	xhci_enable_device,
5334 	.update_hub_device =	xhci_update_hub_device,
5335 	.reset_device =		xhci_discover_or_reset_device,
5336 
5337 	/*
5338 	 * scheduling support
5339 	 */
5340 	.get_frame_number =	xhci_get_frame,
5341 
5342 	/*
5343 	 * root hub support
5344 	 */
5345 	.hub_control =		xhci_hub_control,
5346 	.hub_status_data =	xhci_hub_status_data,
5347 	.bus_suspend =		xhci_bus_suspend,
5348 	.bus_resume =		xhci_bus_resume,
5349 	.get_resuming_ports =	xhci_get_resuming_ports,
5350 
5351 	/*
5352 	 * call back when device connected and addressed
5353 	 */
5354 	.update_device =        xhci_update_device,
5355 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5356 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5357 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5358 	.find_raw_port_number =	xhci_find_raw_port_number,
5359 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5360 };
5361 
5362 void xhci_init_driver(struct hc_driver *drv,
5363 		      const struct xhci_driver_overrides *over)
5364 {
5365 	BUG_ON(!over);
5366 
5367 	/* Copy the generic table to drv then apply the overrides */
5368 	*drv = xhci_hc_driver;
5369 
5370 	if (over) {
5371 		drv->hcd_priv_size += over->extra_priv_size;
5372 		if (over->reset)
5373 			drv->reset = over->reset;
5374 		if (over->start)
5375 			drv->start = over->start;
5376 		if (over->add_endpoint)
5377 			drv->add_endpoint = over->add_endpoint;
5378 		if (over->drop_endpoint)
5379 			drv->drop_endpoint = over->drop_endpoint;
5380 		if (over->check_bandwidth)
5381 			drv->check_bandwidth = over->check_bandwidth;
5382 		if (over->reset_bandwidth)
5383 			drv->reset_bandwidth = over->reset_bandwidth;
5384 		if (over->update_hub_device)
5385 			drv->update_hub_device = over->update_hub_device;
5386 		if (over->hub_control)
5387 			drv->hub_control = over->hub_control;
5388 	}
5389 }
5390 EXPORT_SYMBOL_GPL(xhci_init_driver);
5391 
5392 MODULE_DESCRIPTION(DRIVER_DESC);
5393 MODULE_AUTHOR(DRIVER_AUTHOR);
5394 MODULE_LICENSE("GPL");
5395 
5396 static int __init xhci_hcd_init(void)
5397 {
5398 	/*
5399 	 * Check the compiler generated sizes of structures that must be laid
5400 	 * out in specific ways for hardware access.
5401 	 */
5402 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5403 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5404 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5405 	/* xhci_device_control has eight fields, and also
5406 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5407 	 */
5408 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5409 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5410 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5411 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5412 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5413 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5414 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5415 
5416 	if (usb_disabled())
5417 		return -ENODEV;
5418 
5419 	xhci_debugfs_create_root();
5420 	xhci_dbc_init();
5421 
5422 	return 0;
5423 }
5424 
5425 /*
5426  * If an init function is provided, an exit function must also be provided
5427  * to allow module unload.
5428  */
5429 static void __exit xhci_hcd_fini(void)
5430 {
5431 	xhci_debugfs_remove_root();
5432 	xhci_dbc_exit();
5433 }
5434 
5435 module_init(xhci_hcd_init);
5436 module_exit(xhci_hcd_fini);
5437