1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 31 #include "xhci.h" 32 33 #define DRIVER_AUTHOR "Sarah Sharp" 34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 35 36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 37 static int link_quirk; 38 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 40 41 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 42 /* 43 * xhci_handshake - spin reading hc until handshake completes or fails 44 * @ptr: address of hc register to be read 45 * @mask: bits to look at in result of read 46 * @done: value of those bits when handshake succeeds 47 * @usec: timeout in microseconds 48 * 49 * Returns negative errno, or zero on success 50 * 51 * Success happens when the "mask" bits have the specified value (hardware 52 * handshake done). There are two failure modes: "usec" have passed (major 53 * hardware flakeout), or the register reads as all-ones (hardware removed). 54 */ 55 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr, 56 u32 mask, u32 done, int usec) 57 { 58 u32 result; 59 60 do { 61 result = xhci_readl(xhci, ptr); 62 if (result == ~(u32)0) /* card removed */ 63 return -ENODEV; 64 result &= mask; 65 if (result == done) 66 return 0; 67 udelay(1); 68 usec--; 69 } while (usec > 0); 70 return -ETIMEDOUT; 71 } 72 73 /* 74 * Disable interrupts and begin the xHCI halting process. 75 */ 76 void xhci_quiesce(struct xhci_hcd *xhci) 77 { 78 u32 halted; 79 u32 cmd; 80 u32 mask; 81 82 mask = ~(XHCI_IRQS); 83 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; 84 if (!halted) 85 mask &= ~CMD_RUN; 86 87 cmd = xhci_readl(xhci, &xhci->op_regs->command); 88 cmd &= mask; 89 xhci_writel(xhci, cmd, &xhci->op_regs->command); 90 } 91 92 /* 93 * Force HC into halt state. 94 * 95 * Disable any IRQs and clear the run/stop bit. 96 * HC will complete any current and actively pipelined transactions, and 97 * should halt within 16 ms of the run/stop bit being cleared. 98 * Read HC Halted bit in the status register to see when the HC is finished. 99 */ 100 int xhci_halt(struct xhci_hcd *xhci) 101 { 102 int ret; 103 xhci_dbg(xhci, "// Halt the HC\n"); 104 xhci_quiesce(xhci); 105 106 ret = xhci_handshake(xhci, &xhci->op_regs->status, 107 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 108 if (!ret) { 109 xhci->xhc_state |= XHCI_STATE_HALTED; 110 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 111 } else 112 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 113 XHCI_MAX_HALT_USEC); 114 return ret; 115 } 116 117 /* 118 * Set the run bit and wait for the host to be running. 119 */ 120 static int xhci_start(struct xhci_hcd *xhci) 121 { 122 u32 temp; 123 int ret; 124 125 temp = xhci_readl(xhci, &xhci->op_regs->command); 126 temp |= (CMD_RUN); 127 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n", 128 temp); 129 xhci_writel(xhci, temp, &xhci->op_regs->command); 130 131 /* 132 * Wait for the HCHalted Status bit to be 0 to indicate the host is 133 * running. 134 */ 135 ret = xhci_handshake(xhci, &xhci->op_regs->status, 136 STS_HALT, 0, XHCI_MAX_HALT_USEC); 137 if (ret == -ETIMEDOUT) 138 xhci_err(xhci, "Host took too long to start, " 139 "waited %u microseconds.\n", 140 XHCI_MAX_HALT_USEC); 141 if (!ret) 142 xhci->xhc_state &= ~XHCI_STATE_HALTED; 143 return ret; 144 } 145 146 /* 147 * Reset a halted HC. 148 * 149 * This resets pipelines, timers, counters, state machines, etc. 150 * Transactions will be terminated immediately, and operational registers 151 * will be set to their defaults. 152 */ 153 int xhci_reset(struct xhci_hcd *xhci) 154 { 155 u32 command; 156 u32 state; 157 int ret, i; 158 159 state = xhci_readl(xhci, &xhci->op_regs->status); 160 if ((state & STS_HALT) == 0) { 161 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 162 return 0; 163 } 164 165 xhci_dbg(xhci, "// Reset the HC\n"); 166 command = xhci_readl(xhci, &xhci->op_regs->command); 167 command |= CMD_RESET; 168 xhci_writel(xhci, command, &xhci->op_regs->command); 169 170 ret = xhci_handshake(xhci, &xhci->op_regs->command, 171 CMD_RESET, 0, 10 * 1000 * 1000); 172 if (ret) 173 return ret; 174 175 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n"); 176 /* 177 * xHCI cannot write to any doorbells or operational registers other 178 * than status until the "Controller Not Ready" flag is cleared. 179 */ 180 ret = xhci_handshake(xhci, &xhci->op_regs->status, 181 STS_CNR, 0, 10 * 1000 * 1000); 182 183 for (i = 0; i < 2; ++i) { 184 xhci->bus_state[i].port_c_suspend = 0; 185 xhci->bus_state[i].suspended_ports = 0; 186 xhci->bus_state[i].resuming_ports = 0; 187 } 188 189 return ret; 190 } 191 192 #ifdef CONFIG_PCI 193 static int xhci_free_msi(struct xhci_hcd *xhci) 194 { 195 int i; 196 197 if (!xhci->msix_entries) 198 return -EINVAL; 199 200 for (i = 0; i < xhci->msix_count; i++) 201 if (xhci->msix_entries[i].vector) 202 free_irq(xhci->msix_entries[i].vector, 203 xhci_to_hcd(xhci)); 204 return 0; 205 } 206 207 /* 208 * Set up MSI 209 */ 210 static int xhci_setup_msi(struct xhci_hcd *xhci) 211 { 212 int ret; 213 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 214 215 ret = pci_enable_msi(pdev); 216 if (ret) { 217 xhci_dbg(xhci, "failed to allocate MSI entry\n"); 218 return ret; 219 } 220 221 ret = request_irq(pdev->irq, xhci_msi_irq, 222 0, "xhci_hcd", xhci_to_hcd(xhci)); 223 if (ret) { 224 xhci_dbg(xhci, "disable MSI interrupt\n"); 225 pci_disable_msi(pdev); 226 } 227 228 return ret; 229 } 230 231 /* 232 * Free IRQs 233 * free all IRQs request 234 */ 235 static void xhci_free_irq(struct xhci_hcd *xhci) 236 { 237 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 238 int ret; 239 240 /* return if using legacy interrupt */ 241 if (xhci_to_hcd(xhci)->irq > 0) 242 return; 243 244 ret = xhci_free_msi(xhci); 245 if (!ret) 246 return; 247 if (pdev->irq > 0) 248 free_irq(pdev->irq, xhci_to_hcd(xhci)); 249 250 return; 251 } 252 253 /* 254 * Set up MSI-X 255 */ 256 static int xhci_setup_msix(struct xhci_hcd *xhci) 257 { 258 int i, ret = 0; 259 struct usb_hcd *hcd = xhci_to_hcd(xhci); 260 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 261 262 /* 263 * calculate number of msi-x vectors supported. 264 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 265 * with max number of interrupters based on the xhci HCSPARAMS1. 266 * - num_online_cpus: maximum msi-x vectors per CPUs core. 267 * Add additional 1 vector to ensure always available interrupt. 268 */ 269 xhci->msix_count = min(num_online_cpus() + 1, 270 HCS_MAX_INTRS(xhci->hcs_params1)); 271 272 xhci->msix_entries = 273 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 274 GFP_KERNEL); 275 if (!xhci->msix_entries) { 276 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 277 return -ENOMEM; 278 } 279 280 for (i = 0; i < xhci->msix_count; i++) { 281 xhci->msix_entries[i].entry = i; 282 xhci->msix_entries[i].vector = 0; 283 } 284 285 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); 286 if (ret) { 287 xhci_dbg(xhci, "Failed to enable MSI-X\n"); 288 goto free_entries; 289 } 290 291 for (i = 0; i < xhci->msix_count; i++) { 292 ret = request_irq(xhci->msix_entries[i].vector, 293 xhci_msi_irq, 294 0, "xhci_hcd", xhci_to_hcd(xhci)); 295 if (ret) 296 goto disable_msix; 297 } 298 299 hcd->msix_enabled = 1; 300 return ret; 301 302 disable_msix: 303 xhci_dbg(xhci, "disable MSI-X interrupt\n"); 304 xhci_free_irq(xhci); 305 pci_disable_msix(pdev); 306 free_entries: 307 kfree(xhci->msix_entries); 308 xhci->msix_entries = NULL; 309 return ret; 310 } 311 312 /* Free any IRQs and disable MSI-X */ 313 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 314 { 315 struct usb_hcd *hcd = xhci_to_hcd(xhci); 316 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 317 318 xhci_free_irq(xhci); 319 320 if (xhci->msix_entries) { 321 pci_disable_msix(pdev); 322 kfree(xhci->msix_entries); 323 xhci->msix_entries = NULL; 324 } else { 325 pci_disable_msi(pdev); 326 } 327 328 hcd->msix_enabled = 0; 329 return; 330 } 331 332 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 333 { 334 int i; 335 336 if (xhci->msix_entries) { 337 for (i = 0; i < xhci->msix_count; i++) 338 synchronize_irq(xhci->msix_entries[i].vector); 339 } 340 } 341 342 static int xhci_try_enable_msi(struct usb_hcd *hcd) 343 { 344 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 345 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 346 int ret; 347 348 /* 349 * Some Fresco Logic host controllers advertise MSI, but fail to 350 * generate interrupts. Don't even try to enable MSI. 351 */ 352 if (xhci->quirks & XHCI_BROKEN_MSI) 353 goto legacy_irq; 354 355 /* unregister the legacy interrupt */ 356 if (hcd->irq) 357 free_irq(hcd->irq, hcd); 358 hcd->irq = 0; 359 360 ret = xhci_setup_msix(xhci); 361 if (ret) 362 /* fall back to msi*/ 363 ret = xhci_setup_msi(xhci); 364 365 if (!ret) 366 /* hcd->irq is 0, we have MSI */ 367 return 0; 368 369 if (!pdev->irq) { 370 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 371 return -EINVAL; 372 } 373 374 legacy_irq: 375 /* fall back to legacy interrupt*/ 376 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 377 hcd->irq_descr, hcd); 378 if (ret) { 379 xhci_err(xhci, "request interrupt %d failed\n", 380 pdev->irq); 381 return ret; 382 } 383 hcd->irq = pdev->irq; 384 return 0; 385 } 386 387 #else 388 389 static int xhci_try_enable_msi(struct usb_hcd *hcd) 390 { 391 return 0; 392 } 393 394 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 395 { 396 } 397 398 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 399 { 400 } 401 402 #endif 403 404 static void compliance_mode_recovery(unsigned long arg) 405 { 406 struct xhci_hcd *xhci; 407 struct usb_hcd *hcd; 408 u32 temp; 409 int i; 410 411 xhci = (struct xhci_hcd *)arg; 412 413 for (i = 0; i < xhci->num_usb3_ports; i++) { 414 temp = xhci_readl(xhci, xhci->usb3_ports[i]); 415 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 416 /* 417 * Compliance Mode Detected. Letting USB Core 418 * handle the Warm Reset 419 */ 420 xhci_dbg(xhci, "Compliance mode detected->port %d\n", 421 i + 1); 422 xhci_dbg(xhci, "Attempting compliance mode recovery\n"); 423 hcd = xhci->shared_hcd; 424 425 if (hcd->state == HC_STATE_SUSPENDED) 426 usb_hcd_resume_root_hub(hcd); 427 428 usb_hcd_poll_rh_status(hcd); 429 } 430 } 431 432 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 433 mod_timer(&xhci->comp_mode_recovery_timer, 434 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 435 } 436 437 /* 438 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 439 * that causes ports behind that hardware to enter compliance mode sometimes. 440 * The quirk creates a timer that polls every 2 seconds the link state of 441 * each host controller's port and recovers it by issuing a Warm reset 442 * if Compliance mode is detected, otherwise the port will become "dead" (no 443 * device connections or disconnections will be detected anymore). Becasue no 444 * status event is generated when entering compliance mode (per xhci spec), 445 * this quirk is needed on systems that have the failing hardware installed. 446 */ 447 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 448 { 449 xhci->port_status_u0 = 0; 450 init_timer(&xhci->comp_mode_recovery_timer); 451 452 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci; 453 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery; 454 xhci->comp_mode_recovery_timer.expires = jiffies + 455 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 456 457 set_timer_slack(&xhci->comp_mode_recovery_timer, 458 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 459 add_timer(&xhci->comp_mode_recovery_timer); 460 xhci_dbg(xhci, "Compliance mode recovery timer initialized\n"); 461 } 462 463 /* 464 * This function identifies the systems that have installed the SN65LVPE502CP 465 * USB3.0 re-driver and that need the Compliance Mode Quirk. 466 * Systems: 467 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 468 */ 469 bool xhci_compliance_mode_recovery_timer_quirk_check(void) 470 { 471 const char *dmi_product_name, *dmi_sys_vendor; 472 473 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 474 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 475 if (!dmi_product_name || !dmi_sys_vendor) 476 return false; 477 478 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 479 return false; 480 481 if (strstr(dmi_product_name, "Z420") || 482 strstr(dmi_product_name, "Z620") || 483 strstr(dmi_product_name, "Z820") || 484 strstr(dmi_product_name, "Z1 Workstation")) 485 return true; 486 487 return false; 488 } 489 490 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 491 { 492 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 493 } 494 495 496 /* 497 * Initialize memory for HCD and xHC (one-time init). 498 * 499 * Program the PAGESIZE register, initialize the device context array, create 500 * device contexts (?), set up a command ring segment (or two?), create event 501 * ring (one for now). 502 */ 503 int xhci_init(struct usb_hcd *hcd) 504 { 505 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 506 int retval = 0; 507 508 xhci_dbg(xhci, "xhci_init\n"); 509 spin_lock_init(&xhci->lock); 510 if (xhci->hci_version == 0x95 && link_quirk) { 511 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n"); 512 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 513 } else { 514 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n"); 515 } 516 retval = xhci_mem_init(xhci, GFP_KERNEL); 517 xhci_dbg(xhci, "Finished xhci_init\n"); 518 519 /* Initializing Compliance Mode Recovery Data If Needed */ 520 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 521 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 522 compliance_mode_recovery_timer_init(xhci); 523 } 524 525 return retval; 526 } 527 528 /*-------------------------------------------------------------------------*/ 529 530 531 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 532 static void xhci_event_ring_work(unsigned long arg) 533 { 534 unsigned long flags; 535 int temp; 536 u64 temp_64; 537 struct xhci_hcd *xhci = (struct xhci_hcd *) arg; 538 int i, j; 539 540 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies); 541 542 spin_lock_irqsave(&xhci->lock, flags); 543 temp = xhci_readl(xhci, &xhci->op_regs->status); 544 xhci_dbg(xhci, "op reg status = 0x%x\n", temp); 545 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 546 (xhci->xhc_state & XHCI_STATE_HALTED)) { 547 xhci_dbg(xhci, "HW died, polling stopped.\n"); 548 spin_unlock_irqrestore(&xhci->lock, flags); 549 return; 550 } 551 552 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 553 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp); 554 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask); 555 xhci->error_bitmask = 0; 556 xhci_dbg(xhci, "Event ring:\n"); 557 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 558 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 559 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 560 temp_64 &= ~ERST_PTR_MASK; 561 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 562 xhci_dbg(xhci, "Command ring:\n"); 563 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg); 564 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 565 xhci_dbg_cmd_ptrs(xhci); 566 for (i = 0; i < MAX_HC_SLOTS; ++i) { 567 if (!xhci->devs[i]) 568 continue; 569 for (j = 0; j < 31; ++j) { 570 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]); 571 } 572 } 573 spin_unlock_irqrestore(&xhci->lock, flags); 574 575 if (!xhci->zombie) 576 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ); 577 else 578 xhci_dbg(xhci, "Quit polling the event ring.\n"); 579 } 580 #endif 581 582 static int xhci_run_finished(struct xhci_hcd *xhci) 583 { 584 if (xhci_start(xhci)) { 585 xhci_halt(xhci); 586 return -ENODEV; 587 } 588 xhci->shared_hcd->state = HC_STATE_RUNNING; 589 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 590 591 if (xhci->quirks & XHCI_NEC_HOST) 592 xhci_ring_cmd_db(xhci); 593 594 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n"); 595 return 0; 596 } 597 598 /* 599 * Start the HC after it was halted. 600 * 601 * This function is called by the USB core when the HC driver is added. 602 * Its opposite is xhci_stop(). 603 * 604 * xhci_init() must be called once before this function can be called. 605 * Reset the HC, enable device slot contexts, program DCBAAP, and 606 * set command ring pointer and event ring pointer. 607 * 608 * Setup MSI-X vectors and enable interrupts. 609 */ 610 int xhci_run(struct usb_hcd *hcd) 611 { 612 u32 temp; 613 u64 temp_64; 614 int ret; 615 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 616 617 /* Start the xHCI host controller running only after the USB 2.0 roothub 618 * is setup. 619 */ 620 621 hcd->uses_new_polling = 1; 622 if (!usb_hcd_is_primary_hcd(hcd)) 623 return xhci_run_finished(xhci); 624 625 xhci_dbg(xhci, "xhci_run\n"); 626 627 ret = xhci_try_enable_msi(hcd); 628 if (ret) 629 return ret; 630 631 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 632 init_timer(&xhci->event_ring_timer); 633 xhci->event_ring_timer.data = (unsigned long) xhci; 634 xhci->event_ring_timer.function = xhci_event_ring_work; 635 /* Poll the event ring */ 636 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ; 637 xhci->zombie = 0; 638 xhci_dbg(xhci, "Setting event ring polling timer\n"); 639 add_timer(&xhci->event_ring_timer); 640 #endif 641 642 xhci_dbg(xhci, "Command ring memory map follows:\n"); 643 xhci_debug_ring(xhci, xhci->cmd_ring); 644 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 645 xhci_dbg_cmd_ptrs(xhci); 646 647 xhci_dbg(xhci, "ERST memory map follows:\n"); 648 xhci_dbg_erst(xhci, &xhci->erst); 649 xhci_dbg(xhci, "Event ring:\n"); 650 xhci_debug_ring(xhci, xhci->event_ring); 651 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 652 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 653 temp_64 &= ~ERST_PTR_MASK; 654 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 655 656 xhci_dbg(xhci, "// Set the interrupt modulation register\n"); 657 temp = xhci_readl(xhci, &xhci->ir_set->irq_control); 658 temp &= ~ER_IRQ_INTERVAL_MASK; 659 temp |= (u32) 160; 660 xhci_writel(xhci, temp, &xhci->ir_set->irq_control); 661 662 /* Set the HCD state before we enable the irqs */ 663 temp = xhci_readl(xhci, &xhci->op_regs->command); 664 temp |= (CMD_EIE); 665 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n", 666 temp); 667 xhci_writel(xhci, temp, &xhci->op_regs->command); 668 669 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 670 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n", 671 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 672 xhci_writel(xhci, ER_IRQ_ENABLE(temp), 673 &xhci->ir_set->irq_pending); 674 xhci_print_ir_set(xhci, 0); 675 676 if (xhci->quirks & XHCI_NEC_HOST) 677 xhci_queue_vendor_command(xhci, 0, 0, 0, 678 TRB_TYPE(TRB_NEC_GET_FW)); 679 680 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n"); 681 return 0; 682 } 683 684 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 685 { 686 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 687 688 spin_lock_irq(&xhci->lock); 689 xhci_halt(xhci); 690 691 /* The shared_hcd is going to be deallocated shortly (the USB core only 692 * calls this function when allocation fails in usb_add_hcd(), or 693 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 694 */ 695 xhci->shared_hcd = NULL; 696 spin_unlock_irq(&xhci->lock); 697 } 698 699 /* 700 * Stop xHCI driver. 701 * 702 * This function is called by the USB core when the HC driver is removed. 703 * Its opposite is xhci_run(). 704 * 705 * Disable device contexts, disable IRQs, and quiesce the HC. 706 * Reset the HC, finish any completed transactions, and cleanup memory. 707 */ 708 void xhci_stop(struct usb_hcd *hcd) 709 { 710 u32 temp; 711 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 712 713 if (!usb_hcd_is_primary_hcd(hcd)) { 714 xhci_only_stop_hcd(xhci->shared_hcd); 715 return; 716 } 717 718 spin_lock_irq(&xhci->lock); 719 /* Make sure the xHC is halted for a USB3 roothub 720 * (xhci_stop() could be called as part of failed init). 721 */ 722 xhci_halt(xhci); 723 xhci_reset(xhci); 724 spin_unlock_irq(&xhci->lock); 725 726 xhci_cleanup_msix(xhci); 727 728 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 729 /* Tell the event ring poll function not to reschedule */ 730 xhci->zombie = 1; 731 del_timer_sync(&xhci->event_ring_timer); 732 #endif 733 734 /* Deleting Compliance Mode Recovery Timer */ 735 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 736 (!(xhci_all_ports_seen_u0(xhci)))) { 737 del_timer_sync(&xhci->comp_mode_recovery_timer); 738 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n", 739 __func__); 740 } 741 742 if (xhci->quirks & XHCI_AMD_PLL_FIX) 743 usb_amd_dev_put(); 744 745 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 746 temp = xhci_readl(xhci, &xhci->op_regs->status); 747 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 748 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 749 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 750 &xhci->ir_set->irq_pending); 751 xhci_print_ir_set(xhci, 0); 752 753 xhci_dbg(xhci, "cleaning up memory\n"); 754 xhci_mem_cleanup(xhci); 755 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 756 xhci_readl(xhci, &xhci->op_regs->status)); 757 } 758 759 /* 760 * Shutdown HC (not bus-specific) 761 * 762 * This is called when the machine is rebooting or halting. We assume that the 763 * machine will be powered off, and the HC's internal state will be reset. 764 * Don't bother to free memory. 765 * 766 * This will only ever be called with the main usb_hcd (the USB3 roothub). 767 */ 768 void xhci_shutdown(struct usb_hcd *hcd) 769 { 770 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 771 772 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 773 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 774 775 spin_lock_irq(&xhci->lock); 776 xhci_halt(xhci); 777 spin_unlock_irq(&xhci->lock); 778 779 xhci_cleanup_msix(xhci); 780 781 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n", 782 xhci_readl(xhci, &xhci->op_regs->status)); 783 } 784 785 #ifdef CONFIG_PM 786 static void xhci_save_registers(struct xhci_hcd *xhci) 787 { 788 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command); 789 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification); 790 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 791 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg); 792 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size); 793 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 794 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 795 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 796 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control); 797 } 798 799 static void xhci_restore_registers(struct xhci_hcd *xhci) 800 { 801 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command); 802 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 803 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 804 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg); 805 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size); 806 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 807 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 808 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 809 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control); 810 } 811 812 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 813 { 814 u64 val_64; 815 816 /* step 2: initialize command ring buffer */ 817 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 818 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 819 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 820 xhci->cmd_ring->dequeue) & 821 (u64) ~CMD_RING_RSVD_BITS) | 822 xhci->cmd_ring->cycle_state; 823 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n", 824 (long unsigned long) val_64); 825 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 826 } 827 828 /* 829 * The whole command ring must be cleared to zero when we suspend the host. 830 * 831 * The host doesn't save the command ring pointer in the suspend well, so we 832 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 833 * aligned, because of the reserved bits in the command ring dequeue pointer 834 * register. Therefore, we can't just set the dequeue pointer back in the 835 * middle of the ring (TRBs are 16-byte aligned). 836 */ 837 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 838 { 839 struct xhci_ring *ring; 840 struct xhci_segment *seg; 841 842 ring = xhci->cmd_ring; 843 seg = ring->deq_seg; 844 do { 845 memset(seg->trbs, 0, 846 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 847 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 848 cpu_to_le32(~TRB_CYCLE); 849 seg = seg->next; 850 } while (seg != ring->deq_seg); 851 852 /* Reset the software enqueue and dequeue pointers */ 853 ring->deq_seg = ring->first_seg; 854 ring->dequeue = ring->first_seg->trbs; 855 ring->enq_seg = ring->deq_seg; 856 ring->enqueue = ring->dequeue; 857 858 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 859 /* 860 * Ring is now zeroed, so the HW should look for change of ownership 861 * when the cycle bit is set to 1. 862 */ 863 ring->cycle_state = 1; 864 865 /* 866 * Reset the hardware dequeue pointer. 867 * Yes, this will need to be re-written after resume, but we're paranoid 868 * and want to make sure the hardware doesn't access bogus memory 869 * because, say, the BIOS or an SMI started the host without changing 870 * the command ring pointers. 871 */ 872 xhci_set_cmd_ring_deq(xhci); 873 } 874 875 /* 876 * Stop HC (not bus-specific) 877 * 878 * This is called when the machine transition into S3/S4 mode. 879 * 880 */ 881 int xhci_suspend(struct xhci_hcd *xhci) 882 { 883 int rc = 0; 884 struct usb_hcd *hcd = xhci_to_hcd(xhci); 885 u32 command; 886 887 if (hcd->state != HC_STATE_SUSPENDED || 888 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 889 return -EINVAL; 890 891 /* Don't poll the roothubs on bus suspend. */ 892 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 893 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 894 del_timer_sync(&hcd->rh_timer); 895 896 spin_lock_irq(&xhci->lock); 897 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 898 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 899 /* step 1: stop endpoint */ 900 /* skipped assuming that port suspend has done */ 901 902 /* step 2: clear Run/Stop bit */ 903 command = xhci_readl(xhci, &xhci->op_regs->command); 904 command &= ~CMD_RUN; 905 xhci_writel(xhci, command, &xhci->op_regs->command); 906 if (xhci_handshake(xhci, &xhci->op_regs->status, 907 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) { 908 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 909 spin_unlock_irq(&xhci->lock); 910 return -ETIMEDOUT; 911 } 912 xhci_clear_command_ring(xhci); 913 914 /* step 3: save registers */ 915 xhci_save_registers(xhci); 916 917 /* step 4: set CSS flag */ 918 command = xhci_readl(xhci, &xhci->op_regs->command); 919 command |= CMD_CSS; 920 xhci_writel(xhci, command, &xhci->op_regs->command); 921 if (xhci_handshake(xhci, &xhci->op_regs->status, 922 STS_SAVE, 0, 10 * 1000)) { 923 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 924 spin_unlock_irq(&xhci->lock); 925 return -ETIMEDOUT; 926 } 927 spin_unlock_irq(&xhci->lock); 928 929 /* 930 * Deleting Compliance Mode Recovery Timer because the xHCI Host 931 * is about to be suspended. 932 */ 933 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 934 (!(xhci_all_ports_seen_u0(xhci)))) { 935 del_timer_sync(&xhci->comp_mode_recovery_timer); 936 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n", 937 __func__); 938 } 939 940 /* step 5: remove core well power */ 941 /* synchronize irq when using MSI-X */ 942 xhci_msix_sync_irqs(xhci); 943 944 return rc; 945 } 946 947 /* 948 * start xHC (not bus-specific) 949 * 950 * This is called when the machine transition from S3/S4 mode. 951 * 952 */ 953 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 954 { 955 u32 command, temp = 0; 956 struct usb_hcd *hcd = xhci_to_hcd(xhci); 957 struct usb_hcd *secondary_hcd; 958 int retval = 0; 959 bool comp_timer_running = false; 960 961 /* Wait a bit if either of the roothubs need to settle from the 962 * transition into bus suspend. 963 */ 964 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 965 time_before(jiffies, 966 xhci->bus_state[1].next_statechange)) 967 msleep(100); 968 969 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 970 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 971 972 spin_lock_irq(&xhci->lock); 973 if (xhci->quirks & XHCI_RESET_ON_RESUME) 974 hibernated = true; 975 976 if (!hibernated) { 977 /* step 1: restore register */ 978 xhci_restore_registers(xhci); 979 /* step 2: initialize command ring buffer */ 980 xhci_set_cmd_ring_deq(xhci); 981 /* step 3: restore state and start state*/ 982 /* step 3: set CRS flag */ 983 command = xhci_readl(xhci, &xhci->op_regs->command); 984 command |= CMD_CRS; 985 xhci_writel(xhci, command, &xhci->op_regs->command); 986 if (xhci_handshake(xhci, &xhci->op_regs->status, 987 STS_RESTORE, 0, 10 * 1000)) { 988 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 989 spin_unlock_irq(&xhci->lock); 990 return -ETIMEDOUT; 991 } 992 temp = xhci_readl(xhci, &xhci->op_regs->status); 993 } 994 995 /* If restore operation fails, re-initialize the HC during resume */ 996 if ((temp & STS_SRE) || hibernated) { 997 998 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 999 !(xhci_all_ports_seen_u0(xhci))) { 1000 del_timer_sync(&xhci->comp_mode_recovery_timer); 1001 xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n"); 1002 } 1003 1004 /* Let the USB core know _both_ roothubs lost power. */ 1005 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1006 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1007 1008 xhci_dbg(xhci, "Stop HCD\n"); 1009 xhci_halt(xhci); 1010 xhci_reset(xhci); 1011 spin_unlock_irq(&xhci->lock); 1012 xhci_cleanup_msix(xhci); 1013 1014 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 1015 /* Tell the event ring poll function not to reschedule */ 1016 xhci->zombie = 1; 1017 del_timer_sync(&xhci->event_ring_timer); 1018 #endif 1019 1020 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1021 temp = xhci_readl(xhci, &xhci->op_regs->status); 1022 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 1023 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 1024 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 1025 &xhci->ir_set->irq_pending); 1026 xhci_print_ir_set(xhci, 0); 1027 1028 xhci_dbg(xhci, "cleaning up memory\n"); 1029 xhci_mem_cleanup(xhci); 1030 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1031 xhci_readl(xhci, &xhci->op_regs->status)); 1032 1033 /* USB core calls the PCI reinit and start functions twice: 1034 * first with the primary HCD, and then with the secondary HCD. 1035 * If we don't do the same, the host will never be started. 1036 */ 1037 if (!usb_hcd_is_primary_hcd(hcd)) 1038 secondary_hcd = hcd; 1039 else 1040 secondary_hcd = xhci->shared_hcd; 1041 1042 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1043 retval = xhci_init(hcd->primary_hcd); 1044 if (retval) 1045 return retval; 1046 comp_timer_running = true; 1047 1048 xhci_dbg(xhci, "Start the primary HCD\n"); 1049 retval = xhci_run(hcd->primary_hcd); 1050 if (!retval) { 1051 xhci_dbg(xhci, "Start the secondary HCD\n"); 1052 retval = xhci_run(secondary_hcd); 1053 } 1054 hcd->state = HC_STATE_SUSPENDED; 1055 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1056 goto done; 1057 } 1058 1059 /* step 4: set Run/Stop bit */ 1060 command = xhci_readl(xhci, &xhci->op_regs->command); 1061 command |= CMD_RUN; 1062 xhci_writel(xhci, command, &xhci->op_regs->command); 1063 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT, 1064 0, 250 * 1000); 1065 1066 /* step 5: walk topology and initialize portsc, 1067 * portpmsc and portli 1068 */ 1069 /* this is done in bus_resume */ 1070 1071 /* step 6: restart each of the previously 1072 * Running endpoints by ringing their doorbells 1073 */ 1074 1075 spin_unlock_irq(&xhci->lock); 1076 1077 done: 1078 if (retval == 0) { 1079 usb_hcd_resume_root_hub(hcd); 1080 usb_hcd_resume_root_hub(xhci->shared_hcd); 1081 } 1082 1083 /* 1084 * If system is subject to the Quirk, Compliance Mode Timer needs to 1085 * be re-initialized Always after a system resume. Ports are subject 1086 * to suffer the Compliance Mode issue again. It doesn't matter if 1087 * ports have entered previously to U0 before system's suspension. 1088 */ 1089 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1090 compliance_mode_recovery_timer_init(xhci); 1091 1092 /* Re-enable port polling. */ 1093 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1094 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1095 usb_hcd_poll_rh_status(hcd); 1096 1097 return retval; 1098 } 1099 #endif /* CONFIG_PM */ 1100 1101 /*-------------------------------------------------------------------------*/ 1102 1103 /** 1104 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1105 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1106 * value to right shift 1 for the bitmask. 1107 * 1108 * Index = (epnum * 2) + direction - 1, 1109 * where direction = 0 for OUT, 1 for IN. 1110 * For control endpoints, the IN index is used (OUT index is unused), so 1111 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1112 */ 1113 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1114 { 1115 unsigned int index; 1116 if (usb_endpoint_xfer_control(desc)) 1117 index = (unsigned int) (usb_endpoint_num(desc)*2); 1118 else 1119 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1120 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1121 return index; 1122 } 1123 1124 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1125 * address from the XHCI endpoint index. 1126 */ 1127 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1128 { 1129 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1130 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1131 return direction | number; 1132 } 1133 1134 /* Find the flag for this endpoint (for use in the control context). Use the 1135 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1136 * bit 1, etc. 1137 */ 1138 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1139 { 1140 return 1 << (xhci_get_endpoint_index(desc) + 1); 1141 } 1142 1143 /* Find the flag for this endpoint (for use in the control context). Use the 1144 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1145 * bit 1, etc. 1146 */ 1147 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1148 { 1149 return 1 << (ep_index + 1); 1150 } 1151 1152 /* Compute the last valid endpoint context index. Basically, this is the 1153 * endpoint index plus one. For slot contexts with more than valid endpoint, 1154 * we find the most significant bit set in the added contexts flags. 1155 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1156 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1157 */ 1158 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1159 { 1160 return fls(added_ctxs) - 1; 1161 } 1162 1163 /* Returns 1 if the arguments are OK; 1164 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1165 */ 1166 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1167 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1168 const char *func) { 1169 struct xhci_hcd *xhci; 1170 struct xhci_virt_device *virt_dev; 1171 1172 if (!hcd || (check_ep && !ep) || !udev) { 1173 printk(KERN_DEBUG "xHCI %s called with invalid args\n", 1174 func); 1175 return -EINVAL; 1176 } 1177 if (!udev->parent) { 1178 printk(KERN_DEBUG "xHCI %s called for root hub\n", 1179 func); 1180 return 0; 1181 } 1182 1183 xhci = hcd_to_xhci(hcd); 1184 if (xhci->xhc_state & XHCI_STATE_HALTED) 1185 return -ENODEV; 1186 1187 if (check_virt_dev) { 1188 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1189 printk(KERN_DEBUG "xHCI %s called with unaddressed " 1190 "device\n", func); 1191 return -EINVAL; 1192 } 1193 1194 virt_dev = xhci->devs[udev->slot_id]; 1195 if (virt_dev->udev != udev) { 1196 printk(KERN_DEBUG "xHCI %s called with udev and " 1197 "virt_dev does not match\n", func); 1198 return -EINVAL; 1199 } 1200 } 1201 1202 return 1; 1203 } 1204 1205 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1206 struct usb_device *udev, struct xhci_command *command, 1207 bool ctx_change, bool must_succeed); 1208 1209 /* 1210 * Full speed devices may have a max packet size greater than 8 bytes, but the 1211 * USB core doesn't know that until it reads the first 8 bytes of the 1212 * descriptor. If the usb_device's max packet size changes after that point, 1213 * we need to issue an evaluate context command and wait on it. 1214 */ 1215 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1216 unsigned int ep_index, struct urb *urb) 1217 { 1218 struct xhci_container_ctx *in_ctx; 1219 struct xhci_container_ctx *out_ctx; 1220 struct xhci_input_control_ctx *ctrl_ctx; 1221 struct xhci_ep_ctx *ep_ctx; 1222 int max_packet_size; 1223 int hw_max_packet_size; 1224 int ret = 0; 1225 1226 out_ctx = xhci->devs[slot_id]->out_ctx; 1227 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1228 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1229 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1230 if (hw_max_packet_size != max_packet_size) { 1231 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n"); 1232 xhci_dbg(xhci, "Max packet size in usb_device = %d\n", 1233 max_packet_size); 1234 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n", 1235 hw_max_packet_size); 1236 xhci_dbg(xhci, "Issuing evaluate context command.\n"); 1237 1238 /* Set up the input context flags for the command */ 1239 /* FIXME: This won't work if a non-default control endpoint 1240 * changes max packet sizes. 1241 */ 1242 in_ctx = xhci->devs[slot_id]->in_ctx; 1243 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1244 if (!ctrl_ctx) { 1245 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1246 __func__); 1247 return -ENOMEM; 1248 } 1249 /* Set up the modified control endpoint 0 */ 1250 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1251 xhci->devs[slot_id]->out_ctx, ep_index); 1252 1253 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1254 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1255 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1256 1257 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1258 ctrl_ctx->drop_flags = 0; 1259 1260 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1261 xhci_dbg_ctx(xhci, in_ctx, ep_index); 1262 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1263 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1264 1265 ret = xhci_configure_endpoint(xhci, urb->dev, NULL, 1266 true, false); 1267 1268 /* Clean up the input context for later use by bandwidth 1269 * functions. 1270 */ 1271 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1272 } 1273 return ret; 1274 } 1275 1276 /* 1277 * non-error returns are a promise to giveback() the urb later 1278 * we drop ownership so next owner (or urb unlink) can get it 1279 */ 1280 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1281 { 1282 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1283 struct xhci_td *buffer; 1284 unsigned long flags; 1285 int ret = 0; 1286 unsigned int slot_id, ep_index; 1287 struct urb_priv *urb_priv; 1288 int size, i; 1289 1290 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1291 true, true, __func__) <= 0) 1292 return -EINVAL; 1293 1294 slot_id = urb->dev->slot_id; 1295 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1296 1297 if (!HCD_HW_ACCESSIBLE(hcd)) { 1298 if (!in_interrupt()) 1299 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1300 ret = -ESHUTDOWN; 1301 goto exit; 1302 } 1303 1304 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1305 size = urb->number_of_packets; 1306 else 1307 size = 1; 1308 1309 urb_priv = kzalloc(sizeof(struct urb_priv) + 1310 size * sizeof(struct xhci_td *), mem_flags); 1311 if (!urb_priv) 1312 return -ENOMEM; 1313 1314 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1315 if (!buffer) { 1316 kfree(urb_priv); 1317 return -ENOMEM; 1318 } 1319 1320 for (i = 0; i < size; i++) { 1321 urb_priv->td[i] = buffer; 1322 buffer++; 1323 } 1324 1325 urb_priv->length = size; 1326 urb_priv->td_cnt = 0; 1327 urb->hcpriv = urb_priv; 1328 1329 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1330 /* Check to see if the max packet size for the default control 1331 * endpoint changed during FS device enumeration 1332 */ 1333 if (urb->dev->speed == USB_SPEED_FULL) { 1334 ret = xhci_check_maxpacket(xhci, slot_id, 1335 ep_index, urb); 1336 if (ret < 0) { 1337 xhci_urb_free_priv(xhci, urb_priv); 1338 urb->hcpriv = NULL; 1339 return ret; 1340 } 1341 } 1342 1343 /* We have a spinlock and interrupts disabled, so we must pass 1344 * atomic context to this function, which may allocate memory. 1345 */ 1346 spin_lock_irqsave(&xhci->lock, flags); 1347 if (xhci->xhc_state & XHCI_STATE_DYING) 1348 goto dying; 1349 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1350 slot_id, ep_index); 1351 if (ret) 1352 goto free_priv; 1353 spin_unlock_irqrestore(&xhci->lock, flags); 1354 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1355 spin_lock_irqsave(&xhci->lock, flags); 1356 if (xhci->xhc_state & XHCI_STATE_DYING) 1357 goto dying; 1358 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1359 EP_GETTING_STREAMS) { 1360 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1361 "is transitioning to using streams.\n"); 1362 ret = -EINVAL; 1363 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1364 EP_GETTING_NO_STREAMS) { 1365 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1366 "is transitioning to " 1367 "not having streams.\n"); 1368 ret = -EINVAL; 1369 } else { 1370 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1371 slot_id, ep_index); 1372 } 1373 if (ret) 1374 goto free_priv; 1375 spin_unlock_irqrestore(&xhci->lock, flags); 1376 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1377 spin_lock_irqsave(&xhci->lock, flags); 1378 if (xhci->xhc_state & XHCI_STATE_DYING) 1379 goto dying; 1380 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1381 slot_id, ep_index); 1382 if (ret) 1383 goto free_priv; 1384 spin_unlock_irqrestore(&xhci->lock, flags); 1385 } else { 1386 spin_lock_irqsave(&xhci->lock, flags); 1387 if (xhci->xhc_state & XHCI_STATE_DYING) 1388 goto dying; 1389 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1390 slot_id, ep_index); 1391 if (ret) 1392 goto free_priv; 1393 spin_unlock_irqrestore(&xhci->lock, flags); 1394 } 1395 exit: 1396 return ret; 1397 dying: 1398 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1399 "non-responsive xHCI host.\n", 1400 urb->ep->desc.bEndpointAddress, urb); 1401 ret = -ESHUTDOWN; 1402 free_priv: 1403 xhci_urb_free_priv(xhci, urb_priv); 1404 urb->hcpriv = NULL; 1405 spin_unlock_irqrestore(&xhci->lock, flags); 1406 return ret; 1407 } 1408 1409 /* Get the right ring for the given URB. 1410 * If the endpoint supports streams, boundary check the URB's stream ID. 1411 * If the endpoint doesn't support streams, return the singular endpoint ring. 1412 */ 1413 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1414 struct urb *urb) 1415 { 1416 unsigned int slot_id; 1417 unsigned int ep_index; 1418 unsigned int stream_id; 1419 struct xhci_virt_ep *ep; 1420 1421 slot_id = urb->dev->slot_id; 1422 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1423 stream_id = urb->stream_id; 1424 ep = &xhci->devs[slot_id]->eps[ep_index]; 1425 /* Common case: no streams */ 1426 if (!(ep->ep_state & EP_HAS_STREAMS)) 1427 return ep->ring; 1428 1429 if (stream_id == 0) { 1430 xhci_warn(xhci, 1431 "WARN: Slot ID %u, ep index %u has streams, " 1432 "but URB has no stream ID.\n", 1433 slot_id, ep_index); 1434 return NULL; 1435 } 1436 1437 if (stream_id < ep->stream_info->num_streams) 1438 return ep->stream_info->stream_rings[stream_id]; 1439 1440 xhci_warn(xhci, 1441 "WARN: Slot ID %u, ep index %u has " 1442 "stream IDs 1 to %u allocated, " 1443 "but stream ID %u is requested.\n", 1444 slot_id, ep_index, 1445 ep->stream_info->num_streams - 1, 1446 stream_id); 1447 return NULL; 1448 } 1449 1450 /* 1451 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1452 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1453 * should pick up where it left off in the TD, unless a Set Transfer Ring 1454 * Dequeue Pointer is issued. 1455 * 1456 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1457 * the ring. Since the ring is a contiguous structure, they can't be physically 1458 * removed. Instead, there are two options: 1459 * 1460 * 1) If the HC is in the middle of processing the URB to be canceled, we 1461 * simply move the ring's dequeue pointer past those TRBs using the Set 1462 * Transfer Ring Dequeue Pointer command. This will be the common case, 1463 * when drivers timeout on the last submitted URB and attempt to cancel. 1464 * 1465 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1466 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1467 * HC will need to invalidate the any TRBs it has cached after the stop 1468 * endpoint command, as noted in the xHCI 0.95 errata. 1469 * 1470 * 3) The TD may have completed by the time the Stop Endpoint Command 1471 * completes, so software needs to handle that case too. 1472 * 1473 * This function should protect against the TD enqueueing code ringing the 1474 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1475 * It also needs to account for multiple cancellations on happening at the same 1476 * time for the same endpoint. 1477 * 1478 * Note that this function can be called in any context, or so says 1479 * usb_hcd_unlink_urb() 1480 */ 1481 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1482 { 1483 unsigned long flags; 1484 int ret, i; 1485 u32 temp; 1486 struct xhci_hcd *xhci; 1487 struct urb_priv *urb_priv; 1488 struct xhci_td *td; 1489 unsigned int ep_index; 1490 struct xhci_ring *ep_ring; 1491 struct xhci_virt_ep *ep; 1492 1493 xhci = hcd_to_xhci(hcd); 1494 spin_lock_irqsave(&xhci->lock, flags); 1495 /* Make sure the URB hasn't completed or been unlinked already */ 1496 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1497 if (ret || !urb->hcpriv) 1498 goto done; 1499 temp = xhci_readl(xhci, &xhci->op_regs->status); 1500 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1501 xhci_dbg(xhci, "HW died, freeing TD.\n"); 1502 urb_priv = urb->hcpriv; 1503 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1504 td = urb_priv->td[i]; 1505 if (!list_empty(&td->td_list)) 1506 list_del_init(&td->td_list); 1507 if (!list_empty(&td->cancelled_td_list)) 1508 list_del_init(&td->cancelled_td_list); 1509 } 1510 1511 usb_hcd_unlink_urb_from_ep(hcd, urb); 1512 spin_unlock_irqrestore(&xhci->lock, flags); 1513 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1514 xhci_urb_free_priv(xhci, urb_priv); 1515 return ret; 1516 } 1517 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1518 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1519 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on " 1520 "non-responsive xHCI host.\n", 1521 urb->ep->desc.bEndpointAddress, urb); 1522 /* Let the stop endpoint command watchdog timer (which set this 1523 * state) finish cleaning up the endpoint TD lists. We must 1524 * have caught it in the middle of dropping a lock and giving 1525 * back an URB. 1526 */ 1527 goto done; 1528 } 1529 1530 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1531 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1532 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1533 if (!ep_ring) { 1534 ret = -EINVAL; 1535 goto done; 1536 } 1537 1538 urb_priv = urb->hcpriv; 1539 i = urb_priv->td_cnt; 1540 if (i < urb_priv->length) 1541 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, " 1542 "starting at offset 0x%llx\n", 1543 urb, urb->dev->devpath, 1544 urb->ep->desc.bEndpointAddress, 1545 (unsigned long long) xhci_trb_virt_to_dma( 1546 urb_priv->td[i]->start_seg, 1547 urb_priv->td[i]->first_trb)); 1548 1549 for (; i < urb_priv->length; i++) { 1550 td = urb_priv->td[i]; 1551 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1552 } 1553 1554 /* Queue a stop endpoint command, but only if this is 1555 * the first cancellation to be handled. 1556 */ 1557 if (!(ep->ep_state & EP_HALT_PENDING)) { 1558 ep->ep_state |= EP_HALT_PENDING; 1559 ep->stop_cmds_pending++; 1560 ep->stop_cmd_timer.expires = jiffies + 1561 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1562 add_timer(&ep->stop_cmd_timer); 1563 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0); 1564 xhci_ring_cmd_db(xhci); 1565 } 1566 done: 1567 spin_unlock_irqrestore(&xhci->lock, flags); 1568 return ret; 1569 } 1570 1571 /* Drop an endpoint from a new bandwidth configuration for this device. 1572 * Only one call to this function is allowed per endpoint before 1573 * check_bandwidth() or reset_bandwidth() must be called. 1574 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1575 * add the endpoint to the schedule with possibly new parameters denoted by a 1576 * different endpoint descriptor in usb_host_endpoint. 1577 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1578 * not allowed. 1579 * 1580 * The USB core will not allow URBs to be queued to an endpoint that is being 1581 * disabled, so there's no need for mutual exclusion to protect 1582 * the xhci->devs[slot_id] structure. 1583 */ 1584 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1585 struct usb_host_endpoint *ep) 1586 { 1587 struct xhci_hcd *xhci; 1588 struct xhci_container_ctx *in_ctx, *out_ctx; 1589 struct xhci_input_control_ctx *ctrl_ctx; 1590 struct xhci_slot_ctx *slot_ctx; 1591 unsigned int last_ctx; 1592 unsigned int ep_index; 1593 struct xhci_ep_ctx *ep_ctx; 1594 u32 drop_flag; 1595 u32 new_add_flags, new_drop_flags, new_slot_info; 1596 int ret; 1597 1598 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1599 if (ret <= 0) 1600 return ret; 1601 xhci = hcd_to_xhci(hcd); 1602 if (xhci->xhc_state & XHCI_STATE_DYING) 1603 return -ENODEV; 1604 1605 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1606 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1607 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1608 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1609 __func__, drop_flag); 1610 return 0; 1611 } 1612 1613 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1614 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1615 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1616 if (!ctrl_ctx) { 1617 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1618 __func__); 1619 return 0; 1620 } 1621 1622 ep_index = xhci_get_endpoint_index(&ep->desc); 1623 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1624 /* If the HC already knows the endpoint is disabled, 1625 * or the HCD has noted it is disabled, ignore this request 1626 */ 1627 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1628 cpu_to_le32(EP_STATE_DISABLED)) || 1629 le32_to_cpu(ctrl_ctx->drop_flags) & 1630 xhci_get_endpoint_flag(&ep->desc)) { 1631 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1632 __func__, ep); 1633 return 0; 1634 } 1635 1636 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1637 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1638 1639 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1640 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1641 1642 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)); 1643 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1644 /* Update the last valid endpoint context, if we deleted the last one */ 1645 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) > 1646 LAST_CTX(last_ctx)) { 1647 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1648 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1649 } 1650 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1651 1652 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1653 1654 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1655 (unsigned int) ep->desc.bEndpointAddress, 1656 udev->slot_id, 1657 (unsigned int) new_drop_flags, 1658 (unsigned int) new_add_flags, 1659 (unsigned int) new_slot_info); 1660 return 0; 1661 } 1662 1663 /* Add an endpoint to a new possible bandwidth configuration for this device. 1664 * Only one call to this function is allowed per endpoint before 1665 * check_bandwidth() or reset_bandwidth() must be called. 1666 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1667 * add the endpoint to the schedule with possibly new parameters denoted by a 1668 * different endpoint descriptor in usb_host_endpoint. 1669 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1670 * not allowed. 1671 * 1672 * The USB core will not allow URBs to be queued to an endpoint until the 1673 * configuration or alt setting is installed in the device, so there's no need 1674 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1675 */ 1676 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1677 struct usb_host_endpoint *ep) 1678 { 1679 struct xhci_hcd *xhci; 1680 struct xhci_container_ctx *in_ctx, *out_ctx; 1681 unsigned int ep_index; 1682 struct xhci_slot_ctx *slot_ctx; 1683 struct xhci_input_control_ctx *ctrl_ctx; 1684 u32 added_ctxs; 1685 unsigned int last_ctx; 1686 u32 new_add_flags, new_drop_flags, new_slot_info; 1687 struct xhci_virt_device *virt_dev; 1688 int ret = 0; 1689 1690 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1691 if (ret <= 0) { 1692 /* So we won't queue a reset ep command for a root hub */ 1693 ep->hcpriv = NULL; 1694 return ret; 1695 } 1696 xhci = hcd_to_xhci(hcd); 1697 if (xhci->xhc_state & XHCI_STATE_DYING) 1698 return -ENODEV; 1699 1700 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1701 last_ctx = xhci_last_valid_endpoint(added_ctxs); 1702 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1703 /* FIXME when we have to issue an evaluate endpoint command to 1704 * deal with ep0 max packet size changing once we get the 1705 * descriptors 1706 */ 1707 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1708 __func__, added_ctxs); 1709 return 0; 1710 } 1711 1712 virt_dev = xhci->devs[udev->slot_id]; 1713 in_ctx = virt_dev->in_ctx; 1714 out_ctx = virt_dev->out_ctx; 1715 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1716 if (!ctrl_ctx) { 1717 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1718 __func__); 1719 return 0; 1720 } 1721 1722 ep_index = xhci_get_endpoint_index(&ep->desc); 1723 /* If this endpoint is already in use, and the upper layers are trying 1724 * to add it again without dropping it, reject the addition. 1725 */ 1726 if (virt_dev->eps[ep_index].ring && 1727 !(le32_to_cpu(ctrl_ctx->drop_flags) & 1728 xhci_get_endpoint_flag(&ep->desc))) { 1729 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1730 "without dropping it.\n", 1731 (unsigned int) ep->desc.bEndpointAddress); 1732 return -EINVAL; 1733 } 1734 1735 /* If the HCD has already noted the endpoint is enabled, 1736 * ignore this request. 1737 */ 1738 if (le32_to_cpu(ctrl_ctx->add_flags) & 1739 xhci_get_endpoint_flag(&ep->desc)) { 1740 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1741 __func__, ep); 1742 return 0; 1743 } 1744 1745 /* 1746 * Configuration and alternate setting changes must be done in 1747 * process context, not interrupt context (or so documenation 1748 * for usb_set_interface() and usb_set_configuration() claim). 1749 */ 1750 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1751 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1752 __func__, ep->desc.bEndpointAddress); 1753 return -ENOMEM; 1754 } 1755 1756 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1757 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1758 1759 /* If xhci_endpoint_disable() was called for this endpoint, but the 1760 * xHC hasn't been notified yet through the check_bandwidth() call, 1761 * this re-adds a new state for the endpoint from the new endpoint 1762 * descriptors. We must drop and re-add this endpoint, so we leave the 1763 * drop flags alone. 1764 */ 1765 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1766 1767 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1768 /* Update the last valid endpoint context, if we just added one past */ 1769 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) < 1770 LAST_CTX(last_ctx)) { 1771 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1772 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1773 } 1774 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1775 1776 /* Store the usb_device pointer for later use */ 1777 ep->hcpriv = udev; 1778 1779 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1780 (unsigned int) ep->desc.bEndpointAddress, 1781 udev->slot_id, 1782 (unsigned int) new_drop_flags, 1783 (unsigned int) new_add_flags, 1784 (unsigned int) new_slot_info); 1785 return 0; 1786 } 1787 1788 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1789 { 1790 struct xhci_input_control_ctx *ctrl_ctx; 1791 struct xhci_ep_ctx *ep_ctx; 1792 struct xhci_slot_ctx *slot_ctx; 1793 int i; 1794 1795 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1796 if (!ctrl_ctx) { 1797 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1798 __func__); 1799 return; 1800 } 1801 1802 /* When a device's add flag and drop flag are zero, any subsequent 1803 * configure endpoint command will leave that endpoint's state 1804 * untouched. Make sure we don't leave any old state in the input 1805 * endpoint contexts. 1806 */ 1807 ctrl_ctx->drop_flags = 0; 1808 ctrl_ctx->add_flags = 0; 1809 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1810 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1811 /* Endpoint 0 is always valid */ 1812 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1813 for (i = 1; i < 31; ++i) { 1814 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1815 ep_ctx->ep_info = 0; 1816 ep_ctx->ep_info2 = 0; 1817 ep_ctx->deq = 0; 1818 ep_ctx->tx_info = 0; 1819 } 1820 } 1821 1822 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1823 struct usb_device *udev, u32 *cmd_status) 1824 { 1825 int ret; 1826 1827 switch (*cmd_status) { 1828 case COMP_ENOMEM: 1829 dev_warn(&udev->dev, "Not enough host controller resources " 1830 "for new device state.\n"); 1831 ret = -ENOMEM; 1832 /* FIXME: can we allocate more resources for the HC? */ 1833 break; 1834 case COMP_BW_ERR: 1835 case COMP_2ND_BW_ERR: 1836 dev_warn(&udev->dev, "Not enough bandwidth " 1837 "for new device state.\n"); 1838 ret = -ENOSPC; 1839 /* FIXME: can we go back to the old state? */ 1840 break; 1841 case COMP_TRB_ERR: 1842 /* the HCD set up something wrong */ 1843 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1844 "add flag = 1, " 1845 "and endpoint is not disabled.\n"); 1846 ret = -EINVAL; 1847 break; 1848 case COMP_DEV_ERR: 1849 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint " 1850 "configure command.\n"); 1851 ret = -ENODEV; 1852 break; 1853 case COMP_SUCCESS: 1854 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n"); 1855 ret = 0; 1856 break; 1857 default: 1858 xhci_err(xhci, "ERROR: unexpected command completion " 1859 "code 0x%x.\n", *cmd_status); 1860 ret = -EINVAL; 1861 break; 1862 } 1863 return ret; 1864 } 1865 1866 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1867 struct usb_device *udev, u32 *cmd_status) 1868 { 1869 int ret; 1870 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1871 1872 switch (*cmd_status) { 1873 case COMP_EINVAL: 1874 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " 1875 "context command.\n"); 1876 ret = -EINVAL; 1877 break; 1878 case COMP_EBADSLT: 1879 dev_warn(&udev->dev, "WARN: slot not enabled for" 1880 "evaluate context command.\n"); 1881 ret = -EINVAL; 1882 break; 1883 case COMP_CTX_STATE: 1884 dev_warn(&udev->dev, "WARN: invalid context state for " 1885 "evaluate context command.\n"); 1886 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1887 ret = -EINVAL; 1888 break; 1889 case COMP_DEV_ERR: 1890 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate " 1891 "context command.\n"); 1892 ret = -ENODEV; 1893 break; 1894 case COMP_MEL_ERR: 1895 /* Max Exit Latency too large error */ 1896 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1897 ret = -EINVAL; 1898 break; 1899 case COMP_SUCCESS: 1900 dev_dbg(&udev->dev, "Successful evaluate context command\n"); 1901 ret = 0; 1902 break; 1903 default: 1904 xhci_err(xhci, "ERROR: unexpected command completion " 1905 "code 0x%x.\n", *cmd_status); 1906 ret = -EINVAL; 1907 break; 1908 } 1909 return ret; 1910 } 1911 1912 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1913 struct xhci_input_control_ctx *ctrl_ctx) 1914 { 1915 u32 valid_add_flags; 1916 u32 valid_drop_flags; 1917 1918 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1919 * (bit 1). The default control endpoint is added during the Address 1920 * Device command and is never removed until the slot is disabled. 1921 */ 1922 valid_add_flags = ctrl_ctx->add_flags >> 2; 1923 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1924 1925 /* Use hweight32 to count the number of ones in the add flags, or 1926 * number of endpoints added. Don't count endpoints that are changed 1927 * (both added and dropped). 1928 */ 1929 return hweight32(valid_add_flags) - 1930 hweight32(valid_add_flags & valid_drop_flags); 1931 } 1932 1933 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1934 struct xhci_input_control_ctx *ctrl_ctx) 1935 { 1936 u32 valid_add_flags; 1937 u32 valid_drop_flags; 1938 1939 valid_add_flags = ctrl_ctx->add_flags >> 2; 1940 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1941 1942 return hweight32(valid_drop_flags) - 1943 hweight32(valid_add_flags & valid_drop_flags); 1944 } 1945 1946 /* 1947 * We need to reserve the new number of endpoints before the configure endpoint 1948 * command completes. We can't subtract the dropped endpoints from the number 1949 * of active endpoints until the command completes because we can oversubscribe 1950 * the host in this case: 1951 * 1952 * - the first configure endpoint command drops more endpoints than it adds 1953 * - a second configure endpoint command that adds more endpoints is queued 1954 * - the first configure endpoint command fails, so the config is unchanged 1955 * - the second command may succeed, even though there isn't enough resources 1956 * 1957 * Must be called with xhci->lock held. 1958 */ 1959 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1960 struct xhci_input_control_ctx *ctrl_ctx) 1961 { 1962 u32 added_eps; 1963 1964 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1965 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1966 xhci_dbg(xhci, "Not enough ep ctxs: " 1967 "%u active, need to add %u, limit is %u.\n", 1968 xhci->num_active_eps, added_eps, 1969 xhci->limit_active_eps); 1970 return -ENOMEM; 1971 } 1972 xhci->num_active_eps += added_eps; 1973 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps, 1974 xhci->num_active_eps); 1975 return 0; 1976 } 1977 1978 /* 1979 * The configure endpoint was failed by the xHC for some other reason, so we 1980 * need to revert the resources that failed configuration would have used. 1981 * 1982 * Must be called with xhci->lock held. 1983 */ 1984 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1985 struct xhci_input_control_ctx *ctrl_ctx) 1986 { 1987 u32 num_failed_eps; 1988 1989 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1990 xhci->num_active_eps -= num_failed_eps; 1991 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n", 1992 num_failed_eps, 1993 xhci->num_active_eps); 1994 } 1995 1996 /* 1997 * Now that the command has completed, clean up the active endpoint count by 1998 * subtracting out the endpoints that were dropped (but not changed). 1999 * 2000 * Must be called with xhci->lock held. 2001 */ 2002 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2003 struct xhci_input_control_ctx *ctrl_ctx) 2004 { 2005 u32 num_dropped_eps; 2006 2007 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2008 xhci->num_active_eps -= num_dropped_eps; 2009 if (num_dropped_eps) 2010 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n", 2011 num_dropped_eps, 2012 xhci->num_active_eps); 2013 } 2014 2015 static unsigned int xhci_get_block_size(struct usb_device *udev) 2016 { 2017 switch (udev->speed) { 2018 case USB_SPEED_LOW: 2019 case USB_SPEED_FULL: 2020 return FS_BLOCK; 2021 case USB_SPEED_HIGH: 2022 return HS_BLOCK; 2023 case USB_SPEED_SUPER: 2024 return SS_BLOCK; 2025 case USB_SPEED_UNKNOWN: 2026 case USB_SPEED_WIRELESS: 2027 default: 2028 /* Should never happen */ 2029 return 1; 2030 } 2031 } 2032 2033 static unsigned int 2034 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2035 { 2036 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2037 return LS_OVERHEAD; 2038 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2039 return FS_OVERHEAD; 2040 return HS_OVERHEAD; 2041 } 2042 2043 /* If we are changing a LS/FS device under a HS hub, 2044 * make sure (if we are activating a new TT) that the HS bus has enough 2045 * bandwidth for this new TT. 2046 */ 2047 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2048 struct xhci_virt_device *virt_dev, 2049 int old_active_eps) 2050 { 2051 struct xhci_interval_bw_table *bw_table; 2052 struct xhci_tt_bw_info *tt_info; 2053 2054 /* Find the bandwidth table for the root port this TT is attached to. */ 2055 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2056 tt_info = virt_dev->tt_info; 2057 /* If this TT already had active endpoints, the bandwidth for this TT 2058 * has already been added. Removing all periodic endpoints (and thus 2059 * making the TT enactive) will only decrease the bandwidth used. 2060 */ 2061 if (old_active_eps) 2062 return 0; 2063 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2064 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2065 return -ENOMEM; 2066 return 0; 2067 } 2068 /* Not sure why we would have no new active endpoints... 2069 * 2070 * Maybe because of an Evaluate Context change for a hub update or a 2071 * control endpoint 0 max packet size change? 2072 * FIXME: skip the bandwidth calculation in that case. 2073 */ 2074 return 0; 2075 } 2076 2077 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2078 struct xhci_virt_device *virt_dev) 2079 { 2080 unsigned int bw_reserved; 2081 2082 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2083 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2084 return -ENOMEM; 2085 2086 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2087 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2088 return -ENOMEM; 2089 2090 return 0; 2091 } 2092 2093 /* 2094 * This algorithm is a very conservative estimate of the worst-case scheduling 2095 * scenario for any one interval. The hardware dynamically schedules the 2096 * packets, so we can't tell which microframe could be the limiting factor in 2097 * the bandwidth scheduling. This only takes into account periodic endpoints. 2098 * 2099 * Obviously, we can't solve an NP complete problem to find the minimum worst 2100 * case scenario. Instead, we come up with an estimate that is no less than 2101 * the worst case bandwidth used for any one microframe, but may be an 2102 * over-estimate. 2103 * 2104 * We walk the requirements for each endpoint by interval, starting with the 2105 * smallest interval, and place packets in the schedule where there is only one 2106 * possible way to schedule packets for that interval. In order to simplify 2107 * this algorithm, we record the largest max packet size for each interval, and 2108 * assume all packets will be that size. 2109 * 2110 * For interval 0, we obviously must schedule all packets for each interval. 2111 * The bandwidth for interval 0 is just the amount of data to be transmitted 2112 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2113 * the number of packets). 2114 * 2115 * For interval 1, we have two possible microframes to schedule those packets 2116 * in. For this algorithm, if we can schedule the same number of packets for 2117 * each possible scheduling opportunity (each microframe), we will do so. The 2118 * remaining number of packets will be saved to be transmitted in the gaps in 2119 * the next interval's scheduling sequence. 2120 * 2121 * As we move those remaining packets to be scheduled with interval 2 packets, 2122 * we have to double the number of remaining packets to transmit. This is 2123 * because the intervals are actually powers of 2, and we would be transmitting 2124 * the previous interval's packets twice in this interval. We also have to be 2125 * sure that when we look at the largest max packet size for this interval, we 2126 * also look at the largest max packet size for the remaining packets and take 2127 * the greater of the two. 2128 * 2129 * The algorithm continues to evenly distribute packets in each scheduling 2130 * opportunity, and push the remaining packets out, until we get to the last 2131 * interval. Then those packets and their associated overhead are just added 2132 * to the bandwidth used. 2133 */ 2134 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2135 struct xhci_virt_device *virt_dev, 2136 int old_active_eps) 2137 { 2138 unsigned int bw_reserved; 2139 unsigned int max_bandwidth; 2140 unsigned int bw_used; 2141 unsigned int block_size; 2142 struct xhci_interval_bw_table *bw_table; 2143 unsigned int packet_size = 0; 2144 unsigned int overhead = 0; 2145 unsigned int packets_transmitted = 0; 2146 unsigned int packets_remaining = 0; 2147 unsigned int i; 2148 2149 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2150 return xhci_check_ss_bw(xhci, virt_dev); 2151 2152 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2153 max_bandwidth = HS_BW_LIMIT; 2154 /* Convert percent of bus BW reserved to blocks reserved */ 2155 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2156 } else { 2157 max_bandwidth = FS_BW_LIMIT; 2158 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2159 } 2160 2161 bw_table = virt_dev->bw_table; 2162 /* We need to translate the max packet size and max ESIT payloads into 2163 * the units the hardware uses. 2164 */ 2165 block_size = xhci_get_block_size(virt_dev->udev); 2166 2167 /* If we are manipulating a LS/FS device under a HS hub, double check 2168 * that the HS bus has enough bandwidth if we are activing a new TT. 2169 */ 2170 if (virt_dev->tt_info) { 2171 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 2172 virt_dev->real_port); 2173 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2174 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2175 "newly activated TT.\n"); 2176 return -ENOMEM; 2177 } 2178 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n", 2179 virt_dev->tt_info->slot_id, 2180 virt_dev->tt_info->ttport); 2181 } else { 2182 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 2183 virt_dev->real_port); 2184 } 2185 2186 /* Add in how much bandwidth will be used for interval zero, or the 2187 * rounded max ESIT payload + number of packets * largest overhead. 2188 */ 2189 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2190 bw_table->interval_bw[0].num_packets * 2191 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2192 2193 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2194 unsigned int bw_added; 2195 unsigned int largest_mps; 2196 unsigned int interval_overhead; 2197 2198 /* 2199 * How many packets could we transmit in this interval? 2200 * If packets didn't fit in the previous interval, we will need 2201 * to transmit that many packets twice within this interval. 2202 */ 2203 packets_remaining = 2 * packets_remaining + 2204 bw_table->interval_bw[i].num_packets; 2205 2206 /* Find the largest max packet size of this or the previous 2207 * interval. 2208 */ 2209 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2210 largest_mps = 0; 2211 else { 2212 struct xhci_virt_ep *virt_ep; 2213 struct list_head *ep_entry; 2214 2215 ep_entry = bw_table->interval_bw[i].endpoints.next; 2216 virt_ep = list_entry(ep_entry, 2217 struct xhci_virt_ep, bw_endpoint_list); 2218 /* Convert to blocks, rounding up */ 2219 largest_mps = DIV_ROUND_UP( 2220 virt_ep->bw_info.max_packet_size, 2221 block_size); 2222 } 2223 if (largest_mps > packet_size) 2224 packet_size = largest_mps; 2225 2226 /* Use the larger overhead of this or the previous interval. */ 2227 interval_overhead = xhci_get_largest_overhead( 2228 &bw_table->interval_bw[i]); 2229 if (interval_overhead > overhead) 2230 overhead = interval_overhead; 2231 2232 /* How many packets can we evenly distribute across 2233 * (1 << (i + 1)) possible scheduling opportunities? 2234 */ 2235 packets_transmitted = packets_remaining >> (i + 1); 2236 2237 /* Add in the bandwidth used for those scheduled packets */ 2238 bw_added = packets_transmitted * (overhead + packet_size); 2239 2240 /* How many packets do we have remaining to transmit? */ 2241 packets_remaining = packets_remaining % (1 << (i + 1)); 2242 2243 /* What largest max packet size should those packets have? */ 2244 /* If we've transmitted all packets, don't carry over the 2245 * largest packet size. 2246 */ 2247 if (packets_remaining == 0) { 2248 packet_size = 0; 2249 overhead = 0; 2250 } else if (packets_transmitted > 0) { 2251 /* Otherwise if we do have remaining packets, and we've 2252 * scheduled some packets in this interval, take the 2253 * largest max packet size from endpoints with this 2254 * interval. 2255 */ 2256 packet_size = largest_mps; 2257 overhead = interval_overhead; 2258 } 2259 /* Otherwise carry over packet_size and overhead from the last 2260 * time we had a remainder. 2261 */ 2262 bw_used += bw_added; 2263 if (bw_used > max_bandwidth) { 2264 xhci_warn(xhci, "Not enough bandwidth. " 2265 "Proposed: %u, Max: %u\n", 2266 bw_used, max_bandwidth); 2267 return -ENOMEM; 2268 } 2269 } 2270 /* 2271 * Ok, we know we have some packets left over after even-handedly 2272 * scheduling interval 15. We don't know which microframes they will 2273 * fit into, so we over-schedule and say they will be scheduled every 2274 * microframe. 2275 */ 2276 if (packets_remaining > 0) 2277 bw_used += overhead + packet_size; 2278 2279 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2280 unsigned int port_index = virt_dev->real_port - 1; 2281 2282 /* OK, we're manipulating a HS device attached to a 2283 * root port bandwidth domain. Include the number of active TTs 2284 * in the bandwidth used. 2285 */ 2286 bw_used += TT_HS_OVERHEAD * 2287 xhci->rh_bw[port_index].num_active_tts; 2288 } 2289 2290 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2291 "Available: %u " "percent\n", 2292 bw_used, max_bandwidth, bw_reserved, 2293 (max_bandwidth - bw_used - bw_reserved) * 100 / 2294 max_bandwidth); 2295 2296 bw_used += bw_reserved; 2297 if (bw_used > max_bandwidth) { 2298 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2299 bw_used, max_bandwidth); 2300 return -ENOMEM; 2301 } 2302 2303 bw_table->bw_used = bw_used; 2304 return 0; 2305 } 2306 2307 static bool xhci_is_async_ep(unsigned int ep_type) 2308 { 2309 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2310 ep_type != ISOC_IN_EP && 2311 ep_type != INT_IN_EP); 2312 } 2313 2314 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2315 { 2316 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2317 } 2318 2319 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2320 { 2321 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2322 2323 if (ep_bw->ep_interval == 0) 2324 return SS_OVERHEAD_BURST + 2325 (ep_bw->mult * ep_bw->num_packets * 2326 (SS_OVERHEAD + mps)); 2327 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2328 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2329 1 << ep_bw->ep_interval); 2330 2331 } 2332 2333 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2334 struct xhci_bw_info *ep_bw, 2335 struct xhci_interval_bw_table *bw_table, 2336 struct usb_device *udev, 2337 struct xhci_virt_ep *virt_ep, 2338 struct xhci_tt_bw_info *tt_info) 2339 { 2340 struct xhci_interval_bw *interval_bw; 2341 int normalized_interval; 2342 2343 if (xhci_is_async_ep(ep_bw->type)) 2344 return; 2345 2346 if (udev->speed == USB_SPEED_SUPER) { 2347 if (xhci_is_sync_in_ep(ep_bw->type)) 2348 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2349 xhci_get_ss_bw_consumed(ep_bw); 2350 else 2351 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2352 xhci_get_ss_bw_consumed(ep_bw); 2353 return; 2354 } 2355 2356 /* SuperSpeed endpoints never get added to intervals in the table, so 2357 * this check is only valid for HS/FS/LS devices. 2358 */ 2359 if (list_empty(&virt_ep->bw_endpoint_list)) 2360 return; 2361 /* For LS/FS devices, we need to translate the interval expressed in 2362 * microframes to frames. 2363 */ 2364 if (udev->speed == USB_SPEED_HIGH) 2365 normalized_interval = ep_bw->ep_interval; 2366 else 2367 normalized_interval = ep_bw->ep_interval - 3; 2368 2369 if (normalized_interval == 0) 2370 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2371 interval_bw = &bw_table->interval_bw[normalized_interval]; 2372 interval_bw->num_packets -= ep_bw->num_packets; 2373 switch (udev->speed) { 2374 case USB_SPEED_LOW: 2375 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2376 break; 2377 case USB_SPEED_FULL: 2378 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2379 break; 2380 case USB_SPEED_HIGH: 2381 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2382 break; 2383 case USB_SPEED_SUPER: 2384 case USB_SPEED_UNKNOWN: 2385 case USB_SPEED_WIRELESS: 2386 /* Should never happen because only LS/FS/HS endpoints will get 2387 * added to the endpoint list. 2388 */ 2389 return; 2390 } 2391 if (tt_info) 2392 tt_info->active_eps -= 1; 2393 list_del_init(&virt_ep->bw_endpoint_list); 2394 } 2395 2396 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2397 struct xhci_bw_info *ep_bw, 2398 struct xhci_interval_bw_table *bw_table, 2399 struct usb_device *udev, 2400 struct xhci_virt_ep *virt_ep, 2401 struct xhci_tt_bw_info *tt_info) 2402 { 2403 struct xhci_interval_bw *interval_bw; 2404 struct xhci_virt_ep *smaller_ep; 2405 int normalized_interval; 2406 2407 if (xhci_is_async_ep(ep_bw->type)) 2408 return; 2409 2410 if (udev->speed == USB_SPEED_SUPER) { 2411 if (xhci_is_sync_in_ep(ep_bw->type)) 2412 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2413 xhci_get_ss_bw_consumed(ep_bw); 2414 else 2415 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2416 xhci_get_ss_bw_consumed(ep_bw); 2417 return; 2418 } 2419 2420 /* For LS/FS devices, we need to translate the interval expressed in 2421 * microframes to frames. 2422 */ 2423 if (udev->speed == USB_SPEED_HIGH) 2424 normalized_interval = ep_bw->ep_interval; 2425 else 2426 normalized_interval = ep_bw->ep_interval - 3; 2427 2428 if (normalized_interval == 0) 2429 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2430 interval_bw = &bw_table->interval_bw[normalized_interval]; 2431 interval_bw->num_packets += ep_bw->num_packets; 2432 switch (udev->speed) { 2433 case USB_SPEED_LOW: 2434 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2435 break; 2436 case USB_SPEED_FULL: 2437 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2438 break; 2439 case USB_SPEED_HIGH: 2440 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2441 break; 2442 case USB_SPEED_SUPER: 2443 case USB_SPEED_UNKNOWN: 2444 case USB_SPEED_WIRELESS: 2445 /* Should never happen because only LS/FS/HS endpoints will get 2446 * added to the endpoint list. 2447 */ 2448 return; 2449 } 2450 2451 if (tt_info) 2452 tt_info->active_eps += 1; 2453 /* Insert the endpoint into the list, largest max packet size first. */ 2454 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2455 bw_endpoint_list) { 2456 if (ep_bw->max_packet_size >= 2457 smaller_ep->bw_info.max_packet_size) { 2458 /* Add the new ep before the smaller endpoint */ 2459 list_add_tail(&virt_ep->bw_endpoint_list, 2460 &smaller_ep->bw_endpoint_list); 2461 return; 2462 } 2463 } 2464 /* Add the new endpoint at the end of the list. */ 2465 list_add_tail(&virt_ep->bw_endpoint_list, 2466 &interval_bw->endpoints); 2467 } 2468 2469 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2470 struct xhci_virt_device *virt_dev, 2471 int old_active_eps) 2472 { 2473 struct xhci_root_port_bw_info *rh_bw_info; 2474 if (!virt_dev->tt_info) 2475 return; 2476 2477 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2478 if (old_active_eps == 0 && 2479 virt_dev->tt_info->active_eps != 0) { 2480 rh_bw_info->num_active_tts += 1; 2481 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2482 } else if (old_active_eps != 0 && 2483 virt_dev->tt_info->active_eps == 0) { 2484 rh_bw_info->num_active_tts -= 1; 2485 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2486 } 2487 } 2488 2489 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2490 struct xhci_virt_device *virt_dev, 2491 struct xhci_container_ctx *in_ctx) 2492 { 2493 struct xhci_bw_info ep_bw_info[31]; 2494 int i; 2495 struct xhci_input_control_ctx *ctrl_ctx; 2496 int old_active_eps = 0; 2497 2498 if (virt_dev->tt_info) 2499 old_active_eps = virt_dev->tt_info->active_eps; 2500 2501 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2502 if (!ctrl_ctx) { 2503 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2504 __func__); 2505 return -ENOMEM; 2506 } 2507 2508 for (i = 0; i < 31; i++) { 2509 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2510 continue; 2511 2512 /* Make a copy of the BW info in case we need to revert this */ 2513 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2514 sizeof(ep_bw_info[i])); 2515 /* Drop the endpoint from the interval table if the endpoint is 2516 * being dropped or changed. 2517 */ 2518 if (EP_IS_DROPPED(ctrl_ctx, i)) 2519 xhci_drop_ep_from_interval_table(xhci, 2520 &virt_dev->eps[i].bw_info, 2521 virt_dev->bw_table, 2522 virt_dev->udev, 2523 &virt_dev->eps[i], 2524 virt_dev->tt_info); 2525 } 2526 /* Overwrite the information stored in the endpoints' bw_info */ 2527 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2528 for (i = 0; i < 31; i++) { 2529 /* Add any changed or added endpoints to the interval table */ 2530 if (EP_IS_ADDED(ctrl_ctx, i)) 2531 xhci_add_ep_to_interval_table(xhci, 2532 &virt_dev->eps[i].bw_info, 2533 virt_dev->bw_table, 2534 virt_dev->udev, 2535 &virt_dev->eps[i], 2536 virt_dev->tt_info); 2537 } 2538 2539 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2540 /* Ok, this fits in the bandwidth we have. 2541 * Update the number of active TTs. 2542 */ 2543 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2544 return 0; 2545 } 2546 2547 /* We don't have enough bandwidth for this, revert the stored info. */ 2548 for (i = 0; i < 31; i++) { 2549 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2550 continue; 2551 2552 /* Drop the new copies of any added or changed endpoints from 2553 * the interval table. 2554 */ 2555 if (EP_IS_ADDED(ctrl_ctx, i)) { 2556 xhci_drop_ep_from_interval_table(xhci, 2557 &virt_dev->eps[i].bw_info, 2558 virt_dev->bw_table, 2559 virt_dev->udev, 2560 &virt_dev->eps[i], 2561 virt_dev->tt_info); 2562 } 2563 /* Revert the endpoint back to its old information */ 2564 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2565 sizeof(ep_bw_info[i])); 2566 /* Add any changed or dropped endpoints back into the table */ 2567 if (EP_IS_DROPPED(ctrl_ctx, i)) 2568 xhci_add_ep_to_interval_table(xhci, 2569 &virt_dev->eps[i].bw_info, 2570 virt_dev->bw_table, 2571 virt_dev->udev, 2572 &virt_dev->eps[i], 2573 virt_dev->tt_info); 2574 } 2575 return -ENOMEM; 2576 } 2577 2578 2579 /* Issue a configure endpoint command or evaluate context command 2580 * and wait for it to finish. 2581 */ 2582 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2583 struct usb_device *udev, 2584 struct xhci_command *command, 2585 bool ctx_change, bool must_succeed) 2586 { 2587 int ret; 2588 int timeleft; 2589 unsigned long flags; 2590 struct xhci_container_ctx *in_ctx; 2591 struct xhci_input_control_ctx *ctrl_ctx; 2592 struct completion *cmd_completion; 2593 u32 *cmd_status; 2594 struct xhci_virt_device *virt_dev; 2595 union xhci_trb *cmd_trb; 2596 2597 spin_lock_irqsave(&xhci->lock, flags); 2598 virt_dev = xhci->devs[udev->slot_id]; 2599 2600 if (command) 2601 in_ctx = command->in_ctx; 2602 else 2603 in_ctx = virt_dev->in_ctx; 2604 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2605 if (!ctrl_ctx) { 2606 spin_unlock_irqrestore(&xhci->lock, flags); 2607 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2608 __func__); 2609 return -ENOMEM; 2610 } 2611 2612 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2613 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2614 spin_unlock_irqrestore(&xhci->lock, flags); 2615 xhci_warn(xhci, "Not enough host resources, " 2616 "active endpoint contexts = %u\n", 2617 xhci->num_active_eps); 2618 return -ENOMEM; 2619 } 2620 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2621 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) { 2622 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2623 xhci_free_host_resources(xhci, ctrl_ctx); 2624 spin_unlock_irqrestore(&xhci->lock, flags); 2625 xhci_warn(xhci, "Not enough bandwidth\n"); 2626 return -ENOMEM; 2627 } 2628 2629 if (command) { 2630 cmd_completion = command->completion; 2631 cmd_status = &command->status; 2632 command->command_trb = xhci->cmd_ring->enqueue; 2633 2634 /* Enqueue pointer can be left pointing to the link TRB, 2635 * we must handle that 2636 */ 2637 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control)) 2638 command->command_trb = 2639 xhci->cmd_ring->enq_seg->next->trbs; 2640 2641 list_add_tail(&command->cmd_list, &virt_dev->cmd_list); 2642 } else { 2643 cmd_completion = &virt_dev->cmd_completion; 2644 cmd_status = &virt_dev->cmd_status; 2645 } 2646 init_completion(cmd_completion); 2647 2648 cmd_trb = xhci->cmd_ring->dequeue; 2649 if (!ctx_change) 2650 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, 2651 udev->slot_id, must_succeed); 2652 else 2653 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, 2654 udev->slot_id, must_succeed); 2655 if (ret < 0) { 2656 if (command) 2657 list_del(&command->cmd_list); 2658 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2659 xhci_free_host_resources(xhci, ctrl_ctx); 2660 spin_unlock_irqrestore(&xhci->lock, flags); 2661 xhci_dbg(xhci, "FIXME allocate a new ring segment\n"); 2662 return -ENOMEM; 2663 } 2664 xhci_ring_cmd_db(xhci); 2665 spin_unlock_irqrestore(&xhci->lock, flags); 2666 2667 /* Wait for the configure endpoint command to complete */ 2668 timeleft = wait_for_completion_interruptible_timeout( 2669 cmd_completion, 2670 XHCI_CMD_DEFAULT_TIMEOUT); 2671 if (timeleft <= 0) { 2672 xhci_warn(xhci, "%s while waiting for %s command\n", 2673 timeleft == 0 ? "Timeout" : "Signal", 2674 ctx_change == 0 ? 2675 "configure endpoint" : 2676 "evaluate context"); 2677 /* cancel the configure endpoint command */ 2678 ret = xhci_cancel_cmd(xhci, command, cmd_trb); 2679 if (ret < 0) 2680 return ret; 2681 return -ETIME; 2682 } 2683 2684 if (!ctx_change) 2685 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status); 2686 else 2687 ret = xhci_evaluate_context_result(xhci, udev, cmd_status); 2688 2689 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2690 spin_lock_irqsave(&xhci->lock, flags); 2691 /* If the command failed, remove the reserved resources. 2692 * Otherwise, clean up the estimate to include dropped eps. 2693 */ 2694 if (ret) 2695 xhci_free_host_resources(xhci, ctrl_ctx); 2696 else 2697 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2698 spin_unlock_irqrestore(&xhci->lock, flags); 2699 } 2700 return ret; 2701 } 2702 2703 /* Called after one or more calls to xhci_add_endpoint() or 2704 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2705 * to call xhci_reset_bandwidth(). 2706 * 2707 * Since we are in the middle of changing either configuration or 2708 * installing a new alt setting, the USB core won't allow URBs to be 2709 * enqueued for any endpoint on the old config or interface. Nothing 2710 * else should be touching the xhci->devs[slot_id] structure, so we 2711 * don't need to take the xhci->lock for manipulating that. 2712 */ 2713 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2714 { 2715 int i; 2716 int ret = 0; 2717 struct xhci_hcd *xhci; 2718 struct xhci_virt_device *virt_dev; 2719 struct xhci_input_control_ctx *ctrl_ctx; 2720 struct xhci_slot_ctx *slot_ctx; 2721 2722 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2723 if (ret <= 0) 2724 return ret; 2725 xhci = hcd_to_xhci(hcd); 2726 if (xhci->xhc_state & XHCI_STATE_DYING) 2727 return -ENODEV; 2728 2729 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2730 virt_dev = xhci->devs[udev->slot_id]; 2731 2732 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2733 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 2734 if (!ctrl_ctx) { 2735 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2736 __func__); 2737 return -ENOMEM; 2738 } 2739 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2740 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2741 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2742 2743 /* Don't issue the command if there's no endpoints to update. */ 2744 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2745 ctrl_ctx->drop_flags == 0) 2746 return 0; 2747 2748 xhci_dbg(xhci, "New Input Control Context:\n"); 2749 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2750 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2751 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2752 2753 ret = xhci_configure_endpoint(xhci, udev, NULL, 2754 false, false); 2755 if (ret) { 2756 /* Callee should call reset_bandwidth() */ 2757 return ret; 2758 } 2759 2760 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2761 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2762 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2763 2764 /* Free any rings that were dropped, but not changed. */ 2765 for (i = 1; i < 31; ++i) { 2766 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2767 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) 2768 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2769 } 2770 xhci_zero_in_ctx(xhci, virt_dev); 2771 /* 2772 * Install any rings for completely new endpoints or changed endpoints, 2773 * and free or cache any old rings from changed endpoints. 2774 */ 2775 for (i = 1; i < 31; ++i) { 2776 if (!virt_dev->eps[i].new_ring) 2777 continue; 2778 /* Only cache or free the old ring if it exists. 2779 * It may not if this is the first add of an endpoint. 2780 */ 2781 if (virt_dev->eps[i].ring) { 2782 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2783 } 2784 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2785 virt_dev->eps[i].new_ring = NULL; 2786 } 2787 2788 return ret; 2789 } 2790 2791 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2792 { 2793 struct xhci_hcd *xhci; 2794 struct xhci_virt_device *virt_dev; 2795 int i, ret; 2796 2797 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2798 if (ret <= 0) 2799 return; 2800 xhci = hcd_to_xhci(hcd); 2801 2802 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2803 virt_dev = xhci->devs[udev->slot_id]; 2804 /* Free any rings allocated for added endpoints */ 2805 for (i = 0; i < 31; ++i) { 2806 if (virt_dev->eps[i].new_ring) { 2807 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2808 virt_dev->eps[i].new_ring = NULL; 2809 } 2810 } 2811 xhci_zero_in_ctx(xhci, virt_dev); 2812 } 2813 2814 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2815 struct xhci_container_ctx *in_ctx, 2816 struct xhci_container_ctx *out_ctx, 2817 struct xhci_input_control_ctx *ctrl_ctx, 2818 u32 add_flags, u32 drop_flags) 2819 { 2820 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2821 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2822 xhci_slot_copy(xhci, in_ctx, out_ctx); 2823 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2824 2825 xhci_dbg(xhci, "Input Context:\n"); 2826 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2827 } 2828 2829 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2830 unsigned int slot_id, unsigned int ep_index, 2831 struct xhci_dequeue_state *deq_state) 2832 { 2833 struct xhci_input_control_ctx *ctrl_ctx; 2834 struct xhci_container_ctx *in_ctx; 2835 struct xhci_ep_ctx *ep_ctx; 2836 u32 added_ctxs; 2837 dma_addr_t addr; 2838 2839 in_ctx = xhci->devs[slot_id]->in_ctx; 2840 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2841 if (!ctrl_ctx) { 2842 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2843 __func__); 2844 return; 2845 } 2846 2847 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2848 xhci->devs[slot_id]->out_ctx, ep_index); 2849 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2850 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2851 deq_state->new_deq_ptr); 2852 if (addr == 0) { 2853 xhci_warn(xhci, "WARN Cannot submit config ep after " 2854 "reset ep command\n"); 2855 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2856 deq_state->new_deq_seg, 2857 deq_state->new_deq_ptr); 2858 return; 2859 } 2860 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2861 2862 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2863 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2864 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2865 added_ctxs, added_ctxs); 2866 } 2867 2868 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2869 struct usb_device *udev, unsigned int ep_index) 2870 { 2871 struct xhci_dequeue_state deq_state; 2872 struct xhci_virt_ep *ep; 2873 2874 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n"); 2875 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2876 /* We need to move the HW's dequeue pointer past this TD, 2877 * or it will attempt to resend it on the next doorbell ring. 2878 */ 2879 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2880 ep_index, ep->stopped_stream, ep->stopped_td, 2881 &deq_state); 2882 2883 /* HW with the reset endpoint quirk will use the saved dequeue state to 2884 * issue a configure endpoint command later. 2885 */ 2886 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2887 xhci_dbg(xhci, "Queueing new dequeue state\n"); 2888 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2889 ep_index, ep->stopped_stream, &deq_state); 2890 } else { 2891 /* Better hope no one uses the input context between now and the 2892 * reset endpoint completion! 2893 * XXX: No idea how this hardware will react when stream rings 2894 * are enabled. 2895 */ 2896 xhci_dbg(xhci, "Setting up input context for " 2897 "configure endpoint command\n"); 2898 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2899 ep_index, &deq_state); 2900 } 2901 } 2902 2903 /* Deal with stalled endpoints. The core should have sent the control message 2904 * to clear the halt condition. However, we need to make the xHCI hardware 2905 * reset its sequence number, since a device will expect a sequence number of 2906 * zero after the halt condition is cleared. 2907 * Context: in_interrupt 2908 */ 2909 void xhci_endpoint_reset(struct usb_hcd *hcd, 2910 struct usb_host_endpoint *ep) 2911 { 2912 struct xhci_hcd *xhci; 2913 struct usb_device *udev; 2914 unsigned int ep_index; 2915 unsigned long flags; 2916 int ret; 2917 struct xhci_virt_ep *virt_ep; 2918 2919 xhci = hcd_to_xhci(hcd); 2920 udev = (struct usb_device *) ep->hcpriv; 2921 /* Called with a root hub endpoint (or an endpoint that wasn't added 2922 * with xhci_add_endpoint() 2923 */ 2924 if (!ep->hcpriv) 2925 return; 2926 ep_index = xhci_get_endpoint_index(&ep->desc); 2927 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2928 if (!virt_ep->stopped_td) { 2929 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n", 2930 ep->desc.bEndpointAddress); 2931 return; 2932 } 2933 if (usb_endpoint_xfer_control(&ep->desc)) { 2934 xhci_dbg(xhci, "Control endpoint stall already handled.\n"); 2935 return; 2936 } 2937 2938 xhci_dbg(xhci, "Queueing reset endpoint command\n"); 2939 spin_lock_irqsave(&xhci->lock, flags); 2940 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); 2941 /* 2942 * Can't change the ring dequeue pointer until it's transitioned to the 2943 * stopped state, which is only upon a successful reset endpoint 2944 * command. Better hope that last command worked! 2945 */ 2946 if (!ret) { 2947 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 2948 kfree(virt_ep->stopped_td); 2949 xhci_ring_cmd_db(xhci); 2950 } 2951 virt_ep->stopped_td = NULL; 2952 virt_ep->stopped_trb = NULL; 2953 virt_ep->stopped_stream = 0; 2954 spin_unlock_irqrestore(&xhci->lock, flags); 2955 2956 if (ret) 2957 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 2958 } 2959 2960 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2961 struct usb_device *udev, struct usb_host_endpoint *ep, 2962 unsigned int slot_id) 2963 { 2964 int ret; 2965 unsigned int ep_index; 2966 unsigned int ep_state; 2967 2968 if (!ep) 2969 return -EINVAL; 2970 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2971 if (ret <= 0) 2972 return -EINVAL; 2973 if (ep->ss_ep_comp.bmAttributes == 0) { 2974 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2975 " descriptor for ep 0x%x does not support streams\n", 2976 ep->desc.bEndpointAddress); 2977 return -EINVAL; 2978 } 2979 2980 ep_index = xhci_get_endpoint_index(&ep->desc); 2981 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2982 if (ep_state & EP_HAS_STREAMS || 2983 ep_state & EP_GETTING_STREAMS) { 2984 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2985 "already has streams set up.\n", 2986 ep->desc.bEndpointAddress); 2987 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2988 "dynamic stream context array reallocation.\n"); 2989 return -EINVAL; 2990 } 2991 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2992 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2993 "endpoint 0x%x; URBs are pending.\n", 2994 ep->desc.bEndpointAddress); 2995 return -EINVAL; 2996 } 2997 return 0; 2998 } 2999 3000 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3001 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3002 { 3003 unsigned int max_streams; 3004 3005 /* The stream context array size must be a power of two */ 3006 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3007 /* 3008 * Find out how many primary stream array entries the host controller 3009 * supports. Later we may use secondary stream arrays (similar to 2nd 3010 * level page entries), but that's an optional feature for xHCI host 3011 * controllers. xHCs must support at least 4 stream IDs. 3012 */ 3013 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3014 if (*num_stream_ctxs > max_streams) { 3015 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3016 max_streams); 3017 *num_stream_ctxs = max_streams; 3018 *num_streams = max_streams; 3019 } 3020 } 3021 3022 /* Returns an error code if one of the endpoint already has streams. 3023 * This does not change any data structures, it only checks and gathers 3024 * information. 3025 */ 3026 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3027 struct usb_device *udev, 3028 struct usb_host_endpoint **eps, unsigned int num_eps, 3029 unsigned int *num_streams, u32 *changed_ep_bitmask) 3030 { 3031 unsigned int max_streams; 3032 unsigned int endpoint_flag; 3033 int i; 3034 int ret; 3035 3036 for (i = 0; i < num_eps; i++) { 3037 ret = xhci_check_streams_endpoint(xhci, udev, 3038 eps[i], udev->slot_id); 3039 if (ret < 0) 3040 return ret; 3041 3042 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3043 if (max_streams < (*num_streams - 1)) { 3044 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3045 eps[i]->desc.bEndpointAddress, 3046 max_streams); 3047 *num_streams = max_streams+1; 3048 } 3049 3050 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3051 if (*changed_ep_bitmask & endpoint_flag) 3052 return -EINVAL; 3053 *changed_ep_bitmask |= endpoint_flag; 3054 } 3055 return 0; 3056 } 3057 3058 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3059 struct usb_device *udev, 3060 struct usb_host_endpoint **eps, unsigned int num_eps) 3061 { 3062 u32 changed_ep_bitmask = 0; 3063 unsigned int slot_id; 3064 unsigned int ep_index; 3065 unsigned int ep_state; 3066 int i; 3067 3068 slot_id = udev->slot_id; 3069 if (!xhci->devs[slot_id]) 3070 return 0; 3071 3072 for (i = 0; i < num_eps; i++) { 3073 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3074 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3075 /* Are streams already being freed for the endpoint? */ 3076 if (ep_state & EP_GETTING_NO_STREAMS) { 3077 xhci_warn(xhci, "WARN Can't disable streams for " 3078 "endpoint 0x%x\n, " 3079 "streams are being disabled already.", 3080 eps[i]->desc.bEndpointAddress); 3081 return 0; 3082 } 3083 /* Are there actually any streams to free? */ 3084 if (!(ep_state & EP_HAS_STREAMS) && 3085 !(ep_state & EP_GETTING_STREAMS)) { 3086 xhci_warn(xhci, "WARN Can't disable streams for " 3087 "endpoint 0x%x\n, " 3088 "streams are already disabled!", 3089 eps[i]->desc.bEndpointAddress); 3090 xhci_warn(xhci, "WARN xhci_free_streams() called " 3091 "with non-streams endpoint\n"); 3092 return 0; 3093 } 3094 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3095 } 3096 return changed_ep_bitmask; 3097 } 3098 3099 /* 3100 * The USB device drivers use this function (though the HCD interface in USB 3101 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3102 * coordinate mass storage command queueing across multiple endpoints (basically 3103 * a stream ID == a task ID). 3104 * 3105 * Setting up streams involves allocating the same size stream context array 3106 * for each endpoint and issuing a configure endpoint command for all endpoints. 3107 * 3108 * Don't allow the call to succeed if one endpoint only supports one stream 3109 * (which means it doesn't support streams at all). 3110 * 3111 * Drivers may get less stream IDs than they asked for, if the host controller 3112 * hardware or endpoints claim they can't support the number of requested 3113 * stream IDs. 3114 */ 3115 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3116 struct usb_host_endpoint **eps, unsigned int num_eps, 3117 unsigned int num_streams, gfp_t mem_flags) 3118 { 3119 int i, ret; 3120 struct xhci_hcd *xhci; 3121 struct xhci_virt_device *vdev; 3122 struct xhci_command *config_cmd; 3123 struct xhci_input_control_ctx *ctrl_ctx; 3124 unsigned int ep_index; 3125 unsigned int num_stream_ctxs; 3126 unsigned long flags; 3127 u32 changed_ep_bitmask = 0; 3128 3129 if (!eps) 3130 return -EINVAL; 3131 3132 /* Add one to the number of streams requested to account for 3133 * stream 0 that is reserved for xHCI usage. 3134 */ 3135 num_streams += 1; 3136 xhci = hcd_to_xhci(hcd); 3137 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3138 num_streams); 3139 3140 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3141 if (!config_cmd) { 3142 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3143 return -ENOMEM; 3144 } 3145 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 3146 if (!ctrl_ctx) { 3147 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3148 __func__); 3149 xhci_free_command(xhci, config_cmd); 3150 return -ENOMEM; 3151 } 3152 3153 /* Check to make sure all endpoints are not already configured for 3154 * streams. While we're at it, find the maximum number of streams that 3155 * all the endpoints will support and check for duplicate endpoints. 3156 */ 3157 spin_lock_irqsave(&xhci->lock, flags); 3158 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3159 num_eps, &num_streams, &changed_ep_bitmask); 3160 if (ret < 0) { 3161 xhci_free_command(xhci, config_cmd); 3162 spin_unlock_irqrestore(&xhci->lock, flags); 3163 return ret; 3164 } 3165 if (num_streams <= 1) { 3166 xhci_warn(xhci, "WARN: endpoints can't handle " 3167 "more than one stream.\n"); 3168 xhci_free_command(xhci, config_cmd); 3169 spin_unlock_irqrestore(&xhci->lock, flags); 3170 return -EINVAL; 3171 } 3172 vdev = xhci->devs[udev->slot_id]; 3173 /* Mark each endpoint as being in transition, so 3174 * xhci_urb_enqueue() will reject all URBs. 3175 */ 3176 for (i = 0; i < num_eps; i++) { 3177 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3178 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3179 } 3180 spin_unlock_irqrestore(&xhci->lock, flags); 3181 3182 /* Setup internal data structures and allocate HW data structures for 3183 * streams (but don't install the HW structures in the input context 3184 * until we're sure all memory allocation succeeded). 3185 */ 3186 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3187 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3188 num_stream_ctxs, num_streams); 3189 3190 for (i = 0; i < num_eps; i++) { 3191 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3192 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3193 num_stream_ctxs, 3194 num_streams, mem_flags); 3195 if (!vdev->eps[ep_index].stream_info) 3196 goto cleanup; 3197 /* Set maxPstreams in endpoint context and update deq ptr to 3198 * point to stream context array. FIXME 3199 */ 3200 } 3201 3202 /* Set up the input context for a configure endpoint command. */ 3203 for (i = 0; i < num_eps; i++) { 3204 struct xhci_ep_ctx *ep_ctx; 3205 3206 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3207 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3208 3209 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3210 vdev->out_ctx, ep_index); 3211 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3212 vdev->eps[ep_index].stream_info); 3213 } 3214 /* Tell the HW to drop its old copy of the endpoint context info 3215 * and add the updated copy from the input context. 3216 */ 3217 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3218 vdev->out_ctx, ctrl_ctx, 3219 changed_ep_bitmask, changed_ep_bitmask); 3220 3221 /* Issue and wait for the configure endpoint command */ 3222 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3223 false, false); 3224 3225 /* xHC rejected the configure endpoint command for some reason, so we 3226 * leave the old ring intact and free our internal streams data 3227 * structure. 3228 */ 3229 if (ret < 0) 3230 goto cleanup; 3231 3232 spin_lock_irqsave(&xhci->lock, flags); 3233 for (i = 0; i < num_eps; i++) { 3234 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3235 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3236 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3237 udev->slot_id, ep_index); 3238 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3239 } 3240 xhci_free_command(xhci, config_cmd); 3241 spin_unlock_irqrestore(&xhci->lock, flags); 3242 3243 /* Subtract 1 for stream 0, which drivers can't use */ 3244 return num_streams - 1; 3245 3246 cleanup: 3247 /* If it didn't work, free the streams! */ 3248 for (i = 0; i < num_eps; i++) { 3249 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3250 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3251 vdev->eps[ep_index].stream_info = NULL; 3252 /* FIXME Unset maxPstreams in endpoint context and 3253 * update deq ptr to point to normal string ring. 3254 */ 3255 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3256 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3257 xhci_endpoint_zero(xhci, vdev, eps[i]); 3258 } 3259 xhci_free_command(xhci, config_cmd); 3260 return -ENOMEM; 3261 } 3262 3263 /* Transition the endpoint from using streams to being a "normal" endpoint 3264 * without streams. 3265 * 3266 * Modify the endpoint context state, submit a configure endpoint command, 3267 * and free all endpoint rings for streams if that completes successfully. 3268 */ 3269 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3270 struct usb_host_endpoint **eps, unsigned int num_eps, 3271 gfp_t mem_flags) 3272 { 3273 int i, ret; 3274 struct xhci_hcd *xhci; 3275 struct xhci_virt_device *vdev; 3276 struct xhci_command *command; 3277 struct xhci_input_control_ctx *ctrl_ctx; 3278 unsigned int ep_index; 3279 unsigned long flags; 3280 u32 changed_ep_bitmask; 3281 3282 xhci = hcd_to_xhci(hcd); 3283 vdev = xhci->devs[udev->slot_id]; 3284 3285 /* Set up a configure endpoint command to remove the streams rings */ 3286 spin_lock_irqsave(&xhci->lock, flags); 3287 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3288 udev, eps, num_eps); 3289 if (changed_ep_bitmask == 0) { 3290 spin_unlock_irqrestore(&xhci->lock, flags); 3291 return -EINVAL; 3292 } 3293 3294 /* Use the xhci_command structure from the first endpoint. We may have 3295 * allocated too many, but the driver may call xhci_free_streams() for 3296 * each endpoint it grouped into one call to xhci_alloc_streams(). 3297 */ 3298 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3299 command = vdev->eps[ep_index].stream_info->free_streams_command; 3300 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 3301 if (!ctrl_ctx) { 3302 spin_unlock_irqrestore(&xhci->lock, flags); 3303 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3304 __func__); 3305 return -EINVAL; 3306 } 3307 3308 for (i = 0; i < num_eps; i++) { 3309 struct xhci_ep_ctx *ep_ctx; 3310 3311 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3312 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3313 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3314 EP_GETTING_NO_STREAMS; 3315 3316 xhci_endpoint_copy(xhci, command->in_ctx, 3317 vdev->out_ctx, ep_index); 3318 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 3319 &vdev->eps[ep_index]); 3320 } 3321 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3322 vdev->out_ctx, ctrl_ctx, 3323 changed_ep_bitmask, changed_ep_bitmask); 3324 spin_unlock_irqrestore(&xhci->lock, flags); 3325 3326 /* Issue and wait for the configure endpoint command, 3327 * which must succeed. 3328 */ 3329 ret = xhci_configure_endpoint(xhci, udev, command, 3330 false, true); 3331 3332 /* xHC rejected the configure endpoint command for some reason, so we 3333 * leave the streams rings intact. 3334 */ 3335 if (ret < 0) 3336 return ret; 3337 3338 spin_lock_irqsave(&xhci->lock, flags); 3339 for (i = 0; i < num_eps; i++) { 3340 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3341 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3342 vdev->eps[ep_index].stream_info = NULL; 3343 /* FIXME Unset maxPstreams in endpoint context and 3344 * update deq ptr to point to normal string ring. 3345 */ 3346 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3347 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3348 } 3349 spin_unlock_irqrestore(&xhci->lock, flags); 3350 3351 return 0; 3352 } 3353 3354 /* 3355 * Deletes endpoint resources for endpoints that were active before a Reset 3356 * Device command, or a Disable Slot command. The Reset Device command leaves 3357 * the control endpoint intact, whereas the Disable Slot command deletes it. 3358 * 3359 * Must be called with xhci->lock held. 3360 */ 3361 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3362 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3363 { 3364 int i; 3365 unsigned int num_dropped_eps = 0; 3366 unsigned int drop_flags = 0; 3367 3368 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3369 if (virt_dev->eps[i].ring) { 3370 drop_flags |= 1 << i; 3371 num_dropped_eps++; 3372 } 3373 } 3374 xhci->num_active_eps -= num_dropped_eps; 3375 if (num_dropped_eps) 3376 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, " 3377 "%u now active.\n", 3378 num_dropped_eps, drop_flags, 3379 xhci->num_active_eps); 3380 } 3381 3382 /* 3383 * This submits a Reset Device Command, which will set the device state to 0, 3384 * set the device address to 0, and disable all the endpoints except the default 3385 * control endpoint. The USB core should come back and call 3386 * xhci_address_device(), and then re-set up the configuration. If this is 3387 * called because of a usb_reset_and_verify_device(), then the old alternate 3388 * settings will be re-installed through the normal bandwidth allocation 3389 * functions. 3390 * 3391 * Wait for the Reset Device command to finish. Remove all structures 3392 * associated with the endpoints that were disabled. Clear the input device 3393 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3394 * 3395 * If the virt_dev to be reset does not exist or does not match the udev, 3396 * it means the device is lost, possibly due to the xHC restore error and 3397 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3398 * re-allocate the device. 3399 */ 3400 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3401 { 3402 int ret, i; 3403 unsigned long flags; 3404 struct xhci_hcd *xhci; 3405 unsigned int slot_id; 3406 struct xhci_virt_device *virt_dev; 3407 struct xhci_command *reset_device_cmd; 3408 int timeleft; 3409 int last_freed_endpoint; 3410 struct xhci_slot_ctx *slot_ctx; 3411 int old_active_eps = 0; 3412 3413 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3414 if (ret <= 0) 3415 return ret; 3416 xhci = hcd_to_xhci(hcd); 3417 slot_id = udev->slot_id; 3418 virt_dev = xhci->devs[slot_id]; 3419 if (!virt_dev) { 3420 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3421 "not exist. Re-allocate the device\n", slot_id); 3422 ret = xhci_alloc_dev(hcd, udev); 3423 if (ret == 1) 3424 return 0; 3425 else 3426 return -EINVAL; 3427 } 3428 3429 if (virt_dev->udev != udev) { 3430 /* If the virt_dev and the udev does not match, this virt_dev 3431 * may belong to another udev. 3432 * Re-allocate the device. 3433 */ 3434 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3435 "not match the udev. Re-allocate the device\n", 3436 slot_id); 3437 ret = xhci_alloc_dev(hcd, udev); 3438 if (ret == 1) 3439 return 0; 3440 else 3441 return -EINVAL; 3442 } 3443 3444 /* If device is not setup, there is no point in resetting it */ 3445 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3446 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3447 SLOT_STATE_DISABLED) 3448 return 0; 3449 3450 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3451 /* Allocate the command structure that holds the struct completion. 3452 * Assume we're in process context, since the normal device reset 3453 * process has to wait for the device anyway. Storage devices are 3454 * reset as part of error handling, so use GFP_NOIO instead of 3455 * GFP_KERNEL. 3456 */ 3457 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3458 if (!reset_device_cmd) { 3459 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3460 return -ENOMEM; 3461 } 3462 3463 /* Attempt to submit the Reset Device command to the command ring */ 3464 spin_lock_irqsave(&xhci->lock, flags); 3465 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue; 3466 3467 /* Enqueue pointer can be left pointing to the link TRB, 3468 * we must handle that 3469 */ 3470 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control)) 3471 reset_device_cmd->command_trb = 3472 xhci->cmd_ring->enq_seg->next->trbs; 3473 3474 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); 3475 ret = xhci_queue_reset_device(xhci, slot_id); 3476 if (ret) { 3477 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3478 list_del(&reset_device_cmd->cmd_list); 3479 spin_unlock_irqrestore(&xhci->lock, flags); 3480 goto command_cleanup; 3481 } 3482 xhci_ring_cmd_db(xhci); 3483 spin_unlock_irqrestore(&xhci->lock, flags); 3484 3485 /* Wait for the Reset Device command to finish */ 3486 timeleft = wait_for_completion_interruptible_timeout( 3487 reset_device_cmd->completion, 3488 USB_CTRL_SET_TIMEOUT); 3489 if (timeleft <= 0) { 3490 xhci_warn(xhci, "%s while waiting for reset device command\n", 3491 timeleft == 0 ? "Timeout" : "Signal"); 3492 spin_lock_irqsave(&xhci->lock, flags); 3493 /* The timeout might have raced with the event ring handler, so 3494 * only delete from the list if the item isn't poisoned. 3495 */ 3496 if (reset_device_cmd->cmd_list.next != LIST_POISON1) 3497 list_del(&reset_device_cmd->cmd_list); 3498 spin_unlock_irqrestore(&xhci->lock, flags); 3499 ret = -ETIME; 3500 goto command_cleanup; 3501 } 3502 3503 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3504 * unless we tried to reset a slot ID that wasn't enabled, 3505 * or the device wasn't in the addressed or configured state. 3506 */ 3507 ret = reset_device_cmd->status; 3508 switch (ret) { 3509 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3510 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3511 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n", 3512 slot_id, 3513 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3514 xhci_info(xhci, "Not freeing device rings.\n"); 3515 /* Don't treat this as an error. May change my mind later. */ 3516 ret = 0; 3517 goto command_cleanup; 3518 case COMP_SUCCESS: 3519 xhci_dbg(xhci, "Successful reset device command.\n"); 3520 break; 3521 default: 3522 if (xhci_is_vendor_info_code(xhci, ret)) 3523 break; 3524 xhci_warn(xhci, "Unknown completion code %u for " 3525 "reset device command.\n", ret); 3526 ret = -EINVAL; 3527 goto command_cleanup; 3528 } 3529 3530 /* Free up host controller endpoint resources */ 3531 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3532 spin_lock_irqsave(&xhci->lock, flags); 3533 /* Don't delete the default control endpoint resources */ 3534 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3535 spin_unlock_irqrestore(&xhci->lock, flags); 3536 } 3537 3538 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3539 last_freed_endpoint = 1; 3540 for (i = 1; i < 31; ++i) { 3541 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3542 3543 if (ep->ep_state & EP_HAS_STREAMS) { 3544 xhci_free_stream_info(xhci, ep->stream_info); 3545 ep->stream_info = NULL; 3546 ep->ep_state &= ~EP_HAS_STREAMS; 3547 } 3548 3549 if (ep->ring) { 3550 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3551 last_freed_endpoint = i; 3552 } 3553 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3554 xhci_drop_ep_from_interval_table(xhci, 3555 &virt_dev->eps[i].bw_info, 3556 virt_dev->bw_table, 3557 udev, 3558 &virt_dev->eps[i], 3559 virt_dev->tt_info); 3560 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3561 } 3562 /* If necessary, update the number of active TTs on this root port */ 3563 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3564 3565 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3566 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3567 ret = 0; 3568 3569 command_cleanup: 3570 xhci_free_command(xhci, reset_device_cmd); 3571 return ret; 3572 } 3573 3574 /* 3575 * At this point, the struct usb_device is about to go away, the device has 3576 * disconnected, and all traffic has been stopped and the endpoints have been 3577 * disabled. Free any HC data structures associated with that device. 3578 */ 3579 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3580 { 3581 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3582 struct xhci_virt_device *virt_dev; 3583 unsigned long flags; 3584 u32 state; 3585 int i, ret; 3586 3587 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3588 /* If the host is halted due to driver unload, we still need to free the 3589 * device. 3590 */ 3591 if (ret <= 0 && ret != -ENODEV) 3592 return; 3593 3594 virt_dev = xhci->devs[udev->slot_id]; 3595 3596 /* Stop any wayward timer functions (which may grab the lock) */ 3597 for (i = 0; i < 31; ++i) { 3598 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3599 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3600 } 3601 3602 if (udev->usb2_hw_lpm_enabled) { 3603 xhci_set_usb2_hardware_lpm(hcd, udev, 0); 3604 udev->usb2_hw_lpm_enabled = 0; 3605 } 3606 3607 spin_lock_irqsave(&xhci->lock, flags); 3608 /* Don't disable the slot if the host controller is dead. */ 3609 state = xhci_readl(xhci, &xhci->op_regs->status); 3610 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3611 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3612 xhci_free_virt_device(xhci, udev->slot_id); 3613 spin_unlock_irqrestore(&xhci->lock, flags); 3614 return; 3615 } 3616 3617 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { 3618 spin_unlock_irqrestore(&xhci->lock, flags); 3619 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3620 return; 3621 } 3622 xhci_ring_cmd_db(xhci); 3623 spin_unlock_irqrestore(&xhci->lock, flags); 3624 /* 3625 * Event command completion handler will free any data structures 3626 * associated with the slot. XXX Can free sleep? 3627 */ 3628 } 3629 3630 /* 3631 * Checks if we have enough host controller resources for the default control 3632 * endpoint. 3633 * 3634 * Must be called with xhci->lock held. 3635 */ 3636 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3637 { 3638 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3639 xhci_dbg(xhci, "Not enough ep ctxs: " 3640 "%u active, need to add 1, limit is %u.\n", 3641 xhci->num_active_eps, xhci->limit_active_eps); 3642 return -ENOMEM; 3643 } 3644 xhci->num_active_eps += 1; 3645 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n", 3646 xhci->num_active_eps); 3647 return 0; 3648 } 3649 3650 3651 /* 3652 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3653 * timed out, or allocating memory failed. Returns 1 on success. 3654 */ 3655 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3656 { 3657 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3658 unsigned long flags; 3659 int timeleft; 3660 int ret; 3661 union xhci_trb *cmd_trb; 3662 3663 spin_lock_irqsave(&xhci->lock, flags); 3664 cmd_trb = xhci->cmd_ring->dequeue; 3665 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); 3666 if (ret) { 3667 spin_unlock_irqrestore(&xhci->lock, flags); 3668 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3669 return 0; 3670 } 3671 xhci_ring_cmd_db(xhci); 3672 spin_unlock_irqrestore(&xhci->lock, flags); 3673 3674 /* XXX: how much time for xHC slot assignment? */ 3675 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3676 XHCI_CMD_DEFAULT_TIMEOUT); 3677 if (timeleft <= 0) { 3678 xhci_warn(xhci, "%s while waiting for a slot\n", 3679 timeleft == 0 ? "Timeout" : "Signal"); 3680 /* cancel the enable slot request */ 3681 return xhci_cancel_cmd(xhci, NULL, cmd_trb); 3682 } 3683 3684 if (!xhci->slot_id) { 3685 xhci_err(xhci, "Error while assigning device slot ID\n"); 3686 return 0; 3687 } 3688 3689 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3690 spin_lock_irqsave(&xhci->lock, flags); 3691 ret = xhci_reserve_host_control_ep_resources(xhci); 3692 if (ret) { 3693 spin_unlock_irqrestore(&xhci->lock, flags); 3694 xhci_warn(xhci, "Not enough host resources, " 3695 "active endpoint contexts = %u\n", 3696 xhci->num_active_eps); 3697 goto disable_slot; 3698 } 3699 spin_unlock_irqrestore(&xhci->lock, flags); 3700 } 3701 /* Use GFP_NOIO, since this function can be called from 3702 * xhci_discover_or_reset_device(), which may be called as part of 3703 * mass storage driver error handling. 3704 */ 3705 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3706 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3707 goto disable_slot; 3708 } 3709 udev->slot_id = xhci->slot_id; 3710 /* Is this a LS or FS device under a HS hub? */ 3711 /* Hub or peripherial? */ 3712 return 1; 3713 3714 disable_slot: 3715 /* Disable slot, if we can do it without mem alloc */ 3716 spin_lock_irqsave(&xhci->lock, flags); 3717 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) 3718 xhci_ring_cmd_db(xhci); 3719 spin_unlock_irqrestore(&xhci->lock, flags); 3720 return 0; 3721 } 3722 3723 /* 3724 * Issue an Address Device command (which will issue a SetAddress request to 3725 * the device). 3726 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so 3727 * we should only issue and wait on one address command at the same time. 3728 * 3729 * We add one to the device address issued by the hardware because the USB core 3730 * uses address 1 for the root hubs (even though they're not really devices). 3731 */ 3732 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3733 { 3734 unsigned long flags; 3735 int timeleft; 3736 struct xhci_virt_device *virt_dev; 3737 int ret = 0; 3738 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3739 struct xhci_slot_ctx *slot_ctx; 3740 struct xhci_input_control_ctx *ctrl_ctx; 3741 u64 temp_64; 3742 union xhci_trb *cmd_trb; 3743 3744 if (!udev->slot_id) { 3745 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id); 3746 return -EINVAL; 3747 } 3748 3749 virt_dev = xhci->devs[udev->slot_id]; 3750 3751 if (WARN_ON(!virt_dev)) { 3752 /* 3753 * In plug/unplug torture test with an NEC controller, 3754 * a zero-dereference was observed once due to virt_dev = 0. 3755 * Print useful debug rather than crash if it is observed again! 3756 */ 3757 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3758 udev->slot_id); 3759 return -EINVAL; 3760 } 3761 3762 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3763 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 3764 if (!ctrl_ctx) { 3765 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3766 __func__); 3767 return -EINVAL; 3768 } 3769 /* 3770 * If this is the first Set Address since device plug-in or 3771 * virt_device realloaction after a resume with an xHCI power loss, 3772 * then set up the slot context. 3773 */ 3774 if (!slot_ctx->dev_info) 3775 xhci_setup_addressable_virt_dev(xhci, udev); 3776 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3777 else 3778 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3779 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3780 ctrl_ctx->drop_flags = 0; 3781 3782 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3783 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3784 3785 spin_lock_irqsave(&xhci->lock, flags); 3786 cmd_trb = xhci->cmd_ring->dequeue; 3787 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, 3788 udev->slot_id); 3789 if (ret) { 3790 spin_unlock_irqrestore(&xhci->lock, flags); 3791 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3792 return ret; 3793 } 3794 xhci_ring_cmd_db(xhci); 3795 spin_unlock_irqrestore(&xhci->lock, flags); 3796 3797 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3798 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3799 XHCI_CMD_DEFAULT_TIMEOUT); 3800 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3801 * the SetAddress() "recovery interval" required by USB and aborting the 3802 * command on a timeout. 3803 */ 3804 if (timeleft <= 0) { 3805 xhci_warn(xhci, "%s while waiting for address device command\n", 3806 timeleft == 0 ? "Timeout" : "Signal"); 3807 /* cancel the address device command */ 3808 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb); 3809 if (ret < 0) 3810 return ret; 3811 return -ETIME; 3812 } 3813 3814 switch (virt_dev->cmd_status) { 3815 case COMP_CTX_STATE: 3816 case COMP_EBADSLT: 3817 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", 3818 udev->slot_id); 3819 ret = -EINVAL; 3820 break; 3821 case COMP_TX_ERR: 3822 dev_warn(&udev->dev, "Device not responding to set address.\n"); 3823 ret = -EPROTO; 3824 break; 3825 case COMP_DEV_ERR: 3826 dev_warn(&udev->dev, "ERROR: Incompatible device for address " 3827 "device command.\n"); 3828 ret = -ENODEV; 3829 break; 3830 case COMP_SUCCESS: 3831 xhci_dbg(xhci, "Successful Address Device command\n"); 3832 break; 3833 default: 3834 xhci_err(xhci, "ERROR: unexpected command completion " 3835 "code 0x%x.\n", virt_dev->cmd_status); 3836 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3837 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3838 ret = -EINVAL; 3839 break; 3840 } 3841 if (ret) { 3842 return ret; 3843 } 3844 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3845 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64); 3846 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n", 3847 udev->slot_id, 3848 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3849 (unsigned long long) 3850 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3851 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n", 3852 (unsigned long long)virt_dev->out_ctx->dma); 3853 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3854 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3855 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3856 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3857 /* 3858 * USB core uses address 1 for the roothubs, so we add one to the 3859 * address given back to us by the HC. 3860 */ 3861 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3862 /* Use kernel assigned address for devices; store xHC assigned 3863 * address locally. */ 3864 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK) 3865 + 1; 3866 /* Zero the input context control for later use */ 3867 ctrl_ctx->add_flags = 0; 3868 ctrl_ctx->drop_flags = 0; 3869 3870 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address); 3871 3872 return 0; 3873 } 3874 3875 /* 3876 * Transfer the port index into real index in the HW port status 3877 * registers. Caculate offset between the port's PORTSC register 3878 * and port status base. Divide the number of per port register 3879 * to get the real index. The raw port number bases 1. 3880 */ 3881 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3882 { 3883 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3884 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3885 __le32 __iomem *addr; 3886 int raw_port; 3887 3888 if (hcd->speed != HCD_USB3) 3889 addr = xhci->usb2_ports[port1 - 1]; 3890 else 3891 addr = xhci->usb3_ports[port1 - 1]; 3892 3893 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3894 return raw_port; 3895 } 3896 3897 /* 3898 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3899 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3900 */ 3901 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3902 struct usb_device *udev, u16 max_exit_latency) 3903 { 3904 struct xhci_virt_device *virt_dev; 3905 struct xhci_command *command; 3906 struct xhci_input_control_ctx *ctrl_ctx; 3907 struct xhci_slot_ctx *slot_ctx; 3908 unsigned long flags; 3909 int ret; 3910 3911 spin_lock_irqsave(&xhci->lock, flags); 3912 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) { 3913 spin_unlock_irqrestore(&xhci->lock, flags); 3914 return 0; 3915 } 3916 3917 /* Attempt to issue an Evaluate Context command to change the MEL. */ 3918 virt_dev = xhci->devs[udev->slot_id]; 3919 command = xhci->lpm_command; 3920 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 3921 if (!ctrl_ctx) { 3922 spin_unlock_irqrestore(&xhci->lock, flags); 3923 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3924 __func__); 3925 return -ENOMEM; 3926 } 3927 3928 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 3929 spin_unlock_irqrestore(&xhci->lock, flags); 3930 3931 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3932 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 3933 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 3934 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 3935 3936 xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n"); 3937 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 3938 xhci_dbg_ctx(xhci, command->in_ctx, 0); 3939 3940 /* Issue and wait for the evaluate context command. */ 3941 ret = xhci_configure_endpoint(xhci, udev, command, 3942 true, true); 3943 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 3944 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 3945 3946 if (!ret) { 3947 spin_lock_irqsave(&xhci->lock, flags); 3948 virt_dev->current_mel = max_exit_latency; 3949 spin_unlock_irqrestore(&xhci->lock, flags); 3950 } 3951 return ret; 3952 } 3953 3954 #ifdef CONFIG_PM_RUNTIME 3955 3956 /* BESL to HIRD Encoding array for USB2 LPM */ 3957 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3958 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3959 3960 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3961 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 3962 struct usb_device *udev) 3963 { 3964 int u2del, besl, besl_host; 3965 int besl_device = 0; 3966 u32 field; 3967 3968 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 3969 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 3970 3971 if (field & USB_BESL_SUPPORT) { 3972 for (besl_host = 0; besl_host < 16; besl_host++) { 3973 if (xhci_besl_encoding[besl_host] >= u2del) 3974 break; 3975 } 3976 /* Use baseline BESL value as default */ 3977 if (field & USB_BESL_BASELINE_VALID) 3978 besl_device = USB_GET_BESL_BASELINE(field); 3979 else if (field & USB_BESL_DEEP_VALID) 3980 besl_device = USB_GET_BESL_DEEP(field); 3981 } else { 3982 if (u2del <= 50) 3983 besl_host = 0; 3984 else 3985 besl_host = (u2del - 51) / 75 + 1; 3986 } 3987 3988 besl = besl_host + besl_device; 3989 if (besl > 15) 3990 besl = 15; 3991 3992 return besl; 3993 } 3994 3995 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 3996 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 3997 { 3998 u32 field; 3999 int l1; 4000 int besld = 0; 4001 int hirdm = 0; 4002 4003 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4004 4005 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4006 l1 = udev->l1_params.timeout / 256; 4007 4008 /* device has preferred BESLD */ 4009 if (field & USB_BESL_DEEP_VALID) { 4010 besld = USB_GET_BESL_DEEP(field); 4011 hirdm = 1; 4012 } 4013 4014 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4015 } 4016 4017 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd, 4018 struct usb_device *udev) 4019 { 4020 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4021 struct dev_info *dev_info; 4022 __le32 __iomem **port_array; 4023 __le32 __iomem *addr, *pm_addr; 4024 u32 temp, dev_id; 4025 unsigned int port_num; 4026 unsigned long flags; 4027 int hird; 4028 int ret; 4029 4030 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 4031 !udev->lpm_capable) 4032 return -EINVAL; 4033 4034 /* we only support lpm for non-hub device connected to root hub yet */ 4035 if (!udev->parent || udev->parent->parent || 4036 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4037 return -EINVAL; 4038 4039 spin_lock_irqsave(&xhci->lock, flags); 4040 4041 /* Look for devices in lpm_failed_devs list */ 4042 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 | 4043 le16_to_cpu(udev->descriptor.idProduct); 4044 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) { 4045 if (dev_info->dev_id == dev_id) { 4046 ret = -EINVAL; 4047 goto finish; 4048 } 4049 } 4050 4051 port_array = xhci->usb2_ports; 4052 port_num = udev->portnum - 1; 4053 4054 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) { 4055 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum); 4056 ret = -EINVAL; 4057 goto finish; 4058 } 4059 4060 /* 4061 * Test USB 2.0 software LPM. 4062 * FIXME: some xHCI 1.0 hosts may implement a new register to set up 4063 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1 4064 * in the June 2011 errata release. 4065 */ 4066 xhci_dbg(xhci, "test port %d software LPM\n", port_num); 4067 /* 4068 * Set L1 Device Slot and HIRD/BESL. 4069 * Check device's USB 2.0 extension descriptor to determine whether 4070 * HIRD or BESL shoule be used. See USB2.0 LPM errata. 4071 */ 4072 pm_addr = port_array[port_num] + PORTPMSC; 4073 hird = xhci_calculate_hird_besl(xhci, udev); 4074 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird); 4075 xhci_writel(xhci, temp, pm_addr); 4076 4077 /* Set port link state to U2(L1) */ 4078 addr = port_array[port_num]; 4079 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2); 4080 4081 /* wait for ACK */ 4082 spin_unlock_irqrestore(&xhci->lock, flags); 4083 msleep(10); 4084 spin_lock_irqsave(&xhci->lock, flags); 4085 4086 /* Check L1 Status */ 4087 ret = xhci_handshake(xhci, pm_addr, 4088 PORT_L1S_MASK, PORT_L1S_SUCCESS, 125); 4089 if (ret != -ETIMEDOUT) { 4090 /* enter L1 successfully */ 4091 temp = xhci_readl(xhci, addr); 4092 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n", 4093 port_num, temp); 4094 ret = 0; 4095 } else { 4096 temp = xhci_readl(xhci, pm_addr); 4097 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n", 4098 port_num, temp & PORT_L1S_MASK); 4099 ret = -EINVAL; 4100 } 4101 4102 /* Resume the port */ 4103 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0); 4104 4105 spin_unlock_irqrestore(&xhci->lock, flags); 4106 msleep(10); 4107 spin_lock_irqsave(&xhci->lock, flags); 4108 4109 /* Clear PLC */ 4110 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC); 4111 4112 /* Check PORTSC to make sure the device is in the right state */ 4113 if (!ret) { 4114 temp = xhci_readl(xhci, addr); 4115 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp); 4116 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) || 4117 (temp & PORT_PLS_MASK) != XDEV_U0) { 4118 xhci_dbg(xhci, "port L1 resume fail\n"); 4119 ret = -EINVAL; 4120 } 4121 } 4122 4123 if (ret) { 4124 /* Insert dev to lpm_failed_devs list */ 4125 xhci_warn(xhci, "device LPM test failed, may disconnect and " 4126 "re-enumerate\n"); 4127 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC); 4128 if (!dev_info) { 4129 ret = -ENOMEM; 4130 goto finish; 4131 } 4132 dev_info->dev_id = dev_id; 4133 INIT_LIST_HEAD(&dev_info->list); 4134 list_add(&dev_info->list, &xhci->lpm_failed_devs); 4135 } else { 4136 xhci_ring_device(xhci, udev->slot_id); 4137 } 4138 4139 finish: 4140 spin_unlock_irqrestore(&xhci->lock, flags); 4141 return ret; 4142 } 4143 4144 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4145 struct usb_device *udev, int enable) 4146 { 4147 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4148 __le32 __iomem **port_array; 4149 __le32 __iomem *pm_addr, *hlpm_addr; 4150 u32 pm_val, hlpm_val, field; 4151 unsigned int port_num; 4152 unsigned long flags; 4153 int hird, exit_latency; 4154 int ret; 4155 4156 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 4157 !udev->lpm_capable) 4158 return -EPERM; 4159 4160 if (!udev->parent || udev->parent->parent || 4161 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4162 return -EPERM; 4163 4164 if (udev->usb2_hw_lpm_capable != 1) 4165 return -EPERM; 4166 4167 spin_lock_irqsave(&xhci->lock, flags); 4168 4169 port_array = xhci->usb2_ports; 4170 port_num = udev->portnum - 1; 4171 pm_addr = port_array[port_num] + PORTPMSC; 4172 pm_val = xhci_readl(xhci, pm_addr); 4173 hlpm_addr = port_array[port_num] + PORTHLPMC; 4174 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4175 4176 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4177 enable ? "enable" : "disable", port_num); 4178 4179 if (enable) { 4180 /* Host supports BESL timeout instead of HIRD */ 4181 if (udev->usb2_hw_lpm_besl_capable) { 4182 /* if device doesn't have a preferred BESL value use a 4183 * default one which works with mixed HIRD and BESL 4184 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4185 */ 4186 if ((field & USB_BESL_SUPPORT) && 4187 (field & USB_BESL_BASELINE_VALID)) 4188 hird = USB_GET_BESL_BASELINE(field); 4189 else 4190 hird = udev->l1_params.besl; 4191 4192 exit_latency = xhci_besl_encoding[hird]; 4193 spin_unlock_irqrestore(&xhci->lock, flags); 4194 4195 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4196 * input context for link powermanagement evaluate 4197 * context commands. It is protected by hcd->bandwidth 4198 * mutex and is shared by all devices. We need to set 4199 * the max ext latency in USB 2 BESL LPM as well, so 4200 * use the same mutex and xhci_change_max_exit_latency() 4201 */ 4202 mutex_lock(hcd->bandwidth_mutex); 4203 ret = xhci_change_max_exit_latency(xhci, udev, 4204 exit_latency); 4205 mutex_unlock(hcd->bandwidth_mutex); 4206 4207 if (ret < 0) 4208 return ret; 4209 spin_lock_irqsave(&xhci->lock, flags); 4210 4211 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4212 xhci_writel(xhci, hlpm_val, hlpm_addr); 4213 /* flush write */ 4214 xhci_readl(xhci, hlpm_addr); 4215 } else { 4216 hird = xhci_calculate_hird_besl(xhci, udev); 4217 } 4218 4219 pm_val &= ~PORT_HIRD_MASK; 4220 pm_val |= PORT_HIRD(hird) | PORT_RWE; 4221 xhci_writel(xhci, pm_val, pm_addr); 4222 pm_val = xhci_readl(xhci, pm_addr); 4223 pm_val |= PORT_HLE; 4224 xhci_writel(xhci, pm_val, pm_addr); 4225 /* flush write */ 4226 xhci_readl(xhci, pm_addr); 4227 } else { 4228 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK); 4229 xhci_writel(xhci, pm_val, pm_addr); 4230 /* flush write */ 4231 xhci_readl(xhci, pm_addr); 4232 if (udev->usb2_hw_lpm_besl_capable) { 4233 spin_unlock_irqrestore(&xhci->lock, flags); 4234 mutex_lock(hcd->bandwidth_mutex); 4235 xhci_change_max_exit_latency(xhci, udev, 0); 4236 mutex_unlock(hcd->bandwidth_mutex); 4237 return 0; 4238 } 4239 } 4240 4241 spin_unlock_irqrestore(&xhci->lock, flags); 4242 return 0; 4243 } 4244 4245 /* check if a usb2 port supports a given extened capability protocol 4246 * only USB2 ports extended protocol capability values are cached. 4247 * Return 1 if capability is supported 4248 */ 4249 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4250 unsigned capability) 4251 { 4252 u32 port_offset, port_count; 4253 int i; 4254 4255 for (i = 0; i < xhci->num_ext_caps; i++) { 4256 if (xhci->ext_caps[i] & capability) { 4257 /* port offsets starts at 1 */ 4258 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4259 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4260 if (port >= port_offset && 4261 port < port_offset + port_count) 4262 return 1; 4263 } 4264 } 4265 return 0; 4266 } 4267 4268 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4269 { 4270 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4271 int ret; 4272 int portnum = udev->portnum - 1; 4273 4274 ret = xhci_usb2_software_lpm_test(hcd, udev); 4275 if (!ret) { 4276 xhci_dbg(xhci, "software LPM test succeed\n"); 4277 if (xhci->hw_lpm_support == 1 && 4278 xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) { 4279 udev->usb2_hw_lpm_capable = 1; 4280 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4281 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4282 if (xhci_check_usb2_port_capability(xhci, portnum, 4283 XHCI_BLC)) 4284 udev->usb2_hw_lpm_besl_capable = 1; 4285 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1); 4286 if (!ret) 4287 udev->usb2_hw_lpm_enabled = 1; 4288 } 4289 } 4290 4291 return 0; 4292 } 4293 4294 #else 4295 4296 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4297 struct usb_device *udev, int enable) 4298 { 4299 return 0; 4300 } 4301 4302 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4303 { 4304 return 0; 4305 } 4306 4307 #endif /* CONFIG_PM_RUNTIME */ 4308 4309 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4310 4311 #ifdef CONFIG_PM 4312 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4313 static unsigned long long xhci_service_interval_to_ns( 4314 struct usb_endpoint_descriptor *desc) 4315 { 4316 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4317 } 4318 4319 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4320 enum usb3_link_state state) 4321 { 4322 unsigned long long sel; 4323 unsigned long long pel; 4324 unsigned int max_sel_pel; 4325 char *state_name; 4326 4327 switch (state) { 4328 case USB3_LPM_U1: 4329 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4330 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4331 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4332 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4333 state_name = "U1"; 4334 break; 4335 case USB3_LPM_U2: 4336 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4337 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4338 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4339 state_name = "U2"; 4340 break; 4341 default: 4342 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4343 __func__); 4344 return USB3_LPM_DISABLED; 4345 } 4346 4347 if (sel <= max_sel_pel && pel <= max_sel_pel) 4348 return USB3_LPM_DEVICE_INITIATED; 4349 4350 if (sel > max_sel_pel) 4351 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4352 "due to long SEL %llu ms\n", 4353 state_name, sel); 4354 else 4355 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4356 "due to long PEL %llu\n ms", 4357 state_name, pel); 4358 return USB3_LPM_DISABLED; 4359 } 4360 4361 /* Returns the hub-encoded U1 timeout value. 4362 * The U1 timeout should be the maximum of the following values: 4363 * - For control endpoints, U1 system exit latency (SEL) * 3 4364 * - For bulk endpoints, U1 SEL * 5 4365 * - For interrupt endpoints: 4366 * - Notification EPs, U1 SEL * 3 4367 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4368 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4369 */ 4370 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev, 4371 struct usb_endpoint_descriptor *desc) 4372 { 4373 unsigned long long timeout_ns; 4374 int ep_type; 4375 int intr_type; 4376 4377 ep_type = usb_endpoint_type(desc); 4378 switch (ep_type) { 4379 case USB_ENDPOINT_XFER_CONTROL: 4380 timeout_ns = udev->u1_params.sel * 3; 4381 break; 4382 case USB_ENDPOINT_XFER_BULK: 4383 timeout_ns = udev->u1_params.sel * 5; 4384 break; 4385 case USB_ENDPOINT_XFER_INT: 4386 intr_type = usb_endpoint_interrupt_type(desc); 4387 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4388 timeout_ns = udev->u1_params.sel * 3; 4389 break; 4390 } 4391 /* Otherwise the calculation is the same as isoc eps */ 4392 case USB_ENDPOINT_XFER_ISOC: 4393 timeout_ns = xhci_service_interval_to_ns(desc); 4394 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4395 if (timeout_ns < udev->u1_params.sel * 2) 4396 timeout_ns = udev->u1_params.sel * 2; 4397 break; 4398 default: 4399 return 0; 4400 } 4401 4402 /* The U1 timeout is encoded in 1us intervals. */ 4403 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4404 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */ 4405 if (timeout_ns == USB3_LPM_DISABLED) 4406 timeout_ns++; 4407 4408 /* If the necessary timeout value is bigger than what we can set in the 4409 * USB 3.0 hub, we have to disable hub-initiated U1. 4410 */ 4411 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4412 return timeout_ns; 4413 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4414 "due to long timeout %llu ms\n", timeout_ns); 4415 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4416 } 4417 4418 /* Returns the hub-encoded U2 timeout value. 4419 * The U2 timeout should be the maximum of: 4420 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4421 * - largest bInterval of any active periodic endpoint (to avoid going 4422 * into lower power link states between intervals). 4423 * - the U2 Exit Latency of the device 4424 */ 4425 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev, 4426 struct usb_endpoint_descriptor *desc) 4427 { 4428 unsigned long long timeout_ns; 4429 unsigned long long u2_del_ns; 4430 4431 timeout_ns = 10 * 1000 * 1000; 4432 4433 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4434 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4435 timeout_ns = xhci_service_interval_to_ns(desc); 4436 4437 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4438 if (u2_del_ns > timeout_ns) 4439 timeout_ns = u2_del_ns; 4440 4441 /* The U2 timeout is encoded in 256us intervals */ 4442 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4443 /* If the necessary timeout value is bigger than what we can set in the 4444 * USB 3.0 hub, we have to disable hub-initiated U2. 4445 */ 4446 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4447 return timeout_ns; 4448 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4449 "due to long timeout %llu ms\n", timeout_ns); 4450 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4451 } 4452 4453 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4454 struct usb_device *udev, 4455 struct usb_endpoint_descriptor *desc, 4456 enum usb3_link_state state, 4457 u16 *timeout) 4458 { 4459 if (state == USB3_LPM_U1) { 4460 if (xhci->quirks & XHCI_INTEL_HOST) 4461 return xhci_calculate_intel_u1_timeout(udev, desc); 4462 } else { 4463 if (xhci->quirks & XHCI_INTEL_HOST) 4464 return xhci_calculate_intel_u2_timeout(udev, desc); 4465 } 4466 4467 return USB3_LPM_DISABLED; 4468 } 4469 4470 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4471 struct usb_device *udev, 4472 struct usb_endpoint_descriptor *desc, 4473 enum usb3_link_state state, 4474 u16 *timeout) 4475 { 4476 u16 alt_timeout; 4477 4478 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4479 desc, state, timeout); 4480 4481 /* If we found we can't enable hub-initiated LPM, or 4482 * the U1 or U2 exit latency was too high to allow 4483 * device-initiated LPM as well, just stop searching. 4484 */ 4485 if (alt_timeout == USB3_LPM_DISABLED || 4486 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4487 *timeout = alt_timeout; 4488 return -E2BIG; 4489 } 4490 if (alt_timeout > *timeout) 4491 *timeout = alt_timeout; 4492 return 0; 4493 } 4494 4495 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4496 struct usb_device *udev, 4497 struct usb_host_interface *alt, 4498 enum usb3_link_state state, 4499 u16 *timeout) 4500 { 4501 int j; 4502 4503 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4504 if (xhci_update_timeout_for_endpoint(xhci, udev, 4505 &alt->endpoint[j].desc, state, timeout)) 4506 return -E2BIG; 4507 continue; 4508 } 4509 return 0; 4510 } 4511 4512 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4513 enum usb3_link_state state) 4514 { 4515 struct usb_device *parent; 4516 unsigned int num_hubs; 4517 4518 if (state == USB3_LPM_U2) 4519 return 0; 4520 4521 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4522 for (parent = udev->parent, num_hubs = 0; parent->parent; 4523 parent = parent->parent) 4524 num_hubs++; 4525 4526 if (num_hubs < 2) 4527 return 0; 4528 4529 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4530 " below second-tier hub.\n"); 4531 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4532 "to decrease power consumption.\n"); 4533 return -E2BIG; 4534 } 4535 4536 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4537 struct usb_device *udev, 4538 enum usb3_link_state state) 4539 { 4540 if (xhci->quirks & XHCI_INTEL_HOST) 4541 return xhci_check_intel_tier_policy(udev, state); 4542 return -EINVAL; 4543 } 4544 4545 /* Returns the U1 or U2 timeout that should be enabled. 4546 * If the tier check or timeout setting functions return with a non-zero exit 4547 * code, that means the timeout value has been finalized and we shouldn't look 4548 * at any more endpoints. 4549 */ 4550 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4551 struct usb_device *udev, enum usb3_link_state state) 4552 { 4553 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4554 struct usb_host_config *config; 4555 char *state_name; 4556 int i; 4557 u16 timeout = USB3_LPM_DISABLED; 4558 4559 if (state == USB3_LPM_U1) 4560 state_name = "U1"; 4561 else if (state == USB3_LPM_U2) 4562 state_name = "U2"; 4563 else { 4564 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4565 state); 4566 return timeout; 4567 } 4568 4569 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4570 return timeout; 4571 4572 /* Gather some information about the currently installed configuration 4573 * and alternate interface settings. 4574 */ 4575 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4576 state, &timeout)) 4577 return timeout; 4578 4579 config = udev->actconfig; 4580 if (!config) 4581 return timeout; 4582 4583 for (i = 0; i < USB_MAXINTERFACES; i++) { 4584 struct usb_driver *driver; 4585 struct usb_interface *intf = config->interface[i]; 4586 4587 if (!intf) 4588 continue; 4589 4590 /* Check if any currently bound drivers want hub-initiated LPM 4591 * disabled. 4592 */ 4593 if (intf->dev.driver) { 4594 driver = to_usb_driver(intf->dev.driver); 4595 if (driver && driver->disable_hub_initiated_lpm) { 4596 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4597 "at request of driver %s\n", 4598 state_name, driver->name); 4599 return xhci_get_timeout_no_hub_lpm(udev, state); 4600 } 4601 } 4602 4603 /* Not sure how this could happen... */ 4604 if (!intf->cur_altsetting) 4605 continue; 4606 4607 if (xhci_update_timeout_for_interface(xhci, udev, 4608 intf->cur_altsetting, 4609 state, &timeout)) 4610 return timeout; 4611 } 4612 return timeout; 4613 } 4614 4615 static int calculate_max_exit_latency(struct usb_device *udev, 4616 enum usb3_link_state state_changed, 4617 u16 hub_encoded_timeout) 4618 { 4619 unsigned long long u1_mel_us = 0; 4620 unsigned long long u2_mel_us = 0; 4621 unsigned long long mel_us = 0; 4622 bool disabling_u1; 4623 bool disabling_u2; 4624 bool enabling_u1; 4625 bool enabling_u2; 4626 4627 disabling_u1 = (state_changed == USB3_LPM_U1 && 4628 hub_encoded_timeout == USB3_LPM_DISABLED); 4629 disabling_u2 = (state_changed == USB3_LPM_U2 && 4630 hub_encoded_timeout == USB3_LPM_DISABLED); 4631 4632 enabling_u1 = (state_changed == USB3_LPM_U1 && 4633 hub_encoded_timeout != USB3_LPM_DISABLED); 4634 enabling_u2 = (state_changed == USB3_LPM_U2 && 4635 hub_encoded_timeout != USB3_LPM_DISABLED); 4636 4637 /* If U1 was already enabled and we're not disabling it, 4638 * or we're going to enable U1, account for the U1 max exit latency. 4639 */ 4640 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4641 enabling_u1) 4642 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4643 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4644 enabling_u2) 4645 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4646 4647 if (u1_mel_us > u2_mel_us) 4648 mel_us = u1_mel_us; 4649 else 4650 mel_us = u2_mel_us; 4651 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4652 if (mel_us > MAX_EXIT) { 4653 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4654 "is too big.\n", mel_us); 4655 return -E2BIG; 4656 } 4657 return mel_us; 4658 } 4659 4660 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4661 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4662 struct usb_device *udev, enum usb3_link_state state) 4663 { 4664 struct xhci_hcd *xhci; 4665 u16 hub_encoded_timeout; 4666 int mel; 4667 int ret; 4668 4669 xhci = hcd_to_xhci(hcd); 4670 /* The LPM timeout values are pretty host-controller specific, so don't 4671 * enable hub-initiated timeouts unless the vendor has provided 4672 * information about their timeout algorithm. 4673 */ 4674 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4675 !xhci->devs[udev->slot_id]) 4676 return USB3_LPM_DISABLED; 4677 4678 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4679 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4680 if (mel < 0) { 4681 /* Max Exit Latency is too big, disable LPM. */ 4682 hub_encoded_timeout = USB3_LPM_DISABLED; 4683 mel = 0; 4684 } 4685 4686 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4687 if (ret) 4688 return ret; 4689 return hub_encoded_timeout; 4690 } 4691 4692 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4693 struct usb_device *udev, enum usb3_link_state state) 4694 { 4695 struct xhci_hcd *xhci; 4696 u16 mel; 4697 int ret; 4698 4699 xhci = hcd_to_xhci(hcd); 4700 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4701 !xhci->devs[udev->slot_id]) 4702 return 0; 4703 4704 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4705 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4706 if (ret) 4707 return ret; 4708 return 0; 4709 } 4710 #else /* CONFIG_PM */ 4711 4712 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4713 struct usb_device *udev, enum usb3_link_state state) 4714 { 4715 return USB3_LPM_DISABLED; 4716 } 4717 4718 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4719 struct usb_device *udev, enum usb3_link_state state) 4720 { 4721 return 0; 4722 } 4723 #endif /* CONFIG_PM */ 4724 4725 /*-------------------------------------------------------------------------*/ 4726 4727 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4728 * internal data structures for the device. 4729 */ 4730 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4731 struct usb_tt *tt, gfp_t mem_flags) 4732 { 4733 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4734 struct xhci_virt_device *vdev; 4735 struct xhci_command *config_cmd; 4736 struct xhci_input_control_ctx *ctrl_ctx; 4737 struct xhci_slot_ctx *slot_ctx; 4738 unsigned long flags; 4739 unsigned think_time; 4740 int ret; 4741 4742 /* Ignore root hubs */ 4743 if (!hdev->parent) 4744 return 0; 4745 4746 vdev = xhci->devs[hdev->slot_id]; 4747 if (!vdev) { 4748 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4749 return -EINVAL; 4750 } 4751 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4752 if (!config_cmd) { 4753 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4754 return -ENOMEM; 4755 } 4756 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 4757 if (!ctrl_ctx) { 4758 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4759 __func__); 4760 xhci_free_command(xhci, config_cmd); 4761 return -ENOMEM; 4762 } 4763 4764 spin_lock_irqsave(&xhci->lock, flags); 4765 if (hdev->speed == USB_SPEED_HIGH && 4766 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4767 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4768 xhci_free_command(xhci, config_cmd); 4769 spin_unlock_irqrestore(&xhci->lock, flags); 4770 return -ENOMEM; 4771 } 4772 4773 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4774 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4775 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4776 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4777 if (tt->multi) 4778 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4779 if (xhci->hci_version > 0x95) { 4780 xhci_dbg(xhci, "xHCI version %x needs hub " 4781 "TT think time and number of ports\n", 4782 (unsigned int) xhci->hci_version); 4783 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4784 /* Set TT think time - convert from ns to FS bit times. 4785 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4786 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4787 * 4788 * xHCI 1.0: this field shall be 0 if the device is not a 4789 * High-spped hub. 4790 */ 4791 think_time = tt->think_time; 4792 if (think_time != 0) 4793 think_time = (think_time / 666) - 1; 4794 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4795 slot_ctx->tt_info |= 4796 cpu_to_le32(TT_THINK_TIME(think_time)); 4797 } else { 4798 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4799 "TT think time or number of ports\n", 4800 (unsigned int) xhci->hci_version); 4801 } 4802 slot_ctx->dev_state = 0; 4803 spin_unlock_irqrestore(&xhci->lock, flags); 4804 4805 xhci_dbg(xhci, "Set up %s for hub device.\n", 4806 (xhci->hci_version > 0x95) ? 4807 "configure endpoint" : "evaluate context"); 4808 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4809 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4810 4811 /* Issue and wait for the configure endpoint or 4812 * evaluate context command. 4813 */ 4814 if (xhci->hci_version > 0x95) 4815 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4816 false, false); 4817 else 4818 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4819 true, false); 4820 4821 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4822 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4823 4824 xhci_free_command(xhci, config_cmd); 4825 return ret; 4826 } 4827 4828 int xhci_get_frame(struct usb_hcd *hcd) 4829 { 4830 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4831 /* EHCI mods by the periodic size. Why? */ 4832 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; 4833 } 4834 4835 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4836 { 4837 struct xhci_hcd *xhci; 4838 struct device *dev = hcd->self.controller; 4839 int retval; 4840 u32 temp; 4841 4842 /* Accept arbitrarily long scatter-gather lists */ 4843 hcd->self.sg_tablesize = ~0; 4844 /* XHCI controllers don't stop the ep queue on short packets :| */ 4845 hcd->self.no_stop_on_short = 1; 4846 4847 if (usb_hcd_is_primary_hcd(hcd)) { 4848 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 4849 if (!xhci) 4850 return -ENOMEM; 4851 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 4852 xhci->main_hcd = hcd; 4853 /* Mark the first roothub as being USB 2.0. 4854 * The xHCI driver will register the USB 3.0 roothub. 4855 */ 4856 hcd->speed = HCD_USB2; 4857 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4858 /* 4859 * USB 2.0 roothub under xHCI has an integrated TT, 4860 * (rate matching hub) as opposed to having an OHCI/UHCI 4861 * companion controller. 4862 */ 4863 hcd->has_tt = 1; 4864 } else { 4865 /* xHCI private pointer was set in xhci_pci_probe for the second 4866 * registered roothub. 4867 */ 4868 xhci = hcd_to_xhci(hcd); 4869 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4870 if (HCC_64BIT_ADDR(temp)) { 4871 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4872 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4873 } else { 4874 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4875 } 4876 return 0; 4877 } 4878 4879 xhci->cap_regs = hcd->regs; 4880 xhci->op_regs = hcd->regs + 4881 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase)); 4882 xhci->run_regs = hcd->regs + 4883 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4884 /* Cache read-only capability registers */ 4885 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1); 4886 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2); 4887 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3); 4888 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); 4889 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4890 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4891 xhci_print_registers(xhci); 4892 4893 get_quirks(dev, xhci); 4894 4895 /* Make sure the HC is halted. */ 4896 retval = xhci_halt(xhci); 4897 if (retval) 4898 goto error; 4899 4900 xhci_dbg(xhci, "Resetting HCD\n"); 4901 /* Reset the internal HC memory state and registers. */ 4902 retval = xhci_reset(xhci); 4903 if (retval) 4904 goto error; 4905 xhci_dbg(xhci, "Reset complete\n"); 4906 4907 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4908 if (HCC_64BIT_ADDR(temp)) { 4909 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4910 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4911 } else { 4912 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4913 } 4914 4915 xhci_dbg(xhci, "Calling HCD init\n"); 4916 /* Initialize HCD and host controller data structures. */ 4917 retval = xhci_init(hcd); 4918 if (retval) 4919 goto error; 4920 xhci_dbg(xhci, "Called HCD init\n"); 4921 return 0; 4922 error: 4923 kfree(xhci); 4924 return retval; 4925 } 4926 4927 MODULE_DESCRIPTION(DRIVER_DESC); 4928 MODULE_AUTHOR(DRIVER_AUTHOR); 4929 MODULE_LICENSE("GPL"); 4930 4931 static int __init xhci_hcd_init(void) 4932 { 4933 int retval; 4934 4935 retval = xhci_register_pci(); 4936 if (retval < 0) { 4937 printk(KERN_DEBUG "Problem registering PCI driver."); 4938 return retval; 4939 } 4940 retval = xhci_register_plat(); 4941 if (retval < 0) { 4942 printk(KERN_DEBUG "Problem registering platform driver."); 4943 goto unreg_pci; 4944 } 4945 /* 4946 * Check the compiler generated sizes of structures that must be laid 4947 * out in specific ways for hardware access. 4948 */ 4949 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4950 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4951 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4952 /* xhci_device_control has eight fields, and also 4953 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4954 */ 4955 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4956 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4957 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4958 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 4959 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4960 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4961 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4962 return 0; 4963 unreg_pci: 4964 xhci_unregister_pci(); 4965 return retval; 4966 } 4967 module_init(xhci_hcd_init); 4968 4969 static void __exit xhci_hcd_cleanup(void) 4970 { 4971 xhci_unregister_pci(); 4972 xhci_unregister_plat(); 4973 } 4974 module_exit(xhci_hcd_cleanup); 4975