xref: /linux/drivers/usb/host/xhci.c (revision c4c11dd160a8cc98f402c4e12f94b1572e822ffd)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 
31 #include "xhci.h"
32 
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35 
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40 
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43  * xhci_handshake - spin reading hc until handshake completes or fails
44  * @ptr: address of hc register to be read
45  * @mask: bits to look at in result of read
46  * @done: value of those bits when handshake succeeds
47  * @usec: timeout in microseconds
48  *
49  * Returns negative errno, or zero on success
50  *
51  * Success happens when the "mask" bits have the specified value (hardware
52  * handshake done).  There are two failure modes:  "usec" have passed (major
53  * hardware flakeout), or the register reads as all-ones (hardware removed).
54  */
55 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56 		      u32 mask, u32 done, int usec)
57 {
58 	u32	result;
59 
60 	do {
61 		result = xhci_readl(xhci, ptr);
62 		if (result == ~(u32)0)		/* card removed */
63 			return -ENODEV;
64 		result &= mask;
65 		if (result == done)
66 			return 0;
67 		udelay(1);
68 		usec--;
69 	} while (usec > 0);
70 	return -ETIMEDOUT;
71 }
72 
73 /*
74  * Disable interrupts and begin the xHCI halting process.
75  */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78 	u32 halted;
79 	u32 cmd;
80 	u32 mask;
81 
82 	mask = ~(XHCI_IRQS);
83 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84 	if (!halted)
85 		mask &= ~CMD_RUN;
86 
87 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
88 	cmd &= mask;
89 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91 
92 /*
93  * Force HC into halt state.
94  *
95  * Disable any IRQs and clear the run/stop bit.
96  * HC will complete any current and actively pipelined transactions, and
97  * should halt within 16 ms of the run/stop bit being cleared.
98  * Read HC Halted bit in the status register to see when the HC is finished.
99  */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102 	int ret;
103 	xhci_dbg(xhci, "// Halt the HC\n");
104 	xhci_quiesce(xhci);
105 
106 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
107 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108 	if (!ret) {
109 		xhci->xhc_state |= XHCI_STATE_HALTED;
110 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111 	} else
112 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113 				XHCI_MAX_HALT_USEC);
114 	return ret;
115 }
116 
117 /*
118  * Set the run bit and wait for the host to be running.
119  */
120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122 	u32 temp;
123 	int ret;
124 
125 	temp = xhci_readl(xhci, &xhci->op_regs->command);
126 	temp |= (CMD_RUN);
127 	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128 			temp);
129 	xhci_writel(xhci, temp, &xhci->op_regs->command);
130 
131 	/*
132 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
133 	 * running.
134 	 */
135 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
136 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
137 	if (ret == -ETIMEDOUT)
138 		xhci_err(xhci, "Host took too long to start, "
139 				"waited %u microseconds.\n",
140 				XHCI_MAX_HALT_USEC);
141 	if (!ret)
142 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
143 	return ret;
144 }
145 
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155 	u32 command;
156 	u32 state;
157 	int ret, i;
158 
159 	state = xhci_readl(xhci, &xhci->op_regs->status);
160 	if ((state & STS_HALT) == 0) {
161 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162 		return 0;
163 	}
164 
165 	xhci_dbg(xhci, "// Reset the HC\n");
166 	command = xhci_readl(xhci, &xhci->op_regs->command);
167 	command |= CMD_RESET;
168 	xhci_writel(xhci, command, &xhci->op_regs->command);
169 
170 	ret = xhci_handshake(xhci, &xhci->op_regs->command,
171 			CMD_RESET, 0, 10 * 1000 * 1000);
172 	if (ret)
173 		return ret;
174 
175 	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176 	/*
177 	 * xHCI cannot write to any doorbells or operational registers other
178 	 * than status until the "Controller Not Ready" flag is cleared.
179 	 */
180 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
181 			STS_CNR, 0, 10 * 1000 * 1000);
182 
183 	for (i = 0; i < 2; ++i) {
184 		xhci->bus_state[i].port_c_suspend = 0;
185 		xhci->bus_state[i].suspended_ports = 0;
186 		xhci->bus_state[i].resuming_ports = 0;
187 	}
188 
189 	return ret;
190 }
191 
192 #ifdef CONFIG_PCI
193 static int xhci_free_msi(struct xhci_hcd *xhci)
194 {
195 	int i;
196 
197 	if (!xhci->msix_entries)
198 		return -EINVAL;
199 
200 	for (i = 0; i < xhci->msix_count; i++)
201 		if (xhci->msix_entries[i].vector)
202 			free_irq(xhci->msix_entries[i].vector,
203 					xhci_to_hcd(xhci));
204 	return 0;
205 }
206 
207 /*
208  * Set up MSI
209  */
210 static int xhci_setup_msi(struct xhci_hcd *xhci)
211 {
212 	int ret;
213 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214 
215 	ret = pci_enable_msi(pdev);
216 	if (ret) {
217 		xhci_dbg(xhci, "failed to allocate MSI entry\n");
218 		return ret;
219 	}
220 
221 	ret = request_irq(pdev->irq, xhci_msi_irq,
222 				0, "xhci_hcd", xhci_to_hcd(xhci));
223 	if (ret) {
224 		xhci_dbg(xhci, "disable MSI interrupt\n");
225 		pci_disable_msi(pdev);
226 	}
227 
228 	return ret;
229 }
230 
231 /*
232  * Free IRQs
233  * free all IRQs request
234  */
235 static void xhci_free_irq(struct xhci_hcd *xhci)
236 {
237 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238 	int ret;
239 
240 	/* return if using legacy interrupt */
241 	if (xhci_to_hcd(xhci)->irq > 0)
242 		return;
243 
244 	ret = xhci_free_msi(xhci);
245 	if (!ret)
246 		return;
247 	if (pdev->irq > 0)
248 		free_irq(pdev->irq, xhci_to_hcd(xhci));
249 
250 	return;
251 }
252 
253 /*
254  * Set up MSI-X
255  */
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258 	int i, ret = 0;
259 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
260 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261 
262 	/*
263 	 * calculate number of msi-x vectors supported.
264 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
266 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
267 	 *   Add additional 1 vector to ensure always available interrupt.
268 	 */
269 	xhci->msix_count = min(num_online_cpus() + 1,
270 				HCS_MAX_INTRS(xhci->hcs_params1));
271 
272 	xhci->msix_entries =
273 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274 				GFP_KERNEL);
275 	if (!xhci->msix_entries) {
276 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277 		return -ENOMEM;
278 	}
279 
280 	for (i = 0; i < xhci->msix_count; i++) {
281 		xhci->msix_entries[i].entry = i;
282 		xhci->msix_entries[i].vector = 0;
283 	}
284 
285 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286 	if (ret) {
287 		xhci_dbg(xhci, "Failed to enable MSI-X\n");
288 		goto free_entries;
289 	}
290 
291 	for (i = 0; i < xhci->msix_count; i++) {
292 		ret = request_irq(xhci->msix_entries[i].vector,
293 				xhci_msi_irq,
294 				0, "xhci_hcd", xhci_to_hcd(xhci));
295 		if (ret)
296 			goto disable_msix;
297 	}
298 
299 	hcd->msix_enabled = 1;
300 	return ret;
301 
302 disable_msix:
303 	xhci_dbg(xhci, "disable MSI-X interrupt\n");
304 	xhci_free_irq(xhci);
305 	pci_disable_msix(pdev);
306 free_entries:
307 	kfree(xhci->msix_entries);
308 	xhci->msix_entries = NULL;
309 	return ret;
310 }
311 
312 /* Free any IRQs and disable MSI-X */
313 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314 {
315 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
316 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
317 
318 	xhci_free_irq(xhci);
319 
320 	if (xhci->msix_entries) {
321 		pci_disable_msix(pdev);
322 		kfree(xhci->msix_entries);
323 		xhci->msix_entries = NULL;
324 	} else {
325 		pci_disable_msi(pdev);
326 	}
327 
328 	hcd->msix_enabled = 0;
329 	return;
330 }
331 
332 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
333 {
334 	int i;
335 
336 	if (xhci->msix_entries) {
337 		for (i = 0; i < xhci->msix_count; i++)
338 			synchronize_irq(xhci->msix_entries[i].vector);
339 	}
340 }
341 
342 static int xhci_try_enable_msi(struct usb_hcd *hcd)
343 {
344 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
345 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
346 	int ret;
347 
348 	/*
349 	 * Some Fresco Logic host controllers advertise MSI, but fail to
350 	 * generate interrupts.  Don't even try to enable MSI.
351 	 */
352 	if (xhci->quirks & XHCI_BROKEN_MSI)
353 		goto legacy_irq;
354 
355 	/* unregister the legacy interrupt */
356 	if (hcd->irq)
357 		free_irq(hcd->irq, hcd);
358 	hcd->irq = 0;
359 
360 	ret = xhci_setup_msix(xhci);
361 	if (ret)
362 		/* fall back to msi*/
363 		ret = xhci_setup_msi(xhci);
364 
365 	if (!ret)
366 		/* hcd->irq is 0, we have MSI */
367 		return 0;
368 
369 	if (!pdev->irq) {
370 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
371 		return -EINVAL;
372 	}
373 
374  legacy_irq:
375 	/* fall back to legacy interrupt*/
376 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
377 			hcd->irq_descr, hcd);
378 	if (ret) {
379 		xhci_err(xhci, "request interrupt %d failed\n",
380 				pdev->irq);
381 		return ret;
382 	}
383 	hcd->irq = pdev->irq;
384 	return 0;
385 }
386 
387 #else
388 
389 static int xhci_try_enable_msi(struct usb_hcd *hcd)
390 {
391 	return 0;
392 }
393 
394 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
395 {
396 }
397 
398 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
399 {
400 }
401 
402 #endif
403 
404 static void compliance_mode_recovery(unsigned long arg)
405 {
406 	struct xhci_hcd *xhci;
407 	struct usb_hcd *hcd;
408 	u32 temp;
409 	int i;
410 
411 	xhci = (struct xhci_hcd *)arg;
412 
413 	for (i = 0; i < xhci->num_usb3_ports; i++) {
414 		temp = xhci_readl(xhci, xhci->usb3_ports[i]);
415 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
416 			/*
417 			 * Compliance Mode Detected. Letting USB Core
418 			 * handle the Warm Reset
419 			 */
420 			xhci_dbg(xhci, "Compliance mode detected->port %d\n",
421 					i + 1);
422 			xhci_dbg(xhci, "Attempting compliance mode recovery\n");
423 			hcd = xhci->shared_hcd;
424 
425 			if (hcd->state == HC_STATE_SUSPENDED)
426 				usb_hcd_resume_root_hub(hcd);
427 
428 			usb_hcd_poll_rh_status(hcd);
429 		}
430 	}
431 
432 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
433 		mod_timer(&xhci->comp_mode_recovery_timer,
434 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
435 }
436 
437 /*
438  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
439  * that causes ports behind that hardware to enter compliance mode sometimes.
440  * The quirk creates a timer that polls every 2 seconds the link state of
441  * each host controller's port and recovers it by issuing a Warm reset
442  * if Compliance mode is detected, otherwise the port will become "dead" (no
443  * device connections or disconnections will be detected anymore). Becasue no
444  * status event is generated when entering compliance mode (per xhci spec),
445  * this quirk is needed on systems that have the failing hardware installed.
446  */
447 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
448 {
449 	xhci->port_status_u0 = 0;
450 	init_timer(&xhci->comp_mode_recovery_timer);
451 
452 	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
453 	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
454 	xhci->comp_mode_recovery_timer.expires = jiffies +
455 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
456 
457 	set_timer_slack(&xhci->comp_mode_recovery_timer,
458 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
459 	add_timer(&xhci->comp_mode_recovery_timer);
460 	xhci_dbg(xhci, "Compliance mode recovery timer initialized\n");
461 }
462 
463 /*
464  * This function identifies the systems that have installed the SN65LVPE502CP
465  * USB3.0 re-driver and that need the Compliance Mode Quirk.
466  * Systems:
467  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
468  */
469 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
470 {
471 	const char *dmi_product_name, *dmi_sys_vendor;
472 
473 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
474 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
475 	if (!dmi_product_name || !dmi_sys_vendor)
476 		return false;
477 
478 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
479 		return false;
480 
481 	if (strstr(dmi_product_name, "Z420") ||
482 			strstr(dmi_product_name, "Z620") ||
483 			strstr(dmi_product_name, "Z820") ||
484 			strstr(dmi_product_name, "Z1 Workstation"))
485 		return true;
486 
487 	return false;
488 }
489 
490 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
491 {
492 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
493 }
494 
495 
496 /*
497  * Initialize memory for HCD and xHC (one-time init).
498  *
499  * Program the PAGESIZE register, initialize the device context array, create
500  * device contexts (?), set up a command ring segment (or two?), create event
501  * ring (one for now).
502  */
503 int xhci_init(struct usb_hcd *hcd)
504 {
505 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
506 	int retval = 0;
507 
508 	xhci_dbg(xhci, "xhci_init\n");
509 	spin_lock_init(&xhci->lock);
510 	if (xhci->hci_version == 0x95 && link_quirk) {
511 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
512 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
513 	} else {
514 		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
515 	}
516 	retval = xhci_mem_init(xhci, GFP_KERNEL);
517 	xhci_dbg(xhci, "Finished xhci_init\n");
518 
519 	/* Initializing Compliance Mode Recovery Data If Needed */
520 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
521 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
522 		compliance_mode_recovery_timer_init(xhci);
523 	}
524 
525 	return retval;
526 }
527 
528 /*-------------------------------------------------------------------------*/
529 
530 
531 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
532 static void xhci_event_ring_work(unsigned long arg)
533 {
534 	unsigned long flags;
535 	int temp;
536 	u64 temp_64;
537 	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
538 	int i, j;
539 
540 	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
541 
542 	spin_lock_irqsave(&xhci->lock, flags);
543 	temp = xhci_readl(xhci, &xhci->op_regs->status);
544 	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
545 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
546 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
547 		xhci_dbg(xhci, "HW died, polling stopped.\n");
548 		spin_unlock_irqrestore(&xhci->lock, flags);
549 		return;
550 	}
551 
552 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
553 	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
554 	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
555 	xhci->error_bitmask = 0;
556 	xhci_dbg(xhci, "Event ring:\n");
557 	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
558 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
559 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
560 	temp_64 &= ~ERST_PTR_MASK;
561 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
562 	xhci_dbg(xhci, "Command ring:\n");
563 	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
564 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
565 	xhci_dbg_cmd_ptrs(xhci);
566 	for (i = 0; i < MAX_HC_SLOTS; ++i) {
567 		if (!xhci->devs[i])
568 			continue;
569 		for (j = 0; j < 31; ++j) {
570 			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
571 		}
572 	}
573 	spin_unlock_irqrestore(&xhci->lock, flags);
574 
575 	if (!xhci->zombie)
576 		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
577 	else
578 		xhci_dbg(xhci, "Quit polling the event ring.\n");
579 }
580 #endif
581 
582 static int xhci_run_finished(struct xhci_hcd *xhci)
583 {
584 	if (xhci_start(xhci)) {
585 		xhci_halt(xhci);
586 		return -ENODEV;
587 	}
588 	xhci->shared_hcd->state = HC_STATE_RUNNING;
589 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
590 
591 	if (xhci->quirks & XHCI_NEC_HOST)
592 		xhci_ring_cmd_db(xhci);
593 
594 	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
595 	return 0;
596 }
597 
598 /*
599  * Start the HC after it was halted.
600  *
601  * This function is called by the USB core when the HC driver is added.
602  * Its opposite is xhci_stop().
603  *
604  * xhci_init() must be called once before this function can be called.
605  * Reset the HC, enable device slot contexts, program DCBAAP, and
606  * set command ring pointer and event ring pointer.
607  *
608  * Setup MSI-X vectors and enable interrupts.
609  */
610 int xhci_run(struct usb_hcd *hcd)
611 {
612 	u32 temp;
613 	u64 temp_64;
614 	int ret;
615 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
616 
617 	/* Start the xHCI host controller running only after the USB 2.0 roothub
618 	 * is setup.
619 	 */
620 
621 	hcd->uses_new_polling = 1;
622 	if (!usb_hcd_is_primary_hcd(hcd))
623 		return xhci_run_finished(xhci);
624 
625 	xhci_dbg(xhci, "xhci_run\n");
626 
627 	ret = xhci_try_enable_msi(hcd);
628 	if (ret)
629 		return ret;
630 
631 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
632 	init_timer(&xhci->event_ring_timer);
633 	xhci->event_ring_timer.data = (unsigned long) xhci;
634 	xhci->event_ring_timer.function = xhci_event_ring_work;
635 	/* Poll the event ring */
636 	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
637 	xhci->zombie = 0;
638 	xhci_dbg(xhci, "Setting event ring polling timer\n");
639 	add_timer(&xhci->event_ring_timer);
640 #endif
641 
642 	xhci_dbg(xhci, "Command ring memory map follows:\n");
643 	xhci_debug_ring(xhci, xhci->cmd_ring);
644 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
645 	xhci_dbg_cmd_ptrs(xhci);
646 
647 	xhci_dbg(xhci, "ERST memory map follows:\n");
648 	xhci_dbg_erst(xhci, &xhci->erst);
649 	xhci_dbg(xhci, "Event ring:\n");
650 	xhci_debug_ring(xhci, xhci->event_ring);
651 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
652 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
653 	temp_64 &= ~ERST_PTR_MASK;
654 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
655 
656 	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
657 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
658 	temp &= ~ER_IRQ_INTERVAL_MASK;
659 	temp |= (u32) 160;
660 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
661 
662 	/* Set the HCD state before we enable the irqs */
663 	temp = xhci_readl(xhci, &xhci->op_regs->command);
664 	temp |= (CMD_EIE);
665 	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
666 			temp);
667 	xhci_writel(xhci, temp, &xhci->op_regs->command);
668 
669 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
670 	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
671 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
672 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
673 			&xhci->ir_set->irq_pending);
674 	xhci_print_ir_set(xhci, 0);
675 
676 	if (xhci->quirks & XHCI_NEC_HOST)
677 		xhci_queue_vendor_command(xhci, 0, 0, 0,
678 				TRB_TYPE(TRB_NEC_GET_FW));
679 
680 	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
681 	return 0;
682 }
683 
684 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
685 {
686 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
687 
688 	spin_lock_irq(&xhci->lock);
689 	xhci_halt(xhci);
690 
691 	/* The shared_hcd is going to be deallocated shortly (the USB core only
692 	 * calls this function when allocation fails in usb_add_hcd(), or
693 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
694 	 */
695 	xhci->shared_hcd = NULL;
696 	spin_unlock_irq(&xhci->lock);
697 }
698 
699 /*
700  * Stop xHCI driver.
701  *
702  * This function is called by the USB core when the HC driver is removed.
703  * Its opposite is xhci_run().
704  *
705  * Disable device contexts, disable IRQs, and quiesce the HC.
706  * Reset the HC, finish any completed transactions, and cleanup memory.
707  */
708 void xhci_stop(struct usb_hcd *hcd)
709 {
710 	u32 temp;
711 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
712 
713 	if (!usb_hcd_is_primary_hcd(hcd)) {
714 		xhci_only_stop_hcd(xhci->shared_hcd);
715 		return;
716 	}
717 
718 	spin_lock_irq(&xhci->lock);
719 	/* Make sure the xHC is halted for a USB3 roothub
720 	 * (xhci_stop() could be called as part of failed init).
721 	 */
722 	xhci_halt(xhci);
723 	xhci_reset(xhci);
724 	spin_unlock_irq(&xhci->lock);
725 
726 	xhci_cleanup_msix(xhci);
727 
728 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
729 	/* Tell the event ring poll function not to reschedule */
730 	xhci->zombie = 1;
731 	del_timer_sync(&xhci->event_ring_timer);
732 #endif
733 
734 	/* Deleting Compliance Mode Recovery Timer */
735 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
736 			(!(xhci_all_ports_seen_u0(xhci)))) {
737 		del_timer_sync(&xhci->comp_mode_recovery_timer);
738 		xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
739 				__func__);
740 	}
741 
742 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
743 		usb_amd_dev_put();
744 
745 	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
746 	temp = xhci_readl(xhci, &xhci->op_regs->status);
747 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
748 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
749 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
750 			&xhci->ir_set->irq_pending);
751 	xhci_print_ir_set(xhci, 0);
752 
753 	xhci_dbg(xhci, "cleaning up memory\n");
754 	xhci_mem_cleanup(xhci);
755 	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
756 		    xhci_readl(xhci, &xhci->op_regs->status));
757 }
758 
759 /*
760  * Shutdown HC (not bus-specific)
761  *
762  * This is called when the machine is rebooting or halting.  We assume that the
763  * machine will be powered off, and the HC's internal state will be reset.
764  * Don't bother to free memory.
765  *
766  * This will only ever be called with the main usb_hcd (the USB3 roothub).
767  */
768 void xhci_shutdown(struct usb_hcd *hcd)
769 {
770 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
771 
772 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
773 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
774 
775 	spin_lock_irq(&xhci->lock);
776 	xhci_halt(xhci);
777 	spin_unlock_irq(&xhci->lock);
778 
779 	xhci_cleanup_msix(xhci);
780 
781 	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
782 		    xhci_readl(xhci, &xhci->op_regs->status));
783 }
784 
785 #ifdef CONFIG_PM
786 static void xhci_save_registers(struct xhci_hcd *xhci)
787 {
788 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
789 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
790 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
791 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
792 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
793 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
794 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
795 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
796 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
797 }
798 
799 static void xhci_restore_registers(struct xhci_hcd *xhci)
800 {
801 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
802 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
803 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
804 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
805 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
806 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
807 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
808 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
809 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
810 }
811 
812 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
813 {
814 	u64	val_64;
815 
816 	/* step 2: initialize command ring buffer */
817 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
818 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
819 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
820 				      xhci->cmd_ring->dequeue) &
821 		 (u64) ~CMD_RING_RSVD_BITS) |
822 		xhci->cmd_ring->cycle_state;
823 	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
824 			(long unsigned long) val_64);
825 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
826 }
827 
828 /*
829  * The whole command ring must be cleared to zero when we suspend the host.
830  *
831  * The host doesn't save the command ring pointer in the suspend well, so we
832  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
833  * aligned, because of the reserved bits in the command ring dequeue pointer
834  * register.  Therefore, we can't just set the dequeue pointer back in the
835  * middle of the ring (TRBs are 16-byte aligned).
836  */
837 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
838 {
839 	struct xhci_ring *ring;
840 	struct xhci_segment *seg;
841 
842 	ring = xhci->cmd_ring;
843 	seg = ring->deq_seg;
844 	do {
845 		memset(seg->trbs, 0,
846 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
847 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
848 			cpu_to_le32(~TRB_CYCLE);
849 		seg = seg->next;
850 	} while (seg != ring->deq_seg);
851 
852 	/* Reset the software enqueue and dequeue pointers */
853 	ring->deq_seg = ring->first_seg;
854 	ring->dequeue = ring->first_seg->trbs;
855 	ring->enq_seg = ring->deq_seg;
856 	ring->enqueue = ring->dequeue;
857 
858 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
859 	/*
860 	 * Ring is now zeroed, so the HW should look for change of ownership
861 	 * when the cycle bit is set to 1.
862 	 */
863 	ring->cycle_state = 1;
864 
865 	/*
866 	 * Reset the hardware dequeue pointer.
867 	 * Yes, this will need to be re-written after resume, but we're paranoid
868 	 * and want to make sure the hardware doesn't access bogus memory
869 	 * because, say, the BIOS or an SMI started the host without changing
870 	 * the command ring pointers.
871 	 */
872 	xhci_set_cmd_ring_deq(xhci);
873 }
874 
875 /*
876  * Stop HC (not bus-specific)
877  *
878  * This is called when the machine transition into S3/S4 mode.
879  *
880  */
881 int xhci_suspend(struct xhci_hcd *xhci)
882 {
883 	int			rc = 0;
884 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
885 	u32			command;
886 
887 	if (hcd->state != HC_STATE_SUSPENDED ||
888 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
889 		return -EINVAL;
890 
891 	/* Don't poll the roothubs on bus suspend. */
892 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
893 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
894 	del_timer_sync(&hcd->rh_timer);
895 
896 	spin_lock_irq(&xhci->lock);
897 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
898 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
899 	/* step 1: stop endpoint */
900 	/* skipped assuming that port suspend has done */
901 
902 	/* step 2: clear Run/Stop bit */
903 	command = xhci_readl(xhci, &xhci->op_regs->command);
904 	command &= ~CMD_RUN;
905 	xhci_writel(xhci, command, &xhci->op_regs->command);
906 	if (xhci_handshake(xhci, &xhci->op_regs->status,
907 		      STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
908 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
909 		spin_unlock_irq(&xhci->lock);
910 		return -ETIMEDOUT;
911 	}
912 	xhci_clear_command_ring(xhci);
913 
914 	/* step 3: save registers */
915 	xhci_save_registers(xhci);
916 
917 	/* step 4: set CSS flag */
918 	command = xhci_readl(xhci, &xhci->op_regs->command);
919 	command |= CMD_CSS;
920 	xhci_writel(xhci, command, &xhci->op_regs->command);
921 	if (xhci_handshake(xhci, &xhci->op_regs->status,
922 				STS_SAVE, 0, 10 * 1000)) {
923 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
924 		spin_unlock_irq(&xhci->lock);
925 		return -ETIMEDOUT;
926 	}
927 	spin_unlock_irq(&xhci->lock);
928 
929 	/*
930 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
931 	 * is about to be suspended.
932 	 */
933 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
934 			(!(xhci_all_ports_seen_u0(xhci)))) {
935 		del_timer_sync(&xhci->comp_mode_recovery_timer);
936 		xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
937 				__func__);
938 	}
939 
940 	/* step 5: remove core well power */
941 	/* synchronize irq when using MSI-X */
942 	xhci_msix_sync_irqs(xhci);
943 
944 	return rc;
945 }
946 
947 /*
948  * start xHC (not bus-specific)
949  *
950  * This is called when the machine transition from S3/S4 mode.
951  *
952  */
953 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
954 {
955 	u32			command, temp = 0;
956 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
957 	struct usb_hcd		*secondary_hcd;
958 	int			retval = 0;
959 	bool			comp_timer_running = false;
960 
961 	/* Wait a bit if either of the roothubs need to settle from the
962 	 * transition into bus suspend.
963 	 */
964 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
965 			time_before(jiffies,
966 				xhci->bus_state[1].next_statechange))
967 		msleep(100);
968 
969 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
970 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
971 
972 	spin_lock_irq(&xhci->lock);
973 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
974 		hibernated = true;
975 
976 	if (!hibernated) {
977 		/* step 1: restore register */
978 		xhci_restore_registers(xhci);
979 		/* step 2: initialize command ring buffer */
980 		xhci_set_cmd_ring_deq(xhci);
981 		/* step 3: restore state and start state*/
982 		/* step 3: set CRS flag */
983 		command = xhci_readl(xhci, &xhci->op_regs->command);
984 		command |= CMD_CRS;
985 		xhci_writel(xhci, command, &xhci->op_regs->command);
986 		if (xhci_handshake(xhci, &xhci->op_regs->status,
987 			      STS_RESTORE, 0, 10 * 1000)) {
988 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
989 			spin_unlock_irq(&xhci->lock);
990 			return -ETIMEDOUT;
991 		}
992 		temp = xhci_readl(xhci, &xhci->op_regs->status);
993 	}
994 
995 	/* If restore operation fails, re-initialize the HC during resume */
996 	if ((temp & STS_SRE) || hibernated) {
997 
998 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
999 				!(xhci_all_ports_seen_u0(xhci))) {
1000 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1001 			xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n");
1002 		}
1003 
1004 		/* Let the USB core know _both_ roothubs lost power. */
1005 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1006 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1007 
1008 		xhci_dbg(xhci, "Stop HCD\n");
1009 		xhci_halt(xhci);
1010 		xhci_reset(xhci);
1011 		spin_unlock_irq(&xhci->lock);
1012 		xhci_cleanup_msix(xhci);
1013 
1014 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1015 		/* Tell the event ring poll function not to reschedule */
1016 		xhci->zombie = 1;
1017 		del_timer_sync(&xhci->event_ring_timer);
1018 #endif
1019 
1020 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1021 		temp = xhci_readl(xhci, &xhci->op_regs->status);
1022 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1023 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1024 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1025 				&xhci->ir_set->irq_pending);
1026 		xhci_print_ir_set(xhci, 0);
1027 
1028 		xhci_dbg(xhci, "cleaning up memory\n");
1029 		xhci_mem_cleanup(xhci);
1030 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1031 			    xhci_readl(xhci, &xhci->op_regs->status));
1032 
1033 		/* USB core calls the PCI reinit and start functions twice:
1034 		 * first with the primary HCD, and then with the secondary HCD.
1035 		 * If we don't do the same, the host will never be started.
1036 		 */
1037 		if (!usb_hcd_is_primary_hcd(hcd))
1038 			secondary_hcd = hcd;
1039 		else
1040 			secondary_hcd = xhci->shared_hcd;
1041 
1042 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1043 		retval = xhci_init(hcd->primary_hcd);
1044 		if (retval)
1045 			return retval;
1046 		comp_timer_running = true;
1047 
1048 		xhci_dbg(xhci, "Start the primary HCD\n");
1049 		retval = xhci_run(hcd->primary_hcd);
1050 		if (!retval) {
1051 			xhci_dbg(xhci, "Start the secondary HCD\n");
1052 			retval = xhci_run(secondary_hcd);
1053 		}
1054 		hcd->state = HC_STATE_SUSPENDED;
1055 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1056 		goto done;
1057 	}
1058 
1059 	/* step 4: set Run/Stop bit */
1060 	command = xhci_readl(xhci, &xhci->op_regs->command);
1061 	command |= CMD_RUN;
1062 	xhci_writel(xhci, command, &xhci->op_regs->command);
1063 	xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1064 		  0, 250 * 1000);
1065 
1066 	/* step 5: walk topology and initialize portsc,
1067 	 * portpmsc and portli
1068 	 */
1069 	/* this is done in bus_resume */
1070 
1071 	/* step 6: restart each of the previously
1072 	 * Running endpoints by ringing their doorbells
1073 	 */
1074 
1075 	spin_unlock_irq(&xhci->lock);
1076 
1077  done:
1078 	if (retval == 0) {
1079 		usb_hcd_resume_root_hub(hcd);
1080 		usb_hcd_resume_root_hub(xhci->shared_hcd);
1081 	}
1082 
1083 	/*
1084 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1085 	 * be re-initialized Always after a system resume. Ports are subject
1086 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1087 	 * ports have entered previously to U0 before system's suspension.
1088 	 */
1089 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1090 		compliance_mode_recovery_timer_init(xhci);
1091 
1092 	/* Re-enable port polling. */
1093 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1094 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1095 	usb_hcd_poll_rh_status(hcd);
1096 
1097 	return retval;
1098 }
1099 #endif	/* CONFIG_PM */
1100 
1101 /*-------------------------------------------------------------------------*/
1102 
1103 /**
1104  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1105  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1106  * value to right shift 1 for the bitmask.
1107  *
1108  * Index  = (epnum * 2) + direction - 1,
1109  * where direction = 0 for OUT, 1 for IN.
1110  * For control endpoints, the IN index is used (OUT index is unused), so
1111  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1112  */
1113 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1114 {
1115 	unsigned int index;
1116 	if (usb_endpoint_xfer_control(desc))
1117 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1118 	else
1119 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1120 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1121 	return index;
1122 }
1123 
1124 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1125  * address from the XHCI endpoint index.
1126  */
1127 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1128 {
1129 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1130 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1131 	return direction | number;
1132 }
1133 
1134 /* Find the flag for this endpoint (for use in the control context).  Use the
1135  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1136  * bit 1, etc.
1137  */
1138 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1139 {
1140 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1141 }
1142 
1143 /* Find the flag for this endpoint (for use in the control context).  Use the
1144  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1145  * bit 1, etc.
1146  */
1147 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1148 {
1149 	return 1 << (ep_index + 1);
1150 }
1151 
1152 /* Compute the last valid endpoint context index.  Basically, this is the
1153  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1154  * we find the most significant bit set in the added contexts flags.
1155  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1156  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1157  */
1158 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1159 {
1160 	return fls(added_ctxs) - 1;
1161 }
1162 
1163 /* Returns 1 if the arguments are OK;
1164  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1165  */
1166 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1167 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1168 		const char *func) {
1169 	struct xhci_hcd	*xhci;
1170 	struct xhci_virt_device	*virt_dev;
1171 
1172 	if (!hcd || (check_ep && !ep) || !udev) {
1173 		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1174 				func);
1175 		return -EINVAL;
1176 	}
1177 	if (!udev->parent) {
1178 		printk(KERN_DEBUG "xHCI %s called for root hub\n",
1179 				func);
1180 		return 0;
1181 	}
1182 
1183 	xhci = hcd_to_xhci(hcd);
1184 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1185 		return -ENODEV;
1186 
1187 	if (check_virt_dev) {
1188 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1189 			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1190 						"device\n", func);
1191 			return -EINVAL;
1192 		}
1193 
1194 		virt_dev = xhci->devs[udev->slot_id];
1195 		if (virt_dev->udev != udev) {
1196 			printk(KERN_DEBUG "xHCI %s called with udev and "
1197 					  "virt_dev does not match\n", func);
1198 			return -EINVAL;
1199 		}
1200 	}
1201 
1202 	return 1;
1203 }
1204 
1205 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1206 		struct usb_device *udev, struct xhci_command *command,
1207 		bool ctx_change, bool must_succeed);
1208 
1209 /*
1210  * Full speed devices may have a max packet size greater than 8 bytes, but the
1211  * USB core doesn't know that until it reads the first 8 bytes of the
1212  * descriptor.  If the usb_device's max packet size changes after that point,
1213  * we need to issue an evaluate context command and wait on it.
1214  */
1215 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1216 		unsigned int ep_index, struct urb *urb)
1217 {
1218 	struct xhci_container_ctx *in_ctx;
1219 	struct xhci_container_ctx *out_ctx;
1220 	struct xhci_input_control_ctx *ctrl_ctx;
1221 	struct xhci_ep_ctx *ep_ctx;
1222 	int max_packet_size;
1223 	int hw_max_packet_size;
1224 	int ret = 0;
1225 
1226 	out_ctx = xhci->devs[slot_id]->out_ctx;
1227 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1228 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1229 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1230 	if (hw_max_packet_size != max_packet_size) {
1231 		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1232 		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1233 				max_packet_size);
1234 		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1235 				hw_max_packet_size);
1236 		xhci_dbg(xhci, "Issuing evaluate context command.\n");
1237 
1238 		/* Set up the input context flags for the command */
1239 		/* FIXME: This won't work if a non-default control endpoint
1240 		 * changes max packet sizes.
1241 		 */
1242 		in_ctx = xhci->devs[slot_id]->in_ctx;
1243 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1244 		if (!ctrl_ctx) {
1245 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1246 					__func__);
1247 			return -ENOMEM;
1248 		}
1249 		/* Set up the modified control endpoint 0 */
1250 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1251 				xhci->devs[slot_id]->out_ctx, ep_index);
1252 
1253 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1254 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1255 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1256 
1257 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1258 		ctrl_ctx->drop_flags = 0;
1259 
1260 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1261 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1262 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1263 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1264 
1265 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1266 				true, false);
1267 
1268 		/* Clean up the input context for later use by bandwidth
1269 		 * functions.
1270 		 */
1271 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1272 	}
1273 	return ret;
1274 }
1275 
1276 /*
1277  * non-error returns are a promise to giveback() the urb later
1278  * we drop ownership so next owner (or urb unlink) can get it
1279  */
1280 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1281 {
1282 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1283 	struct xhci_td *buffer;
1284 	unsigned long flags;
1285 	int ret = 0;
1286 	unsigned int slot_id, ep_index;
1287 	struct urb_priv	*urb_priv;
1288 	int size, i;
1289 
1290 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1291 					true, true, __func__) <= 0)
1292 		return -EINVAL;
1293 
1294 	slot_id = urb->dev->slot_id;
1295 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1296 
1297 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1298 		if (!in_interrupt())
1299 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1300 		ret = -ESHUTDOWN;
1301 		goto exit;
1302 	}
1303 
1304 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1305 		size = urb->number_of_packets;
1306 	else
1307 		size = 1;
1308 
1309 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1310 				  size * sizeof(struct xhci_td *), mem_flags);
1311 	if (!urb_priv)
1312 		return -ENOMEM;
1313 
1314 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1315 	if (!buffer) {
1316 		kfree(urb_priv);
1317 		return -ENOMEM;
1318 	}
1319 
1320 	for (i = 0; i < size; i++) {
1321 		urb_priv->td[i] = buffer;
1322 		buffer++;
1323 	}
1324 
1325 	urb_priv->length = size;
1326 	urb_priv->td_cnt = 0;
1327 	urb->hcpriv = urb_priv;
1328 
1329 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1330 		/* Check to see if the max packet size for the default control
1331 		 * endpoint changed during FS device enumeration
1332 		 */
1333 		if (urb->dev->speed == USB_SPEED_FULL) {
1334 			ret = xhci_check_maxpacket(xhci, slot_id,
1335 					ep_index, urb);
1336 			if (ret < 0) {
1337 				xhci_urb_free_priv(xhci, urb_priv);
1338 				urb->hcpriv = NULL;
1339 				return ret;
1340 			}
1341 		}
1342 
1343 		/* We have a spinlock and interrupts disabled, so we must pass
1344 		 * atomic context to this function, which may allocate memory.
1345 		 */
1346 		spin_lock_irqsave(&xhci->lock, flags);
1347 		if (xhci->xhc_state & XHCI_STATE_DYING)
1348 			goto dying;
1349 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1350 				slot_id, ep_index);
1351 		if (ret)
1352 			goto free_priv;
1353 		spin_unlock_irqrestore(&xhci->lock, flags);
1354 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1355 		spin_lock_irqsave(&xhci->lock, flags);
1356 		if (xhci->xhc_state & XHCI_STATE_DYING)
1357 			goto dying;
1358 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1359 				EP_GETTING_STREAMS) {
1360 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1361 					"is transitioning to using streams.\n");
1362 			ret = -EINVAL;
1363 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1364 				EP_GETTING_NO_STREAMS) {
1365 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1366 					"is transitioning to "
1367 					"not having streams.\n");
1368 			ret = -EINVAL;
1369 		} else {
1370 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1371 					slot_id, ep_index);
1372 		}
1373 		if (ret)
1374 			goto free_priv;
1375 		spin_unlock_irqrestore(&xhci->lock, flags);
1376 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1377 		spin_lock_irqsave(&xhci->lock, flags);
1378 		if (xhci->xhc_state & XHCI_STATE_DYING)
1379 			goto dying;
1380 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1381 				slot_id, ep_index);
1382 		if (ret)
1383 			goto free_priv;
1384 		spin_unlock_irqrestore(&xhci->lock, flags);
1385 	} else {
1386 		spin_lock_irqsave(&xhci->lock, flags);
1387 		if (xhci->xhc_state & XHCI_STATE_DYING)
1388 			goto dying;
1389 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1390 				slot_id, ep_index);
1391 		if (ret)
1392 			goto free_priv;
1393 		spin_unlock_irqrestore(&xhci->lock, flags);
1394 	}
1395 exit:
1396 	return ret;
1397 dying:
1398 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1399 			"non-responsive xHCI host.\n",
1400 			urb->ep->desc.bEndpointAddress, urb);
1401 	ret = -ESHUTDOWN;
1402 free_priv:
1403 	xhci_urb_free_priv(xhci, urb_priv);
1404 	urb->hcpriv = NULL;
1405 	spin_unlock_irqrestore(&xhci->lock, flags);
1406 	return ret;
1407 }
1408 
1409 /* Get the right ring for the given URB.
1410  * If the endpoint supports streams, boundary check the URB's stream ID.
1411  * If the endpoint doesn't support streams, return the singular endpoint ring.
1412  */
1413 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1414 		struct urb *urb)
1415 {
1416 	unsigned int slot_id;
1417 	unsigned int ep_index;
1418 	unsigned int stream_id;
1419 	struct xhci_virt_ep *ep;
1420 
1421 	slot_id = urb->dev->slot_id;
1422 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1423 	stream_id = urb->stream_id;
1424 	ep = &xhci->devs[slot_id]->eps[ep_index];
1425 	/* Common case: no streams */
1426 	if (!(ep->ep_state & EP_HAS_STREAMS))
1427 		return ep->ring;
1428 
1429 	if (stream_id == 0) {
1430 		xhci_warn(xhci,
1431 				"WARN: Slot ID %u, ep index %u has streams, "
1432 				"but URB has no stream ID.\n",
1433 				slot_id, ep_index);
1434 		return NULL;
1435 	}
1436 
1437 	if (stream_id < ep->stream_info->num_streams)
1438 		return ep->stream_info->stream_rings[stream_id];
1439 
1440 	xhci_warn(xhci,
1441 			"WARN: Slot ID %u, ep index %u has "
1442 			"stream IDs 1 to %u allocated, "
1443 			"but stream ID %u is requested.\n",
1444 			slot_id, ep_index,
1445 			ep->stream_info->num_streams - 1,
1446 			stream_id);
1447 	return NULL;
1448 }
1449 
1450 /*
1451  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1452  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1453  * should pick up where it left off in the TD, unless a Set Transfer Ring
1454  * Dequeue Pointer is issued.
1455  *
1456  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1457  * the ring.  Since the ring is a contiguous structure, they can't be physically
1458  * removed.  Instead, there are two options:
1459  *
1460  *  1) If the HC is in the middle of processing the URB to be canceled, we
1461  *     simply move the ring's dequeue pointer past those TRBs using the Set
1462  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1463  *     when drivers timeout on the last submitted URB and attempt to cancel.
1464  *
1465  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1466  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1467  *     HC will need to invalidate the any TRBs it has cached after the stop
1468  *     endpoint command, as noted in the xHCI 0.95 errata.
1469  *
1470  *  3) The TD may have completed by the time the Stop Endpoint Command
1471  *     completes, so software needs to handle that case too.
1472  *
1473  * This function should protect against the TD enqueueing code ringing the
1474  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1475  * It also needs to account for multiple cancellations on happening at the same
1476  * time for the same endpoint.
1477  *
1478  * Note that this function can be called in any context, or so says
1479  * usb_hcd_unlink_urb()
1480  */
1481 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1482 {
1483 	unsigned long flags;
1484 	int ret, i;
1485 	u32 temp;
1486 	struct xhci_hcd *xhci;
1487 	struct urb_priv	*urb_priv;
1488 	struct xhci_td *td;
1489 	unsigned int ep_index;
1490 	struct xhci_ring *ep_ring;
1491 	struct xhci_virt_ep *ep;
1492 
1493 	xhci = hcd_to_xhci(hcd);
1494 	spin_lock_irqsave(&xhci->lock, flags);
1495 	/* Make sure the URB hasn't completed or been unlinked already */
1496 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1497 	if (ret || !urb->hcpriv)
1498 		goto done;
1499 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1500 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1501 		xhci_dbg(xhci, "HW died, freeing TD.\n");
1502 		urb_priv = urb->hcpriv;
1503 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1504 			td = urb_priv->td[i];
1505 			if (!list_empty(&td->td_list))
1506 				list_del_init(&td->td_list);
1507 			if (!list_empty(&td->cancelled_td_list))
1508 				list_del_init(&td->cancelled_td_list);
1509 		}
1510 
1511 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1512 		spin_unlock_irqrestore(&xhci->lock, flags);
1513 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1514 		xhci_urb_free_priv(xhci, urb_priv);
1515 		return ret;
1516 	}
1517 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1518 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1519 		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1520 				"non-responsive xHCI host.\n",
1521 				urb->ep->desc.bEndpointAddress, urb);
1522 		/* Let the stop endpoint command watchdog timer (which set this
1523 		 * state) finish cleaning up the endpoint TD lists.  We must
1524 		 * have caught it in the middle of dropping a lock and giving
1525 		 * back an URB.
1526 		 */
1527 		goto done;
1528 	}
1529 
1530 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1531 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1532 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1533 	if (!ep_ring) {
1534 		ret = -EINVAL;
1535 		goto done;
1536 	}
1537 
1538 	urb_priv = urb->hcpriv;
1539 	i = urb_priv->td_cnt;
1540 	if (i < urb_priv->length)
1541 		xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1542 				"starting at offset 0x%llx\n",
1543 				urb, urb->dev->devpath,
1544 				urb->ep->desc.bEndpointAddress,
1545 				(unsigned long long) xhci_trb_virt_to_dma(
1546 					urb_priv->td[i]->start_seg,
1547 					urb_priv->td[i]->first_trb));
1548 
1549 	for (; i < urb_priv->length; i++) {
1550 		td = urb_priv->td[i];
1551 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1552 	}
1553 
1554 	/* Queue a stop endpoint command, but only if this is
1555 	 * the first cancellation to be handled.
1556 	 */
1557 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1558 		ep->ep_state |= EP_HALT_PENDING;
1559 		ep->stop_cmds_pending++;
1560 		ep->stop_cmd_timer.expires = jiffies +
1561 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1562 		add_timer(&ep->stop_cmd_timer);
1563 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1564 		xhci_ring_cmd_db(xhci);
1565 	}
1566 done:
1567 	spin_unlock_irqrestore(&xhci->lock, flags);
1568 	return ret;
1569 }
1570 
1571 /* Drop an endpoint from a new bandwidth configuration for this device.
1572  * Only one call to this function is allowed per endpoint before
1573  * check_bandwidth() or reset_bandwidth() must be called.
1574  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1575  * add the endpoint to the schedule with possibly new parameters denoted by a
1576  * different endpoint descriptor in usb_host_endpoint.
1577  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1578  * not allowed.
1579  *
1580  * The USB core will not allow URBs to be queued to an endpoint that is being
1581  * disabled, so there's no need for mutual exclusion to protect
1582  * the xhci->devs[slot_id] structure.
1583  */
1584 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1585 		struct usb_host_endpoint *ep)
1586 {
1587 	struct xhci_hcd *xhci;
1588 	struct xhci_container_ctx *in_ctx, *out_ctx;
1589 	struct xhci_input_control_ctx *ctrl_ctx;
1590 	struct xhci_slot_ctx *slot_ctx;
1591 	unsigned int last_ctx;
1592 	unsigned int ep_index;
1593 	struct xhci_ep_ctx *ep_ctx;
1594 	u32 drop_flag;
1595 	u32 new_add_flags, new_drop_flags, new_slot_info;
1596 	int ret;
1597 
1598 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1599 	if (ret <= 0)
1600 		return ret;
1601 	xhci = hcd_to_xhci(hcd);
1602 	if (xhci->xhc_state & XHCI_STATE_DYING)
1603 		return -ENODEV;
1604 
1605 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1606 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1607 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1608 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1609 				__func__, drop_flag);
1610 		return 0;
1611 	}
1612 
1613 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1614 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1615 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1616 	if (!ctrl_ctx) {
1617 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1618 				__func__);
1619 		return 0;
1620 	}
1621 
1622 	ep_index = xhci_get_endpoint_index(&ep->desc);
1623 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1624 	/* If the HC already knows the endpoint is disabled,
1625 	 * or the HCD has noted it is disabled, ignore this request
1626 	 */
1627 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1628 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1629 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1630 	    xhci_get_endpoint_flag(&ep->desc)) {
1631 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1632 				__func__, ep);
1633 		return 0;
1634 	}
1635 
1636 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1637 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1638 
1639 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1640 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1641 
1642 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1643 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1644 	/* Update the last valid endpoint context, if we deleted the last one */
1645 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1646 	    LAST_CTX(last_ctx)) {
1647 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1648 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1649 	}
1650 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1651 
1652 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1653 
1654 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1655 			(unsigned int) ep->desc.bEndpointAddress,
1656 			udev->slot_id,
1657 			(unsigned int) new_drop_flags,
1658 			(unsigned int) new_add_flags,
1659 			(unsigned int) new_slot_info);
1660 	return 0;
1661 }
1662 
1663 /* Add an endpoint to a new possible bandwidth configuration for this device.
1664  * Only one call to this function is allowed per endpoint before
1665  * check_bandwidth() or reset_bandwidth() must be called.
1666  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1667  * add the endpoint to the schedule with possibly new parameters denoted by a
1668  * different endpoint descriptor in usb_host_endpoint.
1669  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1670  * not allowed.
1671  *
1672  * The USB core will not allow URBs to be queued to an endpoint until the
1673  * configuration or alt setting is installed in the device, so there's no need
1674  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1675  */
1676 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1677 		struct usb_host_endpoint *ep)
1678 {
1679 	struct xhci_hcd *xhci;
1680 	struct xhci_container_ctx *in_ctx, *out_ctx;
1681 	unsigned int ep_index;
1682 	struct xhci_slot_ctx *slot_ctx;
1683 	struct xhci_input_control_ctx *ctrl_ctx;
1684 	u32 added_ctxs;
1685 	unsigned int last_ctx;
1686 	u32 new_add_flags, new_drop_flags, new_slot_info;
1687 	struct xhci_virt_device *virt_dev;
1688 	int ret = 0;
1689 
1690 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1691 	if (ret <= 0) {
1692 		/* So we won't queue a reset ep command for a root hub */
1693 		ep->hcpriv = NULL;
1694 		return ret;
1695 	}
1696 	xhci = hcd_to_xhci(hcd);
1697 	if (xhci->xhc_state & XHCI_STATE_DYING)
1698 		return -ENODEV;
1699 
1700 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1701 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1702 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1703 		/* FIXME when we have to issue an evaluate endpoint command to
1704 		 * deal with ep0 max packet size changing once we get the
1705 		 * descriptors
1706 		 */
1707 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1708 				__func__, added_ctxs);
1709 		return 0;
1710 	}
1711 
1712 	virt_dev = xhci->devs[udev->slot_id];
1713 	in_ctx = virt_dev->in_ctx;
1714 	out_ctx = virt_dev->out_ctx;
1715 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1716 	if (!ctrl_ctx) {
1717 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1718 				__func__);
1719 		return 0;
1720 	}
1721 
1722 	ep_index = xhci_get_endpoint_index(&ep->desc);
1723 	/* If this endpoint is already in use, and the upper layers are trying
1724 	 * to add it again without dropping it, reject the addition.
1725 	 */
1726 	if (virt_dev->eps[ep_index].ring &&
1727 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1728 				xhci_get_endpoint_flag(&ep->desc))) {
1729 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1730 				"without dropping it.\n",
1731 				(unsigned int) ep->desc.bEndpointAddress);
1732 		return -EINVAL;
1733 	}
1734 
1735 	/* If the HCD has already noted the endpoint is enabled,
1736 	 * ignore this request.
1737 	 */
1738 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1739 	    xhci_get_endpoint_flag(&ep->desc)) {
1740 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1741 				__func__, ep);
1742 		return 0;
1743 	}
1744 
1745 	/*
1746 	 * Configuration and alternate setting changes must be done in
1747 	 * process context, not interrupt context (or so documenation
1748 	 * for usb_set_interface() and usb_set_configuration() claim).
1749 	 */
1750 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1751 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1752 				__func__, ep->desc.bEndpointAddress);
1753 		return -ENOMEM;
1754 	}
1755 
1756 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1757 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1758 
1759 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1760 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1761 	 * this re-adds a new state for the endpoint from the new endpoint
1762 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1763 	 * drop flags alone.
1764 	 */
1765 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1766 
1767 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1768 	/* Update the last valid endpoint context, if we just added one past */
1769 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1770 	    LAST_CTX(last_ctx)) {
1771 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1772 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1773 	}
1774 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1775 
1776 	/* Store the usb_device pointer for later use */
1777 	ep->hcpriv = udev;
1778 
1779 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1780 			(unsigned int) ep->desc.bEndpointAddress,
1781 			udev->slot_id,
1782 			(unsigned int) new_drop_flags,
1783 			(unsigned int) new_add_flags,
1784 			(unsigned int) new_slot_info);
1785 	return 0;
1786 }
1787 
1788 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1789 {
1790 	struct xhci_input_control_ctx *ctrl_ctx;
1791 	struct xhci_ep_ctx *ep_ctx;
1792 	struct xhci_slot_ctx *slot_ctx;
1793 	int i;
1794 
1795 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1796 	if (!ctrl_ctx) {
1797 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1798 				__func__);
1799 		return;
1800 	}
1801 
1802 	/* When a device's add flag and drop flag are zero, any subsequent
1803 	 * configure endpoint command will leave that endpoint's state
1804 	 * untouched.  Make sure we don't leave any old state in the input
1805 	 * endpoint contexts.
1806 	 */
1807 	ctrl_ctx->drop_flags = 0;
1808 	ctrl_ctx->add_flags = 0;
1809 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1810 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1811 	/* Endpoint 0 is always valid */
1812 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1813 	for (i = 1; i < 31; ++i) {
1814 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1815 		ep_ctx->ep_info = 0;
1816 		ep_ctx->ep_info2 = 0;
1817 		ep_ctx->deq = 0;
1818 		ep_ctx->tx_info = 0;
1819 	}
1820 }
1821 
1822 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1823 		struct usb_device *udev, u32 *cmd_status)
1824 {
1825 	int ret;
1826 
1827 	switch (*cmd_status) {
1828 	case COMP_ENOMEM:
1829 		dev_warn(&udev->dev, "Not enough host controller resources "
1830 				"for new device state.\n");
1831 		ret = -ENOMEM;
1832 		/* FIXME: can we allocate more resources for the HC? */
1833 		break;
1834 	case COMP_BW_ERR:
1835 	case COMP_2ND_BW_ERR:
1836 		dev_warn(&udev->dev, "Not enough bandwidth "
1837 				"for new device state.\n");
1838 		ret = -ENOSPC;
1839 		/* FIXME: can we go back to the old state? */
1840 		break;
1841 	case COMP_TRB_ERR:
1842 		/* the HCD set up something wrong */
1843 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1844 				"add flag = 1, "
1845 				"and endpoint is not disabled.\n");
1846 		ret = -EINVAL;
1847 		break;
1848 	case COMP_DEV_ERR:
1849 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1850 				"configure command.\n");
1851 		ret = -ENODEV;
1852 		break;
1853 	case COMP_SUCCESS:
1854 		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1855 		ret = 0;
1856 		break;
1857 	default:
1858 		xhci_err(xhci, "ERROR: unexpected command completion "
1859 				"code 0x%x.\n", *cmd_status);
1860 		ret = -EINVAL;
1861 		break;
1862 	}
1863 	return ret;
1864 }
1865 
1866 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1867 		struct usb_device *udev, u32 *cmd_status)
1868 {
1869 	int ret;
1870 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1871 
1872 	switch (*cmd_status) {
1873 	case COMP_EINVAL:
1874 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1875 				"context command.\n");
1876 		ret = -EINVAL;
1877 		break;
1878 	case COMP_EBADSLT:
1879 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1880 				"evaluate context command.\n");
1881 		ret = -EINVAL;
1882 		break;
1883 	case COMP_CTX_STATE:
1884 		dev_warn(&udev->dev, "WARN: invalid context state for "
1885 				"evaluate context command.\n");
1886 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1887 		ret = -EINVAL;
1888 		break;
1889 	case COMP_DEV_ERR:
1890 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1891 				"context command.\n");
1892 		ret = -ENODEV;
1893 		break;
1894 	case COMP_MEL_ERR:
1895 		/* Max Exit Latency too large error */
1896 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1897 		ret = -EINVAL;
1898 		break;
1899 	case COMP_SUCCESS:
1900 		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1901 		ret = 0;
1902 		break;
1903 	default:
1904 		xhci_err(xhci, "ERROR: unexpected command completion "
1905 				"code 0x%x.\n", *cmd_status);
1906 		ret = -EINVAL;
1907 		break;
1908 	}
1909 	return ret;
1910 }
1911 
1912 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1913 		struct xhci_input_control_ctx *ctrl_ctx)
1914 {
1915 	u32 valid_add_flags;
1916 	u32 valid_drop_flags;
1917 
1918 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1919 	 * (bit 1).  The default control endpoint is added during the Address
1920 	 * Device command and is never removed until the slot is disabled.
1921 	 */
1922 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1923 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1924 
1925 	/* Use hweight32 to count the number of ones in the add flags, or
1926 	 * number of endpoints added.  Don't count endpoints that are changed
1927 	 * (both added and dropped).
1928 	 */
1929 	return hweight32(valid_add_flags) -
1930 		hweight32(valid_add_flags & valid_drop_flags);
1931 }
1932 
1933 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1934 		struct xhci_input_control_ctx *ctrl_ctx)
1935 {
1936 	u32 valid_add_flags;
1937 	u32 valid_drop_flags;
1938 
1939 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1940 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1941 
1942 	return hweight32(valid_drop_flags) -
1943 		hweight32(valid_add_flags & valid_drop_flags);
1944 }
1945 
1946 /*
1947  * We need to reserve the new number of endpoints before the configure endpoint
1948  * command completes.  We can't subtract the dropped endpoints from the number
1949  * of active endpoints until the command completes because we can oversubscribe
1950  * the host in this case:
1951  *
1952  *  - the first configure endpoint command drops more endpoints than it adds
1953  *  - a second configure endpoint command that adds more endpoints is queued
1954  *  - the first configure endpoint command fails, so the config is unchanged
1955  *  - the second command may succeed, even though there isn't enough resources
1956  *
1957  * Must be called with xhci->lock held.
1958  */
1959 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1960 		struct xhci_input_control_ctx *ctrl_ctx)
1961 {
1962 	u32 added_eps;
1963 
1964 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1965 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1966 		xhci_dbg(xhci, "Not enough ep ctxs: "
1967 				"%u active, need to add %u, limit is %u.\n",
1968 				xhci->num_active_eps, added_eps,
1969 				xhci->limit_active_eps);
1970 		return -ENOMEM;
1971 	}
1972 	xhci->num_active_eps += added_eps;
1973 	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1974 			xhci->num_active_eps);
1975 	return 0;
1976 }
1977 
1978 /*
1979  * The configure endpoint was failed by the xHC for some other reason, so we
1980  * need to revert the resources that failed configuration would have used.
1981  *
1982  * Must be called with xhci->lock held.
1983  */
1984 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1985 		struct xhci_input_control_ctx *ctrl_ctx)
1986 {
1987 	u32 num_failed_eps;
1988 
1989 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1990 	xhci->num_active_eps -= num_failed_eps;
1991 	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1992 			num_failed_eps,
1993 			xhci->num_active_eps);
1994 }
1995 
1996 /*
1997  * Now that the command has completed, clean up the active endpoint count by
1998  * subtracting out the endpoints that were dropped (but not changed).
1999  *
2000  * Must be called with xhci->lock held.
2001  */
2002 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2003 		struct xhci_input_control_ctx *ctrl_ctx)
2004 {
2005 	u32 num_dropped_eps;
2006 
2007 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2008 	xhci->num_active_eps -= num_dropped_eps;
2009 	if (num_dropped_eps)
2010 		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
2011 				num_dropped_eps,
2012 				xhci->num_active_eps);
2013 }
2014 
2015 static unsigned int xhci_get_block_size(struct usb_device *udev)
2016 {
2017 	switch (udev->speed) {
2018 	case USB_SPEED_LOW:
2019 	case USB_SPEED_FULL:
2020 		return FS_BLOCK;
2021 	case USB_SPEED_HIGH:
2022 		return HS_BLOCK;
2023 	case USB_SPEED_SUPER:
2024 		return SS_BLOCK;
2025 	case USB_SPEED_UNKNOWN:
2026 	case USB_SPEED_WIRELESS:
2027 	default:
2028 		/* Should never happen */
2029 		return 1;
2030 	}
2031 }
2032 
2033 static unsigned int
2034 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2035 {
2036 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2037 		return LS_OVERHEAD;
2038 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2039 		return FS_OVERHEAD;
2040 	return HS_OVERHEAD;
2041 }
2042 
2043 /* If we are changing a LS/FS device under a HS hub,
2044  * make sure (if we are activating a new TT) that the HS bus has enough
2045  * bandwidth for this new TT.
2046  */
2047 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2048 		struct xhci_virt_device *virt_dev,
2049 		int old_active_eps)
2050 {
2051 	struct xhci_interval_bw_table *bw_table;
2052 	struct xhci_tt_bw_info *tt_info;
2053 
2054 	/* Find the bandwidth table for the root port this TT is attached to. */
2055 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2056 	tt_info = virt_dev->tt_info;
2057 	/* If this TT already had active endpoints, the bandwidth for this TT
2058 	 * has already been added.  Removing all periodic endpoints (and thus
2059 	 * making the TT enactive) will only decrease the bandwidth used.
2060 	 */
2061 	if (old_active_eps)
2062 		return 0;
2063 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2064 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2065 			return -ENOMEM;
2066 		return 0;
2067 	}
2068 	/* Not sure why we would have no new active endpoints...
2069 	 *
2070 	 * Maybe because of an Evaluate Context change for a hub update or a
2071 	 * control endpoint 0 max packet size change?
2072 	 * FIXME: skip the bandwidth calculation in that case.
2073 	 */
2074 	return 0;
2075 }
2076 
2077 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2078 		struct xhci_virt_device *virt_dev)
2079 {
2080 	unsigned int bw_reserved;
2081 
2082 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2083 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2084 		return -ENOMEM;
2085 
2086 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2087 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2088 		return -ENOMEM;
2089 
2090 	return 0;
2091 }
2092 
2093 /*
2094  * This algorithm is a very conservative estimate of the worst-case scheduling
2095  * scenario for any one interval.  The hardware dynamically schedules the
2096  * packets, so we can't tell which microframe could be the limiting factor in
2097  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2098  *
2099  * Obviously, we can't solve an NP complete problem to find the minimum worst
2100  * case scenario.  Instead, we come up with an estimate that is no less than
2101  * the worst case bandwidth used for any one microframe, but may be an
2102  * over-estimate.
2103  *
2104  * We walk the requirements for each endpoint by interval, starting with the
2105  * smallest interval, and place packets in the schedule where there is only one
2106  * possible way to schedule packets for that interval.  In order to simplify
2107  * this algorithm, we record the largest max packet size for each interval, and
2108  * assume all packets will be that size.
2109  *
2110  * For interval 0, we obviously must schedule all packets for each interval.
2111  * The bandwidth for interval 0 is just the amount of data to be transmitted
2112  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2113  * the number of packets).
2114  *
2115  * For interval 1, we have two possible microframes to schedule those packets
2116  * in.  For this algorithm, if we can schedule the same number of packets for
2117  * each possible scheduling opportunity (each microframe), we will do so.  The
2118  * remaining number of packets will be saved to be transmitted in the gaps in
2119  * the next interval's scheduling sequence.
2120  *
2121  * As we move those remaining packets to be scheduled with interval 2 packets,
2122  * we have to double the number of remaining packets to transmit.  This is
2123  * because the intervals are actually powers of 2, and we would be transmitting
2124  * the previous interval's packets twice in this interval.  We also have to be
2125  * sure that when we look at the largest max packet size for this interval, we
2126  * also look at the largest max packet size for the remaining packets and take
2127  * the greater of the two.
2128  *
2129  * The algorithm continues to evenly distribute packets in each scheduling
2130  * opportunity, and push the remaining packets out, until we get to the last
2131  * interval.  Then those packets and their associated overhead are just added
2132  * to the bandwidth used.
2133  */
2134 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2135 		struct xhci_virt_device *virt_dev,
2136 		int old_active_eps)
2137 {
2138 	unsigned int bw_reserved;
2139 	unsigned int max_bandwidth;
2140 	unsigned int bw_used;
2141 	unsigned int block_size;
2142 	struct xhci_interval_bw_table *bw_table;
2143 	unsigned int packet_size = 0;
2144 	unsigned int overhead = 0;
2145 	unsigned int packets_transmitted = 0;
2146 	unsigned int packets_remaining = 0;
2147 	unsigned int i;
2148 
2149 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2150 		return xhci_check_ss_bw(xhci, virt_dev);
2151 
2152 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2153 		max_bandwidth = HS_BW_LIMIT;
2154 		/* Convert percent of bus BW reserved to blocks reserved */
2155 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2156 	} else {
2157 		max_bandwidth = FS_BW_LIMIT;
2158 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2159 	}
2160 
2161 	bw_table = virt_dev->bw_table;
2162 	/* We need to translate the max packet size and max ESIT payloads into
2163 	 * the units the hardware uses.
2164 	 */
2165 	block_size = xhci_get_block_size(virt_dev->udev);
2166 
2167 	/* If we are manipulating a LS/FS device under a HS hub, double check
2168 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2169 	 */
2170 	if (virt_dev->tt_info) {
2171 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2172 				virt_dev->real_port);
2173 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2174 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2175 					"newly activated TT.\n");
2176 			return -ENOMEM;
2177 		}
2178 		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2179 				virt_dev->tt_info->slot_id,
2180 				virt_dev->tt_info->ttport);
2181 	} else {
2182 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2183 				virt_dev->real_port);
2184 	}
2185 
2186 	/* Add in how much bandwidth will be used for interval zero, or the
2187 	 * rounded max ESIT payload + number of packets * largest overhead.
2188 	 */
2189 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2190 		bw_table->interval_bw[0].num_packets *
2191 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2192 
2193 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2194 		unsigned int bw_added;
2195 		unsigned int largest_mps;
2196 		unsigned int interval_overhead;
2197 
2198 		/*
2199 		 * How many packets could we transmit in this interval?
2200 		 * If packets didn't fit in the previous interval, we will need
2201 		 * to transmit that many packets twice within this interval.
2202 		 */
2203 		packets_remaining = 2 * packets_remaining +
2204 			bw_table->interval_bw[i].num_packets;
2205 
2206 		/* Find the largest max packet size of this or the previous
2207 		 * interval.
2208 		 */
2209 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2210 			largest_mps = 0;
2211 		else {
2212 			struct xhci_virt_ep *virt_ep;
2213 			struct list_head *ep_entry;
2214 
2215 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2216 			virt_ep = list_entry(ep_entry,
2217 					struct xhci_virt_ep, bw_endpoint_list);
2218 			/* Convert to blocks, rounding up */
2219 			largest_mps = DIV_ROUND_UP(
2220 					virt_ep->bw_info.max_packet_size,
2221 					block_size);
2222 		}
2223 		if (largest_mps > packet_size)
2224 			packet_size = largest_mps;
2225 
2226 		/* Use the larger overhead of this or the previous interval. */
2227 		interval_overhead = xhci_get_largest_overhead(
2228 				&bw_table->interval_bw[i]);
2229 		if (interval_overhead > overhead)
2230 			overhead = interval_overhead;
2231 
2232 		/* How many packets can we evenly distribute across
2233 		 * (1 << (i + 1)) possible scheduling opportunities?
2234 		 */
2235 		packets_transmitted = packets_remaining >> (i + 1);
2236 
2237 		/* Add in the bandwidth used for those scheduled packets */
2238 		bw_added = packets_transmitted * (overhead + packet_size);
2239 
2240 		/* How many packets do we have remaining to transmit? */
2241 		packets_remaining = packets_remaining % (1 << (i + 1));
2242 
2243 		/* What largest max packet size should those packets have? */
2244 		/* If we've transmitted all packets, don't carry over the
2245 		 * largest packet size.
2246 		 */
2247 		if (packets_remaining == 0) {
2248 			packet_size = 0;
2249 			overhead = 0;
2250 		} else if (packets_transmitted > 0) {
2251 			/* Otherwise if we do have remaining packets, and we've
2252 			 * scheduled some packets in this interval, take the
2253 			 * largest max packet size from endpoints with this
2254 			 * interval.
2255 			 */
2256 			packet_size = largest_mps;
2257 			overhead = interval_overhead;
2258 		}
2259 		/* Otherwise carry over packet_size and overhead from the last
2260 		 * time we had a remainder.
2261 		 */
2262 		bw_used += bw_added;
2263 		if (bw_used > max_bandwidth) {
2264 			xhci_warn(xhci, "Not enough bandwidth. "
2265 					"Proposed: %u, Max: %u\n",
2266 				bw_used, max_bandwidth);
2267 			return -ENOMEM;
2268 		}
2269 	}
2270 	/*
2271 	 * Ok, we know we have some packets left over after even-handedly
2272 	 * scheduling interval 15.  We don't know which microframes they will
2273 	 * fit into, so we over-schedule and say they will be scheduled every
2274 	 * microframe.
2275 	 */
2276 	if (packets_remaining > 0)
2277 		bw_used += overhead + packet_size;
2278 
2279 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2280 		unsigned int port_index = virt_dev->real_port - 1;
2281 
2282 		/* OK, we're manipulating a HS device attached to a
2283 		 * root port bandwidth domain.  Include the number of active TTs
2284 		 * in the bandwidth used.
2285 		 */
2286 		bw_used += TT_HS_OVERHEAD *
2287 			xhci->rh_bw[port_index].num_active_tts;
2288 	}
2289 
2290 	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2291 		"Available: %u " "percent\n",
2292 		bw_used, max_bandwidth, bw_reserved,
2293 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2294 		max_bandwidth);
2295 
2296 	bw_used += bw_reserved;
2297 	if (bw_used > max_bandwidth) {
2298 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2299 				bw_used, max_bandwidth);
2300 		return -ENOMEM;
2301 	}
2302 
2303 	bw_table->bw_used = bw_used;
2304 	return 0;
2305 }
2306 
2307 static bool xhci_is_async_ep(unsigned int ep_type)
2308 {
2309 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2310 					ep_type != ISOC_IN_EP &&
2311 					ep_type != INT_IN_EP);
2312 }
2313 
2314 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2315 {
2316 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2317 }
2318 
2319 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2320 {
2321 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2322 
2323 	if (ep_bw->ep_interval == 0)
2324 		return SS_OVERHEAD_BURST +
2325 			(ep_bw->mult * ep_bw->num_packets *
2326 					(SS_OVERHEAD + mps));
2327 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2328 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2329 				1 << ep_bw->ep_interval);
2330 
2331 }
2332 
2333 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2334 		struct xhci_bw_info *ep_bw,
2335 		struct xhci_interval_bw_table *bw_table,
2336 		struct usb_device *udev,
2337 		struct xhci_virt_ep *virt_ep,
2338 		struct xhci_tt_bw_info *tt_info)
2339 {
2340 	struct xhci_interval_bw	*interval_bw;
2341 	int normalized_interval;
2342 
2343 	if (xhci_is_async_ep(ep_bw->type))
2344 		return;
2345 
2346 	if (udev->speed == USB_SPEED_SUPER) {
2347 		if (xhci_is_sync_in_ep(ep_bw->type))
2348 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2349 				xhci_get_ss_bw_consumed(ep_bw);
2350 		else
2351 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2352 				xhci_get_ss_bw_consumed(ep_bw);
2353 		return;
2354 	}
2355 
2356 	/* SuperSpeed endpoints never get added to intervals in the table, so
2357 	 * this check is only valid for HS/FS/LS devices.
2358 	 */
2359 	if (list_empty(&virt_ep->bw_endpoint_list))
2360 		return;
2361 	/* For LS/FS devices, we need to translate the interval expressed in
2362 	 * microframes to frames.
2363 	 */
2364 	if (udev->speed == USB_SPEED_HIGH)
2365 		normalized_interval = ep_bw->ep_interval;
2366 	else
2367 		normalized_interval = ep_bw->ep_interval - 3;
2368 
2369 	if (normalized_interval == 0)
2370 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2371 	interval_bw = &bw_table->interval_bw[normalized_interval];
2372 	interval_bw->num_packets -= ep_bw->num_packets;
2373 	switch (udev->speed) {
2374 	case USB_SPEED_LOW:
2375 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2376 		break;
2377 	case USB_SPEED_FULL:
2378 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2379 		break;
2380 	case USB_SPEED_HIGH:
2381 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2382 		break;
2383 	case USB_SPEED_SUPER:
2384 	case USB_SPEED_UNKNOWN:
2385 	case USB_SPEED_WIRELESS:
2386 		/* Should never happen because only LS/FS/HS endpoints will get
2387 		 * added to the endpoint list.
2388 		 */
2389 		return;
2390 	}
2391 	if (tt_info)
2392 		tt_info->active_eps -= 1;
2393 	list_del_init(&virt_ep->bw_endpoint_list);
2394 }
2395 
2396 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2397 		struct xhci_bw_info *ep_bw,
2398 		struct xhci_interval_bw_table *bw_table,
2399 		struct usb_device *udev,
2400 		struct xhci_virt_ep *virt_ep,
2401 		struct xhci_tt_bw_info *tt_info)
2402 {
2403 	struct xhci_interval_bw	*interval_bw;
2404 	struct xhci_virt_ep *smaller_ep;
2405 	int normalized_interval;
2406 
2407 	if (xhci_is_async_ep(ep_bw->type))
2408 		return;
2409 
2410 	if (udev->speed == USB_SPEED_SUPER) {
2411 		if (xhci_is_sync_in_ep(ep_bw->type))
2412 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2413 				xhci_get_ss_bw_consumed(ep_bw);
2414 		else
2415 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2416 				xhci_get_ss_bw_consumed(ep_bw);
2417 		return;
2418 	}
2419 
2420 	/* For LS/FS devices, we need to translate the interval expressed in
2421 	 * microframes to frames.
2422 	 */
2423 	if (udev->speed == USB_SPEED_HIGH)
2424 		normalized_interval = ep_bw->ep_interval;
2425 	else
2426 		normalized_interval = ep_bw->ep_interval - 3;
2427 
2428 	if (normalized_interval == 0)
2429 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2430 	interval_bw = &bw_table->interval_bw[normalized_interval];
2431 	interval_bw->num_packets += ep_bw->num_packets;
2432 	switch (udev->speed) {
2433 	case USB_SPEED_LOW:
2434 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2435 		break;
2436 	case USB_SPEED_FULL:
2437 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2438 		break;
2439 	case USB_SPEED_HIGH:
2440 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2441 		break;
2442 	case USB_SPEED_SUPER:
2443 	case USB_SPEED_UNKNOWN:
2444 	case USB_SPEED_WIRELESS:
2445 		/* Should never happen because only LS/FS/HS endpoints will get
2446 		 * added to the endpoint list.
2447 		 */
2448 		return;
2449 	}
2450 
2451 	if (tt_info)
2452 		tt_info->active_eps += 1;
2453 	/* Insert the endpoint into the list, largest max packet size first. */
2454 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2455 			bw_endpoint_list) {
2456 		if (ep_bw->max_packet_size >=
2457 				smaller_ep->bw_info.max_packet_size) {
2458 			/* Add the new ep before the smaller endpoint */
2459 			list_add_tail(&virt_ep->bw_endpoint_list,
2460 					&smaller_ep->bw_endpoint_list);
2461 			return;
2462 		}
2463 	}
2464 	/* Add the new endpoint at the end of the list. */
2465 	list_add_tail(&virt_ep->bw_endpoint_list,
2466 			&interval_bw->endpoints);
2467 }
2468 
2469 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2470 		struct xhci_virt_device *virt_dev,
2471 		int old_active_eps)
2472 {
2473 	struct xhci_root_port_bw_info *rh_bw_info;
2474 	if (!virt_dev->tt_info)
2475 		return;
2476 
2477 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2478 	if (old_active_eps == 0 &&
2479 				virt_dev->tt_info->active_eps != 0) {
2480 		rh_bw_info->num_active_tts += 1;
2481 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2482 	} else if (old_active_eps != 0 &&
2483 				virt_dev->tt_info->active_eps == 0) {
2484 		rh_bw_info->num_active_tts -= 1;
2485 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2486 	}
2487 }
2488 
2489 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2490 		struct xhci_virt_device *virt_dev,
2491 		struct xhci_container_ctx *in_ctx)
2492 {
2493 	struct xhci_bw_info ep_bw_info[31];
2494 	int i;
2495 	struct xhci_input_control_ctx *ctrl_ctx;
2496 	int old_active_eps = 0;
2497 
2498 	if (virt_dev->tt_info)
2499 		old_active_eps = virt_dev->tt_info->active_eps;
2500 
2501 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2502 	if (!ctrl_ctx) {
2503 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2504 				__func__);
2505 		return -ENOMEM;
2506 	}
2507 
2508 	for (i = 0; i < 31; i++) {
2509 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2510 			continue;
2511 
2512 		/* Make a copy of the BW info in case we need to revert this */
2513 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2514 				sizeof(ep_bw_info[i]));
2515 		/* Drop the endpoint from the interval table if the endpoint is
2516 		 * being dropped or changed.
2517 		 */
2518 		if (EP_IS_DROPPED(ctrl_ctx, i))
2519 			xhci_drop_ep_from_interval_table(xhci,
2520 					&virt_dev->eps[i].bw_info,
2521 					virt_dev->bw_table,
2522 					virt_dev->udev,
2523 					&virt_dev->eps[i],
2524 					virt_dev->tt_info);
2525 	}
2526 	/* Overwrite the information stored in the endpoints' bw_info */
2527 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2528 	for (i = 0; i < 31; i++) {
2529 		/* Add any changed or added endpoints to the interval table */
2530 		if (EP_IS_ADDED(ctrl_ctx, i))
2531 			xhci_add_ep_to_interval_table(xhci,
2532 					&virt_dev->eps[i].bw_info,
2533 					virt_dev->bw_table,
2534 					virt_dev->udev,
2535 					&virt_dev->eps[i],
2536 					virt_dev->tt_info);
2537 	}
2538 
2539 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2540 		/* Ok, this fits in the bandwidth we have.
2541 		 * Update the number of active TTs.
2542 		 */
2543 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2544 		return 0;
2545 	}
2546 
2547 	/* We don't have enough bandwidth for this, revert the stored info. */
2548 	for (i = 0; i < 31; i++) {
2549 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2550 			continue;
2551 
2552 		/* Drop the new copies of any added or changed endpoints from
2553 		 * the interval table.
2554 		 */
2555 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2556 			xhci_drop_ep_from_interval_table(xhci,
2557 					&virt_dev->eps[i].bw_info,
2558 					virt_dev->bw_table,
2559 					virt_dev->udev,
2560 					&virt_dev->eps[i],
2561 					virt_dev->tt_info);
2562 		}
2563 		/* Revert the endpoint back to its old information */
2564 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2565 				sizeof(ep_bw_info[i]));
2566 		/* Add any changed or dropped endpoints back into the table */
2567 		if (EP_IS_DROPPED(ctrl_ctx, i))
2568 			xhci_add_ep_to_interval_table(xhci,
2569 					&virt_dev->eps[i].bw_info,
2570 					virt_dev->bw_table,
2571 					virt_dev->udev,
2572 					&virt_dev->eps[i],
2573 					virt_dev->tt_info);
2574 	}
2575 	return -ENOMEM;
2576 }
2577 
2578 
2579 /* Issue a configure endpoint command or evaluate context command
2580  * and wait for it to finish.
2581  */
2582 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2583 		struct usb_device *udev,
2584 		struct xhci_command *command,
2585 		bool ctx_change, bool must_succeed)
2586 {
2587 	int ret;
2588 	int timeleft;
2589 	unsigned long flags;
2590 	struct xhci_container_ctx *in_ctx;
2591 	struct xhci_input_control_ctx *ctrl_ctx;
2592 	struct completion *cmd_completion;
2593 	u32 *cmd_status;
2594 	struct xhci_virt_device *virt_dev;
2595 	union xhci_trb *cmd_trb;
2596 
2597 	spin_lock_irqsave(&xhci->lock, flags);
2598 	virt_dev = xhci->devs[udev->slot_id];
2599 
2600 	if (command)
2601 		in_ctx = command->in_ctx;
2602 	else
2603 		in_ctx = virt_dev->in_ctx;
2604 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2605 	if (!ctrl_ctx) {
2606 		spin_unlock_irqrestore(&xhci->lock, flags);
2607 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2608 				__func__);
2609 		return -ENOMEM;
2610 	}
2611 
2612 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2613 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2614 		spin_unlock_irqrestore(&xhci->lock, flags);
2615 		xhci_warn(xhci, "Not enough host resources, "
2616 				"active endpoint contexts = %u\n",
2617 				xhci->num_active_eps);
2618 		return -ENOMEM;
2619 	}
2620 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2621 			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2622 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2623 			xhci_free_host_resources(xhci, ctrl_ctx);
2624 		spin_unlock_irqrestore(&xhci->lock, flags);
2625 		xhci_warn(xhci, "Not enough bandwidth\n");
2626 		return -ENOMEM;
2627 	}
2628 
2629 	if (command) {
2630 		cmd_completion = command->completion;
2631 		cmd_status = &command->status;
2632 		command->command_trb = xhci->cmd_ring->enqueue;
2633 
2634 		/* Enqueue pointer can be left pointing to the link TRB,
2635 		 * we must handle that
2636 		 */
2637 		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2638 			command->command_trb =
2639 				xhci->cmd_ring->enq_seg->next->trbs;
2640 
2641 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2642 	} else {
2643 		cmd_completion = &virt_dev->cmd_completion;
2644 		cmd_status = &virt_dev->cmd_status;
2645 	}
2646 	init_completion(cmd_completion);
2647 
2648 	cmd_trb = xhci->cmd_ring->dequeue;
2649 	if (!ctx_change)
2650 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2651 				udev->slot_id, must_succeed);
2652 	else
2653 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2654 				udev->slot_id, must_succeed);
2655 	if (ret < 0) {
2656 		if (command)
2657 			list_del(&command->cmd_list);
2658 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2659 			xhci_free_host_resources(xhci, ctrl_ctx);
2660 		spin_unlock_irqrestore(&xhci->lock, flags);
2661 		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2662 		return -ENOMEM;
2663 	}
2664 	xhci_ring_cmd_db(xhci);
2665 	spin_unlock_irqrestore(&xhci->lock, flags);
2666 
2667 	/* Wait for the configure endpoint command to complete */
2668 	timeleft = wait_for_completion_interruptible_timeout(
2669 			cmd_completion,
2670 			XHCI_CMD_DEFAULT_TIMEOUT);
2671 	if (timeleft <= 0) {
2672 		xhci_warn(xhci, "%s while waiting for %s command\n",
2673 				timeleft == 0 ? "Timeout" : "Signal",
2674 				ctx_change == 0 ?
2675 					"configure endpoint" :
2676 					"evaluate context");
2677 		/* cancel the configure endpoint command */
2678 		ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2679 		if (ret < 0)
2680 			return ret;
2681 		return -ETIME;
2682 	}
2683 
2684 	if (!ctx_change)
2685 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2686 	else
2687 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2688 
2689 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2690 		spin_lock_irqsave(&xhci->lock, flags);
2691 		/* If the command failed, remove the reserved resources.
2692 		 * Otherwise, clean up the estimate to include dropped eps.
2693 		 */
2694 		if (ret)
2695 			xhci_free_host_resources(xhci, ctrl_ctx);
2696 		else
2697 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2698 		spin_unlock_irqrestore(&xhci->lock, flags);
2699 	}
2700 	return ret;
2701 }
2702 
2703 /* Called after one or more calls to xhci_add_endpoint() or
2704  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2705  * to call xhci_reset_bandwidth().
2706  *
2707  * Since we are in the middle of changing either configuration or
2708  * installing a new alt setting, the USB core won't allow URBs to be
2709  * enqueued for any endpoint on the old config or interface.  Nothing
2710  * else should be touching the xhci->devs[slot_id] structure, so we
2711  * don't need to take the xhci->lock for manipulating that.
2712  */
2713 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2714 {
2715 	int i;
2716 	int ret = 0;
2717 	struct xhci_hcd *xhci;
2718 	struct xhci_virt_device	*virt_dev;
2719 	struct xhci_input_control_ctx *ctrl_ctx;
2720 	struct xhci_slot_ctx *slot_ctx;
2721 
2722 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2723 	if (ret <= 0)
2724 		return ret;
2725 	xhci = hcd_to_xhci(hcd);
2726 	if (xhci->xhc_state & XHCI_STATE_DYING)
2727 		return -ENODEV;
2728 
2729 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2730 	virt_dev = xhci->devs[udev->slot_id];
2731 
2732 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2733 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2734 	if (!ctrl_ctx) {
2735 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2736 				__func__);
2737 		return -ENOMEM;
2738 	}
2739 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2740 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2741 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2742 
2743 	/* Don't issue the command if there's no endpoints to update. */
2744 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2745 			ctrl_ctx->drop_flags == 0)
2746 		return 0;
2747 
2748 	xhci_dbg(xhci, "New Input Control Context:\n");
2749 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2750 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2751 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2752 
2753 	ret = xhci_configure_endpoint(xhci, udev, NULL,
2754 			false, false);
2755 	if (ret) {
2756 		/* Callee should call reset_bandwidth() */
2757 		return ret;
2758 	}
2759 
2760 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2761 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2762 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2763 
2764 	/* Free any rings that were dropped, but not changed. */
2765 	for (i = 1; i < 31; ++i) {
2766 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2767 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2768 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2769 	}
2770 	xhci_zero_in_ctx(xhci, virt_dev);
2771 	/*
2772 	 * Install any rings for completely new endpoints or changed endpoints,
2773 	 * and free or cache any old rings from changed endpoints.
2774 	 */
2775 	for (i = 1; i < 31; ++i) {
2776 		if (!virt_dev->eps[i].new_ring)
2777 			continue;
2778 		/* Only cache or free the old ring if it exists.
2779 		 * It may not if this is the first add of an endpoint.
2780 		 */
2781 		if (virt_dev->eps[i].ring) {
2782 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2783 		}
2784 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2785 		virt_dev->eps[i].new_ring = NULL;
2786 	}
2787 
2788 	return ret;
2789 }
2790 
2791 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2792 {
2793 	struct xhci_hcd *xhci;
2794 	struct xhci_virt_device	*virt_dev;
2795 	int i, ret;
2796 
2797 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2798 	if (ret <= 0)
2799 		return;
2800 	xhci = hcd_to_xhci(hcd);
2801 
2802 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2803 	virt_dev = xhci->devs[udev->slot_id];
2804 	/* Free any rings allocated for added endpoints */
2805 	for (i = 0; i < 31; ++i) {
2806 		if (virt_dev->eps[i].new_ring) {
2807 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2808 			virt_dev->eps[i].new_ring = NULL;
2809 		}
2810 	}
2811 	xhci_zero_in_ctx(xhci, virt_dev);
2812 }
2813 
2814 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2815 		struct xhci_container_ctx *in_ctx,
2816 		struct xhci_container_ctx *out_ctx,
2817 		struct xhci_input_control_ctx *ctrl_ctx,
2818 		u32 add_flags, u32 drop_flags)
2819 {
2820 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2821 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2822 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2823 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2824 
2825 	xhci_dbg(xhci, "Input Context:\n");
2826 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2827 }
2828 
2829 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2830 		unsigned int slot_id, unsigned int ep_index,
2831 		struct xhci_dequeue_state *deq_state)
2832 {
2833 	struct xhci_input_control_ctx *ctrl_ctx;
2834 	struct xhci_container_ctx *in_ctx;
2835 	struct xhci_ep_ctx *ep_ctx;
2836 	u32 added_ctxs;
2837 	dma_addr_t addr;
2838 
2839 	in_ctx = xhci->devs[slot_id]->in_ctx;
2840 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2841 	if (!ctrl_ctx) {
2842 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2843 				__func__);
2844 		return;
2845 	}
2846 
2847 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2848 			xhci->devs[slot_id]->out_ctx, ep_index);
2849 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2850 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2851 			deq_state->new_deq_ptr);
2852 	if (addr == 0) {
2853 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2854 				"reset ep command\n");
2855 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2856 				deq_state->new_deq_seg,
2857 				deq_state->new_deq_ptr);
2858 		return;
2859 	}
2860 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2861 
2862 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2863 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2864 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2865 			added_ctxs, added_ctxs);
2866 }
2867 
2868 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2869 		struct usb_device *udev, unsigned int ep_index)
2870 {
2871 	struct xhci_dequeue_state deq_state;
2872 	struct xhci_virt_ep *ep;
2873 
2874 	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2875 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2876 	/* We need to move the HW's dequeue pointer past this TD,
2877 	 * or it will attempt to resend it on the next doorbell ring.
2878 	 */
2879 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2880 			ep_index, ep->stopped_stream, ep->stopped_td,
2881 			&deq_state);
2882 
2883 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2884 	 * issue a configure endpoint command later.
2885 	 */
2886 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2887 		xhci_dbg(xhci, "Queueing new dequeue state\n");
2888 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2889 				ep_index, ep->stopped_stream, &deq_state);
2890 	} else {
2891 		/* Better hope no one uses the input context between now and the
2892 		 * reset endpoint completion!
2893 		 * XXX: No idea how this hardware will react when stream rings
2894 		 * are enabled.
2895 		 */
2896 		xhci_dbg(xhci, "Setting up input context for "
2897 				"configure endpoint command\n");
2898 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2899 				ep_index, &deq_state);
2900 	}
2901 }
2902 
2903 /* Deal with stalled endpoints.  The core should have sent the control message
2904  * to clear the halt condition.  However, we need to make the xHCI hardware
2905  * reset its sequence number, since a device will expect a sequence number of
2906  * zero after the halt condition is cleared.
2907  * Context: in_interrupt
2908  */
2909 void xhci_endpoint_reset(struct usb_hcd *hcd,
2910 		struct usb_host_endpoint *ep)
2911 {
2912 	struct xhci_hcd *xhci;
2913 	struct usb_device *udev;
2914 	unsigned int ep_index;
2915 	unsigned long flags;
2916 	int ret;
2917 	struct xhci_virt_ep *virt_ep;
2918 
2919 	xhci = hcd_to_xhci(hcd);
2920 	udev = (struct usb_device *) ep->hcpriv;
2921 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2922 	 * with xhci_add_endpoint()
2923 	 */
2924 	if (!ep->hcpriv)
2925 		return;
2926 	ep_index = xhci_get_endpoint_index(&ep->desc);
2927 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2928 	if (!virt_ep->stopped_td) {
2929 		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2930 				ep->desc.bEndpointAddress);
2931 		return;
2932 	}
2933 	if (usb_endpoint_xfer_control(&ep->desc)) {
2934 		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2935 		return;
2936 	}
2937 
2938 	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2939 	spin_lock_irqsave(&xhci->lock, flags);
2940 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2941 	/*
2942 	 * Can't change the ring dequeue pointer until it's transitioned to the
2943 	 * stopped state, which is only upon a successful reset endpoint
2944 	 * command.  Better hope that last command worked!
2945 	 */
2946 	if (!ret) {
2947 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2948 		kfree(virt_ep->stopped_td);
2949 		xhci_ring_cmd_db(xhci);
2950 	}
2951 	virt_ep->stopped_td = NULL;
2952 	virt_ep->stopped_trb = NULL;
2953 	virt_ep->stopped_stream = 0;
2954 	spin_unlock_irqrestore(&xhci->lock, flags);
2955 
2956 	if (ret)
2957 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2958 }
2959 
2960 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2961 		struct usb_device *udev, struct usb_host_endpoint *ep,
2962 		unsigned int slot_id)
2963 {
2964 	int ret;
2965 	unsigned int ep_index;
2966 	unsigned int ep_state;
2967 
2968 	if (!ep)
2969 		return -EINVAL;
2970 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2971 	if (ret <= 0)
2972 		return -EINVAL;
2973 	if (ep->ss_ep_comp.bmAttributes == 0) {
2974 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2975 				" descriptor for ep 0x%x does not support streams\n",
2976 				ep->desc.bEndpointAddress);
2977 		return -EINVAL;
2978 	}
2979 
2980 	ep_index = xhci_get_endpoint_index(&ep->desc);
2981 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2982 	if (ep_state & EP_HAS_STREAMS ||
2983 			ep_state & EP_GETTING_STREAMS) {
2984 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2985 				"already has streams set up.\n",
2986 				ep->desc.bEndpointAddress);
2987 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2988 				"dynamic stream context array reallocation.\n");
2989 		return -EINVAL;
2990 	}
2991 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2992 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2993 				"endpoint 0x%x; URBs are pending.\n",
2994 				ep->desc.bEndpointAddress);
2995 		return -EINVAL;
2996 	}
2997 	return 0;
2998 }
2999 
3000 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3001 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3002 {
3003 	unsigned int max_streams;
3004 
3005 	/* The stream context array size must be a power of two */
3006 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3007 	/*
3008 	 * Find out how many primary stream array entries the host controller
3009 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3010 	 * level page entries), but that's an optional feature for xHCI host
3011 	 * controllers. xHCs must support at least 4 stream IDs.
3012 	 */
3013 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3014 	if (*num_stream_ctxs > max_streams) {
3015 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3016 				max_streams);
3017 		*num_stream_ctxs = max_streams;
3018 		*num_streams = max_streams;
3019 	}
3020 }
3021 
3022 /* Returns an error code if one of the endpoint already has streams.
3023  * This does not change any data structures, it only checks and gathers
3024  * information.
3025  */
3026 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3027 		struct usb_device *udev,
3028 		struct usb_host_endpoint **eps, unsigned int num_eps,
3029 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3030 {
3031 	unsigned int max_streams;
3032 	unsigned int endpoint_flag;
3033 	int i;
3034 	int ret;
3035 
3036 	for (i = 0; i < num_eps; i++) {
3037 		ret = xhci_check_streams_endpoint(xhci, udev,
3038 				eps[i], udev->slot_id);
3039 		if (ret < 0)
3040 			return ret;
3041 
3042 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3043 		if (max_streams < (*num_streams - 1)) {
3044 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3045 					eps[i]->desc.bEndpointAddress,
3046 					max_streams);
3047 			*num_streams = max_streams+1;
3048 		}
3049 
3050 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3051 		if (*changed_ep_bitmask & endpoint_flag)
3052 			return -EINVAL;
3053 		*changed_ep_bitmask |= endpoint_flag;
3054 	}
3055 	return 0;
3056 }
3057 
3058 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3059 		struct usb_device *udev,
3060 		struct usb_host_endpoint **eps, unsigned int num_eps)
3061 {
3062 	u32 changed_ep_bitmask = 0;
3063 	unsigned int slot_id;
3064 	unsigned int ep_index;
3065 	unsigned int ep_state;
3066 	int i;
3067 
3068 	slot_id = udev->slot_id;
3069 	if (!xhci->devs[slot_id])
3070 		return 0;
3071 
3072 	for (i = 0; i < num_eps; i++) {
3073 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3074 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3075 		/* Are streams already being freed for the endpoint? */
3076 		if (ep_state & EP_GETTING_NO_STREAMS) {
3077 			xhci_warn(xhci, "WARN Can't disable streams for "
3078 					"endpoint 0x%x\n, "
3079 					"streams are being disabled already.",
3080 					eps[i]->desc.bEndpointAddress);
3081 			return 0;
3082 		}
3083 		/* Are there actually any streams to free? */
3084 		if (!(ep_state & EP_HAS_STREAMS) &&
3085 				!(ep_state & EP_GETTING_STREAMS)) {
3086 			xhci_warn(xhci, "WARN Can't disable streams for "
3087 					"endpoint 0x%x\n, "
3088 					"streams are already disabled!",
3089 					eps[i]->desc.bEndpointAddress);
3090 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3091 					"with non-streams endpoint\n");
3092 			return 0;
3093 		}
3094 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3095 	}
3096 	return changed_ep_bitmask;
3097 }
3098 
3099 /*
3100  * The USB device drivers use this function (though the HCD interface in USB
3101  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3102  * coordinate mass storage command queueing across multiple endpoints (basically
3103  * a stream ID == a task ID).
3104  *
3105  * Setting up streams involves allocating the same size stream context array
3106  * for each endpoint and issuing a configure endpoint command for all endpoints.
3107  *
3108  * Don't allow the call to succeed if one endpoint only supports one stream
3109  * (which means it doesn't support streams at all).
3110  *
3111  * Drivers may get less stream IDs than they asked for, if the host controller
3112  * hardware or endpoints claim they can't support the number of requested
3113  * stream IDs.
3114  */
3115 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3116 		struct usb_host_endpoint **eps, unsigned int num_eps,
3117 		unsigned int num_streams, gfp_t mem_flags)
3118 {
3119 	int i, ret;
3120 	struct xhci_hcd *xhci;
3121 	struct xhci_virt_device *vdev;
3122 	struct xhci_command *config_cmd;
3123 	struct xhci_input_control_ctx *ctrl_ctx;
3124 	unsigned int ep_index;
3125 	unsigned int num_stream_ctxs;
3126 	unsigned long flags;
3127 	u32 changed_ep_bitmask = 0;
3128 
3129 	if (!eps)
3130 		return -EINVAL;
3131 
3132 	/* Add one to the number of streams requested to account for
3133 	 * stream 0 that is reserved for xHCI usage.
3134 	 */
3135 	num_streams += 1;
3136 	xhci = hcd_to_xhci(hcd);
3137 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3138 			num_streams);
3139 
3140 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3141 	if (!config_cmd) {
3142 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3143 		return -ENOMEM;
3144 	}
3145 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3146 	if (!ctrl_ctx) {
3147 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3148 				__func__);
3149 		xhci_free_command(xhci, config_cmd);
3150 		return -ENOMEM;
3151 	}
3152 
3153 	/* Check to make sure all endpoints are not already configured for
3154 	 * streams.  While we're at it, find the maximum number of streams that
3155 	 * all the endpoints will support and check for duplicate endpoints.
3156 	 */
3157 	spin_lock_irqsave(&xhci->lock, flags);
3158 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3159 			num_eps, &num_streams, &changed_ep_bitmask);
3160 	if (ret < 0) {
3161 		xhci_free_command(xhci, config_cmd);
3162 		spin_unlock_irqrestore(&xhci->lock, flags);
3163 		return ret;
3164 	}
3165 	if (num_streams <= 1) {
3166 		xhci_warn(xhci, "WARN: endpoints can't handle "
3167 				"more than one stream.\n");
3168 		xhci_free_command(xhci, config_cmd);
3169 		spin_unlock_irqrestore(&xhci->lock, flags);
3170 		return -EINVAL;
3171 	}
3172 	vdev = xhci->devs[udev->slot_id];
3173 	/* Mark each endpoint as being in transition, so
3174 	 * xhci_urb_enqueue() will reject all URBs.
3175 	 */
3176 	for (i = 0; i < num_eps; i++) {
3177 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3178 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3179 	}
3180 	spin_unlock_irqrestore(&xhci->lock, flags);
3181 
3182 	/* Setup internal data structures and allocate HW data structures for
3183 	 * streams (but don't install the HW structures in the input context
3184 	 * until we're sure all memory allocation succeeded).
3185 	 */
3186 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3187 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3188 			num_stream_ctxs, num_streams);
3189 
3190 	for (i = 0; i < num_eps; i++) {
3191 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3192 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3193 				num_stream_ctxs,
3194 				num_streams, mem_flags);
3195 		if (!vdev->eps[ep_index].stream_info)
3196 			goto cleanup;
3197 		/* Set maxPstreams in endpoint context and update deq ptr to
3198 		 * point to stream context array. FIXME
3199 		 */
3200 	}
3201 
3202 	/* Set up the input context for a configure endpoint command. */
3203 	for (i = 0; i < num_eps; i++) {
3204 		struct xhci_ep_ctx *ep_ctx;
3205 
3206 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3207 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3208 
3209 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3210 				vdev->out_ctx, ep_index);
3211 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3212 				vdev->eps[ep_index].stream_info);
3213 	}
3214 	/* Tell the HW to drop its old copy of the endpoint context info
3215 	 * and add the updated copy from the input context.
3216 	 */
3217 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3218 			vdev->out_ctx, ctrl_ctx,
3219 			changed_ep_bitmask, changed_ep_bitmask);
3220 
3221 	/* Issue and wait for the configure endpoint command */
3222 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3223 			false, false);
3224 
3225 	/* xHC rejected the configure endpoint command for some reason, so we
3226 	 * leave the old ring intact and free our internal streams data
3227 	 * structure.
3228 	 */
3229 	if (ret < 0)
3230 		goto cleanup;
3231 
3232 	spin_lock_irqsave(&xhci->lock, flags);
3233 	for (i = 0; i < num_eps; i++) {
3234 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3235 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3236 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3237 			 udev->slot_id, ep_index);
3238 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3239 	}
3240 	xhci_free_command(xhci, config_cmd);
3241 	spin_unlock_irqrestore(&xhci->lock, flags);
3242 
3243 	/* Subtract 1 for stream 0, which drivers can't use */
3244 	return num_streams - 1;
3245 
3246 cleanup:
3247 	/* If it didn't work, free the streams! */
3248 	for (i = 0; i < num_eps; i++) {
3249 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3250 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3251 		vdev->eps[ep_index].stream_info = NULL;
3252 		/* FIXME Unset maxPstreams in endpoint context and
3253 		 * update deq ptr to point to normal string ring.
3254 		 */
3255 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3256 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3257 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3258 	}
3259 	xhci_free_command(xhci, config_cmd);
3260 	return -ENOMEM;
3261 }
3262 
3263 /* Transition the endpoint from using streams to being a "normal" endpoint
3264  * without streams.
3265  *
3266  * Modify the endpoint context state, submit a configure endpoint command,
3267  * and free all endpoint rings for streams if that completes successfully.
3268  */
3269 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3270 		struct usb_host_endpoint **eps, unsigned int num_eps,
3271 		gfp_t mem_flags)
3272 {
3273 	int i, ret;
3274 	struct xhci_hcd *xhci;
3275 	struct xhci_virt_device *vdev;
3276 	struct xhci_command *command;
3277 	struct xhci_input_control_ctx *ctrl_ctx;
3278 	unsigned int ep_index;
3279 	unsigned long flags;
3280 	u32 changed_ep_bitmask;
3281 
3282 	xhci = hcd_to_xhci(hcd);
3283 	vdev = xhci->devs[udev->slot_id];
3284 
3285 	/* Set up a configure endpoint command to remove the streams rings */
3286 	spin_lock_irqsave(&xhci->lock, flags);
3287 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3288 			udev, eps, num_eps);
3289 	if (changed_ep_bitmask == 0) {
3290 		spin_unlock_irqrestore(&xhci->lock, flags);
3291 		return -EINVAL;
3292 	}
3293 
3294 	/* Use the xhci_command structure from the first endpoint.  We may have
3295 	 * allocated too many, but the driver may call xhci_free_streams() for
3296 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3297 	 */
3298 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3299 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3300 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3301 	if (!ctrl_ctx) {
3302 		spin_unlock_irqrestore(&xhci->lock, flags);
3303 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3304 				__func__);
3305 		return -EINVAL;
3306 	}
3307 
3308 	for (i = 0; i < num_eps; i++) {
3309 		struct xhci_ep_ctx *ep_ctx;
3310 
3311 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3312 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3313 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3314 			EP_GETTING_NO_STREAMS;
3315 
3316 		xhci_endpoint_copy(xhci, command->in_ctx,
3317 				vdev->out_ctx, ep_index);
3318 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3319 				&vdev->eps[ep_index]);
3320 	}
3321 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3322 			vdev->out_ctx, ctrl_ctx,
3323 			changed_ep_bitmask, changed_ep_bitmask);
3324 	spin_unlock_irqrestore(&xhci->lock, flags);
3325 
3326 	/* Issue and wait for the configure endpoint command,
3327 	 * which must succeed.
3328 	 */
3329 	ret = xhci_configure_endpoint(xhci, udev, command,
3330 			false, true);
3331 
3332 	/* xHC rejected the configure endpoint command for some reason, so we
3333 	 * leave the streams rings intact.
3334 	 */
3335 	if (ret < 0)
3336 		return ret;
3337 
3338 	spin_lock_irqsave(&xhci->lock, flags);
3339 	for (i = 0; i < num_eps; i++) {
3340 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3341 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3342 		vdev->eps[ep_index].stream_info = NULL;
3343 		/* FIXME Unset maxPstreams in endpoint context and
3344 		 * update deq ptr to point to normal string ring.
3345 		 */
3346 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3347 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3348 	}
3349 	spin_unlock_irqrestore(&xhci->lock, flags);
3350 
3351 	return 0;
3352 }
3353 
3354 /*
3355  * Deletes endpoint resources for endpoints that were active before a Reset
3356  * Device command, or a Disable Slot command.  The Reset Device command leaves
3357  * the control endpoint intact, whereas the Disable Slot command deletes it.
3358  *
3359  * Must be called with xhci->lock held.
3360  */
3361 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3362 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3363 {
3364 	int i;
3365 	unsigned int num_dropped_eps = 0;
3366 	unsigned int drop_flags = 0;
3367 
3368 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3369 		if (virt_dev->eps[i].ring) {
3370 			drop_flags |= 1 << i;
3371 			num_dropped_eps++;
3372 		}
3373 	}
3374 	xhci->num_active_eps -= num_dropped_eps;
3375 	if (num_dropped_eps)
3376 		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3377 				"%u now active.\n",
3378 				num_dropped_eps, drop_flags,
3379 				xhci->num_active_eps);
3380 }
3381 
3382 /*
3383  * This submits a Reset Device Command, which will set the device state to 0,
3384  * set the device address to 0, and disable all the endpoints except the default
3385  * control endpoint.  The USB core should come back and call
3386  * xhci_address_device(), and then re-set up the configuration.  If this is
3387  * called because of a usb_reset_and_verify_device(), then the old alternate
3388  * settings will be re-installed through the normal bandwidth allocation
3389  * functions.
3390  *
3391  * Wait for the Reset Device command to finish.  Remove all structures
3392  * associated with the endpoints that were disabled.  Clear the input device
3393  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3394  *
3395  * If the virt_dev to be reset does not exist or does not match the udev,
3396  * it means the device is lost, possibly due to the xHC restore error and
3397  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3398  * re-allocate the device.
3399  */
3400 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3401 {
3402 	int ret, i;
3403 	unsigned long flags;
3404 	struct xhci_hcd *xhci;
3405 	unsigned int slot_id;
3406 	struct xhci_virt_device *virt_dev;
3407 	struct xhci_command *reset_device_cmd;
3408 	int timeleft;
3409 	int last_freed_endpoint;
3410 	struct xhci_slot_ctx *slot_ctx;
3411 	int old_active_eps = 0;
3412 
3413 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3414 	if (ret <= 0)
3415 		return ret;
3416 	xhci = hcd_to_xhci(hcd);
3417 	slot_id = udev->slot_id;
3418 	virt_dev = xhci->devs[slot_id];
3419 	if (!virt_dev) {
3420 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3421 				"not exist. Re-allocate the device\n", slot_id);
3422 		ret = xhci_alloc_dev(hcd, udev);
3423 		if (ret == 1)
3424 			return 0;
3425 		else
3426 			return -EINVAL;
3427 	}
3428 
3429 	if (virt_dev->udev != udev) {
3430 		/* If the virt_dev and the udev does not match, this virt_dev
3431 		 * may belong to another udev.
3432 		 * Re-allocate the device.
3433 		 */
3434 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3435 				"not match the udev. Re-allocate the device\n",
3436 				slot_id);
3437 		ret = xhci_alloc_dev(hcd, udev);
3438 		if (ret == 1)
3439 			return 0;
3440 		else
3441 			return -EINVAL;
3442 	}
3443 
3444 	/* If device is not setup, there is no point in resetting it */
3445 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3446 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3447 						SLOT_STATE_DISABLED)
3448 		return 0;
3449 
3450 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3451 	/* Allocate the command structure that holds the struct completion.
3452 	 * Assume we're in process context, since the normal device reset
3453 	 * process has to wait for the device anyway.  Storage devices are
3454 	 * reset as part of error handling, so use GFP_NOIO instead of
3455 	 * GFP_KERNEL.
3456 	 */
3457 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3458 	if (!reset_device_cmd) {
3459 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3460 		return -ENOMEM;
3461 	}
3462 
3463 	/* Attempt to submit the Reset Device command to the command ring */
3464 	spin_lock_irqsave(&xhci->lock, flags);
3465 	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3466 
3467 	/* Enqueue pointer can be left pointing to the link TRB,
3468 	 * we must handle that
3469 	 */
3470 	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3471 		reset_device_cmd->command_trb =
3472 			xhci->cmd_ring->enq_seg->next->trbs;
3473 
3474 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3475 	ret = xhci_queue_reset_device(xhci, slot_id);
3476 	if (ret) {
3477 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3478 		list_del(&reset_device_cmd->cmd_list);
3479 		spin_unlock_irqrestore(&xhci->lock, flags);
3480 		goto command_cleanup;
3481 	}
3482 	xhci_ring_cmd_db(xhci);
3483 	spin_unlock_irqrestore(&xhci->lock, flags);
3484 
3485 	/* Wait for the Reset Device command to finish */
3486 	timeleft = wait_for_completion_interruptible_timeout(
3487 			reset_device_cmd->completion,
3488 			USB_CTRL_SET_TIMEOUT);
3489 	if (timeleft <= 0) {
3490 		xhci_warn(xhci, "%s while waiting for reset device command\n",
3491 				timeleft == 0 ? "Timeout" : "Signal");
3492 		spin_lock_irqsave(&xhci->lock, flags);
3493 		/* The timeout might have raced with the event ring handler, so
3494 		 * only delete from the list if the item isn't poisoned.
3495 		 */
3496 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3497 			list_del(&reset_device_cmd->cmd_list);
3498 		spin_unlock_irqrestore(&xhci->lock, flags);
3499 		ret = -ETIME;
3500 		goto command_cleanup;
3501 	}
3502 
3503 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3504 	 * unless we tried to reset a slot ID that wasn't enabled,
3505 	 * or the device wasn't in the addressed or configured state.
3506 	 */
3507 	ret = reset_device_cmd->status;
3508 	switch (ret) {
3509 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3510 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3511 		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3512 				slot_id,
3513 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3514 		xhci_info(xhci, "Not freeing device rings.\n");
3515 		/* Don't treat this as an error.  May change my mind later. */
3516 		ret = 0;
3517 		goto command_cleanup;
3518 	case COMP_SUCCESS:
3519 		xhci_dbg(xhci, "Successful reset device command.\n");
3520 		break;
3521 	default:
3522 		if (xhci_is_vendor_info_code(xhci, ret))
3523 			break;
3524 		xhci_warn(xhci, "Unknown completion code %u for "
3525 				"reset device command.\n", ret);
3526 		ret = -EINVAL;
3527 		goto command_cleanup;
3528 	}
3529 
3530 	/* Free up host controller endpoint resources */
3531 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3532 		spin_lock_irqsave(&xhci->lock, flags);
3533 		/* Don't delete the default control endpoint resources */
3534 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3535 		spin_unlock_irqrestore(&xhci->lock, flags);
3536 	}
3537 
3538 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3539 	last_freed_endpoint = 1;
3540 	for (i = 1; i < 31; ++i) {
3541 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3542 
3543 		if (ep->ep_state & EP_HAS_STREAMS) {
3544 			xhci_free_stream_info(xhci, ep->stream_info);
3545 			ep->stream_info = NULL;
3546 			ep->ep_state &= ~EP_HAS_STREAMS;
3547 		}
3548 
3549 		if (ep->ring) {
3550 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3551 			last_freed_endpoint = i;
3552 		}
3553 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3554 			xhci_drop_ep_from_interval_table(xhci,
3555 					&virt_dev->eps[i].bw_info,
3556 					virt_dev->bw_table,
3557 					udev,
3558 					&virt_dev->eps[i],
3559 					virt_dev->tt_info);
3560 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3561 	}
3562 	/* If necessary, update the number of active TTs on this root port */
3563 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3564 
3565 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3566 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3567 	ret = 0;
3568 
3569 command_cleanup:
3570 	xhci_free_command(xhci, reset_device_cmd);
3571 	return ret;
3572 }
3573 
3574 /*
3575  * At this point, the struct usb_device is about to go away, the device has
3576  * disconnected, and all traffic has been stopped and the endpoints have been
3577  * disabled.  Free any HC data structures associated with that device.
3578  */
3579 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3580 {
3581 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3582 	struct xhci_virt_device *virt_dev;
3583 	unsigned long flags;
3584 	u32 state;
3585 	int i, ret;
3586 
3587 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3588 	/* If the host is halted due to driver unload, we still need to free the
3589 	 * device.
3590 	 */
3591 	if (ret <= 0 && ret != -ENODEV)
3592 		return;
3593 
3594 	virt_dev = xhci->devs[udev->slot_id];
3595 
3596 	/* Stop any wayward timer functions (which may grab the lock) */
3597 	for (i = 0; i < 31; ++i) {
3598 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3599 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3600 	}
3601 
3602 	if (udev->usb2_hw_lpm_enabled) {
3603 		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3604 		udev->usb2_hw_lpm_enabled = 0;
3605 	}
3606 
3607 	spin_lock_irqsave(&xhci->lock, flags);
3608 	/* Don't disable the slot if the host controller is dead. */
3609 	state = xhci_readl(xhci, &xhci->op_regs->status);
3610 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3611 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3612 		xhci_free_virt_device(xhci, udev->slot_id);
3613 		spin_unlock_irqrestore(&xhci->lock, flags);
3614 		return;
3615 	}
3616 
3617 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3618 		spin_unlock_irqrestore(&xhci->lock, flags);
3619 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3620 		return;
3621 	}
3622 	xhci_ring_cmd_db(xhci);
3623 	spin_unlock_irqrestore(&xhci->lock, flags);
3624 	/*
3625 	 * Event command completion handler will free any data structures
3626 	 * associated with the slot.  XXX Can free sleep?
3627 	 */
3628 }
3629 
3630 /*
3631  * Checks if we have enough host controller resources for the default control
3632  * endpoint.
3633  *
3634  * Must be called with xhci->lock held.
3635  */
3636 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3637 {
3638 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3639 		xhci_dbg(xhci, "Not enough ep ctxs: "
3640 				"%u active, need to add 1, limit is %u.\n",
3641 				xhci->num_active_eps, xhci->limit_active_eps);
3642 		return -ENOMEM;
3643 	}
3644 	xhci->num_active_eps += 1;
3645 	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3646 			xhci->num_active_eps);
3647 	return 0;
3648 }
3649 
3650 
3651 /*
3652  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3653  * timed out, or allocating memory failed.  Returns 1 on success.
3654  */
3655 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3656 {
3657 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3658 	unsigned long flags;
3659 	int timeleft;
3660 	int ret;
3661 	union xhci_trb *cmd_trb;
3662 
3663 	spin_lock_irqsave(&xhci->lock, flags);
3664 	cmd_trb = xhci->cmd_ring->dequeue;
3665 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3666 	if (ret) {
3667 		spin_unlock_irqrestore(&xhci->lock, flags);
3668 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3669 		return 0;
3670 	}
3671 	xhci_ring_cmd_db(xhci);
3672 	spin_unlock_irqrestore(&xhci->lock, flags);
3673 
3674 	/* XXX: how much time for xHC slot assignment? */
3675 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3676 			XHCI_CMD_DEFAULT_TIMEOUT);
3677 	if (timeleft <= 0) {
3678 		xhci_warn(xhci, "%s while waiting for a slot\n",
3679 				timeleft == 0 ? "Timeout" : "Signal");
3680 		/* cancel the enable slot request */
3681 		return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3682 	}
3683 
3684 	if (!xhci->slot_id) {
3685 		xhci_err(xhci, "Error while assigning device slot ID\n");
3686 		return 0;
3687 	}
3688 
3689 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3690 		spin_lock_irqsave(&xhci->lock, flags);
3691 		ret = xhci_reserve_host_control_ep_resources(xhci);
3692 		if (ret) {
3693 			spin_unlock_irqrestore(&xhci->lock, flags);
3694 			xhci_warn(xhci, "Not enough host resources, "
3695 					"active endpoint contexts = %u\n",
3696 					xhci->num_active_eps);
3697 			goto disable_slot;
3698 		}
3699 		spin_unlock_irqrestore(&xhci->lock, flags);
3700 	}
3701 	/* Use GFP_NOIO, since this function can be called from
3702 	 * xhci_discover_or_reset_device(), which may be called as part of
3703 	 * mass storage driver error handling.
3704 	 */
3705 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3706 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3707 		goto disable_slot;
3708 	}
3709 	udev->slot_id = xhci->slot_id;
3710 	/* Is this a LS or FS device under a HS hub? */
3711 	/* Hub or peripherial? */
3712 	return 1;
3713 
3714 disable_slot:
3715 	/* Disable slot, if we can do it without mem alloc */
3716 	spin_lock_irqsave(&xhci->lock, flags);
3717 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3718 		xhci_ring_cmd_db(xhci);
3719 	spin_unlock_irqrestore(&xhci->lock, flags);
3720 	return 0;
3721 }
3722 
3723 /*
3724  * Issue an Address Device command (which will issue a SetAddress request to
3725  * the device).
3726  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3727  * we should only issue and wait on one address command at the same time.
3728  *
3729  * We add one to the device address issued by the hardware because the USB core
3730  * uses address 1 for the root hubs (even though they're not really devices).
3731  */
3732 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3733 {
3734 	unsigned long flags;
3735 	int timeleft;
3736 	struct xhci_virt_device *virt_dev;
3737 	int ret = 0;
3738 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3739 	struct xhci_slot_ctx *slot_ctx;
3740 	struct xhci_input_control_ctx *ctrl_ctx;
3741 	u64 temp_64;
3742 	union xhci_trb *cmd_trb;
3743 
3744 	if (!udev->slot_id) {
3745 		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3746 		return -EINVAL;
3747 	}
3748 
3749 	virt_dev = xhci->devs[udev->slot_id];
3750 
3751 	if (WARN_ON(!virt_dev)) {
3752 		/*
3753 		 * In plug/unplug torture test with an NEC controller,
3754 		 * a zero-dereference was observed once due to virt_dev = 0.
3755 		 * Print useful debug rather than crash if it is observed again!
3756 		 */
3757 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3758 			udev->slot_id);
3759 		return -EINVAL;
3760 	}
3761 
3762 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3763 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3764 	if (!ctrl_ctx) {
3765 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3766 				__func__);
3767 		return -EINVAL;
3768 	}
3769 	/*
3770 	 * If this is the first Set Address since device plug-in or
3771 	 * virt_device realloaction after a resume with an xHCI power loss,
3772 	 * then set up the slot context.
3773 	 */
3774 	if (!slot_ctx->dev_info)
3775 		xhci_setup_addressable_virt_dev(xhci, udev);
3776 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3777 	else
3778 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3779 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3780 	ctrl_ctx->drop_flags = 0;
3781 
3782 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3783 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3784 
3785 	spin_lock_irqsave(&xhci->lock, flags);
3786 	cmd_trb = xhci->cmd_ring->dequeue;
3787 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3788 					udev->slot_id);
3789 	if (ret) {
3790 		spin_unlock_irqrestore(&xhci->lock, flags);
3791 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3792 		return ret;
3793 	}
3794 	xhci_ring_cmd_db(xhci);
3795 	spin_unlock_irqrestore(&xhci->lock, flags);
3796 
3797 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3798 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3799 			XHCI_CMD_DEFAULT_TIMEOUT);
3800 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3801 	 * the SetAddress() "recovery interval" required by USB and aborting the
3802 	 * command on a timeout.
3803 	 */
3804 	if (timeleft <= 0) {
3805 		xhci_warn(xhci, "%s while waiting for address device command\n",
3806 				timeleft == 0 ? "Timeout" : "Signal");
3807 		/* cancel the address device command */
3808 		ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3809 		if (ret < 0)
3810 			return ret;
3811 		return -ETIME;
3812 	}
3813 
3814 	switch (virt_dev->cmd_status) {
3815 	case COMP_CTX_STATE:
3816 	case COMP_EBADSLT:
3817 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3818 				udev->slot_id);
3819 		ret = -EINVAL;
3820 		break;
3821 	case COMP_TX_ERR:
3822 		dev_warn(&udev->dev, "Device not responding to set address.\n");
3823 		ret = -EPROTO;
3824 		break;
3825 	case COMP_DEV_ERR:
3826 		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3827 				"device command.\n");
3828 		ret = -ENODEV;
3829 		break;
3830 	case COMP_SUCCESS:
3831 		xhci_dbg(xhci, "Successful Address Device command\n");
3832 		break;
3833 	default:
3834 		xhci_err(xhci, "ERROR: unexpected command completion "
3835 				"code 0x%x.\n", virt_dev->cmd_status);
3836 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3837 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3838 		ret = -EINVAL;
3839 		break;
3840 	}
3841 	if (ret) {
3842 		return ret;
3843 	}
3844 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3845 	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3846 	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3847 		 udev->slot_id,
3848 		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3849 		 (unsigned long long)
3850 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3851 	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3852 			(unsigned long long)virt_dev->out_ctx->dma);
3853 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3854 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3855 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3856 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3857 	/*
3858 	 * USB core uses address 1 for the roothubs, so we add one to the
3859 	 * address given back to us by the HC.
3860 	 */
3861 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3862 	/* Use kernel assigned address for devices; store xHC assigned
3863 	 * address locally. */
3864 	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3865 		+ 1;
3866 	/* Zero the input context control for later use */
3867 	ctrl_ctx->add_flags = 0;
3868 	ctrl_ctx->drop_flags = 0;
3869 
3870 	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3871 
3872 	return 0;
3873 }
3874 
3875 /*
3876  * Transfer the port index into real index in the HW port status
3877  * registers. Caculate offset between the port's PORTSC register
3878  * and port status base. Divide the number of per port register
3879  * to get the real index. The raw port number bases 1.
3880  */
3881 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3882 {
3883 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3884 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3885 	__le32 __iomem *addr;
3886 	int raw_port;
3887 
3888 	if (hcd->speed != HCD_USB3)
3889 		addr = xhci->usb2_ports[port1 - 1];
3890 	else
3891 		addr = xhci->usb3_ports[port1 - 1];
3892 
3893 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3894 	return raw_port;
3895 }
3896 
3897 /*
3898  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3899  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3900  */
3901 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3902 			struct usb_device *udev, u16 max_exit_latency)
3903 {
3904 	struct xhci_virt_device *virt_dev;
3905 	struct xhci_command *command;
3906 	struct xhci_input_control_ctx *ctrl_ctx;
3907 	struct xhci_slot_ctx *slot_ctx;
3908 	unsigned long flags;
3909 	int ret;
3910 
3911 	spin_lock_irqsave(&xhci->lock, flags);
3912 	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3913 		spin_unlock_irqrestore(&xhci->lock, flags);
3914 		return 0;
3915 	}
3916 
3917 	/* Attempt to issue an Evaluate Context command to change the MEL. */
3918 	virt_dev = xhci->devs[udev->slot_id];
3919 	command = xhci->lpm_command;
3920 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3921 	if (!ctrl_ctx) {
3922 		spin_unlock_irqrestore(&xhci->lock, flags);
3923 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3924 				__func__);
3925 		return -ENOMEM;
3926 	}
3927 
3928 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3929 	spin_unlock_irqrestore(&xhci->lock, flags);
3930 
3931 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3932 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3933 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3934 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3935 
3936 	xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
3937 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3938 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
3939 
3940 	/* Issue and wait for the evaluate context command. */
3941 	ret = xhci_configure_endpoint(xhci, udev, command,
3942 			true, true);
3943 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3944 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3945 
3946 	if (!ret) {
3947 		spin_lock_irqsave(&xhci->lock, flags);
3948 		virt_dev->current_mel = max_exit_latency;
3949 		spin_unlock_irqrestore(&xhci->lock, flags);
3950 	}
3951 	return ret;
3952 }
3953 
3954 #ifdef CONFIG_PM_RUNTIME
3955 
3956 /* BESL to HIRD Encoding array for USB2 LPM */
3957 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3958 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3959 
3960 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3961 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3962 					struct usb_device *udev)
3963 {
3964 	int u2del, besl, besl_host;
3965 	int besl_device = 0;
3966 	u32 field;
3967 
3968 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3969 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3970 
3971 	if (field & USB_BESL_SUPPORT) {
3972 		for (besl_host = 0; besl_host < 16; besl_host++) {
3973 			if (xhci_besl_encoding[besl_host] >= u2del)
3974 				break;
3975 		}
3976 		/* Use baseline BESL value as default */
3977 		if (field & USB_BESL_BASELINE_VALID)
3978 			besl_device = USB_GET_BESL_BASELINE(field);
3979 		else if (field & USB_BESL_DEEP_VALID)
3980 			besl_device = USB_GET_BESL_DEEP(field);
3981 	} else {
3982 		if (u2del <= 50)
3983 			besl_host = 0;
3984 		else
3985 			besl_host = (u2del - 51) / 75 + 1;
3986 	}
3987 
3988 	besl = besl_host + besl_device;
3989 	if (besl > 15)
3990 		besl = 15;
3991 
3992 	return besl;
3993 }
3994 
3995 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
3996 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
3997 {
3998 	u32 field;
3999 	int l1;
4000 	int besld = 0;
4001 	int hirdm = 0;
4002 
4003 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4004 
4005 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4006 	l1 = udev->l1_params.timeout / 256;
4007 
4008 	/* device has preferred BESLD */
4009 	if (field & USB_BESL_DEEP_VALID) {
4010 		besld = USB_GET_BESL_DEEP(field);
4011 		hirdm = 1;
4012 	}
4013 
4014 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4015 }
4016 
4017 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
4018 					struct usb_device *udev)
4019 {
4020 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4021 	struct dev_info	*dev_info;
4022 	__le32 __iomem	**port_array;
4023 	__le32 __iomem	*addr, *pm_addr;
4024 	u32		temp, dev_id;
4025 	unsigned int	port_num;
4026 	unsigned long	flags;
4027 	int		hird;
4028 	int		ret;
4029 
4030 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4031 			!udev->lpm_capable)
4032 		return -EINVAL;
4033 
4034 	/* we only support lpm for non-hub device connected to root hub yet */
4035 	if (!udev->parent || udev->parent->parent ||
4036 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4037 		return -EINVAL;
4038 
4039 	spin_lock_irqsave(&xhci->lock, flags);
4040 
4041 	/* Look for devices in lpm_failed_devs list */
4042 	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
4043 			le16_to_cpu(udev->descriptor.idProduct);
4044 	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
4045 		if (dev_info->dev_id == dev_id) {
4046 			ret = -EINVAL;
4047 			goto finish;
4048 		}
4049 	}
4050 
4051 	port_array = xhci->usb2_ports;
4052 	port_num = udev->portnum - 1;
4053 
4054 	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
4055 		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
4056 		ret = -EINVAL;
4057 		goto finish;
4058 	}
4059 
4060 	/*
4061 	 * Test USB 2.0 software LPM.
4062 	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
4063 	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
4064 	 * in the June 2011 errata release.
4065 	 */
4066 	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
4067 	/*
4068 	 * Set L1 Device Slot and HIRD/BESL.
4069 	 * Check device's USB 2.0 extension descriptor to determine whether
4070 	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
4071 	 */
4072 	pm_addr = port_array[port_num] + PORTPMSC;
4073 	hird = xhci_calculate_hird_besl(xhci, udev);
4074 	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
4075 	xhci_writel(xhci, temp, pm_addr);
4076 
4077 	/* Set port link state to U2(L1) */
4078 	addr = port_array[port_num];
4079 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
4080 
4081 	/* wait for ACK */
4082 	spin_unlock_irqrestore(&xhci->lock, flags);
4083 	msleep(10);
4084 	spin_lock_irqsave(&xhci->lock, flags);
4085 
4086 	/* Check L1 Status */
4087 	ret = xhci_handshake(xhci, pm_addr,
4088 			PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
4089 	if (ret != -ETIMEDOUT) {
4090 		/* enter L1 successfully */
4091 		temp = xhci_readl(xhci, addr);
4092 		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
4093 				port_num, temp);
4094 		ret = 0;
4095 	} else {
4096 		temp = xhci_readl(xhci, pm_addr);
4097 		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
4098 				port_num, temp & PORT_L1S_MASK);
4099 		ret = -EINVAL;
4100 	}
4101 
4102 	/* Resume the port */
4103 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
4104 
4105 	spin_unlock_irqrestore(&xhci->lock, flags);
4106 	msleep(10);
4107 	spin_lock_irqsave(&xhci->lock, flags);
4108 
4109 	/* Clear PLC */
4110 	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
4111 
4112 	/* Check PORTSC to make sure the device is in the right state */
4113 	if (!ret) {
4114 		temp = xhci_readl(xhci, addr);
4115 		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
4116 		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
4117 				(temp & PORT_PLS_MASK) != XDEV_U0) {
4118 			xhci_dbg(xhci, "port L1 resume fail\n");
4119 			ret = -EINVAL;
4120 		}
4121 	}
4122 
4123 	if (ret) {
4124 		/* Insert dev to lpm_failed_devs list */
4125 		xhci_warn(xhci, "device LPM test failed, may disconnect and "
4126 				"re-enumerate\n");
4127 		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
4128 		if (!dev_info) {
4129 			ret = -ENOMEM;
4130 			goto finish;
4131 		}
4132 		dev_info->dev_id = dev_id;
4133 		INIT_LIST_HEAD(&dev_info->list);
4134 		list_add(&dev_info->list, &xhci->lpm_failed_devs);
4135 	} else {
4136 		xhci_ring_device(xhci, udev->slot_id);
4137 	}
4138 
4139 finish:
4140 	spin_unlock_irqrestore(&xhci->lock, flags);
4141 	return ret;
4142 }
4143 
4144 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4145 			struct usb_device *udev, int enable)
4146 {
4147 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4148 	__le32 __iomem	**port_array;
4149 	__le32 __iomem	*pm_addr, *hlpm_addr;
4150 	u32		pm_val, hlpm_val, field;
4151 	unsigned int	port_num;
4152 	unsigned long	flags;
4153 	int		hird, exit_latency;
4154 	int		ret;
4155 
4156 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4157 			!udev->lpm_capable)
4158 		return -EPERM;
4159 
4160 	if (!udev->parent || udev->parent->parent ||
4161 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4162 		return -EPERM;
4163 
4164 	if (udev->usb2_hw_lpm_capable != 1)
4165 		return -EPERM;
4166 
4167 	spin_lock_irqsave(&xhci->lock, flags);
4168 
4169 	port_array = xhci->usb2_ports;
4170 	port_num = udev->portnum - 1;
4171 	pm_addr = port_array[port_num] + PORTPMSC;
4172 	pm_val = xhci_readl(xhci, pm_addr);
4173 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4174 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4175 
4176 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4177 			enable ? "enable" : "disable", port_num);
4178 
4179 	if (enable) {
4180 		/* Host supports BESL timeout instead of HIRD */
4181 		if (udev->usb2_hw_lpm_besl_capable) {
4182 			/* if device doesn't have a preferred BESL value use a
4183 			 * default one which works with mixed HIRD and BESL
4184 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4185 			 */
4186 			if ((field & USB_BESL_SUPPORT) &&
4187 			    (field & USB_BESL_BASELINE_VALID))
4188 				hird = USB_GET_BESL_BASELINE(field);
4189 			else
4190 				hird = udev->l1_params.besl;
4191 
4192 			exit_latency = xhci_besl_encoding[hird];
4193 			spin_unlock_irqrestore(&xhci->lock, flags);
4194 
4195 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4196 			 * input context for link powermanagement evaluate
4197 			 * context commands. It is protected by hcd->bandwidth
4198 			 * mutex and is shared by all devices. We need to set
4199 			 * the max ext latency in USB 2 BESL LPM as well, so
4200 			 * use the same mutex and xhci_change_max_exit_latency()
4201 			 */
4202 			mutex_lock(hcd->bandwidth_mutex);
4203 			ret = xhci_change_max_exit_latency(xhci, udev,
4204 							   exit_latency);
4205 			mutex_unlock(hcd->bandwidth_mutex);
4206 
4207 			if (ret < 0)
4208 				return ret;
4209 			spin_lock_irqsave(&xhci->lock, flags);
4210 
4211 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4212 			xhci_writel(xhci, hlpm_val, hlpm_addr);
4213 			/* flush write */
4214 			xhci_readl(xhci, hlpm_addr);
4215 		} else {
4216 			hird = xhci_calculate_hird_besl(xhci, udev);
4217 		}
4218 
4219 		pm_val &= ~PORT_HIRD_MASK;
4220 		pm_val |= PORT_HIRD(hird) | PORT_RWE;
4221 		xhci_writel(xhci, pm_val, pm_addr);
4222 		pm_val = xhci_readl(xhci, pm_addr);
4223 		pm_val |= PORT_HLE;
4224 		xhci_writel(xhci, pm_val, pm_addr);
4225 		/* flush write */
4226 		xhci_readl(xhci, pm_addr);
4227 	} else {
4228 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4229 		xhci_writel(xhci, pm_val, pm_addr);
4230 		/* flush write */
4231 		xhci_readl(xhci, pm_addr);
4232 		if (udev->usb2_hw_lpm_besl_capable) {
4233 			spin_unlock_irqrestore(&xhci->lock, flags);
4234 			mutex_lock(hcd->bandwidth_mutex);
4235 			xhci_change_max_exit_latency(xhci, udev, 0);
4236 			mutex_unlock(hcd->bandwidth_mutex);
4237 			return 0;
4238 		}
4239 	}
4240 
4241 	spin_unlock_irqrestore(&xhci->lock, flags);
4242 	return 0;
4243 }
4244 
4245 /* check if a usb2 port supports a given extened capability protocol
4246  * only USB2 ports extended protocol capability values are cached.
4247  * Return 1 if capability is supported
4248  */
4249 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4250 					   unsigned capability)
4251 {
4252 	u32 port_offset, port_count;
4253 	int i;
4254 
4255 	for (i = 0; i < xhci->num_ext_caps; i++) {
4256 		if (xhci->ext_caps[i] & capability) {
4257 			/* port offsets starts at 1 */
4258 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4259 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4260 			if (port >= port_offset &&
4261 			    port < port_offset + port_count)
4262 				return 1;
4263 		}
4264 	}
4265 	return 0;
4266 }
4267 
4268 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4269 {
4270 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4271 	int		ret;
4272 	int		portnum = udev->portnum - 1;
4273 
4274 	ret = xhci_usb2_software_lpm_test(hcd, udev);
4275 	if (!ret) {
4276 		xhci_dbg(xhci, "software LPM test succeed\n");
4277 		if (xhci->hw_lpm_support == 1 &&
4278 		    xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) {
4279 			udev->usb2_hw_lpm_capable = 1;
4280 			udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4281 			udev->l1_params.besl = XHCI_DEFAULT_BESL;
4282 			if (xhci_check_usb2_port_capability(xhci, portnum,
4283 							    XHCI_BLC))
4284 				udev->usb2_hw_lpm_besl_capable = 1;
4285 			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4286 			if (!ret)
4287 				udev->usb2_hw_lpm_enabled = 1;
4288 		}
4289 	}
4290 
4291 	return 0;
4292 }
4293 
4294 #else
4295 
4296 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4297 				struct usb_device *udev, int enable)
4298 {
4299 	return 0;
4300 }
4301 
4302 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4303 {
4304 	return 0;
4305 }
4306 
4307 #endif /* CONFIG_PM_RUNTIME */
4308 
4309 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4310 
4311 #ifdef CONFIG_PM
4312 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4313 static unsigned long long xhci_service_interval_to_ns(
4314 		struct usb_endpoint_descriptor *desc)
4315 {
4316 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4317 }
4318 
4319 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4320 		enum usb3_link_state state)
4321 {
4322 	unsigned long long sel;
4323 	unsigned long long pel;
4324 	unsigned int max_sel_pel;
4325 	char *state_name;
4326 
4327 	switch (state) {
4328 	case USB3_LPM_U1:
4329 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4330 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4331 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4332 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4333 		state_name = "U1";
4334 		break;
4335 	case USB3_LPM_U2:
4336 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4337 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4338 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4339 		state_name = "U2";
4340 		break;
4341 	default:
4342 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4343 				__func__);
4344 		return USB3_LPM_DISABLED;
4345 	}
4346 
4347 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4348 		return USB3_LPM_DEVICE_INITIATED;
4349 
4350 	if (sel > max_sel_pel)
4351 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4352 				"due to long SEL %llu ms\n",
4353 				state_name, sel);
4354 	else
4355 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4356 				"due to long PEL %llu\n ms",
4357 				state_name, pel);
4358 	return USB3_LPM_DISABLED;
4359 }
4360 
4361 /* Returns the hub-encoded U1 timeout value.
4362  * The U1 timeout should be the maximum of the following values:
4363  *  - For control endpoints, U1 system exit latency (SEL) * 3
4364  *  - For bulk endpoints, U1 SEL * 5
4365  *  - For interrupt endpoints:
4366  *    - Notification EPs, U1 SEL * 3
4367  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4368  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4369  */
4370 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4371 		struct usb_endpoint_descriptor *desc)
4372 {
4373 	unsigned long long timeout_ns;
4374 	int ep_type;
4375 	int intr_type;
4376 
4377 	ep_type = usb_endpoint_type(desc);
4378 	switch (ep_type) {
4379 	case USB_ENDPOINT_XFER_CONTROL:
4380 		timeout_ns = udev->u1_params.sel * 3;
4381 		break;
4382 	case USB_ENDPOINT_XFER_BULK:
4383 		timeout_ns = udev->u1_params.sel * 5;
4384 		break;
4385 	case USB_ENDPOINT_XFER_INT:
4386 		intr_type = usb_endpoint_interrupt_type(desc);
4387 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4388 			timeout_ns = udev->u1_params.sel * 3;
4389 			break;
4390 		}
4391 		/* Otherwise the calculation is the same as isoc eps */
4392 	case USB_ENDPOINT_XFER_ISOC:
4393 		timeout_ns = xhci_service_interval_to_ns(desc);
4394 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4395 		if (timeout_ns < udev->u1_params.sel * 2)
4396 			timeout_ns = udev->u1_params.sel * 2;
4397 		break;
4398 	default:
4399 		return 0;
4400 	}
4401 
4402 	/* The U1 timeout is encoded in 1us intervals. */
4403 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4404 	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4405 	if (timeout_ns == USB3_LPM_DISABLED)
4406 		timeout_ns++;
4407 
4408 	/* If the necessary timeout value is bigger than what we can set in the
4409 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4410 	 */
4411 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4412 		return timeout_ns;
4413 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4414 			"due to long timeout %llu ms\n", timeout_ns);
4415 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4416 }
4417 
4418 /* Returns the hub-encoded U2 timeout value.
4419  * The U2 timeout should be the maximum of:
4420  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4421  *  - largest bInterval of any active periodic endpoint (to avoid going
4422  *    into lower power link states between intervals).
4423  *  - the U2 Exit Latency of the device
4424  */
4425 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4426 		struct usb_endpoint_descriptor *desc)
4427 {
4428 	unsigned long long timeout_ns;
4429 	unsigned long long u2_del_ns;
4430 
4431 	timeout_ns = 10 * 1000 * 1000;
4432 
4433 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4434 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4435 		timeout_ns = xhci_service_interval_to_ns(desc);
4436 
4437 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4438 	if (u2_del_ns > timeout_ns)
4439 		timeout_ns = u2_del_ns;
4440 
4441 	/* The U2 timeout is encoded in 256us intervals */
4442 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4443 	/* If the necessary timeout value is bigger than what we can set in the
4444 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4445 	 */
4446 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4447 		return timeout_ns;
4448 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4449 			"due to long timeout %llu ms\n", timeout_ns);
4450 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4451 }
4452 
4453 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4454 		struct usb_device *udev,
4455 		struct usb_endpoint_descriptor *desc,
4456 		enum usb3_link_state state,
4457 		u16 *timeout)
4458 {
4459 	if (state == USB3_LPM_U1) {
4460 		if (xhci->quirks & XHCI_INTEL_HOST)
4461 			return xhci_calculate_intel_u1_timeout(udev, desc);
4462 	} else {
4463 		if (xhci->quirks & XHCI_INTEL_HOST)
4464 			return xhci_calculate_intel_u2_timeout(udev, desc);
4465 	}
4466 
4467 	return USB3_LPM_DISABLED;
4468 }
4469 
4470 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4471 		struct usb_device *udev,
4472 		struct usb_endpoint_descriptor *desc,
4473 		enum usb3_link_state state,
4474 		u16 *timeout)
4475 {
4476 	u16 alt_timeout;
4477 
4478 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4479 		desc, state, timeout);
4480 
4481 	/* If we found we can't enable hub-initiated LPM, or
4482 	 * the U1 or U2 exit latency was too high to allow
4483 	 * device-initiated LPM as well, just stop searching.
4484 	 */
4485 	if (alt_timeout == USB3_LPM_DISABLED ||
4486 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4487 		*timeout = alt_timeout;
4488 		return -E2BIG;
4489 	}
4490 	if (alt_timeout > *timeout)
4491 		*timeout = alt_timeout;
4492 	return 0;
4493 }
4494 
4495 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4496 		struct usb_device *udev,
4497 		struct usb_host_interface *alt,
4498 		enum usb3_link_state state,
4499 		u16 *timeout)
4500 {
4501 	int j;
4502 
4503 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4504 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4505 					&alt->endpoint[j].desc, state, timeout))
4506 			return -E2BIG;
4507 		continue;
4508 	}
4509 	return 0;
4510 }
4511 
4512 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4513 		enum usb3_link_state state)
4514 {
4515 	struct usb_device *parent;
4516 	unsigned int num_hubs;
4517 
4518 	if (state == USB3_LPM_U2)
4519 		return 0;
4520 
4521 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4522 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4523 			parent = parent->parent)
4524 		num_hubs++;
4525 
4526 	if (num_hubs < 2)
4527 		return 0;
4528 
4529 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4530 			" below second-tier hub.\n");
4531 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4532 			"to decrease power consumption.\n");
4533 	return -E2BIG;
4534 }
4535 
4536 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4537 		struct usb_device *udev,
4538 		enum usb3_link_state state)
4539 {
4540 	if (xhci->quirks & XHCI_INTEL_HOST)
4541 		return xhci_check_intel_tier_policy(udev, state);
4542 	return -EINVAL;
4543 }
4544 
4545 /* Returns the U1 or U2 timeout that should be enabled.
4546  * If the tier check or timeout setting functions return with a non-zero exit
4547  * code, that means the timeout value has been finalized and we shouldn't look
4548  * at any more endpoints.
4549  */
4550 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4551 			struct usb_device *udev, enum usb3_link_state state)
4552 {
4553 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4554 	struct usb_host_config *config;
4555 	char *state_name;
4556 	int i;
4557 	u16 timeout = USB3_LPM_DISABLED;
4558 
4559 	if (state == USB3_LPM_U1)
4560 		state_name = "U1";
4561 	else if (state == USB3_LPM_U2)
4562 		state_name = "U2";
4563 	else {
4564 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4565 				state);
4566 		return timeout;
4567 	}
4568 
4569 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4570 		return timeout;
4571 
4572 	/* Gather some information about the currently installed configuration
4573 	 * and alternate interface settings.
4574 	 */
4575 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4576 			state, &timeout))
4577 		return timeout;
4578 
4579 	config = udev->actconfig;
4580 	if (!config)
4581 		return timeout;
4582 
4583 	for (i = 0; i < USB_MAXINTERFACES; i++) {
4584 		struct usb_driver *driver;
4585 		struct usb_interface *intf = config->interface[i];
4586 
4587 		if (!intf)
4588 			continue;
4589 
4590 		/* Check if any currently bound drivers want hub-initiated LPM
4591 		 * disabled.
4592 		 */
4593 		if (intf->dev.driver) {
4594 			driver = to_usb_driver(intf->dev.driver);
4595 			if (driver && driver->disable_hub_initiated_lpm) {
4596 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4597 						"at request of driver %s\n",
4598 						state_name, driver->name);
4599 				return xhci_get_timeout_no_hub_lpm(udev, state);
4600 			}
4601 		}
4602 
4603 		/* Not sure how this could happen... */
4604 		if (!intf->cur_altsetting)
4605 			continue;
4606 
4607 		if (xhci_update_timeout_for_interface(xhci, udev,
4608 					intf->cur_altsetting,
4609 					state, &timeout))
4610 			return timeout;
4611 	}
4612 	return timeout;
4613 }
4614 
4615 static int calculate_max_exit_latency(struct usb_device *udev,
4616 		enum usb3_link_state state_changed,
4617 		u16 hub_encoded_timeout)
4618 {
4619 	unsigned long long u1_mel_us = 0;
4620 	unsigned long long u2_mel_us = 0;
4621 	unsigned long long mel_us = 0;
4622 	bool disabling_u1;
4623 	bool disabling_u2;
4624 	bool enabling_u1;
4625 	bool enabling_u2;
4626 
4627 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4628 			hub_encoded_timeout == USB3_LPM_DISABLED);
4629 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4630 			hub_encoded_timeout == USB3_LPM_DISABLED);
4631 
4632 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4633 			hub_encoded_timeout != USB3_LPM_DISABLED);
4634 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4635 			hub_encoded_timeout != USB3_LPM_DISABLED);
4636 
4637 	/* If U1 was already enabled and we're not disabling it,
4638 	 * or we're going to enable U1, account for the U1 max exit latency.
4639 	 */
4640 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4641 			enabling_u1)
4642 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4643 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4644 			enabling_u2)
4645 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4646 
4647 	if (u1_mel_us > u2_mel_us)
4648 		mel_us = u1_mel_us;
4649 	else
4650 		mel_us = u2_mel_us;
4651 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4652 	if (mel_us > MAX_EXIT) {
4653 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4654 				"is too big.\n", mel_us);
4655 		return -E2BIG;
4656 	}
4657 	return mel_us;
4658 }
4659 
4660 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4661 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4662 			struct usb_device *udev, enum usb3_link_state state)
4663 {
4664 	struct xhci_hcd	*xhci;
4665 	u16 hub_encoded_timeout;
4666 	int mel;
4667 	int ret;
4668 
4669 	xhci = hcd_to_xhci(hcd);
4670 	/* The LPM timeout values are pretty host-controller specific, so don't
4671 	 * enable hub-initiated timeouts unless the vendor has provided
4672 	 * information about their timeout algorithm.
4673 	 */
4674 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4675 			!xhci->devs[udev->slot_id])
4676 		return USB3_LPM_DISABLED;
4677 
4678 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4679 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4680 	if (mel < 0) {
4681 		/* Max Exit Latency is too big, disable LPM. */
4682 		hub_encoded_timeout = USB3_LPM_DISABLED;
4683 		mel = 0;
4684 	}
4685 
4686 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4687 	if (ret)
4688 		return ret;
4689 	return hub_encoded_timeout;
4690 }
4691 
4692 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4693 			struct usb_device *udev, enum usb3_link_state state)
4694 {
4695 	struct xhci_hcd	*xhci;
4696 	u16 mel;
4697 	int ret;
4698 
4699 	xhci = hcd_to_xhci(hcd);
4700 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4701 			!xhci->devs[udev->slot_id])
4702 		return 0;
4703 
4704 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4705 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4706 	if (ret)
4707 		return ret;
4708 	return 0;
4709 }
4710 #else /* CONFIG_PM */
4711 
4712 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4713 			struct usb_device *udev, enum usb3_link_state state)
4714 {
4715 	return USB3_LPM_DISABLED;
4716 }
4717 
4718 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4719 			struct usb_device *udev, enum usb3_link_state state)
4720 {
4721 	return 0;
4722 }
4723 #endif	/* CONFIG_PM */
4724 
4725 /*-------------------------------------------------------------------------*/
4726 
4727 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4728  * internal data structures for the device.
4729  */
4730 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4731 			struct usb_tt *tt, gfp_t mem_flags)
4732 {
4733 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4734 	struct xhci_virt_device *vdev;
4735 	struct xhci_command *config_cmd;
4736 	struct xhci_input_control_ctx *ctrl_ctx;
4737 	struct xhci_slot_ctx *slot_ctx;
4738 	unsigned long flags;
4739 	unsigned think_time;
4740 	int ret;
4741 
4742 	/* Ignore root hubs */
4743 	if (!hdev->parent)
4744 		return 0;
4745 
4746 	vdev = xhci->devs[hdev->slot_id];
4747 	if (!vdev) {
4748 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4749 		return -EINVAL;
4750 	}
4751 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4752 	if (!config_cmd) {
4753 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4754 		return -ENOMEM;
4755 	}
4756 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4757 	if (!ctrl_ctx) {
4758 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4759 				__func__);
4760 		xhci_free_command(xhci, config_cmd);
4761 		return -ENOMEM;
4762 	}
4763 
4764 	spin_lock_irqsave(&xhci->lock, flags);
4765 	if (hdev->speed == USB_SPEED_HIGH &&
4766 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4767 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4768 		xhci_free_command(xhci, config_cmd);
4769 		spin_unlock_irqrestore(&xhci->lock, flags);
4770 		return -ENOMEM;
4771 	}
4772 
4773 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4774 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4775 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4776 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4777 	if (tt->multi)
4778 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4779 	if (xhci->hci_version > 0x95) {
4780 		xhci_dbg(xhci, "xHCI version %x needs hub "
4781 				"TT think time and number of ports\n",
4782 				(unsigned int) xhci->hci_version);
4783 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4784 		/* Set TT think time - convert from ns to FS bit times.
4785 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4786 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4787 		 *
4788 		 * xHCI 1.0: this field shall be 0 if the device is not a
4789 		 * High-spped hub.
4790 		 */
4791 		think_time = tt->think_time;
4792 		if (think_time != 0)
4793 			think_time = (think_time / 666) - 1;
4794 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4795 			slot_ctx->tt_info |=
4796 				cpu_to_le32(TT_THINK_TIME(think_time));
4797 	} else {
4798 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4799 				"TT think time or number of ports\n",
4800 				(unsigned int) xhci->hci_version);
4801 	}
4802 	slot_ctx->dev_state = 0;
4803 	spin_unlock_irqrestore(&xhci->lock, flags);
4804 
4805 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4806 			(xhci->hci_version > 0x95) ?
4807 			"configure endpoint" : "evaluate context");
4808 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4809 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4810 
4811 	/* Issue and wait for the configure endpoint or
4812 	 * evaluate context command.
4813 	 */
4814 	if (xhci->hci_version > 0x95)
4815 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4816 				false, false);
4817 	else
4818 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4819 				true, false);
4820 
4821 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4822 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4823 
4824 	xhci_free_command(xhci, config_cmd);
4825 	return ret;
4826 }
4827 
4828 int xhci_get_frame(struct usb_hcd *hcd)
4829 {
4830 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4831 	/* EHCI mods by the periodic size.  Why? */
4832 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4833 }
4834 
4835 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4836 {
4837 	struct xhci_hcd		*xhci;
4838 	struct device		*dev = hcd->self.controller;
4839 	int			retval;
4840 	u32			temp;
4841 
4842 	/* Accept arbitrarily long scatter-gather lists */
4843 	hcd->self.sg_tablesize = ~0;
4844 	/* XHCI controllers don't stop the ep queue on short packets :| */
4845 	hcd->self.no_stop_on_short = 1;
4846 
4847 	if (usb_hcd_is_primary_hcd(hcd)) {
4848 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4849 		if (!xhci)
4850 			return -ENOMEM;
4851 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4852 		xhci->main_hcd = hcd;
4853 		/* Mark the first roothub as being USB 2.0.
4854 		 * The xHCI driver will register the USB 3.0 roothub.
4855 		 */
4856 		hcd->speed = HCD_USB2;
4857 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4858 		/*
4859 		 * USB 2.0 roothub under xHCI has an integrated TT,
4860 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4861 		 * companion controller.
4862 		 */
4863 		hcd->has_tt = 1;
4864 	} else {
4865 		/* xHCI private pointer was set in xhci_pci_probe for the second
4866 		 * registered roothub.
4867 		 */
4868 		xhci = hcd_to_xhci(hcd);
4869 		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4870 		if (HCC_64BIT_ADDR(temp)) {
4871 			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4872 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4873 		} else {
4874 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4875 		}
4876 		return 0;
4877 	}
4878 
4879 	xhci->cap_regs = hcd->regs;
4880 	xhci->op_regs = hcd->regs +
4881 		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4882 	xhci->run_regs = hcd->regs +
4883 		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4884 	/* Cache read-only capability registers */
4885 	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4886 	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4887 	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4888 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4889 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4890 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4891 	xhci_print_registers(xhci);
4892 
4893 	get_quirks(dev, xhci);
4894 
4895 	/* Make sure the HC is halted. */
4896 	retval = xhci_halt(xhci);
4897 	if (retval)
4898 		goto error;
4899 
4900 	xhci_dbg(xhci, "Resetting HCD\n");
4901 	/* Reset the internal HC memory state and registers. */
4902 	retval = xhci_reset(xhci);
4903 	if (retval)
4904 		goto error;
4905 	xhci_dbg(xhci, "Reset complete\n");
4906 
4907 	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4908 	if (HCC_64BIT_ADDR(temp)) {
4909 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4910 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4911 	} else {
4912 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4913 	}
4914 
4915 	xhci_dbg(xhci, "Calling HCD init\n");
4916 	/* Initialize HCD and host controller data structures. */
4917 	retval = xhci_init(hcd);
4918 	if (retval)
4919 		goto error;
4920 	xhci_dbg(xhci, "Called HCD init\n");
4921 	return 0;
4922 error:
4923 	kfree(xhci);
4924 	return retval;
4925 }
4926 
4927 MODULE_DESCRIPTION(DRIVER_DESC);
4928 MODULE_AUTHOR(DRIVER_AUTHOR);
4929 MODULE_LICENSE("GPL");
4930 
4931 static int __init xhci_hcd_init(void)
4932 {
4933 	int retval;
4934 
4935 	retval = xhci_register_pci();
4936 	if (retval < 0) {
4937 		printk(KERN_DEBUG "Problem registering PCI driver.");
4938 		return retval;
4939 	}
4940 	retval = xhci_register_plat();
4941 	if (retval < 0) {
4942 		printk(KERN_DEBUG "Problem registering platform driver.");
4943 		goto unreg_pci;
4944 	}
4945 	/*
4946 	 * Check the compiler generated sizes of structures that must be laid
4947 	 * out in specific ways for hardware access.
4948 	 */
4949 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4950 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4951 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4952 	/* xhci_device_control has eight fields, and also
4953 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4954 	 */
4955 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4956 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4957 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4958 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4959 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4960 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4961 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4962 	return 0;
4963 unreg_pci:
4964 	xhci_unregister_pci();
4965 	return retval;
4966 }
4967 module_init(xhci_hcd_init);
4968 
4969 static void __exit xhci_hcd_cleanup(void)
4970 {
4971 	xhci_unregister_pci();
4972 	xhci_unregister_plat();
4973 }
4974 module_exit(xhci_hcd_cleanup);
4975