xref: /linux/drivers/usb/host/xhci.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19 
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * xhci_handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
55 {
56 	u32	result;
57 
58 	do {
59 		result = readl(ptr);
60 		if (result == ~(u32)0)		/* card removed */
61 			return -ENODEV;
62 		result &= mask;
63 		if (result == done)
64 			return 0;
65 		udelay(1);
66 		usec--;
67 	} while (usec > 0);
68 	return -ETIMEDOUT;
69 }
70 
71 /*
72  * Disable interrupts and begin the xHCI halting process.
73  */
74 void xhci_quiesce(struct xhci_hcd *xhci)
75 {
76 	u32 halted;
77 	u32 cmd;
78 	u32 mask;
79 
80 	mask = ~(XHCI_IRQS);
81 	halted = readl(&xhci->op_regs->status) & STS_HALT;
82 	if (!halted)
83 		mask &= ~CMD_RUN;
84 
85 	cmd = readl(&xhci->op_regs->command);
86 	cmd &= mask;
87 	writel(cmd, &xhci->op_regs->command);
88 }
89 
90 /*
91  * Force HC into halt state.
92  *
93  * Disable any IRQs and clear the run/stop bit.
94  * HC will complete any current and actively pipelined transactions, and
95  * should halt within 16 ms of the run/stop bit being cleared.
96  * Read HC Halted bit in the status register to see when the HC is finished.
97  */
98 int xhci_halt(struct xhci_hcd *xhci)
99 {
100 	int ret;
101 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
102 	xhci_quiesce(xhci);
103 
104 	ret = xhci_handshake(&xhci->op_regs->status,
105 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
106 	if (ret) {
107 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
108 		return ret;
109 	}
110 	xhci->xhc_state |= XHCI_STATE_HALTED;
111 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
112 	return ret;
113 }
114 
115 /*
116  * Set the run bit and wait for the host to be running.
117  */
118 int xhci_start(struct xhci_hcd *xhci)
119 {
120 	u32 temp;
121 	int ret;
122 
123 	temp = readl(&xhci->op_regs->command);
124 	temp |= (CMD_RUN);
125 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
126 			temp);
127 	writel(temp, &xhci->op_regs->command);
128 
129 	/*
130 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
131 	 * running.
132 	 */
133 	ret = xhci_handshake(&xhci->op_regs->status,
134 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
135 	if (ret == -ETIMEDOUT)
136 		xhci_err(xhci, "Host took too long to start, "
137 				"waited %u microseconds.\n",
138 				XHCI_MAX_HALT_USEC);
139 	if (!ret)
140 		/* clear state flags. Including dying, halted or removing */
141 		xhci->xhc_state = 0;
142 
143 	return ret;
144 }
145 
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155 	u32 command;
156 	u32 state;
157 	int ret, i;
158 
159 	state = readl(&xhci->op_regs->status);
160 
161 	if (state == ~(u32)0) {
162 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
163 		return -ENODEV;
164 	}
165 
166 	if ((state & STS_HALT) == 0) {
167 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 		return 0;
169 	}
170 
171 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 	command = readl(&xhci->op_regs->command);
173 	command |= CMD_RESET;
174 	writel(command, &xhci->op_regs->command);
175 
176 	/* Existing Intel xHCI controllers require a delay of 1 mS,
177 	 * after setting the CMD_RESET bit, and before accessing any
178 	 * HC registers. This allows the HC to complete the
179 	 * reset operation and be ready for HC register access.
180 	 * Without this delay, the subsequent HC register access,
181 	 * may result in a system hang very rarely.
182 	 */
183 	if (xhci->quirks & XHCI_INTEL_HOST)
184 		udelay(1000);
185 
186 	ret = xhci_handshake(&xhci->op_regs->command,
187 			CMD_RESET, 0, 10 * 1000 * 1000);
188 	if (ret)
189 		return ret;
190 
191 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
192 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
193 
194 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195 			 "Wait for controller to be ready for doorbell rings");
196 	/*
197 	 * xHCI cannot write to any doorbells or operational registers other
198 	 * than status until the "Controller Not Ready" flag is cleared.
199 	 */
200 	ret = xhci_handshake(&xhci->op_regs->status,
201 			STS_CNR, 0, 10 * 1000 * 1000);
202 
203 	for (i = 0; i < 2; i++) {
204 		xhci->bus_state[i].port_c_suspend = 0;
205 		xhci->bus_state[i].suspended_ports = 0;
206 		xhci->bus_state[i].resuming_ports = 0;
207 	}
208 
209 	return ret;
210 }
211 
212 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
213 {
214 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
215 	int err, i;
216 	u64 val;
217 
218 	/*
219 	 * Some Renesas controllers get into a weird state if they are
220 	 * reset while programmed with 64bit addresses (they will preserve
221 	 * the top half of the address in internal, non visible
222 	 * registers). You end up with half the address coming from the
223 	 * kernel, and the other half coming from the firmware. Also,
224 	 * changing the programming leads to extra accesses even if the
225 	 * controller is supposed to be halted. The controller ends up with
226 	 * a fatal fault, and is then ripe for being properly reset.
227 	 *
228 	 * Special care is taken to only apply this if the device is behind
229 	 * an iommu. Doing anything when there is no iommu is definitely
230 	 * unsafe...
231 	 */
232 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !dev->iommu_group)
233 		return;
234 
235 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
236 
237 	/* Clear HSEIE so that faults do not get signaled */
238 	val = readl(&xhci->op_regs->command);
239 	val &= ~CMD_HSEIE;
240 	writel(val, &xhci->op_regs->command);
241 
242 	/* Clear HSE (aka FATAL) */
243 	val = readl(&xhci->op_regs->status);
244 	val |= STS_FATAL;
245 	writel(val, &xhci->op_regs->status);
246 
247 	/* Now zero the registers, and brace for impact */
248 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
249 	if (upper_32_bits(val))
250 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
251 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
252 	if (upper_32_bits(val))
253 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
254 
255 	for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
256 		struct xhci_intr_reg __iomem *ir;
257 
258 		ir = &xhci->run_regs->ir_set[i];
259 		val = xhci_read_64(xhci, &ir->erst_base);
260 		if (upper_32_bits(val))
261 			xhci_write_64(xhci, 0, &ir->erst_base);
262 		val= xhci_read_64(xhci, &ir->erst_dequeue);
263 		if (upper_32_bits(val))
264 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
265 	}
266 
267 	/* Wait for the fault to appear. It will be cleared on reset */
268 	err = xhci_handshake(&xhci->op_regs->status,
269 			     STS_FATAL, STS_FATAL,
270 			     XHCI_MAX_HALT_USEC);
271 	if (!err)
272 		xhci_info(xhci, "Fault detected\n");
273 }
274 
275 #ifdef CONFIG_USB_PCI
276 /*
277  * Set up MSI
278  */
279 static int xhci_setup_msi(struct xhci_hcd *xhci)
280 {
281 	int ret;
282 	/*
283 	 * TODO:Check with MSI Soc for sysdev
284 	 */
285 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
286 
287 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
288 	if (ret < 0) {
289 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
290 				"failed to allocate MSI entry");
291 		return ret;
292 	}
293 
294 	ret = request_irq(pdev->irq, xhci_msi_irq,
295 				0, "xhci_hcd", xhci_to_hcd(xhci));
296 	if (ret) {
297 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
298 				"disable MSI interrupt");
299 		pci_free_irq_vectors(pdev);
300 	}
301 
302 	return ret;
303 }
304 
305 /*
306  * Set up MSI-X
307  */
308 static int xhci_setup_msix(struct xhci_hcd *xhci)
309 {
310 	int i, ret = 0;
311 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
312 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
313 
314 	/*
315 	 * calculate number of msi-x vectors supported.
316 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
317 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
318 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
319 	 *   Add additional 1 vector to ensure always available interrupt.
320 	 */
321 	xhci->msix_count = min(num_online_cpus() + 1,
322 				HCS_MAX_INTRS(xhci->hcs_params1));
323 
324 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
325 			PCI_IRQ_MSIX);
326 	if (ret < 0) {
327 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
328 				"Failed to enable MSI-X");
329 		return ret;
330 	}
331 
332 	for (i = 0; i < xhci->msix_count; i++) {
333 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
334 				"xhci_hcd", xhci_to_hcd(xhci));
335 		if (ret)
336 			goto disable_msix;
337 	}
338 
339 	hcd->msix_enabled = 1;
340 	return ret;
341 
342 disable_msix:
343 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
344 	while (--i >= 0)
345 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
346 	pci_free_irq_vectors(pdev);
347 	return ret;
348 }
349 
350 /* Free any IRQs and disable MSI-X */
351 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
352 {
353 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
354 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
355 
356 	if (xhci->quirks & XHCI_PLAT)
357 		return;
358 
359 	/* return if using legacy interrupt */
360 	if (hcd->irq > 0)
361 		return;
362 
363 	if (hcd->msix_enabled) {
364 		int i;
365 
366 		for (i = 0; i < xhci->msix_count; i++)
367 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
368 	} else {
369 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
370 	}
371 
372 	pci_free_irq_vectors(pdev);
373 	hcd->msix_enabled = 0;
374 }
375 
376 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
377 {
378 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
379 
380 	if (hcd->msix_enabled) {
381 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
382 		int i;
383 
384 		for (i = 0; i < xhci->msix_count; i++)
385 			synchronize_irq(pci_irq_vector(pdev, i));
386 	}
387 }
388 
389 static int xhci_try_enable_msi(struct usb_hcd *hcd)
390 {
391 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
392 	struct pci_dev  *pdev;
393 	int ret;
394 
395 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
396 	if (xhci->quirks & XHCI_PLAT)
397 		return 0;
398 
399 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
400 	/*
401 	 * Some Fresco Logic host controllers advertise MSI, but fail to
402 	 * generate interrupts.  Don't even try to enable MSI.
403 	 */
404 	if (xhci->quirks & XHCI_BROKEN_MSI)
405 		goto legacy_irq;
406 
407 	/* unregister the legacy interrupt */
408 	if (hcd->irq)
409 		free_irq(hcd->irq, hcd);
410 	hcd->irq = 0;
411 
412 	ret = xhci_setup_msix(xhci);
413 	if (ret)
414 		/* fall back to msi*/
415 		ret = xhci_setup_msi(xhci);
416 
417 	if (!ret) {
418 		hcd->msi_enabled = 1;
419 		return 0;
420 	}
421 
422 	if (!pdev->irq) {
423 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
424 		return -EINVAL;
425 	}
426 
427  legacy_irq:
428 	if (!strlen(hcd->irq_descr))
429 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
430 			 hcd->driver->description, hcd->self.busnum);
431 
432 	/* fall back to legacy interrupt*/
433 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
434 			hcd->irq_descr, hcd);
435 	if (ret) {
436 		xhci_err(xhci, "request interrupt %d failed\n",
437 				pdev->irq);
438 		return ret;
439 	}
440 	hcd->irq = pdev->irq;
441 	return 0;
442 }
443 
444 #else
445 
446 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
447 {
448 	return 0;
449 }
450 
451 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
452 {
453 }
454 
455 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
456 {
457 }
458 
459 #endif
460 
461 static void compliance_mode_recovery(struct timer_list *t)
462 {
463 	struct xhci_hcd *xhci;
464 	struct usb_hcd *hcd;
465 	struct xhci_hub *rhub;
466 	u32 temp;
467 	int i;
468 
469 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
470 	rhub = &xhci->usb3_rhub;
471 
472 	for (i = 0; i < rhub->num_ports; i++) {
473 		temp = readl(rhub->ports[i]->addr);
474 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
475 			/*
476 			 * Compliance Mode Detected. Letting USB Core
477 			 * handle the Warm Reset
478 			 */
479 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
480 					"Compliance mode detected->port %d",
481 					i + 1);
482 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
483 					"Attempting compliance mode recovery");
484 			hcd = xhci->shared_hcd;
485 
486 			if (hcd->state == HC_STATE_SUSPENDED)
487 				usb_hcd_resume_root_hub(hcd);
488 
489 			usb_hcd_poll_rh_status(hcd);
490 		}
491 	}
492 
493 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
494 		mod_timer(&xhci->comp_mode_recovery_timer,
495 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
496 }
497 
498 /*
499  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
500  * that causes ports behind that hardware to enter compliance mode sometimes.
501  * The quirk creates a timer that polls every 2 seconds the link state of
502  * each host controller's port and recovers it by issuing a Warm reset
503  * if Compliance mode is detected, otherwise the port will become "dead" (no
504  * device connections or disconnections will be detected anymore). Becasue no
505  * status event is generated when entering compliance mode (per xhci spec),
506  * this quirk is needed on systems that have the failing hardware installed.
507  */
508 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
509 {
510 	xhci->port_status_u0 = 0;
511 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
512 		    0);
513 	xhci->comp_mode_recovery_timer.expires = jiffies +
514 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
515 
516 	add_timer(&xhci->comp_mode_recovery_timer);
517 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
518 			"Compliance mode recovery timer initialized");
519 }
520 
521 /*
522  * This function identifies the systems that have installed the SN65LVPE502CP
523  * USB3.0 re-driver and that need the Compliance Mode Quirk.
524  * Systems:
525  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
526  */
527 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
528 {
529 	const char *dmi_product_name, *dmi_sys_vendor;
530 
531 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
532 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
533 	if (!dmi_product_name || !dmi_sys_vendor)
534 		return false;
535 
536 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
537 		return false;
538 
539 	if (strstr(dmi_product_name, "Z420") ||
540 			strstr(dmi_product_name, "Z620") ||
541 			strstr(dmi_product_name, "Z820") ||
542 			strstr(dmi_product_name, "Z1 Workstation"))
543 		return true;
544 
545 	return false;
546 }
547 
548 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
549 {
550 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
551 }
552 
553 
554 /*
555  * Initialize memory for HCD and xHC (one-time init).
556  *
557  * Program the PAGESIZE register, initialize the device context array, create
558  * device contexts (?), set up a command ring segment (or two?), create event
559  * ring (one for now).
560  */
561 static int xhci_init(struct usb_hcd *hcd)
562 {
563 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
564 	int retval = 0;
565 
566 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
567 	spin_lock_init(&xhci->lock);
568 	if (xhci->hci_version == 0x95 && link_quirk) {
569 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
570 				"QUIRK: Not clearing Link TRB chain bits.");
571 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
572 	} else {
573 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
574 				"xHCI doesn't need link TRB QUIRK");
575 	}
576 	retval = xhci_mem_init(xhci, GFP_KERNEL);
577 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
578 
579 	/* Initializing Compliance Mode Recovery Data If Needed */
580 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
581 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
582 		compliance_mode_recovery_timer_init(xhci);
583 	}
584 
585 	return retval;
586 }
587 
588 /*-------------------------------------------------------------------------*/
589 
590 
591 static int xhci_run_finished(struct xhci_hcd *xhci)
592 {
593 	if (xhci_start(xhci)) {
594 		xhci_halt(xhci);
595 		return -ENODEV;
596 	}
597 	xhci->shared_hcd->state = HC_STATE_RUNNING;
598 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
599 
600 	if (xhci->quirks & XHCI_NEC_HOST)
601 		xhci_ring_cmd_db(xhci);
602 
603 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
604 			"Finished xhci_run for USB3 roothub");
605 	return 0;
606 }
607 
608 /*
609  * Start the HC after it was halted.
610  *
611  * This function is called by the USB core when the HC driver is added.
612  * Its opposite is xhci_stop().
613  *
614  * xhci_init() must be called once before this function can be called.
615  * Reset the HC, enable device slot contexts, program DCBAAP, and
616  * set command ring pointer and event ring pointer.
617  *
618  * Setup MSI-X vectors and enable interrupts.
619  */
620 int xhci_run(struct usb_hcd *hcd)
621 {
622 	u32 temp;
623 	u64 temp_64;
624 	int ret;
625 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
626 
627 	/* Start the xHCI host controller running only after the USB 2.0 roothub
628 	 * is setup.
629 	 */
630 
631 	hcd->uses_new_polling = 1;
632 	if (!usb_hcd_is_primary_hcd(hcd))
633 		return xhci_run_finished(xhci);
634 
635 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
636 
637 	ret = xhci_try_enable_msi(hcd);
638 	if (ret)
639 		return ret;
640 
641 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
642 	temp_64 &= ~ERST_PTR_MASK;
643 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
644 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
645 
646 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
647 			"// Set the interrupt modulation register");
648 	temp = readl(&xhci->ir_set->irq_control);
649 	temp &= ~ER_IRQ_INTERVAL_MASK;
650 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
651 	writel(temp, &xhci->ir_set->irq_control);
652 
653 	/* Set the HCD state before we enable the irqs */
654 	temp = readl(&xhci->op_regs->command);
655 	temp |= (CMD_EIE);
656 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
657 			"// Enable interrupts, cmd = 0x%x.", temp);
658 	writel(temp, &xhci->op_regs->command);
659 
660 	temp = readl(&xhci->ir_set->irq_pending);
661 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
663 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
664 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
665 
666 	if (xhci->quirks & XHCI_NEC_HOST) {
667 		struct xhci_command *command;
668 
669 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
670 		if (!command)
671 			return -ENOMEM;
672 
673 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
674 				TRB_TYPE(TRB_NEC_GET_FW));
675 		if (ret)
676 			xhci_free_command(xhci, command);
677 	}
678 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679 			"Finished xhci_run for USB2 roothub");
680 
681 	xhci_dbc_init(xhci);
682 
683 	xhci_debugfs_init(xhci);
684 
685 	return 0;
686 }
687 EXPORT_SYMBOL_GPL(xhci_run);
688 
689 /*
690  * Stop xHCI driver.
691  *
692  * This function is called by the USB core when the HC driver is removed.
693  * Its opposite is xhci_run().
694  *
695  * Disable device contexts, disable IRQs, and quiesce the HC.
696  * Reset the HC, finish any completed transactions, and cleanup memory.
697  */
698 static void xhci_stop(struct usb_hcd *hcd)
699 {
700 	u32 temp;
701 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
702 
703 	mutex_lock(&xhci->mutex);
704 
705 	/* Only halt host and free memory after both hcds are removed */
706 	if (!usb_hcd_is_primary_hcd(hcd)) {
707 		/* usb core will free this hcd shortly, unset pointer */
708 		xhci->shared_hcd = NULL;
709 		mutex_unlock(&xhci->mutex);
710 		return;
711 	}
712 
713 	xhci_dbc_exit(xhci);
714 
715 	spin_lock_irq(&xhci->lock);
716 	xhci->xhc_state |= XHCI_STATE_HALTED;
717 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
718 	xhci_halt(xhci);
719 	xhci_reset(xhci);
720 	spin_unlock_irq(&xhci->lock);
721 
722 	xhci_cleanup_msix(xhci);
723 
724 	/* Deleting Compliance Mode Recovery Timer */
725 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
726 			(!(xhci_all_ports_seen_u0(xhci)))) {
727 		del_timer_sync(&xhci->comp_mode_recovery_timer);
728 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
729 				"%s: compliance mode recovery timer deleted",
730 				__func__);
731 	}
732 
733 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
734 		usb_amd_dev_put();
735 
736 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
737 			"// Disabling event ring interrupts");
738 	temp = readl(&xhci->op_regs->status);
739 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
740 	temp = readl(&xhci->ir_set->irq_pending);
741 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
742 
743 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
744 	xhci_mem_cleanup(xhci);
745 	xhci_debugfs_exit(xhci);
746 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
747 			"xhci_stop completed - status = %x",
748 			readl(&xhci->op_regs->status));
749 	mutex_unlock(&xhci->mutex);
750 }
751 
752 /*
753  * Shutdown HC (not bus-specific)
754  *
755  * This is called when the machine is rebooting or halting.  We assume that the
756  * machine will be powered off, and the HC's internal state will be reset.
757  * Don't bother to free memory.
758  *
759  * This will only ever be called with the main usb_hcd (the USB3 roothub).
760  */
761 static void xhci_shutdown(struct usb_hcd *hcd)
762 {
763 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
764 
765 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
766 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
767 
768 	spin_lock_irq(&xhci->lock);
769 	xhci_halt(xhci);
770 	/* Workaround for spurious wakeups at shutdown with HSW */
771 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
772 		xhci_reset(xhci);
773 	spin_unlock_irq(&xhci->lock);
774 
775 	xhci_cleanup_msix(xhci);
776 
777 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
778 			"xhci_shutdown completed - status = %x",
779 			readl(&xhci->op_regs->status));
780 
781 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
782 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
783 		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
784 }
785 
786 #ifdef CONFIG_PM
787 static void xhci_save_registers(struct xhci_hcd *xhci)
788 {
789 	xhci->s3.command = readl(&xhci->op_regs->command);
790 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
791 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
792 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
793 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
794 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
795 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
796 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
797 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
798 }
799 
800 static void xhci_restore_registers(struct xhci_hcd *xhci)
801 {
802 	writel(xhci->s3.command, &xhci->op_regs->command);
803 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
804 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
805 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
806 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
807 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
808 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
809 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
810 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
811 }
812 
813 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
814 {
815 	u64	val_64;
816 
817 	/* step 2: initialize command ring buffer */
818 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
819 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
820 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
821 				      xhci->cmd_ring->dequeue) &
822 		 (u64) ~CMD_RING_RSVD_BITS) |
823 		xhci->cmd_ring->cycle_state;
824 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
825 			"// Setting command ring address to 0x%llx",
826 			(long unsigned long) val_64);
827 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
828 }
829 
830 /*
831  * The whole command ring must be cleared to zero when we suspend the host.
832  *
833  * The host doesn't save the command ring pointer in the suspend well, so we
834  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
835  * aligned, because of the reserved bits in the command ring dequeue pointer
836  * register.  Therefore, we can't just set the dequeue pointer back in the
837  * middle of the ring (TRBs are 16-byte aligned).
838  */
839 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
840 {
841 	struct xhci_ring *ring;
842 	struct xhci_segment *seg;
843 
844 	ring = xhci->cmd_ring;
845 	seg = ring->deq_seg;
846 	do {
847 		memset(seg->trbs, 0,
848 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
849 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
850 			cpu_to_le32(~TRB_CYCLE);
851 		seg = seg->next;
852 	} while (seg != ring->deq_seg);
853 
854 	/* Reset the software enqueue and dequeue pointers */
855 	ring->deq_seg = ring->first_seg;
856 	ring->dequeue = ring->first_seg->trbs;
857 	ring->enq_seg = ring->deq_seg;
858 	ring->enqueue = ring->dequeue;
859 
860 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
861 	/*
862 	 * Ring is now zeroed, so the HW should look for change of ownership
863 	 * when the cycle bit is set to 1.
864 	 */
865 	ring->cycle_state = 1;
866 
867 	/*
868 	 * Reset the hardware dequeue pointer.
869 	 * Yes, this will need to be re-written after resume, but we're paranoid
870 	 * and want to make sure the hardware doesn't access bogus memory
871 	 * because, say, the BIOS or an SMI started the host without changing
872 	 * the command ring pointers.
873 	 */
874 	xhci_set_cmd_ring_deq(xhci);
875 }
876 
877 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
878 {
879 	struct xhci_port **ports;
880 	int port_index;
881 	unsigned long flags;
882 	u32 t1, t2;
883 
884 	spin_lock_irqsave(&xhci->lock, flags);
885 
886 	/* disable usb3 ports Wake bits */
887 	port_index = xhci->usb3_rhub.num_ports;
888 	ports = xhci->usb3_rhub.ports;
889 	while (port_index--) {
890 		t1 = readl(ports[port_index]->addr);
891 		t1 = xhci_port_state_to_neutral(t1);
892 		t2 = t1 & ~PORT_WAKE_BITS;
893 		if (t1 != t2)
894 			writel(t2, ports[port_index]->addr);
895 	}
896 
897 	/* disable usb2 ports Wake bits */
898 	port_index = xhci->usb2_rhub.num_ports;
899 	ports = xhci->usb2_rhub.ports;
900 	while (port_index--) {
901 		t1 = readl(ports[port_index]->addr);
902 		t1 = xhci_port_state_to_neutral(t1);
903 		t2 = t1 & ~PORT_WAKE_BITS;
904 		if (t1 != t2)
905 			writel(t2, ports[port_index]->addr);
906 	}
907 
908 	spin_unlock_irqrestore(&xhci->lock, flags);
909 }
910 
911 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
912 {
913 	struct xhci_port	**ports;
914 	int			port_index;
915 	u32			status;
916 	u32			portsc;
917 
918 	status = readl(&xhci->op_regs->status);
919 	if (status & STS_EINT)
920 		return true;
921 	/*
922 	 * Checking STS_EINT is not enough as there is a lag between a change
923 	 * bit being set and the Port Status Change Event that it generated
924 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
925 	 */
926 
927 	port_index = xhci->usb2_rhub.num_ports;
928 	ports = xhci->usb2_rhub.ports;
929 	while (port_index--) {
930 		portsc = readl(ports[port_index]->addr);
931 		if (portsc & PORT_CHANGE_MASK ||
932 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
933 			return true;
934 	}
935 	port_index = xhci->usb3_rhub.num_ports;
936 	ports = xhci->usb3_rhub.ports;
937 	while (port_index--) {
938 		portsc = readl(ports[port_index]->addr);
939 		if (portsc & PORT_CHANGE_MASK ||
940 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
941 			return true;
942 	}
943 	return false;
944 }
945 
946 /*
947  * Stop HC (not bus-specific)
948  *
949  * This is called when the machine transition into S3/S4 mode.
950  *
951  */
952 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
953 {
954 	int			rc = 0;
955 	unsigned int		delay = XHCI_MAX_HALT_USEC;
956 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
957 	u32			command;
958 
959 	if (!hcd->state)
960 		return 0;
961 
962 	if (hcd->state != HC_STATE_SUSPENDED ||
963 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
964 		return -EINVAL;
965 
966 	xhci_dbc_suspend(xhci);
967 
968 	/* Clear root port wake on bits if wakeup not allowed. */
969 	if (!do_wakeup)
970 		xhci_disable_port_wake_on_bits(xhci);
971 
972 	/* Don't poll the roothubs on bus suspend. */
973 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
974 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
975 	del_timer_sync(&hcd->rh_timer);
976 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
977 	del_timer_sync(&xhci->shared_hcd->rh_timer);
978 
979 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
980 		usleep_range(1000, 1500);
981 
982 	spin_lock_irq(&xhci->lock);
983 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
984 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
985 	/* step 1: stop endpoint */
986 	/* skipped assuming that port suspend has done */
987 
988 	/* step 2: clear Run/Stop bit */
989 	command = readl(&xhci->op_regs->command);
990 	command &= ~CMD_RUN;
991 	writel(command, &xhci->op_regs->command);
992 
993 	/* Some chips from Fresco Logic need an extraordinary delay */
994 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
995 
996 	if (xhci_handshake(&xhci->op_regs->status,
997 		      STS_HALT, STS_HALT, delay)) {
998 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
999 		spin_unlock_irq(&xhci->lock);
1000 		return -ETIMEDOUT;
1001 	}
1002 	xhci_clear_command_ring(xhci);
1003 
1004 	/* step 3: save registers */
1005 	xhci_save_registers(xhci);
1006 
1007 	/* step 4: set CSS flag */
1008 	command = readl(&xhci->op_regs->command);
1009 	command |= CMD_CSS;
1010 	writel(command, &xhci->op_regs->command);
1011 	if (xhci_handshake(&xhci->op_regs->status,
1012 				STS_SAVE, 0, 10 * 1000)) {
1013 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
1014 		spin_unlock_irq(&xhci->lock);
1015 		return -ETIMEDOUT;
1016 	}
1017 	spin_unlock_irq(&xhci->lock);
1018 
1019 	/*
1020 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1021 	 * is about to be suspended.
1022 	 */
1023 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1024 			(!(xhci_all_ports_seen_u0(xhci)))) {
1025 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1026 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1027 				"%s: compliance mode recovery timer deleted",
1028 				__func__);
1029 	}
1030 
1031 	/* step 5: remove core well power */
1032 	/* synchronize irq when using MSI-X */
1033 	xhci_msix_sync_irqs(xhci);
1034 
1035 	return rc;
1036 }
1037 EXPORT_SYMBOL_GPL(xhci_suspend);
1038 
1039 /*
1040  * start xHC (not bus-specific)
1041  *
1042  * This is called when the machine transition from S3/S4 mode.
1043  *
1044  */
1045 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1046 {
1047 	u32			command, temp = 0;
1048 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1049 	struct usb_hcd		*secondary_hcd;
1050 	int			retval = 0;
1051 	bool			comp_timer_running = false;
1052 
1053 	if (!hcd->state)
1054 		return 0;
1055 
1056 	/* Wait a bit if either of the roothubs need to settle from the
1057 	 * transition into bus suspend.
1058 	 */
1059 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1060 			time_before(jiffies,
1061 				xhci->bus_state[1].next_statechange))
1062 		msleep(100);
1063 
1064 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1065 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1066 
1067 	spin_lock_irq(&xhci->lock);
1068 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1069 		hibernated = true;
1070 
1071 	if (!hibernated) {
1072 		/* step 1: restore register */
1073 		xhci_restore_registers(xhci);
1074 		/* step 2: initialize command ring buffer */
1075 		xhci_set_cmd_ring_deq(xhci);
1076 		/* step 3: restore state and start state*/
1077 		/* step 3: set CRS flag */
1078 		command = readl(&xhci->op_regs->command);
1079 		command |= CMD_CRS;
1080 		writel(command, &xhci->op_regs->command);
1081 		/*
1082 		 * Some controllers take up to 55+ ms to complete the controller
1083 		 * restore so setting the timeout to 100ms. Xhci specification
1084 		 * doesn't mention any timeout value.
1085 		 */
1086 		if (xhci_handshake(&xhci->op_regs->status,
1087 			      STS_RESTORE, 0, 100 * 1000)) {
1088 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1089 			spin_unlock_irq(&xhci->lock);
1090 			return -ETIMEDOUT;
1091 		}
1092 		temp = readl(&xhci->op_regs->status);
1093 	}
1094 
1095 	/* If restore operation fails, re-initialize the HC during resume */
1096 	if ((temp & STS_SRE) || hibernated) {
1097 
1098 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1099 				!(xhci_all_ports_seen_u0(xhci))) {
1100 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1101 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1102 				"Compliance Mode Recovery Timer deleted!");
1103 		}
1104 
1105 		/* Let the USB core know _both_ roothubs lost power. */
1106 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1107 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1108 
1109 		xhci_dbg(xhci, "Stop HCD\n");
1110 		xhci_halt(xhci);
1111 		xhci_zero_64b_regs(xhci);
1112 		xhci_reset(xhci);
1113 		spin_unlock_irq(&xhci->lock);
1114 		xhci_cleanup_msix(xhci);
1115 
1116 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1117 		temp = readl(&xhci->op_regs->status);
1118 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1119 		temp = readl(&xhci->ir_set->irq_pending);
1120 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1121 
1122 		xhci_dbg(xhci, "cleaning up memory\n");
1123 		xhci_mem_cleanup(xhci);
1124 		xhci_debugfs_exit(xhci);
1125 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1126 			    readl(&xhci->op_regs->status));
1127 
1128 		/* USB core calls the PCI reinit and start functions twice:
1129 		 * first with the primary HCD, and then with the secondary HCD.
1130 		 * If we don't do the same, the host will never be started.
1131 		 */
1132 		if (!usb_hcd_is_primary_hcd(hcd))
1133 			secondary_hcd = hcd;
1134 		else
1135 			secondary_hcd = xhci->shared_hcd;
1136 
1137 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1138 		retval = xhci_init(hcd->primary_hcd);
1139 		if (retval)
1140 			return retval;
1141 		comp_timer_running = true;
1142 
1143 		xhci_dbg(xhci, "Start the primary HCD\n");
1144 		retval = xhci_run(hcd->primary_hcd);
1145 		if (!retval) {
1146 			xhci_dbg(xhci, "Start the secondary HCD\n");
1147 			retval = xhci_run(secondary_hcd);
1148 		}
1149 		hcd->state = HC_STATE_SUSPENDED;
1150 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1151 		goto done;
1152 	}
1153 
1154 	/* step 4: set Run/Stop bit */
1155 	command = readl(&xhci->op_regs->command);
1156 	command |= CMD_RUN;
1157 	writel(command, &xhci->op_regs->command);
1158 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1159 		  0, 250 * 1000);
1160 
1161 	/* step 5: walk topology and initialize portsc,
1162 	 * portpmsc and portli
1163 	 */
1164 	/* this is done in bus_resume */
1165 
1166 	/* step 6: restart each of the previously
1167 	 * Running endpoints by ringing their doorbells
1168 	 */
1169 
1170 	spin_unlock_irq(&xhci->lock);
1171 
1172 	xhci_dbc_resume(xhci);
1173 
1174  done:
1175 	if (retval == 0) {
1176 		/* Resume root hubs only when have pending events. */
1177 		if (xhci_pending_portevent(xhci)) {
1178 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1179 			usb_hcd_resume_root_hub(hcd);
1180 		}
1181 	}
1182 
1183 	/*
1184 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1185 	 * be re-initialized Always after a system resume. Ports are subject
1186 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1187 	 * ports have entered previously to U0 before system's suspension.
1188 	 */
1189 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1190 		compliance_mode_recovery_timer_init(xhci);
1191 
1192 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1193 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1194 
1195 	/* Re-enable port polling. */
1196 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1197 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1198 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1199 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1200 	usb_hcd_poll_rh_status(hcd);
1201 
1202 	return retval;
1203 }
1204 EXPORT_SYMBOL_GPL(xhci_resume);
1205 #endif	/* CONFIG_PM */
1206 
1207 /*-------------------------------------------------------------------------*/
1208 
1209 /**
1210  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1211  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1212  * value to right shift 1 for the bitmask.
1213  *
1214  * Index  = (epnum * 2) + direction - 1,
1215  * where direction = 0 for OUT, 1 for IN.
1216  * For control endpoints, the IN index is used (OUT index is unused), so
1217  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1218  */
1219 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1220 {
1221 	unsigned int index;
1222 	if (usb_endpoint_xfer_control(desc))
1223 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1224 	else
1225 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1226 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1227 	return index;
1228 }
1229 
1230 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1231  * address from the XHCI endpoint index.
1232  */
1233 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1234 {
1235 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1236 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1237 	return direction | number;
1238 }
1239 
1240 /* Find the flag for this endpoint (for use in the control context).  Use the
1241  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1242  * bit 1, etc.
1243  */
1244 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1245 {
1246 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1247 }
1248 
1249 /* Find the flag for this endpoint (for use in the control context).  Use the
1250  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1251  * bit 1, etc.
1252  */
1253 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1254 {
1255 	return 1 << (ep_index + 1);
1256 }
1257 
1258 /* Compute the last valid endpoint context index.  Basically, this is the
1259  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1260  * we find the most significant bit set in the added contexts flags.
1261  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1262  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1263  */
1264 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1265 {
1266 	return fls(added_ctxs) - 1;
1267 }
1268 
1269 /* Returns 1 if the arguments are OK;
1270  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1271  */
1272 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1273 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1274 		const char *func) {
1275 	struct xhci_hcd	*xhci;
1276 	struct xhci_virt_device	*virt_dev;
1277 
1278 	if (!hcd || (check_ep && !ep) || !udev) {
1279 		pr_debug("xHCI %s called with invalid args\n", func);
1280 		return -EINVAL;
1281 	}
1282 	if (!udev->parent) {
1283 		pr_debug("xHCI %s called for root hub\n", func);
1284 		return 0;
1285 	}
1286 
1287 	xhci = hcd_to_xhci(hcd);
1288 	if (check_virt_dev) {
1289 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1290 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1291 					func);
1292 			return -EINVAL;
1293 		}
1294 
1295 		virt_dev = xhci->devs[udev->slot_id];
1296 		if (virt_dev->udev != udev) {
1297 			xhci_dbg(xhci, "xHCI %s called with udev and "
1298 					  "virt_dev does not match\n", func);
1299 			return -EINVAL;
1300 		}
1301 	}
1302 
1303 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1304 		return -ENODEV;
1305 
1306 	return 1;
1307 }
1308 
1309 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1310 		struct usb_device *udev, struct xhci_command *command,
1311 		bool ctx_change, bool must_succeed);
1312 
1313 /*
1314  * Full speed devices may have a max packet size greater than 8 bytes, but the
1315  * USB core doesn't know that until it reads the first 8 bytes of the
1316  * descriptor.  If the usb_device's max packet size changes after that point,
1317  * we need to issue an evaluate context command and wait on it.
1318  */
1319 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1320 		unsigned int ep_index, struct urb *urb)
1321 {
1322 	struct xhci_container_ctx *out_ctx;
1323 	struct xhci_input_control_ctx *ctrl_ctx;
1324 	struct xhci_ep_ctx *ep_ctx;
1325 	struct xhci_command *command;
1326 	int max_packet_size;
1327 	int hw_max_packet_size;
1328 	int ret = 0;
1329 
1330 	out_ctx = xhci->devs[slot_id]->out_ctx;
1331 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1332 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1333 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1334 	if (hw_max_packet_size != max_packet_size) {
1335 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1336 				"Max Packet Size for ep 0 changed.");
1337 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1338 				"Max packet size in usb_device = %d",
1339 				max_packet_size);
1340 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1341 				"Max packet size in xHCI HW = %d",
1342 				hw_max_packet_size);
1343 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1344 				"Issuing evaluate context command.");
1345 
1346 		/* Set up the input context flags for the command */
1347 		/* FIXME: This won't work if a non-default control endpoint
1348 		 * changes max packet sizes.
1349 		 */
1350 
1351 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1352 		if (!command)
1353 			return -ENOMEM;
1354 
1355 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1356 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1357 		if (!ctrl_ctx) {
1358 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1359 					__func__);
1360 			ret = -ENOMEM;
1361 			goto command_cleanup;
1362 		}
1363 		/* Set up the modified control endpoint 0 */
1364 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1365 				xhci->devs[slot_id]->out_ctx, ep_index);
1366 
1367 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1368 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1369 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1370 
1371 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1372 		ctrl_ctx->drop_flags = 0;
1373 
1374 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1375 				true, false);
1376 
1377 		/* Clean up the input context for later use by bandwidth
1378 		 * functions.
1379 		 */
1380 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1381 command_cleanup:
1382 		kfree(command->completion);
1383 		kfree(command);
1384 	}
1385 	return ret;
1386 }
1387 
1388 /*
1389  * non-error returns are a promise to giveback() the urb later
1390  * we drop ownership so next owner (or urb unlink) can get it
1391  */
1392 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1393 {
1394 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1395 	unsigned long flags;
1396 	int ret = 0;
1397 	unsigned int slot_id, ep_index;
1398 	unsigned int *ep_state;
1399 	struct urb_priv	*urb_priv;
1400 	int num_tds;
1401 
1402 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1403 					true, true, __func__) <= 0)
1404 		return -EINVAL;
1405 
1406 	slot_id = urb->dev->slot_id;
1407 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1408 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1409 
1410 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1411 		if (!in_interrupt())
1412 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1413 		return -ESHUTDOWN;
1414 	}
1415 
1416 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1417 		num_tds = urb->number_of_packets;
1418 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1419 	    urb->transfer_buffer_length > 0 &&
1420 	    urb->transfer_flags & URB_ZERO_PACKET &&
1421 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1422 		num_tds = 2;
1423 	else
1424 		num_tds = 1;
1425 
1426 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1427 			   num_tds * sizeof(struct xhci_td), mem_flags);
1428 	if (!urb_priv)
1429 		return -ENOMEM;
1430 
1431 	urb_priv->num_tds = num_tds;
1432 	urb_priv->num_tds_done = 0;
1433 	urb->hcpriv = urb_priv;
1434 
1435 	trace_xhci_urb_enqueue(urb);
1436 
1437 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1438 		/* Check to see if the max packet size for the default control
1439 		 * endpoint changed during FS device enumeration
1440 		 */
1441 		if (urb->dev->speed == USB_SPEED_FULL) {
1442 			ret = xhci_check_maxpacket(xhci, slot_id,
1443 					ep_index, urb);
1444 			if (ret < 0) {
1445 				xhci_urb_free_priv(urb_priv);
1446 				urb->hcpriv = NULL;
1447 				return ret;
1448 			}
1449 		}
1450 	}
1451 
1452 	spin_lock_irqsave(&xhci->lock, flags);
1453 
1454 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1455 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1456 			 urb->ep->desc.bEndpointAddress, urb);
1457 		ret = -ESHUTDOWN;
1458 		goto free_priv;
1459 	}
1460 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1461 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1462 			  *ep_state);
1463 		ret = -EINVAL;
1464 		goto free_priv;
1465 	}
1466 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1467 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1468 		ret = -EINVAL;
1469 		goto free_priv;
1470 	}
1471 
1472 	switch (usb_endpoint_type(&urb->ep->desc)) {
1473 
1474 	case USB_ENDPOINT_XFER_CONTROL:
1475 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1476 					 slot_id, ep_index);
1477 		break;
1478 	case USB_ENDPOINT_XFER_BULK:
1479 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1480 					 slot_id, ep_index);
1481 		break;
1482 	case USB_ENDPOINT_XFER_INT:
1483 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1484 				slot_id, ep_index);
1485 		break;
1486 	case USB_ENDPOINT_XFER_ISOC:
1487 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1488 				slot_id, ep_index);
1489 	}
1490 
1491 	if (ret) {
1492 free_priv:
1493 		xhci_urb_free_priv(urb_priv);
1494 		urb->hcpriv = NULL;
1495 	}
1496 	spin_unlock_irqrestore(&xhci->lock, flags);
1497 	return ret;
1498 }
1499 
1500 /*
1501  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1502  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1503  * should pick up where it left off in the TD, unless a Set Transfer Ring
1504  * Dequeue Pointer is issued.
1505  *
1506  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1507  * the ring.  Since the ring is a contiguous structure, they can't be physically
1508  * removed.  Instead, there are two options:
1509  *
1510  *  1) If the HC is in the middle of processing the URB to be canceled, we
1511  *     simply move the ring's dequeue pointer past those TRBs using the Set
1512  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1513  *     when drivers timeout on the last submitted URB and attempt to cancel.
1514  *
1515  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1516  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1517  *     HC will need to invalidate the any TRBs it has cached after the stop
1518  *     endpoint command, as noted in the xHCI 0.95 errata.
1519  *
1520  *  3) The TD may have completed by the time the Stop Endpoint Command
1521  *     completes, so software needs to handle that case too.
1522  *
1523  * This function should protect against the TD enqueueing code ringing the
1524  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1525  * It also needs to account for multiple cancellations on happening at the same
1526  * time for the same endpoint.
1527  *
1528  * Note that this function can be called in any context, or so says
1529  * usb_hcd_unlink_urb()
1530  */
1531 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1532 {
1533 	unsigned long flags;
1534 	int ret, i;
1535 	u32 temp;
1536 	struct xhci_hcd *xhci;
1537 	struct urb_priv	*urb_priv;
1538 	struct xhci_td *td;
1539 	unsigned int ep_index;
1540 	struct xhci_ring *ep_ring;
1541 	struct xhci_virt_ep *ep;
1542 	struct xhci_command *command;
1543 	struct xhci_virt_device *vdev;
1544 
1545 	xhci = hcd_to_xhci(hcd);
1546 	spin_lock_irqsave(&xhci->lock, flags);
1547 
1548 	trace_xhci_urb_dequeue(urb);
1549 
1550 	/* Make sure the URB hasn't completed or been unlinked already */
1551 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1552 	if (ret)
1553 		goto done;
1554 
1555 	/* give back URB now if we can't queue it for cancel */
1556 	vdev = xhci->devs[urb->dev->slot_id];
1557 	urb_priv = urb->hcpriv;
1558 	if (!vdev || !urb_priv)
1559 		goto err_giveback;
1560 
1561 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1562 	ep = &vdev->eps[ep_index];
1563 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1564 	if (!ep || !ep_ring)
1565 		goto err_giveback;
1566 
1567 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1568 	temp = readl(&xhci->op_regs->status);
1569 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1570 		xhci_hc_died(xhci);
1571 		goto done;
1572 	}
1573 
1574 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1575 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1576 				"HC halted, freeing TD manually.");
1577 		for (i = urb_priv->num_tds_done;
1578 		     i < urb_priv->num_tds;
1579 		     i++) {
1580 			td = &urb_priv->td[i];
1581 			if (!list_empty(&td->td_list))
1582 				list_del_init(&td->td_list);
1583 			if (!list_empty(&td->cancelled_td_list))
1584 				list_del_init(&td->cancelled_td_list);
1585 		}
1586 		goto err_giveback;
1587 	}
1588 
1589 	i = urb_priv->num_tds_done;
1590 	if (i < urb_priv->num_tds)
1591 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1592 				"Cancel URB %p, dev %s, ep 0x%x, "
1593 				"starting at offset 0x%llx",
1594 				urb, urb->dev->devpath,
1595 				urb->ep->desc.bEndpointAddress,
1596 				(unsigned long long) xhci_trb_virt_to_dma(
1597 					urb_priv->td[i].start_seg,
1598 					urb_priv->td[i].first_trb));
1599 
1600 	for (; i < urb_priv->num_tds; i++) {
1601 		td = &urb_priv->td[i];
1602 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1603 	}
1604 
1605 	/* Queue a stop endpoint command, but only if this is
1606 	 * the first cancellation to be handled.
1607 	 */
1608 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1609 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1610 		if (!command) {
1611 			ret = -ENOMEM;
1612 			goto done;
1613 		}
1614 		ep->ep_state |= EP_STOP_CMD_PENDING;
1615 		ep->stop_cmd_timer.expires = jiffies +
1616 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1617 		add_timer(&ep->stop_cmd_timer);
1618 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1619 					 ep_index, 0);
1620 		xhci_ring_cmd_db(xhci);
1621 	}
1622 done:
1623 	spin_unlock_irqrestore(&xhci->lock, flags);
1624 	return ret;
1625 
1626 err_giveback:
1627 	if (urb_priv)
1628 		xhci_urb_free_priv(urb_priv);
1629 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1630 	spin_unlock_irqrestore(&xhci->lock, flags);
1631 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1632 	return ret;
1633 }
1634 
1635 /* Drop an endpoint from a new bandwidth configuration for this device.
1636  * Only one call to this function is allowed per endpoint before
1637  * check_bandwidth() or reset_bandwidth() must be called.
1638  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1639  * add the endpoint to the schedule with possibly new parameters denoted by a
1640  * different endpoint descriptor in usb_host_endpoint.
1641  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1642  * not allowed.
1643  *
1644  * The USB core will not allow URBs to be queued to an endpoint that is being
1645  * disabled, so there's no need for mutual exclusion to protect
1646  * the xhci->devs[slot_id] structure.
1647  */
1648 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1649 		struct usb_host_endpoint *ep)
1650 {
1651 	struct xhci_hcd *xhci;
1652 	struct xhci_container_ctx *in_ctx, *out_ctx;
1653 	struct xhci_input_control_ctx *ctrl_ctx;
1654 	unsigned int ep_index;
1655 	struct xhci_ep_ctx *ep_ctx;
1656 	u32 drop_flag;
1657 	u32 new_add_flags, new_drop_flags;
1658 	int ret;
1659 
1660 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1661 	if (ret <= 0)
1662 		return ret;
1663 	xhci = hcd_to_xhci(hcd);
1664 	if (xhci->xhc_state & XHCI_STATE_DYING)
1665 		return -ENODEV;
1666 
1667 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1668 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1669 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1670 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1671 				__func__, drop_flag);
1672 		return 0;
1673 	}
1674 
1675 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1676 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1677 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1678 	if (!ctrl_ctx) {
1679 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1680 				__func__);
1681 		return 0;
1682 	}
1683 
1684 	ep_index = xhci_get_endpoint_index(&ep->desc);
1685 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1686 	/* If the HC already knows the endpoint is disabled,
1687 	 * or the HCD has noted it is disabled, ignore this request
1688 	 */
1689 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1690 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1691 	    xhci_get_endpoint_flag(&ep->desc)) {
1692 		/* Do not warn when called after a usb_device_reset */
1693 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1694 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1695 				  __func__, ep);
1696 		return 0;
1697 	}
1698 
1699 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1700 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1701 
1702 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1703 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1704 
1705 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1706 
1707 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1708 
1709 	if (xhci->quirks & XHCI_MTK_HOST)
1710 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1711 
1712 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1713 			(unsigned int) ep->desc.bEndpointAddress,
1714 			udev->slot_id,
1715 			(unsigned int) new_drop_flags,
1716 			(unsigned int) new_add_flags);
1717 	return 0;
1718 }
1719 
1720 /* Add an endpoint to a new possible bandwidth configuration for this device.
1721  * Only one call to this function is allowed per endpoint before
1722  * check_bandwidth() or reset_bandwidth() must be called.
1723  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1724  * add the endpoint to the schedule with possibly new parameters denoted by a
1725  * different endpoint descriptor in usb_host_endpoint.
1726  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1727  * not allowed.
1728  *
1729  * The USB core will not allow URBs to be queued to an endpoint until the
1730  * configuration or alt setting is installed in the device, so there's no need
1731  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1732  */
1733 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1734 		struct usb_host_endpoint *ep)
1735 {
1736 	struct xhci_hcd *xhci;
1737 	struct xhci_container_ctx *in_ctx;
1738 	unsigned int ep_index;
1739 	struct xhci_input_control_ctx *ctrl_ctx;
1740 	u32 added_ctxs;
1741 	u32 new_add_flags, new_drop_flags;
1742 	struct xhci_virt_device *virt_dev;
1743 	int ret = 0;
1744 
1745 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1746 	if (ret <= 0) {
1747 		/* So we won't queue a reset ep command for a root hub */
1748 		ep->hcpriv = NULL;
1749 		return ret;
1750 	}
1751 	xhci = hcd_to_xhci(hcd);
1752 	if (xhci->xhc_state & XHCI_STATE_DYING)
1753 		return -ENODEV;
1754 
1755 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1756 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1757 		/* FIXME when we have to issue an evaluate endpoint command to
1758 		 * deal with ep0 max packet size changing once we get the
1759 		 * descriptors
1760 		 */
1761 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1762 				__func__, added_ctxs);
1763 		return 0;
1764 	}
1765 
1766 	virt_dev = xhci->devs[udev->slot_id];
1767 	in_ctx = virt_dev->in_ctx;
1768 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1769 	if (!ctrl_ctx) {
1770 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1771 				__func__);
1772 		return 0;
1773 	}
1774 
1775 	ep_index = xhci_get_endpoint_index(&ep->desc);
1776 	/* If this endpoint is already in use, and the upper layers are trying
1777 	 * to add it again without dropping it, reject the addition.
1778 	 */
1779 	if (virt_dev->eps[ep_index].ring &&
1780 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1781 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1782 				"without dropping it.\n",
1783 				(unsigned int) ep->desc.bEndpointAddress);
1784 		return -EINVAL;
1785 	}
1786 
1787 	/* If the HCD has already noted the endpoint is enabled,
1788 	 * ignore this request.
1789 	 */
1790 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1791 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1792 				__func__, ep);
1793 		return 0;
1794 	}
1795 
1796 	/*
1797 	 * Configuration and alternate setting changes must be done in
1798 	 * process context, not interrupt context (or so documenation
1799 	 * for usb_set_interface() and usb_set_configuration() claim).
1800 	 */
1801 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1802 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1803 				__func__, ep->desc.bEndpointAddress);
1804 		return -ENOMEM;
1805 	}
1806 
1807 	if (xhci->quirks & XHCI_MTK_HOST) {
1808 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1809 		if (ret < 0) {
1810 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1811 			virt_dev->eps[ep_index].new_ring = NULL;
1812 			return ret;
1813 		}
1814 	}
1815 
1816 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1817 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1818 
1819 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1820 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1821 	 * this re-adds a new state for the endpoint from the new endpoint
1822 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1823 	 * drop flags alone.
1824 	 */
1825 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1826 
1827 	/* Store the usb_device pointer for later use */
1828 	ep->hcpriv = udev;
1829 
1830 	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1831 
1832 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1833 			(unsigned int) ep->desc.bEndpointAddress,
1834 			udev->slot_id,
1835 			(unsigned int) new_drop_flags,
1836 			(unsigned int) new_add_flags);
1837 	return 0;
1838 }
1839 
1840 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1841 {
1842 	struct xhci_input_control_ctx *ctrl_ctx;
1843 	struct xhci_ep_ctx *ep_ctx;
1844 	struct xhci_slot_ctx *slot_ctx;
1845 	int i;
1846 
1847 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1848 	if (!ctrl_ctx) {
1849 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1850 				__func__);
1851 		return;
1852 	}
1853 
1854 	/* When a device's add flag and drop flag are zero, any subsequent
1855 	 * configure endpoint command will leave that endpoint's state
1856 	 * untouched.  Make sure we don't leave any old state in the input
1857 	 * endpoint contexts.
1858 	 */
1859 	ctrl_ctx->drop_flags = 0;
1860 	ctrl_ctx->add_flags = 0;
1861 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1862 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1863 	/* Endpoint 0 is always valid */
1864 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1865 	for (i = 1; i < 31; i++) {
1866 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1867 		ep_ctx->ep_info = 0;
1868 		ep_ctx->ep_info2 = 0;
1869 		ep_ctx->deq = 0;
1870 		ep_ctx->tx_info = 0;
1871 	}
1872 }
1873 
1874 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1875 		struct usb_device *udev, u32 *cmd_status)
1876 {
1877 	int ret;
1878 
1879 	switch (*cmd_status) {
1880 	case COMP_COMMAND_ABORTED:
1881 	case COMP_COMMAND_RING_STOPPED:
1882 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1883 		ret = -ETIME;
1884 		break;
1885 	case COMP_RESOURCE_ERROR:
1886 		dev_warn(&udev->dev,
1887 			 "Not enough host controller resources for new device state.\n");
1888 		ret = -ENOMEM;
1889 		/* FIXME: can we allocate more resources for the HC? */
1890 		break;
1891 	case COMP_BANDWIDTH_ERROR:
1892 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1893 		dev_warn(&udev->dev,
1894 			 "Not enough bandwidth for new device state.\n");
1895 		ret = -ENOSPC;
1896 		/* FIXME: can we go back to the old state? */
1897 		break;
1898 	case COMP_TRB_ERROR:
1899 		/* the HCD set up something wrong */
1900 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1901 				"add flag = 1, "
1902 				"and endpoint is not disabled.\n");
1903 		ret = -EINVAL;
1904 		break;
1905 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1906 		dev_warn(&udev->dev,
1907 			 "ERROR: Incompatible device for endpoint configure command.\n");
1908 		ret = -ENODEV;
1909 		break;
1910 	case COMP_SUCCESS:
1911 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1912 				"Successful Endpoint Configure command");
1913 		ret = 0;
1914 		break;
1915 	default:
1916 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1917 				*cmd_status);
1918 		ret = -EINVAL;
1919 		break;
1920 	}
1921 	return ret;
1922 }
1923 
1924 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1925 		struct usb_device *udev, u32 *cmd_status)
1926 {
1927 	int ret;
1928 
1929 	switch (*cmd_status) {
1930 	case COMP_COMMAND_ABORTED:
1931 	case COMP_COMMAND_RING_STOPPED:
1932 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1933 		ret = -ETIME;
1934 		break;
1935 	case COMP_PARAMETER_ERROR:
1936 		dev_warn(&udev->dev,
1937 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1938 		ret = -EINVAL;
1939 		break;
1940 	case COMP_SLOT_NOT_ENABLED_ERROR:
1941 		dev_warn(&udev->dev,
1942 			"WARN: slot not enabled for evaluate context command.\n");
1943 		ret = -EINVAL;
1944 		break;
1945 	case COMP_CONTEXT_STATE_ERROR:
1946 		dev_warn(&udev->dev,
1947 			"WARN: invalid context state for evaluate context command.\n");
1948 		ret = -EINVAL;
1949 		break;
1950 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1951 		dev_warn(&udev->dev,
1952 			"ERROR: Incompatible device for evaluate context command.\n");
1953 		ret = -ENODEV;
1954 		break;
1955 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1956 		/* Max Exit Latency too large error */
1957 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1958 		ret = -EINVAL;
1959 		break;
1960 	case COMP_SUCCESS:
1961 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1962 				"Successful evaluate context command");
1963 		ret = 0;
1964 		break;
1965 	default:
1966 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1967 			*cmd_status);
1968 		ret = -EINVAL;
1969 		break;
1970 	}
1971 	return ret;
1972 }
1973 
1974 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1975 		struct xhci_input_control_ctx *ctrl_ctx)
1976 {
1977 	u32 valid_add_flags;
1978 	u32 valid_drop_flags;
1979 
1980 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1981 	 * (bit 1).  The default control endpoint is added during the Address
1982 	 * Device command and is never removed until the slot is disabled.
1983 	 */
1984 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1985 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1986 
1987 	/* Use hweight32 to count the number of ones in the add flags, or
1988 	 * number of endpoints added.  Don't count endpoints that are changed
1989 	 * (both added and dropped).
1990 	 */
1991 	return hweight32(valid_add_flags) -
1992 		hweight32(valid_add_flags & valid_drop_flags);
1993 }
1994 
1995 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1996 		struct xhci_input_control_ctx *ctrl_ctx)
1997 {
1998 	u32 valid_add_flags;
1999 	u32 valid_drop_flags;
2000 
2001 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2002 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2003 
2004 	return hweight32(valid_drop_flags) -
2005 		hweight32(valid_add_flags & valid_drop_flags);
2006 }
2007 
2008 /*
2009  * We need to reserve the new number of endpoints before the configure endpoint
2010  * command completes.  We can't subtract the dropped endpoints from the number
2011  * of active endpoints until the command completes because we can oversubscribe
2012  * the host in this case:
2013  *
2014  *  - the first configure endpoint command drops more endpoints than it adds
2015  *  - a second configure endpoint command that adds more endpoints is queued
2016  *  - the first configure endpoint command fails, so the config is unchanged
2017  *  - the second command may succeed, even though there isn't enough resources
2018  *
2019  * Must be called with xhci->lock held.
2020  */
2021 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2022 		struct xhci_input_control_ctx *ctrl_ctx)
2023 {
2024 	u32 added_eps;
2025 
2026 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2027 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2028 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2029 				"Not enough ep ctxs: "
2030 				"%u active, need to add %u, limit is %u.",
2031 				xhci->num_active_eps, added_eps,
2032 				xhci->limit_active_eps);
2033 		return -ENOMEM;
2034 	}
2035 	xhci->num_active_eps += added_eps;
2036 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2037 			"Adding %u ep ctxs, %u now active.", added_eps,
2038 			xhci->num_active_eps);
2039 	return 0;
2040 }
2041 
2042 /*
2043  * The configure endpoint was failed by the xHC for some other reason, so we
2044  * need to revert the resources that failed configuration would have used.
2045  *
2046  * Must be called with xhci->lock held.
2047  */
2048 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2049 		struct xhci_input_control_ctx *ctrl_ctx)
2050 {
2051 	u32 num_failed_eps;
2052 
2053 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2054 	xhci->num_active_eps -= num_failed_eps;
2055 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2056 			"Removing %u failed ep ctxs, %u now active.",
2057 			num_failed_eps,
2058 			xhci->num_active_eps);
2059 }
2060 
2061 /*
2062  * Now that the command has completed, clean up the active endpoint count by
2063  * subtracting out the endpoints that were dropped (but not changed).
2064  *
2065  * Must be called with xhci->lock held.
2066  */
2067 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2068 		struct xhci_input_control_ctx *ctrl_ctx)
2069 {
2070 	u32 num_dropped_eps;
2071 
2072 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2073 	xhci->num_active_eps -= num_dropped_eps;
2074 	if (num_dropped_eps)
2075 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2076 				"Removing %u dropped ep ctxs, %u now active.",
2077 				num_dropped_eps,
2078 				xhci->num_active_eps);
2079 }
2080 
2081 static unsigned int xhci_get_block_size(struct usb_device *udev)
2082 {
2083 	switch (udev->speed) {
2084 	case USB_SPEED_LOW:
2085 	case USB_SPEED_FULL:
2086 		return FS_BLOCK;
2087 	case USB_SPEED_HIGH:
2088 		return HS_BLOCK;
2089 	case USB_SPEED_SUPER:
2090 	case USB_SPEED_SUPER_PLUS:
2091 		return SS_BLOCK;
2092 	case USB_SPEED_UNKNOWN:
2093 	case USB_SPEED_WIRELESS:
2094 	default:
2095 		/* Should never happen */
2096 		return 1;
2097 	}
2098 }
2099 
2100 static unsigned int
2101 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2102 {
2103 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2104 		return LS_OVERHEAD;
2105 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2106 		return FS_OVERHEAD;
2107 	return HS_OVERHEAD;
2108 }
2109 
2110 /* If we are changing a LS/FS device under a HS hub,
2111  * make sure (if we are activating a new TT) that the HS bus has enough
2112  * bandwidth for this new TT.
2113  */
2114 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2115 		struct xhci_virt_device *virt_dev,
2116 		int old_active_eps)
2117 {
2118 	struct xhci_interval_bw_table *bw_table;
2119 	struct xhci_tt_bw_info *tt_info;
2120 
2121 	/* Find the bandwidth table for the root port this TT is attached to. */
2122 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2123 	tt_info = virt_dev->tt_info;
2124 	/* If this TT already had active endpoints, the bandwidth for this TT
2125 	 * has already been added.  Removing all periodic endpoints (and thus
2126 	 * making the TT enactive) will only decrease the bandwidth used.
2127 	 */
2128 	if (old_active_eps)
2129 		return 0;
2130 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2131 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2132 			return -ENOMEM;
2133 		return 0;
2134 	}
2135 	/* Not sure why we would have no new active endpoints...
2136 	 *
2137 	 * Maybe because of an Evaluate Context change for a hub update or a
2138 	 * control endpoint 0 max packet size change?
2139 	 * FIXME: skip the bandwidth calculation in that case.
2140 	 */
2141 	return 0;
2142 }
2143 
2144 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2145 		struct xhci_virt_device *virt_dev)
2146 {
2147 	unsigned int bw_reserved;
2148 
2149 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2150 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2151 		return -ENOMEM;
2152 
2153 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2154 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2155 		return -ENOMEM;
2156 
2157 	return 0;
2158 }
2159 
2160 /*
2161  * This algorithm is a very conservative estimate of the worst-case scheduling
2162  * scenario for any one interval.  The hardware dynamically schedules the
2163  * packets, so we can't tell which microframe could be the limiting factor in
2164  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2165  *
2166  * Obviously, we can't solve an NP complete problem to find the minimum worst
2167  * case scenario.  Instead, we come up with an estimate that is no less than
2168  * the worst case bandwidth used for any one microframe, but may be an
2169  * over-estimate.
2170  *
2171  * We walk the requirements for each endpoint by interval, starting with the
2172  * smallest interval, and place packets in the schedule where there is only one
2173  * possible way to schedule packets for that interval.  In order to simplify
2174  * this algorithm, we record the largest max packet size for each interval, and
2175  * assume all packets will be that size.
2176  *
2177  * For interval 0, we obviously must schedule all packets for each interval.
2178  * The bandwidth for interval 0 is just the amount of data to be transmitted
2179  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2180  * the number of packets).
2181  *
2182  * For interval 1, we have two possible microframes to schedule those packets
2183  * in.  For this algorithm, if we can schedule the same number of packets for
2184  * each possible scheduling opportunity (each microframe), we will do so.  The
2185  * remaining number of packets will be saved to be transmitted in the gaps in
2186  * the next interval's scheduling sequence.
2187  *
2188  * As we move those remaining packets to be scheduled with interval 2 packets,
2189  * we have to double the number of remaining packets to transmit.  This is
2190  * because the intervals are actually powers of 2, and we would be transmitting
2191  * the previous interval's packets twice in this interval.  We also have to be
2192  * sure that when we look at the largest max packet size for this interval, we
2193  * also look at the largest max packet size for the remaining packets and take
2194  * the greater of the two.
2195  *
2196  * The algorithm continues to evenly distribute packets in each scheduling
2197  * opportunity, and push the remaining packets out, until we get to the last
2198  * interval.  Then those packets and their associated overhead are just added
2199  * to the bandwidth used.
2200  */
2201 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2202 		struct xhci_virt_device *virt_dev,
2203 		int old_active_eps)
2204 {
2205 	unsigned int bw_reserved;
2206 	unsigned int max_bandwidth;
2207 	unsigned int bw_used;
2208 	unsigned int block_size;
2209 	struct xhci_interval_bw_table *bw_table;
2210 	unsigned int packet_size = 0;
2211 	unsigned int overhead = 0;
2212 	unsigned int packets_transmitted = 0;
2213 	unsigned int packets_remaining = 0;
2214 	unsigned int i;
2215 
2216 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2217 		return xhci_check_ss_bw(xhci, virt_dev);
2218 
2219 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2220 		max_bandwidth = HS_BW_LIMIT;
2221 		/* Convert percent of bus BW reserved to blocks reserved */
2222 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2223 	} else {
2224 		max_bandwidth = FS_BW_LIMIT;
2225 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2226 	}
2227 
2228 	bw_table = virt_dev->bw_table;
2229 	/* We need to translate the max packet size and max ESIT payloads into
2230 	 * the units the hardware uses.
2231 	 */
2232 	block_size = xhci_get_block_size(virt_dev->udev);
2233 
2234 	/* If we are manipulating a LS/FS device under a HS hub, double check
2235 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2236 	 */
2237 	if (virt_dev->tt_info) {
2238 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2239 				"Recalculating BW for rootport %u",
2240 				virt_dev->real_port);
2241 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2242 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2243 					"newly activated TT.\n");
2244 			return -ENOMEM;
2245 		}
2246 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2247 				"Recalculating BW for TT slot %u port %u",
2248 				virt_dev->tt_info->slot_id,
2249 				virt_dev->tt_info->ttport);
2250 	} else {
2251 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2252 				"Recalculating BW for rootport %u",
2253 				virt_dev->real_port);
2254 	}
2255 
2256 	/* Add in how much bandwidth will be used for interval zero, or the
2257 	 * rounded max ESIT payload + number of packets * largest overhead.
2258 	 */
2259 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2260 		bw_table->interval_bw[0].num_packets *
2261 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2262 
2263 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2264 		unsigned int bw_added;
2265 		unsigned int largest_mps;
2266 		unsigned int interval_overhead;
2267 
2268 		/*
2269 		 * How many packets could we transmit in this interval?
2270 		 * If packets didn't fit in the previous interval, we will need
2271 		 * to transmit that many packets twice within this interval.
2272 		 */
2273 		packets_remaining = 2 * packets_remaining +
2274 			bw_table->interval_bw[i].num_packets;
2275 
2276 		/* Find the largest max packet size of this or the previous
2277 		 * interval.
2278 		 */
2279 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2280 			largest_mps = 0;
2281 		else {
2282 			struct xhci_virt_ep *virt_ep;
2283 			struct list_head *ep_entry;
2284 
2285 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2286 			virt_ep = list_entry(ep_entry,
2287 					struct xhci_virt_ep, bw_endpoint_list);
2288 			/* Convert to blocks, rounding up */
2289 			largest_mps = DIV_ROUND_UP(
2290 					virt_ep->bw_info.max_packet_size,
2291 					block_size);
2292 		}
2293 		if (largest_mps > packet_size)
2294 			packet_size = largest_mps;
2295 
2296 		/* Use the larger overhead of this or the previous interval. */
2297 		interval_overhead = xhci_get_largest_overhead(
2298 				&bw_table->interval_bw[i]);
2299 		if (interval_overhead > overhead)
2300 			overhead = interval_overhead;
2301 
2302 		/* How many packets can we evenly distribute across
2303 		 * (1 << (i + 1)) possible scheduling opportunities?
2304 		 */
2305 		packets_transmitted = packets_remaining >> (i + 1);
2306 
2307 		/* Add in the bandwidth used for those scheduled packets */
2308 		bw_added = packets_transmitted * (overhead + packet_size);
2309 
2310 		/* How many packets do we have remaining to transmit? */
2311 		packets_remaining = packets_remaining % (1 << (i + 1));
2312 
2313 		/* What largest max packet size should those packets have? */
2314 		/* If we've transmitted all packets, don't carry over the
2315 		 * largest packet size.
2316 		 */
2317 		if (packets_remaining == 0) {
2318 			packet_size = 0;
2319 			overhead = 0;
2320 		} else if (packets_transmitted > 0) {
2321 			/* Otherwise if we do have remaining packets, and we've
2322 			 * scheduled some packets in this interval, take the
2323 			 * largest max packet size from endpoints with this
2324 			 * interval.
2325 			 */
2326 			packet_size = largest_mps;
2327 			overhead = interval_overhead;
2328 		}
2329 		/* Otherwise carry over packet_size and overhead from the last
2330 		 * time we had a remainder.
2331 		 */
2332 		bw_used += bw_added;
2333 		if (bw_used > max_bandwidth) {
2334 			xhci_warn(xhci, "Not enough bandwidth. "
2335 					"Proposed: %u, Max: %u\n",
2336 				bw_used, max_bandwidth);
2337 			return -ENOMEM;
2338 		}
2339 	}
2340 	/*
2341 	 * Ok, we know we have some packets left over after even-handedly
2342 	 * scheduling interval 15.  We don't know which microframes they will
2343 	 * fit into, so we over-schedule and say they will be scheduled every
2344 	 * microframe.
2345 	 */
2346 	if (packets_remaining > 0)
2347 		bw_used += overhead + packet_size;
2348 
2349 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2350 		unsigned int port_index = virt_dev->real_port - 1;
2351 
2352 		/* OK, we're manipulating a HS device attached to a
2353 		 * root port bandwidth domain.  Include the number of active TTs
2354 		 * in the bandwidth used.
2355 		 */
2356 		bw_used += TT_HS_OVERHEAD *
2357 			xhci->rh_bw[port_index].num_active_tts;
2358 	}
2359 
2360 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2361 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2362 		"Available: %u " "percent",
2363 		bw_used, max_bandwidth, bw_reserved,
2364 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2365 		max_bandwidth);
2366 
2367 	bw_used += bw_reserved;
2368 	if (bw_used > max_bandwidth) {
2369 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2370 				bw_used, max_bandwidth);
2371 		return -ENOMEM;
2372 	}
2373 
2374 	bw_table->bw_used = bw_used;
2375 	return 0;
2376 }
2377 
2378 static bool xhci_is_async_ep(unsigned int ep_type)
2379 {
2380 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2381 					ep_type != ISOC_IN_EP &&
2382 					ep_type != INT_IN_EP);
2383 }
2384 
2385 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2386 {
2387 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2388 }
2389 
2390 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2391 {
2392 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2393 
2394 	if (ep_bw->ep_interval == 0)
2395 		return SS_OVERHEAD_BURST +
2396 			(ep_bw->mult * ep_bw->num_packets *
2397 					(SS_OVERHEAD + mps));
2398 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2399 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2400 				1 << ep_bw->ep_interval);
2401 
2402 }
2403 
2404 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2405 		struct xhci_bw_info *ep_bw,
2406 		struct xhci_interval_bw_table *bw_table,
2407 		struct usb_device *udev,
2408 		struct xhci_virt_ep *virt_ep,
2409 		struct xhci_tt_bw_info *tt_info)
2410 {
2411 	struct xhci_interval_bw	*interval_bw;
2412 	int normalized_interval;
2413 
2414 	if (xhci_is_async_ep(ep_bw->type))
2415 		return;
2416 
2417 	if (udev->speed >= USB_SPEED_SUPER) {
2418 		if (xhci_is_sync_in_ep(ep_bw->type))
2419 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2420 				xhci_get_ss_bw_consumed(ep_bw);
2421 		else
2422 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2423 				xhci_get_ss_bw_consumed(ep_bw);
2424 		return;
2425 	}
2426 
2427 	/* SuperSpeed endpoints never get added to intervals in the table, so
2428 	 * this check is only valid for HS/FS/LS devices.
2429 	 */
2430 	if (list_empty(&virt_ep->bw_endpoint_list))
2431 		return;
2432 	/* For LS/FS devices, we need to translate the interval expressed in
2433 	 * microframes to frames.
2434 	 */
2435 	if (udev->speed == USB_SPEED_HIGH)
2436 		normalized_interval = ep_bw->ep_interval;
2437 	else
2438 		normalized_interval = ep_bw->ep_interval - 3;
2439 
2440 	if (normalized_interval == 0)
2441 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2442 	interval_bw = &bw_table->interval_bw[normalized_interval];
2443 	interval_bw->num_packets -= ep_bw->num_packets;
2444 	switch (udev->speed) {
2445 	case USB_SPEED_LOW:
2446 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2447 		break;
2448 	case USB_SPEED_FULL:
2449 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2450 		break;
2451 	case USB_SPEED_HIGH:
2452 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2453 		break;
2454 	case USB_SPEED_SUPER:
2455 	case USB_SPEED_SUPER_PLUS:
2456 	case USB_SPEED_UNKNOWN:
2457 	case USB_SPEED_WIRELESS:
2458 		/* Should never happen because only LS/FS/HS endpoints will get
2459 		 * added to the endpoint list.
2460 		 */
2461 		return;
2462 	}
2463 	if (tt_info)
2464 		tt_info->active_eps -= 1;
2465 	list_del_init(&virt_ep->bw_endpoint_list);
2466 }
2467 
2468 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2469 		struct xhci_bw_info *ep_bw,
2470 		struct xhci_interval_bw_table *bw_table,
2471 		struct usb_device *udev,
2472 		struct xhci_virt_ep *virt_ep,
2473 		struct xhci_tt_bw_info *tt_info)
2474 {
2475 	struct xhci_interval_bw	*interval_bw;
2476 	struct xhci_virt_ep *smaller_ep;
2477 	int normalized_interval;
2478 
2479 	if (xhci_is_async_ep(ep_bw->type))
2480 		return;
2481 
2482 	if (udev->speed == USB_SPEED_SUPER) {
2483 		if (xhci_is_sync_in_ep(ep_bw->type))
2484 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2485 				xhci_get_ss_bw_consumed(ep_bw);
2486 		else
2487 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2488 				xhci_get_ss_bw_consumed(ep_bw);
2489 		return;
2490 	}
2491 
2492 	/* For LS/FS devices, we need to translate the interval expressed in
2493 	 * microframes to frames.
2494 	 */
2495 	if (udev->speed == USB_SPEED_HIGH)
2496 		normalized_interval = ep_bw->ep_interval;
2497 	else
2498 		normalized_interval = ep_bw->ep_interval - 3;
2499 
2500 	if (normalized_interval == 0)
2501 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2502 	interval_bw = &bw_table->interval_bw[normalized_interval];
2503 	interval_bw->num_packets += ep_bw->num_packets;
2504 	switch (udev->speed) {
2505 	case USB_SPEED_LOW:
2506 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2507 		break;
2508 	case USB_SPEED_FULL:
2509 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2510 		break;
2511 	case USB_SPEED_HIGH:
2512 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2513 		break;
2514 	case USB_SPEED_SUPER:
2515 	case USB_SPEED_SUPER_PLUS:
2516 	case USB_SPEED_UNKNOWN:
2517 	case USB_SPEED_WIRELESS:
2518 		/* Should never happen because only LS/FS/HS endpoints will get
2519 		 * added to the endpoint list.
2520 		 */
2521 		return;
2522 	}
2523 
2524 	if (tt_info)
2525 		tt_info->active_eps += 1;
2526 	/* Insert the endpoint into the list, largest max packet size first. */
2527 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2528 			bw_endpoint_list) {
2529 		if (ep_bw->max_packet_size >=
2530 				smaller_ep->bw_info.max_packet_size) {
2531 			/* Add the new ep before the smaller endpoint */
2532 			list_add_tail(&virt_ep->bw_endpoint_list,
2533 					&smaller_ep->bw_endpoint_list);
2534 			return;
2535 		}
2536 	}
2537 	/* Add the new endpoint at the end of the list. */
2538 	list_add_tail(&virt_ep->bw_endpoint_list,
2539 			&interval_bw->endpoints);
2540 }
2541 
2542 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2543 		struct xhci_virt_device *virt_dev,
2544 		int old_active_eps)
2545 {
2546 	struct xhci_root_port_bw_info *rh_bw_info;
2547 	if (!virt_dev->tt_info)
2548 		return;
2549 
2550 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2551 	if (old_active_eps == 0 &&
2552 				virt_dev->tt_info->active_eps != 0) {
2553 		rh_bw_info->num_active_tts += 1;
2554 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2555 	} else if (old_active_eps != 0 &&
2556 				virt_dev->tt_info->active_eps == 0) {
2557 		rh_bw_info->num_active_tts -= 1;
2558 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2559 	}
2560 }
2561 
2562 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2563 		struct xhci_virt_device *virt_dev,
2564 		struct xhci_container_ctx *in_ctx)
2565 {
2566 	struct xhci_bw_info ep_bw_info[31];
2567 	int i;
2568 	struct xhci_input_control_ctx *ctrl_ctx;
2569 	int old_active_eps = 0;
2570 
2571 	if (virt_dev->tt_info)
2572 		old_active_eps = virt_dev->tt_info->active_eps;
2573 
2574 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2575 	if (!ctrl_ctx) {
2576 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2577 				__func__);
2578 		return -ENOMEM;
2579 	}
2580 
2581 	for (i = 0; i < 31; i++) {
2582 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2583 			continue;
2584 
2585 		/* Make a copy of the BW info in case we need to revert this */
2586 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2587 				sizeof(ep_bw_info[i]));
2588 		/* Drop the endpoint from the interval table if the endpoint is
2589 		 * being dropped or changed.
2590 		 */
2591 		if (EP_IS_DROPPED(ctrl_ctx, i))
2592 			xhci_drop_ep_from_interval_table(xhci,
2593 					&virt_dev->eps[i].bw_info,
2594 					virt_dev->bw_table,
2595 					virt_dev->udev,
2596 					&virt_dev->eps[i],
2597 					virt_dev->tt_info);
2598 	}
2599 	/* Overwrite the information stored in the endpoints' bw_info */
2600 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2601 	for (i = 0; i < 31; i++) {
2602 		/* Add any changed or added endpoints to the interval table */
2603 		if (EP_IS_ADDED(ctrl_ctx, i))
2604 			xhci_add_ep_to_interval_table(xhci,
2605 					&virt_dev->eps[i].bw_info,
2606 					virt_dev->bw_table,
2607 					virt_dev->udev,
2608 					&virt_dev->eps[i],
2609 					virt_dev->tt_info);
2610 	}
2611 
2612 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2613 		/* Ok, this fits in the bandwidth we have.
2614 		 * Update the number of active TTs.
2615 		 */
2616 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2617 		return 0;
2618 	}
2619 
2620 	/* We don't have enough bandwidth for this, revert the stored info. */
2621 	for (i = 0; i < 31; i++) {
2622 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2623 			continue;
2624 
2625 		/* Drop the new copies of any added or changed endpoints from
2626 		 * the interval table.
2627 		 */
2628 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2629 			xhci_drop_ep_from_interval_table(xhci,
2630 					&virt_dev->eps[i].bw_info,
2631 					virt_dev->bw_table,
2632 					virt_dev->udev,
2633 					&virt_dev->eps[i],
2634 					virt_dev->tt_info);
2635 		}
2636 		/* Revert the endpoint back to its old information */
2637 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2638 				sizeof(ep_bw_info[i]));
2639 		/* Add any changed or dropped endpoints back into the table */
2640 		if (EP_IS_DROPPED(ctrl_ctx, i))
2641 			xhci_add_ep_to_interval_table(xhci,
2642 					&virt_dev->eps[i].bw_info,
2643 					virt_dev->bw_table,
2644 					virt_dev->udev,
2645 					&virt_dev->eps[i],
2646 					virt_dev->tt_info);
2647 	}
2648 	return -ENOMEM;
2649 }
2650 
2651 
2652 /* Issue a configure endpoint command or evaluate context command
2653  * and wait for it to finish.
2654  */
2655 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2656 		struct usb_device *udev,
2657 		struct xhci_command *command,
2658 		bool ctx_change, bool must_succeed)
2659 {
2660 	int ret;
2661 	unsigned long flags;
2662 	struct xhci_input_control_ctx *ctrl_ctx;
2663 	struct xhci_virt_device *virt_dev;
2664 	struct xhci_slot_ctx *slot_ctx;
2665 
2666 	if (!command)
2667 		return -EINVAL;
2668 
2669 	spin_lock_irqsave(&xhci->lock, flags);
2670 
2671 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2672 		spin_unlock_irqrestore(&xhci->lock, flags);
2673 		return -ESHUTDOWN;
2674 	}
2675 
2676 	virt_dev = xhci->devs[udev->slot_id];
2677 
2678 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2679 	if (!ctrl_ctx) {
2680 		spin_unlock_irqrestore(&xhci->lock, flags);
2681 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2682 				__func__);
2683 		return -ENOMEM;
2684 	}
2685 
2686 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2687 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2688 		spin_unlock_irqrestore(&xhci->lock, flags);
2689 		xhci_warn(xhci, "Not enough host resources, "
2690 				"active endpoint contexts = %u\n",
2691 				xhci->num_active_eps);
2692 		return -ENOMEM;
2693 	}
2694 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2695 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2696 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2697 			xhci_free_host_resources(xhci, ctrl_ctx);
2698 		spin_unlock_irqrestore(&xhci->lock, flags);
2699 		xhci_warn(xhci, "Not enough bandwidth\n");
2700 		return -ENOMEM;
2701 	}
2702 
2703 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2704 	trace_xhci_configure_endpoint(slot_ctx);
2705 
2706 	if (!ctx_change)
2707 		ret = xhci_queue_configure_endpoint(xhci, command,
2708 				command->in_ctx->dma,
2709 				udev->slot_id, must_succeed);
2710 	else
2711 		ret = xhci_queue_evaluate_context(xhci, command,
2712 				command->in_ctx->dma,
2713 				udev->slot_id, must_succeed);
2714 	if (ret < 0) {
2715 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2716 			xhci_free_host_resources(xhci, ctrl_ctx);
2717 		spin_unlock_irqrestore(&xhci->lock, flags);
2718 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2719 				"FIXME allocate a new ring segment");
2720 		return -ENOMEM;
2721 	}
2722 	xhci_ring_cmd_db(xhci);
2723 	spin_unlock_irqrestore(&xhci->lock, flags);
2724 
2725 	/* Wait for the configure endpoint command to complete */
2726 	wait_for_completion(command->completion);
2727 
2728 	if (!ctx_change)
2729 		ret = xhci_configure_endpoint_result(xhci, udev,
2730 						     &command->status);
2731 	else
2732 		ret = xhci_evaluate_context_result(xhci, udev,
2733 						   &command->status);
2734 
2735 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2736 		spin_lock_irqsave(&xhci->lock, flags);
2737 		/* If the command failed, remove the reserved resources.
2738 		 * Otherwise, clean up the estimate to include dropped eps.
2739 		 */
2740 		if (ret)
2741 			xhci_free_host_resources(xhci, ctrl_ctx);
2742 		else
2743 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2744 		spin_unlock_irqrestore(&xhci->lock, flags);
2745 	}
2746 	return ret;
2747 }
2748 
2749 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2750 	struct xhci_virt_device *vdev, int i)
2751 {
2752 	struct xhci_virt_ep *ep = &vdev->eps[i];
2753 
2754 	if (ep->ep_state & EP_HAS_STREAMS) {
2755 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2756 				xhci_get_endpoint_address(i));
2757 		xhci_free_stream_info(xhci, ep->stream_info);
2758 		ep->stream_info = NULL;
2759 		ep->ep_state &= ~EP_HAS_STREAMS;
2760 	}
2761 }
2762 
2763 /* Called after one or more calls to xhci_add_endpoint() or
2764  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2765  * to call xhci_reset_bandwidth().
2766  *
2767  * Since we are in the middle of changing either configuration or
2768  * installing a new alt setting, the USB core won't allow URBs to be
2769  * enqueued for any endpoint on the old config or interface.  Nothing
2770  * else should be touching the xhci->devs[slot_id] structure, so we
2771  * don't need to take the xhci->lock for manipulating that.
2772  */
2773 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2774 {
2775 	int i;
2776 	int ret = 0;
2777 	struct xhci_hcd *xhci;
2778 	struct xhci_virt_device	*virt_dev;
2779 	struct xhci_input_control_ctx *ctrl_ctx;
2780 	struct xhci_slot_ctx *slot_ctx;
2781 	struct xhci_command *command;
2782 
2783 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2784 	if (ret <= 0)
2785 		return ret;
2786 	xhci = hcd_to_xhci(hcd);
2787 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2788 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2789 		return -ENODEV;
2790 
2791 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2792 	virt_dev = xhci->devs[udev->slot_id];
2793 
2794 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2795 	if (!command)
2796 		return -ENOMEM;
2797 
2798 	command->in_ctx = virt_dev->in_ctx;
2799 
2800 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2801 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2802 	if (!ctrl_ctx) {
2803 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2804 				__func__);
2805 		ret = -ENOMEM;
2806 		goto command_cleanup;
2807 	}
2808 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2809 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2810 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2811 
2812 	/* Don't issue the command if there's no endpoints to update. */
2813 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2814 	    ctrl_ctx->drop_flags == 0) {
2815 		ret = 0;
2816 		goto command_cleanup;
2817 	}
2818 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2819 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2820 	for (i = 31; i >= 1; i--) {
2821 		__le32 le32 = cpu_to_le32(BIT(i));
2822 
2823 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2824 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2825 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2826 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2827 			break;
2828 		}
2829 	}
2830 
2831 	ret = xhci_configure_endpoint(xhci, udev, command,
2832 			false, false);
2833 	if (ret)
2834 		/* Callee should call reset_bandwidth() */
2835 		goto command_cleanup;
2836 
2837 	/* Free any rings that were dropped, but not changed. */
2838 	for (i = 1; i < 31; i++) {
2839 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2840 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2841 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2842 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2843 		}
2844 	}
2845 	xhci_zero_in_ctx(xhci, virt_dev);
2846 	/*
2847 	 * Install any rings for completely new endpoints or changed endpoints,
2848 	 * and free any old rings from changed endpoints.
2849 	 */
2850 	for (i = 1; i < 31; i++) {
2851 		if (!virt_dev->eps[i].new_ring)
2852 			continue;
2853 		/* Only free the old ring if it exists.
2854 		 * It may not if this is the first add of an endpoint.
2855 		 */
2856 		if (virt_dev->eps[i].ring) {
2857 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2858 		}
2859 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2860 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2861 		virt_dev->eps[i].new_ring = NULL;
2862 	}
2863 command_cleanup:
2864 	kfree(command->completion);
2865 	kfree(command);
2866 
2867 	return ret;
2868 }
2869 
2870 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2871 {
2872 	struct xhci_hcd *xhci;
2873 	struct xhci_virt_device	*virt_dev;
2874 	int i, ret;
2875 
2876 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2877 	if (ret <= 0)
2878 		return;
2879 	xhci = hcd_to_xhci(hcd);
2880 
2881 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2882 	virt_dev = xhci->devs[udev->slot_id];
2883 	/* Free any rings allocated for added endpoints */
2884 	for (i = 0; i < 31; i++) {
2885 		if (virt_dev->eps[i].new_ring) {
2886 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2887 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2888 			virt_dev->eps[i].new_ring = NULL;
2889 		}
2890 	}
2891 	xhci_zero_in_ctx(xhci, virt_dev);
2892 }
2893 
2894 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2895 		struct xhci_container_ctx *in_ctx,
2896 		struct xhci_container_ctx *out_ctx,
2897 		struct xhci_input_control_ctx *ctrl_ctx,
2898 		u32 add_flags, u32 drop_flags)
2899 {
2900 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2901 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2902 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2903 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2904 }
2905 
2906 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2907 		unsigned int slot_id, unsigned int ep_index,
2908 		struct xhci_dequeue_state *deq_state)
2909 {
2910 	struct xhci_input_control_ctx *ctrl_ctx;
2911 	struct xhci_container_ctx *in_ctx;
2912 	struct xhci_ep_ctx *ep_ctx;
2913 	u32 added_ctxs;
2914 	dma_addr_t addr;
2915 
2916 	in_ctx = xhci->devs[slot_id]->in_ctx;
2917 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2918 	if (!ctrl_ctx) {
2919 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2920 				__func__);
2921 		return;
2922 	}
2923 
2924 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2925 			xhci->devs[slot_id]->out_ctx, ep_index);
2926 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2927 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2928 			deq_state->new_deq_ptr);
2929 	if (addr == 0) {
2930 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2931 				"reset ep command\n");
2932 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2933 				deq_state->new_deq_seg,
2934 				deq_state->new_deq_ptr);
2935 		return;
2936 	}
2937 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2938 
2939 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2940 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2941 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2942 			added_ctxs, added_ctxs);
2943 }
2944 
2945 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2946 			       unsigned int stream_id, struct xhci_td *td)
2947 {
2948 	struct xhci_dequeue_state deq_state;
2949 	struct usb_device *udev = td->urb->dev;
2950 
2951 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2952 			"Cleaning up stalled endpoint ring");
2953 	/* We need to move the HW's dequeue pointer past this TD,
2954 	 * or it will attempt to resend it on the next doorbell ring.
2955 	 */
2956 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2957 			ep_index, stream_id, td, &deq_state);
2958 
2959 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2960 		return;
2961 
2962 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2963 	 * issue a configure endpoint command later.
2964 	 */
2965 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2966 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2967 				"Queueing new dequeue state");
2968 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2969 				ep_index, &deq_state);
2970 	} else {
2971 		/* Better hope no one uses the input context between now and the
2972 		 * reset endpoint completion!
2973 		 * XXX: No idea how this hardware will react when stream rings
2974 		 * are enabled.
2975 		 */
2976 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2977 				"Setting up input context for "
2978 				"configure endpoint command");
2979 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2980 				ep_index, &deq_state);
2981 	}
2982 }
2983 
2984 /*
2985  * Called after usb core issues a clear halt control message.
2986  * The host side of the halt should already be cleared by a reset endpoint
2987  * command issued when the STALL event was received.
2988  *
2989  * The reset endpoint command may only be issued to endpoints in the halted
2990  * state. For software that wishes to reset the data toggle or sequence number
2991  * of an endpoint that isn't in the halted state this function will issue a
2992  * configure endpoint command with the Drop and Add bits set for the target
2993  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
2994  */
2995 
2996 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2997 		struct usb_host_endpoint *host_ep)
2998 {
2999 	struct xhci_hcd *xhci;
3000 	struct usb_device *udev;
3001 	struct xhci_virt_device *vdev;
3002 	struct xhci_virt_ep *ep;
3003 	struct xhci_input_control_ctx *ctrl_ctx;
3004 	struct xhci_command *stop_cmd, *cfg_cmd;
3005 	unsigned int ep_index;
3006 	unsigned long flags;
3007 	u32 ep_flag;
3008 
3009 	xhci = hcd_to_xhci(hcd);
3010 	if (!host_ep->hcpriv)
3011 		return;
3012 	udev = (struct usb_device *) host_ep->hcpriv;
3013 	vdev = xhci->devs[udev->slot_id];
3014 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3015 	ep = &vdev->eps[ep_index];
3016 
3017 	/* Bail out if toggle is already being cleared by a endpoint reset */
3018 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3019 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3020 		return;
3021 	}
3022 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3023 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3024 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3025 		return;
3026 
3027 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3028 
3029 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3030 		return;
3031 
3032 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3033 	if (!stop_cmd)
3034 		return;
3035 
3036 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3037 	if (!cfg_cmd)
3038 		goto cleanup;
3039 
3040 	spin_lock_irqsave(&xhci->lock, flags);
3041 
3042 	/* block queuing new trbs and ringing ep doorbell */
3043 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3044 
3045 	/*
3046 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3047 	 * Driver is required to synchronously cancel all transfer request.
3048 	 * Stop the endpoint to force xHC to update the output context
3049 	 */
3050 
3051 	if (!list_empty(&ep->ring->td_list)) {
3052 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3053 		spin_unlock_irqrestore(&xhci->lock, flags);
3054 		xhci_free_command(xhci, cfg_cmd);
3055 		goto cleanup;
3056 	}
3057 	xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
3058 	xhci_ring_cmd_db(xhci);
3059 	spin_unlock_irqrestore(&xhci->lock, flags);
3060 
3061 	wait_for_completion(stop_cmd->completion);
3062 
3063 	spin_lock_irqsave(&xhci->lock, flags);
3064 
3065 	/* config ep command clears toggle if add and drop ep flags are set */
3066 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3067 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3068 					   ctrl_ctx, ep_flag, ep_flag);
3069 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3070 
3071 	xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3072 				      udev->slot_id, false);
3073 	xhci_ring_cmd_db(xhci);
3074 	spin_unlock_irqrestore(&xhci->lock, flags);
3075 
3076 	wait_for_completion(cfg_cmd->completion);
3077 
3078 	ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3079 	xhci_free_command(xhci, cfg_cmd);
3080 cleanup:
3081 	xhci_free_command(xhci, stop_cmd);
3082 }
3083 
3084 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3085 		struct usb_device *udev, struct usb_host_endpoint *ep,
3086 		unsigned int slot_id)
3087 {
3088 	int ret;
3089 	unsigned int ep_index;
3090 	unsigned int ep_state;
3091 
3092 	if (!ep)
3093 		return -EINVAL;
3094 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3095 	if (ret <= 0)
3096 		return -EINVAL;
3097 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3098 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3099 				" descriptor for ep 0x%x does not support streams\n",
3100 				ep->desc.bEndpointAddress);
3101 		return -EINVAL;
3102 	}
3103 
3104 	ep_index = xhci_get_endpoint_index(&ep->desc);
3105 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3106 	if (ep_state & EP_HAS_STREAMS ||
3107 			ep_state & EP_GETTING_STREAMS) {
3108 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3109 				"already has streams set up.\n",
3110 				ep->desc.bEndpointAddress);
3111 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3112 				"dynamic stream context array reallocation.\n");
3113 		return -EINVAL;
3114 	}
3115 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3116 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3117 				"endpoint 0x%x; URBs are pending.\n",
3118 				ep->desc.bEndpointAddress);
3119 		return -EINVAL;
3120 	}
3121 	return 0;
3122 }
3123 
3124 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3125 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3126 {
3127 	unsigned int max_streams;
3128 
3129 	/* The stream context array size must be a power of two */
3130 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3131 	/*
3132 	 * Find out how many primary stream array entries the host controller
3133 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3134 	 * level page entries), but that's an optional feature for xHCI host
3135 	 * controllers. xHCs must support at least 4 stream IDs.
3136 	 */
3137 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3138 	if (*num_stream_ctxs > max_streams) {
3139 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3140 				max_streams);
3141 		*num_stream_ctxs = max_streams;
3142 		*num_streams = max_streams;
3143 	}
3144 }
3145 
3146 /* Returns an error code if one of the endpoint already has streams.
3147  * This does not change any data structures, it only checks and gathers
3148  * information.
3149  */
3150 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3151 		struct usb_device *udev,
3152 		struct usb_host_endpoint **eps, unsigned int num_eps,
3153 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3154 {
3155 	unsigned int max_streams;
3156 	unsigned int endpoint_flag;
3157 	int i;
3158 	int ret;
3159 
3160 	for (i = 0; i < num_eps; i++) {
3161 		ret = xhci_check_streams_endpoint(xhci, udev,
3162 				eps[i], udev->slot_id);
3163 		if (ret < 0)
3164 			return ret;
3165 
3166 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3167 		if (max_streams < (*num_streams - 1)) {
3168 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3169 					eps[i]->desc.bEndpointAddress,
3170 					max_streams);
3171 			*num_streams = max_streams+1;
3172 		}
3173 
3174 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3175 		if (*changed_ep_bitmask & endpoint_flag)
3176 			return -EINVAL;
3177 		*changed_ep_bitmask |= endpoint_flag;
3178 	}
3179 	return 0;
3180 }
3181 
3182 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3183 		struct usb_device *udev,
3184 		struct usb_host_endpoint **eps, unsigned int num_eps)
3185 {
3186 	u32 changed_ep_bitmask = 0;
3187 	unsigned int slot_id;
3188 	unsigned int ep_index;
3189 	unsigned int ep_state;
3190 	int i;
3191 
3192 	slot_id = udev->slot_id;
3193 	if (!xhci->devs[slot_id])
3194 		return 0;
3195 
3196 	for (i = 0; i < num_eps; i++) {
3197 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3198 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3199 		/* Are streams already being freed for the endpoint? */
3200 		if (ep_state & EP_GETTING_NO_STREAMS) {
3201 			xhci_warn(xhci, "WARN Can't disable streams for "
3202 					"endpoint 0x%x, "
3203 					"streams are being disabled already\n",
3204 					eps[i]->desc.bEndpointAddress);
3205 			return 0;
3206 		}
3207 		/* Are there actually any streams to free? */
3208 		if (!(ep_state & EP_HAS_STREAMS) &&
3209 				!(ep_state & EP_GETTING_STREAMS)) {
3210 			xhci_warn(xhci, "WARN Can't disable streams for "
3211 					"endpoint 0x%x, "
3212 					"streams are already disabled!\n",
3213 					eps[i]->desc.bEndpointAddress);
3214 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3215 					"with non-streams endpoint\n");
3216 			return 0;
3217 		}
3218 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3219 	}
3220 	return changed_ep_bitmask;
3221 }
3222 
3223 /*
3224  * The USB device drivers use this function (through the HCD interface in USB
3225  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3226  * coordinate mass storage command queueing across multiple endpoints (basically
3227  * a stream ID == a task ID).
3228  *
3229  * Setting up streams involves allocating the same size stream context array
3230  * for each endpoint and issuing a configure endpoint command for all endpoints.
3231  *
3232  * Don't allow the call to succeed if one endpoint only supports one stream
3233  * (which means it doesn't support streams at all).
3234  *
3235  * Drivers may get less stream IDs than they asked for, if the host controller
3236  * hardware or endpoints claim they can't support the number of requested
3237  * stream IDs.
3238  */
3239 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3240 		struct usb_host_endpoint **eps, unsigned int num_eps,
3241 		unsigned int num_streams, gfp_t mem_flags)
3242 {
3243 	int i, ret;
3244 	struct xhci_hcd *xhci;
3245 	struct xhci_virt_device *vdev;
3246 	struct xhci_command *config_cmd;
3247 	struct xhci_input_control_ctx *ctrl_ctx;
3248 	unsigned int ep_index;
3249 	unsigned int num_stream_ctxs;
3250 	unsigned int max_packet;
3251 	unsigned long flags;
3252 	u32 changed_ep_bitmask = 0;
3253 
3254 	if (!eps)
3255 		return -EINVAL;
3256 
3257 	/* Add one to the number of streams requested to account for
3258 	 * stream 0 that is reserved for xHCI usage.
3259 	 */
3260 	num_streams += 1;
3261 	xhci = hcd_to_xhci(hcd);
3262 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3263 			num_streams);
3264 
3265 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3266 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3267 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3268 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3269 		return -ENOSYS;
3270 	}
3271 
3272 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3273 	if (!config_cmd)
3274 		return -ENOMEM;
3275 
3276 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3277 	if (!ctrl_ctx) {
3278 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3279 				__func__);
3280 		xhci_free_command(xhci, config_cmd);
3281 		return -ENOMEM;
3282 	}
3283 
3284 	/* Check to make sure all endpoints are not already configured for
3285 	 * streams.  While we're at it, find the maximum number of streams that
3286 	 * all the endpoints will support and check for duplicate endpoints.
3287 	 */
3288 	spin_lock_irqsave(&xhci->lock, flags);
3289 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3290 			num_eps, &num_streams, &changed_ep_bitmask);
3291 	if (ret < 0) {
3292 		xhci_free_command(xhci, config_cmd);
3293 		spin_unlock_irqrestore(&xhci->lock, flags);
3294 		return ret;
3295 	}
3296 	if (num_streams <= 1) {
3297 		xhci_warn(xhci, "WARN: endpoints can't handle "
3298 				"more than one stream.\n");
3299 		xhci_free_command(xhci, config_cmd);
3300 		spin_unlock_irqrestore(&xhci->lock, flags);
3301 		return -EINVAL;
3302 	}
3303 	vdev = xhci->devs[udev->slot_id];
3304 	/* Mark each endpoint as being in transition, so
3305 	 * xhci_urb_enqueue() will reject all URBs.
3306 	 */
3307 	for (i = 0; i < num_eps; i++) {
3308 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3309 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3310 	}
3311 	spin_unlock_irqrestore(&xhci->lock, flags);
3312 
3313 	/* Setup internal data structures and allocate HW data structures for
3314 	 * streams (but don't install the HW structures in the input context
3315 	 * until we're sure all memory allocation succeeded).
3316 	 */
3317 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3318 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3319 			num_stream_ctxs, num_streams);
3320 
3321 	for (i = 0; i < num_eps; i++) {
3322 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3323 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3324 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3325 				num_stream_ctxs,
3326 				num_streams,
3327 				max_packet, mem_flags);
3328 		if (!vdev->eps[ep_index].stream_info)
3329 			goto cleanup;
3330 		/* Set maxPstreams in endpoint context and update deq ptr to
3331 		 * point to stream context array. FIXME
3332 		 */
3333 	}
3334 
3335 	/* Set up the input context for a configure endpoint command. */
3336 	for (i = 0; i < num_eps; i++) {
3337 		struct xhci_ep_ctx *ep_ctx;
3338 
3339 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3340 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3341 
3342 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3343 				vdev->out_ctx, ep_index);
3344 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3345 				vdev->eps[ep_index].stream_info);
3346 	}
3347 	/* Tell the HW to drop its old copy of the endpoint context info
3348 	 * and add the updated copy from the input context.
3349 	 */
3350 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3351 			vdev->out_ctx, ctrl_ctx,
3352 			changed_ep_bitmask, changed_ep_bitmask);
3353 
3354 	/* Issue and wait for the configure endpoint command */
3355 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3356 			false, false);
3357 
3358 	/* xHC rejected the configure endpoint command for some reason, so we
3359 	 * leave the old ring intact and free our internal streams data
3360 	 * structure.
3361 	 */
3362 	if (ret < 0)
3363 		goto cleanup;
3364 
3365 	spin_lock_irqsave(&xhci->lock, flags);
3366 	for (i = 0; i < num_eps; i++) {
3367 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3368 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3369 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3370 			 udev->slot_id, ep_index);
3371 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3372 	}
3373 	xhci_free_command(xhci, config_cmd);
3374 	spin_unlock_irqrestore(&xhci->lock, flags);
3375 
3376 	/* Subtract 1 for stream 0, which drivers can't use */
3377 	return num_streams - 1;
3378 
3379 cleanup:
3380 	/* If it didn't work, free the streams! */
3381 	for (i = 0; i < num_eps; i++) {
3382 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3383 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3384 		vdev->eps[ep_index].stream_info = NULL;
3385 		/* FIXME Unset maxPstreams in endpoint context and
3386 		 * update deq ptr to point to normal string ring.
3387 		 */
3388 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3389 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3390 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3391 	}
3392 	xhci_free_command(xhci, config_cmd);
3393 	return -ENOMEM;
3394 }
3395 
3396 /* Transition the endpoint from using streams to being a "normal" endpoint
3397  * without streams.
3398  *
3399  * Modify the endpoint context state, submit a configure endpoint command,
3400  * and free all endpoint rings for streams if that completes successfully.
3401  */
3402 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3403 		struct usb_host_endpoint **eps, unsigned int num_eps,
3404 		gfp_t mem_flags)
3405 {
3406 	int i, ret;
3407 	struct xhci_hcd *xhci;
3408 	struct xhci_virt_device *vdev;
3409 	struct xhci_command *command;
3410 	struct xhci_input_control_ctx *ctrl_ctx;
3411 	unsigned int ep_index;
3412 	unsigned long flags;
3413 	u32 changed_ep_bitmask;
3414 
3415 	xhci = hcd_to_xhci(hcd);
3416 	vdev = xhci->devs[udev->slot_id];
3417 
3418 	/* Set up a configure endpoint command to remove the streams rings */
3419 	spin_lock_irqsave(&xhci->lock, flags);
3420 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3421 			udev, eps, num_eps);
3422 	if (changed_ep_bitmask == 0) {
3423 		spin_unlock_irqrestore(&xhci->lock, flags);
3424 		return -EINVAL;
3425 	}
3426 
3427 	/* Use the xhci_command structure from the first endpoint.  We may have
3428 	 * allocated too many, but the driver may call xhci_free_streams() for
3429 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3430 	 */
3431 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3432 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3433 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3434 	if (!ctrl_ctx) {
3435 		spin_unlock_irqrestore(&xhci->lock, flags);
3436 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3437 				__func__);
3438 		return -EINVAL;
3439 	}
3440 
3441 	for (i = 0; i < num_eps; i++) {
3442 		struct xhci_ep_ctx *ep_ctx;
3443 
3444 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3445 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3446 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3447 			EP_GETTING_NO_STREAMS;
3448 
3449 		xhci_endpoint_copy(xhci, command->in_ctx,
3450 				vdev->out_ctx, ep_index);
3451 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3452 				&vdev->eps[ep_index]);
3453 	}
3454 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3455 			vdev->out_ctx, ctrl_ctx,
3456 			changed_ep_bitmask, changed_ep_bitmask);
3457 	spin_unlock_irqrestore(&xhci->lock, flags);
3458 
3459 	/* Issue and wait for the configure endpoint command,
3460 	 * which must succeed.
3461 	 */
3462 	ret = xhci_configure_endpoint(xhci, udev, command,
3463 			false, true);
3464 
3465 	/* xHC rejected the configure endpoint command for some reason, so we
3466 	 * leave the streams rings intact.
3467 	 */
3468 	if (ret < 0)
3469 		return ret;
3470 
3471 	spin_lock_irqsave(&xhci->lock, flags);
3472 	for (i = 0; i < num_eps; i++) {
3473 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3474 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3475 		vdev->eps[ep_index].stream_info = NULL;
3476 		/* FIXME Unset maxPstreams in endpoint context and
3477 		 * update deq ptr to point to normal string ring.
3478 		 */
3479 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3480 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3481 	}
3482 	spin_unlock_irqrestore(&xhci->lock, flags);
3483 
3484 	return 0;
3485 }
3486 
3487 /*
3488  * Deletes endpoint resources for endpoints that were active before a Reset
3489  * Device command, or a Disable Slot command.  The Reset Device command leaves
3490  * the control endpoint intact, whereas the Disable Slot command deletes it.
3491  *
3492  * Must be called with xhci->lock held.
3493  */
3494 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3495 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3496 {
3497 	int i;
3498 	unsigned int num_dropped_eps = 0;
3499 	unsigned int drop_flags = 0;
3500 
3501 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3502 		if (virt_dev->eps[i].ring) {
3503 			drop_flags |= 1 << i;
3504 			num_dropped_eps++;
3505 		}
3506 	}
3507 	xhci->num_active_eps -= num_dropped_eps;
3508 	if (num_dropped_eps)
3509 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3510 				"Dropped %u ep ctxs, flags = 0x%x, "
3511 				"%u now active.",
3512 				num_dropped_eps, drop_flags,
3513 				xhci->num_active_eps);
3514 }
3515 
3516 /*
3517  * This submits a Reset Device Command, which will set the device state to 0,
3518  * set the device address to 0, and disable all the endpoints except the default
3519  * control endpoint.  The USB core should come back and call
3520  * xhci_address_device(), and then re-set up the configuration.  If this is
3521  * called because of a usb_reset_and_verify_device(), then the old alternate
3522  * settings will be re-installed through the normal bandwidth allocation
3523  * functions.
3524  *
3525  * Wait for the Reset Device command to finish.  Remove all structures
3526  * associated with the endpoints that were disabled.  Clear the input device
3527  * structure? Reset the control endpoint 0 max packet size?
3528  *
3529  * If the virt_dev to be reset does not exist or does not match the udev,
3530  * it means the device is lost, possibly due to the xHC restore error and
3531  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3532  * re-allocate the device.
3533  */
3534 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3535 		struct usb_device *udev)
3536 {
3537 	int ret, i;
3538 	unsigned long flags;
3539 	struct xhci_hcd *xhci;
3540 	unsigned int slot_id;
3541 	struct xhci_virt_device *virt_dev;
3542 	struct xhci_command *reset_device_cmd;
3543 	struct xhci_slot_ctx *slot_ctx;
3544 	int old_active_eps = 0;
3545 
3546 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3547 	if (ret <= 0)
3548 		return ret;
3549 	xhci = hcd_to_xhci(hcd);
3550 	slot_id = udev->slot_id;
3551 	virt_dev = xhci->devs[slot_id];
3552 	if (!virt_dev) {
3553 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3554 				"not exist. Re-allocate the device\n", slot_id);
3555 		ret = xhci_alloc_dev(hcd, udev);
3556 		if (ret == 1)
3557 			return 0;
3558 		else
3559 			return -EINVAL;
3560 	}
3561 
3562 	if (virt_dev->tt_info)
3563 		old_active_eps = virt_dev->tt_info->active_eps;
3564 
3565 	if (virt_dev->udev != udev) {
3566 		/* If the virt_dev and the udev does not match, this virt_dev
3567 		 * may belong to another udev.
3568 		 * Re-allocate the device.
3569 		 */
3570 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3571 				"not match the udev. Re-allocate the device\n",
3572 				slot_id);
3573 		ret = xhci_alloc_dev(hcd, udev);
3574 		if (ret == 1)
3575 			return 0;
3576 		else
3577 			return -EINVAL;
3578 	}
3579 
3580 	/* If device is not setup, there is no point in resetting it */
3581 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3582 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3583 						SLOT_STATE_DISABLED)
3584 		return 0;
3585 
3586 	trace_xhci_discover_or_reset_device(slot_ctx);
3587 
3588 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3589 	/* Allocate the command structure that holds the struct completion.
3590 	 * Assume we're in process context, since the normal device reset
3591 	 * process has to wait for the device anyway.  Storage devices are
3592 	 * reset as part of error handling, so use GFP_NOIO instead of
3593 	 * GFP_KERNEL.
3594 	 */
3595 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3596 	if (!reset_device_cmd) {
3597 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3598 		return -ENOMEM;
3599 	}
3600 
3601 	/* Attempt to submit the Reset Device command to the command ring */
3602 	spin_lock_irqsave(&xhci->lock, flags);
3603 
3604 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3605 	if (ret) {
3606 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3607 		spin_unlock_irqrestore(&xhci->lock, flags);
3608 		goto command_cleanup;
3609 	}
3610 	xhci_ring_cmd_db(xhci);
3611 	spin_unlock_irqrestore(&xhci->lock, flags);
3612 
3613 	/* Wait for the Reset Device command to finish */
3614 	wait_for_completion(reset_device_cmd->completion);
3615 
3616 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3617 	 * unless we tried to reset a slot ID that wasn't enabled,
3618 	 * or the device wasn't in the addressed or configured state.
3619 	 */
3620 	ret = reset_device_cmd->status;
3621 	switch (ret) {
3622 	case COMP_COMMAND_ABORTED:
3623 	case COMP_COMMAND_RING_STOPPED:
3624 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3625 		ret = -ETIME;
3626 		goto command_cleanup;
3627 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3628 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3629 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3630 				slot_id,
3631 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3632 		xhci_dbg(xhci, "Not freeing device rings.\n");
3633 		/* Don't treat this as an error.  May change my mind later. */
3634 		ret = 0;
3635 		goto command_cleanup;
3636 	case COMP_SUCCESS:
3637 		xhci_dbg(xhci, "Successful reset device command.\n");
3638 		break;
3639 	default:
3640 		if (xhci_is_vendor_info_code(xhci, ret))
3641 			break;
3642 		xhci_warn(xhci, "Unknown completion code %u for "
3643 				"reset device command.\n", ret);
3644 		ret = -EINVAL;
3645 		goto command_cleanup;
3646 	}
3647 
3648 	/* Free up host controller endpoint resources */
3649 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3650 		spin_lock_irqsave(&xhci->lock, flags);
3651 		/* Don't delete the default control endpoint resources */
3652 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3653 		spin_unlock_irqrestore(&xhci->lock, flags);
3654 	}
3655 
3656 	/* Everything but endpoint 0 is disabled, so free the rings. */
3657 	for (i = 1; i < 31; i++) {
3658 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3659 
3660 		if (ep->ep_state & EP_HAS_STREAMS) {
3661 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3662 					xhci_get_endpoint_address(i));
3663 			xhci_free_stream_info(xhci, ep->stream_info);
3664 			ep->stream_info = NULL;
3665 			ep->ep_state &= ~EP_HAS_STREAMS;
3666 		}
3667 
3668 		if (ep->ring) {
3669 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3670 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3671 		}
3672 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3673 			xhci_drop_ep_from_interval_table(xhci,
3674 					&virt_dev->eps[i].bw_info,
3675 					virt_dev->bw_table,
3676 					udev,
3677 					&virt_dev->eps[i],
3678 					virt_dev->tt_info);
3679 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3680 	}
3681 	/* If necessary, update the number of active TTs on this root port */
3682 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3683 	ret = 0;
3684 
3685 command_cleanup:
3686 	xhci_free_command(xhci, reset_device_cmd);
3687 	return ret;
3688 }
3689 
3690 /*
3691  * At this point, the struct usb_device is about to go away, the device has
3692  * disconnected, and all traffic has been stopped and the endpoints have been
3693  * disabled.  Free any HC data structures associated with that device.
3694  */
3695 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3696 {
3697 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3698 	struct xhci_virt_device *virt_dev;
3699 	struct xhci_slot_ctx *slot_ctx;
3700 	int i, ret;
3701 
3702 #ifndef CONFIG_USB_DEFAULT_PERSIST
3703 	/*
3704 	 * We called pm_runtime_get_noresume when the device was attached.
3705 	 * Decrement the counter here to allow controller to runtime suspend
3706 	 * if no devices remain.
3707 	 */
3708 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3709 		pm_runtime_put_noidle(hcd->self.controller);
3710 #endif
3711 
3712 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3713 	/* If the host is halted due to driver unload, we still need to free the
3714 	 * device.
3715 	 */
3716 	if (ret <= 0 && ret != -ENODEV)
3717 		return;
3718 
3719 	virt_dev = xhci->devs[udev->slot_id];
3720 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3721 	trace_xhci_free_dev(slot_ctx);
3722 
3723 	/* Stop any wayward timer functions (which may grab the lock) */
3724 	for (i = 0; i < 31; i++) {
3725 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3726 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3727 	}
3728 	xhci_debugfs_remove_slot(xhci, udev->slot_id);
3729 	virt_dev->udev = NULL;
3730 	ret = xhci_disable_slot(xhci, udev->slot_id);
3731 	if (ret)
3732 		xhci_free_virt_device(xhci, udev->slot_id);
3733 }
3734 
3735 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3736 {
3737 	struct xhci_command *command;
3738 	unsigned long flags;
3739 	u32 state;
3740 	int ret = 0;
3741 
3742 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3743 	if (!command)
3744 		return -ENOMEM;
3745 
3746 	spin_lock_irqsave(&xhci->lock, flags);
3747 	/* Don't disable the slot if the host controller is dead. */
3748 	state = readl(&xhci->op_regs->status);
3749 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3750 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3751 		spin_unlock_irqrestore(&xhci->lock, flags);
3752 		kfree(command);
3753 		return -ENODEV;
3754 	}
3755 
3756 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3757 				slot_id);
3758 	if (ret) {
3759 		spin_unlock_irqrestore(&xhci->lock, flags);
3760 		kfree(command);
3761 		return ret;
3762 	}
3763 	xhci_ring_cmd_db(xhci);
3764 	spin_unlock_irqrestore(&xhci->lock, flags);
3765 	return ret;
3766 }
3767 
3768 /*
3769  * Checks if we have enough host controller resources for the default control
3770  * endpoint.
3771  *
3772  * Must be called with xhci->lock held.
3773  */
3774 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3775 {
3776 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3777 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3778 				"Not enough ep ctxs: "
3779 				"%u active, need to add 1, limit is %u.",
3780 				xhci->num_active_eps, xhci->limit_active_eps);
3781 		return -ENOMEM;
3782 	}
3783 	xhci->num_active_eps += 1;
3784 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3785 			"Adding 1 ep ctx, %u now active.",
3786 			xhci->num_active_eps);
3787 	return 0;
3788 }
3789 
3790 
3791 /*
3792  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3793  * timed out, or allocating memory failed.  Returns 1 on success.
3794  */
3795 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3796 {
3797 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3798 	struct xhci_virt_device *vdev;
3799 	struct xhci_slot_ctx *slot_ctx;
3800 	unsigned long flags;
3801 	int ret, slot_id;
3802 	struct xhci_command *command;
3803 
3804 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3805 	if (!command)
3806 		return 0;
3807 
3808 	spin_lock_irqsave(&xhci->lock, flags);
3809 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3810 	if (ret) {
3811 		spin_unlock_irqrestore(&xhci->lock, flags);
3812 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3813 		xhci_free_command(xhci, command);
3814 		return 0;
3815 	}
3816 	xhci_ring_cmd_db(xhci);
3817 	spin_unlock_irqrestore(&xhci->lock, flags);
3818 
3819 	wait_for_completion(command->completion);
3820 	slot_id = command->slot_id;
3821 
3822 	if (!slot_id || command->status != COMP_SUCCESS) {
3823 		xhci_err(xhci, "Error while assigning device slot ID\n");
3824 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3825 				HCS_MAX_SLOTS(
3826 					readl(&xhci->cap_regs->hcs_params1)));
3827 		xhci_free_command(xhci, command);
3828 		return 0;
3829 	}
3830 
3831 	xhci_free_command(xhci, command);
3832 
3833 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3834 		spin_lock_irqsave(&xhci->lock, flags);
3835 		ret = xhci_reserve_host_control_ep_resources(xhci);
3836 		if (ret) {
3837 			spin_unlock_irqrestore(&xhci->lock, flags);
3838 			xhci_warn(xhci, "Not enough host resources, "
3839 					"active endpoint contexts = %u\n",
3840 					xhci->num_active_eps);
3841 			goto disable_slot;
3842 		}
3843 		spin_unlock_irqrestore(&xhci->lock, flags);
3844 	}
3845 	/* Use GFP_NOIO, since this function can be called from
3846 	 * xhci_discover_or_reset_device(), which may be called as part of
3847 	 * mass storage driver error handling.
3848 	 */
3849 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3850 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3851 		goto disable_slot;
3852 	}
3853 	vdev = xhci->devs[slot_id];
3854 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3855 	trace_xhci_alloc_dev(slot_ctx);
3856 
3857 	udev->slot_id = slot_id;
3858 
3859 	xhci_debugfs_create_slot(xhci, slot_id);
3860 
3861 #ifndef CONFIG_USB_DEFAULT_PERSIST
3862 	/*
3863 	 * If resetting upon resume, we can't put the controller into runtime
3864 	 * suspend if there is a device attached.
3865 	 */
3866 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3867 		pm_runtime_get_noresume(hcd->self.controller);
3868 #endif
3869 
3870 	/* Is this a LS or FS device under a HS hub? */
3871 	/* Hub or peripherial? */
3872 	return 1;
3873 
3874 disable_slot:
3875 	ret = xhci_disable_slot(xhci, udev->slot_id);
3876 	if (ret)
3877 		xhci_free_virt_device(xhci, udev->slot_id);
3878 
3879 	return 0;
3880 }
3881 
3882 /*
3883  * Issue an Address Device command and optionally send a corresponding
3884  * SetAddress request to the device.
3885  */
3886 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3887 			     enum xhci_setup_dev setup)
3888 {
3889 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3890 	unsigned long flags;
3891 	struct xhci_virt_device *virt_dev;
3892 	int ret = 0;
3893 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3894 	struct xhci_slot_ctx *slot_ctx;
3895 	struct xhci_input_control_ctx *ctrl_ctx;
3896 	u64 temp_64;
3897 	struct xhci_command *command = NULL;
3898 
3899 	mutex_lock(&xhci->mutex);
3900 
3901 	if (xhci->xhc_state) {	/* dying, removing or halted */
3902 		ret = -ESHUTDOWN;
3903 		goto out;
3904 	}
3905 
3906 	if (!udev->slot_id) {
3907 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3908 				"Bad Slot ID %d", udev->slot_id);
3909 		ret = -EINVAL;
3910 		goto out;
3911 	}
3912 
3913 	virt_dev = xhci->devs[udev->slot_id];
3914 
3915 	if (WARN_ON(!virt_dev)) {
3916 		/*
3917 		 * In plug/unplug torture test with an NEC controller,
3918 		 * a zero-dereference was observed once due to virt_dev = 0.
3919 		 * Print useful debug rather than crash if it is observed again!
3920 		 */
3921 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3922 			udev->slot_id);
3923 		ret = -EINVAL;
3924 		goto out;
3925 	}
3926 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3927 	trace_xhci_setup_device_slot(slot_ctx);
3928 
3929 	if (setup == SETUP_CONTEXT_ONLY) {
3930 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3931 		    SLOT_STATE_DEFAULT) {
3932 			xhci_dbg(xhci, "Slot already in default state\n");
3933 			goto out;
3934 		}
3935 	}
3936 
3937 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3938 	if (!command) {
3939 		ret = -ENOMEM;
3940 		goto out;
3941 	}
3942 
3943 	command->in_ctx = virt_dev->in_ctx;
3944 
3945 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3946 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3947 	if (!ctrl_ctx) {
3948 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3949 				__func__);
3950 		ret = -EINVAL;
3951 		goto out;
3952 	}
3953 	/*
3954 	 * If this is the first Set Address since device plug-in or
3955 	 * virt_device realloaction after a resume with an xHCI power loss,
3956 	 * then set up the slot context.
3957 	 */
3958 	if (!slot_ctx->dev_info)
3959 		xhci_setup_addressable_virt_dev(xhci, udev);
3960 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3961 	else
3962 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3963 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3964 	ctrl_ctx->drop_flags = 0;
3965 
3966 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3967 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3968 
3969 	spin_lock_irqsave(&xhci->lock, flags);
3970 	trace_xhci_setup_device(virt_dev);
3971 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3972 					udev->slot_id, setup);
3973 	if (ret) {
3974 		spin_unlock_irqrestore(&xhci->lock, flags);
3975 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3976 				"FIXME: allocate a command ring segment");
3977 		goto out;
3978 	}
3979 	xhci_ring_cmd_db(xhci);
3980 	spin_unlock_irqrestore(&xhci->lock, flags);
3981 
3982 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3983 	wait_for_completion(command->completion);
3984 
3985 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3986 	 * the SetAddress() "recovery interval" required by USB and aborting the
3987 	 * command on a timeout.
3988 	 */
3989 	switch (command->status) {
3990 	case COMP_COMMAND_ABORTED:
3991 	case COMP_COMMAND_RING_STOPPED:
3992 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3993 		ret = -ETIME;
3994 		break;
3995 	case COMP_CONTEXT_STATE_ERROR:
3996 	case COMP_SLOT_NOT_ENABLED_ERROR:
3997 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3998 			 act, udev->slot_id);
3999 		ret = -EINVAL;
4000 		break;
4001 	case COMP_USB_TRANSACTION_ERROR:
4002 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4003 
4004 		mutex_unlock(&xhci->mutex);
4005 		ret = xhci_disable_slot(xhci, udev->slot_id);
4006 		if (!ret)
4007 			xhci_alloc_dev(hcd, udev);
4008 		kfree(command->completion);
4009 		kfree(command);
4010 		return -EPROTO;
4011 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4012 		dev_warn(&udev->dev,
4013 			 "ERROR: Incompatible device for setup %s command\n", act);
4014 		ret = -ENODEV;
4015 		break;
4016 	case COMP_SUCCESS:
4017 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4018 			       "Successful setup %s command", act);
4019 		break;
4020 	default:
4021 		xhci_err(xhci,
4022 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4023 			 act, command->status);
4024 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4025 		ret = -EINVAL;
4026 		break;
4027 	}
4028 	if (ret)
4029 		goto out;
4030 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4031 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4032 			"Op regs DCBAA ptr = %#016llx", temp_64);
4033 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4034 		"Slot ID %d dcbaa entry @%p = %#016llx",
4035 		udev->slot_id,
4036 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4037 		(unsigned long long)
4038 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4039 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4040 			"Output Context DMA address = %#08llx",
4041 			(unsigned long long)virt_dev->out_ctx->dma);
4042 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4043 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4044 	/*
4045 	 * USB core uses address 1 for the roothubs, so we add one to the
4046 	 * address given back to us by the HC.
4047 	 */
4048 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4049 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4050 	/* Zero the input context control for later use */
4051 	ctrl_ctx->add_flags = 0;
4052 	ctrl_ctx->drop_flags = 0;
4053 
4054 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4055 		       "Internal device address = %d",
4056 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4057 out:
4058 	mutex_unlock(&xhci->mutex);
4059 	if (command) {
4060 		kfree(command->completion);
4061 		kfree(command);
4062 	}
4063 	return ret;
4064 }
4065 
4066 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4067 {
4068 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4069 }
4070 
4071 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4072 {
4073 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4074 }
4075 
4076 /*
4077  * Transfer the port index into real index in the HW port status
4078  * registers. Caculate offset between the port's PORTSC register
4079  * and port status base. Divide the number of per port register
4080  * to get the real index. The raw port number bases 1.
4081  */
4082 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4083 {
4084 	struct xhci_hub *rhub;
4085 
4086 	rhub = xhci_get_rhub(hcd);
4087 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4088 }
4089 
4090 /*
4091  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4092  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4093  */
4094 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4095 			struct usb_device *udev, u16 max_exit_latency)
4096 {
4097 	struct xhci_virt_device *virt_dev;
4098 	struct xhci_command *command;
4099 	struct xhci_input_control_ctx *ctrl_ctx;
4100 	struct xhci_slot_ctx *slot_ctx;
4101 	unsigned long flags;
4102 	int ret;
4103 
4104 	spin_lock_irqsave(&xhci->lock, flags);
4105 
4106 	virt_dev = xhci->devs[udev->slot_id];
4107 
4108 	/*
4109 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4110 	 * xHC was re-initialized. Exit latency will be set later after
4111 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4112 	 */
4113 
4114 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4115 		spin_unlock_irqrestore(&xhci->lock, flags);
4116 		return 0;
4117 	}
4118 
4119 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4120 	command = xhci->lpm_command;
4121 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4122 	if (!ctrl_ctx) {
4123 		spin_unlock_irqrestore(&xhci->lock, flags);
4124 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4125 				__func__);
4126 		return -ENOMEM;
4127 	}
4128 
4129 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4130 	spin_unlock_irqrestore(&xhci->lock, flags);
4131 
4132 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4133 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4134 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4135 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4136 	slot_ctx->dev_state = 0;
4137 
4138 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4139 			"Set up evaluate context for LPM MEL change.");
4140 
4141 	/* Issue and wait for the evaluate context command. */
4142 	ret = xhci_configure_endpoint(xhci, udev, command,
4143 			true, true);
4144 
4145 	if (!ret) {
4146 		spin_lock_irqsave(&xhci->lock, flags);
4147 		virt_dev->current_mel = max_exit_latency;
4148 		spin_unlock_irqrestore(&xhci->lock, flags);
4149 	}
4150 	return ret;
4151 }
4152 
4153 #ifdef CONFIG_PM
4154 
4155 /* BESL to HIRD Encoding array for USB2 LPM */
4156 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4157 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4158 
4159 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4160 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4161 					struct usb_device *udev)
4162 {
4163 	int u2del, besl, besl_host;
4164 	int besl_device = 0;
4165 	u32 field;
4166 
4167 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4168 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4169 
4170 	if (field & USB_BESL_SUPPORT) {
4171 		for (besl_host = 0; besl_host < 16; besl_host++) {
4172 			if (xhci_besl_encoding[besl_host] >= u2del)
4173 				break;
4174 		}
4175 		/* Use baseline BESL value as default */
4176 		if (field & USB_BESL_BASELINE_VALID)
4177 			besl_device = USB_GET_BESL_BASELINE(field);
4178 		else if (field & USB_BESL_DEEP_VALID)
4179 			besl_device = USB_GET_BESL_DEEP(field);
4180 	} else {
4181 		if (u2del <= 50)
4182 			besl_host = 0;
4183 		else
4184 			besl_host = (u2del - 51) / 75 + 1;
4185 	}
4186 
4187 	besl = besl_host + besl_device;
4188 	if (besl > 15)
4189 		besl = 15;
4190 
4191 	return besl;
4192 }
4193 
4194 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4195 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4196 {
4197 	u32 field;
4198 	int l1;
4199 	int besld = 0;
4200 	int hirdm = 0;
4201 
4202 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4203 
4204 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4205 	l1 = udev->l1_params.timeout / 256;
4206 
4207 	/* device has preferred BESLD */
4208 	if (field & USB_BESL_DEEP_VALID) {
4209 		besld = USB_GET_BESL_DEEP(field);
4210 		hirdm = 1;
4211 	}
4212 
4213 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4214 }
4215 
4216 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4217 			struct usb_device *udev, int enable)
4218 {
4219 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4220 	struct xhci_port **ports;
4221 	__le32 __iomem	*pm_addr, *hlpm_addr;
4222 	u32		pm_val, hlpm_val, field;
4223 	unsigned int	port_num;
4224 	unsigned long	flags;
4225 	int		hird, exit_latency;
4226 	int		ret;
4227 
4228 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4229 			!udev->lpm_capable)
4230 		return -EPERM;
4231 
4232 	if (!udev->parent || udev->parent->parent ||
4233 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4234 		return -EPERM;
4235 
4236 	if (udev->usb2_hw_lpm_capable != 1)
4237 		return -EPERM;
4238 
4239 	spin_lock_irqsave(&xhci->lock, flags);
4240 
4241 	ports = xhci->usb2_rhub.ports;
4242 	port_num = udev->portnum - 1;
4243 	pm_addr = ports[port_num]->addr + PORTPMSC;
4244 	pm_val = readl(pm_addr);
4245 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4246 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4247 
4248 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4249 			enable ? "enable" : "disable", port_num + 1);
4250 
4251 	if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4252 		/* Host supports BESL timeout instead of HIRD */
4253 		if (udev->usb2_hw_lpm_besl_capable) {
4254 			/* if device doesn't have a preferred BESL value use a
4255 			 * default one which works with mixed HIRD and BESL
4256 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4257 			 */
4258 			if ((field & USB_BESL_SUPPORT) &&
4259 			    (field & USB_BESL_BASELINE_VALID))
4260 				hird = USB_GET_BESL_BASELINE(field);
4261 			else
4262 				hird = udev->l1_params.besl;
4263 
4264 			exit_latency = xhci_besl_encoding[hird];
4265 			spin_unlock_irqrestore(&xhci->lock, flags);
4266 
4267 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4268 			 * input context for link powermanagement evaluate
4269 			 * context commands. It is protected by hcd->bandwidth
4270 			 * mutex and is shared by all devices. We need to set
4271 			 * the max ext latency in USB 2 BESL LPM as well, so
4272 			 * use the same mutex and xhci_change_max_exit_latency()
4273 			 */
4274 			mutex_lock(hcd->bandwidth_mutex);
4275 			ret = xhci_change_max_exit_latency(xhci, udev,
4276 							   exit_latency);
4277 			mutex_unlock(hcd->bandwidth_mutex);
4278 
4279 			if (ret < 0)
4280 				return ret;
4281 			spin_lock_irqsave(&xhci->lock, flags);
4282 
4283 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4284 			writel(hlpm_val, hlpm_addr);
4285 			/* flush write */
4286 			readl(hlpm_addr);
4287 		} else {
4288 			hird = xhci_calculate_hird_besl(xhci, udev);
4289 		}
4290 
4291 		pm_val &= ~PORT_HIRD_MASK;
4292 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4293 		writel(pm_val, pm_addr);
4294 		pm_val = readl(pm_addr);
4295 		pm_val |= PORT_HLE;
4296 		writel(pm_val, pm_addr);
4297 		/* flush write */
4298 		readl(pm_addr);
4299 	} else {
4300 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4301 		writel(pm_val, pm_addr);
4302 		/* flush write */
4303 		readl(pm_addr);
4304 		if (udev->usb2_hw_lpm_besl_capable) {
4305 			spin_unlock_irqrestore(&xhci->lock, flags);
4306 			mutex_lock(hcd->bandwidth_mutex);
4307 			xhci_change_max_exit_latency(xhci, udev, 0);
4308 			mutex_unlock(hcd->bandwidth_mutex);
4309 			return 0;
4310 		}
4311 	}
4312 
4313 	spin_unlock_irqrestore(&xhci->lock, flags);
4314 	return 0;
4315 }
4316 
4317 /* check if a usb2 port supports a given extened capability protocol
4318  * only USB2 ports extended protocol capability values are cached.
4319  * Return 1 if capability is supported
4320  */
4321 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4322 					   unsigned capability)
4323 {
4324 	u32 port_offset, port_count;
4325 	int i;
4326 
4327 	for (i = 0; i < xhci->num_ext_caps; i++) {
4328 		if (xhci->ext_caps[i] & capability) {
4329 			/* port offsets starts at 1 */
4330 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4331 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4332 			if (port >= port_offset &&
4333 			    port < port_offset + port_count)
4334 				return 1;
4335 		}
4336 	}
4337 	return 0;
4338 }
4339 
4340 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4341 {
4342 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4343 	int		portnum = udev->portnum - 1;
4344 
4345 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4346 			!udev->lpm_capable)
4347 		return 0;
4348 
4349 	/* we only support lpm for non-hub device connected to root hub yet */
4350 	if (!udev->parent || udev->parent->parent ||
4351 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4352 		return 0;
4353 
4354 	if (xhci->hw_lpm_support == 1 &&
4355 			xhci_check_usb2_port_capability(
4356 				xhci, portnum, XHCI_HLC)) {
4357 		udev->usb2_hw_lpm_capable = 1;
4358 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4359 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4360 		if (xhci_check_usb2_port_capability(xhci, portnum,
4361 					XHCI_BLC))
4362 			udev->usb2_hw_lpm_besl_capable = 1;
4363 	}
4364 
4365 	return 0;
4366 }
4367 
4368 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4369 
4370 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4371 static unsigned long long xhci_service_interval_to_ns(
4372 		struct usb_endpoint_descriptor *desc)
4373 {
4374 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4375 }
4376 
4377 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4378 		enum usb3_link_state state)
4379 {
4380 	unsigned long long sel;
4381 	unsigned long long pel;
4382 	unsigned int max_sel_pel;
4383 	char *state_name;
4384 
4385 	switch (state) {
4386 	case USB3_LPM_U1:
4387 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4388 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4389 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4390 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4391 		state_name = "U1";
4392 		break;
4393 	case USB3_LPM_U2:
4394 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4395 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4396 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4397 		state_name = "U2";
4398 		break;
4399 	default:
4400 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4401 				__func__);
4402 		return USB3_LPM_DISABLED;
4403 	}
4404 
4405 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4406 		return USB3_LPM_DEVICE_INITIATED;
4407 
4408 	if (sel > max_sel_pel)
4409 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4410 				"due to long SEL %llu ms\n",
4411 				state_name, sel);
4412 	else
4413 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4414 				"due to long PEL %llu ms\n",
4415 				state_name, pel);
4416 	return USB3_LPM_DISABLED;
4417 }
4418 
4419 /* The U1 timeout should be the maximum of the following values:
4420  *  - For control endpoints, U1 system exit latency (SEL) * 3
4421  *  - For bulk endpoints, U1 SEL * 5
4422  *  - For interrupt endpoints:
4423  *    - Notification EPs, U1 SEL * 3
4424  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4425  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4426  */
4427 static unsigned long long xhci_calculate_intel_u1_timeout(
4428 		struct usb_device *udev,
4429 		struct usb_endpoint_descriptor *desc)
4430 {
4431 	unsigned long long timeout_ns;
4432 	int ep_type;
4433 	int intr_type;
4434 
4435 	ep_type = usb_endpoint_type(desc);
4436 	switch (ep_type) {
4437 	case USB_ENDPOINT_XFER_CONTROL:
4438 		timeout_ns = udev->u1_params.sel * 3;
4439 		break;
4440 	case USB_ENDPOINT_XFER_BULK:
4441 		timeout_ns = udev->u1_params.sel * 5;
4442 		break;
4443 	case USB_ENDPOINT_XFER_INT:
4444 		intr_type = usb_endpoint_interrupt_type(desc);
4445 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4446 			timeout_ns = udev->u1_params.sel * 3;
4447 			break;
4448 		}
4449 		/* Otherwise the calculation is the same as isoc eps */
4450 		/* fall through */
4451 	case USB_ENDPOINT_XFER_ISOC:
4452 		timeout_ns = xhci_service_interval_to_ns(desc);
4453 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4454 		if (timeout_ns < udev->u1_params.sel * 2)
4455 			timeout_ns = udev->u1_params.sel * 2;
4456 		break;
4457 	default:
4458 		return 0;
4459 	}
4460 
4461 	return timeout_ns;
4462 }
4463 
4464 /* Returns the hub-encoded U1 timeout value. */
4465 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4466 		struct usb_device *udev,
4467 		struct usb_endpoint_descriptor *desc)
4468 {
4469 	unsigned long long timeout_ns;
4470 
4471 	if (xhci->quirks & XHCI_INTEL_HOST)
4472 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4473 	else
4474 		timeout_ns = udev->u1_params.sel;
4475 
4476 	/* The U1 timeout is encoded in 1us intervals.
4477 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4478 	 */
4479 	if (timeout_ns == USB3_LPM_DISABLED)
4480 		timeout_ns = 1;
4481 	else
4482 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4483 
4484 	/* If the necessary timeout value is bigger than what we can set in the
4485 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4486 	 */
4487 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4488 		return timeout_ns;
4489 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4490 			"due to long timeout %llu ms\n", timeout_ns);
4491 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4492 }
4493 
4494 /* The U2 timeout should be the maximum of:
4495  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4496  *  - largest bInterval of any active periodic endpoint (to avoid going
4497  *    into lower power link states between intervals).
4498  *  - the U2 Exit Latency of the device
4499  */
4500 static unsigned long long xhci_calculate_intel_u2_timeout(
4501 		struct usb_device *udev,
4502 		struct usb_endpoint_descriptor *desc)
4503 {
4504 	unsigned long long timeout_ns;
4505 	unsigned long long u2_del_ns;
4506 
4507 	timeout_ns = 10 * 1000 * 1000;
4508 
4509 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4510 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4511 		timeout_ns = xhci_service_interval_to_ns(desc);
4512 
4513 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4514 	if (u2_del_ns > timeout_ns)
4515 		timeout_ns = u2_del_ns;
4516 
4517 	return timeout_ns;
4518 }
4519 
4520 /* Returns the hub-encoded U2 timeout value. */
4521 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4522 		struct usb_device *udev,
4523 		struct usb_endpoint_descriptor *desc)
4524 {
4525 	unsigned long long timeout_ns;
4526 
4527 	if (xhci->quirks & XHCI_INTEL_HOST)
4528 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4529 	else
4530 		timeout_ns = udev->u2_params.sel;
4531 
4532 	/* The U2 timeout is encoded in 256us intervals */
4533 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4534 	/* If the necessary timeout value is bigger than what we can set in the
4535 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4536 	 */
4537 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4538 		return timeout_ns;
4539 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4540 			"due to long timeout %llu ms\n", timeout_ns);
4541 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4542 }
4543 
4544 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4545 		struct usb_device *udev,
4546 		struct usb_endpoint_descriptor *desc,
4547 		enum usb3_link_state state,
4548 		u16 *timeout)
4549 {
4550 	if (state == USB3_LPM_U1)
4551 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4552 	else if (state == USB3_LPM_U2)
4553 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4554 
4555 	return USB3_LPM_DISABLED;
4556 }
4557 
4558 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4559 		struct usb_device *udev,
4560 		struct usb_endpoint_descriptor *desc,
4561 		enum usb3_link_state state,
4562 		u16 *timeout)
4563 {
4564 	u16 alt_timeout;
4565 
4566 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4567 		desc, state, timeout);
4568 
4569 	/* If we found we can't enable hub-initiated LPM, or
4570 	 * the U1 or U2 exit latency was too high to allow
4571 	 * device-initiated LPM as well, just stop searching.
4572 	 */
4573 	if (alt_timeout == USB3_LPM_DISABLED ||
4574 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4575 		*timeout = alt_timeout;
4576 		return -E2BIG;
4577 	}
4578 	if (alt_timeout > *timeout)
4579 		*timeout = alt_timeout;
4580 	return 0;
4581 }
4582 
4583 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4584 		struct usb_device *udev,
4585 		struct usb_host_interface *alt,
4586 		enum usb3_link_state state,
4587 		u16 *timeout)
4588 {
4589 	int j;
4590 
4591 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4592 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4593 					&alt->endpoint[j].desc, state, timeout))
4594 			return -E2BIG;
4595 		continue;
4596 	}
4597 	return 0;
4598 }
4599 
4600 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4601 		enum usb3_link_state state)
4602 {
4603 	struct usb_device *parent;
4604 	unsigned int num_hubs;
4605 
4606 	if (state == USB3_LPM_U2)
4607 		return 0;
4608 
4609 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4610 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4611 			parent = parent->parent)
4612 		num_hubs++;
4613 
4614 	if (num_hubs < 2)
4615 		return 0;
4616 
4617 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4618 			" below second-tier hub.\n");
4619 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4620 			"to decrease power consumption.\n");
4621 	return -E2BIG;
4622 }
4623 
4624 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4625 		struct usb_device *udev,
4626 		enum usb3_link_state state)
4627 {
4628 	if (xhci->quirks & XHCI_INTEL_HOST)
4629 		return xhci_check_intel_tier_policy(udev, state);
4630 	else
4631 		return 0;
4632 }
4633 
4634 /* Returns the U1 or U2 timeout that should be enabled.
4635  * If the tier check or timeout setting functions return with a non-zero exit
4636  * code, that means the timeout value has been finalized and we shouldn't look
4637  * at any more endpoints.
4638  */
4639 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4640 			struct usb_device *udev, enum usb3_link_state state)
4641 {
4642 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4643 	struct usb_host_config *config;
4644 	char *state_name;
4645 	int i;
4646 	u16 timeout = USB3_LPM_DISABLED;
4647 
4648 	if (state == USB3_LPM_U1)
4649 		state_name = "U1";
4650 	else if (state == USB3_LPM_U2)
4651 		state_name = "U2";
4652 	else {
4653 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4654 				state);
4655 		return timeout;
4656 	}
4657 
4658 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4659 		return timeout;
4660 
4661 	/* Gather some information about the currently installed configuration
4662 	 * and alternate interface settings.
4663 	 */
4664 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4665 			state, &timeout))
4666 		return timeout;
4667 
4668 	config = udev->actconfig;
4669 	if (!config)
4670 		return timeout;
4671 
4672 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4673 		struct usb_driver *driver;
4674 		struct usb_interface *intf = config->interface[i];
4675 
4676 		if (!intf)
4677 			continue;
4678 
4679 		/* Check if any currently bound drivers want hub-initiated LPM
4680 		 * disabled.
4681 		 */
4682 		if (intf->dev.driver) {
4683 			driver = to_usb_driver(intf->dev.driver);
4684 			if (driver && driver->disable_hub_initiated_lpm) {
4685 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4686 						"at request of driver %s\n",
4687 						state_name, driver->name);
4688 				return xhci_get_timeout_no_hub_lpm(udev, state);
4689 			}
4690 		}
4691 
4692 		/* Not sure how this could happen... */
4693 		if (!intf->cur_altsetting)
4694 			continue;
4695 
4696 		if (xhci_update_timeout_for_interface(xhci, udev,
4697 					intf->cur_altsetting,
4698 					state, &timeout))
4699 			return timeout;
4700 	}
4701 	return timeout;
4702 }
4703 
4704 static int calculate_max_exit_latency(struct usb_device *udev,
4705 		enum usb3_link_state state_changed,
4706 		u16 hub_encoded_timeout)
4707 {
4708 	unsigned long long u1_mel_us = 0;
4709 	unsigned long long u2_mel_us = 0;
4710 	unsigned long long mel_us = 0;
4711 	bool disabling_u1;
4712 	bool disabling_u2;
4713 	bool enabling_u1;
4714 	bool enabling_u2;
4715 
4716 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4717 			hub_encoded_timeout == USB3_LPM_DISABLED);
4718 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4719 			hub_encoded_timeout == USB3_LPM_DISABLED);
4720 
4721 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4722 			hub_encoded_timeout != USB3_LPM_DISABLED);
4723 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4724 			hub_encoded_timeout != USB3_LPM_DISABLED);
4725 
4726 	/* If U1 was already enabled and we're not disabling it,
4727 	 * or we're going to enable U1, account for the U1 max exit latency.
4728 	 */
4729 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4730 			enabling_u1)
4731 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4732 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4733 			enabling_u2)
4734 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4735 
4736 	if (u1_mel_us > u2_mel_us)
4737 		mel_us = u1_mel_us;
4738 	else
4739 		mel_us = u2_mel_us;
4740 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4741 	if (mel_us > MAX_EXIT) {
4742 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4743 				"is too big.\n", mel_us);
4744 		return -E2BIG;
4745 	}
4746 	return mel_us;
4747 }
4748 
4749 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4750 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4751 			struct usb_device *udev, enum usb3_link_state state)
4752 {
4753 	struct xhci_hcd	*xhci;
4754 	u16 hub_encoded_timeout;
4755 	int mel;
4756 	int ret;
4757 
4758 	xhci = hcd_to_xhci(hcd);
4759 	/* The LPM timeout values are pretty host-controller specific, so don't
4760 	 * enable hub-initiated timeouts unless the vendor has provided
4761 	 * information about their timeout algorithm.
4762 	 */
4763 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4764 			!xhci->devs[udev->slot_id])
4765 		return USB3_LPM_DISABLED;
4766 
4767 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4768 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4769 	if (mel < 0) {
4770 		/* Max Exit Latency is too big, disable LPM. */
4771 		hub_encoded_timeout = USB3_LPM_DISABLED;
4772 		mel = 0;
4773 	}
4774 
4775 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4776 	if (ret)
4777 		return ret;
4778 	return hub_encoded_timeout;
4779 }
4780 
4781 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4782 			struct usb_device *udev, enum usb3_link_state state)
4783 {
4784 	struct xhci_hcd	*xhci;
4785 	u16 mel;
4786 
4787 	xhci = hcd_to_xhci(hcd);
4788 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4789 			!xhci->devs[udev->slot_id])
4790 		return 0;
4791 
4792 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4793 	return xhci_change_max_exit_latency(xhci, udev, mel);
4794 }
4795 #else /* CONFIG_PM */
4796 
4797 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4798 				struct usb_device *udev, int enable)
4799 {
4800 	return 0;
4801 }
4802 
4803 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4804 {
4805 	return 0;
4806 }
4807 
4808 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4809 			struct usb_device *udev, enum usb3_link_state state)
4810 {
4811 	return USB3_LPM_DISABLED;
4812 }
4813 
4814 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4815 			struct usb_device *udev, enum usb3_link_state state)
4816 {
4817 	return 0;
4818 }
4819 #endif	/* CONFIG_PM */
4820 
4821 /*-------------------------------------------------------------------------*/
4822 
4823 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4824  * internal data structures for the device.
4825  */
4826 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4827 			struct usb_tt *tt, gfp_t mem_flags)
4828 {
4829 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4830 	struct xhci_virt_device *vdev;
4831 	struct xhci_command *config_cmd;
4832 	struct xhci_input_control_ctx *ctrl_ctx;
4833 	struct xhci_slot_ctx *slot_ctx;
4834 	unsigned long flags;
4835 	unsigned think_time;
4836 	int ret;
4837 
4838 	/* Ignore root hubs */
4839 	if (!hdev->parent)
4840 		return 0;
4841 
4842 	vdev = xhci->devs[hdev->slot_id];
4843 	if (!vdev) {
4844 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4845 		return -EINVAL;
4846 	}
4847 
4848 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4849 	if (!config_cmd)
4850 		return -ENOMEM;
4851 
4852 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4853 	if (!ctrl_ctx) {
4854 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4855 				__func__);
4856 		xhci_free_command(xhci, config_cmd);
4857 		return -ENOMEM;
4858 	}
4859 
4860 	spin_lock_irqsave(&xhci->lock, flags);
4861 	if (hdev->speed == USB_SPEED_HIGH &&
4862 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4863 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4864 		xhci_free_command(xhci, config_cmd);
4865 		spin_unlock_irqrestore(&xhci->lock, flags);
4866 		return -ENOMEM;
4867 	}
4868 
4869 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4870 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4871 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4872 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4873 	/*
4874 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4875 	 * but it may be already set to 1 when setup an xHCI virtual
4876 	 * device, so clear it anyway.
4877 	 */
4878 	if (tt->multi)
4879 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4880 	else if (hdev->speed == USB_SPEED_FULL)
4881 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4882 
4883 	if (xhci->hci_version > 0x95) {
4884 		xhci_dbg(xhci, "xHCI version %x needs hub "
4885 				"TT think time and number of ports\n",
4886 				(unsigned int) xhci->hci_version);
4887 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4888 		/* Set TT think time - convert from ns to FS bit times.
4889 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4890 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4891 		 *
4892 		 * xHCI 1.0: this field shall be 0 if the device is not a
4893 		 * High-spped hub.
4894 		 */
4895 		think_time = tt->think_time;
4896 		if (think_time != 0)
4897 			think_time = (think_time / 666) - 1;
4898 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4899 			slot_ctx->tt_info |=
4900 				cpu_to_le32(TT_THINK_TIME(think_time));
4901 	} else {
4902 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4903 				"TT think time or number of ports\n",
4904 				(unsigned int) xhci->hci_version);
4905 	}
4906 	slot_ctx->dev_state = 0;
4907 	spin_unlock_irqrestore(&xhci->lock, flags);
4908 
4909 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4910 			(xhci->hci_version > 0x95) ?
4911 			"configure endpoint" : "evaluate context");
4912 
4913 	/* Issue and wait for the configure endpoint or
4914 	 * evaluate context command.
4915 	 */
4916 	if (xhci->hci_version > 0x95)
4917 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4918 				false, false);
4919 	else
4920 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4921 				true, false);
4922 
4923 	xhci_free_command(xhci, config_cmd);
4924 	return ret;
4925 }
4926 
4927 static int xhci_get_frame(struct usb_hcd *hcd)
4928 {
4929 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4930 	/* EHCI mods by the periodic size.  Why? */
4931 	return readl(&xhci->run_regs->microframe_index) >> 3;
4932 }
4933 
4934 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4935 {
4936 	struct xhci_hcd		*xhci;
4937 	/*
4938 	 * TODO: Check with DWC3 clients for sysdev according to
4939 	 * quirks
4940 	 */
4941 	struct device		*dev = hcd->self.sysdev;
4942 	unsigned int		minor_rev;
4943 	int			retval;
4944 
4945 	/* Accept arbitrarily long scatter-gather lists */
4946 	hcd->self.sg_tablesize = ~0;
4947 
4948 	/* support to build packet from discontinuous buffers */
4949 	hcd->self.no_sg_constraint = 1;
4950 
4951 	/* XHCI controllers don't stop the ep queue on short packets :| */
4952 	hcd->self.no_stop_on_short = 1;
4953 
4954 	xhci = hcd_to_xhci(hcd);
4955 
4956 	if (usb_hcd_is_primary_hcd(hcd)) {
4957 		xhci->main_hcd = hcd;
4958 		xhci->usb2_rhub.hcd = hcd;
4959 		/* Mark the first roothub as being USB 2.0.
4960 		 * The xHCI driver will register the USB 3.0 roothub.
4961 		 */
4962 		hcd->speed = HCD_USB2;
4963 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4964 		/*
4965 		 * USB 2.0 roothub under xHCI has an integrated TT,
4966 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4967 		 * companion controller.
4968 		 */
4969 		hcd->has_tt = 1;
4970 	} else {
4971 		/*
4972 		 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
4973 		 * minor revision instead of sbrn
4974 		 */
4975 		minor_rev = xhci->usb3_rhub.min_rev;
4976 		if (minor_rev) {
4977 			hcd->speed = HCD_USB31;
4978 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4979 		}
4980 		xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
4981 			  minor_rev,
4982 			  minor_rev ? "Enhanced" : "");
4983 
4984 		xhci->usb3_rhub.hcd = hcd;
4985 		/* xHCI private pointer was set in xhci_pci_probe for the second
4986 		 * registered roothub.
4987 		 */
4988 		return 0;
4989 	}
4990 
4991 	mutex_init(&xhci->mutex);
4992 	xhci->cap_regs = hcd->regs;
4993 	xhci->op_regs = hcd->regs +
4994 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4995 	xhci->run_regs = hcd->regs +
4996 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4997 	/* Cache read-only capability registers */
4998 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4999 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5000 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5001 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5002 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5003 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5004 	if (xhci->hci_version > 0x100)
5005 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5006 
5007 	xhci->quirks |= quirks;
5008 
5009 	get_quirks(dev, xhci);
5010 
5011 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5012 	 * success event after a short transfer. This quirk will ignore such
5013 	 * spurious event.
5014 	 */
5015 	if (xhci->hci_version > 0x96)
5016 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5017 
5018 	/* Make sure the HC is halted. */
5019 	retval = xhci_halt(xhci);
5020 	if (retval)
5021 		return retval;
5022 
5023 	xhci_zero_64b_regs(xhci);
5024 
5025 	xhci_dbg(xhci, "Resetting HCD\n");
5026 	/* Reset the internal HC memory state and registers. */
5027 	retval = xhci_reset(xhci);
5028 	if (retval)
5029 		return retval;
5030 	xhci_dbg(xhci, "Reset complete\n");
5031 
5032 	/*
5033 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5034 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5035 	 * address memory pointers actually. So, this driver clears the AC64
5036 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5037 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5038 	 */
5039 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5040 		xhci->hcc_params &= ~BIT(0);
5041 
5042 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5043 	 * if xHC supports 64-bit addressing */
5044 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5045 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5046 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5047 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5048 	} else {
5049 		/*
5050 		 * This is to avoid error in cases where a 32-bit USB
5051 		 * controller is used on a 64-bit capable system.
5052 		 */
5053 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5054 		if (retval)
5055 			return retval;
5056 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5057 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5058 	}
5059 
5060 	xhci_dbg(xhci, "Calling HCD init\n");
5061 	/* Initialize HCD and host controller data structures. */
5062 	retval = xhci_init(hcd);
5063 	if (retval)
5064 		return retval;
5065 	xhci_dbg(xhci, "Called HCD init\n");
5066 
5067 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5068 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5069 
5070 	return 0;
5071 }
5072 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5073 
5074 static const struct hc_driver xhci_hc_driver = {
5075 	.description =		"xhci-hcd",
5076 	.product_desc =		"xHCI Host Controller",
5077 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5078 
5079 	/*
5080 	 * generic hardware linkage
5081 	 */
5082 	.irq =			xhci_irq,
5083 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5084 
5085 	/*
5086 	 * basic lifecycle operations
5087 	 */
5088 	.reset =		NULL, /* set in xhci_init_driver() */
5089 	.start =		xhci_run,
5090 	.stop =			xhci_stop,
5091 	.shutdown =		xhci_shutdown,
5092 
5093 	/*
5094 	 * managing i/o requests and associated device resources
5095 	 */
5096 	.urb_enqueue =		xhci_urb_enqueue,
5097 	.urb_dequeue =		xhci_urb_dequeue,
5098 	.alloc_dev =		xhci_alloc_dev,
5099 	.free_dev =		xhci_free_dev,
5100 	.alloc_streams =	xhci_alloc_streams,
5101 	.free_streams =		xhci_free_streams,
5102 	.add_endpoint =		xhci_add_endpoint,
5103 	.drop_endpoint =	xhci_drop_endpoint,
5104 	.endpoint_reset =	xhci_endpoint_reset,
5105 	.check_bandwidth =	xhci_check_bandwidth,
5106 	.reset_bandwidth =	xhci_reset_bandwidth,
5107 	.address_device =	xhci_address_device,
5108 	.enable_device =	xhci_enable_device,
5109 	.update_hub_device =	xhci_update_hub_device,
5110 	.reset_device =		xhci_discover_or_reset_device,
5111 
5112 	/*
5113 	 * scheduling support
5114 	 */
5115 	.get_frame_number =	xhci_get_frame,
5116 
5117 	/*
5118 	 * root hub support
5119 	 */
5120 	.hub_control =		xhci_hub_control,
5121 	.hub_status_data =	xhci_hub_status_data,
5122 	.bus_suspend =		xhci_bus_suspend,
5123 	.bus_resume =		xhci_bus_resume,
5124 
5125 	/*
5126 	 * call back when device connected and addressed
5127 	 */
5128 	.update_device =        xhci_update_device,
5129 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5130 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5131 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5132 	.find_raw_port_number =	xhci_find_raw_port_number,
5133 };
5134 
5135 void xhci_init_driver(struct hc_driver *drv,
5136 		      const struct xhci_driver_overrides *over)
5137 {
5138 	BUG_ON(!over);
5139 
5140 	/* Copy the generic table to drv then apply the overrides */
5141 	*drv = xhci_hc_driver;
5142 
5143 	if (over) {
5144 		drv->hcd_priv_size += over->extra_priv_size;
5145 		if (over->reset)
5146 			drv->reset = over->reset;
5147 		if (over->start)
5148 			drv->start = over->start;
5149 	}
5150 }
5151 EXPORT_SYMBOL_GPL(xhci_init_driver);
5152 
5153 MODULE_DESCRIPTION(DRIVER_DESC);
5154 MODULE_AUTHOR(DRIVER_AUTHOR);
5155 MODULE_LICENSE("GPL");
5156 
5157 static int __init xhci_hcd_init(void)
5158 {
5159 	/*
5160 	 * Check the compiler generated sizes of structures that must be laid
5161 	 * out in specific ways for hardware access.
5162 	 */
5163 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5164 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5165 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5166 	/* xhci_device_control has eight fields, and also
5167 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5168 	 */
5169 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5170 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5171 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5172 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5173 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5174 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5175 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5176 
5177 	if (usb_disabled())
5178 		return -ENODEV;
5179 
5180 	xhci_debugfs_create_root();
5181 
5182 	return 0;
5183 }
5184 
5185 /*
5186  * If an init function is provided, an exit function must also be provided
5187  * to allow module unload.
5188  */
5189 static void __exit xhci_hcd_fini(void)
5190 {
5191 	xhci_debugfs_remove_root();
5192 }
5193 
5194 module_init(xhci_hcd_init);
5195 module_exit(xhci_hcd_fini);
5196