1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/jiffies.h> 12 #include <linux/pci.h> 13 #include <linux/iommu.h> 14 #include <linux/iopoll.h> 15 #include <linux/irq.h> 16 #include <linux/log2.h> 17 #include <linux/module.h> 18 #include <linux/moduleparam.h> 19 #include <linux/slab.h> 20 #include <linux/string_choices.h> 21 #include <linux/dmi.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/usb/xhci-sideband.h> 24 25 #include "xhci.h" 26 #include "xhci-trace.h" 27 #include "xhci-debugfs.h" 28 #include "xhci-dbgcap.h" 29 30 #define DRIVER_AUTHOR "Sarah Sharp" 31 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 32 33 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 34 35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 36 static int link_quirk; 37 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 39 40 static unsigned long long quirks; 41 module_param(quirks, ullong, S_IRUGO); 42 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 43 44 void xhci_portsc_writel(struct xhci_port *port, u32 val) 45 { 46 trace_xhci_portsc_writel(port, val); 47 writel(val, &port->port_reg->portsc); 48 } 49 EXPORT_SYMBOL_GPL(xhci_portsc_writel); 50 51 u32 xhci_portsc_readl(struct xhci_port *port) 52 { 53 return readl(&port->port_reg->portsc); 54 } 55 EXPORT_SYMBOL_GPL(xhci_portsc_readl); 56 57 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 58 { 59 struct xhci_segment *seg; 60 61 if (!td || !td->start_seg) 62 return false; 63 64 xhci_for_each_ring_seg(ring->first_seg, seg) { 65 if (seg == td->start_seg) 66 return true; 67 } 68 69 return false; 70 } 71 72 /* 73 * xhci_handshake - spin reading hc until handshake completes or fails 74 * @ptr: address of hc register to be read 75 * @mask: bits to look at in result of read 76 * @done: value of those bits when handshake succeeds 77 * @usec: timeout in microseconds 78 * 79 * Returns negative errno, or zero on success 80 * 81 * Success happens when the "mask" bits have the specified value (hardware 82 * handshake done). There are two failure modes: "usec" have passed (major 83 * hardware flakeout), or the register reads as all-ones (hardware removed). 84 */ 85 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 86 { 87 u32 result; 88 int ret; 89 90 ret = readl_poll_timeout_atomic(ptr, result, 91 (result & mask) == done || 92 result == U32_MAX, 93 1, timeout_us); 94 if (result == U32_MAX) /* card removed */ 95 return -ENODEV; 96 97 return ret; 98 } 99 100 /* 101 * Disable interrupts and begin the xHCI halting process. 102 */ 103 void xhci_quiesce(struct xhci_hcd *xhci) 104 { 105 u32 halted; 106 u32 cmd; 107 u32 mask; 108 109 mask = ~(XHCI_IRQS); 110 halted = readl(&xhci->op_regs->status) & STS_HALT; 111 if (!halted) 112 mask &= ~CMD_RUN; 113 114 cmd = readl(&xhci->op_regs->command); 115 cmd &= mask; 116 writel(cmd, &xhci->op_regs->command); 117 } 118 119 /* 120 * Force HC into halt state. 121 * 122 * Disable any IRQs and clear the run/stop bit. 123 * HC will complete any current and actively pipelined transactions, and 124 * should halt within 16 ms of the run/stop bit being cleared. 125 * Read HC Halted bit in the status register to see when the HC is finished. 126 */ 127 int xhci_halt(struct xhci_hcd *xhci) 128 { 129 int ret; 130 131 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 132 xhci_quiesce(xhci); 133 134 ret = xhci_handshake(&xhci->op_regs->status, 135 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 136 if (ret) { 137 if (!(xhci->xhc_state & XHCI_STATE_DYING)) 138 xhci_warn(xhci, "Host halt failed, %d\n", ret); 139 return ret; 140 } 141 142 xhci->xhc_state |= XHCI_STATE_HALTED; 143 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 144 145 return ret; 146 } 147 148 /* 149 * Set the run bit and wait for the host to be running. 150 */ 151 int xhci_start(struct xhci_hcd *xhci) 152 { 153 u32 temp; 154 int ret; 155 156 temp = readl(&xhci->op_regs->command); 157 temp |= (CMD_RUN); 158 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 159 temp); 160 writel(temp, &xhci->op_regs->command); 161 162 /* 163 * Wait for the HCHalted Status bit to be 0 to indicate the host is 164 * running. 165 */ 166 ret = xhci_handshake(&xhci->op_regs->status, 167 STS_HALT, 0, XHCI_MAX_HALT_USEC); 168 if (ret == -ETIMEDOUT) 169 xhci_err(xhci, "Host took too long to start, " 170 "waited %u microseconds.\n", 171 XHCI_MAX_HALT_USEC); 172 if (!ret) { 173 /* clear state flags. Including dying, halted or removing */ 174 xhci->xhc_state = 0; 175 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 176 } 177 178 return ret; 179 } 180 181 /* 182 * Reset a halted HC. 183 * 184 * This resets pipelines, timers, counters, state machines, etc. 185 * Transactions will be terminated immediately, and operational registers 186 * will be set to their defaults. 187 */ 188 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 189 { 190 u32 command; 191 u32 state; 192 int ret; 193 194 state = readl(&xhci->op_regs->status); 195 196 if (state == ~(u32)0) { 197 if (!(xhci->xhc_state & XHCI_STATE_DYING)) 198 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 199 return -ENODEV; 200 } 201 202 if ((state & STS_HALT) == 0) { 203 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 204 return 0; 205 } 206 207 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 208 command = readl(&xhci->op_regs->command); 209 command |= CMD_RESET; 210 writel(command, &xhci->op_regs->command); 211 212 /* Existing Intel xHCI controllers require a delay of 1 mS, 213 * after setting the CMD_RESET bit, and before accessing any 214 * HC registers. This allows the HC to complete the 215 * reset operation and be ready for HC register access. 216 * Without this delay, the subsequent HC register access, 217 * may result in a system hang very rarely. 218 */ 219 if (xhci->quirks & XHCI_INTEL_HOST) 220 udelay(1000); 221 222 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us); 223 if (ret) 224 return ret; 225 226 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 227 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 228 229 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 230 "Wait for controller to be ready for doorbell rings"); 231 /* 232 * xHCI cannot write to any doorbells or operational registers other 233 * than status until the "Controller Not Ready" flag is cleared. 234 */ 235 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 236 237 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 238 xhci->usb2_rhub.bus_state.suspended_ports = 0; 239 xhci->usb2_rhub.bus_state.resuming_ports = 0; 240 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 241 xhci->usb3_rhub.bus_state.suspended_ports = 0; 242 xhci->usb3_rhub.bus_state.resuming_ports = 0; 243 244 return ret; 245 } 246 247 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 248 { 249 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 250 struct iommu_domain *domain; 251 int err, i; 252 u64 val; 253 254 /* 255 * Some Renesas controllers get into a weird state if they are 256 * reset while programmed with 64bit addresses (they will preserve 257 * the top half of the address in internal, non visible 258 * registers). You end up with half the address coming from the 259 * kernel, and the other half coming from the firmware. Also, 260 * changing the programming leads to extra accesses even if the 261 * controller is supposed to be halted. The controller ends up with 262 * a fatal fault, and is then ripe for being properly reset. 263 * 264 * Special care is taken to only apply this if the device is behind 265 * an iommu. Doing anything when there is no iommu is definitely 266 * unsafe... 267 */ 268 domain = iommu_get_domain_for_dev(dev); 269 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || 270 domain->type == IOMMU_DOMAIN_IDENTITY) 271 return; 272 273 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 274 275 /* Clear HSEIE so that faults do not get signaled */ 276 val = readl(&xhci->op_regs->command); 277 val &= ~CMD_HSEIE; 278 writel(val, &xhci->op_regs->command); 279 280 /* Clear HSE (aka FATAL) */ 281 val = readl(&xhci->op_regs->status); 282 val |= STS_FATAL; 283 writel(val, &xhci->op_regs->status); 284 285 /* Now zero the registers, and brace for impact */ 286 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 287 if (upper_32_bits(val)) 288 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 289 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 290 if (upper_32_bits(val)) 291 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 292 293 for (i = 0; i < xhci->max_interrupters; i++) { 294 struct xhci_intr_reg __iomem *ir; 295 296 ir = &xhci->run_regs->ir_set[i]; 297 val = xhci_read_64(xhci, &ir->erst_base); 298 if (upper_32_bits(val)) 299 xhci_write_64(xhci, 0, &ir->erst_base); 300 val= xhci_read_64(xhci, &ir->erst_dequeue); 301 if (upper_32_bits(val)) 302 xhci_write_64(xhci, 0, &ir->erst_dequeue); 303 } 304 305 /* Wait for the fault to appear. It will be cleared on reset */ 306 err = xhci_handshake(&xhci->op_regs->status, 307 STS_FATAL, STS_FATAL, 308 XHCI_MAX_HALT_USEC); 309 if (!err) 310 xhci_info(xhci, "Fault detected\n"); 311 } 312 313 int xhci_enable_interrupter(struct xhci_interrupter *ir) 314 { 315 u32 iman; 316 317 if (!ir || !ir->ir_set) 318 return -EINVAL; 319 320 iman = readl(&ir->ir_set->iman); 321 iman &= ~IMAN_IP; 322 iman |= IMAN_IE; 323 writel(iman, &ir->ir_set->iman); 324 325 /* Read operation to guarantee the write has been flushed from posted buffers */ 326 readl(&ir->ir_set->iman); 327 return 0; 328 } 329 330 int xhci_disable_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 331 { 332 u32 iman; 333 334 if (!ir || !ir->ir_set) 335 return -EINVAL; 336 337 iman = readl(&ir->ir_set->iman); 338 iman &= ~IMAN_IP; 339 iman &= ~IMAN_IE; 340 writel(iman, &ir->ir_set->iman); 341 342 iman = readl(&ir->ir_set->iman); 343 if (iman & IMAN_IP) 344 xhci_dbg(xhci, "%s: Interrupt pending\n", __func__); 345 346 return 0; 347 } 348 349 /* interrupt moderation interval imod_interval in nanoseconds */ 350 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir, 351 u32 imod_interval) 352 { 353 u32 imod; 354 355 if (!ir || !ir->ir_set) 356 return -EINVAL; 357 358 /* IMODI value in IMOD register is in 250ns increments */ 359 imod_interval = umin(imod_interval / 250, IMODI_MASK); 360 361 imod = readl(&ir->ir_set->imod); 362 imod &= ~IMODI_MASK; 363 imod |= imod_interval; 364 writel(imod, &ir->ir_set->imod); 365 366 return 0; 367 } 368 369 static void compliance_mode_recovery(struct timer_list *t) 370 { 371 struct xhci_hcd *xhci; 372 struct usb_hcd *hcd; 373 struct xhci_hub *rhub; 374 u32 temp; 375 int i; 376 377 xhci = timer_container_of(xhci, t, comp_mode_recovery_timer); 378 rhub = &xhci->usb3_rhub; 379 hcd = rhub->hcd; 380 381 if (!hcd) 382 return; 383 384 for (i = 0; i < rhub->num_ports; i++) { 385 temp = xhci_portsc_readl(rhub->ports[i]); 386 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 387 /* 388 * Compliance Mode Detected. Letting USB Core 389 * handle the Warm Reset 390 */ 391 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 392 "Compliance mode detected->port %d", 393 i + 1); 394 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 395 "Attempting compliance mode recovery"); 396 397 if (hcd->state == HC_STATE_SUSPENDED) 398 usb_hcd_resume_root_hub(hcd); 399 400 usb_hcd_poll_rh_status(hcd); 401 } 402 } 403 404 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 405 mod_timer(&xhci->comp_mode_recovery_timer, 406 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 407 } 408 409 /* 410 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 411 * that causes ports behind that hardware to enter compliance mode sometimes. 412 * The quirk creates a timer that polls every 2 seconds the link state of 413 * each host controller's port and recovers it by issuing a Warm reset 414 * if Compliance mode is detected, otherwise the port will become "dead" (no 415 * device connections or disconnections will be detected anymore). Becasue no 416 * status event is generated when entering compliance mode (per xhci spec), 417 * this quirk is needed on systems that have the failing hardware installed. 418 */ 419 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 420 { 421 xhci->port_status_u0 = 0; 422 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 423 0); 424 xhci->comp_mode_recovery_timer.expires = jiffies + 425 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 426 427 add_timer(&xhci->comp_mode_recovery_timer); 428 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 429 "Compliance mode recovery timer initialized"); 430 } 431 432 /* 433 * This function identifies the systems that have installed the SN65LVPE502CP 434 * USB3.0 re-driver and that need the Compliance Mode Quirk. 435 * Systems: 436 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 437 */ 438 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 439 { 440 const char *dmi_product_name, *dmi_sys_vendor; 441 442 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 443 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 444 if (!dmi_product_name || !dmi_sys_vendor) 445 return false; 446 447 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 448 return false; 449 450 if (strstr(dmi_product_name, "Z420") || 451 strstr(dmi_product_name, "Z620") || 452 strstr(dmi_product_name, "Z820") || 453 strstr(dmi_product_name, "Z1 Workstation")) 454 return true; 455 456 return false; 457 } 458 459 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 460 { 461 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 462 } 463 464 static void xhci_hcd_page_size(struct xhci_hcd *xhci) 465 { 466 u32 page_size; 467 468 page_size = readl(&xhci->op_regs->page_size) & XHCI_PAGE_SIZE_MASK; 469 if (!is_power_of_2(page_size)) { 470 xhci_warn(xhci, "Invalid page size register = 0x%x\n", page_size); 471 /* Fallback to 4K page size, since that's common */ 472 page_size = 1; 473 } 474 475 xhci->page_size = page_size << 12; 476 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "HCD page size set to %iK", 477 xhci->page_size >> 10); 478 } 479 480 static void xhci_enable_max_dev_slots(struct xhci_hcd *xhci) 481 { 482 u32 config_reg; 483 484 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xHC can handle at most %d device slots", 485 xhci->max_slots); 486 487 config_reg = readl(&xhci->op_regs->config_reg); 488 config_reg &= ~HCS_SLOTS_MASK; 489 config_reg |= xhci->max_slots; 490 491 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting Max device slots reg = 0x%x", 492 config_reg); 493 writel(config_reg, &xhci->op_regs->config_reg); 494 } 495 496 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 497 { 498 dma_addr_t deq_dma; 499 u64 crcr; 500 501 deq_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, xhci->cmd_ring->dequeue); 502 deq_dma &= CMD_RING_PTR_MASK; 503 504 crcr = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 505 crcr &= ~CMD_RING_PTR_MASK; 506 crcr |= deq_dma; 507 508 crcr &= ~CMD_RING_CYCLE; 509 crcr |= xhci->cmd_ring->cycle_state; 510 511 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting command ring address to 0x%llx", crcr); 512 xhci_write_64(xhci, crcr, &xhci->op_regs->cmd_ring); 513 } 514 515 static void xhci_set_doorbell_ptr(struct xhci_hcd *xhci) 516 { 517 u32 offset; 518 519 offset = readl(&xhci->cap_regs->db_off) & DBOFF_MASK; 520 xhci->dba = (void __iomem *)xhci->cap_regs + offset; 521 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 522 "Doorbell array is located at offset 0x%x from cap regs base addr", offset); 523 } 524 525 /* 526 * Enable USB 3.0 device notifications for function remote wake, which is necessary 527 * for allowing USB 3.0 devices to do remote wakeup from U3 (device suspend). 528 */ 529 static void xhci_set_dev_notifications(struct xhci_hcd *xhci) 530 { 531 u32 dev_notf; 532 533 dev_notf = readl(&xhci->op_regs->dev_notification); 534 dev_notf &= ~DEV_NOTE_MASK; 535 dev_notf |= DEV_NOTE_FWAKE; 536 writel(dev_notf, &xhci->op_regs->dev_notification); 537 } 538 539 /* 540 * Initialize memory for HCD and xHC (one-time init). 541 * 542 * Program the PAGESIZE register, initialize the device context array, create 543 * device contexts (?), set up a command ring segment (or two?), create event 544 * ring (one for now). 545 */ 546 static int xhci_init(struct usb_hcd *hcd) 547 { 548 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 549 int retval; 550 551 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Starting %s", __func__); 552 spin_lock_init(&xhci->lock); 553 554 INIT_LIST_HEAD(&xhci->cmd_list); 555 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); 556 init_completion(&xhci->cmd_ring_stop_completion); 557 xhci_hcd_page_size(xhci); 558 memset(xhci->devs, 0, MAX_HC_SLOTS * sizeof(*xhci->devs)); 559 560 retval = xhci_mem_init(xhci, GFP_KERNEL); 561 if (retval) 562 return retval; 563 564 /* Set the Number of Device Slots Enabled to the maximum supported value */ 565 xhci_enable_max_dev_slots(xhci); 566 567 /* Set the address in the Command Ring Control register */ 568 xhci_set_cmd_ring_deq(xhci); 569 570 /* Set Device Context Base Address Array pointer */ 571 xhci_write_64(xhci, xhci->dcbaa->dma, &xhci->op_regs->dcbaa_ptr); 572 573 /* Set Doorbell array pointer */ 574 xhci_set_doorbell_ptr(xhci); 575 576 /* Set USB 3.0 device notifications for function remote wake */ 577 xhci_set_dev_notifications(xhci); 578 579 /* Initialize the Primary interrupter */ 580 xhci_add_interrupter(xhci, 0); 581 xhci->interrupters[0]->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX; 582 583 /* Initializing Compliance Mode Recovery Data If Needed */ 584 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 585 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 586 compliance_mode_recovery_timer_init(xhci); 587 } 588 589 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished %s", __func__); 590 return 0; 591 } 592 593 /*-------------------------------------------------------------------------*/ 594 595 static int xhci_run_finished(struct xhci_hcd *xhci) 596 { 597 struct xhci_interrupter *ir = xhci->interrupters[0]; 598 unsigned long flags; 599 u32 temp; 600 601 /* 602 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 603 * Protect the short window before host is running with a lock 604 */ 605 spin_lock_irqsave(&xhci->lock, flags); 606 607 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 608 temp = readl(&xhci->op_regs->command); 609 temp |= (CMD_EIE); 610 writel(temp, &xhci->op_regs->command); 611 612 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 613 xhci_enable_interrupter(ir); 614 615 if (xhci_start(xhci)) { 616 xhci_halt(xhci); 617 spin_unlock_irqrestore(&xhci->lock, flags); 618 return -ENODEV; 619 } 620 621 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 622 623 if (xhci->quirks & XHCI_NEC_HOST) 624 xhci_ring_cmd_db(xhci); 625 626 spin_unlock_irqrestore(&xhci->lock, flags); 627 628 return 0; 629 } 630 631 /* 632 * Start the HC after it was halted. 633 * 634 * This function is called by the USB core when the HC driver is added. 635 * Its opposite is xhci_stop(). 636 * 637 * xhci_init() must be called once before this function can be called. 638 * Reset the HC, enable device slot contexts, program DCBAAP, and 639 * set command ring pointer and event ring pointer. 640 * 641 * Setup MSI-X vectors and enable interrupts. 642 */ 643 int xhci_run(struct usb_hcd *hcd) 644 { 645 u64 temp_64; 646 int ret; 647 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 648 struct xhci_interrupter *ir = xhci->interrupters[0]; 649 /* Start the xHCI host controller running only after the USB 2.0 roothub 650 * is setup. 651 */ 652 653 hcd->uses_new_polling = 1; 654 if (hcd->msi_enabled) 655 ir->ip_autoclear = true; 656 657 if (!usb_hcd_is_primary_hcd(hcd)) 658 return xhci_run_finished(xhci); 659 660 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 661 662 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 663 temp_64 &= ERST_PTR_MASK; 664 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 665 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 666 667 xhci_set_interrupter_moderation(ir, xhci->imod_interval); 668 669 if (xhci->quirks & XHCI_NEC_HOST) { 670 struct xhci_command *command; 671 672 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 673 if (!command) 674 return -ENOMEM; 675 676 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 677 TRB_TYPE(TRB_NEC_GET_FW)); 678 if (ret) 679 xhci_free_command(xhci, command); 680 } 681 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 682 "Finished %s for main hcd", __func__); 683 684 xhci_create_dbc_dev(xhci); 685 686 xhci_debugfs_init(xhci); 687 688 if (xhci_has_one_roothub(xhci)) 689 return xhci_run_finished(xhci); 690 691 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 692 693 return 0; 694 } 695 EXPORT_SYMBOL_GPL(xhci_run); 696 697 /* 698 * Stop xHCI driver. 699 * 700 * This function is called by the USB core when the HC driver is removed. 701 * Its opposite is xhci_run(). 702 * 703 * Disable device contexts, disable IRQs, and quiesce the HC. 704 * Reset the HC, finish any completed transactions, and cleanup memory. 705 */ 706 void xhci_stop(struct usb_hcd *hcd) 707 { 708 u32 temp; 709 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 710 struct xhci_interrupter *ir = xhci->interrupters[0]; 711 712 mutex_lock(&xhci->mutex); 713 714 /* Only halt host and free memory after both hcds are removed */ 715 if (!usb_hcd_is_primary_hcd(hcd)) { 716 mutex_unlock(&xhci->mutex); 717 return; 718 } 719 720 xhci_remove_dbc_dev(xhci); 721 722 spin_lock_irq(&xhci->lock); 723 xhci->xhc_state |= XHCI_STATE_HALTED; 724 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 725 xhci_halt(xhci); 726 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 727 spin_unlock_irq(&xhci->lock); 728 729 /* Deleting Compliance Mode Recovery Timer */ 730 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 731 (!(xhci_all_ports_seen_u0(xhci)))) { 732 timer_delete_sync(&xhci->comp_mode_recovery_timer); 733 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 734 "%s: compliance mode recovery timer deleted", 735 __func__); 736 } 737 738 if (xhci->quirks & XHCI_AMD_PLL_FIX) 739 usb_amd_dev_put(); 740 741 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 742 "// Disabling event ring interrupts"); 743 temp = readl(&xhci->op_regs->status); 744 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 745 xhci_disable_interrupter(xhci, ir); 746 747 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 748 xhci_mem_cleanup(xhci); 749 xhci_debugfs_exit(xhci); 750 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 751 "xhci_stop completed - status = %x", 752 readl(&xhci->op_regs->status)); 753 mutex_unlock(&xhci->mutex); 754 } 755 EXPORT_SYMBOL_GPL(xhci_stop); 756 757 /* 758 * Shutdown HC (not bus-specific) 759 * 760 * This is called when the machine is rebooting or halting. We assume that the 761 * machine will be powered off, and the HC's internal state will be reset. 762 * Don't bother to free memory. 763 * 764 * This will only ever be called with the main usb_hcd (the USB3 roothub). 765 */ 766 void xhci_shutdown(struct usb_hcd *hcd) 767 { 768 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 769 770 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 771 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 772 773 /* Don't poll the roothubs after shutdown. */ 774 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 775 __func__, hcd->self.busnum); 776 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 777 timer_delete_sync(&hcd->rh_timer); 778 779 if (xhci->shared_hcd) { 780 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 781 timer_delete_sync(&xhci->shared_hcd->rh_timer); 782 } 783 784 spin_lock_irq(&xhci->lock); 785 xhci_halt(xhci); 786 787 /* 788 * Workaround for spurious wakeps at shutdown with HSW, and for boot 789 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 790 */ 791 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 792 xhci->quirks & XHCI_RESET_TO_DEFAULT) 793 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 794 795 spin_unlock_irq(&xhci->lock); 796 797 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 798 "xhci_shutdown completed - status = %x", 799 readl(&xhci->op_regs->status)); 800 } 801 EXPORT_SYMBOL_GPL(xhci_shutdown); 802 803 #ifdef CONFIG_PM 804 static void xhci_save_registers(struct xhci_hcd *xhci) 805 { 806 struct xhci_interrupter *ir; 807 unsigned int i; 808 809 xhci->s3.command = readl(&xhci->op_regs->command); 810 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 811 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 812 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 813 814 /* save both primary and all secondary interrupters */ 815 /* fixme, shold we lock to prevent race with remove secondary interrupter? */ 816 for (i = 0; i < xhci->max_interrupters; i++) { 817 ir = xhci->interrupters[i]; 818 if (!ir) 819 continue; 820 821 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 822 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 823 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 824 ir->s3_iman = readl(&ir->ir_set->iman); 825 ir->s3_imod = readl(&ir->ir_set->imod); 826 } 827 } 828 829 static void xhci_restore_registers(struct xhci_hcd *xhci) 830 { 831 struct xhci_interrupter *ir; 832 unsigned int i; 833 834 writel(xhci->s3.command, &xhci->op_regs->command); 835 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 836 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 837 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 838 839 /* FIXME should we lock to protect against freeing of interrupters */ 840 for (i = 0; i < xhci->max_interrupters; i++) { 841 ir = xhci->interrupters[i]; 842 if (!ir) 843 continue; 844 845 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 846 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 847 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 848 writel(ir->s3_iman, &ir->ir_set->iman); 849 writel(ir->s3_imod, &ir->ir_set->imod); 850 } 851 } 852 853 /* 854 * The whole command ring must be cleared to zero when we suspend the host. 855 * 856 * The host doesn't save the command ring pointer in the suspend well, so we 857 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 858 * aligned, because of the reserved bits in the command ring dequeue pointer 859 * register. Therefore, we can't just set the dequeue pointer back in the 860 * middle of the ring (TRBs are 16-byte aligned). 861 */ 862 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 863 { 864 struct xhci_ring *ring; 865 struct xhci_segment *seg; 866 867 ring = xhci->cmd_ring; 868 xhci_for_each_ring_seg(ring->first_seg, seg) { 869 /* erase all TRBs before the link */ 870 memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 871 /* clear link cycle bit */ 872 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE); 873 } 874 875 xhci_initialize_ring_info(ring); 876 /* 877 * Reset the hardware dequeue pointer. 878 * Yes, this will need to be re-written after resume, but we're paranoid 879 * and want to make sure the hardware doesn't access bogus memory 880 * because, say, the BIOS or an SMI started the host without changing 881 * the command ring pointers. 882 */ 883 xhci_set_cmd_ring_deq(xhci); 884 } 885 886 /* 887 * Disable port wake bits if do_wakeup is not set. 888 * 889 * Also clear a possible internal port wake state left hanging for ports that 890 * detected termination but never successfully enumerated (trained to 0U). 891 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 892 * at enumeration clears this wake, force one here as well for unconnected ports 893 */ 894 895 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 896 struct xhci_hub *rhub, 897 bool do_wakeup) 898 { 899 unsigned long flags; 900 u32 t1, t2, portsc; 901 int i; 902 903 spin_lock_irqsave(&xhci->lock, flags); 904 905 for (i = 0; i < rhub->num_ports; i++) { 906 portsc = xhci_portsc_readl(rhub->ports[i]); 907 t1 = xhci_port_state_to_neutral(portsc); 908 t2 = t1; 909 910 /* clear wake bits if do_wake is not set */ 911 if (!do_wakeup) 912 t2 &= ~PORT_WAKE_BITS; 913 914 /* Don't touch csc bit if connected or connect change is set */ 915 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 916 t2 |= PORT_CSC; 917 918 if (t1 != t2) { 919 xhci_portsc_writel(rhub->ports[i], t2); 920 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 921 rhub->hcd->self.busnum, i + 1, portsc, t2); 922 } 923 } 924 spin_unlock_irqrestore(&xhci->lock, flags); 925 } 926 927 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 928 { 929 struct xhci_port **ports; 930 int port_index; 931 u32 status; 932 u32 portsc; 933 934 status = readl(&xhci->op_regs->status); 935 if (status & STS_EINT) 936 return true; 937 /* 938 * Checking STS_EINT is not enough as there is a lag between a change 939 * bit being set and the Port Status Change Event that it generated 940 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 941 */ 942 943 port_index = xhci->usb2_rhub.num_ports; 944 ports = xhci->usb2_rhub.ports; 945 while (port_index--) { 946 portsc = xhci_portsc_readl(ports[port_index]); 947 if (portsc & PORT_CHANGE_MASK || 948 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 949 return true; 950 } 951 port_index = xhci->usb3_rhub.num_ports; 952 ports = xhci->usb3_rhub.ports; 953 while (port_index--) { 954 portsc = xhci_portsc_readl(ports[port_index]); 955 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) || 956 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 957 return true; 958 } 959 return false; 960 } 961 962 /* 963 * Stop HC (not bus-specific) 964 * 965 * This is called when the machine transition into S3/S4 mode. 966 * 967 */ 968 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 969 { 970 int rc = 0; 971 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 972 struct usb_hcd *hcd = xhci_to_hcd(xhci); 973 u32 command; 974 u32 res; 975 976 if (!hcd->state) 977 return 0; 978 979 if (hcd->state != HC_STATE_SUSPENDED || 980 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 981 return -EINVAL; 982 983 /* Clear root port wake on bits if wakeup not allowed. */ 984 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 985 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 986 987 if (!HCD_HW_ACCESSIBLE(hcd)) 988 return 0; 989 990 xhci_dbc_suspend(xhci); 991 992 /* Don't poll the roothubs on bus suspend. */ 993 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 994 __func__, hcd->self.busnum); 995 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 996 timer_delete_sync(&hcd->rh_timer); 997 if (xhci->shared_hcd) { 998 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 999 timer_delete_sync(&xhci->shared_hcd->rh_timer); 1000 } 1001 1002 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1003 usleep_range(1000, 1500); 1004 1005 spin_lock_irq(&xhci->lock); 1006 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1007 if (xhci->shared_hcd) 1008 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1009 /* step 1: stop endpoint */ 1010 /* skipped assuming that port suspend has done */ 1011 1012 /* step 2: clear Run/Stop bit */ 1013 command = readl(&xhci->op_regs->command); 1014 command &= ~CMD_RUN; 1015 writel(command, &xhci->op_regs->command); 1016 1017 /* Some chips from Fresco Logic need an extraordinary delay */ 1018 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1019 1020 if (xhci_handshake(&xhci->op_regs->status, 1021 STS_HALT, STS_HALT, delay)) { 1022 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1023 spin_unlock_irq(&xhci->lock); 1024 return -ETIMEDOUT; 1025 } 1026 xhci_clear_command_ring(xhci); 1027 1028 /* step 3: save registers */ 1029 xhci_save_registers(xhci); 1030 1031 /* step 4: set CSS flag */ 1032 command = readl(&xhci->op_regs->command); 1033 command |= CMD_CSS; 1034 writel(command, &xhci->op_regs->command); 1035 xhci->broken_suspend = 0; 1036 if (xhci_handshake(&xhci->op_regs->status, 1037 STS_SAVE, 0, 20 * 1000)) { 1038 /* 1039 * AMD SNPS xHC 3.0 occasionally does not clear the 1040 * SSS bit of USBSTS and when driver tries to poll 1041 * to see if the xHC clears BIT(8) which never happens 1042 * and driver assumes that controller is not responding 1043 * and times out. To workaround this, its good to check 1044 * if SRE and HCE bits are not set (as per xhci 1045 * Section 5.4.2) and bypass the timeout. 1046 */ 1047 res = readl(&xhci->op_regs->status); 1048 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1049 (((res & STS_SRE) == 0) && 1050 ((res & STS_HCE) == 0))) { 1051 xhci->broken_suspend = 1; 1052 } else { 1053 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1054 spin_unlock_irq(&xhci->lock); 1055 return -ETIMEDOUT; 1056 } 1057 } 1058 spin_unlock_irq(&xhci->lock); 1059 1060 /* 1061 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1062 * is about to be suspended. 1063 */ 1064 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1065 (!(xhci_all_ports_seen_u0(xhci)))) { 1066 timer_delete_sync(&xhci->comp_mode_recovery_timer); 1067 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1068 "%s: compliance mode recovery timer deleted", 1069 __func__); 1070 } 1071 1072 return rc; 1073 } 1074 EXPORT_SYMBOL_GPL(xhci_suspend); 1075 1076 /* 1077 * start xHC (not bus-specific) 1078 * 1079 * This is called when the machine transition from S3/S4 mode. 1080 * 1081 */ 1082 int xhci_resume(struct xhci_hcd *xhci, bool power_lost, bool is_auto_resume) 1083 { 1084 u32 command, temp = 0; 1085 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1086 int retval = 0; 1087 bool comp_timer_running = false; 1088 bool pending_portevent = false; 1089 bool suspended_usb3_devs = false; 1090 1091 if (!hcd->state) 1092 return 0; 1093 1094 /* Wait a bit if either of the roothubs need to settle from the 1095 * transition into bus suspend. 1096 */ 1097 1098 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1099 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1100 msleep(100); 1101 1102 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1103 if (xhci->shared_hcd) 1104 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1105 1106 spin_lock_irq(&xhci->lock); 1107 1108 if (xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1109 power_lost = true; 1110 1111 if (!power_lost) { 1112 /* 1113 * Some controllers might lose power during suspend, so wait 1114 * for controller not ready bit to clear, just as in xHC init. 1115 */ 1116 retval = xhci_handshake(&xhci->op_regs->status, 1117 STS_CNR, 0, 10 * 1000 * 1000); 1118 if (retval) { 1119 xhci_warn(xhci, "Controller not ready at resume %d\n", 1120 retval); 1121 spin_unlock_irq(&xhci->lock); 1122 return retval; 1123 } 1124 /* step 1: restore register */ 1125 xhci_restore_registers(xhci); 1126 /* step 2: initialize command ring buffer */ 1127 xhci_set_cmd_ring_deq(xhci); 1128 /* step 3: restore state and start state*/ 1129 /* step 3: set CRS flag */ 1130 command = readl(&xhci->op_regs->command); 1131 command |= CMD_CRS; 1132 writel(command, &xhci->op_regs->command); 1133 /* 1134 * Some controllers take up to 55+ ms to complete the controller 1135 * restore so setting the timeout to 100ms. Xhci specification 1136 * doesn't mention any timeout value. 1137 */ 1138 if (xhci_handshake(&xhci->op_regs->status, 1139 STS_RESTORE, 0, 100 * 1000)) { 1140 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1141 spin_unlock_irq(&xhci->lock); 1142 return -ETIMEDOUT; 1143 } 1144 } 1145 1146 temp = readl(&xhci->op_regs->status); 1147 1148 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1149 if ((temp & (STS_SRE | STS_HCE)) && 1150 !(xhci->xhc_state & XHCI_STATE_REMOVING)) { 1151 if (!power_lost) 1152 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1153 power_lost = true; 1154 } 1155 1156 if (power_lost) { 1157 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1158 !(xhci_all_ports_seen_u0(xhci))) { 1159 timer_delete_sync(&xhci->comp_mode_recovery_timer); 1160 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1161 "Compliance Mode Recovery Timer deleted!"); 1162 } 1163 1164 /* Let the USB core know _both_ roothubs lost power. */ 1165 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1166 if (xhci->shared_hcd) 1167 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1168 1169 xhci_dbg(xhci, "Stop HCD\n"); 1170 xhci_halt(xhci); 1171 xhci_zero_64b_regs(xhci); 1172 if (xhci->xhc_state & XHCI_STATE_REMOVING) 1173 retval = -ENODEV; 1174 else 1175 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1176 spin_unlock_irq(&xhci->lock); 1177 if (retval) 1178 return retval; 1179 1180 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1181 temp = readl(&xhci->op_regs->status); 1182 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1183 xhci_disable_interrupter(xhci, xhci->interrupters[0]); 1184 1185 xhci_dbg(xhci, "cleaning up memory\n"); 1186 xhci_mem_cleanup(xhci); 1187 xhci_debugfs_exit(xhci); 1188 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1189 readl(&xhci->op_regs->status)); 1190 1191 /* USB core calls the PCI reinit and start functions twice: 1192 * first with the primary HCD, and then with the secondary HCD. 1193 * If we don't do the same, the host will never be started. 1194 */ 1195 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1196 retval = xhci_init(hcd); 1197 if (retval) 1198 return retval; 1199 comp_timer_running = true; 1200 1201 xhci_dbg(xhci, "Start the primary HCD\n"); 1202 retval = xhci_run(hcd); 1203 if (!retval && xhci->shared_hcd) { 1204 xhci_dbg(xhci, "Start the secondary HCD\n"); 1205 retval = xhci_run(xhci->shared_hcd); 1206 } 1207 if (retval) 1208 return retval; 1209 /* 1210 * Resume roothubs unconditionally as PORTSC change bits are not 1211 * immediately visible after xHC reset 1212 */ 1213 hcd->state = HC_STATE_SUSPENDED; 1214 1215 if (xhci->shared_hcd) { 1216 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1217 usb_hcd_resume_root_hub(xhci->shared_hcd); 1218 } 1219 usb_hcd_resume_root_hub(hcd); 1220 1221 goto done; 1222 } 1223 1224 /* step 4: set Run/Stop bit */ 1225 command = readl(&xhci->op_regs->command); 1226 command |= CMD_RUN; 1227 writel(command, &xhci->op_regs->command); 1228 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1229 0, 250 * 1000); 1230 1231 /* step 5: walk topology and initialize portsc, 1232 * portpmsc and portli 1233 */ 1234 /* this is done in bus_resume */ 1235 1236 /* step 6: restart each of the previously 1237 * Running endpoints by ringing their doorbells 1238 */ 1239 1240 spin_unlock_irq(&xhci->lock); 1241 1242 xhci_dbc_resume(xhci); 1243 1244 if (retval == 0) { 1245 /* 1246 * Resume roothubs only if there are pending events. 1247 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1248 * the first wake signalling failed, give it that chance if 1249 * there are suspended USB 3 devices. 1250 */ 1251 if (xhci->usb3_rhub.bus_state.suspended_ports || 1252 xhci->usb3_rhub.bus_state.bus_suspended) 1253 suspended_usb3_devs = true; 1254 1255 pending_portevent = xhci_pending_portevent(xhci); 1256 1257 if (suspended_usb3_devs && !pending_portevent && is_auto_resume) { 1258 msleep(120); 1259 pending_portevent = xhci_pending_portevent(xhci); 1260 } 1261 1262 if (pending_portevent) { 1263 if (xhci->shared_hcd) 1264 usb_hcd_resume_root_hub(xhci->shared_hcd); 1265 usb_hcd_resume_root_hub(hcd); 1266 } 1267 } 1268 done: 1269 /* 1270 * If system is subject to the Quirk, Compliance Mode Timer needs to 1271 * be re-initialized Always after a system resume. Ports are subject 1272 * to suffer the Compliance Mode issue again. It doesn't matter if 1273 * ports have entered previously to U0 before system's suspension. 1274 */ 1275 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1276 compliance_mode_recovery_timer_init(xhci); 1277 1278 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1279 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1280 1281 /* Re-enable port polling. */ 1282 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1283 __func__, hcd->self.busnum); 1284 if (xhci->shared_hcd) { 1285 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1286 usb_hcd_poll_rh_status(xhci->shared_hcd); 1287 } 1288 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1289 usb_hcd_poll_rh_status(hcd); 1290 1291 return retval; 1292 } 1293 EXPORT_SYMBOL_GPL(xhci_resume); 1294 #endif /* CONFIG_PM */ 1295 1296 /*-------------------------------------------------------------------------*/ 1297 1298 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1299 { 1300 void *temp; 1301 int ret = 0; 1302 unsigned int buf_len; 1303 enum dma_data_direction dir; 1304 1305 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1306 buf_len = urb->transfer_buffer_length; 1307 1308 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1309 dev_to_node(hcd->self.sysdev)); 1310 if (!temp) 1311 return -ENOMEM; 1312 1313 if (usb_urb_dir_out(urb)) 1314 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1315 temp, buf_len, 0); 1316 1317 urb->transfer_buffer = temp; 1318 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1319 urb->transfer_buffer, 1320 urb->transfer_buffer_length, 1321 dir); 1322 1323 if (dma_mapping_error(hcd->self.sysdev, 1324 urb->transfer_dma)) { 1325 ret = -EAGAIN; 1326 kfree(temp); 1327 } else { 1328 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1329 } 1330 1331 return ret; 1332 } 1333 1334 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1335 struct urb *urb) 1336 { 1337 bool ret = false; 1338 unsigned int i; 1339 unsigned int len = 0; 1340 unsigned int trb_size; 1341 unsigned int max_pkt; 1342 struct scatterlist *sg; 1343 struct scatterlist *tail_sg; 1344 1345 tail_sg = urb->sg; 1346 max_pkt = xhci_usb_endpoint_maxp(urb->dev, urb->ep); 1347 1348 if (!urb->num_sgs) 1349 return ret; 1350 1351 if (urb->dev->speed >= USB_SPEED_SUPER) 1352 trb_size = TRB_CACHE_SIZE_SS; 1353 else 1354 trb_size = TRB_CACHE_SIZE_HS; 1355 1356 if (urb->transfer_buffer_length != 0 && 1357 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1358 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1359 len = len + sg->length; 1360 if (i > trb_size - 2) { 1361 len = len - tail_sg->length; 1362 if (len < max_pkt) { 1363 ret = true; 1364 break; 1365 } 1366 1367 tail_sg = sg_next(tail_sg); 1368 } 1369 } 1370 } 1371 return ret; 1372 } 1373 1374 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1375 { 1376 unsigned int len; 1377 unsigned int buf_len; 1378 enum dma_data_direction dir; 1379 1380 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1381 1382 buf_len = urb->transfer_buffer_length; 1383 1384 if (IS_ENABLED(CONFIG_HAS_DMA) && 1385 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1386 dma_unmap_single(hcd->self.sysdev, 1387 urb->transfer_dma, 1388 urb->transfer_buffer_length, 1389 dir); 1390 1391 if (usb_urb_dir_in(urb)) { 1392 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1393 urb->transfer_buffer, 1394 buf_len, 1395 0); 1396 if (len != buf_len) { 1397 xhci_dbg(hcd_to_xhci(hcd), 1398 "Copy from tmp buf to urb sg list failed\n"); 1399 urb->actual_length = len; 1400 } 1401 } 1402 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1403 kfree(urb->transfer_buffer); 1404 urb->transfer_buffer = NULL; 1405 } 1406 1407 /* 1408 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1409 * we'll copy the actual data into the TRB address register. This is limited to 1410 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1411 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1412 */ 1413 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1414 gfp_t mem_flags) 1415 { 1416 struct xhci_hcd *xhci; 1417 1418 xhci = hcd_to_xhci(hcd); 1419 1420 if (xhci_urb_suitable_for_idt(urb)) 1421 return 0; 1422 1423 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1424 if (xhci_urb_temp_buffer_required(hcd, urb)) 1425 return xhci_map_temp_buffer(hcd, urb); 1426 } 1427 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1428 } 1429 1430 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1431 { 1432 struct xhci_hcd *xhci; 1433 bool unmap_temp_buf = false; 1434 1435 xhci = hcd_to_xhci(hcd); 1436 1437 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1438 unmap_temp_buf = true; 1439 1440 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1441 xhci_unmap_temp_buf(hcd, urb); 1442 else 1443 usb_hcd_unmap_urb_for_dma(hcd, urb); 1444 } 1445 1446 /** 1447 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1448 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1449 * value to right shift 1 for the bitmask. 1450 * @desc: USB endpoint descriptor to determine index for 1451 * 1452 * Index = (epnum * 2) + direction - 1, 1453 * where direction = 0 for OUT, 1 for IN. 1454 * For control endpoints, the IN index is used (OUT index is unused), so 1455 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1456 */ 1457 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1458 { 1459 unsigned int index; 1460 if (usb_endpoint_xfer_control(desc)) 1461 index = (unsigned int) (usb_endpoint_num(desc)*2); 1462 else 1463 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1464 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1465 return index; 1466 } 1467 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1468 1469 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1470 * address from the XHCI endpoint index. 1471 */ 1472 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1473 { 1474 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1475 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1476 return direction | number; 1477 } 1478 1479 /* Find the flag for this endpoint (for use in the control context). Use the 1480 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1481 * bit 1, etc. 1482 */ 1483 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1484 { 1485 return 1 << (xhci_get_endpoint_index(desc) + 1); 1486 } 1487 1488 /* Compute the last valid endpoint context index. Basically, this is the 1489 * endpoint index plus one. For slot contexts with more than valid endpoint, 1490 * we find the most significant bit set in the added contexts flags. 1491 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1492 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1493 */ 1494 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1495 { 1496 return fls(added_ctxs) - 1; 1497 } 1498 1499 /* Returns 1 if the arguments are OK; 1500 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1501 */ 1502 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1503 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1504 const char *func) { 1505 struct xhci_hcd *xhci; 1506 struct xhci_virt_device *virt_dev; 1507 1508 if (!hcd || (check_ep && !ep) || !udev) { 1509 pr_debug("xHCI %s called with invalid args\n", func); 1510 return -EINVAL; 1511 } 1512 if (!udev->parent) { 1513 pr_debug("xHCI %s called for root hub\n", func); 1514 return 0; 1515 } 1516 1517 xhci = hcd_to_xhci(hcd); 1518 if (check_virt_dev) { 1519 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1520 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1521 func); 1522 return -EINVAL; 1523 } 1524 1525 virt_dev = xhci->devs[udev->slot_id]; 1526 if (virt_dev->udev != udev) { 1527 xhci_dbg(xhci, "xHCI %s called with udev and " 1528 "virt_dev does not match\n", func); 1529 return -EINVAL; 1530 } 1531 } 1532 1533 if (xhci->xhc_state & XHCI_STATE_HALTED) 1534 return -ENODEV; 1535 1536 return 1; 1537 } 1538 1539 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1540 struct usb_device *udev, struct xhci_command *command, 1541 bool ctx_change, bool must_succeed); 1542 1543 /* 1544 * Full speed devices may have a max packet size greater than 8 bytes, but the 1545 * USB core doesn't know that until it reads the first 8 bytes of the 1546 * descriptor. If the usb_device's max packet size changes after that point, 1547 * we need to issue an evaluate context command and wait on it. 1548 */ 1549 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev) 1550 { 1551 struct xhci_input_control_ctx *ctrl_ctx; 1552 struct xhci_ep_ctx *ep_ctx; 1553 struct xhci_command *command; 1554 int max_packet_size; 1555 int hw_max_packet_size; 1556 int ret = 0; 1557 1558 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0); 1559 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1560 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc); 1561 1562 if (hw_max_packet_size == max_packet_size) 1563 return 0; 1564 1565 switch (max_packet_size) { 1566 case 8: case 16: case 32: case 64: case 9: 1567 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1568 "Max Packet Size for ep 0 changed."); 1569 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1570 "Max packet size in usb_device = %d", 1571 max_packet_size); 1572 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1573 "Max packet size in xHCI HW = %d", 1574 hw_max_packet_size); 1575 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1576 "Issuing evaluate context command."); 1577 1578 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1579 if (!command) 1580 return -ENOMEM; 1581 1582 command->in_ctx = vdev->in_ctx; 1583 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1584 if (!ctrl_ctx) { 1585 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1586 __func__); 1587 ret = -ENOMEM; 1588 break; 1589 } 1590 /* Set up the modified control endpoint 0 */ 1591 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0); 1592 1593 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0); 1594 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1595 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1596 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1597 1598 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1599 ctrl_ctx->drop_flags = 0; 1600 1601 ret = xhci_configure_endpoint(xhci, vdev->udev, command, 1602 true, false); 1603 /* Clean up the input context for later use by bandwidth functions */ 1604 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1605 break; 1606 default: 1607 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n", 1608 max_packet_size); 1609 return -EINVAL; 1610 } 1611 1612 kfree(command->completion); 1613 kfree(command); 1614 1615 return ret; 1616 } 1617 1618 /* 1619 * non-error returns are a promise to giveback() the urb later 1620 * we drop ownership so next owner (or urb unlink) can get it 1621 */ 1622 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1623 { 1624 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1625 unsigned long flags; 1626 int ret = 0; 1627 unsigned int slot_id, ep_index; 1628 unsigned int *ep_state; 1629 struct urb_priv *urb_priv; 1630 int num_tds; 1631 1632 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1633 1634 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1635 num_tds = urb->number_of_packets; 1636 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1637 urb->transfer_buffer_length > 0 && 1638 urb->transfer_flags & URB_ZERO_PACKET && 1639 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1640 num_tds = 2; 1641 else 1642 num_tds = 1; 1643 1644 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1645 if (!urb_priv) 1646 return -ENOMEM; 1647 1648 urb_priv->num_tds = num_tds; 1649 urb_priv->num_tds_done = 0; 1650 urb->hcpriv = urb_priv; 1651 1652 trace_xhci_urb_enqueue(urb); 1653 1654 spin_lock_irqsave(&xhci->lock, flags); 1655 1656 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1657 true, true, __func__); 1658 if (ret <= 0) { 1659 ret = ret ? ret : -EINVAL; 1660 goto free_priv; 1661 } 1662 1663 slot_id = urb->dev->slot_id; 1664 1665 if (!HCD_HW_ACCESSIBLE(hcd)) { 1666 ret = -ESHUTDOWN; 1667 goto free_priv; 1668 } 1669 1670 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1671 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1672 ret = -ENODEV; 1673 goto free_priv; 1674 } 1675 1676 if (xhci->xhc_state & XHCI_STATE_DYING) { 1677 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1678 urb->ep->desc.bEndpointAddress, urb); 1679 ret = -ESHUTDOWN; 1680 goto free_priv; 1681 } 1682 1683 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1684 1685 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1686 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1687 *ep_state); 1688 ret = -EINVAL; 1689 goto free_priv; 1690 } 1691 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1692 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1693 ret = -EINVAL; 1694 goto free_priv; 1695 } 1696 1697 switch (usb_endpoint_type(&urb->ep->desc)) { 1698 1699 case USB_ENDPOINT_XFER_CONTROL: 1700 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1701 slot_id, ep_index); 1702 break; 1703 case USB_ENDPOINT_XFER_BULK: 1704 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1705 slot_id, ep_index); 1706 break; 1707 case USB_ENDPOINT_XFER_INT: 1708 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1709 slot_id, ep_index); 1710 break; 1711 case USB_ENDPOINT_XFER_ISOC: 1712 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1713 slot_id, ep_index); 1714 } 1715 1716 if (ret) { 1717 free_priv: 1718 xhci_urb_free_priv(urb_priv); 1719 urb->hcpriv = NULL; 1720 } 1721 spin_unlock_irqrestore(&xhci->lock, flags); 1722 return ret; 1723 } 1724 1725 /* 1726 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1727 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1728 * should pick up where it left off in the TD, unless a Set Transfer Ring 1729 * Dequeue Pointer is issued. 1730 * 1731 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1732 * the ring. Since the ring is a contiguous structure, they can't be physically 1733 * removed. Instead, there are two options: 1734 * 1735 * 1) If the HC is in the middle of processing the URB to be canceled, we 1736 * simply move the ring's dequeue pointer past those TRBs using the Set 1737 * Transfer Ring Dequeue Pointer command. This will be the common case, 1738 * when drivers timeout on the last submitted URB and attempt to cancel. 1739 * 1740 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1741 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1742 * HC will need to invalidate the any TRBs it has cached after the stop 1743 * endpoint command, as noted in the xHCI 0.95 errata. 1744 * 1745 * 3) The TD may have completed by the time the Stop Endpoint Command 1746 * completes, so software needs to handle that case too. 1747 * 1748 * This function should protect against the TD enqueueing code ringing the 1749 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1750 * It also needs to account for multiple cancellations on happening at the same 1751 * time for the same endpoint. 1752 * 1753 * Note that this function can be called in any context, or so says 1754 * usb_hcd_unlink_urb() 1755 */ 1756 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1757 { 1758 unsigned long flags; 1759 int ret, i; 1760 u32 temp; 1761 struct xhci_hcd *xhci; 1762 struct urb_priv *urb_priv; 1763 struct xhci_td *td; 1764 unsigned int ep_index; 1765 struct xhci_ring *ep_ring; 1766 struct xhci_virt_ep *ep; 1767 struct xhci_command *command; 1768 struct xhci_virt_device *vdev; 1769 1770 xhci = hcd_to_xhci(hcd); 1771 spin_lock_irqsave(&xhci->lock, flags); 1772 1773 trace_xhci_urb_dequeue(urb); 1774 1775 /* Make sure the URB hasn't completed or been unlinked already */ 1776 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1777 if (ret) 1778 goto done; 1779 1780 /* give back URB now if we can't queue it for cancel */ 1781 vdev = xhci->devs[urb->dev->slot_id]; 1782 urb_priv = urb->hcpriv; 1783 if (!vdev || !urb_priv) 1784 goto err_giveback; 1785 1786 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1787 ep = &vdev->eps[ep_index]; 1788 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1789 if (!ep || !ep_ring) 1790 goto err_giveback; 1791 1792 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1793 temp = readl(&xhci->op_regs->status); 1794 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1795 xhci_hc_died(xhci); 1796 goto done; 1797 } 1798 1799 /* 1800 * check ring is not re-allocated since URB was enqueued. If it is, then 1801 * make sure none of the ring related pointers in this URB private data 1802 * are touched, such as td_list, otherwise we overwrite freed data 1803 */ 1804 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1805 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1806 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1807 td = &urb_priv->td[i]; 1808 if (!list_empty(&td->cancelled_td_list)) 1809 list_del_init(&td->cancelled_td_list); 1810 } 1811 goto err_giveback; 1812 } 1813 1814 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1815 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1816 "HC halted, freeing TD manually."); 1817 for (i = urb_priv->num_tds_done; 1818 i < urb_priv->num_tds; 1819 i++) { 1820 td = &urb_priv->td[i]; 1821 if (!list_empty(&td->td_list)) 1822 list_del_init(&td->td_list); 1823 if (!list_empty(&td->cancelled_td_list)) 1824 list_del_init(&td->cancelled_td_list); 1825 } 1826 goto err_giveback; 1827 } 1828 1829 i = urb_priv->num_tds_done; 1830 if (i < urb_priv->num_tds) 1831 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1832 "Cancel URB %p, dev %s, ep 0x%x, " 1833 "starting at offset 0x%llx", 1834 urb, urb->dev->devpath, 1835 urb->ep->desc.bEndpointAddress, 1836 (unsigned long long) xhci_trb_virt_to_dma( 1837 urb_priv->td[i].start_seg, 1838 urb_priv->td[i].start_trb)); 1839 1840 for (; i < urb_priv->num_tds; i++) { 1841 td = &urb_priv->td[i]; 1842 /* TD can already be on cancelled list if ep halted on it */ 1843 if (list_empty(&td->cancelled_td_list)) { 1844 td->cancel_status = TD_DIRTY; 1845 list_add_tail(&td->cancelled_td_list, 1846 &ep->cancelled_td_list); 1847 } 1848 } 1849 1850 /* These completion handlers will sort out cancelled TDs for us */ 1851 if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) { 1852 xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n", 1853 urb->dev->slot_id, ep_index, ep->ep_state); 1854 goto done; 1855 } 1856 1857 /* In this case no commands are pending but the endpoint is stopped */ 1858 if (ep->ep_state & EP_CLEARING_TT) { 1859 /* and cancelled TDs can be given back right away */ 1860 xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n", 1861 urb->dev->slot_id, ep_index, ep->ep_state); 1862 xhci_process_cancelled_tds(ep); 1863 } else { 1864 /* Otherwise, queue a new Stop Endpoint command */ 1865 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1866 if (!command) { 1867 ret = -ENOMEM; 1868 goto done; 1869 } 1870 ep->stop_time = jiffies; 1871 ep->ep_state |= EP_STOP_CMD_PENDING; 1872 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1873 ep_index, 0); 1874 xhci_ring_cmd_db(xhci); 1875 } 1876 done: 1877 spin_unlock_irqrestore(&xhci->lock, flags); 1878 return ret; 1879 1880 err_giveback: 1881 if (urb_priv) 1882 xhci_urb_free_priv(urb_priv); 1883 usb_hcd_unlink_urb_from_ep(hcd, urb); 1884 spin_unlock_irqrestore(&xhci->lock, flags); 1885 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1886 return ret; 1887 } 1888 1889 /* Drop an endpoint from a new bandwidth configuration for this device. 1890 * Only one call to this function is allowed per endpoint before 1891 * check_bandwidth() or reset_bandwidth() must be called. 1892 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1893 * add the endpoint to the schedule with possibly new parameters denoted by a 1894 * different endpoint descriptor in usb_host_endpoint. 1895 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1896 * not allowed. 1897 * 1898 * The USB core will not allow URBs to be queued to an endpoint that is being 1899 * disabled, so there's no need for mutual exclusion to protect 1900 * the xhci->devs[slot_id] structure. 1901 */ 1902 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1903 struct usb_host_endpoint *ep) 1904 { 1905 struct xhci_hcd *xhci; 1906 struct xhci_container_ctx *in_ctx, *out_ctx; 1907 struct xhci_input_control_ctx *ctrl_ctx; 1908 unsigned int ep_index; 1909 struct xhci_ep_ctx *ep_ctx; 1910 u32 drop_flag; 1911 u32 new_add_flags, new_drop_flags; 1912 int ret; 1913 1914 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1915 if (ret <= 0) 1916 return ret; 1917 xhci = hcd_to_xhci(hcd); 1918 if (xhci->xhc_state & XHCI_STATE_DYING) 1919 return -ENODEV; 1920 1921 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1922 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1923 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1924 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1925 __func__, drop_flag); 1926 return 0; 1927 } 1928 1929 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1930 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1931 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1932 if (!ctrl_ctx) { 1933 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1934 __func__); 1935 return 0; 1936 } 1937 1938 ep_index = xhci_get_endpoint_index(&ep->desc); 1939 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1940 /* If the HC already knows the endpoint is disabled, 1941 * or the HCD has noted it is disabled, ignore this request 1942 */ 1943 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1944 le32_to_cpu(ctrl_ctx->drop_flags) & 1945 xhci_get_endpoint_flag(&ep->desc)) { 1946 /* Do not warn when called after a usb_device_reset */ 1947 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1948 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1949 __func__, ep); 1950 return 0; 1951 } 1952 1953 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1954 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1955 1956 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1957 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1958 1959 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1960 1961 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1962 1963 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1964 (unsigned int) ep->desc.bEndpointAddress, 1965 udev->slot_id, 1966 (unsigned int) new_drop_flags, 1967 (unsigned int) new_add_flags); 1968 return 0; 1969 } 1970 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1971 1972 /* Add an endpoint to a new possible bandwidth configuration for this device. 1973 * Only one call to this function is allowed per endpoint before 1974 * check_bandwidth() or reset_bandwidth() must be called. 1975 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1976 * add the endpoint to the schedule with possibly new parameters denoted by a 1977 * different endpoint descriptor in usb_host_endpoint. 1978 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1979 * not allowed. 1980 * 1981 * The USB core will not allow URBs to be queued to an endpoint until the 1982 * configuration or alt setting is installed in the device, so there's no need 1983 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1984 */ 1985 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1986 struct usb_host_endpoint *ep) 1987 { 1988 struct xhci_hcd *xhci; 1989 struct xhci_container_ctx *in_ctx; 1990 unsigned int ep_index; 1991 struct xhci_input_control_ctx *ctrl_ctx; 1992 struct xhci_ep_ctx *ep_ctx; 1993 u32 added_ctxs; 1994 u32 new_add_flags, new_drop_flags; 1995 struct xhci_virt_device *virt_dev; 1996 int ret = 0; 1997 1998 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1999 if (ret <= 0) { 2000 /* So we won't queue a reset ep command for a root hub */ 2001 ep->hcpriv = NULL; 2002 return ret; 2003 } 2004 xhci = hcd_to_xhci(hcd); 2005 if (xhci->xhc_state & XHCI_STATE_DYING) 2006 return -ENODEV; 2007 2008 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 2009 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 2010 /* FIXME when we have to issue an evaluate endpoint command to 2011 * deal with ep0 max packet size changing once we get the 2012 * descriptors 2013 */ 2014 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 2015 __func__, added_ctxs); 2016 return 0; 2017 } 2018 2019 virt_dev = xhci->devs[udev->slot_id]; 2020 in_ctx = virt_dev->in_ctx; 2021 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2022 if (!ctrl_ctx) { 2023 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2024 __func__); 2025 return 0; 2026 } 2027 2028 ep_index = xhci_get_endpoint_index(&ep->desc); 2029 /* If this endpoint is already in use, and the upper layers are trying 2030 * to add it again without dropping it, reject the addition. 2031 */ 2032 if (virt_dev->eps[ep_index].ring && 2033 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 2034 xhci_warn(xhci, "Trying to add endpoint 0x%x " 2035 "without dropping it.\n", 2036 (unsigned int) ep->desc.bEndpointAddress); 2037 return -EINVAL; 2038 } 2039 2040 /* If the HCD has already noted the endpoint is enabled, 2041 * ignore this request. 2042 */ 2043 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2044 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2045 __func__, ep); 2046 return 0; 2047 } 2048 2049 /* 2050 * Configuration and alternate setting changes must be done in 2051 * process context, not interrupt context (or so documenation 2052 * for usb_set_interface() and usb_set_configuration() claim). 2053 */ 2054 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2055 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2056 __func__, ep->desc.bEndpointAddress); 2057 return -ENOMEM; 2058 } 2059 2060 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2061 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2062 2063 /* If xhci_endpoint_disable() was called for this endpoint, but the 2064 * xHC hasn't been notified yet through the check_bandwidth() call, 2065 * this re-adds a new state for the endpoint from the new endpoint 2066 * descriptors. We must drop and re-add this endpoint, so we leave the 2067 * drop flags alone. 2068 */ 2069 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2070 2071 /* Store the usb_device pointer for later use */ 2072 ep->hcpriv = udev; 2073 2074 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2075 trace_xhci_add_endpoint(ep_ctx); 2076 2077 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2078 (unsigned int) ep->desc.bEndpointAddress, 2079 udev->slot_id, 2080 (unsigned int) new_drop_flags, 2081 (unsigned int) new_add_flags); 2082 return 0; 2083 } 2084 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2085 2086 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2087 { 2088 struct xhci_input_control_ctx *ctrl_ctx; 2089 struct xhci_ep_ctx *ep_ctx; 2090 struct xhci_slot_ctx *slot_ctx; 2091 int i; 2092 2093 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2094 if (!ctrl_ctx) { 2095 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2096 __func__); 2097 return; 2098 } 2099 2100 /* When a device's add flag and drop flag are zero, any subsequent 2101 * configure endpoint command will leave that endpoint's state 2102 * untouched. Make sure we don't leave any old state in the input 2103 * endpoint contexts. 2104 */ 2105 ctrl_ctx->drop_flags = 0; 2106 ctrl_ctx->add_flags = 0; 2107 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2108 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2109 /* Endpoint 0 is always valid */ 2110 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2111 for (i = 1; i < 31; i++) { 2112 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2113 ep_ctx->ep_info = 0; 2114 ep_ctx->ep_info2 = 0; 2115 ep_ctx->deq = 0; 2116 ep_ctx->tx_info = 0; 2117 } 2118 } 2119 2120 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2121 struct usb_device *udev, u32 *cmd_status) 2122 { 2123 int ret; 2124 2125 switch (*cmd_status) { 2126 case COMP_COMMAND_ABORTED: 2127 case COMP_COMMAND_RING_STOPPED: 2128 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2129 ret = -ETIME; 2130 break; 2131 case COMP_RESOURCE_ERROR: 2132 dev_warn(&udev->dev, 2133 "Not enough host controller resources for new device state.\n"); 2134 ret = -ENOMEM; 2135 /* FIXME: can we allocate more resources for the HC? */ 2136 break; 2137 case COMP_BANDWIDTH_ERROR: 2138 case COMP_SECONDARY_BANDWIDTH_ERROR: 2139 dev_warn(&udev->dev, 2140 "Not enough bandwidth for new device state.\n"); 2141 ret = -ENOSPC; 2142 /* FIXME: can we go back to the old state? */ 2143 break; 2144 case COMP_TRB_ERROR: 2145 /* the HCD set up something wrong */ 2146 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2147 "add flag = 1, " 2148 "and endpoint is not disabled.\n"); 2149 ret = -EINVAL; 2150 break; 2151 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2152 dev_warn(&udev->dev, 2153 "ERROR: Incompatible device for endpoint configure command.\n"); 2154 ret = -ENODEV; 2155 break; 2156 case COMP_SUCCESS: 2157 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2158 "Successful Endpoint Configure command"); 2159 ret = 0; 2160 break; 2161 default: 2162 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2163 *cmd_status); 2164 ret = -EINVAL; 2165 break; 2166 } 2167 return ret; 2168 } 2169 2170 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2171 struct usb_device *udev, u32 *cmd_status) 2172 { 2173 int ret; 2174 2175 switch (*cmd_status) { 2176 case COMP_COMMAND_ABORTED: 2177 case COMP_COMMAND_RING_STOPPED: 2178 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2179 ret = -ETIME; 2180 break; 2181 case COMP_PARAMETER_ERROR: 2182 dev_warn(&udev->dev, 2183 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2184 ret = -EINVAL; 2185 break; 2186 case COMP_SLOT_NOT_ENABLED_ERROR: 2187 dev_warn(&udev->dev, 2188 "WARN: slot not enabled for evaluate context command.\n"); 2189 ret = -EINVAL; 2190 break; 2191 case COMP_CONTEXT_STATE_ERROR: 2192 dev_warn(&udev->dev, 2193 "WARN: invalid context state for evaluate context command.\n"); 2194 ret = -EINVAL; 2195 break; 2196 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2197 dev_warn(&udev->dev, 2198 "ERROR: Incompatible device for evaluate context command.\n"); 2199 ret = -ENODEV; 2200 break; 2201 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2202 /* Max Exit Latency too large error */ 2203 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2204 ret = -EINVAL; 2205 break; 2206 case COMP_SUCCESS: 2207 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2208 "Successful evaluate context command"); 2209 ret = 0; 2210 break; 2211 default: 2212 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2213 *cmd_status); 2214 ret = -EINVAL; 2215 break; 2216 } 2217 return ret; 2218 } 2219 2220 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2221 struct xhci_input_control_ctx *ctrl_ctx) 2222 { 2223 u32 valid_add_flags; 2224 u32 valid_drop_flags; 2225 2226 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2227 * (bit 1). The default control endpoint is added during the Address 2228 * Device command and is never removed until the slot is disabled. 2229 */ 2230 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2231 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2232 2233 /* Use hweight32 to count the number of ones in the add flags, or 2234 * number of endpoints added. Don't count endpoints that are changed 2235 * (both added and dropped). 2236 */ 2237 return hweight32(valid_add_flags) - 2238 hweight32(valid_add_flags & valid_drop_flags); 2239 } 2240 2241 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2242 struct xhci_input_control_ctx *ctrl_ctx) 2243 { 2244 u32 valid_add_flags; 2245 u32 valid_drop_flags; 2246 2247 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2248 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2249 2250 return hweight32(valid_drop_flags) - 2251 hweight32(valid_add_flags & valid_drop_flags); 2252 } 2253 2254 /* 2255 * We need to reserve the new number of endpoints before the configure endpoint 2256 * command completes. We can't subtract the dropped endpoints from the number 2257 * of active endpoints until the command completes because we can oversubscribe 2258 * the host in this case: 2259 * 2260 * - the first configure endpoint command drops more endpoints than it adds 2261 * - a second configure endpoint command that adds more endpoints is queued 2262 * - the first configure endpoint command fails, so the config is unchanged 2263 * - the second command may succeed, even though there isn't enough resources 2264 * 2265 * Must be called with xhci->lock held. 2266 */ 2267 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2268 struct xhci_input_control_ctx *ctrl_ctx) 2269 { 2270 u32 added_eps; 2271 2272 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2273 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2274 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2275 "Not enough ep ctxs: " 2276 "%u active, need to add %u, limit is %u.", 2277 xhci->num_active_eps, added_eps, 2278 xhci->limit_active_eps); 2279 return -ENOMEM; 2280 } 2281 xhci->num_active_eps += added_eps; 2282 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2283 "Adding %u ep ctxs, %u now active.", added_eps, 2284 xhci->num_active_eps); 2285 return 0; 2286 } 2287 2288 /* 2289 * The configure endpoint was failed by the xHC for some other reason, so we 2290 * need to revert the resources that failed configuration would have used. 2291 * 2292 * Must be called with xhci->lock held. 2293 */ 2294 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2295 struct xhci_input_control_ctx *ctrl_ctx) 2296 { 2297 u32 num_failed_eps; 2298 2299 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2300 xhci->num_active_eps -= num_failed_eps; 2301 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2302 "Removing %u failed ep ctxs, %u now active.", 2303 num_failed_eps, 2304 xhci->num_active_eps); 2305 } 2306 2307 /* 2308 * Now that the command has completed, clean up the active endpoint count by 2309 * subtracting out the endpoints that were dropped (but not changed). 2310 * 2311 * Must be called with xhci->lock held. 2312 */ 2313 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2314 struct xhci_input_control_ctx *ctrl_ctx) 2315 { 2316 u32 num_dropped_eps; 2317 2318 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2319 xhci->num_active_eps -= num_dropped_eps; 2320 if (num_dropped_eps) 2321 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2322 "Removing %u dropped ep ctxs, %u now active.", 2323 num_dropped_eps, 2324 xhci->num_active_eps); 2325 } 2326 2327 static unsigned int xhci_get_block_size(struct usb_device *udev) 2328 { 2329 switch (udev->speed) { 2330 case USB_SPEED_LOW: 2331 case USB_SPEED_FULL: 2332 return FS_BLOCK; 2333 case USB_SPEED_HIGH: 2334 return HS_BLOCK; 2335 case USB_SPEED_SUPER: 2336 case USB_SPEED_SUPER_PLUS: 2337 return SS_BLOCK; 2338 case USB_SPEED_UNKNOWN: 2339 default: 2340 /* Should never happen */ 2341 return 1; 2342 } 2343 } 2344 2345 static unsigned int 2346 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2347 { 2348 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2349 return LS_OVERHEAD; 2350 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2351 return FS_OVERHEAD; 2352 return HS_OVERHEAD; 2353 } 2354 2355 /* If we are changing a LS/FS device under a HS hub, 2356 * make sure (if we are activating a new TT) that the HS bus has enough 2357 * bandwidth for this new TT. 2358 */ 2359 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2360 struct xhci_virt_device *virt_dev, 2361 int old_active_eps) 2362 { 2363 struct xhci_interval_bw_table *bw_table; 2364 struct xhci_tt_bw_info *tt_info; 2365 2366 /* Find the bandwidth table for the root port this TT is attached to. */ 2367 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table; 2368 tt_info = virt_dev->tt_info; 2369 /* If this TT already had active endpoints, the bandwidth for this TT 2370 * has already been added. Removing all periodic endpoints (and thus 2371 * making the TT enactive) will only decrease the bandwidth used. 2372 */ 2373 if (old_active_eps) 2374 return 0; 2375 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2376 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2377 return -ENOMEM; 2378 return 0; 2379 } 2380 /* Not sure why we would have no new active endpoints... 2381 * 2382 * Maybe because of an Evaluate Context change for a hub update or a 2383 * control endpoint 0 max packet size change? 2384 * FIXME: skip the bandwidth calculation in that case. 2385 */ 2386 return 0; 2387 } 2388 2389 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2390 struct xhci_virt_device *virt_dev) 2391 { 2392 unsigned int bw_reserved; 2393 2394 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2395 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2396 return -ENOMEM; 2397 2398 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2399 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2400 return -ENOMEM; 2401 2402 return 0; 2403 } 2404 2405 /* 2406 * This algorithm is a very conservative estimate of the worst-case scheduling 2407 * scenario for any one interval. The hardware dynamically schedules the 2408 * packets, so we can't tell which microframe could be the limiting factor in 2409 * the bandwidth scheduling. This only takes into account periodic endpoints. 2410 * 2411 * Obviously, we can't solve an NP complete problem to find the minimum worst 2412 * case scenario. Instead, we come up with an estimate that is no less than 2413 * the worst case bandwidth used for any one microframe, but may be an 2414 * over-estimate. 2415 * 2416 * We walk the requirements for each endpoint by interval, starting with the 2417 * smallest interval, and place packets in the schedule where there is only one 2418 * possible way to schedule packets for that interval. In order to simplify 2419 * this algorithm, we record the largest max packet size for each interval, and 2420 * assume all packets will be that size. 2421 * 2422 * For interval 0, we obviously must schedule all packets for each interval. 2423 * The bandwidth for interval 0 is just the amount of data to be transmitted 2424 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2425 * the number of packets). 2426 * 2427 * For interval 1, we have two possible microframes to schedule those packets 2428 * in. For this algorithm, if we can schedule the same number of packets for 2429 * each possible scheduling opportunity (each microframe), we will do so. The 2430 * remaining number of packets will be saved to be transmitted in the gaps in 2431 * the next interval's scheduling sequence. 2432 * 2433 * As we move those remaining packets to be scheduled with interval 2 packets, 2434 * we have to double the number of remaining packets to transmit. This is 2435 * because the intervals are actually powers of 2, and we would be transmitting 2436 * the previous interval's packets twice in this interval. We also have to be 2437 * sure that when we look at the largest max packet size for this interval, we 2438 * also look at the largest max packet size for the remaining packets and take 2439 * the greater of the two. 2440 * 2441 * The algorithm continues to evenly distribute packets in each scheduling 2442 * opportunity, and push the remaining packets out, until we get to the last 2443 * interval. Then those packets and their associated overhead are just added 2444 * to the bandwidth used. 2445 */ 2446 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2447 struct xhci_virt_device *virt_dev, 2448 int old_active_eps) 2449 { 2450 unsigned int bw_reserved; 2451 unsigned int max_bandwidth; 2452 unsigned int bw_used; 2453 unsigned int block_size; 2454 struct xhci_interval_bw_table *bw_table; 2455 unsigned int packet_size = 0; 2456 unsigned int overhead = 0; 2457 unsigned int packets_transmitted = 0; 2458 unsigned int packets_remaining = 0; 2459 unsigned int i; 2460 2461 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2462 return xhci_check_ss_bw(xhci, virt_dev); 2463 2464 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2465 max_bandwidth = HS_BW_LIMIT; 2466 /* Convert percent of bus BW reserved to blocks reserved */ 2467 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2468 } else { 2469 max_bandwidth = FS_BW_LIMIT; 2470 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2471 } 2472 2473 bw_table = virt_dev->bw_table; 2474 /* We need to translate the max packet size and max ESIT payloads into 2475 * the units the hardware uses. 2476 */ 2477 block_size = xhci_get_block_size(virt_dev->udev); 2478 2479 /* If we are manipulating a LS/FS device under a HS hub, double check 2480 * that the HS bus has enough bandwidth if we are activing a new TT. 2481 */ 2482 if (virt_dev->tt_info) { 2483 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2484 "Recalculating BW for rootport %u", 2485 virt_dev->rhub_port->hw_portnum + 1); 2486 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2487 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2488 "newly activated TT.\n"); 2489 return -ENOMEM; 2490 } 2491 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2492 "Recalculating BW for TT slot %u port %u", 2493 virt_dev->tt_info->slot_id, 2494 virt_dev->tt_info->ttport); 2495 } else { 2496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2497 "Recalculating BW for rootport %u", 2498 virt_dev->rhub_port->hw_portnum + 1); 2499 } 2500 2501 /* Add in how much bandwidth will be used for interval zero, or the 2502 * rounded max ESIT payload + number of packets * largest overhead. 2503 */ 2504 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2505 bw_table->interval_bw[0].num_packets * 2506 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2507 2508 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2509 unsigned int bw_added; 2510 unsigned int largest_mps; 2511 unsigned int interval_overhead; 2512 2513 /* 2514 * How many packets could we transmit in this interval? 2515 * If packets didn't fit in the previous interval, we will need 2516 * to transmit that many packets twice within this interval. 2517 */ 2518 packets_remaining = 2 * packets_remaining + 2519 bw_table->interval_bw[i].num_packets; 2520 2521 /* Find the largest max packet size of this or the previous 2522 * interval. 2523 */ 2524 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2525 largest_mps = 0; 2526 else { 2527 struct xhci_virt_ep *virt_ep; 2528 struct list_head *ep_entry; 2529 2530 ep_entry = bw_table->interval_bw[i].endpoints.next; 2531 virt_ep = list_entry(ep_entry, 2532 struct xhci_virt_ep, bw_endpoint_list); 2533 /* Convert to blocks, rounding up */ 2534 largest_mps = DIV_ROUND_UP( 2535 virt_ep->bw_info.max_packet_size, 2536 block_size); 2537 } 2538 if (largest_mps > packet_size) 2539 packet_size = largest_mps; 2540 2541 /* Use the larger overhead of this or the previous interval. */ 2542 interval_overhead = xhci_get_largest_overhead( 2543 &bw_table->interval_bw[i]); 2544 if (interval_overhead > overhead) 2545 overhead = interval_overhead; 2546 2547 /* How many packets can we evenly distribute across 2548 * (1 << (i + 1)) possible scheduling opportunities? 2549 */ 2550 packets_transmitted = packets_remaining >> (i + 1); 2551 2552 /* Add in the bandwidth used for those scheduled packets */ 2553 bw_added = packets_transmitted * (overhead + packet_size); 2554 2555 /* How many packets do we have remaining to transmit? */ 2556 packets_remaining = packets_remaining % (1 << (i + 1)); 2557 2558 /* What largest max packet size should those packets have? */ 2559 /* If we've transmitted all packets, don't carry over the 2560 * largest packet size. 2561 */ 2562 if (packets_remaining == 0) { 2563 packet_size = 0; 2564 overhead = 0; 2565 } else if (packets_transmitted > 0) { 2566 /* Otherwise if we do have remaining packets, and we've 2567 * scheduled some packets in this interval, take the 2568 * largest max packet size from endpoints with this 2569 * interval. 2570 */ 2571 packet_size = largest_mps; 2572 overhead = interval_overhead; 2573 } 2574 /* Otherwise carry over packet_size and overhead from the last 2575 * time we had a remainder. 2576 */ 2577 bw_used += bw_added; 2578 if (bw_used > max_bandwidth) { 2579 xhci_warn(xhci, "Not enough bandwidth. " 2580 "Proposed: %u, Max: %u\n", 2581 bw_used, max_bandwidth); 2582 return -ENOMEM; 2583 } 2584 } 2585 /* 2586 * Ok, we know we have some packets left over after even-handedly 2587 * scheduling interval 15. We don't know which microframes they will 2588 * fit into, so we over-schedule and say they will be scheduled every 2589 * microframe. 2590 */ 2591 if (packets_remaining > 0) 2592 bw_used += overhead + packet_size; 2593 2594 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2595 /* OK, we're manipulating a HS device attached to a 2596 * root port bandwidth domain. Include the number of active TTs 2597 * in the bandwidth used. 2598 */ 2599 bw_used += TT_HS_OVERHEAD * 2600 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts; 2601 } 2602 2603 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2604 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2605 "Available: %u " "percent", 2606 bw_used, max_bandwidth, bw_reserved, 2607 (max_bandwidth - bw_used - bw_reserved) * 100 / 2608 max_bandwidth); 2609 2610 bw_used += bw_reserved; 2611 if (bw_used > max_bandwidth) { 2612 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2613 bw_used, max_bandwidth); 2614 return -ENOMEM; 2615 } 2616 2617 bw_table->bw_used = bw_used; 2618 return 0; 2619 } 2620 2621 static bool xhci_is_async_ep(unsigned int ep_type) 2622 { 2623 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2624 ep_type != ISOC_IN_EP && 2625 ep_type != INT_IN_EP); 2626 } 2627 2628 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2629 { 2630 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2631 } 2632 2633 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2634 { 2635 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2636 2637 if (ep_bw->ep_interval == 0) 2638 return SS_OVERHEAD_BURST + 2639 (ep_bw->mult * ep_bw->num_packets * 2640 (SS_OVERHEAD + mps)); 2641 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2642 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2643 1 << ep_bw->ep_interval); 2644 2645 } 2646 2647 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2648 struct xhci_bw_info *ep_bw, 2649 struct xhci_interval_bw_table *bw_table, 2650 struct usb_device *udev, 2651 struct xhci_virt_ep *virt_ep, 2652 struct xhci_tt_bw_info *tt_info) 2653 { 2654 struct xhci_interval_bw *interval_bw; 2655 int normalized_interval; 2656 2657 if (xhci_is_async_ep(ep_bw->type)) 2658 return; 2659 2660 if (udev->speed >= USB_SPEED_SUPER) { 2661 if (xhci_is_sync_in_ep(ep_bw->type)) 2662 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2663 xhci_get_ss_bw_consumed(ep_bw); 2664 else 2665 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2666 xhci_get_ss_bw_consumed(ep_bw); 2667 return; 2668 } 2669 2670 /* SuperSpeed endpoints never get added to intervals in the table, so 2671 * this check is only valid for HS/FS/LS devices. 2672 */ 2673 if (list_empty(&virt_ep->bw_endpoint_list)) 2674 return; 2675 /* For LS/FS devices, we need to translate the interval expressed in 2676 * microframes to frames. 2677 */ 2678 if (udev->speed == USB_SPEED_HIGH) 2679 normalized_interval = ep_bw->ep_interval; 2680 else 2681 normalized_interval = ep_bw->ep_interval - 3; 2682 2683 if (normalized_interval == 0) 2684 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2685 interval_bw = &bw_table->interval_bw[normalized_interval]; 2686 interval_bw->num_packets -= ep_bw->num_packets; 2687 switch (udev->speed) { 2688 case USB_SPEED_LOW: 2689 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2690 break; 2691 case USB_SPEED_FULL: 2692 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2693 break; 2694 case USB_SPEED_HIGH: 2695 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2696 break; 2697 default: 2698 /* Should never happen because only LS/FS/HS endpoints will get 2699 * added to the endpoint list. 2700 */ 2701 return; 2702 } 2703 if (tt_info) 2704 tt_info->active_eps -= 1; 2705 list_del_init(&virt_ep->bw_endpoint_list); 2706 } 2707 2708 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2709 struct xhci_bw_info *ep_bw, 2710 struct xhci_interval_bw_table *bw_table, 2711 struct usb_device *udev, 2712 struct xhci_virt_ep *virt_ep, 2713 struct xhci_tt_bw_info *tt_info) 2714 { 2715 struct xhci_interval_bw *interval_bw; 2716 struct xhci_virt_ep *smaller_ep; 2717 int normalized_interval; 2718 2719 if (xhci_is_async_ep(ep_bw->type)) 2720 return; 2721 2722 if (udev->speed == USB_SPEED_SUPER) { 2723 if (xhci_is_sync_in_ep(ep_bw->type)) 2724 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2725 xhci_get_ss_bw_consumed(ep_bw); 2726 else 2727 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2728 xhci_get_ss_bw_consumed(ep_bw); 2729 return; 2730 } 2731 2732 /* For LS/FS devices, we need to translate the interval expressed in 2733 * microframes to frames. 2734 */ 2735 if (udev->speed == USB_SPEED_HIGH) 2736 normalized_interval = ep_bw->ep_interval; 2737 else 2738 normalized_interval = ep_bw->ep_interval - 3; 2739 2740 if (normalized_interval == 0) 2741 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2742 interval_bw = &bw_table->interval_bw[normalized_interval]; 2743 interval_bw->num_packets += ep_bw->num_packets; 2744 switch (udev->speed) { 2745 case USB_SPEED_LOW: 2746 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2747 break; 2748 case USB_SPEED_FULL: 2749 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2750 break; 2751 case USB_SPEED_HIGH: 2752 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2753 break; 2754 default: 2755 /* Should never happen because only LS/FS/HS endpoints will get 2756 * added to the endpoint list. 2757 */ 2758 return; 2759 } 2760 2761 if (tt_info) 2762 tt_info->active_eps += 1; 2763 /* Insert the endpoint into the list, largest max packet size first. */ 2764 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2765 bw_endpoint_list) { 2766 if (ep_bw->max_packet_size >= 2767 smaller_ep->bw_info.max_packet_size) { 2768 /* Add the new ep before the smaller endpoint */ 2769 list_add_tail(&virt_ep->bw_endpoint_list, 2770 &smaller_ep->bw_endpoint_list); 2771 return; 2772 } 2773 } 2774 /* Add the new endpoint at the end of the list. */ 2775 list_add_tail(&virt_ep->bw_endpoint_list, 2776 &interval_bw->endpoints); 2777 } 2778 2779 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2780 struct xhci_virt_device *virt_dev, 2781 int old_active_eps) 2782 { 2783 struct xhci_root_port_bw_info *rh_bw_info; 2784 if (!virt_dev->tt_info) 2785 return; 2786 2787 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum]; 2788 if (old_active_eps == 0 && 2789 virt_dev->tt_info->active_eps != 0) { 2790 rh_bw_info->num_active_tts += 1; 2791 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2792 } else if (old_active_eps != 0 && 2793 virt_dev->tt_info->active_eps == 0) { 2794 rh_bw_info->num_active_tts -= 1; 2795 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2796 } 2797 } 2798 2799 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2800 struct xhci_virt_device *virt_dev, 2801 struct xhci_container_ctx *in_ctx) 2802 { 2803 struct xhci_bw_info ep_bw_info[31]; 2804 int i; 2805 struct xhci_input_control_ctx *ctrl_ctx; 2806 int old_active_eps = 0; 2807 2808 if (virt_dev->tt_info) 2809 old_active_eps = virt_dev->tt_info->active_eps; 2810 2811 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2812 if (!ctrl_ctx) { 2813 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2814 __func__); 2815 return -ENOMEM; 2816 } 2817 2818 for (i = 0; i < 31; i++) { 2819 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2820 continue; 2821 2822 /* Make a copy of the BW info in case we need to revert this */ 2823 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2824 sizeof(ep_bw_info[i])); 2825 /* Drop the endpoint from the interval table if the endpoint is 2826 * being dropped or changed. 2827 */ 2828 if (EP_IS_DROPPED(ctrl_ctx, i)) 2829 xhci_drop_ep_from_interval_table(xhci, 2830 &virt_dev->eps[i].bw_info, 2831 virt_dev->bw_table, 2832 virt_dev->udev, 2833 &virt_dev->eps[i], 2834 virt_dev->tt_info); 2835 } 2836 /* Overwrite the information stored in the endpoints' bw_info */ 2837 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2838 for (i = 0; i < 31; i++) { 2839 /* Add any changed or added endpoints to the interval table */ 2840 if (EP_IS_ADDED(ctrl_ctx, i)) 2841 xhci_add_ep_to_interval_table(xhci, 2842 &virt_dev->eps[i].bw_info, 2843 virt_dev->bw_table, 2844 virt_dev->udev, 2845 &virt_dev->eps[i], 2846 virt_dev->tt_info); 2847 } 2848 2849 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2850 /* Ok, this fits in the bandwidth we have. 2851 * Update the number of active TTs. 2852 */ 2853 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2854 return 0; 2855 } 2856 2857 /* We don't have enough bandwidth for this, revert the stored info. */ 2858 for (i = 0; i < 31; i++) { 2859 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2860 continue; 2861 2862 /* Drop the new copies of any added or changed endpoints from 2863 * the interval table. 2864 */ 2865 if (EP_IS_ADDED(ctrl_ctx, i)) { 2866 xhci_drop_ep_from_interval_table(xhci, 2867 &virt_dev->eps[i].bw_info, 2868 virt_dev->bw_table, 2869 virt_dev->udev, 2870 &virt_dev->eps[i], 2871 virt_dev->tt_info); 2872 } 2873 /* Revert the endpoint back to its old information */ 2874 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2875 sizeof(ep_bw_info[i])); 2876 /* Add any changed or dropped endpoints back into the table */ 2877 if (EP_IS_DROPPED(ctrl_ctx, i)) 2878 xhci_add_ep_to_interval_table(xhci, 2879 &virt_dev->eps[i].bw_info, 2880 virt_dev->bw_table, 2881 virt_dev->udev, 2882 &virt_dev->eps[i], 2883 virt_dev->tt_info); 2884 } 2885 return -ENOMEM; 2886 } 2887 2888 /* 2889 * Synchronous XHCI stop endpoint helper. Issues the stop endpoint command and 2890 * waits for the command completion before returning. This does not call 2891 * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error' 2892 * cases, along with transfer ring cleanup. 2893 * 2894 * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage 2895 * their own transfer ring, such as offload situations. 2896 */ 2897 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend, 2898 gfp_t gfp_flags) 2899 { 2900 struct xhci_command *command; 2901 unsigned long flags; 2902 int ret; 2903 2904 command = xhci_alloc_command(xhci, true, gfp_flags); 2905 if (!command) 2906 return -ENOMEM; 2907 2908 spin_lock_irqsave(&xhci->lock, flags); 2909 ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id, 2910 ep->ep_index, suspend); 2911 if (ret < 0) { 2912 spin_unlock_irqrestore(&xhci->lock, flags); 2913 goto out; 2914 } 2915 2916 xhci_ring_cmd_db(xhci); 2917 spin_unlock_irqrestore(&xhci->lock, flags); 2918 2919 wait_for_completion(command->completion); 2920 2921 /* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/ 2922 if (command->status == COMP_COMMAND_ABORTED || 2923 command->status == COMP_COMMAND_RING_STOPPED) { 2924 xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n"); 2925 ret = -ETIME; 2926 } 2927 out: 2928 xhci_free_command(xhci, command); 2929 2930 return ret; 2931 } 2932 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync); 2933 2934 /* 2935 * xhci_usb_endpoint_maxp - get endpoint max packet size 2936 * @host_ep: USB host endpoint to be checked 2937 * 2938 * Returns max packet from the correct descriptor 2939 */ 2940 int xhci_usb_endpoint_maxp(struct usb_device *udev, 2941 struct usb_host_endpoint *host_ep) 2942 { 2943 if (usb_endpoint_is_hs_isoc_double(udev, host_ep)) 2944 return le16_to_cpu(host_ep->eusb2_isoc_ep_comp.wMaxPacketSize); 2945 return usb_endpoint_maxp(&host_ep->desc); 2946 } 2947 2948 /* Issue a configure endpoint command or evaluate context command 2949 * and wait for it to finish. 2950 */ 2951 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2952 struct usb_device *udev, 2953 struct xhci_command *command, 2954 bool ctx_change, bool must_succeed) 2955 { 2956 int ret; 2957 unsigned long flags; 2958 struct xhci_input_control_ctx *ctrl_ctx; 2959 struct xhci_virt_device *virt_dev; 2960 struct xhci_slot_ctx *slot_ctx; 2961 2962 if (!command) 2963 return -EINVAL; 2964 2965 spin_lock_irqsave(&xhci->lock, flags); 2966 2967 if (xhci->xhc_state & XHCI_STATE_DYING) { 2968 spin_unlock_irqrestore(&xhci->lock, flags); 2969 return -ESHUTDOWN; 2970 } 2971 2972 virt_dev = xhci->devs[udev->slot_id]; 2973 2974 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2975 if (!ctrl_ctx) { 2976 spin_unlock_irqrestore(&xhci->lock, flags); 2977 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2978 __func__); 2979 return -ENOMEM; 2980 } 2981 2982 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2983 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2984 spin_unlock_irqrestore(&xhci->lock, flags); 2985 xhci_warn(xhci, "Not enough host resources, " 2986 "active endpoint contexts = %u\n", 2987 xhci->num_active_eps); 2988 return -ENOMEM; 2989 } 2990 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change && 2991 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2992 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2993 xhci_free_host_resources(xhci, ctrl_ctx); 2994 spin_unlock_irqrestore(&xhci->lock, flags); 2995 xhci_warn(xhci, "Not enough bandwidth\n"); 2996 return -ENOMEM; 2997 } 2998 2999 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 3000 3001 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 3002 trace_xhci_configure_endpoint(slot_ctx); 3003 3004 if (!ctx_change) 3005 ret = xhci_queue_configure_endpoint(xhci, command, 3006 command->in_ctx->dma, 3007 udev->slot_id, must_succeed); 3008 else 3009 ret = xhci_queue_evaluate_context(xhci, command, 3010 command->in_ctx->dma, 3011 udev->slot_id, must_succeed); 3012 if (ret < 0) { 3013 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 3014 xhci_free_host_resources(xhci, ctrl_ctx); 3015 spin_unlock_irqrestore(&xhci->lock, flags); 3016 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 3017 "FIXME allocate a new ring segment"); 3018 return -ENOMEM; 3019 } 3020 xhci_ring_cmd_db(xhci); 3021 spin_unlock_irqrestore(&xhci->lock, flags); 3022 3023 /* Wait for the configure endpoint command to complete */ 3024 wait_for_completion(command->completion); 3025 3026 if (!ctx_change) 3027 ret = xhci_configure_endpoint_result(xhci, udev, 3028 &command->status); 3029 else 3030 ret = xhci_evaluate_context_result(xhci, udev, 3031 &command->status); 3032 3033 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3034 spin_lock_irqsave(&xhci->lock, flags); 3035 /* If the command failed, remove the reserved resources. 3036 * Otherwise, clean up the estimate to include dropped eps. 3037 */ 3038 if (ret) 3039 xhci_free_host_resources(xhci, ctrl_ctx); 3040 else 3041 xhci_finish_resource_reservation(xhci, ctrl_ctx); 3042 spin_unlock_irqrestore(&xhci->lock, flags); 3043 } 3044 return ret; 3045 } 3046 3047 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 3048 struct xhci_virt_device *vdev, int i) 3049 { 3050 struct xhci_virt_ep *ep = &vdev->eps[i]; 3051 3052 if (ep->ep_state & EP_HAS_STREAMS) { 3053 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 3054 xhci_get_endpoint_address(i)); 3055 xhci_free_stream_info(xhci, ep->stream_info); 3056 ep->stream_info = NULL; 3057 ep->ep_state &= ~EP_HAS_STREAMS; 3058 } 3059 } 3060 3061 /* Called after one or more calls to xhci_add_endpoint() or 3062 * xhci_drop_endpoint(). If this call fails, the USB core is expected 3063 * to call xhci_reset_bandwidth(). 3064 * 3065 * Since we are in the middle of changing either configuration or 3066 * installing a new alt setting, the USB core won't allow URBs to be 3067 * enqueued for any endpoint on the old config or interface. Nothing 3068 * else should be touching the xhci->devs[slot_id] structure, so we 3069 * don't need to take the xhci->lock for manipulating that. 3070 */ 3071 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3072 { 3073 int i; 3074 int ret = 0; 3075 struct xhci_hcd *xhci; 3076 struct xhci_virt_device *virt_dev; 3077 struct xhci_input_control_ctx *ctrl_ctx; 3078 struct xhci_slot_ctx *slot_ctx; 3079 struct xhci_command *command; 3080 3081 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3082 if (ret <= 0) 3083 return ret; 3084 xhci = hcd_to_xhci(hcd); 3085 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3086 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3087 return -ENODEV; 3088 3089 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3090 virt_dev = xhci->devs[udev->slot_id]; 3091 3092 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3093 if (!command) 3094 return -ENOMEM; 3095 3096 command->in_ctx = virt_dev->in_ctx; 3097 3098 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3099 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3100 if (!ctrl_ctx) { 3101 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3102 __func__); 3103 ret = -ENOMEM; 3104 goto command_cleanup; 3105 } 3106 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3107 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3108 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3109 3110 /* Don't issue the command if there's no endpoints to update. */ 3111 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3112 ctrl_ctx->drop_flags == 0) { 3113 ret = 0; 3114 goto command_cleanup; 3115 } 3116 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3117 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3118 for (i = 31; i >= 1; i--) { 3119 __le32 le32 = cpu_to_le32(BIT(i)); 3120 3121 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3122 || (ctrl_ctx->add_flags & le32) || i == 1) { 3123 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3124 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3125 break; 3126 } 3127 } 3128 3129 ret = xhci_configure_endpoint(xhci, udev, command, 3130 false, false); 3131 if (ret) 3132 /* Callee should call reset_bandwidth() */ 3133 goto command_cleanup; 3134 3135 /* Free any rings that were dropped, but not changed. */ 3136 for (i = 1; i < 31; i++) { 3137 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3138 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3139 xhci_free_endpoint_ring(xhci, virt_dev, i); 3140 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3141 } 3142 } 3143 xhci_zero_in_ctx(xhci, virt_dev); 3144 /* 3145 * Install any rings for completely new endpoints or changed endpoints, 3146 * and free any old rings from changed endpoints. 3147 */ 3148 for (i = 1; i < 31; i++) { 3149 if (!virt_dev->eps[i].new_ring) 3150 continue; 3151 /* Only free the old ring if it exists. 3152 * It may not if this is the first add of an endpoint. 3153 */ 3154 if (virt_dev->eps[i].ring) { 3155 xhci_free_endpoint_ring(xhci, virt_dev, i); 3156 } 3157 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3158 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3159 virt_dev->eps[i].new_ring = NULL; 3160 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3161 } 3162 command_cleanup: 3163 kfree(command->completion); 3164 kfree(command); 3165 3166 return ret; 3167 } 3168 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3169 3170 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3171 { 3172 struct xhci_hcd *xhci; 3173 struct xhci_virt_device *virt_dev; 3174 int i, ret; 3175 3176 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3177 if (ret <= 0) 3178 return; 3179 xhci = hcd_to_xhci(hcd); 3180 3181 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3182 virt_dev = xhci->devs[udev->slot_id]; 3183 /* Free any rings allocated for added endpoints */ 3184 for (i = 0; i < 31; i++) { 3185 if (virt_dev->eps[i].new_ring) { 3186 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3187 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3188 virt_dev->eps[i].new_ring = NULL; 3189 } 3190 } 3191 xhci_zero_in_ctx(xhci, virt_dev); 3192 } 3193 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3194 3195 /* Get the available bandwidth of the ports under the xhci roothub */ 3196 int xhci_get_port_bandwidth(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx, 3197 u8 dev_speed) 3198 { 3199 struct xhci_command *cmd; 3200 unsigned long flags; 3201 int ret; 3202 3203 if (!ctx || !xhci) 3204 return -EINVAL; 3205 3206 cmd = xhci_alloc_command(xhci, true, GFP_KERNEL); 3207 if (!cmd) 3208 return -ENOMEM; 3209 3210 cmd->in_ctx = ctx; 3211 3212 /* get xhci port bandwidth, refer to xhci rev1_2 protocol 4.6.15 */ 3213 spin_lock_irqsave(&xhci->lock, flags); 3214 3215 ret = xhci_queue_get_port_bw(xhci, cmd, ctx->dma, dev_speed, 0); 3216 if (ret) { 3217 spin_unlock_irqrestore(&xhci->lock, flags); 3218 goto err_out; 3219 } 3220 xhci_ring_cmd_db(xhci); 3221 spin_unlock_irqrestore(&xhci->lock, flags); 3222 3223 wait_for_completion(cmd->completion); 3224 err_out: 3225 kfree(cmd->completion); 3226 kfree(cmd); 3227 3228 return ret; 3229 } 3230 3231 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3232 struct xhci_container_ctx *in_ctx, 3233 struct xhci_container_ctx *out_ctx, 3234 struct xhci_input_control_ctx *ctrl_ctx, 3235 u32 add_flags, u32 drop_flags) 3236 { 3237 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3238 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3239 xhci_slot_copy(xhci, in_ctx, out_ctx); 3240 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3241 } 3242 3243 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3244 struct usb_host_endpoint *host_ep) 3245 { 3246 struct xhci_hcd *xhci; 3247 struct xhci_virt_device *vdev; 3248 struct xhci_virt_ep *ep; 3249 struct usb_device *udev; 3250 unsigned long flags; 3251 unsigned int ep_index; 3252 3253 xhci = hcd_to_xhci(hcd); 3254 rescan: 3255 spin_lock_irqsave(&xhci->lock, flags); 3256 3257 udev = (struct usb_device *)host_ep->hcpriv; 3258 if (!udev || !udev->slot_id) 3259 goto done; 3260 3261 vdev = xhci->devs[udev->slot_id]; 3262 if (!vdev) 3263 goto done; 3264 3265 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3266 ep = &vdev->eps[ep_index]; 3267 3268 /* wait for hub_tt_work to finish clearing hub TT */ 3269 if (ep->ep_state & EP_CLEARING_TT) { 3270 spin_unlock_irqrestore(&xhci->lock, flags); 3271 schedule_timeout_uninterruptible(1); 3272 goto rescan; 3273 } 3274 3275 if (ep->ep_state) 3276 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3277 ep->ep_state); 3278 done: 3279 host_ep->hcpriv = NULL; 3280 spin_unlock_irqrestore(&xhci->lock, flags); 3281 } 3282 3283 /* 3284 * Called after usb core issues a clear halt control message. 3285 * The host side of the halt should already be cleared by a reset endpoint 3286 * command issued when the STALL event was received. 3287 * 3288 * The reset endpoint command may only be issued to endpoints in the halted 3289 * state. For software that wishes to reset the data toggle or sequence number 3290 * of an endpoint that isn't in the halted state this function will issue a 3291 * configure endpoint command with the Drop and Add bits set for the target 3292 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3293 * 3294 * vdev may be lost due to xHC restore error and re-initialization during S3/S4 3295 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device() 3296 */ 3297 3298 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3299 struct usb_host_endpoint *host_ep) 3300 { 3301 struct xhci_hcd *xhci; 3302 struct usb_device *udev; 3303 struct xhci_virt_device *vdev; 3304 struct xhci_virt_ep *ep; 3305 struct xhci_input_control_ctx *ctrl_ctx; 3306 struct xhci_command *stop_cmd, *cfg_cmd; 3307 unsigned int ep_index; 3308 unsigned long flags; 3309 u32 ep_flag; 3310 int err; 3311 3312 xhci = hcd_to_xhci(hcd); 3313 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3314 3315 /* 3316 * Usb core assumes a max packet value for ep0 on FS devices until the 3317 * real value is read from the descriptor. Core resets Ep0 if values 3318 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case 3319 */ 3320 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) { 3321 3322 udev = container_of(host_ep, struct usb_device, ep0); 3323 if (udev->speed != USB_SPEED_FULL || !udev->slot_id) 3324 return; 3325 3326 vdev = xhci->devs[udev->slot_id]; 3327 if (!vdev || vdev->udev != udev) 3328 return; 3329 3330 xhci_check_ep0_maxpacket(xhci, vdev); 3331 3332 /* Nothing else should be done here for ep0 during ep reset */ 3333 return; 3334 } 3335 3336 if (!host_ep->hcpriv) 3337 return; 3338 udev = (struct usb_device *) host_ep->hcpriv; 3339 vdev = xhci->devs[udev->slot_id]; 3340 3341 if (!udev->slot_id || !vdev) 3342 return; 3343 3344 ep = &vdev->eps[ep_index]; 3345 3346 /* Bail out if toggle is already being cleared by a endpoint reset */ 3347 spin_lock_irqsave(&xhci->lock, flags); 3348 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3349 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3350 spin_unlock_irqrestore(&xhci->lock, flags); 3351 return; 3352 } 3353 spin_unlock_irqrestore(&xhci->lock, flags); 3354 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3355 if (usb_endpoint_xfer_control(&host_ep->desc) || 3356 usb_endpoint_xfer_isoc(&host_ep->desc)) 3357 return; 3358 3359 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3360 3361 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3362 return; 3363 3364 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3365 if (!stop_cmd) 3366 return; 3367 3368 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3369 if (!cfg_cmd) 3370 goto cleanup; 3371 3372 spin_lock_irqsave(&xhci->lock, flags); 3373 3374 /* block queuing new trbs and ringing ep doorbell */ 3375 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3376 3377 /* 3378 * Make sure endpoint ring is empty before resetting the toggle/seq. 3379 * Driver is required to synchronously cancel all transfer request. 3380 * Stop the endpoint to force xHC to update the output context 3381 */ 3382 3383 if (!list_empty(&ep->ring->td_list)) { 3384 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3385 spin_unlock_irqrestore(&xhci->lock, flags); 3386 xhci_free_command(xhci, cfg_cmd); 3387 goto cleanup; 3388 } 3389 3390 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3391 ep_index, 0); 3392 if (err < 0) { 3393 spin_unlock_irqrestore(&xhci->lock, flags); 3394 xhci_free_command(xhci, cfg_cmd); 3395 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3396 __func__, err); 3397 goto cleanup; 3398 } 3399 3400 xhci_ring_cmd_db(xhci); 3401 spin_unlock_irqrestore(&xhci->lock, flags); 3402 3403 wait_for_completion(stop_cmd->completion); 3404 3405 spin_lock_irqsave(&xhci->lock, flags); 3406 3407 /* config ep command clears toggle if add and drop ep flags are set */ 3408 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3409 if (!ctrl_ctx) { 3410 spin_unlock_irqrestore(&xhci->lock, flags); 3411 xhci_free_command(xhci, cfg_cmd); 3412 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3413 __func__); 3414 goto cleanup; 3415 } 3416 3417 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3418 ctrl_ctx, ep_flag, ep_flag); 3419 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3420 3421 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3422 udev->slot_id, false); 3423 if (err < 0) { 3424 spin_unlock_irqrestore(&xhci->lock, flags); 3425 xhci_free_command(xhci, cfg_cmd); 3426 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3427 __func__, err); 3428 goto cleanup; 3429 } 3430 3431 xhci_ring_cmd_db(xhci); 3432 spin_unlock_irqrestore(&xhci->lock, flags); 3433 3434 wait_for_completion(cfg_cmd->completion); 3435 3436 xhci_free_command(xhci, cfg_cmd); 3437 cleanup: 3438 xhci_free_command(xhci, stop_cmd); 3439 spin_lock_irqsave(&xhci->lock, flags); 3440 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3441 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3442 spin_unlock_irqrestore(&xhci->lock, flags); 3443 } 3444 3445 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3446 struct usb_device *udev, struct usb_host_endpoint *ep, 3447 unsigned int slot_id) 3448 { 3449 int ret; 3450 unsigned int ep_index; 3451 unsigned int ep_state; 3452 3453 if (!ep) 3454 return -EINVAL; 3455 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3456 if (ret <= 0) 3457 return ret ? ret : -EINVAL; 3458 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3459 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3460 " descriptor for ep 0x%x does not support streams\n", 3461 ep->desc.bEndpointAddress); 3462 return -EINVAL; 3463 } 3464 3465 ep_index = xhci_get_endpoint_index(&ep->desc); 3466 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3467 if (ep_state & EP_HAS_STREAMS || 3468 ep_state & EP_GETTING_STREAMS) { 3469 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3470 "already has streams set up.\n", 3471 ep->desc.bEndpointAddress); 3472 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3473 "dynamic stream context array reallocation.\n"); 3474 return -EINVAL; 3475 } 3476 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3477 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3478 "endpoint 0x%x; URBs are pending.\n", 3479 ep->desc.bEndpointAddress); 3480 return -EINVAL; 3481 } 3482 return 0; 3483 } 3484 3485 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3486 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3487 { 3488 unsigned int max_streams; 3489 3490 /* The stream context array size must be a power of two */ 3491 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3492 /* 3493 * Find out how many primary stream array entries the host controller 3494 * supports. Later we may use secondary stream arrays (similar to 2nd 3495 * level page entries), but that's an optional feature for xHCI host 3496 * controllers. xHCs must support at least 4 stream IDs. 3497 */ 3498 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3499 if (*num_stream_ctxs > max_streams) { 3500 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3501 max_streams); 3502 *num_stream_ctxs = max_streams; 3503 *num_streams = max_streams; 3504 } 3505 } 3506 3507 /* Returns an error code if one of the endpoint already has streams. 3508 * This does not change any data structures, it only checks and gathers 3509 * information. 3510 */ 3511 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3512 struct usb_device *udev, 3513 struct usb_host_endpoint **eps, unsigned int num_eps, 3514 unsigned int *num_streams, u32 *changed_ep_bitmask) 3515 { 3516 unsigned int max_streams; 3517 unsigned int endpoint_flag; 3518 int i; 3519 int ret; 3520 3521 for (i = 0; i < num_eps; i++) { 3522 ret = xhci_check_streams_endpoint(xhci, udev, 3523 eps[i], udev->slot_id); 3524 if (ret < 0) 3525 return ret; 3526 3527 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3528 if (max_streams < (*num_streams - 1)) { 3529 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3530 eps[i]->desc.bEndpointAddress, 3531 max_streams); 3532 *num_streams = max_streams+1; 3533 } 3534 3535 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3536 if (*changed_ep_bitmask & endpoint_flag) 3537 return -EINVAL; 3538 *changed_ep_bitmask |= endpoint_flag; 3539 } 3540 return 0; 3541 } 3542 3543 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3544 struct usb_device *udev, 3545 struct usb_host_endpoint **eps, unsigned int num_eps) 3546 { 3547 u32 changed_ep_bitmask = 0; 3548 unsigned int slot_id; 3549 unsigned int ep_index; 3550 unsigned int ep_state; 3551 int i; 3552 3553 slot_id = udev->slot_id; 3554 if (!xhci->devs[slot_id]) 3555 return 0; 3556 3557 for (i = 0; i < num_eps; i++) { 3558 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3559 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3560 /* Are streams already being freed for the endpoint? */ 3561 if (ep_state & EP_GETTING_NO_STREAMS) { 3562 xhci_warn(xhci, "WARN Can't disable streams for " 3563 "endpoint 0x%x, " 3564 "streams are being disabled already\n", 3565 eps[i]->desc.bEndpointAddress); 3566 return 0; 3567 } 3568 /* Are there actually any streams to free? */ 3569 if (!(ep_state & EP_HAS_STREAMS) && 3570 !(ep_state & EP_GETTING_STREAMS)) { 3571 xhci_warn(xhci, "WARN Can't disable streams for " 3572 "endpoint 0x%x, " 3573 "streams are already disabled!\n", 3574 eps[i]->desc.bEndpointAddress); 3575 xhci_warn(xhci, "WARN xhci_free_streams() called " 3576 "with non-streams endpoint\n"); 3577 return 0; 3578 } 3579 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3580 } 3581 return changed_ep_bitmask; 3582 } 3583 3584 /* 3585 * The USB device drivers use this function (through the HCD interface in USB 3586 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3587 * coordinate mass storage command queueing across multiple endpoints (basically 3588 * a stream ID == a task ID). 3589 * 3590 * Setting up streams involves allocating the same size stream context array 3591 * for each endpoint and issuing a configure endpoint command for all endpoints. 3592 * 3593 * Don't allow the call to succeed if one endpoint only supports one stream 3594 * (which means it doesn't support streams at all). 3595 * 3596 * Drivers may get less stream IDs than they asked for, if the host controller 3597 * hardware or endpoints claim they can't support the number of requested 3598 * stream IDs. 3599 */ 3600 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3601 struct usb_host_endpoint **eps, unsigned int num_eps, 3602 unsigned int num_streams, gfp_t mem_flags) 3603 { 3604 int i, ret; 3605 struct xhci_hcd *xhci; 3606 struct xhci_virt_device *vdev; 3607 struct xhci_command *config_cmd; 3608 struct xhci_input_control_ctx *ctrl_ctx; 3609 unsigned int ep_index; 3610 unsigned int num_stream_ctxs; 3611 unsigned int max_packet; 3612 unsigned long flags; 3613 u32 changed_ep_bitmask = 0; 3614 3615 if (!eps) 3616 return -EINVAL; 3617 3618 /* Add one to the number of streams requested to account for 3619 * stream 0 that is reserved for xHCI usage. 3620 */ 3621 num_streams += 1; 3622 xhci = hcd_to_xhci(hcd); 3623 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3624 num_streams); 3625 3626 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3627 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3628 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3629 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3630 return -ENOSYS; 3631 } 3632 3633 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3634 if (!config_cmd) 3635 return -ENOMEM; 3636 3637 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3638 if (!ctrl_ctx) { 3639 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3640 __func__); 3641 xhci_free_command(xhci, config_cmd); 3642 return -ENOMEM; 3643 } 3644 3645 /* Check to make sure all endpoints are not already configured for 3646 * streams. While we're at it, find the maximum number of streams that 3647 * all the endpoints will support and check for duplicate endpoints. 3648 */ 3649 spin_lock_irqsave(&xhci->lock, flags); 3650 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3651 num_eps, &num_streams, &changed_ep_bitmask); 3652 if (ret < 0) { 3653 xhci_free_command(xhci, config_cmd); 3654 spin_unlock_irqrestore(&xhci->lock, flags); 3655 return ret; 3656 } 3657 if (num_streams <= 1) { 3658 xhci_warn(xhci, "WARN: endpoints can't handle " 3659 "more than one stream.\n"); 3660 xhci_free_command(xhci, config_cmd); 3661 spin_unlock_irqrestore(&xhci->lock, flags); 3662 return -EINVAL; 3663 } 3664 vdev = xhci->devs[udev->slot_id]; 3665 /* Mark each endpoint as being in transition, so 3666 * xhci_urb_enqueue() will reject all URBs. 3667 */ 3668 for (i = 0; i < num_eps; i++) { 3669 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3670 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3671 } 3672 spin_unlock_irqrestore(&xhci->lock, flags); 3673 3674 /* Setup internal data structures and allocate HW data structures for 3675 * streams (but don't install the HW structures in the input context 3676 * until we're sure all memory allocation succeeded). 3677 */ 3678 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3679 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3680 num_stream_ctxs, num_streams); 3681 3682 for (i = 0; i < num_eps; i++) { 3683 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3684 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3685 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3686 num_stream_ctxs, 3687 num_streams, 3688 max_packet, mem_flags); 3689 if (!vdev->eps[ep_index].stream_info) 3690 goto cleanup; 3691 /* Set maxPstreams in endpoint context and update deq ptr to 3692 * point to stream context array. FIXME 3693 */ 3694 } 3695 3696 /* Set up the input context for a configure endpoint command. */ 3697 for (i = 0; i < num_eps; i++) { 3698 struct xhci_ep_ctx *ep_ctx; 3699 3700 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3701 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3702 3703 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3704 vdev->out_ctx, ep_index); 3705 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3706 vdev->eps[ep_index].stream_info); 3707 } 3708 /* Tell the HW to drop its old copy of the endpoint context info 3709 * and add the updated copy from the input context. 3710 */ 3711 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3712 vdev->out_ctx, ctrl_ctx, 3713 changed_ep_bitmask, changed_ep_bitmask); 3714 3715 /* Issue and wait for the configure endpoint command */ 3716 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3717 false, false); 3718 3719 /* xHC rejected the configure endpoint command for some reason, so we 3720 * leave the old ring intact and free our internal streams data 3721 * structure. 3722 */ 3723 if (ret < 0) 3724 goto cleanup; 3725 3726 spin_lock_irqsave(&xhci->lock, flags); 3727 for (i = 0; i < num_eps; i++) { 3728 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3729 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3730 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3731 udev->slot_id, ep_index); 3732 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3733 } 3734 xhci_free_command(xhci, config_cmd); 3735 spin_unlock_irqrestore(&xhci->lock, flags); 3736 3737 for (i = 0; i < num_eps; i++) { 3738 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3739 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3740 } 3741 /* Subtract 1 for stream 0, which drivers can't use */ 3742 return num_streams - 1; 3743 3744 cleanup: 3745 /* If it didn't work, free the streams! */ 3746 for (i = 0; i < num_eps; i++) { 3747 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3748 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3749 vdev->eps[ep_index].stream_info = NULL; 3750 /* FIXME Unset maxPstreams in endpoint context and 3751 * update deq ptr to point to normal string ring. 3752 */ 3753 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3754 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3755 xhci_endpoint_zero(xhci, vdev, eps[i]); 3756 } 3757 xhci_free_command(xhci, config_cmd); 3758 return -ENOMEM; 3759 } 3760 3761 /* Transition the endpoint from using streams to being a "normal" endpoint 3762 * without streams. 3763 * 3764 * Modify the endpoint context state, submit a configure endpoint command, 3765 * and free all endpoint rings for streams if that completes successfully. 3766 */ 3767 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3768 struct usb_host_endpoint **eps, unsigned int num_eps, 3769 gfp_t mem_flags) 3770 { 3771 int i, ret; 3772 struct xhci_hcd *xhci; 3773 struct xhci_virt_device *vdev; 3774 struct xhci_command *command; 3775 struct xhci_input_control_ctx *ctrl_ctx; 3776 unsigned int ep_index; 3777 unsigned long flags; 3778 u32 changed_ep_bitmask; 3779 3780 xhci = hcd_to_xhci(hcd); 3781 vdev = xhci->devs[udev->slot_id]; 3782 3783 /* Set up a configure endpoint command to remove the streams rings */ 3784 spin_lock_irqsave(&xhci->lock, flags); 3785 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3786 udev, eps, num_eps); 3787 if (changed_ep_bitmask == 0) { 3788 spin_unlock_irqrestore(&xhci->lock, flags); 3789 return -EINVAL; 3790 } 3791 3792 /* Use the xhci_command structure from the first endpoint. We may have 3793 * allocated too many, but the driver may call xhci_free_streams() for 3794 * each endpoint it grouped into one call to xhci_alloc_streams(). 3795 */ 3796 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3797 command = vdev->eps[ep_index].stream_info->free_streams_command; 3798 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3799 if (!ctrl_ctx) { 3800 spin_unlock_irqrestore(&xhci->lock, flags); 3801 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3802 __func__); 3803 return -EINVAL; 3804 } 3805 3806 for (i = 0; i < num_eps; i++) { 3807 struct xhci_ep_ctx *ep_ctx; 3808 3809 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3810 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3811 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3812 EP_GETTING_NO_STREAMS; 3813 3814 xhci_endpoint_copy(xhci, command->in_ctx, 3815 vdev->out_ctx, ep_index); 3816 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3817 &vdev->eps[ep_index]); 3818 } 3819 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3820 vdev->out_ctx, ctrl_ctx, 3821 changed_ep_bitmask, changed_ep_bitmask); 3822 spin_unlock_irqrestore(&xhci->lock, flags); 3823 3824 /* Issue and wait for the configure endpoint command, 3825 * which must succeed. 3826 */ 3827 ret = xhci_configure_endpoint(xhci, udev, command, 3828 false, true); 3829 3830 /* xHC rejected the configure endpoint command for some reason, so we 3831 * leave the streams rings intact. 3832 */ 3833 if (ret < 0) 3834 return ret; 3835 3836 spin_lock_irqsave(&xhci->lock, flags); 3837 for (i = 0; i < num_eps; i++) { 3838 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3839 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3840 vdev->eps[ep_index].stream_info = NULL; 3841 /* FIXME Unset maxPstreams in endpoint context and 3842 * update deq ptr to point to normal string ring. 3843 */ 3844 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3845 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3846 } 3847 spin_unlock_irqrestore(&xhci->lock, flags); 3848 3849 return 0; 3850 } 3851 3852 /* 3853 * Deletes endpoint resources for endpoints that were active before a Reset 3854 * Device command, or a Disable Slot command. The Reset Device command leaves 3855 * the control endpoint intact, whereas the Disable Slot command deletes it. 3856 * 3857 * Must be called with xhci->lock held. 3858 */ 3859 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3860 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3861 { 3862 int i; 3863 unsigned int num_dropped_eps = 0; 3864 unsigned int drop_flags = 0; 3865 3866 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3867 if (virt_dev->eps[i].ring) { 3868 drop_flags |= 1 << i; 3869 num_dropped_eps++; 3870 } 3871 } 3872 xhci->num_active_eps -= num_dropped_eps; 3873 if (num_dropped_eps) 3874 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3875 "Dropped %u ep ctxs, flags = 0x%x, " 3876 "%u now active.", 3877 num_dropped_eps, drop_flags, 3878 xhci->num_active_eps); 3879 } 3880 3881 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev); 3882 3883 /* 3884 * This submits a Reset Device Command, which will set the device state to 0, 3885 * set the device address to 0, and disable all the endpoints except the default 3886 * control endpoint. The USB core should come back and call 3887 * xhci_address_device(), and then re-set up the configuration. If this is 3888 * called because of a usb_reset_and_verify_device(), then the old alternate 3889 * settings will be re-installed through the normal bandwidth allocation 3890 * functions. 3891 * 3892 * Wait for the Reset Device command to finish. Remove all structures 3893 * associated with the endpoints that were disabled. Clear the input device 3894 * structure? Reset the control endpoint 0 max packet size? 3895 * 3896 * If the virt_dev to be reset does not exist or does not match the udev, 3897 * it means the device is lost, possibly due to the xHC restore error and 3898 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3899 * re-allocate the device. 3900 */ 3901 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3902 struct usb_device *udev) 3903 { 3904 int ret, i; 3905 unsigned long flags; 3906 struct xhci_hcd *xhci; 3907 unsigned int slot_id; 3908 struct xhci_virt_device *virt_dev; 3909 struct xhci_command *reset_device_cmd; 3910 struct xhci_slot_ctx *slot_ctx; 3911 int old_active_eps = 0; 3912 3913 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3914 if (ret <= 0) 3915 return ret; 3916 xhci = hcd_to_xhci(hcd); 3917 slot_id = udev->slot_id; 3918 virt_dev = xhci->devs[slot_id]; 3919 if (!virt_dev) { 3920 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3921 "not exist. Re-allocate the device\n", slot_id); 3922 ret = xhci_alloc_dev(hcd, udev); 3923 if (ret == 1) 3924 return 0; 3925 else 3926 return -EINVAL; 3927 } 3928 3929 if (virt_dev->tt_info) 3930 old_active_eps = virt_dev->tt_info->active_eps; 3931 3932 if (virt_dev->udev != udev) { 3933 /* If the virt_dev and the udev does not match, this virt_dev 3934 * may belong to another udev. 3935 * Re-allocate the device. 3936 */ 3937 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3938 "not match the udev. Re-allocate the device\n", 3939 slot_id); 3940 ret = xhci_alloc_dev(hcd, udev); 3941 if (ret == 1) 3942 return 0; 3943 else 3944 return -EINVAL; 3945 } 3946 3947 /* If device is not setup, there is no point in resetting it */ 3948 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3949 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3950 SLOT_STATE_DISABLED) 3951 return 0; 3952 3953 if (xhci->quirks & XHCI_ETRON_HOST) { 3954 /* 3955 * Obtaining a new device slot to inform the xHCI host that 3956 * the USB device has been reset. 3957 */ 3958 ret = xhci_disable_and_free_slot(xhci, udev->slot_id); 3959 if (!ret) { 3960 ret = xhci_alloc_dev(hcd, udev); 3961 if (ret == 1) 3962 ret = 0; 3963 else 3964 ret = -EINVAL; 3965 } 3966 return ret; 3967 } 3968 3969 trace_xhci_discover_or_reset_device(slot_ctx); 3970 3971 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3972 /* Allocate the command structure that holds the struct completion. 3973 * Assume we're in process context, since the normal device reset 3974 * process has to wait for the device anyway. Storage devices are 3975 * reset as part of error handling, so use GFP_NOIO instead of 3976 * GFP_KERNEL. 3977 */ 3978 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3979 if (!reset_device_cmd) { 3980 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3981 return -ENOMEM; 3982 } 3983 3984 /* Attempt to submit the Reset Device command to the command ring */ 3985 spin_lock_irqsave(&xhci->lock, flags); 3986 3987 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3988 if (ret) { 3989 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3990 spin_unlock_irqrestore(&xhci->lock, flags); 3991 goto command_cleanup; 3992 } 3993 xhci_ring_cmd_db(xhci); 3994 spin_unlock_irqrestore(&xhci->lock, flags); 3995 3996 /* Wait for the Reset Device command to finish */ 3997 wait_for_completion(reset_device_cmd->completion); 3998 3999 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 4000 * unless we tried to reset a slot ID that wasn't enabled, 4001 * or the device wasn't in the addressed or configured state. 4002 */ 4003 ret = reset_device_cmd->status; 4004 switch (ret) { 4005 case COMP_COMMAND_ABORTED: 4006 case COMP_COMMAND_RING_STOPPED: 4007 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 4008 ret = -ETIME; 4009 goto command_cleanup; 4010 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 4011 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 4012 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 4013 slot_id, 4014 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 4015 xhci_dbg(xhci, "Not freeing device rings.\n"); 4016 /* Don't treat this as an error. May change my mind later. */ 4017 virt_dev->flags = 0; 4018 ret = 0; 4019 goto command_cleanup; 4020 case COMP_SUCCESS: 4021 xhci_dbg(xhci, "Successful reset device command.\n"); 4022 break; 4023 default: 4024 if (xhci_is_vendor_info_code(xhci, ret)) 4025 break; 4026 xhci_warn(xhci, "Unknown completion code %u for " 4027 "reset device command.\n", ret); 4028 ret = -EINVAL; 4029 goto command_cleanup; 4030 } 4031 4032 /* Free up host controller endpoint resources */ 4033 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4034 spin_lock_irqsave(&xhci->lock, flags); 4035 /* Don't delete the default control endpoint resources */ 4036 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 4037 spin_unlock_irqrestore(&xhci->lock, flags); 4038 } 4039 4040 /* Everything but endpoint 0 is disabled, so free the rings. */ 4041 for (i = 1; i < 31; i++) { 4042 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 4043 4044 if (ep->ep_state & EP_HAS_STREAMS) { 4045 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 4046 xhci_get_endpoint_address(i)); 4047 xhci_free_stream_info(xhci, ep->stream_info); 4048 ep->stream_info = NULL; 4049 ep->ep_state &= ~EP_HAS_STREAMS; 4050 } 4051 4052 if (ep->ring) { 4053 if (ep->sideband) 4054 xhci_sideband_notify_ep_ring_free(ep->sideband, i); 4055 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 4056 xhci_free_endpoint_ring(xhci, virt_dev, i); 4057 } 4058 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 4059 xhci_drop_ep_from_interval_table(xhci, 4060 &virt_dev->eps[i].bw_info, 4061 virt_dev->bw_table, 4062 udev, 4063 &virt_dev->eps[i], 4064 virt_dev->tt_info); 4065 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 4066 } 4067 /* If necessary, update the number of active TTs on this root port */ 4068 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 4069 virt_dev->flags = 0; 4070 ret = 0; 4071 4072 command_cleanup: 4073 xhci_free_command(xhci, reset_device_cmd); 4074 return ret; 4075 } 4076 4077 /* 4078 * At this point, the struct usb_device is about to go away, the device has 4079 * disconnected, and all traffic has been stopped and the endpoints have been 4080 * disabled. Free any HC data structures associated with that device. 4081 */ 4082 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 4083 { 4084 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4085 struct xhci_virt_device *virt_dev; 4086 struct xhci_slot_ctx *slot_ctx; 4087 unsigned long flags; 4088 int i, ret; 4089 4090 /* 4091 * We called pm_runtime_get_noresume when the device was attached. 4092 * Decrement the counter here to allow controller to runtime suspend 4093 * if no devices remain. 4094 */ 4095 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4096 pm_runtime_put_noidle(hcd->self.controller); 4097 4098 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 4099 /* If the host is halted due to driver unload, we still need to free the 4100 * device. 4101 */ 4102 if (ret <= 0 && ret != -ENODEV) 4103 return; 4104 4105 virt_dev = xhci->devs[udev->slot_id]; 4106 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4107 trace_xhci_free_dev(slot_ctx); 4108 4109 /* Stop any wayward timer functions (which may grab the lock) */ 4110 for (i = 0; i < 31; i++) 4111 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 4112 virt_dev->udev = NULL; 4113 xhci_disable_slot(xhci, udev->slot_id); 4114 4115 spin_lock_irqsave(&xhci->lock, flags); 4116 xhci_free_virt_device(xhci, virt_dev, udev->slot_id); 4117 spin_unlock_irqrestore(&xhci->lock, flags); 4118 4119 } 4120 4121 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 4122 { 4123 struct xhci_command *command; 4124 unsigned long flags; 4125 u32 state; 4126 int ret; 4127 4128 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4129 if (!command) 4130 return -ENOMEM; 4131 4132 xhci_debugfs_remove_slot(xhci, slot_id); 4133 4134 spin_lock_irqsave(&xhci->lock, flags); 4135 /* Don't disable the slot if the host controller is dead. */ 4136 state = readl(&xhci->op_regs->status); 4137 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 4138 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4139 spin_unlock_irqrestore(&xhci->lock, flags); 4140 kfree(command); 4141 return -ENODEV; 4142 } 4143 4144 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 4145 slot_id); 4146 if (ret) { 4147 spin_unlock_irqrestore(&xhci->lock, flags); 4148 kfree(command); 4149 return ret; 4150 } 4151 xhci_ring_cmd_db(xhci); 4152 spin_unlock_irqrestore(&xhci->lock, flags); 4153 4154 wait_for_completion(command->completion); 4155 4156 if (command->status != COMP_SUCCESS) 4157 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4158 slot_id, command->status); 4159 4160 xhci_free_command(xhci, command); 4161 4162 return 0; 4163 } 4164 4165 int xhci_disable_and_free_slot(struct xhci_hcd *xhci, u32 slot_id) 4166 { 4167 struct xhci_virt_device *vdev = xhci->devs[slot_id]; 4168 int ret; 4169 4170 ret = xhci_disable_slot(xhci, slot_id); 4171 xhci_free_virt_device(xhci, vdev, slot_id); 4172 return ret; 4173 } 4174 4175 /* 4176 * Checks if we have enough host controller resources for the default control 4177 * endpoint. 4178 * 4179 * Must be called with xhci->lock held. 4180 */ 4181 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4182 { 4183 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4184 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4185 "Not enough ep ctxs: " 4186 "%u active, need to add 1, limit is %u.", 4187 xhci->num_active_eps, xhci->limit_active_eps); 4188 return -ENOMEM; 4189 } 4190 xhci->num_active_eps += 1; 4191 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4192 "Adding 1 ep ctx, %u now active.", 4193 xhci->num_active_eps); 4194 return 0; 4195 } 4196 4197 4198 /* 4199 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4200 * timed out, or allocating memory failed. Returns 1 on success. 4201 */ 4202 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4203 { 4204 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4205 struct xhci_virt_device *vdev; 4206 struct xhci_slot_ctx *slot_ctx; 4207 unsigned long flags; 4208 int ret, slot_id; 4209 struct xhci_command *command; 4210 4211 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4212 if (!command) 4213 return 0; 4214 4215 spin_lock_irqsave(&xhci->lock, flags); 4216 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4217 if (ret) { 4218 spin_unlock_irqrestore(&xhci->lock, flags); 4219 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4220 xhci_free_command(xhci, command); 4221 return 0; 4222 } 4223 xhci_ring_cmd_db(xhci); 4224 spin_unlock_irqrestore(&xhci->lock, flags); 4225 4226 wait_for_completion(command->completion); 4227 slot_id = command->slot_id; 4228 4229 if (!slot_id || command->status != COMP_SUCCESS) { 4230 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 4231 xhci_trb_comp_code_string(command->status)); 4232 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4233 xhci->max_slots); 4234 xhci_free_command(xhci, command); 4235 return 0; 4236 } 4237 4238 xhci_free_command(xhci, command); 4239 4240 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4241 spin_lock_irqsave(&xhci->lock, flags); 4242 ret = xhci_reserve_host_control_ep_resources(xhci); 4243 if (ret) { 4244 spin_unlock_irqrestore(&xhci->lock, flags); 4245 xhci_warn(xhci, "Not enough host resources, " 4246 "active endpoint contexts = %u\n", 4247 xhci->num_active_eps); 4248 goto disable_slot; 4249 } 4250 spin_unlock_irqrestore(&xhci->lock, flags); 4251 } 4252 /* Use GFP_NOIO, since this function can be called from 4253 * xhci_discover_or_reset_device(), which may be called as part of 4254 * mass storage driver error handling. 4255 */ 4256 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4257 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4258 goto disable_slot; 4259 } 4260 vdev = xhci->devs[slot_id]; 4261 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4262 trace_xhci_alloc_dev(slot_ctx); 4263 4264 udev->slot_id = slot_id; 4265 4266 xhci_debugfs_create_slot(xhci, slot_id); 4267 4268 /* 4269 * If resetting upon resume, we can't put the controller into runtime 4270 * suspend if there is a device attached. 4271 */ 4272 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4273 pm_runtime_get_noresume(hcd->self.controller); 4274 4275 /* Is this a LS or FS device under a HS hub? */ 4276 /* Hub or peripherial? */ 4277 return 1; 4278 4279 disable_slot: 4280 xhci_disable_and_free_slot(xhci, udev->slot_id); 4281 4282 return 0; 4283 } 4284 4285 /** 4286 * xhci_setup_device - issues an Address Device command to assign a unique 4287 * USB bus address. 4288 * @hcd: USB host controller data structure. 4289 * @udev: USB dev structure representing the connected device. 4290 * @setup: Enum specifying setup mode: address only or with context. 4291 * @timeout_ms: Max wait time (ms) for the command operation to complete. 4292 * 4293 * Return: 0 if successful; otherwise, negative error code. 4294 */ 4295 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4296 enum xhci_setup_dev setup, unsigned int timeout_ms) 4297 { 4298 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4299 unsigned long flags; 4300 struct xhci_virt_device *virt_dev; 4301 int ret = 0; 4302 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4303 struct xhci_slot_ctx *slot_ctx; 4304 struct xhci_input_control_ctx *ctrl_ctx; 4305 u64 temp_64; 4306 struct xhci_command *command = NULL; 4307 4308 mutex_lock(&xhci->mutex); 4309 4310 if (xhci->xhc_state) { /* dying, removing or halted */ 4311 ret = -ESHUTDOWN; 4312 goto out; 4313 } 4314 4315 if (!udev->slot_id) { 4316 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4317 "Bad Slot ID %d", udev->slot_id); 4318 ret = -EINVAL; 4319 goto out; 4320 } 4321 4322 virt_dev = xhci->devs[udev->slot_id]; 4323 4324 if (WARN_ON(!virt_dev)) { 4325 /* 4326 * In plug/unplug torture test with an NEC controller, 4327 * a zero-dereference was observed once due to virt_dev = 0. 4328 * Print useful debug rather than crash if it is observed again! 4329 */ 4330 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4331 udev->slot_id); 4332 ret = -EINVAL; 4333 goto out; 4334 } 4335 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4336 trace_xhci_setup_device_slot(slot_ctx); 4337 4338 if (setup == SETUP_CONTEXT_ONLY) { 4339 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4340 SLOT_STATE_DEFAULT) { 4341 xhci_dbg(xhci, "Slot already in default state\n"); 4342 goto out; 4343 } 4344 } 4345 4346 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4347 if (!command) { 4348 ret = -ENOMEM; 4349 goto out; 4350 } 4351 4352 command->in_ctx = virt_dev->in_ctx; 4353 command->timeout_ms = timeout_ms; 4354 4355 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4356 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4357 if (!ctrl_ctx) { 4358 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4359 __func__); 4360 ret = -EINVAL; 4361 goto out; 4362 } 4363 /* 4364 * If this is the first Set Address since device plug-in or 4365 * virt_device realloaction after a resume with an xHCI power loss, 4366 * then set up the slot context. 4367 */ 4368 if (!slot_ctx->dev_info) 4369 xhci_setup_addressable_virt_dev(xhci, udev); 4370 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4371 else 4372 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4373 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4374 ctrl_ctx->drop_flags = 0; 4375 4376 trace_xhci_address_ctx(xhci, virt_dev->in_ctx); 4377 4378 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4379 spin_lock_irqsave(&xhci->lock, flags); 4380 trace_xhci_setup_device(virt_dev); 4381 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4382 udev->slot_id, setup); 4383 if (ret) { 4384 spin_unlock_irqrestore(&xhci->lock, flags); 4385 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4386 "FIXME: allocate a command ring segment"); 4387 goto out; 4388 } 4389 xhci_ring_cmd_db(xhci); 4390 spin_unlock_irqrestore(&xhci->lock, flags); 4391 4392 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4393 wait_for_completion(command->completion); 4394 4395 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4396 * the SetAddress() "recovery interval" required by USB and aborting the 4397 * command on a timeout. 4398 */ 4399 switch (command->status) { 4400 case COMP_COMMAND_ABORTED: 4401 case COMP_COMMAND_RING_STOPPED: 4402 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4403 ret = -ETIME; 4404 break; 4405 case COMP_CONTEXT_STATE_ERROR: 4406 case COMP_SLOT_NOT_ENABLED_ERROR: 4407 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4408 act, udev->slot_id); 4409 ret = -EINVAL; 4410 break; 4411 case COMP_USB_TRANSACTION_ERROR: 4412 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4413 4414 mutex_unlock(&xhci->mutex); 4415 ret = xhci_disable_and_free_slot(xhci, udev->slot_id); 4416 if (!ret) { 4417 if (xhci_alloc_dev(hcd, udev) == 1) 4418 xhci_setup_addressable_virt_dev(xhci, udev); 4419 } 4420 kfree(command->completion); 4421 kfree(command); 4422 return -EPROTO; 4423 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4424 dev_warn(&udev->dev, 4425 "ERROR: Incompatible device for setup %s command\n", act); 4426 ret = -ENODEV; 4427 break; 4428 case COMP_SUCCESS: 4429 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4430 "Successful setup %s command", act); 4431 break; 4432 default: 4433 xhci_err(xhci, 4434 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4435 act, command->status); 4436 trace_xhci_address_ctx(xhci, virt_dev->out_ctx); 4437 ret = -EINVAL; 4438 break; 4439 } 4440 if (ret) 4441 goto out; 4442 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4443 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4444 "Op regs DCBAA ptr = %#016llx", temp_64); 4445 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4446 "Slot ID %d dcbaa entry @%p = %#016llx", 4447 udev->slot_id, 4448 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4449 (unsigned long long) 4450 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4451 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4452 "Output Context DMA address = %#08llx", 4453 (unsigned long long)virt_dev->out_ctx->dma); 4454 trace_xhci_address_ctx(xhci, virt_dev->in_ctx); 4455 /* 4456 * USB core uses address 1 for the roothubs, so we add one to the 4457 * address given back to us by the HC. 4458 */ 4459 trace_xhci_address_ctx(xhci, virt_dev->out_ctx); 4460 /* Zero the input context control for later use */ 4461 ctrl_ctx->add_flags = 0; 4462 ctrl_ctx->drop_flags = 0; 4463 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4464 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4465 4466 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4467 "Internal device address = %d", 4468 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4469 out: 4470 mutex_unlock(&xhci->mutex); 4471 if (command) { 4472 kfree(command->completion); 4473 kfree(command); 4474 } 4475 return ret; 4476 } 4477 4478 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev, 4479 unsigned int timeout_ms) 4480 { 4481 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms); 4482 } 4483 4484 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4485 { 4486 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY, 4487 XHCI_CMD_DEFAULT_TIMEOUT); 4488 } 4489 4490 /* 4491 * Transfer the port index into real index in the HW port status 4492 * registers. Caculate offset between the port's PORTSC register 4493 * and port status base. Divide the number of per port register 4494 * to get the real index. The raw port number bases 1. 4495 */ 4496 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4497 { 4498 struct xhci_hub *rhub; 4499 4500 rhub = xhci_get_rhub(hcd); 4501 return rhub->ports[port1 - 1]->hw_portnum + 1; 4502 } 4503 4504 /* 4505 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4506 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4507 */ 4508 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4509 struct usb_device *udev, u16 max_exit_latency) 4510 { 4511 struct xhci_virt_device *virt_dev; 4512 struct xhci_command *command; 4513 struct xhci_input_control_ctx *ctrl_ctx; 4514 struct xhci_slot_ctx *slot_ctx; 4515 unsigned long flags; 4516 int ret; 4517 4518 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4519 if (!command) 4520 return -ENOMEM; 4521 4522 spin_lock_irqsave(&xhci->lock, flags); 4523 4524 virt_dev = xhci->devs[udev->slot_id]; 4525 4526 /* 4527 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4528 * xHC was re-initialized. Exit latency will be set later after 4529 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4530 */ 4531 4532 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4533 spin_unlock_irqrestore(&xhci->lock, flags); 4534 xhci_free_command(xhci, command); 4535 return 0; 4536 } 4537 4538 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4539 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4540 if (!ctrl_ctx) { 4541 spin_unlock_irqrestore(&xhci->lock, flags); 4542 xhci_free_command(xhci, command); 4543 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4544 __func__); 4545 return -ENOMEM; 4546 } 4547 4548 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4549 spin_unlock_irqrestore(&xhci->lock, flags); 4550 4551 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4552 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4553 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4554 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4555 slot_ctx->dev_state = 0; 4556 4557 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4558 "Set up evaluate context for LPM MEL change."); 4559 4560 /* Issue and wait for the evaluate context command. */ 4561 ret = xhci_configure_endpoint(xhci, udev, command, 4562 true, true); 4563 4564 if (!ret) { 4565 spin_lock_irqsave(&xhci->lock, flags); 4566 virt_dev->current_mel = max_exit_latency; 4567 spin_unlock_irqrestore(&xhci->lock, flags); 4568 } 4569 4570 xhci_free_command(xhci, command); 4571 4572 return ret; 4573 } 4574 4575 #ifdef CONFIG_PM 4576 4577 /* BESL to HIRD Encoding array for USB2 LPM */ 4578 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4579 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4580 4581 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4582 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4583 struct usb_device *udev) 4584 { 4585 int u2del, besl, besl_host; 4586 int besl_device = 0; 4587 u32 field; 4588 4589 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4590 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4591 4592 if (field & USB_BESL_SUPPORT) { 4593 for (besl_host = 0; besl_host < 16; besl_host++) { 4594 if (xhci_besl_encoding[besl_host] >= u2del) 4595 break; 4596 } 4597 /* Use baseline BESL value as default */ 4598 if (field & USB_BESL_BASELINE_VALID) 4599 besl_device = USB_GET_BESL_BASELINE(field); 4600 else if (field & USB_BESL_DEEP_VALID) 4601 besl_device = USB_GET_BESL_DEEP(field); 4602 } else { 4603 if (u2del <= 50) 4604 besl_host = 0; 4605 else 4606 besl_host = (u2del - 51) / 75 + 1; 4607 } 4608 4609 besl = besl_host + besl_device; 4610 if (besl > 15) 4611 besl = 15; 4612 4613 return besl; 4614 } 4615 4616 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4617 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4618 { 4619 u32 field; 4620 int l1; 4621 int besld = 0; 4622 int hirdm = 0; 4623 4624 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4625 4626 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4627 l1 = udev->l1_params.timeout / 256; 4628 4629 /* device has preferred BESLD */ 4630 if (field & USB_BESL_DEEP_VALID) { 4631 besld = USB_GET_BESL_DEEP(field); 4632 hirdm = 1; 4633 } 4634 4635 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4636 } 4637 4638 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4639 struct usb_device *udev, int enable) 4640 { 4641 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4642 struct xhci_port **ports; 4643 struct xhci_port_regs __iomem *port_reg; 4644 u32 pm_val, hlpm_val, field; 4645 unsigned int port_num; 4646 unsigned long flags; 4647 int hird, exit_latency; 4648 int ret; 4649 4650 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4651 return -EPERM; 4652 4653 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4654 !udev->lpm_capable) 4655 return -EPERM; 4656 4657 if (!udev->parent || udev->parent->parent || 4658 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4659 return -EPERM; 4660 4661 if (udev->usb2_hw_lpm_capable != 1) 4662 return -EPERM; 4663 4664 spin_lock_irqsave(&xhci->lock, flags); 4665 4666 ports = xhci->usb2_rhub.ports; 4667 port_num = udev->portnum - 1; 4668 port_reg = ports[port_num]->port_reg; 4669 pm_val = readl(&port_reg->portpmsc); 4670 4671 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4672 str_enable_disable(enable), port_num + 1); 4673 4674 if (enable) { 4675 /* Host supports BESL timeout instead of HIRD */ 4676 if (udev->usb2_hw_lpm_besl_capable) { 4677 /* if device doesn't have a preferred BESL value use a 4678 * default one which works with mixed HIRD and BESL 4679 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4680 */ 4681 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4682 if ((field & USB_BESL_SUPPORT) && 4683 (field & USB_BESL_BASELINE_VALID)) 4684 hird = USB_GET_BESL_BASELINE(field); 4685 else 4686 hird = udev->l1_params.besl; 4687 4688 exit_latency = xhci_besl_encoding[hird]; 4689 spin_unlock_irqrestore(&xhci->lock, flags); 4690 4691 ret = xhci_change_max_exit_latency(xhci, udev, 4692 exit_latency); 4693 if (ret < 0) 4694 return ret; 4695 spin_lock_irqsave(&xhci->lock, flags); 4696 4697 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4698 writel(hlpm_val, &port_reg->porthlmpc); 4699 /* flush write */ 4700 readl(&port_reg->porthlmpc); 4701 } else { 4702 hird = xhci_calculate_hird_besl(xhci, udev); 4703 } 4704 4705 pm_val &= ~PORT_HIRD_MASK; 4706 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4707 writel(pm_val, &port_reg->portpmsc); 4708 pm_val = readl(&port_reg->portpmsc); 4709 pm_val |= PORT_HLE; 4710 writel(pm_val, &port_reg->portpmsc); 4711 /* flush write */ 4712 readl(&port_reg->portpmsc); 4713 } else { 4714 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4715 writel(pm_val, &port_reg->portpmsc); 4716 /* flush write */ 4717 readl(&port_reg->portpmsc); 4718 if (udev->usb2_hw_lpm_besl_capable) { 4719 spin_unlock_irqrestore(&xhci->lock, flags); 4720 xhci_change_max_exit_latency(xhci, udev, 0); 4721 readl_poll_timeout(&ports[port_num]->port_reg->portsc, pm_val, 4722 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4723 100, 10000); 4724 return 0; 4725 } 4726 } 4727 4728 spin_unlock_irqrestore(&xhci->lock, flags); 4729 return 0; 4730 } 4731 4732 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4733 { 4734 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4735 struct xhci_port *port; 4736 u32 capability; 4737 4738 /* Check if USB3 device at root port is tunneled over USB4 */ 4739 if (hcd->speed >= HCD_USB3 && !udev->parent->parent) { 4740 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 4741 4742 udev->tunnel_mode = xhci_port_is_tunneled(xhci, port); 4743 if (udev->tunnel_mode == USB_LINK_UNKNOWN) 4744 dev_dbg(&udev->dev, "link tunnel state unknown\n"); 4745 else if (udev->tunnel_mode == USB_LINK_TUNNELED) 4746 dev_dbg(&udev->dev, "tunneled over USB4 link\n"); 4747 else if (udev->tunnel_mode == USB_LINK_NATIVE) 4748 dev_dbg(&udev->dev, "native USB 3.x link\n"); 4749 return 0; 4750 } 4751 4752 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support) 4753 return 0; 4754 4755 /* we only support lpm for non-hub device connected to root hub yet */ 4756 if (!udev->parent || udev->parent->parent || 4757 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4758 return 0; 4759 4760 port = xhci->usb2_rhub.ports[udev->portnum - 1]; 4761 capability = port->port_cap->protocol_caps; 4762 4763 if (capability & XHCI_HLC) { 4764 udev->usb2_hw_lpm_capable = 1; 4765 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4766 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4767 if (capability & XHCI_BLC) 4768 udev->usb2_hw_lpm_besl_capable = 1; 4769 } 4770 4771 return 0; 4772 } 4773 4774 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4775 4776 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4777 static unsigned long long xhci_service_interval_to_ns( 4778 struct usb_endpoint_descriptor *desc) 4779 { 4780 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4781 } 4782 4783 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4784 enum usb3_link_state state) 4785 { 4786 unsigned long long sel; 4787 unsigned long long pel; 4788 unsigned int max_sel_pel; 4789 char *state_name; 4790 4791 switch (state) { 4792 case USB3_LPM_U1: 4793 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4794 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4795 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4796 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4797 state_name = "U1"; 4798 break; 4799 case USB3_LPM_U2: 4800 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4801 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4802 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4803 state_name = "U2"; 4804 break; 4805 default: 4806 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4807 __func__); 4808 return USB3_LPM_DISABLED; 4809 } 4810 4811 if (sel <= max_sel_pel && pel <= max_sel_pel) 4812 return USB3_LPM_DEVICE_INITIATED; 4813 4814 if (sel > max_sel_pel) 4815 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4816 "due to long SEL %llu ms\n", 4817 state_name, sel); 4818 else 4819 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4820 "due to long PEL %llu ms\n", 4821 state_name, pel); 4822 return USB3_LPM_DISABLED; 4823 } 4824 4825 /* The U1 timeout should be the maximum of the following values: 4826 * - For control endpoints, U1 system exit latency (SEL) * 3 4827 * - For bulk endpoints, U1 SEL * 5 4828 * - For interrupt endpoints: 4829 * - Notification EPs, U1 SEL * 3 4830 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4831 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4832 */ 4833 static unsigned long long xhci_calculate_intel_u1_timeout( 4834 struct usb_device *udev, 4835 struct usb_endpoint_descriptor *desc) 4836 { 4837 unsigned long long timeout_ns; 4838 int ep_type; 4839 int intr_type; 4840 4841 ep_type = usb_endpoint_type(desc); 4842 switch (ep_type) { 4843 case USB_ENDPOINT_XFER_CONTROL: 4844 timeout_ns = udev->u1_params.sel * 3; 4845 break; 4846 case USB_ENDPOINT_XFER_BULK: 4847 timeout_ns = udev->u1_params.sel * 5; 4848 break; 4849 case USB_ENDPOINT_XFER_INT: 4850 intr_type = usb_endpoint_interrupt_type(desc); 4851 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4852 timeout_ns = udev->u1_params.sel * 3; 4853 break; 4854 } 4855 /* Otherwise the calculation is the same as isoc eps */ 4856 fallthrough; 4857 case USB_ENDPOINT_XFER_ISOC: 4858 timeout_ns = xhci_service_interval_to_ns(desc); 4859 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4860 if (timeout_ns < udev->u1_params.sel * 2) 4861 timeout_ns = udev->u1_params.sel * 2; 4862 break; 4863 default: 4864 return 0; 4865 } 4866 4867 return timeout_ns; 4868 } 4869 4870 /* Returns the hub-encoded U1 timeout value. */ 4871 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4872 struct usb_device *udev, 4873 struct usb_endpoint_descriptor *desc) 4874 { 4875 unsigned long long timeout_ns; 4876 4877 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4878 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4879 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4880 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4881 return USB3_LPM_DISABLED; 4882 } 4883 } 4884 4885 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4886 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4887 else 4888 timeout_ns = udev->u1_params.sel; 4889 4890 /* The U1 timeout is encoded in 1us intervals. 4891 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4892 */ 4893 if (timeout_ns == USB3_LPM_DISABLED) 4894 timeout_ns = 1; 4895 else 4896 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4897 4898 /* If the necessary timeout value is bigger than what we can set in the 4899 * USB 3.0 hub, we have to disable hub-initiated U1. 4900 */ 4901 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4902 return timeout_ns; 4903 dev_dbg(&udev->dev, "Hub-initiated U1 disabled due to long timeout %lluus\n", 4904 timeout_ns); 4905 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4906 } 4907 4908 /* The U2 timeout should be the maximum of: 4909 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4910 * - largest bInterval of any active periodic endpoint (to avoid going 4911 * into lower power link states between intervals). 4912 * - the U2 Exit Latency of the device 4913 */ 4914 static unsigned long long xhci_calculate_intel_u2_timeout( 4915 struct usb_device *udev, 4916 struct usb_endpoint_descriptor *desc) 4917 { 4918 unsigned long long timeout_ns; 4919 unsigned long long u2_del_ns; 4920 4921 timeout_ns = 10 * 1000 * 1000; 4922 4923 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4924 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4925 timeout_ns = xhci_service_interval_to_ns(desc); 4926 4927 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4928 if (u2_del_ns > timeout_ns) 4929 timeout_ns = u2_del_ns; 4930 4931 return timeout_ns; 4932 } 4933 4934 /* Returns the hub-encoded U2 timeout value. */ 4935 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4936 struct usb_device *udev, 4937 struct usb_endpoint_descriptor *desc) 4938 { 4939 unsigned long long timeout_ns; 4940 4941 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4942 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4943 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4944 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4945 return USB3_LPM_DISABLED; 4946 } 4947 } 4948 4949 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4950 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4951 else 4952 timeout_ns = udev->u2_params.sel; 4953 4954 /* The U2 timeout is encoded in 256us intervals */ 4955 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4956 /* If the necessary timeout value is bigger than what we can set in the 4957 * USB 3.0 hub, we have to disable hub-initiated U2. 4958 */ 4959 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4960 return timeout_ns; 4961 dev_dbg(&udev->dev, "Hub-initiated U2 disabled due to long timeout %lluus\n", 4962 timeout_ns * 256); 4963 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4964 } 4965 4966 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4967 struct usb_device *udev, 4968 struct usb_endpoint_descriptor *desc, 4969 enum usb3_link_state state, 4970 u16 *timeout) 4971 { 4972 if (state == USB3_LPM_U1) 4973 return xhci_calculate_u1_timeout(xhci, udev, desc); 4974 else if (state == USB3_LPM_U2) 4975 return xhci_calculate_u2_timeout(xhci, udev, desc); 4976 4977 return USB3_LPM_DISABLED; 4978 } 4979 4980 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4981 struct usb_device *udev, 4982 struct usb_endpoint_descriptor *desc, 4983 enum usb3_link_state state, 4984 u16 *timeout) 4985 { 4986 u16 alt_timeout; 4987 4988 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4989 desc, state, timeout); 4990 4991 /* If we found we can't enable hub-initiated LPM, and 4992 * the U1 or U2 exit latency was too high to allow 4993 * device-initiated LPM as well, then we will disable LPM 4994 * for this device, so stop searching any further. 4995 */ 4996 if (alt_timeout == USB3_LPM_DISABLED) { 4997 *timeout = alt_timeout; 4998 return -E2BIG; 4999 } 5000 if (alt_timeout > *timeout) 5001 *timeout = alt_timeout; 5002 return 0; 5003 } 5004 5005 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 5006 struct usb_device *udev, 5007 struct usb_host_interface *alt, 5008 enum usb3_link_state state, 5009 u16 *timeout) 5010 { 5011 int j; 5012 5013 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 5014 if (xhci_update_timeout_for_endpoint(xhci, udev, 5015 &alt->endpoint[j].desc, state, timeout)) 5016 return -E2BIG; 5017 } 5018 return 0; 5019 } 5020 5021 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 5022 struct usb_device *udev, 5023 enum usb3_link_state state) 5024 { 5025 struct usb_device *parent = udev->parent; 5026 int tier = 1; /* roothub is tier1 */ 5027 5028 while (parent) { 5029 parent = parent->parent; 5030 tier++; 5031 } 5032 5033 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3) 5034 goto fail; 5035 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2) 5036 goto fail; 5037 5038 return 0; 5039 fail: 5040 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n", 5041 tier); 5042 return -E2BIG; 5043 } 5044 5045 /* Returns the U1 or U2 timeout that should be enabled. 5046 * If the tier check or timeout setting functions return with a non-zero exit 5047 * code, that means the timeout value has been finalized and we shouldn't look 5048 * at any more endpoints. 5049 */ 5050 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 5051 struct usb_device *udev, enum usb3_link_state state) 5052 { 5053 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5054 struct usb_host_config *config; 5055 char *state_name; 5056 int i; 5057 u16 timeout = USB3_LPM_DISABLED; 5058 5059 if (state == USB3_LPM_U1) 5060 state_name = "U1"; 5061 else if (state == USB3_LPM_U2) 5062 state_name = "U2"; 5063 else { 5064 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 5065 state); 5066 return timeout; 5067 } 5068 5069 /* Gather some information about the currently installed configuration 5070 * and alternate interface settings. 5071 */ 5072 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 5073 state, &timeout)) 5074 return timeout; 5075 5076 config = udev->actconfig; 5077 if (!config) 5078 return timeout; 5079 5080 for (i = 0; i < config->desc.bNumInterfaces; i++) { 5081 struct usb_driver *driver; 5082 struct usb_interface *intf = config->interface[i]; 5083 5084 if (!intf) 5085 continue; 5086 5087 /* Check if any currently bound drivers want hub-initiated LPM 5088 * disabled. 5089 */ 5090 if (intf->dev.driver) { 5091 driver = to_usb_driver(intf->dev.driver); 5092 if (driver && driver->disable_hub_initiated_lpm) { 5093 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 5094 state_name, driver->name); 5095 timeout = xhci_get_timeout_no_hub_lpm(udev, 5096 state); 5097 if (timeout == USB3_LPM_DISABLED) 5098 return timeout; 5099 } 5100 } 5101 5102 /* Not sure how this could happen... */ 5103 if (!intf->cur_altsetting) 5104 continue; 5105 5106 if (xhci_update_timeout_for_interface(xhci, udev, 5107 intf->cur_altsetting, 5108 state, &timeout)) 5109 return timeout; 5110 } 5111 return timeout; 5112 } 5113 5114 static int calculate_max_exit_latency(struct usb_device *udev, 5115 enum usb3_link_state state_changed, 5116 u16 hub_encoded_timeout) 5117 { 5118 unsigned long long u1_mel_us = 0; 5119 unsigned long long u2_mel_us = 0; 5120 unsigned long long mel_us = 0; 5121 bool disabling_u1; 5122 bool disabling_u2; 5123 bool enabling_u1; 5124 bool enabling_u2; 5125 5126 disabling_u1 = (state_changed == USB3_LPM_U1 && 5127 hub_encoded_timeout == USB3_LPM_DISABLED); 5128 disabling_u2 = (state_changed == USB3_LPM_U2 && 5129 hub_encoded_timeout == USB3_LPM_DISABLED); 5130 5131 enabling_u1 = (state_changed == USB3_LPM_U1 && 5132 hub_encoded_timeout != USB3_LPM_DISABLED); 5133 enabling_u2 = (state_changed == USB3_LPM_U2 && 5134 hub_encoded_timeout != USB3_LPM_DISABLED); 5135 5136 /* If U1 was already enabled and we're not disabling it, 5137 * or we're going to enable U1, account for the U1 max exit latency. 5138 */ 5139 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 5140 enabling_u1) 5141 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 5142 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 5143 enabling_u2) 5144 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5145 5146 mel_us = max(u1_mel_us, u2_mel_us); 5147 5148 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5149 if (mel_us > MAX_EXIT) { 5150 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5151 "is too big.\n", mel_us); 5152 return -E2BIG; 5153 } 5154 return mel_us; 5155 } 5156 5157 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5158 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5159 struct usb_device *udev, enum usb3_link_state state) 5160 { 5161 struct xhci_hcd *xhci; 5162 struct xhci_port *port; 5163 u16 hub_encoded_timeout; 5164 int mel; 5165 int ret; 5166 5167 xhci = hcd_to_xhci(hcd); 5168 /* The LPM timeout values are pretty host-controller specific, so don't 5169 * enable hub-initiated timeouts unless the vendor has provided 5170 * information about their timeout algorithm. 5171 */ 5172 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5173 !xhci->devs[udev->slot_id]) 5174 return USB3_LPM_DISABLED; 5175 5176 if (xhci_check_tier_policy(xhci, udev, state) < 0) 5177 return USB3_LPM_DISABLED; 5178 5179 /* If connected to root port then check port can handle lpm */ 5180 if (udev->parent && !udev->parent->parent) { 5181 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 5182 if (port->lpm_incapable) 5183 return USB3_LPM_DISABLED; 5184 } 5185 5186 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5187 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5188 if (mel < 0) { 5189 /* Max Exit Latency is too big, disable LPM. */ 5190 hub_encoded_timeout = USB3_LPM_DISABLED; 5191 mel = 0; 5192 } 5193 5194 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5195 if (ret) 5196 return ret; 5197 return hub_encoded_timeout; 5198 } 5199 5200 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5201 struct usb_device *udev, enum usb3_link_state state) 5202 { 5203 struct xhci_hcd *xhci; 5204 u16 mel; 5205 5206 xhci = hcd_to_xhci(hcd); 5207 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5208 !xhci->devs[udev->slot_id]) 5209 return 0; 5210 5211 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5212 return xhci_change_max_exit_latency(xhci, udev, mel); 5213 } 5214 #else /* CONFIG_PM */ 5215 5216 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5217 struct usb_device *udev, int enable) 5218 { 5219 return 0; 5220 } 5221 5222 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5223 { 5224 return 0; 5225 } 5226 5227 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5228 struct usb_device *udev, enum usb3_link_state state) 5229 { 5230 return USB3_LPM_DISABLED; 5231 } 5232 5233 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5234 struct usb_device *udev, enum usb3_link_state state) 5235 { 5236 return 0; 5237 } 5238 #endif /* CONFIG_PM */ 5239 5240 /*-------------------------------------------------------------------------*/ 5241 5242 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5243 * internal data structures for the device. 5244 */ 5245 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5246 struct usb_tt *tt, gfp_t mem_flags) 5247 { 5248 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5249 struct xhci_virt_device *vdev; 5250 struct xhci_command *config_cmd; 5251 struct xhci_input_control_ctx *ctrl_ctx; 5252 struct xhci_slot_ctx *slot_ctx; 5253 unsigned long flags; 5254 unsigned think_time; 5255 int ret; 5256 5257 /* Ignore root hubs */ 5258 if (!hdev->parent) 5259 return 0; 5260 5261 vdev = xhci->devs[hdev->slot_id]; 5262 if (!vdev) { 5263 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5264 return -EINVAL; 5265 } 5266 5267 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5268 if (!config_cmd) 5269 return -ENOMEM; 5270 5271 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5272 if (!ctrl_ctx) { 5273 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5274 __func__); 5275 xhci_free_command(xhci, config_cmd); 5276 return -ENOMEM; 5277 } 5278 5279 spin_lock_irqsave(&xhci->lock, flags); 5280 if (hdev->speed == USB_SPEED_HIGH && 5281 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5282 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5283 xhci_free_command(xhci, config_cmd); 5284 spin_unlock_irqrestore(&xhci->lock, flags); 5285 return -ENOMEM; 5286 } 5287 5288 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5289 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5290 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5291 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5292 /* 5293 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5294 * but it may be already set to 1 when setup an xHCI virtual 5295 * device, so clear it anyway. 5296 */ 5297 if (tt->multi) 5298 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5299 else if (hdev->speed == USB_SPEED_FULL) 5300 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5301 5302 if (xhci->hci_version > 0x95) { 5303 xhci_dbg(xhci, "xHCI version %x needs hub " 5304 "TT think time and number of ports\n", 5305 (unsigned int) xhci->hci_version); 5306 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5307 /* Set TT think time - convert from ns to FS bit times. 5308 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5309 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5310 * 5311 * xHCI 1.0: this field shall be 0 if the device is not a 5312 * High-spped hub. 5313 */ 5314 think_time = tt->think_time; 5315 if (think_time != 0) 5316 think_time = (think_time / 666) - 1; 5317 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5318 slot_ctx->tt_info |= 5319 cpu_to_le32(TT_THINK_TIME(think_time)); 5320 } else { 5321 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5322 "TT think time or number of ports\n", 5323 (unsigned int) xhci->hci_version); 5324 } 5325 slot_ctx->dev_state = 0; 5326 spin_unlock_irqrestore(&xhci->lock, flags); 5327 5328 xhci_dbg(xhci, "Set up %s for hub device.\n", 5329 (xhci->hci_version > 0x95) ? 5330 "configure endpoint" : "evaluate context"); 5331 5332 /* Issue and wait for the configure endpoint or 5333 * evaluate context command. 5334 */ 5335 if (xhci->hci_version > 0x95) 5336 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5337 false, false); 5338 else 5339 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5340 true, false); 5341 5342 xhci_free_command(xhci, config_cmd); 5343 return ret; 5344 } 5345 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5346 5347 static int xhci_get_frame(struct usb_hcd *hcd) 5348 { 5349 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5350 /* EHCI mods by the periodic size. Why? */ 5351 return readl(&xhci->run_regs->microframe_index) >> 3; 5352 } 5353 5354 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5355 { 5356 xhci->usb2_rhub.hcd = hcd; 5357 hcd->speed = HCD_USB2; 5358 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5359 /* 5360 * USB 2.0 roothub under xHCI has an integrated TT, 5361 * (rate matching hub) as opposed to having an OHCI/UHCI 5362 * companion controller. 5363 */ 5364 hcd->has_tt = 1; 5365 } 5366 5367 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5368 { 5369 unsigned int minor_rev; 5370 5371 /* 5372 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5373 * should return 0x31 for sbrn, or that the minor revision 5374 * is a two digit BCD containig minor and sub-minor numbers. 5375 * This was later clarified in xHCI 1.2. 5376 * 5377 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5378 * minor revision set to 0x1 instead of 0x10. 5379 */ 5380 if (xhci->usb3_rhub.min_rev == 0x1) 5381 minor_rev = 1; 5382 else 5383 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5384 5385 switch (minor_rev) { 5386 case 2: 5387 hcd->speed = HCD_USB32; 5388 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5389 hcd->self.root_hub->rx_lanes = 2; 5390 hcd->self.root_hub->tx_lanes = 2; 5391 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5392 break; 5393 case 1: 5394 hcd->speed = HCD_USB31; 5395 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5396 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5397 break; 5398 } 5399 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5400 minor_rev, minor_rev ? "Enhanced " : ""); 5401 5402 xhci->usb3_rhub.hcd = hcd; 5403 } 5404 5405 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5406 { 5407 struct xhci_hcd *xhci; 5408 /* 5409 * TODO: Check with DWC3 clients for sysdev according to 5410 * quirks 5411 */ 5412 struct device *dev = hcd->self.sysdev; 5413 int retval; 5414 u32 hcs_params1; 5415 5416 /* Accept arbitrarily long scatter-gather lists */ 5417 hcd->self.sg_tablesize = ~0; 5418 5419 /* support to build packet from discontinuous buffers */ 5420 hcd->self.no_sg_constraint = 1; 5421 5422 /* XHCI controllers don't stop the ep queue on short packets :| */ 5423 hcd->self.no_stop_on_short = 1; 5424 5425 xhci = hcd_to_xhci(hcd); 5426 5427 if (!usb_hcd_is_primary_hcd(hcd)) { 5428 xhci_hcd_init_usb3_data(xhci, hcd); 5429 return 0; 5430 } 5431 5432 mutex_init(&xhci->mutex); 5433 xhci->main_hcd = hcd; 5434 xhci->cap_regs = hcd->regs; 5435 xhci->op_regs = hcd->regs + 5436 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5437 xhci->run_regs = hcd->regs + 5438 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5439 /* Cache read-only capability registers */ 5440 hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5441 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5442 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5443 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5444 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5445 if (xhci->hci_version > 0x100) 5446 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5447 5448 xhci->max_slots = HCS_MAX_SLOTS(hcs_params1); 5449 xhci->max_ports = min(HCS_MAX_PORTS(hcs_params1), MAX_HC_PORTS); 5450 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5451 if (!xhci->max_interrupters) 5452 xhci->max_interrupters = min(HCS_MAX_INTRS(hcs_params1), MAX_HC_INTRS); 5453 else if (xhci->max_interrupters > HCS_MAX_INTRS(hcs_params1)) 5454 xhci->max_interrupters = HCS_MAX_INTRS(hcs_params1); 5455 5456 xhci->quirks |= quirks; 5457 5458 if (get_quirks) 5459 get_quirks(dev, xhci); 5460 5461 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5462 * success event after a short transfer. This quirk will ignore such 5463 * spurious event. 5464 */ 5465 if (xhci->hci_version > 0x96) 5466 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5467 5468 if (xhci->hci_version == 0x95 && link_quirk) { 5469 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits"); 5470 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 5471 } 5472 5473 /* Make sure the HC is halted. */ 5474 retval = xhci_halt(xhci); 5475 if (retval) 5476 return retval; 5477 5478 xhci_zero_64b_regs(xhci); 5479 5480 xhci_dbg(xhci, "Resetting HCD\n"); 5481 /* Reset the internal HC memory state and registers. */ 5482 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5483 if (retval) 5484 return retval; 5485 xhci_dbg(xhci, "Reset complete\n"); 5486 5487 /* 5488 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5489 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5490 * address memory pointers actually. So, this driver clears the AC64 5491 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5492 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5493 */ 5494 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5495 xhci->hcc_params &= ~BIT(0); 5496 5497 /* Set dma_mask and coherent_dma_mask to 64-bits, 5498 * if xHC supports 64-bit addressing */ 5499 if ((xhci->hcc_params & HCC_64BIT_ADDR) && 5500 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5501 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5502 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5503 } else { 5504 /* 5505 * This is to avoid error in cases where a 32-bit USB 5506 * controller is used on a 64-bit capable system. 5507 */ 5508 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5509 if (retval) 5510 return retval; 5511 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5512 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5513 } 5514 5515 xhci_dbg(xhci, "Calling HCD init\n"); 5516 /* Initialize HCD and host controller data structures. */ 5517 retval = xhci_init(hcd); 5518 if (retval) 5519 return retval; 5520 xhci_dbg(xhci, "Called HCD init\n"); 5521 5522 if (xhci_hcd_is_usb3(hcd)) 5523 xhci_hcd_init_usb3_data(xhci, hcd); 5524 else 5525 xhci_hcd_init_usb2_data(xhci, hcd); 5526 5527 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5528 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5529 5530 return 0; 5531 } 5532 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5533 5534 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5535 struct usb_host_endpoint *ep) 5536 { 5537 struct xhci_hcd *xhci; 5538 struct usb_device *udev; 5539 unsigned int slot_id; 5540 unsigned int ep_index; 5541 unsigned long flags; 5542 5543 xhci = hcd_to_xhci(hcd); 5544 5545 spin_lock_irqsave(&xhci->lock, flags); 5546 udev = (struct usb_device *)ep->hcpriv; 5547 slot_id = udev->slot_id; 5548 ep_index = xhci_get_endpoint_index(&ep->desc); 5549 5550 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5551 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5552 spin_unlock_irqrestore(&xhci->lock, flags); 5553 } 5554 5555 static const struct hc_driver xhci_hc_driver = { 5556 .description = "xhci-hcd", 5557 .product_desc = "xHCI Host Controller", 5558 .hcd_priv_size = sizeof(struct xhci_hcd), 5559 5560 /* 5561 * generic hardware linkage 5562 */ 5563 .irq = xhci_irq, 5564 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5565 HCD_BH, 5566 5567 /* 5568 * basic lifecycle operations 5569 */ 5570 .reset = NULL, /* set in xhci_init_driver() */ 5571 .start = xhci_run, 5572 .stop = xhci_stop, 5573 .shutdown = xhci_shutdown, 5574 5575 /* 5576 * managing i/o requests and associated device resources 5577 */ 5578 .map_urb_for_dma = xhci_map_urb_for_dma, 5579 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5580 .urb_enqueue = xhci_urb_enqueue, 5581 .urb_dequeue = xhci_urb_dequeue, 5582 .alloc_dev = xhci_alloc_dev, 5583 .free_dev = xhci_free_dev, 5584 .alloc_streams = xhci_alloc_streams, 5585 .free_streams = xhci_free_streams, 5586 .add_endpoint = xhci_add_endpoint, 5587 .drop_endpoint = xhci_drop_endpoint, 5588 .endpoint_disable = xhci_endpoint_disable, 5589 .endpoint_reset = xhci_endpoint_reset, 5590 .check_bandwidth = xhci_check_bandwidth, 5591 .reset_bandwidth = xhci_reset_bandwidth, 5592 .address_device = xhci_address_device, 5593 .enable_device = xhci_enable_device, 5594 .update_hub_device = xhci_update_hub_device, 5595 .reset_device = xhci_discover_or_reset_device, 5596 5597 /* 5598 * scheduling support 5599 */ 5600 .get_frame_number = xhci_get_frame, 5601 5602 /* 5603 * root hub support 5604 */ 5605 .hub_control = xhci_hub_control, 5606 .hub_status_data = xhci_hub_status_data, 5607 .bus_suspend = xhci_bus_suspend, 5608 .bus_resume = xhci_bus_resume, 5609 .get_resuming_ports = xhci_get_resuming_ports, 5610 5611 /* 5612 * call back when device connected and addressed 5613 */ 5614 .update_device = xhci_update_device, 5615 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5616 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5617 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5618 .find_raw_port_number = xhci_find_raw_port_number, 5619 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5620 }; 5621 5622 void xhci_init_driver(struct hc_driver *drv, 5623 const struct xhci_driver_overrides *over) 5624 { 5625 BUG_ON(!over); 5626 5627 /* Copy the generic table to drv then apply the overrides */ 5628 *drv = xhci_hc_driver; 5629 5630 if (over) { 5631 drv->hcd_priv_size += over->extra_priv_size; 5632 if (over->reset) 5633 drv->reset = over->reset; 5634 if (over->start) 5635 drv->start = over->start; 5636 if (over->add_endpoint) 5637 drv->add_endpoint = over->add_endpoint; 5638 if (over->drop_endpoint) 5639 drv->drop_endpoint = over->drop_endpoint; 5640 if (over->check_bandwidth) 5641 drv->check_bandwidth = over->check_bandwidth; 5642 if (over->reset_bandwidth) 5643 drv->reset_bandwidth = over->reset_bandwidth; 5644 if (over->update_hub_device) 5645 drv->update_hub_device = over->update_hub_device; 5646 if (over->hub_control) 5647 drv->hub_control = over->hub_control; 5648 } 5649 } 5650 EXPORT_SYMBOL_GPL(xhci_init_driver); 5651 5652 MODULE_DESCRIPTION(DRIVER_DESC); 5653 MODULE_AUTHOR(DRIVER_AUTHOR); 5654 MODULE_LICENSE("GPL"); 5655 5656 static int __init xhci_hcd_init(void) 5657 { 5658 /* 5659 * Check the compiler generated sizes of structures that must be laid 5660 * out in specific ways for hardware access. 5661 */ 5662 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5663 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5664 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5665 /* xhci_device_control has eight fields, and also 5666 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5667 */ 5668 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5669 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5670 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5671 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5672 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5673 /* xhci_run_regs has eight fields and embeds 1024 xhci_intr_regs */ 5674 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*1024)*32/8); 5675 5676 if (usb_disabled()) 5677 return -ENODEV; 5678 5679 xhci_debugfs_create_root(); 5680 xhci_dbc_init(); 5681 5682 return 0; 5683 } 5684 5685 /* 5686 * If an init function is provided, an exit function must also be provided 5687 * to allow module unload. 5688 */ 5689 static void __exit xhci_hcd_fini(void) 5690 { 5691 xhci_debugfs_remove_root(); 5692 xhci_dbc_exit(); 5693 } 5694 5695 module_init(xhci_hcd_init); 5696 module_exit(xhci_hcd_fini); 5697