1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/jiffies.h> 12 #include <linux/pci.h> 13 #include <linux/iommu.h> 14 #include <linux/iopoll.h> 15 #include <linux/irq.h> 16 #include <linux/log2.h> 17 #include <linux/module.h> 18 #include <linux/moduleparam.h> 19 #include <linux/slab.h> 20 #include <linux/string_choices.h> 21 #include <linux/dmi.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/usb/xhci-sideband.h> 24 25 #include "xhci.h" 26 #include "xhci-trace.h" 27 #include "xhci-debugfs.h" 28 #include "xhci-dbgcap.h" 29 30 #define DRIVER_AUTHOR "Sarah Sharp" 31 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 32 33 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 34 35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 36 static int link_quirk; 37 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 39 40 static unsigned long long quirks; 41 module_param(quirks, ullong, S_IRUGO); 42 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 43 44 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 45 { 46 struct xhci_segment *seg; 47 48 if (!td || !td->start_seg) 49 return false; 50 51 xhci_for_each_ring_seg(ring->first_seg, seg) { 52 if (seg == td->start_seg) 53 return true; 54 } 55 56 return false; 57 } 58 59 /* 60 * xhci_handshake - spin reading hc until handshake completes or fails 61 * @ptr: address of hc register to be read 62 * @mask: bits to look at in result of read 63 * @done: value of those bits when handshake succeeds 64 * @usec: timeout in microseconds 65 * 66 * Returns negative errno, or zero on success 67 * 68 * Success happens when the "mask" bits have the specified value (hardware 69 * handshake done). There are two failure modes: "usec" have passed (major 70 * hardware flakeout), or the register reads as all-ones (hardware removed). 71 */ 72 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 73 { 74 u32 result; 75 int ret; 76 77 ret = readl_poll_timeout_atomic(ptr, result, 78 (result & mask) == done || 79 result == U32_MAX, 80 1, timeout_us); 81 if (result == U32_MAX) /* card removed */ 82 return -ENODEV; 83 84 return ret; 85 } 86 87 /* 88 * Disable interrupts and begin the xHCI halting process. 89 */ 90 void xhci_quiesce(struct xhci_hcd *xhci) 91 { 92 u32 halted; 93 u32 cmd; 94 u32 mask; 95 96 mask = ~(XHCI_IRQS); 97 halted = readl(&xhci->op_regs->status) & STS_HALT; 98 if (!halted) 99 mask &= ~CMD_RUN; 100 101 cmd = readl(&xhci->op_regs->command); 102 cmd &= mask; 103 writel(cmd, &xhci->op_regs->command); 104 } 105 106 /* 107 * Force HC into halt state. 108 * 109 * Disable any IRQs and clear the run/stop bit. 110 * HC will complete any current and actively pipelined transactions, and 111 * should halt within 16 ms of the run/stop bit being cleared. 112 * Read HC Halted bit in the status register to see when the HC is finished. 113 */ 114 int xhci_halt(struct xhci_hcd *xhci) 115 { 116 int ret; 117 118 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 119 xhci_quiesce(xhci); 120 121 ret = xhci_handshake(&xhci->op_regs->status, 122 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 123 if (ret) { 124 if (!(xhci->xhc_state & XHCI_STATE_DYING)) 125 xhci_warn(xhci, "Host halt failed, %d\n", ret); 126 return ret; 127 } 128 129 xhci->xhc_state |= XHCI_STATE_HALTED; 130 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 131 132 return ret; 133 } 134 135 /* 136 * Set the run bit and wait for the host to be running. 137 */ 138 int xhci_start(struct xhci_hcd *xhci) 139 { 140 u32 temp; 141 int ret; 142 143 temp = readl(&xhci->op_regs->command); 144 temp |= (CMD_RUN); 145 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 146 temp); 147 writel(temp, &xhci->op_regs->command); 148 149 /* 150 * Wait for the HCHalted Status bit to be 0 to indicate the host is 151 * running. 152 */ 153 ret = xhci_handshake(&xhci->op_regs->status, 154 STS_HALT, 0, XHCI_MAX_HALT_USEC); 155 if (ret == -ETIMEDOUT) 156 xhci_err(xhci, "Host took too long to start, " 157 "waited %u microseconds.\n", 158 XHCI_MAX_HALT_USEC); 159 if (!ret) { 160 /* clear state flags. Including dying, halted or removing */ 161 xhci->xhc_state = 0; 162 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 163 } 164 165 return ret; 166 } 167 168 /* 169 * Reset a halted HC. 170 * 171 * This resets pipelines, timers, counters, state machines, etc. 172 * Transactions will be terminated immediately, and operational registers 173 * will be set to their defaults. 174 */ 175 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 176 { 177 u32 command; 178 u32 state; 179 int ret; 180 181 state = readl(&xhci->op_regs->status); 182 183 if (state == ~(u32)0) { 184 if (!(xhci->xhc_state & XHCI_STATE_DYING)) 185 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 186 return -ENODEV; 187 } 188 189 if ((state & STS_HALT) == 0) { 190 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 191 return 0; 192 } 193 194 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 195 command = readl(&xhci->op_regs->command); 196 command |= CMD_RESET; 197 writel(command, &xhci->op_regs->command); 198 199 /* Existing Intel xHCI controllers require a delay of 1 mS, 200 * after setting the CMD_RESET bit, and before accessing any 201 * HC registers. This allows the HC to complete the 202 * reset operation and be ready for HC register access. 203 * Without this delay, the subsequent HC register access, 204 * may result in a system hang very rarely. 205 */ 206 if (xhci->quirks & XHCI_INTEL_HOST) 207 udelay(1000); 208 209 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us); 210 if (ret) 211 return ret; 212 213 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 214 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 215 216 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 217 "Wait for controller to be ready for doorbell rings"); 218 /* 219 * xHCI cannot write to any doorbells or operational registers other 220 * than status until the "Controller Not Ready" flag is cleared. 221 */ 222 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 223 224 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 225 xhci->usb2_rhub.bus_state.suspended_ports = 0; 226 xhci->usb2_rhub.bus_state.resuming_ports = 0; 227 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 228 xhci->usb3_rhub.bus_state.suspended_ports = 0; 229 xhci->usb3_rhub.bus_state.resuming_ports = 0; 230 231 return ret; 232 } 233 234 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 235 { 236 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 237 struct iommu_domain *domain; 238 int err, i; 239 u64 val; 240 u32 intrs; 241 242 /* 243 * Some Renesas controllers get into a weird state if they are 244 * reset while programmed with 64bit addresses (they will preserve 245 * the top half of the address in internal, non visible 246 * registers). You end up with half the address coming from the 247 * kernel, and the other half coming from the firmware. Also, 248 * changing the programming leads to extra accesses even if the 249 * controller is supposed to be halted. The controller ends up with 250 * a fatal fault, and is then ripe for being properly reset. 251 * 252 * Special care is taken to only apply this if the device is behind 253 * an iommu. Doing anything when there is no iommu is definitely 254 * unsafe... 255 */ 256 domain = iommu_get_domain_for_dev(dev); 257 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || 258 domain->type == IOMMU_DOMAIN_IDENTITY) 259 return; 260 261 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 262 263 /* Clear HSEIE so that faults do not get signaled */ 264 val = readl(&xhci->op_regs->command); 265 val &= ~CMD_HSEIE; 266 writel(val, &xhci->op_regs->command); 267 268 /* Clear HSE (aka FATAL) */ 269 val = readl(&xhci->op_regs->status); 270 val |= STS_FATAL; 271 writel(val, &xhci->op_regs->status); 272 273 /* Now zero the registers, and brace for impact */ 274 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 275 if (upper_32_bits(val)) 276 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 277 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 278 if (upper_32_bits(val)) 279 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 280 281 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 282 ARRAY_SIZE(xhci->run_regs->ir_set)); 283 284 for (i = 0; i < intrs; i++) { 285 struct xhci_intr_reg __iomem *ir; 286 287 ir = &xhci->run_regs->ir_set[i]; 288 val = xhci_read_64(xhci, &ir->erst_base); 289 if (upper_32_bits(val)) 290 xhci_write_64(xhci, 0, &ir->erst_base); 291 val= xhci_read_64(xhci, &ir->erst_dequeue); 292 if (upper_32_bits(val)) 293 xhci_write_64(xhci, 0, &ir->erst_dequeue); 294 } 295 296 /* Wait for the fault to appear. It will be cleared on reset */ 297 err = xhci_handshake(&xhci->op_regs->status, 298 STS_FATAL, STS_FATAL, 299 XHCI_MAX_HALT_USEC); 300 if (!err) 301 xhci_info(xhci, "Fault detected\n"); 302 } 303 304 int xhci_enable_interrupter(struct xhci_interrupter *ir) 305 { 306 u32 iman; 307 308 if (!ir || !ir->ir_set) 309 return -EINVAL; 310 311 iman = readl(&ir->ir_set->iman); 312 iman &= ~IMAN_IP; 313 iman |= IMAN_IE; 314 writel(iman, &ir->ir_set->iman); 315 316 /* Read operation to guarantee the write has been flushed from posted buffers */ 317 readl(&ir->ir_set->iman); 318 return 0; 319 } 320 321 int xhci_disable_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 322 { 323 u32 iman; 324 325 if (!ir || !ir->ir_set) 326 return -EINVAL; 327 328 iman = readl(&ir->ir_set->iman); 329 iman &= ~IMAN_IP; 330 iman &= ~IMAN_IE; 331 writel(iman, &ir->ir_set->iman); 332 333 iman = readl(&ir->ir_set->iman); 334 if (iman & IMAN_IP) 335 xhci_dbg(xhci, "%s: Interrupt pending\n", __func__); 336 337 return 0; 338 } 339 340 /* interrupt moderation interval imod_interval in nanoseconds */ 341 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir, 342 u32 imod_interval) 343 { 344 u32 imod; 345 346 if (!ir || !ir->ir_set) 347 return -EINVAL; 348 349 /* IMODI value in IMOD register is in 250ns increments */ 350 imod_interval = umin(imod_interval / 250, IMODI_MASK); 351 352 imod = readl(&ir->ir_set->imod); 353 imod &= ~IMODI_MASK; 354 imod |= imod_interval; 355 writel(imod, &ir->ir_set->imod); 356 357 return 0; 358 } 359 360 static void compliance_mode_recovery(struct timer_list *t) 361 { 362 struct xhci_hcd *xhci; 363 struct usb_hcd *hcd; 364 struct xhci_hub *rhub; 365 u32 temp; 366 int i; 367 368 xhci = timer_container_of(xhci, t, comp_mode_recovery_timer); 369 rhub = &xhci->usb3_rhub; 370 hcd = rhub->hcd; 371 372 if (!hcd) 373 return; 374 375 for (i = 0; i < rhub->num_ports; i++) { 376 temp = readl(rhub->ports[i]->addr); 377 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 378 /* 379 * Compliance Mode Detected. Letting USB Core 380 * handle the Warm Reset 381 */ 382 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 383 "Compliance mode detected->port %d", 384 i + 1); 385 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 386 "Attempting compliance mode recovery"); 387 388 if (hcd->state == HC_STATE_SUSPENDED) 389 usb_hcd_resume_root_hub(hcd); 390 391 usb_hcd_poll_rh_status(hcd); 392 } 393 } 394 395 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 396 mod_timer(&xhci->comp_mode_recovery_timer, 397 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 398 } 399 400 /* 401 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 402 * that causes ports behind that hardware to enter compliance mode sometimes. 403 * The quirk creates a timer that polls every 2 seconds the link state of 404 * each host controller's port and recovers it by issuing a Warm reset 405 * if Compliance mode is detected, otherwise the port will become "dead" (no 406 * device connections or disconnections will be detected anymore). Becasue no 407 * status event is generated when entering compliance mode (per xhci spec), 408 * this quirk is needed on systems that have the failing hardware installed. 409 */ 410 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 411 { 412 xhci->port_status_u0 = 0; 413 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 414 0); 415 xhci->comp_mode_recovery_timer.expires = jiffies + 416 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 417 418 add_timer(&xhci->comp_mode_recovery_timer); 419 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 420 "Compliance mode recovery timer initialized"); 421 } 422 423 /* 424 * This function identifies the systems that have installed the SN65LVPE502CP 425 * USB3.0 re-driver and that need the Compliance Mode Quirk. 426 * Systems: 427 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 428 */ 429 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 430 { 431 const char *dmi_product_name, *dmi_sys_vendor; 432 433 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 434 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 435 if (!dmi_product_name || !dmi_sys_vendor) 436 return false; 437 438 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 439 return false; 440 441 if (strstr(dmi_product_name, "Z420") || 442 strstr(dmi_product_name, "Z620") || 443 strstr(dmi_product_name, "Z820") || 444 strstr(dmi_product_name, "Z1 Workstation")) 445 return true; 446 447 return false; 448 } 449 450 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 451 { 452 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 453 } 454 455 static void xhci_hcd_page_size(struct xhci_hcd *xhci) 456 { 457 u32 page_size; 458 459 page_size = readl(&xhci->op_regs->page_size) & XHCI_PAGE_SIZE_MASK; 460 if (!is_power_of_2(page_size)) { 461 xhci_warn(xhci, "Invalid page size register = 0x%x\n", page_size); 462 /* Fallback to 4K page size, since that's common */ 463 page_size = 1; 464 } 465 466 xhci->page_size = page_size << 12; 467 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "HCD page size set to %iK", 468 xhci->page_size >> 10); 469 } 470 471 static void xhci_enable_max_dev_slots(struct xhci_hcd *xhci) 472 { 473 u32 config_reg; 474 u32 max_slots; 475 476 max_slots = HCS_MAX_SLOTS(xhci->hcs_params1); 477 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xHC can handle at most %d device slots", 478 max_slots); 479 480 config_reg = readl(&xhci->op_regs->config_reg); 481 config_reg &= ~HCS_SLOTS_MASK; 482 config_reg |= max_slots; 483 484 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting Max device slots reg = 0x%x", 485 config_reg); 486 writel(config_reg, &xhci->op_regs->config_reg); 487 } 488 489 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 490 { 491 dma_addr_t deq_dma; 492 u64 crcr; 493 494 deq_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, xhci->cmd_ring->dequeue); 495 deq_dma &= CMD_RING_PTR_MASK; 496 497 crcr = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 498 crcr &= ~CMD_RING_PTR_MASK; 499 crcr |= deq_dma; 500 501 crcr &= ~CMD_RING_CYCLE; 502 crcr |= xhci->cmd_ring->cycle_state; 503 504 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting command ring address to 0x%llx", crcr); 505 xhci_write_64(xhci, crcr, &xhci->op_regs->cmd_ring); 506 } 507 508 static void xhci_set_doorbell_ptr(struct xhci_hcd *xhci) 509 { 510 u32 offset; 511 512 offset = readl(&xhci->cap_regs->db_off) & DBOFF_MASK; 513 xhci->dba = (void __iomem *)xhci->cap_regs + offset; 514 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 515 "Doorbell array is located at offset 0x%x from cap regs base addr", offset); 516 } 517 518 /* 519 * Enable USB 3.0 device notifications for function remote wake, which is necessary 520 * for allowing USB 3.0 devices to do remote wakeup from U3 (device suspend). 521 */ 522 static void xhci_set_dev_notifications(struct xhci_hcd *xhci) 523 { 524 u32 dev_notf; 525 526 dev_notf = readl(&xhci->op_regs->dev_notification); 527 dev_notf &= ~DEV_NOTE_MASK; 528 dev_notf |= DEV_NOTE_FWAKE; 529 writel(dev_notf, &xhci->op_regs->dev_notification); 530 } 531 532 /* 533 * Initialize memory for HCD and xHC (one-time init). 534 * 535 * Program the PAGESIZE register, initialize the device context array, create 536 * device contexts (?), set up a command ring segment (or two?), create event 537 * ring (one for now). 538 */ 539 static int xhci_init(struct usb_hcd *hcd) 540 { 541 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 542 int retval; 543 544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Starting %s", __func__); 545 spin_lock_init(&xhci->lock); 546 547 INIT_LIST_HEAD(&xhci->cmd_list); 548 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); 549 init_completion(&xhci->cmd_ring_stop_completion); 550 xhci_hcd_page_size(xhci); 551 memset(xhci->devs, 0, MAX_HC_SLOTS * sizeof(*xhci->devs)); 552 553 retval = xhci_mem_init(xhci, GFP_KERNEL); 554 if (retval) 555 return retval; 556 557 /* Set the Number of Device Slots Enabled to the maximum supported value */ 558 xhci_enable_max_dev_slots(xhci); 559 560 /* Set the address in the Command Ring Control register */ 561 xhci_set_cmd_ring_deq(xhci); 562 563 /* Set Device Context Base Address Array pointer */ 564 xhci_write_64(xhci, xhci->dcbaa->dma, &xhci->op_regs->dcbaa_ptr); 565 566 /* Set Doorbell array pointer */ 567 xhci_set_doorbell_ptr(xhci); 568 569 /* Set USB 3.0 device notifications for function remote wake */ 570 xhci_set_dev_notifications(xhci); 571 572 /* Initialize the Primary interrupter */ 573 xhci_add_interrupter(xhci, 0); 574 xhci->interrupters[0]->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX; 575 576 /* Initializing Compliance Mode Recovery Data If Needed */ 577 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 578 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 579 compliance_mode_recovery_timer_init(xhci); 580 } 581 582 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished %s", __func__); 583 return 0; 584 } 585 586 /*-------------------------------------------------------------------------*/ 587 588 static int xhci_run_finished(struct xhci_hcd *xhci) 589 { 590 struct xhci_interrupter *ir = xhci->interrupters[0]; 591 unsigned long flags; 592 u32 temp; 593 594 /* 595 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 596 * Protect the short window before host is running with a lock 597 */ 598 spin_lock_irqsave(&xhci->lock, flags); 599 600 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 601 temp = readl(&xhci->op_regs->command); 602 temp |= (CMD_EIE); 603 writel(temp, &xhci->op_regs->command); 604 605 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 606 xhci_enable_interrupter(ir); 607 608 if (xhci_start(xhci)) { 609 xhci_halt(xhci); 610 spin_unlock_irqrestore(&xhci->lock, flags); 611 return -ENODEV; 612 } 613 614 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 615 616 if (xhci->quirks & XHCI_NEC_HOST) 617 xhci_ring_cmd_db(xhci); 618 619 spin_unlock_irqrestore(&xhci->lock, flags); 620 621 return 0; 622 } 623 624 /* 625 * Start the HC after it was halted. 626 * 627 * This function is called by the USB core when the HC driver is added. 628 * Its opposite is xhci_stop(). 629 * 630 * xhci_init() must be called once before this function can be called. 631 * Reset the HC, enable device slot contexts, program DCBAAP, and 632 * set command ring pointer and event ring pointer. 633 * 634 * Setup MSI-X vectors and enable interrupts. 635 */ 636 int xhci_run(struct usb_hcd *hcd) 637 { 638 u64 temp_64; 639 int ret; 640 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 641 struct xhci_interrupter *ir = xhci->interrupters[0]; 642 /* Start the xHCI host controller running only after the USB 2.0 roothub 643 * is setup. 644 */ 645 646 hcd->uses_new_polling = 1; 647 if (hcd->msi_enabled) 648 ir->ip_autoclear = true; 649 650 if (!usb_hcd_is_primary_hcd(hcd)) 651 return xhci_run_finished(xhci); 652 653 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 654 655 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 656 temp_64 &= ERST_PTR_MASK; 657 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 658 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 659 660 xhci_set_interrupter_moderation(ir, xhci->imod_interval); 661 662 if (xhci->quirks & XHCI_NEC_HOST) { 663 struct xhci_command *command; 664 665 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 666 if (!command) 667 return -ENOMEM; 668 669 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 670 TRB_TYPE(TRB_NEC_GET_FW)); 671 if (ret) 672 xhci_free_command(xhci, command); 673 } 674 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 675 "Finished %s for main hcd", __func__); 676 677 xhci_create_dbc_dev(xhci); 678 679 xhci_debugfs_init(xhci); 680 681 if (xhci_has_one_roothub(xhci)) 682 return xhci_run_finished(xhci); 683 684 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 685 686 return 0; 687 } 688 EXPORT_SYMBOL_GPL(xhci_run); 689 690 /* 691 * Stop xHCI driver. 692 * 693 * This function is called by the USB core when the HC driver is removed. 694 * Its opposite is xhci_run(). 695 * 696 * Disable device contexts, disable IRQs, and quiesce the HC. 697 * Reset the HC, finish any completed transactions, and cleanup memory. 698 */ 699 void xhci_stop(struct usb_hcd *hcd) 700 { 701 u32 temp; 702 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 703 struct xhci_interrupter *ir = xhci->interrupters[0]; 704 705 mutex_lock(&xhci->mutex); 706 707 /* Only halt host and free memory after both hcds are removed */ 708 if (!usb_hcd_is_primary_hcd(hcd)) { 709 mutex_unlock(&xhci->mutex); 710 return; 711 } 712 713 xhci_remove_dbc_dev(xhci); 714 715 spin_lock_irq(&xhci->lock); 716 xhci->xhc_state |= XHCI_STATE_HALTED; 717 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 718 xhci_halt(xhci); 719 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 720 spin_unlock_irq(&xhci->lock); 721 722 /* Deleting Compliance Mode Recovery Timer */ 723 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 724 (!(xhci_all_ports_seen_u0(xhci)))) { 725 timer_delete_sync(&xhci->comp_mode_recovery_timer); 726 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 727 "%s: compliance mode recovery timer deleted", 728 __func__); 729 } 730 731 if (xhci->quirks & XHCI_AMD_PLL_FIX) 732 usb_amd_dev_put(); 733 734 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 735 "// Disabling event ring interrupts"); 736 temp = readl(&xhci->op_regs->status); 737 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 738 xhci_disable_interrupter(xhci, ir); 739 740 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 741 xhci_mem_cleanup(xhci); 742 xhci_debugfs_exit(xhci); 743 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 744 "xhci_stop completed - status = %x", 745 readl(&xhci->op_regs->status)); 746 mutex_unlock(&xhci->mutex); 747 } 748 EXPORT_SYMBOL_GPL(xhci_stop); 749 750 /* 751 * Shutdown HC (not bus-specific) 752 * 753 * This is called when the machine is rebooting or halting. We assume that the 754 * machine will be powered off, and the HC's internal state will be reset. 755 * Don't bother to free memory. 756 * 757 * This will only ever be called with the main usb_hcd (the USB3 roothub). 758 */ 759 void xhci_shutdown(struct usb_hcd *hcd) 760 { 761 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 762 763 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 764 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 765 766 /* Don't poll the roothubs after shutdown. */ 767 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 768 __func__, hcd->self.busnum); 769 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 770 timer_delete_sync(&hcd->rh_timer); 771 772 if (xhci->shared_hcd) { 773 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 774 timer_delete_sync(&xhci->shared_hcd->rh_timer); 775 } 776 777 spin_lock_irq(&xhci->lock); 778 xhci_halt(xhci); 779 780 /* 781 * Workaround for spurious wakeps at shutdown with HSW, and for boot 782 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 783 */ 784 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 785 xhci->quirks & XHCI_RESET_TO_DEFAULT) 786 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 787 788 spin_unlock_irq(&xhci->lock); 789 790 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 791 "xhci_shutdown completed - status = %x", 792 readl(&xhci->op_regs->status)); 793 } 794 EXPORT_SYMBOL_GPL(xhci_shutdown); 795 796 #ifdef CONFIG_PM 797 static void xhci_save_registers(struct xhci_hcd *xhci) 798 { 799 struct xhci_interrupter *ir; 800 unsigned int i; 801 802 xhci->s3.command = readl(&xhci->op_regs->command); 803 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 804 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 805 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 806 807 /* save both primary and all secondary interrupters */ 808 /* fixme, shold we lock to prevent race with remove secondary interrupter? */ 809 for (i = 0; i < xhci->max_interrupters; i++) { 810 ir = xhci->interrupters[i]; 811 if (!ir) 812 continue; 813 814 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 815 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 816 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 817 ir->s3_iman = readl(&ir->ir_set->iman); 818 ir->s3_imod = readl(&ir->ir_set->imod); 819 } 820 } 821 822 static void xhci_restore_registers(struct xhci_hcd *xhci) 823 { 824 struct xhci_interrupter *ir; 825 unsigned int i; 826 827 writel(xhci->s3.command, &xhci->op_regs->command); 828 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 829 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 830 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 831 832 /* FIXME should we lock to protect against freeing of interrupters */ 833 for (i = 0; i < xhci->max_interrupters; i++) { 834 ir = xhci->interrupters[i]; 835 if (!ir) 836 continue; 837 838 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 839 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 840 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 841 writel(ir->s3_iman, &ir->ir_set->iman); 842 writel(ir->s3_imod, &ir->ir_set->imod); 843 } 844 } 845 846 /* 847 * The whole command ring must be cleared to zero when we suspend the host. 848 * 849 * The host doesn't save the command ring pointer in the suspend well, so we 850 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 851 * aligned, because of the reserved bits in the command ring dequeue pointer 852 * register. Therefore, we can't just set the dequeue pointer back in the 853 * middle of the ring (TRBs are 16-byte aligned). 854 */ 855 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 856 { 857 struct xhci_ring *ring; 858 struct xhci_segment *seg; 859 860 ring = xhci->cmd_ring; 861 xhci_for_each_ring_seg(ring->first_seg, seg) { 862 /* erase all TRBs before the link */ 863 memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 864 /* clear link cycle bit */ 865 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE); 866 } 867 868 xhci_initialize_ring_info(ring); 869 /* 870 * Reset the hardware dequeue pointer. 871 * Yes, this will need to be re-written after resume, but we're paranoid 872 * and want to make sure the hardware doesn't access bogus memory 873 * because, say, the BIOS or an SMI started the host without changing 874 * the command ring pointers. 875 */ 876 xhci_set_cmd_ring_deq(xhci); 877 } 878 879 /* 880 * Disable port wake bits if do_wakeup is not set. 881 * 882 * Also clear a possible internal port wake state left hanging for ports that 883 * detected termination but never successfully enumerated (trained to 0U). 884 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 885 * at enumeration clears this wake, force one here as well for unconnected ports 886 */ 887 888 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 889 struct xhci_hub *rhub, 890 bool do_wakeup) 891 { 892 unsigned long flags; 893 u32 t1, t2, portsc; 894 int i; 895 896 spin_lock_irqsave(&xhci->lock, flags); 897 898 for (i = 0; i < rhub->num_ports; i++) { 899 portsc = readl(rhub->ports[i]->addr); 900 t1 = xhci_port_state_to_neutral(portsc); 901 t2 = t1; 902 903 /* clear wake bits if do_wake is not set */ 904 if (!do_wakeup) 905 t2 &= ~PORT_WAKE_BITS; 906 907 /* Don't touch csc bit if connected or connect change is set */ 908 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 909 t2 |= PORT_CSC; 910 911 if (t1 != t2) { 912 writel(t2, rhub->ports[i]->addr); 913 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 914 rhub->hcd->self.busnum, i + 1, portsc, t2); 915 } 916 } 917 spin_unlock_irqrestore(&xhci->lock, flags); 918 } 919 920 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 921 { 922 struct xhci_port **ports; 923 int port_index; 924 u32 status; 925 u32 portsc; 926 927 status = readl(&xhci->op_regs->status); 928 if (status & STS_EINT) 929 return true; 930 /* 931 * Checking STS_EINT is not enough as there is a lag between a change 932 * bit being set and the Port Status Change Event that it generated 933 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 934 */ 935 936 port_index = xhci->usb2_rhub.num_ports; 937 ports = xhci->usb2_rhub.ports; 938 while (port_index--) { 939 portsc = readl(ports[port_index]->addr); 940 if (portsc & PORT_CHANGE_MASK || 941 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 942 return true; 943 } 944 port_index = xhci->usb3_rhub.num_ports; 945 ports = xhci->usb3_rhub.ports; 946 while (port_index--) { 947 portsc = readl(ports[port_index]->addr); 948 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) || 949 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 950 return true; 951 } 952 return false; 953 } 954 955 /* 956 * Stop HC (not bus-specific) 957 * 958 * This is called when the machine transition into S3/S4 mode. 959 * 960 */ 961 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 962 { 963 int rc = 0; 964 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 965 struct usb_hcd *hcd = xhci_to_hcd(xhci); 966 u32 command; 967 u32 res; 968 969 if (!hcd->state) 970 return 0; 971 972 if (hcd->state != HC_STATE_SUSPENDED || 973 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 974 return -EINVAL; 975 976 /* Clear root port wake on bits if wakeup not allowed. */ 977 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 978 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 979 980 if (!HCD_HW_ACCESSIBLE(hcd)) 981 return 0; 982 983 xhci_dbc_suspend(xhci); 984 985 /* Don't poll the roothubs on bus suspend. */ 986 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 987 __func__, hcd->self.busnum); 988 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 989 timer_delete_sync(&hcd->rh_timer); 990 if (xhci->shared_hcd) { 991 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 992 timer_delete_sync(&xhci->shared_hcd->rh_timer); 993 } 994 995 if (xhci->quirks & XHCI_SUSPEND_DELAY) 996 usleep_range(1000, 1500); 997 998 spin_lock_irq(&xhci->lock); 999 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1000 if (xhci->shared_hcd) 1001 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1002 /* step 1: stop endpoint */ 1003 /* skipped assuming that port suspend has done */ 1004 1005 /* step 2: clear Run/Stop bit */ 1006 command = readl(&xhci->op_regs->command); 1007 command &= ~CMD_RUN; 1008 writel(command, &xhci->op_regs->command); 1009 1010 /* Some chips from Fresco Logic need an extraordinary delay */ 1011 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1012 1013 if (xhci_handshake(&xhci->op_regs->status, 1014 STS_HALT, STS_HALT, delay)) { 1015 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1016 spin_unlock_irq(&xhci->lock); 1017 return -ETIMEDOUT; 1018 } 1019 xhci_clear_command_ring(xhci); 1020 1021 /* step 3: save registers */ 1022 xhci_save_registers(xhci); 1023 1024 /* step 4: set CSS flag */ 1025 command = readl(&xhci->op_regs->command); 1026 command |= CMD_CSS; 1027 writel(command, &xhci->op_regs->command); 1028 xhci->broken_suspend = 0; 1029 if (xhci_handshake(&xhci->op_regs->status, 1030 STS_SAVE, 0, 20 * 1000)) { 1031 /* 1032 * AMD SNPS xHC 3.0 occasionally does not clear the 1033 * SSS bit of USBSTS and when driver tries to poll 1034 * to see if the xHC clears BIT(8) which never happens 1035 * and driver assumes that controller is not responding 1036 * and times out. To workaround this, its good to check 1037 * if SRE and HCE bits are not set (as per xhci 1038 * Section 5.4.2) and bypass the timeout. 1039 */ 1040 res = readl(&xhci->op_regs->status); 1041 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1042 (((res & STS_SRE) == 0) && 1043 ((res & STS_HCE) == 0))) { 1044 xhci->broken_suspend = 1; 1045 } else { 1046 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1047 spin_unlock_irq(&xhci->lock); 1048 return -ETIMEDOUT; 1049 } 1050 } 1051 spin_unlock_irq(&xhci->lock); 1052 1053 /* 1054 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1055 * is about to be suspended. 1056 */ 1057 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1058 (!(xhci_all_ports_seen_u0(xhci)))) { 1059 timer_delete_sync(&xhci->comp_mode_recovery_timer); 1060 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1061 "%s: compliance mode recovery timer deleted", 1062 __func__); 1063 } 1064 1065 return rc; 1066 } 1067 EXPORT_SYMBOL_GPL(xhci_suspend); 1068 1069 /* 1070 * start xHC (not bus-specific) 1071 * 1072 * This is called when the machine transition from S3/S4 mode. 1073 * 1074 */ 1075 int xhci_resume(struct xhci_hcd *xhci, bool power_lost, bool is_auto_resume) 1076 { 1077 u32 command, temp = 0; 1078 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1079 int retval = 0; 1080 bool comp_timer_running = false; 1081 bool pending_portevent = false; 1082 bool suspended_usb3_devs = false; 1083 1084 if (!hcd->state) 1085 return 0; 1086 1087 /* Wait a bit if either of the roothubs need to settle from the 1088 * transition into bus suspend. 1089 */ 1090 1091 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1092 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1093 msleep(100); 1094 1095 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1096 if (xhci->shared_hcd) 1097 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1098 1099 spin_lock_irq(&xhci->lock); 1100 1101 if (xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1102 power_lost = true; 1103 1104 if (!power_lost) { 1105 /* 1106 * Some controllers might lose power during suspend, so wait 1107 * for controller not ready bit to clear, just as in xHC init. 1108 */ 1109 retval = xhci_handshake(&xhci->op_regs->status, 1110 STS_CNR, 0, 10 * 1000 * 1000); 1111 if (retval) { 1112 xhci_warn(xhci, "Controller not ready at resume %d\n", 1113 retval); 1114 spin_unlock_irq(&xhci->lock); 1115 return retval; 1116 } 1117 /* step 1: restore register */ 1118 xhci_restore_registers(xhci); 1119 /* step 2: initialize command ring buffer */ 1120 xhci_set_cmd_ring_deq(xhci); 1121 /* step 3: restore state and start state*/ 1122 /* step 3: set CRS flag */ 1123 command = readl(&xhci->op_regs->command); 1124 command |= CMD_CRS; 1125 writel(command, &xhci->op_regs->command); 1126 /* 1127 * Some controllers take up to 55+ ms to complete the controller 1128 * restore so setting the timeout to 100ms. Xhci specification 1129 * doesn't mention any timeout value. 1130 */ 1131 if (xhci_handshake(&xhci->op_regs->status, 1132 STS_RESTORE, 0, 100 * 1000)) { 1133 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1134 spin_unlock_irq(&xhci->lock); 1135 return -ETIMEDOUT; 1136 } 1137 } 1138 1139 temp = readl(&xhci->op_regs->status); 1140 1141 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1142 if ((temp & (STS_SRE | STS_HCE)) && 1143 !(xhci->xhc_state & XHCI_STATE_REMOVING)) { 1144 if (!power_lost) 1145 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1146 power_lost = true; 1147 } 1148 1149 if (power_lost) { 1150 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1151 !(xhci_all_ports_seen_u0(xhci))) { 1152 timer_delete_sync(&xhci->comp_mode_recovery_timer); 1153 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1154 "Compliance Mode Recovery Timer deleted!"); 1155 } 1156 1157 /* Let the USB core know _both_ roothubs lost power. */ 1158 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1159 if (xhci->shared_hcd) 1160 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1161 1162 xhci_dbg(xhci, "Stop HCD\n"); 1163 xhci_halt(xhci); 1164 xhci_zero_64b_regs(xhci); 1165 if (xhci->xhc_state & XHCI_STATE_REMOVING) 1166 retval = -ENODEV; 1167 else 1168 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1169 spin_unlock_irq(&xhci->lock); 1170 if (retval) 1171 return retval; 1172 1173 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1174 temp = readl(&xhci->op_regs->status); 1175 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1176 xhci_disable_interrupter(xhci, xhci->interrupters[0]); 1177 1178 xhci_dbg(xhci, "cleaning up memory\n"); 1179 xhci_mem_cleanup(xhci); 1180 xhci_debugfs_exit(xhci); 1181 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1182 readl(&xhci->op_regs->status)); 1183 1184 /* USB core calls the PCI reinit and start functions twice: 1185 * first with the primary HCD, and then with the secondary HCD. 1186 * If we don't do the same, the host will never be started. 1187 */ 1188 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1189 retval = xhci_init(hcd); 1190 if (retval) 1191 return retval; 1192 comp_timer_running = true; 1193 1194 xhci_dbg(xhci, "Start the primary HCD\n"); 1195 retval = xhci_run(hcd); 1196 if (!retval && xhci->shared_hcd) { 1197 xhci_dbg(xhci, "Start the secondary HCD\n"); 1198 retval = xhci_run(xhci->shared_hcd); 1199 } 1200 if (retval) 1201 return retval; 1202 /* 1203 * Resume roothubs unconditionally as PORTSC change bits are not 1204 * immediately visible after xHC reset 1205 */ 1206 hcd->state = HC_STATE_SUSPENDED; 1207 1208 if (xhci->shared_hcd) { 1209 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1210 usb_hcd_resume_root_hub(xhci->shared_hcd); 1211 } 1212 usb_hcd_resume_root_hub(hcd); 1213 1214 goto done; 1215 } 1216 1217 /* step 4: set Run/Stop bit */ 1218 command = readl(&xhci->op_regs->command); 1219 command |= CMD_RUN; 1220 writel(command, &xhci->op_regs->command); 1221 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1222 0, 250 * 1000); 1223 1224 /* step 5: walk topology and initialize portsc, 1225 * portpmsc and portli 1226 */ 1227 /* this is done in bus_resume */ 1228 1229 /* step 6: restart each of the previously 1230 * Running endpoints by ringing their doorbells 1231 */ 1232 1233 spin_unlock_irq(&xhci->lock); 1234 1235 xhci_dbc_resume(xhci); 1236 1237 if (retval == 0) { 1238 /* 1239 * Resume roothubs only if there are pending events. 1240 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1241 * the first wake signalling failed, give it that chance if 1242 * there are suspended USB 3 devices. 1243 */ 1244 if (xhci->usb3_rhub.bus_state.suspended_ports || 1245 xhci->usb3_rhub.bus_state.bus_suspended) 1246 suspended_usb3_devs = true; 1247 1248 pending_portevent = xhci_pending_portevent(xhci); 1249 1250 if (suspended_usb3_devs && !pending_portevent && is_auto_resume) { 1251 msleep(120); 1252 pending_portevent = xhci_pending_portevent(xhci); 1253 } 1254 1255 if (pending_portevent) { 1256 if (xhci->shared_hcd) 1257 usb_hcd_resume_root_hub(xhci->shared_hcd); 1258 usb_hcd_resume_root_hub(hcd); 1259 } 1260 } 1261 done: 1262 /* 1263 * If system is subject to the Quirk, Compliance Mode Timer needs to 1264 * be re-initialized Always after a system resume. Ports are subject 1265 * to suffer the Compliance Mode issue again. It doesn't matter if 1266 * ports have entered previously to U0 before system's suspension. 1267 */ 1268 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1269 compliance_mode_recovery_timer_init(xhci); 1270 1271 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1272 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1273 1274 /* Re-enable port polling. */ 1275 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1276 __func__, hcd->self.busnum); 1277 if (xhci->shared_hcd) { 1278 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1279 usb_hcd_poll_rh_status(xhci->shared_hcd); 1280 } 1281 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1282 usb_hcd_poll_rh_status(hcd); 1283 1284 return retval; 1285 } 1286 EXPORT_SYMBOL_GPL(xhci_resume); 1287 #endif /* CONFIG_PM */ 1288 1289 /*-------------------------------------------------------------------------*/ 1290 1291 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1292 { 1293 void *temp; 1294 int ret = 0; 1295 unsigned int buf_len; 1296 enum dma_data_direction dir; 1297 1298 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1299 buf_len = urb->transfer_buffer_length; 1300 1301 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1302 dev_to_node(hcd->self.sysdev)); 1303 if (!temp) 1304 return -ENOMEM; 1305 1306 if (usb_urb_dir_out(urb)) 1307 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1308 temp, buf_len, 0); 1309 1310 urb->transfer_buffer = temp; 1311 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1312 urb->transfer_buffer, 1313 urb->transfer_buffer_length, 1314 dir); 1315 1316 if (dma_mapping_error(hcd->self.sysdev, 1317 urb->transfer_dma)) { 1318 ret = -EAGAIN; 1319 kfree(temp); 1320 } else { 1321 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1322 } 1323 1324 return ret; 1325 } 1326 1327 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1328 struct urb *urb) 1329 { 1330 bool ret = false; 1331 unsigned int i; 1332 unsigned int len = 0; 1333 unsigned int trb_size; 1334 unsigned int max_pkt; 1335 struct scatterlist *sg; 1336 struct scatterlist *tail_sg; 1337 1338 tail_sg = urb->sg; 1339 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1340 1341 if (!urb->num_sgs) 1342 return ret; 1343 1344 if (urb->dev->speed >= USB_SPEED_SUPER) 1345 trb_size = TRB_CACHE_SIZE_SS; 1346 else 1347 trb_size = TRB_CACHE_SIZE_HS; 1348 1349 if (urb->transfer_buffer_length != 0 && 1350 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1351 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1352 len = len + sg->length; 1353 if (i > trb_size - 2) { 1354 len = len - tail_sg->length; 1355 if (len < max_pkt) { 1356 ret = true; 1357 break; 1358 } 1359 1360 tail_sg = sg_next(tail_sg); 1361 } 1362 } 1363 } 1364 return ret; 1365 } 1366 1367 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1368 { 1369 unsigned int len; 1370 unsigned int buf_len; 1371 enum dma_data_direction dir; 1372 1373 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1374 1375 buf_len = urb->transfer_buffer_length; 1376 1377 if (IS_ENABLED(CONFIG_HAS_DMA) && 1378 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1379 dma_unmap_single(hcd->self.sysdev, 1380 urb->transfer_dma, 1381 urb->transfer_buffer_length, 1382 dir); 1383 1384 if (usb_urb_dir_in(urb)) { 1385 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1386 urb->transfer_buffer, 1387 buf_len, 1388 0); 1389 if (len != buf_len) { 1390 xhci_dbg(hcd_to_xhci(hcd), 1391 "Copy from tmp buf to urb sg list failed\n"); 1392 urb->actual_length = len; 1393 } 1394 } 1395 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1396 kfree(urb->transfer_buffer); 1397 urb->transfer_buffer = NULL; 1398 } 1399 1400 /* 1401 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1402 * we'll copy the actual data into the TRB address register. This is limited to 1403 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1404 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1405 */ 1406 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1407 gfp_t mem_flags) 1408 { 1409 struct xhci_hcd *xhci; 1410 1411 xhci = hcd_to_xhci(hcd); 1412 1413 if (xhci_urb_suitable_for_idt(urb)) 1414 return 0; 1415 1416 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1417 if (xhci_urb_temp_buffer_required(hcd, urb)) 1418 return xhci_map_temp_buffer(hcd, urb); 1419 } 1420 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1421 } 1422 1423 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1424 { 1425 struct xhci_hcd *xhci; 1426 bool unmap_temp_buf = false; 1427 1428 xhci = hcd_to_xhci(hcd); 1429 1430 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1431 unmap_temp_buf = true; 1432 1433 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1434 xhci_unmap_temp_buf(hcd, urb); 1435 else 1436 usb_hcd_unmap_urb_for_dma(hcd, urb); 1437 } 1438 1439 /** 1440 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1441 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1442 * value to right shift 1 for the bitmask. 1443 * @desc: USB endpoint descriptor to determine index for 1444 * 1445 * Index = (epnum * 2) + direction - 1, 1446 * where direction = 0 for OUT, 1 for IN. 1447 * For control endpoints, the IN index is used (OUT index is unused), so 1448 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1449 */ 1450 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1451 { 1452 unsigned int index; 1453 if (usb_endpoint_xfer_control(desc)) 1454 index = (unsigned int) (usb_endpoint_num(desc)*2); 1455 else 1456 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1457 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1458 return index; 1459 } 1460 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1461 1462 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1463 * address from the XHCI endpoint index. 1464 */ 1465 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1466 { 1467 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1468 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1469 return direction | number; 1470 } 1471 1472 /* Find the flag for this endpoint (for use in the control context). Use the 1473 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1474 * bit 1, etc. 1475 */ 1476 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1477 { 1478 return 1 << (xhci_get_endpoint_index(desc) + 1); 1479 } 1480 1481 /* Compute the last valid endpoint context index. Basically, this is the 1482 * endpoint index plus one. For slot contexts with more than valid endpoint, 1483 * we find the most significant bit set in the added contexts flags. 1484 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1485 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1486 */ 1487 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1488 { 1489 return fls(added_ctxs) - 1; 1490 } 1491 1492 /* Returns 1 if the arguments are OK; 1493 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1494 */ 1495 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1496 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1497 const char *func) { 1498 struct xhci_hcd *xhci; 1499 struct xhci_virt_device *virt_dev; 1500 1501 if (!hcd || (check_ep && !ep) || !udev) { 1502 pr_debug("xHCI %s called with invalid args\n", func); 1503 return -EINVAL; 1504 } 1505 if (!udev->parent) { 1506 pr_debug("xHCI %s called for root hub\n", func); 1507 return 0; 1508 } 1509 1510 xhci = hcd_to_xhci(hcd); 1511 if (check_virt_dev) { 1512 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1513 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1514 func); 1515 return -EINVAL; 1516 } 1517 1518 virt_dev = xhci->devs[udev->slot_id]; 1519 if (virt_dev->udev != udev) { 1520 xhci_dbg(xhci, "xHCI %s called with udev and " 1521 "virt_dev does not match\n", func); 1522 return -EINVAL; 1523 } 1524 } 1525 1526 if (xhci->xhc_state & XHCI_STATE_HALTED) 1527 return -ENODEV; 1528 1529 return 1; 1530 } 1531 1532 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1533 struct usb_device *udev, struct xhci_command *command, 1534 bool ctx_change, bool must_succeed); 1535 1536 /* 1537 * Full speed devices may have a max packet size greater than 8 bytes, but the 1538 * USB core doesn't know that until it reads the first 8 bytes of the 1539 * descriptor. If the usb_device's max packet size changes after that point, 1540 * we need to issue an evaluate context command and wait on it. 1541 */ 1542 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev) 1543 { 1544 struct xhci_input_control_ctx *ctrl_ctx; 1545 struct xhci_ep_ctx *ep_ctx; 1546 struct xhci_command *command; 1547 int max_packet_size; 1548 int hw_max_packet_size; 1549 int ret = 0; 1550 1551 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0); 1552 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1553 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc); 1554 1555 if (hw_max_packet_size == max_packet_size) 1556 return 0; 1557 1558 switch (max_packet_size) { 1559 case 8: case 16: case 32: case 64: case 9: 1560 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1561 "Max Packet Size for ep 0 changed."); 1562 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1563 "Max packet size in usb_device = %d", 1564 max_packet_size); 1565 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1566 "Max packet size in xHCI HW = %d", 1567 hw_max_packet_size); 1568 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1569 "Issuing evaluate context command."); 1570 1571 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1572 if (!command) 1573 return -ENOMEM; 1574 1575 command->in_ctx = vdev->in_ctx; 1576 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1577 if (!ctrl_ctx) { 1578 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1579 __func__); 1580 ret = -ENOMEM; 1581 break; 1582 } 1583 /* Set up the modified control endpoint 0 */ 1584 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0); 1585 1586 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0); 1587 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1588 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1589 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1590 1591 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1592 ctrl_ctx->drop_flags = 0; 1593 1594 ret = xhci_configure_endpoint(xhci, vdev->udev, command, 1595 true, false); 1596 /* Clean up the input context for later use by bandwidth functions */ 1597 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1598 break; 1599 default: 1600 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n", 1601 max_packet_size); 1602 return -EINVAL; 1603 } 1604 1605 kfree(command->completion); 1606 kfree(command); 1607 1608 return ret; 1609 } 1610 1611 /* 1612 * non-error returns are a promise to giveback() the urb later 1613 * we drop ownership so next owner (or urb unlink) can get it 1614 */ 1615 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1616 { 1617 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1618 unsigned long flags; 1619 int ret = 0; 1620 unsigned int slot_id, ep_index; 1621 unsigned int *ep_state; 1622 struct urb_priv *urb_priv; 1623 int num_tds; 1624 1625 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1626 1627 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1628 num_tds = urb->number_of_packets; 1629 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1630 urb->transfer_buffer_length > 0 && 1631 urb->transfer_flags & URB_ZERO_PACKET && 1632 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1633 num_tds = 2; 1634 else 1635 num_tds = 1; 1636 1637 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1638 if (!urb_priv) 1639 return -ENOMEM; 1640 1641 urb_priv->num_tds = num_tds; 1642 urb_priv->num_tds_done = 0; 1643 urb->hcpriv = urb_priv; 1644 1645 trace_xhci_urb_enqueue(urb); 1646 1647 spin_lock_irqsave(&xhci->lock, flags); 1648 1649 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1650 true, true, __func__); 1651 if (ret <= 0) { 1652 ret = ret ? ret : -EINVAL; 1653 goto free_priv; 1654 } 1655 1656 slot_id = urb->dev->slot_id; 1657 1658 if (!HCD_HW_ACCESSIBLE(hcd)) { 1659 ret = -ESHUTDOWN; 1660 goto free_priv; 1661 } 1662 1663 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1664 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1665 ret = -ENODEV; 1666 goto free_priv; 1667 } 1668 1669 if (xhci->xhc_state & XHCI_STATE_DYING) { 1670 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1671 urb->ep->desc.bEndpointAddress, urb); 1672 ret = -ESHUTDOWN; 1673 goto free_priv; 1674 } 1675 1676 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1677 1678 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1679 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1680 *ep_state); 1681 ret = -EINVAL; 1682 goto free_priv; 1683 } 1684 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1685 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1686 ret = -EINVAL; 1687 goto free_priv; 1688 } 1689 1690 switch (usb_endpoint_type(&urb->ep->desc)) { 1691 1692 case USB_ENDPOINT_XFER_CONTROL: 1693 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1694 slot_id, ep_index); 1695 break; 1696 case USB_ENDPOINT_XFER_BULK: 1697 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1698 slot_id, ep_index); 1699 break; 1700 case USB_ENDPOINT_XFER_INT: 1701 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1702 slot_id, ep_index); 1703 break; 1704 case USB_ENDPOINT_XFER_ISOC: 1705 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1706 slot_id, ep_index); 1707 } 1708 1709 if (ret) { 1710 free_priv: 1711 xhci_urb_free_priv(urb_priv); 1712 urb->hcpriv = NULL; 1713 } 1714 spin_unlock_irqrestore(&xhci->lock, flags); 1715 return ret; 1716 } 1717 1718 /* 1719 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1720 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1721 * should pick up where it left off in the TD, unless a Set Transfer Ring 1722 * Dequeue Pointer is issued. 1723 * 1724 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1725 * the ring. Since the ring is a contiguous structure, they can't be physically 1726 * removed. Instead, there are two options: 1727 * 1728 * 1) If the HC is in the middle of processing the URB to be canceled, we 1729 * simply move the ring's dequeue pointer past those TRBs using the Set 1730 * Transfer Ring Dequeue Pointer command. This will be the common case, 1731 * when drivers timeout on the last submitted URB and attempt to cancel. 1732 * 1733 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1734 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1735 * HC will need to invalidate the any TRBs it has cached after the stop 1736 * endpoint command, as noted in the xHCI 0.95 errata. 1737 * 1738 * 3) The TD may have completed by the time the Stop Endpoint Command 1739 * completes, so software needs to handle that case too. 1740 * 1741 * This function should protect against the TD enqueueing code ringing the 1742 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1743 * It also needs to account for multiple cancellations on happening at the same 1744 * time for the same endpoint. 1745 * 1746 * Note that this function can be called in any context, or so says 1747 * usb_hcd_unlink_urb() 1748 */ 1749 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1750 { 1751 unsigned long flags; 1752 int ret, i; 1753 u32 temp; 1754 struct xhci_hcd *xhci; 1755 struct urb_priv *urb_priv; 1756 struct xhci_td *td; 1757 unsigned int ep_index; 1758 struct xhci_ring *ep_ring; 1759 struct xhci_virt_ep *ep; 1760 struct xhci_command *command; 1761 struct xhci_virt_device *vdev; 1762 1763 xhci = hcd_to_xhci(hcd); 1764 spin_lock_irqsave(&xhci->lock, flags); 1765 1766 trace_xhci_urb_dequeue(urb); 1767 1768 /* Make sure the URB hasn't completed or been unlinked already */ 1769 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1770 if (ret) 1771 goto done; 1772 1773 /* give back URB now if we can't queue it for cancel */ 1774 vdev = xhci->devs[urb->dev->slot_id]; 1775 urb_priv = urb->hcpriv; 1776 if (!vdev || !urb_priv) 1777 goto err_giveback; 1778 1779 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1780 ep = &vdev->eps[ep_index]; 1781 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1782 if (!ep || !ep_ring) 1783 goto err_giveback; 1784 1785 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1786 temp = readl(&xhci->op_regs->status); 1787 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1788 xhci_hc_died(xhci); 1789 goto done; 1790 } 1791 1792 /* 1793 * check ring is not re-allocated since URB was enqueued. If it is, then 1794 * make sure none of the ring related pointers in this URB private data 1795 * are touched, such as td_list, otherwise we overwrite freed data 1796 */ 1797 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1798 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1799 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1800 td = &urb_priv->td[i]; 1801 if (!list_empty(&td->cancelled_td_list)) 1802 list_del_init(&td->cancelled_td_list); 1803 } 1804 goto err_giveback; 1805 } 1806 1807 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1808 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1809 "HC halted, freeing TD manually."); 1810 for (i = urb_priv->num_tds_done; 1811 i < urb_priv->num_tds; 1812 i++) { 1813 td = &urb_priv->td[i]; 1814 if (!list_empty(&td->td_list)) 1815 list_del_init(&td->td_list); 1816 if (!list_empty(&td->cancelled_td_list)) 1817 list_del_init(&td->cancelled_td_list); 1818 } 1819 goto err_giveback; 1820 } 1821 1822 i = urb_priv->num_tds_done; 1823 if (i < urb_priv->num_tds) 1824 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1825 "Cancel URB %p, dev %s, ep 0x%x, " 1826 "starting at offset 0x%llx", 1827 urb, urb->dev->devpath, 1828 urb->ep->desc.bEndpointAddress, 1829 (unsigned long long) xhci_trb_virt_to_dma( 1830 urb_priv->td[i].start_seg, 1831 urb_priv->td[i].start_trb)); 1832 1833 for (; i < urb_priv->num_tds; i++) { 1834 td = &urb_priv->td[i]; 1835 /* TD can already be on cancelled list if ep halted on it */ 1836 if (list_empty(&td->cancelled_td_list)) { 1837 td->cancel_status = TD_DIRTY; 1838 list_add_tail(&td->cancelled_td_list, 1839 &ep->cancelled_td_list); 1840 } 1841 } 1842 1843 /* These completion handlers will sort out cancelled TDs for us */ 1844 if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) { 1845 xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n", 1846 urb->dev->slot_id, ep_index, ep->ep_state); 1847 goto done; 1848 } 1849 1850 /* In this case no commands are pending but the endpoint is stopped */ 1851 if (ep->ep_state & EP_CLEARING_TT) { 1852 /* and cancelled TDs can be given back right away */ 1853 xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n", 1854 urb->dev->slot_id, ep_index, ep->ep_state); 1855 xhci_process_cancelled_tds(ep); 1856 } else { 1857 /* Otherwise, queue a new Stop Endpoint command */ 1858 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1859 if (!command) { 1860 ret = -ENOMEM; 1861 goto done; 1862 } 1863 ep->stop_time = jiffies; 1864 ep->ep_state |= EP_STOP_CMD_PENDING; 1865 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1866 ep_index, 0); 1867 xhci_ring_cmd_db(xhci); 1868 } 1869 done: 1870 spin_unlock_irqrestore(&xhci->lock, flags); 1871 return ret; 1872 1873 err_giveback: 1874 if (urb_priv) 1875 xhci_urb_free_priv(urb_priv); 1876 usb_hcd_unlink_urb_from_ep(hcd, urb); 1877 spin_unlock_irqrestore(&xhci->lock, flags); 1878 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1879 return ret; 1880 } 1881 1882 /* Drop an endpoint from a new bandwidth configuration for this device. 1883 * Only one call to this function is allowed per endpoint before 1884 * check_bandwidth() or reset_bandwidth() must be called. 1885 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1886 * add the endpoint to the schedule with possibly new parameters denoted by a 1887 * different endpoint descriptor in usb_host_endpoint. 1888 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1889 * not allowed. 1890 * 1891 * The USB core will not allow URBs to be queued to an endpoint that is being 1892 * disabled, so there's no need for mutual exclusion to protect 1893 * the xhci->devs[slot_id] structure. 1894 */ 1895 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1896 struct usb_host_endpoint *ep) 1897 { 1898 struct xhci_hcd *xhci; 1899 struct xhci_container_ctx *in_ctx, *out_ctx; 1900 struct xhci_input_control_ctx *ctrl_ctx; 1901 unsigned int ep_index; 1902 struct xhci_ep_ctx *ep_ctx; 1903 u32 drop_flag; 1904 u32 new_add_flags, new_drop_flags; 1905 int ret; 1906 1907 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1908 if (ret <= 0) 1909 return ret; 1910 xhci = hcd_to_xhci(hcd); 1911 if (xhci->xhc_state & XHCI_STATE_DYING) 1912 return -ENODEV; 1913 1914 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1915 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1916 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1917 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1918 __func__, drop_flag); 1919 return 0; 1920 } 1921 1922 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1923 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1924 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1925 if (!ctrl_ctx) { 1926 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1927 __func__); 1928 return 0; 1929 } 1930 1931 ep_index = xhci_get_endpoint_index(&ep->desc); 1932 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1933 /* If the HC already knows the endpoint is disabled, 1934 * or the HCD has noted it is disabled, ignore this request 1935 */ 1936 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1937 le32_to_cpu(ctrl_ctx->drop_flags) & 1938 xhci_get_endpoint_flag(&ep->desc)) { 1939 /* Do not warn when called after a usb_device_reset */ 1940 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1941 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1942 __func__, ep); 1943 return 0; 1944 } 1945 1946 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1947 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1948 1949 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1950 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1951 1952 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1953 1954 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1955 1956 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1957 (unsigned int) ep->desc.bEndpointAddress, 1958 udev->slot_id, 1959 (unsigned int) new_drop_flags, 1960 (unsigned int) new_add_flags); 1961 return 0; 1962 } 1963 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1964 1965 /* Add an endpoint to a new possible bandwidth configuration for this device. 1966 * Only one call to this function is allowed per endpoint before 1967 * check_bandwidth() or reset_bandwidth() must be called. 1968 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1969 * add the endpoint to the schedule with possibly new parameters denoted by a 1970 * different endpoint descriptor in usb_host_endpoint. 1971 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1972 * not allowed. 1973 * 1974 * The USB core will not allow URBs to be queued to an endpoint until the 1975 * configuration or alt setting is installed in the device, so there's no need 1976 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1977 */ 1978 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1979 struct usb_host_endpoint *ep) 1980 { 1981 struct xhci_hcd *xhci; 1982 struct xhci_container_ctx *in_ctx; 1983 unsigned int ep_index; 1984 struct xhci_input_control_ctx *ctrl_ctx; 1985 struct xhci_ep_ctx *ep_ctx; 1986 u32 added_ctxs; 1987 u32 new_add_flags, new_drop_flags; 1988 struct xhci_virt_device *virt_dev; 1989 int ret = 0; 1990 1991 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1992 if (ret <= 0) { 1993 /* So we won't queue a reset ep command for a root hub */ 1994 ep->hcpriv = NULL; 1995 return ret; 1996 } 1997 xhci = hcd_to_xhci(hcd); 1998 if (xhci->xhc_state & XHCI_STATE_DYING) 1999 return -ENODEV; 2000 2001 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 2002 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 2003 /* FIXME when we have to issue an evaluate endpoint command to 2004 * deal with ep0 max packet size changing once we get the 2005 * descriptors 2006 */ 2007 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 2008 __func__, added_ctxs); 2009 return 0; 2010 } 2011 2012 virt_dev = xhci->devs[udev->slot_id]; 2013 in_ctx = virt_dev->in_ctx; 2014 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2015 if (!ctrl_ctx) { 2016 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2017 __func__); 2018 return 0; 2019 } 2020 2021 ep_index = xhci_get_endpoint_index(&ep->desc); 2022 /* If this endpoint is already in use, and the upper layers are trying 2023 * to add it again without dropping it, reject the addition. 2024 */ 2025 if (virt_dev->eps[ep_index].ring && 2026 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 2027 xhci_warn(xhci, "Trying to add endpoint 0x%x " 2028 "without dropping it.\n", 2029 (unsigned int) ep->desc.bEndpointAddress); 2030 return -EINVAL; 2031 } 2032 2033 /* If the HCD has already noted the endpoint is enabled, 2034 * ignore this request. 2035 */ 2036 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2037 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2038 __func__, ep); 2039 return 0; 2040 } 2041 2042 /* 2043 * Configuration and alternate setting changes must be done in 2044 * process context, not interrupt context (or so documenation 2045 * for usb_set_interface() and usb_set_configuration() claim). 2046 */ 2047 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2048 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2049 __func__, ep->desc.bEndpointAddress); 2050 return -ENOMEM; 2051 } 2052 2053 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2054 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2055 2056 /* If xhci_endpoint_disable() was called for this endpoint, but the 2057 * xHC hasn't been notified yet through the check_bandwidth() call, 2058 * this re-adds a new state for the endpoint from the new endpoint 2059 * descriptors. We must drop and re-add this endpoint, so we leave the 2060 * drop flags alone. 2061 */ 2062 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2063 2064 /* Store the usb_device pointer for later use */ 2065 ep->hcpriv = udev; 2066 2067 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2068 trace_xhci_add_endpoint(ep_ctx); 2069 2070 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2071 (unsigned int) ep->desc.bEndpointAddress, 2072 udev->slot_id, 2073 (unsigned int) new_drop_flags, 2074 (unsigned int) new_add_flags); 2075 return 0; 2076 } 2077 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2078 2079 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2080 { 2081 struct xhci_input_control_ctx *ctrl_ctx; 2082 struct xhci_ep_ctx *ep_ctx; 2083 struct xhci_slot_ctx *slot_ctx; 2084 int i; 2085 2086 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2087 if (!ctrl_ctx) { 2088 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2089 __func__); 2090 return; 2091 } 2092 2093 /* When a device's add flag and drop flag are zero, any subsequent 2094 * configure endpoint command will leave that endpoint's state 2095 * untouched. Make sure we don't leave any old state in the input 2096 * endpoint contexts. 2097 */ 2098 ctrl_ctx->drop_flags = 0; 2099 ctrl_ctx->add_flags = 0; 2100 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2101 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2102 /* Endpoint 0 is always valid */ 2103 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2104 for (i = 1; i < 31; i++) { 2105 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2106 ep_ctx->ep_info = 0; 2107 ep_ctx->ep_info2 = 0; 2108 ep_ctx->deq = 0; 2109 ep_ctx->tx_info = 0; 2110 } 2111 } 2112 2113 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2114 struct usb_device *udev, u32 *cmd_status) 2115 { 2116 int ret; 2117 2118 switch (*cmd_status) { 2119 case COMP_COMMAND_ABORTED: 2120 case COMP_COMMAND_RING_STOPPED: 2121 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2122 ret = -ETIME; 2123 break; 2124 case COMP_RESOURCE_ERROR: 2125 dev_warn(&udev->dev, 2126 "Not enough host controller resources for new device state.\n"); 2127 ret = -ENOMEM; 2128 /* FIXME: can we allocate more resources for the HC? */ 2129 break; 2130 case COMP_BANDWIDTH_ERROR: 2131 case COMP_SECONDARY_BANDWIDTH_ERROR: 2132 dev_warn(&udev->dev, 2133 "Not enough bandwidth for new device state.\n"); 2134 ret = -ENOSPC; 2135 /* FIXME: can we go back to the old state? */ 2136 break; 2137 case COMP_TRB_ERROR: 2138 /* the HCD set up something wrong */ 2139 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2140 "add flag = 1, " 2141 "and endpoint is not disabled.\n"); 2142 ret = -EINVAL; 2143 break; 2144 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2145 dev_warn(&udev->dev, 2146 "ERROR: Incompatible device for endpoint configure command.\n"); 2147 ret = -ENODEV; 2148 break; 2149 case COMP_SUCCESS: 2150 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2151 "Successful Endpoint Configure command"); 2152 ret = 0; 2153 break; 2154 default: 2155 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2156 *cmd_status); 2157 ret = -EINVAL; 2158 break; 2159 } 2160 return ret; 2161 } 2162 2163 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2164 struct usb_device *udev, u32 *cmd_status) 2165 { 2166 int ret; 2167 2168 switch (*cmd_status) { 2169 case COMP_COMMAND_ABORTED: 2170 case COMP_COMMAND_RING_STOPPED: 2171 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2172 ret = -ETIME; 2173 break; 2174 case COMP_PARAMETER_ERROR: 2175 dev_warn(&udev->dev, 2176 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2177 ret = -EINVAL; 2178 break; 2179 case COMP_SLOT_NOT_ENABLED_ERROR: 2180 dev_warn(&udev->dev, 2181 "WARN: slot not enabled for evaluate context command.\n"); 2182 ret = -EINVAL; 2183 break; 2184 case COMP_CONTEXT_STATE_ERROR: 2185 dev_warn(&udev->dev, 2186 "WARN: invalid context state for evaluate context command.\n"); 2187 ret = -EINVAL; 2188 break; 2189 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2190 dev_warn(&udev->dev, 2191 "ERROR: Incompatible device for evaluate context command.\n"); 2192 ret = -ENODEV; 2193 break; 2194 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2195 /* Max Exit Latency too large error */ 2196 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2197 ret = -EINVAL; 2198 break; 2199 case COMP_SUCCESS: 2200 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2201 "Successful evaluate context command"); 2202 ret = 0; 2203 break; 2204 default: 2205 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2206 *cmd_status); 2207 ret = -EINVAL; 2208 break; 2209 } 2210 return ret; 2211 } 2212 2213 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2214 struct xhci_input_control_ctx *ctrl_ctx) 2215 { 2216 u32 valid_add_flags; 2217 u32 valid_drop_flags; 2218 2219 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2220 * (bit 1). The default control endpoint is added during the Address 2221 * Device command and is never removed until the slot is disabled. 2222 */ 2223 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2224 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2225 2226 /* Use hweight32 to count the number of ones in the add flags, or 2227 * number of endpoints added. Don't count endpoints that are changed 2228 * (both added and dropped). 2229 */ 2230 return hweight32(valid_add_flags) - 2231 hweight32(valid_add_flags & valid_drop_flags); 2232 } 2233 2234 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2235 struct xhci_input_control_ctx *ctrl_ctx) 2236 { 2237 u32 valid_add_flags; 2238 u32 valid_drop_flags; 2239 2240 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2241 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2242 2243 return hweight32(valid_drop_flags) - 2244 hweight32(valid_add_flags & valid_drop_flags); 2245 } 2246 2247 /* 2248 * We need to reserve the new number of endpoints before the configure endpoint 2249 * command completes. We can't subtract the dropped endpoints from the number 2250 * of active endpoints until the command completes because we can oversubscribe 2251 * the host in this case: 2252 * 2253 * - the first configure endpoint command drops more endpoints than it adds 2254 * - a second configure endpoint command that adds more endpoints is queued 2255 * - the first configure endpoint command fails, so the config is unchanged 2256 * - the second command may succeed, even though there isn't enough resources 2257 * 2258 * Must be called with xhci->lock held. 2259 */ 2260 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2261 struct xhci_input_control_ctx *ctrl_ctx) 2262 { 2263 u32 added_eps; 2264 2265 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2266 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2267 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2268 "Not enough ep ctxs: " 2269 "%u active, need to add %u, limit is %u.", 2270 xhci->num_active_eps, added_eps, 2271 xhci->limit_active_eps); 2272 return -ENOMEM; 2273 } 2274 xhci->num_active_eps += added_eps; 2275 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2276 "Adding %u ep ctxs, %u now active.", added_eps, 2277 xhci->num_active_eps); 2278 return 0; 2279 } 2280 2281 /* 2282 * The configure endpoint was failed by the xHC for some other reason, so we 2283 * need to revert the resources that failed configuration would have used. 2284 * 2285 * Must be called with xhci->lock held. 2286 */ 2287 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2288 struct xhci_input_control_ctx *ctrl_ctx) 2289 { 2290 u32 num_failed_eps; 2291 2292 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2293 xhci->num_active_eps -= num_failed_eps; 2294 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2295 "Removing %u failed ep ctxs, %u now active.", 2296 num_failed_eps, 2297 xhci->num_active_eps); 2298 } 2299 2300 /* 2301 * Now that the command has completed, clean up the active endpoint count by 2302 * subtracting out the endpoints that were dropped (but not changed). 2303 * 2304 * Must be called with xhci->lock held. 2305 */ 2306 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2307 struct xhci_input_control_ctx *ctrl_ctx) 2308 { 2309 u32 num_dropped_eps; 2310 2311 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2312 xhci->num_active_eps -= num_dropped_eps; 2313 if (num_dropped_eps) 2314 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2315 "Removing %u dropped ep ctxs, %u now active.", 2316 num_dropped_eps, 2317 xhci->num_active_eps); 2318 } 2319 2320 static unsigned int xhci_get_block_size(struct usb_device *udev) 2321 { 2322 switch (udev->speed) { 2323 case USB_SPEED_LOW: 2324 case USB_SPEED_FULL: 2325 return FS_BLOCK; 2326 case USB_SPEED_HIGH: 2327 return HS_BLOCK; 2328 case USB_SPEED_SUPER: 2329 case USB_SPEED_SUPER_PLUS: 2330 return SS_BLOCK; 2331 case USB_SPEED_UNKNOWN: 2332 default: 2333 /* Should never happen */ 2334 return 1; 2335 } 2336 } 2337 2338 static unsigned int 2339 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2340 { 2341 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2342 return LS_OVERHEAD; 2343 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2344 return FS_OVERHEAD; 2345 return HS_OVERHEAD; 2346 } 2347 2348 /* If we are changing a LS/FS device under a HS hub, 2349 * make sure (if we are activating a new TT) that the HS bus has enough 2350 * bandwidth for this new TT. 2351 */ 2352 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2353 struct xhci_virt_device *virt_dev, 2354 int old_active_eps) 2355 { 2356 struct xhci_interval_bw_table *bw_table; 2357 struct xhci_tt_bw_info *tt_info; 2358 2359 /* Find the bandwidth table for the root port this TT is attached to. */ 2360 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table; 2361 tt_info = virt_dev->tt_info; 2362 /* If this TT already had active endpoints, the bandwidth for this TT 2363 * has already been added. Removing all periodic endpoints (and thus 2364 * making the TT enactive) will only decrease the bandwidth used. 2365 */ 2366 if (old_active_eps) 2367 return 0; 2368 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2369 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2370 return -ENOMEM; 2371 return 0; 2372 } 2373 /* Not sure why we would have no new active endpoints... 2374 * 2375 * Maybe because of an Evaluate Context change for a hub update or a 2376 * control endpoint 0 max packet size change? 2377 * FIXME: skip the bandwidth calculation in that case. 2378 */ 2379 return 0; 2380 } 2381 2382 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2383 struct xhci_virt_device *virt_dev) 2384 { 2385 unsigned int bw_reserved; 2386 2387 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2388 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2389 return -ENOMEM; 2390 2391 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2392 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2393 return -ENOMEM; 2394 2395 return 0; 2396 } 2397 2398 /* 2399 * This algorithm is a very conservative estimate of the worst-case scheduling 2400 * scenario for any one interval. The hardware dynamically schedules the 2401 * packets, so we can't tell which microframe could be the limiting factor in 2402 * the bandwidth scheduling. This only takes into account periodic endpoints. 2403 * 2404 * Obviously, we can't solve an NP complete problem to find the minimum worst 2405 * case scenario. Instead, we come up with an estimate that is no less than 2406 * the worst case bandwidth used for any one microframe, but may be an 2407 * over-estimate. 2408 * 2409 * We walk the requirements for each endpoint by interval, starting with the 2410 * smallest interval, and place packets in the schedule where there is only one 2411 * possible way to schedule packets for that interval. In order to simplify 2412 * this algorithm, we record the largest max packet size for each interval, and 2413 * assume all packets will be that size. 2414 * 2415 * For interval 0, we obviously must schedule all packets for each interval. 2416 * The bandwidth for interval 0 is just the amount of data to be transmitted 2417 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2418 * the number of packets). 2419 * 2420 * For interval 1, we have two possible microframes to schedule those packets 2421 * in. For this algorithm, if we can schedule the same number of packets for 2422 * each possible scheduling opportunity (each microframe), we will do so. The 2423 * remaining number of packets will be saved to be transmitted in the gaps in 2424 * the next interval's scheduling sequence. 2425 * 2426 * As we move those remaining packets to be scheduled with interval 2 packets, 2427 * we have to double the number of remaining packets to transmit. This is 2428 * because the intervals are actually powers of 2, and we would be transmitting 2429 * the previous interval's packets twice in this interval. We also have to be 2430 * sure that when we look at the largest max packet size for this interval, we 2431 * also look at the largest max packet size for the remaining packets and take 2432 * the greater of the two. 2433 * 2434 * The algorithm continues to evenly distribute packets in each scheduling 2435 * opportunity, and push the remaining packets out, until we get to the last 2436 * interval. Then those packets and their associated overhead are just added 2437 * to the bandwidth used. 2438 */ 2439 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2440 struct xhci_virt_device *virt_dev, 2441 int old_active_eps) 2442 { 2443 unsigned int bw_reserved; 2444 unsigned int max_bandwidth; 2445 unsigned int bw_used; 2446 unsigned int block_size; 2447 struct xhci_interval_bw_table *bw_table; 2448 unsigned int packet_size = 0; 2449 unsigned int overhead = 0; 2450 unsigned int packets_transmitted = 0; 2451 unsigned int packets_remaining = 0; 2452 unsigned int i; 2453 2454 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2455 return xhci_check_ss_bw(xhci, virt_dev); 2456 2457 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2458 max_bandwidth = HS_BW_LIMIT; 2459 /* Convert percent of bus BW reserved to blocks reserved */ 2460 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2461 } else { 2462 max_bandwidth = FS_BW_LIMIT; 2463 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2464 } 2465 2466 bw_table = virt_dev->bw_table; 2467 /* We need to translate the max packet size and max ESIT payloads into 2468 * the units the hardware uses. 2469 */ 2470 block_size = xhci_get_block_size(virt_dev->udev); 2471 2472 /* If we are manipulating a LS/FS device under a HS hub, double check 2473 * that the HS bus has enough bandwidth if we are activing a new TT. 2474 */ 2475 if (virt_dev->tt_info) { 2476 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2477 "Recalculating BW for rootport %u", 2478 virt_dev->rhub_port->hw_portnum + 1); 2479 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2480 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2481 "newly activated TT.\n"); 2482 return -ENOMEM; 2483 } 2484 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2485 "Recalculating BW for TT slot %u port %u", 2486 virt_dev->tt_info->slot_id, 2487 virt_dev->tt_info->ttport); 2488 } else { 2489 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2490 "Recalculating BW for rootport %u", 2491 virt_dev->rhub_port->hw_portnum + 1); 2492 } 2493 2494 /* Add in how much bandwidth will be used for interval zero, or the 2495 * rounded max ESIT payload + number of packets * largest overhead. 2496 */ 2497 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2498 bw_table->interval_bw[0].num_packets * 2499 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2500 2501 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2502 unsigned int bw_added; 2503 unsigned int largest_mps; 2504 unsigned int interval_overhead; 2505 2506 /* 2507 * How many packets could we transmit in this interval? 2508 * If packets didn't fit in the previous interval, we will need 2509 * to transmit that many packets twice within this interval. 2510 */ 2511 packets_remaining = 2 * packets_remaining + 2512 bw_table->interval_bw[i].num_packets; 2513 2514 /* Find the largest max packet size of this or the previous 2515 * interval. 2516 */ 2517 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2518 largest_mps = 0; 2519 else { 2520 struct xhci_virt_ep *virt_ep; 2521 struct list_head *ep_entry; 2522 2523 ep_entry = bw_table->interval_bw[i].endpoints.next; 2524 virt_ep = list_entry(ep_entry, 2525 struct xhci_virt_ep, bw_endpoint_list); 2526 /* Convert to blocks, rounding up */ 2527 largest_mps = DIV_ROUND_UP( 2528 virt_ep->bw_info.max_packet_size, 2529 block_size); 2530 } 2531 if (largest_mps > packet_size) 2532 packet_size = largest_mps; 2533 2534 /* Use the larger overhead of this or the previous interval. */ 2535 interval_overhead = xhci_get_largest_overhead( 2536 &bw_table->interval_bw[i]); 2537 if (interval_overhead > overhead) 2538 overhead = interval_overhead; 2539 2540 /* How many packets can we evenly distribute across 2541 * (1 << (i + 1)) possible scheduling opportunities? 2542 */ 2543 packets_transmitted = packets_remaining >> (i + 1); 2544 2545 /* Add in the bandwidth used for those scheduled packets */ 2546 bw_added = packets_transmitted * (overhead + packet_size); 2547 2548 /* How many packets do we have remaining to transmit? */ 2549 packets_remaining = packets_remaining % (1 << (i + 1)); 2550 2551 /* What largest max packet size should those packets have? */ 2552 /* If we've transmitted all packets, don't carry over the 2553 * largest packet size. 2554 */ 2555 if (packets_remaining == 0) { 2556 packet_size = 0; 2557 overhead = 0; 2558 } else if (packets_transmitted > 0) { 2559 /* Otherwise if we do have remaining packets, and we've 2560 * scheduled some packets in this interval, take the 2561 * largest max packet size from endpoints with this 2562 * interval. 2563 */ 2564 packet_size = largest_mps; 2565 overhead = interval_overhead; 2566 } 2567 /* Otherwise carry over packet_size and overhead from the last 2568 * time we had a remainder. 2569 */ 2570 bw_used += bw_added; 2571 if (bw_used > max_bandwidth) { 2572 xhci_warn(xhci, "Not enough bandwidth. " 2573 "Proposed: %u, Max: %u\n", 2574 bw_used, max_bandwidth); 2575 return -ENOMEM; 2576 } 2577 } 2578 /* 2579 * Ok, we know we have some packets left over after even-handedly 2580 * scheduling interval 15. We don't know which microframes they will 2581 * fit into, so we over-schedule and say they will be scheduled every 2582 * microframe. 2583 */ 2584 if (packets_remaining > 0) 2585 bw_used += overhead + packet_size; 2586 2587 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2588 /* OK, we're manipulating a HS device attached to a 2589 * root port bandwidth domain. Include the number of active TTs 2590 * in the bandwidth used. 2591 */ 2592 bw_used += TT_HS_OVERHEAD * 2593 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts; 2594 } 2595 2596 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2597 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2598 "Available: %u " "percent", 2599 bw_used, max_bandwidth, bw_reserved, 2600 (max_bandwidth - bw_used - bw_reserved) * 100 / 2601 max_bandwidth); 2602 2603 bw_used += bw_reserved; 2604 if (bw_used > max_bandwidth) { 2605 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2606 bw_used, max_bandwidth); 2607 return -ENOMEM; 2608 } 2609 2610 bw_table->bw_used = bw_used; 2611 return 0; 2612 } 2613 2614 static bool xhci_is_async_ep(unsigned int ep_type) 2615 { 2616 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2617 ep_type != ISOC_IN_EP && 2618 ep_type != INT_IN_EP); 2619 } 2620 2621 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2622 { 2623 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2624 } 2625 2626 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2627 { 2628 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2629 2630 if (ep_bw->ep_interval == 0) 2631 return SS_OVERHEAD_BURST + 2632 (ep_bw->mult * ep_bw->num_packets * 2633 (SS_OVERHEAD + mps)); 2634 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2635 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2636 1 << ep_bw->ep_interval); 2637 2638 } 2639 2640 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2641 struct xhci_bw_info *ep_bw, 2642 struct xhci_interval_bw_table *bw_table, 2643 struct usb_device *udev, 2644 struct xhci_virt_ep *virt_ep, 2645 struct xhci_tt_bw_info *tt_info) 2646 { 2647 struct xhci_interval_bw *interval_bw; 2648 int normalized_interval; 2649 2650 if (xhci_is_async_ep(ep_bw->type)) 2651 return; 2652 2653 if (udev->speed >= USB_SPEED_SUPER) { 2654 if (xhci_is_sync_in_ep(ep_bw->type)) 2655 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2656 xhci_get_ss_bw_consumed(ep_bw); 2657 else 2658 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2659 xhci_get_ss_bw_consumed(ep_bw); 2660 return; 2661 } 2662 2663 /* SuperSpeed endpoints never get added to intervals in the table, so 2664 * this check is only valid for HS/FS/LS devices. 2665 */ 2666 if (list_empty(&virt_ep->bw_endpoint_list)) 2667 return; 2668 /* For LS/FS devices, we need to translate the interval expressed in 2669 * microframes to frames. 2670 */ 2671 if (udev->speed == USB_SPEED_HIGH) 2672 normalized_interval = ep_bw->ep_interval; 2673 else 2674 normalized_interval = ep_bw->ep_interval - 3; 2675 2676 if (normalized_interval == 0) 2677 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2678 interval_bw = &bw_table->interval_bw[normalized_interval]; 2679 interval_bw->num_packets -= ep_bw->num_packets; 2680 switch (udev->speed) { 2681 case USB_SPEED_LOW: 2682 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2683 break; 2684 case USB_SPEED_FULL: 2685 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2686 break; 2687 case USB_SPEED_HIGH: 2688 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2689 break; 2690 default: 2691 /* Should never happen because only LS/FS/HS endpoints will get 2692 * added to the endpoint list. 2693 */ 2694 return; 2695 } 2696 if (tt_info) 2697 tt_info->active_eps -= 1; 2698 list_del_init(&virt_ep->bw_endpoint_list); 2699 } 2700 2701 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2702 struct xhci_bw_info *ep_bw, 2703 struct xhci_interval_bw_table *bw_table, 2704 struct usb_device *udev, 2705 struct xhci_virt_ep *virt_ep, 2706 struct xhci_tt_bw_info *tt_info) 2707 { 2708 struct xhci_interval_bw *interval_bw; 2709 struct xhci_virt_ep *smaller_ep; 2710 int normalized_interval; 2711 2712 if (xhci_is_async_ep(ep_bw->type)) 2713 return; 2714 2715 if (udev->speed == USB_SPEED_SUPER) { 2716 if (xhci_is_sync_in_ep(ep_bw->type)) 2717 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2718 xhci_get_ss_bw_consumed(ep_bw); 2719 else 2720 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2721 xhci_get_ss_bw_consumed(ep_bw); 2722 return; 2723 } 2724 2725 /* For LS/FS devices, we need to translate the interval expressed in 2726 * microframes to frames. 2727 */ 2728 if (udev->speed == USB_SPEED_HIGH) 2729 normalized_interval = ep_bw->ep_interval; 2730 else 2731 normalized_interval = ep_bw->ep_interval - 3; 2732 2733 if (normalized_interval == 0) 2734 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2735 interval_bw = &bw_table->interval_bw[normalized_interval]; 2736 interval_bw->num_packets += ep_bw->num_packets; 2737 switch (udev->speed) { 2738 case USB_SPEED_LOW: 2739 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2740 break; 2741 case USB_SPEED_FULL: 2742 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2743 break; 2744 case USB_SPEED_HIGH: 2745 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2746 break; 2747 default: 2748 /* Should never happen because only LS/FS/HS endpoints will get 2749 * added to the endpoint list. 2750 */ 2751 return; 2752 } 2753 2754 if (tt_info) 2755 tt_info->active_eps += 1; 2756 /* Insert the endpoint into the list, largest max packet size first. */ 2757 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2758 bw_endpoint_list) { 2759 if (ep_bw->max_packet_size >= 2760 smaller_ep->bw_info.max_packet_size) { 2761 /* Add the new ep before the smaller endpoint */ 2762 list_add_tail(&virt_ep->bw_endpoint_list, 2763 &smaller_ep->bw_endpoint_list); 2764 return; 2765 } 2766 } 2767 /* Add the new endpoint at the end of the list. */ 2768 list_add_tail(&virt_ep->bw_endpoint_list, 2769 &interval_bw->endpoints); 2770 } 2771 2772 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2773 struct xhci_virt_device *virt_dev, 2774 int old_active_eps) 2775 { 2776 struct xhci_root_port_bw_info *rh_bw_info; 2777 if (!virt_dev->tt_info) 2778 return; 2779 2780 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum]; 2781 if (old_active_eps == 0 && 2782 virt_dev->tt_info->active_eps != 0) { 2783 rh_bw_info->num_active_tts += 1; 2784 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2785 } else if (old_active_eps != 0 && 2786 virt_dev->tt_info->active_eps == 0) { 2787 rh_bw_info->num_active_tts -= 1; 2788 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2789 } 2790 } 2791 2792 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2793 struct xhci_virt_device *virt_dev, 2794 struct xhci_container_ctx *in_ctx) 2795 { 2796 struct xhci_bw_info ep_bw_info[31]; 2797 int i; 2798 struct xhci_input_control_ctx *ctrl_ctx; 2799 int old_active_eps = 0; 2800 2801 if (virt_dev->tt_info) 2802 old_active_eps = virt_dev->tt_info->active_eps; 2803 2804 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2805 if (!ctrl_ctx) { 2806 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2807 __func__); 2808 return -ENOMEM; 2809 } 2810 2811 for (i = 0; i < 31; i++) { 2812 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2813 continue; 2814 2815 /* Make a copy of the BW info in case we need to revert this */ 2816 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2817 sizeof(ep_bw_info[i])); 2818 /* Drop the endpoint from the interval table if the endpoint is 2819 * being dropped or changed. 2820 */ 2821 if (EP_IS_DROPPED(ctrl_ctx, i)) 2822 xhci_drop_ep_from_interval_table(xhci, 2823 &virt_dev->eps[i].bw_info, 2824 virt_dev->bw_table, 2825 virt_dev->udev, 2826 &virt_dev->eps[i], 2827 virt_dev->tt_info); 2828 } 2829 /* Overwrite the information stored in the endpoints' bw_info */ 2830 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2831 for (i = 0; i < 31; i++) { 2832 /* Add any changed or added endpoints to the interval table */ 2833 if (EP_IS_ADDED(ctrl_ctx, i)) 2834 xhci_add_ep_to_interval_table(xhci, 2835 &virt_dev->eps[i].bw_info, 2836 virt_dev->bw_table, 2837 virt_dev->udev, 2838 &virt_dev->eps[i], 2839 virt_dev->tt_info); 2840 } 2841 2842 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2843 /* Ok, this fits in the bandwidth we have. 2844 * Update the number of active TTs. 2845 */ 2846 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2847 return 0; 2848 } 2849 2850 /* We don't have enough bandwidth for this, revert the stored info. */ 2851 for (i = 0; i < 31; i++) { 2852 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2853 continue; 2854 2855 /* Drop the new copies of any added or changed endpoints from 2856 * the interval table. 2857 */ 2858 if (EP_IS_ADDED(ctrl_ctx, i)) { 2859 xhci_drop_ep_from_interval_table(xhci, 2860 &virt_dev->eps[i].bw_info, 2861 virt_dev->bw_table, 2862 virt_dev->udev, 2863 &virt_dev->eps[i], 2864 virt_dev->tt_info); 2865 } 2866 /* Revert the endpoint back to its old information */ 2867 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2868 sizeof(ep_bw_info[i])); 2869 /* Add any changed or dropped endpoints back into the table */ 2870 if (EP_IS_DROPPED(ctrl_ctx, i)) 2871 xhci_add_ep_to_interval_table(xhci, 2872 &virt_dev->eps[i].bw_info, 2873 virt_dev->bw_table, 2874 virt_dev->udev, 2875 &virt_dev->eps[i], 2876 virt_dev->tt_info); 2877 } 2878 return -ENOMEM; 2879 } 2880 2881 /* 2882 * Synchronous XHCI stop endpoint helper. Issues the stop endpoint command and 2883 * waits for the command completion before returning. This does not call 2884 * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error' 2885 * cases, along with transfer ring cleanup. 2886 * 2887 * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage 2888 * their own transfer ring, such as offload situations. 2889 */ 2890 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend, 2891 gfp_t gfp_flags) 2892 { 2893 struct xhci_command *command; 2894 unsigned long flags; 2895 int ret; 2896 2897 command = xhci_alloc_command(xhci, true, gfp_flags); 2898 if (!command) 2899 return -ENOMEM; 2900 2901 spin_lock_irqsave(&xhci->lock, flags); 2902 ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id, 2903 ep->ep_index, suspend); 2904 if (ret < 0) { 2905 spin_unlock_irqrestore(&xhci->lock, flags); 2906 goto out; 2907 } 2908 2909 xhci_ring_cmd_db(xhci); 2910 spin_unlock_irqrestore(&xhci->lock, flags); 2911 2912 wait_for_completion(command->completion); 2913 2914 /* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/ 2915 if (command->status == COMP_COMMAND_ABORTED || 2916 command->status == COMP_COMMAND_RING_STOPPED) { 2917 xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n"); 2918 ret = -ETIME; 2919 } 2920 out: 2921 xhci_free_command(xhci, command); 2922 2923 return ret; 2924 } 2925 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync); 2926 2927 /* Issue a configure endpoint command or evaluate context command 2928 * and wait for it to finish. 2929 */ 2930 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2931 struct usb_device *udev, 2932 struct xhci_command *command, 2933 bool ctx_change, bool must_succeed) 2934 { 2935 int ret; 2936 unsigned long flags; 2937 struct xhci_input_control_ctx *ctrl_ctx; 2938 struct xhci_virt_device *virt_dev; 2939 struct xhci_slot_ctx *slot_ctx; 2940 2941 if (!command) 2942 return -EINVAL; 2943 2944 spin_lock_irqsave(&xhci->lock, flags); 2945 2946 if (xhci->xhc_state & XHCI_STATE_DYING) { 2947 spin_unlock_irqrestore(&xhci->lock, flags); 2948 return -ESHUTDOWN; 2949 } 2950 2951 virt_dev = xhci->devs[udev->slot_id]; 2952 2953 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2954 if (!ctrl_ctx) { 2955 spin_unlock_irqrestore(&xhci->lock, flags); 2956 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2957 __func__); 2958 return -ENOMEM; 2959 } 2960 2961 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2962 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2963 spin_unlock_irqrestore(&xhci->lock, flags); 2964 xhci_warn(xhci, "Not enough host resources, " 2965 "active endpoint contexts = %u\n", 2966 xhci->num_active_eps); 2967 return -ENOMEM; 2968 } 2969 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change && 2970 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2971 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2972 xhci_free_host_resources(xhci, ctrl_ctx); 2973 spin_unlock_irqrestore(&xhci->lock, flags); 2974 xhci_warn(xhci, "Not enough bandwidth\n"); 2975 return -ENOMEM; 2976 } 2977 2978 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2979 2980 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2981 trace_xhci_configure_endpoint(slot_ctx); 2982 2983 if (!ctx_change) 2984 ret = xhci_queue_configure_endpoint(xhci, command, 2985 command->in_ctx->dma, 2986 udev->slot_id, must_succeed); 2987 else 2988 ret = xhci_queue_evaluate_context(xhci, command, 2989 command->in_ctx->dma, 2990 udev->slot_id, must_succeed); 2991 if (ret < 0) { 2992 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2993 xhci_free_host_resources(xhci, ctrl_ctx); 2994 spin_unlock_irqrestore(&xhci->lock, flags); 2995 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2996 "FIXME allocate a new ring segment"); 2997 return -ENOMEM; 2998 } 2999 xhci_ring_cmd_db(xhci); 3000 spin_unlock_irqrestore(&xhci->lock, flags); 3001 3002 /* Wait for the configure endpoint command to complete */ 3003 wait_for_completion(command->completion); 3004 3005 if (!ctx_change) 3006 ret = xhci_configure_endpoint_result(xhci, udev, 3007 &command->status); 3008 else 3009 ret = xhci_evaluate_context_result(xhci, udev, 3010 &command->status); 3011 3012 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3013 spin_lock_irqsave(&xhci->lock, flags); 3014 /* If the command failed, remove the reserved resources. 3015 * Otherwise, clean up the estimate to include dropped eps. 3016 */ 3017 if (ret) 3018 xhci_free_host_resources(xhci, ctrl_ctx); 3019 else 3020 xhci_finish_resource_reservation(xhci, ctrl_ctx); 3021 spin_unlock_irqrestore(&xhci->lock, flags); 3022 } 3023 return ret; 3024 } 3025 3026 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 3027 struct xhci_virt_device *vdev, int i) 3028 { 3029 struct xhci_virt_ep *ep = &vdev->eps[i]; 3030 3031 if (ep->ep_state & EP_HAS_STREAMS) { 3032 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 3033 xhci_get_endpoint_address(i)); 3034 xhci_free_stream_info(xhci, ep->stream_info); 3035 ep->stream_info = NULL; 3036 ep->ep_state &= ~EP_HAS_STREAMS; 3037 } 3038 } 3039 3040 /* Called after one or more calls to xhci_add_endpoint() or 3041 * xhci_drop_endpoint(). If this call fails, the USB core is expected 3042 * to call xhci_reset_bandwidth(). 3043 * 3044 * Since we are in the middle of changing either configuration or 3045 * installing a new alt setting, the USB core won't allow URBs to be 3046 * enqueued for any endpoint on the old config or interface. Nothing 3047 * else should be touching the xhci->devs[slot_id] structure, so we 3048 * don't need to take the xhci->lock for manipulating that. 3049 */ 3050 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3051 { 3052 int i; 3053 int ret = 0; 3054 struct xhci_hcd *xhci; 3055 struct xhci_virt_device *virt_dev; 3056 struct xhci_input_control_ctx *ctrl_ctx; 3057 struct xhci_slot_ctx *slot_ctx; 3058 struct xhci_command *command; 3059 3060 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3061 if (ret <= 0) 3062 return ret; 3063 xhci = hcd_to_xhci(hcd); 3064 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3065 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3066 return -ENODEV; 3067 3068 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3069 virt_dev = xhci->devs[udev->slot_id]; 3070 3071 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3072 if (!command) 3073 return -ENOMEM; 3074 3075 command->in_ctx = virt_dev->in_ctx; 3076 3077 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3078 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3079 if (!ctrl_ctx) { 3080 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3081 __func__); 3082 ret = -ENOMEM; 3083 goto command_cleanup; 3084 } 3085 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3086 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3087 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3088 3089 /* Don't issue the command if there's no endpoints to update. */ 3090 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3091 ctrl_ctx->drop_flags == 0) { 3092 ret = 0; 3093 goto command_cleanup; 3094 } 3095 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3096 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3097 for (i = 31; i >= 1; i--) { 3098 __le32 le32 = cpu_to_le32(BIT(i)); 3099 3100 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3101 || (ctrl_ctx->add_flags & le32) || i == 1) { 3102 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3103 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3104 break; 3105 } 3106 } 3107 3108 ret = xhci_configure_endpoint(xhci, udev, command, 3109 false, false); 3110 if (ret) 3111 /* Callee should call reset_bandwidth() */ 3112 goto command_cleanup; 3113 3114 /* Free any rings that were dropped, but not changed. */ 3115 for (i = 1; i < 31; i++) { 3116 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3117 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3118 xhci_free_endpoint_ring(xhci, virt_dev, i); 3119 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3120 } 3121 } 3122 xhci_zero_in_ctx(xhci, virt_dev); 3123 /* 3124 * Install any rings for completely new endpoints or changed endpoints, 3125 * and free any old rings from changed endpoints. 3126 */ 3127 for (i = 1; i < 31; i++) { 3128 if (!virt_dev->eps[i].new_ring) 3129 continue; 3130 /* Only free the old ring if it exists. 3131 * It may not if this is the first add of an endpoint. 3132 */ 3133 if (virt_dev->eps[i].ring) { 3134 xhci_free_endpoint_ring(xhci, virt_dev, i); 3135 } 3136 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3137 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3138 virt_dev->eps[i].new_ring = NULL; 3139 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3140 } 3141 command_cleanup: 3142 kfree(command->completion); 3143 kfree(command); 3144 3145 return ret; 3146 } 3147 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3148 3149 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3150 { 3151 struct xhci_hcd *xhci; 3152 struct xhci_virt_device *virt_dev; 3153 int i, ret; 3154 3155 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3156 if (ret <= 0) 3157 return; 3158 xhci = hcd_to_xhci(hcd); 3159 3160 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3161 virt_dev = xhci->devs[udev->slot_id]; 3162 /* Free any rings allocated for added endpoints */ 3163 for (i = 0; i < 31; i++) { 3164 if (virt_dev->eps[i].new_ring) { 3165 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3166 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3167 virt_dev->eps[i].new_ring = NULL; 3168 } 3169 } 3170 xhci_zero_in_ctx(xhci, virt_dev); 3171 } 3172 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3173 3174 /* Get the available bandwidth of the ports under the xhci roothub */ 3175 int xhci_get_port_bandwidth(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx, 3176 u8 dev_speed) 3177 { 3178 struct xhci_command *cmd; 3179 unsigned long flags; 3180 int ret; 3181 3182 if (!ctx || !xhci) 3183 return -EINVAL; 3184 3185 cmd = xhci_alloc_command(xhci, true, GFP_KERNEL); 3186 if (!cmd) 3187 return -ENOMEM; 3188 3189 cmd->in_ctx = ctx; 3190 3191 /* get xhci port bandwidth, refer to xhci rev1_2 protocol 4.6.15 */ 3192 spin_lock_irqsave(&xhci->lock, flags); 3193 3194 ret = xhci_queue_get_port_bw(xhci, cmd, ctx->dma, dev_speed, 0); 3195 if (ret) { 3196 spin_unlock_irqrestore(&xhci->lock, flags); 3197 goto err_out; 3198 } 3199 xhci_ring_cmd_db(xhci); 3200 spin_unlock_irqrestore(&xhci->lock, flags); 3201 3202 wait_for_completion(cmd->completion); 3203 err_out: 3204 kfree(cmd->completion); 3205 kfree(cmd); 3206 3207 return ret; 3208 } 3209 3210 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3211 struct xhci_container_ctx *in_ctx, 3212 struct xhci_container_ctx *out_ctx, 3213 struct xhci_input_control_ctx *ctrl_ctx, 3214 u32 add_flags, u32 drop_flags) 3215 { 3216 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3217 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3218 xhci_slot_copy(xhci, in_ctx, out_ctx); 3219 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3220 } 3221 3222 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3223 struct usb_host_endpoint *host_ep) 3224 { 3225 struct xhci_hcd *xhci; 3226 struct xhci_virt_device *vdev; 3227 struct xhci_virt_ep *ep; 3228 struct usb_device *udev; 3229 unsigned long flags; 3230 unsigned int ep_index; 3231 3232 xhci = hcd_to_xhci(hcd); 3233 rescan: 3234 spin_lock_irqsave(&xhci->lock, flags); 3235 3236 udev = (struct usb_device *)host_ep->hcpriv; 3237 if (!udev || !udev->slot_id) 3238 goto done; 3239 3240 vdev = xhci->devs[udev->slot_id]; 3241 if (!vdev) 3242 goto done; 3243 3244 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3245 ep = &vdev->eps[ep_index]; 3246 3247 /* wait for hub_tt_work to finish clearing hub TT */ 3248 if (ep->ep_state & EP_CLEARING_TT) { 3249 spin_unlock_irqrestore(&xhci->lock, flags); 3250 schedule_timeout_uninterruptible(1); 3251 goto rescan; 3252 } 3253 3254 if (ep->ep_state) 3255 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3256 ep->ep_state); 3257 done: 3258 host_ep->hcpriv = NULL; 3259 spin_unlock_irqrestore(&xhci->lock, flags); 3260 } 3261 3262 /* 3263 * Called after usb core issues a clear halt control message. 3264 * The host side of the halt should already be cleared by a reset endpoint 3265 * command issued when the STALL event was received. 3266 * 3267 * The reset endpoint command may only be issued to endpoints in the halted 3268 * state. For software that wishes to reset the data toggle or sequence number 3269 * of an endpoint that isn't in the halted state this function will issue a 3270 * configure endpoint command with the Drop and Add bits set for the target 3271 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3272 * 3273 * vdev may be lost due to xHC restore error and re-initialization during S3/S4 3274 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device() 3275 */ 3276 3277 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3278 struct usb_host_endpoint *host_ep) 3279 { 3280 struct xhci_hcd *xhci; 3281 struct usb_device *udev; 3282 struct xhci_virt_device *vdev; 3283 struct xhci_virt_ep *ep; 3284 struct xhci_input_control_ctx *ctrl_ctx; 3285 struct xhci_command *stop_cmd, *cfg_cmd; 3286 unsigned int ep_index; 3287 unsigned long flags; 3288 u32 ep_flag; 3289 int err; 3290 3291 xhci = hcd_to_xhci(hcd); 3292 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3293 3294 /* 3295 * Usb core assumes a max packet value for ep0 on FS devices until the 3296 * real value is read from the descriptor. Core resets Ep0 if values 3297 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case 3298 */ 3299 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) { 3300 3301 udev = container_of(host_ep, struct usb_device, ep0); 3302 if (udev->speed != USB_SPEED_FULL || !udev->slot_id) 3303 return; 3304 3305 vdev = xhci->devs[udev->slot_id]; 3306 if (!vdev || vdev->udev != udev) 3307 return; 3308 3309 xhci_check_ep0_maxpacket(xhci, vdev); 3310 3311 /* Nothing else should be done here for ep0 during ep reset */ 3312 return; 3313 } 3314 3315 if (!host_ep->hcpriv) 3316 return; 3317 udev = (struct usb_device *) host_ep->hcpriv; 3318 vdev = xhci->devs[udev->slot_id]; 3319 3320 if (!udev->slot_id || !vdev) 3321 return; 3322 3323 ep = &vdev->eps[ep_index]; 3324 3325 /* Bail out if toggle is already being cleared by a endpoint reset */ 3326 spin_lock_irqsave(&xhci->lock, flags); 3327 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3328 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3329 spin_unlock_irqrestore(&xhci->lock, flags); 3330 return; 3331 } 3332 spin_unlock_irqrestore(&xhci->lock, flags); 3333 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3334 if (usb_endpoint_xfer_control(&host_ep->desc) || 3335 usb_endpoint_xfer_isoc(&host_ep->desc)) 3336 return; 3337 3338 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3339 3340 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3341 return; 3342 3343 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3344 if (!stop_cmd) 3345 return; 3346 3347 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3348 if (!cfg_cmd) 3349 goto cleanup; 3350 3351 spin_lock_irqsave(&xhci->lock, flags); 3352 3353 /* block queuing new trbs and ringing ep doorbell */ 3354 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3355 3356 /* 3357 * Make sure endpoint ring is empty before resetting the toggle/seq. 3358 * Driver is required to synchronously cancel all transfer request. 3359 * Stop the endpoint to force xHC to update the output context 3360 */ 3361 3362 if (!list_empty(&ep->ring->td_list)) { 3363 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3364 spin_unlock_irqrestore(&xhci->lock, flags); 3365 xhci_free_command(xhci, cfg_cmd); 3366 goto cleanup; 3367 } 3368 3369 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3370 ep_index, 0); 3371 if (err < 0) { 3372 spin_unlock_irqrestore(&xhci->lock, flags); 3373 xhci_free_command(xhci, cfg_cmd); 3374 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3375 __func__, err); 3376 goto cleanup; 3377 } 3378 3379 xhci_ring_cmd_db(xhci); 3380 spin_unlock_irqrestore(&xhci->lock, flags); 3381 3382 wait_for_completion(stop_cmd->completion); 3383 3384 spin_lock_irqsave(&xhci->lock, flags); 3385 3386 /* config ep command clears toggle if add and drop ep flags are set */ 3387 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3388 if (!ctrl_ctx) { 3389 spin_unlock_irqrestore(&xhci->lock, flags); 3390 xhci_free_command(xhci, cfg_cmd); 3391 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3392 __func__); 3393 goto cleanup; 3394 } 3395 3396 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3397 ctrl_ctx, ep_flag, ep_flag); 3398 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3399 3400 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3401 udev->slot_id, false); 3402 if (err < 0) { 3403 spin_unlock_irqrestore(&xhci->lock, flags); 3404 xhci_free_command(xhci, cfg_cmd); 3405 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3406 __func__, err); 3407 goto cleanup; 3408 } 3409 3410 xhci_ring_cmd_db(xhci); 3411 spin_unlock_irqrestore(&xhci->lock, flags); 3412 3413 wait_for_completion(cfg_cmd->completion); 3414 3415 xhci_free_command(xhci, cfg_cmd); 3416 cleanup: 3417 xhci_free_command(xhci, stop_cmd); 3418 spin_lock_irqsave(&xhci->lock, flags); 3419 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3420 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3421 spin_unlock_irqrestore(&xhci->lock, flags); 3422 } 3423 3424 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3425 struct usb_device *udev, struct usb_host_endpoint *ep, 3426 unsigned int slot_id) 3427 { 3428 int ret; 3429 unsigned int ep_index; 3430 unsigned int ep_state; 3431 3432 if (!ep) 3433 return -EINVAL; 3434 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3435 if (ret <= 0) 3436 return ret ? ret : -EINVAL; 3437 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3438 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3439 " descriptor for ep 0x%x does not support streams\n", 3440 ep->desc.bEndpointAddress); 3441 return -EINVAL; 3442 } 3443 3444 ep_index = xhci_get_endpoint_index(&ep->desc); 3445 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3446 if (ep_state & EP_HAS_STREAMS || 3447 ep_state & EP_GETTING_STREAMS) { 3448 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3449 "already has streams set up.\n", 3450 ep->desc.bEndpointAddress); 3451 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3452 "dynamic stream context array reallocation.\n"); 3453 return -EINVAL; 3454 } 3455 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3456 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3457 "endpoint 0x%x; URBs are pending.\n", 3458 ep->desc.bEndpointAddress); 3459 return -EINVAL; 3460 } 3461 return 0; 3462 } 3463 3464 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3465 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3466 { 3467 unsigned int max_streams; 3468 3469 /* The stream context array size must be a power of two */ 3470 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3471 /* 3472 * Find out how many primary stream array entries the host controller 3473 * supports. Later we may use secondary stream arrays (similar to 2nd 3474 * level page entries), but that's an optional feature for xHCI host 3475 * controllers. xHCs must support at least 4 stream IDs. 3476 */ 3477 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3478 if (*num_stream_ctxs > max_streams) { 3479 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3480 max_streams); 3481 *num_stream_ctxs = max_streams; 3482 *num_streams = max_streams; 3483 } 3484 } 3485 3486 /* Returns an error code if one of the endpoint already has streams. 3487 * This does not change any data structures, it only checks and gathers 3488 * information. 3489 */ 3490 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3491 struct usb_device *udev, 3492 struct usb_host_endpoint **eps, unsigned int num_eps, 3493 unsigned int *num_streams, u32 *changed_ep_bitmask) 3494 { 3495 unsigned int max_streams; 3496 unsigned int endpoint_flag; 3497 int i; 3498 int ret; 3499 3500 for (i = 0; i < num_eps; i++) { 3501 ret = xhci_check_streams_endpoint(xhci, udev, 3502 eps[i], udev->slot_id); 3503 if (ret < 0) 3504 return ret; 3505 3506 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3507 if (max_streams < (*num_streams - 1)) { 3508 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3509 eps[i]->desc.bEndpointAddress, 3510 max_streams); 3511 *num_streams = max_streams+1; 3512 } 3513 3514 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3515 if (*changed_ep_bitmask & endpoint_flag) 3516 return -EINVAL; 3517 *changed_ep_bitmask |= endpoint_flag; 3518 } 3519 return 0; 3520 } 3521 3522 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3523 struct usb_device *udev, 3524 struct usb_host_endpoint **eps, unsigned int num_eps) 3525 { 3526 u32 changed_ep_bitmask = 0; 3527 unsigned int slot_id; 3528 unsigned int ep_index; 3529 unsigned int ep_state; 3530 int i; 3531 3532 slot_id = udev->slot_id; 3533 if (!xhci->devs[slot_id]) 3534 return 0; 3535 3536 for (i = 0; i < num_eps; i++) { 3537 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3538 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3539 /* Are streams already being freed for the endpoint? */ 3540 if (ep_state & EP_GETTING_NO_STREAMS) { 3541 xhci_warn(xhci, "WARN Can't disable streams for " 3542 "endpoint 0x%x, " 3543 "streams are being disabled already\n", 3544 eps[i]->desc.bEndpointAddress); 3545 return 0; 3546 } 3547 /* Are there actually any streams to free? */ 3548 if (!(ep_state & EP_HAS_STREAMS) && 3549 !(ep_state & EP_GETTING_STREAMS)) { 3550 xhci_warn(xhci, "WARN Can't disable streams for " 3551 "endpoint 0x%x, " 3552 "streams are already disabled!\n", 3553 eps[i]->desc.bEndpointAddress); 3554 xhci_warn(xhci, "WARN xhci_free_streams() called " 3555 "with non-streams endpoint\n"); 3556 return 0; 3557 } 3558 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3559 } 3560 return changed_ep_bitmask; 3561 } 3562 3563 /* 3564 * The USB device drivers use this function (through the HCD interface in USB 3565 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3566 * coordinate mass storage command queueing across multiple endpoints (basically 3567 * a stream ID == a task ID). 3568 * 3569 * Setting up streams involves allocating the same size stream context array 3570 * for each endpoint and issuing a configure endpoint command for all endpoints. 3571 * 3572 * Don't allow the call to succeed if one endpoint only supports one stream 3573 * (which means it doesn't support streams at all). 3574 * 3575 * Drivers may get less stream IDs than they asked for, if the host controller 3576 * hardware or endpoints claim they can't support the number of requested 3577 * stream IDs. 3578 */ 3579 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3580 struct usb_host_endpoint **eps, unsigned int num_eps, 3581 unsigned int num_streams, gfp_t mem_flags) 3582 { 3583 int i, ret; 3584 struct xhci_hcd *xhci; 3585 struct xhci_virt_device *vdev; 3586 struct xhci_command *config_cmd; 3587 struct xhci_input_control_ctx *ctrl_ctx; 3588 unsigned int ep_index; 3589 unsigned int num_stream_ctxs; 3590 unsigned int max_packet; 3591 unsigned long flags; 3592 u32 changed_ep_bitmask = 0; 3593 3594 if (!eps) 3595 return -EINVAL; 3596 3597 /* Add one to the number of streams requested to account for 3598 * stream 0 that is reserved for xHCI usage. 3599 */ 3600 num_streams += 1; 3601 xhci = hcd_to_xhci(hcd); 3602 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3603 num_streams); 3604 3605 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3606 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3607 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3608 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3609 return -ENOSYS; 3610 } 3611 3612 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3613 if (!config_cmd) 3614 return -ENOMEM; 3615 3616 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3617 if (!ctrl_ctx) { 3618 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3619 __func__); 3620 xhci_free_command(xhci, config_cmd); 3621 return -ENOMEM; 3622 } 3623 3624 /* Check to make sure all endpoints are not already configured for 3625 * streams. While we're at it, find the maximum number of streams that 3626 * all the endpoints will support and check for duplicate endpoints. 3627 */ 3628 spin_lock_irqsave(&xhci->lock, flags); 3629 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3630 num_eps, &num_streams, &changed_ep_bitmask); 3631 if (ret < 0) { 3632 xhci_free_command(xhci, config_cmd); 3633 spin_unlock_irqrestore(&xhci->lock, flags); 3634 return ret; 3635 } 3636 if (num_streams <= 1) { 3637 xhci_warn(xhci, "WARN: endpoints can't handle " 3638 "more than one stream.\n"); 3639 xhci_free_command(xhci, config_cmd); 3640 spin_unlock_irqrestore(&xhci->lock, flags); 3641 return -EINVAL; 3642 } 3643 vdev = xhci->devs[udev->slot_id]; 3644 /* Mark each endpoint as being in transition, so 3645 * xhci_urb_enqueue() will reject all URBs. 3646 */ 3647 for (i = 0; i < num_eps; i++) { 3648 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3649 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3650 } 3651 spin_unlock_irqrestore(&xhci->lock, flags); 3652 3653 /* Setup internal data structures and allocate HW data structures for 3654 * streams (but don't install the HW structures in the input context 3655 * until we're sure all memory allocation succeeded). 3656 */ 3657 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3658 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3659 num_stream_ctxs, num_streams); 3660 3661 for (i = 0; i < num_eps; i++) { 3662 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3663 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3664 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3665 num_stream_ctxs, 3666 num_streams, 3667 max_packet, mem_flags); 3668 if (!vdev->eps[ep_index].stream_info) 3669 goto cleanup; 3670 /* Set maxPstreams in endpoint context and update deq ptr to 3671 * point to stream context array. FIXME 3672 */ 3673 } 3674 3675 /* Set up the input context for a configure endpoint command. */ 3676 for (i = 0; i < num_eps; i++) { 3677 struct xhci_ep_ctx *ep_ctx; 3678 3679 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3680 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3681 3682 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3683 vdev->out_ctx, ep_index); 3684 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3685 vdev->eps[ep_index].stream_info); 3686 } 3687 /* Tell the HW to drop its old copy of the endpoint context info 3688 * and add the updated copy from the input context. 3689 */ 3690 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3691 vdev->out_ctx, ctrl_ctx, 3692 changed_ep_bitmask, changed_ep_bitmask); 3693 3694 /* Issue and wait for the configure endpoint command */ 3695 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3696 false, false); 3697 3698 /* xHC rejected the configure endpoint command for some reason, so we 3699 * leave the old ring intact and free our internal streams data 3700 * structure. 3701 */ 3702 if (ret < 0) 3703 goto cleanup; 3704 3705 spin_lock_irqsave(&xhci->lock, flags); 3706 for (i = 0; i < num_eps; i++) { 3707 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3708 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3709 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3710 udev->slot_id, ep_index); 3711 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3712 } 3713 xhci_free_command(xhci, config_cmd); 3714 spin_unlock_irqrestore(&xhci->lock, flags); 3715 3716 for (i = 0; i < num_eps; i++) { 3717 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3718 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3719 } 3720 /* Subtract 1 for stream 0, which drivers can't use */ 3721 return num_streams - 1; 3722 3723 cleanup: 3724 /* If it didn't work, free the streams! */ 3725 for (i = 0; i < num_eps; i++) { 3726 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3727 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3728 vdev->eps[ep_index].stream_info = NULL; 3729 /* FIXME Unset maxPstreams in endpoint context and 3730 * update deq ptr to point to normal string ring. 3731 */ 3732 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3733 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3734 xhci_endpoint_zero(xhci, vdev, eps[i]); 3735 } 3736 xhci_free_command(xhci, config_cmd); 3737 return -ENOMEM; 3738 } 3739 3740 /* Transition the endpoint from using streams to being a "normal" endpoint 3741 * without streams. 3742 * 3743 * Modify the endpoint context state, submit a configure endpoint command, 3744 * and free all endpoint rings for streams if that completes successfully. 3745 */ 3746 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3747 struct usb_host_endpoint **eps, unsigned int num_eps, 3748 gfp_t mem_flags) 3749 { 3750 int i, ret; 3751 struct xhci_hcd *xhci; 3752 struct xhci_virt_device *vdev; 3753 struct xhci_command *command; 3754 struct xhci_input_control_ctx *ctrl_ctx; 3755 unsigned int ep_index; 3756 unsigned long flags; 3757 u32 changed_ep_bitmask; 3758 3759 xhci = hcd_to_xhci(hcd); 3760 vdev = xhci->devs[udev->slot_id]; 3761 3762 /* Set up a configure endpoint command to remove the streams rings */ 3763 spin_lock_irqsave(&xhci->lock, flags); 3764 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3765 udev, eps, num_eps); 3766 if (changed_ep_bitmask == 0) { 3767 spin_unlock_irqrestore(&xhci->lock, flags); 3768 return -EINVAL; 3769 } 3770 3771 /* Use the xhci_command structure from the first endpoint. We may have 3772 * allocated too many, but the driver may call xhci_free_streams() for 3773 * each endpoint it grouped into one call to xhci_alloc_streams(). 3774 */ 3775 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3776 command = vdev->eps[ep_index].stream_info->free_streams_command; 3777 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3778 if (!ctrl_ctx) { 3779 spin_unlock_irqrestore(&xhci->lock, flags); 3780 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3781 __func__); 3782 return -EINVAL; 3783 } 3784 3785 for (i = 0; i < num_eps; i++) { 3786 struct xhci_ep_ctx *ep_ctx; 3787 3788 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3789 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3790 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3791 EP_GETTING_NO_STREAMS; 3792 3793 xhci_endpoint_copy(xhci, command->in_ctx, 3794 vdev->out_ctx, ep_index); 3795 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3796 &vdev->eps[ep_index]); 3797 } 3798 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3799 vdev->out_ctx, ctrl_ctx, 3800 changed_ep_bitmask, changed_ep_bitmask); 3801 spin_unlock_irqrestore(&xhci->lock, flags); 3802 3803 /* Issue and wait for the configure endpoint command, 3804 * which must succeed. 3805 */ 3806 ret = xhci_configure_endpoint(xhci, udev, command, 3807 false, true); 3808 3809 /* xHC rejected the configure endpoint command for some reason, so we 3810 * leave the streams rings intact. 3811 */ 3812 if (ret < 0) 3813 return ret; 3814 3815 spin_lock_irqsave(&xhci->lock, flags); 3816 for (i = 0; i < num_eps; i++) { 3817 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3818 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3819 vdev->eps[ep_index].stream_info = NULL; 3820 /* FIXME Unset maxPstreams in endpoint context and 3821 * update deq ptr to point to normal string ring. 3822 */ 3823 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3824 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3825 } 3826 spin_unlock_irqrestore(&xhci->lock, flags); 3827 3828 return 0; 3829 } 3830 3831 /* 3832 * Deletes endpoint resources for endpoints that were active before a Reset 3833 * Device command, or a Disable Slot command. The Reset Device command leaves 3834 * the control endpoint intact, whereas the Disable Slot command deletes it. 3835 * 3836 * Must be called with xhci->lock held. 3837 */ 3838 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3839 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3840 { 3841 int i; 3842 unsigned int num_dropped_eps = 0; 3843 unsigned int drop_flags = 0; 3844 3845 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3846 if (virt_dev->eps[i].ring) { 3847 drop_flags |= 1 << i; 3848 num_dropped_eps++; 3849 } 3850 } 3851 xhci->num_active_eps -= num_dropped_eps; 3852 if (num_dropped_eps) 3853 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3854 "Dropped %u ep ctxs, flags = 0x%x, " 3855 "%u now active.", 3856 num_dropped_eps, drop_flags, 3857 xhci->num_active_eps); 3858 } 3859 3860 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev); 3861 3862 /* 3863 * This submits a Reset Device Command, which will set the device state to 0, 3864 * set the device address to 0, and disable all the endpoints except the default 3865 * control endpoint. The USB core should come back and call 3866 * xhci_address_device(), and then re-set up the configuration. If this is 3867 * called because of a usb_reset_and_verify_device(), then the old alternate 3868 * settings will be re-installed through the normal bandwidth allocation 3869 * functions. 3870 * 3871 * Wait for the Reset Device command to finish. Remove all structures 3872 * associated with the endpoints that were disabled. Clear the input device 3873 * structure? Reset the control endpoint 0 max packet size? 3874 * 3875 * If the virt_dev to be reset does not exist or does not match the udev, 3876 * it means the device is lost, possibly due to the xHC restore error and 3877 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3878 * re-allocate the device. 3879 */ 3880 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3881 struct usb_device *udev) 3882 { 3883 int ret, i; 3884 unsigned long flags; 3885 struct xhci_hcd *xhci; 3886 unsigned int slot_id; 3887 struct xhci_virt_device *virt_dev; 3888 struct xhci_command *reset_device_cmd; 3889 struct xhci_slot_ctx *slot_ctx; 3890 int old_active_eps = 0; 3891 3892 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3893 if (ret <= 0) 3894 return ret; 3895 xhci = hcd_to_xhci(hcd); 3896 slot_id = udev->slot_id; 3897 virt_dev = xhci->devs[slot_id]; 3898 if (!virt_dev) { 3899 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3900 "not exist. Re-allocate the device\n", slot_id); 3901 ret = xhci_alloc_dev(hcd, udev); 3902 if (ret == 1) 3903 return 0; 3904 else 3905 return -EINVAL; 3906 } 3907 3908 if (virt_dev->tt_info) 3909 old_active_eps = virt_dev->tt_info->active_eps; 3910 3911 if (virt_dev->udev != udev) { 3912 /* If the virt_dev and the udev does not match, this virt_dev 3913 * may belong to another udev. 3914 * Re-allocate the device. 3915 */ 3916 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3917 "not match the udev. Re-allocate the device\n", 3918 slot_id); 3919 ret = xhci_alloc_dev(hcd, udev); 3920 if (ret == 1) 3921 return 0; 3922 else 3923 return -EINVAL; 3924 } 3925 3926 /* If device is not setup, there is no point in resetting it */ 3927 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3928 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3929 SLOT_STATE_DISABLED) 3930 return 0; 3931 3932 if (xhci->quirks & XHCI_ETRON_HOST) { 3933 /* 3934 * Obtaining a new device slot to inform the xHCI host that 3935 * the USB device has been reset. 3936 */ 3937 ret = xhci_disable_and_free_slot(xhci, udev->slot_id); 3938 if (!ret) { 3939 ret = xhci_alloc_dev(hcd, udev); 3940 if (ret == 1) 3941 ret = 0; 3942 else 3943 ret = -EINVAL; 3944 } 3945 return ret; 3946 } 3947 3948 trace_xhci_discover_or_reset_device(slot_ctx); 3949 3950 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3951 /* Allocate the command structure that holds the struct completion. 3952 * Assume we're in process context, since the normal device reset 3953 * process has to wait for the device anyway. Storage devices are 3954 * reset as part of error handling, so use GFP_NOIO instead of 3955 * GFP_KERNEL. 3956 */ 3957 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3958 if (!reset_device_cmd) { 3959 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3960 return -ENOMEM; 3961 } 3962 3963 /* Attempt to submit the Reset Device command to the command ring */ 3964 spin_lock_irqsave(&xhci->lock, flags); 3965 3966 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3967 if (ret) { 3968 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3969 spin_unlock_irqrestore(&xhci->lock, flags); 3970 goto command_cleanup; 3971 } 3972 xhci_ring_cmd_db(xhci); 3973 spin_unlock_irqrestore(&xhci->lock, flags); 3974 3975 /* Wait for the Reset Device command to finish */ 3976 wait_for_completion(reset_device_cmd->completion); 3977 3978 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3979 * unless we tried to reset a slot ID that wasn't enabled, 3980 * or the device wasn't in the addressed or configured state. 3981 */ 3982 ret = reset_device_cmd->status; 3983 switch (ret) { 3984 case COMP_COMMAND_ABORTED: 3985 case COMP_COMMAND_RING_STOPPED: 3986 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3987 ret = -ETIME; 3988 goto command_cleanup; 3989 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3990 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3991 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3992 slot_id, 3993 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3994 xhci_dbg(xhci, "Not freeing device rings.\n"); 3995 /* Don't treat this as an error. May change my mind later. */ 3996 ret = 0; 3997 goto command_cleanup; 3998 case COMP_SUCCESS: 3999 xhci_dbg(xhci, "Successful reset device command.\n"); 4000 break; 4001 default: 4002 if (xhci_is_vendor_info_code(xhci, ret)) 4003 break; 4004 xhci_warn(xhci, "Unknown completion code %u for " 4005 "reset device command.\n", ret); 4006 ret = -EINVAL; 4007 goto command_cleanup; 4008 } 4009 4010 /* Free up host controller endpoint resources */ 4011 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4012 spin_lock_irqsave(&xhci->lock, flags); 4013 /* Don't delete the default control endpoint resources */ 4014 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 4015 spin_unlock_irqrestore(&xhci->lock, flags); 4016 } 4017 4018 /* Everything but endpoint 0 is disabled, so free the rings. */ 4019 for (i = 1; i < 31; i++) { 4020 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 4021 4022 if (ep->ep_state & EP_HAS_STREAMS) { 4023 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 4024 xhci_get_endpoint_address(i)); 4025 xhci_free_stream_info(xhci, ep->stream_info); 4026 ep->stream_info = NULL; 4027 ep->ep_state &= ~EP_HAS_STREAMS; 4028 } 4029 4030 if (ep->ring) { 4031 if (ep->sideband) 4032 xhci_sideband_notify_ep_ring_free(ep->sideband, i); 4033 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 4034 xhci_free_endpoint_ring(xhci, virt_dev, i); 4035 } 4036 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 4037 xhci_drop_ep_from_interval_table(xhci, 4038 &virt_dev->eps[i].bw_info, 4039 virt_dev->bw_table, 4040 udev, 4041 &virt_dev->eps[i], 4042 virt_dev->tt_info); 4043 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 4044 } 4045 /* If necessary, update the number of active TTs on this root port */ 4046 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 4047 virt_dev->flags = 0; 4048 ret = 0; 4049 4050 command_cleanup: 4051 xhci_free_command(xhci, reset_device_cmd); 4052 return ret; 4053 } 4054 4055 /* 4056 * At this point, the struct usb_device is about to go away, the device has 4057 * disconnected, and all traffic has been stopped and the endpoints have been 4058 * disabled. Free any HC data structures associated with that device. 4059 */ 4060 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 4061 { 4062 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4063 struct xhci_virt_device *virt_dev; 4064 struct xhci_slot_ctx *slot_ctx; 4065 unsigned long flags; 4066 int i, ret; 4067 4068 /* 4069 * We called pm_runtime_get_noresume when the device was attached. 4070 * Decrement the counter here to allow controller to runtime suspend 4071 * if no devices remain. 4072 */ 4073 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4074 pm_runtime_put_noidle(hcd->self.controller); 4075 4076 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 4077 /* If the host is halted due to driver unload, we still need to free the 4078 * device. 4079 */ 4080 if (ret <= 0 && ret != -ENODEV) 4081 return; 4082 4083 virt_dev = xhci->devs[udev->slot_id]; 4084 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4085 trace_xhci_free_dev(slot_ctx); 4086 4087 /* Stop any wayward timer functions (which may grab the lock) */ 4088 for (i = 0; i < 31; i++) 4089 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 4090 virt_dev->udev = NULL; 4091 xhci_disable_slot(xhci, udev->slot_id); 4092 4093 spin_lock_irqsave(&xhci->lock, flags); 4094 xhci_free_virt_device(xhci, virt_dev, udev->slot_id); 4095 spin_unlock_irqrestore(&xhci->lock, flags); 4096 4097 } 4098 4099 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 4100 { 4101 struct xhci_command *command; 4102 unsigned long flags; 4103 u32 state; 4104 int ret; 4105 4106 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4107 if (!command) 4108 return -ENOMEM; 4109 4110 xhci_debugfs_remove_slot(xhci, slot_id); 4111 4112 spin_lock_irqsave(&xhci->lock, flags); 4113 /* Don't disable the slot if the host controller is dead. */ 4114 state = readl(&xhci->op_regs->status); 4115 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 4116 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4117 spin_unlock_irqrestore(&xhci->lock, flags); 4118 kfree(command); 4119 return -ENODEV; 4120 } 4121 4122 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 4123 slot_id); 4124 if (ret) { 4125 spin_unlock_irqrestore(&xhci->lock, flags); 4126 kfree(command); 4127 return ret; 4128 } 4129 xhci_ring_cmd_db(xhci); 4130 spin_unlock_irqrestore(&xhci->lock, flags); 4131 4132 wait_for_completion(command->completion); 4133 4134 if (command->status != COMP_SUCCESS) 4135 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4136 slot_id, command->status); 4137 4138 xhci_free_command(xhci, command); 4139 4140 return 0; 4141 } 4142 4143 int xhci_disable_and_free_slot(struct xhci_hcd *xhci, u32 slot_id) 4144 { 4145 struct xhci_virt_device *vdev = xhci->devs[slot_id]; 4146 int ret; 4147 4148 ret = xhci_disable_slot(xhci, slot_id); 4149 xhci_free_virt_device(xhci, vdev, slot_id); 4150 return ret; 4151 } 4152 4153 /* 4154 * Checks if we have enough host controller resources for the default control 4155 * endpoint. 4156 * 4157 * Must be called with xhci->lock held. 4158 */ 4159 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4160 { 4161 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4162 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4163 "Not enough ep ctxs: " 4164 "%u active, need to add 1, limit is %u.", 4165 xhci->num_active_eps, xhci->limit_active_eps); 4166 return -ENOMEM; 4167 } 4168 xhci->num_active_eps += 1; 4169 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4170 "Adding 1 ep ctx, %u now active.", 4171 xhci->num_active_eps); 4172 return 0; 4173 } 4174 4175 4176 /* 4177 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4178 * timed out, or allocating memory failed. Returns 1 on success. 4179 */ 4180 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4181 { 4182 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4183 struct xhci_virt_device *vdev; 4184 struct xhci_slot_ctx *slot_ctx; 4185 unsigned long flags; 4186 int ret, slot_id; 4187 struct xhci_command *command; 4188 4189 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4190 if (!command) 4191 return 0; 4192 4193 spin_lock_irqsave(&xhci->lock, flags); 4194 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4195 if (ret) { 4196 spin_unlock_irqrestore(&xhci->lock, flags); 4197 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4198 xhci_free_command(xhci, command); 4199 return 0; 4200 } 4201 xhci_ring_cmd_db(xhci); 4202 spin_unlock_irqrestore(&xhci->lock, flags); 4203 4204 wait_for_completion(command->completion); 4205 slot_id = command->slot_id; 4206 4207 if (!slot_id || command->status != COMP_SUCCESS) { 4208 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 4209 xhci_trb_comp_code_string(command->status)); 4210 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4211 HCS_MAX_SLOTS( 4212 readl(&xhci->cap_regs->hcs_params1))); 4213 xhci_free_command(xhci, command); 4214 return 0; 4215 } 4216 4217 xhci_free_command(xhci, command); 4218 4219 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4220 spin_lock_irqsave(&xhci->lock, flags); 4221 ret = xhci_reserve_host_control_ep_resources(xhci); 4222 if (ret) { 4223 spin_unlock_irqrestore(&xhci->lock, flags); 4224 xhci_warn(xhci, "Not enough host resources, " 4225 "active endpoint contexts = %u\n", 4226 xhci->num_active_eps); 4227 goto disable_slot; 4228 } 4229 spin_unlock_irqrestore(&xhci->lock, flags); 4230 } 4231 /* Use GFP_NOIO, since this function can be called from 4232 * xhci_discover_or_reset_device(), which may be called as part of 4233 * mass storage driver error handling. 4234 */ 4235 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4236 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4237 goto disable_slot; 4238 } 4239 vdev = xhci->devs[slot_id]; 4240 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4241 trace_xhci_alloc_dev(slot_ctx); 4242 4243 udev->slot_id = slot_id; 4244 4245 xhci_debugfs_create_slot(xhci, slot_id); 4246 4247 /* 4248 * If resetting upon resume, we can't put the controller into runtime 4249 * suspend if there is a device attached. 4250 */ 4251 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4252 pm_runtime_get_noresume(hcd->self.controller); 4253 4254 /* Is this a LS or FS device under a HS hub? */ 4255 /* Hub or peripherial? */ 4256 return 1; 4257 4258 disable_slot: 4259 xhci_disable_and_free_slot(xhci, udev->slot_id); 4260 4261 return 0; 4262 } 4263 4264 /** 4265 * xhci_setup_device - issues an Address Device command to assign a unique 4266 * USB bus address. 4267 * @hcd: USB host controller data structure. 4268 * @udev: USB dev structure representing the connected device. 4269 * @setup: Enum specifying setup mode: address only or with context. 4270 * @timeout_ms: Max wait time (ms) for the command operation to complete. 4271 * 4272 * Return: 0 if successful; otherwise, negative error code. 4273 */ 4274 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4275 enum xhci_setup_dev setup, unsigned int timeout_ms) 4276 { 4277 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4278 unsigned long flags; 4279 struct xhci_virt_device *virt_dev; 4280 int ret = 0; 4281 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4282 struct xhci_slot_ctx *slot_ctx; 4283 struct xhci_input_control_ctx *ctrl_ctx; 4284 u64 temp_64; 4285 struct xhci_command *command = NULL; 4286 4287 mutex_lock(&xhci->mutex); 4288 4289 if (xhci->xhc_state) { /* dying, removing or halted */ 4290 ret = -ESHUTDOWN; 4291 goto out; 4292 } 4293 4294 if (!udev->slot_id) { 4295 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4296 "Bad Slot ID %d", udev->slot_id); 4297 ret = -EINVAL; 4298 goto out; 4299 } 4300 4301 virt_dev = xhci->devs[udev->slot_id]; 4302 4303 if (WARN_ON(!virt_dev)) { 4304 /* 4305 * In plug/unplug torture test with an NEC controller, 4306 * a zero-dereference was observed once due to virt_dev = 0. 4307 * Print useful debug rather than crash if it is observed again! 4308 */ 4309 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4310 udev->slot_id); 4311 ret = -EINVAL; 4312 goto out; 4313 } 4314 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4315 trace_xhci_setup_device_slot(slot_ctx); 4316 4317 if (setup == SETUP_CONTEXT_ONLY) { 4318 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4319 SLOT_STATE_DEFAULT) { 4320 xhci_dbg(xhci, "Slot already in default state\n"); 4321 goto out; 4322 } 4323 } 4324 4325 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4326 if (!command) { 4327 ret = -ENOMEM; 4328 goto out; 4329 } 4330 4331 command->in_ctx = virt_dev->in_ctx; 4332 command->timeout_ms = timeout_ms; 4333 4334 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4335 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4336 if (!ctrl_ctx) { 4337 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4338 __func__); 4339 ret = -EINVAL; 4340 goto out; 4341 } 4342 /* 4343 * If this is the first Set Address since device plug-in or 4344 * virt_device realloaction after a resume with an xHCI power loss, 4345 * then set up the slot context. 4346 */ 4347 if (!slot_ctx->dev_info) 4348 xhci_setup_addressable_virt_dev(xhci, udev); 4349 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4350 else 4351 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4352 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4353 ctrl_ctx->drop_flags = 0; 4354 4355 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4356 le32_to_cpu(slot_ctx->dev_info) >> 27); 4357 4358 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4359 spin_lock_irqsave(&xhci->lock, flags); 4360 trace_xhci_setup_device(virt_dev); 4361 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4362 udev->slot_id, setup); 4363 if (ret) { 4364 spin_unlock_irqrestore(&xhci->lock, flags); 4365 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4366 "FIXME: allocate a command ring segment"); 4367 goto out; 4368 } 4369 xhci_ring_cmd_db(xhci); 4370 spin_unlock_irqrestore(&xhci->lock, flags); 4371 4372 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4373 wait_for_completion(command->completion); 4374 4375 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4376 * the SetAddress() "recovery interval" required by USB and aborting the 4377 * command on a timeout. 4378 */ 4379 switch (command->status) { 4380 case COMP_COMMAND_ABORTED: 4381 case COMP_COMMAND_RING_STOPPED: 4382 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4383 ret = -ETIME; 4384 break; 4385 case COMP_CONTEXT_STATE_ERROR: 4386 case COMP_SLOT_NOT_ENABLED_ERROR: 4387 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4388 act, udev->slot_id); 4389 ret = -EINVAL; 4390 break; 4391 case COMP_USB_TRANSACTION_ERROR: 4392 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4393 4394 mutex_unlock(&xhci->mutex); 4395 ret = xhci_disable_and_free_slot(xhci, udev->slot_id); 4396 if (!ret) { 4397 if (xhci_alloc_dev(hcd, udev) == 1) 4398 xhci_setup_addressable_virt_dev(xhci, udev); 4399 } 4400 kfree(command->completion); 4401 kfree(command); 4402 return -EPROTO; 4403 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4404 dev_warn(&udev->dev, 4405 "ERROR: Incompatible device for setup %s command\n", act); 4406 ret = -ENODEV; 4407 break; 4408 case COMP_SUCCESS: 4409 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4410 "Successful setup %s command", act); 4411 break; 4412 default: 4413 xhci_err(xhci, 4414 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4415 act, command->status); 4416 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4417 ret = -EINVAL; 4418 break; 4419 } 4420 if (ret) 4421 goto out; 4422 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4423 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4424 "Op regs DCBAA ptr = %#016llx", temp_64); 4425 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4426 "Slot ID %d dcbaa entry @%p = %#016llx", 4427 udev->slot_id, 4428 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4429 (unsigned long long) 4430 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4431 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4432 "Output Context DMA address = %#08llx", 4433 (unsigned long long)virt_dev->out_ctx->dma); 4434 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4435 le32_to_cpu(slot_ctx->dev_info) >> 27); 4436 /* 4437 * USB core uses address 1 for the roothubs, so we add one to the 4438 * address given back to us by the HC. 4439 */ 4440 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4441 le32_to_cpu(slot_ctx->dev_info) >> 27); 4442 /* Zero the input context control for later use */ 4443 ctrl_ctx->add_flags = 0; 4444 ctrl_ctx->drop_flags = 0; 4445 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4446 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4447 4448 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4449 "Internal device address = %d", 4450 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4451 out: 4452 mutex_unlock(&xhci->mutex); 4453 if (command) { 4454 kfree(command->completion); 4455 kfree(command); 4456 } 4457 return ret; 4458 } 4459 4460 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev, 4461 unsigned int timeout_ms) 4462 { 4463 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms); 4464 } 4465 4466 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4467 { 4468 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY, 4469 XHCI_CMD_DEFAULT_TIMEOUT); 4470 } 4471 4472 /* 4473 * Transfer the port index into real index in the HW port status 4474 * registers. Caculate offset between the port's PORTSC register 4475 * and port status base. Divide the number of per port register 4476 * to get the real index. The raw port number bases 1. 4477 */ 4478 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4479 { 4480 struct xhci_hub *rhub; 4481 4482 rhub = xhci_get_rhub(hcd); 4483 return rhub->ports[port1 - 1]->hw_portnum + 1; 4484 } 4485 4486 /* 4487 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4488 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4489 */ 4490 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4491 struct usb_device *udev, u16 max_exit_latency) 4492 { 4493 struct xhci_virt_device *virt_dev; 4494 struct xhci_command *command; 4495 struct xhci_input_control_ctx *ctrl_ctx; 4496 struct xhci_slot_ctx *slot_ctx; 4497 unsigned long flags; 4498 int ret; 4499 4500 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4501 if (!command) 4502 return -ENOMEM; 4503 4504 spin_lock_irqsave(&xhci->lock, flags); 4505 4506 virt_dev = xhci->devs[udev->slot_id]; 4507 4508 /* 4509 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4510 * xHC was re-initialized. Exit latency will be set later after 4511 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4512 */ 4513 4514 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4515 spin_unlock_irqrestore(&xhci->lock, flags); 4516 xhci_free_command(xhci, command); 4517 return 0; 4518 } 4519 4520 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4521 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4522 if (!ctrl_ctx) { 4523 spin_unlock_irqrestore(&xhci->lock, flags); 4524 xhci_free_command(xhci, command); 4525 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4526 __func__); 4527 return -ENOMEM; 4528 } 4529 4530 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4531 spin_unlock_irqrestore(&xhci->lock, flags); 4532 4533 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4534 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4535 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4536 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4537 slot_ctx->dev_state = 0; 4538 4539 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4540 "Set up evaluate context for LPM MEL change."); 4541 4542 /* Issue and wait for the evaluate context command. */ 4543 ret = xhci_configure_endpoint(xhci, udev, command, 4544 true, true); 4545 4546 if (!ret) { 4547 spin_lock_irqsave(&xhci->lock, flags); 4548 virt_dev->current_mel = max_exit_latency; 4549 spin_unlock_irqrestore(&xhci->lock, flags); 4550 } 4551 4552 xhci_free_command(xhci, command); 4553 4554 return ret; 4555 } 4556 4557 #ifdef CONFIG_PM 4558 4559 /* BESL to HIRD Encoding array for USB2 LPM */ 4560 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4561 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4562 4563 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4564 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4565 struct usb_device *udev) 4566 { 4567 int u2del, besl, besl_host; 4568 int besl_device = 0; 4569 u32 field; 4570 4571 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4572 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4573 4574 if (field & USB_BESL_SUPPORT) { 4575 for (besl_host = 0; besl_host < 16; besl_host++) { 4576 if (xhci_besl_encoding[besl_host] >= u2del) 4577 break; 4578 } 4579 /* Use baseline BESL value as default */ 4580 if (field & USB_BESL_BASELINE_VALID) 4581 besl_device = USB_GET_BESL_BASELINE(field); 4582 else if (field & USB_BESL_DEEP_VALID) 4583 besl_device = USB_GET_BESL_DEEP(field); 4584 } else { 4585 if (u2del <= 50) 4586 besl_host = 0; 4587 else 4588 besl_host = (u2del - 51) / 75 + 1; 4589 } 4590 4591 besl = besl_host + besl_device; 4592 if (besl > 15) 4593 besl = 15; 4594 4595 return besl; 4596 } 4597 4598 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4599 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4600 { 4601 u32 field; 4602 int l1; 4603 int besld = 0; 4604 int hirdm = 0; 4605 4606 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4607 4608 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4609 l1 = udev->l1_params.timeout / 256; 4610 4611 /* device has preferred BESLD */ 4612 if (field & USB_BESL_DEEP_VALID) { 4613 besld = USB_GET_BESL_DEEP(field); 4614 hirdm = 1; 4615 } 4616 4617 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4618 } 4619 4620 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4621 struct usb_device *udev, int enable) 4622 { 4623 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4624 struct xhci_port **ports; 4625 __le32 __iomem *pm_addr, *hlpm_addr; 4626 u32 pm_val, hlpm_val, field; 4627 unsigned int port_num; 4628 unsigned long flags; 4629 int hird, exit_latency; 4630 int ret; 4631 4632 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4633 return -EPERM; 4634 4635 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4636 !udev->lpm_capable) 4637 return -EPERM; 4638 4639 if (!udev->parent || udev->parent->parent || 4640 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4641 return -EPERM; 4642 4643 if (udev->usb2_hw_lpm_capable != 1) 4644 return -EPERM; 4645 4646 spin_lock_irqsave(&xhci->lock, flags); 4647 4648 ports = xhci->usb2_rhub.ports; 4649 port_num = udev->portnum - 1; 4650 pm_addr = ports[port_num]->addr + PORTPMSC; 4651 pm_val = readl(pm_addr); 4652 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4653 4654 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4655 str_enable_disable(enable), port_num + 1); 4656 4657 if (enable) { 4658 /* Host supports BESL timeout instead of HIRD */ 4659 if (udev->usb2_hw_lpm_besl_capable) { 4660 /* if device doesn't have a preferred BESL value use a 4661 * default one which works with mixed HIRD and BESL 4662 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4663 */ 4664 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4665 if ((field & USB_BESL_SUPPORT) && 4666 (field & USB_BESL_BASELINE_VALID)) 4667 hird = USB_GET_BESL_BASELINE(field); 4668 else 4669 hird = udev->l1_params.besl; 4670 4671 exit_latency = xhci_besl_encoding[hird]; 4672 spin_unlock_irqrestore(&xhci->lock, flags); 4673 4674 ret = xhci_change_max_exit_latency(xhci, udev, 4675 exit_latency); 4676 if (ret < 0) 4677 return ret; 4678 spin_lock_irqsave(&xhci->lock, flags); 4679 4680 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4681 writel(hlpm_val, hlpm_addr); 4682 /* flush write */ 4683 readl(hlpm_addr); 4684 } else { 4685 hird = xhci_calculate_hird_besl(xhci, udev); 4686 } 4687 4688 pm_val &= ~PORT_HIRD_MASK; 4689 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4690 writel(pm_val, pm_addr); 4691 pm_val = readl(pm_addr); 4692 pm_val |= PORT_HLE; 4693 writel(pm_val, pm_addr); 4694 /* flush write */ 4695 readl(pm_addr); 4696 } else { 4697 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4698 writel(pm_val, pm_addr); 4699 /* flush write */ 4700 readl(pm_addr); 4701 if (udev->usb2_hw_lpm_besl_capable) { 4702 spin_unlock_irqrestore(&xhci->lock, flags); 4703 xhci_change_max_exit_latency(xhci, udev, 0); 4704 readl_poll_timeout(ports[port_num]->addr, pm_val, 4705 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4706 100, 10000); 4707 return 0; 4708 } 4709 } 4710 4711 spin_unlock_irqrestore(&xhci->lock, flags); 4712 return 0; 4713 } 4714 4715 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4716 { 4717 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4718 struct xhci_port *port; 4719 u32 capability; 4720 4721 /* Check if USB3 device at root port is tunneled over USB4 */ 4722 if (hcd->speed >= HCD_USB3 && !udev->parent->parent) { 4723 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 4724 4725 udev->tunnel_mode = xhci_port_is_tunneled(xhci, port); 4726 if (udev->tunnel_mode == USB_LINK_UNKNOWN) 4727 dev_dbg(&udev->dev, "link tunnel state unknown\n"); 4728 else if (udev->tunnel_mode == USB_LINK_TUNNELED) 4729 dev_dbg(&udev->dev, "tunneled over USB4 link\n"); 4730 else if (udev->tunnel_mode == USB_LINK_NATIVE) 4731 dev_dbg(&udev->dev, "native USB 3.x link\n"); 4732 return 0; 4733 } 4734 4735 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support) 4736 return 0; 4737 4738 /* we only support lpm for non-hub device connected to root hub yet */ 4739 if (!udev->parent || udev->parent->parent || 4740 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4741 return 0; 4742 4743 port = xhci->usb2_rhub.ports[udev->portnum - 1]; 4744 capability = port->port_cap->protocol_caps; 4745 4746 if (capability & XHCI_HLC) { 4747 udev->usb2_hw_lpm_capable = 1; 4748 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4749 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4750 if (capability & XHCI_BLC) 4751 udev->usb2_hw_lpm_besl_capable = 1; 4752 } 4753 4754 return 0; 4755 } 4756 4757 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4758 4759 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4760 static unsigned long long xhci_service_interval_to_ns( 4761 struct usb_endpoint_descriptor *desc) 4762 { 4763 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4764 } 4765 4766 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4767 enum usb3_link_state state) 4768 { 4769 unsigned long long sel; 4770 unsigned long long pel; 4771 unsigned int max_sel_pel; 4772 char *state_name; 4773 4774 switch (state) { 4775 case USB3_LPM_U1: 4776 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4777 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4778 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4779 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4780 state_name = "U1"; 4781 break; 4782 case USB3_LPM_U2: 4783 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4784 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4785 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4786 state_name = "U2"; 4787 break; 4788 default: 4789 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4790 __func__); 4791 return USB3_LPM_DISABLED; 4792 } 4793 4794 if (sel <= max_sel_pel && pel <= max_sel_pel) 4795 return USB3_LPM_DEVICE_INITIATED; 4796 4797 if (sel > max_sel_pel) 4798 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4799 "due to long SEL %llu ms\n", 4800 state_name, sel); 4801 else 4802 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4803 "due to long PEL %llu ms\n", 4804 state_name, pel); 4805 return USB3_LPM_DISABLED; 4806 } 4807 4808 /* The U1 timeout should be the maximum of the following values: 4809 * - For control endpoints, U1 system exit latency (SEL) * 3 4810 * - For bulk endpoints, U1 SEL * 5 4811 * - For interrupt endpoints: 4812 * - Notification EPs, U1 SEL * 3 4813 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4814 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4815 */ 4816 static unsigned long long xhci_calculate_intel_u1_timeout( 4817 struct usb_device *udev, 4818 struct usb_endpoint_descriptor *desc) 4819 { 4820 unsigned long long timeout_ns; 4821 int ep_type; 4822 int intr_type; 4823 4824 ep_type = usb_endpoint_type(desc); 4825 switch (ep_type) { 4826 case USB_ENDPOINT_XFER_CONTROL: 4827 timeout_ns = udev->u1_params.sel * 3; 4828 break; 4829 case USB_ENDPOINT_XFER_BULK: 4830 timeout_ns = udev->u1_params.sel * 5; 4831 break; 4832 case USB_ENDPOINT_XFER_INT: 4833 intr_type = usb_endpoint_interrupt_type(desc); 4834 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4835 timeout_ns = udev->u1_params.sel * 3; 4836 break; 4837 } 4838 /* Otherwise the calculation is the same as isoc eps */ 4839 fallthrough; 4840 case USB_ENDPOINT_XFER_ISOC: 4841 timeout_ns = xhci_service_interval_to_ns(desc); 4842 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4843 if (timeout_ns < udev->u1_params.sel * 2) 4844 timeout_ns = udev->u1_params.sel * 2; 4845 break; 4846 default: 4847 return 0; 4848 } 4849 4850 return timeout_ns; 4851 } 4852 4853 /* Returns the hub-encoded U1 timeout value. */ 4854 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4855 struct usb_device *udev, 4856 struct usb_endpoint_descriptor *desc) 4857 { 4858 unsigned long long timeout_ns; 4859 4860 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4861 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4862 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4863 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4864 return USB3_LPM_DISABLED; 4865 } 4866 } 4867 4868 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4869 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4870 else 4871 timeout_ns = udev->u1_params.sel; 4872 4873 /* The U1 timeout is encoded in 1us intervals. 4874 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4875 */ 4876 if (timeout_ns == USB3_LPM_DISABLED) 4877 timeout_ns = 1; 4878 else 4879 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4880 4881 /* If the necessary timeout value is bigger than what we can set in the 4882 * USB 3.0 hub, we have to disable hub-initiated U1. 4883 */ 4884 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4885 return timeout_ns; 4886 dev_dbg(&udev->dev, "Hub-initiated U1 disabled due to long timeout %lluus\n", 4887 timeout_ns); 4888 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4889 } 4890 4891 /* The U2 timeout should be the maximum of: 4892 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4893 * - largest bInterval of any active periodic endpoint (to avoid going 4894 * into lower power link states between intervals). 4895 * - the U2 Exit Latency of the device 4896 */ 4897 static unsigned long long xhci_calculate_intel_u2_timeout( 4898 struct usb_device *udev, 4899 struct usb_endpoint_descriptor *desc) 4900 { 4901 unsigned long long timeout_ns; 4902 unsigned long long u2_del_ns; 4903 4904 timeout_ns = 10 * 1000 * 1000; 4905 4906 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4907 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4908 timeout_ns = xhci_service_interval_to_ns(desc); 4909 4910 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4911 if (u2_del_ns > timeout_ns) 4912 timeout_ns = u2_del_ns; 4913 4914 return timeout_ns; 4915 } 4916 4917 /* Returns the hub-encoded U2 timeout value. */ 4918 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4919 struct usb_device *udev, 4920 struct usb_endpoint_descriptor *desc) 4921 { 4922 unsigned long long timeout_ns; 4923 4924 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4925 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4926 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4927 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4928 return USB3_LPM_DISABLED; 4929 } 4930 } 4931 4932 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4933 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4934 else 4935 timeout_ns = udev->u2_params.sel; 4936 4937 /* The U2 timeout is encoded in 256us intervals */ 4938 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4939 /* If the necessary timeout value is bigger than what we can set in the 4940 * USB 3.0 hub, we have to disable hub-initiated U2. 4941 */ 4942 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4943 return timeout_ns; 4944 dev_dbg(&udev->dev, "Hub-initiated U2 disabled due to long timeout %lluus\n", 4945 timeout_ns * 256); 4946 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4947 } 4948 4949 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4950 struct usb_device *udev, 4951 struct usb_endpoint_descriptor *desc, 4952 enum usb3_link_state state, 4953 u16 *timeout) 4954 { 4955 if (state == USB3_LPM_U1) 4956 return xhci_calculate_u1_timeout(xhci, udev, desc); 4957 else if (state == USB3_LPM_U2) 4958 return xhci_calculate_u2_timeout(xhci, udev, desc); 4959 4960 return USB3_LPM_DISABLED; 4961 } 4962 4963 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4964 struct usb_device *udev, 4965 struct usb_endpoint_descriptor *desc, 4966 enum usb3_link_state state, 4967 u16 *timeout) 4968 { 4969 u16 alt_timeout; 4970 4971 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4972 desc, state, timeout); 4973 4974 /* If we found we can't enable hub-initiated LPM, and 4975 * the U1 or U2 exit latency was too high to allow 4976 * device-initiated LPM as well, then we will disable LPM 4977 * for this device, so stop searching any further. 4978 */ 4979 if (alt_timeout == USB3_LPM_DISABLED) { 4980 *timeout = alt_timeout; 4981 return -E2BIG; 4982 } 4983 if (alt_timeout > *timeout) 4984 *timeout = alt_timeout; 4985 return 0; 4986 } 4987 4988 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4989 struct usb_device *udev, 4990 struct usb_host_interface *alt, 4991 enum usb3_link_state state, 4992 u16 *timeout) 4993 { 4994 int j; 4995 4996 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4997 if (xhci_update_timeout_for_endpoint(xhci, udev, 4998 &alt->endpoint[j].desc, state, timeout)) 4999 return -E2BIG; 5000 } 5001 return 0; 5002 } 5003 5004 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 5005 struct usb_device *udev, 5006 enum usb3_link_state state) 5007 { 5008 struct usb_device *parent = udev->parent; 5009 int tier = 1; /* roothub is tier1 */ 5010 5011 while (parent) { 5012 parent = parent->parent; 5013 tier++; 5014 } 5015 5016 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3) 5017 goto fail; 5018 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2) 5019 goto fail; 5020 5021 return 0; 5022 fail: 5023 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n", 5024 tier); 5025 return -E2BIG; 5026 } 5027 5028 /* Returns the U1 or U2 timeout that should be enabled. 5029 * If the tier check or timeout setting functions return with a non-zero exit 5030 * code, that means the timeout value has been finalized and we shouldn't look 5031 * at any more endpoints. 5032 */ 5033 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 5034 struct usb_device *udev, enum usb3_link_state state) 5035 { 5036 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5037 struct usb_host_config *config; 5038 char *state_name; 5039 int i; 5040 u16 timeout = USB3_LPM_DISABLED; 5041 5042 if (state == USB3_LPM_U1) 5043 state_name = "U1"; 5044 else if (state == USB3_LPM_U2) 5045 state_name = "U2"; 5046 else { 5047 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 5048 state); 5049 return timeout; 5050 } 5051 5052 /* Gather some information about the currently installed configuration 5053 * and alternate interface settings. 5054 */ 5055 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 5056 state, &timeout)) 5057 return timeout; 5058 5059 config = udev->actconfig; 5060 if (!config) 5061 return timeout; 5062 5063 for (i = 0; i < config->desc.bNumInterfaces; i++) { 5064 struct usb_driver *driver; 5065 struct usb_interface *intf = config->interface[i]; 5066 5067 if (!intf) 5068 continue; 5069 5070 /* Check if any currently bound drivers want hub-initiated LPM 5071 * disabled. 5072 */ 5073 if (intf->dev.driver) { 5074 driver = to_usb_driver(intf->dev.driver); 5075 if (driver && driver->disable_hub_initiated_lpm) { 5076 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 5077 state_name, driver->name); 5078 timeout = xhci_get_timeout_no_hub_lpm(udev, 5079 state); 5080 if (timeout == USB3_LPM_DISABLED) 5081 return timeout; 5082 } 5083 } 5084 5085 /* Not sure how this could happen... */ 5086 if (!intf->cur_altsetting) 5087 continue; 5088 5089 if (xhci_update_timeout_for_interface(xhci, udev, 5090 intf->cur_altsetting, 5091 state, &timeout)) 5092 return timeout; 5093 } 5094 return timeout; 5095 } 5096 5097 static int calculate_max_exit_latency(struct usb_device *udev, 5098 enum usb3_link_state state_changed, 5099 u16 hub_encoded_timeout) 5100 { 5101 unsigned long long u1_mel_us = 0; 5102 unsigned long long u2_mel_us = 0; 5103 unsigned long long mel_us = 0; 5104 bool disabling_u1; 5105 bool disabling_u2; 5106 bool enabling_u1; 5107 bool enabling_u2; 5108 5109 disabling_u1 = (state_changed == USB3_LPM_U1 && 5110 hub_encoded_timeout == USB3_LPM_DISABLED); 5111 disabling_u2 = (state_changed == USB3_LPM_U2 && 5112 hub_encoded_timeout == USB3_LPM_DISABLED); 5113 5114 enabling_u1 = (state_changed == USB3_LPM_U1 && 5115 hub_encoded_timeout != USB3_LPM_DISABLED); 5116 enabling_u2 = (state_changed == USB3_LPM_U2 && 5117 hub_encoded_timeout != USB3_LPM_DISABLED); 5118 5119 /* If U1 was already enabled and we're not disabling it, 5120 * or we're going to enable U1, account for the U1 max exit latency. 5121 */ 5122 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 5123 enabling_u1) 5124 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 5125 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 5126 enabling_u2) 5127 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5128 5129 mel_us = max(u1_mel_us, u2_mel_us); 5130 5131 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5132 if (mel_us > MAX_EXIT) { 5133 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5134 "is too big.\n", mel_us); 5135 return -E2BIG; 5136 } 5137 return mel_us; 5138 } 5139 5140 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5141 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5142 struct usb_device *udev, enum usb3_link_state state) 5143 { 5144 struct xhci_hcd *xhci; 5145 struct xhci_port *port; 5146 u16 hub_encoded_timeout; 5147 int mel; 5148 int ret; 5149 5150 xhci = hcd_to_xhci(hcd); 5151 /* The LPM timeout values are pretty host-controller specific, so don't 5152 * enable hub-initiated timeouts unless the vendor has provided 5153 * information about their timeout algorithm. 5154 */ 5155 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5156 !xhci->devs[udev->slot_id]) 5157 return USB3_LPM_DISABLED; 5158 5159 if (xhci_check_tier_policy(xhci, udev, state) < 0) 5160 return USB3_LPM_DISABLED; 5161 5162 /* If connected to root port then check port can handle lpm */ 5163 if (udev->parent && !udev->parent->parent) { 5164 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 5165 if (port->lpm_incapable) 5166 return USB3_LPM_DISABLED; 5167 } 5168 5169 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5170 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5171 if (mel < 0) { 5172 /* Max Exit Latency is too big, disable LPM. */ 5173 hub_encoded_timeout = USB3_LPM_DISABLED; 5174 mel = 0; 5175 } 5176 5177 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5178 if (ret) 5179 return ret; 5180 return hub_encoded_timeout; 5181 } 5182 5183 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5184 struct usb_device *udev, enum usb3_link_state state) 5185 { 5186 struct xhci_hcd *xhci; 5187 u16 mel; 5188 5189 xhci = hcd_to_xhci(hcd); 5190 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5191 !xhci->devs[udev->slot_id]) 5192 return 0; 5193 5194 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5195 return xhci_change_max_exit_latency(xhci, udev, mel); 5196 } 5197 #else /* CONFIG_PM */ 5198 5199 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5200 struct usb_device *udev, int enable) 5201 { 5202 return 0; 5203 } 5204 5205 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5206 { 5207 return 0; 5208 } 5209 5210 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5211 struct usb_device *udev, enum usb3_link_state state) 5212 { 5213 return USB3_LPM_DISABLED; 5214 } 5215 5216 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5217 struct usb_device *udev, enum usb3_link_state state) 5218 { 5219 return 0; 5220 } 5221 #endif /* CONFIG_PM */ 5222 5223 /*-------------------------------------------------------------------------*/ 5224 5225 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5226 * internal data structures for the device. 5227 */ 5228 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5229 struct usb_tt *tt, gfp_t mem_flags) 5230 { 5231 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5232 struct xhci_virt_device *vdev; 5233 struct xhci_command *config_cmd; 5234 struct xhci_input_control_ctx *ctrl_ctx; 5235 struct xhci_slot_ctx *slot_ctx; 5236 unsigned long flags; 5237 unsigned think_time; 5238 int ret; 5239 5240 /* Ignore root hubs */ 5241 if (!hdev->parent) 5242 return 0; 5243 5244 vdev = xhci->devs[hdev->slot_id]; 5245 if (!vdev) { 5246 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5247 return -EINVAL; 5248 } 5249 5250 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5251 if (!config_cmd) 5252 return -ENOMEM; 5253 5254 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5255 if (!ctrl_ctx) { 5256 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5257 __func__); 5258 xhci_free_command(xhci, config_cmd); 5259 return -ENOMEM; 5260 } 5261 5262 spin_lock_irqsave(&xhci->lock, flags); 5263 if (hdev->speed == USB_SPEED_HIGH && 5264 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5265 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5266 xhci_free_command(xhci, config_cmd); 5267 spin_unlock_irqrestore(&xhci->lock, flags); 5268 return -ENOMEM; 5269 } 5270 5271 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5272 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5273 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5274 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5275 /* 5276 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5277 * but it may be already set to 1 when setup an xHCI virtual 5278 * device, so clear it anyway. 5279 */ 5280 if (tt->multi) 5281 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5282 else if (hdev->speed == USB_SPEED_FULL) 5283 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5284 5285 if (xhci->hci_version > 0x95) { 5286 xhci_dbg(xhci, "xHCI version %x needs hub " 5287 "TT think time and number of ports\n", 5288 (unsigned int) xhci->hci_version); 5289 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5290 /* Set TT think time - convert from ns to FS bit times. 5291 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5292 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5293 * 5294 * xHCI 1.0: this field shall be 0 if the device is not a 5295 * High-spped hub. 5296 */ 5297 think_time = tt->think_time; 5298 if (think_time != 0) 5299 think_time = (think_time / 666) - 1; 5300 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5301 slot_ctx->tt_info |= 5302 cpu_to_le32(TT_THINK_TIME(think_time)); 5303 } else { 5304 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5305 "TT think time or number of ports\n", 5306 (unsigned int) xhci->hci_version); 5307 } 5308 slot_ctx->dev_state = 0; 5309 spin_unlock_irqrestore(&xhci->lock, flags); 5310 5311 xhci_dbg(xhci, "Set up %s for hub device.\n", 5312 (xhci->hci_version > 0x95) ? 5313 "configure endpoint" : "evaluate context"); 5314 5315 /* Issue and wait for the configure endpoint or 5316 * evaluate context command. 5317 */ 5318 if (xhci->hci_version > 0x95) 5319 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5320 false, false); 5321 else 5322 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5323 true, false); 5324 5325 xhci_free_command(xhci, config_cmd); 5326 return ret; 5327 } 5328 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5329 5330 static int xhci_get_frame(struct usb_hcd *hcd) 5331 { 5332 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5333 /* EHCI mods by the periodic size. Why? */ 5334 return readl(&xhci->run_regs->microframe_index) >> 3; 5335 } 5336 5337 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5338 { 5339 xhci->usb2_rhub.hcd = hcd; 5340 hcd->speed = HCD_USB2; 5341 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5342 /* 5343 * USB 2.0 roothub under xHCI has an integrated TT, 5344 * (rate matching hub) as opposed to having an OHCI/UHCI 5345 * companion controller. 5346 */ 5347 hcd->has_tt = 1; 5348 } 5349 5350 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5351 { 5352 unsigned int minor_rev; 5353 5354 /* 5355 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5356 * should return 0x31 for sbrn, or that the minor revision 5357 * is a two digit BCD containig minor and sub-minor numbers. 5358 * This was later clarified in xHCI 1.2. 5359 * 5360 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5361 * minor revision set to 0x1 instead of 0x10. 5362 */ 5363 if (xhci->usb3_rhub.min_rev == 0x1) 5364 minor_rev = 1; 5365 else 5366 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5367 5368 switch (minor_rev) { 5369 case 2: 5370 hcd->speed = HCD_USB32; 5371 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5372 hcd->self.root_hub->rx_lanes = 2; 5373 hcd->self.root_hub->tx_lanes = 2; 5374 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5375 break; 5376 case 1: 5377 hcd->speed = HCD_USB31; 5378 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5379 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5380 break; 5381 } 5382 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5383 minor_rev, minor_rev ? "Enhanced " : ""); 5384 5385 xhci->usb3_rhub.hcd = hcd; 5386 } 5387 5388 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5389 { 5390 struct xhci_hcd *xhci; 5391 /* 5392 * TODO: Check with DWC3 clients for sysdev according to 5393 * quirks 5394 */ 5395 struct device *dev = hcd->self.sysdev; 5396 int retval; 5397 5398 /* Accept arbitrarily long scatter-gather lists */ 5399 hcd->self.sg_tablesize = ~0; 5400 5401 /* support to build packet from discontinuous buffers */ 5402 hcd->self.no_sg_constraint = 1; 5403 5404 /* XHCI controllers don't stop the ep queue on short packets :| */ 5405 hcd->self.no_stop_on_short = 1; 5406 5407 xhci = hcd_to_xhci(hcd); 5408 5409 if (!usb_hcd_is_primary_hcd(hcd)) { 5410 xhci_hcd_init_usb3_data(xhci, hcd); 5411 return 0; 5412 } 5413 5414 mutex_init(&xhci->mutex); 5415 xhci->main_hcd = hcd; 5416 xhci->cap_regs = hcd->regs; 5417 xhci->op_regs = hcd->regs + 5418 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5419 xhci->run_regs = hcd->regs + 5420 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5421 /* Cache read-only capability registers */ 5422 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5423 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5424 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5425 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5426 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5427 if (xhci->hci_version > 0x100) 5428 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5429 5430 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5431 if ((!xhci->max_interrupters) || 5432 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1)) 5433 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1); 5434 5435 xhci->quirks |= quirks; 5436 5437 if (get_quirks) 5438 get_quirks(dev, xhci); 5439 5440 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5441 * success event after a short transfer. This quirk will ignore such 5442 * spurious event. 5443 */ 5444 if (xhci->hci_version > 0x96) 5445 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5446 5447 if (xhci->hci_version == 0x95 && link_quirk) { 5448 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits"); 5449 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 5450 } 5451 5452 /* Make sure the HC is halted. */ 5453 retval = xhci_halt(xhci); 5454 if (retval) 5455 return retval; 5456 5457 xhci_zero_64b_regs(xhci); 5458 5459 xhci_dbg(xhci, "Resetting HCD\n"); 5460 /* Reset the internal HC memory state and registers. */ 5461 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5462 if (retval) 5463 return retval; 5464 xhci_dbg(xhci, "Reset complete\n"); 5465 5466 /* 5467 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5468 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5469 * address memory pointers actually. So, this driver clears the AC64 5470 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5471 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5472 */ 5473 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5474 xhci->hcc_params &= ~BIT(0); 5475 5476 /* Set dma_mask and coherent_dma_mask to 64-bits, 5477 * if xHC supports 64-bit addressing */ 5478 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5479 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5480 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5481 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5482 } else { 5483 /* 5484 * This is to avoid error in cases where a 32-bit USB 5485 * controller is used on a 64-bit capable system. 5486 */ 5487 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5488 if (retval) 5489 return retval; 5490 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5491 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5492 } 5493 5494 xhci_dbg(xhci, "Calling HCD init\n"); 5495 /* Initialize HCD and host controller data structures. */ 5496 retval = xhci_init(hcd); 5497 if (retval) 5498 return retval; 5499 xhci_dbg(xhci, "Called HCD init\n"); 5500 5501 if (xhci_hcd_is_usb3(hcd)) 5502 xhci_hcd_init_usb3_data(xhci, hcd); 5503 else 5504 xhci_hcd_init_usb2_data(xhci, hcd); 5505 5506 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5507 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5508 5509 return 0; 5510 } 5511 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5512 5513 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5514 struct usb_host_endpoint *ep) 5515 { 5516 struct xhci_hcd *xhci; 5517 struct usb_device *udev; 5518 unsigned int slot_id; 5519 unsigned int ep_index; 5520 unsigned long flags; 5521 5522 xhci = hcd_to_xhci(hcd); 5523 5524 spin_lock_irqsave(&xhci->lock, flags); 5525 udev = (struct usb_device *)ep->hcpriv; 5526 slot_id = udev->slot_id; 5527 ep_index = xhci_get_endpoint_index(&ep->desc); 5528 5529 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5530 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5531 spin_unlock_irqrestore(&xhci->lock, flags); 5532 } 5533 5534 static const struct hc_driver xhci_hc_driver = { 5535 .description = "xhci-hcd", 5536 .product_desc = "xHCI Host Controller", 5537 .hcd_priv_size = sizeof(struct xhci_hcd), 5538 5539 /* 5540 * generic hardware linkage 5541 */ 5542 .irq = xhci_irq, 5543 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5544 HCD_BH, 5545 5546 /* 5547 * basic lifecycle operations 5548 */ 5549 .reset = NULL, /* set in xhci_init_driver() */ 5550 .start = xhci_run, 5551 .stop = xhci_stop, 5552 .shutdown = xhci_shutdown, 5553 5554 /* 5555 * managing i/o requests and associated device resources 5556 */ 5557 .map_urb_for_dma = xhci_map_urb_for_dma, 5558 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5559 .urb_enqueue = xhci_urb_enqueue, 5560 .urb_dequeue = xhci_urb_dequeue, 5561 .alloc_dev = xhci_alloc_dev, 5562 .free_dev = xhci_free_dev, 5563 .alloc_streams = xhci_alloc_streams, 5564 .free_streams = xhci_free_streams, 5565 .add_endpoint = xhci_add_endpoint, 5566 .drop_endpoint = xhci_drop_endpoint, 5567 .endpoint_disable = xhci_endpoint_disable, 5568 .endpoint_reset = xhci_endpoint_reset, 5569 .check_bandwidth = xhci_check_bandwidth, 5570 .reset_bandwidth = xhci_reset_bandwidth, 5571 .address_device = xhci_address_device, 5572 .enable_device = xhci_enable_device, 5573 .update_hub_device = xhci_update_hub_device, 5574 .reset_device = xhci_discover_or_reset_device, 5575 5576 /* 5577 * scheduling support 5578 */ 5579 .get_frame_number = xhci_get_frame, 5580 5581 /* 5582 * root hub support 5583 */ 5584 .hub_control = xhci_hub_control, 5585 .hub_status_data = xhci_hub_status_data, 5586 .bus_suspend = xhci_bus_suspend, 5587 .bus_resume = xhci_bus_resume, 5588 .get_resuming_ports = xhci_get_resuming_ports, 5589 5590 /* 5591 * call back when device connected and addressed 5592 */ 5593 .update_device = xhci_update_device, 5594 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5595 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5596 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5597 .find_raw_port_number = xhci_find_raw_port_number, 5598 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5599 }; 5600 5601 void xhci_init_driver(struct hc_driver *drv, 5602 const struct xhci_driver_overrides *over) 5603 { 5604 BUG_ON(!over); 5605 5606 /* Copy the generic table to drv then apply the overrides */ 5607 *drv = xhci_hc_driver; 5608 5609 if (over) { 5610 drv->hcd_priv_size += over->extra_priv_size; 5611 if (over->reset) 5612 drv->reset = over->reset; 5613 if (over->start) 5614 drv->start = over->start; 5615 if (over->add_endpoint) 5616 drv->add_endpoint = over->add_endpoint; 5617 if (over->drop_endpoint) 5618 drv->drop_endpoint = over->drop_endpoint; 5619 if (over->check_bandwidth) 5620 drv->check_bandwidth = over->check_bandwidth; 5621 if (over->reset_bandwidth) 5622 drv->reset_bandwidth = over->reset_bandwidth; 5623 if (over->update_hub_device) 5624 drv->update_hub_device = over->update_hub_device; 5625 if (over->hub_control) 5626 drv->hub_control = over->hub_control; 5627 } 5628 } 5629 EXPORT_SYMBOL_GPL(xhci_init_driver); 5630 5631 MODULE_DESCRIPTION(DRIVER_DESC); 5632 MODULE_AUTHOR(DRIVER_AUTHOR); 5633 MODULE_LICENSE("GPL"); 5634 5635 static int __init xhci_hcd_init(void) 5636 { 5637 /* 5638 * Check the compiler generated sizes of structures that must be laid 5639 * out in specific ways for hardware access. 5640 */ 5641 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5642 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5643 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5644 /* xhci_device_control has eight fields, and also 5645 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5646 */ 5647 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5648 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5649 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5650 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5651 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5652 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5653 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5654 5655 if (usb_disabled()) 5656 return -ENODEV; 5657 5658 xhci_debugfs_create_root(); 5659 xhci_dbc_init(); 5660 5661 return 0; 5662 } 5663 5664 /* 5665 * If an init function is provided, an exit function must also be provided 5666 * to allow module unload. 5667 */ 5668 static void __exit xhci_hcd_fini(void) 5669 { 5670 xhci_debugfs_remove_root(); 5671 xhci_dbc_exit(); 5672 } 5673 5674 module_init(xhci_hcd_init); 5675 module_exit(xhci_hcd_fini); 5676