1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 30 #include "xhci.h" 31 32 #define DRIVER_AUTHOR "Sarah Sharp" 33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 34 35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 36 static int link_quirk; 37 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 39 40 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 41 /* 42 * handshake - spin reading hc until handshake completes or fails 43 * @ptr: address of hc register to be read 44 * @mask: bits to look at in result of read 45 * @done: value of those bits when handshake succeeds 46 * @usec: timeout in microseconds 47 * 48 * Returns negative errno, or zero on success 49 * 50 * Success happens when the "mask" bits have the specified value (hardware 51 * handshake done). There are two failure modes: "usec" have passed (major 52 * hardware flakeout), or the register reads as all-ones (hardware removed). 53 */ 54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr, 55 u32 mask, u32 done, int usec) 56 { 57 u32 result; 58 59 do { 60 result = xhci_readl(xhci, ptr); 61 if (result == ~(u32)0) /* card removed */ 62 return -ENODEV; 63 result &= mask; 64 if (result == done) 65 return 0; 66 udelay(1); 67 usec--; 68 } while (usec > 0); 69 return -ETIMEDOUT; 70 } 71 72 /* 73 * Disable interrupts and begin the xHCI halting process. 74 */ 75 void xhci_quiesce(struct xhci_hcd *xhci) 76 { 77 u32 halted; 78 u32 cmd; 79 u32 mask; 80 81 mask = ~(XHCI_IRQS); 82 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; 83 if (!halted) 84 mask &= ~CMD_RUN; 85 86 cmd = xhci_readl(xhci, &xhci->op_regs->command); 87 cmd &= mask; 88 xhci_writel(xhci, cmd, &xhci->op_regs->command); 89 } 90 91 /* 92 * Force HC into halt state. 93 * 94 * Disable any IRQs and clear the run/stop bit. 95 * HC will complete any current and actively pipelined transactions, and 96 * should halt within 16 ms of the run/stop bit being cleared. 97 * Read HC Halted bit in the status register to see when the HC is finished. 98 */ 99 int xhci_halt(struct xhci_hcd *xhci) 100 { 101 int ret; 102 xhci_dbg(xhci, "// Halt the HC\n"); 103 xhci_quiesce(xhci); 104 105 ret = handshake(xhci, &xhci->op_regs->status, 106 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 107 if (!ret) 108 xhci->xhc_state |= XHCI_STATE_HALTED; 109 return ret; 110 } 111 112 /* 113 * Set the run bit and wait for the host to be running. 114 */ 115 static int xhci_start(struct xhci_hcd *xhci) 116 { 117 u32 temp; 118 int ret; 119 120 temp = xhci_readl(xhci, &xhci->op_regs->command); 121 temp |= (CMD_RUN); 122 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n", 123 temp); 124 xhci_writel(xhci, temp, &xhci->op_regs->command); 125 126 /* 127 * Wait for the HCHalted Status bit to be 0 to indicate the host is 128 * running. 129 */ 130 ret = handshake(xhci, &xhci->op_regs->status, 131 STS_HALT, 0, XHCI_MAX_HALT_USEC); 132 if (ret == -ETIMEDOUT) 133 xhci_err(xhci, "Host took too long to start, " 134 "waited %u microseconds.\n", 135 XHCI_MAX_HALT_USEC); 136 if (!ret) 137 xhci->xhc_state &= ~XHCI_STATE_HALTED; 138 return ret; 139 } 140 141 /* 142 * Reset a halted HC. 143 * 144 * This resets pipelines, timers, counters, state machines, etc. 145 * Transactions will be terminated immediately, and operational registers 146 * will be set to their defaults. 147 */ 148 int xhci_reset(struct xhci_hcd *xhci) 149 { 150 u32 command; 151 u32 state; 152 int ret; 153 154 state = xhci_readl(xhci, &xhci->op_regs->status); 155 if ((state & STS_HALT) == 0) { 156 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 157 return 0; 158 } 159 160 xhci_dbg(xhci, "// Reset the HC\n"); 161 command = xhci_readl(xhci, &xhci->op_regs->command); 162 command |= CMD_RESET; 163 xhci_writel(xhci, command, &xhci->op_regs->command); 164 165 ret = handshake(xhci, &xhci->op_regs->command, 166 CMD_RESET, 0, 250 * 1000); 167 if (ret) 168 return ret; 169 170 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n"); 171 /* 172 * xHCI cannot write to any doorbells or operational registers other 173 * than status until the "Controller Not Ready" flag is cleared. 174 */ 175 return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000); 176 } 177 178 #ifdef CONFIG_PCI 179 static int xhci_free_msi(struct xhci_hcd *xhci) 180 { 181 int i; 182 183 if (!xhci->msix_entries) 184 return -EINVAL; 185 186 for (i = 0; i < xhci->msix_count; i++) 187 if (xhci->msix_entries[i].vector) 188 free_irq(xhci->msix_entries[i].vector, 189 xhci_to_hcd(xhci)); 190 return 0; 191 } 192 193 /* 194 * Set up MSI 195 */ 196 static int xhci_setup_msi(struct xhci_hcd *xhci) 197 { 198 int ret; 199 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 200 201 ret = pci_enable_msi(pdev); 202 if (ret) { 203 xhci_dbg(xhci, "failed to allocate MSI entry\n"); 204 return ret; 205 } 206 207 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq, 208 0, "xhci_hcd", xhci_to_hcd(xhci)); 209 if (ret) { 210 xhci_dbg(xhci, "disable MSI interrupt\n"); 211 pci_disable_msi(pdev); 212 } 213 214 return ret; 215 } 216 217 /* 218 * Free IRQs 219 * free all IRQs request 220 */ 221 static void xhci_free_irq(struct xhci_hcd *xhci) 222 { 223 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 224 int ret; 225 226 /* return if using legacy interrupt */ 227 if (xhci_to_hcd(xhci)->irq >= 0) 228 return; 229 230 ret = xhci_free_msi(xhci); 231 if (!ret) 232 return; 233 if (pdev->irq >= 0) 234 free_irq(pdev->irq, xhci_to_hcd(xhci)); 235 236 return; 237 } 238 239 /* 240 * Set up MSI-X 241 */ 242 static int xhci_setup_msix(struct xhci_hcd *xhci) 243 { 244 int i, ret = 0; 245 struct usb_hcd *hcd = xhci_to_hcd(xhci); 246 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 247 248 /* 249 * calculate number of msi-x vectors supported. 250 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 251 * with max number of interrupters based on the xhci HCSPARAMS1. 252 * - num_online_cpus: maximum msi-x vectors per CPUs core. 253 * Add additional 1 vector to ensure always available interrupt. 254 */ 255 xhci->msix_count = min(num_online_cpus() + 1, 256 HCS_MAX_INTRS(xhci->hcs_params1)); 257 258 xhci->msix_entries = 259 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 260 GFP_KERNEL); 261 if (!xhci->msix_entries) { 262 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 263 return -ENOMEM; 264 } 265 266 for (i = 0; i < xhci->msix_count; i++) { 267 xhci->msix_entries[i].entry = i; 268 xhci->msix_entries[i].vector = 0; 269 } 270 271 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); 272 if (ret) { 273 xhci_dbg(xhci, "Failed to enable MSI-X\n"); 274 goto free_entries; 275 } 276 277 for (i = 0; i < xhci->msix_count; i++) { 278 ret = request_irq(xhci->msix_entries[i].vector, 279 (irq_handler_t)xhci_msi_irq, 280 0, "xhci_hcd", xhci_to_hcd(xhci)); 281 if (ret) 282 goto disable_msix; 283 } 284 285 hcd->msix_enabled = 1; 286 return ret; 287 288 disable_msix: 289 xhci_dbg(xhci, "disable MSI-X interrupt\n"); 290 xhci_free_irq(xhci); 291 pci_disable_msix(pdev); 292 free_entries: 293 kfree(xhci->msix_entries); 294 xhci->msix_entries = NULL; 295 return ret; 296 } 297 298 /* Free any IRQs and disable MSI-X */ 299 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 300 { 301 struct usb_hcd *hcd = xhci_to_hcd(xhci); 302 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 303 304 xhci_free_irq(xhci); 305 306 if (xhci->msix_entries) { 307 pci_disable_msix(pdev); 308 kfree(xhci->msix_entries); 309 xhci->msix_entries = NULL; 310 } else { 311 pci_disable_msi(pdev); 312 } 313 314 hcd->msix_enabled = 0; 315 return; 316 } 317 318 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 319 { 320 int i; 321 322 if (xhci->msix_entries) { 323 for (i = 0; i < xhci->msix_count; i++) 324 synchronize_irq(xhci->msix_entries[i].vector); 325 } 326 } 327 328 static int xhci_try_enable_msi(struct usb_hcd *hcd) 329 { 330 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 331 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 332 int ret; 333 334 /* 335 * Some Fresco Logic host controllers advertise MSI, but fail to 336 * generate interrupts. Don't even try to enable MSI. 337 */ 338 if (xhci->quirks & XHCI_BROKEN_MSI) 339 return 0; 340 341 /* unregister the legacy interrupt */ 342 if (hcd->irq) 343 free_irq(hcd->irq, hcd); 344 hcd->irq = -1; 345 346 ret = xhci_setup_msix(xhci); 347 if (ret) 348 /* fall back to msi*/ 349 ret = xhci_setup_msi(xhci); 350 351 if (!ret) 352 /* hcd->irq is -1, we have MSI */ 353 return 0; 354 355 /* fall back to legacy interrupt*/ 356 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 357 hcd->irq_descr, hcd); 358 if (ret) { 359 xhci_err(xhci, "request interrupt %d failed\n", 360 pdev->irq); 361 return ret; 362 } 363 hcd->irq = pdev->irq; 364 return 0; 365 } 366 367 #else 368 369 static int xhci_try_enable_msi(struct usb_hcd *hcd) 370 { 371 return 0; 372 } 373 374 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 375 { 376 } 377 378 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 379 { 380 } 381 382 #endif 383 384 /* 385 * Initialize memory for HCD and xHC (one-time init). 386 * 387 * Program the PAGESIZE register, initialize the device context array, create 388 * device contexts (?), set up a command ring segment (or two?), create event 389 * ring (one for now). 390 */ 391 int xhci_init(struct usb_hcd *hcd) 392 { 393 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 394 int retval = 0; 395 396 xhci_dbg(xhci, "xhci_init\n"); 397 spin_lock_init(&xhci->lock); 398 if (xhci->hci_version == 0x95 && link_quirk) { 399 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n"); 400 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 401 } else { 402 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n"); 403 } 404 retval = xhci_mem_init(xhci, GFP_KERNEL); 405 xhci_dbg(xhci, "Finished xhci_init\n"); 406 407 return retval; 408 } 409 410 /*-------------------------------------------------------------------------*/ 411 412 413 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 414 static void xhci_event_ring_work(unsigned long arg) 415 { 416 unsigned long flags; 417 int temp; 418 u64 temp_64; 419 struct xhci_hcd *xhci = (struct xhci_hcd *) arg; 420 int i, j; 421 422 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies); 423 424 spin_lock_irqsave(&xhci->lock, flags); 425 temp = xhci_readl(xhci, &xhci->op_regs->status); 426 xhci_dbg(xhci, "op reg status = 0x%x\n", temp); 427 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 428 (xhci->xhc_state & XHCI_STATE_HALTED)) { 429 xhci_dbg(xhci, "HW died, polling stopped.\n"); 430 spin_unlock_irqrestore(&xhci->lock, flags); 431 return; 432 } 433 434 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 435 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp); 436 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask); 437 xhci->error_bitmask = 0; 438 xhci_dbg(xhci, "Event ring:\n"); 439 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 440 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 441 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 442 temp_64 &= ~ERST_PTR_MASK; 443 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 444 xhci_dbg(xhci, "Command ring:\n"); 445 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg); 446 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 447 xhci_dbg_cmd_ptrs(xhci); 448 for (i = 0; i < MAX_HC_SLOTS; ++i) { 449 if (!xhci->devs[i]) 450 continue; 451 for (j = 0; j < 31; ++j) { 452 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]); 453 } 454 } 455 spin_unlock_irqrestore(&xhci->lock, flags); 456 457 if (!xhci->zombie) 458 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ); 459 else 460 xhci_dbg(xhci, "Quit polling the event ring.\n"); 461 } 462 #endif 463 464 static int xhci_run_finished(struct xhci_hcd *xhci) 465 { 466 if (xhci_start(xhci)) { 467 xhci_halt(xhci); 468 return -ENODEV; 469 } 470 xhci->shared_hcd->state = HC_STATE_RUNNING; 471 472 if (xhci->quirks & XHCI_NEC_HOST) 473 xhci_ring_cmd_db(xhci); 474 475 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n"); 476 return 0; 477 } 478 479 /* 480 * Start the HC after it was halted. 481 * 482 * This function is called by the USB core when the HC driver is added. 483 * Its opposite is xhci_stop(). 484 * 485 * xhci_init() must be called once before this function can be called. 486 * Reset the HC, enable device slot contexts, program DCBAAP, and 487 * set command ring pointer and event ring pointer. 488 * 489 * Setup MSI-X vectors and enable interrupts. 490 */ 491 int xhci_run(struct usb_hcd *hcd) 492 { 493 u32 temp; 494 u64 temp_64; 495 int ret; 496 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 497 498 /* Start the xHCI host controller running only after the USB 2.0 roothub 499 * is setup. 500 */ 501 502 hcd->uses_new_polling = 1; 503 if (!usb_hcd_is_primary_hcd(hcd)) 504 return xhci_run_finished(xhci); 505 506 xhci_dbg(xhci, "xhci_run\n"); 507 508 ret = xhci_try_enable_msi(hcd); 509 if (ret) 510 return ret; 511 512 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 513 init_timer(&xhci->event_ring_timer); 514 xhci->event_ring_timer.data = (unsigned long) xhci; 515 xhci->event_ring_timer.function = xhci_event_ring_work; 516 /* Poll the event ring */ 517 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ; 518 xhci->zombie = 0; 519 xhci_dbg(xhci, "Setting event ring polling timer\n"); 520 add_timer(&xhci->event_ring_timer); 521 #endif 522 523 xhci_dbg(xhci, "Command ring memory map follows:\n"); 524 xhci_debug_ring(xhci, xhci->cmd_ring); 525 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 526 xhci_dbg_cmd_ptrs(xhci); 527 528 xhci_dbg(xhci, "ERST memory map follows:\n"); 529 xhci_dbg_erst(xhci, &xhci->erst); 530 xhci_dbg(xhci, "Event ring:\n"); 531 xhci_debug_ring(xhci, xhci->event_ring); 532 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 533 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 534 temp_64 &= ~ERST_PTR_MASK; 535 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 536 537 xhci_dbg(xhci, "// Set the interrupt modulation register\n"); 538 temp = xhci_readl(xhci, &xhci->ir_set->irq_control); 539 temp &= ~ER_IRQ_INTERVAL_MASK; 540 temp |= (u32) 160; 541 xhci_writel(xhci, temp, &xhci->ir_set->irq_control); 542 543 /* Set the HCD state before we enable the irqs */ 544 temp = xhci_readl(xhci, &xhci->op_regs->command); 545 temp |= (CMD_EIE); 546 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n", 547 temp); 548 xhci_writel(xhci, temp, &xhci->op_regs->command); 549 550 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 551 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n", 552 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 553 xhci_writel(xhci, ER_IRQ_ENABLE(temp), 554 &xhci->ir_set->irq_pending); 555 xhci_print_ir_set(xhci, 0); 556 557 if (xhci->quirks & XHCI_NEC_HOST) 558 xhci_queue_vendor_command(xhci, 0, 0, 0, 559 TRB_TYPE(TRB_NEC_GET_FW)); 560 561 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n"); 562 return 0; 563 } 564 565 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 566 { 567 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 568 569 spin_lock_irq(&xhci->lock); 570 xhci_halt(xhci); 571 572 /* The shared_hcd is going to be deallocated shortly (the USB core only 573 * calls this function when allocation fails in usb_add_hcd(), or 574 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 575 */ 576 xhci->shared_hcd = NULL; 577 spin_unlock_irq(&xhci->lock); 578 } 579 580 /* 581 * Stop xHCI driver. 582 * 583 * This function is called by the USB core when the HC driver is removed. 584 * Its opposite is xhci_run(). 585 * 586 * Disable device contexts, disable IRQs, and quiesce the HC. 587 * Reset the HC, finish any completed transactions, and cleanup memory. 588 */ 589 void xhci_stop(struct usb_hcd *hcd) 590 { 591 u32 temp; 592 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 593 594 if (!usb_hcd_is_primary_hcd(hcd)) { 595 xhci_only_stop_hcd(xhci->shared_hcd); 596 return; 597 } 598 599 spin_lock_irq(&xhci->lock); 600 /* Make sure the xHC is halted for a USB3 roothub 601 * (xhci_stop() could be called as part of failed init). 602 */ 603 xhci_halt(xhci); 604 xhci_reset(xhci); 605 spin_unlock_irq(&xhci->lock); 606 607 xhci_cleanup_msix(xhci); 608 609 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 610 /* Tell the event ring poll function not to reschedule */ 611 xhci->zombie = 1; 612 del_timer_sync(&xhci->event_ring_timer); 613 #endif 614 615 if (xhci->quirks & XHCI_AMD_PLL_FIX) 616 usb_amd_dev_put(); 617 618 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 619 temp = xhci_readl(xhci, &xhci->op_regs->status); 620 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 621 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 622 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 623 &xhci->ir_set->irq_pending); 624 xhci_print_ir_set(xhci, 0); 625 626 xhci_dbg(xhci, "cleaning up memory\n"); 627 xhci_mem_cleanup(xhci); 628 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 629 xhci_readl(xhci, &xhci->op_regs->status)); 630 } 631 632 /* 633 * Shutdown HC (not bus-specific) 634 * 635 * This is called when the machine is rebooting or halting. We assume that the 636 * machine will be powered off, and the HC's internal state will be reset. 637 * Don't bother to free memory. 638 * 639 * This will only ever be called with the main usb_hcd (the USB3 roothub). 640 */ 641 void xhci_shutdown(struct usb_hcd *hcd) 642 { 643 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 644 645 spin_lock_irq(&xhci->lock); 646 xhci_halt(xhci); 647 spin_unlock_irq(&xhci->lock); 648 649 xhci_cleanup_msix(xhci); 650 651 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n", 652 xhci_readl(xhci, &xhci->op_regs->status)); 653 } 654 655 #ifdef CONFIG_PM 656 static void xhci_save_registers(struct xhci_hcd *xhci) 657 { 658 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command); 659 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification); 660 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 661 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg); 662 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 663 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control); 664 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size); 665 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 666 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 667 } 668 669 static void xhci_restore_registers(struct xhci_hcd *xhci) 670 { 671 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command); 672 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 673 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 674 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg); 675 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 676 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control); 677 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size); 678 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 679 } 680 681 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 682 { 683 u64 val_64; 684 685 /* step 2: initialize command ring buffer */ 686 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 687 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 688 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 689 xhci->cmd_ring->dequeue) & 690 (u64) ~CMD_RING_RSVD_BITS) | 691 xhci->cmd_ring->cycle_state; 692 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n", 693 (long unsigned long) val_64); 694 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 695 } 696 697 /* 698 * The whole command ring must be cleared to zero when we suspend the host. 699 * 700 * The host doesn't save the command ring pointer in the suspend well, so we 701 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 702 * aligned, because of the reserved bits in the command ring dequeue pointer 703 * register. Therefore, we can't just set the dequeue pointer back in the 704 * middle of the ring (TRBs are 16-byte aligned). 705 */ 706 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 707 { 708 struct xhci_ring *ring; 709 struct xhci_segment *seg; 710 711 ring = xhci->cmd_ring; 712 seg = ring->deq_seg; 713 do { 714 memset(seg->trbs, 0, 715 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 716 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 717 cpu_to_le32(~TRB_CYCLE); 718 seg = seg->next; 719 } while (seg != ring->deq_seg); 720 721 /* Reset the software enqueue and dequeue pointers */ 722 ring->deq_seg = ring->first_seg; 723 ring->dequeue = ring->first_seg->trbs; 724 ring->enq_seg = ring->deq_seg; 725 ring->enqueue = ring->dequeue; 726 727 /* 728 * Ring is now zeroed, so the HW should look for change of ownership 729 * when the cycle bit is set to 1. 730 */ 731 ring->cycle_state = 1; 732 733 /* 734 * Reset the hardware dequeue pointer. 735 * Yes, this will need to be re-written after resume, but we're paranoid 736 * and want to make sure the hardware doesn't access bogus memory 737 * because, say, the BIOS or an SMI started the host without changing 738 * the command ring pointers. 739 */ 740 xhci_set_cmd_ring_deq(xhci); 741 } 742 743 /* 744 * Stop HC (not bus-specific) 745 * 746 * This is called when the machine transition into S3/S4 mode. 747 * 748 */ 749 int xhci_suspend(struct xhci_hcd *xhci) 750 { 751 int rc = 0; 752 struct usb_hcd *hcd = xhci_to_hcd(xhci); 753 u32 command; 754 755 spin_lock_irq(&xhci->lock); 756 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 757 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 758 /* step 1: stop endpoint */ 759 /* skipped assuming that port suspend has done */ 760 761 /* step 2: clear Run/Stop bit */ 762 command = xhci_readl(xhci, &xhci->op_regs->command); 763 command &= ~CMD_RUN; 764 xhci_writel(xhci, command, &xhci->op_regs->command); 765 if (handshake(xhci, &xhci->op_regs->status, 766 STS_HALT, STS_HALT, 100*100)) { 767 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 768 spin_unlock_irq(&xhci->lock); 769 return -ETIMEDOUT; 770 } 771 xhci_clear_command_ring(xhci); 772 773 /* step 3: save registers */ 774 xhci_save_registers(xhci); 775 776 /* step 4: set CSS flag */ 777 command = xhci_readl(xhci, &xhci->op_regs->command); 778 command |= CMD_CSS; 779 xhci_writel(xhci, command, &xhci->op_regs->command); 780 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) { 781 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n"); 782 spin_unlock_irq(&xhci->lock); 783 return -ETIMEDOUT; 784 } 785 spin_unlock_irq(&xhci->lock); 786 787 /* step 5: remove core well power */ 788 /* synchronize irq when using MSI-X */ 789 xhci_msix_sync_irqs(xhci); 790 791 return rc; 792 } 793 794 /* 795 * start xHC (not bus-specific) 796 * 797 * This is called when the machine transition from S3/S4 mode. 798 * 799 */ 800 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 801 { 802 u32 command, temp = 0; 803 struct usb_hcd *hcd = xhci_to_hcd(xhci); 804 struct usb_hcd *secondary_hcd; 805 int retval = 0; 806 807 /* Wait a bit if either of the roothubs need to settle from the 808 * transition into bus suspend. 809 */ 810 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 811 time_before(jiffies, 812 xhci->bus_state[1].next_statechange)) 813 msleep(100); 814 815 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 816 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 817 818 spin_lock_irq(&xhci->lock); 819 if (xhci->quirks & XHCI_RESET_ON_RESUME) 820 hibernated = true; 821 822 if (!hibernated) { 823 /* step 1: restore register */ 824 xhci_restore_registers(xhci); 825 /* step 2: initialize command ring buffer */ 826 xhci_set_cmd_ring_deq(xhci); 827 /* step 3: restore state and start state*/ 828 /* step 3: set CRS flag */ 829 command = xhci_readl(xhci, &xhci->op_regs->command); 830 command |= CMD_CRS; 831 xhci_writel(xhci, command, &xhci->op_regs->command); 832 if (handshake(xhci, &xhci->op_regs->status, 833 STS_RESTORE, 0, 10*100)) { 834 xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n"); 835 spin_unlock_irq(&xhci->lock); 836 return -ETIMEDOUT; 837 } 838 temp = xhci_readl(xhci, &xhci->op_regs->status); 839 } 840 841 /* If restore operation fails, re-initialize the HC during resume */ 842 if ((temp & STS_SRE) || hibernated) { 843 /* Let the USB core know _both_ roothubs lost power. */ 844 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 845 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 846 847 xhci_dbg(xhci, "Stop HCD\n"); 848 xhci_halt(xhci); 849 xhci_reset(xhci); 850 spin_unlock_irq(&xhci->lock); 851 xhci_cleanup_msix(xhci); 852 853 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 854 /* Tell the event ring poll function not to reschedule */ 855 xhci->zombie = 1; 856 del_timer_sync(&xhci->event_ring_timer); 857 #endif 858 859 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 860 temp = xhci_readl(xhci, &xhci->op_regs->status); 861 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 862 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 863 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 864 &xhci->ir_set->irq_pending); 865 xhci_print_ir_set(xhci, 0); 866 867 xhci_dbg(xhci, "cleaning up memory\n"); 868 xhci_mem_cleanup(xhci); 869 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 870 xhci_readl(xhci, &xhci->op_regs->status)); 871 872 /* USB core calls the PCI reinit and start functions twice: 873 * first with the primary HCD, and then with the secondary HCD. 874 * If we don't do the same, the host will never be started. 875 */ 876 if (!usb_hcd_is_primary_hcd(hcd)) 877 secondary_hcd = hcd; 878 else 879 secondary_hcd = xhci->shared_hcd; 880 881 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 882 retval = xhci_init(hcd->primary_hcd); 883 if (retval) 884 return retval; 885 xhci_dbg(xhci, "Start the primary HCD\n"); 886 retval = xhci_run(hcd->primary_hcd); 887 if (!retval) { 888 xhci_dbg(xhci, "Start the secondary HCD\n"); 889 retval = xhci_run(secondary_hcd); 890 } 891 hcd->state = HC_STATE_SUSPENDED; 892 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 893 goto done; 894 } 895 896 /* step 4: set Run/Stop bit */ 897 command = xhci_readl(xhci, &xhci->op_regs->command); 898 command |= CMD_RUN; 899 xhci_writel(xhci, command, &xhci->op_regs->command); 900 handshake(xhci, &xhci->op_regs->status, STS_HALT, 901 0, 250 * 1000); 902 903 /* step 5: walk topology and initialize portsc, 904 * portpmsc and portli 905 */ 906 /* this is done in bus_resume */ 907 908 /* step 6: restart each of the previously 909 * Running endpoints by ringing their doorbells 910 */ 911 912 spin_unlock_irq(&xhci->lock); 913 914 done: 915 if (retval == 0) { 916 usb_hcd_resume_root_hub(hcd); 917 usb_hcd_resume_root_hub(xhci->shared_hcd); 918 } 919 return retval; 920 } 921 #endif /* CONFIG_PM */ 922 923 /*-------------------------------------------------------------------------*/ 924 925 /** 926 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 927 * HCDs. Find the index for an endpoint given its descriptor. Use the return 928 * value to right shift 1 for the bitmask. 929 * 930 * Index = (epnum * 2) + direction - 1, 931 * where direction = 0 for OUT, 1 for IN. 932 * For control endpoints, the IN index is used (OUT index is unused), so 933 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 934 */ 935 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 936 { 937 unsigned int index; 938 if (usb_endpoint_xfer_control(desc)) 939 index = (unsigned int) (usb_endpoint_num(desc)*2); 940 else 941 index = (unsigned int) (usb_endpoint_num(desc)*2) + 942 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 943 return index; 944 } 945 946 /* Find the flag for this endpoint (for use in the control context). Use the 947 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 948 * bit 1, etc. 949 */ 950 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 951 { 952 return 1 << (xhci_get_endpoint_index(desc) + 1); 953 } 954 955 /* Find the flag for this endpoint (for use in the control context). Use the 956 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 957 * bit 1, etc. 958 */ 959 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 960 { 961 return 1 << (ep_index + 1); 962 } 963 964 /* Compute the last valid endpoint context index. Basically, this is the 965 * endpoint index plus one. For slot contexts with more than valid endpoint, 966 * we find the most significant bit set in the added contexts flags. 967 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 968 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 969 */ 970 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 971 { 972 return fls(added_ctxs) - 1; 973 } 974 975 /* Returns 1 if the arguments are OK; 976 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 977 */ 978 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 979 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 980 const char *func) { 981 struct xhci_hcd *xhci; 982 struct xhci_virt_device *virt_dev; 983 984 if (!hcd || (check_ep && !ep) || !udev) { 985 printk(KERN_DEBUG "xHCI %s called with invalid args\n", 986 func); 987 return -EINVAL; 988 } 989 if (!udev->parent) { 990 printk(KERN_DEBUG "xHCI %s called for root hub\n", 991 func); 992 return 0; 993 } 994 995 xhci = hcd_to_xhci(hcd); 996 if (xhci->xhc_state & XHCI_STATE_HALTED) 997 return -ENODEV; 998 999 if (check_virt_dev) { 1000 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1001 printk(KERN_DEBUG "xHCI %s called with unaddressed " 1002 "device\n", func); 1003 return -EINVAL; 1004 } 1005 1006 virt_dev = xhci->devs[udev->slot_id]; 1007 if (virt_dev->udev != udev) { 1008 printk(KERN_DEBUG "xHCI %s called with udev and " 1009 "virt_dev does not match\n", func); 1010 return -EINVAL; 1011 } 1012 } 1013 1014 return 1; 1015 } 1016 1017 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1018 struct usb_device *udev, struct xhci_command *command, 1019 bool ctx_change, bool must_succeed); 1020 1021 /* 1022 * Full speed devices may have a max packet size greater than 8 bytes, but the 1023 * USB core doesn't know that until it reads the first 8 bytes of the 1024 * descriptor. If the usb_device's max packet size changes after that point, 1025 * we need to issue an evaluate context command and wait on it. 1026 */ 1027 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1028 unsigned int ep_index, struct urb *urb) 1029 { 1030 struct xhci_container_ctx *in_ctx; 1031 struct xhci_container_ctx *out_ctx; 1032 struct xhci_input_control_ctx *ctrl_ctx; 1033 struct xhci_ep_ctx *ep_ctx; 1034 int max_packet_size; 1035 int hw_max_packet_size; 1036 int ret = 0; 1037 1038 out_ctx = xhci->devs[slot_id]->out_ctx; 1039 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1040 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1041 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1042 if (hw_max_packet_size != max_packet_size) { 1043 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n"); 1044 xhci_dbg(xhci, "Max packet size in usb_device = %d\n", 1045 max_packet_size); 1046 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n", 1047 hw_max_packet_size); 1048 xhci_dbg(xhci, "Issuing evaluate context command.\n"); 1049 1050 /* Set up the modified control endpoint 0 */ 1051 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1052 xhci->devs[slot_id]->out_ctx, ep_index); 1053 in_ctx = xhci->devs[slot_id]->in_ctx; 1054 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1055 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1056 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1057 1058 /* Set up the input context flags for the command */ 1059 /* FIXME: This won't work if a non-default control endpoint 1060 * changes max packet sizes. 1061 */ 1062 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1063 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1064 ctrl_ctx->drop_flags = 0; 1065 1066 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1067 xhci_dbg_ctx(xhci, in_ctx, ep_index); 1068 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1069 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1070 1071 ret = xhci_configure_endpoint(xhci, urb->dev, NULL, 1072 true, false); 1073 1074 /* Clean up the input context for later use by bandwidth 1075 * functions. 1076 */ 1077 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1078 } 1079 return ret; 1080 } 1081 1082 /* 1083 * non-error returns are a promise to giveback() the urb later 1084 * we drop ownership so next owner (or urb unlink) can get it 1085 */ 1086 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1087 { 1088 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1089 struct xhci_td *buffer; 1090 unsigned long flags; 1091 int ret = 0; 1092 unsigned int slot_id, ep_index; 1093 struct urb_priv *urb_priv; 1094 int size, i; 1095 1096 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1097 true, true, __func__) <= 0) 1098 return -EINVAL; 1099 1100 slot_id = urb->dev->slot_id; 1101 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1102 1103 if (!HCD_HW_ACCESSIBLE(hcd)) { 1104 if (!in_interrupt()) 1105 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1106 ret = -ESHUTDOWN; 1107 goto exit; 1108 } 1109 1110 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1111 size = urb->number_of_packets; 1112 else 1113 size = 1; 1114 1115 urb_priv = kzalloc(sizeof(struct urb_priv) + 1116 size * sizeof(struct xhci_td *), mem_flags); 1117 if (!urb_priv) 1118 return -ENOMEM; 1119 1120 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1121 if (!buffer) { 1122 kfree(urb_priv); 1123 return -ENOMEM; 1124 } 1125 1126 for (i = 0; i < size; i++) { 1127 urb_priv->td[i] = buffer; 1128 buffer++; 1129 } 1130 1131 urb_priv->length = size; 1132 urb_priv->td_cnt = 0; 1133 urb->hcpriv = urb_priv; 1134 1135 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1136 /* Check to see if the max packet size for the default control 1137 * endpoint changed during FS device enumeration 1138 */ 1139 if (urb->dev->speed == USB_SPEED_FULL) { 1140 ret = xhci_check_maxpacket(xhci, slot_id, 1141 ep_index, urb); 1142 if (ret < 0) { 1143 xhci_urb_free_priv(xhci, urb_priv); 1144 urb->hcpriv = NULL; 1145 return ret; 1146 } 1147 } 1148 1149 /* We have a spinlock and interrupts disabled, so we must pass 1150 * atomic context to this function, which may allocate memory. 1151 */ 1152 spin_lock_irqsave(&xhci->lock, flags); 1153 if (xhci->xhc_state & XHCI_STATE_DYING) 1154 goto dying; 1155 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1156 slot_id, ep_index); 1157 if (ret) 1158 goto free_priv; 1159 spin_unlock_irqrestore(&xhci->lock, flags); 1160 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1161 spin_lock_irqsave(&xhci->lock, flags); 1162 if (xhci->xhc_state & XHCI_STATE_DYING) 1163 goto dying; 1164 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1165 EP_GETTING_STREAMS) { 1166 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1167 "is transitioning to using streams.\n"); 1168 ret = -EINVAL; 1169 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1170 EP_GETTING_NO_STREAMS) { 1171 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1172 "is transitioning to " 1173 "not having streams.\n"); 1174 ret = -EINVAL; 1175 } else { 1176 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1177 slot_id, ep_index); 1178 } 1179 if (ret) 1180 goto free_priv; 1181 spin_unlock_irqrestore(&xhci->lock, flags); 1182 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1183 spin_lock_irqsave(&xhci->lock, flags); 1184 if (xhci->xhc_state & XHCI_STATE_DYING) 1185 goto dying; 1186 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1187 slot_id, ep_index); 1188 if (ret) 1189 goto free_priv; 1190 spin_unlock_irqrestore(&xhci->lock, flags); 1191 } else { 1192 spin_lock_irqsave(&xhci->lock, flags); 1193 if (xhci->xhc_state & XHCI_STATE_DYING) 1194 goto dying; 1195 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1196 slot_id, ep_index); 1197 if (ret) 1198 goto free_priv; 1199 spin_unlock_irqrestore(&xhci->lock, flags); 1200 } 1201 exit: 1202 return ret; 1203 dying: 1204 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1205 "non-responsive xHCI host.\n", 1206 urb->ep->desc.bEndpointAddress, urb); 1207 ret = -ESHUTDOWN; 1208 free_priv: 1209 xhci_urb_free_priv(xhci, urb_priv); 1210 urb->hcpriv = NULL; 1211 spin_unlock_irqrestore(&xhci->lock, flags); 1212 return ret; 1213 } 1214 1215 /* Get the right ring for the given URB. 1216 * If the endpoint supports streams, boundary check the URB's stream ID. 1217 * If the endpoint doesn't support streams, return the singular endpoint ring. 1218 */ 1219 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1220 struct urb *urb) 1221 { 1222 unsigned int slot_id; 1223 unsigned int ep_index; 1224 unsigned int stream_id; 1225 struct xhci_virt_ep *ep; 1226 1227 slot_id = urb->dev->slot_id; 1228 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1229 stream_id = urb->stream_id; 1230 ep = &xhci->devs[slot_id]->eps[ep_index]; 1231 /* Common case: no streams */ 1232 if (!(ep->ep_state & EP_HAS_STREAMS)) 1233 return ep->ring; 1234 1235 if (stream_id == 0) { 1236 xhci_warn(xhci, 1237 "WARN: Slot ID %u, ep index %u has streams, " 1238 "but URB has no stream ID.\n", 1239 slot_id, ep_index); 1240 return NULL; 1241 } 1242 1243 if (stream_id < ep->stream_info->num_streams) 1244 return ep->stream_info->stream_rings[stream_id]; 1245 1246 xhci_warn(xhci, 1247 "WARN: Slot ID %u, ep index %u has " 1248 "stream IDs 1 to %u allocated, " 1249 "but stream ID %u is requested.\n", 1250 slot_id, ep_index, 1251 ep->stream_info->num_streams - 1, 1252 stream_id); 1253 return NULL; 1254 } 1255 1256 /* 1257 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1258 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1259 * should pick up where it left off in the TD, unless a Set Transfer Ring 1260 * Dequeue Pointer is issued. 1261 * 1262 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1263 * the ring. Since the ring is a contiguous structure, they can't be physically 1264 * removed. Instead, there are two options: 1265 * 1266 * 1) If the HC is in the middle of processing the URB to be canceled, we 1267 * simply move the ring's dequeue pointer past those TRBs using the Set 1268 * Transfer Ring Dequeue Pointer command. This will be the common case, 1269 * when drivers timeout on the last submitted URB and attempt to cancel. 1270 * 1271 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1272 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1273 * HC will need to invalidate the any TRBs it has cached after the stop 1274 * endpoint command, as noted in the xHCI 0.95 errata. 1275 * 1276 * 3) The TD may have completed by the time the Stop Endpoint Command 1277 * completes, so software needs to handle that case too. 1278 * 1279 * This function should protect against the TD enqueueing code ringing the 1280 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1281 * It also needs to account for multiple cancellations on happening at the same 1282 * time for the same endpoint. 1283 * 1284 * Note that this function can be called in any context, or so says 1285 * usb_hcd_unlink_urb() 1286 */ 1287 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1288 { 1289 unsigned long flags; 1290 int ret, i; 1291 u32 temp; 1292 struct xhci_hcd *xhci; 1293 struct urb_priv *urb_priv; 1294 struct xhci_td *td; 1295 unsigned int ep_index; 1296 struct xhci_ring *ep_ring; 1297 struct xhci_virt_ep *ep; 1298 1299 xhci = hcd_to_xhci(hcd); 1300 spin_lock_irqsave(&xhci->lock, flags); 1301 /* Make sure the URB hasn't completed or been unlinked already */ 1302 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1303 if (ret || !urb->hcpriv) 1304 goto done; 1305 temp = xhci_readl(xhci, &xhci->op_regs->status); 1306 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1307 xhci_dbg(xhci, "HW died, freeing TD.\n"); 1308 urb_priv = urb->hcpriv; 1309 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1310 td = urb_priv->td[i]; 1311 if (!list_empty(&td->td_list)) 1312 list_del_init(&td->td_list); 1313 if (!list_empty(&td->cancelled_td_list)) 1314 list_del_init(&td->cancelled_td_list); 1315 } 1316 1317 usb_hcd_unlink_urb_from_ep(hcd, urb); 1318 spin_unlock_irqrestore(&xhci->lock, flags); 1319 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1320 xhci_urb_free_priv(xhci, urb_priv); 1321 return ret; 1322 } 1323 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1324 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1325 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on " 1326 "non-responsive xHCI host.\n", 1327 urb->ep->desc.bEndpointAddress, urb); 1328 /* Let the stop endpoint command watchdog timer (which set this 1329 * state) finish cleaning up the endpoint TD lists. We must 1330 * have caught it in the middle of dropping a lock and giving 1331 * back an URB. 1332 */ 1333 goto done; 1334 } 1335 1336 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1337 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1338 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1339 if (!ep_ring) { 1340 ret = -EINVAL; 1341 goto done; 1342 } 1343 1344 urb_priv = urb->hcpriv; 1345 i = urb_priv->td_cnt; 1346 if (i < urb_priv->length) 1347 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, " 1348 "starting at offset 0x%llx\n", 1349 urb, urb->dev->devpath, 1350 urb->ep->desc.bEndpointAddress, 1351 (unsigned long long) xhci_trb_virt_to_dma( 1352 urb_priv->td[i]->start_seg, 1353 urb_priv->td[i]->first_trb)); 1354 1355 for (; i < urb_priv->length; i++) { 1356 td = urb_priv->td[i]; 1357 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1358 } 1359 1360 /* Queue a stop endpoint command, but only if this is 1361 * the first cancellation to be handled. 1362 */ 1363 if (!(ep->ep_state & EP_HALT_PENDING)) { 1364 ep->ep_state |= EP_HALT_PENDING; 1365 ep->stop_cmds_pending++; 1366 ep->stop_cmd_timer.expires = jiffies + 1367 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1368 add_timer(&ep->stop_cmd_timer); 1369 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0); 1370 xhci_ring_cmd_db(xhci); 1371 } 1372 done: 1373 spin_unlock_irqrestore(&xhci->lock, flags); 1374 return ret; 1375 } 1376 1377 /* Drop an endpoint from a new bandwidth configuration for this device. 1378 * Only one call to this function is allowed per endpoint before 1379 * check_bandwidth() or reset_bandwidth() must be called. 1380 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1381 * add the endpoint to the schedule with possibly new parameters denoted by a 1382 * different endpoint descriptor in usb_host_endpoint. 1383 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1384 * not allowed. 1385 * 1386 * The USB core will not allow URBs to be queued to an endpoint that is being 1387 * disabled, so there's no need for mutual exclusion to protect 1388 * the xhci->devs[slot_id] structure. 1389 */ 1390 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1391 struct usb_host_endpoint *ep) 1392 { 1393 struct xhci_hcd *xhci; 1394 struct xhci_container_ctx *in_ctx, *out_ctx; 1395 struct xhci_input_control_ctx *ctrl_ctx; 1396 struct xhci_slot_ctx *slot_ctx; 1397 unsigned int last_ctx; 1398 unsigned int ep_index; 1399 struct xhci_ep_ctx *ep_ctx; 1400 u32 drop_flag; 1401 u32 new_add_flags, new_drop_flags, new_slot_info; 1402 int ret; 1403 1404 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1405 if (ret <= 0) 1406 return ret; 1407 xhci = hcd_to_xhci(hcd); 1408 if (xhci->xhc_state & XHCI_STATE_DYING) 1409 return -ENODEV; 1410 1411 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1412 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1413 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1414 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1415 __func__, drop_flag); 1416 return 0; 1417 } 1418 1419 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1420 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1421 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1422 ep_index = xhci_get_endpoint_index(&ep->desc); 1423 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1424 /* If the HC already knows the endpoint is disabled, 1425 * or the HCD has noted it is disabled, ignore this request 1426 */ 1427 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1428 cpu_to_le32(EP_STATE_DISABLED)) || 1429 le32_to_cpu(ctrl_ctx->drop_flags) & 1430 xhci_get_endpoint_flag(&ep->desc)) { 1431 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1432 __func__, ep); 1433 return 0; 1434 } 1435 1436 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1437 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1438 1439 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1440 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1441 1442 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)); 1443 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1444 /* Update the last valid endpoint context, if we deleted the last one */ 1445 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) > 1446 LAST_CTX(last_ctx)) { 1447 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1448 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1449 } 1450 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1451 1452 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1453 1454 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1455 (unsigned int) ep->desc.bEndpointAddress, 1456 udev->slot_id, 1457 (unsigned int) new_drop_flags, 1458 (unsigned int) new_add_flags, 1459 (unsigned int) new_slot_info); 1460 return 0; 1461 } 1462 1463 /* Add an endpoint to a new possible bandwidth configuration for this device. 1464 * Only one call to this function is allowed per endpoint before 1465 * check_bandwidth() or reset_bandwidth() must be called. 1466 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1467 * add the endpoint to the schedule with possibly new parameters denoted by a 1468 * different endpoint descriptor in usb_host_endpoint. 1469 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1470 * not allowed. 1471 * 1472 * The USB core will not allow URBs to be queued to an endpoint until the 1473 * configuration or alt setting is installed in the device, so there's no need 1474 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1475 */ 1476 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1477 struct usb_host_endpoint *ep) 1478 { 1479 struct xhci_hcd *xhci; 1480 struct xhci_container_ctx *in_ctx, *out_ctx; 1481 unsigned int ep_index; 1482 struct xhci_ep_ctx *ep_ctx; 1483 struct xhci_slot_ctx *slot_ctx; 1484 struct xhci_input_control_ctx *ctrl_ctx; 1485 u32 added_ctxs; 1486 unsigned int last_ctx; 1487 u32 new_add_flags, new_drop_flags, new_slot_info; 1488 struct xhci_virt_device *virt_dev; 1489 int ret = 0; 1490 1491 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1492 if (ret <= 0) { 1493 /* So we won't queue a reset ep command for a root hub */ 1494 ep->hcpriv = NULL; 1495 return ret; 1496 } 1497 xhci = hcd_to_xhci(hcd); 1498 if (xhci->xhc_state & XHCI_STATE_DYING) 1499 return -ENODEV; 1500 1501 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1502 last_ctx = xhci_last_valid_endpoint(added_ctxs); 1503 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1504 /* FIXME when we have to issue an evaluate endpoint command to 1505 * deal with ep0 max packet size changing once we get the 1506 * descriptors 1507 */ 1508 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1509 __func__, added_ctxs); 1510 return 0; 1511 } 1512 1513 virt_dev = xhci->devs[udev->slot_id]; 1514 in_ctx = virt_dev->in_ctx; 1515 out_ctx = virt_dev->out_ctx; 1516 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1517 ep_index = xhci_get_endpoint_index(&ep->desc); 1518 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1519 1520 /* If this endpoint is already in use, and the upper layers are trying 1521 * to add it again without dropping it, reject the addition. 1522 */ 1523 if (virt_dev->eps[ep_index].ring && 1524 !(le32_to_cpu(ctrl_ctx->drop_flags) & 1525 xhci_get_endpoint_flag(&ep->desc))) { 1526 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1527 "without dropping it.\n", 1528 (unsigned int) ep->desc.bEndpointAddress); 1529 return -EINVAL; 1530 } 1531 1532 /* If the HCD has already noted the endpoint is enabled, 1533 * ignore this request. 1534 */ 1535 if (le32_to_cpu(ctrl_ctx->add_flags) & 1536 xhci_get_endpoint_flag(&ep->desc)) { 1537 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1538 __func__, ep); 1539 return 0; 1540 } 1541 1542 /* 1543 * Configuration and alternate setting changes must be done in 1544 * process context, not interrupt context (or so documenation 1545 * for usb_set_interface() and usb_set_configuration() claim). 1546 */ 1547 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1548 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1549 __func__, ep->desc.bEndpointAddress); 1550 return -ENOMEM; 1551 } 1552 1553 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1554 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1555 1556 /* If xhci_endpoint_disable() was called for this endpoint, but the 1557 * xHC hasn't been notified yet through the check_bandwidth() call, 1558 * this re-adds a new state for the endpoint from the new endpoint 1559 * descriptors. We must drop and re-add this endpoint, so we leave the 1560 * drop flags alone. 1561 */ 1562 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1563 1564 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1565 /* Update the last valid endpoint context, if we just added one past */ 1566 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) < 1567 LAST_CTX(last_ctx)) { 1568 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1569 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1570 } 1571 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1572 1573 /* Store the usb_device pointer for later use */ 1574 ep->hcpriv = udev; 1575 1576 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1577 (unsigned int) ep->desc.bEndpointAddress, 1578 udev->slot_id, 1579 (unsigned int) new_drop_flags, 1580 (unsigned int) new_add_flags, 1581 (unsigned int) new_slot_info); 1582 return 0; 1583 } 1584 1585 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1586 { 1587 struct xhci_input_control_ctx *ctrl_ctx; 1588 struct xhci_ep_ctx *ep_ctx; 1589 struct xhci_slot_ctx *slot_ctx; 1590 int i; 1591 1592 /* When a device's add flag and drop flag are zero, any subsequent 1593 * configure endpoint command will leave that endpoint's state 1594 * untouched. Make sure we don't leave any old state in the input 1595 * endpoint contexts. 1596 */ 1597 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1598 ctrl_ctx->drop_flags = 0; 1599 ctrl_ctx->add_flags = 0; 1600 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1601 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1602 /* Endpoint 0 is always valid */ 1603 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1604 for (i = 1; i < 31; ++i) { 1605 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1606 ep_ctx->ep_info = 0; 1607 ep_ctx->ep_info2 = 0; 1608 ep_ctx->deq = 0; 1609 ep_ctx->tx_info = 0; 1610 } 1611 } 1612 1613 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1614 struct usb_device *udev, u32 *cmd_status) 1615 { 1616 int ret; 1617 1618 switch (*cmd_status) { 1619 case COMP_ENOMEM: 1620 dev_warn(&udev->dev, "Not enough host controller resources " 1621 "for new device state.\n"); 1622 ret = -ENOMEM; 1623 /* FIXME: can we allocate more resources for the HC? */ 1624 break; 1625 case COMP_BW_ERR: 1626 case COMP_2ND_BW_ERR: 1627 dev_warn(&udev->dev, "Not enough bandwidth " 1628 "for new device state.\n"); 1629 ret = -ENOSPC; 1630 /* FIXME: can we go back to the old state? */ 1631 break; 1632 case COMP_TRB_ERR: 1633 /* the HCD set up something wrong */ 1634 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1635 "add flag = 1, " 1636 "and endpoint is not disabled.\n"); 1637 ret = -EINVAL; 1638 break; 1639 case COMP_DEV_ERR: 1640 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint " 1641 "configure command.\n"); 1642 ret = -ENODEV; 1643 break; 1644 case COMP_SUCCESS: 1645 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n"); 1646 ret = 0; 1647 break; 1648 default: 1649 xhci_err(xhci, "ERROR: unexpected command completion " 1650 "code 0x%x.\n", *cmd_status); 1651 ret = -EINVAL; 1652 break; 1653 } 1654 return ret; 1655 } 1656 1657 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1658 struct usb_device *udev, u32 *cmd_status) 1659 { 1660 int ret; 1661 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1662 1663 switch (*cmd_status) { 1664 case COMP_EINVAL: 1665 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " 1666 "context command.\n"); 1667 ret = -EINVAL; 1668 break; 1669 case COMP_EBADSLT: 1670 dev_warn(&udev->dev, "WARN: slot not enabled for" 1671 "evaluate context command.\n"); 1672 case COMP_CTX_STATE: 1673 dev_warn(&udev->dev, "WARN: invalid context state for " 1674 "evaluate context command.\n"); 1675 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1676 ret = -EINVAL; 1677 break; 1678 case COMP_DEV_ERR: 1679 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate " 1680 "context command.\n"); 1681 ret = -ENODEV; 1682 break; 1683 case COMP_MEL_ERR: 1684 /* Max Exit Latency too large error */ 1685 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1686 ret = -EINVAL; 1687 break; 1688 case COMP_SUCCESS: 1689 dev_dbg(&udev->dev, "Successful evaluate context command\n"); 1690 ret = 0; 1691 break; 1692 default: 1693 xhci_err(xhci, "ERROR: unexpected command completion " 1694 "code 0x%x.\n", *cmd_status); 1695 ret = -EINVAL; 1696 break; 1697 } 1698 return ret; 1699 } 1700 1701 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1702 struct xhci_container_ctx *in_ctx) 1703 { 1704 struct xhci_input_control_ctx *ctrl_ctx; 1705 u32 valid_add_flags; 1706 u32 valid_drop_flags; 1707 1708 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1709 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1710 * (bit 1). The default control endpoint is added during the Address 1711 * Device command and is never removed until the slot is disabled. 1712 */ 1713 valid_add_flags = ctrl_ctx->add_flags >> 2; 1714 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1715 1716 /* Use hweight32 to count the number of ones in the add flags, or 1717 * number of endpoints added. Don't count endpoints that are changed 1718 * (both added and dropped). 1719 */ 1720 return hweight32(valid_add_flags) - 1721 hweight32(valid_add_flags & valid_drop_flags); 1722 } 1723 1724 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1725 struct xhci_container_ctx *in_ctx) 1726 { 1727 struct xhci_input_control_ctx *ctrl_ctx; 1728 u32 valid_add_flags; 1729 u32 valid_drop_flags; 1730 1731 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1732 valid_add_flags = ctrl_ctx->add_flags >> 2; 1733 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1734 1735 return hweight32(valid_drop_flags) - 1736 hweight32(valid_add_flags & valid_drop_flags); 1737 } 1738 1739 /* 1740 * We need to reserve the new number of endpoints before the configure endpoint 1741 * command completes. We can't subtract the dropped endpoints from the number 1742 * of active endpoints until the command completes because we can oversubscribe 1743 * the host in this case: 1744 * 1745 * - the first configure endpoint command drops more endpoints than it adds 1746 * - a second configure endpoint command that adds more endpoints is queued 1747 * - the first configure endpoint command fails, so the config is unchanged 1748 * - the second command may succeed, even though there isn't enough resources 1749 * 1750 * Must be called with xhci->lock held. 1751 */ 1752 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1753 struct xhci_container_ctx *in_ctx) 1754 { 1755 u32 added_eps; 1756 1757 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx); 1758 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1759 xhci_dbg(xhci, "Not enough ep ctxs: " 1760 "%u active, need to add %u, limit is %u.\n", 1761 xhci->num_active_eps, added_eps, 1762 xhci->limit_active_eps); 1763 return -ENOMEM; 1764 } 1765 xhci->num_active_eps += added_eps; 1766 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps, 1767 xhci->num_active_eps); 1768 return 0; 1769 } 1770 1771 /* 1772 * The configure endpoint was failed by the xHC for some other reason, so we 1773 * need to revert the resources that failed configuration would have used. 1774 * 1775 * Must be called with xhci->lock held. 1776 */ 1777 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1778 struct xhci_container_ctx *in_ctx) 1779 { 1780 u32 num_failed_eps; 1781 1782 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx); 1783 xhci->num_active_eps -= num_failed_eps; 1784 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n", 1785 num_failed_eps, 1786 xhci->num_active_eps); 1787 } 1788 1789 /* 1790 * Now that the command has completed, clean up the active endpoint count by 1791 * subtracting out the endpoints that were dropped (but not changed). 1792 * 1793 * Must be called with xhci->lock held. 1794 */ 1795 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1796 struct xhci_container_ctx *in_ctx) 1797 { 1798 u32 num_dropped_eps; 1799 1800 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx); 1801 xhci->num_active_eps -= num_dropped_eps; 1802 if (num_dropped_eps) 1803 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n", 1804 num_dropped_eps, 1805 xhci->num_active_eps); 1806 } 1807 1808 unsigned int xhci_get_block_size(struct usb_device *udev) 1809 { 1810 switch (udev->speed) { 1811 case USB_SPEED_LOW: 1812 case USB_SPEED_FULL: 1813 return FS_BLOCK; 1814 case USB_SPEED_HIGH: 1815 return HS_BLOCK; 1816 case USB_SPEED_SUPER: 1817 return SS_BLOCK; 1818 case USB_SPEED_UNKNOWN: 1819 case USB_SPEED_WIRELESS: 1820 default: 1821 /* Should never happen */ 1822 return 1; 1823 } 1824 } 1825 1826 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 1827 { 1828 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 1829 return LS_OVERHEAD; 1830 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 1831 return FS_OVERHEAD; 1832 return HS_OVERHEAD; 1833 } 1834 1835 /* If we are changing a LS/FS device under a HS hub, 1836 * make sure (if we are activating a new TT) that the HS bus has enough 1837 * bandwidth for this new TT. 1838 */ 1839 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 1840 struct xhci_virt_device *virt_dev, 1841 int old_active_eps) 1842 { 1843 struct xhci_interval_bw_table *bw_table; 1844 struct xhci_tt_bw_info *tt_info; 1845 1846 /* Find the bandwidth table for the root port this TT is attached to. */ 1847 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 1848 tt_info = virt_dev->tt_info; 1849 /* If this TT already had active endpoints, the bandwidth for this TT 1850 * has already been added. Removing all periodic endpoints (and thus 1851 * making the TT enactive) will only decrease the bandwidth used. 1852 */ 1853 if (old_active_eps) 1854 return 0; 1855 if (old_active_eps == 0 && tt_info->active_eps != 0) { 1856 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 1857 return -ENOMEM; 1858 return 0; 1859 } 1860 /* Not sure why we would have no new active endpoints... 1861 * 1862 * Maybe because of an Evaluate Context change for a hub update or a 1863 * control endpoint 0 max packet size change? 1864 * FIXME: skip the bandwidth calculation in that case. 1865 */ 1866 return 0; 1867 } 1868 1869 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 1870 struct xhci_virt_device *virt_dev) 1871 { 1872 unsigned int bw_reserved; 1873 1874 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 1875 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 1876 return -ENOMEM; 1877 1878 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 1879 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 1880 return -ENOMEM; 1881 1882 return 0; 1883 } 1884 1885 /* 1886 * This algorithm is a very conservative estimate of the worst-case scheduling 1887 * scenario for any one interval. The hardware dynamically schedules the 1888 * packets, so we can't tell which microframe could be the limiting factor in 1889 * the bandwidth scheduling. This only takes into account periodic endpoints. 1890 * 1891 * Obviously, we can't solve an NP complete problem to find the minimum worst 1892 * case scenario. Instead, we come up with an estimate that is no less than 1893 * the worst case bandwidth used for any one microframe, but may be an 1894 * over-estimate. 1895 * 1896 * We walk the requirements for each endpoint by interval, starting with the 1897 * smallest interval, and place packets in the schedule where there is only one 1898 * possible way to schedule packets for that interval. In order to simplify 1899 * this algorithm, we record the largest max packet size for each interval, and 1900 * assume all packets will be that size. 1901 * 1902 * For interval 0, we obviously must schedule all packets for each interval. 1903 * The bandwidth for interval 0 is just the amount of data to be transmitted 1904 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 1905 * the number of packets). 1906 * 1907 * For interval 1, we have two possible microframes to schedule those packets 1908 * in. For this algorithm, if we can schedule the same number of packets for 1909 * each possible scheduling opportunity (each microframe), we will do so. The 1910 * remaining number of packets will be saved to be transmitted in the gaps in 1911 * the next interval's scheduling sequence. 1912 * 1913 * As we move those remaining packets to be scheduled with interval 2 packets, 1914 * we have to double the number of remaining packets to transmit. This is 1915 * because the intervals are actually powers of 2, and we would be transmitting 1916 * the previous interval's packets twice in this interval. We also have to be 1917 * sure that when we look at the largest max packet size for this interval, we 1918 * also look at the largest max packet size for the remaining packets and take 1919 * the greater of the two. 1920 * 1921 * The algorithm continues to evenly distribute packets in each scheduling 1922 * opportunity, and push the remaining packets out, until we get to the last 1923 * interval. Then those packets and their associated overhead are just added 1924 * to the bandwidth used. 1925 */ 1926 static int xhci_check_bw_table(struct xhci_hcd *xhci, 1927 struct xhci_virt_device *virt_dev, 1928 int old_active_eps) 1929 { 1930 unsigned int bw_reserved; 1931 unsigned int max_bandwidth; 1932 unsigned int bw_used; 1933 unsigned int block_size; 1934 struct xhci_interval_bw_table *bw_table; 1935 unsigned int packet_size = 0; 1936 unsigned int overhead = 0; 1937 unsigned int packets_transmitted = 0; 1938 unsigned int packets_remaining = 0; 1939 unsigned int i; 1940 1941 if (virt_dev->udev->speed == USB_SPEED_SUPER) 1942 return xhci_check_ss_bw(xhci, virt_dev); 1943 1944 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 1945 max_bandwidth = HS_BW_LIMIT; 1946 /* Convert percent of bus BW reserved to blocks reserved */ 1947 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 1948 } else { 1949 max_bandwidth = FS_BW_LIMIT; 1950 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 1951 } 1952 1953 bw_table = virt_dev->bw_table; 1954 /* We need to translate the max packet size and max ESIT payloads into 1955 * the units the hardware uses. 1956 */ 1957 block_size = xhci_get_block_size(virt_dev->udev); 1958 1959 /* If we are manipulating a LS/FS device under a HS hub, double check 1960 * that the HS bus has enough bandwidth if we are activing a new TT. 1961 */ 1962 if (virt_dev->tt_info) { 1963 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 1964 virt_dev->real_port); 1965 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 1966 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 1967 "newly activated TT.\n"); 1968 return -ENOMEM; 1969 } 1970 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n", 1971 virt_dev->tt_info->slot_id, 1972 virt_dev->tt_info->ttport); 1973 } else { 1974 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 1975 virt_dev->real_port); 1976 } 1977 1978 /* Add in how much bandwidth will be used for interval zero, or the 1979 * rounded max ESIT payload + number of packets * largest overhead. 1980 */ 1981 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 1982 bw_table->interval_bw[0].num_packets * 1983 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 1984 1985 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 1986 unsigned int bw_added; 1987 unsigned int largest_mps; 1988 unsigned int interval_overhead; 1989 1990 /* 1991 * How many packets could we transmit in this interval? 1992 * If packets didn't fit in the previous interval, we will need 1993 * to transmit that many packets twice within this interval. 1994 */ 1995 packets_remaining = 2 * packets_remaining + 1996 bw_table->interval_bw[i].num_packets; 1997 1998 /* Find the largest max packet size of this or the previous 1999 * interval. 2000 */ 2001 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2002 largest_mps = 0; 2003 else { 2004 struct xhci_virt_ep *virt_ep; 2005 struct list_head *ep_entry; 2006 2007 ep_entry = bw_table->interval_bw[i].endpoints.next; 2008 virt_ep = list_entry(ep_entry, 2009 struct xhci_virt_ep, bw_endpoint_list); 2010 /* Convert to blocks, rounding up */ 2011 largest_mps = DIV_ROUND_UP( 2012 virt_ep->bw_info.max_packet_size, 2013 block_size); 2014 } 2015 if (largest_mps > packet_size) 2016 packet_size = largest_mps; 2017 2018 /* Use the larger overhead of this or the previous interval. */ 2019 interval_overhead = xhci_get_largest_overhead( 2020 &bw_table->interval_bw[i]); 2021 if (interval_overhead > overhead) 2022 overhead = interval_overhead; 2023 2024 /* How many packets can we evenly distribute across 2025 * (1 << (i + 1)) possible scheduling opportunities? 2026 */ 2027 packets_transmitted = packets_remaining >> (i + 1); 2028 2029 /* Add in the bandwidth used for those scheduled packets */ 2030 bw_added = packets_transmitted * (overhead + packet_size); 2031 2032 /* How many packets do we have remaining to transmit? */ 2033 packets_remaining = packets_remaining % (1 << (i + 1)); 2034 2035 /* What largest max packet size should those packets have? */ 2036 /* If we've transmitted all packets, don't carry over the 2037 * largest packet size. 2038 */ 2039 if (packets_remaining == 0) { 2040 packet_size = 0; 2041 overhead = 0; 2042 } else if (packets_transmitted > 0) { 2043 /* Otherwise if we do have remaining packets, and we've 2044 * scheduled some packets in this interval, take the 2045 * largest max packet size from endpoints with this 2046 * interval. 2047 */ 2048 packet_size = largest_mps; 2049 overhead = interval_overhead; 2050 } 2051 /* Otherwise carry over packet_size and overhead from the last 2052 * time we had a remainder. 2053 */ 2054 bw_used += bw_added; 2055 if (bw_used > max_bandwidth) { 2056 xhci_warn(xhci, "Not enough bandwidth. " 2057 "Proposed: %u, Max: %u\n", 2058 bw_used, max_bandwidth); 2059 return -ENOMEM; 2060 } 2061 } 2062 /* 2063 * Ok, we know we have some packets left over after even-handedly 2064 * scheduling interval 15. We don't know which microframes they will 2065 * fit into, so we over-schedule and say they will be scheduled every 2066 * microframe. 2067 */ 2068 if (packets_remaining > 0) 2069 bw_used += overhead + packet_size; 2070 2071 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2072 unsigned int port_index = virt_dev->real_port - 1; 2073 2074 /* OK, we're manipulating a HS device attached to a 2075 * root port bandwidth domain. Include the number of active TTs 2076 * in the bandwidth used. 2077 */ 2078 bw_used += TT_HS_OVERHEAD * 2079 xhci->rh_bw[port_index].num_active_tts; 2080 } 2081 2082 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2083 "Available: %u " "percent\n", 2084 bw_used, max_bandwidth, bw_reserved, 2085 (max_bandwidth - bw_used - bw_reserved) * 100 / 2086 max_bandwidth); 2087 2088 bw_used += bw_reserved; 2089 if (bw_used > max_bandwidth) { 2090 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2091 bw_used, max_bandwidth); 2092 return -ENOMEM; 2093 } 2094 2095 bw_table->bw_used = bw_used; 2096 return 0; 2097 } 2098 2099 static bool xhci_is_async_ep(unsigned int ep_type) 2100 { 2101 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2102 ep_type != ISOC_IN_EP && 2103 ep_type != INT_IN_EP); 2104 } 2105 2106 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2107 { 2108 return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP); 2109 } 2110 2111 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2112 { 2113 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2114 2115 if (ep_bw->ep_interval == 0) 2116 return SS_OVERHEAD_BURST + 2117 (ep_bw->mult * ep_bw->num_packets * 2118 (SS_OVERHEAD + mps)); 2119 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2120 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2121 1 << ep_bw->ep_interval); 2122 2123 } 2124 2125 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2126 struct xhci_bw_info *ep_bw, 2127 struct xhci_interval_bw_table *bw_table, 2128 struct usb_device *udev, 2129 struct xhci_virt_ep *virt_ep, 2130 struct xhci_tt_bw_info *tt_info) 2131 { 2132 struct xhci_interval_bw *interval_bw; 2133 int normalized_interval; 2134 2135 if (xhci_is_async_ep(ep_bw->type)) 2136 return; 2137 2138 if (udev->speed == USB_SPEED_SUPER) { 2139 if (xhci_is_sync_in_ep(ep_bw->type)) 2140 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2141 xhci_get_ss_bw_consumed(ep_bw); 2142 else 2143 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2144 xhci_get_ss_bw_consumed(ep_bw); 2145 return; 2146 } 2147 2148 /* SuperSpeed endpoints never get added to intervals in the table, so 2149 * this check is only valid for HS/FS/LS devices. 2150 */ 2151 if (list_empty(&virt_ep->bw_endpoint_list)) 2152 return; 2153 /* For LS/FS devices, we need to translate the interval expressed in 2154 * microframes to frames. 2155 */ 2156 if (udev->speed == USB_SPEED_HIGH) 2157 normalized_interval = ep_bw->ep_interval; 2158 else 2159 normalized_interval = ep_bw->ep_interval - 3; 2160 2161 if (normalized_interval == 0) 2162 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2163 interval_bw = &bw_table->interval_bw[normalized_interval]; 2164 interval_bw->num_packets -= ep_bw->num_packets; 2165 switch (udev->speed) { 2166 case USB_SPEED_LOW: 2167 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2168 break; 2169 case USB_SPEED_FULL: 2170 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2171 break; 2172 case USB_SPEED_HIGH: 2173 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2174 break; 2175 case USB_SPEED_SUPER: 2176 case USB_SPEED_UNKNOWN: 2177 case USB_SPEED_WIRELESS: 2178 /* Should never happen because only LS/FS/HS endpoints will get 2179 * added to the endpoint list. 2180 */ 2181 return; 2182 } 2183 if (tt_info) 2184 tt_info->active_eps -= 1; 2185 list_del_init(&virt_ep->bw_endpoint_list); 2186 } 2187 2188 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2189 struct xhci_bw_info *ep_bw, 2190 struct xhci_interval_bw_table *bw_table, 2191 struct usb_device *udev, 2192 struct xhci_virt_ep *virt_ep, 2193 struct xhci_tt_bw_info *tt_info) 2194 { 2195 struct xhci_interval_bw *interval_bw; 2196 struct xhci_virt_ep *smaller_ep; 2197 int normalized_interval; 2198 2199 if (xhci_is_async_ep(ep_bw->type)) 2200 return; 2201 2202 if (udev->speed == USB_SPEED_SUPER) { 2203 if (xhci_is_sync_in_ep(ep_bw->type)) 2204 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2205 xhci_get_ss_bw_consumed(ep_bw); 2206 else 2207 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2208 xhci_get_ss_bw_consumed(ep_bw); 2209 return; 2210 } 2211 2212 /* For LS/FS devices, we need to translate the interval expressed in 2213 * microframes to frames. 2214 */ 2215 if (udev->speed == USB_SPEED_HIGH) 2216 normalized_interval = ep_bw->ep_interval; 2217 else 2218 normalized_interval = ep_bw->ep_interval - 3; 2219 2220 if (normalized_interval == 0) 2221 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2222 interval_bw = &bw_table->interval_bw[normalized_interval]; 2223 interval_bw->num_packets += ep_bw->num_packets; 2224 switch (udev->speed) { 2225 case USB_SPEED_LOW: 2226 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2227 break; 2228 case USB_SPEED_FULL: 2229 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2230 break; 2231 case USB_SPEED_HIGH: 2232 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2233 break; 2234 case USB_SPEED_SUPER: 2235 case USB_SPEED_UNKNOWN: 2236 case USB_SPEED_WIRELESS: 2237 /* Should never happen because only LS/FS/HS endpoints will get 2238 * added to the endpoint list. 2239 */ 2240 return; 2241 } 2242 2243 if (tt_info) 2244 tt_info->active_eps += 1; 2245 /* Insert the endpoint into the list, largest max packet size first. */ 2246 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2247 bw_endpoint_list) { 2248 if (ep_bw->max_packet_size >= 2249 smaller_ep->bw_info.max_packet_size) { 2250 /* Add the new ep before the smaller endpoint */ 2251 list_add_tail(&virt_ep->bw_endpoint_list, 2252 &smaller_ep->bw_endpoint_list); 2253 return; 2254 } 2255 } 2256 /* Add the new endpoint at the end of the list. */ 2257 list_add_tail(&virt_ep->bw_endpoint_list, 2258 &interval_bw->endpoints); 2259 } 2260 2261 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2262 struct xhci_virt_device *virt_dev, 2263 int old_active_eps) 2264 { 2265 struct xhci_root_port_bw_info *rh_bw_info; 2266 if (!virt_dev->tt_info) 2267 return; 2268 2269 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2270 if (old_active_eps == 0 && 2271 virt_dev->tt_info->active_eps != 0) { 2272 rh_bw_info->num_active_tts += 1; 2273 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2274 } else if (old_active_eps != 0 && 2275 virt_dev->tt_info->active_eps == 0) { 2276 rh_bw_info->num_active_tts -= 1; 2277 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2278 } 2279 } 2280 2281 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2282 struct xhci_virt_device *virt_dev, 2283 struct xhci_container_ctx *in_ctx) 2284 { 2285 struct xhci_bw_info ep_bw_info[31]; 2286 int i; 2287 struct xhci_input_control_ctx *ctrl_ctx; 2288 int old_active_eps = 0; 2289 2290 if (virt_dev->tt_info) 2291 old_active_eps = virt_dev->tt_info->active_eps; 2292 2293 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2294 2295 for (i = 0; i < 31; i++) { 2296 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2297 continue; 2298 2299 /* Make a copy of the BW info in case we need to revert this */ 2300 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2301 sizeof(ep_bw_info[i])); 2302 /* Drop the endpoint from the interval table if the endpoint is 2303 * being dropped or changed. 2304 */ 2305 if (EP_IS_DROPPED(ctrl_ctx, i)) 2306 xhci_drop_ep_from_interval_table(xhci, 2307 &virt_dev->eps[i].bw_info, 2308 virt_dev->bw_table, 2309 virt_dev->udev, 2310 &virt_dev->eps[i], 2311 virt_dev->tt_info); 2312 } 2313 /* Overwrite the information stored in the endpoints' bw_info */ 2314 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2315 for (i = 0; i < 31; i++) { 2316 /* Add any changed or added endpoints to the interval table */ 2317 if (EP_IS_ADDED(ctrl_ctx, i)) 2318 xhci_add_ep_to_interval_table(xhci, 2319 &virt_dev->eps[i].bw_info, 2320 virt_dev->bw_table, 2321 virt_dev->udev, 2322 &virt_dev->eps[i], 2323 virt_dev->tt_info); 2324 } 2325 2326 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2327 /* Ok, this fits in the bandwidth we have. 2328 * Update the number of active TTs. 2329 */ 2330 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2331 return 0; 2332 } 2333 2334 /* We don't have enough bandwidth for this, revert the stored info. */ 2335 for (i = 0; i < 31; i++) { 2336 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2337 continue; 2338 2339 /* Drop the new copies of any added or changed endpoints from 2340 * the interval table. 2341 */ 2342 if (EP_IS_ADDED(ctrl_ctx, i)) { 2343 xhci_drop_ep_from_interval_table(xhci, 2344 &virt_dev->eps[i].bw_info, 2345 virt_dev->bw_table, 2346 virt_dev->udev, 2347 &virt_dev->eps[i], 2348 virt_dev->tt_info); 2349 } 2350 /* Revert the endpoint back to its old information */ 2351 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2352 sizeof(ep_bw_info[i])); 2353 /* Add any changed or dropped endpoints back into the table */ 2354 if (EP_IS_DROPPED(ctrl_ctx, i)) 2355 xhci_add_ep_to_interval_table(xhci, 2356 &virt_dev->eps[i].bw_info, 2357 virt_dev->bw_table, 2358 virt_dev->udev, 2359 &virt_dev->eps[i], 2360 virt_dev->tt_info); 2361 } 2362 return -ENOMEM; 2363 } 2364 2365 2366 /* Issue a configure endpoint command or evaluate context command 2367 * and wait for it to finish. 2368 */ 2369 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2370 struct usb_device *udev, 2371 struct xhci_command *command, 2372 bool ctx_change, bool must_succeed) 2373 { 2374 int ret; 2375 int timeleft; 2376 unsigned long flags; 2377 struct xhci_container_ctx *in_ctx; 2378 struct completion *cmd_completion; 2379 u32 *cmd_status; 2380 struct xhci_virt_device *virt_dev; 2381 2382 spin_lock_irqsave(&xhci->lock, flags); 2383 virt_dev = xhci->devs[udev->slot_id]; 2384 2385 if (command) 2386 in_ctx = command->in_ctx; 2387 else 2388 in_ctx = virt_dev->in_ctx; 2389 2390 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2391 xhci_reserve_host_resources(xhci, in_ctx)) { 2392 spin_unlock_irqrestore(&xhci->lock, flags); 2393 xhci_warn(xhci, "Not enough host resources, " 2394 "active endpoint contexts = %u\n", 2395 xhci->num_active_eps); 2396 return -ENOMEM; 2397 } 2398 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2399 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) { 2400 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2401 xhci_free_host_resources(xhci, in_ctx); 2402 spin_unlock_irqrestore(&xhci->lock, flags); 2403 xhci_warn(xhci, "Not enough bandwidth\n"); 2404 return -ENOMEM; 2405 } 2406 2407 if (command) { 2408 cmd_completion = command->completion; 2409 cmd_status = &command->status; 2410 command->command_trb = xhci->cmd_ring->enqueue; 2411 2412 /* Enqueue pointer can be left pointing to the link TRB, 2413 * we must handle that 2414 */ 2415 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control)) 2416 command->command_trb = 2417 xhci->cmd_ring->enq_seg->next->trbs; 2418 2419 list_add_tail(&command->cmd_list, &virt_dev->cmd_list); 2420 } else { 2421 cmd_completion = &virt_dev->cmd_completion; 2422 cmd_status = &virt_dev->cmd_status; 2423 } 2424 init_completion(cmd_completion); 2425 2426 if (!ctx_change) 2427 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, 2428 udev->slot_id, must_succeed); 2429 else 2430 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, 2431 udev->slot_id); 2432 if (ret < 0) { 2433 if (command) 2434 list_del(&command->cmd_list); 2435 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2436 xhci_free_host_resources(xhci, in_ctx); 2437 spin_unlock_irqrestore(&xhci->lock, flags); 2438 xhci_dbg(xhci, "FIXME allocate a new ring segment\n"); 2439 return -ENOMEM; 2440 } 2441 xhci_ring_cmd_db(xhci); 2442 spin_unlock_irqrestore(&xhci->lock, flags); 2443 2444 /* Wait for the configure endpoint command to complete */ 2445 timeleft = wait_for_completion_interruptible_timeout( 2446 cmd_completion, 2447 USB_CTRL_SET_TIMEOUT); 2448 if (timeleft <= 0) { 2449 xhci_warn(xhci, "%s while waiting for %s command\n", 2450 timeleft == 0 ? "Timeout" : "Signal", 2451 ctx_change == 0 ? 2452 "configure endpoint" : 2453 "evaluate context"); 2454 /* FIXME cancel the configure endpoint command */ 2455 return -ETIME; 2456 } 2457 2458 if (!ctx_change) 2459 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status); 2460 else 2461 ret = xhci_evaluate_context_result(xhci, udev, cmd_status); 2462 2463 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2464 spin_lock_irqsave(&xhci->lock, flags); 2465 /* If the command failed, remove the reserved resources. 2466 * Otherwise, clean up the estimate to include dropped eps. 2467 */ 2468 if (ret) 2469 xhci_free_host_resources(xhci, in_ctx); 2470 else 2471 xhci_finish_resource_reservation(xhci, in_ctx); 2472 spin_unlock_irqrestore(&xhci->lock, flags); 2473 } 2474 return ret; 2475 } 2476 2477 /* Called after one or more calls to xhci_add_endpoint() or 2478 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2479 * to call xhci_reset_bandwidth(). 2480 * 2481 * Since we are in the middle of changing either configuration or 2482 * installing a new alt setting, the USB core won't allow URBs to be 2483 * enqueued for any endpoint on the old config or interface. Nothing 2484 * else should be touching the xhci->devs[slot_id] structure, so we 2485 * don't need to take the xhci->lock for manipulating that. 2486 */ 2487 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2488 { 2489 int i; 2490 int ret = 0; 2491 struct xhci_hcd *xhci; 2492 struct xhci_virt_device *virt_dev; 2493 struct xhci_input_control_ctx *ctrl_ctx; 2494 struct xhci_slot_ctx *slot_ctx; 2495 2496 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2497 if (ret <= 0) 2498 return ret; 2499 xhci = hcd_to_xhci(hcd); 2500 if (xhci->xhc_state & XHCI_STATE_DYING) 2501 return -ENODEV; 2502 2503 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2504 virt_dev = xhci->devs[udev->slot_id]; 2505 2506 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2507 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 2508 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2509 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2510 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2511 2512 /* Don't issue the command if there's no endpoints to update. */ 2513 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2514 ctrl_ctx->drop_flags == 0) 2515 return 0; 2516 2517 xhci_dbg(xhci, "New Input Control Context:\n"); 2518 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2519 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2520 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2521 2522 ret = xhci_configure_endpoint(xhci, udev, NULL, 2523 false, false); 2524 if (ret) { 2525 /* Callee should call reset_bandwidth() */ 2526 return ret; 2527 } 2528 2529 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2530 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2531 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2532 2533 /* Free any rings that were dropped, but not changed. */ 2534 for (i = 1; i < 31; ++i) { 2535 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2536 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) 2537 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2538 } 2539 xhci_zero_in_ctx(xhci, virt_dev); 2540 /* 2541 * Install any rings for completely new endpoints or changed endpoints, 2542 * and free or cache any old rings from changed endpoints. 2543 */ 2544 for (i = 1; i < 31; ++i) { 2545 if (!virt_dev->eps[i].new_ring) 2546 continue; 2547 /* Only cache or free the old ring if it exists. 2548 * It may not if this is the first add of an endpoint. 2549 */ 2550 if (virt_dev->eps[i].ring) { 2551 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2552 } 2553 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2554 virt_dev->eps[i].new_ring = NULL; 2555 } 2556 2557 return ret; 2558 } 2559 2560 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2561 { 2562 struct xhci_hcd *xhci; 2563 struct xhci_virt_device *virt_dev; 2564 int i, ret; 2565 2566 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2567 if (ret <= 0) 2568 return; 2569 xhci = hcd_to_xhci(hcd); 2570 2571 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2572 virt_dev = xhci->devs[udev->slot_id]; 2573 /* Free any rings allocated for added endpoints */ 2574 for (i = 0; i < 31; ++i) { 2575 if (virt_dev->eps[i].new_ring) { 2576 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2577 virt_dev->eps[i].new_ring = NULL; 2578 } 2579 } 2580 xhci_zero_in_ctx(xhci, virt_dev); 2581 } 2582 2583 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2584 struct xhci_container_ctx *in_ctx, 2585 struct xhci_container_ctx *out_ctx, 2586 u32 add_flags, u32 drop_flags) 2587 { 2588 struct xhci_input_control_ctx *ctrl_ctx; 2589 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2590 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2591 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2592 xhci_slot_copy(xhci, in_ctx, out_ctx); 2593 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2594 2595 xhci_dbg(xhci, "Input Context:\n"); 2596 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2597 } 2598 2599 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2600 unsigned int slot_id, unsigned int ep_index, 2601 struct xhci_dequeue_state *deq_state) 2602 { 2603 struct xhci_container_ctx *in_ctx; 2604 struct xhci_ep_ctx *ep_ctx; 2605 u32 added_ctxs; 2606 dma_addr_t addr; 2607 2608 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2609 xhci->devs[slot_id]->out_ctx, ep_index); 2610 in_ctx = xhci->devs[slot_id]->in_ctx; 2611 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2612 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2613 deq_state->new_deq_ptr); 2614 if (addr == 0) { 2615 xhci_warn(xhci, "WARN Cannot submit config ep after " 2616 "reset ep command\n"); 2617 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2618 deq_state->new_deq_seg, 2619 deq_state->new_deq_ptr); 2620 return; 2621 } 2622 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2623 2624 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2625 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2626 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs); 2627 } 2628 2629 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2630 struct usb_device *udev, unsigned int ep_index) 2631 { 2632 struct xhci_dequeue_state deq_state; 2633 struct xhci_virt_ep *ep; 2634 2635 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n"); 2636 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2637 /* We need to move the HW's dequeue pointer past this TD, 2638 * or it will attempt to resend it on the next doorbell ring. 2639 */ 2640 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2641 ep_index, ep->stopped_stream, ep->stopped_td, 2642 &deq_state); 2643 2644 /* HW with the reset endpoint quirk will use the saved dequeue state to 2645 * issue a configure endpoint command later. 2646 */ 2647 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2648 xhci_dbg(xhci, "Queueing new dequeue state\n"); 2649 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2650 ep_index, ep->stopped_stream, &deq_state); 2651 } else { 2652 /* Better hope no one uses the input context between now and the 2653 * reset endpoint completion! 2654 * XXX: No idea how this hardware will react when stream rings 2655 * are enabled. 2656 */ 2657 xhci_dbg(xhci, "Setting up input context for " 2658 "configure endpoint command\n"); 2659 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2660 ep_index, &deq_state); 2661 } 2662 } 2663 2664 /* Deal with stalled endpoints. The core should have sent the control message 2665 * to clear the halt condition. However, we need to make the xHCI hardware 2666 * reset its sequence number, since a device will expect a sequence number of 2667 * zero after the halt condition is cleared. 2668 * Context: in_interrupt 2669 */ 2670 void xhci_endpoint_reset(struct usb_hcd *hcd, 2671 struct usb_host_endpoint *ep) 2672 { 2673 struct xhci_hcd *xhci; 2674 struct usb_device *udev; 2675 unsigned int ep_index; 2676 unsigned long flags; 2677 int ret; 2678 struct xhci_virt_ep *virt_ep; 2679 2680 xhci = hcd_to_xhci(hcd); 2681 udev = (struct usb_device *) ep->hcpriv; 2682 /* Called with a root hub endpoint (or an endpoint that wasn't added 2683 * with xhci_add_endpoint() 2684 */ 2685 if (!ep->hcpriv) 2686 return; 2687 ep_index = xhci_get_endpoint_index(&ep->desc); 2688 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2689 if (!virt_ep->stopped_td) { 2690 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n", 2691 ep->desc.bEndpointAddress); 2692 return; 2693 } 2694 if (usb_endpoint_xfer_control(&ep->desc)) { 2695 xhci_dbg(xhci, "Control endpoint stall already handled.\n"); 2696 return; 2697 } 2698 2699 xhci_dbg(xhci, "Queueing reset endpoint command\n"); 2700 spin_lock_irqsave(&xhci->lock, flags); 2701 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); 2702 /* 2703 * Can't change the ring dequeue pointer until it's transitioned to the 2704 * stopped state, which is only upon a successful reset endpoint 2705 * command. Better hope that last command worked! 2706 */ 2707 if (!ret) { 2708 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 2709 kfree(virt_ep->stopped_td); 2710 xhci_ring_cmd_db(xhci); 2711 } 2712 virt_ep->stopped_td = NULL; 2713 virt_ep->stopped_trb = NULL; 2714 virt_ep->stopped_stream = 0; 2715 spin_unlock_irqrestore(&xhci->lock, flags); 2716 2717 if (ret) 2718 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 2719 } 2720 2721 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2722 struct usb_device *udev, struct usb_host_endpoint *ep, 2723 unsigned int slot_id) 2724 { 2725 int ret; 2726 unsigned int ep_index; 2727 unsigned int ep_state; 2728 2729 if (!ep) 2730 return -EINVAL; 2731 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2732 if (ret <= 0) 2733 return -EINVAL; 2734 if (ep->ss_ep_comp.bmAttributes == 0) { 2735 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2736 " descriptor for ep 0x%x does not support streams\n", 2737 ep->desc.bEndpointAddress); 2738 return -EINVAL; 2739 } 2740 2741 ep_index = xhci_get_endpoint_index(&ep->desc); 2742 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2743 if (ep_state & EP_HAS_STREAMS || 2744 ep_state & EP_GETTING_STREAMS) { 2745 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2746 "already has streams set up.\n", 2747 ep->desc.bEndpointAddress); 2748 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2749 "dynamic stream context array reallocation.\n"); 2750 return -EINVAL; 2751 } 2752 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2753 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2754 "endpoint 0x%x; URBs are pending.\n", 2755 ep->desc.bEndpointAddress); 2756 return -EINVAL; 2757 } 2758 return 0; 2759 } 2760 2761 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2762 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2763 { 2764 unsigned int max_streams; 2765 2766 /* The stream context array size must be a power of two */ 2767 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2768 /* 2769 * Find out how many primary stream array entries the host controller 2770 * supports. Later we may use secondary stream arrays (similar to 2nd 2771 * level page entries), but that's an optional feature for xHCI host 2772 * controllers. xHCs must support at least 4 stream IDs. 2773 */ 2774 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2775 if (*num_stream_ctxs > max_streams) { 2776 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2777 max_streams); 2778 *num_stream_ctxs = max_streams; 2779 *num_streams = max_streams; 2780 } 2781 } 2782 2783 /* Returns an error code if one of the endpoint already has streams. 2784 * This does not change any data structures, it only checks and gathers 2785 * information. 2786 */ 2787 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 2788 struct usb_device *udev, 2789 struct usb_host_endpoint **eps, unsigned int num_eps, 2790 unsigned int *num_streams, u32 *changed_ep_bitmask) 2791 { 2792 unsigned int max_streams; 2793 unsigned int endpoint_flag; 2794 int i; 2795 int ret; 2796 2797 for (i = 0; i < num_eps; i++) { 2798 ret = xhci_check_streams_endpoint(xhci, udev, 2799 eps[i], udev->slot_id); 2800 if (ret < 0) 2801 return ret; 2802 2803 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 2804 if (max_streams < (*num_streams - 1)) { 2805 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 2806 eps[i]->desc.bEndpointAddress, 2807 max_streams); 2808 *num_streams = max_streams+1; 2809 } 2810 2811 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 2812 if (*changed_ep_bitmask & endpoint_flag) 2813 return -EINVAL; 2814 *changed_ep_bitmask |= endpoint_flag; 2815 } 2816 return 0; 2817 } 2818 2819 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 2820 struct usb_device *udev, 2821 struct usb_host_endpoint **eps, unsigned int num_eps) 2822 { 2823 u32 changed_ep_bitmask = 0; 2824 unsigned int slot_id; 2825 unsigned int ep_index; 2826 unsigned int ep_state; 2827 int i; 2828 2829 slot_id = udev->slot_id; 2830 if (!xhci->devs[slot_id]) 2831 return 0; 2832 2833 for (i = 0; i < num_eps; i++) { 2834 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2835 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2836 /* Are streams already being freed for the endpoint? */ 2837 if (ep_state & EP_GETTING_NO_STREAMS) { 2838 xhci_warn(xhci, "WARN Can't disable streams for " 2839 "endpoint 0x%x\n, " 2840 "streams are being disabled already.", 2841 eps[i]->desc.bEndpointAddress); 2842 return 0; 2843 } 2844 /* Are there actually any streams to free? */ 2845 if (!(ep_state & EP_HAS_STREAMS) && 2846 !(ep_state & EP_GETTING_STREAMS)) { 2847 xhci_warn(xhci, "WARN Can't disable streams for " 2848 "endpoint 0x%x\n, " 2849 "streams are already disabled!", 2850 eps[i]->desc.bEndpointAddress); 2851 xhci_warn(xhci, "WARN xhci_free_streams() called " 2852 "with non-streams endpoint\n"); 2853 return 0; 2854 } 2855 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 2856 } 2857 return changed_ep_bitmask; 2858 } 2859 2860 /* 2861 * The USB device drivers use this function (though the HCD interface in USB 2862 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 2863 * coordinate mass storage command queueing across multiple endpoints (basically 2864 * a stream ID == a task ID). 2865 * 2866 * Setting up streams involves allocating the same size stream context array 2867 * for each endpoint and issuing a configure endpoint command for all endpoints. 2868 * 2869 * Don't allow the call to succeed if one endpoint only supports one stream 2870 * (which means it doesn't support streams at all). 2871 * 2872 * Drivers may get less stream IDs than they asked for, if the host controller 2873 * hardware or endpoints claim they can't support the number of requested 2874 * stream IDs. 2875 */ 2876 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 2877 struct usb_host_endpoint **eps, unsigned int num_eps, 2878 unsigned int num_streams, gfp_t mem_flags) 2879 { 2880 int i, ret; 2881 struct xhci_hcd *xhci; 2882 struct xhci_virt_device *vdev; 2883 struct xhci_command *config_cmd; 2884 unsigned int ep_index; 2885 unsigned int num_stream_ctxs; 2886 unsigned long flags; 2887 u32 changed_ep_bitmask = 0; 2888 2889 if (!eps) 2890 return -EINVAL; 2891 2892 /* Add one to the number of streams requested to account for 2893 * stream 0 that is reserved for xHCI usage. 2894 */ 2895 num_streams += 1; 2896 xhci = hcd_to_xhci(hcd); 2897 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 2898 num_streams); 2899 2900 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 2901 if (!config_cmd) { 2902 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 2903 return -ENOMEM; 2904 } 2905 2906 /* Check to make sure all endpoints are not already configured for 2907 * streams. While we're at it, find the maximum number of streams that 2908 * all the endpoints will support and check for duplicate endpoints. 2909 */ 2910 spin_lock_irqsave(&xhci->lock, flags); 2911 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 2912 num_eps, &num_streams, &changed_ep_bitmask); 2913 if (ret < 0) { 2914 xhci_free_command(xhci, config_cmd); 2915 spin_unlock_irqrestore(&xhci->lock, flags); 2916 return ret; 2917 } 2918 if (num_streams <= 1) { 2919 xhci_warn(xhci, "WARN: endpoints can't handle " 2920 "more than one stream.\n"); 2921 xhci_free_command(xhci, config_cmd); 2922 spin_unlock_irqrestore(&xhci->lock, flags); 2923 return -EINVAL; 2924 } 2925 vdev = xhci->devs[udev->slot_id]; 2926 /* Mark each endpoint as being in transition, so 2927 * xhci_urb_enqueue() will reject all URBs. 2928 */ 2929 for (i = 0; i < num_eps; i++) { 2930 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2931 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 2932 } 2933 spin_unlock_irqrestore(&xhci->lock, flags); 2934 2935 /* Setup internal data structures and allocate HW data structures for 2936 * streams (but don't install the HW structures in the input context 2937 * until we're sure all memory allocation succeeded). 2938 */ 2939 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 2940 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 2941 num_stream_ctxs, num_streams); 2942 2943 for (i = 0; i < num_eps; i++) { 2944 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2945 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 2946 num_stream_ctxs, 2947 num_streams, mem_flags); 2948 if (!vdev->eps[ep_index].stream_info) 2949 goto cleanup; 2950 /* Set maxPstreams in endpoint context and update deq ptr to 2951 * point to stream context array. FIXME 2952 */ 2953 } 2954 2955 /* Set up the input context for a configure endpoint command. */ 2956 for (i = 0; i < num_eps; i++) { 2957 struct xhci_ep_ctx *ep_ctx; 2958 2959 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2960 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 2961 2962 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 2963 vdev->out_ctx, ep_index); 2964 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 2965 vdev->eps[ep_index].stream_info); 2966 } 2967 /* Tell the HW to drop its old copy of the endpoint context info 2968 * and add the updated copy from the input context. 2969 */ 2970 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 2971 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 2972 2973 /* Issue and wait for the configure endpoint command */ 2974 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 2975 false, false); 2976 2977 /* xHC rejected the configure endpoint command for some reason, so we 2978 * leave the old ring intact and free our internal streams data 2979 * structure. 2980 */ 2981 if (ret < 0) 2982 goto cleanup; 2983 2984 spin_lock_irqsave(&xhci->lock, flags); 2985 for (i = 0; i < num_eps; i++) { 2986 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2987 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 2988 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 2989 udev->slot_id, ep_index); 2990 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 2991 } 2992 xhci_free_command(xhci, config_cmd); 2993 spin_unlock_irqrestore(&xhci->lock, flags); 2994 2995 /* Subtract 1 for stream 0, which drivers can't use */ 2996 return num_streams - 1; 2997 2998 cleanup: 2999 /* If it didn't work, free the streams! */ 3000 for (i = 0; i < num_eps; i++) { 3001 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3002 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3003 vdev->eps[ep_index].stream_info = NULL; 3004 /* FIXME Unset maxPstreams in endpoint context and 3005 * update deq ptr to point to normal string ring. 3006 */ 3007 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3008 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3009 xhci_endpoint_zero(xhci, vdev, eps[i]); 3010 } 3011 xhci_free_command(xhci, config_cmd); 3012 return -ENOMEM; 3013 } 3014 3015 /* Transition the endpoint from using streams to being a "normal" endpoint 3016 * without streams. 3017 * 3018 * Modify the endpoint context state, submit a configure endpoint command, 3019 * and free all endpoint rings for streams if that completes successfully. 3020 */ 3021 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3022 struct usb_host_endpoint **eps, unsigned int num_eps, 3023 gfp_t mem_flags) 3024 { 3025 int i, ret; 3026 struct xhci_hcd *xhci; 3027 struct xhci_virt_device *vdev; 3028 struct xhci_command *command; 3029 unsigned int ep_index; 3030 unsigned long flags; 3031 u32 changed_ep_bitmask; 3032 3033 xhci = hcd_to_xhci(hcd); 3034 vdev = xhci->devs[udev->slot_id]; 3035 3036 /* Set up a configure endpoint command to remove the streams rings */ 3037 spin_lock_irqsave(&xhci->lock, flags); 3038 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3039 udev, eps, num_eps); 3040 if (changed_ep_bitmask == 0) { 3041 spin_unlock_irqrestore(&xhci->lock, flags); 3042 return -EINVAL; 3043 } 3044 3045 /* Use the xhci_command structure from the first endpoint. We may have 3046 * allocated too many, but the driver may call xhci_free_streams() for 3047 * each endpoint it grouped into one call to xhci_alloc_streams(). 3048 */ 3049 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3050 command = vdev->eps[ep_index].stream_info->free_streams_command; 3051 for (i = 0; i < num_eps; i++) { 3052 struct xhci_ep_ctx *ep_ctx; 3053 3054 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3055 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3056 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3057 EP_GETTING_NO_STREAMS; 3058 3059 xhci_endpoint_copy(xhci, command->in_ctx, 3060 vdev->out_ctx, ep_index); 3061 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 3062 &vdev->eps[ep_index]); 3063 } 3064 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3065 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 3066 spin_unlock_irqrestore(&xhci->lock, flags); 3067 3068 /* Issue and wait for the configure endpoint command, 3069 * which must succeed. 3070 */ 3071 ret = xhci_configure_endpoint(xhci, udev, command, 3072 false, true); 3073 3074 /* xHC rejected the configure endpoint command for some reason, so we 3075 * leave the streams rings intact. 3076 */ 3077 if (ret < 0) 3078 return ret; 3079 3080 spin_lock_irqsave(&xhci->lock, flags); 3081 for (i = 0; i < num_eps; i++) { 3082 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3083 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3084 vdev->eps[ep_index].stream_info = NULL; 3085 /* FIXME Unset maxPstreams in endpoint context and 3086 * update deq ptr to point to normal string ring. 3087 */ 3088 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3089 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3090 } 3091 spin_unlock_irqrestore(&xhci->lock, flags); 3092 3093 return 0; 3094 } 3095 3096 /* 3097 * Deletes endpoint resources for endpoints that were active before a Reset 3098 * Device command, or a Disable Slot command. The Reset Device command leaves 3099 * the control endpoint intact, whereas the Disable Slot command deletes it. 3100 * 3101 * Must be called with xhci->lock held. 3102 */ 3103 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3104 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3105 { 3106 int i; 3107 unsigned int num_dropped_eps = 0; 3108 unsigned int drop_flags = 0; 3109 3110 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3111 if (virt_dev->eps[i].ring) { 3112 drop_flags |= 1 << i; 3113 num_dropped_eps++; 3114 } 3115 } 3116 xhci->num_active_eps -= num_dropped_eps; 3117 if (num_dropped_eps) 3118 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, " 3119 "%u now active.\n", 3120 num_dropped_eps, drop_flags, 3121 xhci->num_active_eps); 3122 } 3123 3124 /* 3125 * This submits a Reset Device Command, which will set the device state to 0, 3126 * set the device address to 0, and disable all the endpoints except the default 3127 * control endpoint. The USB core should come back and call 3128 * xhci_address_device(), and then re-set up the configuration. If this is 3129 * called because of a usb_reset_and_verify_device(), then the old alternate 3130 * settings will be re-installed through the normal bandwidth allocation 3131 * functions. 3132 * 3133 * Wait for the Reset Device command to finish. Remove all structures 3134 * associated with the endpoints that were disabled. Clear the input device 3135 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3136 * 3137 * If the virt_dev to be reset does not exist or does not match the udev, 3138 * it means the device is lost, possibly due to the xHC restore error and 3139 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3140 * re-allocate the device. 3141 */ 3142 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3143 { 3144 int ret, i; 3145 unsigned long flags; 3146 struct xhci_hcd *xhci; 3147 unsigned int slot_id; 3148 struct xhci_virt_device *virt_dev; 3149 struct xhci_command *reset_device_cmd; 3150 int timeleft; 3151 int last_freed_endpoint; 3152 struct xhci_slot_ctx *slot_ctx; 3153 int old_active_eps = 0; 3154 3155 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3156 if (ret <= 0) 3157 return ret; 3158 xhci = hcd_to_xhci(hcd); 3159 slot_id = udev->slot_id; 3160 virt_dev = xhci->devs[slot_id]; 3161 if (!virt_dev) { 3162 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3163 "not exist. Re-allocate the device\n", slot_id); 3164 ret = xhci_alloc_dev(hcd, udev); 3165 if (ret == 1) 3166 return 0; 3167 else 3168 return -EINVAL; 3169 } 3170 3171 if (virt_dev->udev != udev) { 3172 /* If the virt_dev and the udev does not match, this virt_dev 3173 * may belong to another udev. 3174 * Re-allocate the device. 3175 */ 3176 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3177 "not match the udev. Re-allocate the device\n", 3178 slot_id); 3179 ret = xhci_alloc_dev(hcd, udev); 3180 if (ret == 1) 3181 return 0; 3182 else 3183 return -EINVAL; 3184 } 3185 3186 /* If device is not setup, there is no point in resetting it */ 3187 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3188 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3189 SLOT_STATE_DISABLED) 3190 return 0; 3191 3192 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3193 /* Allocate the command structure that holds the struct completion. 3194 * Assume we're in process context, since the normal device reset 3195 * process has to wait for the device anyway. Storage devices are 3196 * reset as part of error handling, so use GFP_NOIO instead of 3197 * GFP_KERNEL. 3198 */ 3199 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3200 if (!reset_device_cmd) { 3201 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3202 return -ENOMEM; 3203 } 3204 3205 /* Attempt to submit the Reset Device command to the command ring */ 3206 spin_lock_irqsave(&xhci->lock, flags); 3207 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue; 3208 3209 /* Enqueue pointer can be left pointing to the link TRB, 3210 * we must handle that 3211 */ 3212 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control)) 3213 reset_device_cmd->command_trb = 3214 xhci->cmd_ring->enq_seg->next->trbs; 3215 3216 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); 3217 ret = xhci_queue_reset_device(xhci, slot_id); 3218 if (ret) { 3219 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3220 list_del(&reset_device_cmd->cmd_list); 3221 spin_unlock_irqrestore(&xhci->lock, flags); 3222 goto command_cleanup; 3223 } 3224 xhci_ring_cmd_db(xhci); 3225 spin_unlock_irqrestore(&xhci->lock, flags); 3226 3227 /* Wait for the Reset Device command to finish */ 3228 timeleft = wait_for_completion_interruptible_timeout( 3229 reset_device_cmd->completion, 3230 USB_CTRL_SET_TIMEOUT); 3231 if (timeleft <= 0) { 3232 xhci_warn(xhci, "%s while waiting for reset device command\n", 3233 timeleft == 0 ? "Timeout" : "Signal"); 3234 spin_lock_irqsave(&xhci->lock, flags); 3235 /* The timeout might have raced with the event ring handler, so 3236 * only delete from the list if the item isn't poisoned. 3237 */ 3238 if (reset_device_cmd->cmd_list.next != LIST_POISON1) 3239 list_del(&reset_device_cmd->cmd_list); 3240 spin_unlock_irqrestore(&xhci->lock, flags); 3241 ret = -ETIME; 3242 goto command_cleanup; 3243 } 3244 3245 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3246 * unless we tried to reset a slot ID that wasn't enabled, 3247 * or the device wasn't in the addressed or configured state. 3248 */ 3249 ret = reset_device_cmd->status; 3250 switch (ret) { 3251 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3252 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3253 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n", 3254 slot_id, 3255 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3256 xhci_info(xhci, "Not freeing device rings.\n"); 3257 /* Don't treat this as an error. May change my mind later. */ 3258 ret = 0; 3259 goto command_cleanup; 3260 case COMP_SUCCESS: 3261 xhci_dbg(xhci, "Successful reset device command.\n"); 3262 break; 3263 default: 3264 if (xhci_is_vendor_info_code(xhci, ret)) 3265 break; 3266 xhci_warn(xhci, "Unknown completion code %u for " 3267 "reset device command.\n", ret); 3268 ret = -EINVAL; 3269 goto command_cleanup; 3270 } 3271 3272 /* Free up host controller endpoint resources */ 3273 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3274 spin_lock_irqsave(&xhci->lock, flags); 3275 /* Don't delete the default control endpoint resources */ 3276 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3277 spin_unlock_irqrestore(&xhci->lock, flags); 3278 } 3279 3280 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3281 last_freed_endpoint = 1; 3282 for (i = 1; i < 31; ++i) { 3283 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3284 3285 if (ep->ep_state & EP_HAS_STREAMS) { 3286 xhci_free_stream_info(xhci, ep->stream_info); 3287 ep->stream_info = NULL; 3288 ep->ep_state &= ~EP_HAS_STREAMS; 3289 } 3290 3291 if (ep->ring) { 3292 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3293 last_freed_endpoint = i; 3294 } 3295 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3296 xhci_drop_ep_from_interval_table(xhci, 3297 &virt_dev->eps[i].bw_info, 3298 virt_dev->bw_table, 3299 udev, 3300 &virt_dev->eps[i], 3301 virt_dev->tt_info); 3302 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3303 } 3304 /* If necessary, update the number of active TTs on this root port */ 3305 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3306 3307 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3308 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3309 ret = 0; 3310 3311 command_cleanup: 3312 xhci_free_command(xhci, reset_device_cmd); 3313 return ret; 3314 } 3315 3316 /* 3317 * At this point, the struct usb_device is about to go away, the device has 3318 * disconnected, and all traffic has been stopped and the endpoints have been 3319 * disabled. Free any HC data structures associated with that device. 3320 */ 3321 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3322 { 3323 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3324 struct xhci_virt_device *virt_dev; 3325 unsigned long flags; 3326 u32 state; 3327 int i, ret; 3328 3329 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3330 /* If the host is halted due to driver unload, we still need to free the 3331 * device. 3332 */ 3333 if (ret <= 0 && ret != -ENODEV) 3334 return; 3335 3336 virt_dev = xhci->devs[udev->slot_id]; 3337 3338 /* Stop any wayward timer functions (which may grab the lock) */ 3339 for (i = 0; i < 31; ++i) { 3340 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3341 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3342 } 3343 3344 if (udev->usb2_hw_lpm_enabled) { 3345 xhci_set_usb2_hardware_lpm(hcd, udev, 0); 3346 udev->usb2_hw_lpm_enabled = 0; 3347 } 3348 3349 spin_lock_irqsave(&xhci->lock, flags); 3350 /* Don't disable the slot if the host controller is dead. */ 3351 state = xhci_readl(xhci, &xhci->op_regs->status); 3352 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3353 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3354 xhci_free_virt_device(xhci, udev->slot_id); 3355 spin_unlock_irqrestore(&xhci->lock, flags); 3356 return; 3357 } 3358 3359 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { 3360 spin_unlock_irqrestore(&xhci->lock, flags); 3361 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3362 return; 3363 } 3364 xhci_ring_cmd_db(xhci); 3365 spin_unlock_irqrestore(&xhci->lock, flags); 3366 /* 3367 * Event command completion handler will free any data structures 3368 * associated with the slot. XXX Can free sleep? 3369 */ 3370 } 3371 3372 /* 3373 * Checks if we have enough host controller resources for the default control 3374 * endpoint. 3375 * 3376 * Must be called with xhci->lock held. 3377 */ 3378 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3379 { 3380 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3381 xhci_dbg(xhci, "Not enough ep ctxs: " 3382 "%u active, need to add 1, limit is %u.\n", 3383 xhci->num_active_eps, xhci->limit_active_eps); 3384 return -ENOMEM; 3385 } 3386 xhci->num_active_eps += 1; 3387 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n", 3388 xhci->num_active_eps); 3389 return 0; 3390 } 3391 3392 3393 /* 3394 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3395 * timed out, or allocating memory failed. Returns 1 on success. 3396 */ 3397 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3398 { 3399 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3400 unsigned long flags; 3401 int timeleft; 3402 int ret; 3403 3404 spin_lock_irqsave(&xhci->lock, flags); 3405 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); 3406 if (ret) { 3407 spin_unlock_irqrestore(&xhci->lock, flags); 3408 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3409 return 0; 3410 } 3411 xhci_ring_cmd_db(xhci); 3412 spin_unlock_irqrestore(&xhci->lock, flags); 3413 3414 /* XXX: how much time for xHC slot assignment? */ 3415 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3416 USB_CTRL_SET_TIMEOUT); 3417 if (timeleft <= 0) { 3418 xhci_warn(xhci, "%s while waiting for a slot\n", 3419 timeleft == 0 ? "Timeout" : "Signal"); 3420 /* FIXME cancel the enable slot request */ 3421 return 0; 3422 } 3423 3424 if (!xhci->slot_id) { 3425 xhci_err(xhci, "Error while assigning device slot ID\n"); 3426 return 0; 3427 } 3428 3429 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3430 spin_lock_irqsave(&xhci->lock, flags); 3431 ret = xhci_reserve_host_control_ep_resources(xhci); 3432 if (ret) { 3433 spin_unlock_irqrestore(&xhci->lock, flags); 3434 xhci_warn(xhci, "Not enough host resources, " 3435 "active endpoint contexts = %u\n", 3436 xhci->num_active_eps); 3437 goto disable_slot; 3438 } 3439 spin_unlock_irqrestore(&xhci->lock, flags); 3440 } 3441 /* Use GFP_NOIO, since this function can be called from 3442 * xhci_discover_or_reset_device(), which may be called as part of 3443 * mass storage driver error handling. 3444 */ 3445 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3446 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3447 goto disable_slot; 3448 } 3449 udev->slot_id = xhci->slot_id; 3450 /* Is this a LS or FS device under a HS hub? */ 3451 /* Hub or peripherial? */ 3452 return 1; 3453 3454 disable_slot: 3455 /* Disable slot, if we can do it without mem alloc */ 3456 spin_lock_irqsave(&xhci->lock, flags); 3457 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) 3458 xhci_ring_cmd_db(xhci); 3459 spin_unlock_irqrestore(&xhci->lock, flags); 3460 return 0; 3461 } 3462 3463 /* 3464 * Issue an Address Device command (which will issue a SetAddress request to 3465 * the device). 3466 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so 3467 * we should only issue and wait on one address command at the same time. 3468 * 3469 * We add one to the device address issued by the hardware because the USB core 3470 * uses address 1 for the root hubs (even though they're not really devices). 3471 */ 3472 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3473 { 3474 unsigned long flags; 3475 int timeleft; 3476 struct xhci_virt_device *virt_dev; 3477 int ret = 0; 3478 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3479 struct xhci_slot_ctx *slot_ctx; 3480 struct xhci_input_control_ctx *ctrl_ctx; 3481 u64 temp_64; 3482 3483 if (!udev->slot_id) { 3484 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id); 3485 return -EINVAL; 3486 } 3487 3488 virt_dev = xhci->devs[udev->slot_id]; 3489 3490 if (WARN_ON(!virt_dev)) { 3491 /* 3492 * In plug/unplug torture test with an NEC controller, 3493 * a zero-dereference was observed once due to virt_dev = 0. 3494 * Print useful debug rather than crash if it is observed again! 3495 */ 3496 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3497 udev->slot_id); 3498 return -EINVAL; 3499 } 3500 3501 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3502 /* 3503 * If this is the first Set Address since device plug-in or 3504 * virt_device realloaction after a resume with an xHCI power loss, 3505 * then set up the slot context. 3506 */ 3507 if (!slot_ctx->dev_info) 3508 xhci_setup_addressable_virt_dev(xhci, udev); 3509 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3510 else 3511 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3512 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 3513 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3514 ctrl_ctx->drop_flags = 0; 3515 3516 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3517 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3518 3519 spin_lock_irqsave(&xhci->lock, flags); 3520 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, 3521 udev->slot_id); 3522 if (ret) { 3523 spin_unlock_irqrestore(&xhci->lock, flags); 3524 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3525 return ret; 3526 } 3527 xhci_ring_cmd_db(xhci); 3528 spin_unlock_irqrestore(&xhci->lock, flags); 3529 3530 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3531 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3532 USB_CTRL_SET_TIMEOUT); 3533 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3534 * the SetAddress() "recovery interval" required by USB and aborting the 3535 * command on a timeout. 3536 */ 3537 if (timeleft <= 0) { 3538 xhci_warn(xhci, "%s while waiting for address device command\n", 3539 timeleft == 0 ? "Timeout" : "Signal"); 3540 /* FIXME cancel the address device command */ 3541 return -ETIME; 3542 } 3543 3544 switch (virt_dev->cmd_status) { 3545 case COMP_CTX_STATE: 3546 case COMP_EBADSLT: 3547 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", 3548 udev->slot_id); 3549 ret = -EINVAL; 3550 break; 3551 case COMP_TX_ERR: 3552 dev_warn(&udev->dev, "Device not responding to set address.\n"); 3553 ret = -EPROTO; 3554 break; 3555 case COMP_DEV_ERR: 3556 dev_warn(&udev->dev, "ERROR: Incompatible device for address " 3557 "device command.\n"); 3558 ret = -ENODEV; 3559 break; 3560 case COMP_SUCCESS: 3561 xhci_dbg(xhci, "Successful Address Device command\n"); 3562 break; 3563 default: 3564 xhci_err(xhci, "ERROR: unexpected command completion " 3565 "code 0x%x.\n", virt_dev->cmd_status); 3566 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3567 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3568 ret = -EINVAL; 3569 break; 3570 } 3571 if (ret) { 3572 return ret; 3573 } 3574 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3575 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64); 3576 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n", 3577 udev->slot_id, 3578 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3579 (unsigned long long) 3580 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3581 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n", 3582 (unsigned long long)virt_dev->out_ctx->dma); 3583 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3584 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3585 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3586 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3587 /* 3588 * USB core uses address 1 for the roothubs, so we add one to the 3589 * address given back to us by the HC. 3590 */ 3591 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3592 /* Use kernel assigned address for devices; store xHC assigned 3593 * address locally. */ 3594 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK) 3595 + 1; 3596 /* Zero the input context control for later use */ 3597 ctrl_ctx->add_flags = 0; 3598 ctrl_ctx->drop_flags = 0; 3599 3600 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address); 3601 3602 return 0; 3603 } 3604 3605 #ifdef CONFIG_USB_SUSPEND 3606 3607 /* BESL to HIRD Encoding array for USB2 LPM */ 3608 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3609 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3610 3611 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3612 static int xhci_calculate_hird_besl(int u2del, bool use_besl) 3613 { 3614 int hird; 3615 3616 if (use_besl) { 3617 for (hird = 0; hird < 16; hird++) { 3618 if (xhci_besl_encoding[hird] >= u2del) 3619 break; 3620 } 3621 } else { 3622 if (u2del <= 50) 3623 hird = 0; 3624 else 3625 hird = (u2del - 51) / 75 + 1; 3626 3627 if (hird > 15) 3628 hird = 15; 3629 } 3630 3631 return hird; 3632 } 3633 3634 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd, 3635 struct usb_device *udev) 3636 { 3637 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3638 struct dev_info *dev_info; 3639 __le32 __iomem **port_array; 3640 __le32 __iomem *addr, *pm_addr; 3641 u32 temp, dev_id; 3642 unsigned int port_num; 3643 unsigned long flags; 3644 int u2del, hird; 3645 int ret; 3646 3647 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 3648 !udev->lpm_capable) 3649 return -EINVAL; 3650 3651 /* we only support lpm for non-hub device connected to root hub yet */ 3652 if (!udev->parent || udev->parent->parent || 3653 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 3654 return -EINVAL; 3655 3656 spin_lock_irqsave(&xhci->lock, flags); 3657 3658 /* Look for devices in lpm_failed_devs list */ 3659 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 | 3660 le16_to_cpu(udev->descriptor.idProduct); 3661 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) { 3662 if (dev_info->dev_id == dev_id) { 3663 ret = -EINVAL; 3664 goto finish; 3665 } 3666 } 3667 3668 port_array = xhci->usb2_ports; 3669 port_num = udev->portnum - 1; 3670 3671 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) { 3672 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum); 3673 ret = -EINVAL; 3674 goto finish; 3675 } 3676 3677 /* 3678 * Test USB 2.0 software LPM. 3679 * FIXME: some xHCI 1.0 hosts may implement a new register to set up 3680 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1 3681 * in the June 2011 errata release. 3682 */ 3683 xhci_dbg(xhci, "test port %d software LPM\n", port_num); 3684 /* 3685 * Set L1 Device Slot and HIRD/BESL. 3686 * Check device's USB 2.0 extension descriptor to determine whether 3687 * HIRD or BESL shoule be used. See USB2.0 LPM errata. 3688 */ 3689 pm_addr = port_array[port_num] + 1; 3690 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 3691 if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2)) 3692 hird = xhci_calculate_hird_besl(u2del, 1); 3693 else 3694 hird = xhci_calculate_hird_besl(u2del, 0); 3695 3696 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird); 3697 xhci_writel(xhci, temp, pm_addr); 3698 3699 /* Set port link state to U2(L1) */ 3700 addr = port_array[port_num]; 3701 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2); 3702 3703 /* wait for ACK */ 3704 spin_unlock_irqrestore(&xhci->lock, flags); 3705 msleep(10); 3706 spin_lock_irqsave(&xhci->lock, flags); 3707 3708 /* Check L1 Status */ 3709 ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125); 3710 if (ret != -ETIMEDOUT) { 3711 /* enter L1 successfully */ 3712 temp = xhci_readl(xhci, addr); 3713 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n", 3714 port_num, temp); 3715 ret = 0; 3716 } else { 3717 temp = xhci_readl(xhci, pm_addr); 3718 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n", 3719 port_num, temp & PORT_L1S_MASK); 3720 ret = -EINVAL; 3721 } 3722 3723 /* Resume the port */ 3724 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0); 3725 3726 spin_unlock_irqrestore(&xhci->lock, flags); 3727 msleep(10); 3728 spin_lock_irqsave(&xhci->lock, flags); 3729 3730 /* Clear PLC */ 3731 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC); 3732 3733 /* Check PORTSC to make sure the device is in the right state */ 3734 if (!ret) { 3735 temp = xhci_readl(xhci, addr); 3736 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp); 3737 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) || 3738 (temp & PORT_PLS_MASK) != XDEV_U0) { 3739 xhci_dbg(xhci, "port L1 resume fail\n"); 3740 ret = -EINVAL; 3741 } 3742 } 3743 3744 if (ret) { 3745 /* Insert dev to lpm_failed_devs list */ 3746 xhci_warn(xhci, "device LPM test failed, may disconnect and " 3747 "re-enumerate\n"); 3748 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC); 3749 if (!dev_info) { 3750 ret = -ENOMEM; 3751 goto finish; 3752 } 3753 dev_info->dev_id = dev_id; 3754 INIT_LIST_HEAD(&dev_info->list); 3755 list_add(&dev_info->list, &xhci->lpm_failed_devs); 3756 } else { 3757 xhci_ring_device(xhci, udev->slot_id); 3758 } 3759 3760 finish: 3761 spin_unlock_irqrestore(&xhci->lock, flags); 3762 return ret; 3763 } 3764 3765 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 3766 struct usb_device *udev, int enable) 3767 { 3768 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3769 __le32 __iomem **port_array; 3770 __le32 __iomem *pm_addr; 3771 u32 temp; 3772 unsigned int port_num; 3773 unsigned long flags; 3774 int u2del, hird; 3775 3776 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 3777 !udev->lpm_capable) 3778 return -EPERM; 3779 3780 if (!udev->parent || udev->parent->parent || 3781 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 3782 return -EPERM; 3783 3784 if (udev->usb2_hw_lpm_capable != 1) 3785 return -EPERM; 3786 3787 spin_lock_irqsave(&xhci->lock, flags); 3788 3789 port_array = xhci->usb2_ports; 3790 port_num = udev->portnum - 1; 3791 pm_addr = port_array[port_num] + 1; 3792 temp = xhci_readl(xhci, pm_addr); 3793 3794 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 3795 enable ? "enable" : "disable", port_num); 3796 3797 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 3798 if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2)) 3799 hird = xhci_calculate_hird_besl(u2del, 1); 3800 else 3801 hird = xhci_calculate_hird_besl(u2del, 0); 3802 3803 if (enable) { 3804 temp &= ~PORT_HIRD_MASK; 3805 temp |= PORT_HIRD(hird) | PORT_RWE; 3806 xhci_writel(xhci, temp, pm_addr); 3807 temp = xhci_readl(xhci, pm_addr); 3808 temp |= PORT_HLE; 3809 xhci_writel(xhci, temp, pm_addr); 3810 } else { 3811 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK); 3812 xhci_writel(xhci, temp, pm_addr); 3813 } 3814 3815 spin_unlock_irqrestore(&xhci->lock, flags); 3816 return 0; 3817 } 3818 3819 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 3820 { 3821 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3822 int ret; 3823 3824 ret = xhci_usb2_software_lpm_test(hcd, udev); 3825 if (!ret) { 3826 xhci_dbg(xhci, "software LPM test succeed\n"); 3827 if (xhci->hw_lpm_support == 1) { 3828 udev->usb2_hw_lpm_capable = 1; 3829 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1); 3830 if (!ret) 3831 udev->usb2_hw_lpm_enabled = 1; 3832 } 3833 } 3834 3835 return 0; 3836 } 3837 3838 #else 3839 3840 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 3841 struct usb_device *udev, int enable) 3842 { 3843 return 0; 3844 } 3845 3846 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 3847 { 3848 return 0; 3849 } 3850 3851 #endif /* CONFIG_USB_SUSPEND */ 3852 3853 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 3854 * internal data structures for the device. 3855 */ 3856 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 3857 struct usb_tt *tt, gfp_t mem_flags) 3858 { 3859 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3860 struct xhci_virt_device *vdev; 3861 struct xhci_command *config_cmd; 3862 struct xhci_input_control_ctx *ctrl_ctx; 3863 struct xhci_slot_ctx *slot_ctx; 3864 unsigned long flags; 3865 unsigned think_time; 3866 int ret; 3867 3868 /* Ignore root hubs */ 3869 if (!hdev->parent) 3870 return 0; 3871 3872 vdev = xhci->devs[hdev->slot_id]; 3873 if (!vdev) { 3874 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 3875 return -EINVAL; 3876 } 3877 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3878 if (!config_cmd) { 3879 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3880 return -ENOMEM; 3881 } 3882 3883 spin_lock_irqsave(&xhci->lock, flags); 3884 if (hdev->speed == USB_SPEED_HIGH && 3885 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 3886 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 3887 xhci_free_command(xhci, config_cmd); 3888 spin_unlock_irqrestore(&xhci->lock, flags); 3889 return -ENOMEM; 3890 } 3891 3892 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 3893 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 3894 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3895 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 3896 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 3897 if (tt->multi) 3898 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 3899 if (xhci->hci_version > 0x95) { 3900 xhci_dbg(xhci, "xHCI version %x needs hub " 3901 "TT think time and number of ports\n", 3902 (unsigned int) xhci->hci_version); 3903 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 3904 /* Set TT think time - convert from ns to FS bit times. 3905 * 0 = 8 FS bit times, 1 = 16 FS bit times, 3906 * 2 = 24 FS bit times, 3 = 32 FS bit times. 3907 * 3908 * xHCI 1.0: this field shall be 0 if the device is not a 3909 * High-spped hub. 3910 */ 3911 think_time = tt->think_time; 3912 if (think_time != 0) 3913 think_time = (think_time / 666) - 1; 3914 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 3915 slot_ctx->tt_info |= 3916 cpu_to_le32(TT_THINK_TIME(think_time)); 3917 } else { 3918 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 3919 "TT think time or number of ports\n", 3920 (unsigned int) xhci->hci_version); 3921 } 3922 slot_ctx->dev_state = 0; 3923 spin_unlock_irqrestore(&xhci->lock, flags); 3924 3925 xhci_dbg(xhci, "Set up %s for hub device.\n", 3926 (xhci->hci_version > 0x95) ? 3927 "configure endpoint" : "evaluate context"); 3928 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 3929 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 3930 3931 /* Issue and wait for the configure endpoint or 3932 * evaluate context command. 3933 */ 3934 if (xhci->hci_version > 0x95) 3935 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 3936 false, false); 3937 else 3938 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 3939 true, false); 3940 3941 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 3942 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 3943 3944 xhci_free_command(xhci, config_cmd); 3945 return ret; 3946 } 3947 3948 int xhci_get_frame(struct usb_hcd *hcd) 3949 { 3950 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3951 /* EHCI mods by the periodic size. Why? */ 3952 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; 3953 } 3954 3955 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 3956 { 3957 struct xhci_hcd *xhci; 3958 struct device *dev = hcd->self.controller; 3959 int retval; 3960 u32 temp; 3961 3962 hcd->self.sg_tablesize = TRBS_PER_SEGMENT - 2; 3963 3964 if (usb_hcd_is_primary_hcd(hcd)) { 3965 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 3966 if (!xhci) 3967 return -ENOMEM; 3968 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 3969 xhci->main_hcd = hcd; 3970 /* Mark the first roothub as being USB 2.0. 3971 * The xHCI driver will register the USB 3.0 roothub. 3972 */ 3973 hcd->speed = HCD_USB2; 3974 hcd->self.root_hub->speed = USB_SPEED_HIGH; 3975 /* 3976 * USB 2.0 roothub under xHCI has an integrated TT, 3977 * (rate matching hub) as opposed to having an OHCI/UHCI 3978 * companion controller. 3979 */ 3980 hcd->has_tt = 1; 3981 } else { 3982 /* xHCI private pointer was set in xhci_pci_probe for the second 3983 * registered roothub. 3984 */ 3985 xhci = hcd_to_xhci(hcd); 3986 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 3987 if (HCC_64BIT_ADDR(temp)) { 3988 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 3989 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 3990 } else { 3991 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 3992 } 3993 return 0; 3994 } 3995 3996 xhci->cap_regs = hcd->regs; 3997 xhci->op_regs = hcd->regs + 3998 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase)); 3999 xhci->run_regs = hcd->regs + 4000 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4001 /* Cache read-only capability registers */ 4002 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1); 4003 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2); 4004 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3); 4005 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); 4006 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4007 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4008 xhci_print_registers(xhci); 4009 4010 get_quirks(dev, xhci); 4011 4012 /* Make sure the HC is halted. */ 4013 retval = xhci_halt(xhci); 4014 if (retval) 4015 goto error; 4016 4017 xhci_dbg(xhci, "Resetting HCD\n"); 4018 /* Reset the internal HC memory state and registers. */ 4019 retval = xhci_reset(xhci); 4020 if (retval) 4021 goto error; 4022 xhci_dbg(xhci, "Reset complete\n"); 4023 4024 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4025 if (HCC_64BIT_ADDR(temp)) { 4026 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4027 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4028 } else { 4029 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4030 } 4031 4032 xhci_dbg(xhci, "Calling HCD init\n"); 4033 /* Initialize HCD and host controller data structures. */ 4034 retval = xhci_init(hcd); 4035 if (retval) 4036 goto error; 4037 xhci_dbg(xhci, "Called HCD init\n"); 4038 return 0; 4039 error: 4040 kfree(xhci); 4041 return retval; 4042 } 4043 4044 MODULE_DESCRIPTION(DRIVER_DESC); 4045 MODULE_AUTHOR(DRIVER_AUTHOR); 4046 MODULE_LICENSE("GPL"); 4047 4048 static int __init xhci_hcd_init(void) 4049 { 4050 int retval; 4051 4052 retval = xhci_register_pci(); 4053 if (retval < 0) { 4054 printk(KERN_DEBUG "Problem registering PCI driver."); 4055 return retval; 4056 } 4057 /* 4058 * Check the compiler generated sizes of structures that must be laid 4059 * out in specific ways for hardware access. 4060 */ 4061 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4062 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4063 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4064 /* xhci_device_control has eight fields, and also 4065 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4066 */ 4067 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4068 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4069 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4070 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 4071 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4072 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4073 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4074 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4075 return 0; 4076 } 4077 module_init(xhci_hcd_init); 4078 4079 static void __exit xhci_hcd_cleanup(void) 4080 { 4081 xhci_unregister_pci(); 4082 } 4083 module_exit(xhci_hcd_cleanup); 4084