xref: /linux/drivers/usb/host/xhci.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 
30 #include "xhci.h"
31 
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34 
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39 
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 		      u32 mask, u32 done, int usec)
56 {
57 	u32	result;
58 
59 	do {
60 		result = xhci_readl(xhci, ptr);
61 		if (result == ~(u32)0)		/* card removed */
62 			return -ENODEV;
63 		result &= mask;
64 		if (result == done)
65 			return 0;
66 		udelay(1);
67 		usec--;
68 	} while (usec > 0);
69 	return -ETIMEDOUT;
70 }
71 
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77 	u32 halted;
78 	u32 cmd;
79 	u32 mask;
80 
81 	mask = ~(XHCI_IRQS);
82 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 	if (!halted)
84 		mask &= ~CMD_RUN;
85 
86 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 	cmd &= mask;
88 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90 
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101 	int ret;
102 	xhci_dbg(xhci, "// Halt the HC\n");
103 	xhci_quiesce(xhci);
104 
105 	ret = handshake(xhci, &xhci->op_regs->status,
106 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 	if (!ret)
108 		xhci->xhc_state |= XHCI_STATE_HALTED;
109 	return ret;
110 }
111 
112 /*
113  * Set the run bit and wait for the host to be running.
114  */
115 static int xhci_start(struct xhci_hcd *xhci)
116 {
117 	u32 temp;
118 	int ret;
119 
120 	temp = xhci_readl(xhci, &xhci->op_regs->command);
121 	temp |= (CMD_RUN);
122 	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123 			temp);
124 	xhci_writel(xhci, temp, &xhci->op_regs->command);
125 
126 	/*
127 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
128 	 * running.
129 	 */
130 	ret = handshake(xhci, &xhci->op_regs->status,
131 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
132 	if (ret == -ETIMEDOUT)
133 		xhci_err(xhci, "Host took too long to start, "
134 				"waited %u microseconds.\n",
135 				XHCI_MAX_HALT_USEC);
136 	if (!ret)
137 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
138 	return ret;
139 }
140 
141 /*
142  * Reset a halted HC.
143  *
144  * This resets pipelines, timers, counters, state machines, etc.
145  * Transactions will be terminated immediately, and operational registers
146  * will be set to their defaults.
147  */
148 int xhci_reset(struct xhci_hcd *xhci)
149 {
150 	u32 command;
151 	u32 state;
152 	int ret;
153 
154 	state = xhci_readl(xhci, &xhci->op_regs->status);
155 	if ((state & STS_HALT) == 0) {
156 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157 		return 0;
158 	}
159 
160 	xhci_dbg(xhci, "// Reset the HC\n");
161 	command = xhci_readl(xhci, &xhci->op_regs->command);
162 	command |= CMD_RESET;
163 	xhci_writel(xhci, command, &xhci->op_regs->command);
164 
165 	ret = handshake(xhci, &xhci->op_regs->command,
166 			CMD_RESET, 0, 250 * 1000);
167 	if (ret)
168 		return ret;
169 
170 	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
171 	/*
172 	 * xHCI cannot write to any doorbells or operational registers other
173 	 * than status until the "Controller Not Ready" flag is cleared.
174 	 */
175 	return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
176 }
177 
178 #ifdef CONFIG_PCI
179 static int xhci_free_msi(struct xhci_hcd *xhci)
180 {
181 	int i;
182 
183 	if (!xhci->msix_entries)
184 		return -EINVAL;
185 
186 	for (i = 0; i < xhci->msix_count; i++)
187 		if (xhci->msix_entries[i].vector)
188 			free_irq(xhci->msix_entries[i].vector,
189 					xhci_to_hcd(xhci));
190 	return 0;
191 }
192 
193 /*
194  * Set up MSI
195  */
196 static int xhci_setup_msi(struct xhci_hcd *xhci)
197 {
198 	int ret;
199 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
200 
201 	ret = pci_enable_msi(pdev);
202 	if (ret) {
203 		xhci_dbg(xhci, "failed to allocate MSI entry\n");
204 		return ret;
205 	}
206 
207 	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
208 				0, "xhci_hcd", xhci_to_hcd(xhci));
209 	if (ret) {
210 		xhci_dbg(xhci, "disable MSI interrupt\n");
211 		pci_disable_msi(pdev);
212 	}
213 
214 	return ret;
215 }
216 
217 /*
218  * Free IRQs
219  * free all IRQs request
220  */
221 static void xhci_free_irq(struct xhci_hcd *xhci)
222 {
223 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224 	int ret;
225 
226 	/* return if using legacy interrupt */
227 	if (xhci_to_hcd(xhci)->irq >= 0)
228 		return;
229 
230 	ret = xhci_free_msi(xhci);
231 	if (!ret)
232 		return;
233 	if (pdev->irq >= 0)
234 		free_irq(pdev->irq, xhci_to_hcd(xhci));
235 
236 	return;
237 }
238 
239 /*
240  * Set up MSI-X
241  */
242 static int xhci_setup_msix(struct xhci_hcd *xhci)
243 {
244 	int i, ret = 0;
245 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
246 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
247 
248 	/*
249 	 * calculate number of msi-x vectors supported.
250 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
251 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
252 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
253 	 *   Add additional 1 vector to ensure always available interrupt.
254 	 */
255 	xhci->msix_count = min(num_online_cpus() + 1,
256 				HCS_MAX_INTRS(xhci->hcs_params1));
257 
258 	xhci->msix_entries =
259 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
260 				GFP_KERNEL);
261 	if (!xhci->msix_entries) {
262 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
263 		return -ENOMEM;
264 	}
265 
266 	for (i = 0; i < xhci->msix_count; i++) {
267 		xhci->msix_entries[i].entry = i;
268 		xhci->msix_entries[i].vector = 0;
269 	}
270 
271 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
272 	if (ret) {
273 		xhci_dbg(xhci, "Failed to enable MSI-X\n");
274 		goto free_entries;
275 	}
276 
277 	for (i = 0; i < xhci->msix_count; i++) {
278 		ret = request_irq(xhci->msix_entries[i].vector,
279 				(irq_handler_t)xhci_msi_irq,
280 				0, "xhci_hcd", xhci_to_hcd(xhci));
281 		if (ret)
282 			goto disable_msix;
283 	}
284 
285 	hcd->msix_enabled = 1;
286 	return ret;
287 
288 disable_msix:
289 	xhci_dbg(xhci, "disable MSI-X interrupt\n");
290 	xhci_free_irq(xhci);
291 	pci_disable_msix(pdev);
292 free_entries:
293 	kfree(xhci->msix_entries);
294 	xhci->msix_entries = NULL;
295 	return ret;
296 }
297 
298 /* Free any IRQs and disable MSI-X */
299 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
300 {
301 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
302 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
303 
304 	xhci_free_irq(xhci);
305 
306 	if (xhci->msix_entries) {
307 		pci_disable_msix(pdev);
308 		kfree(xhci->msix_entries);
309 		xhci->msix_entries = NULL;
310 	} else {
311 		pci_disable_msi(pdev);
312 	}
313 
314 	hcd->msix_enabled = 0;
315 	return;
316 }
317 
318 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
319 {
320 	int i;
321 
322 	if (xhci->msix_entries) {
323 		for (i = 0; i < xhci->msix_count; i++)
324 			synchronize_irq(xhci->msix_entries[i].vector);
325 	}
326 }
327 
328 static int xhci_try_enable_msi(struct usb_hcd *hcd)
329 {
330 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
331 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
332 	int ret;
333 
334 	/*
335 	 * Some Fresco Logic host controllers advertise MSI, but fail to
336 	 * generate interrupts.  Don't even try to enable MSI.
337 	 */
338 	if (xhci->quirks & XHCI_BROKEN_MSI)
339 		return 0;
340 
341 	/* unregister the legacy interrupt */
342 	if (hcd->irq)
343 		free_irq(hcd->irq, hcd);
344 	hcd->irq = -1;
345 
346 	ret = xhci_setup_msix(xhci);
347 	if (ret)
348 		/* fall back to msi*/
349 		ret = xhci_setup_msi(xhci);
350 
351 	if (!ret)
352 		/* hcd->irq is -1, we have MSI */
353 		return 0;
354 
355 	/* fall back to legacy interrupt*/
356 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
357 			hcd->irq_descr, hcd);
358 	if (ret) {
359 		xhci_err(xhci, "request interrupt %d failed\n",
360 				pdev->irq);
361 		return ret;
362 	}
363 	hcd->irq = pdev->irq;
364 	return 0;
365 }
366 
367 #else
368 
369 static int xhci_try_enable_msi(struct usb_hcd *hcd)
370 {
371 	return 0;
372 }
373 
374 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
375 {
376 }
377 
378 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
379 {
380 }
381 
382 #endif
383 
384 /*
385  * Initialize memory for HCD and xHC (one-time init).
386  *
387  * Program the PAGESIZE register, initialize the device context array, create
388  * device contexts (?), set up a command ring segment (or two?), create event
389  * ring (one for now).
390  */
391 int xhci_init(struct usb_hcd *hcd)
392 {
393 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
394 	int retval = 0;
395 
396 	xhci_dbg(xhci, "xhci_init\n");
397 	spin_lock_init(&xhci->lock);
398 	if (xhci->hci_version == 0x95 && link_quirk) {
399 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
400 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
401 	} else {
402 		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
403 	}
404 	retval = xhci_mem_init(xhci, GFP_KERNEL);
405 	xhci_dbg(xhci, "Finished xhci_init\n");
406 
407 	return retval;
408 }
409 
410 /*-------------------------------------------------------------------------*/
411 
412 
413 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
414 static void xhci_event_ring_work(unsigned long arg)
415 {
416 	unsigned long flags;
417 	int temp;
418 	u64 temp_64;
419 	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
420 	int i, j;
421 
422 	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
423 
424 	spin_lock_irqsave(&xhci->lock, flags);
425 	temp = xhci_readl(xhci, &xhci->op_regs->status);
426 	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
427 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
428 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
429 		xhci_dbg(xhci, "HW died, polling stopped.\n");
430 		spin_unlock_irqrestore(&xhci->lock, flags);
431 		return;
432 	}
433 
434 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
435 	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
436 	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
437 	xhci->error_bitmask = 0;
438 	xhci_dbg(xhci, "Event ring:\n");
439 	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
440 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
441 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
442 	temp_64 &= ~ERST_PTR_MASK;
443 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
444 	xhci_dbg(xhci, "Command ring:\n");
445 	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
446 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
447 	xhci_dbg_cmd_ptrs(xhci);
448 	for (i = 0; i < MAX_HC_SLOTS; ++i) {
449 		if (!xhci->devs[i])
450 			continue;
451 		for (j = 0; j < 31; ++j) {
452 			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
453 		}
454 	}
455 	spin_unlock_irqrestore(&xhci->lock, flags);
456 
457 	if (!xhci->zombie)
458 		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
459 	else
460 		xhci_dbg(xhci, "Quit polling the event ring.\n");
461 }
462 #endif
463 
464 static int xhci_run_finished(struct xhci_hcd *xhci)
465 {
466 	if (xhci_start(xhci)) {
467 		xhci_halt(xhci);
468 		return -ENODEV;
469 	}
470 	xhci->shared_hcd->state = HC_STATE_RUNNING;
471 
472 	if (xhci->quirks & XHCI_NEC_HOST)
473 		xhci_ring_cmd_db(xhci);
474 
475 	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
476 	return 0;
477 }
478 
479 /*
480  * Start the HC after it was halted.
481  *
482  * This function is called by the USB core when the HC driver is added.
483  * Its opposite is xhci_stop().
484  *
485  * xhci_init() must be called once before this function can be called.
486  * Reset the HC, enable device slot contexts, program DCBAAP, and
487  * set command ring pointer and event ring pointer.
488  *
489  * Setup MSI-X vectors and enable interrupts.
490  */
491 int xhci_run(struct usb_hcd *hcd)
492 {
493 	u32 temp;
494 	u64 temp_64;
495 	int ret;
496 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
497 
498 	/* Start the xHCI host controller running only after the USB 2.0 roothub
499 	 * is setup.
500 	 */
501 
502 	hcd->uses_new_polling = 1;
503 	if (!usb_hcd_is_primary_hcd(hcd))
504 		return xhci_run_finished(xhci);
505 
506 	xhci_dbg(xhci, "xhci_run\n");
507 
508 	ret = xhci_try_enable_msi(hcd);
509 	if (ret)
510 		return ret;
511 
512 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
513 	init_timer(&xhci->event_ring_timer);
514 	xhci->event_ring_timer.data = (unsigned long) xhci;
515 	xhci->event_ring_timer.function = xhci_event_ring_work;
516 	/* Poll the event ring */
517 	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
518 	xhci->zombie = 0;
519 	xhci_dbg(xhci, "Setting event ring polling timer\n");
520 	add_timer(&xhci->event_ring_timer);
521 #endif
522 
523 	xhci_dbg(xhci, "Command ring memory map follows:\n");
524 	xhci_debug_ring(xhci, xhci->cmd_ring);
525 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
526 	xhci_dbg_cmd_ptrs(xhci);
527 
528 	xhci_dbg(xhci, "ERST memory map follows:\n");
529 	xhci_dbg_erst(xhci, &xhci->erst);
530 	xhci_dbg(xhci, "Event ring:\n");
531 	xhci_debug_ring(xhci, xhci->event_ring);
532 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
533 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
534 	temp_64 &= ~ERST_PTR_MASK;
535 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
536 
537 	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
538 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
539 	temp &= ~ER_IRQ_INTERVAL_MASK;
540 	temp |= (u32) 160;
541 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
542 
543 	/* Set the HCD state before we enable the irqs */
544 	temp = xhci_readl(xhci, &xhci->op_regs->command);
545 	temp |= (CMD_EIE);
546 	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
547 			temp);
548 	xhci_writel(xhci, temp, &xhci->op_regs->command);
549 
550 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
551 	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
552 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
553 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
554 			&xhci->ir_set->irq_pending);
555 	xhci_print_ir_set(xhci, 0);
556 
557 	if (xhci->quirks & XHCI_NEC_HOST)
558 		xhci_queue_vendor_command(xhci, 0, 0, 0,
559 				TRB_TYPE(TRB_NEC_GET_FW));
560 
561 	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
562 	return 0;
563 }
564 
565 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
566 {
567 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
568 
569 	spin_lock_irq(&xhci->lock);
570 	xhci_halt(xhci);
571 
572 	/* The shared_hcd is going to be deallocated shortly (the USB core only
573 	 * calls this function when allocation fails in usb_add_hcd(), or
574 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
575 	 */
576 	xhci->shared_hcd = NULL;
577 	spin_unlock_irq(&xhci->lock);
578 }
579 
580 /*
581  * Stop xHCI driver.
582  *
583  * This function is called by the USB core when the HC driver is removed.
584  * Its opposite is xhci_run().
585  *
586  * Disable device contexts, disable IRQs, and quiesce the HC.
587  * Reset the HC, finish any completed transactions, and cleanup memory.
588  */
589 void xhci_stop(struct usb_hcd *hcd)
590 {
591 	u32 temp;
592 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
593 
594 	if (!usb_hcd_is_primary_hcd(hcd)) {
595 		xhci_only_stop_hcd(xhci->shared_hcd);
596 		return;
597 	}
598 
599 	spin_lock_irq(&xhci->lock);
600 	/* Make sure the xHC is halted for a USB3 roothub
601 	 * (xhci_stop() could be called as part of failed init).
602 	 */
603 	xhci_halt(xhci);
604 	xhci_reset(xhci);
605 	spin_unlock_irq(&xhci->lock);
606 
607 	xhci_cleanup_msix(xhci);
608 
609 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
610 	/* Tell the event ring poll function not to reschedule */
611 	xhci->zombie = 1;
612 	del_timer_sync(&xhci->event_ring_timer);
613 #endif
614 
615 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
616 		usb_amd_dev_put();
617 
618 	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
619 	temp = xhci_readl(xhci, &xhci->op_regs->status);
620 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
621 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
622 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
623 			&xhci->ir_set->irq_pending);
624 	xhci_print_ir_set(xhci, 0);
625 
626 	xhci_dbg(xhci, "cleaning up memory\n");
627 	xhci_mem_cleanup(xhci);
628 	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
629 		    xhci_readl(xhci, &xhci->op_regs->status));
630 }
631 
632 /*
633  * Shutdown HC (not bus-specific)
634  *
635  * This is called when the machine is rebooting or halting.  We assume that the
636  * machine will be powered off, and the HC's internal state will be reset.
637  * Don't bother to free memory.
638  *
639  * This will only ever be called with the main usb_hcd (the USB3 roothub).
640  */
641 void xhci_shutdown(struct usb_hcd *hcd)
642 {
643 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
644 
645 	spin_lock_irq(&xhci->lock);
646 	xhci_halt(xhci);
647 	spin_unlock_irq(&xhci->lock);
648 
649 	xhci_cleanup_msix(xhci);
650 
651 	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
652 		    xhci_readl(xhci, &xhci->op_regs->status));
653 }
654 
655 #ifdef CONFIG_PM
656 static void xhci_save_registers(struct xhci_hcd *xhci)
657 {
658 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
659 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
660 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
661 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
662 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
663 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
664 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
665 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
666 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
667 }
668 
669 static void xhci_restore_registers(struct xhci_hcd *xhci)
670 {
671 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
672 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
673 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
674 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
675 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
676 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
677 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
678 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
679 }
680 
681 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
682 {
683 	u64	val_64;
684 
685 	/* step 2: initialize command ring buffer */
686 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
687 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
688 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
689 				      xhci->cmd_ring->dequeue) &
690 		 (u64) ~CMD_RING_RSVD_BITS) |
691 		xhci->cmd_ring->cycle_state;
692 	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
693 			(long unsigned long) val_64);
694 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
695 }
696 
697 /*
698  * The whole command ring must be cleared to zero when we suspend the host.
699  *
700  * The host doesn't save the command ring pointer in the suspend well, so we
701  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
702  * aligned, because of the reserved bits in the command ring dequeue pointer
703  * register.  Therefore, we can't just set the dequeue pointer back in the
704  * middle of the ring (TRBs are 16-byte aligned).
705  */
706 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
707 {
708 	struct xhci_ring *ring;
709 	struct xhci_segment *seg;
710 
711 	ring = xhci->cmd_ring;
712 	seg = ring->deq_seg;
713 	do {
714 		memset(seg->trbs, 0,
715 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
716 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
717 			cpu_to_le32(~TRB_CYCLE);
718 		seg = seg->next;
719 	} while (seg != ring->deq_seg);
720 
721 	/* Reset the software enqueue and dequeue pointers */
722 	ring->deq_seg = ring->first_seg;
723 	ring->dequeue = ring->first_seg->trbs;
724 	ring->enq_seg = ring->deq_seg;
725 	ring->enqueue = ring->dequeue;
726 
727 	/*
728 	 * Ring is now zeroed, so the HW should look for change of ownership
729 	 * when the cycle bit is set to 1.
730 	 */
731 	ring->cycle_state = 1;
732 
733 	/*
734 	 * Reset the hardware dequeue pointer.
735 	 * Yes, this will need to be re-written after resume, but we're paranoid
736 	 * and want to make sure the hardware doesn't access bogus memory
737 	 * because, say, the BIOS or an SMI started the host without changing
738 	 * the command ring pointers.
739 	 */
740 	xhci_set_cmd_ring_deq(xhci);
741 }
742 
743 /*
744  * Stop HC (not bus-specific)
745  *
746  * This is called when the machine transition into S3/S4 mode.
747  *
748  */
749 int xhci_suspend(struct xhci_hcd *xhci)
750 {
751 	int			rc = 0;
752 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
753 	u32			command;
754 
755 	spin_lock_irq(&xhci->lock);
756 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
757 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
758 	/* step 1: stop endpoint */
759 	/* skipped assuming that port suspend has done */
760 
761 	/* step 2: clear Run/Stop bit */
762 	command = xhci_readl(xhci, &xhci->op_regs->command);
763 	command &= ~CMD_RUN;
764 	xhci_writel(xhci, command, &xhci->op_regs->command);
765 	if (handshake(xhci, &xhci->op_regs->status,
766 		      STS_HALT, STS_HALT, 100*100)) {
767 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
768 		spin_unlock_irq(&xhci->lock);
769 		return -ETIMEDOUT;
770 	}
771 	xhci_clear_command_ring(xhci);
772 
773 	/* step 3: save registers */
774 	xhci_save_registers(xhci);
775 
776 	/* step 4: set CSS flag */
777 	command = xhci_readl(xhci, &xhci->op_regs->command);
778 	command |= CMD_CSS;
779 	xhci_writel(xhci, command, &xhci->op_regs->command);
780 	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
781 		xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
782 		spin_unlock_irq(&xhci->lock);
783 		return -ETIMEDOUT;
784 	}
785 	spin_unlock_irq(&xhci->lock);
786 
787 	/* step 5: remove core well power */
788 	/* synchronize irq when using MSI-X */
789 	xhci_msix_sync_irqs(xhci);
790 
791 	return rc;
792 }
793 
794 /*
795  * start xHC (not bus-specific)
796  *
797  * This is called when the machine transition from S3/S4 mode.
798  *
799  */
800 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
801 {
802 	u32			command, temp = 0;
803 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
804 	struct usb_hcd		*secondary_hcd;
805 	int			retval = 0;
806 
807 	/* Wait a bit if either of the roothubs need to settle from the
808 	 * transition into bus suspend.
809 	 */
810 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
811 			time_before(jiffies,
812 				xhci->bus_state[1].next_statechange))
813 		msleep(100);
814 
815 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
816 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
817 
818 	spin_lock_irq(&xhci->lock);
819 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
820 		hibernated = true;
821 
822 	if (!hibernated) {
823 		/* step 1: restore register */
824 		xhci_restore_registers(xhci);
825 		/* step 2: initialize command ring buffer */
826 		xhci_set_cmd_ring_deq(xhci);
827 		/* step 3: restore state and start state*/
828 		/* step 3: set CRS flag */
829 		command = xhci_readl(xhci, &xhci->op_regs->command);
830 		command |= CMD_CRS;
831 		xhci_writel(xhci, command, &xhci->op_regs->command);
832 		if (handshake(xhci, &xhci->op_regs->status,
833 			      STS_RESTORE, 0, 10*100)) {
834 			xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
835 			spin_unlock_irq(&xhci->lock);
836 			return -ETIMEDOUT;
837 		}
838 		temp = xhci_readl(xhci, &xhci->op_regs->status);
839 	}
840 
841 	/* If restore operation fails, re-initialize the HC during resume */
842 	if ((temp & STS_SRE) || hibernated) {
843 		/* Let the USB core know _both_ roothubs lost power. */
844 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
845 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
846 
847 		xhci_dbg(xhci, "Stop HCD\n");
848 		xhci_halt(xhci);
849 		xhci_reset(xhci);
850 		spin_unlock_irq(&xhci->lock);
851 		xhci_cleanup_msix(xhci);
852 
853 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
854 		/* Tell the event ring poll function not to reschedule */
855 		xhci->zombie = 1;
856 		del_timer_sync(&xhci->event_ring_timer);
857 #endif
858 
859 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
860 		temp = xhci_readl(xhci, &xhci->op_regs->status);
861 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
862 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
863 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
864 				&xhci->ir_set->irq_pending);
865 		xhci_print_ir_set(xhci, 0);
866 
867 		xhci_dbg(xhci, "cleaning up memory\n");
868 		xhci_mem_cleanup(xhci);
869 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
870 			    xhci_readl(xhci, &xhci->op_regs->status));
871 
872 		/* USB core calls the PCI reinit and start functions twice:
873 		 * first with the primary HCD, and then with the secondary HCD.
874 		 * If we don't do the same, the host will never be started.
875 		 */
876 		if (!usb_hcd_is_primary_hcd(hcd))
877 			secondary_hcd = hcd;
878 		else
879 			secondary_hcd = xhci->shared_hcd;
880 
881 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
882 		retval = xhci_init(hcd->primary_hcd);
883 		if (retval)
884 			return retval;
885 		xhci_dbg(xhci, "Start the primary HCD\n");
886 		retval = xhci_run(hcd->primary_hcd);
887 		if (!retval) {
888 			xhci_dbg(xhci, "Start the secondary HCD\n");
889 			retval = xhci_run(secondary_hcd);
890 		}
891 		hcd->state = HC_STATE_SUSPENDED;
892 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
893 		goto done;
894 	}
895 
896 	/* step 4: set Run/Stop bit */
897 	command = xhci_readl(xhci, &xhci->op_regs->command);
898 	command |= CMD_RUN;
899 	xhci_writel(xhci, command, &xhci->op_regs->command);
900 	handshake(xhci, &xhci->op_regs->status, STS_HALT,
901 		  0, 250 * 1000);
902 
903 	/* step 5: walk topology and initialize portsc,
904 	 * portpmsc and portli
905 	 */
906 	/* this is done in bus_resume */
907 
908 	/* step 6: restart each of the previously
909 	 * Running endpoints by ringing their doorbells
910 	 */
911 
912 	spin_unlock_irq(&xhci->lock);
913 
914  done:
915 	if (retval == 0) {
916 		usb_hcd_resume_root_hub(hcd);
917 		usb_hcd_resume_root_hub(xhci->shared_hcd);
918 	}
919 	return retval;
920 }
921 #endif	/* CONFIG_PM */
922 
923 /*-------------------------------------------------------------------------*/
924 
925 /**
926  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
927  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
928  * value to right shift 1 for the bitmask.
929  *
930  * Index  = (epnum * 2) + direction - 1,
931  * where direction = 0 for OUT, 1 for IN.
932  * For control endpoints, the IN index is used (OUT index is unused), so
933  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
934  */
935 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
936 {
937 	unsigned int index;
938 	if (usb_endpoint_xfer_control(desc))
939 		index = (unsigned int) (usb_endpoint_num(desc)*2);
940 	else
941 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
942 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
943 	return index;
944 }
945 
946 /* Find the flag for this endpoint (for use in the control context).  Use the
947  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
948  * bit 1, etc.
949  */
950 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
951 {
952 	return 1 << (xhci_get_endpoint_index(desc) + 1);
953 }
954 
955 /* Find the flag for this endpoint (for use in the control context).  Use the
956  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
957  * bit 1, etc.
958  */
959 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
960 {
961 	return 1 << (ep_index + 1);
962 }
963 
964 /* Compute the last valid endpoint context index.  Basically, this is the
965  * endpoint index plus one.  For slot contexts with more than valid endpoint,
966  * we find the most significant bit set in the added contexts flags.
967  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
968  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
969  */
970 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
971 {
972 	return fls(added_ctxs) - 1;
973 }
974 
975 /* Returns 1 if the arguments are OK;
976  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
977  */
978 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
979 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
980 		const char *func) {
981 	struct xhci_hcd	*xhci;
982 	struct xhci_virt_device	*virt_dev;
983 
984 	if (!hcd || (check_ep && !ep) || !udev) {
985 		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
986 				func);
987 		return -EINVAL;
988 	}
989 	if (!udev->parent) {
990 		printk(KERN_DEBUG "xHCI %s called for root hub\n",
991 				func);
992 		return 0;
993 	}
994 
995 	xhci = hcd_to_xhci(hcd);
996 	if (xhci->xhc_state & XHCI_STATE_HALTED)
997 		return -ENODEV;
998 
999 	if (check_virt_dev) {
1000 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1001 			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1002 						"device\n", func);
1003 			return -EINVAL;
1004 		}
1005 
1006 		virt_dev = xhci->devs[udev->slot_id];
1007 		if (virt_dev->udev != udev) {
1008 			printk(KERN_DEBUG "xHCI %s called with udev and "
1009 					  "virt_dev does not match\n", func);
1010 			return -EINVAL;
1011 		}
1012 	}
1013 
1014 	return 1;
1015 }
1016 
1017 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1018 		struct usb_device *udev, struct xhci_command *command,
1019 		bool ctx_change, bool must_succeed);
1020 
1021 /*
1022  * Full speed devices may have a max packet size greater than 8 bytes, but the
1023  * USB core doesn't know that until it reads the first 8 bytes of the
1024  * descriptor.  If the usb_device's max packet size changes after that point,
1025  * we need to issue an evaluate context command and wait on it.
1026  */
1027 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1028 		unsigned int ep_index, struct urb *urb)
1029 {
1030 	struct xhci_container_ctx *in_ctx;
1031 	struct xhci_container_ctx *out_ctx;
1032 	struct xhci_input_control_ctx *ctrl_ctx;
1033 	struct xhci_ep_ctx *ep_ctx;
1034 	int max_packet_size;
1035 	int hw_max_packet_size;
1036 	int ret = 0;
1037 
1038 	out_ctx = xhci->devs[slot_id]->out_ctx;
1039 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1040 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1041 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1042 	if (hw_max_packet_size != max_packet_size) {
1043 		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1044 		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1045 				max_packet_size);
1046 		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1047 				hw_max_packet_size);
1048 		xhci_dbg(xhci, "Issuing evaluate context command.\n");
1049 
1050 		/* Set up the modified control endpoint 0 */
1051 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1052 				xhci->devs[slot_id]->out_ctx, ep_index);
1053 		in_ctx = xhci->devs[slot_id]->in_ctx;
1054 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1055 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1056 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1057 
1058 		/* Set up the input context flags for the command */
1059 		/* FIXME: This won't work if a non-default control endpoint
1060 		 * changes max packet sizes.
1061 		 */
1062 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1063 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1064 		ctrl_ctx->drop_flags = 0;
1065 
1066 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1067 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1068 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1069 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1070 
1071 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1072 				true, false);
1073 
1074 		/* Clean up the input context for later use by bandwidth
1075 		 * functions.
1076 		 */
1077 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1078 	}
1079 	return ret;
1080 }
1081 
1082 /*
1083  * non-error returns are a promise to giveback() the urb later
1084  * we drop ownership so next owner (or urb unlink) can get it
1085  */
1086 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1087 {
1088 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1089 	struct xhci_td *buffer;
1090 	unsigned long flags;
1091 	int ret = 0;
1092 	unsigned int slot_id, ep_index;
1093 	struct urb_priv	*urb_priv;
1094 	int size, i;
1095 
1096 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1097 					true, true, __func__) <= 0)
1098 		return -EINVAL;
1099 
1100 	slot_id = urb->dev->slot_id;
1101 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1102 
1103 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1104 		if (!in_interrupt())
1105 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1106 		ret = -ESHUTDOWN;
1107 		goto exit;
1108 	}
1109 
1110 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1111 		size = urb->number_of_packets;
1112 	else
1113 		size = 1;
1114 
1115 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1116 				  size * sizeof(struct xhci_td *), mem_flags);
1117 	if (!urb_priv)
1118 		return -ENOMEM;
1119 
1120 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1121 	if (!buffer) {
1122 		kfree(urb_priv);
1123 		return -ENOMEM;
1124 	}
1125 
1126 	for (i = 0; i < size; i++) {
1127 		urb_priv->td[i] = buffer;
1128 		buffer++;
1129 	}
1130 
1131 	urb_priv->length = size;
1132 	urb_priv->td_cnt = 0;
1133 	urb->hcpriv = urb_priv;
1134 
1135 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1136 		/* Check to see if the max packet size for the default control
1137 		 * endpoint changed during FS device enumeration
1138 		 */
1139 		if (urb->dev->speed == USB_SPEED_FULL) {
1140 			ret = xhci_check_maxpacket(xhci, slot_id,
1141 					ep_index, urb);
1142 			if (ret < 0) {
1143 				xhci_urb_free_priv(xhci, urb_priv);
1144 				urb->hcpriv = NULL;
1145 				return ret;
1146 			}
1147 		}
1148 
1149 		/* We have a spinlock and interrupts disabled, so we must pass
1150 		 * atomic context to this function, which may allocate memory.
1151 		 */
1152 		spin_lock_irqsave(&xhci->lock, flags);
1153 		if (xhci->xhc_state & XHCI_STATE_DYING)
1154 			goto dying;
1155 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1156 				slot_id, ep_index);
1157 		if (ret)
1158 			goto free_priv;
1159 		spin_unlock_irqrestore(&xhci->lock, flags);
1160 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1161 		spin_lock_irqsave(&xhci->lock, flags);
1162 		if (xhci->xhc_state & XHCI_STATE_DYING)
1163 			goto dying;
1164 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1165 				EP_GETTING_STREAMS) {
1166 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1167 					"is transitioning to using streams.\n");
1168 			ret = -EINVAL;
1169 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1170 				EP_GETTING_NO_STREAMS) {
1171 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1172 					"is transitioning to "
1173 					"not having streams.\n");
1174 			ret = -EINVAL;
1175 		} else {
1176 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1177 					slot_id, ep_index);
1178 		}
1179 		if (ret)
1180 			goto free_priv;
1181 		spin_unlock_irqrestore(&xhci->lock, flags);
1182 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1183 		spin_lock_irqsave(&xhci->lock, flags);
1184 		if (xhci->xhc_state & XHCI_STATE_DYING)
1185 			goto dying;
1186 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1187 				slot_id, ep_index);
1188 		if (ret)
1189 			goto free_priv;
1190 		spin_unlock_irqrestore(&xhci->lock, flags);
1191 	} else {
1192 		spin_lock_irqsave(&xhci->lock, flags);
1193 		if (xhci->xhc_state & XHCI_STATE_DYING)
1194 			goto dying;
1195 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1196 				slot_id, ep_index);
1197 		if (ret)
1198 			goto free_priv;
1199 		spin_unlock_irqrestore(&xhci->lock, flags);
1200 	}
1201 exit:
1202 	return ret;
1203 dying:
1204 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1205 			"non-responsive xHCI host.\n",
1206 			urb->ep->desc.bEndpointAddress, urb);
1207 	ret = -ESHUTDOWN;
1208 free_priv:
1209 	xhci_urb_free_priv(xhci, urb_priv);
1210 	urb->hcpriv = NULL;
1211 	spin_unlock_irqrestore(&xhci->lock, flags);
1212 	return ret;
1213 }
1214 
1215 /* Get the right ring for the given URB.
1216  * If the endpoint supports streams, boundary check the URB's stream ID.
1217  * If the endpoint doesn't support streams, return the singular endpoint ring.
1218  */
1219 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1220 		struct urb *urb)
1221 {
1222 	unsigned int slot_id;
1223 	unsigned int ep_index;
1224 	unsigned int stream_id;
1225 	struct xhci_virt_ep *ep;
1226 
1227 	slot_id = urb->dev->slot_id;
1228 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1229 	stream_id = urb->stream_id;
1230 	ep = &xhci->devs[slot_id]->eps[ep_index];
1231 	/* Common case: no streams */
1232 	if (!(ep->ep_state & EP_HAS_STREAMS))
1233 		return ep->ring;
1234 
1235 	if (stream_id == 0) {
1236 		xhci_warn(xhci,
1237 				"WARN: Slot ID %u, ep index %u has streams, "
1238 				"but URB has no stream ID.\n",
1239 				slot_id, ep_index);
1240 		return NULL;
1241 	}
1242 
1243 	if (stream_id < ep->stream_info->num_streams)
1244 		return ep->stream_info->stream_rings[stream_id];
1245 
1246 	xhci_warn(xhci,
1247 			"WARN: Slot ID %u, ep index %u has "
1248 			"stream IDs 1 to %u allocated, "
1249 			"but stream ID %u is requested.\n",
1250 			slot_id, ep_index,
1251 			ep->stream_info->num_streams - 1,
1252 			stream_id);
1253 	return NULL;
1254 }
1255 
1256 /*
1257  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1258  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1259  * should pick up where it left off in the TD, unless a Set Transfer Ring
1260  * Dequeue Pointer is issued.
1261  *
1262  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1263  * the ring.  Since the ring is a contiguous structure, they can't be physically
1264  * removed.  Instead, there are two options:
1265  *
1266  *  1) If the HC is in the middle of processing the URB to be canceled, we
1267  *     simply move the ring's dequeue pointer past those TRBs using the Set
1268  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1269  *     when drivers timeout on the last submitted URB and attempt to cancel.
1270  *
1271  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1272  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1273  *     HC will need to invalidate the any TRBs it has cached after the stop
1274  *     endpoint command, as noted in the xHCI 0.95 errata.
1275  *
1276  *  3) The TD may have completed by the time the Stop Endpoint Command
1277  *     completes, so software needs to handle that case too.
1278  *
1279  * This function should protect against the TD enqueueing code ringing the
1280  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1281  * It also needs to account for multiple cancellations on happening at the same
1282  * time for the same endpoint.
1283  *
1284  * Note that this function can be called in any context, or so says
1285  * usb_hcd_unlink_urb()
1286  */
1287 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1288 {
1289 	unsigned long flags;
1290 	int ret, i;
1291 	u32 temp;
1292 	struct xhci_hcd *xhci;
1293 	struct urb_priv	*urb_priv;
1294 	struct xhci_td *td;
1295 	unsigned int ep_index;
1296 	struct xhci_ring *ep_ring;
1297 	struct xhci_virt_ep *ep;
1298 
1299 	xhci = hcd_to_xhci(hcd);
1300 	spin_lock_irqsave(&xhci->lock, flags);
1301 	/* Make sure the URB hasn't completed or been unlinked already */
1302 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1303 	if (ret || !urb->hcpriv)
1304 		goto done;
1305 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1306 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1307 		xhci_dbg(xhci, "HW died, freeing TD.\n");
1308 		urb_priv = urb->hcpriv;
1309 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1310 			td = urb_priv->td[i];
1311 			if (!list_empty(&td->td_list))
1312 				list_del_init(&td->td_list);
1313 			if (!list_empty(&td->cancelled_td_list))
1314 				list_del_init(&td->cancelled_td_list);
1315 		}
1316 
1317 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1318 		spin_unlock_irqrestore(&xhci->lock, flags);
1319 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1320 		xhci_urb_free_priv(xhci, urb_priv);
1321 		return ret;
1322 	}
1323 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1324 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1325 		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1326 				"non-responsive xHCI host.\n",
1327 				urb->ep->desc.bEndpointAddress, urb);
1328 		/* Let the stop endpoint command watchdog timer (which set this
1329 		 * state) finish cleaning up the endpoint TD lists.  We must
1330 		 * have caught it in the middle of dropping a lock and giving
1331 		 * back an URB.
1332 		 */
1333 		goto done;
1334 	}
1335 
1336 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1337 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1338 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1339 	if (!ep_ring) {
1340 		ret = -EINVAL;
1341 		goto done;
1342 	}
1343 
1344 	urb_priv = urb->hcpriv;
1345 	i = urb_priv->td_cnt;
1346 	if (i < urb_priv->length)
1347 		xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1348 				"starting at offset 0x%llx\n",
1349 				urb, urb->dev->devpath,
1350 				urb->ep->desc.bEndpointAddress,
1351 				(unsigned long long) xhci_trb_virt_to_dma(
1352 					urb_priv->td[i]->start_seg,
1353 					urb_priv->td[i]->first_trb));
1354 
1355 	for (; i < urb_priv->length; i++) {
1356 		td = urb_priv->td[i];
1357 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1358 	}
1359 
1360 	/* Queue a stop endpoint command, but only if this is
1361 	 * the first cancellation to be handled.
1362 	 */
1363 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1364 		ep->ep_state |= EP_HALT_PENDING;
1365 		ep->stop_cmds_pending++;
1366 		ep->stop_cmd_timer.expires = jiffies +
1367 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1368 		add_timer(&ep->stop_cmd_timer);
1369 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1370 		xhci_ring_cmd_db(xhci);
1371 	}
1372 done:
1373 	spin_unlock_irqrestore(&xhci->lock, flags);
1374 	return ret;
1375 }
1376 
1377 /* Drop an endpoint from a new bandwidth configuration for this device.
1378  * Only one call to this function is allowed per endpoint before
1379  * check_bandwidth() or reset_bandwidth() must be called.
1380  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1381  * add the endpoint to the schedule with possibly new parameters denoted by a
1382  * different endpoint descriptor in usb_host_endpoint.
1383  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1384  * not allowed.
1385  *
1386  * The USB core will not allow URBs to be queued to an endpoint that is being
1387  * disabled, so there's no need for mutual exclusion to protect
1388  * the xhci->devs[slot_id] structure.
1389  */
1390 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1391 		struct usb_host_endpoint *ep)
1392 {
1393 	struct xhci_hcd *xhci;
1394 	struct xhci_container_ctx *in_ctx, *out_ctx;
1395 	struct xhci_input_control_ctx *ctrl_ctx;
1396 	struct xhci_slot_ctx *slot_ctx;
1397 	unsigned int last_ctx;
1398 	unsigned int ep_index;
1399 	struct xhci_ep_ctx *ep_ctx;
1400 	u32 drop_flag;
1401 	u32 new_add_flags, new_drop_flags, new_slot_info;
1402 	int ret;
1403 
1404 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1405 	if (ret <= 0)
1406 		return ret;
1407 	xhci = hcd_to_xhci(hcd);
1408 	if (xhci->xhc_state & XHCI_STATE_DYING)
1409 		return -ENODEV;
1410 
1411 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1412 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1413 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1414 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1415 				__func__, drop_flag);
1416 		return 0;
1417 	}
1418 
1419 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1420 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1421 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1422 	ep_index = xhci_get_endpoint_index(&ep->desc);
1423 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1424 	/* If the HC already knows the endpoint is disabled,
1425 	 * or the HCD has noted it is disabled, ignore this request
1426 	 */
1427 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1428 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1429 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1430 	    xhci_get_endpoint_flag(&ep->desc)) {
1431 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1432 				__func__, ep);
1433 		return 0;
1434 	}
1435 
1436 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1437 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1438 
1439 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1440 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1441 
1442 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1443 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1444 	/* Update the last valid endpoint context, if we deleted the last one */
1445 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1446 	    LAST_CTX(last_ctx)) {
1447 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1448 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1449 	}
1450 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1451 
1452 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1453 
1454 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1455 			(unsigned int) ep->desc.bEndpointAddress,
1456 			udev->slot_id,
1457 			(unsigned int) new_drop_flags,
1458 			(unsigned int) new_add_flags,
1459 			(unsigned int) new_slot_info);
1460 	return 0;
1461 }
1462 
1463 /* Add an endpoint to a new possible bandwidth configuration for this device.
1464  * Only one call to this function is allowed per endpoint before
1465  * check_bandwidth() or reset_bandwidth() must be called.
1466  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1467  * add the endpoint to the schedule with possibly new parameters denoted by a
1468  * different endpoint descriptor in usb_host_endpoint.
1469  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1470  * not allowed.
1471  *
1472  * The USB core will not allow URBs to be queued to an endpoint until the
1473  * configuration or alt setting is installed in the device, so there's no need
1474  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1475  */
1476 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1477 		struct usb_host_endpoint *ep)
1478 {
1479 	struct xhci_hcd *xhci;
1480 	struct xhci_container_ctx *in_ctx, *out_ctx;
1481 	unsigned int ep_index;
1482 	struct xhci_ep_ctx *ep_ctx;
1483 	struct xhci_slot_ctx *slot_ctx;
1484 	struct xhci_input_control_ctx *ctrl_ctx;
1485 	u32 added_ctxs;
1486 	unsigned int last_ctx;
1487 	u32 new_add_flags, new_drop_flags, new_slot_info;
1488 	struct xhci_virt_device *virt_dev;
1489 	int ret = 0;
1490 
1491 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1492 	if (ret <= 0) {
1493 		/* So we won't queue a reset ep command for a root hub */
1494 		ep->hcpriv = NULL;
1495 		return ret;
1496 	}
1497 	xhci = hcd_to_xhci(hcd);
1498 	if (xhci->xhc_state & XHCI_STATE_DYING)
1499 		return -ENODEV;
1500 
1501 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1502 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1503 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1504 		/* FIXME when we have to issue an evaluate endpoint command to
1505 		 * deal with ep0 max packet size changing once we get the
1506 		 * descriptors
1507 		 */
1508 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1509 				__func__, added_ctxs);
1510 		return 0;
1511 	}
1512 
1513 	virt_dev = xhci->devs[udev->slot_id];
1514 	in_ctx = virt_dev->in_ctx;
1515 	out_ctx = virt_dev->out_ctx;
1516 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1517 	ep_index = xhci_get_endpoint_index(&ep->desc);
1518 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1519 
1520 	/* If this endpoint is already in use, and the upper layers are trying
1521 	 * to add it again without dropping it, reject the addition.
1522 	 */
1523 	if (virt_dev->eps[ep_index].ring &&
1524 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1525 				xhci_get_endpoint_flag(&ep->desc))) {
1526 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1527 				"without dropping it.\n",
1528 				(unsigned int) ep->desc.bEndpointAddress);
1529 		return -EINVAL;
1530 	}
1531 
1532 	/* If the HCD has already noted the endpoint is enabled,
1533 	 * ignore this request.
1534 	 */
1535 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1536 	    xhci_get_endpoint_flag(&ep->desc)) {
1537 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1538 				__func__, ep);
1539 		return 0;
1540 	}
1541 
1542 	/*
1543 	 * Configuration and alternate setting changes must be done in
1544 	 * process context, not interrupt context (or so documenation
1545 	 * for usb_set_interface() and usb_set_configuration() claim).
1546 	 */
1547 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1548 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1549 				__func__, ep->desc.bEndpointAddress);
1550 		return -ENOMEM;
1551 	}
1552 
1553 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1554 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1555 
1556 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1557 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1558 	 * this re-adds a new state for the endpoint from the new endpoint
1559 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1560 	 * drop flags alone.
1561 	 */
1562 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1563 
1564 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1565 	/* Update the last valid endpoint context, if we just added one past */
1566 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1567 	    LAST_CTX(last_ctx)) {
1568 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1569 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1570 	}
1571 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1572 
1573 	/* Store the usb_device pointer for later use */
1574 	ep->hcpriv = udev;
1575 
1576 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1577 			(unsigned int) ep->desc.bEndpointAddress,
1578 			udev->slot_id,
1579 			(unsigned int) new_drop_flags,
1580 			(unsigned int) new_add_flags,
1581 			(unsigned int) new_slot_info);
1582 	return 0;
1583 }
1584 
1585 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1586 {
1587 	struct xhci_input_control_ctx *ctrl_ctx;
1588 	struct xhci_ep_ctx *ep_ctx;
1589 	struct xhci_slot_ctx *slot_ctx;
1590 	int i;
1591 
1592 	/* When a device's add flag and drop flag are zero, any subsequent
1593 	 * configure endpoint command will leave that endpoint's state
1594 	 * untouched.  Make sure we don't leave any old state in the input
1595 	 * endpoint contexts.
1596 	 */
1597 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1598 	ctrl_ctx->drop_flags = 0;
1599 	ctrl_ctx->add_flags = 0;
1600 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1601 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1602 	/* Endpoint 0 is always valid */
1603 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1604 	for (i = 1; i < 31; ++i) {
1605 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1606 		ep_ctx->ep_info = 0;
1607 		ep_ctx->ep_info2 = 0;
1608 		ep_ctx->deq = 0;
1609 		ep_ctx->tx_info = 0;
1610 	}
1611 }
1612 
1613 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1614 		struct usb_device *udev, u32 *cmd_status)
1615 {
1616 	int ret;
1617 
1618 	switch (*cmd_status) {
1619 	case COMP_ENOMEM:
1620 		dev_warn(&udev->dev, "Not enough host controller resources "
1621 				"for new device state.\n");
1622 		ret = -ENOMEM;
1623 		/* FIXME: can we allocate more resources for the HC? */
1624 		break;
1625 	case COMP_BW_ERR:
1626 	case COMP_2ND_BW_ERR:
1627 		dev_warn(&udev->dev, "Not enough bandwidth "
1628 				"for new device state.\n");
1629 		ret = -ENOSPC;
1630 		/* FIXME: can we go back to the old state? */
1631 		break;
1632 	case COMP_TRB_ERR:
1633 		/* the HCD set up something wrong */
1634 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1635 				"add flag = 1, "
1636 				"and endpoint is not disabled.\n");
1637 		ret = -EINVAL;
1638 		break;
1639 	case COMP_DEV_ERR:
1640 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1641 				"configure command.\n");
1642 		ret = -ENODEV;
1643 		break;
1644 	case COMP_SUCCESS:
1645 		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1646 		ret = 0;
1647 		break;
1648 	default:
1649 		xhci_err(xhci, "ERROR: unexpected command completion "
1650 				"code 0x%x.\n", *cmd_status);
1651 		ret = -EINVAL;
1652 		break;
1653 	}
1654 	return ret;
1655 }
1656 
1657 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1658 		struct usb_device *udev, u32 *cmd_status)
1659 {
1660 	int ret;
1661 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1662 
1663 	switch (*cmd_status) {
1664 	case COMP_EINVAL:
1665 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1666 				"context command.\n");
1667 		ret = -EINVAL;
1668 		break;
1669 	case COMP_EBADSLT:
1670 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1671 				"evaluate context command.\n");
1672 	case COMP_CTX_STATE:
1673 		dev_warn(&udev->dev, "WARN: invalid context state for "
1674 				"evaluate context command.\n");
1675 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1676 		ret = -EINVAL;
1677 		break;
1678 	case COMP_DEV_ERR:
1679 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1680 				"context command.\n");
1681 		ret = -ENODEV;
1682 		break;
1683 	case COMP_MEL_ERR:
1684 		/* Max Exit Latency too large error */
1685 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1686 		ret = -EINVAL;
1687 		break;
1688 	case COMP_SUCCESS:
1689 		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1690 		ret = 0;
1691 		break;
1692 	default:
1693 		xhci_err(xhci, "ERROR: unexpected command completion "
1694 				"code 0x%x.\n", *cmd_status);
1695 		ret = -EINVAL;
1696 		break;
1697 	}
1698 	return ret;
1699 }
1700 
1701 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1702 		struct xhci_container_ctx *in_ctx)
1703 {
1704 	struct xhci_input_control_ctx *ctrl_ctx;
1705 	u32 valid_add_flags;
1706 	u32 valid_drop_flags;
1707 
1708 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1709 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1710 	 * (bit 1).  The default control endpoint is added during the Address
1711 	 * Device command and is never removed until the slot is disabled.
1712 	 */
1713 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1714 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1715 
1716 	/* Use hweight32 to count the number of ones in the add flags, or
1717 	 * number of endpoints added.  Don't count endpoints that are changed
1718 	 * (both added and dropped).
1719 	 */
1720 	return hweight32(valid_add_flags) -
1721 		hweight32(valid_add_flags & valid_drop_flags);
1722 }
1723 
1724 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1725 		struct xhci_container_ctx *in_ctx)
1726 {
1727 	struct xhci_input_control_ctx *ctrl_ctx;
1728 	u32 valid_add_flags;
1729 	u32 valid_drop_flags;
1730 
1731 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1732 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1733 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1734 
1735 	return hweight32(valid_drop_flags) -
1736 		hweight32(valid_add_flags & valid_drop_flags);
1737 }
1738 
1739 /*
1740  * We need to reserve the new number of endpoints before the configure endpoint
1741  * command completes.  We can't subtract the dropped endpoints from the number
1742  * of active endpoints until the command completes because we can oversubscribe
1743  * the host in this case:
1744  *
1745  *  - the first configure endpoint command drops more endpoints than it adds
1746  *  - a second configure endpoint command that adds more endpoints is queued
1747  *  - the first configure endpoint command fails, so the config is unchanged
1748  *  - the second command may succeed, even though there isn't enough resources
1749  *
1750  * Must be called with xhci->lock held.
1751  */
1752 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1753 		struct xhci_container_ctx *in_ctx)
1754 {
1755 	u32 added_eps;
1756 
1757 	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1758 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1759 		xhci_dbg(xhci, "Not enough ep ctxs: "
1760 				"%u active, need to add %u, limit is %u.\n",
1761 				xhci->num_active_eps, added_eps,
1762 				xhci->limit_active_eps);
1763 		return -ENOMEM;
1764 	}
1765 	xhci->num_active_eps += added_eps;
1766 	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1767 			xhci->num_active_eps);
1768 	return 0;
1769 }
1770 
1771 /*
1772  * The configure endpoint was failed by the xHC for some other reason, so we
1773  * need to revert the resources that failed configuration would have used.
1774  *
1775  * Must be called with xhci->lock held.
1776  */
1777 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1778 		struct xhci_container_ctx *in_ctx)
1779 {
1780 	u32 num_failed_eps;
1781 
1782 	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1783 	xhci->num_active_eps -= num_failed_eps;
1784 	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1785 			num_failed_eps,
1786 			xhci->num_active_eps);
1787 }
1788 
1789 /*
1790  * Now that the command has completed, clean up the active endpoint count by
1791  * subtracting out the endpoints that were dropped (but not changed).
1792  *
1793  * Must be called with xhci->lock held.
1794  */
1795 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1796 		struct xhci_container_ctx *in_ctx)
1797 {
1798 	u32 num_dropped_eps;
1799 
1800 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1801 	xhci->num_active_eps -= num_dropped_eps;
1802 	if (num_dropped_eps)
1803 		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1804 				num_dropped_eps,
1805 				xhci->num_active_eps);
1806 }
1807 
1808 unsigned int xhci_get_block_size(struct usb_device *udev)
1809 {
1810 	switch (udev->speed) {
1811 	case USB_SPEED_LOW:
1812 	case USB_SPEED_FULL:
1813 		return FS_BLOCK;
1814 	case USB_SPEED_HIGH:
1815 		return HS_BLOCK;
1816 	case USB_SPEED_SUPER:
1817 		return SS_BLOCK;
1818 	case USB_SPEED_UNKNOWN:
1819 	case USB_SPEED_WIRELESS:
1820 	default:
1821 		/* Should never happen */
1822 		return 1;
1823 	}
1824 }
1825 
1826 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1827 {
1828 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1829 		return LS_OVERHEAD;
1830 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1831 		return FS_OVERHEAD;
1832 	return HS_OVERHEAD;
1833 }
1834 
1835 /* If we are changing a LS/FS device under a HS hub,
1836  * make sure (if we are activating a new TT) that the HS bus has enough
1837  * bandwidth for this new TT.
1838  */
1839 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1840 		struct xhci_virt_device *virt_dev,
1841 		int old_active_eps)
1842 {
1843 	struct xhci_interval_bw_table *bw_table;
1844 	struct xhci_tt_bw_info *tt_info;
1845 
1846 	/* Find the bandwidth table for the root port this TT is attached to. */
1847 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1848 	tt_info = virt_dev->tt_info;
1849 	/* If this TT already had active endpoints, the bandwidth for this TT
1850 	 * has already been added.  Removing all periodic endpoints (and thus
1851 	 * making the TT enactive) will only decrease the bandwidth used.
1852 	 */
1853 	if (old_active_eps)
1854 		return 0;
1855 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
1856 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1857 			return -ENOMEM;
1858 		return 0;
1859 	}
1860 	/* Not sure why we would have no new active endpoints...
1861 	 *
1862 	 * Maybe because of an Evaluate Context change for a hub update or a
1863 	 * control endpoint 0 max packet size change?
1864 	 * FIXME: skip the bandwidth calculation in that case.
1865 	 */
1866 	return 0;
1867 }
1868 
1869 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
1870 		struct xhci_virt_device *virt_dev)
1871 {
1872 	unsigned int bw_reserved;
1873 
1874 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
1875 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
1876 		return -ENOMEM;
1877 
1878 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
1879 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
1880 		return -ENOMEM;
1881 
1882 	return 0;
1883 }
1884 
1885 /*
1886  * This algorithm is a very conservative estimate of the worst-case scheduling
1887  * scenario for any one interval.  The hardware dynamically schedules the
1888  * packets, so we can't tell which microframe could be the limiting factor in
1889  * the bandwidth scheduling.  This only takes into account periodic endpoints.
1890  *
1891  * Obviously, we can't solve an NP complete problem to find the minimum worst
1892  * case scenario.  Instead, we come up with an estimate that is no less than
1893  * the worst case bandwidth used for any one microframe, but may be an
1894  * over-estimate.
1895  *
1896  * We walk the requirements for each endpoint by interval, starting with the
1897  * smallest interval, and place packets in the schedule where there is only one
1898  * possible way to schedule packets for that interval.  In order to simplify
1899  * this algorithm, we record the largest max packet size for each interval, and
1900  * assume all packets will be that size.
1901  *
1902  * For interval 0, we obviously must schedule all packets for each interval.
1903  * The bandwidth for interval 0 is just the amount of data to be transmitted
1904  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1905  * the number of packets).
1906  *
1907  * For interval 1, we have two possible microframes to schedule those packets
1908  * in.  For this algorithm, if we can schedule the same number of packets for
1909  * each possible scheduling opportunity (each microframe), we will do so.  The
1910  * remaining number of packets will be saved to be transmitted in the gaps in
1911  * the next interval's scheduling sequence.
1912  *
1913  * As we move those remaining packets to be scheduled with interval 2 packets,
1914  * we have to double the number of remaining packets to transmit.  This is
1915  * because the intervals are actually powers of 2, and we would be transmitting
1916  * the previous interval's packets twice in this interval.  We also have to be
1917  * sure that when we look at the largest max packet size for this interval, we
1918  * also look at the largest max packet size for the remaining packets and take
1919  * the greater of the two.
1920  *
1921  * The algorithm continues to evenly distribute packets in each scheduling
1922  * opportunity, and push the remaining packets out, until we get to the last
1923  * interval.  Then those packets and their associated overhead are just added
1924  * to the bandwidth used.
1925  */
1926 static int xhci_check_bw_table(struct xhci_hcd *xhci,
1927 		struct xhci_virt_device *virt_dev,
1928 		int old_active_eps)
1929 {
1930 	unsigned int bw_reserved;
1931 	unsigned int max_bandwidth;
1932 	unsigned int bw_used;
1933 	unsigned int block_size;
1934 	struct xhci_interval_bw_table *bw_table;
1935 	unsigned int packet_size = 0;
1936 	unsigned int overhead = 0;
1937 	unsigned int packets_transmitted = 0;
1938 	unsigned int packets_remaining = 0;
1939 	unsigned int i;
1940 
1941 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
1942 		return xhci_check_ss_bw(xhci, virt_dev);
1943 
1944 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1945 		max_bandwidth = HS_BW_LIMIT;
1946 		/* Convert percent of bus BW reserved to blocks reserved */
1947 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1948 	} else {
1949 		max_bandwidth = FS_BW_LIMIT;
1950 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1951 	}
1952 
1953 	bw_table = virt_dev->bw_table;
1954 	/* We need to translate the max packet size and max ESIT payloads into
1955 	 * the units the hardware uses.
1956 	 */
1957 	block_size = xhci_get_block_size(virt_dev->udev);
1958 
1959 	/* If we are manipulating a LS/FS device under a HS hub, double check
1960 	 * that the HS bus has enough bandwidth if we are activing a new TT.
1961 	 */
1962 	if (virt_dev->tt_info) {
1963 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1964 				virt_dev->real_port);
1965 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1966 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1967 					"newly activated TT.\n");
1968 			return -ENOMEM;
1969 		}
1970 		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1971 				virt_dev->tt_info->slot_id,
1972 				virt_dev->tt_info->ttport);
1973 	} else {
1974 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1975 				virt_dev->real_port);
1976 	}
1977 
1978 	/* Add in how much bandwidth will be used for interval zero, or the
1979 	 * rounded max ESIT payload + number of packets * largest overhead.
1980 	 */
1981 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
1982 		bw_table->interval_bw[0].num_packets *
1983 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
1984 
1985 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
1986 		unsigned int bw_added;
1987 		unsigned int largest_mps;
1988 		unsigned int interval_overhead;
1989 
1990 		/*
1991 		 * How many packets could we transmit in this interval?
1992 		 * If packets didn't fit in the previous interval, we will need
1993 		 * to transmit that many packets twice within this interval.
1994 		 */
1995 		packets_remaining = 2 * packets_remaining +
1996 			bw_table->interval_bw[i].num_packets;
1997 
1998 		/* Find the largest max packet size of this or the previous
1999 		 * interval.
2000 		 */
2001 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2002 			largest_mps = 0;
2003 		else {
2004 			struct xhci_virt_ep *virt_ep;
2005 			struct list_head *ep_entry;
2006 
2007 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2008 			virt_ep = list_entry(ep_entry,
2009 					struct xhci_virt_ep, bw_endpoint_list);
2010 			/* Convert to blocks, rounding up */
2011 			largest_mps = DIV_ROUND_UP(
2012 					virt_ep->bw_info.max_packet_size,
2013 					block_size);
2014 		}
2015 		if (largest_mps > packet_size)
2016 			packet_size = largest_mps;
2017 
2018 		/* Use the larger overhead of this or the previous interval. */
2019 		interval_overhead = xhci_get_largest_overhead(
2020 				&bw_table->interval_bw[i]);
2021 		if (interval_overhead > overhead)
2022 			overhead = interval_overhead;
2023 
2024 		/* How many packets can we evenly distribute across
2025 		 * (1 << (i + 1)) possible scheduling opportunities?
2026 		 */
2027 		packets_transmitted = packets_remaining >> (i + 1);
2028 
2029 		/* Add in the bandwidth used for those scheduled packets */
2030 		bw_added = packets_transmitted * (overhead + packet_size);
2031 
2032 		/* How many packets do we have remaining to transmit? */
2033 		packets_remaining = packets_remaining % (1 << (i + 1));
2034 
2035 		/* What largest max packet size should those packets have? */
2036 		/* If we've transmitted all packets, don't carry over the
2037 		 * largest packet size.
2038 		 */
2039 		if (packets_remaining == 0) {
2040 			packet_size = 0;
2041 			overhead = 0;
2042 		} else if (packets_transmitted > 0) {
2043 			/* Otherwise if we do have remaining packets, and we've
2044 			 * scheduled some packets in this interval, take the
2045 			 * largest max packet size from endpoints with this
2046 			 * interval.
2047 			 */
2048 			packet_size = largest_mps;
2049 			overhead = interval_overhead;
2050 		}
2051 		/* Otherwise carry over packet_size and overhead from the last
2052 		 * time we had a remainder.
2053 		 */
2054 		bw_used += bw_added;
2055 		if (bw_used > max_bandwidth) {
2056 			xhci_warn(xhci, "Not enough bandwidth. "
2057 					"Proposed: %u, Max: %u\n",
2058 				bw_used, max_bandwidth);
2059 			return -ENOMEM;
2060 		}
2061 	}
2062 	/*
2063 	 * Ok, we know we have some packets left over after even-handedly
2064 	 * scheduling interval 15.  We don't know which microframes they will
2065 	 * fit into, so we over-schedule and say they will be scheduled every
2066 	 * microframe.
2067 	 */
2068 	if (packets_remaining > 0)
2069 		bw_used += overhead + packet_size;
2070 
2071 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2072 		unsigned int port_index = virt_dev->real_port - 1;
2073 
2074 		/* OK, we're manipulating a HS device attached to a
2075 		 * root port bandwidth domain.  Include the number of active TTs
2076 		 * in the bandwidth used.
2077 		 */
2078 		bw_used += TT_HS_OVERHEAD *
2079 			xhci->rh_bw[port_index].num_active_tts;
2080 	}
2081 
2082 	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2083 		"Available: %u " "percent\n",
2084 		bw_used, max_bandwidth, bw_reserved,
2085 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2086 		max_bandwidth);
2087 
2088 	bw_used += bw_reserved;
2089 	if (bw_used > max_bandwidth) {
2090 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2091 				bw_used, max_bandwidth);
2092 		return -ENOMEM;
2093 	}
2094 
2095 	bw_table->bw_used = bw_used;
2096 	return 0;
2097 }
2098 
2099 static bool xhci_is_async_ep(unsigned int ep_type)
2100 {
2101 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2102 					ep_type != ISOC_IN_EP &&
2103 					ep_type != INT_IN_EP);
2104 }
2105 
2106 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2107 {
2108 	return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2109 }
2110 
2111 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2112 {
2113 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2114 
2115 	if (ep_bw->ep_interval == 0)
2116 		return SS_OVERHEAD_BURST +
2117 			(ep_bw->mult * ep_bw->num_packets *
2118 					(SS_OVERHEAD + mps));
2119 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2120 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2121 				1 << ep_bw->ep_interval);
2122 
2123 }
2124 
2125 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2126 		struct xhci_bw_info *ep_bw,
2127 		struct xhci_interval_bw_table *bw_table,
2128 		struct usb_device *udev,
2129 		struct xhci_virt_ep *virt_ep,
2130 		struct xhci_tt_bw_info *tt_info)
2131 {
2132 	struct xhci_interval_bw	*interval_bw;
2133 	int normalized_interval;
2134 
2135 	if (xhci_is_async_ep(ep_bw->type))
2136 		return;
2137 
2138 	if (udev->speed == USB_SPEED_SUPER) {
2139 		if (xhci_is_sync_in_ep(ep_bw->type))
2140 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2141 				xhci_get_ss_bw_consumed(ep_bw);
2142 		else
2143 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2144 				xhci_get_ss_bw_consumed(ep_bw);
2145 		return;
2146 	}
2147 
2148 	/* SuperSpeed endpoints never get added to intervals in the table, so
2149 	 * this check is only valid for HS/FS/LS devices.
2150 	 */
2151 	if (list_empty(&virt_ep->bw_endpoint_list))
2152 		return;
2153 	/* For LS/FS devices, we need to translate the interval expressed in
2154 	 * microframes to frames.
2155 	 */
2156 	if (udev->speed == USB_SPEED_HIGH)
2157 		normalized_interval = ep_bw->ep_interval;
2158 	else
2159 		normalized_interval = ep_bw->ep_interval - 3;
2160 
2161 	if (normalized_interval == 0)
2162 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2163 	interval_bw = &bw_table->interval_bw[normalized_interval];
2164 	interval_bw->num_packets -= ep_bw->num_packets;
2165 	switch (udev->speed) {
2166 	case USB_SPEED_LOW:
2167 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2168 		break;
2169 	case USB_SPEED_FULL:
2170 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2171 		break;
2172 	case USB_SPEED_HIGH:
2173 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2174 		break;
2175 	case USB_SPEED_SUPER:
2176 	case USB_SPEED_UNKNOWN:
2177 	case USB_SPEED_WIRELESS:
2178 		/* Should never happen because only LS/FS/HS endpoints will get
2179 		 * added to the endpoint list.
2180 		 */
2181 		return;
2182 	}
2183 	if (tt_info)
2184 		tt_info->active_eps -= 1;
2185 	list_del_init(&virt_ep->bw_endpoint_list);
2186 }
2187 
2188 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2189 		struct xhci_bw_info *ep_bw,
2190 		struct xhci_interval_bw_table *bw_table,
2191 		struct usb_device *udev,
2192 		struct xhci_virt_ep *virt_ep,
2193 		struct xhci_tt_bw_info *tt_info)
2194 {
2195 	struct xhci_interval_bw	*interval_bw;
2196 	struct xhci_virt_ep *smaller_ep;
2197 	int normalized_interval;
2198 
2199 	if (xhci_is_async_ep(ep_bw->type))
2200 		return;
2201 
2202 	if (udev->speed == USB_SPEED_SUPER) {
2203 		if (xhci_is_sync_in_ep(ep_bw->type))
2204 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2205 				xhci_get_ss_bw_consumed(ep_bw);
2206 		else
2207 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2208 				xhci_get_ss_bw_consumed(ep_bw);
2209 		return;
2210 	}
2211 
2212 	/* For LS/FS devices, we need to translate the interval expressed in
2213 	 * microframes to frames.
2214 	 */
2215 	if (udev->speed == USB_SPEED_HIGH)
2216 		normalized_interval = ep_bw->ep_interval;
2217 	else
2218 		normalized_interval = ep_bw->ep_interval - 3;
2219 
2220 	if (normalized_interval == 0)
2221 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2222 	interval_bw = &bw_table->interval_bw[normalized_interval];
2223 	interval_bw->num_packets += ep_bw->num_packets;
2224 	switch (udev->speed) {
2225 	case USB_SPEED_LOW:
2226 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2227 		break;
2228 	case USB_SPEED_FULL:
2229 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2230 		break;
2231 	case USB_SPEED_HIGH:
2232 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2233 		break;
2234 	case USB_SPEED_SUPER:
2235 	case USB_SPEED_UNKNOWN:
2236 	case USB_SPEED_WIRELESS:
2237 		/* Should never happen because only LS/FS/HS endpoints will get
2238 		 * added to the endpoint list.
2239 		 */
2240 		return;
2241 	}
2242 
2243 	if (tt_info)
2244 		tt_info->active_eps += 1;
2245 	/* Insert the endpoint into the list, largest max packet size first. */
2246 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2247 			bw_endpoint_list) {
2248 		if (ep_bw->max_packet_size >=
2249 				smaller_ep->bw_info.max_packet_size) {
2250 			/* Add the new ep before the smaller endpoint */
2251 			list_add_tail(&virt_ep->bw_endpoint_list,
2252 					&smaller_ep->bw_endpoint_list);
2253 			return;
2254 		}
2255 	}
2256 	/* Add the new endpoint at the end of the list. */
2257 	list_add_tail(&virt_ep->bw_endpoint_list,
2258 			&interval_bw->endpoints);
2259 }
2260 
2261 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2262 		struct xhci_virt_device *virt_dev,
2263 		int old_active_eps)
2264 {
2265 	struct xhci_root_port_bw_info *rh_bw_info;
2266 	if (!virt_dev->tt_info)
2267 		return;
2268 
2269 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2270 	if (old_active_eps == 0 &&
2271 				virt_dev->tt_info->active_eps != 0) {
2272 		rh_bw_info->num_active_tts += 1;
2273 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2274 	} else if (old_active_eps != 0 &&
2275 				virt_dev->tt_info->active_eps == 0) {
2276 		rh_bw_info->num_active_tts -= 1;
2277 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2278 	}
2279 }
2280 
2281 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2282 		struct xhci_virt_device *virt_dev,
2283 		struct xhci_container_ctx *in_ctx)
2284 {
2285 	struct xhci_bw_info ep_bw_info[31];
2286 	int i;
2287 	struct xhci_input_control_ctx *ctrl_ctx;
2288 	int old_active_eps = 0;
2289 
2290 	if (virt_dev->tt_info)
2291 		old_active_eps = virt_dev->tt_info->active_eps;
2292 
2293 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2294 
2295 	for (i = 0; i < 31; i++) {
2296 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2297 			continue;
2298 
2299 		/* Make a copy of the BW info in case we need to revert this */
2300 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2301 				sizeof(ep_bw_info[i]));
2302 		/* Drop the endpoint from the interval table if the endpoint is
2303 		 * being dropped or changed.
2304 		 */
2305 		if (EP_IS_DROPPED(ctrl_ctx, i))
2306 			xhci_drop_ep_from_interval_table(xhci,
2307 					&virt_dev->eps[i].bw_info,
2308 					virt_dev->bw_table,
2309 					virt_dev->udev,
2310 					&virt_dev->eps[i],
2311 					virt_dev->tt_info);
2312 	}
2313 	/* Overwrite the information stored in the endpoints' bw_info */
2314 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2315 	for (i = 0; i < 31; i++) {
2316 		/* Add any changed or added endpoints to the interval table */
2317 		if (EP_IS_ADDED(ctrl_ctx, i))
2318 			xhci_add_ep_to_interval_table(xhci,
2319 					&virt_dev->eps[i].bw_info,
2320 					virt_dev->bw_table,
2321 					virt_dev->udev,
2322 					&virt_dev->eps[i],
2323 					virt_dev->tt_info);
2324 	}
2325 
2326 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2327 		/* Ok, this fits in the bandwidth we have.
2328 		 * Update the number of active TTs.
2329 		 */
2330 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2331 		return 0;
2332 	}
2333 
2334 	/* We don't have enough bandwidth for this, revert the stored info. */
2335 	for (i = 0; i < 31; i++) {
2336 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2337 			continue;
2338 
2339 		/* Drop the new copies of any added or changed endpoints from
2340 		 * the interval table.
2341 		 */
2342 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2343 			xhci_drop_ep_from_interval_table(xhci,
2344 					&virt_dev->eps[i].bw_info,
2345 					virt_dev->bw_table,
2346 					virt_dev->udev,
2347 					&virt_dev->eps[i],
2348 					virt_dev->tt_info);
2349 		}
2350 		/* Revert the endpoint back to its old information */
2351 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2352 				sizeof(ep_bw_info[i]));
2353 		/* Add any changed or dropped endpoints back into the table */
2354 		if (EP_IS_DROPPED(ctrl_ctx, i))
2355 			xhci_add_ep_to_interval_table(xhci,
2356 					&virt_dev->eps[i].bw_info,
2357 					virt_dev->bw_table,
2358 					virt_dev->udev,
2359 					&virt_dev->eps[i],
2360 					virt_dev->tt_info);
2361 	}
2362 	return -ENOMEM;
2363 }
2364 
2365 
2366 /* Issue a configure endpoint command or evaluate context command
2367  * and wait for it to finish.
2368  */
2369 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2370 		struct usb_device *udev,
2371 		struct xhci_command *command,
2372 		bool ctx_change, bool must_succeed)
2373 {
2374 	int ret;
2375 	int timeleft;
2376 	unsigned long flags;
2377 	struct xhci_container_ctx *in_ctx;
2378 	struct completion *cmd_completion;
2379 	u32 *cmd_status;
2380 	struct xhci_virt_device *virt_dev;
2381 
2382 	spin_lock_irqsave(&xhci->lock, flags);
2383 	virt_dev = xhci->devs[udev->slot_id];
2384 
2385 	if (command)
2386 		in_ctx = command->in_ctx;
2387 	else
2388 		in_ctx = virt_dev->in_ctx;
2389 
2390 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2391 			xhci_reserve_host_resources(xhci, in_ctx)) {
2392 		spin_unlock_irqrestore(&xhci->lock, flags);
2393 		xhci_warn(xhci, "Not enough host resources, "
2394 				"active endpoint contexts = %u\n",
2395 				xhci->num_active_eps);
2396 		return -ENOMEM;
2397 	}
2398 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2399 			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2400 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2401 			xhci_free_host_resources(xhci, in_ctx);
2402 		spin_unlock_irqrestore(&xhci->lock, flags);
2403 		xhci_warn(xhci, "Not enough bandwidth\n");
2404 		return -ENOMEM;
2405 	}
2406 
2407 	if (command) {
2408 		cmd_completion = command->completion;
2409 		cmd_status = &command->status;
2410 		command->command_trb = xhci->cmd_ring->enqueue;
2411 
2412 		/* Enqueue pointer can be left pointing to the link TRB,
2413 		 * we must handle that
2414 		 */
2415 		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2416 			command->command_trb =
2417 				xhci->cmd_ring->enq_seg->next->trbs;
2418 
2419 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2420 	} else {
2421 		cmd_completion = &virt_dev->cmd_completion;
2422 		cmd_status = &virt_dev->cmd_status;
2423 	}
2424 	init_completion(cmd_completion);
2425 
2426 	if (!ctx_change)
2427 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2428 				udev->slot_id, must_succeed);
2429 	else
2430 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2431 				udev->slot_id);
2432 	if (ret < 0) {
2433 		if (command)
2434 			list_del(&command->cmd_list);
2435 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2436 			xhci_free_host_resources(xhci, in_ctx);
2437 		spin_unlock_irqrestore(&xhci->lock, flags);
2438 		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2439 		return -ENOMEM;
2440 	}
2441 	xhci_ring_cmd_db(xhci);
2442 	spin_unlock_irqrestore(&xhci->lock, flags);
2443 
2444 	/* Wait for the configure endpoint command to complete */
2445 	timeleft = wait_for_completion_interruptible_timeout(
2446 			cmd_completion,
2447 			USB_CTRL_SET_TIMEOUT);
2448 	if (timeleft <= 0) {
2449 		xhci_warn(xhci, "%s while waiting for %s command\n",
2450 				timeleft == 0 ? "Timeout" : "Signal",
2451 				ctx_change == 0 ?
2452 					"configure endpoint" :
2453 					"evaluate context");
2454 		/* FIXME cancel the configure endpoint command */
2455 		return -ETIME;
2456 	}
2457 
2458 	if (!ctx_change)
2459 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2460 	else
2461 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2462 
2463 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2464 		spin_lock_irqsave(&xhci->lock, flags);
2465 		/* If the command failed, remove the reserved resources.
2466 		 * Otherwise, clean up the estimate to include dropped eps.
2467 		 */
2468 		if (ret)
2469 			xhci_free_host_resources(xhci, in_ctx);
2470 		else
2471 			xhci_finish_resource_reservation(xhci, in_ctx);
2472 		spin_unlock_irqrestore(&xhci->lock, flags);
2473 	}
2474 	return ret;
2475 }
2476 
2477 /* Called after one or more calls to xhci_add_endpoint() or
2478  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2479  * to call xhci_reset_bandwidth().
2480  *
2481  * Since we are in the middle of changing either configuration or
2482  * installing a new alt setting, the USB core won't allow URBs to be
2483  * enqueued for any endpoint on the old config or interface.  Nothing
2484  * else should be touching the xhci->devs[slot_id] structure, so we
2485  * don't need to take the xhci->lock for manipulating that.
2486  */
2487 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2488 {
2489 	int i;
2490 	int ret = 0;
2491 	struct xhci_hcd *xhci;
2492 	struct xhci_virt_device	*virt_dev;
2493 	struct xhci_input_control_ctx *ctrl_ctx;
2494 	struct xhci_slot_ctx *slot_ctx;
2495 
2496 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2497 	if (ret <= 0)
2498 		return ret;
2499 	xhci = hcd_to_xhci(hcd);
2500 	if (xhci->xhc_state & XHCI_STATE_DYING)
2501 		return -ENODEV;
2502 
2503 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2504 	virt_dev = xhci->devs[udev->slot_id];
2505 
2506 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2507 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2508 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2509 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2510 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2511 
2512 	/* Don't issue the command if there's no endpoints to update. */
2513 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2514 			ctrl_ctx->drop_flags == 0)
2515 		return 0;
2516 
2517 	xhci_dbg(xhci, "New Input Control Context:\n");
2518 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2519 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2520 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2521 
2522 	ret = xhci_configure_endpoint(xhci, udev, NULL,
2523 			false, false);
2524 	if (ret) {
2525 		/* Callee should call reset_bandwidth() */
2526 		return ret;
2527 	}
2528 
2529 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2530 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2531 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2532 
2533 	/* Free any rings that were dropped, but not changed. */
2534 	for (i = 1; i < 31; ++i) {
2535 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2536 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2537 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2538 	}
2539 	xhci_zero_in_ctx(xhci, virt_dev);
2540 	/*
2541 	 * Install any rings for completely new endpoints or changed endpoints,
2542 	 * and free or cache any old rings from changed endpoints.
2543 	 */
2544 	for (i = 1; i < 31; ++i) {
2545 		if (!virt_dev->eps[i].new_ring)
2546 			continue;
2547 		/* Only cache or free the old ring if it exists.
2548 		 * It may not if this is the first add of an endpoint.
2549 		 */
2550 		if (virt_dev->eps[i].ring) {
2551 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2552 		}
2553 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2554 		virt_dev->eps[i].new_ring = NULL;
2555 	}
2556 
2557 	return ret;
2558 }
2559 
2560 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2561 {
2562 	struct xhci_hcd *xhci;
2563 	struct xhci_virt_device	*virt_dev;
2564 	int i, ret;
2565 
2566 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2567 	if (ret <= 0)
2568 		return;
2569 	xhci = hcd_to_xhci(hcd);
2570 
2571 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2572 	virt_dev = xhci->devs[udev->slot_id];
2573 	/* Free any rings allocated for added endpoints */
2574 	for (i = 0; i < 31; ++i) {
2575 		if (virt_dev->eps[i].new_ring) {
2576 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2577 			virt_dev->eps[i].new_ring = NULL;
2578 		}
2579 	}
2580 	xhci_zero_in_ctx(xhci, virt_dev);
2581 }
2582 
2583 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2584 		struct xhci_container_ctx *in_ctx,
2585 		struct xhci_container_ctx *out_ctx,
2586 		u32 add_flags, u32 drop_flags)
2587 {
2588 	struct xhci_input_control_ctx *ctrl_ctx;
2589 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2590 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2591 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2592 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2593 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2594 
2595 	xhci_dbg(xhci, "Input Context:\n");
2596 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2597 }
2598 
2599 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2600 		unsigned int slot_id, unsigned int ep_index,
2601 		struct xhci_dequeue_state *deq_state)
2602 {
2603 	struct xhci_container_ctx *in_ctx;
2604 	struct xhci_ep_ctx *ep_ctx;
2605 	u32 added_ctxs;
2606 	dma_addr_t addr;
2607 
2608 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2609 			xhci->devs[slot_id]->out_ctx, ep_index);
2610 	in_ctx = xhci->devs[slot_id]->in_ctx;
2611 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2612 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2613 			deq_state->new_deq_ptr);
2614 	if (addr == 0) {
2615 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2616 				"reset ep command\n");
2617 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2618 				deq_state->new_deq_seg,
2619 				deq_state->new_deq_ptr);
2620 		return;
2621 	}
2622 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2623 
2624 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2625 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2626 			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2627 }
2628 
2629 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2630 		struct usb_device *udev, unsigned int ep_index)
2631 {
2632 	struct xhci_dequeue_state deq_state;
2633 	struct xhci_virt_ep *ep;
2634 
2635 	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2636 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2637 	/* We need to move the HW's dequeue pointer past this TD,
2638 	 * or it will attempt to resend it on the next doorbell ring.
2639 	 */
2640 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2641 			ep_index, ep->stopped_stream, ep->stopped_td,
2642 			&deq_state);
2643 
2644 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2645 	 * issue a configure endpoint command later.
2646 	 */
2647 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2648 		xhci_dbg(xhci, "Queueing new dequeue state\n");
2649 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2650 				ep_index, ep->stopped_stream, &deq_state);
2651 	} else {
2652 		/* Better hope no one uses the input context between now and the
2653 		 * reset endpoint completion!
2654 		 * XXX: No idea how this hardware will react when stream rings
2655 		 * are enabled.
2656 		 */
2657 		xhci_dbg(xhci, "Setting up input context for "
2658 				"configure endpoint command\n");
2659 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2660 				ep_index, &deq_state);
2661 	}
2662 }
2663 
2664 /* Deal with stalled endpoints.  The core should have sent the control message
2665  * to clear the halt condition.  However, we need to make the xHCI hardware
2666  * reset its sequence number, since a device will expect a sequence number of
2667  * zero after the halt condition is cleared.
2668  * Context: in_interrupt
2669  */
2670 void xhci_endpoint_reset(struct usb_hcd *hcd,
2671 		struct usb_host_endpoint *ep)
2672 {
2673 	struct xhci_hcd *xhci;
2674 	struct usb_device *udev;
2675 	unsigned int ep_index;
2676 	unsigned long flags;
2677 	int ret;
2678 	struct xhci_virt_ep *virt_ep;
2679 
2680 	xhci = hcd_to_xhci(hcd);
2681 	udev = (struct usb_device *) ep->hcpriv;
2682 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2683 	 * with xhci_add_endpoint()
2684 	 */
2685 	if (!ep->hcpriv)
2686 		return;
2687 	ep_index = xhci_get_endpoint_index(&ep->desc);
2688 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2689 	if (!virt_ep->stopped_td) {
2690 		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2691 				ep->desc.bEndpointAddress);
2692 		return;
2693 	}
2694 	if (usb_endpoint_xfer_control(&ep->desc)) {
2695 		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2696 		return;
2697 	}
2698 
2699 	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2700 	spin_lock_irqsave(&xhci->lock, flags);
2701 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2702 	/*
2703 	 * Can't change the ring dequeue pointer until it's transitioned to the
2704 	 * stopped state, which is only upon a successful reset endpoint
2705 	 * command.  Better hope that last command worked!
2706 	 */
2707 	if (!ret) {
2708 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2709 		kfree(virt_ep->stopped_td);
2710 		xhci_ring_cmd_db(xhci);
2711 	}
2712 	virt_ep->stopped_td = NULL;
2713 	virt_ep->stopped_trb = NULL;
2714 	virt_ep->stopped_stream = 0;
2715 	spin_unlock_irqrestore(&xhci->lock, flags);
2716 
2717 	if (ret)
2718 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2719 }
2720 
2721 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2722 		struct usb_device *udev, struct usb_host_endpoint *ep,
2723 		unsigned int slot_id)
2724 {
2725 	int ret;
2726 	unsigned int ep_index;
2727 	unsigned int ep_state;
2728 
2729 	if (!ep)
2730 		return -EINVAL;
2731 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2732 	if (ret <= 0)
2733 		return -EINVAL;
2734 	if (ep->ss_ep_comp.bmAttributes == 0) {
2735 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2736 				" descriptor for ep 0x%x does not support streams\n",
2737 				ep->desc.bEndpointAddress);
2738 		return -EINVAL;
2739 	}
2740 
2741 	ep_index = xhci_get_endpoint_index(&ep->desc);
2742 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2743 	if (ep_state & EP_HAS_STREAMS ||
2744 			ep_state & EP_GETTING_STREAMS) {
2745 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2746 				"already has streams set up.\n",
2747 				ep->desc.bEndpointAddress);
2748 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2749 				"dynamic stream context array reallocation.\n");
2750 		return -EINVAL;
2751 	}
2752 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2753 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2754 				"endpoint 0x%x; URBs are pending.\n",
2755 				ep->desc.bEndpointAddress);
2756 		return -EINVAL;
2757 	}
2758 	return 0;
2759 }
2760 
2761 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2762 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2763 {
2764 	unsigned int max_streams;
2765 
2766 	/* The stream context array size must be a power of two */
2767 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2768 	/*
2769 	 * Find out how many primary stream array entries the host controller
2770 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2771 	 * level page entries), but that's an optional feature for xHCI host
2772 	 * controllers. xHCs must support at least 4 stream IDs.
2773 	 */
2774 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2775 	if (*num_stream_ctxs > max_streams) {
2776 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2777 				max_streams);
2778 		*num_stream_ctxs = max_streams;
2779 		*num_streams = max_streams;
2780 	}
2781 }
2782 
2783 /* Returns an error code if one of the endpoint already has streams.
2784  * This does not change any data structures, it only checks and gathers
2785  * information.
2786  */
2787 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2788 		struct usb_device *udev,
2789 		struct usb_host_endpoint **eps, unsigned int num_eps,
2790 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2791 {
2792 	unsigned int max_streams;
2793 	unsigned int endpoint_flag;
2794 	int i;
2795 	int ret;
2796 
2797 	for (i = 0; i < num_eps; i++) {
2798 		ret = xhci_check_streams_endpoint(xhci, udev,
2799 				eps[i], udev->slot_id);
2800 		if (ret < 0)
2801 			return ret;
2802 
2803 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2804 		if (max_streams < (*num_streams - 1)) {
2805 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2806 					eps[i]->desc.bEndpointAddress,
2807 					max_streams);
2808 			*num_streams = max_streams+1;
2809 		}
2810 
2811 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2812 		if (*changed_ep_bitmask & endpoint_flag)
2813 			return -EINVAL;
2814 		*changed_ep_bitmask |= endpoint_flag;
2815 	}
2816 	return 0;
2817 }
2818 
2819 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2820 		struct usb_device *udev,
2821 		struct usb_host_endpoint **eps, unsigned int num_eps)
2822 {
2823 	u32 changed_ep_bitmask = 0;
2824 	unsigned int slot_id;
2825 	unsigned int ep_index;
2826 	unsigned int ep_state;
2827 	int i;
2828 
2829 	slot_id = udev->slot_id;
2830 	if (!xhci->devs[slot_id])
2831 		return 0;
2832 
2833 	for (i = 0; i < num_eps; i++) {
2834 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2835 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2836 		/* Are streams already being freed for the endpoint? */
2837 		if (ep_state & EP_GETTING_NO_STREAMS) {
2838 			xhci_warn(xhci, "WARN Can't disable streams for "
2839 					"endpoint 0x%x\n, "
2840 					"streams are being disabled already.",
2841 					eps[i]->desc.bEndpointAddress);
2842 			return 0;
2843 		}
2844 		/* Are there actually any streams to free? */
2845 		if (!(ep_state & EP_HAS_STREAMS) &&
2846 				!(ep_state & EP_GETTING_STREAMS)) {
2847 			xhci_warn(xhci, "WARN Can't disable streams for "
2848 					"endpoint 0x%x\n, "
2849 					"streams are already disabled!",
2850 					eps[i]->desc.bEndpointAddress);
2851 			xhci_warn(xhci, "WARN xhci_free_streams() called "
2852 					"with non-streams endpoint\n");
2853 			return 0;
2854 		}
2855 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2856 	}
2857 	return changed_ep_bitmask;
2858 }
2859 
2860 /*
2861  * The USB device drivers use this function (though the HCD interface in USB
2862  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2863  * coordinate mass storage command queueing across multiple endpoints (basically
2864  * a stream ID == a task ID).
2865  *
2866  * Setting up streams involves allocating the same size stream context array
2867  * for each endpoint and issuing a configure endpoint command for all endpoints.
2868  *
2869  * Don't allow the call to succeed if one endpoint only supports one stream
2870  * (which means it doesn't support streams at all).
2871  *
2872  * Drivers may get less stream IDs than they asked for, if the host controller
2873  * hardware or endpoints claim they can't support the number of requested
2874  * stream IDs.
2875  */
2876 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2877 		struct usb_host_endpoint **eps, unsigned int num_eps,
2878 		unsigned int num_streams, gfp_t mem_flags)
2879 {
2880 	int i, ret;
2881 	struct xhci_hcd *xhci;
2882 	struct xhci_virt_device *vdev;
2883 	struct xhci_command *config_cmd;
2884 	unsigned int ep_index;
2885 	unsigned int num_stream_ctxs;
2886 	unsigned long flags;
2887 	u32 changed_ep_bitmask = 0;
2888 
2889 	if (!eps)
2890 		return -EINVAL;
2891 
2892 	/* Add one to the number of streams requested to account for
2893 	 * stream 0 that is reserved for xHCI usage.
2894 	 */
2895 	num_streams += 1;
2896 	xhci = hcd_to_xhci(hcd);
2897 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2898 			num_streams);
2899 
2900 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2901 	if (!config_cmd) {
2902 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2903 		return -ENOMEM;
2904 	}
2905 
2906 	/* Check to make sure all endpoints are not already configured for
2907 	 * streams.  While we're at it, find the maximum number of streams that
2908 	 * all the endpoints will support and check for duplicate endpoints.
2909 	 */
2910 	spin_lock_irqsave(&xhci->lock, flags);
2911 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2912 			num_eps, &num_streams, &changed_ep_bitmask);
2913 	if (ret < 0) {
2914 		xhci_free_command(xhci, config_cmd);
2915 		spin_unlock_irqrestore(&xhci->lock, flags);
2916 		return ret;
2917 	}
2918 	if (num_streams <= 1) {
2919 		xhci_warn(xhci, "WARN: endpoints can't handle "
2920 				"more than one stream.\n");
2921 		xhci_free_command(xhci, config_cmd);
2922 		spin_unlock_irqrestore(&xhci->lock, flags);
2923 		return -EINVAL;
2924 	}
2925 	vdev = xhci->devs[udev->slot_id];
2926 	/* Mark each endpoint as being in transition, so
2927 	 * xhci_urb_enqueue() will reject all URBs.
2928 	 */
2929 	for (i = 0; i < num_eps; i++) {
2930 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2931 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2932 	}
2933 	spin_unlock_irqrestore(&xhci->lock, flags);
2934 
2935 	/* Setup internal data structures and allocate HW data structures for
2936 	 * streams (but don't install the HW structures in the input context
2937 	 * until we're sure all memory allocation succeeded).
2938 	 */
2939 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2940 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2941 			num_stream_ctxs, num_streams);
2942 
2943 	for (i = 0; i < num_eps; i++) {
2944 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2945 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2946 				num_stream_ctxs,
2947 				num_streams, mem_flags);
2948 		if (!vdev->eps[ep_index].stream_info)
2949 			goto cleanup;
2950 		/* Set maxPstreams in endpoint context and update deq ptr to
2951 		 * point to stream context array. FIXME
2952 		 */
2953 	}
2954 
2955 	/* Set up the input context for a configure endpoint command. */
2956 	for (i = 0; i < num_eps; i++) {
2957 		struct xhci_ep_ctx *ep_ctx;
2958 
2959 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2960 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2961 
2962 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2963 				vdev->out_ctx, ep_index);
2964 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2965 				vdev->eps[ep_index].stream_info);
2966 	}
2967 	/* Tell the HW to drop its old copy of the endpoint context info
2968 	 * and add the updated copy from the input context.
2969 	 */
2970 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2971 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2972 
2973 	/* Issue and wait for the configure endpoint command */
2974 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2975 			false, false);
2976 
2977 	/* xHC rejected the configure endpoint command for some reason, so we
2978 	 * leave the old ring intact and free our internal streams data
2979 	 * structure.
2980 	 */
2981 	if (ret < 0)
2982 		goto cleanup;
2983 
2984 	spin_lock_irqsave(&xhci->lock, flags);
2985 	for (i = 0; i < num_eps; i++) {
2986 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2987 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2988 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2989 			 udev->slot_id, ep_index);
2990 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2991 	}
2992 	xhci_free_command(xhci, config_cmd);
2993 	spin_unlock_irqrestore(&xhci->lock, flags);
2994 
2995 	/* Subtract 1 for stream 0, which drivers can't use */
2996 	return num_streams - 1;
2997 
2998 cleanup:
2999 	/* If it didn't work, free the streams! */
3000 	for (i = 0; i < num_eps; i++) {
3001 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3002 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3003 		vdev->eps[ep_index].stream_info = NULL;
3004 		/* FIXME Unset maxPstreams in endpoint context and
3005 		 * update deq ptr to point to normal string ring.
3006 		 */
3007 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3008 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3009 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3010 	}
3011 	xhci_free_command(xhci, config_cmd);
3012 	return -ENOMEM;
3013 }
3014 
3015 /* Transition the endpoint from using streams to being a "normal" endpoint
3016  * without streams.
3017  *
3018  * Modify the endpoint context state, submit a configure endpoint command,
3019  * and free all endpoint rings for streams if that completes successfully.
3020  */
3021 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3022 		struct usb_host_endpoint **eps, unsigned int num_eps,
3023 		gfp_t mem_flags)
3024 {
3025 	int i, ret;
3026 	struct xhci_hcd *xhci;
3027 	struct xhci_virt_device *vdev;
3028 	struct xhci_command *command;
3029 	unsigned int ep_index;
3030 	unsigned long flags;
3031 	u32 changed_ep_bitmask;
3032 
3033 	xhci = hcd_to_xhci(hcd);
3034 	vdev = xhci->devs[udev->slot_id];
3035 
3036 	/* Set up a configure endpoint command to remove the streams rings */
3037 	spin_lock_irqsave(&xhci->lock, flags);
3038 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3039 			udev, eps, num_eps);
3040 	if (changed_ep_bitmask == 0) {
3041 		spin_unlock_irqrestore(&xhci->lock, flags);
3042 		return -EINVAL;
3043 	}
3044 
3045 	/* Use the xhci_command structure from the first endpoint.  We may have
3046 	 * allocated too many, but the driver may call xhci_free_streams() for
3047 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3048 	 */
3049 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3050 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3051 	for (i = 0; i < num_eps; i++) {
3052 		struct xhci_ep_ctx *ep_ctx;
3053 
3054 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3055 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3056 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3057 			EP_GETTING_NO_STREAMS;
3058 
3059 		xhci_endpoint_copy(xhci, command->in_ctx,
3060 				vdev->out_ctx, ep_index);
3061 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3062 				&vdev->eps[ep_index]);
3063 	}
3064 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3065 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3066 	spin_unlock_irqrestore(&xhci->lock, flags);
3067 
3068 	/* Issue and wait for the configure endpoint command,
3069 	 * which must succeed.
3070 	 */
3071 	ret = xhci_configure_endpoint(xhci, udev, command,
3072 			false, true);
3073 
3074 	/* xHC rejected the configure endpoint command for some reason, so we
3075 	 * leave the streams rings intact.
3076 	 */
3077 	if (ret < 0)
3078 		return ret;
3079 
3080 	spin_lock_irqsave(&xhci->lock, flags);
3081 	for (i = 0; i < num_eps; i++) {
3082 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3083 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3084 		vdev->eps[ep_index].stream_info = NULL;
3085 		/* FIXME Unset maxPstreams in endpoint context and
3086 		 * update deq ptr to point to normal string ring.
3087 		 */
3088 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3089 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3090 	}
3091 	spin_unlock_irqrestore(&xhci->lock, flags);
3092 
3093 	return 0;
3094 }
3095 
3096 /*
3097  * Deletes endpoint resources for endpoints that were active before a Reset
3098  * Device command, or a Disable Slot command.  The Reset Device command leaves
3099  * the control endpoint intact, whereas the Disable Slot command deletes it.
3100  *
3101  * Must be called with xhci->lock held.
3102  */
3103 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3104 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3105 {
3106 	int i;
3107 	unsigned int num_dropped_eps = 0;
3108 	unsigned int drop_flags = 0;
3109 
3110 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3111 		if (virt_dev->eps[i].ring) {
3112 			drop_flags |= 1 << i;
3113 			num_dropped_eps++;
3114 		}
3115 	}
3116 	xhci->num_active_eps -= num_dropped_eps;
3117 	if (num_dropped_eps)
3118 		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3119 				"%u now active.\n",
3120 				num_dropped_eps, drop_flags,
3121 				xhci->num_active_eps);
3122 }
3123 
3124 /*
3125  * This submits a Reset Device Command, which will set the device state to 0,
3126  * set the device address to 0, and disable all the endpoints except the default
3127  * control endpoint.  The USB core should come back and call
3128  * xhci_address_device(), and then re-set up the configuration.  If this is
3129  * called because of a usb_reset_and_verify_device(), then the old alternate
3130  * settings will be re-installed through the normal bandwidth allocation
3131  * functions.
3132  *
3133  * Wait for the Reset Device command to finish.  Remove all structures
3134  * associated with the endpoints that were disabled.  Clear the input device
3135  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3136  *
3137  * If the virt_dev to be reset does not exist or does not match the udev,
3138  * it means the device is lost, possibly due to the xHC restore error and
3139  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3140  * re-allocate the device.
3141  */
3142 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3143 {
3144 	int ret, i;
3145 	unsigned long flags;
3146 	struct xhci_hcd *xhci;
3147 	unsigned int slot_id;
3148 	struct xhci_virt_device *virt_dev;
3149 	struct xhci_command *reset_device_cmd;
3150 	int timeleft;
3151 	int last_freed_endpoint;
3152 	struct xhci_slot_ctx *slot_ctx;
3153 	int old_active_eps = 0;
3154 
3155 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3156 	if (ret <= 0)
3157 		return ret;
3158 	xhci = hcd_to_xhci(hcd);
3159 	slot_id = udev->slot_id;
3160 	virt_dev = xhci->devs[slot_id];
3161 	if (!virt_dev) {
3162 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3163 				"not exist. Re-allocate the device\n", slot_id);
3164 		ret = xhci_alloc_dev(hcd, udev);
3165 		if (ret == 1)
3166 			return 0;
3167 		else
3168 			return -EINVAL;
3169 	}
3170 
3171 	if (virt_dev->udev != udev) {
3172 		/* If the virt_dev and the udev does not match, this virt_dev
3173 		 * may belong to another udev.
3174 		 * Re-allocate the device.
3175 		 */
3176 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3177 				"not match the udev. Re-allocate the device\n",
3178 				slot_id);
3179 		ret = xhci_alloc_dev(hcd, udev);
3180 		if (ret == 1)
3181 			return 0;
3182 		else
3183 			return -EINVAL;
3184 	}
3185 
3186 	/* If device is not setup, there is no point in resetting it */
3187 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3188 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3189 						SLOT_STATE_DISABLED)
3190 		return 0;
3191 
3192 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3193 	/* Allocate the command structure that holds the struct completion.
3194 	 * Assume we're in process context, since the normal device reset
3195 	 * process has to wait for the device anyway.  Storage devices are
3196 	 * reset as part of error handling, so use GFP_NOIO instead of
3197 	 * GFP_KERNEL.
3198 	 */
3199 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3200 	if (!reset_device_cmd) {
3201 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3202 		return -ENOMEM;
3203 	}
3204 
3205 	/* Attempt to submit the Reset Device command to the command ring */
3206 	spin_lock_irqsave(&xhci->lock, flags);
3207 	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3208 
3209 	/* Enqueue pointer can be left pointing to the link TRB,
3210 	 * we must handle that
3211 	 */
3212 	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3213 		reset_device_cmd->command_trb =
3214 			xhci->cmd_ring->enq_seg->next->trbs;
3215 
3216 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3217 	ret = xhci_queue_reset_device(xhci, slot_id);
3218 	if (ret) {
3219 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3220 		list_del(&reset_device_cmd->cmd_list);
3221 		spin_unlock_irqrestore(&xhci->lock, flags);
3222 		goto command_cleanup;
3223 	}
3224 	xhci_ring_cmd_db(xhci);
3225 	spin_unlock_irqrestore(&xhci->lock, flags);
3226 
3227 	/* Wait for the Reset Device command to finish */
3228 	timeleft = wait_for_completion_interruptible_timeout(
3229 			reset_device_cmd->completion,
3230 			USB_CTRL_SET_TIMEOUT);
3231 	if (timeleft <= 0) {
3232 		xhci_warn(xhci, "%s while waiting for reset device command\n",
3233 				timeleft == 0 ? "Timeout" : "Signal");
3234 		spin_lock_irqsave(&xhci->lock, flags);
3235 		/* The timeout might have raced with the event ring handler, so
3236 		 * only delete from the list if the item isn't poisoned.
3237 		 */
3238 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3239 			list_del(&reset_device_cmd->cmd_list);
3240 		spin_unlock_irqrestore(&xhci->lock, flags);
3241 		ret = -ETIME;
3242 		goto command_cleanup;
3243 	}
3244 
3245 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3246 	 * unless we tried to reset a slot ID that wasn't enabled,
3247 	 * or the device wasn't in the addressed or configured state.
3248 	 */
3249 	ret = reset_device_cmd->status;
3250 	switch (ret) {
3251 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3252 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3253 		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3254 				slot_id,
3255 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3256 		xhci_info(xhci, "Not freeing device rings.\n");
3257 		/* Don't treat this as an error.  May change my mind later. */
3258 		ret = 0;
3259 		goto command_cleanup;
3260 	case COMP_SUCCESS:
3261 		xhci_dbg(xhci, "Successful reset device command.\n");
3262 		break;
3263 	default:
3264 		if (xhci_is_vendor_info_code(xhci, ret))
3265 			break;
3266 		xhci_warn(xhci, "Unknown completion code %u for "
3267 				"reset device command.\n", ret);
3268 		ret = -EINVAL;
3269 		goto command_cleanup;
3270 	}
3271 
3272 	/* Free up host controller endpoint resources */
3273 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3274 		spin_lock_irqsave(&xhci->lock, flags);
3275 		/* Don't delete the default control endpoint resources */
3276 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3277 		spin_unlock_irqrestore(&xhci->lock, flags);
3278 	}
3279 
3280 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3281 	last_freed_endpoint = 1;
3282 	for (i = 1; i < 31; ++i) {
3283 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3284 
3285 		if (ep->ep_state & EP_HAS_STREAMS) {
3286 			xhci_free_stream_info(xhci, ep->stream_info);
3287 			ep->stream_info = NULL;
3288 			ep->ep_state &= ~EP_HAS_STREAMS;
3289 		}
3290 
3291 		if (ep->ring) {
3292 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3293 			last_freed_endpoint = i;
3294 		}
3295 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3296 			xhci_drop_ep_from_interval_table(xhci,
3297 					&virt_dev->eps[i].bw_info,
3298 					virt_dev->bw_table,
3299 					udev,
3300 					&virt_dev->eps[i],
3301 					virt_dev->tt_info);
3302 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3303 	}
3304 	/* If necessary, update the number of active TTs on this root port */
3305 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3306 
3307 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3308 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3309 	ret = 0;
3310 
3311 command_cleanup:
3312 	xhci_free_command(xhci, reset_device_cmd);
3313 	return ret;
3314 }
3315 
3316 /*
3317  * At this point, the struct usb_device is about to go away, the device has
3318  * disconnected, and all traffic has been stopped and the endpoints have been
3319  * disabled.  Free any HC data structures associated with that device.
3320  */
3321 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3322 {
3323 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3324 	struct xhci_virt_device *virt_dev;
3325 	unsigned long flags;
3326 	u32 state;
3327 	int i, ret;
3328 
3329 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3330 	/* If the host is halted due to driver unload, we still need to free the
3331 	 * device.
3332 	 */
3333 	if (ret <= 0 && ret != -ENODEV)
3334 		return;
3335 
3336 	virt_dev = xhci->devs[udev->slot_id];
3337 
3338 	/* Stop any wayward timer functions (which may grab the lock) */
3339 	for (i = 0; i < 31; ++i) {
3340 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3341 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3342 	}
3343 
3344 	if (udev->usb2_hw_lpm_enabled) {
3345 		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3346 		udev->usb2_hw_lpm_enabled = 0;
3347 	}
3348 
3349 	spin_lock_irqsave(&xhci->lock, flags);
3350 	/* Don't disable the slot if the host controller is dead. */
3351 	state = xhci_readl(xhci, &xhci->op_regs->status);
3352 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3353 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3354 		xhci_free_virt_device(xhci, udev->slot_id);
3355 		spin_unlock_irqrestore(&xhci->lock, flags);
3356 		return;
3357 	}
3358 
3359 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3360 		spin_unlock_irqrestore(&xhci->lock, flags);
3361 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3362 		return;
3363 	}
3364 	xhci_ring_cmd_db(xhci);
3365 	spin_unlock_irqrestore(&xhci->lock, flags);
3366 	/*
3367 	 * Event command completion handler will free any data structures
3368 	 * associated with the slot.  XXX Can free sleep?
3369 	 */
3370 }
3371 
3372 /*
3373  * Checks if we have enough host controller resources for the default control
3374  * endpoint.
3375  *
3376  * Must be called with xhci->lock held.
3377  */
3378 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3379 {
3380 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3381 		xhci_dbg(xhci, "Not enough ep ctxs: "
3382 				"%u active, need to add 1, limit is %u.\n",
3383 				xhci->num_active_eps, xhci->limit_active_eps);
3384 		return -ENOMEM;
3385 	}
3386 	xhci->num_active_eps += 1;
3387 	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3388 			xhci->num_active_eps);
3389 	return 0;
3390 }
3391 
3392 
3393 /*
3394  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3395  * timed out, or allocating memory failed.  Returns 1 on success.
3396  */
3397 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3398 {
3399 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3400 	unsigned long flags;
3401 	int timeleft;
3402 	int ret;
3403 
3404 	spin_lock_irqsave(&xhci->lock, flags);
3405 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3406 	if (ret) {
3407 		spin_unlock_irqrestore(&xhci->lock, flags);
3408 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3409 		return 0;
3410 	}
3411 	xhci_ring_cmd_db(xhci);
3412 	spin_unlock_irqrestore(&xhci->lock, flags);
3413 
3414 	/* XXX: how much time for xHC slot assignment? */
3415 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3416 			USB_CTRL_SET_TIMEOUT);
3417 	if (timeleft <= 0) {
3418 		xhci_warn(xhci, "%s while waiting for a slot\n",
3419 				timeleft == 0 ? "Timeout" : "Signal");
3420 		/* FIXME cancel the enable slot request */
3421 		return 0;
3422 	}
3423 
3424 	if (!xhci->slot_id) {
3425 		xhci_err(xhci, "Error while assigning device slot ID\n");
3426 		return 0;
3427 	}
3428 
3429 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3430 		spin_lock_irqsave(&xhci->lock, flags);
3431 		ret = xhci_reserve_host_control_ep_resources(xhci);
3432 		if (ret) {
3433 			spin_unlock_irqrestore(&xhci->lock, flags);
3434 			xhci_warn(xhci, "Not enough host resources, "
3435 					"active endpoint contexts = %u\n",
3436 					xhci->num_active_eps);
3437 			goto disable_slot;
3438 		}
3439 		spin_unlock_irqrestore(&xhci->lock, flags);
3440 	}
3441 	/* Use GFP_NOIO, since this function can be called from
3442 	 * xhci_discover_or_reset_device(), which may be called as part of
3443 	 * mass storage driver error handling.
3444 	 */
3445 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3446 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3447 		goto disable_slot;
3448 	}
3449 	udev->slot_id = xhci->slot_id;
3450 	/* Is this a LS or FS device under a HS hub? */
3451 	/* Hub or peripherial? */
3452 	return 1;
3453 
3454 disable_slot:
3455 	/* Disable slot, if we can do it without mem alloc */
3456 	spin_lock_irqsave(&xhci->lock, flags);
3457 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3458 		xhci_ring_cmd_db(xhci);
3459 	spin_unlock_irqrestore(&xhci->lock, flags);
3460 	return 0;
3461 }
3462 
3463 /*
3464  * Issue an Address Device command (which will issue a SetAddress request to
3465  * the device).
3466  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3467  * we should only issue and wait on one address command at the same time.
3468  *
3469  * We add one to the device address issued by the hardware because the USB core
3470  * uses address 1 for the root hubs (even though they're not really devices).
3471  */
3472 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3473 {
3474 	unsigned long flags;
3475 	int timeleft;
3476 	struct xhci_virt_device *virt_dev;
3477 	int ret = 0;
3478 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3479 	struct xhci_slot_ctx *slot_ctx;
3480 	struct xhci_input_control_ctx *ctrl_ctx;
3481 	u64 temp_64;
3482 
3483 	if (!udev->slot_id) {
3484 		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3485 		return -EINVAL;
3486 	}
3487 
3488 	virt_dev = xhci->devs[udev->slot_id];
3489 
3490 	if (WARN_ON(!virt_dev)) {
3491 		/*
3492 		 * In plug/unplug torture test with an NEC controller,
3493 		 * a zero-dereference was observed once due to virt_dev = 0.
3494 		 * Print useful debug rather than crash if it is observed again!
3495 		 */
3496 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3497 			udev->slot_id);
3498 		return -EINVAL;
3499 	}
3500 
3501 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3502 	/*
3503 	 * If this is the first Set Address since device plug-in or
3504 	 * virt_device realloaction after a resume with an xHCI power loss,
3505 	 * then set up the slot context.
3506 	 */
3507 	if (!slot_ctx->dev_info)
3508 		xhci_setup_addressable_virt_dev(xhci, udev);
3509 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3510 	else
3511 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3512 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3513 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3514 	ctrl_ctx->drop_flags = 0;
3515 
3516 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3517 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3518 
3519 	spin_lock_irqsave(&xhci->lock, flags);
3520 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3521 					udev->slot_id);
3522 	if (ret) {
3523 		spin_unlock_irqrestore(&xhci->lock, flags);
3524 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3525 		return ret;
3526 	}
3527 	xhci_ring_cmd_db(xhci);
3528 	spin_unlock_irqrestore(&xhci->lock, flags);
3529 
3530 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3531 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3532 			USB_CTRL_SET_TIMEOUT);
3533 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3534 	 * the SetAddress() "recovery interval" required by USB and aborting the
3535 	 * command on a timeout.
3536 	 */
3537 	if (timeleft <= 0) {
3538 		xhci_warn(xhci, "%s while waiting for address device command\n",
3539 				timeleft == 0 ? "Timeout" : "Signal");
3540 		/* FIXME cancel the address device command */
3541 		return -ETIME;
3542 	}
3543 
3544 	switch (virt_dev->cmd_status) {
3545 	case COMP_CTX_STATE:
3546 	case COMP_EBADSLT:
3547 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3548 				udev->slot_id);
3549 		ret = -EINVAL;
3550 		break;
3551 	case COMP_TX_ERR:
3552 		dev_warn(&udev->dev, "Device not responding to set address.\n");
3553 		ret = -EPROTO;
3554 		break;
3555 	case COMP_DEV_ERR:
3556 		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3557 				"device command.\n");
3558 		ret = -ENODEV;
3559 		break;
3560 	case COMP_SUCCESS:
3561 		xhci_dbg(xhci, "Successful Address Device command\n");
3562 		break;
3563 	default:
3564 		xhci_err(xhci, "ERROR: unexpected command completion "
3565 				"code 0x%x.\n", virt_dev->cmd_status);
3566 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3567 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3568 		ret = -EINVAL;
3569 		break;
3570 	}
3571 	if (ret) {
3572 		return ret;
3573 	}
3574 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3575 	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3576 	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3577 		 udev->slot_id,
3578 		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3579 		 (unsigned long long)
3580 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3581 	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3582 			(unsigned long long)virt_dev->out_ctx->dma);
3583 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3584 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3585 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3586 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3587 	/*
3588 	 * USB core uses address 1 for the roothubs, so we add one to the
3589 	 * address given back to us by the HC.
3590 	 */
3591 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3592 	/* Use kernel assigned address for devices; store xHC assigned
3593 	 * address locally. */
3594 	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3595 		+ 1;
3596 	/* Zero the input context control for later use */
3597 	ctrl_ctx->add_flags = 0;
3598 	ctrl_ctx->drop_flags = 0;
3599 
3600 	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3601 
3602 	return 0;
3603 }
3604 
3605 #ifdef CONFIG_USB_SUSPEND
3606 
3607 /* BESL to HIRD Encoding array for USB2 LPM */
3608 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3609 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3610 
3611 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3612 static int xhci_calculate_hird_besl(int u2del, bool use_besl)
3613 {
3614 	int hird;
3615 
3616 	if (use_besl) {
3617 		for (hird = 0; hird < 16; hird++) {
3618 			if (xhci_besl_encoding[hird] >= u2del)
3619 				break;
3620 		}
3621 	} else {
3622 		if (u2del <= 50)
3623 			hird = 0;
3624 		else
3625 			hird = (u2del - 51) / 75 + 1;
3626 
3627 		if (hird > 15)
3628 			hird = 15;
3629 	}
3630 
3631 	return hird;
3632 }
3633 
3634 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3635 					struct usb_device *udev)
3636 {
3637 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3638 	struct dev_info	*dev_info;
3639 	__le32 __iomem	**port_array;
3640 	__le32 __iomem	*addr, *pm_addr;
3641 	u32		temp, dev_id;
3642 	unsigned int	port_num;
3643 	unsigned long	flags;
3644 	int		u2del, hird;
3645 	int		ret;
3646 
3647 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3648 			!udev->lpm_capable)
3649 		return -EINVAL;
3650 
3651 	/* we only support lpm for non-hub device connected to root hub yet */
3652 	if (!udev->parent || udev->parent->parent ||
3653 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3654 		return -EINVAL;
3655 
3656 	spin_lock_irqsave(&xhci->lock, flags);
3657 
3658 	/* Look for devices in lpm_failed_devs list */
3659 	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3660 			le16_to_cpu(udev->descriptor.idProduct);
3661 	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3662 		if (dev_info->dev_id == dev_id) {
3663 			ret = -EINVAL;
3664 			goto finish;
3665 		}
3666 	}
3667 
3668 	port_array = xhci->usb2_ports;
3669 	port_num = udev->portnum - 1;
3670 
3671 	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3672 		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3673 		ret = -EINVAL;
3674 		goto finish;
3675 	}
3676 
3677 	/*
3678 	 * Test USB 2.0 software LPM.
3679 	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3680 	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3681 	 * in the June 2011 errata release.
3682 	 */
3683 	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3684 	/*
3685 	 * Set L1 Device Slot and HIRD/BESL.
3686 	 * Check device's USB 2.0 extension descriptor to determine whether
3687 	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3688 	 */
3689 	pm_addr = port_array[port_num] + 1;
3690 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3691 	if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3692 		hird = xhci_calculate_hird_besl(u2del, 1);
3693 	else
3694 		hird = xhci_calculate_hird_besl(u2del, 0);
3695 
3696 	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3697 	xhci_writel(xhci, temp, pm_addr);
3698 
3699 	/* Set port link state to U2(L1) */
3700 	addr = port_array[port_num];
3701 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3702 
3703 	/* wait for ACK */
3704 	spin_unlock_irqrestore(&xhci->lock, flags);
3705 	msleep(10);
3706 	spin_lock_irqsave(&xhci->lock, flags);
3707 
3708 	/* Check L1 Status */
3709 	ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3710 	if (ret != -ETIMEDOUT) {
3711 		/* enter L1 successfully */
3712 		temp = xhci_readl(xhci, addr);
3713 		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3714 				port_num, temp);
3715 		ret = 0;
3716 	} else {
3717 		temp = xhci_readl(xhci, pm_addr);
3718 		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3719 				port_num, temp & PORT_L1S_MASK);
3720 		ret = -EINVAL;
3721 	}
3722 
3723 	/* Resume the port */
3724 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3725 
3726 	spin_unlock_irqrestore(&xhci->lock, flags);
3727 	msleep(10);
3728 	spin_lock_irqsave(&xhci->lock, flags);
3729 
3730 	/* Clear PLC */
3731 	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3732 
3733 	/* Check PORTSC to make sure the device is in the right state */
3734 	if (!ret) {
3735 		temp = xhci_readl(xhci, addr);
3736 		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
3737 		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3738 				(temp & PORT_PLS_MASK) != XDEV_U0) {
3739 			xhci_dbg(xhci, "port L1 resume fail\n");
3740 			ret = -EINVAL;
3741 		}
3742 	}
3743 
3744 	if (ret) {
3745 		/* Insert dev to lpm_failed_devs list */
3746 		xhci_warn(xhci, "device LPM test failed, may disconnect and "
3747 				"re-enumerate\n");
3748 		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3749 		if (!dev_info) {
3750 			ret = -ENOMEM;
3751 			goto finish;
3752 		}
3753 		dev_info->dev_id = dev_id;
3754 		INIT_LIST_HEAD(&dev_info->list);
3755 		list_add(&dev_info->list, &xhci->lpm_failed_devs);
3756 	} else {
3757 		xhci_ring_device(xhci, udev->slot_id);
3758 	}
3759 
3760 finish:
3761 	spin_unlock_irqrestore(&xhci->lock, flags);
3762 	return ret;
3763 }
3764 
3765 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3766 			struct usb_device *udev, int enable)
3767 {
3768 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3769 	__le32 __iomem	**port_array;
3770 	__le32 __iomem	*pm_addr;
3771 	u32		temp;
3772 	unsigned int	port_num;
3773 	unsigned long	flags;
3774 	int		u2del, hird;
3775 
3776 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3777 			!udev->lpm_capable)
3778 		return -EPERM;
3779 
3780 	if (!udev->parent || udev->parent->parent ||
3781 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3782 		return -EPERM;
3783 
3784 	if (udev->usb2_hw_lpm_capable != 1)
3785 		return -EPERM;
3786 
3787 	spin_lock_irqsave(&xhci->lock, flags);
3788 
3789 	port_array = xhci->usb2_ports;
3790 	port_num = udev->portnum - 1;
3791 	pm_addr = port_array[port_num] + 1;
3792 	temp = xhci_readl(xhci, pm_addr);
3793 
3794 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3795 			enable ? "enable" : "disable", port_num);
3796 
3797 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3798 	if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3799 		hird = xhci_calculate_hird_besl(u2del, 1);
3800 	else
3801 		hird = xhci_calculate_hird_besl(u2del, 0);
3802 
3803 	if (enable) {
3804 		temp &= ~PORT_HIRD_MASK;
3805 		temp |= PORT_HIRD(hird) | PORT_RWE;
3806 		xhci_writel(xhci, temp, pm_addr);
3807 		temp = xhci_readl(xhci, pm_addr);
3808 		temp |= PORT_HLE;
3809 		xhci_writel(xhci, temp, pm_addr);
3810 	} else {
3811 		temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3812 		xhci_writel(xhci, temp, pm_addr);
3813 	}
3814 
3815 	spin_unlock_irqrestore(&xhci->lock, flags);
3816 	return 0;
3817 }
3818 
3819 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3820 {
3821 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3822 	int		ret;
3823 
3824 	ret = xhci_usb2_software_lpm_test(hcd, udev);
3825 	if (!ret) {
3826 		xhci_dbg(xhci, "software LPM test succeed\n");
3827 		if (xhci->hw_lpm_support == 1) {
3828 			udev->usb2_hw_lpm_capable = 1;
3829 			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3830 			if (!ret)
3831 				udev->usb2_hw_lpm_enabled = 1;
3832 		}
3833 	}
3834 
3835 	return 0;
3836 }
3837 
3838 #else
3839 
3840 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3841 				struct usb_device *udev, int enable)
3842 {
3843 	return 0;
3844 }
3845 
3846 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3847 {
3848 	return 0;
3849 }
3850 
3851 #endif /* CONFIG_USB_SUSPEND */
3852 
3853 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
3854  * internal data structures for the device.
3855  */
3856 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
3857 			struct usb_tt *tt, gfp_t mem_flags)
3858 {
3859 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3860 	struct xhci_virt_device *vdev;
3861 	struct xhci_command *config_cmd;
3862 	struct xhci_input_control_ctx *ctrl_ctx;
3863 	struct xhci_slot_ctx *slot_ctx;
3864 	unsigned long flags;
3865 	unsigned think_time;
3866 	int ret;
3867 
3868 	/* Ignore root hubs */
3869 	if (!hdev->parent)
3870 		return 0;
3871 
3872 	vdev = xhci->devs[hdev->slot_id];
3873 	if (!vdev) {
3874 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
3875 		return -EINVAL;
3876 	}
3877 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3878 	if (!config_cmd) {
3879 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3880 		return -ENOMEM;
3881 	}
3882 
3883 	spin_lock_irqsave(&xhci->lock, flags);
3884 	if (hdev->speed == USB_SPEED_HIGH &&
3885 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
3886 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
3887 		xhci_free_command(xhci, config_cmd);
3888 		spin_unlock_irqrestore(&xhci->lock, flags);
3889 		return -ENOMEM;
3890 	}
3891 
3892 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
3893 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3894 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3895 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
3896 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
3897 	if (tt->multi)
3898 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3899 	if (xhci->hci_version > 0x95) {
3900 		xhci_dbg(xhci, "xHCI version %x needs hub "
3901 				"TT think time and number of ports\n",
3902 				(unsigned int) xhci->hci_version);
3903 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3904 		/* Set TT think time - convert from ns to FS bit times.
3905 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
3906 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
3907 		 *
3908 		 * xHCI 1.0: this field shall be 0 if the device is not a
3909 		 * High-spped hub.
3910 		 */
3911 		think_time = tt->think_time;
3912 		if (think_time != 0)
3913 			think_time = (think_time / 666) - 1;
3914 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3915 			slot_ctx->tt_info |=
3916 				cpu_to_le32(TT_THINK_TIME(think_time));
3917 	} else {
3918 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3919 				"TT think time or number of ports\n",
3920 				(unsigned int) xhci->hci_version);
3921 	}
3922 	slot_ctx->dev_state = 0;
3923 	spin_unlock_irqrestore(&xhci->lock, flags);
3924 
3925 	xhci_dbg(xhci, "Set up %s for hub device.\n",
3926 			(xhci->hci_version > 0x95) ?
3927 			"configure endpoint" : "evaluate context");
3928 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3929 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3930 
3931 	/* Issue and wait for the configure endpoint or
3932 	 * evaluate context command.
3933 	 */
3934 	if (xhci->hci_version > 0x95)
3935 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3936 				false, false);
3937 	else
3938 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3939 				true, false);
3940 
3941 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3942 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3943 
3944 	xhci_free_command(xhci, config_cmd);
3945 	return ret;
3946 }
3947 
3948 int xhci_get_frame(struct usb_hcd *hcd)
3949 {
3950 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3951 	/* EHCI mods by the periodic size.  Why? */
3952 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3953 }
3954 
3955 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
3956 {
3957 	struct xhci_hcd		*xhci;
3958 	struct device		*dev = hcd->self.controller;
3959 	int			retval;
3960 	u32			temp;
3961 
3962 	hcd->self.sg_tablesize = TRBS_PER_SEGMENT - 2;
3963 
3964 	if (usb_hcd_is_primary_hcd(hcd)) {
3965 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
3966 		if (!xhci)
3967 			return -ENOMEM;
3968 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
3969 		xhci->main_hcd = hcd;
3970 		/* Mark the first roothub as being USB 2.0.
3971 		 * The xHCI driver will register the USB 3.0 roothub.
3972 		 */
3973 		hcd->speed = HCD_USB2;
3974 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
3975 		/*
3976 		 * USB 2.0 roothub under xHCI has an integrated TT,
3977 		 * (rate matching hub) as opposed to having an OHCI/UHCI
3978 		 * companion controller.
3979 		 */
3980 		hcd->has_tt = 1;
3981 	} else {
3982 		/* xHCI private pointer was set in xhci_pci_probe for the second
3983 		 * registered roothub.
3984 		 */
3985 		xhci = hcd_to_xhci(hcd);
3986 		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
3987 		if (HCC_64BIT_ADDR(temp)) {
3988 			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
3989 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
3990 		} else {
3991 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
3992 		}
3993 		return 0;
3994 	}
3995 
3996 	xhci->cap_regs = hcd->regs;
3997 	xhci->op_regs = hcd->regs +
3998 		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
3999 	xhci->run_regs = hcd->regs +
4000 		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4001 	/* Cache read-only capability registers */
4002 	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4003 	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4004 	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4005 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4006 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4007 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4008 	xhci_print_registers(xhci);
4009 
4010 	get_quirks(dev, xhci);
4011 
4012 	/* Make sure the HC is halted. */
4013 	retval = xhci_halt(xhci);
4014 	if (retval)
4015 		goto error;
4016 
4017 	xhci_dbg(xhci, "Resetting HCD\n");
4018 	/* Reset the internal HC memory state and registers. */
4019 	retval = xhci_reset(xhci);
4020 	if (retval)
4021 		goto error;
4022 	xhci_dbg(xhci, "Reset complete\n");
4023 
4024 	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4025 	if (HCC_64BIT_ADDR(temp)) {
4026 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4027 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4028 	} else {
4029 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4030 	}
4031 
4032 	xhci_dbg(xhci, "Calling HCD init\n");
4033 	/* Initialize HCD and host controller data structures. */
4034 	retval = xhci_init(hcd);
4035 	if (retval)
4036 		goto error;
4037 	xhci_dbg(xhci, "Called HCD init\n");
4038 	return 0;
4039 error:
4040 	kfree(xhci);
4041 	return retval;
4042 }
4043 
4044 MODULE_DESCRIPTION(DRIVER_DESC);
4045 MODULE_AUTHOR(DRIVER_AUTHOR);
4046 MODULE_LICENSE("GPL");
4047 
4048 static int __init xhci_hcd_init(void)
4049 {
4050 	int retval;
4051 
4052 	retval = xhci_register_pci();
4053 	if (retval < 0) {
4054 		printk(KERN_DEBUG "Problem registering PCI driver.");
4055 		return retval;
4056 	}
4057 	/*
4058 	 * Check the compiler generated sizes of structures that must be laid
4059 	 * out in specific ways for hardware access.
4060 	 */
4061 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4062 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4063 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4064 	/* xhci_device_control has eight fields, and also
4065 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4066 	 */
4067 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4068 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4069 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4070 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4071 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4072 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4073 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4074 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4075 	return 0;
4076 }
4077 module_init(xhci_hcd_init);
4078 
4079 static void __exit xhci_hcd_cleanup(void)
4080 {
4081 	xhci_unregister_pci();
4082 }
4083 module_exit(xhci_hcd_cleanup);
4084