xref: /linux/drivers/usb/host/xhci.c (revision b0d5c81e872ed21de1e56feb0fa6e4161da7be61)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19 
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned int quirks;
37 module_param(quirks, uint, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * xhci_handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
55 {
56 	u32	result;
57 
58 	do {
59 		result = readl(ptr);
60 		if (result == ~(u32)0)		/* card removed */
61 			return -ENODEV;
62 		result &= mask;
63 		if (result == done)
64 			return 0;
65 		udelay(1);
66 		usec--;
67 	} while (usec > 0);
68 	return -ETIMEDOUT;
69 }
70 
71 /*
72  * Disable interrupts and begin the xHCI halting process.
73  */
74 void xhci_quiesce(struct xhci_hcd *xhci)
75 {
76 	u32 halted;
77 	u32 cmd;
78 	u32 mask;
79 
80 	mask = ~(XHCI_IRQS);
81 	halted = readl(&xhci->op_regs->status) & STS_HALT;
82 	if (!halted)
83 		mask &= ~CMD_RUN;
84 
85 	cmd = readl(&xhci->op_regs->command);
86 	cmd &= mask;
87 	writel(cmd, &xhci->op_regs->command);
88 }
89 
90 /*
91  * Force HC into halt state.
92  *
93  * Disable any IRQs and clear the run/stop bit.
94  * HC will complete any current and actively pipelined transactions, and
95  * should halt within 16 ms of the run/stop bit being cleared.
96  * Read HC Halted bit in the status register to see when the HC is finished.
97  */
98 int xhci_halt(struct xhci_hcd *xhci)
99 {
100 	int ret;
101 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
102 	xhci_quiesce(xhci);
103 
104 	ret = xhci_handshake(&xhci->op_regs->status,
105 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
106 	if (ret) {
107 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
108 		return ret;
109 	}
110 	xhci->xhc_state |= XHCI_STATE_HALTED;
111 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
112 	return ret;
113 }
114 
115 /*
116  * Set the run bit and wait for the host to be running.
117  */
118 int xhci_start(struct xhci_hcd *xhci)
119 {
120 	u32 temp;
121 	int ret;
122 
123 	temp = readl(&xhci->op_regs->command);
124 	temp |= (CMD_RUN);
125 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
126 			temp);
127 	writel(temp, &xhci->op_regs->command);
128 
129 	/*
130 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
131 	 * running.
132 	 */
133 	ret = xhci_handshake(&xhci->op_regs->status,
134 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
135 	if (ret == -ETIMEDOUT)
136 		xhci_err(xhci, "Host took too long to start, "
137 				"waited %u microseconds.\n",
138 				XHCI_MAX_HALT_USEC);
139 	if (!ret)
140 		/* clear state flags. Including dying, halted or removing */
141 		xhci->xhc_state = 0;
142 
143 	return ret;
144 }
145 
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155 	u32 command;
156 	u32 state;
157 	int ret, i;
158 
159 	state = readl(&xhci->op_regs->status);
160 
161 	if (state == ~(u32)0) {
162 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
163 		return -ENODEV;
164 	}
165 
166 	if ((state & STS_HALT) == 0) {
167 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 		return 0;
169 	}
170 
171 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 	command = readl(&xhci->op_regs->command);
173 	command |= CMD_RESET;
174 	writel(command, &xhci->op_regs->command);
175 
176 	/* Existing Intel xHCI controllers require a delay of 1 mS,
177 	 * after setting the CMD_RESET bit, and before accessing any
178 	 * HC registers. This allows the HC to complete the
179 	 * reset operation and be ready for HC register access.
180 	 * Without this delay, the subsequent HC register access,
181 	 * may result in a system hang very rarely.
182 	 */
183 	if (xhci->quirks & XHCI_INTEL_HOST)
184 		udelay(1000);
185 
186 	ret = xhci_handshake(&xhci->op_regs->command,
187 			CMD_RESET, 0, 10 * 1000 * 1000);
188 	if (ret)
189 		return ret;
190 
191 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
192 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
193 
194 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195 			 "Wait for controller to be ready for doorbell rings");
196 	/*
197 	 * xHCI cannot write to any doorbells or operational registers other
198 	 * than status until the "Controller Not Ready" flag is cleared.
199 	 */
200 	ret = xhci_handshake(&xhci->op_regs->status,
201 			STS_CNR, 0, 10 * 1000 * 1000);
202 
203 	for (i = 0; i < 2; i++) {
204 		xhci->bus_state[i].port_c_suspend = 0;
205 		xhci->bus_state[i].suspended_ports = 0;
206 		xhci->bus_state[i].resuming_ports = 0;
207 	}
208 
209 	return ret;
210 }
211 
212 
213 #ifdef CONFIG_USB_PCI
214 /*
215  * Set up MSI
216  */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219 	int ret;
220 	/*
221 	 * TODO:Check with MSI Soc for sysdev
222 	 */
223 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224 
225 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
226 	if (ret < 0) {
227 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
228 				"failed to allocate MSI entry");
229 		return ret;
230 	}
231 
232 	ret = request_irq(pdev->irq, xhci_msi_irq,
233 				0, "xhci_hcd", xhci_to_hcd(xhci));
234 	if (ret) {
235 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236 				"disable MSI interrupt");
237 		pci_free_irq_vectors(pdev);
238 	}
239 
240 	return ret;
241 }
242 
243 /*
244  * Set up MSI-X
245  */
246 static int xhci_setup_msix(struct xhci_hcd *xhci)
247 {
248 	int i, ret = 0;
249 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
250 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
251 
252 	/*
253 	 * calculate number of msi-x vectors supported.
254 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
255 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
256 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
257 	 *   Add additional 1 vector to ensure always available interrupt.
258 	 */
259 	xhci->msix_count = min(num_online_cpus() + 1,
260 				HCS_MAX_INTRS(xhci->hcs_params1));
261 
262 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
263 			PCI_IRQ_MSIX);
264 	if (ret < 0) {
265 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
266 				"Failed to enable MSI-X");
267 		return ret;
268 	}
269 
270 	for (i = 0; i < xhci->msix_count; i++) {
271 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
272 				"xhci_hcd", xhci_to_hcd(xhci));
273 		if (ret)
274 			goto disable_msix;
275 	}
276 
277 	hcd->msix_enabled = 1;
278 	return ret;
279 
280 disable_msix:
281 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
282 	while (--i >= 0)
283 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
284 	pci_free_irq_vectors(pdev);
285 	return ret;
286 }
287 
288 /* Free any IRQs and disable MSI-X */
289 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
290 {
291 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
292 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
293 
294 	if (xhci->quirks & XHCI_PLAT)
295 		return;
296 
297 	/* return if using legacy interrupt */
298 	if (hcd->irq > 0)
299 		return;
300 
301 	if (hcd->msix_enabled) {
302 		int i;
303 
304 		for (i = 0; i < xhci->msix_count; i++)
305 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
306 	} else {
307 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
308 	}
309 
310 	pci_free_irq_vectors(pdev);
311 	hcd->msix_enabled = 0;
312 }
313 
314 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
315 {
316 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
317 
318 	if (hcd->msix_enabled) {
319 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
320 		int i;
321 
322 		for (i = 0; i < xhci->msix_count; i++)
323 			synchronize_irq(pci_irq_vector(pdev, i));
324 	}
325 }
326 
327 static int xhci_try_enable_msi(struct usb_hcd *hcd)
328 {
329 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
330 	struct pci_dev  *pdev;
331 	int ret;
332 
333 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
334 	if (xhci->quirks & XHCI_PLAT)
335 		return 0;
336 
337 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
338 	/*
339 	 * Some Fresco Logic host controllers advertise MSI, but fail to
340 	 * generate interrupts.  Don't even try to enable MSI.
341 	 */
342 	if (xhci->quirks & XHCI_BROKEN_MSI)
343 		goto legacy_irq;
344 
345 	/* unregister the legacy interrupt */
346 	if (hcd->irq)
347 		free_irq(hcd->irq, hcd);
348 	hcd->irq = 0;
349 
350 	ret = xhci_setup_msix(xhci);
351 	if (ret)
352 		/* fall back to msi*/
353 		ret = xhci_setup_msi(xhci);
354 
355 	if (!ret) {
356 		hcd->msi_enabled = 1;
357 		return 0;
358 	}
359 
360 	if (!pdev->irq) {
361 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
362 		return -EINVAL;
363 	}
364 
365  legacy_irq:
366 	if (!strlen(hcd->irq_descr))
367 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
368 			 hcd->driver->description, hcd->self.busnum);
369 
370 	/* fall back to legacy interrupt*/
371 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
372 			hcd->irq_descr, hcd);
373 	if (ret) {
374 		xhci_err(xhci, "request interrupt %d failed\n",
375 				pdev->irq);
376 		return ret;
377 	}
378 	hcd->irq = pdev->irq;
379 	return 0;
380 }
381 
382 #else
383 
384 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
385 {
386 	return 0;
387 }
388 
389 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
390 {
391 }
392 
393 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395 }
396 
397 #endif
398 
399 static void compliance_mode_recovery(struct timer_list *t)
400 {
401 	struct xhci_hcd *xhci;
402 	struct usb_hcd *hcd;
403 	u32 temp;
404 	int i;
405 
406 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
407 
408 	for (i = 0; i < xhci->num_usb3_ports; i++) {
409 		temp = readl(xhci->usb3_ports[i]);
410 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
411 			/*
412 			 * Compliance Mode Detected. Letting USB Core
413 			 * handle the Warm Reset
414 			 */
415 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
416 					"Compliance mode detected->port %d",
417 					i + 1);
418 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
419 					"Attempting compliance mode recovery");
420 			hcd = xhci->shared_hcd;
421 
422 			if (hcd->state == HC_STATE_SUSPENDED)
423 				usb_hcd_resume_root_hub(hcd);
424 
425 			usb_hcd_poll_rh_status(hcd);
426 		}
427 	}
428 
429 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
430 		mod_timer(&xhci->comp_mode_recovery_timer,
431 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
432 }
433 
434 /*
435  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
436  * that causes ports behind that hardware to enter compliance mode sometimes.
437  * The quirk creates a timer that polls every 2 seconds the link state of
438  * each host controller's port and recovers it by issuing a Warm reset
439  * if Compliance mode is detected, otherwise the port will become "dead" (no
440  * device connections or disconnections will be detected anymore). Becasue no
441  * status event is generated when entering compliance mode (per xhci spec),
442  * this quirk is needed on systems that have the failing hardware installed.
443  */
444 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
445 {
446 	xhci->port_status_u0 = 0;
447 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
448 		    0);
449 	xhci->comp_mode_recovery_timer.expires = jiffies +
450 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
451 
452 	add_timer(&xhci->comp_mode_recovery_timer);
453 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
454 			"Compliance mode recovery timer initialized");
455 }
456 
457 /*
458  * This function identifies the systems that have installed the SN65LVPE502CP
459  * USB3.0 re-driver and that need the Compliance Mode Quirk.
460  * Systems:
461  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
462  */
463 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
464 {
465 	const char *dmi_product_name, *dmi_sys_vendor;
466 
467 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
468 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
469 	if (!dmi_product_name || !dmi_sys_vendor)
470 		return false;
471 
472 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
473 		return false;
474 
475 	if (strstr(dmi_product_name, "Z420") ||
476 			strstr(dmi_product_name, "Z620") ||
477 			strstr(dmi_product_name, "Z820") ||
478 			strstr(dmi_product_name, "Z1 Workstation"))
479 		return true;
480 
481 	return false;
482 }
483 
484 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
485 {
486 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
487 }
488 
489 
490 /*
491  * Initialize memory for HCD and xHC (one-time init).
492  *
493  * Program the PAGESIZE register, initialize the device context array, create
494  * device contexts (?), set up a command ring segment (or two?), create event
495  * ring (one for now).
496  */
497 static int xhci_init(struct usb_hcd *hcd)
498 {
499 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
500 	int retval = 0;
501 
502 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
503 	spin_lock_init(&xhci->lock);
504 	if (xhci->hci_version == 0x95 && link_quirk) {
505 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
506 				"QUIRK: Not clearing Link TRB chain bits.");
507 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
508 	} else {
509 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
510 				"xHCI doesn't need link TRB QUIRK");
511 	}
512 	retval = xhci_mem_init(xhci, GFP_KERNEL);
513 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
514 
515 	/* Initializing Compliance Mode Recovery Data If Needed */
516 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
517 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
518 		compliance_mode_recovery_timer_init(xhci);
519 	}
520 
521 	return retval;
522 }
523 
524 /*-------------------------------------------------------------------------*/
525 
526 
527 static int xhci_run_finished(struct xhci_hcd *xhci)
528 {
529 	if (xhci_start(xhci)) {
530 		xhci_halt(xhci);
531 		return -ENODEV;
532 	}
533 	xhci->shared_hcd->state = HC_STATE_RUNNING;
534 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
535 
536 	if (xhci->quirks & XHCI_NEC_HOST)
537 		xhci_ring_cmd_db(xhci);
538 
539 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
540 			"Finished xhci_run for USB3 roothub");
541 	return 0;
542 }
543 
544 /*
545  * Start the HC after it was halted.
546  *
547  * This function is called by the USB core when the HC driver is added.
548  * Its opposite is xhci_stop().
549  *
550  * xhci_init() must be called once before this function can be called.
551  * Reset the HC, enable device slot contexts, program DCBAAP, and
552  * set command ring pointer and event ring pointer.
553  *
554  * Setup MSI-X vectors and enable interrupts.
555  */
556 int xhci_run(struct usb_hcd *hcd)
557 {
558 	u32 temp;
559 	u64 temp_64;
560 	int ret;
561 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
562 
563 	/* Start the xHCI host controller running only after the USB 2.0 roothub
564 	 * is setup.
565 	 */
566 
567 	hcd->uses_new_polling = 1;
568 	if (!usb_hcd_is_primary_hcd(hcd))
569 		return xhci_run_finished(xhci);
570 
571 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
572 
573 	ret = xhci_try_enable_msi(hcd);
574 	if (ret)
575 		return ret;
576 
577 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
578 	temp_64 &= ~ERST_PTR_MASK;
579 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
580 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
581 
582 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
583 			"// Set the interrupt modulation register");
584 	temp = readl(&xhci->ir_set->irq_control);
585 	temp &= ~ER_IRQ_INTERVAL_MASK;
586 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
587 	writel(temp, &xhci->ir_set->irq_control);
588 
589 	/* Set the HCD state before we enable the irqs */
590 	temp = readl(&xhci->op_regs->command);
591 	temp |= (CMD_EIE);
592 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
593 			"// Enable interrupts, cmd = 0x%x.", temp);
594 	writel(temp, &xhci->op_regs->command);
595 
596 	temp = readl(&xhci->ir_set->irq_pending);
597 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
598 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
599 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
600 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
601 
602 	if (xhci->quirks & XHCI_NEC_HOST) {
603 		struct xhci_command *command;
604 
605 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
606 		if (!command)
607 			return -ENOMEM;
608 
609 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
610 				TRB_TYPE(TRB_NEC_GET_FW));
611 		if (ret)
612 			xhci_free_command(xhci, command);
613 	}
614 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
615 			"Finished xhci_run for USB2 roothub");
616 
617 	xhci_dbc_init(xhci);
618 
619 	xhci_debugfs_init(xhci);
620 
621 	return 0;
622 }
623 EXPORT_SYMBOL_GPL(xhci_run);
624 
625 /*
626  * Stop xHCI driver.
627  *
628  * This function is called by the USB core when the HC driver is removed.
629  * Its opposite is xhci_run().
630  *
631  * Disable device contexts, disable IRQs, and quiesce the HC.
632  * Reset the HC, finish any completed transactions, and cleanup memory.
633  */
634 static void xhci_stop(struct usb_hcd *hcd)
635 {
636 	u32 temp;
637 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
638 
639 	mutex_lock(&xhci->mutex);
640 
641 	/* Only halt host and free memory after both hcds are removed */
642 	if (!usb_hcd_is_primary_hcd(hcd)) {
643 		/* usb core will free this hcd shortly, unset pointer */
644 		xhci->shared_hcd = NULL;
645 		mutex_unlock(&xhci->mutex);
646 		return;
647 	}
648 
649 	xhci_dbc_exit(xhci);
650 
651 	spin_lock_irq(&xhci->lock);
652 	xhci->xhc_state |= XHCI_STATE_HALTED;
653 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
654 	xhci_halt(xhci);
655 	xhci_reset(xhci);
656 	spin_unlock_irq(&xhci->lock);
657 
658 	xhci_cleanup_msix(xhci);
659 
660 	/* Deleting Compliance Mode Recovery Timer */
661 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
662 			(!(xhci_all_ports_seen_u0(xhci)))) {
663 		del_timer_sync(&xhci->comp_mode_recovery_timer);
664 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
665 				"%s: compliance mode recovery timer deleted",
666 				__func__);
667 	}
668 
669 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
670 		usb_amd_dev_put();
671 
672 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
673 			"// Disabling event ring interrupts");
674 	temp = readl(&xhci->op_regs->status);
675 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
676 	temp = readl(&xhci->ir_set->irq_pending);
677 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
678 
679 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
680 	xhci_mem_cleanup(xhci);
681 	xhci_debugfs_exit(xhci);
682 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
683 			"xhci_stop completed - status = %x",
684 			readl(&xhci->op_regs->status));
685 	mutex_unlock(&xhci->mutex);
686 }
687 
688 /*
689  * Shutdown HC (not bus-specific)
690  *
691  * This is called when the machine is rebooting or halting.  We assume that the
692  * machine will be powered off, and the HC's internal state will be reset.
693  * Don't bother to free memory.
694  *
695  * This will only ever be called with the main usb_hcd (the USB3 roothub).
696  */
697 static void xhci_shutdown(struct usb_hcd *hcd)
698 {
699 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
700 
701 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
702 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
703 
704 	spin_lock_irq(&xhci->lock);
705 	xhci_halt(xhci);
706 	/* Workaround for spurious wakeups at shutdown with HSW */
707 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
708 		xhci_reset(xhci);
709 	spin_unlock_irq(&xhci->lock);
710 
711 	xhci_cleanup_msix(xhci);
712 
713 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
714 			"xhci_shutdown completed - status = %x",
715 			readl(&xhci->op_regs->status));
716 
717 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
718 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
719 		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
720 }
721 
722 #ifdef CONFIG_PM
723 static void xhci_save_registers(struct xhci_hcd *xhci)
724 {
725 	xhci->s3.command = readl(&xhci->op_regs->command);
726 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
727 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
728 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
729 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
730 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
731 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
732 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
733 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
734 }
735 
736 static void xhci_restore_registers(struct xhci_hcd *xhci)
737 {
738 	writel(xhci->s3.command, &xhci->op_regs->command);
739 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
740 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
741 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
742 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
743 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
744 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
745 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
746 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
747 }
748 
749 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
750 {
751 	u64	val_64;
752 
753 	/* step 2: initialize command ring buffer */
754 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
755 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
756 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
757 				      xhci->cmd_ring->dequeue) &
758 		 (u64) ~CMD_RING_RSVD_BITS) |
759 		xhci->cmd_ring->cycle_state;
760 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
761 			"// Setting command ring address to 0x%llx",
762 			(long unsigned long) val_64);
763 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
764 }
765 
766 /*
767  * The whole command ring must be cleared to zero when we suspend the host.
768  *
769  * The host doesn't save the command ring pointer in the suspend well, so we
770  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
771  * aligned, because of the reserved bits in the command ring dequeue pointer
772  * register.  Therefore, we can't just set the dequeue pointer back in the
773  * middle of the ring (TRBs are 16-byte aligned).
774  */
775 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
776 {
777 	struct xhci_ring *ring;
778 	struct xhci_segment *seg;
779 
780 	ring = xhci->cmd_ring;
781 	seg = ring->deq_seg;
782 	do {
783 		memset(seg->trbs, 0,
784 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
785 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
786 			cpu_to_le32(~TRB_CYCLE);
787 		seg = seg->next;
788 	} while (seg != ring->deq_seg);
789 
790 	/* Reset the software enqueue and dequeue pointers */
791 	ring->deq_seg = ring->first_seg;
792 	ring->dequeue = ring->first_seg->trbs;
793 	ring->enq_seg = ring->deq_seg;
794 	ring->enqueue = ring->dequeue;
795 
796 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
797 	/*
798 	 * Ring is now zeroed, so the HW should look for change of ownership
799 	 * when the cycle bit is set to 1.
800 	 */
801 	ring->cycle_state = 1;
802 
803 	/*
804 	 * Reset the hardware dequeue pointer.
805 	 * Yes, this will need to be re-written after resume, but we're paranoid
806 	 * and want to make sure the hardware doesn't access bogus memory
807 	 * because, say, the BIOS or an SMI started the host without changing
808 	 * the command ring pointers.
809 	 */
810 	xhci_set_cmd_ring_deq(xhci);
811 }
812 
813 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
814 {
815 	int port_index;
816 	__le32 __iomem **port_array;
817 	unsigned long flags;
818 	u32 t1, t2;
819 
820 	spin_lock_irqsave(&xhci->lock, flags);
821 
822 	/* disable usb3 ports Wake bits */
823 	port_index = xhci->num_usb3_ports;
824 	port_array = xhci->usb3_ports;
825 	while (port_index--) {
826 		t1 = readl(port_array[port_index]);
827 		t1 = xhci_port_state_to_neutral(t1);
828 		t2 = t1 & ~PORT_WAKE_BITS;
829 		if (t1 != t2)
830 			writel(t2, port_array[port_index]);
831 	}
832 
833 	/* disable usb2 ports Wake bits */
834 	port_index = xhci->num_usb2_ports;
835 	port_array = xhci->usb2_ports;
836 	while (port_index--) {
837 		t1 = readl(port_array[port_index]);
838 		t1 = xhci_port_state_to_neutral(t1);
839 		t2 = t1 & ~PORT_WAKE_BITS;
840 		if (t1 != t2)
841 			writel(t2, port_array[port_index]);
842 	}
843 
844 	spin_unlock_irqrestore(&xhci->lock, flags);
845 }
846 
847 /*
848  * Stop HC (not bus-specific)
849  *
850  * This is called when the machine transition into S3/S4 mode.
851  *
852  */
853 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
854 {
855 	int			rc = 0;
856 	unsigned int		delay = XHCI_MAX_HALT_USEC;
857 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
858 	u32			command;
859 
860 	if (!hcd->state)
861 		return 0;
862 
863 	if (hcd->state != HC_STATE_SUSPENDED ||
864 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
865 		return -EINVAL;
866 
867 	xhci_dbc_suspend(xhci);
868 
869 	/* Clear root port wake on bits if wakeup not allowed. */
870 	if (!do_wakeup)
871 		xhci_disable_port_wake_on_bits(xhci);
872 
873 	/* Don't poll the roothubs on bus suspend. */
874 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
875 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
876 	del_timer_sync(&hcd->rh_timer);
877 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
878 	del_timer_sync(&xhci->shared_hcd->rh_timer);
879 
880 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
881 		usleep_range(1000, 1500);
882 
883 	spin_lock_irq(&xhci->lock);
884 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
885 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
886 	/* step 1: stop endpoint */
887 	/* skipped assuming that port suspend has done */
888 
889 	/* step 2: clear Run/Stop bit */
890 	command = readl(&xhci->op_regs->command);
891 	command &= ~CMD_RUN;
892 	writel(command, &xhci->op_regs->command);
893 
894 	/* Some chips from Fresco Logic need an extraordinary delay */
895 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
896 
897 	if (xhci_handshake(&xhci->op_regs->status,
898 		      STS_HALT, STS_HALT, delay)) {
899 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
900 		spin_unlock_irq(&xhci->lock);
901 		return -ETIMEDOUT;
902 	}
903 	xhci_clear_command_ring(xhci);
904 
905 	/* step 3: save registers */
906 	xhci_save_registers(xhci);
907 
908 	/* step 4: set CSS flag */
909 	command = readl(&xhci->op_regs->command);
910 	command |= CMD_CSS;
911 	writel(command, &xhci->op_regs->command);
912 	if (xhci_handshake(&xhci->op_regs->status,
913 				STS_SAVE, 0, 10 * 1000)) {
914 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
915 		spin_unlock_irq(&xhci->lock);
916 		return -ETIMEDOUT;
917 	}
918 	spin_unlock_irq(&xhci->lock);
919 
920 	/*
921 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
922 	 * is about to be suspended.
923 	 */
924 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
925 			(!(xhci_all_ports_seen_u0(xhci)))) {
926 		del_timer_sync(&xhci->comp_mode_recovery_timer);
927 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
928 				"%s: compliance mode recovery timer deleted",
929 				__func__);
930 	}
931 
932 	/* step 5: remove core well power */
933 	/* synchronize irq when using MSI-X */
934 	xhci_msix_sync_irqs(xhci);
935 
936 	return rc;
937 }
938 EXPORT_SYMBOL_GPL(xhci_suspend);
939 
940 /*
941  * start xHC (not bus-specific)
942  *
943  * This is called when the machine transition from S3/S4 mode.
944  *
945  */
946 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
947 {
948 	u32			command, temp = 0, status;
949 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
950 	struct usb_hcd		*secondary_hcd;
951 	int			retval = 0;
952 	bool			comp_timer_running = false;
953 
954 	if (!hcd->state)
955 		return 0;
956 
957 	/* Wait a bit if either of the roothubs need to settle from the
958 	 * transition into bus suspend.
959 	 */
960 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
961 			time_before(jiffies,
962 				xhci->bus_state[1].next_statechange))
963 		msleep(100);
964 
965 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
966 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
967 
968 	spin_lock_irq(&xhci->lock);
969 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
970 		hibernated = true;
971 
972 	if (!hibernated) {
973 		/* step 1: restore register */
974 		xhci_restore_registers(xhci);
975 		/* step 2: initialize command ring buffer */
976 		xhci_set_cmd_ring_deq(xhci);
977 		/* step 3: restore state and start state*/
978 		/* step 3: set CRS flag */
979 		command = readl(&xhci->op_regs->command);
980 		command |= CMD_CRS;
981 		writel(command, &xhci->op_regs->command);
982 		if (xhci_handshake(&xhci->op_regs->status,
983 			      STS_RESTORE, 0, 10 * 1000)) {
984 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
985 			spin_unlock_irq(&xhci->lock);
986 			return -ETIMEDOUT;
987 		}
988 		temp = readl(&xhci->op_regs->status);
989 	}
990 
991 	/* If restore operation fails, re-initialize the HC during resume */
992 	if ((temp & STS_SRE) || hibernated) {
993 
994 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
995 				!(xhci_all_ports_seen_u0(xhci))) {
996 			del_timer_sync(&xhci->comp_mode_recovery_timer);
997 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
998 				"Compliance Mode Recovery Timer deleted!");
999 		}
1000 
1001 		/* Let the USB core know _both_ roothubs lost power. */
1002 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1003 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1004 
1005 		xhci_dbg(xhci, "Stop HCD\n");
1006 		xhci_halt(xhci);
1007 		xhci_reset(xhci);
1008 		spin_unlock_irq(&xhci->lock);
1009 		xhci_cleanup_msix(xhci);
1010 
1011 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1012 		temp = readl(&xhci->op_regs->status);
1013 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1014 		temp = readl(&xhci->ir_set->irq_pending);
1015 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1016 
1017 		xhci_dbg(xhci, "cleaning up memory\n");
1018 		xhci_mem_cleanup(xhci);
1019 		xhci_debugfs_exit(xhci);
1020 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1021 			    readl(&xhci->op_regs->status));
1022 
1023 		/* USB core calls the PCI reinit and start functions twice:
1024 		 * first with the primary HCD, and then with the secondary HCD.
1025 		 * If we don't do the same, the host will never be started.
1026 		 */
1027 		if (!usb_hcd_is_primary_hcd(hcd))
1028 			secondary_hcd = hcd;
1029 		else
1030 			secondary_hcd = xhci->shared_hcd;
1031 
1032 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1033 		retval = xhci_init(hcd->primary_hcd);
1034 		if (retval)
1035 			return retval;
1036 		comp_timer_running = true;
1037 
1038 		xhci_dbg(xhci, "Start the primary HCD\n");
1039 		retval = xhci_run(hcd->primary_hcd);
1040 		if (!retval) {
1041 			xhci_dbg(xhci, "Start the secondary HCD\n");
1042 			retval = xhci_run(secondary_hcd);
1043 		}
1044 		hcd->state = HC_STATE_SUSPENDED;
1045 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1046 		goto done;
1047 	}
1048 
1049 	/* step 4: set Run/Stop bit */
1050 	command = readl(&xhci->op_regs->command);
1051 	command |= CMD_RUN;
1052 	writel(command, &xhci->op_regs->command);
1053 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1054 		  0, 250 * 1000);
1055 
1056 	/* step 5: walk topology and initialize portsc,
1057 	 * portpmsc and portli
1058 	 */
1059 	/* this is done in bus_resume */
1060 
1061 	/* step 6: restart each of the previously
1062 	 * Running endpoints by ringing their doorbells
1063 	 */
1064 
1065 	spin_unlock_irq(&xhci->lock);
1066 
1067 	xhci_dbc_resume(xhci);
1068 
1069  done:
1070 	if (retval == 0) {
1071 		/* Resume root hubs only when have pending events. */
1072 		status = readl(&xhci->op_regs->status);
1073 		if (status & STS_EINT) {
1074 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1075 			usb_hcd_resume_root_hub(hcd);
1076 		}
1077 	}
1078 
1079 	/*
1080 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1081 	 * be re-initialized Always after a system resume. Ports are subject
1082 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1083 	 * ports have entered previously to U0 before system's suspension.
1084 	 */
1085 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1086 		compliance_mode_recovery_timer_init(xhci);
1087 
1088 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1089 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1090 
1091 	/* Re-enable port polling. */
1092 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1093 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1094 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1095 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1096 	usb_hcd_poll_rh_status(hcd);
1097 
1098 	return retval;
1099 }
1100 EXPORT_SYMBOL_GPL(xhci_resume);
1101 #endif	/* CONFIG_PM */
1102 
1103 /*-------------------------------------------------------------------------*/
1104 
1105 /**
1106  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1107  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1108  * value to right shift 1 for the bitmask.
1109  *
1110  * Index  = (epnum * 2) + direction - 1,
1111  * where direction = 0 for OUT, 1 for IN.
1112  * For control endpoints, the IN index is used (OUT index is unused), so
1113  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1114  */
1115 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1116 {
1117 	unsigned int index;
1118 	if (usb_endpoint_xfer_control(desc))
1119 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1120 	else
1121 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1122 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1123 	return index;
1124 }
1125 
1126 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1127  * address from the XHCI endpoint index.
1128  */
1129 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1130 {
1131 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1132 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1133 	return direction | number;
1134 }
1135 
1136 /* Find the flag for this endpoint (for use in the control context).  Use the
1137  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1138  * bit 1, etc.
1139  */
1140 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1141 {
1142 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1143 }
1144 
1145 /* Find the flag for this endpoint (for use in the control context).  Use the
1146  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1147  * bit 1, etc.
1148  */
1149 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1150 {
1151 	return 1 << (ep_index + 1);
1152 }
1153 
1154 /* Compute the last valid endpoint context index.  Basically, this is the
1155  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1156  * we find the most significant bit set in the added contexts flags.
1157  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1158  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1159  */
1160 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1161 {
1162 	return fls(added_ctxs) - 1;
1163 }
1164 
1165 /* Returns 1 if the arguments are OK;
1166  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1167  */
1168 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1169 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1170 		const char *func) {
1171 	struct xhci_hcd	*xhci;
1172 	struct xhci_virt_device	*virt_dev;
1173 
1174 	if (!hcd || (check_ep && !ep) || !udev) {
1175 		pr_debug("xHCI %s called with invalid args\n", func);
1176 		return -EINVAL;
1177 	}
1178 	if (!udev->parent) {
1179 		pr_debug("xHCI %s called for root hub\n", func);
1180 		return 0;
1181 	}
1182 
1183 	xhci = hcd_to_xhci(hcd);
1184 	if (check_virt_dev) {
1185 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1186 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1187 					func);
1188 			return -EINVAL;
1189 		}
1190 
1191 		virt_dev = xhci->devs[udev->slot_id];
1192 		if (virt_dev->udev != udev) {
1193 			xhci_dbg(xhci, "xHCI %s called with udev and "
1194 					  "virt_dev does not match\n", func);
1195 			return -EINVAL;
1196 		}
1197 	}
1198 
1199 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1200 		return -ENODEV;
1201 
1202 	return 1;
1203 }
1204 
1205 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1206 		struct usb_device *udev, struct xhci_command *command,
1207 		bool ctx_change, bool must_succeed);
1208 
1209 /*
1210  * Full speed devices may have a max packet size greater than 8 bytes, but the
1211  * USB core doesn't know that until it reads the first 8 bytes of the
1212  * descriptor.  If the usb_device's max packet size changes after that point,
1213  * we need to issue an evaluate context command and wait on it.
1214  */
1215 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1216 		unsigned int ep_index, struct urb *urb)
1217 {
1218 	struct xhci_container_ctx *out_ctx;
1219 	struct xhci_input_control_ctx *ctrl_ctx;
1220 	struct xhci_ep_ctx *ep_ctx;
1221 	struct xhci_command *command;
1222 	int max_packet_size;
1223 	int hw_max_packet_size;
1224 	int ret = 0;
1225 
1226 	out_ctx = xhci->devs[slot_id]->out_ctx;
1227 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1228 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1229 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1230 	if (hw_max_packet_size != max_packet_size) {
1231 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1232 				"Max Packet Size for ep 0 changed.");
1233 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1234 				"Max packet size in usb_device = %d",
1235 				max_packet_size);
1236 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1237 				"Max packet size in xHCI HW = %d",
1238 				hw_max_packet_size);
1239 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1240 				"Issuing evaluate context command.");
1241 
1242 		/* Set up the input context flags for the command */
1243 		/* FIXME: This won't work if a non-default control endpoint
1244 		 * changes max packet sizes.
1245 		 */
1246 
1247 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1248 		if (!command)
1249 			return -ENOMEM;
1250 
1251 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1252 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1253 		if (!ctrl_ctx) {
1254 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1255 					__func__);
1256 			ret = -ENOMEM;
1257 			goto command_cleanup;
1258 		}
1259 		/* Set up the modified control endpoint 0 */
1260 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1261 				xhci->devs[slot_id]->out_ctx, ep_index);
1262 
1263 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1264 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1265 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1266 
1267 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1268 		ctrl_ctx->drop_flags = 0;
1269 
1270 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1271 				true, false);
1272 
1273 		/* Clean up the input context for later use by bandwidth
1274 		 * functions.
1275 		 */
1276 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1277 command_cleanup:
1278 		kfree(command->completion);
1279 		kfree(command);
1280 	}
1281 	return ret;
1282 }
1283 
1284 /*
1285  * non-error returns are a promise to giveback() the urb later
1286  * we drop ownership so next owner (or urb unlink) can get it
1287  */
1288 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1289 {
1290 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1291 	unsigned long flags;
1292 	int ret = 0;
1293 	unsigned int slot_id, ep_index, ep_state;
1294 	struct urb_priv	*urb_priv;
1295 	int num_tds;
1296 
1297 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1298 					true, true, __func__) <= 0)
1299 		return -EINVAL;
1300 
1301 	slot_id = urb->dev->slot_id;
1302 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1303 
1304 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1305 		if (!in_interrupt())
1306 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1307 		return -ESHUTDOWN;
1308 	}
1309 
1310 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1311 		num_tds = urb->number_of_packets;
1312 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1313 	    urb->transfer_buffer_length > 0 &&
1314 	    urb->transfer_flags & URB_ZERO_PACKET &&
1315 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1316 		num_tds = 2;
1317 	else
1318 		num_tds = 1;
1319 
1320 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1321 			   num_tds * sizeof(struct xhci_td), mem_flags);
1322 	if (!urb_priv)
1323 		return -ENOMEM;
1324 
1325 	urb_priv->num_tds = num_tds;
1326 	urb_priv->num_tds_done = 0;
1327 	urb->hcpriv = urb_priv;
1328 
1329 	trace_xhci_urb_enqueue(urb);
1330 
1331 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1332 		/* Check to see if the max packet size for the default control
1333 		 * endpoint changed during FS device enumeration
1334 		 */
1335 		if (urb->dev->speed == USB_SPEED_FULL) {
1336 			ret = xhci_check_maxpacket(xhci, slot_id,
1337 					ep_index, urb);
1338 			if (ret < 0) {
1339 				xhci_urb_free_priv(urb_priv);
1340 				urb->hcpriv = NULL;
1341 				return ret;
1342 			}
1343 		}
1344 	}
1345 
1346 	spin_lock_irqsave(&xhci->lock, flags);
1347 
1348 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1349 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1350 			 urb->ep->desc.bEndpointAddress, urb);
1351 		ret = -ESHUTDOWN;
1352 		goto free_priv;
1353 	}
1354 
1355 	switch (usb_endpoint_type(&urb->ep->desc)) {
1356 
1357 	case USB_ENDPOINT_XFER_CONTROL:
1358 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1359 					 slot_id, ep_index);
1360 		break;
1361 	case USB_ENDPOINT_XFER_BULK:
1362 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1363 		if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1364 			xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1365 				  ep_state);
1366 			ret = -EINVAL;
1367 			break;
1368 		}
1369 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1370 					 slot_id, ep_index);
1371 		break;
1372 
1373 
1374 	case USB_ENDPOINT_XFER_INT:
1375 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1376 				slot_id, ep_index);
1377 		break;
1378 
1379 	case USB_ENDPOINT_XFER_ISOC:
1380 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1381 				slot_id, ep_index);
1382 	}
1383 
1384 	if (ret) {
1385 free_priv:
1386 		xhci_urb_free_priv(urb_priv);
1387 		urb->hcpriv = NULL;
1388 	}
1389 	spin_unlock_irqrestore(&xhci->lock, flags);
1390 	return ret;
1391 }
1392 
1393 /*
1394  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1395  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1396  * should pick up where it left off in the TD, unless a Set Transfer Ring
1397  * Dequeue Pointer is issued.
1398  *
1399  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1400  * the ring.  Since the ring is a contiguous structure, they can't be physically
1401  * removed.  Instead, there are two options:
1402  *
1403  *  1) If the HC is in the middle of processing the URB to be canceled, we
1404  *     simply move the ring's dequeue pointer past those TRBs using the Set
1405  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1406  *     when drivers timeout on the last submitted URB and attempt to cancel.
1407  *
1408  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1409  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1410  *     HC will need to invalidate the any TRBs it has cached after the stop
1411  *     endpoint command, as noted in the xHCI 0.95 errata.
1412  *
1413  *  3) The TD may have completed by the time the Stop Endpoint Command
1414  *     completes, so software needs to handle that case too.
1415  *
1416  * This function should protect against the TD enqueueing code ringing the
1417  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1418  * It also needs to account for multiple cancellations on happening at the same
1419  * time for the same endpoint.
1420  *
1421  * Note that this function can be called in any context, or so says
1422  * usb_hcd_unlink_urb()
1423  */
1424 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1425 {
1426 	unsigned long flags;
1427 	int ret, i;
1428 	u32 temp;
1429 	struct xhci_hcd *xhci;
1430 	struct urb_priv	*urb_priv;
1431 	struct xhci_td *td;
1432 	unsigned int ep_index;
1433 	struct xhci_ring *ep_ring;
1434 	struct xhci_virt_ep *ep;
1435 	struct xhci_command *command;
1436 	struct xhci_virt_device *vdev;
1437 
1438 	xhci = hcd_to_xhci(hcd);
1439 	spin_lock_irqsave(&xhci->lock, flags);
1440 
1441 	trace_xhci_urb_dequeue(urb);
1442 
1443 	/* Make sure the URB hasn't completed or been unlinked already */
1444 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1445 	if (ret)
1446 		goto done;
1447 
1448 	/* give back URB now if we can't queue it for cancel */
1449 	vdev = xhci->devs[urb->dev->slot_id];
1450 	urb_priv = urb->hcpriv;
1451 	if (!vdev || !urb_priv)
1452 		goto err_giveback;
1453 
1454 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1455 	ep = &vdev->eps[ep_index];
1456 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1457 	if (!ep || !ep_ring)
1458 		goto err_giveback;
1459 
1460 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1461 	temp = readl(&xhci->op_regs->status);
1462 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1463 		xhci_hc_died(xhci);
1464 		goto done;
1465 	}
1466 
1467 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1468 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1469 				"HC halted, freeing TD manually.");
1470 		for (i = urb_priv->num_tds_done;
1471 		     i < urb_priv->num_tds;
1472 		     i++) {
1473 			td = &urb_priv->td[i];
1474 			if (!list_empty(&td->td_list))
1475 				list_del_init(&td->td_list);
1476 			if (!list_empty(&td->cancelled_td_list))
1477 				list_del_init(&td->cancelled_td_list);
1478 		}
1479 		goto err_giveback;
1480 	}
1481 
1482 	i = urb_priv->num_tds_done;
1483 	if (i < urb_priv->num_tds)
1484 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1485 				"Cancel URB %p, dev %s, ep 0x%x, "
1486 				"starting at offset 0x%llx",
1487 				urb, urb->dev->devpath,
1488 				urb->ep->desc.bEndpointAddress,
1489 				(unsigned long long) xhci_trb_virt_to_dma(
1490 					urb_priv->td[i].start_seg,
1491 					urb_priv->td[i].first_trb));
1492 
1493 	for (; i < urb_priv->num_tds; i++) {
1494 		td = &urb_priv->td[i];
1495 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1496 	}
1497 
1498 	/* Queue a stop endpoint command, but only if this is
1499 	 * the first cancellation to be handled.
1500 	 */
1501 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1502 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1503 		if (!command) {
1504 			ret = -ENOMEM;
1505 			goto done;
1506 		}
1507 		ep->ep_state |= EP_STOP_CMD_PENDING;
1508 		ep->stop_cmd_timer.expires = jiffies +
1509 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1510 		add_timer(&ep->stop_cmd_timer);
1511 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1512 					 ep_index, 0);
1513 		xhci_ring_cmd_db(xhci);
1514 	}
1515 done:
1516 	spin_unlock_irqrestore(&xhci->lock, flags);
1517 	return ret;
1518 
1519 err_giveback:
1520 	if (urb_priv)
1521 		xhci_urb_free_priv(urb_priv);
1522 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1523 	spin_unlock_irqrestore(&xhci->lock, flags);
1524 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1525 	return ret;
1526 }
1527 
1528 /* Drop an endpoint from a new bandwidth configuration for this device.
1529  * Only one call to this function is allowed per endpoint before
1530  * check_bandwidth() or reset_bandwidth() must be called.
1531  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1532  * add the endpoint to the schedule with possibly new parameters denoted by a
1533  * different endpoint descriptor in usb_host_endpoint.
1534  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1535  * not allowed.
1536  *
1537  * The USB core will not allow URBs to be queued to an endpoint that is being
1538  * disabled, so there's no need for mutual exclusion to protect
1539  * the xhci->devs[slot_id] structure.
1540  */
1541 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1542 		struct usb_host_endpoint *ep)
1543 {
1544 	struct xhci_hcd *xhci;
1545 	struct xhci_container_ctx *in_ctx, *out_ctx;
1546 	struct xhci_input_control_ctx *ctrl_ctx;
1547 	unsigned int ep_index;
1548 	struct xhci_ep_ctx *ep_ctx;
1549 	u32 drop_flag;
1550 	u32 new_add_flags, new_drop_flags;
1551 	int ret;
1552 
1553 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1554 	if (ret <= 0)
1555 		return ret;
1556 	xhci = hcd_to_xhci(hcd);
1557 	if (xhci->xhc_state & XHCI_STATE_DYING)
1558 		return -ENODEV;
1559 
1560 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1561 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1562 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1563 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1564 				__func__, drop_flag);
1565 		return 0;
1566 	}
1567 
1568 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1569 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1570 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1571 	if (!ctrl_ctx) {
1572 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1573 				__func__);
1574 		return 0;
1575 	}
1576 
1577 	ep_index = xhci_get_endpoint_index(&ep->desc);
1578 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1579 	/* If the HC already knows the endpoint is disabled,
1580 	 * or the HCD has noted it is disabled, ignore this request
1581 	 */
1582 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1583 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1584 	    xhci_get_endpoint_flag(&ep->desc)) {
1585 		/* Do not warn when called after a usb_device_reset */
1586 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1587 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1588 				  __func__, ep);
1589 		return 0;
1590 	}
1591 
1592 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1593 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1594 
1595 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1596 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1597 
1598 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1599 
1600 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1601 
1602 	if (xhci->quirks & XHCI_MTK_HOST)
1603 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1604 
1605 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1606 			(unsigned int) ep->desc.bEndpointAddress,
1607 			udev->slot_id,
1608 			(unsigned int) new_drop_flags,
1609 			(unsigned int) new_add_flags);
1610 	return 0;
1611 }
1612 
1613 /* Add an endpoint to a new possible bandwidth configuration for this device.
1614  * Only one call to this function is allowed per endpoint before
1615  * check_bandwidth() or reset_bandwidth() must be called.
1616  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1617  * add the endpoint to the schedule with possibly new parameters denoted by a
1618  * different endpoint descriptor in usb_host_endpoint.
1619  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1620  * not allowed.
1621  *
1622  * The USB core will not allow URBs to be queued to an endpoint until the
1623  * configuration or alt setting is installed in the device, so there's no need
1624  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1625  */
1626 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1627 		struct usb_host_endpoint *ep)
1628 {
1629 	struct xhci_hcd *xhci;
1630 	struct xhci_container_ctx *in_ctx;
1631 	unsigned int ep_index;
1632 	struct xhci_input_control_ctx *ctrl_ctx;
1633 	u32 added_ctxs;
1634 	u32 new_add_flags, new_drop_flags;
1635 	struct xhci_virt_device *virt_dev;
1636 	int ret = 0;
1637 
1638 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1639 	if (ret <= 0) {
1640 		/* So we won't queue a reset ep command for a root hub */
1641 		ep->hcpriv = NULL;
1642 		return ret;
1643 	}
1644 	xhci = hcd_to_xhci(hcd);
1645 	if (xhci->xhc_state & XHCI_STATE_DYING)
1646 		return -ENODEV;
1647 
1648 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1649 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1650 		/* FIXME when we have to issue an evaluate endpoint command to
1651 		 * deal with ep0 max packet size changing once we get the
1652 		 * descriptors
1653 		 */
1654 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1655 				__func__, added_ctxs);
1656 		return 0;
1657 	}
1658 
1659 	virt_dev = xhci->devs[udev->slot_id];
1660 	in_ctx = virt_dev->in_ctx;
1661 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1662 	if (!ctrl_ctx) {
1663 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1664 				__func__);
1665 		return 0;
1666 	}
1667 
1668 	ep_index = xhci_get_endpoint_index(&ep->desc);
1669 	/* If this endpoint is already in use, and the upper layers are trying
1670 	 * to add it again without dropping it, reject the addition.
1671 	 */
1672 	if (virt_dev->eps[ep_index].ring &&
1673 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1674 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1675 				"without dropping it.\n",
1676 				(unsigned int) ep->desc.bEndpointAddress);
1677 		return -EINVAL;
1678 	}
1679 
1680 	/* If the HCD has already noted the endpoint is enabled,
1681 	 * ignore this request.
1682 	 */
1683 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1684 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1685 				__func__, ep);
1686 		return 0;
1687 	}
1688 
1689 	/*
1690 	 * Configuration and alternate setting changes must be done in
1691 	 * process context, not interrupt context (or so documenation
1692 	 * for usb_set_interface() and usb_set_configuration() claim).
1693 	 */
1694 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1695 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1696 				__func__, ep->desc.bEndpointAddress);
1697 		return -ENOMEM;
1698 	}
1699 
1700 	if (xhci->quirks & XHCI_MTK_HOST) {
1701 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1702 		if (ret < 0) {
1703 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1704 			virt_dev->eps[ep_index].new_ring = NULL;
1705 			return ret;
1706 		}
1707 	}
1708 
1709 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1710 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1711 
1712 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1713 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1714 	 * this re-adds a new state for the endpoint from the new endpoint
1715 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1716 	 * drop flags alone.
1717 	 */
1718 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1719 
1720 	/* Store the usb_device pointer for later use */
1721 	ep->hcpriv = udev;
1722 
1723 	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1724 
1725 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1726 			(unsigned int) ep->desc.bEndpointAddress,
1727 			udev->slot_id,
1728 			(unsigned int) new_drop_flags,
1729 			(unsigned int) new_add_flags);
1730 	return 0;
1731 }
1732 
1733 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1734 {
1735 	struct xhci_input_control_ctx *ctrl_ctx;
1736 	struct xhci_ep_ctx *ep_ctx;
1737 	struct xhci_slot_ctx *slot_ctx;
1738 	int i;
1739 
1740 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1741 	if (!ctrl_ctx) {
1742 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1743 				__func__);
1744 		return;
1745 	}
1746 
1747 	/* When a device's add flag and drop flag are zero, any subsequent
1748 	 * configure endpoint command will leave that endpoint's state
1749 	 * untouched.  Make sure we don't leave any old state in the input
1750 	 * endpoint contexts.
1751 	 */
1752 	ctrl_ctx->drop_flags = 0;
1753 	ctrl_ctx->add_flags = 0;
1754 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1755 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1756 	/* Endpoint 0 is always valid */
1757 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1758 	for (i = 1; i < 31; i++) {
1759 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1760 		ep_ctx->ep_info = 0;
1761 		ep_ctx->ep_info2 = 0;
1762 		ep_ctx->deq = 0;
1763 		ep_ctx->tx_info = 0;
1764 	}
1765 }
1766 
1767 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1768 		struct usb_device *udev, u32 *cmd_status)
1769 {
1770 	int ret;
1771 
1772 	switch (*cmd_status) {
1773 	case COMP_COMMAND_ABORTED:
1774 	case COMP_COMMAND_RING_STOPPED:
1775 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1776 		ret = -ETIME;
1777 		break;
1778 	case COMP_RESOURCE_ERROR:
1779 		dev_warn(&udev->dev,
1780 			 "Not enough host controller resources for new device state.\n");
1781 		ret = -ENOMEM;
1782 		/* FIXME: can we allocate more resources for the HC? */
1783 		break;
1784 	case COMP_BANDWIDTH_ERROR:
1785 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1786 		dev_warn(&udev->dev,
1787 			 "Not enough bandwidth for new device state.\n");
1788 		ret = -ENOSPC;
1789 		/* FIXME: can we go back to the old state? */
1790 		break;
1791 	case COMP_TRB_ERROR:
1792 		/* the HCD set up something wrong */
1793 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1794 				"add flag = 1, "
1795 				"and endpoint is not disabled.\n");
1796 		ret = -EINVAL;
1797 		break;
1798 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1799 		dev_warn(&udev->dev,
1800 			 "ERROR: Incompatible device for endpoint configure command.\n");
1801 		ret = -ENODEV;
1802 		break;
1803 	case COMP_SUCCESS:
1804 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1805 				"Successful Endpoint Configure command");
1806 		ret = 0;
1807 		break;
1808 	default:
1809 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1810 				*cmd_status);
1811 		ret = -EINVAL;
1812 		break;
1813 	}
1814 	return ret;
1815 }
1816 
1817 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1818 		struct usb_device *udev, u32 *cmd_status)
1819 {
1820 	int ret;
1821 
1822 	switch (*cmd_status) {
1823 	case COMP_COMMAND_ABORTED:
1824 	case COMP_COMMAND_RING_STOPPED:
1825 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1826 		ret = -ETIME;
1827 		break;
1828 	case COMP_PARAMETER_ERROR:
1829 		dev_warn(&udev->dev,
1830 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1831 		ret = -EINVAL;
1832 		break;
1833 	case COMP_SLOT_NOT_ENABLED_ERROR:
1834 		dev_warn(&udev->dev,
1835 			"WARN: slot not enabled for evaluate context command.\n");
1836 		ret = -EINVAL;
1837 		break;
1838 	case COMP_CONTEXT_STATE_ERROR:
1839 		dev_warn(&udev->dev,
1840 			"WARN: invalid context state for evaluate context command.\n");
1841 		ret = -EINVAL;
1842 		break;
1843 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1844 		dev_warn(&udev->dev,
1845 			"ERROR: Incompatible device for evaluate context command.\n");
1846 		ret = -ENODEV;
1847 		break;
1848 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1849 		/* Max Exit Latency too large error */
1850 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1851 		ret = -EINVAL;
1852 		break;
1853 	case COMP_SUCCESS:
1854 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1855 				"Successful evaluate context command");
1856 		ret = 0;
1857 		break;
1858 	default:
1859 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1860 			*cmd_status);
1861 		ret = -EINVAL;
1862 		break;
1863 	}
1864 	return ret;
1865 }
1866 
1867 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1868 		struct xhci_input_control_ctx *ctrl_ctx)
1869 {
1870 	u32 valid_add_flags;
1871 	u32 valid_drop_flags;
1872 
1873 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1874 	 * (bit 1).  The default control endpoint is added during the Address
1875 	 * Device command and is never removed until the slot is disabled.
1876 	 */
1877 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1878 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1879 
1880 	/* Use hweight32 to count the number of ones in the add flags, or
1881 	 * number of endpoints added.  Don't count endpoints that are changed
1882 	 * (both added and dropped).
1883 	 */
1884 	return hweight32(valid_add_flags) -
1885 		hweight32(valid_add_flags & valid_drop_flags);
1886 }
1887 
1888 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1889 		struct xhci_input_control_ctx *ctrl_ctx)
1890 {
1891 	u32 valid_add_flags;
1892 	u32 valid_drop_flags;
1893 
1894 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1895 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1896 
1897 	return hweight32(valid_drop_flags) -
1898 		hweight32(valid_add_flags & valid_drop_flags);
1899 }
1900 
1901 /*
1902  * We need to reserve the new number of endpoints before the configure endpoint
1903  * command completes.  We can't subtract the dropped endpoints from the number
1904  * of active endpoints until the command completes because we can oversubscribe
1905  * the host in this case:
1906  *
1907  *  - the first configure endpoint command drops more endpoints than it adds
1908  *  - a second configure endpoint command that adds more endpoints is queued
1909  *  - the first configure endpoint command fails, so the config is unchanged
1910  *  - the second command may succeed, even though there isn't enough resources
1911  *
1912  * Must be called with xhci->lock held.
1913  */
1914 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1915 		struct xhci_input_control_ctx *ctrl_ctx)
1916 {
1917 	u32 added_eps;
1918 
1919 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1920 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1921 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1922 				"Not enough ep ctxs: "
1923 				"%u active, need to add %u, limit is %u.",
1924 				xhci->num_active_eps, added_eps,
1925 				xhci->limit_active_eps);
1926 		return -ENOMEM;
1927 	}
1928 	xhci->num_active_eps += added_eps;
1929 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1930 			"Adding %u ep ctxs, %u now active.", added_eps,
1931 			xhci->num_active_eps);
1932 	return 0;
1933 }
1934 
1935 /*
1936  * The configure endpoint was failed by the xHC for some other reason, so we
1937  * need to revert the resources that failed configuration would have used.
1938  *
1939  * Must be called with xhci->lock held.
1940  */
1941 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1942 		struct xhci_input_control_ctx *ctrl_ctx)
1943 {
1944 	u32 num_failed_eps;
1945 
1946 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1947 	xhci->num_active_eps -= num_failed_eps;
1948 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1949 			"Removing %u failed ep ctxs, %u now active.",
1950 			num_failed_eps,
1951 			xhci->num_active_eps);
1952 }
1953 
1954 /*
1955  * Now that the command has completed, clean up the active endpoint count by
1956  * subtracting out the endpoints that were dropped (but not changed).
1957  *
1958  * Must be called with xhci->lock held.
1959  */
1960 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1961 		struct xhci_input_control_ctx *ctrl_ctx)
1962 {
1963 	u32 num_dropped_eps;
1964 
1965 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1966 	xhci->num_active_eps -= num_dropped_eps;
1967 	if (num_dropped_eps)
1968 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1969 				"Removing %u dropped ep ctxs, %u now active.",
1970 				num_dropped_eps,
1971 				xhci->num_active_eps);
1972 }
1973 
1974 static unsigned int xhci_get_block_size(struct usb_device *udev)
1975 {
1976 	switch (udev->speed) {
1977 	case USB_SPEED_LOW:
1978 	case USB_SPEED_FULL:
1979 		return FS_BLOCK;
1980 	case USB_SPEED_HIGH:
1981 		return HS_BLOCK;
1982 	case USB_SPEED_SUPER:
1983 	case USB_SPEED_SUPER_PLUS:
1984 		return SS_BLOCK;
1985 	case USB_SPEED_UNKNOWN:
1986 	case USB_SPEED_WIRELESS:
1987 	default:
1988 		/* Should never happen */
1989 		return 1;
1990 	}
1991 }
1992 
1993 static unsigned int
1994 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1995 {
1996 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1997 		return LS_OVERHEAD;
1998 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1999 		return FS_OVERHEAD;
2000 	return HS_OVERHEAD;
2001 }
2002 
2003 /* If we are changing a LS/FS device under a HS hub,
2004  * make sure (if we are activating a new TT) that the HS bus has enough
2005  * bandwidth for this new TT.
2006  */
2007 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2008 		struct xhci_virt_device *virt_dev,
2009 		int old_active_eps)
2010 {
2011 	struct xhci_interval_bw_table *bw_table;
2012 	struct xhci_tt_bw_info *tt_info;
2013 
2014 	/* Find the bandwidth table for the root port this TT is attached to. */
2015 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2016 	tt_info = virt_dev->tt_info;
2017 	/* If this TT already had active endpoints, the bandwidth for this TT
2018 	 * has already been added.  Removing all periodic endpoints (and thus
2019 	 * making the TT enactive) will only decrease the bandwidth used.
2020 	 */
2021 	if (old_active_eps)
2022 		return 0;
2023 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2024 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2025 			return -ENOMEM;
2026 		return 0;
2027 	}
2028 	/* Not sure why we would have no new active endpoints...
2029 	 *
2030 	 * Maybe because of an Evaluate Context change for a hub update or a
2031 	 * control endpoint 0 max packet size change?
2032 	 * FIXME: skip the bandwidth calculation in that case.
2033 	 */
2034 	return 0;
2035 }
2036 
2037 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2038 		struct xhci_virt_device *virt_dev)
2039 {
2040 	unsigned int bw_reserved;
2041 
2042 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2043 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2044 		return -ENOMEM;
2045 
2046 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2047 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2048 		return -ENOMEM;
2049 
2050 	return 0;
2051 }
2052 
2053 /*
2054  * This algorithm is a very conservative estimate of the worst-case scheduling
2055  * scenario for any one interval.  The hardware dynamically schedules the
2056  * packets, so we can't tell which microframe could be the limiting factor in
2057  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2058  *
2059  * Obviously, we can't solve an NP complete problem to find the minimum worst
2060  * case scenario.  Instead, we come up with an estimate that is no less than
2061  * the worst case bandwidth used for any one microframe, but may be an
2062  * over-estimate.
2063  *
2064  * We walk the requirements for each endpoint by interval, starting with the
2065  * smallest interval, and place packets in the schedule where there is only one
2066  * possible way to schedule packets for that interval.  In order to simplify
2067  * this algorithm, we record the largest max packet size for each interval, and
2068  * assume all packets will be that size.
2069  *
2070  * For interval 0, we obviously must schedule all packets for each interval.
2071  * The bandwidth for interval 0 is just the amount of data to be transmitted
2072  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2073  * the number of packets).
2074  *
2075  * For interval 1, we have two possible microframes to schedule those packets
2076  * in.  For this algorithm, if we can schedule the same number of packets for
2077  * each possible scheduling opportunity (each microframe), we will do so.  The
2078  * remaining number of packets will be saved to be transmitted in the gaps in
2079  * the next interval's scheduling sequence.
2080  *
2081  * As we move those remaining packets to be scheduled with interval 2 packets,
2082  * we have to double the number of remaining packets to transmit.  This is
2083  * because the intervals are actually powers of 2, and we would be transmitting
2084  * the previous interval's packets twice in this interval.  We also have to be
2085  * sure that when we look at the largest max packet size for this interval, we
2086  * also look at the largest max packet size for the remaining packets and take
2087  * the greater of the two.
2088  *
2089  * The algorithm continues to evenly distribute packets in each scheduling
2090  * opportunity, and push the remaining packets out, until we get to the last
2091  * interval.  Then those packets and their associated overhead are just added
2092  * to the bandwidth used.
2093  */
2094 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2095 		struct xhci_virt_device *virt_dev,
2096 		int old_active_eps)
2097 {
2098 	unsigned int bw_reserved;
2099 	unsigned int max_bandwidth;
2100 	unsigned int bw_used;
2101 	unsigned int block_size;
2102 	struct xhci_interval_bw_table *bw_table;
2103 	unsigned int packet_size = 0;
2104 	unsigned int overhead = 0;
2105 	unsigned int packets_transmitted = 0;
2106 	unsigned int packets_remaining = 0;
2107 	unsigned int i;
2108 
2109 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2110 		return xhci_check_ss_bw(xhci, virt_dev);
2111 
2112 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2113 		max_bandwidth = HS_BW_LIMIT;
2114 		/* Convert percent of bus BW reserved to blocks reserved */
2115 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2116 	} else {
2117 		max_bandwidth = FS_BW_LIMIT;
2118 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2119 	}
2120 
2121 	bw_table = virt_dev->bw_table;
2122 	/* We need to translate the max packet size and max ESIT payloads into
2123 	 * the units the hardware uses.
2124 	 */
2125 	block_size = xhci_get_block_size(virt_dev->udev);
2126 
2127 	/* If we are manipulating a LS/FS device under a HS hub, double check
2128 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2129 	 */
2130 	if (virt_dev->tt_info) {
2131 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2132 				"Recalculating BW for rootport %u",
2133 				virt_dev->real_port);
2134 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2135 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2136 					"newly activated TT.\n");
2137 			return -ENOMEM;
2138 		}
2139 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2140 				"Recalculating BW for TT slot %u port %u",
2141 				virt_dev->tt_info->slot_id,
2142 				virt_dev->tt_info->ttport);
2143 	} else {
2144 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2145 				"Recalculating BW for rootport %u",
2146 				virt_dev->real_port);
2147 	}
2148 
2149 	/* Add in how much bandwidth will be used for interval zero, or the
2150 	 * rounded max ESIT payload + number of packets * largest overhead.
2151 	 */
2152 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2153 		bw_table->interval_bw[0].num_packets *
2154 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2155 
2156 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2157 		unsigned int bw_added;
2158 		unsigned int largest_mps;
2159 		unsigned int interval_overhead;
2160 
2161 		/*
2162 		 * How many packets could we transmit in this interval?
2163 		 * If packets didn't fit in the previous interval, we will need
2164 		 * to transmit that many packets twice within this interval.
2165 		 */
2166 		packets_remaining = 2 * packets_remaining +
2167 			bw_table->interval_bw[i].num_packets;
2168 
2169 		/* Find the largest max packet size of this or the previous
2170 		 * interval.
2171 		 */
2172 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2173 			largest_mps = 0;
2174 		else {
2175 			struct xhci_virt_ep *virt_ep;
2176 			struct list_head *ep_entry;
2177 
2178 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2179 			virt_ep = list_entry(ep_entry,
2180 					struct xhci_virt_ep, bw_endpoint_list);
2181 			/* Convert to blocks, rounding up */
2182 			largest_mps = DIV_ROUND_UP(
2183 					virt_ep->bw_info.max_packet_size,
2184 					block_size);
2185 		}
2186 		if (largest_mps > packet_size)
2187 			packet_size = largest_mps;
2188 
2189 		/* Use the larger overhead of this or the previous interval. */
2190 		interval_overhead = xhci_get_largest_overhead(
2191 				&bw_table->interval_bw[i]);
2192 		if (interval_overhead > overhead)
2193 			overhead = interval_overhead;
2194 
2195 		/* How many packets can we evenly distribute across
2196 		 * (1 << (i + 1)) possible scheduling opportunities?
2197 		 */
2198 		packets_transmitted = packets_remaining >> (i + 1);
2199 
2200 		/* Add in the bandwidth used for those scheduled packets */
2201 		bw_added = packets_transmitted * (overhead + packet_size);
2202 
2203 		/* How many packets do we have remaining to transmit? */
2204 		packets_remaining = packets_remaining % (1 << (i + 1));
2205 
2206 		/* What largest max packet size should those packets have? */
2207 		/* If we've transmitted all packets, don't carry over the
2208 		 * largest packet size.
2209 		 */
2210 		if (packets_remaining == 0) {
2211 			packet_size = 0;
2212 			overhead = 0;
2213 		} else if (packets_transmitted > 0) {
2214 			/* Otherwise if we do have remaining packets, and we've
2215 			 * scheduled some packets in this interval, take the
2216 			 * largest max packet size from endpoints with this
2217 			 * interval.
2218 			 */
2219 			packet_size = largest_mps;
2220 			overhead = interval_overhead;
2221 		}
2222 		/* Otherwise carry over packet_size and overhead from the last
2223 		 * time we had a remainder.
2224 		 */
2225 		bw_used += bw_added;
2226 		if (bw_used > max_bandwidth) {
2227 			xhci_warn(xhci, "Not enough bandwidth. "
2228 					"Proposed: %u, Max: %u\n",
2229 				bw_used, max_bandwidth);
2230 			return -ENOMEM;
2231 		}
2232 	}
2233 	/*
2234 	 * Ok, we know we have some packets left over after even-handedly
2235 	 * scheduling interval 15.  We don't know which microframes they will
2236 	 * fit into, so we over-schedule and say they will be scheduled every
2237 	 * microframe.
2238 	 */
2239 	if (packets_remaining > 0)
2240 		bw_used += overhead + packet_size;
2241 
2242 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2243 		unsigned int port_index = virt_dev->real_port - 1;
2244 
2245 		/* OK, we're manipulating a HS device attached to a
2246 		 * root port bandwidth domain.  Include the number of active TTs
2247 		 * in the bandwidth used.
2248 		 */
2249 		bw_used += TT_HS_OVERHEAD *
2250 			xhci->rh_bw[port_index].num_active_tts;
2251 	}
2252 
2253 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2254 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2255 		"Available: %u " "percent",
2256 		bw_used, max_bandwidth, bw_reserved,
2257 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2258 		max_bandwidth);
2259 
2260 	bw_used += bw_reserved;
2261 	if (bw_used > max_bandwidth) {
2262 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2263 				bw_used, max_bandwidth);
2264 		return -ENOMEM;
2265 	}
2266 
2267 	bw_table->bw_used = bw_used;
2268 	return 0;
2269 }
2270 
2271 static bool xhci_is_async_ep(unsigned int ep_type)
2272 {
2273 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2274 					ep_type != ISOC_IN_EP &&
2275 					ep_type != INT_IN_EP);
2276 }
2277 
2278 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2279 {
2280 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2281 }
2282 
2283 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2284 {
2285 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2286 
2287 	if (ep_bw->ep_interval == 0)
2288 		return SS_OVERHEAD_BURST +
2289 			(ep_bw->mult * ep_bw->num_packets *
2290 					(SS_OVERHEAD + mps));
2291 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2292 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2293 				1 << ep_bw->ep_interval);
2294 
2295 }
2296 
2297 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2298 		struct xhci_bw_info *ep_bw,
2299 		struct xhci_interval_bw_table *bw_table,
2300 		struct usb_device *udev,
2301 		struct xhci_virt_ep *virt_ep,
2302 		struct xhci_tt_bw_info *tt_info)
2303 {
2304 	struct xhci_interval_bw	*interval_bw;
2305 	int normalized_interval;
2306 
2307 	if (xhci_is_async_ep(ep_bw->type))
2308 		return;
2309 
2310 	if (udev->speed >= USB_SPEED_SUPER) {
2311 		if (xhci_is_sync_in_ep(ep_bw->type))
2312 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2313 				xhci_get_ss_bw_consumed(ep_bw);
2314 		else
2315 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2316 				xhci_get_ss_bw_consumed(ep_bw);
2317 		return;
2318 	}
2319 
2320 	/* SuperSpeed endpoints never get added to intervals in the table, so
2321 	 * this check is only valid for HS/FS/LS devices.
2322 	 */
2323 	if (list_empty(&virt_ep->bw_endpoint_list))
2324 		return;
2325 	/* For LS/FS devices, we need to translate the interval expressed in
2326 	 * microframes to frames.
2327 	 */
2328 	if (udev->speed == USB_SPEED_HIGH)
2329 		normalized_interval = ep_bw->ep_interval;
2330 	else
2331 		normalized_interval = ep_bw->ep_interval - 3;
2332 
2333 	if (normalized_interval == 0)
2334 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2335 	interval_bw = &bw_table->interval_bw[normalized_interval];
2336 	interval_bw->num_packets -= ep_bw->num_packets;
2337 	switch (udev->speed) {
2338 	case USB_SPEED_LOW:
2339 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2340 		break;
2341 	case USB_SPEED_FULL:
2342 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2343 		break;
2344 	case USB_SPEED_HIGH:
2345 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2346 		break;
2347 	case USB_SPEED_SUPER:
2348 	case USB_SPEED_SUPER_PLUS:
2349 	case USB_SPEED_UNKNOWN:
2350 	case USB_SPEED_WIRELESS:
2351 		/* Should never happen because only LS/FS/HS endpoints will get
2352 		 * added to the endpoint list.
2353 		 */
2354 		return;
2355 	}
2356 	if (tt_info)
2357 		tt_info->active_eps -= 1;
2358 	list_del_init(&virt_ep->bw_endpoint_list);
2359 }
2360 
2361 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2362 		struct xhci_bw_info *ep_bw,
2363 		struct xhci_interval_bw_table *bw_table,
2364 		struct usb_device *udev,
2365 		struct xhci_virt_ep *virt_ep,
2366 		struct xhci_tt_bw_info *tt_info)
2367 {
2368 	struct xhci_interval_bw	*interval_bw;
2369 	struct xhci_virt_ep *smaller_ep;
2370 	int normalized_interval;
2371 
2372 	if (xhci_is_async_ep(ep_bw->type))
2373 		return;
2374 
2375 	if (udev->speed == USB_SPEED_SUPER) {
2376 		if (xhci_is_sync_in_ep(ep_bw->type))
2377 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2378 				xhci_get_ss_bw_consumed(ep_bw);
2379 		else
2380 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2381 				xhci_get_ss_bw_consumed(ep_bw);
2382 		return;
2383 	}
2384 
2385 	/* For LS/FS devices, we need to translate the interval expressed in
2386 	 * microframes to frames.
2387 	 */
2388 	if (udev->speed == USB_SPEED_HIGH)
2389 		normalized_interval = ep_bw->ep_interval;
2390 	else
2391 		normalized_interval = ep_bw->ep_interval - 3;
2392 
2393 	if (normalized_interval == 0)
2394 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2395 	interval_bw = &bw_table->interval_bw[normalized_interval];
2396 	interval_bw->num_packets += ep_bw->num_packets;
2397 	switch (udev->speed) {
2398 	case USB_SPEED_LOW:
2399 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2400 		break;
2401 	case USB_SPEED_FULL:
2402 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2403 		break;
2404 	case USB_SPEED_HIGH:
2405 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2406 		break;
2407 	case USB_SPEED_SUPER:
2408 	case USB_SPEED_SUPER_PLUS:
2409 	case USB_SPEED_UNKNOWN:
2410 	case USB_SPEED_WIRELESS:
2411 		/* Should never happen because only LS/FS/HS endpoints will get
2412 		 * added to the endpoint list.
2413 		 */
2414 		return;
2415 	}
2416 
2417 	if (tt_info)
2418 		tt_info->active_eps += 1;
2419 	/* Insert the endpoint into the list, largest max packet size first. */
2420 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2421 			bw_endpoint_list) {
2422 		if (ep_bw->max_packet_size >=
2423 				smaller_ep->bw_info.max_packet_size) {
2424 			/* Add the new ep before the smaller endpoint */
2425 			list_add_tail(&virt_ep->bw_endpoint_list,
2426 					&smaller_ep->bw_endpoint_list);
2427 			return;
2428 		}
2429 	}
2430 	/* Add the new endpoint at the end of the list. */
2431 	list_add_tail(&virt_ep->bw_endpoint_list,
2432 			&interval_bw->endpoints);
2433 }
2434 
2435 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2436 		struct xhci_virt_device *virt_dev,
2437 		int old_active_eps)
2438 {
2439 	struct xhci_root_port_bw_info *rh_bw_info;
2440 	if (!virt_dev->tt_info)
2441 		return;
2442 
2443 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2444 	if (old_active_eps == 0 &&
2445 				virt_dev->tt_info->active_eps != 0) {
2446 		rh_bw_info->num_active_tts += 1;
2447 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2448 	} else if (old_active_eps != 0 &&
2449 				virt_dev->tt_info->active_eps == 0) {
2450 		rh_bw_info->num_active_tts -= 1;
2451 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2452 	}
2453 }
2454 
2455 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2456 		struct xhci_virt_device *virt_dev,
2457 		struct xhci_container_ctx *in_ctx)
2458 {
2459 	struct xhci_bw_info ep_bw_info[31];
2460 	int i;
2461 	struct xhci_input_control_ctx *ctrl_ctx;
2462 	int old_active_eps = 0;
2463 
2464 	if (virt_dev->tt_info)
2465 		old_active_eps = virt_dev->tt_info->active_eps;
2466 
2467 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2468 	if (!ctrl_ctx) {
2469 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2470 				__func__);
2471 		return -ENOMEM;
2472 	}
2473 
2474 	for (i = 0; i < 31; i++) {
2475 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2476 			continue;
2477 
2478 		/* Make a copy of the BW info in case we need to revert this */
2479 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2480 				sizeof(ep_bw_info[i]));
2481 		/* Drop the endpoint from the interval table if the endpoint is
2482 		 * being dropped or changed.
2483 		 */
2484 		if (EP_IS_DROPPED(ctrl_ctx, i))
2485 			xhci_drop_ep_from_interval_table(xhci,
2486 					&virt_dev->eps[i].bw_info,
2487 					virt_dev->bw_table,
2488 					virt_dev->udev,
2489 					&virt_dev->eps[i],
2490 					virt_dev->tt_info);
2491 	}
2492 	/* Overwrite the information stored in the endpoints' bw_info */
2493 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2494 	for (i = 0; i < 31; i++) {
2495 		/* Add any changed or added endpoints to the interval table */
2496 		if (EP_IS_ADDED(ctrl_ctx, i))
2497 			xhci_add_ep_to_interval_table(xhci,
2498 					&virt_dev->eps[i].bw_info,
2499 					virt_dev->bw_table,
2500 					virt_dev->udev,
2501 					&virt_dev->eps[i],
2502 					virt_dev->tt_info);
2503 	}
2504 
2505 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2506 		/* Ok, this fits in the bandwidth we have.
2507 		 * Update the number of active TTs.
2508 		 */
2509 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2510 		return 0;
2511 	}
2512 
2513 	/* We don't have enough bandwidth for this, revert the stored info. */
2514 	for (i = 0; i < 31; i++) {
2515 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2516 			continue;
2517 
2518 		/* Drop the new copies of any added or changed endpoints from
2519 		 * the interval table.
2520 		 */
2521 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2522 			xhci_drop_ep_from_interval_table(xhci,
2523 					&virt_dev->eps[i].bw_info,
2524 					virt_dev->bw_table,
2525 					virt_dev->udev,
2526 					&virt_dev->eps[i],
2527 					virt_dev->tt_info);
2528 		}
2529 		/* Revert the endpoint back to its old information */
2530 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2531 				sizeof(ep_bw_info[i]));
2532 		/* Add any changed or dropped endpoints back into the table */
2533 		if (EP_IS_DROPPED(ctrl_ctx, i))
2534 			xhci_add_ep_to_interval_table(xhci,
2535 					&virt_dev->eps[i].bw_info,
2536 					virt_dev->bw_table,
2537 					virt_dev->udev,
2538 					&virt_dev->eps[i],
2539 					virt_dev->tt_info);
2540 	}
2541 	return -ENOMEM;
2542 }
2543 
2544 
2545 /* Issue a configure endpoint command or evaluate context command
2546  * and wait for it to finish.
2547  */
2548 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2549 		struct usb_device *udev,
2550 		struct xhci_command *command,
2551 		bool ctx_change, bool must_succeed)
2552 {
2553 	int ret;
2554 	unsigned long flags;
2555 	struct xhci_input_control_ctx *ctrl_ctx;
2556 	struct xhci_virt_device *virt_dev;
2557 	struct xhci_slot_ctx *slot_ctx;
2558 
2559 	if (!command)
2560 		return -EINVAL;
2561 
2562 	spin_lock_irqsave(&xhci->lock, flags);
2563 
2564 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2565 		spin_unlock_irqrestore(&xhci->lock, flags);
2566 		return -ESHUTDOWN;
2567 	}
2568 
2569 	virt_dev = xhci->devs[udev->slot_id];
2570 
2571 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2572 	if (!ctrl_ctx) {
2573 		spin_unlock_irqrestore(&xhci->lock, flags);
2574 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2575 				__func__);
2576 		return -ENOMEM;
2577 	}
2578 
2579 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2580 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2581 		spin_unlock_irqrestore(&xhci->lock, flags);
2582 		xhci_warn(xhci, "Not enough host resources, "
2583 				"active endpoint contexts = %u\n",
2584 				xhci->num_active_eps);
2585 		return -ENOMEM;
2586 	}
2587 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2588 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2589 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2590 			xhci_free_host_resources(xhci, ctrl_ctx);
2591 		spin_unlock_irqrestore(&xhci->lock, flags);
2592 		xhci_warn(xhci, "Not enough bandwidth\n");
2593 		return -ENOMEM;
2594 	}
2595 
2596 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2597 	trace_xhci_configure_endpoint(slot_ctx);
2598 
2599 	if (!ctx_change)
2600 		ret = xhci_queue_configure_endpoint(xhci, command,
2601 				command->in_ctx->dma,
2602 				udev->slot_id, must_succeed);
2603 	else
2604 		ret = xhci_queue_evaluate_context(xhci, command,
2605 				command->in_ctx->dma,
2606 				udev->slot_id, must_succeed);
2607 	if (ret < 0) {
2608 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2609 			xhci_free_host_resources(xhci, ctrl_ctx);
2610 		spin_unlock_irqrestore(&xhci->lock, flags);
2611 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2612 				"FIXME allocate a new ring segment");
2613 		return -ENOMEM;
2614 	}
2615 	xhci_ring_cmd_db(xhci);
2616 	spin_unlock_irqrestore(&xhci->lock, flags);
2617 
2618 	/* Wait for the configure endpoint command to complete */
2619 	wait_for_completion(command->completion);
2620 
2621 	if (!ctx_change)
2622 		ret = xhci_configure_endpoint_result(xhci, udev,
2623 						     &command->status);
2624 	else
2625 		ret = xhci_evaluate_context_result(xhci, udev,
2626 						   &command->status);
2627 
2628 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2629 		spin_lock_irqsave(&xhci->lock, flags);
2630 		/* If the command failed, remove the reserved resources.
2631 		 * Otherwise, clean up the estimate to include dropped eps.
2632 		 */
2633 		if (ret)
2634 			xhci_free_host_resources(xhci, ctrl_ctx);
2635 		else
2636 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2637 		spin_unlock_irqrestore(&xhci->lock, flags);
2638 	}
2639 	return ret;
2640 }
2641 
2642 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2643 	struct xhci_virt_device *vdev, int i)
2644 {
2645 	struct xhci_virt_ep *ep = &vdev->eps[i];
2646 
2647 	if (ep->ep_state & EP_HAS_STREAMS) {
2648 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2649 				xhci_get_endpoint_address(i));
2650 		xhci_free_stream_info(xhci, ep->stream_info);
2651 		ep->stream_info = NULL;
2652 		ep->ep_state &= ~EP_HAS_STREAMS;
2653 	}
2654 }
2655 
2656 /* Called after one or more calls to xhci_add_endpoint() or
2657  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2658  * to call xhci_reset_bandwidth().
2659  *
2660  * Since we are in the middle of changing either configuration or
2661  * installing a new alt setting, the USB core won't allow URBs to be
2662  * enqueued for any endpoint on the old config or interface.  Nothing
2663  * else should be touching the xhci->devs[slot_id] structure, so we
2664  * don't need to take the xhci->lock for manipulating that.
2665  */
2666 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2667 {
2668 	int i;
2669 	int ret = 0;
2670 	struct xhci_hcd *xhci;
2671 	struct xhci_virt_device	*virt_dev;
2672 	struct xhci_input_control_ctx *ctrl_ctx;
2673 	struct xhci_slot_ctx *slot_ctx;
2674 	struct xhci_command *command;
2675 
2676 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2677 	if (ret <= 0)
2678 		return ret;
2679 	xhci = hcd_to_xhci(hcd);
2680 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2681 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2682 		return -ENODEV;
2683 
2684 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2685 	virt_dev = xhci->devs[udev->slot_id];
2686 
2687 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2688 	if (!command)
2689 		return -ENOMEM;
2690 
2691 	command->in_ctx = virt_dev->in_ctx;
2692 
2693 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2694 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2695 	if (!ctrl_ctx) {
2696 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2697 				__func__);
2698 		ret = -ENOMEM;
2699 		goto command_cleanup;
2700 	}
2701 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2702 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2703 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2704 
2705 	/* Don't issue the command if there's no endpoints to update. */
2706 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2707 	    ctrl_ctx->drop_flags == 0) {
2708 		ret = 0;
2709 		goto command_cleanup;
2710 	}
2711 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2712 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2713 	for (i = 31; i >= 1; i--) {
2714 		__le32 le32 = cpu_to_le32(BIT(i));
2715 
2716 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2717 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2718 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2719 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2720 			break;
2721 		}
2722 	}
2723 
2724 	ret = xhci_configure_endpoint(xhci, udev, command,
2725 			false, false);
2726 	if (ret)
2727 		/* Callee should call reset_bandwidth() */
2728 		goto command_cleanup;
2729 
2730 	/* Free any rings that were dropped, but not changed. */
2731 	for (i = 1; i < 31; i++) {
2732 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2733 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2734 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2735 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2736 		}
2737 	}
2738 	xhci_zero_in_ctx(xhci, virt_dev);
2739 	/*
2740 	 * Install any rings for completely new endpoints or changed endpoints,
2741 	 * and free any old rings from changed endpoints.
2742 	 */
2743 	for (i = 1; i < 31; i++) {
2744 		if (!virt_dev->eps[i].new_ring)
2745 			continue;
2746 		/* Only free the old ring if it exists.
2747 		 * It may not if this is the first add of an endpoint.
2748 		 */
2749 		if (virt_dev->eps[i].ring) {
2750 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2751 		}
2752 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2753 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2754 		virt_dev->eps[i].new_ring = NULL;
2755 	}
2756 command_cleanup:
2757 	kfree(command->completion);
2758 	kfree(command);
2759 
2760 	return ret;
2761 }
2762 
2763 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2764 {
2765 	struct xhci_hcd *xhci;
2766 	struct xhci_virt_device	*virt_dev;
2767 	int i, ret;
2768 
2769 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2770 	if (ret <= 0)
2771 		return;
2772 	xhci = hcd_to_xhci(hcd);
2773 
2774 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2775 	virt_dev = xhci->devs[udev->slot_id];
2776 	/* Free any rings allocated for added endpoints */
2777 	for (i = 0; i < 31; i++) {
2778 		if (virt_dev->eps[i].new_ring) {
2779 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2780 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2781 			virt_dev->eps[i].new_ring = NULL;
2782 		}
2783 	}
2784 	xhci_zero_in_ctx(xhci, virt_dev);
2785 }
2786 
2787 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2788 		struct xhci_container_ctx *in_ctx,
2789 		struct xhci_container_ctx *out_ctx,
2790 		struct xhci_input_control_ctx *ctrl_ctx,
2791 		u32 add_flags, u32 drop_flags)
2792 {
2793 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2794 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2795 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2796 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2797 }
2798 
2799 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2800 		unsigned int slot_id, unsigned int ep_index,
2801 		struct xhci_dequeue_state *deq_state)
2802 {
2803 	struct xhci_input_control_ctx *ctrl_ctx;
2804 	struct xhci_container_ctx *in_ctx;
2805 	struct xhci_ep_ctx *ep_ctx;
2806 	u32 added_ctxs;
2807 	dma_addr_t addr;
2808 
2809 	in_ctx = xhci->devs[slot_id]->in_ctx;
2810 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2811 	if (!ctrl_ctx) {
2812 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2813 				__func__);
2814 		return;
2815 	}
2816 
2817 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2818 			xhci->devs[slot_id]->out_ctx, ep_index);
2819 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2820 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2821 			deq_state->new_deq_ptr);
2822 	if (addr == 0) {
2823 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2824 				"reset ep command\n");
2825 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2826 				deq_state->new_deq_seg,
2827 				deq_state->new_deq_ptr);
2828 		return;
2829 	}
2830 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2831 
2832 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2833 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2834 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2835 			added_ctxs, added_ctxs);
2836 }
2837 
2838 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2839 			       unsigned int stream_id, struct xhci_td *td)
2840 {
2841 	struct xhci_dequeue_state deq_state;
2842 	struct usb_device *udev = td->urb->dev;
2843 
2844 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2845 			"Cleaning up stalled endpoint ring");
2846 	/* We need to move the HW's dequeue pointer past this TD,
2847 	 * or it will attempt to resend it on the next doorbell ring.
2848 	 */
2849 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2850 			ep_index, stream_id, td, &deq_state);
2851 
2852 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2853 		return;
2854 
2855 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2856 	 * issue a configure endpoint command later.
2857 	 */
2858 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2859 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2860 				"Queueing new dequeue state");
2861 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2862 				ep_index, &deq_state);
2863 	} else {
2864 		/* Better hope no one uses the input context between now and the
2865 		 * reset endpoint completion!
2866 		 * XXX: No idea how this hardware will react when stream rings
2867 		 * are enabled.
2868 		 */
2869 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2870 				"Setting up input context for "
2871 				"configure endpoint command");
2872 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2873 				ep_index, &deq_state);
2874 	}
2875 }
2876 
2877 /* Called when clearing halted device. The core should have sent the control
2878  * message to clear the device halt condition. The host side of the halt should
2879  * already be cleared with a reset endpoint command issued when the STALL tx
2880  * event was received.
2881  *
2882  * Context: in_interrupt
2883  */
2884 
2885 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2886 		struct usb_host_endpoint *ep)
2887 {
2888 	struct xhci_hcd *xhci;
2889 
2890 	xhci = hcd_to_xhci(hcd);
2891 
2892 	/*
2893 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2894 	 * The Reset Endpoint Command may only be issued to endpoints in the
2895 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2896 	 * Number of an endpoint that isn't in the Halted state, then software
2897 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2898 	 * for the target endpoint. that is in the Stopped state.
2899 	 */
2900 
2901 	/* For now just print debug to follow the situation */
2902 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2903 		 ep->desc.bEndpointAddress);
2904 }
2905 
2906 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2907 		struct usb_device *udev, struct usb_host_endpoint *ep,
2908 		unsigned int slot_id)
2909 {
2910 	int ret;
2911 	unsigned int ep_index;
2912 	unsigned int ep_state;
2913 
2914 	if (!ep)
2915 		return -EINVAL;
2916 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2917 	if (ret <= 0)
2918 		return -EINVAL;
2919 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2920 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2921 				" descriptor for ep 0x%x does not support streams\n",
2922 				ep->desc.bEndpointAddress);
2923 		return -EINVAL;
2924 	}
2925 
2926 	ep_index = xhci_get_endpoint_index(&ep->desc);
2927 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2928 	if (ep_state & EP_HAS_STREAMS ||
2929 			ep_state & EP_GETTING_STREAMS) {
2930 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2931 				"already has streams set up.\n",
2932 				ep->desc.bEndpointAddress);
2933 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2934 				"dynamic stream context array reallocation.\n");
2935 		return -EINVAL;
2936 	}
2937 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2938 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2939 				"endpoint 0x%x; URBs are pending.\n",
2940 				ep->desc.bEndpointAddress);
2941 		return -EINVAL;
2942 	}
2943 	return 0;
2944 }
2945 
2946 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2947 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2948 {
2949 	unsigned int max_streams;
2950 
2951 	/* The stream context array size must be a power of two */
2952 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2953 	/*
2954 	 * Find out how many primary stream array entries the host controller
2955 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2956 	 * level page entries), but that's an optional feature for xHCI host
2957 	 * controllers. xHCs must support at least 4 stream IDs.
2958 	 */
2959 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2960 	if (*num_stream_ctxs > max_streams) {
2961 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2962 				max_streams);
2963 		*num_stream_ctxs = max_streams;
2964 		*num_streams = max_streams;
2965 	}
2966 }
2967 
2968 /* Returns an error code if one of the endpoint already has streams.
2969  * This does not change any data structures, it only checks and gathers
2970  * information.
2971  */
2972 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2973 		struct usb_device *udev,
2974 		struct usb_host_endpoint **eps, unsigned int num_eps,
2975 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2976 {
2977 	unsigned int max_streams;
2978 	unsigned int endpoint_flag;
2979 	int i;
2980 	int ret;
2981 
2982 	for (i = 0; i < num_eps; i++) {
2983 		ret = xhci_check_streams_endpoint(xhci, udev,
2984 				eps[i], udev->slot_id);
2985 		if (ret < 0)
2986 			return ret;
2987 
2988 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2989 		if (max_streams < (*num_streams - 1)) {
2990 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2991 					eps[i]->desc.bEndpointAddress,
2992 					max_streams);
2993 			*num_streams = max_streams+1;
2994 		}
2995 
2996 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2997 		if (*changed_ep_bitmask & endpoint_flag)
2998 			return -EINVAL;
2999 		*changed_ep_bitmask |= endpoint_flag;
3000 	}
3001 	return 0;
3002 }
3003 
3004 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3005 		struct usb_device *udev,
3006 		struct usb_host_endpoint **eps, unsigned int num_eps)
3007 {
3008 	u32 changed_ep_bitmask = 0;
3009 	unsigned int slot_id;
3010 	unsigned int ep_index;
3011 	unsigned int ep_state;
3012 	int i;
3013 
3014 	slot_id = udev->slot_id;
3015 	if (!xhci->devs[slot_id])
3016 		return 0;
3017 
3018 	for (i = 0; i < num_eps; i++) {
3019 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3020 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3021 		/* Are streams already being freed for the endpoint? */
3022 		if (ep_state & EP_GETTING_NO_STREAMS) {
3023 			xhci_warn(xhci, "WARN Can't disable streams for "
3024 					"endpoint 0x%x, "
3025 					"streams are being disabled already\n",
3026 					eps[i]->desc.bEndpointAddress);
3027 			return 0;
3028 		}
3029 		/* Are there actually any streams to free? */
3030 		if (!(ep_state & EP_HAS_STREAMS) &&
3031 				!(ep_state & EP_GETTING_STREAMS)) {
3032 			xhci_warn(xhci, "WARN Can't disable streams for "
3033 					"endpoint 0x%x, "
3034 					"streams are already disabled!\n",
3035 					eps[i]->desc.bEndpointAddress);
3036 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3037 					"with non-streams endpoint\n");
3038 			return 0;
3039 		}
3040 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3041 	}
3042 	return changed_ep_bitmask;
3043 }
3044 
3045 /*
3046  * The USB device drivers use this function (through the HCD interface in USB
3047  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3048  * coordinate mass storage command queueing across multiple endpoints (basically
3049  * a stream ID == a task ID).
3050  *
3051  * Setting up streams involves allocating the same size stream context array
3052  * for each endpoint and issuing a configure endpoint command for all endpoints.
3053  *
3054  * Don't allow the call to succeed if one endpoint only supports one stream
3055  * (which means it doesn't support streams at all).
3056  *
3057  * Drivers may get less stream IDs than they asked for, if the host controller
3058  * hardware or endpoints claim they can't support the number of requested
3059  * stream IDs.
3060  */
3061 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3062 		struct usb_host_endpoint **eps, unsigned int num_eps,
3063 		unsigned int num_streams, gfp_t mem_flags)
3064 {
3065 	int i, ret;
3066 	struct xhci_hcd *xhci;
3067 	struct xhci_virt_device *vdev;
3068 	struct xhci_command *config_cmd;
3069 	struct xhci_input_control_ctx *ctrl_ctx;
3070 	unsigned int ep_index;
3071 	unsigned int num_stream_ctxs;
3072 	unsigned int max_packet;
3073 	unsigned long flags;
3074 	u32 changed_ep_bitmask = 0;
3075 
3076 	if (!eps)
3077 		return -EINVAL;
3078 
3079 	/* Add one to the number of streams requested to account for
3080 	 * stream 0 that is reserved for xHCI usage.
3081 	 */
3082 	num_streams += 1;
3083 	xhci = hcd_to_xhci(hcd);
3084 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3085 			num_streams);
3086 
3087 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3088 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3089 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3090 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3091 		return -ENOSYS;
3092 	}
3093 
3094 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3095 	if (!config_cmd)
3096 		return -ENOMEM;
3097 
3098 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3099 	if (!ctrl_ctx) {
3100 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3101 				__func__);
3102 		xhci_free_command(xhci, config_cmd);
3103 		return -ENOMEM;
3104 	}
3105 
3106 	/* Check to make sure all endpoints are not already configured for
3107 	 * streams.  While we're at it, find the maximum number of streams that
3108 	 * all the endpoints will support and check for duplicate endpoints.
3109 	 */
3110 	spin_lock_irqsave(&xhci->lock, flags);
3111 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3112 			num_eps, &num_streams, &changed_ep_bitmask);
3113 	if (ret < 0) {
3114 		xhci_free_command(xhci, config_cmd);
3115 		spin_unlock_irqrestore(&xhci->lock, flags);
3116 		return ret;
3117 	}
3118 	if (num_streams <= 1) {
3119 		xhci_warn(xhci, "WARN: endpoints can't handle "
3120 				"more than one stream.\n");
3121 		xhci_free_command(xhci, config_cmd);
3122 		spin_unlock_irqrestore(&xhci->lock, flags);
3123 		return -EINVAL;
3124 	}
3125 	vdev = xhci->devs[udev->slot_id];
3126 	/* Mark each endpoint as being in transition, so
3127 	 * xhci_urb_enqueue() will reject all URBs.
3128 	 */
3129 	for (i = 0; i < num_eps; i++) {
3130 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3131 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3132 	}
3133 	spin_unlock_irqrestore(&xhci->lock, flags);
3134 
3135 	/* Setup internal data structures and allocate HW data structures for
3136 	 * streams (but don't install the HW structures in the input context
3137 	 * until we're sure all memory allocation succeeded).
3138 	 */
3139 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3140 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3141 			num_stream_ctxs, num_streams);
3142 
3143 	for (i = 0; i < num_eps; i++) {
3144 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3145 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3146 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3147 				num_stream_ctxs,
3148 				num_streams,
3149 				max_packet, mem_flags);
3150 		if (!vdev->eps[ep_index].stream_info)
3151 			goto cleanup;
3152 		/* Set maxPstreams in endpoint context and update deq ptr to
3153 		 * point to stream context array. FIXME
3154 		 */
3155 	}
3156 
3157 	/* Set up the input context for a configure endpoint command. */
3158 	for (i = 0; i < num_eps; i++) {
3159 		struct xhci_ep_ctx *ep_ctx;
3160 
3161 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3162 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3163 
3164 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3165 				vdev->out_ctx, ep_index);
3166 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3167 				vdev->eps[ep_index].stream_info);
3168 	}
3169 	/* Tell the HW to drop its old copy of the endpoint context info
3170 	 * and add the updated copy from the input context.
3171 	 */
3172 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3173 			vdev->out_ctx, ctrl_ctx,
3174 			changed_ep_bitmask, changed_ep_bitmask);
3175 
3176 	/* Issue and wait for the configure endpoint command */
3177 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3178 			false, false);
3179 
3180 	/* xHC rejected the configure endpoint command for some reason, so we
3181 	 * leave the old ring intact and free our internal streams data
3182 	 * structure.
3183 	 */
3184 	if (ret < 0)
3185 		goto cleanup;
3186 
3187 	spin_lock_irqsave(&xhci->lock, flags);
3188 	for (i = 0; i < num_eps; i++) {
3189 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3190 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3191 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3192 			 udev->slot_id, ep_index);
3193 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3194 	}
3195 	xhci_free_command(xhci, config_cmd);
3196 	spin_unlock_irqrestore(&xhci->lock, flags);
3197 
3198 	/* Subtract 1 for stream 0, which drivers can't use */
3199 	return num_streams - 1;
3200 
3201 cleanup:
3202 	/* If it didn't work, free the streams! */
3203 	for (i = 0; i < num_eps; i++) {
3204 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3205 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3206 		vdev->eps[ep_index].stream_info = NULL;
3207 		/* FIXME Unset maxPstreams in endpoint context and
3208 		 * update deq ptr to point to normal string ring.
3209 		 */
3210 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3211 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3212 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3213 	}
3214 	xhci_free_command(xhci, config_cmd);
3215 	return -ENOMEM;
3216 }
3217 
3218 /* Transition the endpoint from using streams to being a "normal" endpoint
3219  * without streams.
3220  *
3221  * Modify the endpoint context state, submit a configure endpoint command,
3222  * and free all endpoint rings for streams if that completes successfully.
3223  */
3224 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3225 		struct usb_host_endpoint **eps, unsigned int num_eps,
3226 		gfp_t mem_flags)
3227 {
3228 	int i, ret;
3229 	struct xhci_hcd *xhci;
3230 	struct xhci_virt_device *vdev;
3231 	struct xhci_command *command;
3232 	struct xhci_input_control_ctx *ctrl_ctx;
3233 	unsigned int ep_index;
3234 	unsigned long flags;
3235 	u32 changed_ep_bitmask;
3236 
3237 	xhci = hcd_to_xhci(hcd);
3238 	vdev = xhci->devs[udev->slot_id];
3239 
3240 	/* Set up a configure endpoint command to remove the streams rings */
3241 	spin_lock_irqsave(&xhci->lock, flags);
3242 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3243 			udev, eps, num_eps);
3244 	if (changed_ep_bitmask == 0) {
3245 		spin_unlock_irqrestore(&xhci->lock, flags);
3246 		return -EINVAL;
3247 	}
3248 
3249 	/* Use the xhci_command structure from the first endpoint.  We may have
3250 	 * allocated too many, but the driver may call xhci_free_streams() for
3251 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3252 	 */
3253 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3254 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3255 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3256 	if (!ctrl_ctx) {
3257 		spin_unlock_irqrestore(&xhci->lock, flags);
3258 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3259 				__func__);
3260 		return -EINVAL;
3261 	}
3262 
3263 	for (i = 0; i < num_eps; i++) {
3264 		struct xhci_ep_ctx *ep_ctx;
3265 
3266 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3267 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3268 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3269 			EP_GETTING_NO_STREAMS;
3270 
3271 		xhci_endpoint_copy(xhci, command->in_ctx,
3272 				vdev->out_ctx, ep_index);
3273 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3274 				&vdev->eps[ep_index]);
3275 	}
3276 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3277 			vdev->out_ctx, ctrl_ctx,
3278 			changed_ep_bitmask, changed_ep_bitmask);
3279 	spin_unlock_irqrestore(&xhci->lock, flags);
3280 
3281 	/* Issue and wait for the configure endpoint command,
3282 	 * which must succeed.
3283 	 */
3284 	ret = xhci_configure_endpoint(xhci, udev, command,
3285 			false, true);
3286 
3287 	/* xHC rejected the configure endpoint command for some reason, so we
3288 	 * leave the streams rings intact.
3289 	 */
3290 	if (ret < 0)
3291 		return ret;
3292 
3293 	spin_lock_irqsave(&xhci->lock, flags);
3294 	for (i = 0; i < num_eps; i++) {
3295 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3296 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3297 		vdev->eps[ep_index].stream_info = NULL;
3298 		/* FIXME Unset maxPstreams in endpoint context and
3299 		 * update deq ptr to point to normal string ring.
3300 		 */
3301 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3302 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3303 	}
3304 	spin_unlock_irqrestore(&xhci->lock, flags);
3305 
3306 	return 0;
3307 }
3308 
3309 /*
3310  * Deletes endpoint resources for endpoints that were active before a Reset
3311  * Device command, or a Disable Slot command.  The Reset Device command leaves
3312  * the control endpoint intact, whereas the Disable Slot command deletes it.
3313  *
3314  * Must be called with xhci->lock held.
3315  */
3316 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3317 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3318 {
3319 	int i;
3320 	unsigned int num_dropped_eps = 0;
3321 	unsigned int drop_flags = 0;
3322 
3323 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3324 		if (virt_dev->eps[i].ring) {
3325 			drop_flags |= 1 << i;
3326 			num_dropped_eps++;
3327 		}
3328 	}
3329 	xhci->num_active_eps -= num_dropped_eps;
3330 	if (num_dropped_eps)
3331 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3332 				"Dropped %u ep ctxs, flags = 0x%x, "
3333 				"%u now active.",
3334 				num_dropped_eps, drop_flags,
3335 				xhci->num_active_eps);
3336 }
3337 
3338 /*
3339  * This submits a Reset Device Command, which will set the device state to 0,
3340  * set the device address to 0, and disable all the endpoints except the default
3341  * control endpoint.  The USB core should come back and call
3342  * xhci_address_device(), and then re-set up the configuration.  If this is
3343  * called because of a usb_reset_and_verify_device(), then the old alternate
3344  * settings will be re-installed through the normal bandwidth allocation
3345  * functions.
3346  *
3347  * Wait for the Reset Device command to finish.  Remove all structures
3348  * associated with the endpoints that were disabled.  Clear the input device
3349  * structure? Reset the control endpoint 0 max packet size?
3350  *
3351  * If the virt_dev to be reset does not exist or does not match the udev,
3352  * it means the device is lost, possibly due to the xHC restore error and
3353  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3354  * re-allocate the device.
3355  */
3356 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3357 		struct usb_device *udev)
3358 {
3359 	int ret, i;
3360 	unsigned long flags;
3361 	struct xhci_hcd *xhci;
3362 	unsigned int slot_id;
3363 	struct xhci_virt_device *virt_dev;
3364 	struct xhci_command *reset_device_cmd;
3365 	struct xhci_slot_ctx *slot_ctx;
3366 	int old_active_eps = 0;
3367 
3368 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3369 	if (ret <= 0)
3370 		return ret;
3371 	xhci = hcd_to_xhci(hcd);
3372 	slot_id = udev->slot_id;
3373 	virt_dev = xhci->devs[slot_id];
3374 	if (!virt_dev) {
3375 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3376 				"not exist. Re-allocate the device\n", slot_id);
3377 		ret = xhci_alloc_dev(hcd, udev);
3378 		if (ret == 1)
3379 			return 0;
3380 		else
3381 			return -EINVAL;
3382 	}
3383 
3384 	if (virt_dev->tt_info)
3385 		old_active_eps = virt_dev->tt_info->active_eps;
3386 
3387 	if (virt_dev->udev != udev) {
3388 		/* If the virt_dev and the udev does not match, this virt_dev
3389 		 * may belong to another udev.
3390 		 * Re-allocate the device.
3391 		 */
3392 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3393 				"not match the udev. Re-allocate the device\n",
3394 				slot_id);
3395 		ret = xhci_alloc_dev(hcd, udev);
3396 		if (ret == 1)
3397 			return 0;
3398 		else
3399 			return -EINVAL;
3400 	}
3401 
3402 	/* If device is not setup, there is no point in resetting it */
3403 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3404 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3405 						SLOT_STATE_DISABLED)
3406 		return 0;
3407 
3408 	trace_xhci_discover_or_reset_device(slot_ctx);
3409 
3410 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3411 	/* Allocate the command structure that holds the struct completion.
3412 	 * Assume we're in process context, since the normal device reset
3413 	 * process has to wait for the device anyway.  Storage devices are
3414 	 * reset as part of error handling, so use GFP_NOIO instead of
3415 	 * GFP_KERNEL.
3416 	 */
3417 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3418 	if (!reset_device_cmd) {
3419 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3420 		return -ENOMEM;
3421 	}
3422 
3423 	/* Attempt to submit the Reset Device command to the command ring */
3424 	spin_lock_irqsave(&xhci->lock, flags);
3425 
3426 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3427 	if (ret) {
3428 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3429 		spin_unlock_irqrestore(&xhci->lock, flags);
3430 		goto command_cleanup;
3431 	}
3432 	xhci_ring_cmd_db(xhci);
3433 	spin_unlock_irqrestore(&xhci->lock, flags);
3434 
3435 	/* Wait for the Reset Device command to finish */
3436 	wait_for_completion(reset_device_cmd->completion);
3437 
3438 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3439 	 * unless we tried to reset a slot ID that wasn't enabled,
3440 	 * or the device wasn't in the addressed or configured state.
3441 	 */
3442 	ret = reset_device_cmd->status;
3443 	switch (ret) {
3444 	case COMP_COMMAND_ABORTED:
3445 	case COMP_COMMAND_RING_STOPPED:
3446 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3447 		ret = -ETIME;
3448 		goto command_cleanup;
3449 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3450 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3451 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3452 				slot_id,
3453 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3454 		xhci_dbg(xhci, "Not freeing device rings.\n");
3455 		/* Don't treat this as an error.  May change my mind later. */
3456 		ret = 0;
3457 		goto command_cleanup;
3458 	case COMP_SUCCESS:
3459 		xhci_dbg(xhci, "Successful reset device command.\n");
3460 		break;
3461 	default:
3462 		if (xhci_is_vendor_info_code(xhci, ret))
3463 			break;
3464 		xhci_warn(xhci, "Unknown completion code %u for "
3465 				"reset device command.\n", ret);
3466 		ret = -EINVAL;
3467 		goto command_cleanup;
3468 	}
3469 
3470 	/* Free up host controller endpoint resources */
3471 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3472 		spin_lock_irqsave(&xhci->lock, flags);
3473 		/* Don't delete the default control endpoint resources */
3474 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3475 		spin_unlock_irqrestore(&xhci->lock, flags);
3476 	}
3477 
3478 	/* Everything but endpoint 0 is disabled, so free the rings. */
3479 	for (i = 1; i < 31; i++) {
3480 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3481 
3482 		if (ep->ep_state & EP_HAS_STREAMS) {
3483 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3484 					xhci_get_endpoint_address(i));
3485 			xhci_free_stream_info(xhci, ep->stream_info);
3486 			ep->stream_info = NULL;
3487 			ep->ep_state &= ~EP_HAS_STREAMS;
3488 		}
3489 
3490 		if (ep->ring) {
3491 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3492 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3493 		}
3494 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3495 			xhci_drop_ep_from_interval_table(xhci,
3496 					&virt_dev->eps[i].bw_info,
3497 					virt_dev->bw_table,
3498 					udev,
3499 					&virt_dev->eps[i],
3500 					virt_dev->tt_info);
3501 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3502 	}
3503 	/* If necessary, update the number of active TTs on this root port */
3504 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3505 	ret = 0;
3506 
3507 command_cleanup:
3508 	xhci_free_command(xhci, reset_device_cmd);
3509 	return ret;
3510 }
3511 
3512 /*
3513  * At this point, the struct usb_device is about to go away, the device has
3514  * disconnected, and all traffic has been stopped and the endpoints have been
3515  * disabled.  Free any HC data structures associated with that device.
3516  */
3517 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3518 {
3519 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3520 	struct xhci_virt_device *virt_dev;
3521 	struct xhci_slot_ctx *slot_ctx;
3522 	int i, ret;
3523 
3524 #ifndef CONFIG_USB_DEFAULT_PERSIST
3525 	/*
3526 	 * We called pm_runtime_get_noresume when the device was attached.
3527 	 * Decrement the counter here to allow controller to runtime suspend
3528 	 * if no devices remain.
3529 	 */
3530 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3531 		pm_runtime_put_noidle(hcd->self.controller);
3532 #endif
3533 
3534 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3535 	/* If the host is halted due to driver unload, we still need to free the
3536 	 * device.
3537 	 */
3538 	if (ret <= 0 && ret != -ENODEV)
3539 		return;
3540 
3541 	virt_dev = xhci->devs[udev->slot_id];
3542 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3543 	trace_xhci_free_dev(slot_ctx);
3544 
3545 	/* Stop any wayward timer functions (which may grab the lock) */
3546 	for (i = 0; i < 31; i++) {
3547 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3548 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3549 	}
3550 	xhci_debugfs_remove_slot(xhci, udev->slot_id);
3551 	ret = xhci_disable_slot(xhci, udev->slot_id);
3552 	if (ret)
3553 		xhci_free_virt_device(xhci, udev->slot_id);
3554 }
3555 
3556 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3557 {
3558 	struct xhci_command *command;
3559 	unsigned long flags;
3560 	u32 state;
3561 	int ret = 0;
3562 
3563 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3564 	if (!command)
3565 		return -ENOMEM;
3566 
3567 	spin_lock_irqsave(&xhci->lock, flags);
3568 	/* Don't disable the slot if the host controller is dead. */
3569 	state = readl(&xhci->op_regs->status);
3570 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3571 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3572 		spin_unlock_irqrestore(&xhci->lock, flags);
3573 		kfree(command);
3574 		return -ENODEV;
3575 	}
3576 
3577 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3578 				slot_id);
3579 	if (ret) {
3580 		spin_unlock_irqrestore(&xhci->lock, flags);
3581 		kfree(command);
3582 		return ret;
3583 	}
3584 	xhci_ring_cmd_db(xhci);
3585 	spin_unlock_irqrestore(&xhci->lock, flags);
3586 	return ret;
3587 }
3588 
3589 /*
3590  * Checks if we have enough host controller resources for the default control
3591  * endpoint.
3592  *
3593  * Must be called with xhci->lock held.
3594  */
3595 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3596 {
3597 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3598 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3599 				"Not enough ep ctxs: "
3600 				"%u active, need to add 1, limit is %u.",
3601 				xhci->num_active_eps, xhci->limit_active_eps);
3602 		return -ENOMEM;
3603 	}
3604 	xhci->num_active_eps += 1;
3605 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3606 			"Adding 1 ep ctx, %u now active.",
3607 			xhci->num_active_eps);
3608 	return 0;
3609 }
3610 
3611 
3612 /*
3613  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3614  * timed out, or allocating memory failed.  Returns 1 on success.
3615  */
3616 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3617 {
3618 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3619 	struct xhci_virt_device *vdev;
3620 	struct xhci_slot_ctx *slot_ctx;
3621 	unsigned long flags;
3622 	int ret, slot_id;
3623 	struct xhci_command *command;
3624 
3625 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3626 	if (!command)
3627 		return 0;
3628 
3629 	spin_lock_irqsave(&xhci->lock, flags);
3630 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3631 	if (ret) {
3632 		spin_unlock_irqrestore(&xhci->lock, flags);
3633 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3634 		xhci_free_command(xhci, command);
3635 		return 0;
3636 	}
3637 	xhci_ring_cmd_db(xhci);
3638 	spin_unlock_irqrestore(&xhci->lock, flags);
3639 
3640 	wait_for_completion(command->completion);
3641 	slot_id = command->slot_id;
3642 
3643 	if (!slot_id || command->status != COMP_SUCCESS) {
3644 		xhci_err(xhci, "Error while assigning device slot ID\n");
3645 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3646 				HCS_MAX_SLOTS(
3647 					readl(&xhci->cap_regs->hcs_params1)));
3648 		xhci_free_command(xhci, command);
3649 		return 0;
3650 	}
3651 
3652 	xhci_free_command(xhci, command);
3653 
3654 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3655 		spin_lock_irqsave(&xhci->lock, flags);
3656 		ret = xhci_reserve_host_control_ep_resources(xhci);
3657 		if (ret) {
3658 			spin_unlock_irqrestore(&xhci->lock, flags);
3659 			xhci_warn(xhci, "Not enough host resources, "
3660 					"active endpoint contexts = %u\n",
3661 					xhci->num_active_eps);
3662 			goto disable_slot;
3663 		}
3664 		spin_unlock_irqrestore(&xhci->lock, flags);
3665 	}
3666 	/* Use GFP_NOIO, since this function can be called from
3667 	 * xhci_discover_or_reset_device(), which may be called as part of
3668 	 * mass storage driver error handling.
3669 	 */
3670 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3671 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3672 		goto disable_slot;
3673 	}
3674 	vdev = xhci->devs[slot_id];
3675 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3676 	trace_xhci_alloc_dev(slot_ctx);
3677 
3678 	udev->slot_id = slot_id;
3679 
3680 	xhci_debugfs_create_slot(xhci, slot_id);
3681 
3682 #ifndef CONFIG_USB_DEFAULT_PERSIST
3683 	/*
3684 	 * If resetting upon resume, we can't put the controller into runtime
3685 	 * suspend if there is a device attached.
3686 	 */
3687 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3688 		pm_runtime_get_noresume(hcd->self.controller);
3689 #endif
3690 
3691 	/* Is this a LS or FS device under a HS hub? */
3692 	/* Hub or peripherial? */
3693 	return 1;
3694 
3695 disable_slot:
3696 	ret = xhci_disable_slot(xhci, udev->slot_id);
3697 	if (ret)
3698 		xhci_free_virt_device(xhci, udev->slot_id);
3699 
3700 	return 0;
3701 }
3702 
3703 /*
3704  * Issue an Address Device command and optionally send a corresponding
3705  * SetAddress request to the device.
3706  */
3707 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3708 			     enum xhci_setup_dev setup)
3709 {
3710 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3711 	unsigned long flags;
3712 	struct xhci_virt_device *virt_dev;
3713 	int ret = 0;
3714 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3715 	struct xhci_slot_ctx *slot_ctx;
3716 	struct xhci_input_control_ctx *ctrl_ctx;
3717 	u64 temp_64;
3718 	struct xhci_command *command = NULL;
3719 
3720 	mutex_lock(&xhci->mutex);
3721 
3722 	if (xhci->xhc_state) {	/* dying, removing or halted */
3723 		ret = -ESHUTDOWN;
3724 		goto out;
3725 	}
3726 
3727 	if (!udev->slot_id) {
3728 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3729 				"Bad Slot ID %d", udev->slot_id);
3730 		ret = -EINVAL;
3731 		goto out;
3732 	}
3733 
3734 	virt_dev = xhci->devs[udev->slot_id];
3735 
3736 	if (WARN_ON(!virt_dev)) {
3737 		/*
3738 		 * In plug/unplug torture test with an NEC controller,
3739 		 * a zero-dereference was observed once due to virt_dev = 0.
3740 		 * Print useful debug rather than crash if it is observed again!
3741 		 */
3742 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3743 			udev->slot_id);
3744 		ret = -EINVAL;
3745 		goto out;
3746 	}
3747 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3748 	trace_xhci_setup_device_slot(slot_ctx);
3749 
3750 	if (setup == SETUP_CONTEXT_ONLY) {
3751 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3752 		    SLOT_STATE_DEFAULT) {
3753 			xhci_dbg(xhci, "Slot already in default state\n");
3754 			goto out;
3755 		}
3756 	}
3757 
3758 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3759 	if (!command) {
3760 		ret = -ENOMEM;
3761 		goto out;
3762 	}
3763 
3764 	command->in_ctx = virt_dev->in_ctx;
3765 
3766 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3767 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3768 	if (!ctrl_ctx) {
3769 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3770 				__func__);
3771 		ret = -EINVAL;
3772 		goto out;
3773 	}
3774 	/*
3775 	 * If this is the first Set Address since device plug-in or
3776 	 * virt_device realloaction after a resume with an xHCI power loss,
3777 	 * then set up the slot context.
3778 	 */
3779 	if (!slot_ctx->dev_info)
3780 		xhci_setup_addressable_virt_dev(xhci, udev);
3781 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3782 	else
3783 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3784 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3785 	ctrl_ctx->drop_flags = 0;
3786 
3787 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3788 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3789 
3790 	spin_lock_irqsave(&xhci->lock, flags);
3791 	trace_xhci_setup_device(virt_dev);
3792 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3793 					udev->slot_id, setup);
3794 	if (ret) {
3795 		spin_unlock_irqrestore(&xhci->lock, flags);
3796 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3797 				"FIXME: allocate a command ring segment");
3798 		goto out;
3799 	}
3800 	xhci_ring_cmd_db(xhci);
3801 	spin_unlock_irqrestore(&xhci->lock, flags);
3802 
3803 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3804 	wait_for_completion(command->completion);
3805 
3806 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3807 	 * the SetAddress() "recovery interval" required by USB and aborting the
3808 	 * command on a timeout.
3809 	 */
3810 	switch (command->status) {
3811 	case COMP_COMMAND_ABORTED:
3812 	case COMP_COMMAND_RING_STOPPED:
3813 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3814 		ret = -ETIME;
3815 		break;
3816 	case COMP_CONTEXT_STATE_ERROR:
3817 	case COMP_SLOT_NOT_ENABLED_ERROR:
3818 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3819 			 act, udev->slot_id);
3820 		ret = -EINVAL;
3821 		break;
3822 	case COMP_USB_TRANSACTION_ERROR:
3823 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3824 
3825 		mutex_unlock(&xhci->mutex);
3826 		ret = xhci_disable_slot(xhci, udev->slot_id);
3827 		if (!ret)
3828 			xhci_alloc_dev(hcd, udev);
3829 		kfree(command->completion);
3830 		kfree(command);
3831 		return -EPROTO;
3832 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
3833 		dev_warn(&udev->dev,
3834 			 "ERROR: Incompatible device for setup %s command\n", act);
3835 		ret = -ENODEV;
3836 		break;
3837 	case COMP_SUCCESS:
3838 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3839 			       "Successful setup %s command", act);
3840 		break;
3841 	default:
3842 		xhci_err(xhci,
3843 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3844 			 act, command->status);
3845 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3846 		ret = -EINVAL;
3847 		break;
3848 	}
3849 	if (ret)
3850 		goto out;
3851 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3852 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3853 			"Op regs DCBAA ptr = %#016llx", temp_64);
3854 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3855 		"Slot ID %d dcbaa entry @%p = %#016llx",
3856 		udev->slot_id,
3857 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3858 		(unsigned long long)
3859 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3860 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3861 			"Output Context DMA address = %#08llx",
3862 			(unsigned long long)virt_dev->out_ctx->dma);
3863 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3864 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3865 	/*
3866 	 * USB core uses address 1 for the roothubs, so we add one to the
3867 	 * address given back to us by the HC.
3868 	 */
3869 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3870 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3871 	/* Zero the input context control for later use */
3872 	ctrl_ctx->add_flags = 0;
3873 	ctrl_ctx->drop_flags = 0;
3874 
3875 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3876 		       "Internal device address = %d",
3877 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3878 out:
3879 	mutex_unlock(&xhci->mutex);
3880 	if (command) {
3881 		kfree(command->completion);
3882 		kfree(command);
3883 	}
3884 	return ret;
3885 }
3886 
3887 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3888 {
3889 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3890 }
3891 
3892 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3893 {
3894 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3895 }
3896 
3897 /*
3898  * Transfer the port index into real index in the HW port status
3899  * registers. Caculate offset between the port's PORTSC register
3900  * and port status base. Divide the number of per port register
3901  * to get the real index. The raw port number bases 1.
3902  */
3903 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3904 {
3905 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3906 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3907 	__le32 __iomem *addr;
3908 	int raw_port;
3909 
3910 	if (hcd->speed < HCD_USB3)
3911 		addr = xhci->usb2_ports[port1 - 1];
3912 	else
3913 		addr = xhci->usb3_ports[port1 - 1];
3914 
3915 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3916 	return raw_port;
3917 }
3918 
3919 /*
3920  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3921  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3922  */
3923 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3924 			struct usb_device *udev, u16 max_exit_latency)
3925 {
3926 	struct xhci_virt_device *virt_dev;
3927 	struct xhci_command *command;
3928 	struct xhci_input_control_ctx *ctrl_ctx;
3929 	struct xhci_slot_ctx *slot_ctx;
3930 	unsigned long flags;
3931 	int ret;
3932 
3933 	spin_lock_irqsave(&xhci->lock, flags);
3934 
3935 	virt_dev = xhci->devs[udev->slot_id];
3936 
3937 	/*
3938 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3939 	 * xHC was re-initialized. Exit latency will be set later after
3940 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3941 	 */
3942 
3943 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3944 		spin_unlock_irqrestore(&xhci->lock, flags);
3945 		return 0;
3946 	}
3947 
3948 	/* Attempt to issue an Evaluate Context command to change the MEL. */
3949 	command = xhci->lpm_command;
3950 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3951 	if (!ctrl_ctx) {
3952 		spin_unlock_irqrestore(&xhci->lock, flags);
3953 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3954 				__func__);
3955 		return -ENOMEM;
3956 	}
3957 
3958 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3959 	spin_unlock_irqrestore(&xhci->lock, flags);
3960 
3961 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3962 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3963 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3964 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3965 	slot_ctx->dev_state = 0;
3966 
3967 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3968 			"Set up evaluate context for LPM MEL change.");
3969 
3970 	/* Issue and wait for the evaluate context command. */
3971 	ret = xhci_configure_endpoint(xhci, udev, command,
3972 			true, true);
3973 
3974 	if (!ret) {
3975 		spin_lock_irqsave(&xhci->lock, flags);
3976 		virt_dev->current_mel = max_exit_latency;
3977 		spin_unlock_irqrestore(&xhci->lock, flags);
3978 	}
3979 	return ret;
3980 }
3981 
3982 #ifdef CONFIG_PM
3983 
3984 /* BESL to HIRD Encoding array for USB2 LPM */
3985 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3986 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3987 
3988 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3989 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3990 					struct usb_device *udev)
3991 {
3992 	int u2del, besl, besl_host;
3993 	int besl_device = 0;
3994 	u32 field;
3995 
3996 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3997 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3998 
3999 	if (field & USB_BESL_SUPPORT) {
4000 		for (besl_host = 0; besl_host < 16; besl_host++) {
4001 			if (xhci_besl_encoding[besl_host] >= u2del)
4002 				break;
4003 		}
4004 		/* Use baseline BESL value as default */
4005 		if (field & USB_BESL_BASELINE_VALID)
4006 			besl_device = USB_GET_BESL_BASELINE(field);
4007 		else if (field & USB_BESL_DEEP_VALID)
4008 			besl_device = USB_GET_BESL_DEEP(field);
4009 	} else {
4010 		if (u2del <= 50)
4011 			besl_host = 0;
4012 		else
4013 			besl_host = (u2del - 51) / 75 + 1;
4014 	}
4015 
4016 	besl = besl_host + besl_device;
4017 	if (besl > 15)
4018 		besl = 15;
4019 
4020 	return besl;
4021 }
4022 
4023 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4024 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4025 {
4026 	u32 field;
4027 	int l1;
4028 	int besld = 0;
4029 	int hirdm = 0;
4030 
4031 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4032 
4033 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4034 	l1 = udev->l1_params.timeout / 256;
4035 
4036 	/* device has preferred BESLD */
4037 	if (field & USB_BESL_DEEP_VALID) {
4038 		besld = USB_GET_BESL_DEEP(field);
4039 		hirdm = 1;
4040 	}
4041 
4042 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4043 }
4044 
4045 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4046 			struct usb_device *udev, int enable)
4047 {
4048 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4049 	__le32 __iomem	**port_array;
4050 	__le32 __iomem	*pm_addr, *hlpm_addr;
4051 	u32		pm_val, hlpm_val, field;
4052 	unsigned int	port_num;
4053 	unsigned long	flags;
4054 	int		hird, exit_latency;
4055 	int		ret;
4056 
4057 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4058 			!udev->lpm_capable)
4059 		return -EPERM;
4060 
4061 	if (!udev->parent || udev->parent->parent ||
4062 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4063 		return -EPERM;
4064 
4065 	if (udev->usb2_hw_lpm_capable != 1)
4066 		return -EPERM;
4067 
4068 	spin_lock_irqsave(&xhci->lock, flags);
4069 
4070 	port_array = xhci->usb2_ports;
4071 	port_num = udev->portnum - 1;
4072 	pm_addr = port_array[port_num] + PORTPMSC;
4073 	pm_val = readl(pm_addr);
4074 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4075 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4076 
4077 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4078 			enable ? "enable" : "disable", port_num + 1);
4079 
4080 	if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4081 		/* Host supports BESL timeout instead of HIRD */
4082 		if (udev->usb2_hw_lpm_besl_capable) {
4083 			/* if device doesn't have a preferred BESL value use a
4084 			 * default one which works with mixed HIRD and BESL
4085 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4086 			 */
4087 			if ((field & USB_BESL_SUPPORT) &&
4088 			    (field & USB_BESL_BASELINE_VALID))
4089 				hird = USB_GET_BESL_BASELINE(field);
4090 			else
4091 				hird = udev->l1_params.besl;
4092 
4093 			exit_latency = xhci_besl_encoding[hird];
4094 			spin_unlock_irqrestore(&xhci->lock, flags);
4095 
4096 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4097 			 * input context for link powermanagement evaluate
4098 			 * context commands. It is protected by hcd->bandwidth
4099 			 * mutex and is shared by all devices. We need to set
4100 			 * the max ext latency in USB 2 BESL LPM as well, so
4101 			 * use the same mutex and xhci_change_max_exit_latency()
4102 			 */
4103 			mutex_lock(hcd->bandwidth_mutex);
4104 			ret = xhci_change_max_exit_latency(xhci, udev,
4105 							   exit_latency);
4106 			mutex_unlock(hcd->bandwidth_mutex);
4107 
4108 			if (ret < 0)
4109 				return ret;
4110 			spin_lock_irqsave(&xhci->lock, flags);
4111 
4112 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4113 			writel(hlpm_val, hlpm_addr);
4114 			/* flush write */
4115 			readl(hlpm_addr);
4116 		} else {
4117 			hird = xhci_calculate_hird_besl(xhci, udev);
4118 		}
4119 
4120 		pm_val &= ~PORT_HIRD_MASK;
4121 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4122 		writel(pm_val, pm_addr);
4123 		pm_val = readl(pm_addr);
4124 		pm_val |= PORT_HLE;
4125 		writel(pm_val, pm_addr);
4126 		/* flush write */
4127 		readl(pm_addr);
4128 	} else {
4129 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4130 		writel(pm_val, pm_addr);
4131 		/* flush write */
4132 		readl(pm_addr);
4133 		if (udev->usb2_hw_lpm_besl_capable) {
4134 			spin_unlock_irqrestore(&xhci->lock, flags);
4135 			mutex_lock(hcd->bandwidth_mutex);
4136 			xhci_change_max_exit_latency(xhci, udev, 0);
4137 			mutex_unlock(hcd->bandwidth_mutex);
4138 			return 0;
4139 		}
4140 	}
4141 
4142 	spin_unlock_irqrestore(&xhci->lock, flags);
4143 	return 0;
4144 }
4145 
4146 /* check if a usb2 port supports a given extened capability protocol
4147  * only USB2 ports extended protocol capability values are cached.
4148  * Return 1 if capability is supported
4149  */
4150 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4151 					   unsigned capability)
4152 {
4153 	u32 port_offset, port_count;
4154 	int i;
4155 
4156 	for (i = 0; i < xhci->num_ext_caps; i++) {
4157 		if (xhci->ext_caps[i] & capability) {
4158 			/* port offsets starts at 1 */
4159 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4160 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4161 			if (port >= port_offset &&
4162 			    port < port_offset + port_count)
4163 				return 1;
4164 		}
4165 	}
4166 	return 0;
4167 }
4168 
4169 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4170 {
4171 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4172 	int		portnum = udev->portnum - 1;
4173 
4174 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4175 			!udev->lpm_capable)
4176 		return 0;
4177 
4178 	/* we only support lpm for non-hub device connected to root hub yet */
4179 	if (!udev->parent || udev->parent->parent ||
4180 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4181 		return 0;
4182 
4183 	if (xhci->hw_lpm_support == 1 &&
4184 			xhci_check_usb2_port_capability(
4185 				xhci, portnum, XHCI_HLC)) {
4186 		udev->usb2_hw_lpm_capable = 1;
4187 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4188 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4189 		if (xhci_check_usb2_port_capability(xhci, portnum,
4190 					XHCI_BLC))
4191 			udev->usb2_hw_lpm_besl_capable = 1;
4192 	}
4193 
4194 	return 0;
4195 }
4196 
4197 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4198 
4199 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4200 static unsigned long long xhci_service_interval_to_ns(
4201 		struct usb_endpoint_descriptor *desc)
4202 {
4203 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4204 }
4205 
4206 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4207 		enum usb3_link_state state)
4208 {
4209 	unsigned long long sel;
4210 	unsigned long long pel;
4211 	unsigned int max_sel_pel;
4212 	char *state_name;
4213 
4214 	switch (state) {
4215 	case USB3_LPM_U1:
4216 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4217 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4218 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4219 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4220 		state_name = "U1";
4221 		break;
4222 	case USB3_LPM_U2:
4223 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4224 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4225 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4226 		state_name = "U2";
4227 		break;
4228 	default:
4229 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4230 				__func__);
4231 		return USB3_LPM_DISABLED;
4232 	}
4233 
4234 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4235 		return USB3_LPM_DEVICE_INITIATED;
4236 
4237 	if (sel > max_sel_pel)
4238 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4239 				"due to long SEL %llu ms\n",
4240 				state_name, sel);
4241 	else
4242 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4243 				"due to long PEL %llu ms\n",
4244 				state_name, pel);
4245 	return USB3_LPM_DISABLED;
4246 }
4247 
4248 /* The U1 timeout should be the maximum of the following values:
4249  *  - For control endpoints, U1 system exit latency (SEL) * 3
4250  *  - For bulk endpoints, U1 SEL * 5
4251  *  - For interrupt endpoints:
4252  *    - Notification EPs, U1 SEL * 3
4253  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4254  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4255  */
4256 static unsigned long long xhci_calculate_intel_u1_timeout(
4257 		struct usb_device *udev,
4258 		struct usb_endpoint_descriptor *desc)
4259 {
4260 	unsigned long long timeout_ns;
4261 	int ep_type;
4262 	int intr_type;
4263 
4264 	ep_type = usb_endpoint_type(desc);
4265 	switch (ep_type) {
4266 	case USB_ENDPOINT_XFER_CONTROL:
4267 		timeout_ns = udev->u1_params.sel * 3;
4268 		break;
4269 	case USB_ENDPOINT_XFER_BULK:
4270 		timeout_ns = udev->u1_params.sel * 5;
4271 		break;
4272 	case USB_ENDPOINT_XFER_INT:
4273 		intr_type = usb_endpoint_interrupt_type(desc);
4274 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4275 			timeout_ns = udev->u1_params.sel * 3;
4276 			break;
4277 		}
4278 		/* Otherwise the calculation is the same as isoc eps */
4279 		/* fall through */
4280 	case USB_ENDPOINT_XFER_ISOC:
4281 		timeout_ns = xhci_service_interval_to_ns(desc);
4282 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4283 		if (timeout_ns < udev->u1_params.sel * 2)
4284 			timeout_ns = udev->u1_params.sel * 2;
4285 		break;
4286 	default:
4287 		return 0;
4288 	}
4289 
4290 	return timeout_ns;
4291 }
4292 
4293 /* Returns the hub-encoded U1 timeout value. */
4294 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4295 		struct usb_device *udev,
4296 		struct usb_endpoint_descriptor *desc)
4297 {
4298 	unsigned long long timeout_ns;
4299 
4300 	if (xhci->quirks & XHCI_INTEL_HOST)
4301 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4302 	else
4303 		timeout_ns = udev->u1_params.sel;
4304 
4305 	/* The U1 timeout is encoded in 1us intervals.
4306 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4307 	 */
4308 	if (timeout_ns == USB3_LPM_DISABLED)
4309 		timeout_ns = 1;
4310 	else
4311 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4312 
4313 	/* If the necessary timeout value is bigger than what we can set in the
4314 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4315 	 */
4316 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4317 		return timeout_ns;
4318 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4319 			"due to long timeout %llu ms\n", timeout_ns);
4320 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4321 }
4322 
4323 /* The U2 timeout should be the maximum of:
4324  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4325  *  - largest bInterval of any active periodic endpoint (to avoid going
4326  *    into lower power link states between intervals).
4327  *  - the U2 Exit Latency of the device
4328  */
4329 static unsigned long long xhci_calculate_intel_u2_timeout(
4330 		struct usb_device *udev,
4331 		struct usb_endpoint_descriptor *desc)
4332 {
4333 	unsigned long long timeout_ns;
4334 	unsigned long long u2_del_ns;
4335 
4336 	timeout_ns = 10 * 1000 * 1000;
4337 
4338 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4339 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4340 		timeout_ns = xhci_service_interval_to_ns(desc);
4341 
4342 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4343 	if (u2_del_ns > timeout_ns)
4344 		timeout_ns = u2_del_ns;
4345 
4346 	return timeout_ns;
4347 }
4348 
4349 /* Returns the hub-encoded U2 timeout value. */
4350 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4351 		struct usb_device *udev,
4352 		struct usb_endpoint_descriptor *desc)
4353 {
4354 	unsigned long long timeout_ns;
4355 
4356 	if (xhci->quirks & XHCI_INTEL_HOST)
4357 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4358 	else
4359 		timeout_ns = udev->u2_params.sel;
4360 
4361 	/* The U2 timeout is encoded in 256us intervals */
4362 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4363 	/* If the necessary timeout value is bigger than what we can set in the
4364 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4365 	 */
4366 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4367 		return timeout_ns;
4368 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4369 			"due to long timeout %llu ms\n", timeout_ns);
4370 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4371 }
4372 
4373 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4374 		struct usb_device *udev,
4375 		struct usb_endpoint_descriptor *desc,
4376 		enum usb3_link_state state,
4377 		u16 *timeout)
4378 {
4379 	if (state == USB3_LPM_U1)
4380 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4381 	else if (state == USB3_LPM_U2)
4382 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4383 
4384 	return USB3_LPM_DISABLED;
4385 }
4386 
4387 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4388 		struct usb_device *udev,
4389 		struct usb_endpoint_descriptor *desc,
4390 		enum usb3_link_state state,
4391 		u16 *timeout)
4392 {
4393 	u16 alt_timeout;
4394 
4395 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4396 		desc, state, timeout);
4397 
4398 	/* If we found we can't enable hub-initiated LPM, or
4399 	 * the U1 or U2 exit latency was too high to allow
4400 	 * device-initiated LPM as well, just stop searching.
4401 	 */
4402 	if (alt_timeout == USB3_LPM_DISABLED ||
4403 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4404 		*timeout = alt_timeout;
4405 		return -E2BIG;
4406 	}
4407 	if (alt_timeout > *timeout)
4408 		*timeout = alt_timeout;
4409 	return 0;
4410 }
4411 
4412 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4413 		struct usb_device *udev,
4414 		struct usb_host_interface *alt,
4415 		enum usb3_link_state state,
4416 		u16 *timeout)
4417 {
4418 	int j;
4419 
4420 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4421 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4422 					&alt->endpoint[j].desc, state, timeout))
4423 			return -E2BIG;
4424 		continue;
4425 	}
4426 	return 0;
4427 }
4428 
4429 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4430 		enum usb3_link_state state)
4431 {
4432 	struct usb_device *parent;
4433 	unsigned int num_hubs;
4434 
4435 	if (state == USB3_LPM_U2)
4436 		return 0;
4437 
4438 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4439 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4440 			parent = parent->parent)
4441 		num_hubs++;
4442 
4443 	if (num_hubs < 2)
4444 		return 0;
4445 
4446 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4447 			" below second-tier hub.\n");
4448 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4449 			"to decrease power consumption.\n");
4450 	return -E2BIG;
4451 }
4452 
4453 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4454 		struct usb_device *udev,
4455 		enum usb3_link_state state)
4456 {
4457 	if (xhci->quirks & XHCI_INTEL_HOST)
4458 		return xhci_check_intel_tier_policy(udev, state);
4459 	else
4460 		return 0;
4461 }
4462 
4463 /* Returns the U1 or U2 timeout that should be enabled.
4464  * If the tier check or timeout setting functions return with a non-zero exit
4465  * code, that means the timeout value has been finalized and we shouldn't look
4466  * at any more endpoints.
4467  */
4468 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4469 			struct usb_device *udev, enum usb3_link_state state)
4470 {
4471 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4472 	struct usb_host_config *config;
4473 	char *state_name;
4474 	int i;
4475 	u16 timeout = USB3_LPM_DISABLED;
4476 
4477 	if (state == USB3_LPM_U1)
4478 		state_name = "U1";
4479 	else if (state == USB3_LPM_U2)
4480 		state_name = "U2";
4481 	else {
4482 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4483 				state);
4484 		return timeout;
4485 	}
4486 
4487 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4488 		return timeout;
4489 
4490 	/* Gather some information about the currently installed configuration
4491 	 * and alternate interface settings.
4492 	 */
4493 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4494 			state, &timeout))
4495 		return timeout;
4496 
4497 	config = udev->actconfig;
4498 	if (!config)
4499 		return timeout;
4500 
4501 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4502 		struct usb_driver *driver;
4503 		struct usb_interface *intf = config->interface[i];
4504 
4505 		if (!intf)
4506 			continue;
4507 
4508 		/* Check if any currently bound drivers want hub-initiated LPM
4509 		 * disabled.
4510 		 */
4511 		if (intf->dev.driver) {
4512 			driver = to_usb_driver(intf->dev.driver);
4513 			if (driver && driver->disable_hub_initiated_lpm) {
4514 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4515 						"at request of driver %s\n",
4516 						state_name, driver->name);
4517 				return xhci_get_timeout_no_hub_lpm(udev, state);
4518 			}
4519 		}
4520 
4521 		/* Not sure how this could happen... */
4522 		if (!intf->cur_altsetting)
4523 			continue;
4524 
4525 		if (xhci_update_timeout_for_interface(xhci, udev,
4526 					intf->cur_altsetting,
4527 					state, &timeout))
4528 			return timeout;
4529 	}
4530 	return timeout;
4531 }
4532 
4533 static int calculate_max_exit_latency(struct usb_device *udev,
4534 		enum usb3_link_state state_changed,
4535 		u16 hub_encoded_timeout)
4536 {
4537 	unsigned long long u1_mel_us = 0;
4538 	unsigned long long u2_mel_us = 0;
4539 	unsigned long long mel_us = 0;
4540 	bool disabling_u1;
4541 	bool disabling_u2;
4542 	bool enabling_u1;
4543 	bool enabling_u2;
4544 
4545 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4546 			hub_encoded_timeout == USB3_LPM_DISABLED);
4547 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4548 			hub_encoded_timeout == USB3_LPM_DISABLED);
4549 
4550 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4551 			hub_encoded_timeout != USB3_LPM_DISABLED);
4552 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4553 			hub_encoded_timeout != USB3_LPM_DISABLED);
4554 
4555 	/* If U1 was already enabled and we're not disabling it,
4556 	 * or we're going to enable U1, account for the U1 max exit latency.
4557 	 */
4558 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4559 			enabling_u1)
4560 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4561 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4562 			enabling_u2)
4563 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4564 
4565 	if (u1_mel_us > u2_mel_us)
4566 		mel_us = u1_mel_us;
4567 	else
4568 		mel_us = u2_mel_us;
4569 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4570 	if (mel_us > MAX_EXIT) {
4571 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4572 				"is too big.\n", mel_us);
4573 		return -E2BIG;
4574 	}
4575 	return mel_us;
4576 }
4577 
4578 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4579 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4580 			struct usb_device *udev, enum usb3_link_state state)
4581 {
4582 	struct xhci_hcd	*xhci;
4583 	u16 hub_encoded_timeout;
4584 	int mel;
4585 	int ret;
4586 
4587 	xhci = hcd_to_xhci(hcd);
4588 	/* The LPM timeout values are pretty host-controller specific, so don't
4589 	 * enable hub-initiated timeouts unless the vendor has provided
4590 	 * information about their timeout algorithm.
4591 	 */
4592 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4593 			!xhci->devs[udev->slot_id])
4594 		return USB3_LPM_DISABLED;
4595 
4596 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4597 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4598 	if (mel < 0) {
4599 		/* Max Exit Latency is too big, disable LPM. */
4600 		hub_encoded_timeout = USB3_LPM_DISABLED;
4601 		mel = 0;
4602 	}
4603 
4604 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4605 	if (ret)
4606 		return ret;
4607 	return hub_encoded_timeout;
4608 }
4609 
4610 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4611 			struct usb_device *udev, enum usb3_link_state state)
4612 {
4613 	struct xhci_hcd	*xhci;
4614 	u16 mel;
4615 
4616 	xhci = hcd_to_xhci(hcd);
4617 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4618 			!xhci->devs[udev->slot_id])
4619 		return 0;
4620 
4621 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4622 	return xhci_change_max_exit_latency(xhci, udev, mel);
4623 }
4624 #else /* CONFIG_PM */
4625 
4626 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4627 				struct usb_device *udev, int enable)
4628 {
4629 	return 0;
4630 }
4631 
4632 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4633 {
4634 	return 0;
4635 }
4636 
4637 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4638 			struct usb_device *udev, enum usb3_link_state state)
4639 {
4640 	return USB3_LPM_DISABLED;
4641 }
4642 
4643 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4644 			struct usb_device *udev, enum usb3_link_state state)
4645 {
4646 	return 0;
4647 }
4648 #endif	/* CONFIG_PM */
4649 
4650 /*-------------------------------------------------------------------------*/
4651 
4652 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4653  * internal data structures for the device.
4654  */
4655 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4656 			struct usb_tt *tt, gfp_t mem_flags)
4657 {
4658 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4659 	struct xhci_virt_device *vdev;
4660 	struct xhci_command *config_cmd;
4661 	struct xhci_input_control_ctx *ctrl_ctx;
4662 	struct xhci_slot_ctx *slot_ctx;
4663 	unsigned long flags;
4664 	unsigned think_time;
4665 	int ret;
4666 
4667 	/* Ignore root hubs */
4668 	if (!hdev->parent)
4669 		return 0;
4670 
4671 	vdev = xhci->devs[hdev->slot_id];
4672 	if (!vdev) {
4673 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4674 		return -EINVAL;
4675 	}
4676 
4677 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4678 	if (!config_cmd)
4679 		return -ENOMEM;
4680 
4681 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4682 	if (!ctrl_ctx) {
4683 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4684 				__func__);
4685 		xhci_free_command(xhci, config_cmd);
4686 		return -ENOMEM;
4687 	}
4688 
4689 	spin_lock_irqsave(&xhci->lock, flags);
4690 	if (hdev->speed == USB_SPEED_HIGH &&
4691 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4692 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4693 		xhci_free_command(xhci, config_cmd);
4694 		spin_unlock_irqrestore(&xhci->lock, flags);
4695 		return -ENOMEM;
4696 	}
4697 
4698 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4699 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4700 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4701 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4702 	/*
4703 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4704 	 * but it may be already set to 1 when setup an xHCI virtual
4705 	 * device, so clear it anyway.
4706 	 */
4707 	if (tt->multi)
4708 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4709 	else if (hdev->speed == USB_SPEED_FULL)
4710 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4711 
4712 	if (xhci->hci_version > 0x95) {
4713 		xhci_dbg(xhci, "xHCI version %x needs hub "
4714 				"TT think time and number of ports\n",
4715 				(unsigned int) xhci->hci_version);
4716 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4717 		/* Set TT think time - convert from ns to FS bit times.
4718 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4719 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4720 		 *
4721 		 * xHCI 1.0: this field shall be 0 if the device is not a
4722 		 * High-spped hub.
4723 		 */
4724 		think_time = tt->think_time;
4725 		if (think_time != 0)
4726 			think_time = (think_time / 666) - 1;
4727 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4728 			slot_ctx->tt_info |=
4729 				cpu_to_le32(TT_THINK_TIME(think_time));
4730 	} else {
4731 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4732 				"TT think time or number of ports\n",
4733 				(unsigned int) xhci->hci_version);
4734 	}
4735 	slot_ctx->dev_state = 0;
4736 	spin_unlock_irqrestore(&xhci->lock, flags);
4737 
4738 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4739 			(xhci->hci_version > 0x95) ?
4740 			"configure endpoint" : "evaluate context");
4741 
4742 	/* Issue and wait for the configure endpoint or
4743 	 * evaluate context command.
4744 	 */
4745 	if (xhci->hci_version > 0x95)
4746 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4747 				false, false);
4748 	else
4749 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4750 				true, false);
4751 
4752 	xhci_free_command(xhci, config_cmd);
4753 	return ret;
4754 }
4755 
4756 static int xhci_get_frame(struct usb_hcd *hcd)
4757 {
4758 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4759 	/* EHCI mods by the periodic size.  Why? */
4760 	return readl(&xhci->run_regs->microframe_index) >> 3;
4761 }
4762 
4763 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4764 {
4765 	struct xhci_hcd		*xhci;
4766 	/*
4767 	 * TODO: Check with DWC3 clients for sysdev according to
4768 	 * quirks
4769 	 */
4770 	struct device		*dev = hcd->self.sysdev;
4771 	int			retval;
4772 
4773 	/* Accept arbitrarily long scatter-gather lists */
4774 	hcd->self.sg_tablesize = ~0;
4775 
4776 	/* support to build packet from discontinuous buffers */
4777 	hcd->self.no_sg_constraint = 1;
4778 
4779 	/* XHCI controllers don't stop the ep queue on short packets :| */
4780 	hcd->self.no_stop_on_short = 1;
4781 
4782 	xhci = hcd_to_xhci(hcd);
4783 
4784 	if (usb_hcd_is_primary_hcd(hcd)) {
4785 		xhci->main_hcd = hcd;
4786 		/* Mark the first roothub as being USB 2.0.
4787 		 * The xHCI driver will register the USB 3.0 roothub.
4788 		 */
4789 		hcd->speed = HCD_USB2;
4790 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4791 		/*
4792 		 * USB 2.0 roothub under xHCI has an integrated TT,
4793 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4794 		 * companion controller.
4795 		 */
4796 		hcd->has_tt = 1;
4797 	} else {
4798 		/* Some 3.1 hosts return sbrn 0x30, can't rely on sbrn alone */
4799 		if (xhci->sbrn == 0x31 || xhci->usb3_rhub.min_rev >= 1) {
4800 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4801 			hcd->speed = HCD_USB31;
4802 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4803 		}
4804 		/* xHCI private pointer was set in xhci_pci_probe for the second
4805 		 * registered roothub.
4806 		 */
4807 		return 0;
4808 	}
4809 
4810 	mutex_init(&xhci->mutex);
4811 	xhci->cap_regs = hcd->regs;
4812 	xhci->op_regs = hcd->regs +
4813 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4814 	xhci->run_regs = hcd->regs +
4815 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4816 	/* Cache read-only capability registers */
4817 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4818 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4819 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4820 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4821 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4822 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4823 	if (xhci->hci_version > 0x100)
4824 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4825 
4826 	xhci->quirks |= quirks;
4827 
4828 	get_quirks(dev, xhci);
4829 
4830 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4831 	 * success event after a short transfer. This quirk will ignore such
4832 	 * spurious event.
4833 	 */
4834 	if (xhci->hci_version > 0x96)
4835 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4836 
4837 	/* Make sure the HC is halted. */
4838 	retval = xhci_halt(xhci);
4839 	if (retval)
4840 		return retval;
4841 
4842 	xhci_dbg(xhci, "Resetting HCD\n");
4843 	/* Reset the internal HC memory state and registers. */
4844 	retval = xhci_reset(xhci);
4845 	if (retval)
4846 		return retval;
4847 	xhci_dbg(xhci, "Reset complete\n");
4848 
4849 	/*
4850 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4851 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4852 	 * address memory pointers actually. So, this driver clears the AC64
4853 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4854 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4855 	 */
4856 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4857 		xhci->hcc_params &= ~BIT(0);
4858 
4859 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4860 	 * if xHC supports 64-bit addressing */
4861 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4862 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4863 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4864 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4865 	} else {
4866 		/*
4867 		 * This is to avoid error in cases where a 32-bit USB
4868 		 * controller is used on a 64-bit capable system.
4869 		 */
4870 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4871 		if (retval)
4872 			return retval;
4873 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4874 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4875 	}
4876 
4877 	xhci_dbg(xhci, "Calling HCD init\n");
4878 	/* Initialize HCD and host controller data structures. */
4879 	retval = xhci_init(hcd);
4880 	if (retval)
4881 		return retval;
4882 	xhci_dbg(xhci, "Called HCD init\n");
4883 
4884 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4885 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4886 
4887 	return 0;
4888 }
4889 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4890 
4891 static const struct hc_driver xhci_hc_driver = {
4892 	.description =		"xhci-hcd",
4893 	.product_desc =		"xHCI Host Controller",
4894 	.hcd_priv_size =	sizeof(struct xhci_hcd),
4895 
4896 	/*
4897 	 * generic hardware linkage
4898 	 */
4899 	.irq =			xhci_irq,
4900 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4901 
4902 	/*
4903 	 * basic lifecycle operations
4904 	 */
4905 	.reset =		NULL, /* set in xhci_init_driver() */
4906 	.start =		xhci_run,
4907 	.stop =			xhci_stop,
4908 	.shutdown =		xhci_shutdown,
4909 
4910 	/*
4911 	 * managing i/o requests and associated device resources
4912 	 */
4913 	.urb_enqueue =		xhci_urb_enqueue,
4914 	.urb_dequeue =		xhci_urb_dequeue,
4915 	.alloc_dev =		xhci_alloc_dev,
4916 	.free_dev =		xhci_free_dev,
4917 	.alloc_streams =	xhci_alloc_streams,
4918 	.free_streams =		xhci_free_streams,
4919 	.add_endpoint =		xhci_add_endpoint,
4920 	.drop_endpoint =	xhci_drop_endpoint,
4921 	.endpoint_reset =	xhci_endpoint_reset,
4922 	.check_bandwidth =	xhci_check_bandwidth,
4923 	.reset_bandwidth =	xhci_reset_bandwidth,
4924 	.address_device =	xhci_address_device,
4925 	.enable_device =	xhci_enable_device,
4926 	.update_hub_device =	xhci_update_hub_device,
4927 	.reset_device =		xhci_discover_or_reset_device,
4928 
4929 	/*
4930 	 * scheduling support
4931 	 */
4932 	.get_frame_number =	xhci_get_frame,
4933 
4934 	/*
4935 	 * root hub support
4936 	 */
4937 	.hub_control =		xhci_hub_control,
4938 	.hub_status_data =	xhci_hub_status_data,
4939 	.bus_suspend =		xhci_bus_suspend,
4940 	.bus_resume =		xhci_bus_resume,
4941 
4942 	/*
4943 	 * call back when device connected and addressed
4944 	 */
4945 	.update_device =        xhci_update_device,
4946 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
4947 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
4948 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
4949 	.find_raw_port_number =	xhci_find_raw_port_number,
4950 };
4951 
4952 void xhci_init_driver(struct hc_driver *drv,
4953 		      const struct xhci_driver_overrides *over)
4954 {
4955 	BUG_ON(!over);
4956 
4957 	/* Copy the generic table to drv then apply the overrides */
4958 	*drv = xhci_hc_driver;
4959 
4960 	if (over) {
4961 		drv->hcd_priv_size += over->extra_priv_size;
4962 		if (over->reset)
4963 			drv->reset = over->reset;
4964 		if (over->start)
4965 			drv->start = over->start;
4966 	}
4967 }
4968 EXPORT_SYMBOL_GPL(xhci_init_driver);
4969 
4970 MODULE_DESCRIPTION(DRIVER_DESC);
4971 MODULE_AUTHOR(DRIVER_AUTHOR);
4972 MODULE_LICENSE("GPL");
4973 
4974 static int __init xhci_hcd_init(void)
4975 {
4976 	/*
4977 	 * Check the compiler generated sizes of structures that must be laid
4978 	 * out in specific ways for hardware access.
4979 	 */
4980 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4981 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4982 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4983 	/* xhci_device_control has eight fields, and also
4984 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4985 	 */
4986 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4987 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4988 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4989 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
4990 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4991 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4992 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4993 
4994 	if (usb_disabled())
4995 		return -ENODEV;
4996 
4997 	xhci_debugfs_create_root();
4998 
4999 	return 0;
5000 }
5001 
5002 /*
5003  * If an init function is provided, an exit function must also be provided
5004  * to allow module unload.
5005  */
5006 static void __exit xhci_hcd_fini(void)
5007 {
5008 	xhci_debugfs_remove_root();
5009 }
5010 
5011 module_init(xhci_hcd_init);
5012 module_exit(xhci_hcd_fini);
5013