1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/log2.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/slab.h> 17 #include <linux/dmi.h> 18 #include <linux/dma-mapping.h> 19 20 #include "xhci.h" 21 #include "xhci-trace.h" 22 #include "xhci-mtk.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned int quirks; 37 module_param(quirks, uint, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 41 /* 42 * xhci_handshake - spin reading hc until handshake completes or fails 43 * @ptr: address of hc register to be read 44 * @mask: bits to look at in result of read 45 * @done: value of those bits when handshake succeeds 46 * @usec: timeout in microseconds 47 * 48 * Returns negative errno, or zero on success 49 * 50 * Success happens when the "mask" bits have the specified value (hardware 51 * handshake done). There are two failure modes: "usec" have passed (major 52 * hardware flakeout), or the register reads as all-ones (hardware removed). 53 */ 54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 55 { 56 u32 result; 57 58 do { 59 result = readl(ptr); 60 if (result == ~(u32)0) /* card removed */ 61 return -ENODEV; 62 result &= mask; 63 if (result == done) 64 return 0; 65 udelay(1); 66 usec--; 67 } while (usec > 0); 68 return -ETIMEDOUT; 69 } 70 71 /* 72 * Disable interrupts and begin the xHCI halting process. 73 */ 74 void xhci_quiesce(struct xhci_hcd *xhci) 75 { 76 u32 halted; 77 u32 cmd; 78 u32 mask; 79 80 mask = ~(XHCI_IRQS); 81 halted = readl(&xhci->op_regs->status) & STS_HALT; 82 if (!halted) 83 mask &= ~CMD_RUN; 84 85 cmd = readl(&xhci->op_regs->command); 86 cmd &= mask; 87 writel(cmd, &xhci->op_regs->command); 88 } 89 90 /* 91 * Force HC into halt state. 92 * 93 * Disable any IRQs and clear the run/stop bit. 94 * HC will complete any current and actively pipelined transactions, and 95 * should halt within 16 ms of the run/stop bit being cleared. 96 * Read HC Halted bit in the status register to see when the HC is finished. 97 */ 98 int xhci_halt(struct xhci_hcd *xhci) 99 { 100 int ret; 101 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 102 xhci_quiesce(xhci); 103 104 ret = xhci_handshake(&xhci->op_regs->status, 105 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 106 if (ret) { 107 xhci_warn(xhci, "Host halt failed, %d\n", ret); 108 return ret; 109 } 110 xhci->xhc_state |= XHCI_STATE_HALTED; 111 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 112 return ret; 113 } 114 115 /* 116 * Set the run bit and wait for the host to be running. 117 */ 118 int xhci_start(struct xhci_hcd *xhci) 119 { 120 u32 temp; 121 int ret; 122 123 temp = readl(&xhci->op_regs->command); 124 temp |= (CMD_RUN); 125 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 126 temp); 127 writel(temp, &xhci->op_regs->command); 128 129 /* 130 * Wait for the HCHalted Status bit to be 0 to indicate the host is 131 * running. 132 */ 133 ret = xhci_handshake(&xhci->op_regs->status, 134 STS_HALT, 0, XHCI_MAX_HALT_USEC); 135 if (ret == -ETIMEDOUT) 136 xhci_err(xhci, "Host took too long to start, " 137 "waited %u microseconds.\n", 138 XHCI_MAX_HALT_USEC); 139 if (!ret) 140 /* clear state flags. Including dying, halted or removing */ 141 xhci->xhc_state = 0; 142 143 return ret; 144 } 145 146 /* 147 * Reset a halted HC. 148 * 149 * This resets pipelines, timers, counters, state machines, etc. 150 * Transactions will be terminated immediately, and operational registers 151 * will be set to their defaults. 152 */ 153 int xhci_reset(struct xhci_hcd *xhci) 154 { 155 u32 command; 156 u32 state; 157 int ret, i; 158 159 state = readl(&xhci->op_regs->status); 160 161 if (state == ~(u32)0) { 162 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 163 return -ENODEV; 164 } 165 166 if ((state & STS_HALT) == 0) { 167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 168 return 0; 169 } 170 171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 172 command = readl(&xhci->op_regs->command); 173 command |= CMD_RESET; 174 writel(command, &xhci->op_regs->command); 175 176 /* Existing Intel xHCI controllers require a delay of 1 mS, 177 * after setting the CMD_RESET bit, and before accessing any 178 * HC registers. This allows the HC to complete the 179 * reset operation and be ready for HC register access. 180 * Without this delay, the subsequent HC register access, 181 * may result in a system hang very rarely. 182 */ 183 if (xhci->quirks & XHCI_INTEL_HOST) 184 udelay(1000); 185 186 ret = xhci_handshake(&xhci->op_regs->command, 187 CMD_RESET, 0, 10 * 1000 * 1000); 188 if (ret) 189 return ret; 190 191 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 192 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 193 194 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 195 "Wait for controller to be ready for doorbell rings"); 196 /* 197 * xHCI cannot write to any doorbells or operational registers other 198 * than status until the "Controller Not Ready" flag is cleared. 199 */ 200 ret = xhci_handshake(&xhci->op_regs->status, 201 STS_CNR, 0, 10 * 1000 * 1000); 202 203 for (i = 0; i < 2; i++) { 204 xhci->bus_state[i].port_c_suspend = 0; 205 xhci->bus_state[i].suspended_ports = 0; 206 xhci->bus_state[i].resuming_ports = 0; 207 } 208 209 return ret; 210 } 211 212 213 #ifdef CONFIG_USB_PCI 214 /* 215 * Set up MSI 216 */ 217 static int xhci_setup_msi(struct xhci_hcd *xhci) 218 { 219 int ret; 220 /* 221 * TODO:Check with MSI Soc for sysdev 222 */ 223 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 224 225 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 226 if (ret < 0) { 227 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 228 "failed to allocate MSI entry"); 229 return ret; 230 } 231 232 ret = request_irq(pdev->irq, xhci_msi_irq, 233 0, "xhci_hcd", xhci_to_hcd(xhci)); 234 if (ret) { 235 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 236 "disable MSI interrupt"); 237 pci_free_irq_vectors(pdev); 238 } 239 240 return ret; 241 } 242 243 /* 244 * Set up MSI-X 245 */ 246 static int xhci_setup_msix(struct xhci_hcd *xhci) 247 { 248 int i, ret = 0; 249 struct usb_hcd *hcd = xhci_to_hcd(xhci); 250 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 251 252 /* 253 * calculate number of msi-x vectors supported. 254 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 255 * with max number of interrupters based on the xhci HCSPARAMS1. 256 * - num_online_cpus: maximum msi-x vectors per CPUs core. 257 * Add additional 1 vector to ensure always available interrupt. 258 */ 259 xhci->msix_count = min(num_online_cpus() + 1, 260 HCS_MAX_INTRS(xhci->hcs_params1)); 261 262 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 263 PCI_IRQ_MSIX); 264 if (ret < 0) { 265 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 266 "Failed to enable MSI-X"); 267 return ret; 268 } 269 270 for (i = 0; i < xhci->msix_count; i++) { 271 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 272 "xhci_hcd", xhci_to_hcd(xhci)); 273 if (ret) 274 goto disable_msix; 275 } 276 277 hcd->msix_enabled = 1; 278 return ret; 279 280 disable_msix: 281 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 282 while (--i >= 0) 283 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 284 pci_free_irq_vectors(pdev); 285 return ret; 286 } 287 288 /* Free any IRQs and disable MSI-X */ 289 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 290 { 291 struct usb_hcd *hcd = xhci_to_hcd(xhci); 292 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 293 294 if (xhci->quirks & XHCI_PLAT) 295 return; 296 297 /* return if using legacy interrupt */ 298 if (hcd->irq > 0) 299 return; 300 301 if (hcd->msix_enabled) { 302 int i; 303 304 for (i = 0; i < xhci->msix_count; i++) 305 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 306 } else { 307 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 308 } 309 310 pci_free_irq_vectors(pdev); 311 hcd->msix_enabled = 0; 312 } 313 314 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 315 { 316 struct usb_hcd *hcd = xhci_to_hcd(xhci); 317 318 if (hcd->msix_enabled) { 319 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 320 int i; 321 322 for (i = 0; i < xhci->msix_count; i++) 323 synchronize_irq(pci_irq_vector(pdev, i)); 324 } 325 } 326 327 static int xhci_try_enable_msi(struct usb_hcd *hcd) 328 { 329 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 330 struct pci_dev *pdev; 331 int ret; 332 333 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 334 if (xhci->quirks & XHCI_PLAT) 335 return 0; 336 337 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 338 /* 339 * Some Fresco Logic host controllers advertise MSI, but fail to 340 * generate interrupts. Don't even try to enable MSI. 341 */ 342 if (xhci->quirks & XHCI_BROKEN_MSI) 343 goto legacy_irq; 344 345 /* unregister the legacy interrupt */ 346 if (hcd->irq) 347 free_irq(hcd->irq, hcd); 348 hcd->irq = 0; 349 350 ret = xhci_setup_msix(xhci); 351 if (ret) 352 /* fall back to msi*/ 353 ret = xhci_setup_msi(xhci); 354 355 if (!ret) { 356 hcd->msi_enabled = 1; 357 return 0; 358 } 359 360 if (!pdev->irq) { 361 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 362 return -EINVAL; 363 } 364 365 legacy_irq: 366 if (!strlen(hcd->irq_descr)) 367 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 368 hcd->driver->description, hcd->self.busnum); 369 370 /* fall back to legacy interrupt*/ 371 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 372 hcd->irq_descr, hcd); 373 if (ret) { 374 xhci_err(xhci, "request interrupt %d failed\n", 375 pdev->irq); 376 return ret; 377 } 378 hcd->irq = pdev->irq; 379 return 0; 380 } 381 382 #else 383 384 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 385 { 386 return 0; 387 } 388 389 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 390 { 391 } 392 393 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 394 { 395 } 396 397 #endif 398 399 static void compliance_mode_recovery(struct timer_list *t) 400 { 401 struct xhci_hcd *xhci; 402 struct usb_hcd *hcd; 403 u32 temp; 404 int i; 405 406 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 407 408 for (i = 0; i < xhci->num_usb3_ports; i++) { 409 temp = readl(xhci->usb3_ports[i]); 410 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 411 /* 412 * Compliance Mode Detected. Letting USB Core 413 * handle the Warm Reset 414 */ 415 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 416 "Compliance mode detected->port %d", 417 i + 1); 418 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 419 "Attempting compliance mode recovery"); 420 hcd = xhci->shared_hcd; 421 422 if (hcd->state == HC_STATE_SUSPENDED) 423 usb_hcd_resume_root_hub(hcd); 424 425 usb_hcd_poll_rh_status(hcd); 426 } 427 } 428 429 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 430 mod_timer(&xhci->comp_mode_recovery_timer, 431 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 432 } 433 434 /* 435 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 436 * that causes ports behind that hardware to enter compliance mode sometimes. 437 * The quirk creates a timer that polls every 2 seconds the link state of 438 * each host controller's port and recovers it by issuing a Warm reset 439 * if Compliance mode is detected, otherwise the port will become "dead" (no 440 * device connections or disconnections will be detected anymore). Becasue no 441 * status event is generated when entering compliance mode (per xhci spec), 442 * this quirk is needed on systems that have the failing hardware installed. 443 */ 444 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 445 { 446 xhci->port_status_u0 = 0; 447 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 448 0); 449 xhci->comp_mode_recovery_timer.expires = jiffies + 450 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 451 452 add_timer(&xhci->comp_mode_recovery_timer); 453 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 454 "Compliance mode recovery timer initialized"); 455 } 456 457 /* 458 * This function identifies the systems that have installed the SN65LVPE502CP 459 * USB3.0 re-driver and that need the Compliance Mode Quirk. 460 * Systems: 461 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 462 */ 463 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 464 { 465 const char *dmi_product_name, *dmi_sys_vendor; 466 467 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 468 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 469 if (!dmi_product_name || !dmi_sys_vendor) 470 return false; 471 472 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 473 return false; 474 475 if (strstr(dmi_product_name, "Z420") || 476 strstr(dmi_product_name, "Z620") || 477 strstr(dmi_product_name, "Z820") || 478 strstr(dmi_product_name, "Z1 Workstation")) 479 return true; 480 481 return false; 482 } 483 484 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 485 { 486 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 487 } 488 489 490 /* 491 * Initialize memory for HCD and xHC (one-time init). 492 * 493 * Program the PAGESIZE register, initialize the device context array, create 494 * device contexts (?), set up a command ring segment (or two?), create event 495 * ring (one for now). 496 */ 497 static int xhci_init(struct usb_hcd *hcd) 498 { 499 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 500 int retval = 0; 501 502 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 503 spin_lock_init(&xhci->lock); 504 if (xhci->hci_version == 0x95 && link_quirk) { 505 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 506 "QUIRK: Not clearing Link TRB chain bits."); 507 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 508 } else { 509 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 510 "xHCI doesn't need link TRB QUIRK"); 511 } 512 retval = xhci_mem_init(xhci, GFP_KERNEL); 513 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 514 515 /* Initializing Compliance Mode Recovery Data If Needed */ 516 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 517 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 518 compliance_mode_recovery_timer_init(xhci); 519 } 520 521 return retval; 522 } 523 524 /*-------------------------------------------------------------------------*/ 525 526 527 static int xhci_run_finished(struct xhci_hcd *xhci) 528 { 529 if (xhci_start(xhci)) { 530 xhci_halt(xhci); 531 return -ENODEV; 532 } 533 xhci->shared_hcd->state = HC_STATE_RUNNING; 534 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 535 536 if (xhci->quirks & XHCI_NEC_HOST) 537 xhci_ring_cmd_db(xhci); 538 539 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 540 "Finished xhci_run for USB3 roothub"); 541 return 0; 542 } 543 544 /* 545 * Start the HC after it was halted. 546 * 547 * This function is called by the USB core when the HC driver is added. 548 * Its opposite is xhci_stop(). 549 * 550 * xhci_init() must be called once before this function can be called. 551 * Reset the HC, enable device slot contexts, program DCBAAP, and 552 * set command ring pointer and event ring pointer. 553 * 554 * Setup MSI-X vectors and enable interrupts. 555 */ 556 int xhci_run(struct usb_hcd *hcd) 557 { 558 u32 temp; 559 u64 temp_64; 560 int ret; 561 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 562 563 /* Start the xHCI host controller running only after the USB 2.0 roothub 564 * is setup. 565 */ 566 567 hcd->uses_new_polling = 1; 568 if (!usb_hcd_is_primary_hcd(hcd)) 569 return xhci_run_finished(xhci); 570 571 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 572 573 ret = xhci_try_enable_msi(hcd); 574 if (ret) 575 return ret; 576 577 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 578 temp_64 &= ~ERST_PTR_MASK; 579 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 580 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 581 582 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 583 "// Set the interrupt modulation register"); 584 temp = readl(&xhci->ir_set->irq_control); 585 temp &= ~ER_IRQ_INTERVAL_MASK; 586 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 587 writel(temp, &xhci->ir_set->irq_control); 588 589 /* Set the HCD state before we enable the irqs */ 590 temp = readl(&xhci->op_regs->command); 591 temp |= (CMD_EIE); 592 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 593 "// Enable interrupts, cmd = 0x%x.", temp); 594 writel(temp, &xhci->op_regs->command); 595 596 temp = readl(&xhci->ir_set->irq_pending); 597 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 598 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 599 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 600 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 601 602 if (xhci->quirks & XHCI_NEC_HOST) { 603 struct xhci_command *command; 604 605 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 606 if (!command) 607 return -ENOMEM; 608 609 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 610 TRB_TYPE(TRB_NEC_GET_FW)); 611 if (ret) 612 xhci_free_command(xhci, command); 613 } 614 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 615 "Finished xhci_run for USB2 roothub"); 616 617 xhci_dbc_init(xhci); 618 619 xhci_debugfs_init(xhci); 620 621 return 0; 622 } 623 EXPORT_SYMBOL_GPL(xhci_run); 624 625 /* 626 * Stop xHCI driver. 627 * 628 * This function is called by the USB core when the HC driver is removed. 629 * Its opposite is xhci_run(). 630 * 631 * Disable device contexts, disable IRQs, and quiesce the HC. 632 * Reset the HC, finish any completed transactions, and cleanup memory. 633 */ 634 static void xhci_stop(struct usb_hcd *hcd) 635 { 636 u32 temp; 637 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 638 639 mutex_lock(&xhci->mutex); 640 641 /* Only halt host and free memory after both hcds are removed */ 642 if (!usb_hcd_is_primary_hcd(hcd)) { 643 /* usb core will free this hcd shortly, unset pointer */ 644 xhci->shared_hcd = NULL; 645 mutex_unlock(&xhci->mutex); 646 return; 647 } 648 649 xhci_dbc_exit(xhci); 650 651 spin_lock_irq(&xhci->lock); 652 xhci->xhc_state |= XHCI_STATE_HALTED; 653 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 654 xhci_halt(xhci); 655 xhci_reset(xhci); 656 spin_unlock_irq(&xhci->lock); 657 658 xhci_cleanup_msix(xhci); 659 660 /* Deleting Compliance Mode Recovery Timer */ 661 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 662 (!(xhci_all_ports_seen_u0(xhci)))) { 663 del_timer_sync(&xhci->comp_mode_recovery_timer); 664 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 665 "%s: compliance mode recovery timer deleted", 666 __func__); 667 } 668 669 if (xhci->quirks & XHCI_AMD_PLL_FIX) 670 usb_amd_dev_put(); 671 672 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 673 "// Disabling event ring interrupts"); 674 temp = readl(&xhci->op_regs->status); 675 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 676 temp = readl(&xhci->ir_set->irq_pending); 677 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 678 679 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 680 xhci_mem_cleanup(xhci); 681 xhci_debugfs_exit(xhci); 682 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 683 "xhci_stop completed - status = %x", 684 readl(&xhci->op_regs->status)); 685 mutex_unlock(&xhci->mutex); 686 } 687 688 /* 689 * Shutdown HC (not bus-specific) 690 * 691 * This is called when the machine is rebooting or halting. We assume that the 692 * machine will be powered off, and the HC's internal state will be reset. 693 * Don't bother to free memory. 694 * 695 * This will only ever be called with the main usb_hcd (the USB3 roothub). 696 */ 697 static void xhci_shutdown(struct usb_hcd *hcd) 698 { 699 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 700 701 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 702 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 703 704 spin_lock_irq(&xhci->lock); 705 xhci_halt(xhci); 706 /* Workaround for spurious wakeups at shutdown with HSW */ 707 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 708 xhci_reset(xhci); 709 spin_unlock_irq(&xhci->lock); 710 711 xhci_cleanup_msix(xhci); 712 713 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 714 "xhci_shutdown completed - status = %x", 715 readl(&xhci->op_regs->status)); 716 717 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 718 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 719 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot); 720 } 721 722 #ifdef CONFIG_PM 723 static void xhci_save_registers(struct xhci_hcd *xhci) 724 { 725 xhci->s3.command = readl(&xhci->op_regs->command); 726 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 727 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 728 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 729 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 730 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 731 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 732 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 733 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 734 } 735 736 static void xhci_restore_registers(struct xhci_hcd *xhci) 737 { 738 writel(xhci->s3.command, &xhci->op_regs->command); 739 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 740 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 741 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 742 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 743 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 744 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 745 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 746 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 747 } 748 749 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 750 { 751 u64 val_64; 752 753 /* step 2: initialize command ring buffer */ 754 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 755 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 756 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 757 xhci->cmd_ring->dequeue) & 758 (u64) ~CMD_RING_RSVD_BITS) | 759 xhci->cmd_ring->cycle_state; 760 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 761 "// Setting command ring address to 0x%llx", 762 (long unsigned long) val_64); 763 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 764 } 765 766 /* 767 * The whole command ring must be cleared to zero when we suspend the host. 768 * 769 * The host doesn't save the command ring pointer in the suspend well, so we 770 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 771 * aligned, because of the reserved bits in the command ring dequeue pointer 772 * register. Therefore, we can't just set the dequeue pointer back in the 773 * middle of the ring (TRBs are 16-byte aligned). 774 */ 775 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 776 { 777 struct xhci_ring *ring; 778 struct xhci_segment *seg; 779 780 ring = xhci->cmd_ring; 781 seg = ring->deq_seg; 782 do { 783 memset(seg->trbs, 0, 784 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 785 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 786 cpu_to_le32(~TRB_CYCLE); 787 seg = seg->next; 788 } while (seg != ring->deq_seg); 789 790 /* Reset the software enqueue and dequeue pointers */ 791 ring->deq_seg = ring->first_seg; 792 ring->dequeue = ring->first_seg->trbs; 793 ring->enq_seg = ring->deq_seg; 794 ring->enqueue = ring->dequeue; 795 796 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 797 /* 798 * Ring is now zeroed, so the HW should look for change of ownership 799 * when the cycle bit is set to 1. 800 */ 801 ring->cycle_state = 1; 802 803 /* 804 * Reset the hardware dequeue pointer. 805 * Yes, this will need to be re-written after resume, but we're paranoid 806 * and want to make sure the hardware doesn't access bogus memory 807 * because, say, the BIOS or an SMI started the host without changing 808 * the command ring pointers. 809 */ 810 xhci_set_cmd_ring_deq(xhci); 811 } 812 813 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 814 { 815 int port_index; 816 __le32 __iomem **port_array; 817 unsigned long flags; 818 u32 t1, t2; 819 820 spin_lock_irqsave(&xhci->lock, flags); 821 822 /* disable usb3 ports Wake bits */ 823 port_index = xhci->num_usb3_ports; 824 port_array = xhci->usb3_ports; 825 while (port_index--) { 826 t1 = readl(port_array[port_index]); 827 t1 = xhci_port_state_to_neutral(t1); 828 t2 = t1 & ~PORT_WAKE_BITS; 829 if (t1 != t2) 830 writel(t2, port_array[port_index]); 831 } 832 833 /* disable usb2 ports Wake bits */ 834 port_index = xhci->num_usb2_ports; 835 port_array = xhci->usb2_ports; 836 while (port_index--) { 837 t1 = readl(port_array[port_index]); 838 t1 = xhci_port_state_to_neutral(t1); 839 t2 = t1 & ~PORT_WAKE_BITS; 840 if (t1 != t2) 841 writel(t2, port_array[port_index]); 842 } 843 844 spin_unlock_irqrestore(&xhci->lock, flags); 845 } 846 847 /* 848 * Stop HC (not bus-specific) 849 * 850 * This is called when the machine transition into S3/S4 mode. 851 * 852 */ 853 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 854 { 855 int rc = 0; 856 unsigned int delay = XHCI_MAX_HALT_USEC; 857 struct usb_hcd *hcd = xhci_to_hcd(xhci); 858 u32 command; 859 860 if (!hcd->state) 861 return 0; 862 863 if (hcd->state != HC_STATE_SUSPENDED || 864 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 865 return -EINVAL; 866 867 xhci_dbc_suspend(xhci); 868 869 /* Clear root port wake on bits if wakeup not allowed. */ 870 if (!do_wakeup) 871 xhci_disable_port_wake_on_bits(xhci); 872 873 /* Don't poll the roothubs on bus suspend. */ 874 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 875 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 876 del_timer_sync(&hcd->rh_timer); 877 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 878 del_timer_sync(&xhci->shared_hcd->rh_timer); 879 880 if (xhci->quirks & XHCI_SUSPEND_DELAY) 881 usleep_range(1000, 1500); 882 883 spin_lock_irq(&xhci->lock); 884 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 885 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 886 /* step 1: stop endpoint */ 887 /* skipped assuming that port suspend has done */ 888 889 /* step 2: clear Run/Stop bit */ 890 command = readl(&xhci->op_regs->command); 891 command &= ~CMD_RUN; 892 writel(command, &xhci->op_regs->command); 893 894 /* Some chips from Fresco Logic need an extraordinary delay */ 895 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 896 897 if (xhci_handshake(&xhci->op_regs->status, 898 STS_HALT, STS_HALT, delay)) { 899 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 900 spin_unlock_irq(&xhci->lock); 901 return -ETIMEDOUT; 902 } 903 xhci_clear_command_ring(xhci); 904 905 /* step 3: save registers */ 906 xhci_save_registers(xhci); 907 908 /* step 4: set CSS flag */ 909 command = readl(&xhci->op_regs->command); 910 command |= CMD_CSS; 911 writel(command, &xhci->op_regs->command); 912 if (xhci_handshake(&xhci->op_regs->status, 913 STS_SAVE, 0, 10 * 1000)) { 914 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 915 spin_unlock_irq(&xhci->lock); 916 return -ETIMEDOUT; 917 } 918 spin_unlock_irq(&xhci->lock); 919 920 /* 921 * Deleting Compliance Mode Recovery Timer because the xHCI Host 922 * is about to be suspended. 923 */ 924 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 925 (!(xhci_all_ports_seen_u0(xhci)))) { 926 del_timer_sync(&xhci->comp_mode_recovery_timer); 927 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 928 "%s: compliance mode recovery timer deleted", 929 __func__); 930 } 931 932 /* step 5: remove core well power */ 933 /* synchronize irq when using MSI-X */ 934 xhci_msix_sync_irqs(xhci); 935 936 return rc; 937 } 938 EXPORT_SYMBOL_GPL(xhci_suspend); 939 940 /* 941 * start xHC (not bus-specific) 942 * 943 * This is called when the machine transition from S3/S4 mode. 944 * 945 */ 946 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 947 { 948 u32 command, temp = 0, status; 949 struct usb_hcd *hcd = xhci_to_hcd(xhci); 950 struct usb_hcd *secondary_hcd; 951 int retval = 0; 952 bool comp_timer_running = false; 953 954 if (!hcd->state) 955 return 0; 956 957 /* Wait a bit if either of the roothubs need to settle from the 958 * transition into bus suspend. 959 */ 960 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 961 time_before(jiffies, 962 xhci->bus_state[1].next_statechange)) 963 msleep(100); 964 965 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 966 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 967 968 spin_lock_irq(&xhci->lock); 969 if (xhci->quirks & XHCI_RESET_ON_RESUME) 970 hibernated = true; 971 972 if (!hibernated) { 973 /* step 1: restore register */ 974 xhci_restore_registers(xhci); 975 /* step 2: initialize command ring buffer */ 976 xhci_set_cmd_ring_deq(xhci); 977 /* step 3: restore state and start state*/ 978 /* step 3: set CRS flag */ 979 command = readl(&xhci->op_regs->command); 980 command |= CMD_CRS; 981 writel(command, &xhci->op_regs->command); 982 if (xhci_handshake(&xhci->op_regs->status, 983 STS_RESTORE, 0, 10 * 1000)) { 984 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 985 spin_unlock_irq(&xhci->lock); 986 return -ETIMEDOUT; 987 } 988 temp = readl(&xhci->op_regs->status); 989 } 990 991 /* If restore operation fails, re-initialize the HC during resume */ 992 if ((temp & STS_SRE) || hibernated) { 993 994 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 995 !(xhci_all_ports_seen_u0(xhci))) { 996 del_timer_sync(&xhci->comp_mode_recovery_timer); 997 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 998 "Compliance Mode Recovery Timer deleted!"); 999 } 1000 1001 /* Let the USB core know _both_ roothubs lost power. */ 1002 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1003 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1004 1005 xhci_dbg(xhci, "Stop HCD\n"); 1006 xhci_halt(xhci); 1007 xhci_reset(xhci); 1008 spin_unlock_irq(&xhci->lock); 1009 xhci_cleanup_msix(xhci); 1010 1011 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1012 temp = readl(&xhci->op_regs->status); 1013 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1014 temp = readl(&xhci->ir_set->irq_pending); 1015 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1016 1017 xhci_dbg(xhci, "cleaning up memory\n"); 1018 xhci_mem_cleanup(xhci); 1019 xhci_debugfs_exit(xhci); 1020 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1021 readl(&xhci->op_regs->status)); 1022 1023 /* USB core calls the PCI reinit and start functions twice: 1024 * first with the primary HCD, and then with the secondary HCD. 1025 * If we don't do the same, the host will never be started. 1026 */ 1027 if (!usb_hcd_is_primary_hcd(hcd)) 1028 secondary_hcd = hcd; 1029 else 1030 secondary_hcd = xhci->shared_hcd; 1031 1032 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1033 retval = xhci_init(hcd->primary_hcd); 1034 if (retval) 1035 return retval; 1036 comp_timer_running = true; 1037 1038 xhci_dbg(xhci, "Start the primary HCD\n"); 1039 retval = xhci_run(hcd->primary_hcd); 1040 if (!retval) { 1041 xhci_dbg(xhci, "Start the secondary HCD\n"); 1042 retval = xhci_run(secondary_hcd); 1043 } 1044 hcd->state = HC_STATE_SUSPENDED; 1045 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1046 goto done; 1047 } 1048 1049 /* step 4: set Run/Stop bit */ 1050 command = readl(&xhci->op_regs->command); 1051 command |= CMD_RUN; 1052 writel(command, &xhci->op_regs->command); 1053 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1054 0, 250 * 1000); 1055 1056 /* step 5: walk topology and initialize portsc, 1057 * portpmsc and portli 1058 */ 1059 /* this is done in bus_resume */ 1060 1061 /* step 6: restart each of the previously 1062 * Running endpoints by ringing their doorbells 1063 */ 1064 1065 spin_unlock_irq(&xhci->lock); 1066 1067 xhci_dbc_resume(xhci); 1068 1069 done: 1070 if (retval == 0) { 1071 /* Resume root hubs only when have pending events. */ 1072 status = readl(&xhci->op_regs->status); 1073 if (status & STS_EINT) { 1074 usb_hcd_resume_root_hub(xhci->shared_hcd); 1075 usb_hcd_resume_root_hub(hcd); 1076 } 1077 } 1078 1079 /* 1080 * If system is subject to the Quirk, Compliance Mode Timer needs to 1081 * be re-initialized Always after a system resume. Ports are subject 1082 * to suffer the Compliance Mode issue again. It doesn't matter if 1083 * ports have entered previously to U0 before system's suspension. 1084 */ 1085 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1086 compliance_mode_recovery_timer_init(xhci); 1087 1088 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1089 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1090 1091 /* Re-enable port polling. */ 1092 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1093 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1094 usb_hcd_poll_rh_status(xhci->shared_hcd); 1095 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1096 usb_hcd_poll_rh_status(hcd); 1097 1098 return retval; 1099 } 1100 EXPORT_SYMBOL_GPL(xhci_resume); 1101 #endif /* CONFIG_PM */ 1102 1103 /*-------------------------------------------------------------------------*/ 1104 1105 /** 1106 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1107 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1108 * value to right shift 1 for the bitmask. 1109 * 1110 * Index = (epnum * 2) + direction - 1, 1111 * where direction = 0 for OUT, 1 for IN. 1112 * For control endpoints, the IN index is used (OUT index is unused), so 1113 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1114 */ 1115 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1116 { 1117 unsigned int index; 1118 if (usb_endpoint_xfer_control(desc)) 1119 index = (unsigned int) (usb_endpoint_num(desc)*2); 1120 else 1121 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1122 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1123 return index; 1124 } 1125 1126 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1127 * address from the XHCI endpoint index. 1128 */ 1129 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1130 { 1131 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1132 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1133 return direction | number; 1134 } 1135 1136 /* Find the flag for this endpoint (for use in the control context). Use the 1137 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1138 * bit 1, etc. 1139 */ 1140 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1141 { 1142 return 1 << (xhci_get_endpoint_index(desc) + 1); 1143 } 1144 1145 /* Find the flag for this endpoint (for use in the control context). Use the 1146 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1147 * bit 1, etc. 1148 */ 1149 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1150 { 1151 return 1 << (ep_index + 1); 1152 } 1153 1154 /* Compute the last valid endpoint context index. Basically, this is the 1155 * endpoint index plus one. For slot contexts with more than valid endpoint, 1156 * we find the most significant bit set in the added contexts flags. 1157 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1158 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1159 */ 1160 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1161 { 1162 return fls(added_ctxs) - 1; 1163 } 1164 1165 /* Returns 1 if the arguments are OK; 1166 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1167 */ 1168 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1169 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1170 const char *func) { 1171 struct xhci_hcd *xhci; 1172 struct xhci_virt_device *virt_dev; 1173 1174 if (!hcd || (check_ep && !ep) || !udev) { 1175 pr_debug("xHCI %s called with invalid args\n", func); 1176 return -EINVAL; 1177 } 1178 if (!udev->parent) { 1179 pr_debug("xHCI %s called for root hub\n", func); 1180 return 0; 1181 } 1182 1183 xhci = hcd_to_xhci(hcd); 1184 if (check_virt_dev) { 1185 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1186 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1187 func); 1188 return -EINVAL; 1189 } 1190 1191 virt_dev = xhci->devs[udev->slot_id]; 1192 if (virt_dev->udev != udev) { 1193 xhci_dbg(xhci, "xHCI %s called with udev and " 1194 "virt_dev does not match\n", func); 1195 return -EINVAL; 1196 } 1197 } 1198 1199 if (xhci->xhc_state & XHCI_STATE_HALTED) 1200 return -ENODEV; 1201 1202 return 1; 1203 } 1204 1205 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1206 struct usb_device *udev, struct xhci_command *command, 1207 bool ctx_change, bool must_succeed); 1208 1209 /* 1210 * Full speed devices may have a max packet size greater than 8 bytes, but the 1211 * USB core doesn't know that until it reads the first 8 bytes of the 1212 * descriptor. If the usb_device's max packet size changes after that point, 1213 * we need to issue an evaluate context command and wait on it. 1214 */ 1215 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1216 unsigned int ep_index, struct urb *urb) 1217 { 1218 struct xhci_container_ctx *out_ctx; 1219 struct xhci_input_control_ctx *ctrl_ctx; 1220 struct xhci_ep_ctx *ep_ctx; 1221 struct xhci_command *command; 1222 int max_packet_size; 1223 int hw_max_packet_size; 1224 int ret = 0; 1225 1226 out_ctx = xhci->devs[slot_id]->out_ctx; 1227 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1228 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1229 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1230 if (hw_max_packet_size != max_packet_size) { 1231 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1232 "Max Packet Size for ep 0 changed."); 1233 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1234 "Max packet size in usb_device = %d", 1235 max_packet_size); 1236 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1237 "Max packet size in xHCI HW = %d", 1238 hw_max_packet_size); 1239 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1240 "Issuing evaluate context command."); 1241 1242 /* Set up the input context flags for the command */ 1243 /* FIXME: This won't work if a non-default control endpoint 1244 * changes max packet sizes. 1245 */ 1246 1247 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1248 if (!command) 1249 return -ENOMEM; 1250 1251 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1252 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1253 if (!ctrl_ctx) { 1254 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1255 __func__); 1256 ret = -ENOMEM; 1257 goto command_cleanup; 1258 } 1259 /* Set up the modified control endpoint 0 */ 1260 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1261 xhci->devs[slot_id]->out_ctx, ep_index); 1262 1263 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1264 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1265 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1266 1267 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1268 ctrl_ctx->drop_flags = 0; 1269 1270 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1271 true, false); 1272 1273 /* Clean up the input context for later use by bandwidth 1274 * functions. 1275 */ 1276 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1277 command_cleanup: 1278 kfree(command->completion); 1279 kfree(command); 1280 } 1281 return ret; 1282 } 1283 1284 /* 1285 * non-error returns are a promise to giveback() the urb later 1286 * we drop ownership so next owner (or urb unlink) can get it 1287 */ 1288 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1289 { 1290 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1291 unsigned long flags; 1292 int ret = 0; 1293 unsigned int slot_id, ep_index, ep_state; 1294 struct urb_priv *urb_priv; 1295 int num_tds; 1296 1297 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1298 true, true, __func__) <= 0) 1299 return -EINVAL; 1300 1301 slot_id = urb->dev->slot_id; 1302 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1303 1304 if (!HCD_HW_ACCESSIBLE(hcd)) { 1305 if (!in_interrupt()) 1306 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1307 return -ESHUTDOWN; 1308 } 1309 1310 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1311 num_tds = urb->number_of_packets; 1312 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1313 urb->transfer_buffer_length > 0 && 1314 urb->transfer_flags & URB_ZERO_PACKET && 1315 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1316 num_tds = 2; 1317 else 1318 num_tds = 1; 1319 1320 urb_priv = kzalloc(sizeof(struct urb_priv) + 1321 num_tds * sizeof(struct xhci_td), mem_flags); 1322 if (!urb_priv) 1323 return -ENOMEM; 1324 1325 urb_priv->num_tds = num_tds; 1326 urb_priv->num_tds_done = 0; 1327 urb->hcpriv = urb_priv; 1328 1329 trace_xhci_urb_enqueue(urb); 1330 1331 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1332 /* Check to see if the max packet size for the default control 1333 * endpoint changed during FS device enumeration 1334 */ 1335 if (urb->dev->speed == USB_SPEED_FULL) { 1336 ret = xhci_check_maxpacket(xhci, slot_id, 1337 ep_index, urb); 1338 if (ret < 0) { 1339 xhci_urb_free_priv(urb_priv); 1340 urb->hcpriv = NULL; 1341 return ret; 1342 } 1343 } 1344 } 1345 1346 spin_lock_irqsave(&xhci->lock, flags); 1347 1348 if (xhci->xhc_state & XHCI_STATE_DYING) { 1349 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1350 urb->ep->desc.bEndpointAddress, urb); 1351 ret = -ESHUTDOWN; 1352 goto free_priv; 1353 } 1354 1355 switch (usb_endpoint_type(&urb->ep->desc)) { 1356 1357 case USB_ENDPOINT_XFER_CONTROL: 1358 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1359 slot_id, ep_index); 1360 break; 1361 case USB_ENDPOINT_XFER_BULK: 1362 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1363 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1364 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1365 ep_state); 1366 ret = -EINVAL; 1367 break; 1368 } 1369 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1370 slot_id, ep_index); 1371 break; 1372 1373 1374 case USB_ENDPOINT_XFER_INT: 1375 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1376 slot_id, ep_index); 1377 break; 1378 1379 case USB_ENDPOINT_XFER_ISOC: 1380 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1381 slot_id, ep_index); 1382 } 1383 1384 if (ret) { 1385 free_priv: 1386 xhci_urb_free_priv(urb_priv); 1387 urb->hcpriv = NULL; 1388 } 1389 spin_unlock_irqrestore(&xhci->lock, flags); 1390 return ret; 1391 } 1392 1393 /* 1394 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1395 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1396 * should pick up where it left off in the TD, unless a Set Transfer Ring 1397 * Dequeue Pointer is issued. 1398 * 1399 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1400 * the ring. Since the ring is a contiguous structure, they can't be physically 1401 * removed. Instead, there are two options: 1402 * 1403 * 1) If the HC is in the middle of processing the URB to be canceled, we 1404 * simply move the ring's dequeue pointer past those TRBs using the Set 1405 * Transfer Ring Dequeue Pointer command. This will be the common case, 1406 * when drivers timeout on the last submitted URB and attempt to cancel. 1407 * 1408 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1409 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1410 * HC will need to invalidate the any TRBs it has cached after the stop 1411 * endpoint command, as noted in the xHCI 0.95 errata. 1412 * 1413 * 3) The TD may have completed by the time the Stop Endpoint Command 1414 * completes, so software needs to handle that case too. 1415 * 1416 * This function should protect against the TD enqueueing code ringing the 1417 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1418 * It also needs to account for multiple cancellations on happening at the same 1419 * time for the same endpoint. 1420 * 1421 * Note that this function can be called in any context, or so says 1422 * usb_hcd_unlink_urb() 1423 */ 1424 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1425 { 1426 unsigned long flags; 1427 int ret, i; 1428 u32 temp; 1429 struct xhci_hcd *xhci; 1430 struct urb_priv *urb_priv; 1431 struct xhci_td *td; 1432 unsigned int ep_index; 1433 struct xhci_ring *ep_ring; 1434 struct xhci_virt_ep *ep; 1435 struct xhci_command *command; 1436 struct xhci_virt_device *vdev; 1437 1438 xhci = hcd_to_xhci(hcd); 1439 spin_lock_irqsave(&xhci->lock, flags); 1440 1441 trace_xhci_urb_dequeue(urb); 1442 1443 /* Make sure the URB hasn't completed or been unlinked already */ 1444 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1445 if (ret) 1446 goto done; 1447 1448 /* give back URB now if we can't queue it for cancel */ 1449 vdev = xhci->devs[urb->dev->slot_id]; 1450 urb_priv = urb->hcpriv; 1451 if (!vdev || !urb_priv) 1452 goto err_giveback; 1453 1454 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1455 ep = &vdev->eps[ep_index]; 1456 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1457 if (!ep || !ep_ring) 1458 goto err_giveback; 1459 1460 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1461 temp = readl(&xhci->op_regs->status); 1462 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1463 xhci_hc_died(xhci); 1464 goto done; 1465 } 1466 1467 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1468 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1469 "HC halted, freeing TD manually."); 1470 for (i = urb_priv->num_tds_done; 1471 i < urb_priv->num_tds; 1472 i++) { 1473 td = &urb_priv->td[i]; 1474 if (!list_empty(&td->td_list)) 1475 list_del_init(&td->td_list); 1476 if (!list_empty(&td->cancelled_td_list)) 1477 list_del_init(&td->cancelled_td_list); 1478 } 1479 goto err_giveback; 1480 } 1481 1482 i = urb_priv->num_tds_done; 1483 if (i < urb_priv->num_tds) 1484 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1485 "Cancel URB %p, dev %s, ep 0x%x, " 1486 "starting at offset 0x%llx", 1487 urb, urb->dev->devpath, 1488 urb->ep->desc.bEndpointAddress, 1489 (unsigned long long) xhci_trb_virt_to_dma( 1490 urb_priv->td[i].start_seg, 1491 urb_priv->td[i].first_trb)); 1492 1493 for (; i < urb_priv->num_tds; i++) { 1494 td = &urb_priv->td[i]; 1495 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1496 } 1497 1498 /* Queue a stop endpoint command, but only if this is 1499 * the first cancellation to be handled. 1500 */ 1501 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1502 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1503 if (!command) { 1504 ret = -ENOMEM; 1505 goto done; 1506 } 1507 ep->ep_state |= EP_STOP_CMD_PENDING; 1508 ep->stop_cmd_timer.expires = jiffies + 1509 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1510 add_timer(&ep->stop_cmd_timer); 1511 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1512 ep_index, 0); 1513 xhci_ring_cmd_db(xhci); 1514 } 1515 done: 1516 spin_unlock_irqrestore(&xhci->lock, flags); 1517 return ret; 1518 1519 err_giveback: 1520 if (urb_priv) 1521 xhci_urb_free_priv(urb_priv); 1522 usb_hcd_unlink_urb_from_ep(hcd, urb); 1523 spin_unlock_irqrestore(&xhci->lock, flags); 1524 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1525 return ret; 1526 } 1527 1528 /* Drop an endpoint from a new bandwidth configuration for this device. 1529 * Only one call to this function is allowed per endpoint before 1530 * check_bandwidth() or reset_bandwidth() must be called. 1531 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1532 * add the endpoint to the schedule with possibly new parameters denoted by a 1533 * different endpoint descriptor in usb_host_endpoint. 1534 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1535 * not allowed. 1536 * 1537 * The USB core will not allow URBs to be queued to an endpoint that is being 1538 * disabled, so there's no need for mutual exclusion to protect 1539 * the xhci->devs[slot_id] structure. 1540 */ 1541 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1542 struct usb_host_endpoint *ep) 1543 { 1544 struct xhci_hcd *xhci; 1545 struct xhci_container_ctx *in_ctx, *out_ctx; 1546 struct xhci_input_control_ctx *ctrl_ctx; 1547 unsigned int ep_index; 1548 struct xhci_ep_ctx *ep_ctx; 1549 u32 drop_flag; 1550 u32 new_add_flags, new_drop_flags; 1551 int ret; 1552 1553 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1554 if (ret <= 0) 1555 return ret; 1556 xhci = hcd_to_xhci(hcd); 1557 if (xhci->xhc_state & XHCI_STATE_DYING) 1558 return -ENODEV; 1559 1560 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1561 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1562 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1563 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1564 __func__, drop_flag); 1565 return 0; 1566 } 1567 1568 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1569 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1570 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1571 if (!ctrl_ctx) { 1572 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1573 __func__); 1574 return 0; 1575 } 1576 1577 ep_index = xhci_get_endpoint_index(&ep->desc); 1578 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1579 /* If the HC already knows the endpoint is disabled, 1580 * or the HCD has noted it is disabled, ignore this request 1581 */ 1582 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1583 le32_to_cpu(ctrl_ctx->drop_flags) & 1584 xhci_get_endpoint_flag(&ep->desc)) { 1585 /* Do not warn when called after a usb_device_reset */ 1586 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1587 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1588 __func__, ep); 1589 return 0; 1590 } 1591 1592 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1593 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1594 1595 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1596 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1597 1598 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1599 1600 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1601 1602 if (xhci->quirks & XHCI_MTK_HOST) 1603 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1604 1605 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1606 (unsigned int) ep->desc.bEndpointAddress, 1607 udev->slot_id, 1608 (unsigned int) new_drop_flags, 1609 (unsigned int) new_add_flags); 1610 return 0; 1611 } 1612 1613 /* Add an endpoint to a new possible bandwidth configuration for this device. 1614 * Only one call to this function is allowed per endpoint before 1615 * check_bandwidth() or reset_bandwidth() must be called. 1616 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1617 * add the endpoint to the schedule with possibly new parameters denoted by a 1618 * different endpoint descriptor in usb_host_endpoint. 1619 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1620 * not allowed. 1621 * 1622 * The USB core will not allow URBs to be queued to an endpoint until the 1623 * configuration or alt setting is installed in the device, so there's no need 1624 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1625 */ 1626 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1627 struct usb_host_endpoint *ep) 1628 { 1629 struct xhci_hcd *xhci; 1630 struct xhci_container_ctx *in_ctx; 1631 unsigned int ep_index; 1632 struct xhci_input_control_ctx *ctrl_ctx; 1633 u32 added_ctxs; 1634 u32 new_add_flags, new_drop_flags; 1635 struct xhci_virt_device *virt_dev; 1636 int ret = 0; 1637 1638 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1639 if (ret <= 0) { 1640 /* So we won't queue a reset ep command for a root hub */ 1641 ep->hcpriv = NULL; 1642 return ret; 1643 } 1644 xhci = hcd_to_xhci(hcd); 1645 if (xhci->xhc_state & XHCI_STATE_DYING) 1646 return -ENODEV; 1647 1648 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1649 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1650 /* FIXME when we have to issue an evaluate endpoint command to 1651 * deal with ep0 max packet size changing once we get the 1652 * descriptors 1653 */ 1654 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1655 __func__, added_ctxs); 1656 return 0; 1657 } 1658 1659 virt_dev = xhci->devs[udev->slot_id]; 1660 in_ctx = virt_dev->in_ctx; 1661 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1662 if (!ctrl_ctx) { 1663 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1664 __func__); 1665 return 0; 1666 } 1667 1668 ep_index = xhci_get_endpoint_index(&ep->desc); 1669 /* If this endpoint is already in use, and the upper layers are trying 1670 * to add it again without dropping it, reject the addition. 1671 */ 1672 if (virt_dev->eps[ep_index].ring && 1673 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1674 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1675 "without dropping it.\n", 1676 (unsigned int) ep->desc.bEndpointAddress); 1677 return -EINVAL; 1678 } 1679 1680 /* If the HCD has already noted the endpoint is enabled, 1681 * ignore this request. 1682 */ 1683 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1684 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1685 __func__, ep); 1686 return 0; 1687 } 1688 1689 /* 1690 * Configuration and alternate setting changes must be done in 1691 * process context, not interrupt context (or so documenation 1692 * for usb_set_interface() and usb_set_configuration() claim). 1693 */ 1694 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1695 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1696 __func__, ep->desc.bEndpointAddress); 1697 return -ENOMEM; 1698 } 1699 1700 if (xhci->quirks & XHCI_MTK_HOST) { 1701 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1702 if (ret < 0) { 1703 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring); 1704 virt_dev->eps[ep_index].new_ring = NULL; 1705 return ret; 1706 } 1707 } 1708 1709 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1710 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1711 1712 /* If xhci_endpoint_disable() was called for this endpoint, but the 1713 * xHC hasn't been notified yet through the check_bandwidth() call, 1714 * this re-adds a new state for the endpoint from the new endpoint 1715 * descriptors. We must drop and re-add this endpoint, so we leave the 1716 * drop flags alone. 1717 */ 1718 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1719 1720 /* Store the usb_device pointer for later use */ 1721 ep->hcpriv = udev; 1722 1723 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index); 1724 1725 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1726 (unsigned int) ep->desc.bEndpointAddress, 1727 udev->slot_id, 1728 (unsigned int) new_drop_flags, 1729 (unsigned int) new_add_flags); 1730 return 0; 1731 } 1732 1733 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1734 { 1735 struct xhci_input_control_ctx *ctrl_ctx; 1736 struct xhci_ep_ctx *ep_ctx; 1737 struct xhci_slot_ctx *slot_ctx; 1738 int i; 1739 1740 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1741 if (!ctrl_ctx) { 1742 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1743 __func__); 1744 return; 1745 } 1746 1747 /* When a device's add flag and drop flag are zero, any subsequent 1748 * configure endpoint command will leave that endpoint's state 1749 * untouched. Make sure we don't leave any old state in the input 1750 * endpoint contexts. 1751 */ 1752 ctrl_ctx->drop_flags = 0; 1753 ctrl_ctx->add_flags = 0; 1754 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1755 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1756 /* Endpoint 0 is always valid */ 1757 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1758 for (i = 1; i < 31; i++) { 1759 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1760 ep_ctx->ep_info = 0; 1761 ep_ctx->ep_info2 = 0; 1762 ep_ctx->deq = 0; 1763 ep_ctx->tx_info = 0; 1764 } 1765 } 1766 1767 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1768 struct usb_device *udev, u32 *cmd_status) 1769 { 1770 int ret; 1771 1772 switch (*cmd_status) { 1773 case COMP_COMMAND_ABORTED: 1774 case COMP_COMMAND_RING_STOPPED: 1775 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1776 ret = -ETIME; 1777 break; 1778 case COMP_RESOURCE_ERROR: 1779 dev_warn(&udev->dev, 1780 "Not enough host controller resources for new device state.\n"); 1781 ret = -ENOMEM; 1782 /* FIXME: can we allocate more resources for the HC? */ 1783 break; 1784 case COMP_BANDWIDTH_ERROR: 1785 case COMP_SECONDARY_BANDWIDTH_ERROR: 1786 dev_warn(&udev->dev, 1787 "Not enough bandwidth for new device state.\n"); 1788 ret = -ENOSPC; 1789 /* FIXME: can we go back to the old state? */ 1790 break; 1791 case COMP_TRB_ERROR: 1792 /* the HCD set up something wrong */ 1793 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1794 "add flag = 1, " 1795 "and endpoint is not disabled.\n"); 1796 ret = -EINVAL; 1797 break; 1798 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1799 dev_warn(&udev->dev, 1800 "ERROR: Incompatible device for endpoint configure command.\n"); 1801 ret = -ENODEV; 1802 break; 1803 case COMP_SUCCESS: 1804 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1805 "Successful Endpoint Configure command"); 1806 ret = 0; 1807 break; 1808 default: 1809 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1810 *cmd_status); 1811 ret = -EINVAL; 1812 break; 1813 } 1814 return ret; 1815 } 1816 1817 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1818 struct usb_device *udev, u32 *cmd_status) 1819 { 1820 int ret; 1821 1822 switch (*cmd_status) { 1823 case COMP_COMMAND_ABORTED: 1824 case COMP_COMMAND_RING_STOPPED: 1825 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1826 ret = -ETIME; 1827 break; 1828 case COMP_PARAMETER_ERROR: 1829 dev_warn(&udev->dev, 1830 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1831 ret = -EINVAL; 1832 break; 1833 case COMP_SLOT_NOT_ENABLED_ERROR: 1834 dev_warn(&udev->dev, 1835 "WARN: slot not enabled for evaluate context command.\n"); 1836 ret = -EINVAL; 1837 break; 1838 case COMP_CONTEXT_STATE_ERROR: 1839 dev_warn(&udev->dev, 1840 "WARN: invalid context state for evaluate context command.\n"); 1841 ret = -EINVAL; 1842 break; 1843 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1844 dev_warn(&udev->dev, 1845 "ERROR: Incompatible device for evaluate context command.\n"); 1846 ret = -ENODEV; 1847 break; 1848 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 1849 /* Max Exit Latency too large error */ 1850 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1851 ret = -EINVAL; 1852 break; 1853 case COMP_SUCCESS: 1854 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1855 "Successful evaluate context command"); 1856 ret = 0; 1857 break; 1858 default: 1859 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1860 *cmd_status); 1861 ret = -EINVAL; 1862 break; 1863 } 1864 return ret; 1865 } 1866 1867 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1868 struct xhci_input_control_ctx *ctrl_ctx) 1869 { 1870 u32 valid_add_flags; 1871 u32 valid_drop_flags; 1872 1873 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1874 * (bit 1). The default control endpoint is added during the Address 1875 * Device command and is never removed until the slot is disabled. 1876 */ 1877 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1878 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1879 1880 /* Use hweight32 to count the number of ones in the add flags, or 1881 * number of endpoints added. Don't count endpoints that are changed 1882 * (both added and dropped). 1883 */ 1884 return hweight32(valid_add_flags) - 1885 hweight32(valid_add_flags & valid_drop_flags); 1886 } 1887 1888 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1889 struct xhci_input_control_ctx *ctrl_ctx) 1890 { 1891 u32 valid_add_flags; 1892 u32 valid_drop_flags; 1893 1894 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1895 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1896 1897 return hweight32(valid_drop_flags) - 1898 hweight32(valid_add_flags & valid_drop_flags); 1899 } 1900 1901 /* 1902 * We need to reserve the new number of endpoints before the configure endpoint 1903 * command completes. We can't subtract the dropped endpoints from the number 1904 * of active endpoints until the command completes because we can oversubscribe 1905 * the host in this case: 1906 * 1907 * - the first configure endpoint command drops more endpoints than it adds 1908 * - a second configure endpoint command that adds more endpoints is queued 1909 * - the first configure endpoint command fails, so the config is unchanged 1910 * - the second command may succeed, even though there isn't enough resources 1911 * 1912 * Must be called with xhci->lock held. 1913 */ 1914 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1915 struct xhci_input_control_ctx *ctrl_ctx) 1916 { 1917 u32 added_eps; 1918 1919 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1920 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1921 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1922 "Not enough ep ctxs: " 1923 "%u active, need to add %u, limit is %u.", 1924 xhci->num_active_eps, added_eps, 1925 xhci->limit_active_eps); 1926 return -ENOMEM; 1927 } 1928 xhci->num_active_eps += added_eps; 1929 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1930 "Adding %u ep ctxs, %u now active.", added_eps, 1931 xhci->num_active_eps); 1932 return 0; 1933 } 1934 1935 /* 1936 * The configure endpoint was failed by the xHC for some other reason, so we 1937 * need to revert the resources that failed configuration would have used. 1938 * 1939 * Must be called with xhci->lock held. 1940 */ 1941 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1942 struct xhci_input_control_ctx *ctrl_ctx) 1943 { 1944 u32 num_failed_eps; 1945 1946 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1947 xhci->num_active_eps -= num_failed_eps; 1948 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1949 "Removing %u failed ep ctxs, %u now active.", 1950 num_failed_eps, 1951 xhci->num_active_eps); 1952 } 1953 1954 /* 1955 * Now that the command has completed, clean up the active endpoint count by 1956 * subtracting out the endpoints that were dropped (but not changed). 1957 * 1958 * Must be called with xhci->lock held. 1959 */ 1960 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1961 struct xhci_input_control_ctx *ctrl_ctx) 1962 { 1963 u32 num_dropped_eps; 1964 1965 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 1966 xhci->num_active_eps -= num_dropped_eps; 1967 if (num_dropped_eps) 1968 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1969 "Removing %u dropped ep ctxs, %u now active.", 1970 num_dropped_eps, 1971 xhci->num_active_eps); 1972 } 1973 1974 static unsigned int xhci_get_block_size(struct usb_device *udev) 1975 { 1976 switch (udev->speed) { 1977 case USB_SPEED_LOW: 1978 case USB_SPEED_FULL: 1979 return FS_BLOCK; 1980 case USB_SPEED_HIGH: 1981 return HS_BLOCK; 1982 case USB_SPEED_SUPER: 1983 case USB_SPEED_SUPER_PLUS: 1984 return SS_BLOCK; 1985 case USB_SPEED_UNKNOWN: 1986 case USB_SPEED_WIRELESS: 1987 default: 1988 /* Should never happen */ 1989 return 1; 1990 } 1991 } 1992 1993 static unsigned int 1994 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 1995 { 1996 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 1997 return LS_OVERHEAD; 1998 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 1999 return FS_OVERHEAD; 2000 return HS_OVERHEAD; 2001 } 2002 2003 /* If we are changing a LS/FS device under a HS hub, 2004 * make sure (if we are activating a new TT) that the HS bus has enough 2005 * bandwidth for this new TT. 2006 */ 2007 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2008 struct xhci_virt_device *virt_dev, 2009 int old_active_eps) 2010 { 2011 struct xhci_interval_bw_table *bw_table; 2012 struct xhci_tt_bw_info *tt_info; 2013 2014 /* Find the bandwidth table for the root port this TT is attached to. */ 2015 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2016 tt_info = virt_dev->tt_info; 2017 /* If this TT already had active endpoints, the bandwidth for this TT 2018 * has already been added. Removing all periodic endpoints (and thus 2019 * making the TT enactive) will only decrease the bandwidth used. 2020 */ 2021 if (old_active_eps) 2022 return 0; 2023 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2024 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2025 return -ENOMEM; 2026 return 0; 2027 } 2028 /* Not sure why we would have no new active endpoints... 2029 * 2030 * Maybe because of an Evaluate Context change for a hub update or a 2031 * control endpoint 0 max packet size change? 2032 * FIXME: skip the bandwidth calculation in that case. 2033 */ 2034 return 0; 2035 } 2036 2037 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2038 struct xhci_virt_device *virt_dev) 2039 { 2040 unsigned int bw_reserved; 2041 2042 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2043 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2044 return -ENOMEM; 2045 2046 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2047 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2048 return -ENOMEM; 2049 2050 return 0; 2051 } 2052 2053 /* 2054 * This algorithm is a very conservative estimate of the worst-case scheduling 2055 * scenario for any one interval. The hardware dynamically schedules the 2056 * packets, so we can't tell which microframe could be the limiting factor in 2057 * the bandwidth scheduling. This only takes into account periodic endpoints. 2058 * 2059 * Obviously, we can't solve an NP complete problem to find the minimum worst 2060 * case scenario. Instead, we come up with an estimate that is no less than 2061 * the worst case bandwidth used for any one microframe, but may be an 2062 * over-estimate. 2063 * 2064 * We walk the requirements for each endpoint by interval, starting with the 2065 * smallest interval, and place packets in the schedule where there is only one 2066 * possible way to schedule packets for that interval. In order to simplify 2067 * this algorithm, we record the largest max packet size for each interval, and 2068 * assume all packets will be that size. 2069 * 2070 * For interval 0, we obviously must schedule all packets for each interval. 2071 * The bandwidth for interval 0 is just the amount of data to be transmitted 2072 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2073 * the number of packets). 2074 * 2075 * For interval 1, we have two possible microframes to schedule those packets 2076 * in. For this algorithm, if we can schedule the same number of packets for 2077 * each possible scheduling opportunity (each microframe), we will do so. The 2078 * remaining number of packets will be saved to be transmitted in the gaps in 2079 * the next interval's scheduling sequence. 2080 * 2081 * As we move those remaining packets to be scheduled with interval 2 packets, 2082 * we have to double the number of remaining packets to transmit. This is 2083 * because the intervals are actually powers of 2, and we would be transmitting 2084 * the previous interval's packets twice in this interval. We also have to be 2085 * sure that when we look at the largest max packet size for this interval, we 2086 * also look at the largest max packet size for the remaining packets and take 2087 * the greater of the two. 2088 * 2089 * The algorithm continues to evenly distribute packets in each scheduling 2090 * opportunity, and push the remaining packets out, until we get to the last 2091 * interval. Then those packets and their associated overhead are just added 2092 * to the bandwidth used. 2093 */ 2094 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2095 struct xhci_virt_device *virt_dev, 2096 int old_active_eps) 2097 { 2098 unsigned int bw_reserved; 2099 unsigned int max_bandwidth; 2100 unsigned int bw_used; 2101 unsigned int block_size; 2102 struct xhci_interval_bw_table *bw_table; 2103 unsigned int packet_size = 0; 2104 unsigned int overhead = 0; 2105 unsigned int packets_transmitted = 0; 2106 unsigned int packets_remaining = 0; 2107 unsigned int i; 2108 2109 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2110 return xhci_check_ss_bw(xhci, virt_dev); 2111 2112 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2113 max_bandwidth = HS_BW_LIMIT; 2114 /* Convert percent of bus BW reserved to blocks reserved */ 2115 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2116 } else { 2117 max_bandwidth = FS_BW_LIMIT; 2118 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2119 } 2120 2121 bw_table = virt_dev->bw_table; 2122 /* We need to translate the max packet size and max ESIT payloads into 2123 * the units the hardware uses. 2124 */ 2125 block_size = xhci_get_block_size(virt_dev->udev); 2126 2127 /* If we are manipulating a LS/FS device under a HS hub, double check 2128 * that the HS bus has enough bandwidth if we are activing a new TT. 2129 */ 2130 if (virt_dev->tt_info) { 2131 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2132 "Recalculating BW for rootport %u", 2133 virt_dev->real_port); 2134 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2135 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2136 "newly activated TT.\n"); 2137 return -ENOMEM; 2138 } 2139 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2140 "Recalculating BW for TT slot %u port %u", 2141 virt_dev->tt_info->slot_id, 2142 virt_dev->tt_info->ttport); 2143 } else { 2144 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2145 "Recalculating BW for rootport %u", 2146 virt_dev->real_port); 2147 } 2148 2149 /* Add in how much bandwidth will be used for interval zero, or the 2150 * rounded max ESIT payload + number of packets * largest overhead. 2151 */ 2152 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2153 bw_table->interval_bw[0].num_packets * 2154 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2155 2156 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2157 unsigned int bw_added; 2158 unsigned int largest_mps; 2159 unsigned int interval_overhead; 2160 2161 /* 2162 * How many packets could we transmit in this interval? 2163 * If packets didn't fit in the previous interval, we will need 2164 * to transmit that many packets twice within this interval. 2165 */ 2166 packets_remaining = 2 * packets_remaining + 2167 bw_table->interval_bw[i].num_packets; 2168 2169 /* Find the largest max packet size of this or the previous 2170 * interval. 2171 */ 2172 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2173 largest_mps = 0; 2174 else { 2175 struct xhci_virt_ep *virt_ep; 2176 struct list_head *ep_entry; 2177 2178 ep_entry = bw_table->interval_bw[i].endpoints.next; 2179 virt_ep = list_entry(ep_entry, 2180 struct xhci_virt_ep, bw_endpoint_list); 2181 /* Convert to blocks, rounding up */ 2182 largest_mps = DIV_ROUND_UP( 2183 virt_ep->bw_info.max_packet_size, 2184 block_size); 2185 } 2186 if (largest_mps > packet_size) 2187 packet_size = largest_mps; 2188 2189 /* Use the larger overhead of this or the previous interval. */ 2190 interval_overhead = xhci_get_largest_overhead( 2191 &bw_table->interval_bw[i]); 2192 if (interval_overhead > overhead) 2193 overhead = interval_overhead; 2194 2195 /* How many packets can we evenly distribute across 2196 * (1 << (i + 1)) possible scheduling opportunities? 2197 */ 2198 packets_transmitted = packets_remaining >> (i + 1); 2199 2200 /* Add in the bandwidth used for those scheduled packets */ 2201 bw_added = packets_transmitted * (overhead + packet_size); 2202 2203 /* How many packets do we have remaining to transmit? */ 2204 packets_remaining = packets_remaining % (1 << (i + 1)); 2205 2206 /* What largest max packet size should those packets have? */ 2207 /* If we've transmitted all packets, don't carry over the 2208 * largest packet size. 2209 */ 2210 if (packets_remaining == 0) { 2211 packet_size = 0; 2212 overhead = 0; 2213 } else if (packets_transmitted > 0) { 2214 /* Otherwise if we do have remaining packets, and we've 2215 * scheduled some packets in this interval, take the 2216 * largest max packet size from endpoints with this 2217 * interval. 2218 */ 2219 packet_size = largest_mps; 2220 overhead = interval_overhead; 2221 } 2222 /* Otherwise carry over packet_size and overhead from the last 2223 * time we had a remainder. 2224 */ 2225 bw_used += bw_added; 2226 if (bw_used > max_bandwidth) { 2227 xhci_warn(xhci, "Not enough bandwidth. " 2228 "Proposed: %u, Max: %u\n", 2229 bw_used, max_bandwidth); 2230 return -ENOMEM; 2231 } 2232 } 2233 /* 2234 * Ok, we know we have some packets left over after even-handedly 2235 * scheduling interval 15. We don't know which microframes they will 2236 * fit into, so we over-schedule and say they will be scheduled every 2237 * microframe. 2238 */ 2239 if (packets_remaining > 0) 2240 bw_used += overhead + packet_size; 2241 2242 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2243 unsigned int port_index = virt_dev->real_port - 1; 2244 2245 /* OK, we're manipulating a HS device attached to a 2246 * root port bandwidth domain. Include the number of active TTs 2247 * in the bandwidth used. 2248 */ 2249 bw_used += TT_HS_OVERHEAD * 2250 xhci->rh_bw[port_index].num_active_tts; 2251 } 2252 2253 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2254 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2255 "Available: %u " "percent", 2256 bw_used, max_bandwidth, bw_reserved, 2257 (max_bandwidth - bw_used - bw_reserved) * 100 / 2258 max_bandwidth); 2259 2260 bw_used += bw_reserved; 2261 if (bw_used > max_bandwidth) { 2262 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2263 bw_used, max_bandwidth); 2264 return -ENOMEM; 2265 } 2266 2267 bw_table->bw_used = bw_used; 2268 return 0; 2269 } 2270 2271 static bool xhci_is_async_ep(unsigned int ep_type) 2272 { 2273 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2274 ep_type != ISOC_IN_EP && 2275 ep_type != INT_IN_EP); 2276 } 2277 2278 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2279 { 2280 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2281 } 2282 2283 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2284 { 2285 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2286 2287 if (ep_bw->ep_interval == 0) 2288 return SS_OVERHEAD_BURST + 2289 (ep_bw->mult * ep_bw->num_packets * 2290 (SS_OVERHEAD + mps)); 2291 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2292 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2293 1 << ep_bw->ep_interval); 2294 2295 } 2296 2297 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2298 struct xhci_bw_info *ep_bw, 2299 struct xhci_interval_bw_table *bw_table, 2300 struct usb_device *udev, 2301 struct xhci_virt_ep *virt_ep, 2302 struct xhci_tt_bw_info *tt_info) 2303 { 2304 struct xhci_interval_bw *interval_bw; 2305 int normalized_interval; 2306 2307 if (xhci_is_async_ep(ep_bw->type)) 2308 return; 2309 2310 if (udev->speed >= USB_SPEED_SUPER) { 2311 if (xhci_is_sync_in_ep(ep_bw->type)) 2312 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2313 xhci_get_ss_bw_consumed(ep_bw); 2314 else 2315 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2316 xhci_get_ss_bw_consumed(ep_bw); 2317 return; 2318 } 2319 2320 /* SuperSpeed endpoints never get added to intervals in the table, so 2321 * this check is only valid for HS/FS/LS devices. 2322 */ 2323 if (list_empty(&virt_ep->bw_endpoint_list)) 2324 return; 2325 /* For LS/FS devices, we need to translate the interval expressed in 2326 * microframes to frames. 2327 */ 2328 if (udev->speed == USB_SPEED_HIGH) 2329 normalized_interval = ep_bw->ep_interval; 2330 else 2331 normalized_interval = ep_bw->ep_interval - 3; 2332 2333 if (normalized_interval == 0) 2334 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2335 interval_bw = &bw_table->interval_bw[normalized_interval]; 2336 interval_bw->num_packets -= ep_bw->num_packets; 2337 switch (udev->speed) { 2338 case USB_SPEED_LOW: 2339 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2340 break; 2341 case USB_SPEED_FULL: 2342 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2343 break; 2344 case USB_SPEED_HIGH: 2345 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2346 break; 2347 case USB_SPEED_SUPER: 2348 case USB_SPEED_SUPER_PLUS: 2349 case USB_SPEED_UNKNOWN: 2350 case USB_SPEED_WIRELESS: 2351 /* Should never happen because only LS/FS/HS endpoints will get 2352 * added to the endpoint list. 2353 */ 2354 return; 2355 } 2356 if (tt_info) 2357 tt_info->active_eps -= 1; 2358 list_del_init(&virt_ep->bw_endpoint_list); 2359 } 2360 2361 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2362 struct xhci_bw_info *ep_bw, 2363 struct xhci_interval_bw_table *bw_table, 2364 struct usb_device *udev, 2365 struct xhci_virt_ep *virt_ep, 2366 struct xhci_tt_bw_info *tt_info) 2367 { 2368 struct xhci_interval_bw *interval_bw; 2369 struct xhci_virt_ep *smaller_ep; 2370 int normalized_interval; 2371 2372 if (xhci_is_async_ep(ep_bw->type)) 2373 return; 2374 2375 if (udev->speed == USB_SPEED_SUPER) { 2376 if (xhci_is_sync_in_ep(ep_bw->type)) 2377 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2378 xhci_get_ss_bw_consumed(ep_bw); 2379 else 2380 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2381 xhci_get_ss_bw_consumed(ep_bw); 2382 return; 2383 } 2384 2385 /* For LS/FS devices, we need to translate the interval expressed in 2386 * microframes to frames. 2387 */ 2388 if (udev->speed == USB_SPEED_HIGH) 2389 normalized_interval = ep_bw->ep_interval; 2390 else 2391 normalized_interval = ep_bw->ep_interval - 3; 2392 2393 if (normalized_interval == 0) 2394 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2395 interval_bw = &bw_table->interval_bw[normalized_interval]; 2396 interval_bw->num_packets += ep_bw->num_packets; 2397 switch (udev->speed) { 2398 case USB_SPEED_LOW: 2399 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2400 break; 2401 case USB_SPEED_FULL: 2402 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2403 break; 2404 case USB_SPEED_HIGH: 2405 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2406 break; 2407 case USB_SPEED_SUPER: 2408 case USB_SPEED_SUPER_PLUS: 2409 case USB_SPEED_UNKNOWN: 2410 case USB_SPEED_WIRELESS: 2411 /* Should never happen because only LS/FS/HS endpoints will get 2412 * added to the endpoint list. 2413 */ 2414 return; 2415 } 2416 2417 if (tt_info) 2418 tt_info->active_eps += 1; 2419 /* Insert the endpoint into the list, largest max packet size first. */ 2420 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2421 bw_endpoint_list) { 2422 if (ep_bw->max_packet_size >= 2423 smaller_ep->bw_info.max_packet_size) { 2424 /* Add the new ep before the smaller endpoint */ 2425 list_add_tail(&virt_ep->bw_endpoint_list, 2426 &smaller_ep->bw_endpoint_list); 2427 return; 2428 } 2429 } 2430 /* Add the new endpoint at the end of the list. */ 2431 list_add_tail(&virt_ep->bw_endpoint_list, 2432 &interval_bw->endpoints); 2433 } 2434 2435 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2436 struct xhci_virt_device *virt_dev, 2437 int old_active_eps) 2438 { 2439 struct xhci_root_port_bw_info *rh_bw_info; 2440 if (!virt_dev->tt_info) 2441 return; 2442 2443 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2444 if (old_active_eps == 0 && 2445 virt_dev->tt_info->active_eps != 0) { 2446 rh_bw_info->num_active_tts += 1; 2447 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2448 } else if (old_active_eps != 0 && 2449 virt_dev->tt_info->active_eps == 0) { 2450 rh_bw_info->num_active_tts -= 1; 2451 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2452 } 2453 } 2454 2455 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2456 struct xhci_virt_device *virt_dev, 2457 struct xhci_container_ctx *in_ctx) 2458 { 2459 struct xhci_bw_info ep_bw_info[31]; 2460 int i; 2461 struct xhci_input_control_ctx *ctrl_ctx; 2462 int old_active_eps = 0; 2463 2464 if (virt_dev->tt_info) 2465 old_active_eps = virt_dev->tt_info->active_eps; 2466 2467 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2468 if (!ctrl_ctx) { 2469 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2470 __func__); 2471 return -ENOMEM; 2472 } 2473 2474 for (i = 0; i < 31; i++) { 2475 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2476 continue; 2477 2478 /* Make a copy of the BW info in case we need to revert this */ 2479 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2480 sizeof(ep_bw_info[i])); 2481 /* Drop the endpoint from the interval table if the endpoint is 2482 * being dropped or changed. 2483 */ 2484 if (EP_IS_DROPPED(ctrl_ctx, i)) 2485 xhci_drop_ep_from_interval_table(xhci, 2486 &virt_dev->eps[i].bw_info, 2487 virt_dev->bw_table, 2488 virt_dev->udev, 2489 &virt_dev->eps[i], 2490 virt_dev->tt_info); 2491 } 2492 /* Overwrite the information stored in the endpoints' bw_info */ 2493 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2494 for (i = 0; i < 31; i++) { 2495 /* Add any changed or added endpoints to the interval table */ 2496 if (EP_IS_ADDED(ctrl_ctx, i)) 2497 xhci_add_ep_to_interval_table(xhci, 2498 &virt_dev->eps[i].bw_info, 2499 virt_dev->bw_table, 2500 virt_dev->udev, 2501 &virt_dev->eps[i], 2502 virt_dev->tt_info); 2503 } 2504 2505 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2506 /* Ok, this fits in the bandwidth we have. 2507 * Update the number of active TTs. 2508 */ 2509 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2510 return 0; 2511 } 2512 2513 /* We don't have enough bandwidth for this, revert the stored info. */ 2514 for (i = 0; i < 31; i++) { 2515 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2516 continue; 2517 2518 /* Drop the new copies of any added or changed endpoints from 2519 * the interval table. 2520 */ 2521 if (EP_IS_ADDED(ctrl_ctx, i)) { 2522 xhci_drop_ep_from_interval_table(xhci, 2523 &virt_dev->eps[i].bw_info, 2524 virt_dev->bw_table, 2525 virt_dev->udev, 2526 &virt_dev->eps[i], 2527 virt_dev->tt_info); 2528 } 2529 /* Revert the endpoint back to its old information */ 2530 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2531 sizeof(ep_bw_info[i])); 2532 /* Add any changed or dropped endpoints back into the table */ 2533 if (EP_IS_DROPPED(ctrl_ctx, i)) 2534 xhci_add_ep_to_interval_table(xhci, 2535 &virt_dev->eps[i].bw_info, 2536 virt_dev->bw_table, 2537 virt_dev->udev, 2538 &virt_dev->eps[i], 2539 virt_dev->tt_info); 2540 } 2541 return -ENOMEM; 2542 } 2543 2544 2545 /* Issue a configure endpoint command or evaluate context command 2546 * and wait for it to finish. 2547 */ 2548 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2549 struct usb_device *udev, 2550 struct xhci_command *command, 2551 bool ctx_change, bool must_succeed) 2552 { 2553 int ret; 2554 unsigned long flags; 2555 struct xhci_input_control_ctx *ctrl_ctx; 2556 struct xhci_virt_device *virt_dev; 2557 struct xhci_slot_ctx *slot_ctx; 2558 2559 if (!command) 2560 return -EINVAL; 2561 2562 spin_lock_irqsave(&xhci->lock, flags); 2563 2564 if (xhci->xhc_state & XHCI_STATE_DYING) { 2565 spin_unlock_irqrestore(&xhci->lock, flags); 2566 return -ESHUTDOWN; 2567 } 2568 2569 virt_dev = xhci->devs[udev->slot_id]; 2570 2571 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2572 if (!ctrl_ctx) { 2573 spin_unlock_irqrestore(&xhci->lock, flags); 2574 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2575 __func__); 2576 return -ENOMEM; 2577 } 2578 2579 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2580 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2581 spin_unlock_irqrestore(&xhci->lock, flags); 2582 xhci_warn(xhci, "Not enough host resources, " 2583 "active endpoint contexts = %u\n", 2584 xhci->num_active_eps); 2585 return -ENOMEM; 2586 } 2587 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2588 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2589 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2590 xhci_free_host_resources(xhci, ctrl_ctx); 2591 spin_unlock_irqrestore(&xhci->lock, flags); 2592 xhci_warn(xhci, "Not enough bandwidth\n"); 2593 return -ENOMEM; 2594 } 2595 2596 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2597 trace_xhci_configure_endpoint(slot_ctx); 2598 2599 if (!ctx_change) 2600 ret = xhci_queue_configure_endpoint(xhci, command, 2601 command->in_ctx->dma, 2602 udev->slot_id, must_succeed); 2603 else 2604 ret = xhci_queue_evaluate_context(xhci, command, 2605 command->in_ctx->dma, 2606 udev->slot_id, must_succeed); 2607 if (ret < 0) { 2608 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2609 xhci_free_host_resources(xhci, ctrl_ctx); 2610 spin_unlock_irqrestore(&xhci->lock, flags); 2611 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2612 "FIXME allocate a new ring segment"); 2613 return -ENOMEM; 2614 } 2615 xhci_ring_cmd_db(xhci); 2616 spin_unlock_irqrestore(&xhci->lock, flags); 2617 2618 /* Wait for the configure endpoint command to complete */ 2619 wait_for_completion(command->completion); 2620 2621 if (!ctx_change) 2622 ret = xhci_configure_endpoint_result(xhci, udev, 2623 &command->status); 2624 else 2625 ret = xhci_evaluate_context_result(xhci, udev, 2626 &command->status); 2627 2628 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2629 spin_lock_irqsave(&xhci->lock, flags); 2630 /* If the command failed, remove the reserved resources. 2631 * Otherwise, clean up the estimate to include dropped eps. 2632 */ 2633 if (ret) 2634 xhci_free_host_resources(xhci, ctrl_ctx); 2635 else 2636 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2637 spin_unlock_irqrestore(&xhci->lock, flags); 2638 } 2639 return ret; 2640 } 2641 2642 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2643 struct xhci_virt_device *vdev, int i) 2644 { 2645 struct xhci_virt_ep *ep = &vdev->eps[i]; 2646 2647 if (ep->ep_state & EP_HAS_STREAMS) { 2648 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2649 xhci_get_endpoint_address(i)); 2650 xhci_free_stream_info(xhci, ep->stream_info); 2651 ep->stream_info = NULL; 2652 ep->ep_state &= ~EP_HAS_STREAMS; 2653 } 2654 } 2655 2656 /* Called after one or more calls to xhci_add_endpoint() or 2657 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2658 * to call xhci_reset_bandwidth(). 2659 * 2660 * Since we are in the middle of changing either configuration or 2661 * installing a new alt setting, the USB core won't allow URBs to be 2662 * enqueued for any endpoint on the old config or interface. Nothing 2663 * else should be touching the xhci->devs[slot_id] structure, so we 2664 * don't need to take the xhci->lock for manipulating that. 2665 */ 2666 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2667 { 2668 int i; 2669 int ret = 0; 2670 struct xhci_hcd *xhci; 2671 struct xhci_virt_device *virt_dev; 2672 struct xhci_input_control_ctx *ctrl_ctx; 2673 struct xhci_slot_ctx *slot_ctx; 2674 struct xhci_command *command; 2675 2676 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2677 if (ret <= 0) 2678 return ret; 2679 xhci = hcd_to_xhci(hcd); 2680 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2681 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2682 return -ENODEV; 2683 2684 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2685 virt_dev = xhci->devs[udev->slot_id]; 2686 2687 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2688 if (!command) 2689 return -ENOMEM; 2690 2691 command->in_ctx = virt_dev->in_ctx; 2692 2693 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2694 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2695 if (!ctrl_ctx) { 2696 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2697 __func__); 2698 ret = -ENOMEM; 2699 goto command_cleanup; 2700 } 2701 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2702 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2703 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2704 2705 /* Don't issue the command if there's no endpoints to update. */ 2706 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2707 ctrl_ctx->drop_flags == 0) { 2708 ret = 0; 2709 goto command_cleanup; 2710 } 2711 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2712 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2713 for (i = 31; i >= 1; i--) { 2714 __le32 le32 = cpu_to_le32(BIT(i)); 2715 2716 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2717 || (ctrl_ctx->add_flags & le32) || i == 1) { 2718 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2719 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2720 break; 2721 } 2722 } 2723 2724 ret = xhci_configure_endpoint(xhci, udev, command, 2725 false, false); 2726 if (ret) 2727 /* Callee should call reset_bandwidth() */ 2728 goto command_cleanup; 2729 2730 /* Free any rings that were dropped, but not changed. */ 2731 for (i = 1; i < 31; i++) { 2732 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2733 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2734 xhci_free_endpoint_ring(xhci, virt_dev, i); 2735 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2736 } 2737 } 2738 xhci_zero_in_ctx(xhci, virt_dev); 2739 /* 2740 * Install any rings for completely new endpoints or changed endpoints, 2741 * and free any old rings from changed endpoints. 2742 */ 2743 for (i = 1; i < 31; i++) { 2744 if (!virt_dev->eps[i].new_ring) 2745 continue; 2746 /* Only free the old ring if it exists. 2747 * It may not if this is the first add of an endpoint. 2748 */ 2749 if (virt_dev->eps[i].ring) { 2750 xhci_free_endpoint_ring(xhci, virt_dev, i); 2751 } 2752 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2753 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2754 virt_dev->eps[i].new_ring = NULL; 2755 } 2756 command_cleanup: 2757 kfree(command->completion); 2758 kfree(command); 2759 2760 return ret; 2761 } 2762 2763 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2764 { 2765 struct xhci_hcd *xhci; 2766 struct xhci_virt_device *virt_dev; 2767 int i, ret; 2768 2769 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2770 if (ret <= 0) 2771 return; 2772 xhci = hcd_to_xhci(hcd); 2773 2774 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2775 virt_dev = xhci->devs[udev->slot_id]; 2776 /* Free any rings allocated for added endpoints */ 2777 for (i = 0; i < 31; i++) { 2778 if (virt_dev->eps[i].new_ring) { 2779 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2780 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2781 virt_dev->eps[i].new_ring = NULL; 2782 } 2783 } 2784 xhci_zero_in_ctx(xhci, virt_dev); 2785 } 2786 2787 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2788 struct xhci_container_ctx *in_ctx, 2789 struct xhci_container_ctx *out_ctx, 2790 struct xhci_input_control_ctx *ctrl_ctx, 2791 u32 add_flags, u32 drop_flags) 2792 { 2793 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2794 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2795 xhci_slot_copy(xhci, in_ctx, out_ctx); 2796 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2797 } 2798 2799 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2800 unsigned int slot_id, unsigned int ep_index, 2801 struct xhci_dequeue_state *deq_state) 2802 { 2803 struct xhci_input_control_ctx *ctrl_ctx; 2804 struct xhci_container_ctx *in_ctx; 2805 struct xhci_ep_ctx *ep_ctx; 2806 u32 added_ctxs; 2807 dma_addr_t addr; 2808 2809 in_ctx = xhci->devs[slot_id]->in_ctx; 2810 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2811 if (!ctrl_ctx) { 2812 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2813 __func__); 2814 return; 2815 } 2816 2817 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2818 xhci->devs[slot_id]->out_ctx, ep_index); 2819 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2820 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2821 deq_state->new_deq_ptr); 2822 if (addr == 0) { 2823 xhci_warn(xhci, "WARN Cannot submit config ep after " 2824 "reset ep command\n"); 2825 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2826 deq_state->new_deq_seg, 2827 deq_state->new_deq_ptr); 2828 return; 2829 } 2830 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2831 2832 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2833 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2834 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2835 added_ctxs, added_ctxs); 2836 } 2837 2838 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index, 2839 unsigned int stream_id, struct xhci_td *td) 2840 { 2841 struct xhci_dequeue_state deq_state; 2842 struct usb_device *udev = td->urb->dev; 2843 2844 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2845 "Cleaning up stalled endpoint ring"); 2846 /* We need to move the HW's dequeue pointer past this TD, 2847 * or it will attempt to resend it on the next doorbell ring. 2848 */ 2849 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2850 ep_index, stream_id, td, &deq_state); 2851 2852 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2853 return; 2854 2855 /* HW with the reset endpoint quirk will use the saved dequeue state to 2856 * issue a configure endpoint command later. 2857 */ 2858 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2859 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2860 "Queueing new dequeue state"); 2861 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2862 ep_index, &deq_state); 2863 } else { 2864 /* Better hope no one uses the input context between now and the 2865 * reset endpoint completion! 2866 * XXX: No idea how this hardware will react when stream rings 2867 * are enabled. 2868 */ 2869 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2870 "Setting up input context for " 2871 "configure endpoint command"); 2872 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2873 ep_index, &deq_state); 2874 } 2875 } 2876 2877 /* Called when clearing halted device. The core should have sent the control 2878 * message to clear the device halt condition. The host side of the halt should 2879 * already be cleared with a reset endpoint command issued when the STALL tx 2880 * event was received. 2881 * 2882 * Context: in_interrupt 2883 */ 2884 2885 static void xhci_endpoint_reset(struct usb_hcd *hcd, 2886 struct usb_host_endpoint *ep) 2887 { 2888 struct xhci_hcd *xhci; 2889 2890 xhci = hcd_to_xhci(hcd); 2891 2892 /* 2893 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2894 * The Reset Endpoint Command may only be issued to endpoints in the 2895 * Halted state. If software wishes reset the Data Toggle or Sequence 2896 * Number of an endpoint that isn't in the Halted state, then software 2897 * may issue a Configure Endpoint Command with the Drop and Add bits set 2898 * for the target endpoint. that is in the Stopped state. 2899 */ 2900 2901 /* For now just print debug to follow the situation */ 2902 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 2903 ep->desc.bEndpointAddress); 2904 } 2905 2906 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2907 struct usb_device *udev, struct usb_host_endpoint *ep, 2908 unsigned int slot_id) 2909 { 2910 int ret; 2911 unsigned int ep_index; 2912 unsigned int ep_state; 2913 2914 if (!ep) 2915 return -EINVAL; 2916 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2917 if (ret <= 0) 2918 return -EINVAL; 2919 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2920 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2921 " descriptor for ep 0x%x does not support streams\n", 2922 ep->desc.bEndpointAddress); 2923 return -EINVAL; 2924 } 2925 2926 ep_index = xhci_get_endpoint_index(&ep->desc); 2927 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2928 if (ep_state & EP_HAS_STREAMS || 2929 ep_state & EP_GETTING_STREAMS) { 2930 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2931 "already has streams set up.\n", 2932 ep->desc.bEndpointAddress); 2933 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2934 "dynamic stream context array reallocation.\n"); 2935 return -EINVAL; 2936 } 2937 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2938 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2939 "endpoint 0x%x; URBs are pending.\n", 2940 ep->desc.bEndpointAddress); 2941 return -EINVAL; 2942 } 2943 return 0; 2944 } 2945 2946 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2947 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2948 { 2949 unsigned int max_streams; 2950 2951 /* The stream context array size must be a power of two */ 2952 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2953 /* 2954 * Find out how many primary stream array entries the host controller 2955 * supports. Later we may use secondary stream arrays (similar to 2nd 2956 * level page entries), but that's an optional feature for xHCI host 2957 * controllers. xHCs must support at least 4 stream IDs. 2958 */ 2959 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2960 if (*num_stream_ctxs > max_streams) { 2961 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2962 max_streams); 2963 *num_stream_ctxs = max_streams; 2964 *num_streams = max_streams; 2965 } 2966 } 2967 2968 /* Returns an error code if one of the endpoint already has streams. 2969 * This does not change any data structures, it only checks and gathers 2970 * information. 2971 */ 2972 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 2973 struct usb_device *udev, 2974 struct usb_host_endpoint **eps, unsigned int num_eps, 2975 unsigned int *num_streams, u32 *changed_ep_bitmask) 2976 { 2977 unsigned int max_streams; 2978 unsigned int endpoint_flag; 2979 int i; 2980 int ret; 2981 2982 for (i = 0; i < num_eps; i++) { 2983 ret = xhci_check_streams_endpoint(xhci, udev, 2984 eps[i], udev->slot_id); 2985 if (ret < 0) 2986 return ret; 2987 2988 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 2989 if (max_streams < (*num_streams - 1)) { 2990 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 2991 eps[i]->desc.bEndpointAddress, 2992 max_streams); 2993 *num_streams = max_streams+1; 2994 } 2995 2996 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 2997 if (*changed_ep_bitmask & endpoint_flag) 2998 return -EINVAL; 2999 *changed_ep_bitmask |= endpoint_flag; 3000 } 3001 return 0; 3002 } 3003 3004 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3005 struct usb_device *udev, 3006 struct usb_host_endpoint **eps, unsigned int num_eps) 3007 { 3008 u32 changed_ep_bitmask = 0; 3009 unsigned int slot_id; 3010 unsigned int ep_index; 3011 unsigned int ep_state; 3012 int i; 3013 3014 slot_id = udev->slot_id; 3015 if (!xhci->devs[slot_id]) 3016 return 0; 3017 3018 for (i = 0; i < num_eps; i++) { 3019 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3020 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3021 /* Are streams already being freed for the endpoint? */ 3022 if (ep_state & EP_GETTING_NO_STREAMS) { 3023 xhci_warn(xhci, "WARN Can't disable streams for " 3024 "endpoint 0x%x, " 3025 "streams are being disabled already\n", 3026 eps[i]->desc.bEndpointAddress); 3027 return 0; 3028 } 3029 /* Are there actually any streams to free? */ 3030 if (!(ep_state & EP_HAS_STREAMS) && 3031 !(ep_state & EP_GETTING_STREAMS)) { 3032 xhci_warn(xhci, "WARN Can't disable streams for " 3033 "endpoint 0x%x, " 3034 "streams are already disabled!\n", 3035 eps[i]->desc.bEndpointAddress); 3036 xhci_warn(xhci, "WARN xhci_free_streams() called " 3037 "with non-streams endpoint\n"); 3038 return 0; 3039 } 3040 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3041 } 3042 return changed_ep_bitmask; 3043 } 3044 3045 /* 3046 * The USB device drivers use this function (through the HCD interface in USB 3047 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3048 * coordinate mass storage command queueing across multiple endpoints (basically 3049 * a stream ID == a task ID). 3050 * 3051 * Setting up streams involves allocating the same size stream context array 3052 * for each endpoint and issuing a configure endpoint command for all endpoints. 3053 * 3054 * Don't allow the call to succeed if one endpoint only supports one stream 3055 * (which means it doesn't support streams at all). 3056 * 3057 * Drivers may get less stream IDs than they asked for, if the host controller 3058 * hardware or endpoints claim they can't support the number of requested 3059 * stream IDs. 3060 */ 3061 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3062 struct usb_host_endpoint **eps, unsigned int num_eps, 3063 unsigned int num_streams, gfp_t mem_flags) 3064 { 3065 int i, ret; 3066 struct xhci_hcd *xhci; 3067 struct xhci_virt_device *vdev; 3068 struct xhci_command *config_cmd; 3069 struct xhci_input_control_ctx *ctrl_ctx; 3070 unsigned int ep_index; 3071 unsigned int num_stream_ctxs; 3072 unsigned int max_packet; 3073 unsigned long flags; 3074 u32 changed_ep_bitmask = 0; 3075 3076 if (!eps) 3077 return -EINVAL; 3078 3079 /* Add one to the number of streams requested to account for 3080 * stream 0 that is reserved for xHCI usage. 3081 */ 3082 num_streams += 1; 3083 xhci = hcd_to_xhci(hcd); 3084 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3085 num_streams); 3086 3087 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3088 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3089 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3090 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3091 return -ENOSYS; 3092 } 3093 3094 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3095 if (!config_cmd) 3096 return -ENOMEM; 3097 3098 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3099 if (!ctrl_ctx) { 3100 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3101 __func__); 3102 xhci_free_command(xhci, config_cmd); 3103 return -ENOMEM; 3104 } 3105 3106 /* Check to make sure all endpoints are not already configured for 3107 * streams. While we're at it, find the maximum number of streams that 3108 * all the endpoints will support and check for duplicate endpoints. 3109 */ 3110 spin_lock_irqsave(&xhci->lock, flags); 3111 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3112 num_eps, &num_streams, &changed_ep_bitmask); 3113 if (ret < 0) { 3114 xhci_free_command(xhci, config_cmd); 3115 spin_unlock_irqrestore(&xhci->lock, flags); 3116 return ret; 3117 } 3118 if (num_streams <= 1) { 3119 xhci_warn(xhci, "WARN: endpoints can't handle " 3120 "more than one stream.\n"); 3121 xhci_free_command(xhci, config_cmd); 3122 spin_unlock_irqrestore(&xhci->lock, flags); 3123 return -EINVAL; 3124 } 3125 vdev = xhci->devs[udev->slot_id]; 3126 /* Mark each endpoint as being in transition, so 3127 * xhci_urb_enqueue() will reject all URBs. 3128 */ 3129 for (i = 0; i < num_eps; i++) { 3130 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3131 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3132 } 3133 spin_unlock_irqrestore(&xhci->lock, flags); 3134 3135 /* Setup internal data structures and allocate HW data structures for 3136 * streams (but don't install the HW structures in the input context 3137 * until we're sure all memory allocation succeeded). 3138 */ 3139 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3140 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3141 num_stream_ctxs, num_streams); 3142 3143 for (i = 0; i < num_eps; i++) { 3144 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3145 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3146 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3147 num_stream_ctxs, 3148 num_streams, 3149 max_packet, mem_flags); 3150 if (!vdev->eps[ep_index].stream_info) 3151 goto cleanup; 3152 /* Set maxPstreams in endpoint context and update deq ptr to 3153 * point to stream context array. FIXME 3154 */ 3155 } 3156 3157 /* Set up the input context for a configure endpoint command. */ 3158 for (i = 0; i < num_eps; i++) { 3159 struct xhci_ep_ctx *ep_ctx; 3160 3161 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3162 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3163 3164 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3165 vdev->out_ctx, ep_index); 3166 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3167 vdev->eps[ep_index].stream_info); 3168 } 3169 /* Tell the HW to drop its old copy of the endpoint context info 3170 * and add the updated copy from the input context. 3171 */ 3172 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3173 vdev->out_ctx, ctrl_ctx, 3174 changed_ep_bitmask, changed_ep_bitmask); 3175 3176 /* Issue and wait for the configure endpoint command */ 3177 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3178 false, false); 3179 3180 /* xHC rejected the configure endpoint command for some reason, so we 3181 * leave the old ring intact and free our internal streams data 3182 * structure. 3183 */ 3184 if (ret < 0) 3185 goto cleanup; 3186 3187 spin_lock_irqsave(&xhci->lock, flags); 3188 for (i = 0; i < num_eps; i++) { 3189 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3190 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3191 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3192 udev->slot_id, ep_index); 3193 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3194 } 3195 xhci_free_command(xhci, config_cmd); 3196 spin_unlock_irqrestore(&xhci->lock, flags); 3197 3198 /* Subtract 1 for stream 0, which drivers can't use */ 3199 return num_streams - 1; 3200 3201 cleanup: 3202 /* If it didn't work, free the streams! */ 3203 for (i = 0; i < num_eps; i++) { 3204 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3205 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3206 vdev->eps[ep_index].stream_info = NULL; 3207 /* FIXME Unset maxPstreams in endpoint context and 3208 * update deq ptr to point to normal string ring. 3209 */ 3210 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3211 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3212 xhci_endpoint_zero(xhci, vdev, eps[i]); 3213 } 3214 xhci_free_command(xhci, config_cmd); 3215 return -ENOMEM; 3216 } 3217 3218 /* Transition the endpoint from using streams to being a "normal" endpoint 3219 * without streams. 3220 * 3221 * Modify the endpoint context state, submit a configure endpoint command, 3222 * and free all endpoint rings for streams if that completes successfully. 3223 */ 3224 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3225 struct usb_host_endpoint **eps, unsigned int num_eps, 3226 gfp_t mem_flags) 3227 { 3228 int i, ret; 3229 struct xhci_hcd *xhci; 3230 struct xhci_virt_device *vdev; 3231 struct xhci_command *command; 3232 struct xhci_input_control_ctx *ctrl_ctx; 3233 unsigned int ep_index; 3234 unsigned long flags; 3235 u32 changed_ep_bitmask; 3236 3237 xhci = hcd_to_xhci(hcd); 3238 vdev = xhci->devs[udev->slot_id]; 3239 3240 /* Set up a configure endpoint command to remove the streams rings */ 3241 spin_lock_irqsave(&xhci->lock, flags); 3242 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3243 udev, eps, num_eps); 3244 if (changed_ep_bitmask == 0) { 3245 spin_unlock_irqrestore(&xhci->lock, flags); 3246 return -EINVAL; 3247 } 3248 3249 /* Use the xhci_command structure from the first endpoint. We may have 3250 * allocated too many, but the driver may call xhci_free_streams() for 3251 * each endpoint it grouped into one call to xhci_alloc_streams(). 3252 */ 3253 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3254 command = vdev->eps[ep_index].stream_info->free_streams_command; 3255 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3256 if (!ctrl_ctx) { 3257 spin_unlock_irqrestore(&xhci->lock, flags); 3258 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3259 __func__); 3260 return -EINVAL; 3261 } 3262 3263 for (i = 0; i < num_eps; i++) { 3264 struct xhci_ep_ctx *ep_ctx; 3265 3266 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3267 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3268 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3269 EP_GETTING_NO_STREAMS; 3270 3271 xhci_endpoint_copy(xhci, command->in_ctx, 3272 vdev->out_ctx, ep_index); 3273 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3274 &vdev->eps[ep_index]); 3275 } 3276 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3277 vdev->out_ctx, ctrl_ctx, 3278 changed_ep_bitmask, changed_ep_bitmask); 3279 spin_unlock_irqrestore(&xhci->lock, flags); 3280 3281 /* Issue and wait for the configure endpoint command, 3282 * which must succeed. 3283 */ 3284 ret = xhci_configure_endpoint(xhci, udev, command, 3285 false, true); 3286 3287 /* xHC rejected the configure endpoint command for some reason, so we 3288 * leave the streams rings intact. 3289 */ 3290 if (ret < 0) 3291 return ret; 3292 3293 spin_lock_irqsave(&xhci->lock, flags); 3294 for (i = 0; i < num_eps; i++) { 3295 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3296 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3297 vdev->eps[ep_index].stream_info = NULL; 3298 /* FIXME Unset maxPstreams in endpoint context and 3299 * update deq ptr to point to normal string ring. 3300 */ 3301 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3302 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3303 } 3304 spin_unlock_irqrestore(&xhci->lock, flags); 3305 3306 return 0; 3307 } 3308 3309 /* 3310 * Deletes endpoint resources for endpoints that were active before a Reset 3311 * Device command, or a Disable Slot command. The Reset Device command leaves 3312 * the control endpoint intact, whereas the Disable Slot command deletes it. 3313 * 3314 * Must be called with xhci->lock held. 3315 */ 3316 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3317 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3318 { 3319 int i; 3320 unsigned int num_dropped_eps = 0; 3321 unsigned int drop_flags = 0; 3322 3323 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3324 if (virt_dev->eps[i].ring) { 3325 drop_flags |= 1 << i; 3326 num_dropped_eps++; 3327 } 3328 } 3329 xhci->num_active_eps -= num_dropped_eps; 3330 if (num_dropped_eps) 3331 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3332 "Dropped %u ep ctxs, flags = 0x%x, " 3333 "%u now active.", 3334 num_dropped_eps, drop_flags, 3335 xhci->num_active_eps); 3336 } 3337 3338 /* 3339 * This submits a Reset Device Command, which will set the device state to 0, 3340 * set the device address to 0, and disable all the endpoints except the default 3341 * control endpoint. The USB core should come back and call 3342 * xhci_address_device(), and then re-set up the configuration. If this is 3343 * called because of a usb_reset_and_verify_device(), then the old alternate 3344 * settings will be re-installed through the normal bandwidth allocation 3345 * functions. 3346 * 3347 * Wait for the Reset Device command to finish. Remove all structures 3348 * associated with the endpoints that were disabled. Clear the input device 3349 * structure? Reset the control endpoint 0 max packet size? 3350 * 3351 * If the virt_dev to be reset does not exist or does not match the udev, 3352 * it means the device is lost, possibly due to the xHC restore error and 3353 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3354 * re-allocate the device. 3355 */ 3356 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3357 struct usb_device *udev) 3358 { 3359 int ret, i; 3360 unsigned long flags; 3361 struct xhci_hcd *xhci; 3362 unsigned int slot_id; 3363 struct xhci_virt_device *virt_dev; 3364 struct xhci_command *reset_device_cmd; 3365 struct xhci_slot_ctx *slot_ctx; 3366 int old_active_eps = 0; 3367 3368 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3369 if (ret <= 0) 3370 return ret; 3371 xhci = hcd_to_xhci(hcd); 3372 slot_id = udev->slot_id; 3373 virt_dev = xhci->devs[slot_id]; 3374 if (!virt_dev) { 3375 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3376 "not exist. Re-allocate the device\n", slot_id); 3377 ret = xhci_alloc_dev(hcd, udev); 3378 if (ret == 1) 3379 return 0; 3380 else 3381 return -EINVAL; 3382 } 3383 3384 if (virt_dev->tt_info) 3385 old_active_eps = virt_dev->tt_info->active_eps; 3386 3387 if (virt_dev->udev != udev) { 3388 /* If the virt_dev and the udev does not match, this virt_dev 3389 * may belong to another udev. 3390 * Re-allocate the device. 3391 */ 3392 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3393 "not match the udev. Re-allocate the device\n", 3394 slot_id); 3395 ret = xhci_alloc_dev(hcd, udev); 3396 if (ret == 1) 3397 return 0; 3398 else 3399 return -EINVAL; 3400 } 3401 3402 /* If device is not setup, there is no point in resetting it */ 3403 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3404 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3405 SLOT_STATE_DISABLED) 3406 return 0; 3407 3408 trace_xhci_discover_or_reset_device(slot_ctx); 3409 3410 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3411 /* Allocate the command structure that holds the struct completion. 3412 * Assume we're in process context, since the normal device reset 3413 * process has to wait for the device anyway. Storage devices are 3414 * reset as part of error handling, so use GFP_NOIO instead of 3415 * GFP_KERNEL. 3416 */ 3417 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3418 if (!reset_device_cmd) { 3419 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3420 return -ENOMEM; 3421 } 3422 3423 /* Attempt to submit the Reset Device command to the command ring */ 3424 spin_lock_irqsave(&xhci->lock, flags); 3425 3426 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3427 if (ret) { 3428 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3429 spin_unlock_irqrestore(&xhci->lock, flags); 3430 goto command_cleanup; 3431 } 3432 xhci_ring_cmd_db(xhci); 3433 spin_unlock_irqrestore(&xhci->lock, flags); 3434 3435 /* Wait for the Reset Device command to finish */ 3436 wait_for_completion(reset_device_cmd->completion); 3437 3438 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3439 * unless we tried to reset a slot ID that wasn't enabled, 3440 * or the device wasn't in the addressed or configured state. 3441 */ 3442 ret = reset_device_cmd->status; 3443 switch (ret) { 3444 case COMP_COMMAND_ABORTED: 3445 case COMP_COMMAND_RING_STOPPED: 3446 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3447 ret = -ETIME; 3448 goto command_cleanup; 3449 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3450 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3451 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3452 slot_id, 3453 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3454 xhci_dbg(xhci, "Not freeing device rings.\n"); 3455 /* Don't treat this as an error. May change my mind later. */ 3456 ret = 0; 3457 goto command_cleanup; 3458 case COMP_SUCCESS: 3459 xhci_dbg(xhci, "Successful reset device command.\n"); 3460 break; 3461 default: 3462 if (xhci_is_vendor_info_code(xhci, ret)) 3463 break; 3464 xhci_warn(xhci, "Unknown completion code %u for " 3465 "reset device command.\n", ret); 3466 ret = -EINVAL; 3467 goto command_cleanup; 3468 } 3469 3470 /* Free up host controller endpoint resources */ 3471 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3472 spin_lock_irqsave(&xhci->lock, flags); 3473 /* Don't delete the default control endpoint resources */ 3474 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3475 spin_unlock_irqrestore(&xhci->lock, flags); 3476 } 3477 3478 /* Everything but endpoint 0 is disabled, so free the rings. */ 3479 for (i = 1; i < 31; i++) { 3480 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3481 3482 if (ep->ep_state & EP_HAS_STREAMS) { 3483 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3484 xhci_get_endpoint_address(i)); 3485 xhci_free_stream_info(xhci, ep->stream_info); 3486 ep->stream_info = NULL; 3487 ep->ep_state &= ~EP_HAS_STREAMS; 3488 } 3489 3490 if (ep->ring) { 3491 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3492 xhci_free_endpoint_ring(xhci, virt_dev, i); 3493 } 3494 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3495 xhci_drop_ep_from_interval_table(xhci, 3496 &virt_dev->eps[i].bw_info, 3497 virt_dev->bw_table, 3498 udev, 3499 &virt_dev->eps[i], 3500 virt_dev->tt_info); 3501 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3502 } 3503 /* If necessary, update the number of active TTs on this root port */ 3504 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3505 ret = 0; 3506 3507 command_cleanup: 3508 xhci_free_command(xhci, reset_device_cmd); 3509 return ret; 3510 } 3511 3512 /* 3513 * At this point, the struct usb_device is about to go away, the device has 3514 * disconnected, and all traffic has been stopped and the endpoints have been 3515 * disabled. Free any HC data structures associated with that device. 3516 */ 3517 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3518 { 3519 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3520 struct xhci_virt_device *virt_dev; 3521 struct xhci_slot_ctx *slot_ctx; 3522 int i, ret; 3523 3524 #ifndef CONFIG_USB_DEFAULT_PERSIST 3525 /* 3526 * We called pm_runtime_get_noresume when the device was attached. 3527 * Decrement the counter here to allow controller to runtime suspend 3528 * if no devices remain. 3529 */ 3530 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3531 pm_runtime_put_noidle(hcd->self.controller); 3532 #endif 3533 3534 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3535 /* If the host is halted due to driver unload, we still need to free the 3536 * device. 3537 */ 3538 if (ret <= 0 && ret != -ENODEV) 3539 return; 3540 3541 virt_dev = xhci->devs[udev->slot_id]; 3542 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3543 trace_xhci_free_dev(slot_ctx); 3544 3545 /* Stop any wayward timer functions (which may grab the lock) */ 3546 for (i = 0; i < 31; i++) { 3547 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3548 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3549 } 3550 xhci_debugfs_remove_slot(xhci, udev->slot_id); 3551 ret = xhci_disable_slot(xhci, udev->slot_id); 3552 if (ret) 3553 xhci_free_virt_device(xhci, udev->slot_id); 3554 } 3555 3556 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3557 { 3558 struct xhci_command *command; 3559 unsigned long flags; 3560 u32 state; 3561 int ret = 0; 3562 3563 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3564 if (!command) 3565 return -ENOMEM; 3566 3567 spin_lock_irqsave(&xhci->lock, flags); 3568 /* Don't disable the slot if the host controller is dead. */ 3569 state = readl(&xhci->op_regs->status); 3570 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3571 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3572 spin_unlock_irqrestore(&xhci->lock, flags); 3573 kfree(command); 3574 return -ENODEV; 3575 } 3576 3577 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3578 slot_id); 3579 if (ret) { 3580 spin_unlock_irqrestore(&xhci->lock, flags); 3581 kfree(command); 3582 return ret; 3583 } 3584 xhci_ring_cmd_db(xhci); 3585 spin_unlock_irqrestore(&xhci->lock, flags); 3586 return ret; 3587 } 3588 3589 /* 3590 * Checks if we have enough host controller resources for the default control 3591 * endpoint. 3592 * 3593 * Must be called with xhci->lock held. 3594 */ 3595 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3596 { 3597 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3598 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3599 "Not enough ep ctxs: " 3600 "%u active, need to add 1, limit is %u.", 3601 xhci->num_active_eps, xhci->limit_active_eps); 3602 return -ENOMEM; 3603 } 3604 xhci->num_active_eps += 1; 3605 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3606 "Adding 1 ep ctx, %u now active.", 3607 xhci->num_active_eps); 3608 return 0; 3609 } 3610 3611 3612 /* 3613 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3614 * timed out, or allocating memory failed. Returns 1 on success. 3615 */ 3616 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3617 { 3618 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3619 struct xhci_virt_device *vdev; 3620 struct xhci_slot_ctx *slot_ctx; 3621 unsigned long flags; 3622 int ret, slot_id; 3623 struct xhci_command *command; 3624 3625 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3626 if (!command) 3627 return 0; 3628 3629 spin_lock_irqsave(&xhci->lock, flags); 3630 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3631 if (ret) { 3632 spin_unlock_irqrestore(&xhci->lock, flags); 3633 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3634 xhci_free_command(xhci, command); 3635 return 0; 3636 } 3637 xhci_ring_cmd_db(xhci); 3638 spin_unlock_irqrestore(&xhci->lock, flags); 3639 3640 wait_for_completion(command->completion); 3641 slot_id = command->slot_id; 3642 3643 if (!slot_id || command->status != COMP_SUCCESS) { 3644 xhci_err(xhci, "Error while assigning device slot ID\n"); 3645 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3646 HCS_MAX_SLOTS( 3647 readl(&xhci->cap_regs->hcs_params1))); 3648 xhci_free_command(xhci, command); 3649 return 0; 3650 } 3651 3652 xhci_free_command(xhci, command); 3653 3654 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3655 spin_lock_irqsave(&xhci->lock, flags); 3656 ret = xhci_reserve_host_control_ep_resources(xhci); 3657 if (ret) { 3658 spin_unlock_irqrestore(&xhci->lock, flags); 3659 xhci_warn(xhci, "Not enough host resources, " 3660 "active endpoint contexts = %u\n", 3661 xhci->num_active_eps); 3662 goto disable_slot; 3663 } 3664 spin_unlock_irqrestore(&xhci->lock, flags); 3665 } 3666 /* Use GFP_NOIO, since this function can be called from 3667 * xhci_discover_or_reset_device(), which may be called as part of 3668 * mass storage driver error handling. 3669 */ 3670 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3671 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3672 goto disable_slot; 3673 } 3674 vdev = xhci->devs[slot_id]; 3675 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3676 trace_xhci_alloc_dev(slot_ctx); 3677 3678 udev->slot_id = slot_id; 3679 3680 xhci_debugfs_create_slot(xhci, slot_id); 3681 3682 #ifndef CONFIG_USB_DEFAULT_PERSIST 3683 /* 3684 * If resetting upon resume, we can't put the controller into runtime 3685 * suspend if there is a device attached. 3686 */ 3687 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3688 pm_runtime_get_noresume(hcd->self.controller); 3689 #endif 3690 3691 /* Is this a LS or FS device under a HS hub? */ 3692 /* Hub or peripherial? */ 3693 return 1; 3694 3695 disable_slot: 3696 ret = xhci_disable_slot(xhci, udev->slot_id); 3697 if (ret) 3698 xhci_free_virt_device(xhci, udev->slot_id); 3699 3700 return 0; 3701 } 3702 3703 /* 3704 * Issue an Address Device command and optionally send a corresponding 3705 * SetAddress request to the device. 3706 */ 3707 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3708 enum xhci_setup_dev setup) 3709 { 3710 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3711 unsigned long flags; 3712 struct xhci_virt_device *virt_dev; 3713 int ret = 0; 3714 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3715 struct xhci_slot_ctx *slot_ctx; 3716 struct xhci_input_control_ctx *ctrl_ctx; 3717 u64 temp_64; 3718 struct xhci_command *command = NULL; 3719 3720 mutex_lock(&xhci->mutex); 3721 3722 if (xhci->xhc_state) { /* dying, removing or halted */ 3723 ret = -ESHUTDOWN; 3724 goto out; 3725 } 3726 3727 if (!udev->slot_id) { 3728 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3729 "Bad Slot ID %d", udev->slot_id); 3730 ret = -EINVAL; 3731 goto out; 3732 } 3733 3734 virt_dev = xhci->devs[udev->slot_id]; 3735 3736 if (WARN_ON(!virt_dev)) { 3737 /* 3738 * In plug/unplug torture test with an NEC controller, 3739 * a zero-dereference was observed once due to virt_dev = 0. 3740 * Print useful debug rather than crash if it is observed again! 3741 */ 3742 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3743 udev->slot_id); 3744 ret = -EINVAL; 3745 goto out; 3746 } 3747 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3748 trace_xhci_setup_device_slot(slot_ctx); 3749 3750 if (setup == SETUP_CONTEXT_ONLY) { 3751 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3752 SLOT_STATE_DEFAULT) { 3753 xhci_dbg(xhci, "Slot already in default state\n"); 3754 goto out; 3755 } 3756 } 3757 3758 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3759 if (!command) { 3760 ret = -ENOMEM; 3761 goto out; 3762 } 3763 3764 command->in_ctx = virt_dev->in_ctx; 3765 3766 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3767 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3768 if (!ctrl_ctx) { 3769 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3770 __func__); 3771 ret = -EINVAL; 3772 goto out; 3773 } 3774 /* 3775 * If this is the first Set Address since device plug-in or 3776 * virt_device realloaction after a resume with an xHCI power loss, 3777 * then set up the slot context. 3778 */ 3779 if (!slot_ctx->dev_info) 3780 xhci_setup_addressable_virt_dev(xhci, udev); 3781 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3782 else 3783 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3784 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3785 ctrl_ctx->drop_flags = 0; 3786 3787 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3788 le32_to_cpu(slot_ctx->dev_info) >> 27); 3789 3790 spin_lock_irqsave(&xhci->lock, flags); 3791 trace_xhci_setup_device(virt_dev); 3792 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3793 udev->slot_id, setup); 3794 if (ret) { 3795 spin_unlock_irqrestore(&xhci->lock, flags); 3796 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3797 "FIXME: allocate a command ring segment"); 3798 goto out; 3799 } 3800 xhci_ring_cmd_db(xhci); 3801 spin_unlock_irqrestore(&xhci->lock, flags); 3802 3803 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3804 wait_for_completion(command->completion); 3805 3806 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3807 * the SetAddress() "recovery interval" required by USB and aborting the 3808 * command on a timeout. 3809 */ 3810 switch (command->status) { 3811 case COMP_COMMAND_ABORTED: 3812 case COMP_COMMAND_RING_STOPPED: 3813 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3814 ret = -ETIME; 3815 break; 3816 case COMP_CONTEXT_STATE_ERROR: 3817 case COMP_SLOT_NOT_ENABLED_ERROR: 3818 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3819 act, udev->slot_id); 3820 ret = -EINVAL; 3821 break; 3822 case COMP_USB_TRANSACTION_ERROR: 3823 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3824 3825 mutex_unlock(&xhci->mutex); 3826 ret = xhci_disable_slot(xhci, udev->slot_id); 3827 if (!ret) 3828 xhci_alloc_dev(hcd, udev); 3829 kfree(command->completion); 3830 kfree(command); 3831 return -EPROTO; 3832 case COMP_INCOMPATIBLE_DEVICE_ERROR: 3833 dev_warn(&udev->dev, 3834 "ERROR: Incompatible device for setup %s command\n", act); 3835 ret = -ENODEV; 3836 break; 3837 case COMP_SUCCESS: 3838 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3839 "Successful setup %s command", act); 3840 break; 3841 default: 3842 xhci_err(xhci, 3843 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3844 act, command->status); 3845 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3846 ret = -EINVAL; 3847 break; 3848 } 3849 if (ret) 3850 goto out; 3851 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3852 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3853 "Op regs DCBAA ptr = %#016llx", temp_64); 3854 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3855 "Slot ID %d dcbaa entry @%p = %#016llx", 3856 udev->slot_id, 3857 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3858 (unsigned long long) 3859 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3860 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3861 "Output Context DMA address = %#08llx", 3862 (unsigned long long)virt_dev->out_ctx->dma); 3863 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3864 le32_to_cpu(slot_ctx->dev_info) >> 27); 3865 /* 3866 * USB core uses address 1 for the roothubs, so we add one to the 3867 * address given back to us by the HC. 3868 */ 3869 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3870 le32_to_cpu(slot_ctx->dev_info) >> 27); 3871 /* Zero the input context control for later use */ 3872 ctrl_ctx->add_flags = 0; 3873 ctrl_ctx->drop_flags = 0; 3874 3875 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3876 "Internal device address = %d", 3877 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3878 out: 3879 mutex_unlock(&xhci->mutex); 3880 if (command) { 3881 kfree(command->completion); 3882 kfree(command); 3883 } 3884 return ret; 3885 } 3886 3887 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3888 { 3889 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3890 } 3891 3892 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3893 { 3894 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3895 } 3896 3897 /* 3898 * Transfer the port index into real index in the HW port status 3899 * registers. Caculate offset between the port's PORTSC register 3900 * and port status base. Divide the number of per port register 3901 * to get the real index. The raw port number bases 1. 3902 */ 3903 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3904 { 3905 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3906 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3907 __le32 __iomem *addr; 3908 int raw_port; 3909 3910 if (hcd->speed < HCD_USB3) 3911 addr = xhci->usb2_ports[port1 - 1]; 3912 else 3913 addr = xhci->usb3_ports[port1 - 1]; 3914 3915 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3916 return raw_port; 3917 } 3918 3919 /* 3920 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3921 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3922 */ 3923 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3924 struct usb_device *udev, u16 max_exit_latency) 3925 { 3926 struct xhci_virt_device *virt_dev; 3927 struct xhci_command *command; 3928 struct xhci_input_control_ctx *ctrl_ctx; 3929 struct xhci_slot_ctx *slot_ctx; 3930 unsigned long flags; 3931 int ret; 3932 3933 spin_lock_irqsave(&xhci->lock, flags); 3934 3935 virt_dev = xhci->devs[udev->slot_id]; 3936 3937 /* 3938 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 3939 * xHC was re-initialized. Exit latency will be set later after 3940 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 3941 */ 3942 3943 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 3944 spin_unlock_irqrestore(&xhci->lock, flags); 3945 return 0; 3946 } 3947 3948 /* Attempt to issue an Evaluate Context command to change the MEL. */ 3949 command = xhci->lpm_command; 3950 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3951 if (!ctrl_ctx) { 3952 spin_unlock_irqrestore(&xhci->lock, flags); 3953 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3954 __func__); 3955 return -ENOMEM; 3956 } 3957 3958 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 3959 spin_unlock_irqrestore(&xhci->lock, flags); 3960 3961 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3962 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 3963 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 3964 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 3965 slot_ctx->dev_state = 0; 3966 3967 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 3968 "Set up evaluate context for LPM MEL change."); 3969 3970 /* Issue and wait for the evaluate context command. */ 3971 ret = xhci_configure_endpoint(xhci, udev, command, 3972 true, true); 3973 3974 if (!ret) { 3975 spin_lock_irqsave(&xhci->lock, flags); 3976 virt_dev->current_mel = max_exit_latency; 3977 spin_unlock_irqrestore(&xhci->lock, flags); 3978 } 3979 return ret; 3980 } 3981 3982 #ifdef CONFIG_PM 3983 3984 /* BESL to HIRD Encoding array for USB2 LPM */ 3985 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3986 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3987 3988 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3989 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 3990 struct usb_device *udev) 3991 { 3992 int u2del, besl, besl_host; 3993 int besl_device = 0; 3994 u32 field; 3995 3996 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 3997 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 3998 3999 if (field & USB_BESL_SUPPORT) { 4000 for (besl_host = 0; besl_host < 16; besl_host++) { 4001 if (xhci_besl_encoding[besl_host] >= u2del) 4002 break; 4003 } 4004 /* Use baseline BESL value as default */ 4005 if (field & USB_BESL_BASELINE_VALID) 4006 besl_device = USB_GET_BESL_BASELINE(field); 4007 else if (field & USB_BESL_DEEP_VALID) 4008 besl_device = USB_GET_BESL_DEEP(field); 4009 } else { 4010 if (u2del <= 50) 4011 besl_host = 0; 4012 else 4013 besl_host = (u2del - 51) / 75 + 1; 4014 } 4015 4016 besl = besl_host + besl_device; 4017 if (besl > 15) 4018 besl = 15; 4019 4020 return besl; 4021 } 4022 4023 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4024 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4025 { 4026 u32 field; 4027 int l1; 4028 int besld = 0; 4029 int hirdm = 0; 4030 4031 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4032 4033 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4034 l1 = udev->l1_params.timeout / 256; 4035 4036 /* device has preferred BESLD */ 4037 if (field & USB_BESL_DEEP_VALID) { 4038 besld = USB_GET_BESL_DEEP(field); 4039 hirdm = 1; 4040 } 4041 4042 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4043 } 4044 4045 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4046 struct usb_device *udev, int enable) 4047 { 4048 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4049 __le32 __iomem **port_array; 4050 __le32 __iomem *pm_addr, *hlpm_addr; 4051 u32 pm_val, hlpm_val, field; 4052 unsigned int port_num; 4053 unsigned long flags; 4054 int hird, exit_latency; 4055 int ret; 4056 4057 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4058 !udev->lpm_capable) 4059 return -EPERM; 4060 4061 if (!udev->parent || udev->parent->parent || 4062 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4063 return -EPERM; 4064 4065 if (udev->usb2_hw_lpm_capable != 1) 4066 return -EPERM; 4067 4068 spin_lock_irqsave(&xhci->lock, flags); 4069 4070 port_array = xhci->usb2_ports; 4071 port_num = udev->portnum - 1; 4072 pm_addr = port_array[port_num] + PORTPMSC; 4073 pm_val = readl(pm_addr); 4074 hlpm_addr = port_array[port_num] + PORTHLPMC; 4075 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4076 4077 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4078 enable ? "enable" : "disable", port_num + 1); 4079 4080 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) { 4081 /* Host supports BESL timeout instead of HIRD */ 4082 if (udev->usb2_hw_lpm_besl_capable) { 4083 /* if device doesn't have a preferred BESL value use a 4084 * default one which works with mixed HIRD and BESL 4085 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4086 */ 4087 if ((field & USB_BESL_SUPPORT) && 4088 (field & USB_BESL_BASELINE_VALID)) 4089 hird = USB_GET_BESL_BASELINE(field); 4090 else 4091 hird = udev->l1_params.besl; 4092 4093 exit_latency = xhci_besl_encoding[hird]; 4094 spin_unlock_irqrestore(&xhci->lock, flags); 4095 4096 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4097 * input context for link powermanagement evaluate 4098 * context commands. It is protected by hcd->bandwidth 4099 * mutex and is shared by all devices. We need to set 4100 * the max ext latency in USB 2 BESL LPM as well, so 4101 * use the same mutex and xhci_change_max_exit_latency() 4102 */ 4103 mutex_lock(hcd->bandwidth_mutex); 4104 ret = xhci_change_max_exit_latency(xhci, udev, 4105 exit_latency); 4106 mutex_unlock(hcd->bandwidth_mutex); 4107 4108 if (ret < 0) 4109 return ret; 4110 spin_lock_irqsave(&xhci->lock, flags); 4111 4112 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4113 writel(hlpm_val, hlpm_addr); 4114 /* flush write */ 4115 readl(hlpm_addr); 4116 } else { 4117 hird = xhci_calculate_hird_besl(xhci, udev); 4118 } 4119 4120 pm_val &= ~PORT_HIRD_MASK; 4121 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4122 writel(pm_val, pm_addr); 4123 pm_val = readl(pm_addr); 4124 pm_val |= PORT_HLE; 4125 writel(pm_val, pm_addr); 4126 /* flush write */ 4127 readl(pm_addr); 4128 } else { 4129 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4130 writel(pm_val, pm_addr); 4131 /* flush write */ 4132 readl(pm_addr); 4133 if (udev->usb2_hw_lpm_besl_capable) { 4134 spin_unlock_irqrestore(&xhci->lock, flags); 4135 mutex_lock(hcd->bandwidth_mutex); 4136 xhci_change_max_exit_latency(xhci, udev, 0); 4137 mutex_unlock(hcd->bandwidth_mutex); 4138 return 0; 4139 } 4140 } 4141 4142 spin_unlock_irqrestore(&xhci->lock, flags); 4143 return 0; 4144 } 4145 4146 /* check if a usb2 port supports a given extened capability protocol 4147 * only USB2 ports extended protocol capability values are cached. 4148 * Return 1 if capability is supported 4149 */ 4150 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4151 unsigned capability) 4152 { 4153 u32 port_offset, port_count; 4154 int i; 4155 4156 for (i = 0; i < xhci->num_ext_caps; i++) { 4157 if (xhci->ext_caps[i] & capability) { 4158 /* port offsets starts at 1 */ 4159 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4160 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4161 if (port >= port_offset && 4162 port < port_offset + port_count) 4163 return 1; 4164 } 4165 } 4166 return 0; 4167 } 4168 4169 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4170 { 4171 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4172 int portnum = udev->portnum - 1; 4173 4174 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4175 !udev->lpm_capable) 4176 return 0; 4177 4178 /* we only support lpm for non-hub device connected to root hub yet */ 4179 if (!udev->parent || udev->parent->parent || 4180 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4181 return 0; 4182 4183 if (xhci->hw_lpm_support == 1 && 4184 xhci_check_usb2_port_capability( 4185 xhci, portnum, XHCI_HLC)) { 4186 udev->usb2_hw_lpm_capable = 1; 4187 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4188 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4189 if (xhci_check_usb2_port_capability(xhci, portnum, 4190 XHCI_BLC)) 4191 udev->usb2_hw_lpm_besl_capable = 1; 4192 } 4193 4194 return 0; 4195 } 4196 4197 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4198 4199 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4200 static unsigned long long xhci_service_interval_to_ns( 4201 struct usb_endpoint_descriptor *desc) 4202 { 4203 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4204 } 4205 4206 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4207 enum usb3_link_state state) 4208 { 4209 unsigned long long sel; 4210 unsigned long long pel; 4211 unsigned int max_sel_pel; 4212 char *state_name; 4213 4214 switch (state) { 4215 case USB3_LPM_U1: 4216 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4217 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4218 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4219 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4220 state_name = "U1"; 4221 break; 4222 case USB3_LPM_U2: 4223 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4224 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4225 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4226 state_name = "U2"; 4227 break; 4228 default: 4229 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4230 __func__); 4231 return USB3_LPM_DISABLED; 4232 } 4233 4234 if (sel <= max_sel_pel && pel <= max_sel_pel) 4235 return USB3_LPM_DEVICE_INITIATED; 4236 4237 if (sel > max_sel_pel) 4238 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4239 "due to long SEL %llu ms\n", 4240 state_name, sel); 4241 else 4242 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4243 "due to long PEL %llu ms\n", 4244 state_name, pel); 4245 return USB3_LPM_DISABLED; 4246 } 4247 4248 /* The U1 timeout should be the maximum of the following values: 4249 * - For control endpoints, U1 system exit latency (SEL) * 3 4250 * - For bulk endpoints, U1 SEL * 5 4251 * - For interrupt endpoints: 4252 * - Notification EPs, U1 SEL * 3 4253 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4254 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4255 */ 4256 static unsigned long long xhci_calculate_intel_u1_timeout( 4257 struct usb_device *udev, 4258 struct usb_endpoint_descriptor *desc) 4259 { 4260 unsigned long long timeout_ns; 4261 int ep_type; 4262 int intr_type; 4263 4264 ep_type = usb_endpoint_type(desc); 4265 switch (ep_type) { 4266 case USB_ENDPOINT_XFER_CONTROL: 4267 timeout_ns = udev->u1_params.sel * 3; 4268 break; 4269 case USB_ENDPOINT_XFER_BULK: 4270 timeout_ns = udev->u1_params.sel * 5; 4271 break; 4272 case USB_ENDPOINT_XFER_INT: 4273 intr_type = usb_endpoint_interrupt_type(desc); 4274 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4275 timeout_ns = udev->u1_params.sel * 3; 4276 break; 4277 } 4278 /* Otherwise the calculation is the same as isoc eps */ 4279 /* fall through */ 4280 case USB_ENDPOINT_XFER_ISOC: 4281 timeout_ns = xhci_service_interval_to_ns(desc); 4282 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4283 if (timeout_ns < udev->u1_params.sel * 2) 4284 timeout_ns = udev->u1_params.sel * 2; 4285 break; 4286 default: 4287 return 0; 4288 } 4289 4290 return timeout_ns; 4291 } 4292 4293 /* Returns the hub-encoded U1 timeout value. */ 4294 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4295 struct usb_device *udev, 4296 struct usb_endpoint_descriptor *desc) 4297 { 4298 unsigned long long timeout_ns; 4299 4300 if (xhci->quirks & XHCI_INTEL_HOST) 4301 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4302 else 4303 timeout_ns = udev->u1_params.sel; 4304 4305 /* The U1 timeout is encoded in 1us intervals. 4306 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4307 */ 4308 if (timeout_ns == USB3_LPM_DISABLED) 4309 timeout_ns = 1; 4310 else 4311 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4312 4313 /* If the necessary timeout value is bigger than what we can set in the 4314 * USB 3.0 hub, we have to disable hub-initiated U1. 4315 */ 4316 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4317 return timeout_ns; 4318 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4319 "due to long timeout %llu ms\n", timeout_ns); 4320 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4321 } 4322 4323 /* The U2 timeout should be the maximum of: 4324 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4325 * - largest bInterval of any active periodic endpoint (to avoid going 4326 * into lower power link states between intervals). 4327 * - the U2 Exit Latency of the device 4328 */ 4329 static unsigned long long xhci_calculate_intel_u2_timeout( 4330 struct usb_device *udev, 4331 struct usb_endpoint_descriptor *desc) 4332 { 4333 unsigned long long timeout_ns; 4334 unsigned long long u2_del_ns; 4335 4336 timeout_ns = 10 * 1000 * 1000; 4337 4338 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4339 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4340 timeout_ns = xhci_service_interval_to_ns(desc); 4341 4342 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4343 if (u2_del_ns > timeout_ns) 4344 timeout_ns = u2_del_ns; 4345 4346 return timeout_ns; 4347 } 4348 4349 /* Returns the hub-encoded U2 timeout value. */ 4350 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4351 struct usb_device *udev, 4352 struct usb_endpoint_descriptor *desc) 4353 { 4354 unsigned long long timeout_ns; 4355 4356 if (xhci->quirks & XHCI_INTEL_HOST) 4357 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4358 else 4359 timeout_ns = udev->u2_params.sel; 4360 4361 /* The U2 timeout is encoded in 256us intervals */ 4362 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4363 /* If the necessary timeout value is bigger than what we can set in the 4364 * USB 3.0 hub, we have to disable hub-initiated U2. 4365 */ 4366 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4367 return timeout_ns; 4368 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4369 "due to long timeout %llu ms\n", timeout_ns); 4370 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4371 } 4372 4373 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4374 struct usb_device *udev, 4375 struct usb_endpoint_descriptor *desc, 4376 enum usb3_link_state state, 4377 u16 *timeout) 4378 { 4379 if (state == USB3_LPM_U1) 4380 return xhci_calculate_u1_timeout(xhci, udev, desc); 4381 else if (state == USB3_LPM_U2) 4382 return xhci_calculate_u2_timeout(xhci, udev, desc); 4383 4384 return USB3_LPM_DISABLED; 4385 } 4386 4387 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4388 struct usb_device *udev, 4389 struct usb_endpoint_descriptor *desc, 4390 enum usb3_link_state state, 4391 u16 *timeout) 4392 { 4393 u16 alt_timeout; 4394 4395 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4396 desc, state, timeout); 4397 4398 /* If we found we can't enable hub-initiated LPM, or 4399 * the U1 or U2 exit latency was too high to allow 4400 * device-initiated LPM as well, just stop searching. 4401 */ 4402 if (alt_timeout == USB3_LPM_DISABLED || 4403 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4404 *timeout = alt_timeout; 4405 return -E2BIG; 4406 } 4407 if (alt_timeout > *timeout) 4408 *timeout = alt_timeout; 4409 return 0; 4410 } 4411 4412 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4413 struct usb_device *udev, 4414 struct usb_host_interface *alt, 4415 enum usb3_link_state state, 4416 u16 *timeout) 4417 { 4418 int j; 4419 4420 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4421 if (xhci_update_timeout_for_endpoint(xhci, udev, 4422 &alt->endpoint[j].desc, state, timeout)) 4423 return -E2BIG; 4424 continue; 4425 } 4426 return 0; 4427 } 4428 4429 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4430 enum usb3_link_state state) 4431 { 4432 struct usb_device *parent; 4433 unsigned int num_hubs; 4434 4435 if (state == USB3_LPM_U2) 4436 return 0; 4437 4438 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4439 for (parent = udev->parent, num_hubs = 0; parent->parent; 4440 parent = parent->parent) 4441 num_hubs++; 4442 4443 if (num_hubs < 2) 4444 return 0; 4445 4446 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4447 " below second-tier hub.\n"); 4448 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4449 "to decrease power consumption.\n"); 4450 return -E2BIG; 4451 } 4452 4453 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4454 struct usb_device *udev, 4455 enum usb3_link_state state) 4456 { 4457 if (xhci->quirks & XHCI_INTEL_HOST) 4458 return xhci_check_intel_tier_policy(udev, state); 4459 else 4460 return 0; 4461 } 4462 4463 /* Returns the U1 or U2 timeout that should be enabled. 4464 * If the tier check or timeout setting functions return with a non-zero exit 4465 * code, that means the timeout value has been finalized and we shouldn't look 4466 * at any more endpoints. 4467 */ 4468 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4469 struct usb_device *udev, enum usb3_link_state state) 4470 { 4471 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4472 struct usb_host_config *config; 4473 char *state_name; 4474 int i; 4475 u16 timeout = USB3_LPM_DISABLED; 4476 4477 if (state == USB3_LPM_U1) 4478 state_name = "U1"; 4479 else if (state == USB3_LPM_U2) 4480 state_name = "U2"; 4481 else { 4482 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4483 state); 4484 return timeout; 4485 } 4486 4487 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4488 return timeout; 4489 4490 /* Gather some information about the currently installed configuration 4491 * and alternate interface settings. 4492 */ 4493 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4494 state, &timeout)) 4495 return timeout; 4496 4497 config = udev->actconfig; 4498 if (!config) 4499 return timeout; 4500 4501 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4502 struct usb_driver *driver; 4503 struct usb_interface *intf = config->interface[i]; 4504 4505 if (!intf) 4506 continue; 4507 4508 /* Check if any currently bound drivers want hub-initiated LPM 4509 * disabled. 4510 */ 4511 if (intf->dev.driver) { 4512 driver = to_usb_driver(intf->dev.driver); 4513 if (driver && driver->disable_hub_initiated_lpm) { 4514 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4515 "at request of driver %s\n", 4516 state_name, driver->name); 4517 return xhci_get_timeout_no_hub_lpm(udev, state); 4518 } 4519 } 4520 4521 /* Not sure how this could happen... */ 4522 if (!intf->cur_altsetting) 4523 continue; 4524 4525 if (xhci_update_timeout_for_interface(xhci, udev, 4526 intf->cur_altsetting, 4527 state, &timeout)) 4528 return timeout; 4529 } 4530 return timeout; 4531 } 4532 4533 static int calculate_max_exit_latency(struct usb_device *udev, 4534 enum usb3_link_state state_changed, 4535 u16 hub_encoded_timeout) 4536 { 4537 unsigned long long u1_mel_us = 0; 4538 unsigned long long u2_mel_us = 0; 4539 unsigned long long mel_us = 0; 4540 bool disabling_u1; 4541 bool disabling_u2; 4542 bool enabling_u1; 4543 bool enabling_u2; 4544 4545 disabling_u1 = (state_changed == USB3_LPM_U1 && 4546 hub_encoded_timeout == USB3_LPM_DISABLED); 4547 disabling_u2 = (state_changed == USB3_LPM_U2 && 4548 hub_encoded_timeout == USB3_LPM_DISABLED); 4549 4550 enabling_u1 = (state_changed == USB3_LPM_U1 && 4551 hub_encoded_timeout != USB3_LPM_DISABLED); 4552 enabling_u2 = (state_changed == USB3_LPM_U2 && 4553 hub_encoded_timeout != USB3_LPM_DISABLED); 4554 4555 /* If U1 was already enabled and we're not disabling it, 4556 * or we're going to enable U1, account for the U1 max exit latency. 4557 */ 4558 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4559 enabling_u1) 4560 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4561 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4562 enabling_u2) 4563 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4564 4565 if (u1_mel_us > u2_mel_us) 4566 mel_us = u1_mel_us; 4567 else 4568 mel_us = u2_mel_us; 4569 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4570 if (mel_us > MAX_EXIT) { 4571 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4572 "is too big.\n", mel_us); 4573 return -E2BIG; 4574 } 4575 return mel_us; 4576 } 4577 4578 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4579 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4580 struct usb_device *udev, enum usb3_link_state state) 4581 { 4582 struct xhci_hcd *xhci; 4583 u16 hub_encoded_timeout; 4584 int mel; 4585 int ret; 4586 4587 xhci = hcd_to_xhci(hcd); 4588 /* The LPM timeout values are pretty host-controller specific, so don't 4589 * enable hub-initiated timeouts unless the vendor has provided 4590 * information about their timeout algorithm. 4591 */ 4592 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4593 !xhci->devs[udev->slot_id]) 4594 return USB3_LPM_DISABLED; 4595 4596 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4597 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4598 if (mel < 0) { 4599 /* Max Exit Latency is too big, disable LPM. */ 4600 hub_encoded_timeout = USB3_LPM_DISABLED; 4601 mel = 0; 4602 } 4603 4604 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4605 if (ret) 4606 return ret; 4607 return hub_encoded_timeout; 4608 } 4609 4610 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4611 struct usb_device *udev, enum usb3_link_state state) 4612 { 4613 struct xhci_hcd *xhci; 4614 u16 mel; 4615 4616 xhci = hcd_to_xhci(hcd); 4617 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4618 !xhci->devs[udev->slot_id]) 4619 return 0; 4620 4621 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4622 return xhci_change_max_exit_latency(xhci, udev, mel); 4623 } 4624 #else /* CONFIG_PM */ 4625 4626 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4627 struct usb_device *udev, int enable) 4628 { 4629 return 0; 4630 } 4631 4632 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4633 { 4634 return 0; 4635 } 4636 4637 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4638 struct usb_device *udev, enum usb3_link_state state) 4639 { 4640 return USB3_LPM_DISABLED; 4641 } 4642 4643 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4644 struct usb_device *udev, enum usb3_link_state state) 4645 { 4646 return 0; 4647 } 4648 #endif /* CONFIG_PM */ 4649 4650 /*-------------------------------------------------------------------------*/ 4651 4652 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4653 * internal data structures for the device. 4654 */ 4655 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4656 struct usb_tt *tt, gfp_t mem_flags) 4657 { 4658 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4659 struct xhci_virt_device *vdev; 4660 struct xhci_command *config_cmd; 4661 struct xhci_input_control_ctx *ctrl_ctx; 4662 struct xhci_slot_ctx *slot_ctx; 4663 unsigned long flags; 4664 unsigned think_time; 4665 int ret; 4666 4667 /* Ignore root hubs */ 4668 if (!hdev->parent) 4669 return 0; 4670 4671 vdev = xhci->devs[hdev->slot_id]; 4672 if (!vdev) { 4673 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4674 return -EINVAL; 4675 } 4676 4677 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 4678 if (!config_cmd) 4679 return -ENOMEM; 4680 4681 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4682 if (!ctrl_ctx) { 4683 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4684 __func__); 4685 xhci_free_command(xhci, config_cmd); 4686 return -ENOMEM; 4687 } 4688 4689 spin_lock_irqsave(&xhci->lock, flags); 4690 if (hdev->speed == USB_SPEED_HIGH && 4691 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4692 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4693 xhci_free_command(xhci, config_cmd); 4694 spin_unlock_irqrestore(&xhci->lock, flags); 4695 return -ENOMEM; 4696 } 4697 4698 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4699 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4700 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4701 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4702 /* 4703 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4704 * but it may be already set to 1 when setup an xHCI virtual 4705 * device, so clear it anyway. 4706 */ 4707 if (tt->multi) 4708 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4709 else if (hdev->speed == USB_SPEED_FULL) 4710 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4711 4712 if (xhci->hci_version > 0x95) { 4713 xhci_dbg(xhci, "xHCI version %x needs hub " 4714 "TT think time and number of ports\n", 4715 (unsigned int) xhci->hci_version); 4716 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4717 /* Set TT think time - convert from ns to FS bit times. 4718 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4719 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4720 * 4721 * xHCI 1.0: this field shall be 0 if the device is not a 4722 * High-spped hub. 4723 */ 4724 think_time = tt->think_time; 4725 if (think_time != 0) 4726 think_time = (think_time / 666) - 1; 4727 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4728 slot_ctx->tt_info |= 4729 cpu_to_le32(TT_THINK_TIME(think_time)); 4730 } else { 4731 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4732 "TT think time or number of ports\n", 4733 (unsigned int) xhci->hci_version); 4734 } 4735 slot_ctx->dev_state = 0; 4736 spin_unlock_irqrestore(&xhci->lock, flags); 4737 4738 xhci_dbg(xhci, "Set up %s for hub device.\n", 4739 (xhci->hci_version > 0x95) ? 4740 "configure endpoint" : "evaluate context"); 4741 4742 /* Issue and wait for the configure endpoint or 4743 * evaluate context command. 4744 */ 4745 if (xhci->hci_version > 0x95) 4746 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4747 false, false); 4748 else 4749 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4750 true, false); 4751 4752 xhci_free_command(xhci, config_cmd); 4753 return ret; 4754 } 4755 4756 static int xhci_get_frame(struct usb_hcd *hcd) 4757 { 4758 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4759 /* EHCI mods by the periodic size. Why? */ 4760 return readl(&xhci->run_regs->microframe_index) >> 3; 4761 } 4762 4763 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4764 { 4765 struct xhci_hcd *xhci; 4766 /* 4767 * TODO: Check with DWC3 clients for sysdev according to 4768 * quirks 4769 */ 4770 struct device *dev = hcd->self.sysdev; 4771 int retval; 4772 4773 /* Accept arbitrarily long scatter-gather lists */ 4774 hcd->self.sg_tablesize = ~0; 4775 4776 /* support to build packet from discontinuous buffers */ 4777 hcd->self.no_sg_constraint = 1; 4778 4779 /* XHCI controllers don't stop the ep queue on short packets :| */ 4780 hcd->self.no_stop_on_short = 1; 4781 4782 xhci = hcd_to_xhci(hcd); 4783 4784 if (usb_hcd_is_primary_hcd(hcd)) { 4785 xhci->main_hcd = hcd; 4786 /* Mark the first roothub as being USB 2.0. 4787 * The xHCI driver will register the USB 3.0 roothub. 4788 */ 4789 hcd->speed = HCD_USB2; 4790 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4791 /* 4792 * USB 2.0 roothub under xHCI has an integrated TT, 4793 * (rate matching hub) as opposed to having an OHCI/UHCI 4794 * companion controller. 4795 */ 4796 hcd->has_tt = 1; 4797 } else { 4798 /* Some 3.1 hosts return sbrn 0x30, can't rely on sbrn alone */ 4799 if (xhci->sbrn == 0x31 || xhci->usb3_rhub.min_rev >= 1) { 4800 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n"); 4801 hcd->speed = HCD_USB31; 4802 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4803 } 4804 /* xHCI private pointer was set in xhci_pci_probe for the second 4805 * registered roothub. 4806 */ 4807 return 0; 4808 } 4809 4810 mutex_init(&xhci->mutex); 4811 xhci->cap_regs = hcd->regs; 4812 xhci->op_regs = hcd->regs + 4813 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4814 xhci->run_regs = hcd->regs + 4815 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4816 /* Cache read-only capability registers */ 4817 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4818 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4819 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4820 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4821 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4822 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4823 if (xhci->hci_version > 0x100) 4824 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4825 4826 xhci->quirks |= quirks; 4827 4828 get_quirks(dev, xhci); 4829 4830 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4831 * success event after a short transfer. This quirk will ignore such 4832 * spurious event. 4833 */ 4834 if (xhci->hci_version > 0x96) 4835 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4836 4837 /* Make sure the HC is halted. */ 4838 retval = xhci_halt(xhci); 4839 if (retval) 4840 return retval; 4841 4842 xhci_dbg(xhci, "Resetting HCD\n"); 4843 /* Reset the internal HC memory state and registers. */ 4844 retval = xhci_reset(xhci); 4845 if (retval) 4846 return retval; 4847 xhci_dbg(xhci, "Reset complete\n"); 4848 4849 /* 4850 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 4851 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 4852 * address memory pointers actually. So, this driver clears the AC64 4853 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 4854 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 4855 */ 4856 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 4857 xhci->hcc_params &= ~BIT(0); 4858 4859 /* Set dma_mask and coherent_dma_mask to 64-bits, 4860 * if xHC supports 64-bit addressing */ 4861 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4862 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4863 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4864 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4865 } else { 4866 /* 4867 * This is to avoid error in cases where a 32-bit USB 4868 * controller is used on a 64-bit capable system. 4869 */ 4870 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4871 if (retval) 4872 return retval; 4873 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4874 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4875 } 4876 4877 xhci_dbg(xhci, "Calling HCD init\n"); 4878 /* Initialize HCD and host controller data structures. */ 4879 retval = xhci_init(hcd); 4880 if (retval) 4881 return retval; 4882 xhci_dbg(xhci, "Called HCD init\n"); 4883 4884 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4885 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4886 4887 return 0; 4888 } 4889 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4890 4891 static const struct hc_driver xhci_hc_driver = { 4892 .description = "xhci-hcd", 4893 .product_desc = "xHCI Host Controller", 4894 .hcd_priv_size = sizeof(struct xhci_hcd), 4895 4896 /* 4897 * generic hardware linkage 4898 */ 4899 .irq = xhci_irq, 4900 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4901 4902 /* 4903 * basic lifecycle operations 4904 */ 4905 .reset = NULL, /* set in xhci_init_driver() */ 4906 .start = xhci_run, 4907 .stop = xhci_stop, 4908 .shutdown = xhci_shutdown, 4909 4910 /* 4911 * managing i/o requests and associated device resources 4912 */ 4913 .urb_enqueue = xhci_urb_enqueue, 4914 .urb_dequeue = xhci_urb_dequeue, 4915 .alloc_dev = xhci_alloc_dev, 4916 .free_dev = xhci_free_dev, 4917 .alloc_streams = xhci_alloc_streams, 4918 .free_streams = xhci_free_streams, 4919 .add_endpoint = xhci_add_endpoint, 4920 .drop_endpoint = xhci_drop_endpoint, 4921 .endpoint_reset = xhci_endpoint_reset, 4922 .check_bandwidth = xhci_check_bandwidth, 4923 .reset_bandwidth = xhci_reset_bandwidth, 4924 .address_device = xhci_address_device, 4925 .enable_device = xhci_enable_device, 4926 .update_hub_device = xhci_update_hub_device, 4927 .reset_device = xhci_discover_or_reset_device, 4928 4929 /* 4930 * scheduling support 4931 */ 4932 .get_frame_number = xhci_get_frame, 4933 4934 /* 4935 * root hub support 4936 */ 4937 .hub_control = xhci_hub_control, 4938 .hub_status_data = xhci_hub_status_data, 4939 .bus_suspend = xhci_bus_suspend, 4940 .bus_resume = xhci_bus_resume, 4941 4942 /* 4943 * call back when device connected and addressed 4944 */ 4945 .update_device = xhci_update_device, 4946 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 4947 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 4948 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 4949 .find_raw_port_number = xhci_find_raw_port_number, 4950 }; 4951 4952 void xhci_init_driver(struct hc_driver *drv, 4953 const struct xhci_driver_overrides *over) 4954 { 4955 BUG_ON(!over); 4956 4957 /* Copy the generic table to drv then apply the overrides */ 4958 *drv = xhci_hc_driver; 4959 4960 if (over) { 4961 drv->hcd_priv_size += over->extra_priv_size; 4962 if (over->reset) 4963 drv->reset = over->reset; 4964 if (over->start) 4965 drv->start = over->start; 4966 } 4967 } 4968 EXPORT_SYMBOL_GPL(xhci_init_driver); 4969 4970 MODULE_DESCRIPTION(DRIVER_DESC); 4971 MODULE_AUTHOR(DRIVER_AUTHOR); 4972 MODULE_LICENSE("GPL"); 4973 4974 static int __init xhci_hcd_init(void) 4975 { 4976 /* 4977 * Check the compiler generated sizes of structures that must be laid 4978 * out in specific ways for hardware access. 4979 */ 4980 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4981 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4982 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4983 /* xhci_device_control has eight fields, and also 4984 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4985 */ 4986 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4987 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4988 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4989 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 4990 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4991 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4992 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4993 4994 if (usb_disabled()) 4995 return -ENODEV; 4996 4997 xhci_debugfs_create_root(); 4998 4999 return 0; 5000 } 5001 5002 /* 5003 * If an init function is provided, an exit function must also be provided 5004 * to allow module unload. 5005 */ 5006 static void __exit xhci_hcd_fini(void) 5007 { 5008 xhci_debugfs_remove_root(); 5009 } 5010 5011 module_init(xhci_hcd_init); 5012 module_exit(xhci_hcd_fini); 5013