1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/jiffies.h> 12 #include <linux/pci.h> 13 #include <linux/iommu.h> 14 #include <linux/iopoll.h> 15 #include <linux/irq.h> 16 #include <linux/log2.h> 17 #include <linux/module.h> 18 #include <linux/moduleparam.h> 19 #include <linux/slab.h> 20 #include <linux/string_choices.h> 21 #include <linux/dmi.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/usb/xhci-sideband.h> 24 25 #include "xhci.h" 26 #include "xhci-trace.h" 27 #include "xhci-debugfs.h" 28 #include "xhci-dbgcap.h" 29 30 #define DRIVER_AUTHOR "Sarah Sharp" 31 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 32 33 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 34 35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 36 static int link_quirk; 37 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 39 40 static unsigned long long quirks; 41 module_param(quirks, ullong, S_IRUGO); 42 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 43 44 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 45 { 46 struct xhci_segment *seg; 47 48 if (!td || !td->start_seg) 49 return false; 50 51 xhci_for_each_ring_seg(ring->first_seg, seg) { 52 if (seg == td->start_seg) 53 return true; 54 } 55 56 return false; 57 } 58 59 /* 60 * xhci_handshake - spin reading hc until handshake completes or fails 61 * @ptr: address of hc register to be read 62 * @mask: bits to look at in result of read 63 * @done: value of those bits when handshake succeeds 64 * @usec: timeout in microseconds 65 * 66 * Returns negative errno, or zero on success 67 * 68 * Success happens when the "mask" bits have the specified value (hardware 69 * handshake done). There are two failure modes: "usec" have passed (major 70 * hardware flakeout), or the register reads as all-ones (hardware removed). 71 */ 72 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 73 { 74 u32 result; 75 int ret; 76 77 ret = readl_poll_timeout_atomic(ptr, result, 78 (result & mask) == done || 79 result == U32_MAX, 80 1, timeout_us); 81 if (result == U32_MAX) /* card removed */ 82 return -ENODEV; 83 84 return ret; 85 } 86 87 /* 88 * xhci_handshake_check_state - same as xhci_handshake but takes an additional 89 * exit_state parameter, and bails out with an error immediately when xhc_state 90 * has exit_state flag set. 91 */ 92 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr, 93 u32 mask, u32 done, int usec, unsigned int exit_state) 94 { 95 u32 result; 96 int ret; 97 98 ret = readl_poll_timeout_atomic(ptr, result, 99 (result & mask) == done || 100 result == U32_MAX || 101 xhci->xhc_state & exit_state, 102 1, usec); 103 104 if (result == U32_MAX || xhci->xhc_state & exit_state) 105 return -ENODEV; 106 107 return ret; 108 } 109 110 /* 111 * Disable interrupts and begin the xHCI halting process. 112 */ 113 void xhci_quiesce(struct xhci_hcd *xhci) 114 { 115 u32 halted; 116 u32 cmd; 117 u32 mask; 118 119 mask = ~(XHCI_IRQS); 120 halted = readl(&xhci->op_regs->status) & STS_HALT; 121 if (!halted) 122 mask &= ~CMD_RUN; 123 124 cmd = readl(&xhci->op_regs->command); 125 cmd &= mask; 126 writel(cmd, &xhci->op_regs->command); 127 } 128 129 /* 130 * Force HC into halt state. 131 * 132 * Disable any IRQs and clear the run/stop bit. 133 * HC will complete any current and actively pipelined transactions, and 134 * should halt within 16 ms of the run/stop bit being cleared. 135 * Read HC Halted bit in the status register to see when the HC is finished. 136 */ 137 int xhci_halt(struct xhci_hcd *xhci) 138 { 139 int ret; 140 141 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 142 xhci_quiesce(xhci); 143 144 ret = xhci_handshake(&xhci->op_regs->status, 145 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 146 if (ret) { 147 xhci_warn(xhci, "Host halt failed, %d\n", ret); 148 return ret; 149 } 150 151 xhci->xhc_state |= XHCI_STATE_HALTED; 152 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 153 154 return ret; 155 } 156 157 /* 158 * Set the run bit and wait for the host to be running. 159 */ 160 int xhci_start(struct xhci_hcd *xhci) 161 { 162 u32 temp; 163 int ret; 164 165 temp = readl(&xhci->op_regs->command); 166 temp |= (CMD_RUN); 167 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 168 temp); 169 writel(temp, &xhci->op_regs->command); 170 171 /* 172 * Wait for the HCHalted Status bit to be 0 to indicate the host is 173 * running. 174 */ 175 ret = xhci_handshake(&xhci->op_regs->status, 176 STS_HALT, 0, XHCI_MAX_HALT_USEC); 177 if (ret == -ETIMEDOUT) 178 xhci_err(xhci, "Host took too long to start, " 179 "waited %u microseconds.\n", 180 XHCI_MAX_HALT_USEC); 181 if (!ret) { 182 /* clear state flags. Including dying, halted or removing */ 183 xhci->xhc_state = 0; 184 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 185 } 186 187 return ret; 188 } 189 190 /* 191 * Reset a halted HC. 192 * 193 * This resets pipelines, timers, counters, state machines, etc. 194 * Transactions will be terminated immediately, and operational registers 195 * will be set to their defaults. 196 */ 197 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 198 { 199 u32 command; 200 u32 state; 201 int ret; 202 203 state = readl(&xhci->op_regs->status); 204 205 if (state == ~(u32)0) { 206 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 207 return -ENODEV; 208 } 209 210 if ((state & STS_HALT) == 0) { 211 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 212 return 0; 213 } 214 215 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 216 command = readl(&xhci->op_regs->command); 217 command |= CMD_RESET; 218 writel(command, &xhci->op_regs->command); 219 220 /* Existing Intel xHCI controllers require a delay of 1 mS, 221 * after setting the CMD_RESET bit, and before accessing any 222 * HC registers. This allows the HC to complete the 223 * reset operation and be ready for HC register access. 224 * Without this delay, the subsequent HC register access, 225 * may result in a system hang very rarely. 226 */ 227 if (xhci->quirks & XHCI_INTEL_HOST) 228 udelay(1000); 229 230 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command, 231 CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING); 232 if (ret) 233 return ret; 234 235 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 236 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 237 238 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 239 "Wait for controller to be ready for doorbell rings"); 240 /* 241 * xHCI cannot write to any doorbells or operational registers other 242 * than status until the "Controller Not Ready" flag is cleared. 243 */ 244 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 245 246 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 247 xhci->usb2_rhub.bus_state.suspended_ports = 0; 248 xhci->usb2_rhub.bus_state.resuming_ports = 0; 249 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 250 xhci->usb3_rhub.bus_state.suspended_ports = 0; 251 xhci->usb3_rhub.bus_state.resuming_ports = 0; 252 253 return ret; 254 } 255 256 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 257 { 258 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 259 struct iommu_domain *domain; 260 int err, i; 261 u64 val; 262 u32 intrs; 263 264 /* 265 * Some Renesas controllers get into a weird state if they are 266 * reset while programmed with 64bit addresses (they will preserve 267 * the top half of the address in internal, non visible 268 * registers). You end up with half the address coming from the 269 * kernel, and the other half coming from the firmware. Also, 270 * changing the programming leads to extra accesses even if the 271 * controller is supposed to be halted. The controller ends up with 272 * a fatal fault, and is then ripe for being properly reset. 273 * 274 * Special care is taken to only apply this if the device is behind 275 * an iommu. Doing anything when there is no iommu is definitely 276 * unsafe... 277 */ 278 domain = iommu_get_domain_for_dev(dev); 279 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || 280 domain->type == IOMMU_DOMAIN_IDENTITY) 281 return; 282 283 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 284 285 /* Clear HSEIE so that faults do not get signaled */ 286 val = readl(&xhci->op_regs->command); 287 val &= ~CMD_HSEIE; 288 writel(val, &xhci->op_regs->command); 289 290 /* Clear HSE (aka FATAL) */ 291 val = readl(&xhci->op_regs->status); 292 val |= STS_FATAL; 293 writel(val, &xhci->op_regs->status); 294 295 /* Now zero the registers, and brace for impact */ 296 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 297 if (upper_32_bits(val)) 298 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 299 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 300 if (upper_32_bits(val)) 301 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 302 303 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 304 ARRAY_SIZE(xhci->run_regs->ir_set)); 305 306 for (i = 0; i < intrs; i++) { 307 struct xhci_intr_reg __iomem *ir; 308 309 ir = &xhci->run_regs->ir_set[i]; 310 val = xhci_read_64(xhci, &ir->erst_base); 311 if (upper_32_bits(val)) 312 xhci_write_64(xhci, 0, &ir->erst_base); 313 val= xhci_read_64(xhci, &ir->erst_dequeue); 314 if (upper_32_bits(val)) 315 xhci_write_64(xhci, 0, &ir->erst_dequeue); 316 } 317 318 /* Wait for the fault to appear. It will be cleared on reset */ 319 err = xhci_handshake(&xhci->op_regs->status, 320 STS_FATAL, STS_FATAL, 321 XHCI_MAX_HALT_USEC); 322 if (!err) 323 xhci_info(xhci, "Fault detected\n"); 324 } 325 326 static int xhci_enable_interrupter(struct xhci_interrupter *ir) 327 { 328 u32 iman; 329 330 if (!ir || !ir->ir_set) 331 return -EINVAL; 332 333 iman = readl(&ir->ir_set->irq_pending); 334 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending); 335 336 return 0; 337 } 338 339 int xhci_disable_interrupter(struct xhci_interrupter *ir) 340 { 341 u32 iman; 342 343 if (!ir || !ir->ir_set) 344 return -EINVAL; 345 346 iman = readl(&ir->ir_set->irq_pending); 347 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending); 348 349 return 0; 350 } 351 352 /* interrupt moderation interval imod_interval in nanoseconds */ 353 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir, 354 u32 imod_interval) 355 { 356 u32 imod; 357 358 if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250) 359 return -EINVAL; 360 361 imod = readl(&ir->ir_set->irq_control); 362 imod &= ~ER_IRQ_INTERVAL_MASK; 363 imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 364 writel(imod, &ir->ir_set->irq_control); 365 366 return 0; 367 } 368 369 static void compliance_mode_recovery(struct timer_list *t) 370 { 371 struct xhci_hcd *xhci; 372 struct usb_hcd *hcd; 373 struct xhci_hub *rhub; 374 u32 temp; 375 int i; 376 377 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 378 rhub = &xhci->usb3_rhub; 379 hcd = rhub->hcd; 380 381 if (!hcd) 382 return; 383 384 for (i = 0; i < rhub->num_ports; i++) { 385 temp = readl(rhub->ports[i]->addr); 386 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 387 /* 388 * Compliance Mode Detected. Letting USB Core 389 * handle the Warm Reset 390 */ 391 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 392 "Compliance mode detected->port %d", 393 i + 1); 394 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 395 "Attempting compliance mode recovery"); 396 397 if (hcd->state == HC_STATE_SUSPENDED) 398 usb_hcd_resume_root_hub(hcd); 399 400 usb_hcd_poll_rh_status(hcd); 401 } 402 } 403 404 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 405 mod_timer(&xhci->comp_mode_recovery_timer, 406 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 407 } 408 409 /* 410 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 411 * that causes ports behind that hardware to enter compliance mode sometimes. 412 * The quirk creates a timer that polls every 2 seconds the link state of 413 * each host controller's port and recovers it by issuing a Warm reset 414 * if Compliance mode is detected, otherwise the port will become "dead" (no 415 * device connections or disconnections will be detected anymore). Becasue no 416 * status event is generated when entering compliance mode (per xhci spec), 417 * this quirk is needed on systems that have the failing hardware installed. 418 */ 419 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 420 { 421 xhci->port_status_u0 = 0; 422 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 423 0); 424 xhci->comp_mode_recovery_timer.expires = jiffies + 425 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 426 427 add_timer(&xhci->comp_mode_recovery_timer); 428 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 429 "Compliance mode recovery timer initialized"); 430 } 431 432 /* 433 * This function identifies the systems that have installed the SN65LVPE502CP 434 * USB3.0 re-driver and that need the Compliance Mode Quirk. 435 * Systems: 436 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 437 */ 438 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 439 { 440 const char *dmi_product_name, *dmi_sys_vendor; 441 442 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 443 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 444 if (!dmi_product_name || !dmi_sys_vendor) 445 return false; 446 447 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 448 return false; 449 450 if (strstr(dmi_product_name, "Z420") || 451 strstr(dmi_product_name, "Z620") || 452 strstr(dmi_product_name, "Z820") || 453 strstr(dmi_product_name, "Z1 Workstation")) 454 return true; 455 456 return false; 457 } 458 459 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 460 { 461 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 462 } 463 464 465 /* 466 * Initialize memory for HCD and xHC (one-time init). 467 * 468 * Program the PAGESIZE register, initialize the device context array, create 469 * device contexts (?), set up a command ring segment (or two?), create event 470 * ring (one for now). 471 */ 472 static int xhci_init(struct usb_hcd *hcd) 473 { 474 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 475 int retval; 476 477 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 478 spin_lock_init(&xhci->lock); 479 480 retval = xhci_mem_init(xhci, GFP_KERNEL); 481 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 482 483 /* Initializing Compliance Mode Recovery Data If Needed */ 484 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 485 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 486 compliance_mode_recovery_timer_init(xhci); 487 } 488 489 return retval; 490 } 491 492 /*-------------------------------------------------------------------------*/ 493 494 static int xhci_run_finished(struct xhci_hcd *xhci) 495 { 496 struct xhci_interrupter *ir = xhci->interrupters[0]; 497 unsigned long flags; 498 u32 temp; 499 500 /* 501 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 502 * Protect the short window before host is running with a lock 503 */ 504 spin_lock_irqsave(&xhci->lock, flags); 505 506 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 507 temp = readl(&xhci->op_regs->command); 508 temp |= (CMD_EIE); 509 writel(temp, &xhci->op_regs->command); 510 511 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 512 xhci_enable_interrupter(ir); 513 514 if (xhci_start(xhci)) { 515 xhci_halt(xhci); 516 spin_unlock_irqrestore(&xhci->lock, flags); 517 return -ENODEV; 518 } 519 520 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 521 522 if (xhci->quirks & XHCI_NEC_HOST) 523 xhci_ring_cmd_db(xhci); 524 525 spin_unlock_irqrestore(&xhci->lock, flags); 526 527 return 0; 528 } 529 530 /* 531 * Start the HC after it was halted. 532 * 533 * This function is called by the USB core when the HC driver is added. 534 * Its opposite is xhci_stop(). 535 * 536 * xhci_init() must be called once before this function can be called. 537 * Reset the HC, enable device slot contexts, program DCBAAP, and 538 * set command ring pointer and event ring pointer. 539 * 540 * Setup MSI-X vectors and enable interrupts. 541 */ 542 int xhci_run(struct usb_hcd *hcd) 543 { 544 u64 temp_64; 545 int ret; 546 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 547 struct xhci_interrupter *ir = xhci->interrupters[0]; 548 /* Start the xHCI host controller running only after the USB 2.0 roothub 549 * is setup. 550 */ 551 552 hcd->uses_new_polling = 1; 553 if (hcd->msi_enabled) 554 ir->ip_autoclear = true; 555 556 if (!usb_hcd_is_primary_hcd(hcd)) 557 return xhci_run_finished(xhci); 558 559 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 560 561 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 562 temp_64 &= ERST_PTR_MASK; 563 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 564 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 565 566 xhci_set_interrupter_moderation(ir, xhci->imod_interval); 567 568 if (xhci->quirks & XHCI_NEC_HOST) { 569 struct xhci_command *command; 570 571 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 572 if (!command) 573 return -ENOMEM; 574 575 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 576 TRB_TYPE(TRB_NEC_GET_FW)); 577 if (ret) 578 xhci_free_command(xhci, command); 579 } 580 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 581 "Finished %s for main hcd", __func__); 582 583 xhci_create_dbc_dev(xhci); 584 585 xhci_debugfs_init(xhci); 586 587 if (xhci_has_one_roothub(xhci)) 588 return xhci_run_finished(xhci); 589 590 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 591 592 return 0; 593 } 594 EXPORT_SYMBOL_GPL(xhci_run); 595 596 /* 597 * Stop xHCI driver. 598 * 599 * This function is called by the USB core when the HC driver is removed. 600 * Its opposite is xhci_run(). 601 * 602 * Disable device contexts, disable IRQs, and quiesce the HC. 603 * Reset the HC, finish any completed transactions, and cleanup memory. 604 */ 605 void xhci_stop(struct usb_hcd *hcd) 606 { 607 u32 temp; 608 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 609 struct xhci_interrupter *ir = xhci->interrupters[0]; 610 611 mutex_lock(&xhci->mutex); 612 613 /* Only halt host and free memory after both hcds are removed */ 614 if (!usb_hcd_is_primary_hcd(hcd)) { 615 mutex_unlock(&xhci->mutex); 616 return; 617 } 618 619 xhci_remove_dbc_dev(xhci); 620 621 spin_lock_irq(&xhci->lock); 622 xhci->xhc_state |= XHCI_STATE_HALTED; 623 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 624 xhci_halt(xhci); 625 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 626 spin_unlock_irq(&xhci->lock); 627 628 /* Deleting Compliance Mode Recovery Timer */ 629 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 630 (!(xhci_all_ports_seen_u0(xhci)))) { 631 timer_delete_sync(&xhci->comp_mode_recovery_timer); 632 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 633 "%s: compliance mode recovery timer deleted", 634 __func__); 635 } 636 637 if (xhci->quirks & XHCI_AMD_PLL_FIX) 638 usb_amd_dev_put(); 639 640 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 641 "// Disabling event ring interrupts"); 642 temp = readl(&xhci->op_regs->status); 643 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 644 xhci_disable_interrupter(ir); 645 646 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 647 xhci_mem_cleanup(xhci); 648 xhci_debugfs_exit(xhci); 649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 650 "xhci_stop completed - status = %x", 651 readl(&xhci->op_regs->status)); 652 mutex_unlock(&xhci->mutex); 653 } 654 EXPORT_SYMBOL_GPL(xhci_stop); 655 656 /* 657 * Shutdown HC (not bus-specific) 658 * 659 * This is called when the machine is rebooting or halting. We assume that the 660 * machine will be powered off, and the HC's internal state will be reset. 661 * Don't bother to free memory. 662 * 663 * This will only ever be called with the main usb_hcd (the USB3 roothub). 664 */ 665 void xhci_shutdown(struct usb_hcd *hcd) 666 { 667 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 668 669 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 670 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 671 672 /* Don't poll the roothubs after shutdown. */ 673 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 674 __func__, hcd->self.busnum); 675 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 676 timer_delete_sync(&hcd->rh_timer); 677 678 if (xhci->shared_hcd) { 679 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 680 timer_delete_sync(&xhci->shared_hcd->rh_timer); 681 } 682 683 spin_lock_irq(&xhci->lock); 684 xhci_halt(xhci); 685 686 /* 687 * Workaround for spurious wakeps at shutdown with HSW, and for boot 688 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 689 */ 690 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 691 xhci->quirks & XHCI_RESET_TO_DEFAULT) 692 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 693 694 spin_unlock_irq(&xhci->lock); 695 696 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 697 "xhci_shutdown completed - status = %x", 698 readl(&xhci->op_regs->status)); 699 } 700 EXPORT_SYMBOL_GPL(xhci_shutdown); 701 702 #ifdef CONFIG_PM 703 static void xhci_save_registers(struct xhci_hcd *xhci) 704 { 705 struct xhci_interrupter *ir; 706 unsigned int i; 707 708 xhci->s3.command = readl(&xhci->op_regs->command); 709 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 710 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 711 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 712 713 /* save both primary and all secondary interrupters */ 714 /* fixme, shold we lock to prevent race with remove secondary interrupter? */ 715 for (i = 0; i < xhci->max_interrupters; i++) { 716 ir = xhci->interrupters[i]; 717 if (!ir) 718 continue; 719 720 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 721 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 722 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 723 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending); 724 ir->s3_irq_control = readl(&ir->ir_set->irq_control); 725 } 726 } 727 728 static void xhci_restore_registers(struct xhci_hcd *xhci) 729 { 730 struct xhci_interrupter *ir; 731 unsigned int i; 732 733 writel(xhci->s3.command, &xhci->op_regs->command); 734 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 735 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 736 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 737 738 /* FIXME should we lock to protect against freeing of interrupters */ 739 for (i = 0; i < xhci->max_interrupters; i++) { 740 ir = xhci->interrupters[i]; 741 if (!ir) 742 continue; 743 744 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 745 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 746 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 747 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending); 748 writel(ir->s3_irq_control, &ir->ir_set->irq_control); 749 } 750 } 751 752 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 753 { 754 u64 val_64; 755 756 /* step 2: initialize command ring buffer */ 757 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 758 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 759 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 760 xhci->cmd_ring->dequeue) & 761 (u64) ~CMD_RING_RSVD_BITS) | 762 xhci->cmd_ring->cycle_state; 763 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 764 "// Setting command ring address to 0x%llx", 765 (long unsigned long) val_64); 766 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 767 } 768 769 /* 770 * The whole command ring must be cleared to zero when we suspend the host. 771 * 772 * The host doesn't save the command ring pointer in the suspend well, so we 773 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 774 * aligned, because of the reserved bits in the command ring dequeue pointer 775 * register. Therefore, we can't just set the dequeue pointer back in the 776 * middle of the ring (TRBs are 16-byte aligned). 777 */ 778 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 779 { 780 struct xhci_ring *ring; 781 struct xhci_segment *seg; 782 783 ring = xhci->cmd_ring; 784 xhci_for_each_ring_seg(ring->first_seg, seg) { 785 /* erase all TRBs before the link */ 786 memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 787 /* clear link cycle bit */ 788 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE); 789 } 790 791 xhci_initialize_ring_info(ring); 792 /* 793 * Reset the hardware dequeue pointer. 794 * Yes, this will need to be re-written after resume, but we're paranoid 795 * and want to make sure the hardware doesn't access bogus memory 796 * because, say, the BIOS or an SMI started the host without changing 797 * the command ring pointers. 798 */ 799 xhci_set_cmd_ring_deq(xhci); 800 } 801 802 /* 803 * Disable port wake bits if do_wakeup is not set. 804 * 805 * Also clear a possible internal port wake state left hanging for ports that 806 * detected termination but never successfully enumerated (trained to 0U). 807 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 808 * at enumeration clears this wake, force one here as well for unconnected ports 809 */ 810 811 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 812 struct xhci_hub *rhub, 813 bool do_wakeup) 814 { 815 unsigned long flags; 816 u32 t1, t2, portsc; 817 int i; 818 819 spin_lock_irqsave(&xhci->lock, flags); 820 821 for (i = 0; i < rhub->num_ports; i++) { 822 portsc = readl(rhub->ports[i]->addr); 823 t1 = xhci_port_state_to_neutral(portsc); 824 t2 = t1; 825 826 /* clear wake bits if do_wake is not set */ 827 if (!do_wakeup) 828 t2 &= ~PORT_WAKE_BITS; 829 830 /* Don't touch csc bit if connected or connect change is set */ 831 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 832 t2 |= PORT_CSC; 833 834 if (t1 != t2) { 835 writel(t2, rhub->ports[i]->addr); 836 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 837 rhub->hcd->self.busnum, i + 1, portsc, t2); 838 } 839 } 840 spin_unlock_irqrestore(&xhci->lock, flags); 841 } 842 843 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 844 { 845 struct xhci_port **ports; 846 int port_index; 847 u32 status; 848 u32 portsc; 849 850 status = readl(&xhci->op_regs->status); 851 if (status & STS_EINT) 852 return true; 853 /* 854 * Checking STS_EINT is not enough as there is a lag between a change 855 * bit being set and the Port Status Change Event that it generated 856 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 857 */ 858 859 port_index = xhci->usb2_rhub.num_ports; 860 ports = xhci->usb2_rhub.ports; 861 while (port_index--) { 862 portsc = readl(ports[port_index]->addr); 863 if (portsc & PORT_CHANGE_MASK || 864 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 865 return true; 866 } 867 port_index = xhci->usb3_rhub.num_ports; 868 ports = xhci->usb3_rhub.ports; 869 while (port_index--) { 870 portsc = readl(ports[port_index]->addr); 871 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) || 872 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 873 return true; 874 } 875 return false; 876 } 877 878 /* 879 * Stop HC (not bus-specific) 880 * 881 * This is called when the machine transition into S3/S4 mode. 882 * 883 */ 884 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 885 { 886 int rc = 0; 887 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 888 struct usb_hcd *hcd = xhci_to_hcd(xhci); 889 u32 command; 890 u32 res; 891 892 if (!hcd->state) 893 return 0; 894 895 if (hcd->state != HC_STATE_SUSPENDED || 896 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 897 return -EINVAL; 898 899 /* Clear root port wake on bits if wakeup not allowed. */ 900 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 901 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 902 903 if (!HCD_HW_ACCESSIBLE(hcd)) 904 return 0; 905 906 xhci_dbc_suspend(xhci); 907 908 /* Don't poll the roothubs on bus suspend. */ 909 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 910 __func__, hcd->self.busnum); 911 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 912 timer_delete_sync(&hcd->rh_timer); 913 if (xhci->shared_hcd) { 914 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 915 timer_delete_sync(&xhci->shared_hcd->rh_timer); 916 } 917 918 if (xhci->quirks & XHCI_SUSPEND_DELAY) 919 usleep_range(1000, 1500); 920 921 spin_lock_irq(&xhci->lock); 922 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 923 if (xhci->shared_hcd) 924 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 925 /* step 1: stop endpoint */ 926 /* skipped assuming that port suspend has done */ 927 928 /* step 2: clear Run/Stop bit */ 929 command = readl(&xhci->op_regs->command); 930 command &= ~CMD_RUN; 931 writel(command, &xhci->op_regs->command); 932 933 /* Some chips from Fresco Logic need an extraordinary delay */ 934 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 935 936 if (xhci_handshake(&xhci->op_regs->status, 937 STS_HALT, STS_HALT, delay)) { 938 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 939 spin_unlock_irq(&xhci->lock); 940 return -ETIMEDOUT; 941 } 942 xhci_clear_command_ring(xhci); 943 944 /* step 3: save registers */ 945 xhci_save_registers(xhci); 946 947 /* step 4: set CSS flag */ 948 command = readl(&xhci->op_regs->command); 949 command |= CMD_CSS; 950 writel(command, &xhci->op_regs->command); 951 xhci->broken_suspend = 0; 952 if (xhci_handshake(&xhci->op_regs->status, 953 STS_SAVE, 0, 20 * 1000)) { 954 /* 955 * AMD SNPS xHC 3.0 occasionally does not clear the 956 * SSS bit of USBSTS and when driver tries to poll 957 * to see if the xHC clears BIT(8) which never happens 958 * and driver assumes that controller is not responding 959 * and times out. To workaround this, its good to check 960 * if SRE and HCE bits are not set (as per xhci 961 * Section 5.4.2) and bypass the timeout. 962 */ 963 res = readl(&xhci->op_regs->status); 964 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 965 (((res & STS_SRE) == 0) && 966 ((res & STS_HCE) == 0))) { 967 xhci->broken_suspend = 1; 968 } else { 969 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 970 spin_unlock_irq(&xhci->lock); 971 return -ETIMEDOUT; 972 } 973 } 974 spin_unlock_irq(&xhci->lock); 975 976 /* 977 * Deleting Compliance Mode Recovery Timer because the xHCI Host 978 * is about to be suspended. 979 */ 980 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 981 (!(xhci_all_ports_seen_u0(xhci)))) { 982 timer_delete_sync(&xhci->comp_mode_recovery_timer); 983 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 984 "%s: compliance mode recovery timer deleted", 985 __func__); 986 } 987 988 return rc; 989 } 990 EXPORT_SYMBOL_GPL(xhci_suspend); 991 992 /* 993 * start xHC (not bus-specific) 994 * 995 * This is called when the machine transition from S3/S4 mode. 996 * 997 */ 998 int xhci_resume(struct xhci_hcd *xhci, bool power_lost, bool is_auto_resume) 999 { 1000 u32 command, temp = 0; 1001 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1002 int retval = 0; 1003 bool comp_timer_running = false; 1004 bool pending_portevent = false; 1005 bool suspended_usb3_devs = false; 1006 1007 if (!hcd->state) 1008 return 0; 1009 1010 /* Wait a bit if either of the roothubs need to settle from the 1011 * transition into bus suspend. 1012 */ 1013 1014 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1015 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1016 msleep(100); 1017 1018 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1019 if (xhci->shared_hcd) 1020 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1021 1022 spin_lock_irq(&xhci->lock); 1023 1024 if (xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1025 power_lost = true; 1026 1027 if (!power_lost) { 1028 /* 1029 * Some controllers might lose power during suspend, so wait 1030 * for controller not ready bit to clear, just as in xHC init. 1031 */ 1032 retval = xhci_handshake(&xhci->op_regs->status, 1033 STS_CNR, 0, 10 * 1000 * 1000); 1034 if (retval) { 1035 xhci_warn(xhci, "Controller not ready at resume %d\n", 1036 retval); 1037 spin_unlock_irq(&xhci->lock); 1038 return retval; 1039 } 1040 /* step 1: restore register */ 1041 xhci_restore_registers(xhci); 1042 /* step 2: initialize command ring buffer */ 1043 xhci_set_cmd_ring_deq(xhci); 1044 /* step 3: restore state and start state*/ 1045 /* step 3: set CRS flag */ 1046 command = readl(&xhci->op_regs->command); 1047 command |= CMD_CRS; 1048 writel(command, &xhci->op_regs->command); 1049 /* 1050 * Some controllers take up to 55+ ms to complete the controller 1051 * restore so setting the timeout to 100ms. Xhci specification 1052 * doesn't mention any timeout value. 1053 */ 1054 if (xhci_handshake(&xhci->op_regs->status, 1055 STS_RESTORE, 0, 100 * 1000)) { 1056 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1057 spin_unlock_irq(&xhci->lock); 1058 return -ETIMEDOUT; 1059 } 1060 } 1061 1062 temp = readl(&xhci->op_regs->status); 1063 1064 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1065 if ((temp & (STS_SRE | STS_HCE)) && 1066 !(xhci->xhc_state & XHCI_STATE_REMOVING)) { 1067 if (!power_lost) 1068 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1069 power_lost = true; 1070 } 1071 1072 if (power_lost) { 1073 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1074 !(xhci_all_ports_seen_u0(xhci))) { 1075 timer_delete_sync(&xhci->comp_mode_recovery_timer); 1076 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1077 "Compliance Mode Recovery Timer deleted!"); 1078 } 1079 1080 /* Let the USB core know _both_ roothubs lost power. */ 1081 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1082 if (xhci->shared_hcd) 1083 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1084 1085 xhci_dbg(xhci, "Stop HCD\n"); 1086 xhci_halt(xhci); 1087 xhci_zero_64b_regs(xhci); 1088 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1089 spin_unlock_irq(&xhci->lock); 1090 if (retval) 1091 return retval; 1092 1093 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1094 temp = readl(&xhci->op_regs->status); 1095 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1096 xhci_disable_interrupter(xhci->interrupters[0]); 1097 1098 xhci_dbg(xhci, "cleaning up memory\n"); 1099 xhci_mem_cleanup(xhci); 1100 xhci_debugfs_exit(xhci); 1101 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1102 readl(&xhci->op_regs->status)); 1103 1104 /* USB core calls the PCI reinit and start functions twice: 1105 * first with the primary HCD, and then with the secondary HCD. 1106 * If we don't do the same, the host will never be started. 1107 */ 1108 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1109 retval = xhci_init(hcd); 1110 if (retval) 1111 return retval; 1112 comp_timer_running = true; 1113 1114 xhci_dbg(xhci, "Start the primary HCD\n"); 1115 retval = xhci_run(hcd); 1116 if (!retval && xhci->shared_hcd) { 1117 xhci_dbg(xhci, "Start the secondary HCD\n"); 1118 retval = xhci_run(xhci->shared_hcd); 1119 } 1120 if (retval) 1121 return retval; 1122 /* 1123 * Resume roothubs unconditionally as PORTSC change bits are not 1124 * immediately visible after xHC reset 1125 */ 1126 hcd->state = HC_STATE_SUSPENDED; 1127 1128 if (xhci->shared_hcd) { 1129 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1130 usb_hcd_resume_root_hub(xhci->shared_hcd); 1131 } 1132 usb_hcd_resume_root_hub(hcd); 1133 1134 goto done; 1135 } 1136 1137 /* step 4: set Run/Stop bit */ 1138 command = readl(&xhci->op_regs->command); 1139 command |= CMD_RUN; 1140 writel(command, &xhci->op_regs->command); 1141 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1142 0, 250 * 1000); 1143 1144 /* step 5: walk topology and initialize portsc, 1145 * portpmsc and portli 1146 */ 1147 /* this is done in bus_resume */ 1148 1149 /* step 6: restart each of the previously 1150 * Running endpoints by ringing their doorbells 1151 */ 1152 1153 spin_unlock_irq(&xhci->lock); 1154 1155 xhci_dbc_resume(xhci); 1156 1157 if (retval == 0) { 1158 /* 1159 * Resume roothubs only if there are pending events. 1160 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1161 * the first wake signalling failed, give it that chance if 1162 * there are suspended USB 3 devices. 1163 */ 1164 if (xhci->usb3_rhub.bus_state.suspended_ports || 1165 xhci->usb3_rhub.bus_state.bus_suspended) 1166 suspended_usb3_devs = true; 1167 1168 pending_portevent = xhci_pending_portevent(xhci); 1169 1170 if (suspended_usb3_devs && !pending_portevent && is_auto_resume) { 1171 msleep(120); 1172 pending_portevent = xhci_pending_portevent(xhci); 1173 } 1174 1175 if (pending_portevent) { 1176 if (xhci->shared_hcd) 1177 usb_hcd_resume_root_hub(xhci->shared_hcd); 1178 usb_hcd_resume_root_hub(hcd); 1179 } 1180 } 1181 done: 1182 /* 1183 * If system is subject to the Quirk, Compliance Mode Timer needs to 1184 * be re-initialized Always after a system resume. Ports are subject 1185 * to suffer the Compliance Mode issue again. It doesn't matter if 1186 * ports have entered previously to U0 before system's suspension. 1187 */ 1188 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1189 compliance_mode_recovery_timer_init(xhci); 1190 1191 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1192 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1193 1194 /* Re-enable port polling. */ 1195 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1196 __func__, hcd->self.busnum); 1197 if (xhci->shared_hcd) { 1198 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1199 usb_hcd_poll_rh_status(xhci->shared_hcd); 1200 } 1201 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1202 usb_hcd_poll_rh_status(hcd); 1203 1204 return retval; 1205 } 1206 EXPORT_SYMBOL_GPL(xhci_resume); 1207 #endif /* CONFIG_PM */ 1208 1209 /*-------------------------------------------------------------------------*/ 1210 1211 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1212 { 1213 void *temp; 1214 int ret = 0; 1215 unsigned int buf_len; 1216 enum dma_data_direction dir; 1217 1218 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1219 buf_len = urb->transfer_buffer_length; 1220 1221 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1222 dev_to_node(hcd->self.sysdev)); 1223 if (!temp) 1224 return -ENOMEM; 1225 1226 if (usb_urb_dir_out(urb)) 1227 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1228 temp, buf_len, 0); 1229 1230 urb->transfer_buffer = temp; 1231 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1232 urb->transfer_buffer, 1233 urb->transfer_buffer_length, 1234 dir); 1235 1236 if (dma_mapping_error(hcd->self.sysdev, 1237 urb->transfer_dma)) { 1238 ret = -EAGAIN; 1239 kfree(temp); 1240 } else { 1241 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1242 } 1243 1244 return ret; 1245 } 1246 1247 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1248 struct urb *urb) 1249 { 1250 bool ret = false; 1251 unsigned int i; 1252 unsigned int len = 0; 1253 unsigned int trb_size; 1254 unsigned int max_pkt; 1255 struct scatterlist *sg; 1256 struct scatterlist *tail_sg; 1257 1258 tail_sg = urb->sg; 1259 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1260 1261 if (!urb->num_sgs) 1262 return ret; 1263 1264 if (urb->dev->speed >= USB_SPEED_SUPER) 1265 trb_size = TRB_CACHE_SIZE_SS; 1266 else 1267 trb_size = TRB_CACHE_SIZE_HS; 1268 1269 if (urb->transfer_buffer_length != 0 && 1270 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1271 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1272 len = len + sg->length; 1273 if (i > trb_size - 2) { 1274 len = len - tail_sg->length; 1275 if (len < max_pkt) { 1276 ret = true; 1277 break; 1278 } 1279 1280 tail_sg = sg_next(tail_sg); 1281 } 1282 } 1283 } 1284 return ret; 1285 } 1286 1287 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1288 { 1289 unsigned int len; 1290 unsigned int buf_len; 1291 enum dma_data_direction dir; 1292 1293 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1294 1295 buf_len = urb->transfer_buffer_length; 1296 1297 if (IS_ENABLED(CONFIG_HAS_DMA) && 1298 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1299 dma_unmap_single(hcd->self.sysdev, 1300 urb->transfer_dma, 1301 urb->transfer_buffer_length, 1302 dir); 1303 1304 if (usb_urb_dir_in(urb)) { 1305 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1306 urb->transfer_buffer, 1307 buf_len, 1308 0); 1309 if (len != buf_len) { 1310 xhci_dbg(hcd_to_xhci(hcd), 1311 "Copy from tmp buf to urb sg list failed\n"); 1312 urb->actual_length = len; 1313 } 1314 } 1315 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1316 kfree(urb->transfer_buffer); 1317 urb->transfer_buffer = NULL; 1318 } 1319 1320 /* 1321 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1322 * we'll copy the actual data into the TRB address register. This is limited to 1323 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1324 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1325 */ 1326 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1327 gfp_t mem_flags) 1328 { 1329 struct xhci_hcd *xhci; 1330 1331 xhci = hcd_to_xhci(hcd); 1332 1333 if (xhci_urb_suitable_for_idt(urb)) 1334 return 0; 1335 1336 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1337 if (xhci_urb_temp_buffer_required(hcd, urb)) 1338 return xhci_map_temp_buffer(hcd, urb); 1339 } 1340 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1341 } 1342 1343 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1344 { 1345 struct xhci_hcd *xhci; 1346 bool unmap_temp_buf = false; 1347 1348 xhci = hcd_to_xhci(hcd); 1349 1350 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1351 unmap_temp_buf = true; 1352 1353 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1354 xhci_unmap_temp_buf(hcd, urb); 1355 else 1356 usb_hcd_unmap_urb_for_dma(hcd, urb); 1357 } 1358 1359 /** 1360 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1361 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1362 * value to right shift 1 for the bitmask. 1363 * 1364 * Index = (epnum * 2) + direction - 1, 1365 * where direction = 0 for OUT, 1 for IN. 1366 * For control endpoints, the IN index is used (OUT index is unused), so 1367 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1368 */ 1369 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1370 { 1371 unsigned int index; 1372 if (usb_endpoint_xfer_control(desc)) 1373 index = (unsigned int) (usb_endpoint_num(desc)*2); 1374 else 1375 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1376 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1377 return index; 1378 } 1379 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1380 1381 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1382 * address from the XHCI endpoint index. 1383 */ 1384 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1385 { 1386 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1387 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1388 return direction | number; 1389 } 1390 1391 /* Find the flag for this endpoint (for use in the control context). Use the 1392 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1393 * bit 1, etc. 1394 */ 1395 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1396 { 1397 return 1 << (xhci_get_endpoint_index(desc) + 1); 1398 } 1399 1400 /* Compute the last valid endpoint context index. Basically, this is the 1401 * endpoint index plus one. For slot contexts with more than valid endpoint, 1402 * we find the most significant bit set in the added contexts flags. 1403 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1404 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1405 */ 1406 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1407 { 1408 return fls(added_ctxs) - 1; 1409 } 1410 1411 /* Returns 1 if the arguments are OK; 1412 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1413 */ 1414 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1415 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1416 const char *func) { 1417 struct xhci_hcd *xhci; 1418 struct xhci_virt_device *virt_dev; 1419 1420 if (!hcd || (check_ep && !ep) || !udev) { 1421 pr_debug("xHCI %s called with invalid args\n", func); 1422 return -EINVAL; 1423 } 1424 if (!udev->parent) { 1425 pr_debug("xHCI %s called for root hub\n", func); 1426 return 0; 1427 } 1428 1429 xhci = hcd_to_xhci(hcd); 1430 if (check_virt_dev) { 1431 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1432 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1433 func); 1434 return -EINVAL; 1435 } 1436 1437 virt_dev = xhci->devs[udev->slot_id]; 1438 if (virt_dev->udev != udev) { 1439 xhci_dbg(xhci, "xHCI %s called with udev and " 1440 "virt_dev does not match\n", func); 1441 return -EINVAL; 1442 } 1443 } 1444 1445 if (xhci->xhc_state & XHCI_STATE_HALTED) 1446 return -ENODEV; 1447 1448 return 1; 1449 } 1450 1451 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1452 struct usb_device *udev, struct xhci_command *command, 1453 bool ctx_change, bool must_succeed); 1454 1455 /* 1456 * Full speed devices may have a max packet size greater than 8 bytes, but the 1457 * USB core doesn't know that until it reads the first 8 bytes of the 1458 * descriptor. If the usb_device's max packet size changes after that point, 1459 * we need to issue an evaluate context command and wait on it. 1460 */ 1461 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev) 1462 { 1463 struct xhci_input_control_ctx *ctrl_ctx; 1464 struct xhci_ep_ctx *ep_ctx; 1465 struct xhci_command *command; 1466 int max_packet_size; 1467 int hw_max_packet_size; 1468 int ret = 0; 1469 1470 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0); 1471 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1472 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc); 1473 1474 if (hw_max_packet_size == max_packet_size) 1475 return 0; 1476 1477 switch (max_packet_size) { 1478 case 8: case 16: case 32: case 64: case 9: 1479 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1480 "Max Packet Size for ep 0 changed."); 1481 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1482 "Max packet size in usb_device = %d", 1483 max_packet_size); 1484 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1485 "Max packet size in xHCI HW = %d", 1486 hw_max_packet_size); 1487 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1488 "Issuing evaluate context command."); 1489 1490 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1491 if (!command) 1492 return -ENOMEM; 1493 1494 command->in_ctx = vdev->in_ctx; 1495 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1496 if (!ctrl_ctx) { 1497 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1498 __func__); 1499 ret = -ENOMEM; 1500 break; 1501 } 1502 /* Set up the modified control endpoint 0 */ 1503 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0); 1504 1505 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0); 1506 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1507 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1508 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1509 1510 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1511 ctrl_ctx->drop_flags = 0; 1512 1513 ret = xhci_configure_endpoint(xhci, vdev->udev, command, 1514 true, false); 1515 /* Clean up the input context for later use by bandwidth functions */ 1516 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1517 break; 1518 default: 1519 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n", 1520 max_packet_size); 1521 return -EINVAL; 1522 } 1523 1524 kfree(command->completion); 1525 kfree(command); 1526 1527 return ret; 1528 } 1529 1530 /* 1531 * non-error returns are a promise to giveback() the urb later 1532 * we drop ownership so next owner (or urb unlink) can get it 1533 */ 1534 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1535 { 1536 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1537 unsigned long flags; 1538 int ret = 0; 1539 unsigned int slot_id, ep_index; 1540 unsigned int *ep_state; 1541 struct urb_priv *urb_priv; 1542 int num_tds; 1543 1544 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1545 1546 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1547 num_tds = urb->number_of_packets; 1548 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1549 urb->transfer_buffer_length > 0 && 1550 urb->transfer_flags & URB_ZERO_PACKET && 1551 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1552 num_tds = 2; 1553 else 1554 num_tds = 1; 1555 1556 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1557 if (!urb_priv) 1558 return -ENOMEM; 1559 1560 urb_priv->num_tds = num_tds; 1561 urb_priv->num_tds_done = 0; 1562 urb->hcpriv = urb_priv; 1563 1564 trace_xhci_urb_enqueue(urb); 1565 1566 spin_lock_irqsave(&xhci->lock, flags); 1567 1568 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1569 true, true, __func__); 1570 if (ret <= 0) { 1571 ret = ret ? ret : -EINVAL; 1572 goto free_priv; 1573 } 1574 1575 slot_id = urb->dev->slot_id; 1576 1577 if (!HCD_HW_ACCESSIBLE(hcd)) { 1578 ret = -ESHUTDOWN; 1579 goto free_priv; 1580 } 1581 1582 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1583 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1584 ret = -ENODEV; 1585 goto free_priv; 1586 } 1587 1588 if (xhci->xhc_state & XHCI_STATE_DYING) { 1589 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1590 urb->ep->desc.bEndpointAddress, urb); 1591 ret = -ESHUTDOWN; 1592 goto free_priv; 1593 } 1594 1595 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1596 1597 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1598 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1599 *ep_state); 1600 ret = -EINVAL; 1601 goto free_priv; 1602 } 1603 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1604 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1605 ret = -EINVAL; 1606 goto free_priv; 1607 } 1608 1609 /* Class driver might not be aware ep halted due to async URB giveback */ 1610 if (*ep_state & EP_STALLED) 1611 dev_dbg(&urb->dev->dev, "URB %p queued before clearing halt\n", 1612 urb); 1613 1614 switch (usb_endpoint_type(&urb->ep->desc)) { 1615 1616 case USB_ENDPOINT_XFER_CONTROL: 1617 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1618 slot_id, ep_index); 1619 break; 1620 case USB_ENDPOINT_XFER_BULK: 1621 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1622 slot_id, ep_index); 1623 break; 1624 case USB_ENDPOINT_XFER_INT: 1625 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1626 slot_id, ep_index); 1627 break; 1628 case USB_ENDPOINT_XFER_ISOC: 1629 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1630 slot_id, ep_index); 1631 } 1632 1633 if (ret) { 1634 free_priv: 1635 xhci_urb_free_priv(urb_priv); 1636 urb->hcpriv = NULL; 1637 } 1638 spin_unlock_irqrestore(&xhci->lock, flags); 1639 return ret; 1640 } 1641 1642 /* 1643 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1644 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1645 * should pick up where it left off in the TD, unless a Set Transfer Ring 1646 * Dequeue Pointer is issued. 1647 * 1648 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1649 * the ring. Since the ring is a contiguous structure, they can't be physically 1650 * removed. Instead, there are two options: 1651 * 1652 * 1) If the HC is in the middle of processing the URB to be canceled, we 1653 * simply move the ring's dequeue pointer past those TRBs using the Set 1654 * Transfer Ring Dequeue Pointer command. This will be the common case, 1655 * when drivers timeout on the last submitted URB and attempt to cancel. 1656 * 1657 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1658 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1659 * HC will need to invalidate the any TRBs it has cached after the stop 1660 * endpoint command, as noted in the xHCI 0.95 errata. 1661 * 1662 * 3) The TD may have completed by the time the Stop Endpoint Command 1663 * completes, so software needs to handle that case too. 1664 * 1665 * This function should protect against the TD enqueueing code ringing the 1666 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1667 * It also needs to account for multiple cancellations on happening at the same 1668 * time for the same endpoint. 1669 * 1670 * Note that this function can be called in any context, or so says 1671 * usb_hcd_unlink_urb() 1672 */ 1673 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1674 { 1675 unsigned long flags; 1676 int ret, i; 1677 u32 temp; 1678 struct xhci_hcd *xhci; 1679 struct urb_priv *urb_priv; 1680 struct xhci_td *td; 1681 unsigned int ep_index; 1682 struct xhci_ring *ep_ring; 1683 struct xhci_virt_ep *ep; 1684 struct xhci_command *command; 1685 struct xhci_virt_device *vdev; 1686 1687 xhci = hcd_to_xhci(hcd); 1688 spin_lock_irqsave(&xhci->lock, flags); 1689 1690 trace_xhci_urb_dequeue(urb); 1691 1692 /* Make sure the URB hasn't completed or been unlinked already */ 1693 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1694 if (ret) 1695 goto done; 1696 1697 /* give back URB now if we can't queue it for cancel */ 1698 vdev = xhci->devs[urb->dev->slot_id]; 1699 urb_priv = urb->hcpriv; 1700 if (!vdev || !urb_priv) 1701 goto err_giveback; 1702 1703 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1704 ep = &vdev->eps[ep_index]; 1705 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1706 if (!ep || !ep_ring) 1707 goto err_giveback; 1708 1709 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1710 temp = readl(&xhci->op_regs->status); 1711 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1712 xhci_hc_died(xhci); 1713 goto done; 1714 } 1715 1716 /* 1717 * check ring is not re-allocated since URB was enqueued. If it is, then 1718 * make sure none of the ring related pointers in this URB private data 1719 * are touched, such as td_list, otherwise we overwrite freed data 1720 */ 1721 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1722 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1723 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1724 td = &urb_priv->td[i]; 1725 if (!list_empty(&td->cancelled_td_list)) 1726 list_del_init(&td->cancelled_td_list); 1727 } 1728 goto err_giveback; 1729 } 1730 1731 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1732 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1733 "HC halted, freeing TD manually."); 1734 for (i = urb_priv->num_tds_done; 1735 i < urb_priv->num_tds; 1736 i++) { 1737 td = &urb_priv->td[i]; 1738 if (!list_empty(&td->td_list)) 1739 list_del_init(&td->td_list); 1740 if (!list_empty(&td->cancelled_td_list)) 1741 list_del_init(&td->cancelled_td_list); 1742 } 1743 goto err_giveback; 1744 } 1745 1746 i = urb_priv->num_tds_done; 1747 if (i < urb_priv->num_tds) 1748 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1749 "Cancel URB %p, dev %s, ep 0x%x, " 1750 "starting at offset 0x%llx", 1751 urb, urb->dev->devpath, 1752 urb->ep->desc.bEndpointAddress, 1753 (unsigned long long) xhci_trb_virt_to_dma( 1754 urb_priv->td[i].start_seg, 1755 urb_priv->td[i].start_trb)); 1756 1757 for (; i < urb_priv->num_tds; i++) { 1758 td = &urb_priv->td[i]; 1759 /* TD can already be on cancelled list if ep halted on it */ 1760 if (list_empty(&td->cancelled_td_list)) { 1761 td->cancel_status = TD_DIRTY; 1762 list_add_tail(&td->cancelled_td_list, 1763 &ep->cancelled_td_list); 1764 } 1765 } 1766 1767 /* These completion handlers will sort out cancelled TDs for us */ 1768 if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) { 1769 xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n", 1770 urb->dev->slot_id, ep_index, ep->ep_state); 1771 goto done; 1772 } 1773 1774 /* In these cases no commands are pending but the endpoint is stopped */ 1775 if (ep->ep_state & (EP_CLEARING_TT | EP_STALLED)) { 1776 /* and cancelled TDs can be given back right away */ 1777 xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n", 1778 urb->dev->slot_id, ep_index, ep->ep_state); 1779 xhci_process_cancelled_tds(ep); 1780 } else { 1781 /* Otherwise, queue a new Stop Endpoint command */ 1782 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1783 if (!command) { 1784 ret = -ENOMEM; 1785 goto done; 1786 } 1787 ep->stop_time = jiffies; 1788 ep->ep_state |= EP_STOP_CMD_PENDING; 1789 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1790 ep_index, 0); 1791 xhci_ring_cmd_db(xhci); 1792 } 1793 done: 1794 spin_unlock_irqrestore(&xhci->lock, flags); 1795 return ret; 1796 1797 err_giveback: 1798 if (urb_priv) 1799 xhci_urb_free_priv(urb_priv); 1800 usb_hcd_unlink_urb_from_ep(hcd, urb); 1801 spin_unlock_irqrestore(&xhci->lock, flags); 1802 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1803 return ret; 1804 } 1805 1806 /* Drop an endpoint from a new bandwidth configuration for this device. 1807 * Only one call to this function is allowed per endpoint before 1808 * check_bandwidth() or reset_bandwidth() must be called. 1809 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1810 * add the endpoint to the schedule with possibly new parameters denoted by a 1811 * different endpoint descriptor in usb_host_endpoint. 1812 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1813 * not allowed. 1814 * 1815 * The USB core will not allow URBs to be queued to an endpoint that is being 1816 * disabled, so there's no need for mutual exclusion to protect 1817 * the xhci->devs[slot_id] structure. 1818 */ 1819 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1820 struct usb_host_endpoint *ep) 1821 { 1822 struct xhci_hcd *xhci; 1823 struct xhci_container_ctx *in_ctx, *out_ctx; 1824 struct xhci_input_control_ctx *ctrl_ctx; 1825 unsigned int ep_index; 1826 struct xhci_ep_ctx *ep_ctx; 1827 u32 drop_flag; 1828 u32 new_add_flags, new_drop_flags; 1829 int ret; 1830 1831 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1832 if (ret <= 0) 1833 return ret; 1834 xhci = hcd_to_xhci(hcd); 1835 if (xhci->xhc_state & XHCI_STATE_DYING) 1836 return -ENODEV; 1837 1838 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1839 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1840 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1841 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1842 __func__, drop_flag); 1843 return 0; 1844 } 1845 1846 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1847 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1848 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1849 if (!ctrl_ctx) { 1850 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1851 __func__); 1852 return 0; 1853 } 1854 1855 ep_index = xhci_get_endpoint_index(&ep->desc); 1856 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1857 /* If the HC already knows the endpoint is disabled, 1858 * or the HCD has noted it is disabled, ignore this request 1859 */ 1860 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1861 le32_to_cpu(ctrl_ctx->drop_flags) & 1862 xhci_get_endpoint_flag(&ep->desc)) { 1863 /* Do not warn when called after a usb_device_reset */ 1864 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1865 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1866 __func__, ep); 1867 return 0; 1868 } 1869 1870 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1871 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1872 1873 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1874 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1875 1876 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1877 1878 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1879 1880 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1881 (unsigned int) ep->desc.bEndpointAddress, 1882 udev->slot_id, 1883 (unsigned int) new_drop_flags, 1884 (unsigned int) new_add_flags); 1885 return 0; 1886 } 1887 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1888 1889 /* Add an endpoint to a new possible bandwidth configuration for this device. 1890 * Only one call to this function is allowed per endpoint before 1891 * check_bandwidth() or reset_bandwidth() must be called. 1892 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1893 * add the endpoint to the schedule with possibly new parameters denoted by a 1894 * different endpoint descriptor in usb_host_endpoint. 1895 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1896 * not allowed. 1897 * 1898 * The USB core will not allow URBs to be queued to an endpoint until the 1899 * configuration or alt setting is installed in the device, so there's no need 1900 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1901 */ 1902 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1903 struct usb_host_endpoint *ep) 1904 { 1905 struct xhci_hcd *xhci; 1906 struct xhci_container_ctx *in_ctx; 1907 unsigned int ep_index; 1908 struct xhci_input_control_ctx *ctrl_ctx; 1909 struct xhci_ep_ctx *ep_ctx; 1910 u32 added_ctxs; 1911 u32 new_add_flags, new_drop_flags; 1912 struct xhci_virt_device *virt_dev; 1913 int ret = 0; 1914 1915 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1916 if (ret <= 0) { 1917 /* So we won't queue a reset ep command for a root hub */ 1918 ep->hcpriv = NULL; 1919 return ret; 1920 } 1921 xhci = hcd_to_xhci(hcd); 1922 if (xhci->xhc_state & XHCI_STATE_DYING) 1923 return -ENODEV; 1924 1925 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1926 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1927 /* FIXME when we have to issue an evaluate endpoint command to 1928 * deal with ep0 max packet size changing once we get the 1929 * descriptors 1930 */ 1931 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1932 __func__, added_ctxs); 1933 return 0; 1934 } 1935 1936 virt_dev = xhci->devs[udev->slot_id]; 1937 in_ctx = virt_dev->in_ctx; 1938 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1939 if (!ctrl_ctx) { 1940 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1941 __func__); 1942 return 0; 1943 } 1944 1945 ep_index = xhci_get_endpoint_index(&ep->desc); 1946 /* If this endpoint is already in use, and the upper layers are trying 1947 * to add it again without dropping it, reject the addition. 1948 */ 1949 if (virt_dev->eps[ep_index].ring && 1950 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1951 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1952 "without dropping it.\n", 1953 (unsigned int) ep->desc.bEndpointAddress); 1954 return -EINVAL; 1955 } 1956 1957 /* If the HCD has already noted the endpoint is enabled, 1958 * ignore this request. 1959 */ 1960 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1961 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1962 __func__, ep); 1963 return 0; 1964 } 1965 1966 /* 1967 * Configuration and alternate setting changes must be done in 1968 * process context, not interrupt context (or so documenation 1969 * for usb_set_interface() and usb_set_configuration() claim). 1970 */ 1971 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1972 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1973 __func__, ep->desc.bEndpointAddress); 1974 return -ENOMEM; 1975 } 1976 1977 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1978 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1979 1980 /* If xhci_endpoint_disable() was called for this endpoint, but the 1981 * xHC hasn't been notified yet through the check_bandwidth() call, 1982 * this re-adds a new state for the endpoint from the new endpoint 1983 * descriptors. We must drop and re-add this endpoint, so we leave the 1984 * drop flags alone. 1985 */ 1986 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1987 1988 /* Store the usb_device pointer for later use */ 1989 ep->hcpriv = udev; 1990 1991 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1992 trace_xhci_add_endpoint(ep_ctx); 1993 1994 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1995 (unsigned int) ep->desc.bEndpointAddress, 1996 udev->slot_id, 1997 (unsigned int) new_drop_flags, 1998 (unsigned int) new_add_flags); 1999 return 0; 2000 } 2001 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2002 2003 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2004 { 2005 struct xhci_input_control_ctx *ctrl_ctx; 2006 struct xhci_ep_ctx *ep_ctx; 2007 struct xhci_slot_ctx *slot_ctx; 2008 int i; 2009 2010 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2011 if (!ctrl_ctx) { 2012 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2013 __func__); 2014 return; 2015 } 2016 2017 /* When a device's add flag and drop flag are zero, any subsequent 2018 * configure endpoint command will leave that endpoint's state 2019 * untouched. Make sure we don't leave any old state in the input 2020 * endpoint contexts. 2021 */ 2022 ctrl_ctx->drop_flags = 0; 2023 ctrl_ctx->add_flags = 0; 2024 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2025 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2026 /* Endpoint 0 is always valid */ 2027 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2028 for (i = 1; i < 31; i++) { 2029 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2030 ep_ctx->ep_info = 0; 2031 ep_ctx->ep_info2 = 0; 2032 ep_ctx->deq = 0; 2033 ep_ctx->tx_info = 0; 2034 } 2035 } 2036 2037 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2038 struct usb_device *udev, u32 *cmd_status) 2039 { 2040 int ret; 2041 2042 switch (*cmd_status) { 2043 case COMP_COMMAND_ABORTED: 2044 case COMP_COMMAND_RING_STOPPED: 2045 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2046 ret = -ETIME; 2047 break; 2048 case COMP_RESOURCE_ERROR: 2049 dev_warn(&udev->dev, 2050 "Not enough host controller resources for new device state.\n"); 2051 ret = -ENOMEM; 2052 /* FIXME: can we allocate more resources for the HC? */ 2053 break; 2054 case COMP_BANDWIDTH_ERROR: 2055 case COMP_SECONDARY_BANDWIDTH_ERROR: 2056 dev_warn(&udev->dev, 2057 "Not enough bandwidth for new device state.\n"); 2058 ret = -ENOSPC; 2059 /* FIXME: can we go back to the old state? */ 2060 break; 2061 case COMP_TRB_ERROR: 2062 /* the HCD set up something wrong */ 2063 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2064 "add flag = 1, " 2065 "and endpoint is not disabled.\n"); 2066 ret = -EINVAL; 2067 break; 2068 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2069 dev_warn(&udev->dev, 2070 "ERROR: Incompatible device for endpoint configure command.\n"); 2071 ret = -ENODEV; 2072 break; 2073 case COMP_SUCCESS: 2074 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2075 "Successful Endpoint Configure command"); 2076 ret = 0; 2077 break; 2078 default: 2079 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2080 *cmd_status); 2081 ret = -EINVAL; 2082 break; 2083 } 2084 return ret; 2085 } 2086 2087 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2088 struct usb_device *udev, u32 *cmd_status) 2089 { 2090 int ret; 2091 2092 switch (*cmd_status) { 2093 case COMP_COMMAND_ABORTED: 2094 case COMP_COMMAND_RING_STOPPED: 2095 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2096 ret = -ETIME; 2097 break; 2098 case COMP_PARAMETER_ERROR: 2099 dev_warn(&udev->dev, 2100 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2101 ret = -EINVAL; 2102 break; 2103 case COMP_SLOT_NOT_ENABLED_ERROR: 2104 dev_warn(&udev->dev, 2105 "WARN: slot not enabled for evaluate context command.\n"); 2106 ret = -EINVAL; 2107 break; 2108 case COMP_CONTEXT_STATE_ERROR: 2109 dev_warn(&udev->dev, 2110 "WARN: invalid context state for evaluate context command.\n"); 2111 ret = -EINVAL; 2112 break; 2113 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2114 dev_warn(&udev->dev, 2115 "ERROR: Incompatible device for evaluate context command.\n"); 2116 ret = -ENODEV; 2117 break; 2118 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2119 /* Max Exit Latency too large error */ 2120 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2121 ret = -EINVAL; 2122 break; 2123 case COMP_SUCCESS: 2124 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2125 "Successful evaluate context command"); 2126 ret = 0; 2127 break; 2128 default: 2129 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2130 *cmd_status); 2131 ret = -EINVAL; 2132 break; 2133 } 2134 return ret; 2135 } 2136 2137 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2138 struct xhci_input_control_ctx *ctrl_ctx) 2139 { 2140 u32 valid_add_flags; 2141 u32 valid_drop_flags; 2142 2143 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2144 * (bit 1). The default control endpoint is added during the Address 2145 * Device command and is never removed until the slot is disabled. 2146 */ 2147 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2148 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2149 2150 /* Use hweight32 to count the number of ones in the add flags, or 2151 * number of endpoints added. Don't count endpoints that are changed 2152 * (both added and dropped). 2153 */ 2154 return hweight32(valid_add_flags) - 2155 hweight32(valid_add_flags & valid_drop_flags); 2156 } 2157 2158 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2159 struct xhci_input_control_ctx *ctrl_ctx) 2160 { 2161 u32 valid_add_flags; 2162 u32 valid_drop_flags; 2163 2164 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2165 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2166 2167 return hweight32(valid_drop_flags) - 2168 hweight32(valid_add_flags & valid_drop_flags); 2169 } 2170 2171 /* 2172 * We need to reserve the new number of endpoints before the configure endpoint 2173 * command completes. We can't subtract the dropped endpoints from the number 2174 * of active endpoints until the command completes because we can oversubscribe 2175 * the host in this case: 2176 * 2177 * - the first configure endpoint command drops more endpoints than it adds 2178 * - a second configure endpoint command that adds more endpoints is queued 2179 * - the first configure endpoint command fails, so the config is unchanged 2180 * - the second command may succeed, even though there isn't enough resources 2181 * 2182 * Must be called with xhci->lock held. 2183 */ 2184 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2185 struct xhci_input_control_ctx *ctrl_ctx) 2186 { 2187 u32 added_eps; 2188 2189 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2190 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2191 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2192 "Not enough ep ctxs: " 2193 "%u active, need to add %u, limit is %u.", 2194 xhci->num_active_eps, added_eps, 2195 xhci->limit_active_eps); 2196 return -ENOMEM; 2197 } 2198 xhci->num_active_eps += added_eps; 2199 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2200 "Adding %u ep ctxs, %u now active.", added_eps, 2201 xhci->num_active_eps); 2202 return 0; 2203 } 2204 2205 /* 2206 * The configure endpoint was failed by the xHC for some other reason, so we 2207 * need to revert the resources that failed configuration would have used. 2208 * 2209 * Must be called with xhci->lock held. 2210 */ 2211 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2212 struct xhci_input_control_ctx *ctrl_ctx) 2213 { 2214 u32 num_failed_eps; 2215 2216 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2217 xhci->num_active_eps -= num_failed_eps; 2218 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2219 "Removing %u failed ep ctxs, %u now active.", 2220 num_failed_eps, 2221 xhci->num_active_eps); 2222 } 2223 2224 /* 2225 * Now that the command has completed, clean up the active endpoint count by 2226 * subtracting out the endpoints that were dropped (but not changed). 2227 * 2228 * Must be called with xhci->lock held. 2229 */ 2230 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2231 struct xhci_input_control_ctx *ctrl_ctx) 2232 { 2233 u32 num_dropped_eps; 2234 2235 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2236 xhci->num_active_eps -= num_dropped_eps; 2237 if (num_dropped_eps) 2238 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2239 "Removing %u dropped ep ctxs, %u now active.", 2240 num_dropped_eps, 2241 xhci->num_active_eps); 2242 } 2243 2244 static unsigned int xhci_get_block_size(struct usb_device *udev) 2245 { 2246 switch (udev->speed) { 2247 case USB_SPEED_LOW: 2248 case USB_SPEED_FULL: 2249 return FS_BLOCK; 2250 case USB_SPEED_HIGH: 2251 return HS_BLOCK; 2252 case USB_SPEED_SUPER: 2253 case USB_SPEED_SUPER_PLUS: 2254 return SS_BLOCK; 2255 case USB_SPEED_UNKNOWN: 2256 default: 2257 /* Should never happen */ 2258 return 1; 2259 } 2260 } 2261 2262 static unsigned int 2263 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2264 { 2265 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2266 return LS_OVERHEAD; 2267 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2268 return FS_OVERHEAD; 2269 return HS_OVERHEAD; 2270 } 2271 2272 /* If we are changing a LS/FS device under a HS hub, 2273 * make sure (if we are activating a new TT) that the HS bus has enough 2274 * bandwidth for this new TT. 2275 */ 2276 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2277 struct xhci_virt_device *virt_dev, 2278 int old_active_eps) 2279 { 2280 struct xhci_interval_bw_table *bw_table; 2281 struct xhci_tt_bw_info *tt_info; 2282 2283 /* Find the bandwidth table for the root port this TT is attached to. */ 2284 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table; 2285 tt_info = virt_dev->tt_info; 2286 /* If this TT already had active endpoints, the bandwidth for this TT 2287 * has already been added. Removing all periodic endpoints (and thus 2288 * making the TT enactive) will only decrease the bandwidth used. 2289 */ 2290 if (old_active_eps) 2291 return 0; 2292 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2293 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2294 return -ENOMEM; 2295 return 0; 2296 } 2297 /* Not sure why we would have no new active endpoints... 2298 * 2299 * Maybe because of an Evaluate Context change for a hub update or a 2300 * control endpoint 0 max packet size change? 2301 * FIXME: skip the bandwidth calculation in that case. 2302 */ 2303 return 0; 2304 } 2305 2306 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2307 struct xhci_virt_device *virt_dev) 2308 { 2309 unsigned int bw_reserved; 2310 2311 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2312 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2313 return -ENOMEM; 2314 2315 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2316 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2317 return -ENOMEM; 2318 2319 return 0; 2320 } 2321 2322 /* 2323 * This algorithm is a very conservative estimate of the worst-case scheduling 2324 * scenario for any one interval. The hardware dynamically schedules the 2325 * packets, so we can't tell which microframe could be the limiting factor in 2326 * the bandwidth scheduling. This only takes into account periodic endpoints. 2327 * 2328 * Obviously, we can't solve an NP complete problem to find the minimum worst 2329 * case scenario. Instead, we come up with an estimate that is no less than 2330 * the worst case bandwidth used for any one microframe, but may be an 2331 * over-estimate. 2332 * 2333 * We walk the requirements for each endpoint by interval, starting with the 2334 * smallest interval, and place packets in the schedule where there is only one 2335 * possible way to schedule packets for that interval. In order to simplify 2336 * this algorithm, we record the largest max packet size for each interval, and 2337 * assume all packets will be that size. 2338 * 2339 * For interval 0, we obviously must schedule all packets for each interval. 2340 * The bandwidth for interval 0 is just the amount of data to be transmitted 2341 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2342 * the number of packets). 2343 * 2344 * For interval 1, we have two possible microframes to schedule those packets 2345 * in. For this algorithm, if we can schedule the same number of packets for 2346 * each possible scheduling opportunity (each microframe), we will do so. The 2347 * remaining number of packets will be saved to be transmitted in the gaps in 2348 * the next interval's scheduling sequence. 2349 * 2350 * As we move those remaining packets to be scheduled with interval 2 packets, 2351 * we have to double the number of remaining packets to transmit. This is 2352 * because the intervals are actually powers of 2, and we would be transmitting 2353 * the previous interval's packets twice in this interval. We also have to be 2354 * sure that when we look at the largest max packet size for this interval, we 2355 * also look at the largest max packet size for the remaining packets and take 2356 * the greater of the two. 2357 * 2358 * The algorithm continues to evenly distribute packets in each scheduling 2359 * opportunity, and push the remaining packets out, until we get to the last 2360 * interval. Then those packets and their associated overhead are just added 2361 * to the bandwidth used. 2362 */ 2363 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2364 struct xhci_virt_device *virt_dev, 2365 int old_active_eps) 2366 { 2367 unsigned int bw_reserved; 2368 unsigned int max_bandwidth; 2369 unsigned int bw_used; 2370 unsigned int block_size; 2371 struct xhci_interval_bw_table *bw_table; 2372 unsigned int packet_size = 0; 2373 unsigned int overhead = 0; 2374 unsigned int packets_transmitted = 0; 2375 unsigned int packets_remaining = 0; 2376 unsigned int i; 2377 2378 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2379 return xhci_check_ss_bw(xhci, virt_dev); 2380 2381 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2382 max_bandwidth = HS_BW_LIMIT; 2383 /* Convert percent of bus BW reserved to blocks reserved */ 2384 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2385 } else { 2386 max_bandwidth = FS_BW_LIMIT; 2387 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2388 } 2389 2390 bw_table = virt_dev->bw_table; 2391 /* We need to translate the max packet size and max ESIT payloads into 2392 * the units the hardware uses. 2393 */ 2394 block_size = xhci_get_block_size(virt_dev->udev); 2395 2396 /* If we are manipulating a LS/FS device under a HS hub, double check 2397 * that the HS bus has enough bandwidth if we are activing a new TT. 2398 */ 2399 if (virt_dev->tt_info) { 2400 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2401 "Recalculating BW for rootport %u", 2402 virt_dev->rhub_port->hw_portnum + 1); 2403 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2404 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2405 "newly activated TT.\n"); 2406 return -ENOMEM; 2407 } 2408 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2409 "Recalculating BW for TT slot %u port %u", 2410 virt_dev->tt_info->slot_id, 2411 virt_dev->tt_info->ttport); 2412 } else { 2413 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2414 "Recalculating BW for rootport %u", 2415 virt_dev->rhub_port->hw_portnum + 1); 2416 } 2417 2418 /* Add in how much bandwidth will be used for interval zero, or the 2419 * rounded max ESIT payload + number of packets * largest overhead. 2420 */ 2421 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2422 bw_table->interval_bw[0].num_packets * 2423 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2424 2425 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2426 unsigned int bw_added; 2427 unsigned int largest_mps; 2428 unsigned int interval_overhead; 2429 2430 /* 2431 * How many packets could we transmit in this interval? 2432 * If packets didn't fit in the previous interval, we will need 2433 * to transmit that many packets twice within this interval. 2434 */ 2435 packets_remaining = 2 * packets_remaining + 2436 bw_table->interval_bw[i].num_packets; 2437 2438 /* Find the largest max packet size of this or the previous 2439 * interval. 2440 */ 2441 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2442 largest_mps = 0; 2443 else { 2444 struct xhci_virt_ep *virt_ep; 2445 struct list_head *ep_entry; 2446 2447 ep_entry = bw_table->interval_bw[i].endpoints.next; 2448 virt_ep = list_entry(ep_entry, 2449 struct xhci_virt_ep, bw_endpoint_list); 2450 /* Convert to blocks, rounding up */ 2451 largest_mps = DIV_ROUND_UP( 2452 virt_ep->bw_info.max_packet_size, 2453 block_size); 2454 } 2455 if (largest_mps > packet_size) 2456 packet_size = largest_mps; 2457 2458 /* Use the larger overhead of this or the previous interval. */ 2459 interval_overhead = xhci_get_largest_overhead( 2460 &bw_table->interval_bw[i]); 2461 if (interval_overhead > overhead) 2462 overhead = interval_overhead; 2463 2464 /* How many packets can we evenly distribute across 2465 * (1 << (i + 1)) possible scheduling opportunities? 2466 */ 2467 packets_transmitted = packets_remaining >> (i + 1); 2468 2469 /* Add in the bandwidth used for those scheduled packets */ 2470 bw_added = packets_transmitted * (overhead + packet_size); 2471 2472 /* How many packets do we have remaining to transmit? */ 2473 packets_remaining = packets_remaining % (1 << (i + 1)); 2474 2475 /* What largest max packet size should those packets have? */ 2476 /* If we've transmitted all packets, don't carry over the 2477 * largest packet size. 2478 */ 2479 if (packets_remaining == 0) { 2480 packet_size = 0; 2481 overhead = 0; 2482 } else if (packets_transmitted > 0) { 2483 /* Otherwise if we do have remaining packets, and we've 2484 * scheduled some packets in this interval, take the 2485 * largest max packet size from endpoints with this 2486 * interval. 2487 */ 2488 packet_size = largest_mps; 2489 overhead = interval_overhead; 2490 } 2491 /* Otherwise carry over packet_size and overhead from the last 2492 * time we had a remainder. 2493 */ 2494 bw_used += bw_added; 2495 if (bw_used > max_bandwidth) { 2496 xhci_warn(xhci, "Not enough bandwidth. " 2497 "Proposed: %u, Max: %u\n", 2498 bw_used, max_bandwidth); 2499 return -ENOMEM; 2500 } 2501 } 2502 /* 2503 * Ok, we know we have some packets left over after even-handedly 2504 * scheduling interval 15. We don't know which microframes they will 2505 * fit into, so we over-schedule and say they will be scheduled every 2506 * microframe. 2507 */ 2508 if (packets_remaining > 0) 2509 bw_used += overhead + packet_size; 2510 2511 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2512 /* OK, we're manipulating a HS device attached to a 2513 * root port bandwidth domain. Include the number of active TTs 2514 * in the bandwidth used. 2515 */ 2516 bw_used += TT_HS_OVERHEAD * 2517 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts; 2518 } 2519 2520 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2521 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2522 "Available: %u " "percent", 2523 bw_used, max_bandwidth, bw_reserved, 2524 (max_bandwidth - bw_used - bw_reserved) * 100 / 2525 max_bandwidth); 2526 2527 bw_used += bw_reserved; 2528 if (bw_used > max_bandwidth) { 2529 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2530 bw_used, max_bandwidth); 2531 return -ENOMEM; 2532 } 2533 2534 bw_table->bw_used = bw_used; 2535 return 0; 2536 } 2537 2538 static bool xhci_is_async_ep(unsigned int ep_type) 2539 { 2540 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2541 ep_type != ISOC_IN_EP && 2542 ep_type != INT_IN_EP); 2543 } 2544 2545 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2546 { 2547 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2548 } 2549 2550 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2551 { 2552 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2553 2554 if (ep_bw->ep_interval == 0) 2555 return SS_OVERHEAD_BURST + 2556 (ep_bw->mult * ep_bw->num_packets * 2557 (SS_OVERHEAD + mps)); 2558 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2559 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2560 1 << ep_bw->ep_interval); 2561 2562 } 2563 2564 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2565 struct xhci_bw_info *ep_bw, 2566 struct xhci_interval_bw_table *bw_table, 2567 struct usb_device *udev, 2568 struct xhci_virt_ep *virt_ep, 2569 struct xhci_tt_bw_info *tt_info) 2570 { 2571 struct xhci_interval_bw *interval_bw; 2572 int normalized_interval; 2573 2574 if (xhci_is_async_ep(ep_bw->type)) 2575 return; 2576 2577 if (udev->speed >= USB_SPEED_SUPER) { 2578 if (xhci_is_sync_in_ep(ep_bw->type)) 2579 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2580 xhci_get_ss_bw_consumed(ep_bw); 2581 else 2582 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2583 xhci_get_ss_bw_consumed(ep_bw); 2584 return; 2585 } 2586 2587 /* SuperSpeed endpoints never get added to intervals in the table, so 2588 * this check is only valid for HS/FS/LS devices. 2589 */ 2590 if (list_empty(&virt_ep->bw_endpoint_list)) 2591 return; 2592 /* For LS/FS devices, we need to translate the interval expressed in 2593 * microframes to frames. 2594 */ 2595 if (udev->speed == USB_SPEED_HIGH) 2596 normalized_interval = ep_bw->ep_interval; 2597 else 2598 normalized_interval = ep_bw->ep_interval - 3; 2599 2600 if (normalized_interval == 0) 2601 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2602 interval_bw = &bw_table->interval_bw[normalized_interval]; 2603 interval_bw->num_packets -= ep_bw->num_packets; 2604 switch (udev->speed) { 2605 case USB_SPEED_LOW: 2606 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2607 break; 2608 case USB_SPEED_FULL: 2609 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2610 break; 2611 case USB_SPEED_HIGH: 2612 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2613 break; 2614 default: 2615 /* Should never happen because only LS/FS/HS endpoints will get 2616 * added to the endpoint list. 2617 */ 2618 return; 2619 } 2620 if (tt_info) 2621 tt_info->active_eps -= 1; 2622 list_del_init(&virt_ep->bw_endpoint_list); 2623 } 2624 2625 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2626 struct xhci_bw_info *ep_bw, 2627 struct xhci_interval_bw_table *bw_table, 2628 struct usb_device *udev, 2629 struct xhci_virt_ep *virt_ep, 2630 struct xhci_tt_bw_info *tt_info) 2631 { 2632 struct xhci_interval_bw *interval_bw; 2633 struct xhci_virt_ep *smaller_ep; 2634 int normalized_interval; 2635 2636 if (xhci_is_async_ep(ep_bw->type)) 2637 return; 2638 2639 if (udev->speed == USB_SPEED_SUPER) { 2640 if (xhci_is_sync_in_ep(ep_bw->type)) 2641 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2642 xhci_get_ss_bw_consumed(ep_bw); 2643 else 2644 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2645 xhci_get_ss_bw_consumed(ep_bw); 2646 return; 2647 } 2648 2649 /* For LS/FS devices, we need to translate the interval expressed in 2650 * microframes to frames. 2651 */ 2652 if (udev->speed == USB_SPEED_HIGH) 2653 normalized_interval = ep_bw->ep_interval; 2654 else 2655 normalized_interval = ep_bw->ep_interval - 3; 2656 2657 if (normalized_interval == 0) 2658 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2659 interval_bw = &bw_table->interval_bw[normalized_interval]; 2660 interval_bw->num_packets += ep_bw->num_packets; 2661 switch (udev->speed) { 2662 case USB_SPEED_LOW: 2663 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2664 break; 2665 case USB_SPEED_FULL: 2666 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2667 break; 2668 case USB_SPEED_HIGH: 2669 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2670 break; 2671 default: 2672 /* Should never happen because only LS/FS/HS endpoints will get 2673 * added to the endpoint list. 2674 */ 2675 return; 2676 } 2677 2678 if (tt_info) 2679 tt_info->active_eps += 1; 2680 /* Insert the endpoint into the list, largest max packet size first. */ 2681 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2682 bw_endpoint_list) { 2683 if (ep_bw->max_packet_size >= 2684 smaller_ep->bw_info.max_packet_size) { 2685 /* Add the new ep before the smaller endpoint */ 2686 list_add_tail(&virt_ep->bw_endpoint_list, 2687 &smaller_ep->bw_endpoint_list); 2688 return; 2689 } 2690 } 2691 /* Add the new endpoint at the end of the list. */ 2692 list_add_tail(&virt_ep->bw_endpoint_list, 2693 &interval_bw->endpoints); 2694 } 2695 2696 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2697 struct xhci_virt_device *virt_dev, 2698 int old_active_eps) 2699 { 2700 struct xhci_root_port_bw_info *rh_bw_info; 2701 if (!virt_dev->tt_info) 2702 return; 2703 2704 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum]; 2705 if (old_active_eps == 0 && 2706 virt_dev->tt_info->active_eps != 0) { 2707 rh_bw_info->num_active_tts += 1; 2708 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2709 } else if (old_active_eps != 0 && 2710 virt_dev->tt_info->active_eps == 0) { 2711 rh_bw_info->num_active_tts -= 1; 2712 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2713 } 2714 } 2715 2716 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2717 struct xhci_virt_device *virt_dev, 2718 struct xhci_container_ctx *in_ctx) 2719 { 2720 struct xhci_bw_info ep_bw_info[31]; 2721 int i; 2722 struct xhci_input_control_ctx *ctrl_ctx; 2723 int old_active_eps = 0; 2724 2725 if (virt_dev->tt_info) 2726 old_active_eps = virt_dev->tt_info->active_eps; 2727 2728 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2729 if (!ctrl_ctx) { 2730 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2731 __func__); 2732 return -ENOMEM; 2733 } 2734 2735 for (i = 0; i < 31; i++) { 2736 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2737 continue; 2738 2739 /* Make a copy of the BW info in case we need to revert this */ 2740 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2741 sizeof(ep_bw_info[i])); 2742 /* Drop the endpoint from the interval table if the endpoint is 2743 * being dropped or changed. 2744 */ 2745 if (EP_IS_DROPPED(ctrl_ctx, i)) 2746 xhci_drop_ep_from_interval_table(xhci, 2747 &virt_dev->eps[i].bw_info, 2748 virt_dev->bw_table, 2749 virt_dev->udev, 2750 &virt_dev->eps[i], 2751 virt_dev->tt_info); 2752 } 2753 /* Overwrite the information stored in the endpoints' bw_info */ 2754 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2755 for (i = 0; i < 31; i++) { 2756 /* Add any changed or added endpoints to the interval table */ 2757 if (EP_IS_ADDED(ctrl_ctx, i)) 2758 xhci_add_ep_to_interval_table(xhci, 2759 &virt_dev->eps[i].bw_info, 2760 virt_dev->bw_table, 2761 virt_dev->udev, 2762 &virt_dev->eps[i], 2763 virt_dev->tt_info); 2764 } 2765 2766 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2767 /* Ok, this fits in the bandwidth we have. 2768 * Update the number of active TTs. 2769 */ 2770 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2771 return 0; 2772 } 2773 2774 /* We don't have enough bandwidth for this, revert the stored info. */ 2775 for (i = 0; i < 31; i++) { 2776 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2777 continue; 2778 2779 /* Drop the new copies of any added or changed endpoints from 2780 * the interval table. 2781 */ 2782 if (EP_IS_ADDED(ctrl_ctx, i)) { 2783 xhci_drop_ep_from_interval_table(xhci, 2784 &virt_dev->eps[i].bw_info, 2785 virt_dev->bw_table, 2786 virt_dev->udev, 2787 &virt_dev->eps[i], 2788 virt_dev->tt_info); 2789 } 2790 /* Revert the endpoint back to its old information */ 2791 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2792 sizeof(ep_bw_info[i])); 2793 /* Add any changed or dropped endpoints back into the table */ 2794 if (EP_IS_DROPPED(ctrl_ctx, i)) 2795 xhci_add_ep_to_interval_table(xhci, 2796 &virt_dev->eps[i].bw_info, 2797 virt_dev->bw_table, 2798 virt_dev->udev, 2799 &virt_dev->eps[i], 2800 virt_dev->tt_info); 2801 } 2802 return -ENOMEM; 2803 } 2804 2805 /* 2806 * Synchronous XHCI stop endpoint helper. Issues the stop endpoint command and 2807 * waits for the command completion before returning. This does not call 2808 * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error' 2809 * cases, along with transfer ring cleanup. 2810 * 2811 * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage 2812 * their own transfer ring, such as offload situations. 2813 */ 2814 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend, 2815 gfp_t gfp_flags) 2816 { 2817 struct xhci_command *command; 2818 unsigned long flags; 2819 int ret; 2820 2821 command = xhci_alloc_command(xhci, true, gfp_flags); 2822 if (!command) 2823 return -ENOMEM; 2824 2825 spin_lock_irqsave(&xhci->lock, flags); 2826 ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id, 2827 ep->ep_index, suspend); 2828 if (ret < 0) { 2829 spin_unlock_irqrestore(&xhci->lock, flags); 2830 goto out; 2831 } 2832 2833 xhci_ring_cmd_db(xhci); 2834 spin_unlock_irqrestore(&xhci->lock, flags); 2835 2836 wait_for_completion(command->completion); 2837 2838 /* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/ 2839 if (command->status == COMP_COMMAND_ABORTED || 2840 command->status == COMP_COMMAND_RING_STOPPED) { 2841 xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n"); 2842 ret = -ETIME; 2843 } 2844 out: 2845 xhci_free_command(xhci, command); 2846 2847 return ret; 2848 } 2849 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync); 2850 2851 /* Issue a configure endpoint command or evaluate context command 2852 * and wait for it to finish. 2853 */ 2854 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2855 struct usb_device *udev, 2856 struct xhci_command *command, 2857 bool ctx_change, bool must_succeed) 2858 { 2859 int ret; 2860 unsigned long flags; 2861 struct xhci_input_control_ctx *ctrl_ctx; 2862 struct xhci_virt_device *virt_dev; 2863 struct xhci_slot_ctx *slot_ctx; 2864 2865 if (!command) 2866 return -EINVAL; 2867 2868 spin_lock_irqsave(&xhci->lock, flags); 2869 2870 if (xhci->xhc_state & XHCI_STATE_DYING) { 2871 spin_unlock_irqrestore(&xhci->lock, flags); 2872 return -ESHUTDOWN; 2873 } 2874 2875 virt_dev = xhci->devs[udev->slot_id]; 2876 2877 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2878 if (!ctrl_ctx) { 2879 spin_unlock_irqrestore(&xhci->lock, flags); 2880 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2881 __func__); 2882 return -ENOMEM; 2883 } 2884 2885 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2886 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2887 spin_unlock_irqrestore(&xhci->lock, flags); 2888 xhci_warn(xhci, "Not enough host resources, " 2889 "active endpoint contexts = %u\n", 2890 xhci->num_active_eps); 2891 return -ENOMEM; 2892 } 2893 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change && 2894 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2895 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2896 xhci_free_host_resources(xhci, ctrl_ctx); 2897 spin_unlock_irqrestore(&xhci->lock, flags); 2898 xhci_warn(xhci, "Not enough bandwidth\n"); 2899 return -ENOMEM; 2900 } 2901 2902 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2903 2904 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2905 trace_xhci_configure_endpoint(slot_ctx); 2906 2907 if (!ctx_change) 2908 ret = xhci_queue_configure_endpoint(xhci, command, 2909 command->in_ctx->dma, 2910 udev->slot_id, must_succeed); 2911 else 2912 ret = xhci_queue_evaluate_context(xhci, command, 2913 command->in_ctx->dma, 2914 udev->slot_id, must_succeed); 2915 if (ret < 0) { 2916 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2917 xhci_free_host_resources(xhci, ctrl_ctx); 2918 spin_unlock_irqrestore(&xhci->lock, flags); 2919 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2920 "FIXME allocate a new ring segment"); 2921 return -ENOMEM; 2922 } 2923 xhci_ring_cmd_db(xhci); 2924 spin_unlock_irqrestore(&xhci->lock, flags); 2925 2926 /* Wait for the configure endpoint command to complete */ 2927 wait_for_completion(command->completion); 2928 2929 if (!ctx_change) 2930 ret = xhci_configure_endpoint_result(xhci, udev, 2931 &command->status); 2932 else 2933 ret = xhci_evaluate_context_result(xhci, udev, 2934 &command->status); 2935 2936 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2937 spin_lock_irqsave(&xhci->lock, flags); 2938 /* If the command failed, remove the reserved resources. 2939 * Otherwise, clean up the estimate to include dropped eps. 2940 */ 2941 if (ret) 2942 xhci_free_host_resources(xhci, ctrl_ctx); 2943 else 2944 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2945 spin_unlock_irqrestore(&xhci->lock, flags); 2946 } 2947 return ret; 2948 } 2949 2950 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2951 struct xhci_virt_device *vdev, int i) 2952 { 2953 struct xhci_virt_ep *ep = &vdev->eps[i]; 2954 2955 if (ep->ep_state & EP_HAS_STREAMS) { 2956 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2957 xhci_get_endpoint_address(i)); 2958 xhci_free_stream_info(xhci, ep->stream_info); 2959 ep->stream_info = NULL; 2960 ep->ep_state &= ~EP_HAS_STREAMS; 2961 } 2962 } 2963 2964 /* Called after one or more calls to xhci_add_endpoint() or 2965 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2966 * to call xhci_reset_bandwidth(). 2967 * 2968 * Since we are in the middle of changing either configuration or 2969 * installing a new alt setting, the USB core won't allow URBs to be 2970 * enqueued for any endpoint on the old config or interface. Nothing 2971 * else should be touching the xhci->devs[slot_id] structure, so we 2972 * don't need to take the xhci->lock for manipulating that. 2973 */ 2974 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2975 { 2976 int i; 2977 int ret = 0; 2978 struct xhci_hcd *xhci; 2979 struct xhci_virt_device *virt_dev; 2980 struct xhci_input_control_ctx *ctrl_ctx; 2981 struct xhci_slot_ctx *slot_ctx; 2982 struct xhci_command *command; 2983 2984 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2985 if (ret <= 0) 2986 return ret; 2987 xhci = hcd_to_xhci(hcd); 2988 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2989 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2990 return -ENODEV; 2991 2992 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2993 virt_dev = xhci->devs[udev->slot_id]; 2994 2995 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2996 if (!command) 2997 return -ENOMEM; 2998 2999 command->in_ctx = virt_dev->in_ctx; 3000 3001 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3002 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3003 if (!ctrl_ctx) { 3004 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3005 __func__); 3006 ret = -ENOMEM; 3007 goto command_cleanup; 3008 } 3009 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3010 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3011 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3012 3013 /* Don't issue the command if there's no endpoints to update. */ 3014 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3015 ctrl_ctx->drop_flags == 0) { 3016 ret = 0; 3017 goto command_cleanup; 3018 } 3019 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3020 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3021 for (i = 31; i >= 1; i--) { 3022 __le32 le32 = cpu_to_le32(BIT(i)); 3023 3024 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3025 || (ctrl_ctx->add_flags & le32) || i == 1) { 3026 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3027 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3028 break; 3029 } 3030 } 3031 3032 ret = xhci_configure_endpoint(xhci, udev, command, 3033 false, false); 3034 if (ret) 3035 /* Callee should call reset_bandwidth() */ 3036 goto command_cleanup; 3037 3038 /* Free any rings that were dropped, but not changed. */ 3039 for (i = 1; i < 31; i++) { 3040 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3041 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3042 xhci_free_endpoint_ring(xhci, virt_dev, i); 3043 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3044 } 3045 } 3046 xhci_zero_in_ctx(xhci, virt_dev); 3047 /* 3048 * Install any rings for completely new endpoints or changed endpoints, 3049 * and free any old rings from changed endpoints. 3050 */ 3051 for (i = 1; i < 31; i++) { 3052 if (!virt_dev->eps[i].new_ring) 3053 continue; 3054 /* Only free the old ring if it exists. 3055 * It may not if this is the first add of an endpoint. 3056 */ 3057 if (virt_dev->eps[i].ring) { 3058 xhci_free_endpoint_ring(xhci, virt_dev, i); 3059 } 3060 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3061 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3062 virt_dev->eps[i].new_ring = NULL; 3063 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3064 } 3065 command_cleanup: 3066 kfree(command->completion); 3067 kfree(command); 3068 3069 return ret; 3070 } 3071 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3072 3073 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3074 { 3075 struct xhci_hcd *xhci; 3076 struct xhci_virt_device *virt_dev; 3077 int i, ret; 3078 3079 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3080 if (ret <= 0) 3081 return; 3082 xhci = hcd_to_xhci(hcd); 3083 3084 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3085 virt_dev = xhci->devs[udev->slot_id]; 3086 /* Free any rings allocated for added endpoints */ 3087 for (i = 0; i < 31; i++) { 3088 if (virt_dev->eps[i].new_ring) { 3089 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3090 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3091 virt_dev->eps[i].new_ring = NULL; 3092 } 3093 } 3094 xhci_zero_in_ctx(xhci, virt_dev); 3095 } 3096 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3097 3098 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3099 struct xhci_container_ctx *in_ctx, 3100 struct xhci_container_ctx *out_ctx, 3101 struct xhci_input_control_ctx *ctrl_ctx, 3102 u32 add_flags, u32 drop_flags) 3103 { 3104 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3105 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3106 xhci_slot_copy(xhci, in_ctx, out_ctx); 3107 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3108 } 3109 3110 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3111 struct usb_host_endpoint *host_ep) 3112 { 3113 struct xhci_hcd *xhci; 3114 struct xhci_virt_device *vdev; 3115 struct xhci_virt_ep *ep; 3116 struct usb_device *udev; 3117 unsigned long flags; 3118 unsigned int ep_index; 3119 3120 xhci = hcd_to_xhci(hcd); 3121 rescan: 3122 spin_lock_irqsave(&xhci->lock, flags); 3123 3124 udev = (struct usb_device *)host_ep->hcpriv; 3125 if (!udev || !udev->slot_id) 3126 goto done; 3127 3128 vdev = xhci->devs[udev->slot_id]; 3129 if (!vdev) 3130 goto done; 3131 3132 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3133 ep = &vdev->eps[ep_index]; 3134 3135 /* wait for hub_tt_work to finish clearing hub TT */ 3136 if (ep->ep_state & EP_CLEARING_TT) { 3137 spin_unlock_irqrestore(&xhci->lock, flags); 3138 schedule_timeout_uninterruptible(1); 3139 goto rescan; 3140 } 3141 3142 if (ep->ep_state) 3143 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3144 ep->ep_state); 3145 done: 3146 host_ep->hcpriv = NULL; 3147 spin_unlock_irqrestore(&xhci->lock, flags); 3148 } 3149 3150 /* 3151 * Called after usb core issues a clear halt control message. 3152 * The host side of the halt should already be cleared by a reset endpoint 3153 * command issued when the STALL event was received. 3154 * 3155 * The reset endpoint command may only be issued to endpoints in the halted 3156 * state. For software that wishes to reset the data toggle or sequence number 3157 * of an endpoint that isn't in the halted state this function will issue a 3158 * configure endpoint command with the Drop and Add bits set for the target 3159 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3160 * 3161 * vdev may be lost due to xHC restore error and re-initialization during S3/S4 3162 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device() 3163 */ 3164 3165 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3166 struct usb_host_endpoint *host_ep) 3167 { 3168 struct xhci_hcd *xhci; 3169 struct usb_device *udev; 3170 struct xhci_virt_device *vdev; 3171 struct xhci_virt_ep *ep; 3172 struct xhci_input_control_ctx *ctrl_ctx; 3173 struct xhci_command *stop_cmd, *cfg_cmd; 3174 unsigned int ep_index; 3175 unsigned long flags; 3176 u32 ep_flag; 3177 int err; 3178 3179 xhci = hcd_to_xhci(hcd); 3180 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3181 3182 /* 3183 * Usb core assumes a max packet value for ep0 on FS devices until the 3184 * real value is read from the descriptor. Core resets Ep0 if values 3185 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case 3186 */ 3187 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) { 3188 3189 udev = container_of(host_ep, struct usb_device, ep0); 3190 if (udev->speed != USB_SPEED_FULL || !udev->slot_id) 3191 return; 3192 3193 vdev = xhci->devs[udev->slot_id]; 3194 if (!vdev || vdev->udev != udev) 3195 return; 3196 3197 xhci_check_ep0_maxpacket(xhci, vdev); 3198 3199 /* Nothing else should be done here for ep0 during ep reset */ 3200 return; 3201 } 3202 3203 if (!host_ep->hcpriv) 3204 return; 3205 udev = (struct usb_device *) host_ep->hcpriv; 3206 vdev = xhci->devs[udev->slot_id]; 3207 3208 if (!udev->slot_id || !vdev) 3209 return; 3210 3211 ep = &vdev->eps[ep_index]; 3212 3213 spin_lock_irqsave(&xhci->lock, flags); 3214 3215 ep->ep_state &= ~EP_STALLED; 3216 3217 /* Bail out if toggle is already being cleared by a endpoint reset */ 3218 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3219 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3220 spin_unlock_irqrestore(&xhci->lock, flags); 3221 return; 3222 } 3223 spin_unlock_irqrestore(&xhci->lock, flags); 3224 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3225 if (usb_endpoint_xfer_control(&host_ep->desc) || 3226 usb_endpoint_xfer_isoc(&host_ep->desc)) 3227 return; 3228 3229 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3230 3231 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3232 return; 3233 3234 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3235 if (!stop_cmd) 3236 return; 3237 3238 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3239 if (!cfg_cmd) 3240 goto cleanup; 3241 3242 spin_lock_irqsave(&xhci->lock, flags); 3243 3244 /* block queuing new trbs and ringing ep doorbell */ 3245 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3246 3247 /* 3248 * Make sure endpoint ring is empty before resetting the toggle/seq. 3249 * Driver is required to synchronously cancel all transfer request. 3250 * Stop the endpoint to force xHC to update the output context 3251 */ 3252 3253 if (!list_empty(&ep->ring->td_list)) { 3254 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3255 spin_unlock_irqrestore(&xhci->lock, flags); 3256 xhci_free_command(xhci, cfg_cmd); 3257 goto cleanup; 3258 } 3259 3260 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3261 ep_index, 0); 3262 if (err < 0) { 3263 spin_unlock_irqrestore(&xhci->lock, flags); 3264 xhci_free_command(xhci, cfg_cmd); 3265 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3266 __func__, err); 3267 goto cleanup; 3268 } 3269 3270 xhci_ring_cmd_db(xhci); 3271 spin_unlock_irqrestore(&xhci->lock, flags); 3272 3273 wait_for_completion(stop_cmd->completion); 3274 3275 spin_lock_irqsave(&xhci->lock, flags); 3276 3277 /* config ep command clears toggle if add and drop ep flags are set */ 3278 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3279 if (!ctrl_ctx) { 3280 spin_unlock_irqrestore(&xhci->lock, flags); 3281 xhci_free_command(xhci, cfg_cmd); 3282 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3283 __func__); 3284 goto cleanup; 3285 } 3286 3287 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3288 ctrl_ctx, ep_flag, ep_flag); 3289 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3290 3291 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3292 udev->slot_id, false); 3293 if (err < 0) { 3294 spin_unlock_irqrestore(&xhci->lock, flags); 3295 xhci_free_command(xhci, cfg_cmd); 3296 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3297 __func__, err); 3298 goto cleanup; 3299 } 3300 3301 xhci_ring_cmd_db(xhci); 3302 spin_unlock_irqrestore(&xhci->lock, flags); 3303 3304 wait_for_completion(cfg_cmd->completion); 3305 3306 xhci_free_command(xhci, cfg_cmd); 3307 cleanup: 3308 xhci_free_command(xhci, stop_cmd); 3309 spin_lock_irqsave(&xhci->lock, flags); 3310 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3311 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3312 spin_unlock_irqrestore(&xhci->lock, flags); 3313 } 3314 3315 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3316 struct usb_device *udev, struct usb_host_endpoint *ep, 3317 unsigned int slot_id) 3318 { 3319 int ret; 3320 unsigned int ep_index; 3321 unsigned int ep_state; 3322 3323 if (!ep) 3324 return -EINVAL; 3325 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3326 if (ret <= 0) 3327 return ret ? ret : -EINVAL; 3328 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3329 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3330 " descriptor for ep 0x%x does not support streams\n", 3331 ep->desc.bEndpointAddress); 3332 return -EINVAL; 3333 } 3334 3335 ep_index = xhci_get_endpoint_index(&ep->desc); 3336 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3337 if (ep_state & EP_HAS_STREAMS || 3338 ep_state & EP_GETTING_STREAMS) { 3339 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3340 "already has streams set up.\n", 3341 ep->desc.bEndpointAddress); 3342 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3343 "dynamic stream context array reallocation.\n"); 3344 return -EINVAL; 3345 } 3346 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3347 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3348 "endpoint 0x%x; URBs are pending.\n", 3349 ep->desc.bEndpointAddress); 3350 return -EINVAL; 3351 } 3352 return 0; 3353 } 3354 3355 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3356 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3357 { 3358 unsigned int max_streams; 3359 3360 /* The stream context array size must be a power of two */ 3361 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3362 /* 3363 * Find out how many primary stream array entries the host controller 3364 * supports. Later we may use secondary stream arrays (similar to 2nd 3365 * level page entries), but that's an optional feature for xHCI host 3366 * controllers. xHCs must support at least 4 stream IDs. 3367 */ 3368 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3369 if (*num_stream_ctxs > max_streams) { 3370 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3371 max_streams); 3372 *num_stream_ctxs = max_streams; 3373 *num_streams = max_streams; 3374 } 3375 } 3376 3377 /* Returns an error code if one of the endpoint already has streams. 3378 * This does not change any data structures, it only checks and gathers 3379 * information. 3380 */ 3381 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3382 struct usb_device *udev, 3383 struct usb_host_endpoint **eps, unsigned int num_eps, 3384 unsigned int *num_streams, u32 *changed_ep_bitmask) 3385 { 3386 unsigned int max_streams; 3387 unsigned int endpoint_flag; 3388 int i; 3389 int ret; 3390 3391 for (i = 0; i < num_eps; i++) { 3392 ret = xhci_check_streams_endpoint(xhci, udev, 3393 eps[i], udev->slot_id); 3394 if (ret < 0) 3395 return ret; 3396 3397 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3398 if (max_streams < (*num_streams - 1)) { 3399 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3400 eps[i]->desc.bEndpointAddress, 3401 max_streams); 3402 *num_streams = max_streams+1; 3403 } 3404 3405 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3406 if (*changed_ep_bitmask & endpoint_flag) 3407 return -EINVAL; 3408 *changed_ep_bitmask |= endpoint_flag; 3409 } 3410 return 0; 3411 } 3412 3413 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3414 struct usb_device *udev, 3415 struct usb_host_endpoint **eps, unsigned int num_eps) 3416 { 3417 u32 changed_ep_bitmask = 0; 3418 unsigned int slot_id; 3419 unsigned int ep_index; 3420 unsigned int ep_state; 3421 int i; 3422 3423 slot_id = udev->slot_id; 3424 if (!xhci->devs[slot_id]) 3425 return 0; 3426 3427 for (i = 0; i < num_eps; i++) { 3428 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3429 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3430 /* Are streams already being freed for the endpoint? */ 3431 if (ep_state & EP_GETTING_NO_STREAMS) { 3432 xhci_warn(xhci, "WARN Can't disable streams for " 3433 "endpoint 0x%x, " 3434 "streams are being disabled already\n", 3435 eps[i]->desc.bEndpointAddress); 3436 return 0; 3437 } 3438 /* Are there actually any streams to free? */ 3439 if (!(ep_state & EP_HAS_STREAMS) && 3440 !(ep_state & EP_GETTING_STREAMS)) { 3441 xhci_warn(xhci, "WARN Can't disable streams for " 3442 "endpoint 0x%x, " 3443 "streams are already disabled!\n", 3444 eps[i]->desc.bEndpointAddress); 3445 xhci_warn(xhci, "WARN xhci_free_streams() called " 3446 "with non-streams endpoint\n"); 3447 return 0; 3448 } 3449 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3450 } 3451 return changed_ep_bitmask; 3452 } 3453 3454 /* 3455 * The USB device drivers use this function (through the HCD interface in USB 3456 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3457 * coordinate mass storage command queueing across multiple endpoints (basically 3458 * a stream ID == a task ID). 3459 * 3460 * Setting up streams involves allocating the same size stream context array 3461 * for each endpoint and issuing a configure endpoint command for all endpoints. 3462 * 3463 * Don't allow the call to succeed if one endpoint only supports one stream 3464 * (which means it doesn't support streams at all). 3465 * 3466 * Drivers may get less stream IDs than they asked for, if the host controller 3467 * hardware or endpoints claim they can't support the number of requested 3468 * stream IDs. 3469 */ 3470 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3471 struct usb_host_endpoint **eps, unsigned int num_eps, 3472 unsigned int num_streams, gfp_t mem_flags) 3473 { 3474 int i, ret; 3475 struct xhci_hcd *xhci; 3476 struct xhci_virt_device *vdev; 3477 struct xhci_command *config_cmd; 3478 struct xhci_input_control_ctx *ctrl_ctx; 3479 unsigned int ep_index; 3480 unsigned int num_stream_ctxs; 3481 unsigned int max_packet; 3482 unsigned long flags; 3483 u32 changed_ep_bitmask = 0; 3484 3485 if (!eps) 3486 return -EINVAL; 3487 3488 /* Add one to the number of streams requested to account for 3489 * stream 0 that is reserved for xHCI usage. 3490 */ 3491 num_streams += 1; 3492 xhci = hcd_to_xhci(hcd); 3493 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3494 num_streams); 3495 3496 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3497 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3498 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3499 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3500 return -ENOSYS; 3501 } 3502 3503 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3504 if (!config_cmd) 3505 return -ENOMEM; 3506 3507 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3508 if (!ctrl_ctx) { 3509 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3510 __func__); 3511 xhci_free_command(xhci, config_cmd); 3512 return -ENOMEM; 3513 } 3514 3515 /* Check to make sure all endpoints are not already configured for 3516 * streams. While we're at it, find the maximum number of streams that 3517 * all the endpoints will support and check for duplicate endpoints. 3518 */ 3519 spin_lock_irqsave(&xhci->lock, flags); 3520 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3521 num_eps, &num_streams, &changed_ep_bitmask); 3522 if (ret < 0) { 3523 xhci_free_command(xhci, config_cmd); 3524 spin_unlock_irqrestore(&xhci->lock, flags); 3525 return ret; 3526 } 3527 if (num_streams <= 1) { 3528 xhci_warn(xhci, "WARN: endpoints can't handle " 3529 "more than one stream.\n"); 3530 xhci_free_command(xhci, config_cmd); 3531 spin_unlock_irqrestore(&xhci->lock, flags); 3532 return -EINVAL; 3533 } 3534 vdev = xhci->devs[udev->slot_id]; 3535 /* Mark each endpoint as being in transition, so 3536 * xhci_urb_enqueue() will reject all URBs. 3537 */ 3538 for (i = 0; i < num_eps; i++) { 3539 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3540 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3541 } 3542 spin_unlock_irqrestore(&xhci->lock, flags); 3543 3544 /* Setup internal data structures and allocate HW data structures for 3545 * streams (but don't install the HW structures in the input context 3546 * until we're sure all memory allocation succeeded). 3547 */ 3548 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3549 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3550 num_stream_ctxs, num_streams); 3551 3552 for (i = 0; i < num_eps; i++) { 3553 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3554 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3555 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3556 num_stream_ctxs, 3557 num_streams, 3558 max_packet, mem_flags); 3559 if (!vdev->eps[ep_index].stream_info) 3560 goto cleanup; 3561 /* Set maxPstreams in endpoint context and update deq ptr to 3562 * point to stream context array. FIXME 3563 */ 3564 } 3565 3566 /* Set up the input context for a configure endpoint command. */ 3567 for (i = 0; i < num_eps; i++) { 3568 struct xhci_ep_ctx *ep_ctx; 3569 3570 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3571 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3572 3573 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3574 vdev->out_ctx, ep_index); 3575 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3576 vdev->eps[ep_index].stream_info); 3577 } 3578 /* Tell the HW to drop its old copy of the endpoint context info 3579 * and add the updated copy from the input context. 3580 */ 3581 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3582 vdev->out_ctx, ctrl_ctx, 3583 changed_ep_bitmask, changed_ep_bitmask); 3584 3585 /* Issue and wait for the configure endpoint command */ 3586 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3587 false, false); 3588 3589 /* xHC rejected the configure endpoint command for some reason, so we 3590 * leave the old ring intact and free our internal streams data 3591 * structure. 3592 */ 3593 if (ret < 0) 3594 goto cleanup; 3595 3596 spin_lock_irqsave(&xhci->lock, flags); 3597 for (i = 0; i < num_eps; i++) { 3598 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3599 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3600 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3601 udev->slot_id, ep_index); 3602 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3603 } 3604 xhci_free_command(xhci, config_cmd); 3605 spin_unlock_irqrestore(&xhci->lock, flags); 3606 3607 for (i = 0; i < num_eps; i++) { 3608 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3609 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3610 } 3611 /* Subtract 1 for stream 0, which drivers can't use */ 3612 return num_streams - 1; 3613 3614 cleanup: 3615 /* If it didn't work, free the streams! */ 3616 for (i = 0; i < num_eps; i++) { 3617 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3618 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3619 vdev->eps[ep_index].stream_info = NULL; 3620 /* FIXME Unset maxPstreams in endpoint context and 3621 * update deq ptr to point to normal string ring. 3622 */ 3623 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3624 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3625 xhci_endpoint_zero(xhci, vdev, eps[i]); 3626 } 3627 xhci_free_command(xhci, config_cmd); 3628 return -ENOMEM; 3629 } 3630 3631 /* Transition the endpoint from using streams to being a "normal" endpoint 3632 * without streams. 3633 * 3634 * Modify the endpoint context state, submit a configure endpoint command, 3635 * and free all endpoint rings for streams if that completes successfully. 3636 */ 3637 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3638 struct usb_host_endpoint **eps, unsigned int num_eps, 3639 gfp_t mem_flags) 3640 { 3641 int i, ret; 3642 struct xhci_hcd *xhci; 3643 struct xhci_virt_device *vdev; 3644 struct xhci_command *command; 3645 struct xhci_input_control_ctx *ctrl_ctx; 3646 unsigned int ep_index; 3647 unsigned long flags; 3648 u32 changed_ep_bitmask; 3649 3650 xhci = hcd_to_xhci(hcd); 3651 vdev = xhci->devs[udev->slot_id]; 3652 3653 /* Set up a configure endpoint command to remove the streams rings */ 3654 spin_lock_irqsave(&xhci->lock, flags); 3655 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3656 udev, eps, num_eps); 3657 if (changed_ep_bitmask == 0) { 3658 spin_unlock_irqrestore(&xhci->lock, flags); 3659 return -EINVAL; 3660 } 3661 3662 /* Use the xhci_command structure from the first endpoint. We may have 3663 * allocated too many, but the driver may call xhci_free_streams() for 3664 * each endpoint it grouped into one call to xhci_alloc_streams(). 3665 */ 3666 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3667 command = vdev->eps[ep_index].stream_info->free_streams_command; 3668 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3669 if (!ctrl_ctx) { 3670 spin_unlock_irqrestore(&xhci->lock, flags); 3671 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3672 __func__); 3673 return -EINVAL; 3674 } 3675 3676 for (i = 0; i < num_eps; i++) { 3677 struct xhci_ep_ctx *ep_ctx; 3678 3679 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3680 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3681 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3682 EP_GETTING_NO_STREAMS; 3683 3684 xhci_endpoint_copy(xhci, command->in_ctx, 3685 vdev->out_ctx, ep_index); 3686 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3687 &vdev->eps[ep_index]); 3688 } 3689 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3690 vdev->out_ctx, ctrl_ctx, 3691 changed_ep_bitmask, changed_ep_bitmask); 3692 spin_unlock_irqrestore(&xhci->lock, flags); 3693 3694 /* Issue and wait for the configure endpoint command, 3695 * which must succeed. 3696 */ 3697 ret = xhci_configure_endpoint(xhci, udev, command, 3698 false, true); 3699 3700 /* xHC rejected the configure endpoint command for some reason, so we 3701 * leave the streams rings intact. 3702 */ 3703 if (ret < 0) 3704 return ret; 3705 3706 spin_lock_irqsave(&xhci->lock, flags); 3707 for (i = 0; i < num_eps; i++) { 3708 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3709 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3710 vdev->eps[ep_index].stream_info = NULL; 3711 /* FIXME Unset maxPstreams in endpoint context and 3712 * update deq ptr to point to normal string ring. 3713 */ 3714 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3715 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3716 } 3717 spin_unlock_irqrestore(&xhci->lock, flags); 3718 3719 return 0; 3720 } 3721 3722 /* 3723 * Deletes endpoint resources for endpoints that were active before a Reset 3724 * Device command, or a Disable Slot command. The Reset Device command leaves 3725 * the control endpoint intact, whereas the Disable Slot command deletes it. 3726 * 3727 * Must be called with xhci->lock held. 3728 */ 3729 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3730 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3731 { 3732 int i; 3733 unsigned int num_dropped_eps = 0; 3734 unsigned int drop_flags = 0; 3735 3736 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3737 if (virt_dev->eps[i].ring) { 3738 drop_flags |= 1 << i; 3739 num_dropped_eps++; 3740 } 3741 } 3742 xhci->num_active_eps -= num_dropped_eps; 3743 if (num_dropped_eps) 3744 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3745 "Dropped %u ep ctxs, flags = 0x%x, " 3746 "%u now active.", 3747 num_dropped_eps, drop_flags, 3748 xhci->num_active_eps); 3749 } 3750 3751 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev); 3752 3753 /* 3754 * This submits a Reset Device Command, which will set the device state to 0, 3755 * set the device address to 0, and disable all the endpoints except the default 3756 * control endpoint. The USB core should come back and call 3757 * xhci_address_device(), and then re-set up the configuration. If this is 3758 * called because of a usb_reset_and_verify_device(), then the old alternate 3759 * settings will be re-installed through the normal bandwidth allocation 3760 * functions. 3761 * 3762 * Wait for the Reset Device command to finish. Remove all structures 3763 * associated with the endpoints that were disabled. Clear the input device 3764 * structure? Reset the control endpoint 0 max packet size? 3765 * 3766 * If the virt_dev to be reset does not exist or does not match the udev, 3767 * it means the device is lost, possibly due to the xHC restore error and 3768 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3769 * re-allocate the device. 3770 */ 3771 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3772 struct usb_device *udev) 3773 { 3774 int ret, i; 3775 unsigned long flags; 3776 struct xhci_hcd *xhci; 3777 unsigned int slot_id; 3778 struct xhci_virt_device *virt_dev; 3779 struct xhci_command *reset_device_cmd; 3780 struct xhci_slot_ctx *slot_ctx; 3781 int old_active_eps = 0; 3782 3783 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3784 if (ret <= 0) 3785 return ret; 3786 xhci = hcd_to_xhci(hcd); 3787 slot_id = udev->slot_id; 3788 virt_dev = xhci->devs[slot_id]; 3789 if (!virt_dev) { 3790 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3791 "not exist. Re-allocate the device\n", slot_id); 3792 ret = xhci_alloc_dev(hcd, udev); 3793 if (ret == 1) 3794 return 0; 3795 else 3796 return -EINVAL; 3797 } 3798 3799 if (virt_dev->tt_info) 3800 old_active_eps = virt_dev->tt_info->active_eps; 3801 3802 if (virt_dev->udev != udev) { 3803 /* If the virt_dev and the udev does not match, this virt_dev 3804 * may belong to another udev. 3805 * Re-allocate the device. 3806 */ 3807 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3808 "not match the udev. Re-allocate the device\n", 3809 slot_id); 3810 ret = xhci_alloc_dev(hcd, udev); 3811 if (ret == 1) 3812 return 0; 3813 else 3814 return -EINVAL; 3815 } 3816 3817 /* If device is not setup, there is no point in resetting it */ 3818 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3819 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3820 SLOT_STATE_DISABLED) 3821 return 0; 3822 3823 if (xhci->quirks & XHCI_ETRON_HOST) { 3824 /* 3825 * Obtaining a new device slot to inform the xHCI host that 3826 * the USB device has been reset. 3827 */ 3828 ret = xhci_disable_slot(xhci, udev->slot_id); 3829 xhci_free_virt_device(xhci, udev->slot_id); 3830 if (!ret) { 3831 ret = xhci_alloc_dev(hcd, udev); 3832 if (ret == 1) 3833 ret = 0; 3834 else 3835 ret = -EINVAL; 3836 } 3837 return ret; 3838 } 3839 3840 trace_xhci_discover_or_reset_device(slot_ctx); 3841 3842 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3843 /* Allocate the command structure that holds the struct completion. 3844 * Assume we're in process context, since the normal device reset 3845 * process has to wait for the device anyway. Storage devices are 3846 * reset as part of error handling, so use GFP_NOIO instead of 3847 * GFP_KERNEL. 3848 */ 3849 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3850 if (!reset_device_cmd) { 3851 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3852 return -ENOMEM; 3853 } 3854 3855 /* Attempt to submit the Reset Device command to the command ring */ 3856 spin_lock_irqsave(&xhci->lock, flags); 3857 3858 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3859 if (ret) { 3860 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3861 spin_unlock_irqrestore(&xhci->lock, flags); 3862 goto command_cleanup; 3863 } 3864 xhci_ring_cmd_db(xhci); 3865 spin_unlock_irqrestore(&xhci->lock, flags); 3866 3867 /* Wait for the Reset Device command to finish */ 3868 wait_for_completion(reset_device_cmd->completion); 3869 3870 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3871 * unless we tried to reset a slot ID that wasn't enabled, 3872 * or the device wasn't in the addressed or configured state. 3873 */ 3874 ret = reset_device_cmd->status; 3875 switch (ret) { 3876 case COMP_COMMAND_ABORTED: 3877 case COMP_COMMAND_RING_STOPPED: 3878 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3879 ret = -ETIME; 3880 goto command_cleanup; 3881 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3882 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3883 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3884 slot_id, 3885 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3886 xhci_dbg(xhci, "Not freeing device rings.\n"); 3887 /* Don't treat this as an error. May change my mind later. */ 3888 ret = 0; 3889 goto command_cleanup; 3890 case COMP_SUCCESS: 3891 xhci_dbg(xhci, "Successful reset device command.\n"); 3892 break; 3893 default: 3894 if (xhci_is_vendor_info_code(xhci, ret)) 3895 break; 3896 xhci_warn(xhci, "Unknown completion code %u for " 3897 "reset device command.\n", ret); 3898 ret = -EINVAL; 3899 goto command_cleanup; 3900 } 3901 3902 /* Free up host controller endpoint resources */ 3903 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3904 spin_lock_irqsave(&xhci->lock, flags); 3905 /* Don't delete the default control endpoint resources */ 3906 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3907 spin_unlock_irqrestore(&xhci->lock, flags); 3908 } 3909 3910 /* Everything but endpoint 0 is disabled, so free the rings. */ 3911 for (i = 1; i < 31; i++) { 3912 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3913 3914 if (ep->ep_state & EP_HAS_STREAMS) { 3915 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3916 xhci_get_endpoint_address(i)); 3917 xhci_free_stream_info(xhci, ep->stream_info); 3918 ep->stream_info = NULL; 3919 ep->ep_state &= ~EP_HAS_STREAMS; 3920 } 3921 3922 if (ep->ring) { 3923 if (ep->sideband) 3924 xhci_sideband_notify_ep_ring_free(ep->sideband, i); 3925 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3926 xhci_free_endpoint_ring(xhci, virt_dev, i); 3927 } 3928 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3929 xhci_drop_ep_from_interval_table(xhci, 3930 &virt_dev->eps[i].bw_info, 3931 virt_dev->bw_table, 3932 udev, 3933 &virt_dev->eps[i], 3934 virt_dev->tt_info); 3935 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3936 } 3937 /* If necessary, update the number of active TTs on this root port */ 3938 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3939 virt_dev->flags = 0; 3940 ret = 0; 3941 3942 command_cleanup: 3943 xhci_free_command(xhci, reset_device_cmd); 3944 return ret; 3945 } 3946 3947 /* 3948 * At this point, the struct usb_device is about to go away, the device has 3949 * disconnected, and all traffic has been stopped and the endpoints have been 3950 * disabled. Free any HC data structures associated with that device. 3951 */ 3952 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3953 { 3954 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3955 struct xhci_virt_device *virt_dev; 3956 struct xhci_slot_ctx *slot_ctx; 3957 unsigned long flags; 3958 int i, ret; 3959 3960 /* 3961 * We called pm_runtime_get_noresume when the device was attached. 3962 * Decrement the counter here to allow controller to runtime suspend 3963 * if no devices remain. 3964 */ 3965 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3966 pm_runtime_put_noidle(hcd->self.controller); 3967 3968 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3969 /* If the host is halted due to driver unload, we still need to free the 3970 * device. 3971 */ 3972 if (ret <= 0 && ret != -ENODEV) 3973 return; 3974 3975 virt_dev = xhci->devs[udev->slot_id]; 3976 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3977 trace_xhci_free_dev(slot_ctx); 3978 3979 /* Stop any wayward timer functions (which may grab the lock) */ 3980 for (i = 0; i < 31; i++) 3981 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3982 virt_dev->udev = NULL; 3983 xhci_disable_slot(xhci, udev->slot_id); 3984 3985 spin_lock_irqsave(&xhci->lock, flags); 3986 xhci_free_virt_device(xhci, udev->slot_id); 3987 spin_unlock_irqrestore(&xhci->lock, flags); 3988 3989 } 3990 3991 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3992 { 3993 struct xhci_command *command; 3994 unsigned long flags; 3995 u32 state; 3996 int ret; 3997 3998 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3999 if (!command) 4000 return -ENOMEM; 4001 4002 xhci_debugfs_remove_slot(xhci, slot_id); 4003 4004 spin_lock_irqsave(&xhci->lock, flags); 4005 /* Don't disable the slot if the host controller is dead. */ 4006 state = readl(&xhci->op_regs->status); 4007 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 4008 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4009 spin_unlock_irqrestore(&xhci->lock, flags); 4010 kfree(command); 4011 return -ENODEV; 4012 } 4013 4014 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 4015 slot_id); 4016 if (ret) { 4017 spin_unlock_irqrestore(&xhci->lock, flags); 4018 kfree(command); 4019 return ret; 4020 } 4021 xhci_ring_cmd_db(xhci); 4022 spin_unlock_irqrestore(&xhci->lock, flags); 4023 4024 wait_for_completion(command->completion); 4025 4026 if (command->status != COMP_SUCCESS) 4027 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4028 slot_id, command->status); 4029 4030 xhci_free_command(xhci, command); 4031 4032 return 0; 4033 } 4034 4035 /* 4036 * Checks if we have enough host controller resources for the default control 4037 * endpoint. 4038 * 4039 * Must be called with xhci->lock held. 4040 */ 4041 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4042 { 4043 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4044 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4045 "Not enough ep ctxs: " 4046 "%u active, need to add 1, limit is %u.", 4047 xhci->num_active_eps, xhci->limit_active_eps); 4048 return -ENOMEM; 4049 } 4050 xhci->num_active_eps += 1; 4051 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4052 "Adding 1 ep ctx, %u now active.", 4053 xhci->num_active_eps); 4054 return 0; 4055 } 4056 4057 4058 /* 4059 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4060 * timed out, or allocating memory failed. Returns 1 on success. 4061 */ 4062 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4063 { 4064 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4065 struct xhci_virt_device *vdev; 4066 struct xhci_slot_ctx *slot_ctx; 4067 unsigned long flags; 4068 int ret, slot_id; 4069 struct xhci_command *command; 4070 4071 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4072 if (!command) 4073 return 0; 4074 4075 spin_lock_irqsave(&xhci->lock, flags); 4076 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4077 if (ret) { 4078 spin_unlock_irqrestore(&xhci->lock, flags); 4079 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4080 xhci_free_command(xhci, command); 4081 return 0; 4082 } 4083 xhci_ring_cmd_db(xhci); 4084 spin_unlock_irqrestore(&xhci->lock, flags); 4085 4086 wait_for_completion(command->completion); 4087 slot_id = command->slot_id; 4088 4089 if (!slot_id || command->status != COMP_SUCCESS) { 4090 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 4091 xhci_trb_comp_code_string(command->status)); 4092 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4093 HCS_MAX_SLOTS( 4094 readl(&xhci->cap_regs->hcs_params1))); 4095 xhci_free_command(xhci, command); 4096 return 0; 4097 } 4098 4099 xhci_free_command(xhci, command); 4100 4101 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4102 spin_lock_irqsave(&xhci->lock, flags); 4103 ret = xhci_reserve_host_control_ep_resources(xhci); 4104 if (ret) { 4105 spin_unlock_irqrestore(&xhci->lock, flags); 4106 xhci_warn(xhci, "Not enough host resources, " 4107 "active endpoint contexts = %u\n", 4108 xhci->num_active_eps); 4109 goto disable_slot; 4110 } 4111 spin_unlock_irqrestore(&xhci->lock, flags); 4112 } 4113 /* Use GFP_NOIO, since this function can be called from 4114 * xhci_discover_or_reset_device(), which may be called as part of 4115 * mass storage driver error handling. 4116 */ 4117 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4118 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4119 goto disable_slot; 4120 } 4121 vdev = xhci->devs[slot_id]; 4122 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4123 trace_xhci_alloc_dev(slot_ctx); 4124 4125 udev->slot_id = slot_id; 4126 4127 xhci_debugfs_create_slot(xhci, slot_id); 4128 4129 /* 4130 * If resetting upon resume, we can't put the controller into runtime 4131 * suspend if there is a device attached. 4132 */ 4133 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4134 pm_runtime_get_noresume(hcd->self.controller); 4135 4136 /* Is this a LS or FS device under a HS hub? */ 4137 /* Hub or peripherial? */ 4138 return 1; 4139 4140 disable_slot: 4141 xhci_disable_slot(xhci, udev->slot_id); 4142 xhci_free_virt_device(xhci, udev->slot_id); 4143 4144 return 0; 4145 } 4146 4147 /** 4148 * xhci_setup_device - issues an Address Device command to assign a unique 4149 * USB bus address. 4150 * @hcd: USB host controller data structure. 4151 * @udev: USB dev structure representing the connected device. 4152 * @setup: Enum specifying setup mode: address only or with context. 4153 * @timeout_ms: Max wait time (ms) for the command operation to complete. 4154 * 4155 * Return: 0 if successful; otherwise, negative error code. 4156 */ 4157 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4158 enum xhci_setup_dev setup, unsigned int timeout_ms) 4159 { 4160 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4161 unsigned long flags; 4162 struct xhci_virt_device *virt_dev; 4163 int ret = 0; 4164 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4165 struct xhci_slot_ctx *slot_ctx; 4166 struct xhci_input_control_ctx *ctrl_ctx; 4167 u64 temp_64; 4168 struct xhci_command *command = NULL; 4169 4170 mutex_lock(&xhci->mutex); 4171 4172 if (xhci->xhc_state) { /* dying, removing or halted */ 4173 ret = -ESHUTDOWN; 4174 goto out; 4175 } 4176 4177 if (!udev->slot_id) { 4178 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4179 "Bad Slot ID %d", udev->slot_id); 4180 ret = -EINVAL; 4181 goto out; 4182 } 4183 4184 virt_dev = xhci->devs[udev->slot_id]; 4185 4186 if (WARN_ON(!virt_dev)) { 4187 /* 4188 * In plug/unplug torture test with an NEC controller, 4189 * a zero-dereference was observed once due to virt_dev = 0. 4190 * Print useful debug rather than crash if it is observed again! 4191 */ 4192 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4193 udev->slot_id); 4194 ret = -EINVAL; 4195 goto out; 4196 } 4197 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4198 trace_xhci_setup_device_slot(slot_ctx); 4199 4200 if (setup == SETUP_CONTEXT_ONLY) { 4201 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4202 SLOT_STATE_DEFAULT) { 4203 xhci_dbg(xhci, "Slot already in default state\n"); 4204 goto out; 4205 } 4206 } 4207 4208 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4209 if (!command) { 4210 ret = -ENOMEM; 4211 goto out; 4212 } 4213 4214 command->in_ctx = virt_dev->in_ctx; 4215 command->timeout_ms = timeout_ms; 4216 4217 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4218 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4219 if (!ctrl_ctx) { 4220 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4221 __func__); 4222 ret = -EINVAL; 4223 goto out; 4224 } 4225 /* 4226 * If this is the first Set Address since device plug-in or 4227 * virt_device realloaction after a resume with an xHCI power loss, 4228 * then set up the slot context. 4229 */ 4230 if (!slot_ctx->dev_info) 4231 xhci_setup_addressable_virt_dev(xhci, udev); 4232 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4233 else 4234 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4235 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4236 ctrl_ctx->drop_flags = 0; 4237 4238 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4239 le32_to_cpu(slot_ctx->dev_info) >> 27); 4240 4241 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4242 spin_lock_irqsave(&xhci->lock, flags); 4243 trace_xhci_setup_device(virt_dev); 4244 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4245 udev->slot_id, setup); 4246 if (ret) { 4247 spin_unlock_irqrestore(&xhci->lock, flags); 4248 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4249 "FIXME: allocate a command ring segment"); 4250 goto out; 4251 } 4252 xhci_ring_cmd_db(xhci); 4253 spin_unlock_irqrestore(&xhci->lock, flags); 4254 4255 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4256 wait_for_completion(command->completion); 4257 4258 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4259 * the SetAddress() "recovery interval" required by USB and aborting the 4260 * command on a timeout. 4261 */ 4262 switch (command->status) { 4263 case COMP_COMMAND_ABORTED: 4264 case COMP_COMMAND_RING_STOPPED: 4265 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4266 ret = -ETIME; 4267 break; 4268 case COMP_CONTEXT_STATE_ERROR: 4269 case COMP_SLOT_NOT_ENABLED_ERROR: 4270 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4271 act, udev->slot_id); 4272 ret = -EINVAL; 4273 break; 4274 case COMP_USB_TRANSACTION_ERROR: 4275 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4276 4277 mutex_unlock(&xhci->mutex); 4278 ret = xhci_disable_slot(xhci, udev->slot_id); 4279 xhci_free_virt_device(xhci, udev->slot_id); 4280 if (!ret) { 4281 if (xhci_alloc_dev(hcd, udev) == 1) 4282 xhci_setup_addressable_virt_dev(xhci, udev); 4283 } 4284 kfree(command->completion); 4285 kfree(command); 4286 return -EPROTO; 4287 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4288 dev_warn(&udev->dev, 4289 "ERROR: Incompatible device for setup %s command\n", act); 4290 ret = -ENODEV; 4291 break; 4292 case COMP_SUCCESS: 4293 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4294 "Successful setup %s command", act); 4295 break; 4296 default: 4297 xhci_err(xhci, 4298 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4299 act, command->status); 4300 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4301 ret = -EINVAL; 4302 break; 4303 } 4304 if (ret) 4305 goto out; 4306 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4307 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4308 "Op regs DCBAA ptr = %#016llx", temp_64); 4309 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4310 "Slot ID %d dcbaa entry @%p = %#016llx", 4311 udev->slot_id, 4312 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4313 (unsigned long long) 4314 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4315 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4316 "Output Context DMA address = %#08llx", 4317 (unsigned long long)virt_dev->out_ctx->dma); 4318 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4319 le32_to_cpu(slot_ctx->dev_info) >> 27); 4320 /* 4321 * USB core uses address 1 for the roothubs, so we add one to the 4322 * address given back to us by the HC. 4323 */ 4324 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4325 le32_to_cpu(slot_ctx->dev_info) >> 27); 4326 /* Zero the input context control for later use */ 4327 ctrl_ctx->add_flags = 0; 4328 ctrl_ctx->drop_flags = 0; 4329 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4330 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4331 4332 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4333 "Internal device address = %d", 4334 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4335 out: 4336 mutex_unlock(&xhci->mutex); 4337 if (command) { 4338 kfree(command->completion); 4339 kfree(command); 4340 } 4341 return ret; 4342 } 4343 4344 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev, 4345 unsigned int timeout_ms) 4346 { 4347 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms); 4348 } 4349 4350 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4351 { 4352 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY, 4353 XHCI_CMD_DEFAULT_TIMEOUT); 4354 } 4355 4356 /* 4357 * Transfer the port index into real index in the HW port status 4358 * registers. Caculate offset between the port's PORTSC register 4359 * and port status base. Divide the number of per port register 4360 * to get the real index. The raw port number bases 1. 4361 */ 4362 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4363 { 4364 struct xhci_hub *rhub; 4365 4366 rhub = xhci_get_rhub(hcd); 4367 return rhub->ports[port1 - 1]->hw_portnum + 1; 4368 } 4369 4370 /* 4371 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4372 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4373 */ 4374 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4375 struct usb_device *udev, u16 max_exit_latency) 4376 { 4377 struct xhci_virt_device *virt_dev; 4378 struct xhci_command *command; 4379 struct xhci_input_control_ctx *ctrl_ctx; 4380 struct xhci_slot_ctx *slot_ctx; 4381 unsigned long flags; 4382 int ret; 4383 4384 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4385 if (!command) 4386 return -ENOMEM; 4387 4388 spin_lock_irqsave(&xhci->lock, flags); 4389 4390 virt_dev = xhci->devs[udev->slot_id]; 4391 4392 /* 4393 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4394 * xHC was re-initialized. Exit latency will be set later after 4395 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4396 */ 4397 4398 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4399 spin_unlock_irqrestore(&xhci->lock, flags); 4400 xhci_free_command(xhci, command); 4401 return 0; 4402 } 4403 4404 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4405 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4406 if (!ctrl_ctx) { 4407 spin_unlock_irqrestore(&xhci->lock, flags); 4408 xhci_free_command(xhci, command); 4409 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4410 __func__); 4411 return -ENOMEM; 4412 } 4413 4414 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4415 spin_unlock_irqrestore(&xhci->lock, flags); 4416 4417 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4418 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4419 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4420 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4421 slot_ctx->dev_state = 0; 4422 4423 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4424 "Set up evaluate context for LPM MEL change."); 4425 4426 /* Issue and wait for the evaluate context command. */ 4427 ret = xhci_configure_endpoint(xhci, udev, command, 4428 true, true); 4429 4430 if (!ret) { 4431 spin_lock_irqsave(&xhci->lock, flags); 4432 virt_dev->current_mel = max_exit_latency; 4433 spin_unlock_irqrestore(&xhci->lock, flags); 4434 } 4435 4436 xhci_free_command(xhci, command); 4437 4438 return ret; 4439 } 4440 4441 #ifdef CONFIG_PM 4442 4443 /* BESL to HIRD Encoding array for USB2 LPM */ 4444 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4445 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4446 4447 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4448 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4449 struct usb_device *udev) 4450 { 4451 int u2del, besl, besl_host; 4452 int besl_device = 0; 4453 u32 field; 4454 4455 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4456 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4457 4458 if (field & USB_BESL_SUPPORT) { 4459 for (besl_host = 0; besl_host < 16; besl_host++) { 4460 if (xhci_besl_encoding[besl_host] >= u2del) 4461 break; 4462 } 4463 /* Use baseline BESL value as default */ 4464 if (field & USB_BESL_BASELINE_VALID) 4465 besl_device = USB_GET_BESL_BASELINE(field); 4466 else if (field & USB_BESL_DEEP_VALID) 4467 besl_device = USB_GET_BESL_DEEP(field); 4468 } else { 4469 if (u2del <= 50) 4470 besl_host = 0; 4471 else 4472 besl_host = (u2del - 51) / 75 + 1; 4473 } 4474 4475 besl = besl_host + besl_device; 4476 if (besl > 15) 4477 besl = 15; 4478 4479 return besl; 4480 } 4481 4482 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4483 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4484 { 4485 u32 field; 4486 int l1; 4487 int besld = 0; 4488 int hirdm = 0; 4489 4490 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4491 4492 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4493 l1 = udev->l1_params.timeout / 256; 4494 4495 /* device has preferred BESLD */ 4496 if (field & USB_BESL_DEEP_VALID) { 4497 besld = USB_GET_BESL_DEEP(field); 4498 hirdm = 1; 4499 } 4500 4501 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4502 } 4503 4504 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4505 struct usb_device *udev, int enable) 4506 { 4507 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4508 struct xhci_port **ports; 4509 __le32 __iomem *pm_addr, *hlpm_addr; 4510 u32 pm_val, hlpm_val, field; 4511 unsigned int port_num; 4512 unsigned long flags; 4513 int hird, exit_latency; 4514 int ret; 4515 4516 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4517 return -EPERM; 4518 4519 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4520 !udev->lpm_capable) 4521 return -EPERM; 4522 4523 if (!udev->parent || udev->parent->parent || 4524 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4525 return -EPERM; 4526 4527 if (udev->usb2_hw_lpm_capable != 1) 4528 return -EPERM; 4529 4530 spin_lock_irqsave(&xhci->lock, flags); 4531 4532 ports = xhci->usb2_rhub.ports; 4533 port_num = udev->portnum - 1; 4534 pm_addr = ports[port_num]->addr + PORTPMSC; 4535 pm_val = readl(pm_addr); 4536 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4537 4538 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4539 str_enable_disable(enable), port_num + 1); 4540 4541 if (enable) { 4542 /* Host supports BESL timeout instead of HIRD */ 4543 if (udev->usb2_hw_lpm_besl_capable) { 4544 /* if device doesn't have a preferred BESL value use a 4545 * default one which works with mixed HIRD and BESL 4546 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4547 */ 4548 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4549 if ((field & USB_BESL_SUPPORT) && 4550 (field & USB_BESL_BASELINE_VALID)) 4551 hird = USB_GET_BESL_BASELINE(field); 4552 else 4553 hird = udev->l1_params.besl; 4554 4555 exit_latency = xhci_besl_encoding[hird]; 4556 spin_unlock_irqrestore(&xhci->lock, flags); 4557 4558 ret = xhci_change_max_exit_latency(xhci, udev, 4559 exit_latency); 4560 if (ret < 0) 4561 return ret; 4562 spin_lock_irqsave(&xhci->lock, flags); 4563 4564 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4565 writel(hlpm_val, hlpm_addr); 4566 /* flush write */ 4567 readl(hlpm_addr); 4568 } else { 4569 hird = xhci_calculate_hird_besl(xhci, udev); 4570 } 4571 4572 pm_val &= ~PORT_HIRD_MASK; 4573 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4574 writel(pm_val, pm_addr); 4575 pm_val = readl(pm_addr); 4576 pm_val |= PORT_HLE; 4577 writel(pm_val, pm_addr); 4578 /* flush write */ 4579 readl(pm_addr); 4580 } else { 4581 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4582 writel(pm_val, pm_addr); 4583 /* flush write */ 4584 readl(pm_addr); 4585 if (udev->usb2_hw_lpm_besl_capable) { 4586 spin_unlock_irqrestore(&xhci->lock, flags); 4587 xhci_change_max_exit_latency(xhci, udev, 0); 4588 readl_poll_timeout(ports[port_num]->addr, pm_val, 4589 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4590 100, 10000); 4591 return 0; 4592 } 4593 } 4594 4595 spin_unlock_irqrestore(&xhci->lock, flags); 4596 return 0; 4597 } 4598 4599 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4600 { 4601 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4602 struct xhci_port *port; 4603 u32 capability; 4604 4605 /* Check if USB3 device at root port is tunneled over USB4 */ 4606 if (hcd->speed >= HCD_USB3 && !udev->parent->parent) { 4607 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 4608 4609 udev->tunnel_mode = xhci_port_is_tunneled(xhci, port); 4610 if (udev->tunnel_mode == USB_LINK_UNKNOWN) 4611 dev_dbg(&udev->dev, "link tunnel state unknown\n"); 4612 else if (udev->tunnel_mode == USB_LINK_TUNNELED) 4613 dev_dbg(&udev->dev, "tunneled over USB4 link\n"); 4614 else if (udev->tunnel_mode == USB_LINK_NATIVE) 4615 dev_dbg(&udev->dev, "native USB 3.x link\n"); 4616 return 0; 4617 } 4618 4619 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support) 4620 return 0; 4621 4622 /* we only support lpm for non-hub device connected to root hub yet */ 4623 if (!udev->parent || udev->parent->parent || 4624 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4625 return 0; 4626 4627 port = xhci->usb2_rhub.ports[udev->portnum - 1]; 4628 capability = port->port_cap->protocol_caps; 4629 4630 if (capability & XHCI_HLC) { 4631 udev->usb2_hw_lpm_capable = 1; 4632 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4633 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4634 if (capability & XHCI_BLC) 4635 udev->usb2_hw_lpm_besl_capable = 1; 4636 } 4637 4638 return 0; 4639 } 4640 4641 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4642 4643 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4644 static unsigned long long xhci_service_interval_to_ns( 4645 struct usb_endpoint_descriptor *desc) 4646 { 4647 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4648 } 4649 4650 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4651 enum usb3_link_state state) 4652 { 4653 unsigned long long sel; 4654 unsigned long long pel; 4655 unsigned int max_sel_pel; 4656 char *state_name; 4657 4658 switch (state) { 4659 case USB3_LPM_U1: 4660 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4661 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4662 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4663 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4664 state_name = "U1"; 4665 break; 4666 case USB3_LPM_U2: 4667 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4668 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4669 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4670 state_name = "U2"; 4671 break; 4672 default: 4673 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4674 __func__); 4675 return USB3_LPM_DISABLED; 4676 } 4677 4678 if (sel <= max_sel_pel && pel <= max_sel_pel) 4679 return USB3_LPM_DEVICE_INITIATED; 4680 4681 if (sel > max_sel_pel) 4682 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4683 "due to long SEL %llu ms\n", 4684 state_name, sel); 4685 else 4686 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4687 "due to long PEL %llu ms\n", 4688 state_name, pel); 4689 return USB3_LPM_DISABLED; 4690 } 4691 4692 /* The U1 timeout should be the maximum of the following values: 4693 * - For control endpoints, U1 system exit latency (SEL) * 3 4694 * - For bulk endpoints, U1 SEL * 5 4695 * - For interrupt endpoints: 4696 * - Notification EPs, U1 SEL * 3 4697 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4698 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4699 */ 4700 static unsigned long long xhci_calculate_intel_u1_timeout( 4701 struct usb_device *udev, 4702 struct usb_endpoint_descriptor *desc) 4703 { 4704 unsigned long long timeout_ns; 4705 int ep_type; 4706 int intr_type; 4707 4708 ep_type = usb_endpoint_type(desc); 4709 switch (ep_type) { 4710 case USB_ENDPOINT_XFER_CONTROL: 4711 timeout_ns = udev->u1_params.sel * 3; 4712 break; 4713 case USB_ENDPOINT_XFER_BULK: 4714 timeout_ns = udev->u1_params.sel * 5; 4715 break; 4716 case USB_ENDPOINT_XFER_INT: 4717 intr_type = usb_endpoint_interrupt_type(desc); 4718 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4719 timeout_ns = udev->u1_params.sel * 3; 4720 break; 4721 } 4722 /* Otherwise the calculation is the same as isoc eps */ 4723 fallthrough; 4724 case USB_ENDPOINT_XFER_ISOC: 4725 timeout_ns = xhci_service_interval_to_ns(desc); 4726 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4727 if (timeout_ns < udev->u1_params.sel * 2) 4728 timeout_ns = udev->u1_params.sel * 2; 4729 break; 4730 default: 4731 return 0; 4732 } 4733 4734 return timeout_ns; 4735 } 4736 4737 /* Returns the hub-encoded U1 timeout value. */ 4738 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4739 struct usb_device *udev, 4740 struct usb_endpoint_descriptor *desc) 4741 { 4742 unsigned long long timeout_ns; 4743 4744 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4745 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4746 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4747 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4748 return USB3_LPM_DISABLED; 4749 } 4750 } 4751 4752 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4753 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4754 else 4755 timeout_ns = udev->u1_params.sel; 4756 4757 /* The U1 timeout is encoded in 1us intervals. 4758 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4759 */ 4760 if (timeout_ns == USB3_LPM_DISABLED) 4761 timeout_ns = 1; 4762 else 4763 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4764 4765 /* If the necessary timeout value is bigger than what we can set in the 4766 * USB 3.0 hub, we have to disable hub-initiated U1. 4767 */ 4768 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4769 return timeout_ns; 4770 dev_dbg(&udev->dev, "Hub-initiated U1 disabled due to long timeout %lluus\n", 4771 timeout_ns); 4772 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4773 } 4774 4775 /* The U2 timeout should be the maximum of: 4776 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4777 * - largest bInterval of any active periodic endpoint (to avoid going 4778 * into lower power link states between intervals). 4779 * - the U2 Exit Latency of the device 4780 */ 4781 static unsigned long long xhci_calculate_intel_u2_timeout( 4782 struct usb_device *udev, 4783 struct usb_endpoint_descriptor *desc) 4784 { 4785 unsigned long long timeout_ns; 4786 unsigned long long u2_del_ns; 4787 4788 timeout_ns = 10 * 1000 * 1000; 4789 4790 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4791 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4792 timeout_ns = xhci_service_interval_to_ns(desc); 4793 4794 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4795 if (u2_del_ns > timeout_ns) 4796 timeout_ns = u2_del_ns; 4797 4798 return timeout_ns; 4799 } 4800 4801 /* Returns the hub-encoded U2 timeout value. */ 4802 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4803 struct usb_device *udev, 4804 struct usb_endpoint_descriptor *desc) 4805 { 4806 unsigned long long timeout_ns; 4807 4808 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4809 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4810 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4811 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4812 return USB3_LPM_DISABLED; 4813 } 4814 } 4815 4816 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4817 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4818 else 4819 timeout_ns = udev->u2_params.sel; 4820 4821 /* The U2 timeout is encoded in 256us intervals */ 4822 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4823 /* If the necessary timeout value is bigger than what we can set in the 4824 * USB 3.0 hub, we have to disable hub-initiated U2. 4825 */ 4826 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4827 return timeout_ns; 4828 dev_dbg(&udev->dev, "Hub-initiated U2 disabled due to long timeout %lluus\n", 4829 timeout_ns * 256); 4830 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4831 } 4832 4833 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4834 struct usb_device *udev, 4835 struct usb_endpoint_descriptor *desc, 4836 enum usb3_link_state state, 4837 u16 *timeout) 4838 { 4839 if (state == USB3_LPM_U1) 4840 return xhci_calculate_u1_timeout(xhci, udev, desc); 4841 else if (state == USB3_LPM_U2) 4842 return xhci_calculate_u2_timeout(xhci, udev, desc); 4843 4844 return USB3_LPM_DISABLED; 4845 } 4846 4847 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4848 struct usb_device *udev, 4849 struct usb_endpoint_descriptor *desc, 4850 enum usb3_link_state state, 4851 u16 *timeout) 4852 { 4853 u16 alt_timeout; 4854 4855 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4856 desc, state, timeout); 4857 4858 /* If we found we can't enable hub-initiated LPM, and 4859 * the U1 or U2 exit latency was too high to allow 4860 * device-initiated LPM as well, then we will disable LPM 4861 * for this device, so stop searching any further. 4862 */ 4863 if (alt_timeout == USB3_LPM_DISABLED) { 4864 *timeout = alt_timeout; 4865 return -E2BIG; 4866 } 4867 if (alt_timeout > *timeout) 4868 *timeout = alt_timeout; 4869 return 0; 4870 } 4871 4872 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4873 struct usb_device *udev, 4874 struct usb_host_interface *alt, 4875 enum usb3_link_state state, 4876 u16 *timeout) 4877 { 4878 int j; 4879 4880 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4881 if (xhci_update_timeout_for_endpoint(xhci, udev, 4882 &alt->endpoint[j].desc, state, timeout)) 4883 return -E2BIG; 4884 } 4885 return 0; 4886 } 4887 4888 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4889 struct usb_device *udev, 4890 enum usb3_link_state state) 4891 { 4892 struct usb_device *parent = udev->parent; 4893 int tier = 1; /* roothub is tier1 */ 4894 4895 while (parent) { 4896 parent = parent->parent; 4897 tier++; 4898 } 4899 4900 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3) 4901 goto fail; 4902 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2) 4903 goto fail; 4904 4905 return 0; 4906 fail: 4907 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n", 4908 tier); 4909 return -E2BIG; 4910 } 4911 4912 /* Returns the U1 or U2 timeout that should be enabled. 4913 * If the tier check or timeout setting functions return with a non-zero exit 4914 * code, that means the timeout value has been finalized and we shouldn't look 4915 * at any more endpoints. 4916 */ 4917 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4918 struct usb_device *udev, enum usb3_link_state state) 4919 { 4920 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4921 struct usb_host_config *config; 4922 char *state_name; 4923 int i; 4924 u16 timeout = USB3_LPM_DISABLED; 4925 4926 if (state == USB3_LPM_U1) 4927 state_name = "U1"; 4928 else if (state == USB3_LPM_U2) 4929 state_name = "U2"; 4930 else { 4931 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4932 state); 4933 return timeout; 4934 } 4935 4936 /* Gather some information about the currently installed configuration 4937 * and alternate interface settings. 4938 */ 4939 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4940 state, &timeout)) 4941 return timeout; 4942 4943 config = udev->actconfig; 4944 if (!config) 4945 return timeout; 4946 4947 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4948 struct usb_driver *driver; 4949 struct usb_interface *intf = config->interface[i]; 4950 4951 if (!intf) 4952 continue; 4953 4954 /* Check if any currently bound drivers want hub-initiated LPM 4955 * disabled. 4956 */ 4957 if (intf->dev.driver) { 4958 driver = to_usb_driver(intf->dev.driver); 4959 if (driver && driver->disable_hub_initiated_lpm) { 4960 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4961 state_name, driver->name); 4962 timeout = xhci_get_timeout_no_hub_lpm(udev, 4963 state); 4964 if (timeout == USB3_LPM_DISABLED) 4965 return timeout; 4966 } 4967 } 4968 4969 /* Not sure how this could happen... */ 4970 if (!intf->cur_altsetting) 4971 continue; 4972 4973 if (xhci_update_timeout_for_interface(xhci, udev, 4974 intf->cur_altsetting, 4975 state, &timeout)) 4976 return timeout; 4977 } 4978 return timeout; 4979 } 4980 4981 static int calculate_max_exit_latency(struct usb_device *udev, 4982 enum usb3_link_state state_changed, 4983 u16 hub_encoded_timeout) 4984 { 4985 unsigned long long u1_mel_us = 0; 4986 unsigned long long u2_mel_us = 0; 4987 unsigned long long mel_us = 0; 4988 bool disabling_u1; 4989 bool disabling_u2; 4990 bool enabling_u1; 4991 bool enabling_u2; 4992 4993 disabling_u1 = (state_changed == USB3_LPM_U1 && 4994 hub_encoded_timeout == USB3_LPM_DISABLED); 4995 disabling_u2 = (state_changed == USB3_LPM_U2 && 4996 hub_encoded_timeout == USB3_LPM_DISABLED); 4997 4998 enabling_u1 = (state_changed == USB3_LPM_U1 && 4999 hub_encoded_timeout != USB3_LPM_DISABLED); 5000 enabling_u2 = (state_changed == USB3_LPM_U2 && 5001 hub_encoded_timeout != USB3_LPM_DISABLED); 5002 5003 /* If U1 was already enabled and we're not disabling it, 5004 * or we're going to enable U1, account for the U1 max exit latency. 5005 */ 5006 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 5007 enabling_u1) 5008 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 5009 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 5010 enabling_u2) 5011 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5012 5013 mel_us = max(u1_mel_us, u2_mel_us); 5014 5015 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5016 if (mel_us > MAX_EXIT) { 5017 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5018 "is too big.\n", mel_us); 5019 return -E2BIG; 5020 } 5021 return mel_us; 5022 } 5023 5024 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5025 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5026 struct usb_device *udev, enum usb3_link_state state) 5027 { 5028 struct xhci_hcd *xhci; 5029 struct xhci_port *port; 5030 u16 hub_encoded_timeout; 5031 int mel; 5032 int ret; 5033 5034 xhci = hcd_to_xhci(hcd); 5035 /* The LPM timeout values are pretty host-controller specific, so don't 5036 * enable hub-initiated timeouts unless the vendor has provided 5037 * information about their timeout algorithm. 5038 */ 5039 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5040 !xhci->devs[udev->slot_id]) 5041 return USB3_LPM_DISABLED; 5042 5043 if (xhci_check_tier_policy(xhci, udev, state) < 0) 5044 return USB3_LPM_DISABLED; 5045 5046 /* If connected to root port then check port can handle lpm */ 5047 if (udev->parent && !udev->parent->parent) { 5048 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 5049 if (port->lpm_incapable) 5050 return USB3_LPM_DISABLED; 5051 } 5052 5053 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5054 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5055 if (mel < 0) { 5056 /* Max Exit Latency is too big, disable LPM. */ 5057 hub_encoded_timeout = USB3_LPM_DISABLED; 5058 mel = 0; 5059 } 5060 5061 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5062 if (ret) 5063 return ret; 5064 return hub_encoded_timeout; 5065 } 5066 5067 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5068 struct usb_device *udev, enum usb3_link_state state) 5069 { 5070 struct xhci_hcd *xhci; 5071 u16 mel; 5072 5073 xhci = hcd_to_xhci(hcd); 5074 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5075 !xhci->devs[udev->slot_id]) 5076 return 0; 5077 5078 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5079 return xhci_change_max_exit_latency(xhci, udev, mel); 5080 } 5081 #else /* CONFIG_PM */ 5082 5083 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5084 struct usb_device *udev, int enable) 5085 { 5086 return 0; 5087 } 5088 5089 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5090 { 5091 return 0; 5092 } 5093 5094 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5095 struct usb_device *udev, enum usb3_link_state state) 5096 { 5097 return USB3_LPM_DISABLED; 5098 } 5099 5100 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5101 struct usb_device *udev, enum usb3_link_state state) 5102 { 5103 return 0; 5104 } 5105 #endif /* CONFIG_PM */ 5106 5107 /*-------------------------------------------------------------------------*/ 5108 5109 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5110 * internal data structures for the device. 5111 */ 5112 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5113 struct usb_tt *tt, gfp_t mem_flags) 5114 { 5115 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5116 struct xhci_virt_device *vdev; 5117 struct xhci_command *config_cmd; 5118 struct xhci_input_control_ctx *ctrl_ctx; 5119 struct xhci_slot_ctx *slot_ctx; 5120 unsigned long flags; 5121 unsigned think_time; 5122 int ret; 5123 5124 /* Ignore root hubs */ 5125 if (!hdev->parent) 5126 return 0; 5127 5128 vdev = xhci->devs[hdev->slot_id]; 5129 if (!vdev) { 5130 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5131 return -EINVAL; 5132 } 5133 5134 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5135 if (!config_cmd) 5136 return -ENOMEM; 5137 5138 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5139 if (!ctrl_ctx) { 5140 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5141 __func__); 5142 xhci_free_command(xhci, config_cmd); 5143 return -ENOMEM; 5144 } 5145 5146 spin_lock_irqsave(&xhci->lock, flags); 5147 if (hdev->speed == USB_SPEED_HIGH && 5148 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5149 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5150 xhci_free_command(xhci, config_cmd); 5151 spin_unlock_irqrestore(&xhci->lock, flags); 5152 return -ENOMEM; 5153 } 5154 5155 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5156 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5157 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5158 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5159 /* 5160 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5161 * but it may be already set to 1 when setup an xHCI virtual 5162 * device, so clear it anyway. 5163 */ 5164 if (tt->multi) 5165 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5166 else if (hdev->speed == USB_SPEED_FULL) 5167 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5168 5169 if (xhci->hci_version > 0x95) { 5170 xhci_dbg(xhci, "xHCI version %x needs hub " 5171 "TT think time and number of ports\n", 5172 (unsigned int) xhci->hci_version); 5173 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5174 /* Set TT think time - convert from ns to FS bit times. 5175 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5176 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5177 * 5178 * xHCI 1.0: this field shall be 0 if the device is not a 5179 * High-spped hub. 5180 */ 5181 think_time = tt->think_time; 5182 if (think_time != 0) 5183 think_time = (think_time / 666) - 1; 5184 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5185 slot_ctx->tt_info |= 5186 cpu_to_le32(TT_THINK_TIME(think_time)); 5187 } else { 5188 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5189 "TT think time or number of ports\n", 5190 (unsigned int) xhci->hci_version); 5191 } 5192 slot_ctx->dev_state = 0; 5193 spin_unlock_irqrestore(&xhci->lock, flags); 5194 5195 xhci_dbg(xhci, "Set up %s for hub device.\n", 5196 (xhci->hci_version > 0x95) ? 5197 "configure endpoint" : "evaluate context"); 5198 5199 /* Issue and wait for the configure endpoint or 5200 * evaluate context command. 5201 */ 5202 if (xhci->hci_version > 0x95) 5203 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5204 false, false); 5205 else 5206 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5207 true, false); 5208 5209 xhci_free_command(xhci, config_cmd); 5210 return ret; 5211 } 5212 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5213 5214 static int xhci_get_frame(struct usb_hcd *hcd) 5215 { 5216 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5217 /* EHCI mods by the periodic size. Why? */ 5218 return readl(&xhci->run_regs->microframe_index) >> 3; 5219 } 5220 5221 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5222 { 5223 xhci->usb2_rhub.hcd = hcd; 5224 hcd->speed = HCD_USB2; 5225 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5226 /* 5227 * USB 2.0 roothub under xHCI has an integrated TT, 5228 * (rate matching hub) as opposed to having an OHCI/UHCI 5229 * companion controller. 5230 */ 5231 hcd->has_tt = 1; 5232 } 5233 5234 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5235 { 5236 unsigned int minor_rev; 5237 5238 /* 5239 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5240 * should return 0x31 for sbrn, or that the minor revision 5241 * is a two digit BCD containig minor and sub-minor numbers. 5242 * This was later clarified in xHCI 1.2. 5243 * 5244 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5245 * minor revision set to 0x1 instead of 0x10. 5246 */ 5247 if (xhci->usb3_rhub.min_rev == 0x1) 5248 minor_rev = 1; 5249 else 5250 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5251 5252 switch (minor_rev) { 5253 case 2: 5254 hcd->speed = HCD_USB32; 5255 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5256 hcd->self.root_hub->rx_lanes = 2; 5257 hcd->self.root_hub->tx_lanes = 2; 5258 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5259 break; 5260 case 1: 5261 hcd->speed = HCD_USB31; 5262 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5263 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5264 break; 5265 } 5266 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5267 minor_rev, minor_rev ? "Enhanced " : ""); 5268 5269 xhci->usb3_rhub.hcd = hcd; 5270 } 5271 5272 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5273 { 5274 struct xhci_hcd *xhci; 5275 /* 5276 * TODO: Check with DWC3 clients for sysdev according to 5277 * quirks 5278 */ 5279 struct device *dev = hcd->self.sysdev; 5280 int retval; 5281 5282 /* Accept arbitrarily long scatter-gather lists */ 5283 hcd->self.sg_tablesize = ~0; 5284 5285 /* support to build packet from discontinuous buffers */ 5286 hcd->self.no_sg_constraint = 1; 5287 5288 /* XHCI controllers don't stop the ep queue on short packets :| */ 5289 hcd->self.no_stop_on_short = 1; 5290 5291 xhci = hcd_to_xhci(hcd); 5292 5293 if (!usb_hcd_is_primary_hcd(hcd)) { 5294 xhci_hcd_init_usb3_data(xhci, hcd); 5295 return 0; 5296 } 5297 5298 mutex_init(&xhci->mutex); 5299 xhci->main_hcd = hcd; 5300 xhci->cap_regs = hcd->regs; 5301 xhci->op_regs = hcd->regs + 5302 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5303 xhci->run_regs = hcd->regs + 5304 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5305 /* Cache read-only capability registers */ 5306 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5307 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5308 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5309 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5310 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5311 if (xhci->hci_version > 0x100) 5312 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5313 5314 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5315 if ((!xhci->max_interrupters) || 5316 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1)) 5317 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1); 5318 5319 xhci->quirks |= quirks; 5320 5321 if (get_quirks) 5322 get_quirks(dev, xhci); 5323 5324 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5325 * success event after a short transfer. This quirk will ignore such 5326 * spurious event. 5327 */ 5328 if (xhci->hci_version > 0x96) 5329 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5330 5331 if (xhci->hci_version == 0x95 && link_quirk) { 5332 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits"); 5333 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 5334 } 5335 5336 /* Make sure the HC is halted. */ 5337 retval = xhci_halt(xhci); 5338 if (retval) 5339 return retval; 5340 5341 xhci_zero_64b_regs(xhci); 5342 5343 xhci_dbg(xhci, "Resetting HCD\n"); 5344 /* Reset the internal HC memory state and registers. */ 5345 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5346 if (retval) 5347 return retval; 5348 xhci_dbg(xhci, "Reset complete\n"); 5349 5350 /* 5351 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5352 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5353 * address memory pointers actually. So, this driver clears the AC64 5354 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5355 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5356 */ 5357 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5358 xhci->hcc_params &= ~BIT(0); 5359 5360 /* Set dma_mask and coherent_dma_mask to 64-bits, 5361 * if xHC supports 64-bit addressing */ 5362 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5363 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5364 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5365 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5366 } else { 5367 /* 5368 * This is to avoid error in cases where a 32-bit USB 5369 * controller is used on a 64-bit capable system. 5370 */ 5371 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5372 if (retval) 5373 return retval; 5374 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5375 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5376 } 5377 5378 xhci_dbg(xhci, "Calling HCD init\n"); 5379 /* Initialize HCD and host controller data structures. */ 5380 retval = xhci_init(hcd); 5381 if (retval) 5382 return retval; 5383 xhci_dbg(xhci, "Called HCD init\n"); 5384 5385 if (xhci_hcd_is_usb3(hcd)) 5386 xhci_hcd_init_usb3_data(xhci, hcd); 5387 else 5388 xhci_hcd_init_usb2_data(xhci, hcd); 5389 5390 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5391 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5392 5393 return 0; 5394 } 5395 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5396 5397 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5398 struct usb_host_endpoint *ep) 5399 { 5400 struct xhci_hcd *xhci; 5401 struct usb_device *udev; 5402 unsigned int slot_id; 5403 unsigned int ep_index; 5404 unsigned long flags; 5405 5406 xhci = hcd_to_xhci(hcd); 5407 5408 spin_lock_irqsave(&xhci->lock, flags); 5409 udev = (struct usb_device *)ep->hcpriv; 5410 slot_id = udev->slot_id; 5411 ep_index = xhci_get_endpoint_index(&ep->desc); 5412 5413 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5414 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5415 spin_unlock_irqrestore(&xhci->lock, flags); 5416 } 5417 5418 static const struct hc_driver xhci_hc_driver = { 5419 .description = "xhci-hcd", 5420 .product_desc = "xHCI Host Controller", 5421 .hcd_priv_size = sizeof(struct xhci_hcd), 5422 5423 /* 5424 * generic hardware linkage 5425 */ 5426 .irq = xhci_irq, 5427 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5428 HCD_BH, 5429 5430 /* 5431 * basic lifecycle operations 5432 */ 5433 .reset = NULL, /* set in xhci_init_driver() */ 5434 .start = xhci_run, 5435 .stop = xhci_stop, 5436 .shutdown = xhci_shutdown, 5437 5438 /* 5439 * managing i/o requests and associated device resources 5440 */ 5441 .map_urb_for_dma = xhci_map_urb_for_dma, 5442 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5443 .urb_enqueue = xhci_urb_enqueue, 5444 .urb_dequeue = xhci_urb_dequeue, 5445 .alloc_dev = xhci_alloc_dev, 5446 .free_dev = xhci_free_dev, 5447 .alloc_streams = xhci_alloc_streams, 5448 .free_streams = xhci_free_streams, 5449 .add_endpoint = xhci_add_endpoint, 5450 .drop_endpoint = xhci_drop_endpoint, 5451 .endpoint_disable = xhci_endpoint_disable, 5452 .endpoint_reset = xhci_endpoint_reset, 5453 .check_bandwidth = xhci_check_bandwidth, 5454 .reset_bandwidth = xhci_reset_bandwidth, 5455 .address_device = xhci_address_device, 5456 .enable_device = xhci_enable_device, 5457 .update_hub_device = xhci_update_hub_device, 5458 .reset_device = xhci_discover_or_reset_device, 5459 5460 /* 5461 * scheduling support 5462 */ 5463 .get_frame_number = xhci_get_frame, 5464 5465 /* 5466 * root hub support 5467 */ 5468 .hub_control = xhci_hub_control, 5469 .hub_status_data = xhci_hub_status_data, 5470 .bus_suspend = xhci_bus_suspend, 5471 .bus_resume = xhci_bus_resume, 5472 .get_resuming_ports = xhci_get_resuming_ports, 5473 5474 /* 5475 * call back when device connected and addressed 5476 */ 5477 .update_device = xhci_update_device, 5478 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5479 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5480 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5481 .find_raw_port_number = xhci_find_raw_port_number, 5482 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5483 }; 5484 5485 void xhci_init_driver(struct hc_driver *drv, 5486 const struct xhci_driver_overrides *over) 5487 { 5488 BUG_ON(!over); 5489 5490 /* Copy the generic table to drv then apply the overrides */ 5491 *drv = xhci_hc_driver; 5492 5493 if (over) { 5494 drv->hcd_priv_size += over->extra_priv_size; 5495 if (over->reset) 5496 drv->reset = over->reset; 5497 if (over->start) 5498 drv->start = over->start; 5499 if (over->add_endpoint) 5500 drv->add_endpoint = over->add_endpoint; 5501 if (over->drop_endpoint) 5502 drv->drop_endpoint = over->drop_endpoint; 5503 if (over->check_bandwidth) 5504 drv->check_bandwidth = over->check_bandwidth; 5505 if (over->reset_bandwidth) 5506 drv->reset_bandwidth = over->reset_bandwidth; 5507 if (over->update_hub_device) 5508 drv->update_hub_device = over->update_hub_device; 5509 if (over->hub_control) 5510 drv->hub_control = over->hub_control; 5511 } 5512 } 5513 EXPORT_SYMBOL_GPL(xhci_init_driver); 5514 5515 MODULE_DESCRIPTION(DRIVER_DESC); 5516 MODULE_AUTHOR(DRIVER_AUTHOR); 5517 MODULE_LICENSE("GPL"); 5518 5519 static int __init xhci_hcd_init(void) 5520 { 5521 /* 5522 * Check the compiler generated sizes of structures that must be laid 5523 * out in specific ways for hardware access. 5524 */ 5525 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5526 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5527 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5528 /* xhci_device_control has eight fields, and also 5529 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5530 */ 5531 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5532 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5533 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5534 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5535 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5536 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5537 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5538 5539 if (usb_disabled()) 5540 return -ENODEV; 5541 5542 xhci_debugfs_create_root(); 5543 xhci_dbc_init(); 5544 5545 return 0; 5546 } 5547 5548 /* 5549 * If an init function is provided, an exit function must also be provided 5550 * to allow module unload. 5551 */ 5552 static void __exit xhci_hcd_fini(void) 5553 { 5554 xhci_debugfs_remove_root(); 5555 xhci_dbc_exit(); 5556 } 5557 5558 module_init(xhci_hcd_init); 5559 module_exit(xhci_hcd_fini); 5560