1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 41 { 42 struct xhci_segment *seg = ring->first_seg; 43 44 if (!td || !td->start_seg) 45 return false; 46 do { 47 if (seg == td->start_seg) 48 return true; 49 seg = seg->next; 50 } while (seg && seg != ring->first_seg); 51 52 return false; 53 } 54 55 /* 56 * xhci_handshake - spin reading hc until handshake completes or fails 57 * @ptr: address of hc register to be read 58 * @mask: bits to look at in result of read 59 * @done: value of those bits when handshake succeeds 60 * @usec: timeout in microseconds 61 * 62 * Returns negative errno, or zero on success 63 * 64 * Success happens when the "mask" bits have the specified value (hardware 65 * handshake done). There are two failure modes: "usec" have passed (major 66 * hardware flakeout), or the register reads as all-ones (hardware removed). 67 */ 68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 69 { 70 u32 result; 71 int ret; 72 73 ret = readl_poll_timeout_atomic(ptr, result, 74 (result & mask) == done || 75 result == U32_MAX, 76 1, usec); 77 if (result == U32_MAX) /* card removed */ 78 return -ENODEV; 79 80 return ret; 81 } 82 83 /* 84 * Disable interrupts and begin the xHCI halting process. 85 */ 86 void xhci_quiesce(struct xhci_hcd *xhci) 87 { 88 u32 halted; 89 u32 cmd; 90 u32 mask; 91 92 mask = ~(XHCI_IRQS); 93 halted = readl(&xhci->op_regs->status) & STS_HALT; 94 if (!halted) 95 mask &= ~CMD_RUN; 96 97 cmd = readl(&xhci->op_regs->command); 98 cmd &= mask; 99 writel(cmd, &xhci->op_regs->command); 100 } 101 102 /* 103 * Force HC into halt state. 104 * 105 * Disable any IRQs and clear the run/stop bit. 106 * HC will complete any current and actively pipelined transactions, and 107 * should halt within 16 ms of the run/stop bit being cleared. 108 * Read HC Halted bit in the status register to see when the HC is finished. 109 */ 110 int xhci_halt(struct xhci_hcd *xhci) 111 { 112 int ret; 113 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 114 xhci_quiesce(xhci); 115 116 ret = xhci_handshake(&xhci->op_regs->status, 117 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 118 if (ret) { 119 xhci_warn(xhci, "Host halt failed, %d\n", ret); 120 return ret; 121 } 122 xhci->xhc_state |= XHCI_STATE_HALTED; 123 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 124 return ret; 125 } 126 127 /* 128 * Set the run bit and wait for the host to be running. 129 */ 130 int xhci_start(struct xhci_hcd *xhci) 131 { 132 u32 temp; 133 int ret; 134 135 temp = readl(&xhci->op_regs->command); 136 temp |= (CMD_RUN); 137 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 138 temp); 139 writel(temp, &xhci->op_regs->command); 140 141 /* 142 * Wait for the HCHalted Status bit to be 0 to indicate the host is 143 * running. 144 */ 145 ret = xhci_handshake(&xhci->op_regs->status, 146 STS_HALT, 0, XHCI_MAX_HALT_USEC); 147 if (ret == -ETIMEDOUT) 148 xhci_err(xhci, "Host took too long to start, " 149 "waited %u microseconds.\n", 150 XHCI_MAX_HALT_USEC); 151 if (!ret) 152 /* clear state flags. Including dying, halted or removing */ 153 xhci->xhc_state = 0; 154 155 return ret; 156 } 157 158 /* 159 * Reset a halted HC. 160 * 161 * This resets pipelines, timers, counters, state machines, etc. 162 * Transactions will be terminated immediately, and operational registers 163 * will be set to their defaults. 164 */ 165 int xhci_reset(struct xhci_hcd *xhci) 166 { 167 u32 command; 168 u32 state; 169 int ret; 170 171 state = readl(&xhci->op_regs->status); 172 173 if (state == ~(u32)0) { 174 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 175 return -ENODEV; 176 } 177 178 if ((state & STS_HALT) == 0) { 179 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 180 return 0; 181 } 182 183 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 184 command = readl(&xhci->op_regs->command); 185 command |= CMD_RESET; 186 writel(command, &xhci->op_regs->command); 187 188 /* Existing Intel xHCI controllers require a delay of 1 mS, 189 * after setting the CMD_RESET bit, and before accessing any 190 * HC registers. This allows the HC to complete the 191 * reset operation and be ready for HC register access. 192 * Without this delay, the subsequent HC register access, 193 * may result in a system hang very rarely. 194 */ 195 if (xhci->quirks & XHCI_INTEL_HOST) 196 udelay(1000); 197 198 ret = xhci_handshake(&xhci->op_regs->command, 199 CMD_RESET, 0, 10 * 1000 * 1000); 200 if (ret) 201 return ret; 202 203 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 204 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 205 206 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 207 "Wait for controller to be ready for doorbell rings"); 208 /* 209 * xHCI cannot write to any doorbells or operational registers other 210 * than status until the "Controller Not Ready" flag is cleared. 211 */ 212 ret = xhci_handshake(&xhci->op_regs->status, 213 STS_CNR, 0, 10 * 1000 * 1000); 214 215 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 216 xhci->usb2_rhub.bus_state.suspended_ports = 0; 217 xhci->usb2_rhub.bus_state.resuming_ports = 0; 218 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 219 xhci->usb3_rhub.bus_state.suspended_ports = 0; 220 xhci->usb3_rhub.bus_state.resuming_ports = 0; 221 222 return ret; 223 } 224 225 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 226 { 227 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 228 int err, i; 229 u64 val; 230 u32 intrs; 231 232 /* 233 * Some Renesas controllers get into a weird state if they are 234 * reset while programmed with 64bit addresses (they will preserve 235 * the top half of the address in internal, non visible 236 * registers). You end up with half the address coming from the 237 * kernel, and the other half coming from the firmware. Also, 238 * changing the programming leads to extra accesses even if the 239 * controller is supposed to be halted. The controller ends up with 240 * a fatal fault, and is then ripe for being properly reset. 241 * 242 * Special care is taken to only apply this if the device is behind 243 * an iommu. Doing anything when there is no iommu is definitely 244 * unsafe... 245 */ 246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 247 return; 248 249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 250 251 /* Clear HSEIE so that faults do not get signaled */ 252 val = readl(&xhci->op_regs->command); 253 val &= ~CMD_HSEIE; 254 writel(val, &xhci->op_regs->command); 255 256 /* Clear HSE (aka FATAL) */ 257 val = readl(&xhci->op_regs->status); 258 val |= STS_FATAL; 259 writel(val, &xhci->op_regs->status); 260 261 /* Now zero the registers, and brace for impact */ 262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 263 if (upper_32_bits(val)) 264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 266 if (upper_32_bits(val)) 267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 268 269 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 270 ARRAY_SIZE(xhci->run_regs->ir_set)); 271 272 for (i = 0; i < intrs; i++) { 273 struct xhci_intr_reg __iomem *ir; 274 275 ir = &xhci->run_regs->ir_set[i]; 276 val = xhci_read_64(xhci, &ir->erst_base); 277 if (upper_32_bits(val)) 278 xhci_write_64(xhci, 0, &ir->erst_base); 279 val= xhci_read_64(xhci, &ir->erst_dequeue); 280 if (upper_32_bits(val)) 281 xhci_write_64(xhci, 0, &ir->erst_dequeue); 282 } 283 284 /* Wait for the fault to appear. It will be cleared on reset */ 285 err = xhci_handshake(&xhci->op_regs->status, 286 STS_FATAL, STS_FATAL, 287 XHCI_MAX_HALT_USEC); 288 if (!err) 289 xhci_info(xhci, "Fault detected\n"); 290 } 291 292 #ifdef CONFIG_USB_PCI 293 /* 294 * Set up MSI 295 */ 296 static int xhci_setup_msi(struct xhci_hcd *xhci) 297 { 298 int ret; 299 /* 300 * TODO:Check with MSI Soc for sysdev 301 */ 302 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 303 304 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 305 if (ret < 0) { 306 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 307 "failed to allocate MSI entry"); 308 return ret; 309 } 310 311 ret = request_irq(pdev->irq, xhci_msi_irq, 312 0, "xhci_hcd", xhci_to_hcd(xhci)); 313 if (ret) { 314 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 315 "disable MSI interrupt"); 316 pci_free_irq_vectors(pdev); 317 } 318 319 return ret; 320 } 321 322 /* 323 * Set up MSI-X 324 */ 325 static int xhci_setup_msix(struct xhci_hcd *xhci) 326 { 327 int i, ret = 0; 328 struct usb_hcd *hcd = xhci_to_hcd(xhci); 329 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 330 331 /* 332 * calculate number of msi-x vectors supported. 333 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 334 * with max number of interrupters based on the xhci HCSPARAMS1. 335 * - num_online_cpus: maximum msi-x vectors per CPUs core. 336 * Add additional 1 vector to ensure always available interrupt. 337 */ 338 xhci->msix_count = min(num_online_cpus() + 1, 339 HCS_MAX_INTRS(xhci->hcs_params1)); 340 341 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 342 PCI_IRQ_MSIX); 343 if (ret < 0) { 344 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 345 "Failed to enable MSI-X"); 346 return ret; 347 } 348 349 for (i = 0; i < xhci->msix_count; i++) { 350 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 351 "xhci_hcd", xhci_to_hcd(xhci)); 352 if (ret) 353 goto disable_msix; 354 } 355 356 hcd->msix_enabled = 1; 357 return ret; 358 359 disable_msix: 360 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 361 while (--i >= 0) 362 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 363 pci_free_irq_vectors(pdev); 364 return ret; 365 } 366 367 /* Free any IRQs and disable MSI-X */ 368 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 369 { 370 struct usb_hcd *hcd = xhci_to_hcd(xhci); 371 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 372 373 if (xhci->quirks & XHCI_PLAT) 374 return; 375 376 /* return if using legacy interrupt */ 377 if (hcd->irq > 0) 378 return; 379 380 if (hcd->msix_enabled) { 381 int i; 382 383 for (i = 0; i < xhci->msix_count; i++) 384 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 385 } else { 386 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 387 } 388 389 pci_free_irq_vectors(pdev); 390 hcd->msix_enabled = 0; 391 } 392 393 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 394 { 395 struct usb_hcd *hcd = xhci_to_hcd(xhci); 396 397 if (hcd->msix_enabled) { 398 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 399 int i; 400 401 for (i = 0; i < xhci->msix_count; i++) 402 synchronize_irq(pci_irq_vector(pdev, i)); 403 } 404 } 405 406 static int xhci_try_enable_msi(struct usb_hcd *hcd) 407 { 408 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 409 struct pci_dev *pdev; 410 int ret; 411 412 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 413 if (xhci->quirks & XHCI_PLAT) 414 return 0; 415 416 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 417 /* 418 * Some Fresco Logic host controllers advertise MSI, but fail to 419 * generate interrupts. Don't even try to enable MSI. 420 */ 421 if (xhci->quirks & XHCI_BROKEN_MSI) 422 goto legacy_irq; 423 424 /* unregister the legacy interrupt */ 425 if (hcd->irq) 426 free_irq(hcd->irq, hcd); 427 hcd->irq = 0; 428 429 ret = xhci_setup_msix(xhci); 430 if (ret) 431 /* fall back to msi*/ 432 ret = xhci_setup_msi(xhci); 433 434 if (!ret) { 435 hcd->msi_enabled = 1; 436 return 0; 437 } 438 439 if (!pdev->irq) { 440 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 441 return -EINVAL; 442 } 443 444 legacy_irq: 445 if (!strlen(hcd->irq_descr)) 446 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 447 hcd->driver->description, hcd->self.busnum); 448 449 /* fall back to legacy interrupt*/ 450 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 451 hcd->irq_descr, hcd); 452 if (ret) { 453 xhci_err(xhci, "request interrupt %d failed\n", 454 pdev->irq); 455 return ret; 456 } 457 hcd->irq = pdev->irq; 458 return 0; 459 } 460 461 #else 462 463 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 464 { 465 return 0; 466 } 467 468 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 469 { 470 } 471 472 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 473 { 474 } 475 476 #endif 477 478 static void compliance_mode_recovery(struct timer_list *t) 479 { 480 struct xhci_hcd *xhci; 481 struct usb_hcd *hcd; 482 struct xhci_hub *rhub; 483 u32 temp; 484 int i; 485 486 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 487 rhub = &xhci->usb3_rhub; 488 489 for (i = 0; i < rhub->num_ports; i++) { 490 temp = readl(rhub->ports[i]->addr); 491 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 492 /* 493 * Compliance Mode Detected. Letting USB Core 494 * handle the Warm Reset 495 */ 496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 497 "Compliance mode detected->port %d", 498 i + 1); 499 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 500 "Attempting compliance mode recovery"); 501 hcd = xhci->shared_hcd; 502 503 if (hcd->state == HC_STATE_SUSPENDED) 504 usb_hcd_resume_root_hub(hcd); 505 506 usb_hcd_poll_rh_status(hcd); 507 } 508 } 509 510 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 511 mod_timer(&xhci->comp_mode_recovery_timer, 512 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 513 } 514 515 /* 516 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 517 * that causes ports behind that hardware to enter compliance mode sometimes. 518 * The quirk creates a timer that polls every 2 seconds the link state of 519 * each host controller's port and recovers it by issuing a Warm reset 520 * if Compliance mode is detected, otherwise the port will become "dead" (no 521 * device connections or disconnections will be detected anymore). Becasue no 522 * status event is generated when entering compliance mode (per xhci spec), 523 * this quirk is needed on systems that have the failing hardware installed. 524 */ 525 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 526 { 527 xhci->port_status_u0 = 0; 528 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 529 0); 530 xhci->comp_mode_recovery_timer.expires = jiffies + 531 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 532 533 add_timer(&xhci->comp_mode_recovery_timer); 534 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 535 "Compliance mode recovery timer initialized"); 536 } 537 538 /* 539 * This function identifies the systems that have installed the SN65LVPE502CP 540 * USB3.0 re-driver and that need the Compliance Mode Quirk. 541 * Systems: 542 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 543 */ 544 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 545 { 546 const char *dmi_product_name, *dmi_sys_vendor; 547 548 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 549 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 550 if (!dmi_product_name || !dmi_sys_vendor) 551 return false; 552 553 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 554 return false; 555 556 if (strstr(dmi_product_name, "Z420") || 557 strstr(dmi_product_name, "Z620") || 558 strstr(dmi_product_name, "Z820") || 559 strstr(dmi_product_name, "Z1 Workstation")) 560 return true; 561 562 return false; 563 } 564 565 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 566 { 567 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 568 } 569 570 571 /* 572 * Initialize memory for HCD and xHC (one-time init). 573 * 574 * Program the PAGESIZE register, initialize the device context array, create 575 * device contexts (?), set up a command ring segment (or two?), create event 576 * ring (one for now). 577 */ 578 static int xhci_init(struct usb_hcd *hcd) 579 { 580 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 581 int retval = 0; 582 583 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 584 spin_lock_init(&xhci->lock); 585 if (xhci->hci_version == 0x95 && link_quirk) { 586 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 587 "QUIRK: Not clearing Link TRB chain bits."); 588 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 589 } else { 590 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 591 "xHCI doesn't need link TRB QUIRK"); 592 } 593 retval = xhci_mem_init(xhci, GFP_KERNEL); 594 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 595 596 /* Initializing Compliance Mode Recovery Data If Needed */ 597 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 598 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 599 compliance_mode_recovery_timer_init(xhci); 600 } 601 602 return retval; 603 } 604 605 /*-------------------------------------------------------------------------*/ 606 607 608 static int xhci_run_finished(struct xhci_hcd *xhci) 609 { 610 if (xhci_start(xhci)) { 611 xhci_halt(xhci); 612 return -ENODEV; 613 } 614 xhci->shared_hcd->state = HC_STATE_RUNNING; 615 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 616 617 if (xhci->quirks & XHCI_NEC_HOST) 618 xhci_ring_cmd_db(xhci); 619 620 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 621 "Finished xhci_run for USB3 roothub"); 622 return 0; 623 } 624 625 /* 626 * Start the HC after it was halted. 627 * 628 * This function is called by the USB core when the HC driver is added. 629 * Its opposite is xhci_stop(). 630 * 631 * xhci_init() must be called once before this function can be called. 632 * Reset the HC, enable device slot contexts, program DCBAAP, and 633 * set command ring pointer and event ring pointer. 634 * 635 * Setup MSI-X vectors and enable interrupts. 636 */ 637 int xhci_run(struct usb_hcd *hcd) 638 { 639 u32 temp; 640 u64 temp_64; 641 int ret; 642 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 643 644 /* Start the xHCI host controller running only after the USB 2.0 roothub 645 * is setup. 646 */ 647 648 hcd->uses_new_polling = 1; 649 if (!usb_hcd_is_primary_hcd(hcd)) 650 return xhci_run_finished(xhci); 651 652 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 653 654 ret = xhci_try_enable_msi(hcd); 655 if (ret) 656 return ret; 657 658 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 659 temp_64 &= ~ERST_PTR_MASK; 660 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 661 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 662 663 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 664 "// Set the interrupt modulation register"); 665 temp = readl(&xhci->ir_set->irq_control); 666 temp &= ~ER_IRQ_INTERVAL_MASK; 667 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 668 writel(temp, &xhci->ir_set->irq_control); 669 670 /* Set the HCD state before we enable the irqs */ 671 temp = readl(&xhci->op_regs->command); 672 temp |= (CMD_EIE); 673 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 674 "// Enable interrupts, cmd = 0x%x.", temp); 675 writel(temp, &xhci->op_regs->command); 676 677 temp = readl(&xhci->ir_set->irq_pending); 678 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 679 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 680 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 681 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 682 683 if (xhci->quirks & XHCI_NEC_HOST) { 684 struct xhci_command *command; 685 686 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 687 if (!command) 688 return -ENOMEM; 689 690 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 691 TRB_TYPE(TRB_NEC_GET_FW)); 692 if (ret) 693 xhci_free_command(xhci, command); 694 } 695 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 696 "Finished xhci_run for USB2 roothub"); 697 698 xhci_dbc_init(xhci); 699 700 xhci_debugfs_init(xhci); 701 702 return 0; 703 } 704 EXPORT_SYMBOL_GPL(xhci_run); 705 706 /* 707 * Stop xHCI driver. 708 * 709 * This function is called by the USB core when the HC driver is removed. 710 * Its opposite is xhci_run(). 711 * 712 * Disable device contexts, disable IRQs, and quiesce the HC. 713 * Reset the HC, finish any completed transactions, and cleanup memory. 714 */ 715 static void xhci_stop(struct usb_hcd *hcd) 716 { 717 u32 temp; 718 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 719 720 mutex_lock(&xhci->mutex); 721 722 /* Only halt host and free memory after both hcds are removed */ 723 if (!usb_hcd_is_primary_hcd(hcd)) { 724 mutex_unlock(&xhci->mutex); 725 return; 726 } 727 728 xhci_dbc_exit(xhci); 729 730 spin_lock_irq(&xhci->lock); 731 xhci->xhc_state |= XHCI_STATE_HALTED; 732 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 733 xhci_halt(xhci); 734 xhci_reset(xhci); 735 spin_unlock_irq(&xhci->lock); 736 737 xhci_cleanup_msix(xhci); 738 739 /* Deleting Compliance Mode Recovery Timer */ 740 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 741 (!(xhci_all_ports_seen_u0(xhci)))) { 742 del_timer_sync(&xhci->comp_mode_recovery_timer); 743 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 744 "%s: compliance mode recovery timer deleted", 745 __func__); 746 } 747 748 if (xhci->quirks & XHCI_AMD_PLL_FIX) 749 usb_amd_dev_put(); 750 751 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 752 "// Disabling event ring interrupts"); 753 temp = readl(&xhci->op_regs->status); 754 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 755 temp = readl(&xhci->ir_set->irq_pending); 756 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 757 758 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 759 xhci_mem_cleanup(xhci); 760 xhci_debugfs_exit(xhci); 761 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 762 "xhci_stop completed - status = %x", 763 readl(&xhci->op_regs->status)); 764 mutex_unlock(&xhci->mutex); 765 } 766 767 /* 768 * Shutdown HC (not bus-specific) 769 * 770 * This is called when the machine is rebooting or halting. We assume that the 771 * machine will be powered off, and the HC's internal state will be reset. 772 * Don't bother to free memory. 773 * 774 * This will only ever be called with the main usb_hcd (the USB3 roothub). 775 */ 776 void xhci_shutdown(struct usb_hcd *hcd) 777 { 778 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 779 780 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 781 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 782 783 spin_lock_irq(&xhci->lock); 784 xhci_halt(xhci); 785 /* Workaround for spurious wakeups at shutdown with HSW */ 786 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 787 xhci_reset(xhci); 788 spin_unlock_irq(&xhci->lock); 789 790 xhci_cleanup_msix(xhci); 791 792 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 793 "xhci_shutdown completed - status = %x", 794 readl(&xhci->op_regs->status)); 795 } 796 EXPORT_SYMBOL_GPL(xhci_shutdown); 797 798 #ifdef CONFIG_PM 799 static void xhci_save_registers(struct xhci_hcd *xhci) 800 { 801 xhci->s3.command = readl(&xhci->op_regs->command); 802 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 803 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 804 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 805 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 806 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 807 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 808 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 809 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 810 } 811 812 static void xhci_restore_registers(struct xhci_hcd *xhci) 813 { 814 writel(xhci->s3.command, &xhci->op_regs->command); 815 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 816 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 817 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 818 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 819 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 820 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 821 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 822 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 823 } 824 825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 826 { 827 u64 val_64; 828 829 /* step 2: initialize command ring buffer */ 830 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 831 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 832 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 833 xhci->cmd_ring->dequeue) & 834 (u64) ~CMD_RING_RSVD_BITS) | 835 xhci->cmd_ring->cycle_state; 836 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 837 "// Setting command ring address to 0x%llx", 838 (long unsigned long) val_64); 839 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 840 } 841 842 /* 843 * The whole command ring must be cleared to zero when we suspend the host. 844 * 845 * The host doesn't save the command ring pointer in the suspend well, so we 846 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 847 * aligned, because of the reserved bits in the command ring dequeue pointer 848 * register. Therefore, we can't just set the dequeue pointer back in the 849 * middle of the ring (TRBs are 16-byte aligned). 850 */ 851 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 852 { 853 struct xhci_ring *ring; 854 struct xhci_segment *seg; 855 856 ring = xhci->cmd_ring; 857 seg = ring->deq_seg; 858 do { 859 memset(seg->trbs, 0, 860 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 861 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 862 cpu_to_le32(~TRB_CYCLE); 863 seg = seg->next; 864 } while (seg != ring->deq_seg); 865 866 /* Reset the software enqueue and dequeue pointers */ 867 ring->deq_seg = ring->first_seg; 868 ring->dequeue = ring->first_seg->trbs; 869 ring->enq_seg = ring->deq_seg; 870 ring->enqueue = ring->dequeue; 871 872 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 873 /* 874 * Ring is now zeroed, so the HW should look for change of ownership 875 * when the cycle bit is set to 1. 876 */ 877 ring->cycle_state = 1; 878 879 /* 880 * Reset the hardware dequeue pointer. 881 * Yes, this will need to be re-written after resume, but we're paranoid 882 * and want to make sure the hardware doesn't access bogus memory 883 * because, say, the BIOS or an SMI started the host without changing 884 * the command ring pointers. 885 */ 886 xhci_set_cmd_ring_deq(xhci); 887 } 888 889 /* 890 * Disable port wake bits if do_wakeup is not set. 891 * 892 * Also clear a possible internal port wake state left hanging for ports that 893 * detected termination but never successfully enumerated (trained to 0U). 894 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 895 * at enumeration clears this wake, force one here as well for unconnected ports 896 */ 897 898 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 899 struct xhci_hub *rhub, 900 bool do_wakeup) 901 { 902 unsigned long flags; 903 u32 t1, t2, portsc; 904 int i; 905 906 spin_lock_irqsave(&xhci->lock, flags); 907 908 for (i = 0; i < rhub->num_ports; i++) { 909 portsc = readl(rhub->ports[i]->addr); 910 t1 = xhci_port_state_to_neutral(portsc); 911 t2 = t1; 912 913 /* clear wake bits if do_wake is not set */ 914 if (!do_wakeup) 915 t2 &= ~PORT_WAKE_BITS; 916 917 /* Don't touch csc bit if connected or connect change is set */ 918 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 919 t2 |= PORT_CSC; 920 921 if (t1 != t2) { 922 writel(t2, rhub->ports[i]->addr); 923 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 924 rhub->hcd->self.busnum, i + 1, portsc, t2); 925 } 926 } 927 spin_unlock_irqrestore(&xhci->lock, flags); 928 } 929 930 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 931 { 932 struct xhci_port **ports; 933 int port_index; 934 u32 status; 935 u32 portsc; 936 937 status = readl(&xhci->op_regs->status); 938 if (status & STS_EINT) 939 return true; 940 /* 941 * Checking STS_EINT is not enough as there is a lag between a change 942 * bit being set and the Port Status Change Event that it generated 943 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 944 */ 945 946 port_index = xhci->usb2_rhub.num_ports; 947 ports = xhci->usb2_rhub.ports; 948 while (port_index--) { 949 portsc = readl(ports[port_index]->addr); 950 if (portsc & PORT_CHANGE_MASK || 951 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 952 return true; 953 } 954 port_index = xhci->usb3_rhub.num_ports; 955 ports = xhci->usb3_rhub.ports; 956 while (port_index--) { 957 portsc = readl(ports[port_index]->addr); 958 if (portsc & PORT_CHANGE_MASK || 959 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 960 return true; 961 } 962 return false; 963 } 964 965 /* 966 * Stop HC (not bus-specific) 967 * 968 * This is called when the machine transition into S3/S4 mode. 969 * 970 */ 971 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 972 { 973 int rc = 0; 974 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 975 struct usb_hcd *hcd = xhci_to_hcd(xhci); 976 u32 command; 977 u32 res; 978 979 if (!hcd->state) 980 return 0; 981 982 if (hcd->state != HC_STATE_SUSPENDED || 983 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 984 return -EINVAL; 985 986 /* Clear root port wake on bits if wakeup not allowed. */ 987 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 988 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 989 990 if (!HCD_HW_ACCESSIBLE(hcd)) 991 return 0; 992 993 xhci_dbc_suspend(xhci); 994 995 /* Don't poll the roothubs on bus suspend. */ 996 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 997 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 998 del_timer_sync(&hcd->rh_timer); 999 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1000 del_timer_sync(&xhci->shared_hcd->rh_timer); 1001 1002 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1003 usleep_range(1000, 1500); 1004 1005 spin_lock_irq(&xhci->lock); 1006 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1007 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1008 /* step 1: stop endpoint */ 1009 /* skipped assuming that port suspend has done */ 1010 1011 /* step 2: clear Run/Stop bit */ 1012 command = readl(&xhci->op_regs->command); 1013 command &= ~CMD_RUN; 1014 writel(command, &xhci->op_regs->command); 1015 1016 /* Some chips from Fresco Logic need an extraordinary delay */ 1017 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1018 1019 if (xhci_handshake(&xhci->op_regs->status, 1020 STS_HALT, STS_HALT, delay)) { 1021 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1022 spin_unlock_irq(&xhci->lock); 1023 return -ETIMEDOUT; 1024 } 1025 xhci_clear_command_ring(xhci); 1026 1027 /* step 3: save registers */ 1028 xhci_save_registers(xhci); 1029 1030 /* step 4: set CSS flag */ 1031 command = readl(&xhci->op_regs->command); 1032 command |= CMD_CSS; 1033 writel(command, &xhci->op_regs->command); 1034 xhci->broken_suspend = 0; 1035 if (xhci_handshake(&xhci->op_regs->status, 1036 STS_SAVE, 0, 20 * 1000)) { 1037 /* 1038 * AMD SNPS xHC 3.0 occasionally does not clear the 1039 * SSS bit of USBSTS and when driver tries to poll 1040 * to see if the xHC clears BIT(8) which never happens 1041 * and driver assumes that controller is not responding 1042 * and times out. To workaround this, its good to check 1043 * if SRE and HCE bits are not set (as per xhci 1044 * Section 5.4.2) and bypass the timeout. 1045 */ 1046 res = readl(&xhci->op_regs->status); 1047 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1048 (((res & STS_SRE) == 0) && 1049 ((res & STS_HCE) == 0))) { 1050 xhci->broken_suspend = 1; 1051 } else { 1052 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1053 spin_unlock_irq(&xhci->lock); 1054 return -ETIMEDOUT; 1055 } 1056 } 1057 spin_unlock_irq(&xhci->lock); 1058 1059 /* 1060 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1061 * is about to be suspended. 1062 */ 1063 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1064 (!(xhci_all_ports_seen_u0(xhci)))) { 1065 del_timer_sync(&xhci->comp_mode_recovery_timer); 1066 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1067 "%s: compliance mode recovery timer deleted", 1068 __func__); 1069 } 1070 1071 /* step 5: remove core well power */ 1072 /* synchronize irq when using MSI-X */ 1073 xhci_msix_sync_irqs(xhci); 1074 1075 return rc; 1076 } 1077 EXPORT_SYMBOL_GPL(xhci_suspend); 1078 1079 /* 1080 * start xHC (not bus-specific) 1081 * 1082 * This is called when the machine transition from S3/S4 mode. 1083 * 1084 */ 1085 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1086 { 1087 u32 command, temp = 0; 1088 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1089 struct usb_hcd *secondary_hcd; 1090 int retval = 0; 1091 bool comp_timer_running = false; 1092 bool pending_portevent = false; 1093 1094 if (!hcd->state) 1095 return 0; 1096 1097 /* Wait a bit if either of the roothubs need to settle from the 1098 * transition into bus suspend. 1099 */ 1100 1101 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1102 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1103 msleep(100); 1104 1105 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1106 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1107 1108 spin_lock_irq(&xhci->lock); 1109 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend) 1110 hibernated = true; 1111 1112 if (!hibernated) { 1113 /* 1114 * Some controllers might lose power during suspend, so wait 1115 * for controller not ready bit to clear, just as in xHC init. 1116 */ 1117 retval = xhci_handshake(&xhci->op_regs->status, 1118 STS_CNR, 0, 10 * 1000 * 1000); 1119 if (retval) { 1120 xhci_warn(xhci, "Controller not ready at resume %d\n", 1121 retval); 1122 spin_unlock_irq(&xhci->lock); 1123 return retval; 1124 } 1125 /* step 1: restore register */ 1126 xhci_restore_registers(xhci); 1127 /* step 2: initialize command ring buffer */ 1128 xhci_set_cmd_ring_deq(xhci); 1129 /* step 3: restore state and start state*/ 1130 /* step 3: set CRS flag */ 1131 command = readl(&xhci->op_regs->command); 1132 command |= CMD_CRS; 1133 writel(command, &xhci->op_regs->command); 1134 /* 1135 * Some controllers take up to 55+ ms to complete the controller 1136 * restore so setting the timeout to 100ms. Xhci specification 1137 * doesn't mention any timeout value. 1138 */ 1139 if (xhci_handshake(&xhci->op_regs->status, 1140 STS_RESTORE, 0, 100 * 1000)) { 1141 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1142 spin_unlock_irq(&xhci->lock); 1143 return -ETIMEDOUT; 1144 } 1145 temp = readl(&xhci->op_regs->status); 1146 } 1147 1148 /* If restore operation fails, re-initialize the HC during resume */ 1149 if ((temp & STS_SRE) || hibernated) { 1150 1151 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1152 !(xhci_all_ports_seen_u0(xhci))) { 1153 del_timer_sync(&xhci->comp_mode_recovery_timer); 1154 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1155 "Compliance Mode Recovery Timer deleted!"); 1156 } 1157 1158 /* Let the USB core know _both_ roothubs lost power. */ 1159 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1160 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1161 1162 xhci_dbg(xhci, "Stop HCD\n"); 1163 xhci_halt(xhci); 1164 xhci_zero_64b_regs(xhci); 1165 retval = xhci_reset(xhci); 1166 spin_unlock_irq(&xhci->lock); 1167 if (retval) 1168 return retval; 1169 xhci_cleanup_msix(xhci); 1170 1171 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1172 temp = readl(&xhci->op_regs->status); 1173 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1174 temp = readl(&xhci->ir_set->irq_pending); 1175 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1176 1177 xhci_dbg(xhci, "cleaning up memory\n"); 1178 xhci_mem_cleanup(xhci); 1179 xhci_debugfs_exit(xhci); 1180 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1181 readl(&xhci->op_regs->status)); 1182 1183 /* USB core calls the PCI reinit and start functions twice: 1184 * first with the primary HCD, and then with the secondary HCD. 1185 * If we don't do the same, the host will never be started. 1186 */ 1187 if (!usb_hcd_is_primary_hcd(hcd)) 1188 secondary_hcd = hcd; 1189 else 1190 secondary_hcd = xhci->shared_hcd; 1191 1192 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1193 retval = xhci_init(hcd->primary_hcd); 1194 if (retval) 1195 return retval; 1196 comp_timer_running = true; 1197 1198 xhci_dbg(xhci, "Start the primary HCD\n"); 1199 retval = xhci_run(hcd->primary_hcd); 1200 if (!retval) { 1201 xhci_dbg(xhci, "Start the secondary HCD\n"); 1202 retval = xhci_run(secondary_hcd); 1203 } 1204 hcd->state = HC_STATE_SUSPENDED; 1205 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1206 goto done; 1207 } 1208 1209 /* step 4: set Run/Stop bit */ 1210 command = readl(&xhci->op_regs->command); 1211 command |= CMD_RUN; 1212 writel(command, &xhci->op_regs->command); 1213 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1214 0, 250 * 1000); 1215 1216 /* step 5: walk topology and initialize portsc, 1217 * portpmsc and portli 1218 */ 1219 /* this is done in bus_resume */ 1220 1221 /* step 6: restart each of the previously 1222 * Running endpoints by ringing their doorbells 1223 */ 1224 1225 spin_unlock_irq(&xhci->lock); 1226 1227 xhci_dbc_resume(xhci); 1228 1229 done: 1230 if (retval == 0) { 1231 /* 1232 * Resume roothubs only if there are pending events. 1233 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1234 * the first wake signalling failed, give it that chance. 1235 */ 1236 pending_portevent = xhci_pending_portevent(xhci); 1237 if (!pending_portevent) { 1238 msleep(120); 1239 pending_portevent = xhci_pending_portevent(xhci); 1240 } 1241 1242 if (pending_portevent) { 1243 usb_hcd_resume_root_hub(xhci->shared_hcd); 1244 usb_hcd_resume_root_hub(hcd); 1245 } 1246 } 1247 /* 1248 * If system is subject to the Quirk, Compliance Mode Timer needs to 1249 * be re-initialized Always after a system resume. Ports are subject 1250 * to suffer the Compliance Mode issue again. It doesn't matter if 1251 * ports have entered previously to U0 before system's suspension. 1252 */ 1253 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1254 compliance_mode_recovery_timer_init(xhci); 1255 1256 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1257 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1258 1259 /* Re-enable port polling. */ 1260 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1261 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1262 usb_hcd_poll_rh_status(xhci->shared_hcd); 1263 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1264 usb_hcd_poll_rh_status(hcd); 1265 1266 return retval; 1267 } 1268 EXPORT_SYMBOL_GPL(xhci_resume); 1269 #endif /* CONFIG_PM */ 1270 1271 /*-------------------------------------------------------------------------*/ 1272 1273 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1274 { 1275 void *temp; 1276 int ret = 0; 1277 unsigned int buf_len; 1278 enum dma_data_direction dir; 1279 1280 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1281 buf_len = urb->transfer_buffer_length; 1282 1283 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1284 dev_to_node(hcd->self.sysdev)); 1285 1286 if (usb_urb_dir_out(urb)) 1287 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1288 temp, buf_len, 0); 1289 1290 urb->transfer_buffer = temp; 1291 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1292 urb->transfer_buffer, 1293 urb->transfer_buffer_length, 1294 dir); 1295 1296 if (dma_mapping_error(hcd->self.sysdev, 1297 urb->transfer_dma)) { 1298 ret = -EAGAIN; 1299 kfree(temp); 1300 } else { 1301 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1302 } 1303 1304 return ret; 1305 } 1306 1307 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1308 struct urb *urb) 1309 { 1310 bool ret = false; 1311 unsigned int i; 1312 unsigned int len = 0; 1313 unsigned int trb_size; 1314 unsigned int max_pkt; 1315 struct scatterlist *sg; 1316 struct scatterlist *tail_sg; 1317 1318 tail_sg = urb->sg; 1319 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1320 1321 if (!urb->num_sgs) 1322 return ret; 1323 1324 if (urb->dev->speed >= USB_SPEED_SUPER) 1325 trb_size = TRB_CACHE_SIZE_SS; 1326 else 1327 trb_size = TRB_CACHE_SIZE_HS; 1328 1329 if (urb->transfer_buffer_length != 0 && 1330 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1331 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1332 len = len + sg->length; 1333 if (i > trb_size - 2) { 1334 len = len - tail_sg->length; 1335 if (len < max_pkt) { 1336 ret = true; 1337 break; 1338 } 1339 1340 tail_sg = sg_next(tail_sg); 1341 } 1342 } 1343 } 1344 return ret; 1345 } 1346 1347 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1348 { 1349 unsigned int len; 1350 unsigned int buf_len; 1351 enum dma_data_direction dir; 1352 1353 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1354 1355 buf_len = urb->transfer_buffer_length; 1356 1357 if (IS_ENABLED(CONFIG_HAS_DMA) && 1358 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1359 dma_unmap_single(hcd->self.sysdev, 1360 urb->transfer_dma, 1361 urb->transfer_buffer_length, 1362 dir); 1363 1364 if (usb_urb_dir_in(urb)) { 1365 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1366 urb->transfer_buffer, 1367 buf_len, 1368 0); 1369 if (len != buf_len) { 1370 xhci_dbg(hcd_to_xhci(hcd), 1371 "Copy from tmp buf to urb sg list failed\n"); 1372 urb->actual_length = len; 1373 } 1374 } 1375 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1376 kfree(urb->transfer_buffer); 1377 urb->transfer_buffer = NULL; 1378 } 1379 1380 /* 1381 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1382 * we'll copy the actual data into the TRB address register. This is limited to 1383 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1384 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1385 */ 1386 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1387 gfp_t mem_flags) 1388 { 1389 struct xhci_hcd *xhci; 1390 1391 xhci = hcd_to_xhci(hcd); 1392 1393 if (xhci_urb_suitable_for_idt(urb)) 1394 return 0; 1395 1396 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1397 if (xhci_urb_temp_buffer_required(hcd, urb)) 1398 return xhci_map_temp_buffer(hcd, urb); 1399 } 1400 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1401 } 1402 1403 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1404 { 1405 struct xhci_hcd *xhci; 1406 bool unmap_temp_buf = false; 1407 1408 xhci = hcd_to_xhci(hcd); 1409 1410 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1411 unmap_temp_buf = true; 1412 1413 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1414 xhci_unmap_temp_buf(hcd, urb); 1415 else 1416 usb_hcd_unmap_urb_for_dma(hcd, urb); 1417 } 1418 1419 /** 1420 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1421 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1422 * value to right shift 1 for the bitmask. 1423 * 1424 * Index = (epnum * 2) + direction - 1, 1425 * where direction = 0 for OUT, 1 for IN. 1426 * For control endpoints, the IN index is used (OUT index is unused), so 1427 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1428 */ 1429 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1430 { 1431 unsigned int index; 1432 if (usb_endpoint_xfer_control(desc)) 1433 index = (unsigned int) (usb_endpoint_num(desc)*2); 1434 else 1435 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1436 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1437 return index; 1438 } 1439 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1440 1441 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1442 * address from the XHCI endpoint index. 1443 */ 1444 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1445 { 1446 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1447 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1448 return direction | number; 1449 } 1450 1451 /* Find the flag for this endpoint (for use in the control context). Use the 1452 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1453 * bit 1, etc. 1454 */ 1455 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1456 { 1457 return 1 << (xhci_get_endpoint_index(desc) + 1); 1458 } 1459 1460 /* Compute the last valid endpoint context index. Basically, this is the 1461 * endpoint index plus one. For slot contexts with more than valid endpoint, 1462 * we find the most significant bit set in the added contexts flags. 1463 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1464 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1465 */ 1466 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1467 { 1468 return fls(added_ctxs) - 1; 1469 } 1470 1471 /* Returns 1 if the arguments are OK; 1472 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1473 */ 1474 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1475 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1476 const char *func) { 1477 struct xhci_hcd *xhci; 1478 struct xhci_virt_device *virt_dev; 1479 1480 if (!hcd || (check_ep && !ep) || !udev) { 1481 pr_debug("xHCI %s called with invalid args\n", func); 1482 return -EINVAL; 1483 } 1484 if (!udev->parent) { 1485 pr_debug("xHCI %s called for root hub\n", func); 1486 return 0; 1487 } 1488 1489 xhci = hcd_to_xhci(hcd); 1490 if (check_virt_dev) { 1491 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1492 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1493 func); 1494 return -EINVAL; 1495 } 1496 1497 virt_dev = xhci->devs[udev->slot_id]; 1498 if (virt_dev->udev != udev) { 1499 xhci_dbg(xhci, "xHCI %s called with udev and " 1500 "virt_dev does not match\n", func); 1501 return -EINVAL; 1502 } 1503 } 1504 1505 if (xhci->xhc_state & XHCI_STATE_HALTED) 1506 return -ENODEV; 1507 1508 return 1; 1509 } 1510 1511 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1512 struct usb_device *udev, struct xhci_command *command, 1513 bool ctx_change, bool must_succeed); 1514 1515 /* 1516 * Full speed devices may have a max packet size greater than 8 bytes, but the 1517 * USB core doesn't know that until it reads the first 8 bytes of the 1518 * descriptor. If the usb_device's max packet size changes after that point, 1519 * we need to issue an evaluate context command and wait on it. 1520 */ 1521 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1522 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1523 { 1524 struct xhci_container_ctx *out_ctx; 1525 struct xhci_input_control_ctx *ctrl_ctx; 1526 struct xhci_ep_ctx *ep_ctx; 1527 struct xhci_command *command; 1528 int max_packet_size; 1529 int hw_max_packet_size; 1530 int ret = 0; 1531 1532 out_ctx = xhci->devs[slot_id]->out_ctx; 1533 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1534 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1535 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1536 if (hw_max_packet_size != max_packet_size) { 1537 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1538 "Max Packet Size for ep 0 changed."); 1539 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1540 "Max packet size in usb_device = %d", 1541 max_packet_size); 1542 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1543 "Max packet size in xHCI HW = %d", 1544 hw_max_packet_size); 1545 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1546 "Issuing evaluate context command."); 1547 1548 /* Set up the input context flags for the command */ 1549 /* FIXME: This won't work if a non-default control endpoint 1550 * changes max packet sizes. 1551 */ 1552 1553 command = xhci_alloc_command(xhci, true, mem_flags); 1554 if (!command) 1555 return -ENOMEM; 1556 1557 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1558 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1559 if (!ctrl_ctx) { 1560 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1561 __func__); 1562 ret = -ENOMEM; 1563 goto command_cleanup; 1564 } 1565 /* Set up the modified control endpoint 0 */ 1566 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1567 xhci->devs[slot_id]->out_ctx, ep_index); 1568 1569 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1570 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1571 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1572 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1573 1574 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1575 ctrl_ctx->drop_flags = 0; 1576 1577 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1578 true, false); 1579 1580 /* Clean up the input context for later use by bandwidth 1581 * functions. 1582 */ 1583 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1584 command_cleanup: 1585 kfree(command->completion); 1586 kfree(command); 1587 } 1588 return ret; 1589 } 1590 1591 /* 1592 * non-error returns are a promise to giveback() the urb later 1593 * we drop ownership so next owner (or urb unlink) can get it 1594 */ 1595 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1596 { 1597 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1598 unsigned long flags; 1599 int ret = 0; 1600 unsigned int slot_id, ep_index; 1601 unsigned int *ep_state; 1602 struct urb_priv *urb_priv; 1603 int num_tds; 1604 1605 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1606 true, true, __func__) <= 0) 1607 return -EINVAL; 1608 1609 slot_id = urb->dev->slot_id; 1610 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1611 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1612 1613 if (!HCD_HW_ACCESSIBLE(hcd)) 1614 return -ESHUTDOWN; 1615 1616 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1617 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1618 return -ENODEV; 1619 } 1620 1621 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1622 num_tds = urb->number_of_packets; 1623 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1624 urb->transfer_buffer_length > 0 && 1625 urb->transfer_flags & URB_ZERO_PACKET && 1626 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1627 num_tds = 2; 1628 else 1629 num_tds = 1; 1630 1631 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1632 if (!urb_priv) 1633 return -ENOMEM; 1634 1635 urb_priv->num_tds = num_tds; 1636 urb_priv->num_tds_done = 0; 1637 urb->hcpriv = urb_priv; 1638 1639 trace_xhci_urb_enqueue(urb); 1640 1641 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1642 /* Check to see if the max packet size for the default control 1643 * endpoint changed during FS device enumeration 1644 */ 1645 if (urb->dev->speed == USB_SPEED_FULL) { 1646 ret = xhci_check_maxpacket(xhci, slot_id, 1647 ep_index, urb, mem_flags); 1648 if (ret < 0) { 1649 xhci_urb_free_priv(urb_priv); 1650 urb->hcpriv = NULL; 1651 return ret; 1652 } 1653 } 1654 } 1655 1656 spin_lock_irqsave(&xhci->lock, flags); 1657 1658 if (xhci->xhc_state & XHCI_STATE_DYING) { 1659 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1660 urb->ep->desc.bEndpointAddress, urb); 1661 ret = -ESHUTDOWN; 1662 goto free_priv; 1663 } 1664 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1665 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1666 *ep_state); 1667 ret = -EINVAL; 1668 goto free_priv; 1669 } 1670 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1671 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1672 ret = -EINVAL; 1673 goto free_priv; 1674 } 1675 1676 switch (usb_endpoint_type(&urb->ep->desc)) { 1677 1678 case USB_ENDPOINT_XFER_CONTROL: 1679 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1680 slot_id, ep_index); 1681 break; 1682 case USB_ENDPOINT_XFER_BULK: 1683 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1684 slot_id, ep_index); 1685 break; 1686 case USB_ENDPOINT_XFER_INT: 1687 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1688 slot_id, ep_index); 1689 break; 1690 case USB_ENDPOINT_XFER_ISOC: 1691 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1692 slot_id, ep_index); 1693 } 1694 1695 if (ret) { 1696 free_priv: 1697 xhci_urb_free_priv(urb_priv); 1698 urb->hcpriv = NULL; 1699 } 1700 spin_unlock_irqrestore(&xhci->lock, flags); 1701 return ret; 1702 } 1703 1704 /* 1705 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1706 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1707 * should pick up where it left off in the TD, unless a Set Transfer Ring 1708 * Dequeue Pointer is issued. 1709 * 1710 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1711 * the ring. Since the ring is a contiguous structure, they can't be physically 1712 * removed. Instead, there are two options: 1713 * 1714 * 1) If the HC is in the middle of processing the URB to be canceled, we 1715 * simply move the ring's dequeue pointer past those TRBs using the Set 1716 * Transfer Ring Dequeue Pointer command. This will be the common case, 1717 * when drivers timeout on the last submitted URB and attempt to cancel. 1718 * 1719 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1720 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1721 * HC will need to invalidate the any TRBs it has cached after the stop 1722 * endpoint command, as noted in the xHCI 0.95 errata. 1723 * 1724 * 3) The TD may have completed by the time the Stop Endpoint Command 1725 * completes, so software needs to handle that case too. 1726 * 1727 * This function should protect against the TD enqueueing code ringing the 1728 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1729 * It also needs to account for multiple cancellations on happening at the same 1730 * time for the same endpoint. 1731 * 1732 * Note that this function can be called in any context, or so says 1733 * usb_hcd_unlink_urb() 1734 */ 1735 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1736 { 1737 unsigned long flags; 1738 int ret, i; 1739 u32 temp; 1740 struct xhci_hcd *xhci; 1741 struct urb_priv *urb_priv; 1742 struct xhci_td *td; 1743 unsigned int ep_index; 1744 struct xhci_ring *ep_ring; 1745 struct xhci_virt_ep *ep; 1746 struct xhci_command *command; 1747 struct xhci_virt_device *vdev; 1748 1749 xhci = hcd_to_xhci(hcd); 1750 spin_lock_irqsave(&xhci->lock, flags); 1751 1752 trace_xhci_urb_dequeue(urb); 1753 1754 /* Make sure the URB hasn't completed or been unlinked already */ 1755 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1756 if (ret) 1757 goto done; 1758 1759 /* give back URB now if we can't queue it for cancel */ 1760 vdev = xhci->devs[urb->dev->slot_id]; 1761 urb_priv = urb->hcpriv; 1762 if (!vdev || !urb_priv) 1763 goto err_giveback; 1764 1765 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1766 ep = &vdev->eps[ep_index]; 1767 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1768 if (!ep || !ep_ring) 1769 goto err_giveback; 1770 1771 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1772 temp = readl(&xhci->op_regs->status); 1773 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1774 xhci_hc_died(xhci); 1775 goto done; 1776 } 1777 1778 /* 1779 * check ring is not re-allocated since URB was enqueued. If it is, then 1780 * make sure none of the ring related pointers in this URB private data 1781 * are touched, such as td_list, otherwise we overwrite freed data 1782 */ 1783 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1784 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1785 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1786 td = &urb_priv->td[i]; 1787 if (!list_empty(&td->cancelled_td_list)) 1788 list_del_init(&td->cancelled_td_list); 1789 } 1790 goto err_giveback; 1791 } 1792 1793 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1794 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1795 "HC halted, freeing TD manually."); 1796 for (i = urb_priv->num_tds_done; 1797 i < urb_priv->num_tds; 1798 i++) { 1799 td = &urb_priv->td[i]; 1800 if (!list_empty(&td->td_list)) 1801 list_del_init(&td->td_list); 1802 if (!list_empty(&td->cancelled_td_list)) 1803 list_del_init(&td->cancelled_td_list); 1804 } 1805 goto err_giveback; 1806 } 1807 1808 i = urb_priv->num_tds_done; 1809 if (i < urb_priv->num_tds) 1810 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1811 "Cancel URB %p, dev %s, ep 0x%x, " 1812 "starting at offset 0x%llx", 1813 urb, urb->dev->devpath, 1814 urb->ep->desc.bEndpointAddress, 1815 (unsigned long long) xhci_trb_virt_to_dma( 1816 urb_priv->td[i].start_seg, 1817 urb_priv->td[i].first_trb)); 1818 1819 for (; i < urb_priv->num_tds; i++) { 1820 td = &urb_priv->td[i]; 1821 /* TD can already be on cancelled list if ep halted on it */ 1822 if (list_empty(&td->cancelled_td_list)) { 1823 td->cancel_status = TD_DIRTY; 1824 list_add_tail(&td->cancelled_td_list, 1825 &ep->cancelled_td_list); 1826 } 1827 } 1828 1829 /* Queue a stop endpoint command, but only if this is 1830 * the first cancellation to be handled. 1831 */ 1832 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1833 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1834 if (!command) { 1835 ret = -ENOMEM; 1836 goto done; 1837 } 1838 ep->ep_state |= EP_STOP_CMD_PENDING; 1839 ep->stop_cmd_timer.expires = jiffies + 1840 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1841 add_timer(&ep->stop_cmd_timer); 1842 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1843 ep_index, 0); 1844 xhci_ring_cmd_db(xhci); 1845 } 1846 done: 1847 spin_unlock_irqrestore(&xhci->lock, flags); 1848 return ret; 1849 1850 err_giveback: 1851 if (urb_priv) 1852 xhci_urb_free_priv(urb_priv); 1853 usb_hcd_unlink_urb_from_ep(hcd, urb); 1854 spin_unlock_irqrestore(&xhci->lock, flags); 1855 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1856 return ret; 1857 } 1858 1859 /* Drop an endpoint from a new bandwidth configuration for this device. 1860 * Only one call to this function is allowed per endpoint before 1861 * check_bandwidth() or reset_bandwidth() must be called. 1862 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1863 * add the endpoint to the schedule with possibly new parameters denoted by a 1864 * different endpoint descriptor in usb_host_endpoint. 1865 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1866 * not allowed. 1867 * 1868 * The USB core will not allow URBs to be queued to an endpoint that is being 1869 * disabled, so there's no need for mutual exclusion to protect 1870 * the xhci->devs[slot_id] structure. 1871 */ 1872 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1873 struct usb_host_endpoint *ep) 1874 { 1875 struct xhci_hcd *xhci; 1876 struct xhci_container_ctx *in_ctx, *out_ctx; 1877 struct xhci_input_control_ctx *ctrl_ctx; 1878 unsigned int ep_index; 1879 struct xhci_ep_ctx *ep_ctx; 1880 u32 drop_flag; 1881 u32 new_add_flags, new_drop_flags; 1882 int ret; 1883 1884 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1885 if (ret <= 0) 1886 return ret; 1887 xhci = hcd_to_xhci(hcd); 1888 if (xhci->xhc_state & XHCI_STATE_DYING) 1889 return -ENODEV; 1890 1891 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1892 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1893 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1894 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1895 __func__, drop_flag); 1896 return 0; 1897 } 1898 1899 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1900 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1901 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1902 if (!ctrl_ctx) { 1903 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1904 __func__); 1905 return 0; 1906 } 1907 1908 ep_index = xhci_get_endpoint_index(&ep->desc); 1909 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1910 /* If the HC already knows the endpoint is disabled, 1911 * or the HCD has noted it is disabled, ignore this request 1912 */ 1913 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1914 le32_to_cpu(ctrl_ctx->drop_flags) & 1915 xhci_get_endpoint_flag(&ep->desc)) { 1916 /* Do not warn when called after a usb_device_reset */ 1917 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1918 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1919 __func__, ep); 1920 return 0; 1921 } 1922 1923 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1924 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1925 1926 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1927 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1928 1929 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1930 1931 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1932 1933 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1934 (unsigned int) ep->desc.bEndpointAddress, 1935 udev->slot_id, 1936 (unsigned int) new_drop_flags, 1937 (unsigned int) new_add_flags); 1938 return 0; 1939 } 1940 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1941 1942 /* Add an endpoint to a new possible bandwidth configuration for this device. 1943 * Only one call to this function is allowed per endpoint before 1944 * check_bandwidth() or reset_bandwidth() must be called. 1945 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1946 * add the endpoint to the schedule with possibly new parameters denoted by a 1947 * different endpoint descriptor in usb_host_endpoint. 1948 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1949 * not allowed. 1950 * 1951 * The USB core will not allow URBs to be queued to an endpoint until the 1952 * configuration or alt setting is installed in the device, so there's no need 1953 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1954 */ 1955 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1956 struct usb_host_endpoint *ep) 1957 { 1958 struct xhci_hcd *xhci; 1959 struct xhci_container_ctx *in_ctx; 1960 unsigned int ep_index; 1961 struct xhci_input_control_ctx *ctrl_ctx; 1962 struct xhci_ep_ctx *ep_ctx; 1963 u32 added_ctxs; 1964 u32 new_add_flags, new_drop_flags; 1965 struct xhci_virt_device *virt_dev; 1966 int ret = 0; 1967 1968 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1969 if (ret <= 0) { 1970 /* So we won't queue a reset ep command for a root hub */ 1971 ep->hcpriv = NULL; 1972 return ret; 1973 } 1974 xhci = hcd_to_xhci(hcd); 1975 if (xhci->xhc_state & XHCI_STATE_DYING) 1976 return -ENODEV; 1977 1978 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1979 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1980 /* FIXME when we have to issue an evaluate endpoint command to 1981 * deal with ep0 max packet size changing once we get the 1982 * descriptors 1983 */ 1984 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1985 __func__, added_ctxs); 1986 return 0; 1987 } 1988 1989 virt_dev = xhci->devs[udev->slot_id]; 1990 in_ctx = virt_dev->in_ctx; 1991 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1992 if (!ctrl_ctx) { 1993 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1994 __func__); 1995 return 0; 1996 } 1997 1998 ep_index = xhci_get_endpoint_index(&ep->desc); 1999 /* If this endpoint is already in use, and the upper layers are trying 2000 * to add it again without dropping it, reject the addition. 2001 */ 2002 if (virt_dev->eps[ep_index].ring && 2003 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 2004 xhci_warn(xhci, "Trying to add endpoint 0x%x " 2005 "without dropping it.\n", 2006 (unsigned int) ep->desc.bEndpointAddress); 2007 return -EINVAL; 2008 } 2009 2010 /* If the HCD has already noted the endpoint is enabled, 2011 * ignore this request. 2012 */ 2013 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2014 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2015 __func__, ep); 2016 return 0; 2017 } 2018 2019 /* 2020 * Configuration and alternate setting changes must be done in 2021 * process context, not interrupt context (or so documenation 2022 * for usb_set_interface() and usb_set_configuration() claim). 2023 */ 2024 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2025 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2026 __func__, ep->desc.bEndpointAddress); 2027 return -ENOMEM; 2028 } 2029 2030 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2031 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2032 2033 /* If xhci_endpoint_disable() was called for this endpoint, but the 2034 * xHC hasn't been notified yet through the check_bandwidth() call, 2035 * this re-adds a new state for the endpoint from the new endpoint 2036 * descriptors. We must drop and re-add this endpoint, so we leave the 2037 * drop flags alone. 2038 */ 2039 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2040 2041 /* Store the usb_device pointer for later use */ 2042 ep->hcpriv = udev; 2043 2044 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2045 trace_xhci_add_endpoint(ep_ctx); 2046 2047 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2048 (unsigned int) ep->desc.bEndpointAddress, 2049 udev->slot_id, 2050 (unsigned int) new_drop_flags, 2051 (unsigned int) new_add_flags); 2052 return 0; 2053 } 2054 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2055 2056 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2057 { 2058 struct xhci_input_control_ctx *ctrl_ctx; 2059 struct xhci_ep_ctx *ep_ctx; 2060 struct xhci_slot_ctx *slot_ctx; 2061 int i; 2062 2063 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2064 if (!ctrl_ctx) { 2065 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2066 __func__); 2067 return; 2068 } 2069 2070 /* When a device's add flag and drop flag are zero, any subsequent 2071 * configure endpoint command will leave that endpoint's state 2072 * untouched. Make sure we don't leave any old state in the input 2073 * endpoint contexts. 2074 */ 2075 ctrl_ctx->drop_flags = 0; 2076 ctrl_ctx->add_flags = 0; 2077 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2078 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2079 /* Endpoint 0 is always valid */ 2080 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2081 for (i = 1; i < 31; i++) { 2082 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2083 ep_ctx->ep_info = 0; 2084 ep_ctx->ep_info2 = 0; 2085 ep_ctx->deq = 0; 2086 ep_ctx->tx_info = 0; 2087 } 2088 } 2089 2090 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2091 struct usb_device *udev, u32 *cmd_status) 2092 { 2093 int ret; 2094 2095 switch (*cmd_status) { 2096 case COMP_COMMAND_ABORTED: 2097 case COMP_COMMAND_RING_STOPPED: 2098 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2099 ret = -ETIME; 2100 break; 2101 case COMP_RESOURCE_ERROR: 2102 dev_warn(&udev->dev, 2103 "Not enough host controller resources for new device state.\n"); 2104 ret = -ENOMEM; 2105 /* FIXME: can we allocate more resources for the HC? */ 2106 break; 2107 case COMP_BANDWIDTH_ERROR: 2108 case COMP_SECONDARY_BANDWIDTH_ERROR: 2109 dev_warn(&udev->dev, 2110 "Not enough bandwidth for new device state.\n"); 2111 ret = -ENOSPC; 2112 /* FIXME: can we go back to the old state? */ 2113 break; 2114 case COMP_TRB_ERROR: 2115 /* the HCD set up something wrong */ 2116 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2117 "add flag = 1, " 2118 "and endpoint is not disabled.\n"); 2119 ret = -EINVAL; 2120 break; 2121 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2122 dev_warn(&udev->dev, 2123 "ERROR: Incompatible device for endpoint configure command.\n"); 2124 ret = -ENODEV; 2125 break; 2126 case COMP_SUCCESS: 2127 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2128 "Successful Endpoint Configure command"); 2129 ret = 0; 2130 break; 2131 default: 2132 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2133 *cmd_status); 2134 ret = -EINVAL; 2135 break; 2136 } 2137 return ret; 2138 } 2139 2140 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2141 struct usb_device *udev, u32 *cmd_status) 2142 { 2143 int ret; 2144 2145 switch (*cmd_status) { 2146 case COMP_COMMAND_ABORTED: 2147 case COMP_COMMAND_RING_STOPPED: 2148 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2149 ret = -ETIME; 2150 break; 2151 case COMP_PARAMETER_ERROR: 2152 dev_warn(&udev->dev, 2153 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2154 ret = -EINVAL; 2155 break; 2156 case COMP_SLOT_NOT_ENABLED_ERROR: 2157 dev_warn(&udev->dev, 2158 "WARN: slot not enabled for evaluate context command.\n"); 2159 ret = -EINVAL; 2160 break; 2161 case COMP_CONTEXT_STATE_ERROR: 2162 dev_warn(&udev->dev, 2163 "WARN: invalid context state for evaluate context command.\n"); 2164 ret = -EINVAL; 2165 break; 2166 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2167 dev_warn(&udev->dev, 2168 "ERROR: Incompatible device for evaluate context command.\n"); 2169 ret = -ENODEV; 2170 break; 2171 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2172 /* Max Exit Latency too large error */ 2173 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2174 ret = -EINVAL; 2175 break; 2176 case COMP_SUCCESS: 2177 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2178 "Successful evaluate context command"); 2179 ret = 0; 2180 break; 2181 default: 2182 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2183 *cmd_status); 2184 ret = -EINVAL; 2185 break; 2186 } 2187 return ret; 2188 } 2189 2190 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2191 struct xhci_input_control_ctx *ctrl_ctx) 2192 { 2193 u32 valid_add_flags; 2194 u32 valid_drop_flags; 2195 2196 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2197 * (bit 1). The default control endpoint is added during the Address 2198 * Device command and is never removed until the slot is disabled. 2199 */ 2200 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2201 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2202 2203 /* Use hweight32 to count the number of ones in the add flags, or 2204 * number of endpoints added. Don't count endpoints that are changed 2205 * (both added and dropped). 2206 */ 2207 return hweight32(valid_add_flags) - 2208 hweight32(valid_add_flags & valid_drop_flags); 2209 } 2210 2211 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2212 struct xhci_input_control_ctx *ctrl_ctx) 2213 { 2214 u32 valid_add_flags; 2215 u32 valid_drop_flags; 2216 2217 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2218 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2219 2220 return hweight32(valid_drop_flags) - 2221 hweight32(valid_add_flags & valid_drop_flags); 2222 } 2223 2224 /* 2225 * We need to reserve the new number of endpoints before the configure endpoint 2226 * command completes. We can't subtract the dropped endpoints from the number 2227 * of active endpoints until the command completes because we can oversubscribe 2228 * the host in this case: 2229 * 2230 * - the first configure endpoint command drops more endpoints than it adds 2231 * - a second configure endpoint command that adds more endpoints is queued 2232 * - the first configure endpoint command fails, so the config is unchanged 2233 * - the second command may succeed, even though there isn't enough resources 2234 * 2235 * Must be called with xhci->lock held. 2236 */ 2237 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2238 struct xhci_input_control_ctx *ctrl_ctx) 2239 { 2240 u32 added_eps; 2241 2242 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2243 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2244 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2245 "Not enough ep ctxs: " 2246 "%u active, need to add %u, limit is %u.", 2247 xhci->num_active_eps, added_eps, 2248 xhci->limit_active_eps); 2249 return -ENOMEM; 2250 } 2251 xhci->num_active_eps += added_eps; 2252 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2253 "Adding %u ep ctxs, %u now active.", added_eps, 2254 xhci->num_active_eps); 2255 return 0; 2256 } 2257 2258 /* 2259 * The configure endpoint was failed by the xHC for some other reason, so we 2260 * need to revert the resources that failed configuration would have used. 2261 * 2262 * Must be called with xhci->lock held. 2263 */ 2264 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2265 struct xhci_input_control_ctx *ctrl_ctx) 2266 { 2267 u32 num_failed_eps; 2268 2269 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2270 xhci->num_active_eps -= num_failed_eps; 2271 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2272 "Removing %u failed ep ctxs, %u now active.", 2273 num_failed_eps, 2274 xhci->num_active_eps); 2275 } 2276 2277 /* 2278 * Now that the command has completed, clean up the active endpoint count by 2279 * subtracting out the endpoints that were dropped (but not changed). 2280 * 2281 * Must be called with xhci->lock held. 2282 */ 2283 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2284 struct xhci_input_control_ctx *ctrl_ctx) 2285 { 2286 u32 num_dropped_eps; 2287 2288 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2289 xhci->num_active_eps -= num_dropped_eps; 2290 if (num_dropped_eps) 2291 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2292 "Removing %u dropped ep ctxs, %u now active.", 2293 num_dropped_eps, 2294 xhci->num_active_eps); 2295 } 2296 2297 static unsigned int xhci_get_block_size(struct usb_device *udev) 2298 { 2299 switch (udev->speed) { 2300 case USB_SPEED_LOW: 2301 case USB_SPEED_FULL: 2302 return FS_BLOCK; 2303 case USB_SPEED_HIGH: 2304 return HS_BLOCK; 2305 case USB_SPEED_SUPER: 2306 case USB_SPEED_SUPER_PLUS: 2307 return SS_BLOCK; 2308 case USB_SPEED_UNKNOWN: 2309 case USB_SPEED_WIRELESS: 2310 default: 2311 /* Should never happen */ 2312 return 1; 2313 } 2314 } 2315 2316 static unsigned int 2317 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2318 { 2319 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2320 return LS_OVERHEAD; 2321 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2322 return FS_OVERHEAD; 2323 return HS_OVERHEAD; 2324 } 2325 2326 /* If we are changing a LS/FS device under a HS hub, 2327 * make sure (if we are activating a new TT) that the HS bus has enough 2328 * bandwidth for this new TT. 2329 */ 2330 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2331 struct xhci_virt_device *virt_dev, 2332 int old_active_eps) 2333 { 2334 struct xhci_interval_bw_table *bw_table; 2335 struct xhci_tt_bw_info *tt_info; 2336 2337 /* Find the bandwidth table for the root port this TT is attached to. */ 2338 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2339 tt_info = virt_dev->tt_info; 2340 /* If this TT already had active endpoints, the bandwidth for this TT 2341 * has already been added. Removing all periodic endpoints (and thus 2342 * making the TT enactive) will only decrease the bandwidth used. 2343 */ 2344 if (old_active_eps) 2345 return 0; 2346 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2347 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2348 return -ENOMEM; 2349 return 0; 2350 } 2351 /* Not sure why we would have no new active endpoints... 2352 * 2353 * Maybe because of an Evaluate Context change for a hub update or a 2354 * control endpoint 0 max packet size change? 2355 * FIXME: skip the bandwidth calculation in that case. 2356 */ 2357 return 0; 2358 } 2359 2360 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2361 struct xhci_virt_device *virt_dev) 2362 { 2363 unsigned int bw_reserved; 2364 2365 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2366 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2367 return -ENOMEM; 2368 2369 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2370 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2371 return -ENOMEM; 2372 2373 return 0; 2374 } 2375 2376 /* 2377 * This algorithm is a very conservative estimate of the worst-case scheduling 2378 * scenario for any one interval. The hardware dynamically schedules the 2379 * packets, so we can't tell which microframe could be the limiting factor in 2380 * the bandwidth scheduling. This only takes into account periodic endpoints. 2381 * 2382 * Obviously, we can't solve an NP complete problem to find the minimum worst 2383 * case scenario. Instead, we come up with an estimate that is no less than 2384 * the worst case bandwidth used for any one microframe, but may be an 2385 * over-estimate. 2386 * 2387 * We walk the requirements for each endpoint by interval, starting with the 2388 * smallest interval, and place packets in the schedule where there is only one 2389 * possible way to schedule packets for that interval. In order to simplify 2390 * this algorithm, we record the largest max packet size for each interval, and 2391 * assume all packets will be that size. 2392 * 2393 * For interval 0, we obviously must schedule all packets for each interval. 2394 * The bandwidth for interval 0 is just the amount of data to be transmitted 2395 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2396 * the number of packets). 2397 * 2398 * For interval 1, we have two possible microframes to schedule those packets 2399 * in. For this algorithm, if we can schedule the same number of packets for 2400 * each possible scheduling opportunity (each microframe), we will do so. The 2401 * remaining number of packets will be saved to be transmitted in the gaps in 2402 * the next interval's scheduling sequence. 2403 * 2404 * As we move those remaining packets to be scheduled with interval 2 packets, 2405 * we have to double the number of remaining packets to transmit. This is 2406 * because the intervals are actually powers of 2, and we would be transmitting 2407 * the previous interval's packets twice in this interval. We also have to be 2408 * sure that when we look at the largest max packet size for this interval, we 2409 * also look at the largest max packet size for the remaining packets and take 2410 * the greater of the two. 2411 * 2412 * The algorithm continues to evenly distribute packets in each scheduling 2413 * opportunity, and push the remaining packets out, until we get to the last 2414 * interval. Then those packets and their associated overhead are just added 2415 * to the bandwidth used. 2416 */ 2417 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2418 struct xhci_virt_device *virt_dev, 2419 int old_active_eps) 2420 { 2421 unsigned int bw_reserved; 2422 unsigned int max_bandwidth; 2423 unsigned int bw_used; 2424 unsigned int block_size; 2425 struct xhci_interval_bw_table *bw_table; 2426 unsigned int packet_size = 0; 2427 unsigned int overhead = 0; 2428 unsigned int packets_transmitted = 0; 2429 unsigned int packets_remaining = 0; 2430 unsigned int i; 2431 2432 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2433 return xhci_check_ss_bw(xhci, virt_dev); 2434 2435 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2436 max_bandwidth = HS_BW_LIMIT; 2437 /* Convert percent of bus BW reserved to blocks reserved */ 2438 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2439 } else { 2440 max_bandwidth = FS_BW_LIMIT; 2441 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2442 } 2443 2444 bw_table = virt_dev->bw_table; 2445 /* We need to translate the max packet size and max ESIT payloads into 2446 * the units the hardware uses. 2447 */ 2448 block_size = xhci_get_block_size(virt_dev->udev); 2449 2450 /* If we are manipulating a LS/FS device under a HS hub, double check 2451 * that the HS bus has enough bandwidth if we are activing a new TT. 2452 */ 2453 if (virt_dev->tt_info) { 2454 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2455 "Recalculating BW for rootport %u", 2456 virt_dev->real_port); 2457 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2458 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2459 "newly activated TT.\n"); 2460 return -ENOMEM; 2461 } 2462 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2463 "Recalculating BW for TT slot %u port %u", 2464 virt_dev->tt_info->slot_id, 2465 virt_dev->tt_info->ttport); 2466 } else { 2467 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2468 "Recalculating BW for rootport %u", 2469 virt_dev->real_port); 2470 } 2471 2472 /* Add in how much bandwidth will be used for interval zero, or the 2473 * rounded max ESIT payload + number of packets * largest overhead. 2474 */ 2475 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2476 bw_table->interval_bw[0].num_packets * 2477 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2478 2479 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2480 unsigned int bw_added; 2481 unsigned int largest_mps; 2482 unsigned int interval_overhead; 2483 2484 /* 2485 * How many packets could we transmit in this interval? 2486 * If packets didn't fit in the previous interval, we will need 2487 * to transmit that many packets twice within this interval. 2488 */ 2489 packets_remaining = 2 * packets_remaining + 2490 bw_table->interval_bw[i].num_packets; 2491 2492 /* Find the largest max packet size of this or the previous 2493 * interval. 2494 */ 2495 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2496 largest_mps = 0; 2497 else { 2498 struct xhci_virt_ep *virt_ep; 2499 struct list_head *ep_entry; 2500 2501 ep_entry = bw_table->interval_bw[i].endpoints.next; 2502 virt_ep = list_entry(ep_entry, 2503 struct xhci_virt_ep, bw_endpoint_list); 2504 /* Convert to blocks, rounding up */ 2505 largest_mps = DIV_ROUND_UP( 2506 virt_ep->bw_info.max_packet_size, 2507 block_size); 2508 } 2509 if (largest_mps > packet_size) 2510 packet_size = largest_mps; 2511 2512 /* Use the larger overhead of this or the previous interval. */ 2513 interval_overhead = xhci_get_largest_overhead( 2514 &bw_table->interval_bw[i]); 2515 if (interval_overhead > overhead) 2516 overhead = interval_overhead; 2517 2518 /* How many packets can we evenly distribute across 2519 * (1 << (i + 1)) possible scheduling opportunities? 2520 */ 2521 packets_transmitted = packets_remaining >> (i + 1); 2522 2523 /* Add in the bandwidth used for those scheduled packets */ 2524 bw_added = packets_transmitted * (overhead + packet_size); 2525 2526 /* How many packets do we have remaining to transmit? */ 2527 packets_remaining = packets_remaining % (1 << (i + 1)); 2528 2529 /* What largest max packet size should those packets have? */ 2530 /* If we've transmitted all packets, don't carry over the 2531 * largest packet size. 2532 */ 2533 if (packets_remaining == 0) { 2534 packet_size = 0; 2535 overhead = 0; 2536 } else if (packets_transmitted > 0) { 2537 /* Otherwise if we do have remaining packets, and we've 2538 * scheduled some packets in this interval, take the 2539 * largest max packet size from endpoints with this 2540 * interval. 2541 */ 2542 packet_size = largest_mps; 2543 overhead = interval_overhead; 2544 } 2545 /* Otherwise carry over packet_size and overhead from the last 2546 * time we had a remainder. 2547 */ 2548 bw_used += bw_added; 2549 if (bw_used > max_bandwidth) { 2550 xhci_warn(xhci, "Not enough bandwidth. " 2551 "Proposed: %u, Max: %u\n", 2552 bw_used, max_bandwidth); 2553 return -ENOMEM; 2554 } 2555 } 2556 /* 2557 * Ok, we know we have some packets left over after even-handedly 2558 * scheduling interval 15. We don't know which microframes they will 2559 * fit into, so we over-schedule and say they will be scheduled every 2560 * microframe. 2561 */ 2562 if (packets_remaining > 0) 2563 bw_used += overhead + packet_size; 2564 2565 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2566 unsigned int port_index = virt_dev->real_port - 1; 2567 2568 /* OK, we're manipulating a HS device attached to a 2569 * root port bandwidth domain. Include the number of active TTs 2570 * in the bandwidth used. 2571 */ 2572 bw_used += TT_HS_OVERHEAD * 2573 xhci->rh_bw[port_index].num_active_tts; 2574 } 2575 2576 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2577 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2578 "Available: %u " "percent", 2579 bw_used, max_bandwidth, bw_reserved, 2580 (max_bandwidth - bw_used - bw_reserved) * 100 / 2581 max_bandwidth); 2582 2583 bw_used += bw_reserved; 2584 if (bw_used > max_bandwidth) { 2585 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2586 bw_used, max_bandwidth); 2587 return -ENOMEM; 2588 } 2589 2590 bw_table->bw_used = bw_used; 2591 return 0; 2592 } 2593 2594 static bool xhci_is_async_ep(unsigned int ep_type) 2595 { 2596 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2597 ep_type != ISOC_IN_EP && 2598 ep_type != INT_IN_EP); 2599 } 2600 2601 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2602 { 2603 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2604 } 2605 2606 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2607 { 2608 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2609 2610 if (ep_bw->ep_interval == 0) 2611 return SS_OVERHEAD_BURST + 2612 (ep_bw->mult * ep_bw->num_packets * 2613 (SS_OVERHEAD + mps)); 2614 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2615 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2616 1 << ep_bw->ep_interval); 2617 2618 } 2619 2620 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2621 struct xhci_bw_info *ep_bw, 2622 struct xhci_interval_bw_table *bw_table, 2623 struct usb_device *udev, 2624 struct xhci_virt_ep *virt_ep, 2625 struct xhci_tt_bw_info *tt_info) 2626 { 2627 struct xhci_interval_bw *interval_bw; 2628 int normalized_interval; 2629 2630 if (xhci_is_async_ep(ep_bw->type)) 2631 return; 2632 2633 if (udev->speed >= USB_SPEED_SUPER) { 2634 if (xhci_is_sync_in_ep(ep_bw->type)) 2635 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2636 xhci_get_ss_bw_consumed(ep_bw); 2637 else 2638 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2639 xhci_get_ss_bw_consumed(ep_bw); 2640 return; 2641 } 2642 2643 /* SuperSpeed endpoints never get added to intervals in the table, so 2644 * this check is only valid for HS/FS/LS devices. 2645 */ 2646 if (list_empty(&virt_ep->bw_endpoint_list)) 2647 return; 2648 /* For LS/FS devices, we need to translate the interval expressed in 2649 * microframes to frames. 2650 */ 2651 if (udev->speed == USB_SPEED_HIGH) 2652 normalized_interval = ep_bw->ep_interval; 2653 else 2654 normalized_interval = ep_bw->ep_interval - 3; 2655 2656 if (normalized_interval == 0) 2657 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2658 interval_bw = &bw_table->interval_bw[normalized_interval]; 2659 interval_bw->num_packets -= ep_bw->num_packets; 2660 switch (udev->speed) { 2661 case USB_SPEED_LOW: 2662 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2663 break; 2664 case USB_SPEED_FULL: 2665 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2666 break; 2667 case USB_SPEED_HIGH: 2668 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2669 break; 2670 case USB_SPEED_SUPER: 2671 case USB_SPEED_SUPER_PLUS: 2672 case USB_SPEED_UNKNOWN: 2673 case USB_SPEED_WIRELESS: 2674 /* Should never happen because only LS/FS/HS endpoints will get 2675 * added to the endpoint list. 2676 */ 2677 return; 2678 } 2679 if (tt_info) 2680 tt_info->active_eps -= 1; 2681 list_del_init(&virt_ep->bw_endpoint_list); 2682 } 2683 2684 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2685 struct xhci_bw_info *ep_bw, 2686 struct xhci_interval_bw_table *bw_table, 2687 struct usb_device *udev, 2688 struct xhci_virt_ep *virt_ep, 2689 struct xhci_tt_bw_info *tt_info) 2690 { 2691 struct xhci_interval_bw *interval_bw; 2692 struct xhci_virt_ep *smaller_ep; 2693 int normalized_interval; 2694 2695 if (xhci_is_async_ep(ep_bw->type)) 2696 return; 2697 2698 if (udev->speed == USB_SPEED_SUPER) { 2699 if (xhci_is_sync_in_ep(ep_bw->type)) 2700 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2701 xhci_get_ss_bw_consumed(ep_bw); 2702 else 2703 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2704 xhci_get_ss_bw_consumed(ep_bw); 2705 return; 2706 } 2707 2708 /* For LS/FS devices, we need to translate the interval expressed in 2709 * microframes to frames. 2710 */ 2711 if (udev->speed == USB_SPEED_HIGH) 2712 normalized_interval = ep_bw->ep_interval; 2713 else 2714 normalized_interval = ep_bw->ep_interval - 3; 2715 2716 if (normalized_interval == 0) 2717 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2718 interval_bw = &bw_table->interval_bw[normalized_interval]; 2719 interval_bw->num_packets += ep_bw->num_packets; 2720 switch (udev->speed) { 2721 case USB_SPEED_LOW: 2722 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2723 break; 2724 case USB_SPEED_FULL: 2725 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2726 break; 2727 case USB_SPEED_HIGH: 2728 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2729 break; 2730 case USB_SPEED_SUPER: 2731 case USB_SPEED_SUPER_PLUS: 2732 case USB_SPEED_UNKNOWN: 2733 case USB_SPEED_WIRELESS: 2734 /* Should never happen because only LS/FS/HS endpoints will get 2735 * added to the endpoint list. 2736 */ 2737 return; 2738 } 2739 2740 if (tt_info) 2741 tt_info->active_eps += 1; 2742 /* Insert the endpoint into the list, largest max packet size first. */ 2743 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2744 bw_endpoint_list) { 2745 if (ep_bw->max_packet_size >= 2746 smaller_ep->bw_info.max_packet_size) { 2747 /* Add the new ep before the smaller endpoint */ 2748 list_add_tail(&virt_ep->bw_endpoint_list, 2749 &smaller_ep->bw_endpoint_list); 2750 return; 2751 } 2752 } 2753 /* Add the new endpoint at the end of the list. */ 2754 list_add_tail(&virt_ep->bw_endpoint_list, 2755 &interval_bw->endpoints); 2756 } 2757 2758 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2759 struct xhci_virt_device *virt_dev, 2760 int old_active_eps) 2761 { 2762 struct xhci_root_port_bw_info *rh_bw_info; 2763 if (!virt_dev->tt_info) 2764 return; 2765 2766 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2767 if (old_active_eps == 0 && 2768 virt_dev->tt_info->active_eps != 0) { 2769 rh_bw_info->num_active_tts += 1; 2770 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2771 } else if (old_active_eps != 0 && 2772 virt_dev->tt_info->active_eps == 0) { 2773 rh_bw_info->num_active_tts -= 1; 2774 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2775 } 2776 } 2777 2778 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2779 struct xhci_virt_device *virt_dev, 2780 struct xhci_container_ctx *in_ctx) 2781 { 2782 struct xhci_bw_info ep_bw_info[31]; 2783 int i; 2784 struct xhci_input_control_ctx *ctrl_ctx; 2785 int old_active_eps = 0; 2786 2787 if (virt_dev->tt_info) 2788 old_active_eps = virt_dev->tt_info->active_eps; 2789 2790 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2791 if (!ctrl_ctx) { 2792 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2793 __func__); 2794 return -ENOMEM; 2795 } 2796 2797 for (i = 0; i < 31; i++) { 2798 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2799 continue; 2800 2801 /* Make a copy of the BW info in case we need to revert this */ 2802 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2803 sizeof(ep_bw_info[i])); 2804 /* Drop the endpoint from the interval table if the endpoint is 2805 * being dropped or changed. 2806 */ 2807 if (EP_IS_DROPPED(ctrl_ctx, i)) 2808 xhci_drop_ep_from_interval_table(xhci, 2809 &virt_dev->eps[i].bw_info, 2810 virt_dev->bw_table, 2811 virt_dev->udev, 2812 &virt_dev->eps[i], 2813 virt_dev->tt_info); 2814 } 2815 /* Overwrite the information stored in the endpoints' bw_info */ 2816 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2817 for (i = 0; i < 31; i++) { 2818 /* Add any changed or added endpoints to the interval table */ 2819 if (EP_IS_ADDED(ctrl_ctx, i)) 2820 xhci_add_ep_to_interval_table(xhci, 2821 &virt_dev->eps[i].bw_info, 2822 virt_dev->bw_table, 2823 virt_dev->udev, 2824 &virt_dev->eps[i], 2825 virt_dev->tt_info); 2826 } 2827 2828 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2829 /* Ok, this fits in the bandwidth we have. 2830 * Update the number of active TTs. 2831 */ 2832 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2833 return 0; 2834 } 2835 2836 /* We don't have enough bandwidth for this, revert the stored info. */ 2837 for (i = 0; i < 31; i++) { 2838 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2839 continue; 2840 2841 /* Drop the new copies of any added or changed endpoints from 2842 * the interval table. 2843 */ 2844 if (EP_IS_ADDED(ctrl_ctx, i)) { 2845 xhci_drop_ep_from_interval_table(xhci, 2846 &virt_dev->eps[i].bw_info, 2847 virt_dev->bw_table, 2848 virt_dev->udev, 2849 &virt_dev->eps[i], 2850 virt_dev->tt_info); 2851 } 2852 /* Revert the endpoint back to its old information */ 2853 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2854 sizeof(ep_bw_info[i])); 2855 /* Add any changed or dropped endpoints back into the table */ 2856 if (EP_IS_DROPPED(ctrl_ctx, i)) 2857 xhci_add_ep_to_interval_table(xhci, 2858 &virt_dev->eps[i].bw_info, 2859 virt_dev->bw_table, 2860 virt_dev->udev, 2861 &virt_dev->eps[i], 2862 virt_dev->tt_info); 2863 } 2864 return -ENOMEM; 2865 } 2866 2867 2868 /* Issue a configure endpoint command or evaluate context command 2869 * and wait for it to finish. 2870 */ 2871 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2872 struct usb_device *udev, 2873 struct xhci_command *command, 2874 bool ctx_change, bool must_succeed) 2875 { 2876 int ret; 2877 unsigned long flags; 2878 struct xhci_input_control_ctx *ctrl_ctx; 2879 struct xhci_virt_device *virt_dev; 2880 struct xhci_slot_ctx *slot_ctx; 2881 2882 if (!command) 2883 return -EINVAL; 2884 2885 spin_lock_irqsave(&xhci->lock, flags); 2886 2887 if (xhci->xhc_state & XHCI_STATE_DYING) { 2888 spin_unlock_irqrestore(&xhci->lock, flags); 2889 return -ESHUTDOWN; 2890 } 2891 2892 virt_dev = xhci->devs[udev->slot_id]; 2893 2894 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2895 if (!ctrl_ctx) { 2896 spin_unlock_irqrestore(&xhci->lock, flags); 2897 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2898 __func__); 2899 return -ENOMEM; 2900 } 2901 2902 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2903 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2904 spin_unlock_irqrestore(&xhci->lock, flags); 2905 xhci_warn(xhci, "Not enough host resources, " 2906 "active endpoint contexts = %u\n", 2907 xhci->num_active_eps); 2908 return -ENOMEM; 2909 } 2910 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2911 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2912 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2913 xhci_free_host_resources(xhci, ctrl_ctx); 2914 spin_unlock_irqrestore(&xhci->lock, flags); 2915 xhci_warn(xhci, "Not enough bandwidth\n"); 2916 return -ENOMEM; 2917 } 2918 2919 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2920 2921 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2922 trace_xhci_configure_endpoint(slot_ctx); 2923 2924 if (!ctx_change) 2925 ret = xhci_queue_configure_endpoint(xhci, command, 2926 command->in_ctx->dma, 2927 udev->slot_id, must_succeed); 2928 else 2929 ret = xhci_queue_evaluate_context(xhci, command, 2930 command->in_ctx->dma, 2931 udev->slot_id, must_succeed); 2932 if (ret < 0) { 2933 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2934 xhci_free_host_resources(xhci, ctrl_ctx); 2935 spin_unlock_irqrestore(&xhci->lock, flags); 2936 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2937 "FIXME allocate a new ring segment"); 2938 return -ENOMEM; 2939 } 2940 xhci_ring_cmd_db(xhci); 2941 spin_unlock_irqrestore(&xhci->lock, flags); 2942 2943 /* Wait for the configure endpoint command to complete */ 2944 wait_for_completion(command->completion); 2945 2946 if (!ctx_change) 2947 ret = xhci_configure_endpoint_result(xhci, udev, 2948 &command->status); 2949 else 2950 ret = xhci_evaluate_context_result(xhci, udev, 2951 &command->status); 2952 2953 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2954 spin_lock_irqsave(&xhci->lock, flags); 2955 /* If the command failed, remove the reserved resources. 2956 * Otherwise, clean up the estimate to include dropped eps. 2957 */ 2958 if (ret) 2959 xhci_free_host_resources(xhci, ctrl_ctx); 2960 else 2961 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2962 spin_unlock_irqrestore(&xhci->lock, flags); 2963 } 2964 return ret; 2965 } 2966 2967 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2968 struct xhci_virt_device *vdev, int i) 2969 { 2970 struct xhci_virt_ep *ep = &vdev->eps[i]; 2971 2972 if (ep->ep_state & EP_HAS_STREAMS) { 2973 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2974 xhci_get_endpoint_address(i)); 2975 xhci_free_stream_info(xhci, ep->stream_info); 2976 ep->stream_info = NULL; 2977 ep->ep_state &= ~EP_HAS_STREAMS; 2978 } 2979 } 2980 2981 /* Called after one or more calls to xhci_add_endpoint() or 2982 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2983 * to call xhci_reset_bandwidth(). 2984 * 2985 * Since we are in the middle of changing either configuration or 2986 * installing a new alt setting, the USB core won't allow URBs to be 2987 * enqueued for any endpoint on the old config or interface. Nothing 2988 * else should be touching the xhci->devs[slot_id] structure, so we 2989 * don't need to take the xhci->lock for manipulating that. 2990 */ 2991 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2992 { 2993 int i; 2994 int ret = 0; 2995 struct xhci_hcd *xhci; 2996 struct xhci_virt_device *virt_dev; 2997 struct xhci_input_control_ctx *ctrl_ctx; 2998 struct xhci_slot_ctx *slot_ctx; 2999 struct xhci_command *command; 3000 3001 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3002 if (ret <= 0) 3003 return ret; 3004 xhci = hcd_to_xhci(hcd); 3005 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3006 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3007 return -ENODEV; 3008 3009 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3010 virt_dev = xhci->devs[udev->slot_id]; 3011 3012 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3013 if (!command) 3014 return -ENOMEM; 3015 3016 command->in_ctx = virt_dev->in_ctx; 3017 3018 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3019 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3020 if (!ctrl_ctx) { 3021 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3022 __func__); 3023 ret = -ENOMEM; 3024 goto command_cleanup; 3025 } 3026 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3027 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3028 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3029 3030 /* Don't issue the command if there's no endpoints to update. */ 3031 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3032 ctrl_ctx->drop_flags == 0) { 3033 ret = 0; 3034 goto command_cleanup; 3035 } 3036 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3037 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3038 for (i = 31; i >= 1; i--) { 3039 __le32 le32 = cpu_to_le32(BIT(i)); 3040 3041 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3042 || (ctrl_ctx->add_flags & le32) || i == 1) { 3043 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3044 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3045 break; 3046 } 3047 } 3048 3049 ret = xhci_configure_endpoint(xhci, udev, command, 3050 false, false); 3051 if (ret) 3052 /* Callee should call reset_bandwidth() */ 3053 goto command_cleanup; 3054 3055 /* Free any rings that were dropped, but not changed. */ 3056 for (i = 1; i < 31; i++) { 3057 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3058 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3059 xhci_free_endpoint_ring(xhci, virt_dev, i); 3060 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3061 } 3062 } 3063 xhci_zero_in_ctx(xhci, virt_dev); 3064 /* 3065 * Install any rings for completely new endpoints or changed endpoints, 3066 * and free any old rings from changed endpoints. 3067 */ 3068 for (i = 1; i < 31; i++) { 3069 if (!virt_dev->eps[i].new_ring) 3070 continue; 3071 /* Only free the old ring if it exists. 3072 * It may not if this is the first add of an endpoint. 3073 */ 3074 if (virt_dev->eps[i].ring) { 3075 xhci_free_endpoint_ring(xhci, virt_dev, i); 3076 } 3077 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3078 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3079 virt_dev->eps[i].new_ring = NULL; 3080 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3081 } 3082 command_cleanup: 3083 kfree(command->completion); 3084 kfree(command); 3085 3086 return ret; 3087 } 3088 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3089 3090 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3091 { 3092 struct xhci_hcd *xhci; 3093 struct xhci_virt_device *virt_dev; 3094 int i, ret; 3095 3096 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3097 if (ret <= 0) 3098 return; 3099 xhci = hcd_to_xhci(hcd); 3100 3101 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3102 virt_dev = xhci->devs[udev->slot_id]; 3103 /* Free any rings allocated for added endpoints */ 3104 for (i = 0; i < 31; i++) { 3105 if (virt_dev->eps[i].new_ring) { 3106 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3107 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3108 virt_dev->eps[i].new_ring = NULL; 3109 } 3110 } 3111 xhci_zero_in_ctx(xhci, virt_dev); 3112 } 3113 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3114 3115 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3116 struct xhci_container_ctx *in_ctx, 3117 struct xhci_container_ctx *out_ctx, 3118 struct xhci_input_control_ctx *ctrl_ctx, 3119 u32 add_flags, u32 drop_flags) 3120 { 3121 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3122 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3123 xhci_slot_copy(xhci, in_ctx, out_ctx); 3124 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3125 } 3126 3127 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3128 struct usb_host_endpoint *host_ep) 3129 { 3130 struct xhci_hcd *xhci; 3131 struct xhci_virt_device *vdev; 3132 struct xhci_virt_ep *ep; 3133 struct usb_device *udev; 3134 unsigned long flags; 3135 unsigned int ep_index; 3136 3137 xhci = hcd_to_xhci(hcd); 3138 rescan: 3139 spin_lock_irqsave(&xhci->lock, flags); 3140 3141 udev = (struct usb_device *)host_ep->hcpriv; 3142 if (!udev || !udev->slot_id) 3143 goto done; 3144 3145 vdev = xhci->devs[udev->slot_id]; 3146 if (!vdev) 3147 goto done; 3148 3149 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3150 ep = &vdev->eps[ep_index]; 3151 if (!ep) 3152 goto done; 3153 3154 /* wait for hub_tt_work to finish clearing hub TT */ 3155 if (ep->ep_state & EP_CLEARING_TT) { 3156 spin_unlock_irqrestore(&xhci->lock, flags); 3157 schedule_timeout_uninterruptible(1); 3158 goto rescan; 3159 } 3160 3161 if (ep->ep_state) 3162 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3163 ep->ep_state); 3164 done: 3165 host_ep->hcpriv = NULL; 3166 spin_unlock_irqrestore(&xhci->lock, flags); 3167 } 3168 3169 /* 3170 * Called after usb core issues a clear halt control message. 3171 * The host side of the halt should already be cleared by a reset endpoint 3172 * command issued when the STALL event was received. 3173 * 3174 * The reset endpoint command may only be issued to endpoints in the halted 3175 * state. For software that wishes to reset the data toggle or sequence number 3176 * of an endpoint that isn't in the halted state this function will issue a 3177 * configure endpoint command with the Drop and Add bits set for the target 3178 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3179 */ 3180 3181 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3182 struct usb_host_endpoint *host_ep) 3183 { 3184 struct xhci_hcd *xhci; 3185 struct usb_device *udev; 3186 struct xhci_virt_device *vdev; 3187 struct xhci_virt_ep *ep; 3188 struct xhci_input_control_ctx *ctrl_ctx; 3189 struct xhci_command *stop_cmd, *cfg_cmd; 3190 unsigned int ep_index; 3191 unsigned long flags; 3192 u32 ep_flag; 3193 int err; 3194 3195 xhci = hcd_to_xhci(hcd); 3196 if (!host_ep->hcpriv) 3197 return; 3198 udev = (struct usb_device *) host_ep->hcpriv; 3199 vdev = xhci->devs[udev->slot_id]; 3200 3201 /* 3202 * vdev may be lost due to xHC restore error and re-initialization 3203 * during S3/S4 resume. A new vdev will be allocated later by 3204 * xhci_discover_or_reset_device() 3205 */ 3206 if (!udev->slot_id || !vdev) 3207 return; 3208 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3209 ep = &vdev->eps[ep_index]; 3210 if (!ep) 3211 return; 3212 3213 /* Bail out if toggle is already being cleared by a endpoint reset */ 3214 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3215 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3216 return; 3217 } 3218 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3219 if (usb_endpoint_xfer_control(&host_ep->desc) || 3220 usb_endpoint_xfer_isoc(&host_ep->desc)) 3221 return; 3222 3223 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3224 3225 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3226 return; 3227 3228 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3229 if (!stop_cmd) 3230 return; 3231 3232 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3233 if (!cfg_cmd) 3234 goto cleanup; 3235 3236 spin_lock_irqsave(&xhci->lock, flags); 3237 3238 /* block queuing new trbs and ringing ep doorbell */ 3239 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3240 3241 /* 3242 * Make sure endpoint ring is empty before resetting the toggle/seq. 3243 * Driver is required to synchronously cancel all transfer request. 3244 * Stop the endpoint to force xHC to update the output context 3245 */ 3246 3247 if (!list_empty(&ep->ring->td_list)) { 3248 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3249 spin_unlock_irqrestore(&xhci->lock, flags); 3250 xhci_free_command(xhci, cfg_cmd); 3251 goto cleanup; 3252 } 3253 3254 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3255 ep_index, 0); 3256 if (err < 0) { 3257 spin_unlock_irqrestore(&xhci->lock, flags); 3258 xhci_free_command(xhci, cfg_cmd); 3259 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3260 __func__, err); 3261 goto cleanup; 3262 } 3263 3264 xhci_ring_cmd_db(xhci); 3265 spin_unlock_irqrestore(&xhci->lock, flags); 3266 3267 wait_for_completion(stop_cmd->completion); 3268 3269 spin_lock_irqsave(&xhci->lock, flags); 3270 3271 /* config ep command clears toggle if add and drop ep flags are set */ 3272 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3273 if (!ctrl_ctx) { 3274 spin_unlock_irqrestore(&xhci->lock, flags); 3275 xhci_free_command(xhci, cfg_cmd); 3276 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3277 __func__); 3278 goto cleanup; 3279 } 3280 3281 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3282 ctrl_ctx, ep_flag, ep_flag); 3283 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3284 3285 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3286 udev->slot_id, false); 3287 if (err < 0) { 3288 spin_unlock_irqrestore(&xhci->lock, flags); 3289 xhci_free_command(xhci, cfg_cmd); 3290 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3291 __func__, err); 3292 goto cleanup; 3293 } 3294 3295 xhci_ring_cmd_db(xhci); 3296 spin_unlock_irqrestore(&xhci->lock, flags); 3297 3298 wait_for_completion(cfg_cmd->completion); 3299 3300 xhci_free_command(xhci, cfg_cmd); 3301 cleanup: 3302 xhci_free_command(xhci, stop_cmd); 3303 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3304 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3305 } 3306 3307 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3308 struct usb_device *udev, struct usb_host_endpoint *ep, 3309 unsigned int slot_id) 3310 { 3311 int ret; 3312 unsigned int ep_index; 3313 unsigned int ep_state; 3314 3315 if (!ep) 3316 return -EINVAL; 3317 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3318 if (ret <= 0) 3319 return -EINVAL; 3320 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3321 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3322 " descriptor for ep 0x%x does not support streams\n", 3323 ep->desc.bEndpointAddress); 3324 return -EINVAL; 3325 } 3326 3327 ep_index = xhci_get_endpoint_index(&ep->desc); 3328 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3329 if (ep_state & EP_HAS_STREAMS || 3330 ep_state & EP_GETTING_STREAMS) { 3331 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3332 "already has streams set up.\n", 3333 ep->desc.bEndpointAddress); 3334 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3335 "dynamic stream context array reallocation.\n"); 3336 return -EINVAL; 3337 } 3338 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3339 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3340 "endpoint 0x%x; URBs are pending.\n", 3341 ep->desc.bEndpointAddress); 3342 return -EINVAL; 3343 } 3344 return 0; 3345 } 3346 3347 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3348 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3349 { 3350 unsigned int max_streams; 3351 3352 /* The stream context array size must be a power of two */ 3353 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3354 /* 3355 * Find out how many primary stream array entries the host controller 3356 * supports. Later we may use secondary stream arrays (similar to 2nd 3357 * level page entries), but that's an optional feature for xHCI host 3358 * controllers. xHCs must support at least 4 stream IDs. 3359 */ 3360 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3361 if (*num_stream_ctxs > max_streams) { 3362 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3363 max_streams); 3364 *num_stream_ctxs = max_streams; 3365 *num_streams = max_streams; 3366 } 3367 } 3368 3369 /* Returns an error code if one of the endpoint already has streams. 3370 * This does not change any data structures, it only checks and gathers 3371 * information. 3372 */ 3373 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3374 struct usb_device *udev, 3375 struct usb_host_endpoint **eps, unsigned int num_eps, 3376 unsigned int *num_streams, u32 *changed_ep_bitmask) 3377 { 3378 unsigned int max_streams; 3379 unsigned int endpoint_flag; 3380 int i; 3381 int ret; 3382 3383 for (i = 0; i < num_eps; i++) { 3384 ret = xhci_check_streams_endpoint(xhci, udev, 3385 eps[i], udev->slot_id); 3386 if (ret < 0) 3387 return ret; 3388 3389 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3390 if (max_streams < (*num_streams - 1)) { 3391 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3392 eps[i]->desc.bEndpointAddress, 3393 max_streams); 3394 *num_streams = max_streams+1; 3395 } 3396 3397 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3398 if (*changed_ep_bitmask & endpoint_flag) 3399 return -EINVAL; 3400 *changed_ep_bitmask |= endpoint_flag; 3401 } 3402 return 0; 3403 } 3404 3405 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3406 struct usb_device *udev, 3407 struct usb_host_endpoint **eps, unsigned int num_eps) 3408 { 3409 u32 changed_ep_bitmask = 0; 3410 unsigned int slot_id; 3411 unsigned int ep_index; 3412 unsigned int ep_state; 3413 int i; 3414 3415 slot_id = udev->slot_id; 3416 if (!xhci->devs[slot_id]) 3417 return 0; 3418 3419 for (i = 0; i < num_eps; i++) { 3420 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3421 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3422 /* Are streams already being freed for the endpoint? */ 3423 if (ep_state & EP_GETTING_NO_STREAMS) { 3424 xhci_warn(xhci, "WARN Can't disable streams for " 3425 "endpoint 0x%x, " 3426 "streams are being disabled already\n", 3427 eps[i]->desc.bEndpointAddress); 3428 return 0; 3429 } 3430 /* Are there actually any streams to free? */ 3431 if (!(ep_state & EP_HAS_STREAMS) && 3432 !(ep_state & EP_GETTING_STREAMS)) { 3433 xhci_warn(xhci, "WARN Can't disable streams for " 3434 "endpoint 0x%x, " 3435 "streams are already disabled!\n", 3436 eps[i]->desc.bEndpointAddress); 3437 xhci_warn(xhci, "WARN xhci_free_streams() called " 3438 "with non-streams endpoint\n"); 3439 return 0; 3440 } 3441 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3442 } 3443 return changed_ep_bitmask; 3444 } 3445 3446 /* 3447 * The USB device drivers use this function (through the HCD interface in USB 3448 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3449 * coordinate mass storage command queueing across multiple endpoints (basically 3450 * a stream ID == a task ID). 3451 * 3452 * Setting up streams involves allocating the same size stream context array 3453 * for each endpoint and issuing a configure endpoint command for all endpoints. 3454 * 3455 * Don't allow the call to succeed if one endpoint only supports one stream 3456 * (which means it doesn't support streams at all). 3457 * 3458 * Drivers may get less stream IDs than they asked for, if the host controller 3459 * hardware or endpoints claim they can't support the number of requested 3460 * stream IDs. 3461 */ 3462 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3463 struct usb_host_endpoint **eps, unsigned int num_eps, 3464 unsigned int num_streams, gfp_t mem_flags) 3465 { 3466 int i, ret; 3467 struct xhci_hcd *xhci; 3468 struct xhci_virt_device *vdev; 3469 struct xhci_command *config_cmd; 3470 struct xhci_input_control_ctx *ctrl_ctx; 3471 unsigned int ep_index; 3472 unsigned int num_stream_ctxs; 3473 unsigned int max_packet; 3474 unsigned long flags; 3475 u32 changed_ep_bitmask = 0; 3476 3477 if (!eps) 3478 return -EINVAL; 3479 3480 /* Add one to the number of streams requested to account for 3481 * stream 0 that is reserved for xHCI usage. 3482 */ 3483 num_streams += 1; 3484 xhci = hcd_to_xhci(hcd); 3485 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3486 num_streams); 3487 3488 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3489 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3490 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3491 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3492 return -ENOSYS; 3493 } 3494 3495 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3496 if (!config_cmd) 3497 return -ENOMEM; 3498 3499 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3500 if (!ctrl_ctx) { 3501 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3502 __func__); 3503 xhci_free_command(xhci, config_cmd); 3504 return -ENOMEM; 3505 } 3506 3507 /* Check to make sure all endpoints are not already configured for 3508 * streams. While we're at it, find the maximum number of streams that 3509 * all the endpoints will support and check for duplicate endpoints. 3510 */ 3511 spin_lock_irqsave(&xhci->lock, flags); 3512 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3513 num_eps, &num_streams, &changed_ep_bitmask); 3514 if (ret < 0) { 3515 xhci_free_command(xhci, config_cmd); 3516 spin_unlock_irqrestore(&xhci->lock, flags); 3517 return ret; 3518 } 3519 if (num_streams <= 1) { 3520 xhci_warn(xhci, "WARN: endpoints can't handle " 3521 "more than one stream.\n"); 3522 xhci_free_command(xhci, config_cmd); 3523 spin_unlock_irqrestore(&xhci->lock, flags); 3524 return -EINVAL; 3525 } 3526 vdev = xhci->devs[udev->slot_id]; 3527 /* Mark each endpoint as being in transition, so 3528 * xhci_urb_enqueue() will reject all URBs. 3529 */ 3530 for (i = 0; i < num_eps; i++) { 3531 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3532 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3533 } 3534 spin_unlock_irqrestore(&xhci->lock, flags); 3535 3536 /* Setup internal data structures and allocate HW data structures for 3537 * streams (but don't install the HW structures in the input context 3538 * until we're sure all memory allocation succeeded). 3539 */ 3540 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3541 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3542 num_stream_ctxs, num_streams); 3543 3544 for (i = 0; i < num_eps; i++) { 3545 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3546 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3547 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3548 num_stream_ctxs, 3549 num_streams, 3550 max_packet, mem_flags); 3551 if (!vdev->eps[ep_index].stream_info) 3552 goto cleanup; 3553 /* Set maxPstreams in endpoint context and update deq ptr to 3554 * point to stream context array. FIXME 3555 */ 3556 } 3557 3558 /* Set up the input context for a configure endpoint command. */ 3559 for (i = 0; i < num_eps; i++) { 3560 struct xhci_ep_ctx *ep_ctx; 3561 3562 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3563 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3564 3565 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3566 vdev->out_ctx, ep_index); 3567 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3568 vdev->eps[ep_index].stream_info); 3569 } 3570 /* Tell the HW to drop its old copy of the endpoint context info 3571 * and add the updated copy from the input context. 3572 */ 3573 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3574 vdev->out_ctx, ctrl_ctx, 3575 changed_ep_bitmask, changed_ep_bitmask); 3576 3577 /* Issue and wait for the configure endpoint command */ 3578 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3579 false, false); 3580 3581 /* xHC rejected the configure endpoint command for some reason, so we 3582 * leave the old ring intact and free our internal streams data 3583 * structure. 3584 */ 3585 if (ret < 0) 3586 goto cleanup; 3587 3588 spin_lock_irqsave(&xhci->lock, flags); 3589 for (i = 0; i < num_eps; i++) { 3590 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3591 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3592 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3593 udev->slot_id, ep_index); 3594 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3595 } 3596 xhci_free_command(xhci, config_cmd); 3597 spin_unlock_irqrestore(&xhci->lock, flags); 3598 3599 for (i = 0; i < num_eps; i++) { 3600 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3601 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3602 } 3603 /* Subtract 1 for stream 0, which drivers can't use */ 3604 return num_streams - 1; 3605 3606 cleanup: 3607 /* If it didn't work, free the streams! */ 3608 for (i = 0; i < num_eps; i++) { 3609 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3610 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3611 vdev->eps[ep_index].stream_info = NULL; 3612 /* FIXME Unset maxPstreams in endpoint context and 3613 * update deq ptr to point to normal string ring. 3614 */ 3615 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3616 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3617 xhci_endpoint_zero(xhci, vdev, eps[i]); 3618 } 3619 xhci_free_command(xhci, config_cmd); 3620 return -ENOMEM; 3621 } 3622 3623 /* Transition the endpoint from using streams to being a "normal" endpoint 3624 * without streams. 3625 * 3626 * Modify the endpoint context state, submit a configure endpoint command, 3627 * and free all endpoint rings for streams if that completes successfully. 3628 */ 3629 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3630 struct usb_host_endpoint **eps, unsigned int num_eps, 3631 gfp_t mem_flags) 3632 { 3633 int i, ret; 3634 struct xhci_hcd *xhci; 3635 struct xhci_virt_device *vdev; 3636 struct xhci_command *command; 3637 struct xhci_input_control_ctx *ctrl_ctx; 3638 unsigned int ep_index; 3639 unsigned long flags; 3640 u32 changed_ep_bitmask; 3641 3642 xhci = hcd_to_xhci(hcd); 3643 vdev = xhci->devs[udev->slot_id]; 3644 3645 /* Set up a configure endpoint command to remove the streams rings */ 3646 spin_lock_irqsave(&xhci->lock, flags); 3647 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3648 udev, eps, num_eps); 3649 if (changed_ep_bitmask == 0) { 3650 spin_unlock_irqrestore(&xhci->lock, flags); 3651 return -EINVAL; 3652 } 3653 3654 /* Use the xhci_command structure from the first endpoint. We may have 3655 * allocated too many, but the driver may call xhci_free_streams() for 3656 * each endpoint it grouped into one call to xhci_alloc_streams(). 3657 */ 3658 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3659 command = vdev->eps[ep_index].stream_info->free_streams_command; 3660 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3661 if (!ctrl_ctx) { 3662 spin_unlock_irqrestore(&xhci->lock, flags); 3663 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3664 __func__); 3665 return -EINVAL; 3666 } 3667 3668 for (i = 0; i < num_eps; i++) { 3669 struct xhci_ep_ctx *ep_ctx; 3670 3671 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3672 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3673 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3674 EP_GETTING_NO_STREAMS; 3675 3676 xhci_endpoint_copy(xhci, command->in_ctx, 3677 vdev->out_ctx, ep_index); 3678 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3679 &vdev->eps[ep_index]); 3680 } 3681 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3682 vdev->out_ctx, ctrl_ctx, 3683 changed_ep_bitmask, changed_ep_bitmask); 3684 spin_unlock_irqrestore(&xhci->lock, flags); 3685 3686 /* Issue and wait for the configure endpoint command, 3687 * which must succeed. 3688 */ 3689 ret = xhci_configure_endpoint(xhci, udev, command, 3690 false, true); 3691 3692 /* xHC rejected the configure endpoint command for some reason, so we 3693 * leave the streams rings intact. 3694 */ 3695 if (ret < 0) 3696 return ret; 3697 3698 spin_lock_irqsave(&xhci->lock, flags); 3699 for (i = 0; i < num_eps; i++) { 3700 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3701 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3702 vdev->eps[ep_index].stream_info = NULL; 3703 /* FIXME Unset maxPstreams in endpoint context and 3704 * update deq ptr to point to normal string ring. 3705 */ 3706 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3707 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3708 } 3709 spin_unlock_irqrestore(&xhci->lock, flags); 3710 3711 return 0; 3712 } 3713 3714 /* 3715 * Deletes endpoint resources for endpoints that were active before a Reset 3716 * Device command, or a Disable Slot command. The Reset Device command leaves 3717 * the control endpoint intact, whereas the Disable Slot command deletes it. 3718 * 3719 * Must be called with xhci->lock held. 3720 */ 3721 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3722 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3723 { 3724 int i; 3725 unsigned int num_dropped_eps = 0; 3726 unsigned int drop_flags = 0; 3727 3728 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3729 if (virt_dev->eps[i].ring) { 3730 drop_flags |= 1 << i; 3731 num_dropped_eps++; 3732 } 3733 } 3734 xhci->num_active_eps -= num_dropped_eps; 3735 if (num_dropped_eps) 3736 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3737 "Dropped %u ep ctxs, flags = 0x%x, " 3738 "%u now active.", 3739 num_dropped_eps, drop_flags, 3740 xhci->num_active_eps); 3741 } 3742 3743 /* 3744 * This submits a Reset Device Command, which will set the device state to 0, 3745 * set the device address to 0, and disable all the endpoints except the default 3746 * control endpoint. The USB core should come back and call 3747 * xhci_address_device(), and then re-set up the configuration. If this is 3748 * called because of a usb_reset_and_verify_device(), then the old alternate 3749 * settings will be re-installed through the normal bandwidth allocation 3750 * functions. 3751 * 3752 * Wait for the Reset Device command to finish. Remove all structures 3753 * associated with the endpoints that were disabled. Clear the input device 3754 * structure? Reset the control endpoint 0 max packet size? 3755 * 3756 * If the virt_dev to be reset does not exist or does not match the udev, 3757 * it means the device is lost, possibly due to the xHC restore error and 3758 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3759 * re-allocate the device. 3760 */ 3761 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3762 struct usb_device *udev) 3763 { 3764 int ret, i; 3765 unsigned long flags; 3766 struct xhci_hcd *xhci; 3767 unsigned int slot_id; 3768 struct xhci_virt_device *virt_dev; 3769 struct xhci_command *reset_device_cmd; 3770 struct xhci_slot_ctx *slot_ctx; 3771 int old_active_eps = 0; 3772 3773 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3774 if (ret <= 0) 3775 return ret; 3776 xhci = hcd_to_xhci(hcd); 3777 slot_id = udev->slot_id; 3778 virt_dev = xhci->devs[slot_id]; 3779 if (!virt_dev) { 3780 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3781 "not exist. Re-allocate the device\n", slot_id); 3782 ret = xhci_alloc_dev(hcd, udev); 3783 if (ret == 1) 3784 return 0; 3785 else 3786 return -EINVAL; 3787 } 3788 3789 if (virt_dev->tt_info) 3790 old_active_eps = virt_dev->tt_info->active_eps; 3791 3792 if (virt_dev->udev != udev) { 3793 /* If the virt_dev and the udev does not match, this virt_dev 3794 * may belong to another udev. 3795 * Re-allocate the device. 3796 */ 3797 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3798 "not match the udev. Re-allocate the device\n", 3799 slot_id); 3800 ret = xhci_alloc_dev(hcd, udev); 3801 if (ret == 1) 3802 return 0; 3803 else 3804 return -EINVAL; 3805 } 3806 3807 /* If device is not setup, there is no point in resetting it */ 3808 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3809 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3810 SLOT_STATE_DISABLED) 3811 return 0; 3812 3813 trace_xhci_discover_or_reset_device(slot_ctx); 3814 3815 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3816 /* Allocate the command structure that holds the struct completion. 3817 * Assume we're in process context, since the normal device reset 3818 * process has to wait for the device anyway. Storage devices are 3819 * reset as part of error handling, so use GFP_NOIO instead of 3820 * GFP_KERNEL. 3821 */ 3822 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3823 if (!reset_device_cmd) { 3824 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3825 return -ENOMEM; 3826 } 3827 3828 /* Attempt to submit the Reset Device command to the command ring */ 3829 spin_lock_irqsave(&xhci->lock, flags); 3830 3831 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3832 if (ret) { 3833 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3834 spin_unlock_irqrestore(&xhci->lock, flags); 3835 goto command_cleanup; 3836 } 3837 xhci_ring_cmd_db(xhci); 3838 spin_unlock_irqrestore(&xhci->lock, flags); 3839 3840 /* Wait for the Reset Device command to finish */ 3841 wait_for_completion(reset_device_cmd->completion); 3842 3843 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3844 * unless we tried to reset a slot ID that wasn't enabled, 3845 * or the device wasn't in the addressed or configured state. 3846 */ 3847 ret = reset_device_cmd->status; 3848 switch (ret) { 3849 case COMP_COMMAND_ABORTED: 3850 case COMP_COMMAND_RING_STOPPED: 3851 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3852 ret = -ETIME; 3853 goto command_cleanup; 3854 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3855 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3856 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3857 slot_id, 3858 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3859 xhci_dbg(xhci, "Not freeing device rings.\n"); 3860 /* Don't treat this as an error. May change my mind later. */ 3861 ret = 0; 3862 goto command_cleanup; 3863 case COMP_SUCCESS: 3864 xhci_dbg(xhci, "Successful reset device command.\n"); 3865 break; 3866 default: 3867 if (xhci_is_vendor_info_code(xhci, ret)) 3868 break; 3869 xhci_warn(xhci, "Unknown completion code %u for " 3870 "reset device command.\n", ret); 3871 ret = -EINVAL; 3872 goto command_cleanup; 3873 } 3874 3875 /* Free up host controller endpoint resources */ 3876 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3877 spin_lock_irqsave(&xhci->lock, flags); 3878 /* Don't delete the default control endpoint resources */ 3879 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3880 spin_unlock_irqrestore(&xhci->lock, flags); 3881 } 3882 3883 /* Everything but endpoint 0 is disabled, so free the rings. */ 3884 for (i = 1; i < 31; i++) { 3885 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3886 3887 if (ep->ep_state & EP_HAS_STREAMS) { 3888 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3889 xhci_get_endpoint_address(i)); 3890 xhci_free_stream_info(xhci, ep->stream_info); 3891 ep->stream_info = NULL; 3892 ep->ep_state &= ~EP_HAS_STREAMS; 3893 } 3894 3895 if (ep->ring) { 3896 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3897 xhci_free_endpoint_ring(xhci, virt_dev, i); 3898 } 3899 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3900 xhci_drop_ep_from_interval_table(xhci, 3901 &virt_dev->eps[i].bw_info, 3902 virt_dev->bw_table, 3903 udev, 3904 &virt_dev->eps[i], 3905 virt_dev->tt_info); 3906 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3907 } 3908 /* If necessary, update the number of active TTs on this root port */ 3909 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3910 virt_dev->flags = 0; 3911 ret = 0; 3912 3913 command_cleanup: 3914 xhci_free_command(xhci, reset_device_cmd); 3915 return ret; 3916 } 3917 3918 /* 3919 * At this point, the struct usb_device is about to go away, the device has 3920 * disconnected, and all traffic has been stopped and the endpoints have been 3921 * disabled. Free any HC data structures associated with that device. 3922 */ 3923 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3924 { 3925 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3926 struct xhci_virt_device *virt_dev; 3927 struct xhci_slot_ctx *slot_ctx; 3928 int i, ret; 3929 3930 #ifndef CONFIG_USB_DEFAULT_PERSIST 3931 /* 3932 * We called pm_runtime_get_noresume when the device was attached. 3933 * Decrement the counter here to allow controller to runtime suspend 3934 * if no devices remain. 3935 */ 3936 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3937 pm_runtime_put_noidle(hcd->self.controller); 3938 #endif 3939 3940 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3941 /* If the host is halted due to driver unload, we still need to free the 3942 * device. 3943 */ 3944 if (ret <= 0 && ret != -ENODEV) 3945 return; 3946 3947 virt_dev = xhci->devs[udev->slot_id]; 3948 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3949 trace_xhci_free_dev(slot_ctx); 3950 3951 /* Stop any wayward timer functions (which may grab the lock) */ 3952 for (i = 0; i < 31; i++) { 3953 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3954 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3955 } 3956 virt_dev->udev = NULL; 3957 ret = xhci_disable_slot(xhci, udev->slot_id); 3958 if (ret) 3959 xhci_free_virt_device(xhci, udev->slot_id); 3960 } 3961 3962 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3963 { 3964 struct xhci_command *command; 3965 unsigned long flags; 3966 u32 state; 3967 int ret = 0; 3968 3969 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3970 if (!command) 3971 return -ENOMEM; 3972 3973 xhci_debugfs_remove_slot(xhci, slot_id); 3974 3975 spin_lock_irqsave(&xhci->lock, flags); 3976 /* Don't disable the slot if the host controller is dead. */ 3977 state = readl(&xhci->op_regs->status); 3978 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3979 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3980 spin_unlock_irqrestore(&xhci->lock, flags); 3981 kfree(command); 3982 return -ENODEV; 3983 } 3984 3985 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3986 slot_id); 3987 if (ret) { 3988 spin_unlock_irqrestore(&xhci->lock, flags); 3989 kfree(command); 3990 return ret; 3991 } 3992 xhci_ring_cmd_db(xhci); 3993 spin_unlock_irqrestore(&xhci->lock, flags); 3994 return ret; 3995 } 3996 3997 /* 3998 * Checks if we have enough host controller resources for the default control 3999 * endpoint. 4000 * 4001 * Must be called with xhci->lock held. 4002 */ 4003 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4004 { 4005 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4006 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4007 "Not enough ep ctxs: " 4008 "%u active, need to add 1, limit is %u.", 4009 xhci->num_active_eps, xhci->limit_active_eps); 4010 return -ENOMEM; 4011 } 4012 xhci->num_active_eps += 1; 4013 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4014 "Adding 1 ep ctx, %u now active.", 4015 xhci->num_active_eps); 4016 return 0; 4017 } 4018 4019 4020 /* 4021 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4022 * timed out, or allocating memory failed. Returns 1 on success. 4023 */ 4024 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4025 { 4026 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4027 struct xhci_virt_device *vdev; 4028 struct xhci_slot_ctx *slot_ctx; 4029 unsigned long flags; 4030 int ret, slot_id; 4031 struct xhci_command *command; 4032 4033 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4034 if (!command) 4035 return 0; 4036 4037 spin_lock_irqsave(&xhci->lock, flags); 4038 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4039 if (ret) { 4040 spin_unlock_irqrestore(&xhci->lock, flags); 4041 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4042 xhci_free_command(xhci, command); 4043 return 0; 4044 } 4045 xhci_ring_cmd_db(xhci); 4046 spin_unlock_irqrestore(&xhci->lock, flags); 4047 4048 wait_for_completion(command->completion); 4049 slot_id = command->slot_id; 4050 4051 if (!slot_id || command->status != COMP_SUCCESS) { 4052 xhci_err(xhci, "Error while assigning device slot ID\n"); 4053 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4054 HCS_MAX_SLOTS( 4055 readl(&xhci->cap_regs->hcs_params1))); 4056 xhci_free_command(xhci, command); 4057 return 0; 4058 } 4059 4060 xhci_free_command(xhci, command); 4061 4062 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4063 spin_lock_irqsave(&xhci->lock, flags); 4064 ret = xhci_reserve_host_control_ep_resources(xhci); 4065 if (ret) { 4066 spin_unlock_irqrestore(&xhci->lock, flags); 4067 xhci_warn(xhci, "Not enough host resources, " 4068 "active endpoint contexts = %u\n", 4069 xhci->num_active_eps); 4070 goto disable_slot; 4071 } 4072 spin_unlock_irqrestore(&xhci->lock, flags); 4073 } 4074 /* Use GFP_NOIO, since this function can be called from 4075 * xhci_discover_or_reset_device(), which may be called as part of 4076 * mass storage driver error handling. 4077 */ 4078 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4079 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4080 goto disable_slot; 4081 } 4082 vdev = xhci->devs[slot_id]; 4083 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4084 trace_xhci_alloc_dev(slot_ctx); 4085 4086 udev->slot_id = slot_id; 4087 4088 xhci_debugfs_create_slot(xhci, slot_id); 4089 4090 #ifndef CONFIG_USB_DEFAULT_PERSIST 4091 /* 4092 * If resetting upon resume, we can't put the controller into runtime 4093 * suspend if there is a device attached. 4094 */ 4095 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4096 pm_runtime_get_noresume(hcd->self.controller); 4097 #endif 4098 4099 /* Is this a LS or FS device under a HS hub? */ 4100 /* Hub or peripherial? */ 4101 return 1; 4102 4103 disable_slot: 4104 ret = xhci_disable_slot(xhci, udev->slot_id); 4105 if (ret) 4106 xhci_free_virt_device(xhci, udev->slot_id); 4107 4108 return 0; 4109 } 4110 4111 /* 4112 * Issue an Address Device command and optionally send a corresponding 4113 * SetAddress request to the device. 4114 */ 4115 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4116 enum xhci_setup_dev setup) 4117 { 4118 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4119 unsigned long flags; 4120 struct xhci_virt_device *virt_dev; 4121 int ret = 0; 4122 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4123 struct xhci_slot_ctx *slot_ctx; 4124 struct xhci_input_control_ctx *ctrl_ctx; 4125 u64 temp_64; 4126 struct xhci_command *command = NULL; 4127 4128 mutex_lock(&xhci->mutex); 4129 4130 if (xhci->xhc_state) { /* dying, removing or halted */ 4131 ret = -ESHUTDOWN; 4132 goto out; 4133 } 4134 4135 if (!udev->slot_id) { 4136 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4137 "Bad Slot ID %d", udev->slot_id); 4138 ret = -EINVAL; 4139 goto out; 4140 } 4141 4142 virt_dev = xhci->devs[udev->slot_id]; 4143 4144 if (WARN_ON(!virt_dev)) { 4145 /* 4146 * In plug/unplug torture test with an NEC controller, 4147 * a zero-dereference was observed once due to virt_dev = 0. 4148 * Print useful debug rather than crash if it is observed again! 4149 */ 4150 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4151 udev->slot_id); 4152 ret = -EINVAL; 4153 goto out; 4154 } 4155 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4156 trace_xhci_setup_device_slot(slot_ctx); 4157 4158 if (setup == SETUP_CONTEXT_ONLY) { 4159 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4160 SLOT_STATE_DEFAULT) { 4161 xhci_dbg(xhci, "Slot already in default state\n"); 4162 goto out; 4163 } 4164 } 4165 4166 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4167 if (!command) { 4168 ret = -ENOMEM; 4169 goto out; 4170 } 4171 4172 command->in_ctx = virt_dev->in_ctx; 4173 4174 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4175 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4176 if (!ctrl_ctx) { 4177 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4178 __func__); 4179 ret = -EINVAL; 4180 goto out; 4181 } 4182 /* 4183 * If this is the first Set Address since device plug-in or 4184 * virt_device realloaction after a resume with an xHCI power loss, 4185 * then set up the slot context. 4186 */ 4187 if (!slot_ctx->dev_info) 4188 xhci_setup_addressable_virt_dev(xhci, udev); 4189 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4190 else 4191 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4192 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4193 ctrl_ctx->drop_flags = 0; 4194 4195 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4196 le32_to_cpu(slot_ctx->dev_info) >> 27); 4197 4198 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4199 spin_lock_irqsave(&xhci->lock, flags); 4200 trace_xhci_setup_device(virt_dev); 4201 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4202 udev->slot_id, setup); 4203 if (ret) { 4204 spin_unlock_irqrestore(&xhci->lock, flags); 4205 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4206 "FIXME: allocate a command ring segment"); 4207 goto out; 4208 } 4209 xhci_ring_cmd_db(xhci); 4210 spin_unlock_irqrestore(&xhci->lock, flags); 4211 4212 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4213 wait_for_completion(command->completion); 4214 4215 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4216 * the SetAddress() "recovery interval" required by USB and aborting the 4217 * command on a timeout. 4218 */ 4219 switch (command->status) { 4220 case COMP_COMMAND_ABORTED: 4221 case COMP_COMMAND_RING_STOPPED: 4222 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4223 ret = -ETIME; 4224 break; 4225 case COMP_CONTEXT_STATE_ERROR: 4226 case COMP_SLOT_NOT_ENABLED_ERROR: 4227 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4228 act, udev->slot_id); 4229 ret = -EINVAL; 4230 break; 4231 case COMP_USB_TRANSACTION_ERROR: 4232 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4233 4234 mutex_unlock(&xhci->mutex); 4235 ret = xhci_disable_slot(xhci, udev->slot_id); 4236 if (!ret) 4237 xhci_alloc_dev(hcd, udev); 4238 kfree(command->completion); 4239 kfree(command); 4240 return -EPROTO; 4241 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4242 dev_warn(&udev->dev, 4243 "ERROR: Incompatible device for setup %s command\n", act); 4244 ret = -ENODEV; 4245 break; 4246 case COMP_SUCCESS: 4247 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4248 "Successful setup %s command", act); 4249 break; 4250 default: 4251 xhci_err(xhci, 4252 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4253 act, command->status); 4254 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4255 ret = -EINVAL; 4256 break; 4257 } 4258 if (ret) 4259 goto out; 4260 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4261 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4262 "Op regs DCBAA ptr = %#016llx", temp_64); 4263 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4264 "Slot ID %d dcbaa entry @%p = %#016llx", 4265 udev->slot_id, 4266 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4267 (unsigned long long) 4268 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4269 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4270 "Output Context DMA address = %#08llx", 4271 (unsigned long long)virt_dev->out_ctx->dma); 4272 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4273 le32_to_cpu(slot_ctx->dev_info) >> 27); 4274 /* 4275 * USB core uses address 1 for the roothubs, so we add one to the 4276 * address given back to us by the HC. 4277 */ 4278 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4279 le32_to_cpu(slot_ctx->dev_info) >> 27); 4280 /* Zero the input context control for later use */ 4281 ctrl_ctx->add_flags = 0; 4282 ctrl_ctx->drop_flags = 0; 4283 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4284 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4285 4286 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4287 "Internal device address = %d", 4288 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4289 out: 4290 mutex_unlock(&xhci->mutex); 4291 if (command) { 4292 kfree(command->completion); 4293 kfree(command); 4294 } 4295 return ret; 4296 } 4297 4298 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4299 { 4300 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4301 } 4302 4303 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4304 { 4305 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4306 } 4307 4308 /* 4309 * Transfer the port index into real index in the HW port status 4310 * registers. Caculate offset between the port's PORTSC register 4311 * and port status base. Divide the number of per port register 4312 * to get the real index. The raw port number bases 1. 4313 */ 4314 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4315 { 4316 struct xhci_hub *rhub; 4317 4318 rhub = xhci_get_rhub(hcd); 4319 return rhub->ports[port1 - 1]->hw_portnum + 1; 4320 } 4321 4322 /* 4323 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4324 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4325 */ 4326 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4327 struct usb_device *udev, u16 max_exit_latency) 4328 { 4329 struct xhci_virt_device *virt_dev; 4330 struct xhci_command *command; 4331 struct xhci_input_control_ctx *ctrl_ctx; 4332 struct xhci_slot_ctx *slot_ctx; 4333 unsigned long flags; 4334 int ret; 4335 4336 spin_lock_irqsave(&xhci->lock, flags); 4337 4338 virt_dev = xhci->devs[udev->slot_id]; 4339 4340 /* 4341 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4342 * xHC was re-initialized. Exit latency will be set later after 4343 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4344 */ 4345 4346 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4347 spin_unlock_irqrestore(&xhci->lock, flags); 4348 return 0; 4349 } 4350 4351 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4352 command = xhci->lpm_command; 4353 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4354 if (!ctrl_ctx) { 4355 spin_unlock_irqrestore(&xhci->lock, flags); 4356 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4357 __func__); 4358 return -ENOMEM; 4359 } 4360 4361 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4362 spin_unlock_irqrestore(&xhci->lock, flags); 4363 4364 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4365 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4366 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4367 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4368 slot_ctx->dev_state = 0; 4369 4370 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4371 "Set up evaluate context for LPM MEL change."); 4372 4373 /* Issue and wait for the evaluate context command. */ 4374 ret = xhci_configure_endpoint(xhci, udev, command, 4375 true, true); 4376 4377 if (!ret) { 4378 spin_lock_irqsave(&xhci->lock, flags); 4379 virt_dev->current_mel = max_exit_latency; 4380 spin_unlock_irqrestore(&xhci->lock, flags); 4381 } 4382 return ret; 4383 } 4384 4385 #ifdef CONFIG_PM 4386 4387 /* BESL to HIRD Encoding array for USB2 LPM */ 4388 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4389 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4390 4391 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4392 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4393 struct usb_device *udev) 4394 { 4395 int u2del, besl, besl_host; 4396 int besl_device = 0; 4397 u32 field; 4398 4399 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4400 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4401 4402 if (field & USB_BESL_SUPPORT) { 4403 for (besl_host = 0; besl_host < 16; besl_host++) { 4404 if (xhci_besl_encoding[besl_host] >= u2del) 4405 break; 4406 } 4407 /* Use baseline BESL value as default */ 4408 if (field & USB_BESL_BASELINE_VALID) 4409 besl_device = USB_GET_BESL_BASELINE(field); 4410 else if (field & USB_BESL_DEEP_VALID) 4411 besl_device = USB_GET_BESL_DEEP(field); 4412 } else { 4413 if (u2del <= 50) 4414 besl_host = 0; 4415 else 4416 besl_host = (u2del - 51) / 75 + 1; 4417 } 4418 4419 besl = besl_host + besl_device; 4420 if (besl > 15) 4421 besl = 15; 4422 4423 return besl; 4424 } 4425 4426 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4427 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4428 { 4429 u32 field; 4430 int l1; 4431 int besld = 0; 4432 int hirdm = 0; 4433 4434 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4435 4436 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4437 l1 = udev->l1_params.timeout / 256; 4438 4439 /* device has preferred BESLD */ 4440 if (field & USB_BESL_DEEP_VALID) { 4441 besld = USB_GET_BESL_DEEP(field); 4442 hirdm = 1; 4443 } 4444 4445 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4446 } 4447 4448 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4449 struct usb_device *udev, int enable) 4450 { 4451 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4452 struct xhci_port **ports; 4453 __le32 __iomem *pm_addr, *hlpm_addr; 4454 u32 pm_val, hlpm_val, field; 4455 unsigned int port_num; 4456 unsigned long flags; 4457 int hird, exit_latency; 4458 int ret; 4459 4460 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4461 return -EPERM; 4462 4463 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4464 !udev->lpm_capable) 4465 return -EPERM; 4466 4467 if (!udev->parent || udev->parent->parent || 4468 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4469 return -EPERM; 4470 4471 if (udev->usb2_hw_lpm_capable != 1) 4472 return -EPERM; 4473 4474 spin_lock_irqsave(&xhci->lock, flags); 4475 4476 ports = xhci->usb2_rhub.ports; 4477 port_num = udev->portnum - 1; 4478 pm_addr = ports[port_num]->addr + PORTPMSC; 4479 pm_val = readl(pm_addr); 4480 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4481 4482 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4483 enable ? "enable" : "disable", port_num + 1); 4484 4485 if (enable) { 4486 /* Host supports BESL timeout instead of HIRD */ 4487 if (udev->usb2_hw_lpm_besl_capable) { 4488 /* if device doesn't have a preferred BESL value use a 4489 * default one which works with mixed HIRD and BESL 4490 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4491 */ 4492 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4493 if ((field & USB_BESL_SUPPORT) && 4494 (field & USB_BESL_BASELINE_VALID)) 4495 hird = USB_GET_BESL_BASELINE(field); 4496 else 4497 hird = udev->l1_params.besl; 4498 4499 exit_latency = xhci_besl_encoding[hird]; 4500 spin_unlock_irqrestore(&xhci->lock, flags); 4501 4502 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4503 * input context for link powermanagement evaluate 4504 * context commands. It is protected by hcd->bandwidth 4505 * mutex and is shared by all devices. We need to set 4506 * the max ext latency in USB 2 BESL LPM as well, so 4507 * use the same mutex and xhci_change_max_exit_latency() 4508 */ 4509 mutex_lock(hcd->bandwidth_mutex); 4510 ret = xhci_change_max_exit_latency(xhci, udev, 4511 exit_latency); 4512 mutex_unlock(hcd->bandwidth_mutex); 4513 4514 if (ret < 0) 4515 return ret; 4516 spin_lock_irqsave(&xhci->lock, flags); 4517 4518 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4519 writel(hlpm_val, hlpm_addr); 4520 /* flush write */ 4521 readl(hlpm_addr); 4522 } else { 4523 hird = xhci_calculate_hird_besl(xhci, udev); 4524 } 4525 4526 pm_val &= ~PORT_HIRD_MASK; 4527 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4528 writel(pm_val, pm_addr); 4529 pm_val = readl(pm_addr); 4530 pm_val |= PORT_HLE; 4531 writel(pm_val, pm_addr); 4532 /* flush write */ 4533 readl(pm_addr); 4534 } else { 4535 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4536 writel(pm_val, pm_addr); 4537 /* flush write */ 4538 readl(pm_addr); 4539 if (udev->usb2_hw_lpm_besl_capable) { 4540 spin_unlock_irqrestore(&xhci->lock, flags); 4541 mutex_lock(hcd->bandwidth_mutex); 4542 xhci_change_max_exit_latency(xhci, udev, 0); 4543 mutex_unlock(hcd->bandwidth_mutex); 4544 readl_poll_timeout(ports[port_num]->addr, pm_val, 4545 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4546 100, 10000); 4547 return 0; 4548 } 4549 } 4550 4551 spin_unlock_irqrestore(&xhci->lock, flags); 4552 return 0; 4553 } 4554 4555 /* check if a usb2 port supports a given extened capability protocol 4556 * only USB2 ports extended protocol capability values are cached. 4557 * Return 1 if capability is supported 4558 */ 4559 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4560 unsigned capability) 4561 { 4562 u32 port_offset, port_count; 4563 int i; 4564 4565 for (i = 0; i < xhci->num_ext_caps; i++) { 4566 if (xhci->ext_caps[i] & capability) { 4567 /* port offsets starts at 1 */ 4568 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4569 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4570 if (port >= port_offset && 4571 port < port_offset + port_count) 4572 return 1; 4573 } 4574 } 4575 return 0; 4576 } 4577 4578 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4579 { 4580 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4581 int portnum = udev->portnum - 1; 4582 4583 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4584 return 0; 4585 4586 /* we only support lpm for non-hub device connected to root hub yet */ 4587 if (!udev->parent || udev->parent->parent || 4588 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4589 return 0; 4590 4591 if (xhci->hw_lpm_support == 1 && 4592 xhci_check_usb2_port_capability( 4593 xhci, portnum, XHCI_HLC)) { 4594 udev->usb2_hw_lpm_capable = 1; 4595 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4596 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4597 if (xhci_check_usb2_port_capability(xhci, portnum, 4598 XHCI_BLC)) 4599 udev->usb2_hw_lpm_besl_capable = 1; 4600 } 4601 4602 return 0; 4603 } 4604 4605 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4606 4607 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4608 static unsigned long long xhci_service_interval_to_ns( 4609 struct usb_endpoint_descriptor *desc) 4610 { 4611 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4612 } 4613 4614 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4615 enum usb3_link_state state) 4616 { 4617 unsigned long long sel; 4618 unsigned long long pel; 4619 unsigned int max_sel_pel; 4620 char *state_name; 4621 4622 switch (state) { 4623 case USB3_LPM_U1: 4624 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4625 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4626 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4627 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4628 state_name = "U1"; 4629 break; 4630 case USB3_LPM_U2: 4631 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4632 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4633 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4634 state_name = "U2"; 4635 break; 4636 default: 4637 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4638 __func__); 4639 return USB3_LPM_DISABLED; 4640 } 4641 4642 if (sel <= max_sel_pel && pel <= max_sel_pel) 4643 return USB3_LPM_DEVICE_INITIATED; 4644 4645 if (sel > max_sel_pel) 4646 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4647 "due to long SEL %llu ms\n", 4648 state_name, sel); 4649 else 4650 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4651 "due to long PEL %llu ms\n", 4652 state_name, pel); 4653 return USB3_LPM_DISABLED; 4654 } 4655 4656 /* The U1 timeout should be the maximum of the following values: 4657 * - For control endpoints, U1 system exit latency (SEL) * 3 4658 * - For bulk endpoints, U1 SEL * 5 4659 * - For interrupt endpoints: 4660 * - Notification EPs, U1 SEL * 3 4661 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4662 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4663 */ 4664 static unsigned long long xhci_calculate_intel_u1_timeout( 4665 struct usb_device *udev, 4666 struct usb_endpoint_descriptor *desc) 4667 { 4668 unsigned long long timeout_ns; 4669 int ep_type; 4670 int intr_type; 4671 4672 ep_type = usb_endpoint_type(desc); 4673 switch (ep_type) { 4674 case USB_ENDPOINT_XFER_CONTROL: 4675 timeout_ns = udev->u1_params.sel * 3; 4676 break; 4677 case USB_ENDPOINT_XFER_BULK: 4678 timeout_ns = udev->u1_params.sel * 5; 4679 break; 4680 case USB_ENDPOINT_XFER_INT: 4681 intr_type = usb_endpoint_interrupt_type(desc); 4682 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4683 timeout_ns = udev->u1_params.sel * 3; 4684 break; 4685 } 4686 /* Otherwise the calculation is the same as isoc eps */ 4687 fallthrough; 4688 case USB_ENDPOINT_XFER_ISOC: 4689 timeout_ns = xhci_service_interval_to_ns(desc); 4690 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4691 if (timeout_ns < udev->u1_params.sel * 2) 4692 timeout_ns = udev->u1_params.sel * 2; 4693 break; 4694 default: 4695 return 0; 4696 } 4697 4698 return timeout_ns; 4699 } 4700 4701 /* Returns the hub-encoded U1 timeout value. */ 4702 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4703 struct usb_device *udev, 4704 struct usb_endpoint_descriptor *desc) 4705 { 4706 unsigned long long timeout_ns; 4707 4708 if (xhci->quirks & XHCI_INTEL_HOST) 4709 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4710 else 4711 timeout_ns = udev->u1_params.sel; 4712 4713 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4714 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4715 if (xhci_service_interval_to_ns(desc) <= timeout_ns) { 4716 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4717 return USB3_LPM_DISABLED; 4718 } 4719 } 4720 4721 /* The U1 timeout is encoded in 1us intervals. 4722 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4723 */ 4724 if (timeout_ns == USB3_LPM_DISABLED) 4725 timeout_ns = 1; 4726 else 4727 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4728 4729 /* If the necessary timeout value is bigger than what we can set in the 4730 * USB 3.0 hub, we have to disable hub-initiated U1. 4731 */ 4732 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4733 return timeout_ns; 4734 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4735 "due to long timeout %llu ms\n", timeout_ns); 4736 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4737 } 4738 4739 /* The U2 timeout should be the maximum of: 4740 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4741 * - largest bInterval of any active periodic endpoint (to avoid going 4742 * into lower power link states between intervals). 4743 * - the U2 Exit Latency of the device 4744 */ 4745 static unsigned long long xhci_calculate_intel_u2_timeout( 4746 struct usb_device *udev, 4747 struct usb_endpoint_descriptor *desc) 4748 { 4749 unsigned long long timeout_ns; 4750 unsigned long long u2_del_ns; 4751 4752 timeout_ns = 10 * 1000 * 1000; 4753 4754 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4755 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4756 timeout_ns = xhci_service_interval_to_ns(desc); 4757 4758 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4759 if (u2_del_ns > timeout_ns) 4760 timeout_ns = u2_del_ns; 4761 4762 return timeout_ns; 4763 } 4764 4765 /* Returns the hub-encoded U2 timeout value. */ 4766 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4767 struct usb_device *udev, 4768 struct usb_endpoint_descriptor *desc) 4769 { 4770 unsigned long long timeout_ns; 4771 4772 if (xhci->quirks & XHCI_INTEL_HOST) 4773 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4774 else 4775 timeout_ns = udev->u2_params.sel; 4776 4777 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4778 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4779 if (xhci_service_interval_to_ns(desc) <= timeout_ns) { 4780 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4781 return USB3_LPM_DISABLED; 4782 } 4783 } 4784 4785 /* The U2 timeout is encoded in 256us intervals */ 4786 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4787 /* If the necessary timeout value is bigger than what we can set in the 4788 * USB 3.0 hub, we have to disable hub-initiated U2. 4789 */ 4790 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4791 return timeout_ns; 4792 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4793 "due to long timeout %llu ms\n", timeout_ns); 4794 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4795 } 4796 4797 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4798 struct usb_device *udev, 4799 struct usb_endpoint_descriptor *desc, 4800 enum usb3_link_state state, 4801 u16 *timeout) 4802 { 4803 if (state == USB3_LPM_U1) 4804 return xhci_calculate_u1_timeout(xhci, udev, desc); 4805 else if (state == USB3_LPM_U2) 4806 return xhci_calculate_u2_timeout(xhci, udev, desc); 4807 4808 return USB3_LPM_DISABLED; 4809 } 4810 4811 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4812 struct usb_device *udev, 4813 struct usb_endpoint_descriptor *desc, 4814 enum usb3_link_state state, 4815 u16 *timeout) 4816 { 4817 u16 alt_timeout; 4818 4819 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4820 desc, state, timeout); 4821 4822 /* If we found we can't enable hub-initiated LPM, and 4823 * the U1 or U2 exit latency was too high to allow 4824 * device-initiated LPM as well, then we will disable LPM 4825 * for this device, so stop searching any further. 4826 */ 4827 if (alt_timeout == USB3_LPM_DISABLED) { 4828 *timeout = alt_timeout; 4829 return -E2BIG; 4830 } 4831 if (alt_timeout > *timeout) 4832 *timeout = alt_timeout; 4833 return 0; 4834 } 4835 4836 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4837 struct usb_device *udev, 4838 struct usb_host_interface *alt, 4839 enum usb3_link_state state, 4840 u16 *timeout) 4841 { 4842 int j; 4843 4844 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4845 if (xhci_update_timeout_for_endpoint(xhci, udev, 4846 &alt->endpoint[j].desc, state, timeout)) 4847 return -E2BIG; 4848 } 4849 return 0; 4850 } 4851 4852 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4853 enum usb3_link_state state) 4854 { 4855 struct usb_device *parent; 4856 unsigned int num_hubs; 4857 4858 if (state == USB3_LPM_U2) 4859 return 0; 4860 4861 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4862 for (parent = udev->parent, num_hubs = 0; parent->parent; 4863 parent = parent->parent) 4864 num_hubs++; 4865 4866 if (num_hubs < 2) 4867 return 0; 4868 4869 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4870 " below second-tier hub.\n"); 4871 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4872 "to decrease power consumption.\n"); 4873 return -E2BIG; 4874 } 4875 4876 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4877 struct usb_device *udev, 4878 enum usb3_link_state state) 4879 { 4880 if (xhci->quirks & XHCI_INTEL_HOST) 4881 return xhci_check_intel_tier_policy(udev, state); 4882 else 4883 return 0; 4884 } 4885 4886 /* Returns the U1 or U2 timeout that should be enabled. 4887 * If the tier check or timeout setting functions return with a non-zero exit 4888 * code, that means the timeout value has been finalized and we shouldn't look 4889 * at any more endpoints. 4890 */ 4891 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4892 struct usb_device *udev, enum usb3_link_state state) 4893 { 4894 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4895 struct usb_host_config *config; 4896 char *state_name; 4897 int i; 4898 u16 timeout = USB3_LPM_DISABLED; 4899 4900 if (state == USB3_LPM_U1) 4901 state_name = "U1"; 4902 else if (state == USB3_LPM_U2) 4903 state_name = "U2"; 4904 else { 4905 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4906 state); 4907 return timeout; 4908 } 4909 4910 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4911 return timeout; 4912 4913 /* Gather some information about the currently installed configuration 4914 * and alternate interface settings. 4915 */ 4916 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4917 state, &timeout)) 4918 return timeout; 4919 4920 config = udev->actconfig; 4921 if (!config) 4922 return timeout; 4923 4924 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4925 struct usb_driver *driver; 4926 struct usb_interface *intf = config->interface[i]; 4927 4928 if (!intf) 4929 continue; 4930 4931 /* Check if any currently bound drivers want hub-initiated LPM 4932 * disabled. 4933 */ 4934 if (intf->dev.driver) { 4935 driver = to_usb_driver(intf->dev.driver); 4936 if (driver && driver->disable_hub_initiated_lpm) { 4937 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4938 state_name, driver->name); 4939 timeout = xhci_get_timeout_no_hub_lpm(udev, 4940 state); 4941 if (timeout == USB3_LPM_DISABLED) 4942 return timeout; 4943 } 4944 } 4945 4946 /* Not sure how this could happen... */ 4947 if (!intf->cur_altsetting) 4948 continue; 4949 4950 if (xhci_update_timeout_for_interface(xhci, udev, 4951 intf->cur_altsetting, 4952 state, &timeout)) 4953 return timeout; 4954 } 4955 return timeout; 4956 } 4957 4958 static int calculate_max_exit_latency(struct usb_device *udev, 4959 enum usb3_link_state state_changed, 4960 u16 hub_encoded_timeout) 4961 { 4962 unsigned long long u1_mel_us = 0; 4963 unsigned long long u2_mel_us = 0; 4964 unsigned long long mel_us = 0; 4965 bool disabling_u1; 4966 bool disabling_u2; 4967 bool enabling_u1; 4968 bool enabling_u2; 4969 4970 disabling_u1 = (state_changed == USB3_LPM_U1 && 4971 hub_encoded_timeout == USB3_LPM_DISABLED); 4972 disabling_u2 = (state_changed == USB3_LPM_U2 && 4973 hub_encoded_timeout == USB3_LPM_DISABLED); 4974 4975 enabling_u1 = (state_changed == USB3_LPM_U1 && 4976 hub_encoded_timeout != USB3_LPM_DISABLED); 4977 enabling_u2 = (state_changed == USB3_LPM_U2 && 4978 hub_encoded_timeout != USB3_LPM_DISABLED); 4979 4980 /* If U1 was already enabled and we're not disabling it, 4981 * or we're going to enable U1, account for the U1 max exit latency. 4982 */ 4983 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4984 enabling_u1) 4985 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4986 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4987 enabling_u2) 4988 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4989 4990 if (u1_mel_us > u2_mel_us) 4991 mel_us = u1_mel_us; 4992 else 4993 mel_us = u2_mel_us; 4994 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4995 if (mel_us > MAX_EXIT) { 4996 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4997 "is too big.\n", mel_us); 4998 return -E2BIG; 4999 } 5000 return mel_us; 5001 } 5002 5003 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5004 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5005 struct usb_device *udev, enum usb3_link_state state) 5006 { 5007 struct xhci_hcd *xhci; 5008 u16 hub_encoded_timeout; 5009 int mel; 5010 int ret; 5011 5012 xhci = hcd_to_xhci(hcd); 5013 /* The LPM timeout values are pretty host-controller specific, so don't 5014 * enable hub-initiated timeouts unless the vendor has provided 5015 * information about their timeout algorithm. 5016 */ 5017 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5018 !xhci->devs[udev->slot_id]) 5019 return USB3_LPM_DISABLED; 5020 5021 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5022 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5023 if (mel < 0) { 5024 /* Max Exit Latency is too big, disable LPM. */ 5025 hub_encoded_timeout = USB3_LPM_DISABLED; 5026 mel = 0; 5027 } 5028 5029 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5030 if (ret) 5031 return ret; 5032 return hub_encoded_timeout; 5033 } 5034 5035 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5036 struct usb_device *udev, enum usb3_link_state state) 5037 { 5038 struct xhci_hcd *xhci; 5039 u16 mel; 5040 5041 xhci = hcd_to_xhci(hcd); 5042 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5043 !xhci->devs[udev->slot_id]) 5044 return 0; 5045 5046 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5047 return xhci_change_max_exit_latency(xhci, udev, mel); 5048 } 5049 #else /* CONFIG_PM */ 5050 5051 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5052 struct usb_device *udev, int enable) 5053 { 5054 return 0; 5055 } 5056 5057 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5058 { 5059 return 0; 5060 } 5061 5062 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5063 struct usb_device *udev, enum usb3_link_state state) 5064 { 5065 return USB3_LPM_DISABLED; 5066 } 5067 5068 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5069 struct usb_device *udev, enum usb3_link_state state) 5070 { 5071 return 0; 5072 } 5073 #endif /* CONFIG_PM */ 5074 5075 /*-------------------------------------------------------------------------*/ 5076 5077 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5078 * internal data structures for the device. 5079 */ 5080 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5081 struct usb_tt *tt, gfp_t mem_flags) 5082 { 5083 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5084 struct xhci_virt_device *vdev; 5085 struct xhci_command *config_cmd; 5086 struct xhci_input_control_ctx *ctrl_ctx; 5087 struct xhci_slot_ctx *slot_ctx; 5088 unsigned long flags; 5089 unsigned think_time; 5090 int ret; 5091 5092 /* Ignore root hubs */ 5093 if (!hdev->parent) 5094 return 0; 5095 5096 vdev = xhci->devs[hdev->slot_id]; 5097 if (!vdev) { 5098 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5099 return -EINVAL; 5100 } 5101 5102 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5103 if (!config_cmd) 5104 return -ENOMEM; 5105 5106 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5107 if (!ctrl_ctx) { 5108 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5109 __func__); 5110 xhci_free_command(xhci, config_cmd); 5111 return -ENOMEM; 5112 } 5113 5114 spin_lock_irqsave(&xhci->lock, flags); 5115 if (hdev->speed == USB_SPEED_HIGH && 5116 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5117 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5118 xhci_free_command(xhci, config_cmd); 5119 spin_unlock_irqrestore(&xhci->lock, flags); 5120 return -ENOMEM; 5121 } 5122 5123 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5124 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5125 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5126 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5127 /* 5128 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5129 * but it may be already set to 1 when setup an xHCI virtual 5130 * device, so clear it anyway. 5131 */ 5132 if (tt->multi) 5133 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5134 else if (hdev->speed == USB_SPEED_FULL) 5135 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5136 5137 if (xhci->hci_version > 0x95) { 5138 xhci_dbg(xhci, "xHCI version %x needs hub " 5139 "TT think time and number of ports\n", 5140 (unsigned int) xhci->hci_version); 5141 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5142 /* Set TT think time - convert from ns to FS bit times. 5143 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5144 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5145 * 5146 * xHCI 1.0: this field shall be 0 if the device is not a 5147 * High-spped hub. 5148 */ 5149 think_time = tt->think_time; 5150 if (think_time != 0) 5151 think_time = (think_time / 666) - 1; 5152 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5153 slot_ctx->tt_info |= 5154 cpu_to_le32(TT_THINK_TIME(think_time)); 5155 } else { 5156 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5157 "TT think time or number of ports\n", 5158 (unsigned int) xhci->hci_version); 5159 } 5160 slot_ctx->dev_state = 0; 5161 spin_unlock_irqrestore(&xhci->lock, flags); 5162 5163 xhci_dbg(xhci, "Set up %s for hub device.\n", 5164 (xhci->hci_version > 0x95) ? 5165 "configure endpoint" : "evaluate context"); 5166 5167 /* Issue and wait for the configure endpoint or 5168 * evaluate context command. 5169 */ 5170 if (xhci->hci_version > 0x95) 5171 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5172 false, false); 5173 else 5174 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5175 true, false); 5176 5177 xhci_free_command(xhci, config_cmd); 5178 return ret; 5179 } 5180 5181 static int xhci_get_frame(struct usb_hcd *hcd) 5182 { 5183 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5184 /* EHCI mods by the periodic size. Why? */ 5185 return readl(&xhci->run_regs->microframe_index) >> 3; 5186 } 5187 5188 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5189 { 5190 struct xhci_hcd *xhci; 5191 /* 5192 * TODO: Check with DWC3 clients for sysdev according to 5193 * quirks 5194 */ 5195 struct device *dev = hcd->self.sysdev; 5196 unsigned int minor_rev; 5197 int retval; 5198 5199 /* Accept arbitrarily long scatter-gather lists */ 5200 hcd->self.sg_tablesize = ~0; 5201 5202 /* support to build packet from discontinuous buffers */ 5203 hcd->self.no_sg_constraint = 1; 5204 5205 /* XHCI controllers don't stop the ep queue on short packets :| */ 5206 hcd->self.no_stop_on_short = 1; 5207 5208 xhci = hcd_to_xhci(hcd); 5209 5210 if (usb_hcd_is_primary_hcd(hcd)) { 5211 xhci->main_hcd = hcd; 5212 xhci->usb2_rhub.hcd = hcd; 5213 /* Mark the first roothub as being USB 2.0. 5214 * The xHCI driver will register the USB 3.0 roothub. 5215 */ 5216 hcd->speed = HCD_USB2; 5217 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5218 /* 5219 * USB 2.0 roothub under xHCI has an integrated TT, 5220 * (rate matching hub) as opposed to having an OHCI/UHCI 5221 * companion controller. 5222 */ 5223 hcd->has_tt = 1; 5224 } else { 5225 /* 5226 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5227 * should return 0x31 for sbrn, or that the minor revision 5228 * is a two digit BCD containig minor and sub-minor numbers. 5229 * This was later clarified in xHCI 1.2. 5230 * 5231 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5232 * minor revision set to 0x1 instead of 0x10. 5233 */ 5234 if (xhci->usb3_rhub.min_rev == 0x1) 5235 minor_rev = 1; 5236 else 5237 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5238 5239 switch (minor_rev) { 5240 case 2: 5241 hcd->speed = HCD_USB32; 5242 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5243 hcd->self.root_hub->rx_lanes = 2; 5244 hcd->self.root_hub->tx_lanes = 2; 5245 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5246 break; 5247 case 1: 5248 hcd->speed = HCD_USB31; 5249 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5250 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5251 break; 5252 } 5253 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5254 minor_rev, 5255 minor_rev ? "Enhanced " : ""); 5256 5257 xhci->usb3_rhub.hcd = hcd; 5258 /* xHCI private pointer was set in xhci_pci_probe for the second 5259 * registered roothub. 5260 */ 5261 return 0; 5262 } 5263 5264 mutex_init(&xhci->mutex); 5265 xhci->cap_regs = hcd->regs; 5266 xhci->op_regs = hcd->regs + 5267 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5268 xhci->run_regs = hcd->regs + 5269 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5270 /* Cache read-only capability registers */ 5271 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5272 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5273 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5274 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 5275 xhci->hci_version = HC_VERSION(xhci->hcc_params); 5276 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5277 if (xhci->hci_version > 0x100) 5278 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5279 5280 xhci->quirks |= quirks; 5281 5282 get_quirks(dev, xhci); 5283 5284 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5285 * success event after a short transfer. This quirk will ignore such 5286 * spurious event. 5287 */ 5288 if (xhci->hci_version > 0x96) 5289 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5290 5291 /* Make sure the HC is halted. */ 5292 retval = xhci_halt(xhci); 5293 if (retval) 5294 return retval; 5295 5296 xhci_zero_64b_regs(xhci); 5297 5298 xhci_dbg(xhci, "Resetting HCD\n"); 5299 /* Reset the internal HC memory state and registers. */ 5300 retval = xhci_reset(xhci); 5301 if (retval) 5302 return retval; 5303 xhci_dbg(xhci, "Reset complete\n"); 5304 5305 /* 5306 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5307 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5308 * address memory pointers actually. So, this driver clears the AC64 5309 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5310 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5311 */ 5312 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5313 xhci->hcc_params &= ~BIT(0); 5314 5315 /* Set dma_mask and coherent_dma_mask to 64-bits, 5316 * if xHC supports 64-bit addressing */ 5317 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5318 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5319 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5320 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5321 } else { 5322 /* 5323 * This is to avoid error in cases where a 32-bit USB 5324 * controller is used on a 64-bit capable system. 5325 */ 5326 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5327 if (retval) 5328 return retval; 5329 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5330 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5331 } 5332 5333 xhci_dbg(xhci, "Calling HCD init\n"); 5334 /* Initialize HCD and host controller data structures. */ 5335 retval = xhci_init(hcd); 5336 if (retval) 5337 return retval; 5338 xhci_dbg(xhci, "Called HCD init\n"); 5339 5340 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5341 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5342 5343 return 0; 5344 } 5345 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5346 5347 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5348 struct usb_host_endpoint *ep) 5349 { 5350 struct xhci_hcd *xhci; 5351 struct usb_device *udev; 5352 unsigned int slot_id; 5353 unsigned int ep_index; 5354 unsigned long flags; 5355 5356 xhci = hcd_to_xhci(hcd); 5357 5358 spin_lock_irqsave(&xhci->lock, flags); 5359 udev = (struct usb_device *)ep->hcpriv; 5360 slot_id = udev->slot_id; 5361 ep_index = xhci_get_endpoint_index(&ep->desc); 5362 5363 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5364 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5365 spin_unlock_irqrestore(&xhci->lock, flags); 5366 } 5367 5368 static const struct hc_driver xhci_hc_driver = { 5369 .description = "xhci-hcd", 5370 .product_desc = "xHCI Host Controller", 5371 .hcd_priv_size = sizeof(struct xhci_hcd), 5372 5373 /* 5374 * generic hardware linkage 5375 */ 5376 .irq = xhci_irq, 5377 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5378 HCD_BH, 5379 5380 /* 5381 * basic lifecycle operations 5382 */ 5383 .reset = NULL, /* set in xhci_init_driver() */ 5384 .start = xhci_run, 5385 .stop = xhci_stop, 5386 .shutdown = xhci_shutdown, 5387 5388 /* 5389 * managing i/o requests and associated device resources 5390 */ 5391 .map_urb_for_dma = xhci_map_urb_for_dma, 5392 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5393 .urb_enqueue = xhci_urb_enqueue, 5394 .urb_dequeue = xhci_urb_dequeue, 5395 .alloc_dev = xhci_alloc_dev, 5396 .free_dev = xhci_free_dev, 5397 .alloc_streams = xhci_alloc_streams, 5398 .free_streams = xhci_free_streams, 5399 .add_endpoint = xhci_add_endpoint, 5400 .drop_endpoint = xhci_drop_endpoint, 5401 .endpoint_disable = xhci_endpoint_disable, 5402 .endpoint_reset = xhci_endpoint_reset, 5403 .check_bandwidth = xhci_check_bandwidth, 5404 .reset_bandwidth = xhci_reset_bandwidth, 5405 .address_device = xhci_address_device, 5406 .enable_device = xhci_enable_device, 5407 .update_hub_device = xhci_update_hub_device, 5408 .reset_device = xhci_discover_or_reset_device, 5409 5410 /* 5411 * scheduling support 5412 */ 5413 .get_frame_number = xhci_get_frame, 5414 5415 /* 5416 * root hub support 5417 */ 5418 .hub_control = xhci_hub_control, 5419 .hub_status_data = xhci_hub_status_data, 5420 .bus_suspend = xhci_bus_suspend, 5421 .bus_resume = xhci_bus_resume, 5422 .get_resuming_ports = xhci_get_resuming_ports, 5423 5424 /* 5425 * call back when device connected and addressed 5426 */ 5427 .update_device = xhci_update_device, 5428 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5429 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5430 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5431 .find_raw_port_number = xhci_find_raw_port_number, 5432 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5433 }; 5434 5435 void xhci_init_driver(struct hc_driver *drv, 5436 const struct xhci_driver_overrides *over) 5437 { 5438 BUG_ON(!over); 5439 5440 /* Copy the generic table to drv then apply the overrides */ 5441 *drv = xhci_hc_driver; 5442 5443 if (over) { 5444 drv->hcd_priv_size += over->extra_priv_size; 5445 if (over->reset) 5446 drv->reset = over->reset; 5447 if (over->start) 5448 drv->start = over->start; 5449 if (over->add_endpoint) 5450 drv->add_endpoint = over->add_endpoint; 5451 if (over->drop_endpoint) 5452 drv->drop_endpoint = over->drop_endpoint; 5453 if (over->check_bandwidth) 5454 drv->check_bandwidth = over->check_bandwidth; 5455 if (over->reset_bandwidth) 5456 drv->reset_bandwidth = over->reset_bandwidth; 5457 } 5458 } 5459 EXPORT_SYMBOL_GPL(xhci_init_driver); 5460 5461 MODULE_DESCRIPTION(DRIVER_DESC); 5462 MODULE_AUTHOR(DRIVER_AUTHOR); 5463 MODULE_LICENSE("GPL"); 5464 5465 static int __init xhci_hcd_init(void) 5466 { 5467 /* 5468 * Check the compiler generated sizes of structures that must be laid 5469 * out in specific ways for hardware access. 5470 */ 5471 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5472 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5473 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5474 /* xhci_device_control has eight fields, and also 5475 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5476 */ 5477 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5478 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5479 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5480 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5481 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5482 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5483 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5484 5485 if (usb_disabled()) 5486 return -ENODEV; 5487 5488 xhci_debugfs_create_root(); 5489 5490 return 0; 5491 } 5492 5493 /* 5494 * If an init function is provided, an exit function must also be provided 5495 * to allow module unload. 5496 */ 5497 static void __exit xhci_hcd_fini(void) 5498 { 5499 xhci_debugfs_remove_root(); 5500 } 5501 5502 module_init(xhci_hcd_init); 5503 module_exit(xhci_hcd_fini); 5504