1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 41 { 42 struct xhci_segment *seg = ring->first_seg; 43 44 if (!td || !td->start_seg) 45 return false; 46 do { 47 if (seg == td->start_seg) 48 return true; 49 seg = seg->next; 50 } while (seg && seg != ring->first_seg); 51 52 return false; 53 } 54 55 /* 56 * xhci_handshake - spin reading hc until handshake completes or fails 57 * @ptr: address of hc register to be read 58 * @mask: bits to look at in result of read 59 * @done: value of those bits when handshake succeeds 60 * @usec: timeout in microseconds 61 * 62 * Returns negative errno, or zero on success 63 * 64 * Success happens when the "mask" bits have the specified value (hardware 65 * handshake done). There are two failure modes: "usec" have passed (major 66 * hardware flakeout), or the register reads as all-ones (hardware removed). 67 */ 68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 69 { 70 u32 result; 71 int ret; 72 73 ret = readl_poll_timeout_atomic(ptr, result, 74 (result & mask) == done || 75 result == U32_MAX, 76 1, timeout_us); 77 if (result == U32_MAX) /* card removed */ 78 return -ENODEV; 79 80 return ret; 81 } 82 83 /* 84 * Disable interrupts and begin the xHCI halting process. 85 */ 86 void xhci_quiesce(struct xhci_hcd *xhci) 87 { 88 u32 halted; 89 u32 cmd; 90 u32 mask; 91 92 mask = ~(XHCI_IRQS); 93 halted = readl(&xhci->op_regs->status) & STS_HALT; 94 if (!halted) 95 mask &= ~CMD_RUN; 96 97 cmd = readl(&xhci->op_regs->command); 98 cmd &= mask; 99 writel(cmd, &xhci->op_regs->command); 100 } 101 102 /* 103 * Force HC into halt state. 104 * 105 * Disable any IRQs and clear the run/stop bit. 106 * HC will complete any current and actively pipelined transactions, and 107 * should halt within 16 ms of the run/stop bit being cleared. 108 * Read HC Halted bit in the status register to see when the HC is finished. 109 */ 110 int xhci_halt(struct xhci_hcd *xhci) 111 { 112 int ret; 113 114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 115 xhci_quiesce(xhci); 116 117 ret = xhci_handshake(&xhci->op_regs->status, 118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 119 if (ret) { 120 xhci_warn(xhci, "Host halt failed, %d\n", ret); 121 return ret; 122 } 123 124 xhci->xhc_state |= XHCI_STATE_HALTED; 125 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 126 127 return ret; 128 } 129 130 /* 131 * Set the run bit and wait for the host to be running. 132 */ 133 int xhci_start(struct xhci_hcd *xhci) 134 { 135 u32 temp; 136 int ret; 137 138 temp = readl(&xhci->op_regs->command); 139 temp |= (CMD_RUN); 140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 141 temp); 142 writel(temp, &xhci->op_regs->command); 143 144 /* 145 * Wait for the HCHalted Status bit to be 0 to indicate the host is 146 * running. 147 */ 148 ret = xhci_handshake(&xhci->op_regs->status, 149 STS_HALT, 0, XHCI_MAX_HALT_USEC); 150 if (ret == -ETIMEDOUT) 151 xhci_err(xhci, "Host took too long to start, " 152 "waited %u microseconds.\n", 153 XHCI_MAX_HALT_USEC); 154 if (!ret) 155 /* clear state flags. Including dying, halted or removing */ 156 xhci->xhc_state = 0; 157 158 return ret; 159 } 160 161 /* 162 * Reset a halted HC. 163 * 164 * This resets pipelines, timers, counters, state machines, etc. 165 * Transactions will be terminated immediately, and operational registers 166 * will be set to their defaults. 167 */ 168 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 169 { 170 u32 command; 171 u32 state; 172 int ret; 173 174 state = readl(&xhci->op_regs->status); 175 176 if (state == ~(u32)0) { 177 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 178 return -ENODEV; 179 } 180 181 if ((state & STS_HALT) == 0) { 182 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 183 return 0; 184 } 185 186 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 187 command = readl(&xhci->op_regs->command); 188 command |= CMD_RESET; 189 writel(command, &xhci->op_regs->command); 190 191 /* Existing Intel xHCI controllers require a delay of 1 mS, 192 * after setting the CMD_RESET bit, and before accessing any 193 * HC registers. This allows the HC to complete the 194 * reset operation and be ready for HC register access. 195 * Without this delay, the subsequent HC register access, 196 * may result in a system hang very rarely. 197 */ 198 if (xhci->quirks & XHCI_INTEL_HOST) 199 udelay(1000); 200 201 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us); 202 if (ret) 203 return ret; 204 205 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 206 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 207 208 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 209 "Wait for controller to be ready for doorbell rings"); 210 /* 211 * xHCI cannot write to any doorbells or operational registers other 212 * than status until the "Controller Not Ready" flag is cleared. 213 */ 214 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 215 216 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 217 xhci->usb2_rhub.bus_state.suspended_ports = 0; 218 xhci->usb2_rhub.bus_state.resuming_ports = 0; 219 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 220 xhci->usb3_rhub.bus_state.suspended_ports = 0; 221 xhci->usb3_rhub.bus_state.resuming_ports = 0; 222 223 return ret; 224 } 225 226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 227 { 228 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 229 int err, i; 230 u64 val; 231 u32 intrs; 232 233 /* 234 * Some Renesas controllers get into a weird state if they are 235 * reset while programmed with 64bit addresses (they will preserve 236 * the top half of the address in internal, non visible 237 * registers). You end up with half the address coming from the 238 * kernel, and the other half coming from the firmware. Also, 239 * changing the programming leads to extra accesses even if the 240 * controller is supposed to be halted. The controller ends up with 241 * a fatal fault, and is then ripe for being properly reset. 242 * 243 * Special care is taken to only apply this if the device is behind 244 * an iommu. Doing anything when there is no iommu is definitely 245 * unsafe... 246 */ 247 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 248 return; 249 250 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 251 252 /* Clear HSEIE so that faults do not get signaled */ 253 val = readl(&xhci->op_regs->command); 254 val &= ~CMD_HSEIE; 255 writel(val, &xhci->op_regs->command); 256 257 /* Clear HSE (aka FATAL) */ 258 val = readl(&xhci->op_regs->status); 259 val |= STS_FATAL; 260 writel(val, &xhci->op_regs->status); 261 262 /* Now zero the registers, and brace for impact */ 263 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 264 if (upper_32_bits(val)) 265 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 266 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 267 if (upper_32_bits(val)) 268 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 269 270 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 271 ARRAY_SIZE(xhci->run_regs->ir_set)); 272 273 for (i = 0; i < intrs; i++) { 274 struct xhci_intr_reg __iomem *ir; 275 276 ir = &xhci->run_regs->ir_set[i]; 277 val = xhci_read_64(xhci, &ir->erst_base); 278 if (upper_32_bits(val)) 279 xhci_write_64(xhci, 0, &ir->erst_base); 280 val= xhci_read_64(xhci, &ir->erst_dequeue); 281 if (upper_32_bits(val)) 282 xhci_write_64(xhci, 0, &ir->erst_dequeue); 283 } 284 285 /* Wait for the fault to appear. It will be cleared on reset */ 286 err = xhci_handshake(&xhci->op_regs->status, 287 STS_FATAL, STS_FATAL, 288 XHCI_MAX_HALT_USEC); 289 if (!err) 290 xhci_info(xhci, "Fault detected\n"); 291 } 292 293 #ifdef CONFIG_USB_PCI 294 /* 295 * Set up MSI 296 */ 297 static int xhci_setup_msi(struct xhci_hcd *xhci) 298 { 299 int ret; 300 /* 301 * TODO:Check with MSI Soc for sysdev 302 */ 303 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 304 305 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 306 if (ret < 0) { 307 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 308 "failed to allocate MSI entry"); 309 return ret; 310 } 311 312 ret = request_irq(pdev->irq, xhci_msi_irq, 313 0, "xhci_hcd", xhci_to_hcd(xhci)); 314 if (ret) { 315 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 316 "disable MSI interrupt"); 317 pci_free_irq_vectors(pdev); 318 } 319 320 return ret; 321 } 322 323 /* 324 * Set up MSI-X 325 */ 326 static int xhci_setup_msix(struct xhci_hcd *xhci) 327 { 328 int i, ret; 329 struct usb_hcd *hcd = xhci_to_hcd(xhci); 330 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 331 332 /* 333 * calculate number of msi-x vectors supported. 334 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 335 * with max number of interrupters based on the xhci HCSPARAMS1. 336 * - num_online_cpus: maximum msi-x vectors per CPUs core. 337 * Add additional 1 vector to ensure always available interrupt. 338 */ 339 xhci->msix_count = min(num_online_cpus() + 1, 340 HCS_MAX_INTRS(xhci->hcs_params1)); 341 342 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 343 PCI_IRQ_MSIX); 344 if (ret < 0) { 345 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 346 "Failed to enable MSI-X"); 347 return ret; 348 } 349 350 for (i = 0; i < xhci->msix_count; i++) { 351 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 352 "xhci_hcd", xhci_to_hcd(xhci)); 353 if (ret) 354 goto disable_msix; 355 } 356 357 hcd->msix_enabled = 1; 358 return ret; 359 360 disable_msix: 361 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 362 while (--i >= 0) 363 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 364 pci_free_irq_vectors(pdev); 365 return ret; 366 } 367 368 /* Free any IRQs and disable MSI-X */ 369 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 370 { 371 struct usb_hcd *hcd = xhci_to_hcd(xhci); 372 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 373 374 if (xhci->quirks & XHCI_PLAT) 375 return; 376 377 /* return if using legacy interrupt */ 378 if (hcd->irq > 0) 379 return; 380 381 if (hcd->msix_enabled) { 382 int i; 383 384 for (i = 0; i < xhci->msix_count; i++) 385 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 386 } else { 387 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 388 } 389 390 pci_free_irq_vectors(pdev); 391 hcd->msix_enabled = 0; 392 } 393 394 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 395 { 396 struct usb_hcd *hcd = xhci_to_hcd(xhci); 397 398 if (hcd->msix_enabled) { 399 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 400 int i; 401 402 for (i = 0; i < xhci->msix_count; i++) 403 synchronize_irq(pci_irq_vector(pdev, i)); 404 } 405 } 406 407 static int xhci_try_enable_msi(struct usb_hcd *hcd) 408 { 409 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 410 struct pci_dev *pdev; 411 int ret; 412 413 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 414 if (xhci->quirks & XHCI_PLAT) 415 return 0; 416 417 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 418 /* 419 * Some Fresco Logic host controllers advertise MSI, but fail to 420 * generate interrupts. Don't even try to enable MSI. 421 */ 422 if (xhci->quirks & XHCI_BROKEN_MSI) 423 goto legacy_irq; 424 425 /* unregister the legacy interrupt */ 426 if (hcd->irq) 427 free_irq(hcd->irq, hcd); 428 hcd->irq = 0; 429 430 ret = xhci_setup_msix(xhci); 431 if (ret) 432 /* fall back to msi*/ 433 ret = xhci_setup_msi(xhci); 434 435 if (!ret) { 436 hcd->msi_enabled = 1; 437 return 0; 438 } 439 440 if (!pdev->irq) { 441 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 442 return -EINVAL; 443 } 444 445 legacy_irq: 446 if (!strlen(hcd->irq_descr)) 447 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 448 hcd->driver->description, hcd->self.busnum); 449 450 /* fall back to legacy interrupt*/ 451 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 452 hcd->irq_descr, hcd); 453 if (ret) { 454 xhci_err(xhci, "request interrupt %d failed\n", 455 pdev->irq); 456 return ret; 457 } 458 hcd->irq = pdev->irq; 459 return 0; 460 } 461 462 #else 463 464 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 465 { 466 return 0; 467 } 468 469 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 470 { 471 } 472 473 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 474 { 475 } 476 477 #endif 478 479 static void compliance_mode_recovery(struct timer_list *t) 480 { 481 struct xhci_hcd *xhci; 482 struct usb_hcd *hcd; 483 struct xhci_hub *rhub; 484 u32 temp; 485 int i; 486 487 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 488 rhub = &xhci->usb3_rhub; 489 490 for (i = 0; i < rhub->num_ports; i++) { 491 temp = readl(rhub->ports[i]->addr); 492 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 493 /* 494 * Compliance Mode Detected. Letting USB Core 495 * handle the Warm Reset 496 */ 497 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 498 "Compliance mode detected->port %d", 499 i + 1); 500 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 501 "Attempting compliance mode recovery"); 502 hcd = xhci->shared_hcd; 503 504 if (hcd->state == HC_STATE_SUSPENDED) 505 usb_hcd_resume_root_hub(hcd); 506 507 usb_hcd_poll_rh_status(hcd); 508 } 509 } 510 511 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 512 mod_timer(&xhci->comp_mode_recovery_timer, 513 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 514 } 515 516 /* 517 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 518 * that causes ports behind that hardware to enter compliance mode sometimes. 519 * The quirk creates a timer that polls every 2 seconds the link state of 520 * each host controller's port and recovers it by issuing a Warm reset 521 * if Compliance mode is detected, otherwise the port will become "dead" (no 522 * device connections or disconnections will be detected anymore). Becasue no 523 * status event is generated when entering compliance mode (per xhci spec), 524 * this quirk is needed on systems that have the failing hardware installed. 525 */ 526 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 527 { 528 xhci->port_status_u0 = 0; 529 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 530 0); 531 xhci->comp_mode_recovery_timer.expires = jiffies + 532 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 533 534 add_timer(&xhci->comp_mode_recovery_timer); 535 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 536 "Compliance mode recovery timer initialized"); 537 } 538 539 /* 540 * This function identifies the systems that have installed the SN65LVPE502CP 541 * USB3.0 re-driver and that need the Compliance Mode Quirk. 542 * Systems: 543 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 544 */ 545 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 546 { 547 const char *dmi_product_name, *dmi_sys_vendor; 548 549 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 550 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 551 if (!dmi_product_name || !dmi_sys_vendor) 552 return false; 553 554 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 555 return false; 556 557 if (strstr(dmi_product_name, "Z420") || 558 strstr(dmi_product_name, "Z620") || 559 strstr(dmi_product_name, "Z820") || 560 strstr(dmi_product_name, "Z1 Workstation")) 561 return true; 562 563 return false; 564 } 565 566 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 567 { 568 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 569 } 570 571 572 /* 573 * Initialize memory for HCD and xHC (one-time init). 574 * 575 * Program the PAGESIZE register, initialize the device context array, create 576 * device contexts (?), set up a command ring segment (or two?), create event 577 * ring (one for now). 578 */ 579 static int xhci_init(struct usb_hcd *hcd) 580 { 581 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 582 int retval; 583 584 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 585 spin_lock_init(&xhci->lock); 586 if (xhci->hci_version == 0x95 && link_quirk) { 587 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 588 "QUIRK: Not clearing Link TRB chain bits."); 589 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 590 } else { 591 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 592 "xHCI doesn't need link TRB QUIRK"); 593 } 594 retval = xhci_mem_init(xhci, GFP_KERNEL); 595 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 596 597 /* Initializing Compliance Mode Recovery Data If Needed */ 598 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 599 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 600 compliance_mode_recovery_timer_init(xhci); 601 } 602 603 return retval; 604 } 605 606 /*-------------------------------------------------------------------------*/ 607 608 609 static int xhci_run_finished(struct xhci_hcd *xhci) 610 { 611 if (xhci_start(xhci)) { 612 xhci_halt(xhci); 613 return -ENODEV; 614 } 615 xhci->shared_hcd->state = HC_STATE_RUNNING; 616 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 617 618 if (xhci->quirks & XHCI_NEC_HOST) 619 xhci_ring_cmd_db(xhci); 620 621 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 622 "Finished xhci_run for USB3 roothub"); 623 return 0; 624 } 625 626 /* 627 * Start the HC after it was halted. 628 * 629 * This function is called by the USB core when the HC driver is added. 630 * Its opposite is xhci_stop(). 631 * 632 * xhci_init() must be called once before this function can be called. 633 * Reset the HC, enable device slot contexts, program DCBAAP, and 634 * set command ring pointer and event ring pointer. 635 * 636 * Setup MSI-X vectors and enable interrupts. 637 */ 638 int xhci_run(struct usb_hcd *hcd) 639 { 640 u32 temp; 641 u64 temp_64; 642 int ret; 643 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 644 645 /* Start the xHCI host controller running only after the USB 2.0 roothub 646 * is setup. 647 */ 648 649 hcd->uses_new_polling = 1; 650 if (!usb_hcd_is_primary_hcd(hcd)) 651 return xhci_run_finished(xhci); 652 653 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 654 655 ret = xhci_try_enable_msi(hcd); 656 if (ret) 657 return ret; 658 659 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 660 temp_64 &= ~ERST_PTR_MASK; 661 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 662 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 663 664 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 665 "// Set the interrupt modulation register"); 666 temp = readl(&xhci->ir_set->irq_control); 667 temp &= ~ER_IRQ_INTERVAL_MASK; 668 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 669 writel(temp, &xhci->ir_set->irq_control); 670 671 /* Set the HCD state before we enable the irqs */ 672 temp = readl(&xhci->op_regs->command); 673 temp |= (CMD_EIE); 674 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 675 "// Enable interrupts, cmd = 0x%x.", temp); 676 writel(temp, &xhci->op_regs->command); 677 678 temp = readl(&xhci->ir_set->irq_pending); 679 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 680 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 681 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 682 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 683 684 if (xhci->quirks & XHCI_NEC_HOST) { 685 struct xhci_command *command; 686 687 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 688 if (!command) 689 return -ENOMEM; 690 691 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 692 TRB_TYPE(TRB_NEC_GET_FW)); 693 if (ret) 694 xhci_free_command(xhci, command); 695 } 696 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 697 "Finished xhci_run for USB2 roothub"); 698 699 xhci_create_dbc_dev(xhci); 700 701 xhci_debugfs_init(xhci); 702 703 return 0; 704 } 705 EXPORT_SYMBOL_GPL(xhci_run); 706 707 /* 708 * Stop xHCI driver. 709 * 710 * This function is called by the USB core when the HC driver is removed. 711 * Its opposite is xhci_run(). 712 * 713 * Disable device contexts, disable IRQs, and quiesce the HC. 714 * Reset the HC, finish any completed transactions, and cleanup memory. 715 */ 716 static void xhci_stop(struct usb_hcd *hcd) 717 { 718 u32 temp; 719 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 720 721 mutex_lock(&xhci->mutex); 722 723 /* Only halt host and free memory after both hcds are removed */ 724 if (!usb_hcd_is_primary_hcd(hcd)) { 725 mutex_unlock(&xhci->mutex); 726 return; 727 } 728 729 xhci_remove_dbc_dev(xhci); 730 731 spin_lock_irq(&xhci->lock); 732 xhci->xhc_state |= XHCI_STATE_HALTED; 733 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 734 xhci_halt(xhci); 735 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 736 spin_unlock_irq(&xhci->lock); 737 738 xhci_cleanup_msix(xhci); 739 740 /* Deleting Compliance Mode Recovery Timer */ 741 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 742 (!(xhci_all_ports_seen_u0(xhci)))) { 743 del_timer_sync(&xhci->comp_mode_recovery_timer); 744 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 745 "%s: compliance mode recovery timer deleted", 746 __func__); 747 } 748 749 if (xhci->quirks & XHCI_AMD_PLL_FIX) 750 usb_amd_dev_put(); 751 752 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 753 "// Disabling event ring interrupts"); 754 temp = readl(&xhci->op_regs->status); 755 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 756 temp = readl(&xhci->ir_set->irq_pending); 757 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 758 759 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 760 xhci_mem_cleanup(xhci); 761 xhci_debugfs_exit(xhci); 762 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 763 "xhci_stop completed - status = %x", 764 readl(&xhci->op_regs->status)); 765 mutex_unlock(&xhci->mutex); 766 } 767 768 /* 769 * Shutdown HC (not bus-specific) 770 * 771 * This is called when the machine is rebooting or halting. We assume that the 772 * machine will be powered off, and the HC's internal state will be reset. 773 * Don't bother to free memory. 774 * 775 * This will only ever be called with the main usb_hcd (the USB3 roothub). 776 */ 777 void xhci_shutdown(struct usb_hcd *hcd) 778 { 779 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 780 781 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 782 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 783 784 spin_lock_irq(&xhci->lock); 785 xhci_halt(xhci); 786 /* Workaround for spurious wakeups at shutdown with HSW */ 787 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 788 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 789 spin_unlock_irq(&xhci->lock); 790 791 xhci_cleanup_msix(xhci); 792 793 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 794 "xhci_shutdown completed - status = %x", 795 readl(&xhci->op_regs->status)); 796 } 797 EXPORT_SYMBOL_GPL(xhci_shutdown); 798 799 #ifdef CONFIG_PM 800 static void xhci_save_registers(struct xhci_hcd *xhci) 801 { 802 xhci->s3.command = readl(&xhci->op_regs->command); 803 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 804 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 805 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 806 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 807 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 808 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 809 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 810 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 811 } 812 813 static void xhci_restore_registers(struct xhci_hcd *xhci) 814 { 815 writel(xhci->s3.command, &xhci->op_regs->command); 816 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 817 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 818 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 819 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 820 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 821 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 822 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 823 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 824 } 825 826 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 827 { 828 u64 val_64; 829 830 /* step 2: initialize command ring buffer */ 831 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 832 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 833 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 834 xhci->cmd_ring->dequeue) & 835 (u64) ~CMD_RING_RSVD_BITS) | 836 xhci->cmd_ring->cycle_state; 837 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 838 "// Setting command ring address to 0x%llx", 839 (long unsigned long) val_64); 840 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 841 } 842 843 /* 844 * The whole command ring must be cleared to zero when we suspend the host. 845 * 846 * The host doesn't save the command ring pointer in the suspend well, so we 847 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 848 * aligned, because of the reserved bits in the command ring dequeue pointer 849 * register. Therefore, we can't just set the dequeue pointer back in the 850 * middle of the ring (TRBs are 16-byte aligned). 851 */ 852 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 853 { 854 struct xhci_ring *ring; 855 struct xhci_segment *seg; 856 857 ring = xhci->cmd_ring; 858 seg = ring->deq_seg; 859 do { 860 memset(seg->trbs, 0, 861 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 862 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 863 cpu_to_le32(~TRB_CYCLE); 864 seg = seg->next; 865 } while (seg != ring->deq_seg); 866 867 /* Reset the software enqueue and dequeue pointers */ 868 ring->deq_seg = ring->first_seg; 869 ring->dequeue = ring->first_seg->trbs; 870 ring->enq_seg = ring->deq_seg; 871 ring->enqueue = ring->dequeue; 872 873 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 874 /* 875 * Ring is now zeroed, so the HW should look for change of ownership 876 * when the cycle bit is set to 1. 877 */ 878 ring->cycle_state = 1; 879 880 /* 881 * Reset the hardware dequeue pointer. 882 * Yes, this will need to be re-written after resume, but we're paranoid 883 * and want to make sure the hardware doesn't access bogus memory 884 * because, say, the BIOS or an SMI started the host without changing 885 * the command ring pointers. 886 */ 887 xhci_set_cmd_ring_deq(xhci); 888 } 889 890 /* 891 * Disable port wake bits if do_wakeup is not set. 892 * 893 * Also clear a possible internal port wake state left hanging for ports that 894 * detected termination but never successfully enumerated (trained to 0U). 895 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 896 * at enumeration clears this wake, force one here as well for unconnected ports 897 */ 898 899 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 900 struct xhci_hub *rhub, 901 bool do_wakeup) 902 { 903 unsigned long flags; 904 u32 t1, t2, portsc; 905 int i; 906 907 spin_lock_irqsave(&xhci->lock, flags); 908 909 for (i = 0; i < rhub->num_ports; i++) { 910 portsc = readl(rhub->ports[i]->addr); 911 t1 = xhci_port_state_to_neutral(portsc); 912 t2 = t1; 913 914 /* clear wake bits if do_wake is not set */ 915 if (!do_wakeup) 916 t2 &= ~PORT_WAKE_BITS; 917 918 /* Don't touch csc bit if connected or connect change is set */ 919 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 920 t2 |= PORT_CSC; 921 922 if (t1 != t2) { 923 writel(t2, rhub->ports[i]->addr); 924 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 925 rhub->hcd->self.busnum, i + 1, portsc, t2); 926 } 927 } 928 spin_unlock_irqrestore(&xhci->lock, flags); 929 } 930 931 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 932 { 933 struct xhci_port **ports; 934 int port_index; 935 u32 status; 936 u32 portsc; 937 938 status = readl(&xhci->op_regs->status); 939 if (status & STS_EINT) 940 return true; 941 /* 942 * Checking STS_EINT is not enough as there is a lag between a change 943 * bit being set and the Port Status Change Event that it generated 944 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 945 */ 946 947 port_index = xhci->usb2_rhub.num_ports; 948 ports = xhci->usb2_rhub.ports; 949 while (port_index--) { 950 portsc = readl(ports[port_index]->addr); 951 if (portsc & PORT_CHANGE_MASK || 952 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 953 return true; 954 } 955 port_index = xhci->usb3_rhub.num_ports; 956 ports = xhci->usb3_rhub.ports; 957 while (port_index--) { 958 portsc = readl(ports[port_index]->addr); 959 if (portsc & PORT_CHANGE_MASK || 960 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 961 return true; 962 } 963 return false; 964 } 965 966 /* 967 * Stop HC (not bus-specific) 968 * 969 * This is called when the machine transition into S3/S4 mode. 970 * 971 */ 972 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 973 { 974 int rc = 0; 975 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 976 struct usb_hcd *hcd = xhci_to_hcd(xhci); 977 u32 command; 978 u32 res; 979 980 if (!hcd->state) 981 return 0; 982 983 if (hcd->state != HC_STATE_SUSPENDED || 984 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 985 return -EINVAL; 986 987 /* Clear root port wake on bits if wakeup not allowed. */ 988 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 989 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 990 991 if (!HCD_HW_ACCESSIBLE(hcd)) 992 return 0; 993 994 xhci_dbc_suspend(xhci); 995 996 /* Don't poll the roothubs on bus suspend. */ 997 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 998 __func__, hcd->self.busnum); 999 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1000 del_timer_sync(&hcd->rh_timer); 1001 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1002 del_timer_sync(&xhci->shared_hcd->rh_timer); 1003 1004 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1005 usleep_range(1000, 1500); 1006 1007 spin_lock_irq(&xhci->lock); 1008 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1009 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1010 /* step 1: stop endpoint */ 1011 /* skipped assuming that port suspend has done */ 1012 1013 /* step 2: clear Run/Stop bit */ 1014 command = readl(&xhci->op_regs->command); 1015 command &= ~CMD_RUN; 1016 writel(command, &xhci->op_regs->command); 1017 1018 /* Some chips from Fresco Logic need an extraordinary delay */ 1019 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1020 1021 if (xhci_handshake(&xhci->op_regs->status, 1022 STS_HALT, STS_HALT, delay)) { 1023 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1024 spin_unlock_irq(&xhci->lock); 1025 return -ETIMEDOUT; 1026 } 1027 xhci_clear_command_ring(xhci); 1028 1029 /* step 3: save registers */ 1030 xhci_save_registers(xhci); 1031 1032 /* step 4: set CSS flag */ 1033 command = readl(&xhci->op_regs->command); 1034 command |= CMD_CSS; 1035 writel(command, &xhci->op_regs->command); 1036 xhci->broken_suspend = 0; 1037 if (xhci_handshake(&xhci->op_regs->status, 1038 STS_SAVE, 0, 20 * 1000)) { 1039 /* 1040 * AMD SNPS xHC 3.0 occasionally does not clear the 1041 * SSS bit of USBSTS and when driver tries to poll 1042 * to see if the xHC clears BIT(8) which never happens 1043 * and driver assumes that controller is not responding 1044 * and times out. To workaround this, its good to check 1045 * if SRE and HCE bits are not set (as per xhci 1046 * Section 5.4.2) and bypass the timeout. 1047 */ 1048 res = readl(&xhci->op_regs->status); 1049 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1050 (((res & STS_SRE) == 0) && 1051 ((res & STS_HCE) == 0))) { 1052 xhci->broken_suspend = 1; 1053 } else { 1054 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1055 spin_unlock_irq(&xhci->lock); 1056 return -ETIMEDOUT; 1057 } 1058 } 1059 spin_unlock_irq(&xhci->lock); 1060 1061 /* 1062 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1063 * is about to be suspended. 1064 */ 1065 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1066 (!(xhci_all_ports_seen_u0(xhci)))) { 1067 del_timer_sync(&xhci->comp_mode_recovery_timer); 1068 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1069 "%s: compliance mode recovery timer deleted", 1070 __func__); 1071 } 1072 1073 /* step 5: remove core well power */ 1074 /* synchronize irq when using MSI-X */ 1075 xhci_msix_sync_irqs(xhci); 1076 1077 return rc; 1078 } 1079 EXPORT_SYMBOL_GPL(xhci_suspend); 1080 1081 /* 1082 * start xHC (not bus-specific) 1083 * 1084 * This is called when the machine transition from S3/S4 mode. 1085 * 1086 */ 1087 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1088 { 1089 u32 command, temp = 0; 1090 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1091 struct usb_hcd *secondary_hcd; 1092 int retval = 0; 1093 bool comp_timer_running = false; 1094 bool pending_portevent = false; 1095 bool reinit_xhc = false; 1096 1097 if (!hcd->state) 1098 return 0; 1099 1100 /* Wait a bit if either of the roothubs need to settle from the 1101 * transition into bus suspend. 1102 */ 1103 1104 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1105 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1106 msleep(100); 1107 1108 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1109 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1110 1111 spin_lock_irq(&xhci->lock); 1112 1113 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1114 reinit_xhc = true; 1115 1116 if (!reinit_xhc) { 1117 /* 1118 * Some controllers might lose power during suspend, so wait 1119 * for controller not ready bit to clear, just as in xHC init. 1120 */ 1121 retval = xhci_handshake(&xhci->op_regs->status, 1122 STS_CNR, 0, 10 * 1000 * 1000); 1123 if (retval) { 1124 xhci_warn(xhci, "Controller not ready at resume %d\n", 1125 retval); 1126 spin_unlock_irq(&xhci->lock); 1127 return retval; 1128 } 1129 /* step 1: restore register */ 1130 xhci_restore_registers(xhci); 1131 /* step 2: initialize command ring buffer */ 1132 xhci_set_cmd_ring_deq(xhci); 1133 /* step 3: restore state and start state*/ 1134 /* step 3: set CRS flag */ 1135 command = readl(&xhci->op_regs->command); 1136 command |= CMD_CRS; 1137 writel(command, &xhci->op_regs->command); 1138 /* 1139 * Some controllers take up to 55+ ms to complete the controller 1140 * restore so setting the timeout to 100ms. Xhci specification 1141 * doesn't mention any timeout value. 1142 */ 1143 if (xhci_handshake(&xhci->op_regs->status, 1144 STS_RESTORE, 0, 100 * 1000)) { 1145 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1146 spin_unlock_irq(&xhci->lock); 1147 return -ETIMEDOUT; 1148 } 1149 } 1150 1151 temp = readl(&xhci->op_regs->status); 1152 1153 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1154 if (temp & (STS_SRE | STS_HCE)) { 1155 reinit_xhc = true; 1156 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1157 } 1158 1159 if (reinit_xhc) { 1160 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1161 !(xhci_all_ports_seen_u0(xhci))) { 1162 del_timer_sync(&xhci->comp_mode_recovery_timer); 1163 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1164 "Compliance Mode Recovery Timer deleted!"); 1165 } 1166 1167 /* Let the USB core know _both_ roothubs lost power. */ 1168 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1169 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1170 1171 xhci_dbg(xhci, "Stop HCD\n"); 1172 xhci_halt(xhci); 1173 xhci_zero_64b_regs(xhci); 1174 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1175 spin_unlock_irq(&xhci->lock); 1176 if (retval) 1177 return retval; 1178 xhci_cleanup_msix(xhci); 1179 1180 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1181 temp = readl(&xhci->op_regs->status); 1182 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1183 temp = readl(&xhci->ir_set->irq_pending); 1184 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1185 1186 xhci_dbg(xhci, "cleaning up memory\n"); 1187 xhci_mem_cleanup(xhci); 1188 xhci_debugfs_exit(xhci); 1189 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1190 readl(&xhci->op_regs->status)); 1191 1192 /* USB core calls the PCI reinit and start functions twice: 1193 * first with the primary HCD, and then with the secondary HCD. 1194 * If we don't do the same, the host will never be started. 1195 */ 1196 if (!usb_hcd_is_primary_hcd(hcd)) 1197 secondary_hcd = hcd; 1198 else 1199 secondary_hcd = xhci->shared_hcd; 1200 1201 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1202 retval = xhci_init(hcd->primary_hcd); 1203 if (retval) 1204 return retval; 1205 comp_timer_running = true; 1206 1207 xhci_dbg(xhci, "Start the primary HCD\n"); 1208 retval = xhci_run(hcd->primary_hcd); 1209 if (!retval) { 1210 xhci_dbg(xhci, "Start the secondary HCD\n"); 1211 retval = xhci_run(secondary_hcd); 1212 } 1213 hcd->state = HC_STATE_SUSPENDED; 1214 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1215 goto done; 1216 } 1217 1218 /* step 4: set Run/Stop bit */ 1219 command = readl(&xhci->op_regs->command); 1220 command |= CMD_RUN; 1221 writel(command, &xhci->op_regs->command); 1222 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1223 0, 250 * 1000); 1224 1225 /* step 5: walk topology and initialize portsc, 1226 * portpmsc and portli 1227 */ 1228 /* this is done in bus_resume */ 1229 1230 /* step 6: restart each of the previously 1231 * Running endpoints by ringing their doorbells 1232 */ 1233 1234 spin_unlock_irq(&xhci->lock); 1235 1236 xhci_dbc_resume(xhci); 1237 1238 done: 1239 if (retval == 0) { 1240 /* 1241 * Resume roothubs only if there are pending events. 1242 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1243 * the first wake signalling failed, give it that chance. 1244 */ 1245 pending_portevent = xhci_pending_portevent(xhci); 1246 if (!pending_portevent) { 1247 msleep(120); 1248 pending_portevent = xhci_pending_portevent(xhci); 1249 } 1250 1251 if (pending_portevent) { 1252 usb_hcd_resume_root_hub(xhci->shared_hcd); 1253 usb_hcd_resume_root_hub(hcd); 1254 } 1255 } 1256 /* 1257 * If system is subject to the Quirk, Compliance Mode Timer needs to 1258 * be re-initialized Always after a system resume. Ports are subject 1259 * to suffer the Compliance Mode issue again. It doesn't matter if 1260 * ports have entered previously to U0 before system's suspension. 1261 */ 1262 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1263 compliance_mode_recovery_timer_init(xhci); 1264 1265 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1266 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1267 1268 /* Re-enable port polling. */ 1269 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1270 __func__, hcd->self.busnum); 1271 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1272 usb_hcd_poll_rh_status(xhci->shared_hcd); 1273 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1274 usb_hcd_poll_rh_status(hcd); 1275 1276 return retval; 1277 } 1278 EXPORT_SYMBOL_GPL(xhci_resume); 1279 #endif /* CONFIG_PM */ 1280 1281 /*-------------------------------------------------------------------------*/ 1282 1283 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1284 { 1285 void *temp; 1286 int ret = 0; 1287 unsigned int buf_len; 1288 enum dma_data_direction dir; 1289 1290 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1291 buf_len = urb->transfer_buffer_length; 1292 1293 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1294 dev_to_node(hcd->self.sysdev)); 1295 1296 if (usb_urb_dir_out(urb)) 1297 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1298 temp, buf_len, 0); 1299 1300 urb->transfer_buffer = temp; 1301 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1302 urb->transfer_buffer, 1303 urb->transfer_buffer_length, 1304 dir); 1305 1306 if (dma_mapping_error(hcd->self.sysdev, 1307 urb->transfer_dma)) { 1308 ret = -EAGAIN; 1309 kfree(temp); 1310 } else { 1311 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1312 } 1313 1314 return ret; 1315 } 1316 1317 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1318 struct urb *urb) 1319 { 1320 bool ret = false; 1321 unsigned int i; 1322 unsigned int len = 0; 1323 unsigned int trb_size; 1324 unsigned int max_pkt; 1325 struct scatterlist *sg; 1326 struct scatterlist *tail_sg; 1327 1328 tail_sg = urb->sg; 1329 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1330 1331 if (!urb->num_sgs) 1332 return ret; 1333 1334 if (urb->dev->speed >= USB_SPEED_SUPER) 1335 trb_size = TRB_CACHE_SIZE_SS; 1336 else 1337 trb_size = TRB_CACHE_SIZE_HS; 1338 1339 if (urb->transfer_buffer_length != 0 && 1340 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1341 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1342 len = len + sg->length; 1343 if (i > trb_size - 2) { 1344 len = len - tail_sg->length; 1345 if (len < max_pkt) { 1346 ret = true; 1347 break; 1348 } 1349 1350 tail_sg = sg_next(tail_sg); 1351 } 1352 } 1353 } 1354 return ret; 1355 } 1356 1357 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1358 { 1359 unsigned int len; 1360 unsigned int buf_len; 1361 enum dma_data_direction dir; 1362 1363 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1364 1365 buf_len = urb->transfer_buffer_length; 1366 1367 if (IS_ENABLED(CONFIG_HAS_DMA) && 1368 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1369 dma_unmap_single(hcd->self.sysdev, 1370 urb->transfer_dma, 1371 urb->transfer_buffer_length, 1372 dir); 1373 1374 if (usb_urb_dir_in(urb)) { 1375 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1376 urb->transfer_buffer, 1377 buf_len, 1378 0); 1379 if (len != buf_len) { 1380 xhci_dbg(hcd_to_xhci(hcd), 1381 "Copy from tmp buf to urb sg list failed\n"); 1382 urb->actual_length = len; 1383 } 1384 } 1385 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1386 kfree(urb->transfer_buffer); 1387 urb->transfer_buffer = NULL; 1388 } 1389 1390 /* 1391 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1392 * we'll copy the actual data into the TRB address register. This is limited to 1393 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1394 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1395 */ 1396 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1397 gfp_t mem_flags) 1398 { 1399 struct xhci_hcd *xhci; 1400 1401 xhci = hcd_to_xhci(hcd); 1402 1403 if (xhci_urb_suitable_for_idt(urb)) 1404 return 0; 1405 1406 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1407 if (xhci_urb_temp_buffer_required(hcd, urb)) 1408 return xhci_map_temp_buffer(hcd, urb); 1409 } 1410 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1411 } 1412 1413 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1414 { 1415 struct xhci_hcd *xhci; 1416 bool unmap_temp_buf = false; 1417 1418 xhci = hcd_to_xhci(hcd); 1419 1420 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1421 unmap_temp_buf = true; 1422 1423 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1424 xhci_unmap_temp_buf(hcd, urb); 1425 else 1426 usb_hcd_unmap_urb_for_dma(hcd, urb); 1427 } 1428 1429 /** 1430 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1431 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1432 * value to right shift 1 for the bitmask. 1433 * 1434 * Index = (epnum * 2) + direction - 1, 1435 * where direction = 0 for OUT, 1 for IN. 1436 * For control endpoints, the IN index is used (OUT index is unused), so 1437 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1438 */ 1439 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1440 { 1441 unsigned int index; 1442 if (usb_endpoint_xfer_control(desc)) 1443 index = (unsigned int) (usb_endpoint_num(desc)*2); 1444 else 1445 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1446 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1447 return index; 1448 } 1449 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1450 1451 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1452 * address from the XHCI endpoint index. 1453 */ 1454 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1455 { 1456 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1457 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1458 return direction | number; 1459 } 1460 1461 /* Find the flag for this endpoint (for use in the control context). Use the 1462 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1463 * bit 1, etc. 1464 */ 1465 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1466 { 1467 return 1 << (xhci_get_endpoint_index(desc) + 1); 1468 } 1469 1470 /* Compute the last valid endpoint context index. Basically, this is the 1471 * endpoint index plus one. For slot contexts with more than valid endpoint, 1472 * we find the most significant bit set in the added contexts flags. 1473 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1474 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1475 */ 1476 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1477 { 1478 return fls(added_ctxs) - 1; 1479 } 1480 1481 /* Returns 1 if the arguments are OK; 1482 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1483 */ 1484 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1485 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1486 const char *func) { 1487 struct xhci_hcd *xhci; 1488 struct xhci_virt_device *virt_dev; 1489 1490 if (!hcd || (check_ep && !ep) || !udev) { 1491 pr_debug("xHCI %s called with invalid args\n", func); 1492 return -EINVAL; 1493 } 1494 if (!udev->parent) { 1495 pr_debug("xHCI %s called for root hub\n", func); 1496 return 0; 1497 } 1498 1499 xhci = hcd_to_xhci(hcd); 1500 if (check_virt_dev) { 1501 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1502 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1503 func); 1504 return -EINVAL; 1505 } 1506 1507 virt_dev = xhci->devs[udev->slot_id]; 1508 if (virt_dev->udev != udev) { 1509 xhci_dbg(xhci, "xHCI %s called with udev and " 1510 "virt_dev does not match\n", func); 1511 return -EINVAL; 1512 } 1513 } 1514 1515 if (xhci->xhc_state & XHCI_STATE_HALTED) 1516 return -ENODEV; 1517 1518 return 1; 1519 } 1520 1521 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1522 struct usb_device *udev, struct xhci_command *command, 1523 bool ctx_change, bool must_succeed); 1524 1525 /* 1526 * Full speed devices may have a max packet size greater than 8 bytes, but the 1527 * USB core doesn't know that until it reads the first 8 bytes of the 1528 * descriptor. If the usb_device's max packet size changes after that point, 1529 * we need to issue an evaluate context command and wait on it. 1530 */ 1531 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1532 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1533 { 1534 struct xhci_container_ctx *out_ctx; 1535 struct xhci_input_control_ctx *ctrl_ctx; 1536 struct xhci_ep_ctx *ep_ctx; 1537 struct xhci_command *command; 1538 int max_packet_size; 1539 int hw_max_packet_size; 1540 int ret = 0; 1541 1542 out_ctx = xhci->devs[slot_id]->out_ctx; 1543 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1544 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1545 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1546 if (hw_max_packet_size != max_packet_size) { 1547 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1548 "Max Packet Size for ep 0 changed."); 1549 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1550 "Max packet size in usb_device = %d", 1551 max_packet_size); 1552 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1553 "Max packet size in xHCI HW = %d", 1554 hw_max_packet_size); 1555 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1556 "Issuing evaluate context command."); 1557 1558 /* Set up the input context flags for the command */ 1559 /* FIXME: This won't work if a non-default control endpoint 1560 * changes max packet sizes. 1561 */ 1562 1563 command = xhci_alloc_command(xhci, true, mem_flags); 1564 if (!command) 1565 return -ENOMEM; 1566 1567 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1568 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1569 if (!ctrl_ctx) { 1570 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1571 __func__); 1572 ret = -ENOMEM; 1573 goto command_cleanup; 1574 } 1575 /* Set up the modified control endpoint 0 */ 1576 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1577 xhci->devs[slot_id]->out_ctx, ep_index); 1578 1579 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1580 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1581 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1582 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1583 1584 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1585 ctrl_ctx->drop_flags = 0; 1586 1587 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1588 true, false); 1589 1590 /* Clean up the input context for later use by bandwidth 1591 * functions. 1592 */ 1593 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1594 command_cleanup: 1595 kfree(command->completion); 1596 kfree(command); 1597 } 1598 return ret; 1599 } 1600 1601 /* 1602 * non-error returns are a promise to giveback() the urb later 1603 * we drop ownership so next owner (or urb unlink) can get it 1604 */ 1605 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1606 { 1607 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1608 unsigned long flags; 1609 int ret = 0; 1610 unsigned int slot_id, ep_index; 1611 unsigned int *ep_state; 1612 struct urb_priv *urb_priv; 1613 int num_tds; 1614 1615 if (!urb) 1616 return -EINVAL; 1617 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1618 true, true, __func__); 1619 if (ret <= 0) 1620 return ret ? ret : -EINVAL; 1621 1622 slot_id = urb->dev->slot_id; 1623 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1624 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1625 1626 if (!HCD_HW_ACCESSIBLE(hcd)) 1627 return -ESHUTDOWN; 1628 1629 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1630 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1631 return -ENODEV; 1632 } 1633 1634 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1635 num_tds = urb->number_of_packets; 1636 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1637 urb->transfer_buffer_length > 0 && 1638 urb->transfer_flags & URB_ZERO_PACKET && 1639 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1640 num_tds = 2; 1641 else 1642 num_tds = 1; 1643 1644 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1645 if (!urb_priv) 1646 return -ENOMEM; 1647 1648 urb_priv->num_tds = num_tds; 1649 urb_priv->num_tds_done = 0; 1650 urb->hcpriv = urb_priv; 1651 1652 trace_xhci_urb_enqueue(urb); 1653 1654 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1655 /* Check to see if the max packet size for the default control 1656 * endpoint changed during FS device enumeration 1657 */ 1658 if (urb->dev->speed == USB_SPEED_FULL) { 1659 ret = xhci_check_maxpacket(xhci, slot_id, 1660 ep_index, urb, mem_flags); 1661 if (ret < 0) { 1662 xhci_urb_free_priv(urb_priv); 1663 urb->hcpriv = NULL; 1664 return ret; 1665 } 1666 } 1667 } 1668 1669 spin_lock_irqsave(&xhci->lock, flags); 1670 1671 if (xhci->xhc_state & XHCI_STATE_DYING) { 1672 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1673 urb->ep->desc.bEndpointAddress, urb); 1674 ret = -ESHUTDOWN; 1675 goto free_priv; 1676 } 1677 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1678 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1679 *ep_state); 1680 ret = -EINVAL; 1681 goto free_priv; 1682 } 1683 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1684 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1685 ret = -EINVAL; 1686 goto free_priv; 1687 } 1688 1689 switch (usb_endpoint_type(&urb->ep->desc)) { 1690 1691 case USB_ENDPOINT_XFER_CONTROL: 1692 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1693 slot_id, ep_index); 1694 break; 1695 case USB_ENDPOINT_XFER_BULK: 1696 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1697 slot_id, ep_index); 1698 break; 1699 case USB_ENDPOINT_XFER_INT: 1700 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1701 slot_id, ep_index); 1702 break; 1703 case USB_ENDPOINT_XFER_ISOC: 1704 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1705 slot_id, ep_index); 1706 } 1707 1708 if (ret) { 1709 free_priv: 1710 xhci_urb_free_priv(urb_priv); 1711 urb->hcpriv = NULL; 1712 } 1713 spin_unlock_irqrestore(&xhci->lock, flags); 1714 return ret; 1715 } 1716 1717 /* 1718 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1719 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1720 * should pick up where it left off in the TD, unless a Set Transfer Ring 1721 * Dequeue Pointer is issued. 1722 * 1723 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1724 * the ring. Since the ring is a contiguous structure, they can't be physically 1725 * removed. Instead, there are two options: 1726 * 1727 * 1) If the HC is in the middle of processing the URB to be canceled, we 1728 * simply move the ring's dequeue pointer past those TRBs using the Set 1729 * Transfer Ring Dequeue Pointer command. This will be the common case, 1730 * when drivers timeout on the last submitted URB and attempt to cancel. 1731 * 1732 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1733 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1734 * HC will need to invalidate the any TRBs it has cached after the stop 1735 * endpoint command, as noted in the xHCI 0.95 errata. 1736 * 1737 * 3) The TD may have completed by the time the Stop Endpoint Command 1738 * completes, so software needs to handle that case too. 1739 * 1740 * This function should protect against the TD enqueueing code ringing the 1741 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1742 * It also needs to account for multiple cancellations on happening at the same 1743 * time for the same endpoint. 1744 * 1745 * Note that this function can be called in any context, or so says 1746 * usb_hcd_unlink_urb() 1747 */ 1748 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1749 { 1750 unsigned long flags; 1751 int ret, i; 1752 u32 temp; 1753 struct xhci_hcd *xhci; 1754 struct urb_priv *urb_priv; 1755 struct xhci_td *td; 1756 unsigned int ep_index; 1757 struct xhci_ring *ep_ring; 1758 struct xhci_virt_ep *ep; 1759 struct xhci_command *command; 1760 struct xhci_virt_device *vdev; 1761 1762 xhci = hcd_to_xhci(hcd); 1763 spin_lock_irqsave(&xhci->lock, flags); 1764 1765 trace_xhci_urb_dequeue(urb); 1766 1767 /* Make sure the URB hasn't completed or been unlinked already */ 1768 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1769 if (ret) 1770 goto done; 1771 1772 /* give back URB now if we can't queue it for cancel */ 1773 vdev = xhci->devs[urb->dev->slot_id]; 1774 urb_priv = urb->hcpriv; 1775 if (!vdev || !urb_priv) 1776 goto err_giveback; 1777 1778 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1779 ep = &vdev->eps[ep_index]; 1780 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1781 if (!ep || !ep_ring) 1782 goto err_giveback; 1783 1784 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1785 temp = readl(&xhci->op_regs->status); 1786 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1787 xhci_hc_died(xhci); 1788 goto done; 1789 } 1790 1791 /* 1792 * check ring is not re-allocated since URB was enqueued. If it is, then 1793 * make sure none of the ring related pointers in this URB private data 1794 * are touched, such as td_list, otherwise we overwrite freed data 1795 */ 1796 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1797 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1798 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1799 td = &urb_priv->td[i]; 1800 if (!list_empty(&td->cancelled_td_list)) 1801 list_del_init(&td->cancelled_td_list); 1802 } 1803 goto err_giveback; 1804 } 1805 1806 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1807 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1808 "HC halted, freeing TD manually."); 1809 for (i = urb_priv->num_tds_done; 1810 i < urb_priv->num_tds; 1811 i++) { 1812 td = &urb_priv->td[i]; 1813 if (!list_empty(&td->td_list)) 1814 list_del_init(&td->td_list); 1815 if (!list_empty(&td->cancelled_td_list)) 1816 list_del_init(&td->cancelled_td_list); 1817 } 1818 goto err_giveback; 1819 } 1820 1821 i = urb_priv->num_tds_done; 1822 if (i < urb_priv->num_tds) 1823 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1824 "Cancel URB %p, dev %s, ep 0x%x, " 1825 "starting at offset 0x%llx", 1826 urb, urb->dev->devpath, 1827 urb->ep->desc.bEndpointAddress, 1828 (unsigned long long) xhci_trb_virt_to_dma( 1829 urb_priv->td[i].start_seg, 1830 urb_priv->td[i].first_trb)); 1831 1832 for (; i < urb_priv->num_tds; i++) { 1833 td = &urb_priv->td[i]; 1834 /* TD can already be on cancelled list if ep halted on it */ 1835 if (list_empty(&td->cancelled_td_list)) { 1836 td->cancel_status = TD_DIRTY; 1837 list_add_tail(&td->cancelled_td_list, 1838 &ep->cancelled_td_list); 1839 } 1840 } 1841 1842 /* Queue a stop endpoint command, but only if this is 1843 * the first cancellation to be handled. 1844 */ 1845 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1846 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1847 if (!command) { 1848 ret = -ENOMEM; 1849 goto done; 1850 } 1851 ep->ep_state |= EP_STOP_CMD_PENDING; 1852 ep->stop_cmd_timer.expires = jiffies + 1853 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1854 add_timer(&ep->stop_cmd_timer); 1855 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1856 ep_index, 0); 1857 xhci_ring_cmd_db(xhci); 1858 } 1859 done: 1860 spin_unlock_irqrestore(&xhci->lock, flags); 1861 return ret; 1862 1863 err_giveback: 1864 if (urb_priv) 1865 xhci_urb_free_priv(urb_priv); 1866 usb_hcd_unlink_urb_from_ep(hcd, urb); 1867 spin_unlock_irqrestore(&xhci->lock, flags); 1868 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1869 return ret; 1870 } 1871 1872 /* Drop an endpoint from a new bandwidth configuration for this device. 1873 * Only one call to this function is allowed per endpoint before 1874 * check_bandwidth() or reset_bandwidth() must be called. 1875 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1876 * add the endpoint to the schedule with possibly new parameters denoted by a 1877 * different endpoint descriptor in usb_host_endpoint. 1878 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1879 * not allowed. 1880 * 1881 * The USB core will not allow URBs to be queued to an endpoint that is being 1882 * disabled, so there's no need for mutual exclusion to protect 1883 * the xhci->devs[slot_id] structure. 1884 */ 1885 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1886 struct usb_host_endpoint *ep) 1887 { 1888 struct xhci_hcd *xhci; 1889 struct xhci_container_ctx *in_ctx, *out_ctx; 1890 struct xhci_input_control_ctx *ctrl_ctx; 1891 unsigned int ep_index; 1892 struct xhci_ep_ctx *ep_ctx; 1893 u32 drop_flag; 1894 u32 new_add_flags, new_drop_flags; 1895 int ret; 1896 1897 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1898 if (ret <= 0) 1899 return ret; 1900 xhci = hcd_to_xhci(hcd); 1901 if (xhci->xhc_state & XHCI_STATE_DYING) 1902 return -ENODEV; 1903 1904 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1905 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1906 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1907 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1908 __func__, drop_flag); 1909 return 0; 1910 } 1911 1912 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1913 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1914 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1915 if (!ctrl_ctx) { 1916 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1917 __func__); 1918 return 0; 1919 } 1920 1921 ep_index = xhci_get_endpoint_index(&ep->desc); 1922 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1923 /* If the HC already knows the endpoint is disabled, 1924 * or the HCD has noted it is disabled, ignore this request 1925 */ 1926 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1927 le32_to_cpu(ctrl_ctx->drop_flags) & 1928 xhci_get_endpoint_flag(&ep->desc)) { 1929 /* Do not warn when called after a usb_device_reset */ 1930 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1931 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1932 __func__, ep); 1933 return 0; 1934 } 1935 1936 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1937 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1938 1939 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1940 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1941 1942 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1943 1944 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1945 1946 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1947 (unsigned int) ep->desc.bEndpointAddress, 1948 udev->slot_id, 1949 (unsigned int) new_drop_flags, 1950 (unsigned int) new_add_flags); 1951 return 0; 1952 } 1953 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1954 1955 /* Add an endpoint to a new possible bandwidth configuration for this device. 1956 * Only one call to this function is allowed per endpoint before 1957 * check_bandwidth() or reset_bandwidth() must be called. 1958 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1959 * add the endpoint to the schedule with possibly new parameters denoted by a 1960 * different endpoint descriptor in usb_host_endpoint. 1961 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1962 * not allowed. 1963 * 1964 * The USB core will not allow URBs to be queued to an endpoint until the 1965 * configuration or alt setting is installed in the device, so there's no need 1966 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1967 */ 1968 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1969 struct usb_host_endpoint *ep) 1970 { 1971 struct xhci_hcd *xhci; 1972 struct xhci_container_ctx *in_ctx; 1973 unsigned int ep_index; 1974 struct xhci_input_control_ctx *ctrl_ctx; 1975 struct xhci_ep_ctx *ep_ctx; 1976 u32 added_ctxs; 1977 u32 new_add_flags, new_drop_flags; 1978 struct xhci_virt_device *virt_dev; 1979 int ret = 0; 1980 1981 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1982 if (ret <= 0) { 1983 /* So we won't queue a reset ep command for a root hub */ 1984 ep->hcpriv = NULL; 1985 return ret; 1986 } 1987 xhci = hcd_to_xhci(hcd); 1988 if (xhci->xhc_state & XHCI_STATE_DYING) 1989 return -ENODEV; 1990 1991 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1992 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1993 /* FIXME when we have to issue an evaluate endpoint command to 1994 * deal with ep0 max packet size changing once we get the 1995 * descriptors 1996 */ 1997 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1998 __func__, added_ctxs); 1999 return 0; 2000 } 2001 2002 virt_dev = xhci->devs[udev->slot_id]; 2003 in_ctx = virt_dev->in_ctx; 2004 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2005 if (!ctrl_ctx) { 2006 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2007 __func__); 2008 return 0; 2009 } 2010 2011 ep_index = xhci_get_endpoint_index(&ep->desc); 2012 /* If this endpoint is already in use, and the upper layers are trying 2013 * to add it again without dropping it, reject the addition. 2014 */ 2015 if (virt_dev->eps[ep_index].ring && 2016 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 2017 xhci_warn(xhci, "Trying to add endpoint 0x%x " 2018 "without dropping it.\n", 2019 (unsigned int) ep->desc.bEndpointAddress); 2020 return -EINVAL; 2021 } 2022 2023 /* If the HCD has already noted the endpoint is enabled, 2024 * ignore this request. 2025 */ 2026 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2027 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2028 __func__, ep); 2029 return 0; 2030 } 2031 2032 /* 2033 * Configuration and alternate setting changes must be done in 2034 * process context, not interrupt context (or so documenation 2035 * for usb_set_interface() and usb_set_configuration() claim). 2036 */ 2037 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2038 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2039 __func__, ep->desc.bEndpointAddress); 2040 return -ENOMEM; 2041 } 2042 2043 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2044 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2045 2046 /* If xhci_endpoint_disable() was called for this endpoint, but the 2047 * xHC hasn't been notified yet through the check_bandwidth() call, 2048 * this re-adds a new state for the endpoint from the new endpoint 2049 * descriptors. We must drop and re-add this endpoint, so we leave the 2050 * drop flags alone. 2051 */ 2052 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2053 2054 /* Store the usb_device pointer for later use */ 2055 ep->hcpriv = udev; 2056 2057 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2058 trace_xhci_add_endpoint(ep_ctx); 2059 2060 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2061 (unsigned int) ep->desc.bEndpointAddress, 2062 udev->slot_id, 2063 (unsigned int) new_drop_flags, 2064 (unsigned int) new_add_flags); 2065 return 0; 2066 } 2067 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2068 2069 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2070 { 2071 struct xhci_input_control_ctx *ctrl_ctx; 2072 struct xhci_ep_ctx *ep_ctx; 2073 struct xhci_slot_ctx *slot_ctx; 2074 int i; 2075 2076 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2077 if (!ctrl_ctx) { 2078 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2079 __func__); 2080 return; 2081 } 2082 2083 /* When a device's add flag and drop flag are zero, any subsequent 2084 * configure endpoint command will leave that endpoint's state 2085 * untouched. Make sure we don't leave any old state in the input 2086 * endpoint contexts. 2087 */ 2088 ctrl_ctx->drop_flags = 0; 2089 ctrl_ctx->add_flags = 0; 2090 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2091 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2092 /* Endpoint 0 is always valid */ 2093 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2094 for (i = 1; i < 31; i++) { 2095 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2096 ep_ctx->ep_info = 0; 2097 ep_ctx->ep_info2 = 0; 2098 ep_ctx->deq = 0; 2099 ep_ctx->tx_info = 0; 2100 } 2101 } 2102 2103 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2104 struct usb_device *udev, u32 *cmd_status) 2105 { 2106 int ret; 2107 2108 switch (*cmd_status) { 2109 case COMP_COMMAND_ABORTED: 2110 case COMP_COMMAND_RING_STOPPED: 2111 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2112 ret = -ETIME; 2113 break; 2114 case COMP_RESOURCE_ERROR: 2115 dev_warn(&udev->dev, 2116 "Not enough host controller resources for new device state.\n"); 2117 ret = -ENOMEM; 2118 /* FIXME: can we allocate more resources for the HC? */ 2119 break; 2120 case COMP_BANDWIDTH_ERROR: 2121 case COMP_SECONDARY_BANDWIDTH_ERROR: 2122 dev_warn(&udev->dev, 2123 "Not enough bandwidth for new device state.\n"); 2124 ret = -ENOSPC; 2125 /* FIXME: can we go back to the old state? */ 2126 break; 2127 case COMP_TRB_ERROR: 2128 /* the HCD set up something wrong */ 2129 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2130 "add flag = 1, " 2131 "and endpoint is not disabled.\n"); 2132 ret = -EINVAL; 2133 break; 2134 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2135 dev_warn(&udev->dev, 2136 "ERROR: Incompatible device for endpoint configure command.\n"); 2137 ret = -ENODEV; 2138 break; 2139 case COMP_SUCCESS: 2140 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2141 "Successful Endpoint Configure command"); 2142 ret = 0; 2143 break; 2144 default: 2145 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2146 *cmd_status); 2147 ret = -EINVAL; 2148 break; 2149 } 2150 return ret; 2151 } 2152 2153 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2154 struct usb_device *udev, u32 *cmd_status) 2155 { 2156 int ret; 2157 2158 switch (*cmd_status) { 2159 case COMP_COMMAND_ABORTED: 2160 case COMP_COMMAND_RING_STOPPED: 2161 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2162 ret = -ETIME; 2163 break; 2164 case COMP_PARAMETER_ERROR: 2165 dev_warn(&udev->dev, 2166 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2167 ret = -EINVAL; 2168 break; 2169 case COMP_SLOT_NOT_ENABLED_ERROR: 2170 dev_warn(&udev->dev, 2171 "WARN: slot not enabled for evaluate context command.\n"); 2172 ret = -EINVAL; 2173 break; 2174 case COMP_CONTEXT_STATE_ERROR: 2175 dev_warn(&udev->dev, 2176 "WARN: invalid context state for evaluate context command.\n"); 2177 ret = -EINVAL; 2178 break; 2179 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2180 dev_warn(&udev->dev, 2181 "ERROR: Incompatible device for evaluate context command.\n"); 2182 ret = -ENODEV; 2183 break; 2184 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2185 /* Max Exit Latency too large error */ 2186 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2187 ret = -EINVAL; 2188 break; 2189 case COMP_SUCCESS: 2190 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2191 "Successful evaluate context command"); 2192 ret = 0; 2193 break; 2194 default: 2195 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2196 *cmd_status); 2197 ret = -EINVAL; 2198 break; 2199 } 2200 return ret; 2201 } 2202 2203 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2204 struct xhci_input_control_ctx *ctrl_ctx) 2205 { 2206 u32 valid_add_flags; 2207 u32 valid_drop_flags; 2208 2209 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2210 * (bit 1). The default control endpoint is added during the Address 2211 * Device command and is never removed until the slot is disabled. 2212 */ 2213 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2214 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2215 2216 /* Use hweight32 to count the number of ones in the add flags, or 2217 * number of endpoints added. Don't count endpoints that are changed 2218 * (both added and dropped). 2219 */ 2220 return hweight32(valid_add_flags) - 2221 hweight32(valid_add_flags & valid_drop_flags); 2222 } 2223 2224 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2225 struct xhci_input_control_ctx *ctrl_ctx) 2226 { 2227 u32 valid_add_flags; 2228 u32 valid_drop_flags; 2229 2230 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2231 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2232 2233 return hweight32(valid_drop_flags) - 2234 hweight32(valid_add_flags & valid_drop_flags); 2235 } 2236 2237 /* 2238 * We need to reserve the new number of endpoints before the configure endpoint 2239 * command completes. We can't subtract the dropped endpoints from the number 2240 * of active endpoints until the command completes because we can oversubscribe 2241 * the host in this case: 2242 * 2243 * - the first configure endpoint command drops more endpoints than it adds 2244 * - a second configure endpoint command that adds more endpoints is queued 2245 * - the first configure endpoint command fails, so the config is unchanged 2246 * - the second command may succeed, even though there isn't enough resources 2247 * 2248 * Must be called with xhci->lock held. 2249 */ 2250 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2251 struct xhci_input_control_ctx *ctrl_ctx) 2252 { 2253 u32 added_eps; 2254 2255 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2256 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2257 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2258 "Not enough ep ctxs: " 2259 "%u active, need to add %u, limit is %u.", 2260 xhci->num_active_eps, added_eps, 2261 xhci->limit_active_eps); 2262 return -ENOMEM; 2263 } 2264 xhci->num_active_eps += added_eps; 2265 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2266 "Adding %u ep ctxs, %u now active.", added_eps, 2267 xhci->num_active_eps); 2268 return 0; 2269 } 2270 2271 /* 2272 * The configure endpoint was failed by the xHC for some other reason, so we 2273 * need to revert the resources that failed configuration would have used. 2274 * 2275 * Must be called with xhci->lock held. 2276 */ 2277 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2278 struct xhci_input_control_ctx *ctrl_ctx) 2279 { 2280 u32 num_failed_eps; 2281 2282 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2283 xhci->num_active_eps -= num_failed_eps; 2284 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2285 "Removing %u failed ep ctxs, %u now active.", 2286 num_failed_eps, 2287 xhci->num_active_eps); 2288 } 2289 2290 /* 2291 * Now that the command has completed, clean up the active endpoint count by 2292 * subtracting out the endpoints that were dropped (but not changed). 2293 * 2294 * Must be called with xhci->lock held. 2295 */ 2296 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2297 struct xhci_input_control_ctx *ctrl_ctx) 2298 { 2299 u32 num_dropped_eps; 2300 2301 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2302 xhci->num_active_eps -= num_dropped_eps; 2303 if (num_dropped_eps) 2304 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2305 "Removing %u dropped ep ctxs, %u now active.", 2306 num_dropped_eps, 2307 xhci->num_active_eps); 2308 } 2309 2310 static unsigned int xhci_get_block_size(struct usb_device *udev) 2311 { 2312 switch (udev->speed) { 2313 case USB_SPEED_LOW: 2314 case USB_SPEED_FULL: 2315 return FS_BLOCK; 2316 case USB_SPEED_HIGH: 2317 return HS_BLOCK; 2318 case USB_SPEED_SUPER: 2319 case USB_SPEED_SUPER_PLUS: 2320 return SS_BLOCK; 2321 case USB_SPEED_UNKNOWN: 2322 case USB_SPEED_WIRELESS: 2323 default: 2324 /* Should never happen */ 2325 return 1; 2326 } 2327 } 2328 2329 static unsigned int 2330 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2331 { 2332 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2333 return LS_OVERHEAD; 2334 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2335 return FS_OVERHEAD; 2336 return HS_OVERHEAD; 2337 } 2338 2339 /* If we are changing a LS/FS device under a HS hub, 2340 * make sure (if we are activating a new TT) that the HS bus has enough 2341 * bandwidth for this new TT. 2342 */ 2343 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2344 struct xhci_virt_device *virt_dev, 2345 int old_active_eps) 2346 { 2347 struct xhci_interval_bw_table *bw_table; 2348 struct xhci_tt_bw_info *tt_info; 2349 2350 /* Find the bandwidth table for the root port this TT is attached to. */ 2351 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2352 tt_info = virt_dev->tt_info; 2353 /* If this TT already had active endpoints, the bandwidth for this TT 2354 * has already been added. Removing all periodic endpoints (and thus 2355 * making the TT enactive) will only decrease the bandwidth used. 2356 */ 2357 if (old_active_eps) 2358 return 0; 2359 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2360 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2361 return -ENOMEM; 2362 return 0; 2363 } 2364 /* Not sure why we would have no new active endpoints... 2365 * 2366 * Maybe because of an Evaluate Context change for a hub update or a 2367 * control endpoint 0 max packet size change? 2368 * FIXME: skip the bandwidth calculation in that case. 2369 */ 2370 return 0; 2371 } 2372 2373 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2374 struct xhci_virt_device *virt_dev) 2375 { 2376 unsigned int bw_reserved; 2377 2378 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2379 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2380 return -ENOMEM; 2381 2382 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2383 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2384 return -ENOMEM; 2385 2386 return 0; 2387 } 2388 2389 /* 2390 * This algorithm is a very conservative estimate of the worst-case scheduling 2391 * scenario for any one interval. The hardware dynamically schedules the 2392 * packets, so we can't tell which microframe could be the limiting factor in 2393 * the bandwidth scheduling. This only takes into account periodic endpoints. 2394 * 2395 * Obviously, we can't solve an NP complete problem to find the minimum worst 2396 * case scenario. Instead, we come up with an estimate that is no less than 2397 * the worst case bandwidth used for any one microframe, but may be an 2398 * over-estimate. 2399 * 2400 * We walk the requirements for each endpoint by interval, starting with the 2401 * smallest interval, and place packets in the schedule where there is only one 2402 * possible way to schedule packets for that interval. In order to simplify 2403 * this algorithm, we record the largest max packet size for each interval, and 2404 * assume all packets will be that size. 2405 * 2406 * For interval 0, we obviously must schedule all packets for each interval. 2407 * The bandwidth for interval 0 is just the amount of data to be transmitted 2408 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2409 * the number of packets). 2410 * 2411 * For interval 1, we have two possible microframes to schedule those packets 2412 * in. For this algorithm, if we can schedule the same number of packets for 2413 * each possible scheduling opportunity (each microframe), we will do so. The 2414 * remaining number of packets will be saved to be transmitted in the gaps in 2415 * the next interval's scheduling sequence. 2416 * 2417 * As we move those remaining packets to be scheduled with interval 2 packets, 2418 * we have to double the number of remaining packets to transmit. This is 2419 * because the intervals are actually powers of 2, and we would be transmitting 2420 * the previous interval's packets twice in this interval. We also have to be 2421 * sure that when we look at the largest max packet size for this interval, we 2422 * also look at the largest max packet size for the remaining packets and take 2423 * the greater of the two. 2424 * 2425 * The algorithm continues to evenly distribute packets in each scheduling 2426 * opportunity, and push the remaining packets out, until we get to the last 2427 * interval. Then those packets and their associated overhead are just added 2428 * to the bandwidth used. 2429 */ 2430 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2431 struct xhci_virt_device *virt_dev, 2432 int old_active_eps) 2433 { 2434 unsigned int bw_reserved; 2435 unsigned int max_bandwidth; 2436 unsigned int bw_used; 2437 unsigned int block_size; 2438 struct xhci_interval_bw_table *bw_table; 2439 unsigned int packet_size = 0; 2440 unsigned int overhead = 0; 2441 unsigned int packets_transmitted = 0; 2442 unsigned int packets_remaining = 0; 2443 unsigned int i; 2444 2445 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2446 return xhci_check_ss_bw(xhci, virt_dev); 2447 2448 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2449 max_bandwidth = HS_BW_LIMIT; 2450 /* Convert percent of bus BW reserved to blocks reserved */ 2451 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2452 } else { 2453 max_bandwidth = FS_BW_LIMIT; 2454 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2455 } 2456 2457 bw_table = virt_dev->bw_table; 2458 /* We need to translate the max packet size and max ESIT payloads into 2459 * the units the hardware uses. 2460 */ 2461 block_size = xhci_get_block_size(virt_dev->udev); 2462 2463 /* If we are manipulating a LS/FS device under a HS hub, double check 2464 * that the HS bus has enough bandwidth if we are activing a new TT. 2465 */ 2466 if (virt_dev->tt_info) { 2467 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2468 "Recalculating BW for rootport %u", 2469 virt_dev->real_port); 2470 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2471 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2472 "newly activated TT.\n"); 2473 return -ENOMEM; 2474 } 2475 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2476 "Recalculating BW for TT slot %u port %u", 2477 virt_dev->tt_info->slot_id, 2478 virt_dev->tt_info->ttport); 2479 } else { 2480 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2481 "Recalculating BW for rootport %u", 2482 virt_dev->real_port); 2483 } 2484 2485 /* Add in how much bandwidth will be used for interval zero, or the 2486 * rounded max ESIT payload + number of packets * largest overhead. 2487 */ 2488 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2489 bw_table->interval_bw[0].num_packets * 2490 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2491 2492 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2493 unsigned int bw_added; 2494 unsigned int largest_mps; 2495 unsigned int interval_overhead; 2496 2497 /* 2498 * How many packets could we transmit in this interval? 2499 * If packets didn't fit in the previous interval, we will need 2500 * to transmit that many packets twice within this interval. 2501 */ 2502 packets_remaining = 2 * packets_remaining + 2503 bw_table->interval_bw[i].num_packets; 2504 2505 /* Find the largest max packet size of this or the previous 2506 * interval. 2507 */ 2508 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2509 largest_mps = 0; 2510 else { 2511 struct xhci_virt_ep *virt_ep; 2512 struct list_head *ep_entry; 2513 2514 ep_entry = bw_table->interval_bw[i].endpoints.next; 2515 virt_ep = list_entry(ep_entry, 2516 struct xhci_virt_ep, bw_endpoint_list); 2517 /* Convert to blocks, rounding up */ 2518 largest_mps = DIV_ROUND_UP( 2519 virt_ep->bw_info.max_packet_size, 2520 block_size); 2521 } 2522 if (largest_mps > packet_size) 2523 packet_size = largest_mps; 2524 2525 /* Use the larger overhead of this or the previous interval. */ 2526 interval_overhead = xhci_get_largest_overhead( 2527 &bw_table->interval_bw[i]); 2528 if (interval_overhead > overhead) 2529 overhead = interval_overhead; 2530 2531 /* How many packets can we evenly distribute across 2532 * (1 << (i + 1)) possible scheduling opportunities? 2533 */ 2534 packets_transmitted = packets_remaining >> (i + 1); 2535 2536 /* Add in the bandwidth used for those scheduled packets */ 2537 bw_added = packets_transmitted * (overhead + packet_size); 2538 2539 /* How many packets do we have remaining to transmit? */ 2540 packets_remaining = packets_remaining % (1 << (i + 1)); 2541 2542 /* What largest max packet size should those packets have? */ 2543 /* If we've transmitted all packets, don't carry over the 2544 * largest packet size. 2545 */ 2546 if (packets_remaining == 0) { 2547 packet_size = 0; 2548 overhead = 0; 2549 } else if (packets_transmitted > 0) { 2550 /* Otherwise if we do have remaining packets, and we've 2551 * scheduled some packets in this interval, take the 2552 * largest max packet size from endpoints with this 2553 * interval. 2554 */ 2555 packet_size = largest_mps; 2556 overhead = interval_overhead; 2557 } 2558 /* Otherwise carry over packet_size and overhead from the last 2559 * time we had a remainder. 2560 */ 2561 bw_used += bw_added; 2562 if (bw_used > max_bandwidth) { 2563 xhci_warn(xhci, "Not enough bandwidth. " 2564 "Proposed: %u, Max: %u\n", 2565 bw_used, max_bandwidth); 2566 return -ENOMEM; 2567 } 2568 } 2569 /* 2570 * Ok, we know we have some packets left over after even-handedly 2571 * scheduling interval 15. We don't know which microframes they will 2572 * fit into, so we over-schedule and say they will be scheduled every 2573 * microframe. 2574 */ 2575 if (packets_remaining > 0) 2576 bw_used += overhead + packet_size; 2577 2578 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2579 unsigned int port_index = virt_dev->real_port - 1; 2580 2581 /* OK, we're manipulating a HS device attached to a 2582 * root port bandwidth domain. Include the number of active TTs 2583 * in the bandwidth used. 2584 */ 2585 bw_used += TT_HS_OVERHEAD * 2586 xhci->rh_bw[port_index].num_active_tts; 2587 } 2588 2589 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2590 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2591 "Available: %u " "percent", 2592 bw_used, max_bandwidth, bw_reserved, 2593 (max_bandwidth - bw_used - bw_reserved) * 100 / 2594 max_bandwidth); 2595 2596 bw_used += bw_reserved; 2597 if (bw_used > max_bandwidth) { 2598 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2599 bw_used, max_bandwidth); 2600 return -ENOMEM; 2601 } 2602 2603 bw_table->bw_used = bw_used; 2604 return 0; 2605 } 2606 2607 static bool xhci_is_async_ep(unsigned int ep_type) 2608 { 2609 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2610 ep_type != ISOC_IN_EP && 2611 ep_type != INT_IN_EP); 2612 } 2613 2614 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2615 { 2616 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2617 } 2618 2619 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2620 { 2621 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2622 2623 if (ep_bw->ep_interval == 0) 2624 return SS_OVERHEAD_BURST + 2625 (ep_bw->mult * ep_bw->num_packets * 2626 (SS_OVERHEAD + mps)); 2627 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2628 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2629 1 << ep_bw->ep_interval); 2630 2631 } 2632 2633 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2634 struct xhci_bw_info *ep_bw, 2635 struct xhci_interval_bw_table *bw_table, 2636 struct usb_device *udev, 2637 struct xhci_virt_ep *virt_ep, 2638 struct xhci_tt_bw_info *tt_info) 2639 { 2640 struct xhci_interval_bw *interval_bw; 2641 int normalized_interval; 2642 2643 if (xhci_is_async_ep(ep_bw->type)) 2644 return; 2645 2646 if (udev->speed >= USB_SPEED_SUPER) { 2647 if (xhci_is_sync_in_ep(ep_bw->type)) 2648 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2649 xhci_get_ss_bw_consumed(ep_bw); 2650 else 2651 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2652 xhci_get_ss_bw_consumed(ep_bw); 2653 return; 2654 } 2655 2656 /* SuperSpeed endpoints never get added to intervals in the table, so 2657 * this check is only valid for HS/FS/LS devices. 2658 */ 2659 if (list_empty(&virt_ep->bw_endpoint_list)) 2660 return; 2661 /* For LS/FS devices, we need to translate the interval expressed in 2662 * microframes to frames. 2663 */ 2664 if (udev->speed == USB_SPEED_HIGH) 2665 normalized_interval = ep_bw->ep_interval; 2666 else 2667 normalized_interval = ep_bw->ep_interval - 3; 2668 2669 if (normalized_interval == 0) 2670 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2671 interval_bw = &bw_table->interval_bw[normalized_interval]; 2672 interval_bw->num_packets -= ep_bw->num_packets; 2673 switch (udev->speed) { 2674 case USB_SPEED_LOW: 2675 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2676 break; 2677 case USB_SPEED_FULL: 2678 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2679 break; 2680 case USB_SPEED_HIGH: 2681 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2682 break; 2683 case USB_SPEED_SUPER: 2684 case USB_SPEED_SUPER_PLUS: 2685 case USB_SPEED_UNKNOWN: 2686 case USB_SPEED_WIRELESS: 2687 /* Should never happen because only LS/FS/HS endpoints will get 2688 * added to the endpoint list. 2689 */ 2690 return; 2691 } 2692 if (tt_info) 2693 tt_info->active_eps -= 1; 2694 list_del_init(&virt_ep->bw_endpoint_list); 2695 } 2696 2697 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2698 struct xhci_bw_info *ep_bw, 2699 struct xhci_interval_bw_table *bw_table, 2700 struct usb_device *udev, 2701 struct xhci_virt_ep *virt_ep, 2702 struct xhci_tt_bw_info *tt_info) 2703 { 2704 struct xhci_interval_bw *interval_bw; 2705 struct xhci_virt_ep *smaller_ep; 2706 int normalized_interval; 2707 2708 if (xhci_is_async_ep(ep_bw->type)) 2709 return; 2710 2711 if (udev->speed == USB_SPEED_SUPER) { 2712 if (xhci_is_sync_in_ep(ep_bw->type)) 2713 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2714 xhci_get_ss_bw_consumed(ep_bw); 2715 else 2716 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2717 xhci_get_ss_bw_consumed(ep_bw); 2718 return; 2719 } 2720 2721 /* For LS/FS devices, we need to translate the interval expressed in 2722 * microframes to frames. 2723 */ 2724 if (udev->speed == USB_SPEED_HIGH) 2725 normalized_interval = ep_bw->ep_interval; 2726 else 2727 normalized_interval = ep_bw->ep_interval - 3; 2728 2729 if (normalized_interval == 0) 2730 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2731 interval_bw = &bw_table->interval_bw[normalized_interval]; 2732 interval_bw->num_packets += ep_bw->num_packets; 2733 switch (udev->speed) { 2734 case USB_SPEED_LOW: 2735 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2736 break; 2737 case USB_SPEED_FULL: 2738 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2739 break; 2740 case USB_SPEED_HIGH: 2741 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2742 break; 2743 case USB_SPEED_SUPER: 2744 case USB_SPEED_SUPER_PLUS: 2745 case USB_SPEED_UNKNOWN: 2746 case USB_SPEED_WIRELESS: 2747 /* Should never happen because only LS/FS/HS endpoints will get 2748 * added to the endpoint list. 2749 */ 2750 return; 2751 } 2752 2753 if (tt_info) 2754 tt_info->active_eps += 1; 2755 /* Insert the endpoint into the list, largest max packet size first. */ 2756 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2757 bw_endpoint_list) { 2758 if (ep_bw->max_packet_size >= 2759 smaller_ep->bw_info.max_packet_size) { 2760 /* Add the new ep before the smaller endpoint */ 2761 list_add_tail(&virt_ep->bw_endpoint_list, 2762 &smaller_ep->bw_endpoint_list); 2763 return; 2764 } 2765 } 2766 /* Add the new endpoint at the end of the list. */ 2767 list_add_tail(&virt_ep->bw_endpoint_list, 2768 &interval_bw->endpoints); 2769 } 2770 2771 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2772 struct xhci_virt_device *virt_dev, 2773 int old_active_eps) 2774 { 2775 struct xhci_root_port_bw_info *rh_bw_info; 2776 if (!virt_dev->tt_info) 2777 return; 2778 2779 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2780 if (old_active_eps == 0 && 2781 virt_dev->tt_info->active_eps != 0) { 2782 rh_bw_info->num_active_tts += 1; 2783 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2784 } else if (old_active_eps != 0 && 2785 virt_dev->tt_info->active_eps == 0) { 2786 rh_bw_info->num_active_tts -= 1; 2787 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2788 } 2789 } 2790 2791 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2792 struct xhci_virt_device *virt_dev, 2793 struct xhci_container_ctx *in_ctx) 2794 { 2795 struct xhci_bw_info ep_bw_info[31]; 2796 int i; 2797 struct xhci_input_control_ctx *ctrl_ctx; 2798 int old_active_eps = 0; 2799 2800 if (virt_dev->tt_info) 2801 old_active_eps = virt_dev->tt_info->active_eps; 2802 2803 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2804 if (!ctrl_ctx) { 2805 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2806 __func__); 2807 return -ENOMEM; 2808 } 2809 2810 for (i = 0; i < 31; i++) { 2811 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2812 continue; 2813 2814 /* Make a copy of the BW info in case we need to revert this */ 2815 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2816 sizeof(ep_bw_info[i])); 2817 /* Drop the endpoint from the interval table if the endpoint is 2818 * being dropped or changed. 2819 */ 2820 if (EP_IS_DROPPED(ctrl_ctx, i)) 2821 xhci_drop_ep_from_interval_table(xhci, 2822 &virt_dev->eps[i].bw_info, 2823 virt_dev->bw_table, 2824 virt_dev->udev, 2825 &virt_dev->eps[i], 2826 virt_dev->tt_info); 2827 } 2828 /* Overwrite the information stored in the endpoints' bw_info */ 2829 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2830 for (i = 0; i < 31; i++) { 2831 /* Add any changed or added endpoints to the interval table */ 2832 if (EP_IS_ADDED(ctrl_ctx, i)) 2833 xhci_add_ep_to_interval_table(xhci, 2834 &virt_dev->eps[i].bw_info, 2835 virt_dev->bw_table, 2836 virt_dev->udev, 2837 &virt_dev->eps[i], 2838 virt_dev->tt_info); 2839 } 2840 2841 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2842 /* Ok, this fits in the bandwidth we have. 2843 * Update the number of active TTs. 2844 */ 2845 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2846 return 0; 2847 } 2848 2849 /* We don't have enough bandwidth for this, revert the stored info. */ 2850 for (i = 0; i < 31; i++) { 2851 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2852 continue; 2853 2854 /* Drop the new copies of any added or changed endpoints from 2855 * the interval table. 2856 */ 2857 if (EP_IS_ADDED(ctrl_ctx, i)) { 2858 xhci_drop_ep_from_interval_table(xhci, 2859 &virt_dev->eps[i].bw_info, 2860 virt_dev->bw_table, 2861 virt_dev->udev, 2862 &virt_dev->eps[i], 2863 virt_dev->tt_info); 2864 } 2865 /* Revert the endpoint back to its old information */ 2866 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2867 sizeof(ep_bw_info[i])); 2868 /* Add any changed or dropped endpoints back into the table */ 2869 if (EP_IS_DROPPED(ctrl_ctx, i)) 2870 xhci_add_ep_to_interval_table(xhci, 2871 &virt_dev->eps[i].bw_info, 2872 virt_dev->bw_table, 2873 virt_dev->udev, 2874 &virt_dev->eps[i], 2875 virt_dev->tt_info); 2876 } 2877 return -ENOMEM; 2878 } 2879 2880 2881 /* Issue a configure endpoint command or evaluate context command 2882 * and wait for it to finish. 2883 */ 2884 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2885 struct usb_device *udev, 2886 struct xhci_command *command, 2887 bool ctx_change, bool must_succeed) 2888 { 2889 int ret; 2890 unsigned long flags; 2891 struct xhci_input_control_ctx *ctrl_ctx; 2892 struct xhci_virt_device *virt_dev; 2893 struct xhci_slot_ctx *slot_ctx; 2894 2895 if (!command) 2896 return -EINVAL; 2897 2898 spin_lock_irqsave(&xhci->lock, flags); 2899 2900 if (xhci->xhc_state & XHCI_STATE_DYING) { 2901 spin_unlock_irqrestore(&xhci->lock, flags); 2902 return -ESHUTDOWN; 2903 } 2904 2905 virt_dev = xhci->devs[udev->slot_id]; 2906 2907 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2908 if (!ctrl_ctx) { 2909 spin_unlock_irqrestore(&xhci->lock, flags); 2910 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2911 __func__); 2912 return -ENOMEM; 2913 } 2914 2915 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2916 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2917 spin_unlock_irqrestore(&xhci->lock, flags); 2918 xhci_warn(xhci, "Not enough host resources, " 2919 "active endpoint contexts = %u\n", 2920 xhci->num_active_eps); 2921 return -ENOMEM; 2922 } 2923 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2924 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2925 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2926 xhci_free_host_resources(xhci, ctrl_ctx); 2927 spin_unlock_irqrestore(&xhci->lock, flags); 2928 xhci_warn(xhci, "Not enough bandwidth\n"); 2929 return -ENOMEM; 2930 } 2931 2932 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2933 2934 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2935 trace_xhci_configure_endpoint(slot_ctx); 2936 2937 if (!ctx_change) 2938 ret = xhci_queue_configure_endpoint(xhci, command, 2939 command->in_ctx->dma, 2940 udev->slot_id, must_succeed); 2941 else 2942 ret = xhci_queue_evaluate_context(xhci, command, 2943 command->in_ctx->dma, 2944 udev->slot_id, must_succeed); 2945 if (ret < 0) { 2946 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2947 xhci_free_host_resources(xhci, ctrl_ctx); 2948 spin_unlock_irqrestore(&xhci->lock, flags); 2949 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2950 "FIXME allocate a new ring segment"); 2951 return -ENOMEM; 2952 } 2953 xhci_ring_cmd_db(xhci); 2954 spin_unlock_irqrestore(&xhci->lock, flags); 2955 2956 /* Wait for the configure endpoint command to complete */ 2957 wait_for_completion(command->completion); 2958 2959 if (!ctx_change) 2960 ret = xhci_configure_endpoint_result(xhci, udev, 2961 &command->status); 2962 else 2963 ret = xhci_evaluate_context_result(xhci, udev, 2964 &command->status); 2965 2966 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2967 spin_lock_irqsave(&xhci->lock, flags); 2968 /* If the command failed, remove the reserved resources. 2969 * Otherwise, clean up the estimate to include dropped eps. 2970 */ 2971 if (ret) 2972 xhci_free_host_resources(xhci, ctrl_ctx); 2973 else 2974 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2975 spin_unlock_irqrestore(&xhci->lock, flags); 2976 } 2977 return ret; 2978 } 2979 2980 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2981 struct xhci_virt_device *vdev, int i) 2982 { 2983 struct xhci_virt_ep *ep = &vdev->eps[i]; 2984 2985 if (ep->ep_state & EP_HAS_STREAMS) { 2986 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2987 xhci_get_endpoint_address(i)); 2988 xhci_free_stream_info(xhci, ep->stream_info); 2989 ep->stream_info = NULL; 2990 ep->ep_state &= ~EP_HAS_STREAMS; 2991 } 2992 } 2993 2994 /* Called after one or more calls to xhci_add_endpoint() or 2995 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2996 * to call xhci_reset_bandwidth(). 2997 * 2998 * Since we are in the middle of changing either configuration or 2999 * installing a new alt setting, the USB core won't allow URBs to be 3000 * enqueued for any endpoint on the old config or interface. Nothing 3001 * else should be touching the xhci->devs[slot_id] structure, so we 3002 * don't need to take the xhci->lock for manipulating that. 3003 */ 3004 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3005 { 3006 int i; 3007 int ret = 0; 3008 struct xhci_hcd *xhci; 3009 struct xhci_virt_device *virt_dev; 3010 struct xhci_input_control_ctx *ctrl_ctx; 3011 struct xhci_slot_ctx *slot_ctx; 3012 struct xhci_command *command; 3013 3014 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3015 if (ret <= 0) 3016 return ret; 3017 xhci = hcd_to_xhci(hcd); 3018 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3019 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3020 return -ENODEV; 3021 3022 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3023 virt_dev = xhci->devs[udev->slot_id]; 3024 3025 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3026 if (!command) 3027 return -ENOMEM; 3028 3029 command->in_ctx = virt_dev->in_ctx; 3030 3031 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3032 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3033 if (!ctrl_ctx) { 3034 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3035 __func__); 3036 ret = -ENOMEM; 3037 goto command_cleanup; 3038 } 3039 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3040 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3041 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3042 3043 /* Don't issue the command if there's no endpoints to update. */ 3044 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3045 ctrl_ctx->drop_flags == 0) { 3046 ret = 0; 3047 goto command_cleanup; 3048 } 3049 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3050 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3051 for (i = 31; i >= 1; i--) { 3052 __le32 le32 = cpu_to_le32(BIT(i)); 3053 3054 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3055 || (ctrl_ctx->add_flags & le32) || i == 1) { 3056 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3057 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3058 break; 3059 } 3060 } 3061 3062 ret = xhci_configure_endpoint(xhci, udev, command, 3063 false, false); 3064 if (ret) 3065 /* Callee should call reset_bandwidth() */ 3066 goto command_cleanup; 3067 3068 /* Free any rings that were dropped, but not changed. */ 3069 for (i = 1; i < 31; i++) { 3070 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3071 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3072 xhci_free_endpoint_ring(xhci, virt_dev, i); 3073 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3074 } 3075 } 3076 xhci_zero_in_ctx(xhci, virt_dev); 3077 /* 3078 * Install any rings for completely new endpoints or changed endpoints, 3079 * and free any old rings from changed endpoints. 3080 */ 3081 for (i = 1; i < 31; i++) { 3082 if (!virt_dev->eps[i].new_ring) 3083 continue; 3084 /* Only free the old ring if it exists. 3085 * It may not if this is the first add of an endpoint. 3086 */ 3087 if (virt_dev->eps[i].ring) { 3088 xhci_free_endpoint_ring(xhci, virt_dev, i); 3089 } 3090 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3091 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3092 virt_dev->eps[i].new_ring = NULL; 3093 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3094 } 3095 command_cleanup: 3096 kfree(command->completion); 3097 kfree(command); 3098 3099 return ret; 3100 } 3101 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3102 3103 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3104 { 3105 struct xhci_hcd *xhci; 3106 struct xhci_virt_device *virt_dev; 3107 int i, ret; 3108 3109 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3110 if (ret <= 0) 3111 return; 3112 xhci = hcd_to_xhci(hcd); 3113 3114 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3115 virt_dev = xhci->devs[udev->slot_id]; 3116 /* Free any rings allocated for added endpoints */ 3117 for (i = 0; i < 31; i++) { 3118 if (virt_dev->eps[i].new_ring) { 3119 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3120 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3121 virt_dev->eps[i].new_ring = NULL; 3122 } 3123 } 3124 xhci_zero_in_ctx(xhci, virt_dev); 3125 } 3126 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3127 3128 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3129 struct xhci_container_ctx *in_ctx, 3130 struct xhci_container_ctx *out_ctx, 3131 struct xhci_input_control_ctx *ctrl_ctx, 3132 u32 add_flags, u32 drop_flags) 3133 { 3134 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3135 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3136 xhci_slot_copy(xhci, in_ctx, out_ctx); 3137 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3138 } 3139 3140 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3141 struct usb_host_endpoint *host_ep) 3142 { 3143 struct xhci_hcd *xhci; 3144 struct xhci_virt_device *vdev; 3145 struct xhci_virt_ep *ep; 3146 struct usb_device *udev; 3147 unsigned long flags; 3148 unsigned int ep_index; 3149 3150 xhci = hcd_to_xhci(hcd); 3151 rescan: 3152 spin_lock_irqsave(&xhci->lock, flags); 3153 3154 udev = (struct usb_device *)host_ep->hcpriv; 3155 if (!udev || !udev->slot_id) 3156 goto done; 3157 3158 vdev = xhci->devs[udev->slot_id]; 3159 if (!vdev) 3160 goto done; 3161 3162 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3163 ep = &vdev->eps[ep_index]; 3164 3165 /* wait for hub_tt_work to finish clearing hub TT */ 3166 if (ep->ep_state & EP_CLEARING_TT) { 3167 spin_unlock_irqrestore(&xhci->lock, flags); 3168 schedule_timeout_uninterruptible(1); 3169 goto rescan; 3170 } 3171 3172 if (ep->ep_state) 3173 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3174 ep->ep_state); 3175 done: 3176 host_ep->hcpriv = NULL; 3177 spin_unlock_irqrestore(&xhci->lock, flags); 3178 } 3179 3180 /* 3181 * Called after usb core issues a clear halt control message. 3182 * The host side of the halt should already be cleared by a reset endpoint 3183 * command issued when the STALL event was received. 3184 * 3185 * The reset endpoint command may only be issued to endpoints in the halted 3186 * state. For software that wishes to reset the data toggle or sequence number 3187 * of an endpoint that isn't in the halted state this function will issue a 3188 * configure endpoint command with the Drop and Add bits set for the target 3189 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3190 */ 3191 3192 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3193 struct usb_host_endpoint *host_ep) 3194 { 3195 struct xhci_hcd *xhci; 3196 struct usb_device *udev; 3197 struct xhci_virt_device *vdev; 3198 struct xhci_virt_ep *ep; 3199 struct xhci_input_control_ctx *ctrl_ctx; 3200 struct xhci_command *stop_cmd, *cfg_cmd; 3201 unsigned int ep_index; 3202 unsigned long flags; 3203 u32 ep_flag; 3204 int err; 3205 3206 xhci = hcd_to_xhci(hcd); 3207 if (!host_ep->hcpriv) 3208 return; 3209 udev = (struct usb_device *) host_ep->hcpriv; 3210 vdev = xhci->devs[udev->slot_id]; 3211 3212 /* 3213 * vdev may be lost due to xHC restore error and re-initialization 3214 * during S3/S4 resume. A new vdev will be allocated later by 3215 * xhci_discover_or_reset_device() 3216 */ 3217 if (!udev->slot_id || !vdev) 3218 return; 3219 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3220 ep = &vdev->eps[ep_index]; 3221 3222 /* Bail out if toggle is already being cleared by a endpoint reset */ 3223 spin_lock_irqsave(&xhci->lock, flags); 3224 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3225 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3226 spin_unlock_irqrestore(&xhci->lock, flags); 3227 return; 3228 } 3229 spin_unlock_irqrestore(&xhci->lock, flags); 3230 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3231 if (usb_endpoint_xfer_control(&host_ep->desc) || 3232 usb_endpoint_xfer_isoc(&host_ep->desc)) 3233 return; 3234 3235 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3236 3237 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3238 return; 3239 3240 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3241 if (!stop_cmd) 3242 return; 3243 3244 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3245 if (!cfg_cmd) 3246 goto cleanup; 3247 3248 spin_lock_irqsave(&xhci->lock, flags); 3249 3250 /* block queuing new trbs and ringing ep doorbell */ 3251 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3252 3253 /* 3254 * Make sure endpoint ring is empty before resetting the toggle/seq. 3255 * Driver is required to synchronously cancel all transfer request. 3256 * Stop the endpoint to force xHC to update the output context 3257 */ 3258 3259 if (!list_empty(&ep->ring->td_list)) { 3260 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3261 spin_unlock_irqrestore(&xhci->lock, flags); 3262 xhci_free_command(xhci, cfg_cmd); 3263 goto cleanup; 3264 } 3265 3266 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3267 ep_index, 0); 3268 if (err < 0) { 3269 spin_unlock_irqrestore(&xhci->lock, flags); 3270 xhci_free_command(xhci, cfg_cmd); 3271 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3272 __func__, err); 3273 goto cleanup; 3274 } 3275 3276 xhci_ring_cmd_db(xhci); 3277 spin_unlock_irqrestore(&xhci->lock, flags); 3278 3279 wait_for_completion(stop_cmd->completion); 3280 3281 spin_lock_irqsave(&xhci->lock, flags); 3282 3283 /* config ep command clears toggle if add and drop ep flags are set */ 3284 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3285 if (!ctrl_ctx) { 3286 spin_unlock_irqrestore(&xhci->lock, flags); 3287 xhci_free_command(xhci, cfg_cmd); 3288 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3289 __func__); 3290 goto cleanup; 3291 } 3292 3293 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3294 ctrl_ctx, ep_flag, ep_flag); 3295 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3296 3297 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3298 udev->slot_id, false); 3299 if (err < 0) { 3300 spin_unlock_irqrestore(&xhci->lock, flags); 3301 xhci_free_command(xhci, cfg_cmd); 3302 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3303 __func__, err); 3304 goto cleanup; 3305 } 3306 3307 xhci_ring_cmd_db(xhci); 3308 spin_unlock_irqrestore(&xhci->lock, flags); 3309 3310 wait_for_completion(cfg_cmd->completion); 3311 3312 xhci_free_command(xhci, cfg_cmd); 3313 cleanup: 3314 xhci_free_command(xhci, stop_cmd); 3315 spin_lock_irqsave(&xhci->lock, flags); 3316 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3317 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3318 spin_unlock_irqrestore(&xhci->lock, flags); 3319 } 3320 3321 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3322 struct usb_device *udev, struct usb_host_endpoint *ep, 3323 unsigned int slot_id) 3324 { 3325 int ret; 3326 unsigned int ep_index; 3327 unsigned int ep_state; 3328 3329 if (!ep) 3330 return -EINVAL; 3331 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3332 if (ret <= 0) 3333 return ret ? ret : -EINVAL; 3334 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3335 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3336 " descriptor for ep 0x%x does not support streams\n", 3337 ep->desc.bEndpointAddress); 3338 return -EINVAL; 3339 } 3340 3341 ep_index = xhci_get_endpoint_index(&ep->desc); 3342 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3343 if (ep_state & EP_HAS_STREAMS || 3344 ep_state & EP_GETTING_STREAMS) { 3345 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3346 "already has streams set up.\n", 3347 ep->desc.bEndpointAddress); 3348 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3349 "dynamic stream context array reallocation.\n"); 3350 return -EINVAL; 3351 } 3352 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3353 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3354 "endpoint 0x%x; URBs are pending.\n", 3355 ep->desc.bEndpointAddress); 3356 return -EINVAL; 3357 } 3358 return 0; 3359 } 3360 3361 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3362 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3363 { 3364 unsigned int max_streams; 3365 3366 /* The stream context array size must be a power of two */ 3367 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3368 /* 3369 * Find out how many primary stream array entries the host controller 3370 * supports. Later we may use secondary stream arrays (similar to 2nd 3371 * level page entries), but that's an optional feature for xHCI host 3372 * controllers. xHCs must support at least 4 stream IDs. 3373 */ 3374 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3375 if (*num_stream_ctxs > max_streams) { 3376 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3377 max_streams); 3378 *num_stream_ctxs = max_streams; 3379 *num_streams = max_streams; 3380 } 3381 } 3382 3383 /* Returns an error code if one of the endpoint already has streams. 3384 * This does not change any data structures, it only checks and gathers 3385 * information. 3386 */ 3387 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3388 struct usb_device *udev, 3389 struct usb_host_endpoint **eps, unsigned int num_eps, 3390 unsigned int *num_streams, u32 *changed_ep_bitmask) 3391 { 3392 unsigned int max_streams; 3393 unsigned int endpoint_flag; 3394 int i; 3395 int ret; 3396 3397 for (i = 0; i < num_eps; i++) { 3398 ret = xhci_check_streams_endpoint(xhci, udev, 3399 eps[i], udev->slot_id); 3400 if (ret < 0) 3401 return ret; 3402 3403 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3404 if (max_streams < (*num_streams - 1)) { 3405 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3406 eps[i]->desc.bEndpointAddress, 3407 max_streams); 3408 *num_streams = max_streams+1; 3409 } 3410 3411 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3412 if (*changed_ep_bitmask & endpoint_flag) 3413 return -EINVAL; 3414 *changed_ep_bitmask |= endpoint_flag; 3415 } 3416 return 0; 3417 } 3418 3419 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3420 struct usb_device *udev, 3421 struct usb_host_endpoint **eps, unsigned int num_eps) 3422 { 3423 u32 changed_ep_bitmask = 0; 3424 unsigned int slot_id; 3425 unsigned int ep_index; 3426 unsigned int ep_state; 3427 int i; 3428 3429 slot_id = udev->slot_id; 3430 if (!xhci->devs[slot_id]) 3431 return 0; 3432 3433 for (i = 0; i < num_eps; i++) { 3434 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3435 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3436 /* Are streams already being freed for the endpoint? */ 3437 if (ep_state & EP_GETTING_NO_STREAMS) { 3438 xhci_warn(xhci, "WARN Can't disable streams for " 3439 "endpoint 0x%x, " 3440 "streams are being disabled already\n", 3441 eps[i]->desc.bEndpointAddress); 3442 return 0; 3443 } 3444 /* Are there actually any streams to free? */ 3445 if (!(ep_state & EP_HAS_STREAMS) && 3446 !(ep_state & EP_GETTING_STREAMS)) { 3447 xhci_warn(xhci, "WARN Can't disable streams for " 3448 "endpoint 0x%x, " 3449 "streams are already disabled!\n", 3450 eps[i]->desc.bEndpointAddress); 3451 xhci_warn(xhci, "WARN xhci_free_streams() called " 3452 "with non-streams endpoint\n"); 3453 return 0; 3454 } 3455 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3456 } 3457 return changed_ep_bitmask; 3458 } 3459 3460 /* 3461 * The USB device drivers use this function (through the HCD interface in USB 3462 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3463 * coordinate mass storage command queueing across multiple endpoints (basically 3464 * a stream ID == a task ID). 3465 * 3466 * Setting up streams involves allocating the same size stream context array 3467 * for each endpoint and issuing a configure endpoint command for all endpoints. 3468 * 3469 * Don't allow the call to succeed if one endpoint only supports one stream 3470 * (which means it doesn't support streams at all). 3471 * 3472 * Drivers may get less stream IDs than they asked for, if the host controller 3473 * hardware or endpoints claim they can't support the number of requested 3474 * stream IDs. 3475 */ 3476 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3477 struct usb_host_endpoint **eps, unsigned int num_eps, 3478 unsigned int num_streams, gfp_t mem_flags) 3479 { 3480 int i, ret; 3481 struct xhci_hcd *xhci; 3482 struct xhci_virt_device *vdev; 3483 struct xhci_command *config_cmd; 3484 struct xhci_input_control_ctx *ctrl_ctx; 3485 unsigned int ep_index; 3486 unsigned int num_stream_ctxs; 3487 unsigned int max_packet; 3488 unsigned long flags; 3489 u32 changed_ep_bitmask = 0; 3490 3491 if (!eps) 3492 return -EINVAL; 3493 3494 /* Add one to the number of streams requested to account for 3495 * stream 0 that is reserved for xHCI usage. 3496 */ 3497 num_streams += 1; 3498 xhci = hcd_to_xhci(hcd); 3499 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3500 num_streams); 3501 3502 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3503 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3504 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3505 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3506 return -ENOSYS; 3507 } 3508 3509 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3510 if (!config_cmd) 3511 return -ENOMEM; 3512 3513 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3514 if (!ctrl_ctx) { 3515 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3516 __func__); 3517 xhci_free_command(xhci, config_cmd); 3518 return -ENOMEM; 3519 } 3520 3521 /* Check to make sure all endpoints are not already configured for 3522 * streams. While we're at it, find the maximum number of streams that 3523 * all the endpoints will support and check for duplicate endpoints. 3524 */ 3525 spin_lock_irqsave(&xhci->lock, flags); 3526 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3527 num_eps, &num_streams, &changed_ep_bitmask); 3528 if (ret < 0) { 3529 xhci_free_command(xhci, config_cmd); 3530 spin_unlock_irqrestore(&xhci->lock, flags); 3531 return ret; 3532 } 3533 if (num_streams <= 1) { 3534 xhci_warn(xhci, "WARN: endpoints can't handle " 3535 "more than one stream.\n"); 3536 xhci_free_command(xhci, config_cmd); 3537 spin_unlock_irqrestore(&xhci->lock, flags); 3538 return -EINVAL; 3539 } 3540 vdev = xhci->devs[udev->slot_id]; 3541 /* Mark each endpoint as being in transition, so 3542 * xhci_urb_enqueue() will reject all URBs. 3543 */ 3544 for (i = 0; i < num_eps; i++) { 3545 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3546 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3547 } 3548 spin_unlock_irqrestore(&xhci->lock, flags); 3549 3550 /* Setup internal data structures and allocate HW data structures for 3551 * streams (but don't install the HW structures in the input context 3552 * until we're sure all memory allocation succeeded). 3553 */ 3554 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3555 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3556 num_stream_ctxs, num_streams); 3557 3558 for (i = 0; i < num_eps; i++) { 3559 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3560 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3561 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3562 num_stream_ctxs, 3563 num_streams, 3564 max_packet, mem_flags); 3565 if (!vdev->eps[ep_index].stream_info) 3566 goto cleanup; 3567 /* Set maxPstreams in endpoint context and update deq ptr to 3568 * point to stream context array. FIXME 3569 */ 3570 } 3571 3572 /* Set up the input context for a configure endpoint command. */ 3573 for (i = 0; i < num_eps; i++) { 3574 struct xhci_ep_ctx *ep_ctx; 3575 3576 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3577 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3578 3579 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3580 vdev->out_ctx, ep_index); 3581 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3582 vdev->eps[ep_index].stream_info); 3583 } 3584 /* Tell the HW to drop its old copy of the endpoint context info 3585 * and add the updated copy from the input context. 3586 */ 3587 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3588 vdev->out_ctx, ctrl_ctx, 3589 changed_ep_bitmask, changed_ep_bitmask); 3590 3591 /* Issue and wait for the configure endpoint command */ 3592 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3593 false, false); 3594 3595 /* xHC rejected the configure endpoint command for some reason, so we 3596 * leave the old ring intact and free our internal streams data 3597 * structure. 3598 */ 3599 if (ret < 0) 3600 goto cleanup; 3601 3602 spin_lock_irqsave(&xhci->lock, flags); 3603 for (i = 0; i < num_eps; i++) { 3604 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3605 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3606 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3607 udev->slot_id, ep_index); 3608 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3609 } 3610 xhci_free_command(xhci, config_cmd); 3611 spin_unlock_irqrestore(&xhci->lock, flags); 3612 3613 for (i = 0; i < num_eps; i++) { 3614 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3615 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3616 } 3617 /* Subtract 1 for stream 0, which drivers can't use */ 3618 return num_streams - 1; 3619 3620 cleanup: 3621 /* If it didn't work, free the streams! */ 3622 for (i = 0; i < num_eps; i++) { 3623 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3624 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3625 vdev->eps[ep_index].stream_info = NULL; 3626 /* FIXME Unset maxPstreams in endpoint context and 3627 * update deq ptr to point to normal string ring. 3628 */ 3629 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3630 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3631 xhci_endpoint_zero(xhci, vdev, eps[i]); 3632 } 3633 xhci_free_command(xhci, config_cmd); 3634 return -ENOMEM; 3635 } 3636 3637 /* Transition the endpoint from using streams to being a "normal" endpoint 3638 * without streams. 3639 * 3640 * Modify the endpoint context state, submit a configure endpoint command, 3641 * and free all endpoint rings for streams if that completes successfully. 3642 */ 3643 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3644 struct usb_host_endpoint **eps, unsigned int num_eps, 3645 gfp_t mem_flags) 3646 { 3647 int i, ret; 3648 struct xhci_hcd *xhci; 3649 struct xhci_virt_device *vdev; 3650 struct xhci_command *command; 3651 struct xhci_input_control_ctx *ctrl_ctx; 3652 unsigned int ep_index; 3653 unsigned long flags; 3654 u32 changed_ep_bitmask; 3655 3656 xhci = hcd_to_xhci(hcd); 3657 vdev = xhci->devs[udev->slot_id]; 3658 3659 /* Set up a configure endpoint command to remove the streams rings */ 3660 spin_lock_irqsave(&xhci->lock, flags); 3661 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3662 udev, eps, num_eps); 3663 if (changed_ep_bitmask == 0) { 3664 spin_unlock_irqrestore(&xhci->lock, flags); 3665 return -EINVAL; 3666 } 3667 3668 /* Use the xhci_command structure from the first endpoint. We may have 3669 * allocated too many, but the driver may call xhci_free_streams() for 3670 * each endpoint it grouped into one call to xhci_alloc_streams(). 3671 */ 3672 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3673 command = vdev->eps[ep_index].stream_info->free_streams_command; 3674 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3675 if (!ctrl_ctx) { 3676 spin_unlock_irqrestore(&xhci->lock, flags); 3677 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3678 __func__); 3679 return -EINVAL; 3680 } 3681 3682 for (i = 0; i < num_eps; i++) { 3683 struct xhci_ep_ctx *ep_ctx; 3684 3685 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3686 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3687 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3688 EP_GETTING_NO_STREAMS; 3689 3690 xhci_endpoint_copy(xhci, command->in_ctx, 3691 vdev->out_ctx, ep_index); 3692 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3693 &vdev->eps[ep_index]); 3694 } 3695 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3696 vdev->out_ctx, ctrl_ctx, 3697 changed_ep_bitmask, changed_ep_bitmask); 3698 spin_unlock_irqrestore(&xhci->lock, flags); 3699 3700 /* Issue and wait for the configure endpoint command, 3701 * which must succeed. 3702 */ 3703 ret = xhci_configure_endpoint(xhci, udev, command, 3704 false, true); 3705 3706 /* xHC rejected the configure endpoint command for some reason, so we 3707 * leave the streams rings intact. 3708 */ 3709 if (ret < 0) 3710 return ret; 3711 3712 spin_lock_irqsave(&xhci->lock, flags); 3713 for (i = 0; i < num_eps; i++) { 3714 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3715 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3716 vdev->eps[ep_index].stream_info = NULL; 3717 /* FIXME Unset maxPstreams in endpoint context and 3718 * update deq ptr to point to normal string ring. 3719 */ 3720 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3721 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3722 } 3723 spin_unlock_irqrestore(&xhci->lock, flags); 3724 3725 return 0; 3726 } 3727 3728 /* 3729 * Deletes endpoint resources for endpoints that were active before a Reset 3730 * Device command, or a Disable Slot command. The Reset Device command leaves 3731 * the control endpoint intact, whereas the Disable Slot command deletes it. 3732 * 3733 * Must be called with xhci->lock held. 3734 */ 3735 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3736 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3737 { 3738 int i; 3739 unsigned int num_dropped_eps = 0; 3740 unsigned int drop_flags = 0; 3741 3742 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3743 if (virt_dev->eps[i].ring) { 3744 drop_flags |= 1 << i; 3745 num_dropped_eps++; 3746 } 3747 } 3748 xhci->num_active_eps -= num_dropped_eps; 3749 if (num_dropped_eps) 3750 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3751 "Dropped %u ep ctxs, flags = 0x%x, " 3752 "%u now active.", 3753 num_dropped_eps, drop_flags, 3754 xhci->num_active_eps); 3755 } 3756 3757 /* 3758 * This submits a Reset Device Command, which will set the device state to 0, 3759 * set the device address to 0, and disable all the endpoints except the default 3760 * control endpoint. The USB core should come back and call 3761 * xhci_address_device(), and then re-set up the configuration. If this is 3762 * called because of a usb_reset_and_verify_device(), then the old alternate 3763 * settings will be re-installed through the normal bandwidth allocation 3764 * functions. 3765 * 3766 * Wait for the Reset Device command to finish. Remove all structures 3767 * associated with the endpoints that were disabled. Clear the input device 3768 * structure? Reset the control endpoint 0 max packet size? 3769 * 3770 * If the virt_dev to be reset does not exist or does not match the udev, 3771 * it means the device is lost, possibly due to the xHC restore error and 3772 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3773 * re-allocate the device. 3774 */ 3775 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3776 struct usb_device *udev) 3777 { 3778 int ret, i; 3779 unsigned long flags; 3780 struct xhci_hcd *xhci; 3781 unsigned int slot_id; 3782 struct xhci_virt_device *virt_dev; 3783 struct xhci_command *reset_device_cmd; 3784 struct xhci_slot_ctx *slot_ctx; 3785 int old_active_eps = 0; 3786 3787 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3788 if (ret <= 0) 3789 return ret; 3790 xhci = hcd_to_xhci(hcd); 3791 slot_id = udev->slot_id; 3792 virt_dev = xhci->devs[slot_id]; 3793 if (!virt_dev) { 3794 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3795 "not exist. Re-allocate the device\n", slot_id); 3796 ret = xhci_alloc_dev(hcd, udev); 3797 if (ret == 1) 3798 return 0; 3799 else 3800 return -EINVAL; 3801 } 3802 3803 if (virt_dev->tt_info) 3804 old_active_eps = virt_dev->tt_info->active_eps; 3805 3806 if (virt_dev->udev != udev) { 3807 /* If the virt_dev and the udev does not match, this virt_dev 3808 * may belong to another udev. 3809 * Re-allocate the device. 3810 */ 3811 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3812 "not match the udev. Re-allocate the device\n", 3813 slot_id); 3814 ret = xhci_alloc_dev(hcd, udev); 3815 if (ret == 1) 3816 return 0; 3817 else 3818 return -EINVAL; 3819 } 3820 3821 /* If device is not setup, there is no point in resetting it */ 3822 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3823 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3824 SLOT_STATE_DISABLED) 3825 return 0; 3826 3827 trace_xhci_discover_or_reset_device(slot_ctx); 3828 3829 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3830 /* Allocate the command structure that holds the struct completion. 3831 * Assume we're in process context, since the normal device reset 3832 * process has to wait for the device anyway. Storage devices are 3833 * reset as part of error handling, so use GFP_NOIO instead of 3834 * GFP_KERNEL. 3835 */ 3836 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3837 if (!reset_device_cmd) { 3838 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3839 return -ENOMEM; 3840 } 3841 3842 /* Attempt to submit the Reset Device command to the command ring */ 3843 spin_lock_irqsave(&xhci->lock, flags); 3844 3845 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3846 if (ret) { 3847 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3848 spin_unlock_irqrestore(&xhci->lock, flags); 3849 goto command_cleanup; 3850 } 3851 xhci_ring_cmd_db(xhci); 3852 spin_unlock_irqrestore(&xhci->lock, flags); 3853 3854 /* Wait for the Reset Device command to finish */ 3855 wait_for_completion(reset_device_cmd->completion); 3856 3857 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3858 * unless we tried to reset a slot ID that wasn't enabled, 3859 * or the device wasn't in the addressed or configured state. 3860 */ 3861 ret = reset_device_cmd->status; 3862 switch (ret) { 3863 case COMP_COMMAND_ABORTED: 3864 case COMP_COMMAND_RING_STOPPED: 3865 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3866 ret = -ETIME; 3867 goto command_cleanup; 3868 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3869 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3870 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3871 slot_id, 3872 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3873 xhci_dbg(xhci, "Not freeing device rings.\n"); 3874 /* Don't treat this as an error. May change my mind later. */ 3875 ret = 0; 3876 goto command_cleanup; 3877 case COMP_SUCCESS: 3878 xhci_dbg(xhci, "Successful reset device command.\n"); 3879 break; 3880 default: 3881 if (xhci_is_vendor_info_code(xhci, ret)) 3882 break; 3883 xhci_warn(xhci, "Unknown completion code %u for " 3884 "reset device command.\n", ret); 3885 ret = -EINVAL; 3886 goto command_cleanup; 3887 } 3888 3889 /* Free up host controller endpoint resources */ 3890 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3891 spin_lock_irqsave(&xhci->lock, flags); 3892 /* Don't delete the default control endpoint resources */ 3893 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3894 spin_unlock_irqrestore(&xhci->lock, flags); 3895 } 3896 3897 /* Everything but endpoint 0 is disabled, so free the rings. */ 3898 for (i = 1; i < 31; i++) { 3899 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3900 3901 if (ep->ep_state & EP_HAS_STREAMS) { 3902 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3903 xhci_get_endpoint_address(i)); 3904 xhci_free_stream_info(xhci, ep->stream_info); 3905 ep->stream_info = NULL; 3906 ep->ep_state &= ~EP_HAS_STREAMS; 3907 } 3908 3909 if (ep->ring) { 3910 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3911 xhci_free_endpoint_ring(xhci, virt_dev, i); 3912 } 3913 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3914 xhci_drop_ep_from_interval_table(xhci, 3915 &virt_dev->eps[i].bw_info, 3916 virt_dev->bw_table, 3917 udev, 3918 &virt_dev->eps[i], 3919 virt_dev->tt_info); 3920 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3921 } 3922 /* If necessary, update the number of active TTs on this root port */ 3923 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3924 virt_dev->flags = 0; 3925 ret = 0; 3926 3927 command_cleanup: 3928 xhci_free_command(xhci, reset_device_cmd); 3929 return ret; 3930 } 3931 3932 /* 3933 * At this point, the struct usb_device is about to go away, the device has 3934 * disconnected, and all traffic has been stopped and the endpoints have been 3935 * disabled. Free any HC data structures associated with that device. 3936 */ 3937 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3938 { 3939 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3940 struct xhci_virt_device *virt_dev; 3941 struct xhci_slot_ctx *slot_ctx; 3942 int i, ret; 3943 3944 /* 3945 * We called pm_runtime_get_noresume when the device was attached. 3946 * Decrement the counter here to allow controller to runtime suspend 3947 * if no devices remain. 3948 */ 3949 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3950 pm_runtime_put_noidle(hcd->self.controller); 3951 3952 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3953 /* If the host is halted due to driver unload, we still need to free the 3954 * device. 3955 */ 3956 if (ret <= 0 && ret != -ENODEV) 3957 return; 3958 3959 virt_dev = xhci->devs[udev->slot_id]; 3960 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3961 trace_xhci_free_dev(slot_ctx); 3962 3963 /* Stop any wayward timer functions (which may grab the lock) */ 3964 for (i = 0; i < 31; i++) { 3965 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3966 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3967 } 3968 virt_dev->udev = NULL; 3969 xhci_disable_slot(xhci, udev->slot_id); 3970 xhci_free_virt_device(xhci, udev->slot_id); 3971 } 3972 3973 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3974 { 3975 struct xhci_command *command; 3976 unsigned long flags; 3977 u32 state; 3978 int ret; 3979 3980 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3981 if (!command) 3982 return -ENOMEM; 3983 3984 xhci_debugfs_remove_slot(xhci, slot_id); 3985 3986 spin_lock_irqsave(&xhci->lock, flags); 3987 /* Don't disable the slot if the host controller is dead. */ 3988 state = readl(&xhci->op_regs->status); 3989 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3990 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3991 spin_unlock_irqrestore(&xhci->lock, flags); 3992 kfree(command); 3993 return -ENODEV; 3994 } 3995 3996 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3997 slot_id); 3998 if (ret) { 3999 spin_unlock_irqrestore(&xhci->lock, flags); 4000 kfree(command); 4001 return ret; 4002 } 4003 xhci_ring_cmd_db(xhci); 4004 spin_unlock_irqrestore(&xhci->lock, flags); 4005 4006 wait_for_completion(command->completion); 4007 4008 if (command->status != COMP_SUCCESS) 4009 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4010 slot_id, command->status); 4011 4012 xhci_free_command(xhci, command); 4013 4014 return 0; 4015 } 4016 4017 /* 4018 * Checks if we have enough host controller resources for the default control 4019 * endpoint. 4020 * 4021 * Must be called with xhci->lock held. 4022 */ 4023 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4024 { 4025 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4026 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4027 "Not enough ep ctxs: " 4028 "%u active, need to add 1, limit is %u.", 4029 xhci->num_active_eps, xhci->limit_active_eps); 4030 return -ENOMEM; 4031 } 4032 xhci->num_active_eps += 1; 4033 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4034 "Adding 1 ep ctx, %u now active.", 4035 xhci->num_active_eps); 4036 return 0; 4037 } 4038 4039 4040 /* 4041 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4042 * timed out, or allocating memory failed. Returns 1 on success. 4043 */ 4044 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4045 { 4046 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4047 struct xhci_virt_device *vdev; 4048 struct xhci_slot_ctx *slot_ctx; 4049 unsigned long flags; 4050 int ret, slot_id; 4051 struct xhci_command *command; 4052 4053 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4054 if (!command) 4055 return 0; 4056 4057 spin_lock_irqsave(&xhci->lock, flags); 4058 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4059 if (ret) { 4060 spin_unlock_irqrestore(&xhci->lock, flags); 4061 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4062 xhci_free_command(xhci, command); 4063 return 0; 4064 } 4065 xhci_ring_cmd_db(xhci); 4066 spin_unlock_irqrestore(&xhci->lock, flags); 4067 4068 wait_for_completion(command->completion); 4069 slot_id = command->slot_id; 4070 4071 if (!slot_id || command->status != COMP_SUCCESS) { 4072 xhci_err(xhci, "Error while assigning device slot ID\n"); 4073 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4074 HCS_MAX_SLOTS( 4075 readl(&xhci->cap_regs->hcs_params1))); 4076 xhci_free_command(xhci, command); 4077 return 0; 4078 } 4079 4080 xhci_free_command(xhci, command); 4081 4082 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4083 spin_lock_irqsave(&xhci->lock, flags); 4084 ret = xhci_reserve_host_control_ep_resources(xhci); 4085 if (ret) { 4086 spin_unlock_irqrestore(&xhci->lock, flags); 4087 xhci_warn(xhci, "Not enough host resources, " 4088 "active endpoint contexts = %u\n", 4089 xhci->num_active_eps); 4090 goto disable_slot; 4091 } 4092 spin_unlock_irqrestore(&xhci->lock, flags); 4093 } 4094 /* Use GFP_NOIO, since this function can be called from 4095 * xhci_discover_or_reset_device(), which may be called as part of 4096 * mass storage driver error handling. 4097 */ 4098 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4099 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4100 goto disable_slot; 4101 } 4102 vdev = xhci->devs[slot_id]; 4103 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4104 trace_xhci_alloc_dev(slot_ctx); 4105 4106 udev->slot_id = slot_id; 4107 4108 xhci_debugfs_create_slot(xhci, slot_id); 4109 4110 /* 4111 * If resetting upon resume, we can't put the controller into runtime 4112 * suspend if there is a device attached. 4113 */ 4114 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4115 pm_runtime_get_noresume(hcd->self.controller); 4116 4117 /* Is this a LS or FS device under a HS hub? */ 4118 /* Hub or peripherial? */ 4119 return 1; 4120 4121 disable_slot: 4122 xhci_disable_slot(xhci, udev->slot_id); 4123 xhci_free_virt_device(xhci, udev->slot_id); 4124 4125 return 0; 4126 } 4127 4128 /* 4129 * Issue an Address Device command and optionally send a corresponding 4130 * SetAddress request to the device. 4131 */ 4132 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4133 enum xhci_setup_dev setup) 4134 { 4135 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4136 unsigned long flags; 4137 struct xhci_virt_device *virt_dev; 4138 int ret = 0; 4139 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4140 struct xhci_slot_ctx *slot_ctx; 4141 struct xhci_input_control_ctx *ctrl_ctx; 4142 u64 temp_64; 4143 struct xhci_command *command = NULL; 4144 4145 mutex_lock(&xhci->mutex); 4146 4147 if (xhci->xhc_state) { /* dying, removing or halted */ 4148 ret = -ESHUTDOWN; 4149 goto out; 4150 } 4151 4152 if (!udev->slot_id) { 4153 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4154 "Bad Slot ID %d", udev->slot_id); 4155 ret = -EINVAL; 4156 goto out; 4157 } 4158 4159 virt_dev = xhci->devs[udev->slot_id]; 4160 4161 if (WARN_ON(!virt_dev)) { 4162 /* 4163 * In plug/unplug torture test with an NEC controller, 4164 * a zero-dereference was observed once due to virt_dev = 0. 4165 * Print useful debug rather than crash if it is observed again! 4166 */ 4167 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4168 udev->slot_id); 4169 ret = -EINVAL; 4170 goto out; 4171 } 4172 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4173 trace_xhci_setup_device_slot(slot_ctx); 4174 4175 if (setup == SETUP_CONTEXT_ONLY) { 4176 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4177 SLOT_STATE_DEFAULT) { 4178 xhci_dbg(xhci, "Slot already in default state\n"); 4179 goto out; 4180 } 4181 } 4182 4183 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4184 if (!command) { 4185 ret = -ENOMEM; 4186 goto out; 4187 } 4188 4189 command->in_ctx = virt_dev->in_ctx; 4190 4191 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4192 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4193 if (!ctrl_ctx) { 4194 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4195 __func__); 4196 ret = -EINVAL; 4197 goto out; 4198 } 4199 /* 4200 * If this is the first Set Address since device plug-in or 4201 * virt_device realloaction after a resume with an xHCI power loss, 4202 * then set up the slot context. 4203 */ 4204 if (!slot_ctx->dev_info) 4205 xhci_setup_addressable_virt_dev(xhci, udev); 4206 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4207 else 4208 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4209 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4210 ctrl_ctx->drop_flags = 0; 4211 4212 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4213 le32_to_cpu(slot_ctx->dev_info) >> 27); 4214 4215 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4216 spin_lock_irqsave(&xhci->lock, flags); 4217 trace_xhci_setup_device(virt_dev); 4218 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4219 udev->slot_id, setup); 4220 if (ret) { 4221 spin_unlock_irqrestore(&xhci->lock, flags); 4222 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4223 "FIXME: allocate a command ring segment"); 4224 goto out; 4225 } 4226 xhci_ring_cmd_db(xhci); 4227 spin_unlock_irqrestore(&xhci->lock, flags); 4228 4229 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4230 wait_for_completion(command->completion); 4231 4232 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4233 * the SetAddress() "recovery interval" required by USB and aborting the 4234 * command on a timeout. 4235 */ 4236 switch (command->status) { 4237 case COMP_COMMAND_ABORTED: 4238 case COMP_COMMAND_RING_STOPPED: 4239 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4240 ret = -ETIME; 4241 break; 4242 case COMP_CONTEXT_STATE_ERROR: 4243 case COMP_SLOT_NOT_ENABLED_ERROR: 4244 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4245 act, udev->slot_id); 4246 ret = -EINVAL; 4247 break; 4248 case COMP_USB_TRANSACTION_ERROR: 4249 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4250 4251 mutex_unlock(&xhci->mutex); 4252 ret = xhci_disable_slot(xhci, udev->slot_id); 4253 xhci_free_virt_device(xhci, udev->slot_id); 4254 if (!ret) 4255 xhci_alloc_dev(hcd, udev); 4256 kfree(command->completion); 4257 kfree(command); 4258 return -EPROTO; 4259 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4260 dev_warn(&udev->dev, 4261 "ERROR: Incompatible device for setup %s command\n", act); 4262 ret = -ENODEV; 4263 break; 4264 case COMP_SUCCESS: 4265 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4266 "Successful setup %s command", act); 4267 break; 4268 default: 4269 xhci_err(xhci, 4270 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4271 act, command->status); 4272 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4273 ret = -EINVAL; 4274 break; 4275 } 4276 if (ret) 4277 goto out; 4278 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4279 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4280 "Op regs DCBAA ptr = %#016llx", temp_64); 4281 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4282 "Slot ID %d dcbaa entry @%p = %#016llx", 4283 udev->slot_id, 4284 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4285 (unsigned long long) 4286 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4287 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4288 "Output Context DMA address = %#08llx", 4289 (unsigned long long)virt_dev->out_ctx->dma); 4290 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4291 le32_to_cpu(slot_ctx->dev_info) >> 27); 4292 /* 4293 * USB core uses address 1 for the roothubs, so we add one to the 4294 * address given back to us by the HC. 4295 */ 4296 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4297 le32_to_cpu(slot_ctx->dev_info) >> 27); 4298 /* Zero the input context control for later use */ 4299 ctrl_ctx->add_flags = 0; 4300 ctrl_ctx->drop_flags = 0; 4301 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4302 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4303 4304 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4305 "Internal device address = %d", 4306 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4307 out: 4308 mutex_unlock(&xhci->mutex); 4309 if (command) { 4310 kfree(command->completion); 4311 kfree(command); 4312 } 4313 return ret; 4314 } 4315 4316 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4317 { 4318 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4319 } 4320 4321 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4322 { 4323 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4324 } 4325 4326 /* 4327 * Transfer the port index into real index in the HW port status 4328 * registers. Caculate offset between the port's PORTSC register 4329 * and port status base. Divide the number of per port register 4330 * to get the real index. The raw port number bases 1. 4331 */ 4332 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4333 { 4334 struct xhci_hub *rhub; 4335 4336 rhub = xhci_get_rhub(hcd); 4337 return rhub->ports[port1 - 1]->hw_portnum + 1; 4338 } 4339 4340 /* 4341 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4342 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4343 */ 4344 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4345 struct usb_device *udev, u16 max_exit_latency) 4346 { 4347 struct xhci_virt_device *virt_dev; 4348 struct xhci_command *command; 4349 struct xhci_input_control_ctx *ctrl_ctx; 4350 struct xhci_slot_ctx *slot_ctx; 4351 unsigned long flags; 4352 int ret; 4353 4354 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4355 if (!command) 4356 return -ENOMEM; 4357 4358 spin_lock_irqsave(&xhci->lock, flags); 4359 4360 virt_dev = xhci->devs[udev->slot_id]; 4361 4362 /* 4363 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4364 * xHC was re-initialized. Exit latency will be set later after 4365 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4366 */ 4367 4368 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4369 spin_unlock_irqrestore(&xhci->lock, flags); 4370 return 0; 4371 } 4372 4373 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4374 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4375 if (!ctrl_ctx) { 4376 spin_unlock_irqrestore(&xhci->lock, flags); 4377 xhci_free_command(xhci, command); 4378 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4379 __func__); 4380 return -ENOMEM; 4381 } 4382 4383 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4384 spin_unlock_irqrestore(&xhci->lock, flags); 4385 4386 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4387 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4388 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4389 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4390 slot_ctx->dev_state = 0; 4391 4392 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4393 "Set up evaluate context for LPM MEL change."); 4394 4395 /* Issue and wait for the evaluate context command. */ 4396 ret = xhci_configure_endpoint(xhci, udev, command, 4397 true, true); 4398 4399 if (!ret) { 4400 spin_lock_irqsave(&xhci->lock, flags); 4401 virt_dev->current_mel = max_exit_latency; 4402 spin_unlock_irqrestore(&xhci->lock, flags); 4403 } 4404 4405 xhci_free_command(xhci, command); 4406 4407 return ret; 4408 } 4409 4410 #ifdef CONFIG_PM 4411 4412 /* BESL to HIRD Encoding array for USB2 LPM */ 4413 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4414 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4415 4416 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4417 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4418 struct usb_device *udev) 4419 { 4420 int u2del, besl, besl_host; 4421 int besl_device = 0; 4422 u32 field; 4423 4424 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4425 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4426 4427 if (field & USB_BESL_SUPPORT) { 4428 for (besl_host = 0; besl_host < 16; besl_host++) { 4429 if (xhci_besl_encoding[besl_host] >= u2del) 4430 break; 4431 } 4432 /* Use baseline BESL value as default */ 4433 if (field & USB_BESL_BASELINE_VALID) 4434 besl_device = USB_GET_BESL_BASELINE(field); 4435 else if (field & USB_BESL_DEEP_VALID) 4436 besl_device = USB_GET_BESL_DEEP(field); 4437 } else { 4438 if (u2del <= 50) 4439 besl_host = 0; 4440 else 4441 besl_host = (u2del - 51) / 75 + 1; 4442 } 4443 4444 besl = besl_host + besl_device; 4445 if (besl > 15) 4446 besl = 15; 4447 4448 return besl; 4449 } 4450 4451 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4452 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4453 { 4454 u32 field; 4455 int l1; 4456 int besld = 0; 4457 int hirdm = 0; 4458 4459 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4460 4461 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4462 l1 = udev->l1_params.timeout / 256; 4463 4464 /* device has preferred BESLD */ 4465 if (field & USB_BESL_DEEP_VALID) { 4466 besld = USB_GET_BESL_DEEP(field); 4467 hirdm = 1; 4468 } 4469 4470 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4471 } 4472 4473 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4474 struct usb_device *udev, int enable) 4475 { 4476 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4477 struct xhci_port **ports; 4478 __le32 __iomem *pm_addr, *hlpm_addr; 4479 u32 pm_val, hlpm_val, field; 4480 unsigned int port_num; 4481 unsigned long flags; 4482 int hird, exit_latency; 4483 int ret; 4484 4485 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4486 return -EPERM; 4487 4488 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4489 !udev->lpm_capable) 4490 return -EPERM; 4491 4492 if (!udev->parent || udev->parent->parent || 4493 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4494 return -EPERM; 4495 4496 if (udev->usb2_hw_lpm_capable != 1) 4497 return -EPERM; 4498 4499 spin_lock_irqsave(&xhci->lock, flags); 4500 4501 ports = xhci->usb2_rhub.ports; 4502 port_num = udev->portnum - 1; 4503 pm_addr = ports[port_num]->addr + PORTPMSC; 4504 pm_val = readl(pm_addr); 4505 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4506 4507 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4508 enable ? "enable" : "disable", port_num + 1); 4509 4510 if (enable) { 4511 /* Host supports BESL timeout instead of HIRD */ 4512 if (udev->usb2_hw_lpm_besl_capable) { 4513 /* if device doesn't have a preferred BESL value use a 4514 * default one which works with mixed HIRD and BESL 4515 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4516 */ 4517 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4518 if ((field & USB_BESL_SUPPORT) && 4519 (field & USB_BESL_BASELINE_VALID)) 4520 hird = USB_GET_BESL_BASELINE(field); 4521 else 4522 hird = udev->l1_params.besl; 4523 4524 exit_latency = xhci_besl_encoding[hird]; 4525 spin_unlock_irqrestore(&xhci->lock, flags); 4526 4527 ret = xhci_change_max_exit_latency(xhci, udev, 4528 exit_latency); 4529 if (ret < 0) 4530 return ret; 4531 spin_lock_irqsave(&xhci->lock, flags); 4532 4533 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4534 writel(hlpm_val, hlpm_addr); 4535 /* flush write */ 4536 readl(hlpm_addr); 4537 } else { 4538 hird = xhci_calculate_hird_besl(xhci, udev); 4539 } 4540 4541 pm_val &= ~PORT_HIRD_MASK; 4542 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4543 writel(pm_val, pm_addr); 4544 pm_val = readl(pm_addr); 4545 pm_val |= PORT_HLE; 4546 writel(pm_val, pm_addr); 4547 /* flush write */ 4548 readl(pm_addr); 4549 } else { 4550 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4551 writel(pm_val, pm_addr); 4552 /* flush write */ 4553 readl(pm_addr); 4554 if (udev->usb2_hw_lpm_besl_capable) { 4555 spin_unlock_irqrestore(&xhci->lock, flags); 4556 xhci_change_max_exit_latency(xhci, udev, 0); 4557 readl_poll_timeout(ports[port_num]->addr, pm_val, 4558 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4559 100, 10000); 4560 return 0; 4561 } 4562 } 4563 4564 spin_unlock_irqrestore(&xhci->lock, flags); 4565 return 0; 4566 } 4567 4568 /* check if a usb2 port supports a given extened capability protocol 4569 * only USB2 ports extended protocol capability values are cached. 4570 * Return 1 if capability is supported 4571 */ 4572 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4573 unsigned capability) 4574 { 4575 u32 port_offset, port_count; 4576 int i; 4577 4578 for (i = 0; i < xhci->num_ext_caps; i++) { 4579 if (xhci->ext_caps[i] & capability) { 4580 /* port offsets starts at 1 */ 4581 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4582 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4583 if (port >= port_offset && 4584 port < port_offset + port_count) 4585 return 1; 4586 } 4587 } 4588 return 0; 4589 } 4590 4591 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4592 { 4593 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4594 int portnum = udev->portnum - 1; 4595 4596 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4597 return 0; 4598 4599 /* we only support lpm for non-hub device connected to root hub yet */ 4600 if (!udev->parent || udev->parent->parent || 4601 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4602 return 0; 4603 4604 if (xhci->hw_lpm_support == 1 && 4605 xhci_check_usb2_port_capability( 4606 xhci, portnum, XHCI_HLC)) { 4607 udev->usb2_hw_lpm_capable = 1; 4608 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4609 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4610 if (xhci_check_usb2_port_capability(xhci, portnum, 4611 XHCI_BLC)) 4612 udev->usb2_hw_lpm_besl_capable = 1; 4613 } 4614 4615 return 0; 4616 } 4617 4618 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4619 4620 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4621 static unsigned long long xhci_service_interval_to_ns( 4622 struct usb_endpoint_descriptor *desc) 4623 { 4624 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4625 } 4626 4627 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4628 enum usb3_link_state state) 4629 { 4630 unsigned long long sel; 4631 unsigned long long pel; 4632 unsigned int max_sel_pel; 4633 char *state_name; 4634 4635 switch (state) { 4636 case USB3_LPM_U1: 4637 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4638 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4639 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4640 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4641 state_name = "U1"; 4642 break; 4643 case USB3_LPM_U2: 4644 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4645 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4646 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4647 state_name = "U2"; 4648 break; 4649 default: 4650 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4651 __func__); 4652 return USB3_LPM_DISABLED; 4653 } 4654 4655 if (sel <= max_sel_pel && pel <= max_sel_pel) 4656 return USB3_LPM_DEVICE_INITIATED; 4657 4658 if (sel > max_sel_pel) 4659 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4660 "due to long SEL %llu ms\n", 4661 state_name, sel); 4662 else 4663 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4664 "due to long PEL %llu ms\n", 4665 state_name, pel); 4666 return USB3_LPM_DISABLED; 4667 } 4668 4669 /* The U1 timeout should be the maximum of the following values: 4670 * - For control endpoints, U1 system exit latency (SEL) * 3 4671 * - For bulk endpoints, U1 SEL * 5 4672 * - For interrupt endpoints: 4673 * - Notification EPs, U1 SEL * 3 4674 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4675 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4676 */ 4677 static unsigned long long xhci_calculate_intel_u1_timeout( 4678 struct usb_device *udev, 4679 struct usb_endpoint_descriptor *desc) 4680 { 4681 unsigned long long timeout_ns; 4682 int ep_type; 4683 int intr_type; 4684 4685 ep_type = usb_endpoint_type(desc); 4686 switch (ep_type) { 4687 case USB_ENDPOINT_XFER_CONTROL: 4688 timeout_ns = udev->u1_params.sel * 3; 4689 break; 4690 case USB_ENDPOINT_XFER_BULK: 4691 timeout_ns = udev->u1_params.sel * 5; 4692 break; 4693 case USB_ENDPOINT_XFER_INT: 4694 intr_type = usb_endpoint_interrupt_type(desc); 4695 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4696 timeout_ns = udev->u1_params.sel * 3; 4697 break; 4698 } 4699 /* Otherwise the calculation is the same as isoc eps */ 4700 fallthrough; 4701 case USB_ENDPOINT_XFER_ISOC: 4702 timeout_ns = xhci_service_interval_to_ns(desc); 4703 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4704 if (timeout_ns < udev->u1_params.sel * 2) 4705 timeout_ns = udev->u1_params.sel * 2; 4706 break; 4707 default: 4708 return 0; 4709 } 4710 4711 return timeout_ns; 4712 } 4713 4714 /* Returns the hub-encoded U1 timeout value. */ 4715 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4716 struct usb_device *udev, 4717 struct usb_endpoint_descriptor *desc) 4718 { 4719 unsigned long long timeout_ns; 4720 4721 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4722 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4723 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4724 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4725 return USB3_LPM_DISABLED; 4726 } 4727 } 4728 4729 if (xhci->quirks & XHCI_INTEL_HOST) 4730 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4731 else 4732 timeout_ns = udev->u1_params.sel; 4733 4734 /* The U1 timeout is encoded in 1us intervals. 4735 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4736 */ 4737 if (timeout_ns == USB3_LPM_DISABLED) 4738 timeout_ns = 1; 4739 else 4740 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4741 4742 /* If the necessary timeout value is bigger than what we can set in the 4743 * USB 3.0 hub, we have to disable hub-initiated U1. 4744 */ 4745 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4746 return timeout_ns; 4747 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4748 "due to long timeout %llu ms\n", timeout_ns); 4749 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4750 } 4751 4752 /* The U2 timeout should be the maximum of: 4753 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4754 * - largest bInterval of any active periodic endpoint (to avoid going 4755 * into lower power link states between intervals). 4756 * - the U2 Exit Latency of the device 4757 */ 4758 static unsigned long long xhci_calculate_intel_u2_timeout( 4759 struct usb_device *udev, 4760 struct usb_endpoint_descriptor *desc) 4761 { 4762 unsigned long long timeout_ns; 4763 unsigned long long u2_del_ns; 4764 4765 timeout_ns = 10 * 1000 * 1000; 4766 4767 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4768 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4769 timeout_ns = xhci_service_interval_to_ns(desc); 4770 4771 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4772 if (u2_del_ns > timeout_ns) 4773 timeout_ns = u2_del_ns; 4774 4775 return timeout_ns; 4776 } 4777 4778 /* Returns the hub-encoded U2 timeout value. */ 4779 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4780 struct usb_device *udev, 4781 struct usb_endpoint_descriptor *desc) 4782 { 4783 unsigned long long timeout_ns; 4784 4785 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4786 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4787 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4788 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4789 return USB3_LPM_DISABLED; 4790 } 4791 } 4792 4793 if (xhci->quirks & XHCI_INTEL_HOST) 4794 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4795 else 4796 timeout_ns = udev->u2_params.sel; 4797 4798 /* The U2 timeout is encoded in 256us intervals */ 4799 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4800 /* If the necessary timeout value is bigger than what we can set in the 4801 * USB 3.0 hub, we have to disable hub-initiated U2. 4802 */ 4803 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4804 return timeout_ns; 4805 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4806 "due to long timeout %llu ms\n", timeout_ns); 4807 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4808 } 4809 4810 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4811 struct usb_device *udev, 4812 struct usb_endpoint_descriptor *desc, 4813 enum usb3_link_state state, 4814 u16 *timeout) 4815 { 4816 if (state == USB3_LPM_U1) 4817 return xhci_calculate_u1_timeout(xhci, udev, desc); 4818 else if (state == USB3_LPM_U2) 4819 return xhci_calculate_u2_timeout(xhci, udev, desc); 4820 4821 return USB3_LPM_DISABLED; 4822 } 4823 4824 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4825 struct usb_device *udev, 4826 struct usb_endpoint_descriptor *desc, 4827 enum usb3_link_state state, 4828 u16 *timeout) 4829 { 4830 u16 alt_timeout; 4831 4832 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4833 desc, state, timeout); 4834 4835 /* If we found we can't enable hub-initiated LPM, and 4836 * the U1 or U2 exit latency was too high to allow 4837 * device-initiated LPM as well, then we will disable LPM 4838 * for this device, so stop searching any further. 4839 */ 4840 if (alt_timeout == USB3_LPM_DISABLED) { 4841 *timeout = alt_timeout; 4842 return -E2BIG; 4843 } 4844 if (alt_timeout > *timeout) 4845 *timeout = alt_timeout; 4846 return 0; 4847 } 4848 4849 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4850 struct usb_device *udev, 4851 struct usb_host_interface *alt, 4852 enum usb3_link_state state, 4853 u16 *timeout) 4854 { 4855 int j; 4856 4857 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4858 if (xhci_update_timeout_for_endpoint(xhci, udev, 4859 &alt->endpoint[j].desc, state, timeout)) 4860 return -E2BIG; 4861 } 4862 return 0; 4863 } 4864 4865 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4866 enum usb3_link_state state) 4867 { 4868 struct usb_device *parent; 4869 unsigned int num_hubs; 4870 4871 if (state == USB3_LPM_U2) 4872 return 0; 4873 4874 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4875 for (parent = udev->parent, num_hubs = 0; parent->parent; 4876 parent = parent->parent) 4877 num_hubs++; 4878 4879 if (num_hubs < 2) 4880 return 0; 4881 4882 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4883 " below second-tier hub.\n"); 4884 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4885 "to decrease power consumption.\n"); 4886 return -E2BIG; 4887 } 4888 4889 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4890 struct usb_device *udev, 4891 enum usb3_link_state state) 4892 { 4893 if (xhci->quirks & XHCI_INTEL_HOST) 4894 return xhci_check_intel_tier_policy(udev, state); 4895 else 4896 return 0; 4897 } 4898 4899 /* Returns the U1 or U2 timeout that should be enabled. 4900 * If the tier check or timeout setting functions return with a non-zero exit 4901 * code, that means the timeout value has been finalized and we shouldn't look 4902 * at any more endpoints. 4903 */ 4904 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4905 struct usb_device *udev, enum usb3_link_state state) 4906 { 4907 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4908 struct usb_host_config *config; 4909 char *state_name; 4910 int i; 4911 u16 timeout = USB3_LPM_DISABLED; 4912 4913 if (state == USB3_LPM_U1) 4914 state_name = "U1"; 4915 else if (state == USB3_LPM_U2) 4916 state_name = "U2"; 4917 else { 4918 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4919 state); 4920 return timeout; 4921 } 4922 4923 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4924 return timeout; 4925 4926 /* Gather some information about the currently installed configuration 4927 * and alternate interface settings. 4928 */ 4929 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4930 state, &timeout)) 4931 return timeout; 4932 4933 config = udev->actconfig; 4934 if (!config) 4935 return timeout; 4936 4937 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4938 struct usb_driver *driver; 4939 struct usb_interface *intf = config->interface[i]; 4940 4941 if (!intf) 4942 continue; 4943 4944 /* Check if any currently bound drivers want hub-initiated LPM 4945 * disabled. 4946 */ 4947 if (intf->dev.driver) { 4948 driver = to_usb_driver(intf->dev.driver); 4949 if (driver && driver->disable_hub_initiated_lpm) { 4950 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4951 state_name, driver->name); 4952 timeout = xhci_get_timeout_no_hub_lpm(udev, 4953 state); 4954 if (timeout == USB3_LPM_DISABLED) 4955 return timeout; 4956 } 4957 } 4958 4959 /* Not sure how this could happen... */ 4960 if (!intf->cur_altsetting) 4961 continue; 4962 4963 if (xhci_update_timeout_for_interface(xhci, udev, 4964 intf->cur_altsetting, 4965 state, &timeout)) 4966 return timeout; 4967 } 4968 return timeout; 4969 } 4970 4971 static int calculate_max_exit_latency(struct usb_device *udev, 4972 enum usb3_link_state state_changed, 4973 u16 hub_encoded_timeout) 4974 { 4975 unsigned long long u1_mel_us = 0; 4976 unsigned long long u2_mel_us = 0; 4977 unsigned long long mel_us = 0; 4978 bool disabling_u1; 4979 bool disabling_u2; 4980 bool enabling_u1; 4981 bool enabling_u2; 4982 4983 disabling_u1 = (state_changed == USB3_LPM_U1 && 4984 hub_encoded_timeout == USB3_LPM_DISABLED); 4985 disabling_u2 = (state_changed == USB3_LPM_U2 && 4986 hub_encoded_timeout == USB3_LPM_DISABLED); 4987 4988 enabling_u1 = (state_changed == USB3_LPM_U1 && 4989 hub_encoded_timeout != USB3_LPM_DISABLED); 4990 enabling_u2 = (state_changed == USB3_LPM_U2 && 4991 hub_encoded_timeout != USB3_LPM_DISABLED); 4992 4993 /* If U1 was already enabled and we're not disabling it, 4994 * or we're going to enable U1, account for the U1 max exit latency. 4995 */ 4996 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4997 enabling_u1) 4998 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4999 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 5000 enabling_u2) 5001 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5002 5003 mel_us = max(u1_mel_us, u2_mel_us); 5004 5005 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5006 if (mel_us > MAX_EXIT) { 5007 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5008 "is too big.\n", mel_us); 5009 return -E2BIG; 5010 } 5011 return mel_us; 5012 } 5013 5014 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5015 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5016 struct usb_device *udev, enum usb3_link_state state) 5017 { 5018 struct xhci_hcd *xhci; 5019 u16 hub_encoded_timeout; 5020 int mel; 5021 int ret; 5022 5023 xhci = hcd_to_xhci(hcd); 5024 /* The LPM timeout values are pretty host-controller specific, so don't 5025 * enable hub-initiated timeouts unless the vendor has provided 5026 * information about their timeout algorithm. 5027 */ 5028 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5029 !xhci->devs[udev->slot_id]) 5030 return USB3_LPM_DISABLED; 5031 5032 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5033 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5034 if (mel < 0) { 5035 /* Max Exit Latency is too big, disable LPM. */ 5036 hub_encoded_timeout = USB3_LPM_DISABLED; 5037 mel = 0; 5038 } 5039 5040 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5041 if (ret) 5042 return ret; 5043 return hub_encoded_timeout; 5044 } 5045 5046 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5047 struct usb_device *udev, enum usb3_link_state state) 5048 { 5049 struct xhci_hcd *xhci; 5050 u16 mel; 5051 5052 xhci = hcd_to_xhci(hcd); 5053 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5054 !xhci->devs[udev->slot_id]) 5055 return 0; 5056 5057 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5058 return xhci_change_max_exit_latency(xhci, udev, mel); 5059 } 5060 #else /* CONFIG_PM */ 5061 5062 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5063 struct usb_device *udev, int enable) 5064 { 5065 return 0; 5066 } 5067 5068 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5069 { 5070 return 0; 5071 } 5072 5073 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5074 struct usb_device *udev, enum usb3_link_state state) 5075 { 5076 return USB3_LPM_DISABLED; 5077 } 5078 5079 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5080 struct usb_device *udev, enum usb3_link_state state) 5081 { 5082 return 0; 5083 } 5084 #endif /* CONFIG_PM */ 5085 5086 /*-------------------------------------------------------------------------*/ 5087 5088 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5089 * internal data structures for the device. 5090 */ 5091 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5092 struct usb_tt *tt, gfp_t mem_flags) 5093 { 5094 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5095 struct xhci_virt_device *vdev; 5096 struct xhci_command *config_cmd; 5097 struct xhci_input_control_ctx *ctrl_ctx; 5098 struct xhci_slot_ctx *slot_ctx; 5099 unsigned long flags; 5100 unsigned think_time; 5101 int ret; 5102 5103 /* Ignore root hubs */ 5104 if (!hdev->parent) 5105 return 0; 5106 5107 vdev = xhci->devs[hdev->slot_id]; 5108 if (!vdev) { 5109 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5110 return -EINVAL; 5111 } 5112 5113 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5114 if (!config_cmd) 5115 return -ENOMEM; 5116 5117 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5118 if (!ctrl_ctx) { 5119 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5120 __func__); 5121 xhci_free_command(xhci, config_cmd); 5122 return -ENOMEM; 5123 } 5124 5125 spin_lock_irqsave(&xhci->lock, flags); 5126 if (hdev->speed == USB_SPEED_HIGH && 5127 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5128 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5129 xhci_free_command(xhci, config_cmd); 5130 spin_unlock_irqrestore(&xhci->lock, flags); 5131 return -ENOMEM; 5132 } 5133 5134 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5135 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5136 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5137 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5138 /* 5139 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5140 * but it may be already set to 1 when setup an xHCI virtual 5141 * device, so clear it anyway. 5142 */ 5143 if (tt->multi) 5144 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5145 else if (hdev->speed == USB_SPEED_FULL) 5146 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5147 5148 if (xhci->hci_version > 0x95) { 5149 xhci_dbg(xhci, "xHCI version %x needs hub " 5150 "TT think time and number of ports\n", 5151 (unsigned int) xhci->hci_version); 5152 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5153 /* Set TT think time - convert from ns to FS bit times. 5154 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5155 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5156 * 5157 * xHCI 1.0: this field shall be 0 if the device is not a 5158 * High-spped hub. 5159 */ 5160 think_time = tt->think_time; 5161 if (think_time != 0) 5162 think_time = (think_time / 666) - 1; 5163 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5164 slot_ctx->tt_info |= 5165 cpu_to_le32(TT_THINK_TIME(think_time)); 5166 } else { 5167 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5168 "TT think time or number of ports\n", 5169 (unsigned int) xhci->hci_version); 5170 } 5171 slot_ctx->dev_state = 0; 5172 spin_unlock_irqrestore(&xhci->lock, flags); 5173 5174 xhci_dbg(xhci, "Set up %s for hub device.\n", 5175 (xhci->hci_version > 0x95) ? 5176 "configure endpoint" : "evaluate context"); 5177 5178 /* Issue and wait for the configure endpoint or 5179 * evaluate context command. 5180 */ 5181 if (xhci->hci_version > 0x95) 5182 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5183 false, false); 5184 else 5185 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5186 true, false); 5187 5188 xhci_free_command(xhci, config_cmd); 5189 return ret; 5190 } 5191 5192 static int xhci_get_frame(struct usb_hcd *hcd) 5193 { 5194 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5195 /* EHCI mods by the periodic size. Why? */ 5196 return readl(&xhci->run_regs->microframe_index) >> 3; 5197 } 5198 5199 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5200 { 5201 struct xhci_hcd *xhci; 5202 /* 5203 * TODO: Check with DWC3 clients for sysdev according to 5204 * quirks 5205 */ 5206 struct device *dev = hcd->self.sysdev; 5207 unsigned int minor_rev; 5208 int retval; 5209 5210 /* Accept arbitrarily long scatter-gather lists */ 5211 hcd->self.sg_tablesize = ~0; 5212 5213 /* support to build packet from discontinuous buffers */ 5214 hcd->self.no_sg_constraint = 1; 5215 5216 /* XHCI controllers don't stop the ep queue on short packets :| */ 5217 hcd->self.no_stop_on_short = 1; 5218 5219 xhci = hcd_to_xhci(hcd); 5220 5221 if (usb_hcd_is_primary_hcd(hcd)) { 5222 xhci->main_hcd = hcd; 5223 xhci->usb2_rhub.hcd = hcd; 5224 /* Mark the first roothub as being USB 2.0. 5225 * The xHCI driver will register the USB 3.0 roothub. 5226 */ 5227 hcd->speed = HCD_USB2; 5228 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5229 /* 5230 * USB 2.0 roothub under xHCI has an integrated TT, 5231 * (rate matching hub) as opposed to having an OHCI/UHCI 5232 * companion controller. 5233 */ 5234 hcd->has_tt = 1; 5235 } else { 5236 /* 5237 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5238 * should return 0x31 for sbrn, or that the minor revision 5239 * is a two digit BCD containig minor and sub-minor numbers. 5240 * This was later clarified in xHCI 1.2. 5241 * 5242 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5243 * minor revision set to 0x1 instead of 0x10. 5244 */ 5245 if (xhci->usb3_rhub.min_rev == 0x1) 5246 minor_rev = 1; 5247 else 5248 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5249 5250 switch (minor_rev) { 5251 case 2: 5252 hcd->speed = HCD_USB32; 5253 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5254 hcd->self.root_hub->rx_lanes = 2; 5255 hcd->self.root_hub->tx_lanes = 2; 5256 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5257 break; 5258 case 1: 5259 hcd->speed = HCD_USB31; 5260 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5261 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5262 break; 5263 } 5264 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5265 minor_rev, 5266 minor_rev ? "Enhanced " : ""); 5267 5268 xhci->usb3_rhub.hcd = hcd; 5269 /* xHCI private pointer was set in xhci_pci_probe for the second 5270 * registered roothub. 5271 */ 5272 return 0; 5273 } 5274 5275 mutex_init(&xhci->mutex); 5276 xhci->cap_regs = hcd->regs; 5277 xhci->op_regs = hcd->regs + 5278 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5279 xhci->run_regs = hcd->regs + 5280 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5281 /* Cache read-only capability registers */ 5282 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5283 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5284 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5285 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5286 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5287 if (xhci->hci_version > 0x100) 5288 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5289 5290 xhci->quirks |= quirks; 5291 5292 get_quirks(dev, xhci); 5293 5294 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5295 * success event after a short transfer. This quirk will ignore such 5296 * spurious event. 5297 */ 5298 if (xhci->hci_version > 0x96) 5299 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5300 5301 /* Make sure the HC is halted. */ 5302 retval = xhci_halt(xhci); 5303 if (retval) 5304 return retval; 5305 5306 xhci_zero_64b_regs(xhci); 5307 5308 xhci_dbg(xhci, "Resetting HCD\n"); 5309 /* Reset the internal HC memory state and registers. */ 5310 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5311 if (retval) 5312 return retval; 5313 xhci_dbg(xhci, "Reset complete\n"); 5314 5315 /* 5316 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5317 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5318 * address memory pointers actually. So, this driver clears the AC64 5319 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5320 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5321 */ 5322 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5323 xhci->hcc_params &= ~BIT(0); 5324 5325 /* Set dma_mask and coherent_dma_mask to 64-bits, 5326 * if xHC supports 64-bit addressing */ 5327 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5328 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5329 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5330 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5331 } else { 5332 /* 5333 * This is to avoid error in cases where a 32-bit USB 5334 * controller is used on a 64-bit capable system. 5335 */ 5336 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5337 if (retval) 5338 return retval; 5339 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5340 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5341 } 5342 5343 xhci_dbg(xhci, "Calling HCD init\n"); 5344 /* Initialize HCD and host controller data structures. */ 5345 retval = xhci_init(hcd); 5346 if (retval) 5347 return retval; 5348 xhci_dbg(xhci, "Called HCD init\n"); 5349 5350 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5351 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5352 5353 return 0; 5354 } 5355 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5356 5357 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5358 struct usb_host_endpoint *ep) 5359 { 5360 struct xhci_hcd *xhci; 5361 struct usb_device *udev; 5362 unsigned int slot_id; 5363 unsigned int ep_index; 5364 unsigned long flags; 5365 5366 xhci = hcd_to_xhci(hcd); 5367 5368 spin_lock_irqsave(&xhci->lock, flags); 5369 udev = (struct usb_device *)ep->hcpriv; 5370 slot_id = udev->slot_id; 5371 ep_index = xhci_get_endpoint_index(&ep->desc); 5372 5373 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5374 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5375 spin_unlock_irqrestore(&xhci->lock, flags); 5376 } 5377 5378 static const struct hc_driver xhci_hc_driver = { 5379 .description = "xhci-hcd", 5380 .product_desc = "xHCI Host Controller", 5381 .hcd_priv_size = sizeof(struct xhci_hcd), 5382 5383 /* 5384 * generic hardware linkage 5385 */ 5386 .irq = xhci_irq, 5387 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5388 HCD_BH, 5389 5390 /* 5391 * basic lifecycle operations 5392 */ 5393 .reset = NULL, /* set in xhci_init_driver() */ 5394 .start = xhci_run, 5395 .stop = xhci_stop, 5396 .shutdown = xhci_shutdown, 5397 5398 /* 5399 * managing i/o requests and associated device resources 5400 */ 5401 .map_urb_for_dma = xhci_map_urb_for_dma, 5402 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5403 .urb_enqueue = xhci_urb_enqueue, 5404 .urb_dequeue = xhci_urb_dequeue, 5405 .alloc_dev = xhci_alloc_dev, 5406 .free_dev = xhci_free_dev, 5407 .alloc_streams = xhci_alloc_streams, 5408 .free_streams = xhci_free_streams, 5409 .add_endpoint = xhci_add_endpoint, 5410 .drop_endpoint = xhci_drop_endpoint, 5411 .endpoint_disable = xhci_endpoint_disable, 5412 .endpoint_reset = xhci_endpoint_reset, 5413 .check_bandwidth = xhci_check_bandwidth, 5414 .reset_bandwidth = xhci_reset_bandwidth, 5415 .address_device = xhci_address_device, 5416 .enable_device = xhci_enable_device, 5417 .update_hub_device = xhci_update_hub_device, 5418 .reset_device = xhci_discover_or_reset_device, 5419 5420 /* 5421 * scheduling support 5422 */ 5423 .get_frame_number = xhci_get_frame, 5424 5425 /* 5426 * root hub support 5427 */ 5428 .hub_control = xhci_hub_control, 5429 .hub_status_data = xhci_hub_status_data, 5430 .bus_suspend = xhci_bus_suspend, 5431 .bus_resume = xhci_bus_resume, 5432 .get_resuming_ports = xhci_get_resuming_ports, 5433 5434 /* 5435 * call back when device connected and addressed 5436 */ 5437 .update_device = xhci_update_device, 5438 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5439 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5440 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5441 .find_raw_port_number = xhci_find_raw_port_number, 5442 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5443 }; 5444 5445 void xhci_init_driver(struct hc_driver *drv, 5446 const struct xhci_driver_overrides *over) 5447 { 5448 BUG_ON(!over); 5449 5450 /* Copy the generic table to drv then apply the overrides */ 5451 *drv = xhci_hc_driver; 5452 5453 if (over) { 5454 drv->hcd_priv_size += over->extra_priv_size; 5455 if (over->reset) 5456 drv->reset = over->reset; 5457 if (over->start) 5458 drv->start = over->start; 5459 if (over->add_endpoint) 5460 drv->add_endpoint = over->add_endpoint; 5461 if (over->drop_endpoint) 5462 drv->drop_endpoint = over->drop_endpoint; 5463 if (over->check_bandwidth) 5464 drv->check_bandwidth = over->check_bandwidth; 5465 if (over->reset_bandwidth) 5466 drv->reset_bandwidth = over->reset_bandwidth; 5467 } 5468 } 5469 EXPORT_SYMBOL_GPL(xhci_init_driver); 5470 5471 MODULE_DESCRIPTION(DRIVER_DESC); 5472 MODULE_AUTHOR(DRIVER_AUTHOR); 5473 MODULE_LICENSE("GPL"); 5474 5475 static int __init xhci_hcd_init(void) 5476 { 5477 /* 5478 * Check the compiler generated sizes of structures that must be laid 5479 * out in specific ways for hardware access. 5480 */ 5481 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5482 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5483 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5484 /* xhci_device_control has eight fields, and also 5485 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5486 */ 5487 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5488 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5489 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5490 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5491 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5492 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5493 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5494 5495 if (usb_disabled()) 5496 return -ENODEV; 5497 5498 xhci_debugfs_create_root(); 5499 xhci_dbc_init(); 5500 5501 return 0; 5502 } 5503 5504 /* 5505 * If an init function is provided, an exit function must also be provided 5506 * to allow module unload. 5507 */ 5508 static void __exit xhci_hcd_fini(void) 5509 { 5510 xhci_debugfs_remove_root(); 5511 xhci_dbc_exit(); 5512 } 5513 5514 module_init(xhci_hcd_init); 5515 module_exit(xhci_hcd_fini); 5516