xref: /linux/drivers/usb/host/xhci.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37 
38 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39 
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44 
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48 
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64 {
65 	u32	result;
66 
67 	do {
68 		result = readl(ptr);
69 		if (result == ~(u32)0)		/* card removed */
70 			return -ENODEV;
71 		result &= mask;
72 		if (result == done)
73 			return 0;
74 		udelay(1);
75 		usec--;
76 	} while (usec > 0);
77 	return -ETIMEDOUT;
78 }
79 
80 /*
81  * Disable interrupts and begin the xHCI halting process.
82  */
83 void xhci_quiesce(struct xhci_hcd *xhci)
84 {
85 	u32 halted;
86 	u32 cmd;
87 	u32 mask;
88 
89 	mask = ~(XHCI_IRQS);
90 	halted = readl(&xhci->op_regs->status) & STS_HALT;
91 	if (!halted)
92 		mask &= ~CMD_RUN;
93 
94 	cmd = readl(&xhci->op_regs->command);
95 	cmd &= mask;
96 	writel(cmd, &xhci->op_regs->command);
97 }
98 
99 /*
100  * Force HC into halt state.
101  *
102  * Disable any IRQs and clear the run/stop bit.
103  * HC will complete any current and actively pipelined transactions, and
104  * should halt within 16 ms of the run/stop bit being cleared.
105  * Read HC Halted bit in the status register to see when the HC is finished.
106  */
107 int xhci_halt(struct xhci_hcd *xhci)
108 {
109 	int ret;
110 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
111 	xhci_quiesce(xhci);
112 
113 	ret = xhci_handshake(&xhci->op_regs->status,
114 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
115 	if (!ret) {
116 		xhci->xhc_state |= XHCI_STATE_HALTED;
117 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
118 	} else
119 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120 				XHCI_MAX_HALT_USEC);
121 	return ret;
122 }
123 
124 /*
125  * Set the run bit and wait for the host to be running.
126  */
127 static int xhci_start(struct xhci_hcd *xhci)
128 {
129 	u32 temp;
130 	int ret;
131 
132 	temp = readl(&xhci->op_regs->command);
133 	temp |= (CMD_RUN);
134 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
135 			temp);
136 	writel(temp, &xhci->op_regs->command);
137 
138 	/*
139 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
140 	 * running.
141 	 */
142 	ret = xhci_handshake(&xhci->op_regs->status,
143 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
144 	if (ret == -ETIMEDOUT)
145 		xhci_err(xhci, "Host took too long to start, "
146 				"waited %u microseconds.\n",
147 				XHCI_MAX_HALT_USEC);
148 	if (!ret)
149 		xhci->xhc_state &= ~(XHCI_STATE_HALTED | XHCI_STATE_DYING);
150 
151 	return ret;
152 }
153 
154 /*
155  * Reset a halted HC.
156  *
157  * This resets pipelines, timers, counters, state machines, etc.
158  * Transactions will be terminated immediately, and operational registers
159  * will be set to their defaults.
160  */
161 int xhci_reset(struct xhci_hcd *xhci)
162 {
163 	u32 command;
164 	u32 state;
165 	int ret, i;
166 
167 	state = readl(&xhci->op_regs->status);
168 	if ((state & STS_HALT) == 0) {
169 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
170 		return 0;
171 	}
172 
173 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
174 	command = readl(&xhci->op_regs->command);
175 	command |= CMD_RESET;
176 	writel(command, &xhci->op_regs->command);
177 
178 	ret = xhci_handshake(&xhci->op_regs->command,
179 			CMD_RESET, 0, 10 * 1000 * 1000);
180 	if (ret)
181 		return ret;
182 
183 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
184 			 "Wait for controller to be ready for doorbell rings");
185 	/*
186 	 * xHCI cannot write to any doorbells or operational registers other
187 	 * than status until the "Controller Not Ready" flag is cleared.
188 	 */
189 	ret = xhci_handshake(&xhci->op_regs->status,
190 			STS_CNR, 0, 10 * 1000 * 1000);
191 
192 	for (i = 0; i < 2; ++i) {
193 		xhci->bus_state[i].port_c_suspend = 0;
194 		xhci->bus_state[i].suspended_ports = 0;
195 		xhci->bus_state[i].resuming_ports = 0;
196 	}
197 
198 	return ret;
199 }
200 
201 #ifdef CONFIG_PCI
202 static int xhci_free_msi(struct xhci_hcd *xhci)
203 {
204 	int i;
205 
206 	if (!xhci->msix_entries)
207 		return -EINVAL;
208 
209 	for (i = 0; i < xhci->msix_count; i++)
210 		if (xhci->msix_entries[i].vector)
211 			free_irq(xhci->msix_entries[i].vector,
212 					xhci_to_hcd(xhci));
213 	return 0;
214 }
215 
216 /*
217  * Set up MSI
218  */
219 static int xhci_setup_msi(struct xhci_hcd *xhci)
220 {
221 	int ret;
222 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
223 
224 	ret = pci_enable_msi(pdev);
225 	if (ret) {
226 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
227 				"failed to allocate MSI entry");
228 		return ret;
229 	}
230 
231 	ret = request_irq(pdev->irq, xhci_msi_irq,
232 				0, "xhci_hcd", xhci_to_hcd(xhci));
233 	if (ret) {
234 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
235 				"disable MSI interrupt");
236 		pci_disable_msi(pdev);
237 	}
238 
239 	return ret;
240 }
241 
242 /*
243  * Free IRQs
244  * free all IRQs request
245  */
246 static void xhci_free_irq(struct xhci_hcd *xhci)
247 {
248 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
249 	int ret;
250 
251 	/* return if using legacy interrupt */
252 	if (xhci_to_hcd(xhci)->irq > 0)
253 		return;
254 
255 	ret = xhci_free_msi(xhci);
256 	if (!ret)
257 		return;
258 	if (pdev->irq > 0)
259 		free_irq(pdev->irq, xhci_to_hcd(xhci));
260 
261 	return;
262 }
263 
264 /*
265  * Set up MSI-X
266  */
267 static int xhci_setup_msix(struct xhci_hcd *xhci)
268 {
269 	int i, ret = 0;
270 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
271 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
272 
273 	/*
274 	 * calculate number of msi-x vectors supported.
275 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
276 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
277 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
278 	 *   Add additional 1 vector to ensure always available interrupt.
279 	 */
280 	xhci->msix_count = min(num_online_cpus() + 1,
281 				HCS_MAX_INTRS(xhci->hcs_params1));
282 
283 	xhci->msix_entries =
284 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
285 				GFP_KERNEL);
286 	if (!xhci->msix_entries) {
287 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
288 		return -ENOMEM;
289 	}
290 
291 	for (i = 0; i < xhci->msix_count; i++) {
292 		xhci->msix_entries[i].entry = i;
293 		xhci->msix_entries[i].vector = 0;
294 	}
295 
296 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
297 	if (ret) {
298 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
299 				"Failed to enable MSI-X");
300 		goto free_entries;
301 	}
302 
303 	for (i = 0; i < xhci->msix_count; i++) {
304 		ret = request_irq(xhci->msix_entries[i].vector,
305 				xhci_msi_irq,
306 				0, "xhci_hcd", xhci_to_hcd(xhci));
307 		if (ret)
308 			goto disable_msix;
309 	}
310 
311 	hcd->msix_enabled = 1;
312 	return ret;
313 
314 disable_msix:
315 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
316 	xhci_free_irq(xhci);
317 	pci_disable_msix(pdev);
318 free_entries:
319 	kfree(xhci->msix_entries);
320 	xhci->msix_entries = NULL;
321 	return ret;
322 }
323 
324 /* Free any IRQs and disable MSI-X */
325 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
326 {
327 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
328 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
329 
330 	if (xhci->quirks & XHCI_PLAT)
331 		return;
332 
333 	xhci_free_irq(xhci);
334 
335 	if (xhci->msix_entries) {
336 		pci_disable_msix(pdev);
337 		kfree(xhci->msix_entries);
338 		xhci->msix_entries = NULL;
339 	} else {
340 		pci_disable_msi(pdev);
341 	}
342 
343 	hcd->msix_enabled = 0;
344 	return;
345 }
346 
347 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
348 {
349 	int i;
350 
351 	if (xhci->msix_entries) {
352 		for (i = 0; i < xhci->msix_count; i++)
353 			synchronize_irq(xhci->msix_entries[i].vector);
354 	}
355 }
356 
357 static int xhci_try_enable_msi(struct usb_hcd *hcd)
358 {
359 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
360 	struct pci_dev  *pdev;
361 	int ret;
362 
363 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
364 	if (xhci->quirks & XHCI_PLAT)
365 		return 0;
366 
367 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
368 	/*
369 	 * Some Fresco Logic host controllers advertise MSI, but fail to
370 	 * generate interrupts.  Don't even try to enable MSI.
371 	 */
372 	if (xhci->quirks & XHCI_BROKEN_MSI)
373 		goto legacy_irq;
374 
375 	/* unregister the legacy interrupt */
376 	if (hcd->irq)
377 		free_irq(hcd->irq, hcd);
378 	hcd->irq = 0;
379 
380 	ret = xhci_setup_msix(xhci);
381 	if (ret)
382 		/* fall back to msi*/
383 		ret = xhci_setup_msi(xhci);
384 
385 	if (!ret)
386 		/* hcd->irq is 0, we have MSI */
387 		return 0;
388 
389 	if (!pdev->irq) {
390 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
391 		return -EINVAL;
392 	}
393 
394  legacy_irq:
395 	if (!strlen(hcd->irq_descr))
396 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
397 			 hcd->driver->description, hcd->self.busnum);
398 
399 	/* fall back to legacy interrupt*/
400 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
401 			hcd->irq_descr, hcd);
402 	if (ret) {
403 		xhci_err(xhci, "request interrupt %d failed\n",
404 				pdev->irq);
405 		return ret;
406 	}
407 	hcd->irq = pdev->irq;
408 	return 0;
409 }
410 
411 #else
412 
413 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
414 {
415 	return 0;
416 }
417 
418 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
419 {
420 }
421 
422 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
423 {
424 }
425 
426 #endif
427 
428 static void compliance_mode_recovery(unsigned long arg)
429 {
430 	struct xhci_hcd *xhci;
431 	struct usb_hcd *hcd;
432 	u32 temp;
433 	int i;
434 
435 	xhci = (struct xhci_hcd *)arg;
436 
437 	for (i = 0; i < xhci->num_usb3_ports; i++) {
438 		temp = readl(xhci->usb3_ports[i]);
439 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
440 			/*
441 			 * Compliance Mode Detected. Letting USB Core
442 			 * handle the Warm Reset
443 			 */
444 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
445 					"Compliance mode detected->port %d",
446 					i + 1);
447 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
448 					"Attempting compliance mode recovery");
449 			hcd = xhci->shared_hcd;
450 
451 			if (hcd->state == HC_STATE_SUSPENDED)
452 				usb_hcd_resume_root_hub(hcd);
453 
454 			usb_hcd_poll_rh_status(hcd);
455 		}
456 	}
457 
458 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
459 		mod_timer(&xhci->comp_mode_recovery_timer,
460 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
461 }
462 
463 /*
464  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
465  * that causes ports behind that hardware to enter compliance mode sometimes.
466  * The quirk creates a timer that polls every 2 seconds the link state of
467  * each host controller's port and recovers it by issuing a Warm reset
468  * if Compliance mode is detected, otherwise the port will become "dead" (no
469  * device connections or disconnections will be detected anymore). Becasue no
470  * status event is generated when entering compliance mode (per xhci spec),
471  * this quirk is needed on systems that have the failing hardware installed.
472  */
473 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
474 {
475 	xhci->port_status_u0 = 0;
476 	setup_timer(&xhci->comp_mode_recovery_timer,
477 		    compliance_mode_recovery, (unsigned long)xhci);
478 	xhci->comp_mode_recovery_timer.expires = jiffies +
479 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
480 
481 	set_timer_slack(&xhci->comp_mode_recovery_timer,
482 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
483 	add_timer(&xhci->comp_mode_recovery_timer);
484 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
485 			"Compliance mode recovery timer initialized");
486 }
487 
488 /*
489  * This function identifies the systems that have installed the SN65LVPE502CP
490  * USB3.0 re-driver and that need the Compliance Mode Quirk.
491  * Systems:
492  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
493  */
494 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
495 {
496 	const char *dmi_product_name, *dmi_sys_vendor;
497 
498 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
499 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
500 	if (!dmi_product_name || !dmi_sys_vendor)
501 		return false;
502 
503 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
504 		return false;
505 
506 	if (strstr(dmi_product_name, "Z420") ||
507 			strstr(dmi_product_name, "Z620") ||
508 			strstr(dmi_product_name, "Z820") ||
509 			strstr(dmi_product_name, "Z1 Workstation"))
510 		return true;
511 
512 	return false;
513 }
514 
515 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
516 {
517 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
518 }
519 
520 
521 /*
522  * Initialize memory for HCD and xHC (one-time init).
523  *
524  * Program the PAGESIZE register, initialize the device context array, create
525  * device contexts (?), set up a command ring segment (or two?), create event
526  * ring (one for now).
527  */
528 int xhci_init(struct usb_hcd *hcd)
529 {
530 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
531 	int retval = 0;
532 
533 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
534 	spin_lock_init(&xhci->lock);
535 	if (xhci->hci_version == 0x95 && link_quirk) {
536 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
537 				"QUIRK: Not clearing Link TRB chain bits.");
538 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
539 	} else {
540 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
541 				"xHCI doesn't need link TRB QUIRK");
542 	}
543 	retval = xhci_mem_init(xhci, GFP_KERNEL);
544 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
545 
546 	/* Initializing Compliance Mode Recovery Data If Needed */
547 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
548 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
549 		compliance_mode_recovery_timer_init(xhci);
550 	}
551 
552 	return retval;
553 }
554 
555 /*-------------------------------------------------------------------------*/
556 
557 
558 static int xhci_run_finished(struct xhci_hcd *xhci)
559 {
560 	if (xhci_start(xhci)) {
561 		xhci_halt(xhci);
562 		return -ENODEV;
563 	}
564 	xhci->shared_hcd->state = HC_STATE_RUNNING;
565 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
566 
567 	if (xhci->quirks & XHCI_NEC_HOST)
568 		xhci_ring_cmd_db(xhci);
569 
570 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
571 			"Finished xhci_run for USB3 roothub");
572 	return 0;
573 }
574 
575 /*
576  * Start the HC after it was halted.
577  *
578  * This function is called by the USB core when the HC driver is added.
579  * Its opposite is xhci_stop().
580  *
581  * xhci_init() must be called once before this function can be called.
582  * Reset the HC, enable device slot contexts, program DCBAAP, and
583  * set command ring pointer and event ring pointer.
584  *
585  * Setup MSI-X vectors and enable interrupts.
586  */
587 int xhci_run(struct usb_hcd *hcd)
588 {
589 	u32 temp;
590 	u64 temp_64;
591 	int ret;
592 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
593 
594 	/* Start the xHCI host controller running only after the USB 2.0 roothub
595 	 * is setup.
596 	 */
597 
598 	hcd->uses_new_polling = 1;
599 	if (!usb_hcd_is_primary_hcd(hcd))
600 		return xhci_run_finished(xhci);
601 
602 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
603 
604 	ret = xhci_try_enable_msi(hcd);
605 	if (ret)
606 		return ret;
607 
608 	xhci_dbg(xhci, "Command ring memory map follows:\n");
609 	xhci_debug_ring(xhci, xhci->cmd_ring);
610 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
611 	xhci_dbg_cmd_ptrs(xhci);
612 
613 	xhci_dbg(xhci, "ERST memory map follows:\n");
614 	xhci_dbg_erst(xhci, &xhci->erst);
615 	xhci_dbg(xhci, "Event ring:\n");
616 	xhci_debug_ring(xhci, xhci->event_ring);
617 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
618 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
619 	temp_64 &= ~ERST_PTR_MASK;
620 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
622 
623 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624 			"// Set the interrupt modulation register");
625 	temp = readl(&xhci->ir_set->irq_control);
626 	temp &= ~ER_IRQ_INTERVAL_MASK;
627 	temp |= (u32) 160;
628 	writel(temp, &xhci->ir_set->irq_control);
629 
630 	/* Set the HCD state before we enable the irqs */
631 	temp = readl(&xhci->op_regs->command);
632 	temp |= (CMD_EIE);
633 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634 			"// Enable interrupts, cmd = 0x%x.", temp);
635 	writel(temp, &xhci->op_regs->command);
636 
637 	temp = readl(&xhci->ir_set->irq_pending);
638 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
640 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
641 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
642 	xhci_print_ir_set(xhci, 0);
643 
644 	if (xhci->quirks & XHCI_NEC_HOST) {
645 		struct xhci_command *command;
646 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
647 		if (!command)
648 			return -ENOMEM;
649 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
650 				TRB_TYPE(TRB_NEC_GET_FW));
651 	}
652 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
653 			"Finished xhci_run for USB2 roothub");
654 	return 0;
655 }
656 EXPORT_SYMBOL_GPL(xhci_run);
657 
658 /*
659  * Stop xHCI driver.
660  *
661  * This function is called by the USB core when the HC driver is removed.
662  * Its opposite is xhci_run().
663  *
664  * Disable device contexts, disable IRQs, and quiesce the HC.
665  * Reset the HC, finish any completed transactions, and cleanup memory.
666  */
667 void xhci_stop(struct usb_hcd *hcd)
668 {
669 	u32 temp;
670 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
671 
672 	if (xhci->xhc_state & XHCI_STATE_HALTED)
673 		return;
674 
675 	mutex_lock(&xhci->mutex);
676 	spin_lock_irq(&xhci->lock);
677 	xhci->xhc_state |= XHCI_STATE_HALTED;
678 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
679 
680 	/* Make sure the xHC is halted for a USB3 roothub
681 	 * (xhci_stop() could be called as part of failed init).
682 	 */
683 	xhci_halt(xhci);
684 	xhci_reset(xhci);
685 	spin_unlock_irq(&xhci->lock);
686 
687 	xhci_cleanup_msix(xhci);
688 
689 	/* Deleting Compliance Mode Recovery Timer */
690 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
691 			(!(xhci_all_ports_seen_u0(xhci)))) {
692 		del_timer_sync(&xhci->comp_mode_recovery_timer);
693 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
694 				"%s: compliance mode recovery timer deleted",
695 				__func__);
696 	}
697 
698 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
699 		usb_amd_dev_put();
700 
701 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
702 			"// Disabling event ring interrupts");
703 	temp = readl(&xhci->op_regs->status);
704 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
705 	temp = readl(&xhci->ir_set->irq_pending);
706 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
707 	xhci_print_ir_set(xhci, 0);
708 
709 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
710 	xhci_mem_cleanup(xhci);
711 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
712 			"xhci_stop completed - status = %x",
713 			readl(&xhci->op_regs->status));
714 	mutex_unlock(&xhci->mutex);
715 }
716 
717 /*
718  * Shutdown HC (not bus-specific)
719  *
720  * This is called when the machine is rebooting or halting.  We assume that the
721  * machine will be powered off, and the HC's internal state will be reset.
722  * Don't bother to free memory.
723  *
724  * This will only ever be called with the main usb_hcd (the USB3 roothub).
725  */
726 void xhci_shutdown(struct usb_hcd *hcd)
727 {
728 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
729 
730 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
731 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
732 
733 	spin_lock_irq(&xhci->lock);
734 	xhci_halt(xhci);
735 	/* Workaround for spurious wakeups at shutdown with HSW */
736 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
737 		xhci_reset(xhci);
738 	spin_unlock_irq(&xhci->lock);
739 
740 	xhci_cleanup_msix(xhci);
741 
742 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
743 			"xhci_shutdown completed - status = %x",
744 			readl(&xhci->op_regs->status));
745 
746 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
747 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
748 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
749 }
750 
751 #ifdef CONFIG_PM
752 static void xhci_save_registers(struct xhci_hcd *xhci)
753 {
754 	xhci->s3.command = readl(&xhci->op_regs->command);
755 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
756 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
757 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
758 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
759 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
760 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
761 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
762 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
763 }
764 
765 static void xhci_restore_registers(struct xhci_hcd *xhci)
766 {
767 	writel(xhci->s3.command, &xhci->op_regs->command);
768 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
769 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
770 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
771 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
772 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
773 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
774 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
775 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
776 }
777 
778 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
779 {
780 	u64	val_64;
781 
782 	/* step 2: initialize command ring buffer */
783 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
784 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
785 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
786 				      xhci->cmd_ring->dequeue) &
787 		 (u64) ~CMD_RING_RSVD_BITS) |
788 		xhci->cmd_ring->cycle_state;
789 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790 			"// Setting command ring address to 0x%llx",
791 			(long unsigned long) val_64);
792 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
793 }
794 
795 /*
796  * The whole command ring must be cleared to zero when we suspend the host.
797  *
798  * The host doesn't save the command ring pointer in the suspend well, so we
799  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
800  * aligned, because of the reserved bits in the command ring dequeue pointer
801  * register.  Therefore, we can't just set the dequeue pointer back in the
802  * middle of the ring (TRBs are 16-byte aligned).
803  */
804 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
805 {
806 	struct xhci_ring *ring;
807 	struct xhci_segment *seg;
808 
809 	ring = xhci->cmd_ring;
810 	seg = ring->deq_seg;
811 	do {
812 		memset(seg->trbs, 0,
813 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
814 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
815 			cpu_to_le32(~TRB_CYCLE);
816 		seg = seg->next;
817 	} while (seg != ring->deq_seg);
818 
819 	/* Reset the software enqueue and dequeue pointers */
820 	ring->deq_seg = ring->first_seg;
821 	ring->dequeue = ring->first_seg->trbs;
822 	ring->enq_seg = ring->deq_seg;
823 	ring->enqueue = ring->dequeue;
824 
825 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
826 	/*
827 	 * Ring is now zeroed, so the HW should look for change of ownership
828 	 * when the cycle bit is set to 1.
829 	 */
830 	ring->cycle_state = 1;
831 
832 	/*
833 	 * Reset the hardware dequeue pointer.
834 	 * Yes, this will need to be re-written after resume, but we're paranoid
835 	 * and want to make sure the hardware doesn't access bogus memory
836 	 * because, say, the BIOS or an SMI started the host without changing
837 	 * the command ring pointers.
838 	 */
839 	xhci_set_cmd_ring_deq(xhci);
840 }
841 
842 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
843 {
844 	int port_index;
845 	__le32 __iomem **port_array;
846 	unsigned long flags;
847 	u32 t1, t2;
848 
849 	spin_lock_irqsave(&xhci->lock, flags);
850 
851 	/* disble usb3 ports Wake bits*/
852 	port_index = xhci->num_usb3_ports;
853 	port_array = xhci->usb3_ports;
854 	while (port_index--) {
855 		t1 = readl(port_array[port_index]);
856 		t1 = xhci_port_state_to_neutral(t1);
857 		t2 = t1 & ~PORT_WAKE_BITS;
858 		if (t1 != t2)
859 			writel(t2, port_array[port_index]);
860 	}
861 
862 	/* disble usb2 ports Wake bits*/
863 	port_index = xhci->num_usb2_ports;
864 	port_array = xhci->usb2_ports;
865 	while (port_index--) {
866 		t1 = readl(port_array[port_index]);
867 		t1 = xhci_port_state_to_neutral(t1);
868 		t2 = t1 & ~PORT_WAKE_BITS;
869 		if (t1 != t2)
870 			writel(t2, port_array[port_index]);
871 	}
872 
873 	spin_unlock_irqrestore(&xhci->lock, flags);
874 }
875 
876 /*
877  * Stop HC (not bus-specific)
878  *
879  * This is called when the machine transition into S3/S4 mode.
880  *
881  */
882 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
883 {
884 	int			rc = 0;
885 	unsigned int		delay = XHCI_MAX_HALT_USEC;
886 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
887 	u32			command;
888 
889 	if (!hcd->state)
890 		return 0;
891 
892 	if (hcd->state != HC_STATE_SUSPENDED ||
893 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
894 		return -EINVAL;
895 
896 	/* Clear root port wake on bits if wakeup not allowed. */
897 	if (!do_wakeup)
898 		xhci_disable_port_wake_on_bits(xhci);
899 
900 	/* Don't poll the roothubs on bus suspend. */
901 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
902 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
903 	del_timer_sync(&hcd->rh_timer);
904 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
905 	del_timer_sync(&xhci->shared_hcd->rh_timer);
906 
907 	spin_lock_irq(&xhci->lock);
908 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
909 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
910 	/* step 1: stop endpoint */
911 	/* skipped assuming that port suspend has done */
912 
913 	/* step 2: clear Run/Stop bit */
914 	command = readl(&xhci->op_regs->command);
915 	command &= ~CMD_RUN;
916 	writel(command, &xhci->op_regs->command);
917 
918 	/* Some chips from Fresco Logic need an extraordinary delay */
919 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
920 
921 	if (xhci_handshake(&xhci->op_regs->status,
922 		      STS_HALT, STS_HALT, delay)) {
923 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
924 		spin_unlock_irq(&xhci->lock);
925 		return -ETIMEDOUT;
926 	}
927 	xhci_clear_command_ring(xhci);
928 
929 	/* step 3: save registers */
930 	xhci_save_registers(xhci);
931 
932 	/* step 4: set CSS flag */
933 	command = readl(&xhci->op_regs->command);
934 	command |= CMD_CSS;
935 	writel(command, &xhci->op_regs->command);
936 	if (xhci_handshake(&xhci->op_regs->status,
937 				STS_SAVE, 0, 10 * 1000)) {
938 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
939 		spin_unlock_irq(&xhci->lock);
940 		return -ETIMEDOUT;
941 	}
942 	spin_unlock_irq(&xhci->lock);
943 
944 	/*
945 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
946 	 * is about to be suspended.
947 	 */
948 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
949 			(!(xhci_all_ports_seen_u0(xhci)))) {
950 		del_timer_sync(&xhci->comp_mode_recovery_timer);
951 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
952 				"%s: compliance mode recovery timer deleted",
953 				__func__);
954 	}
955 
956 	/* step 5: remove core well power */
957 	/* synchronize irq when using MSI-X */
958 	xhci_msix_sync_irqs(xhci);
959 
960 	return rc;
961 }
962 EXPORT_SYMBOL_GPL(xhci_suspend);
963 
964 /*
965  * start xHC (not bus-specific)
966  *
967  * This is called when the machine transition from S3/S4 mode.
968  *
969  */
970 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
971 {
972 	u32			command, temp = 0, status;
973 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
974 	struct usb_hcd		*secondary_hcd;
975 	int			retval = 0;
976 	bool			comp_timer_running = false;
977 
978 	if (!hcd->state)
979 		return 0;
980 
981 	/* Wait a bit if either of the roothubs need to settle from the
982 	 * transition into bus suspend.
983 	 */
984 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
985 			time_before(jiffies,
986 				xhci->bus_state[1].next_statechange))
987 		msleep(100);
988 
989 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
990 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
991 
992 	spin_lock_irq(&xhci->lock);
993 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
994 		hibernated = true;
995 
996 	if (!hibernated) {
997 		/* step 1: restore register */
998 		xhci_restore_registers(xhci);
999 		/* step 2: initialize command ring buffer */
1000 		xhci_set_cmd_ring_deq(xhci);
1001 		/* step 3: restore state and start state*/
1002 		/* step 3: set CRS flag */
1003 		command = readl(&xhci->op_regs->command);
1004 		command |= CMD_CRS;
1005 		writel(command, &xhci->op_regs->command);
1006 		if (xhci_handshake(&xhci->op_regs->status,
1007 			      STS_RESTORE, 0, 10 * 1000)) {
1008 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1009 			spin_unlock_irq(&xhci->lock);
1010 			return -ETIMEDOUT;
1011 		}
1012 		temp = readl(&xhci->op_regs->status);
1013 	}
1014 
1015 	/* If restore operation fails, re-initialize the HC during resume */
1016 	if ((temp & STS_SRE) || hibernated) {
1017 
1018 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1019 				!(xhci_all_ports_seen_u0(xhci))) {
1020 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1021 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1022 				"Compliance Mode Recovery Timer deleted!");
1023 		}
1024 
1025 		/* Let the USB core know _both_ roothubs lost power. */
1026 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1027 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1028 
1029 		xhci_dbg(xhci, "Stop HCD\n");
1030 		xhci_halt(xhci);
1031 		xhci_reset(xhci);
1032 		spin_unlock_irq(&xhci->lock);
1033 		xhci_cleanup_msix(xhci);
1034 
1035 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1036 		temp = readl(&xhci->op_regs->status);
1037 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1038 		temp = readl(&xhci->ir_set->irq_pending);
1039 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1040 		xhci_print_ir_set(xhci, 0);
1041 
1042 		xhci_dbg(xhci, "cleaning up memory\n");
1043 		xhci_mem_cleanup(xhci);
1044 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1045 			    readl(&xhci->op_regs->status));
1046 
1047 		/* USB core calls the PCI reinit and start functions twice:
1048 		 * first with the primary HCD, and then with the secondary HCD.
1049 		 * If we don't do the same, the host will never be started.
1050 		 */
1051 		if (!usb_hcd_is_primary_hcd(hcd))
1052 			secondary_hcd = hcd;
1053 		else
1054 			secondary_hcd = xhci->shared_hcd;
1055 
1056 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1057 		retval = xhci_init(hcd->primary_hcd);
1058 		if (retval)
1059 			return retval;
1060 		comp_timer_running = true;
1061 
1062 		xhci_dbg(xhci, "Start the primary HCD\n");
1063 		retval = xhci_run(hcd->primary_hcd);
1064 		if (!retval) {
1065 			xhci_dbg(xhci, "Start the secondary HCD\n");
1066 			retval = xhci_run(secondary_hcd);
1067 		}
1068 		hcd->state = HC_STATE_SUSPENDED;
1069 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1070 		goto done;
1071 	}
1072 
1073 	/* step 4: set Run/Stop bit */
1074 	command = readl(&xhci->op_regs->command);
1075 	command |= CMD_RUN;
1076 	writel(command, &xhci->op_regs->command);
1077 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1078 		  0, 250 * 1000);
1079 
1080 	/* step 5: walk topology and initialize portsc,
1081 	 * portpmsc and portli
1082 	 */
1083 	/* this is done in bus_resume */
1084 
1085 	/* step 6: restart each of the previously
1086 	 * Running endpoints by ringing their doorbells
1087 	 */
1088 
1089 	spin_unlock_irq(&xhci->lock);
1090 
1091  done:
1092 	if (retval == 0) {
1093 		/* Resume root hubs only when have pending events. */
1094 		status = readl(&xhci->op_regs->status);
1095 		if (status & STS_EINT) {
1096 			usb_hcd_resume_root_hub(hcd);
1097 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1098 		}
1099 	}
1100 
1101 	/*
1102 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1103 	 * be re-initialized Always after a system resume. Ports are subject
1104 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1105 	 * ports have entered previously to U0 before system's suspension.
1106 	 */
1107 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1108 		compliance_mode_recovery_timer_init(xhci);
1109 
1110 	/* Re-enable port polling. */
1111 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1112 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1113 	usb_hcd_poll_rh_status(hcd);
1114 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1115 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1116 
1117 	return retval;
1118 }
1119 EXPORT_SYMBOL_GPL(xhci_resume);
1120 #endif	/* CONFIG_PM */
1121 
1122 /*-------------------------------------------------------------------------*/
1123 
1124 /**
1125  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1126  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1127  * value to right shift 1 for the bitmask.
1128  *
1129  * Index  = (epnum * 2) + direction - 1,
1130  * where direction = 0 for OUT, 1 for IN.
1131  * For control endpoints, the IN index is used (OUT index is unused), so
1132  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1133  */
1134 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1135 {
1136 	unsigned int index;
1137 	if (usb_endpoint_xfer_control(desc))
1138 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1139 	else
1140 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1141 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1142 	return index;
1143 }
1144 
1145 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1146  * address from the XHCI endpoint index.
1147  */
1148 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1149 {
1150 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1151 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1152 	return direction | number;
1153 }
1154 
1155 /* Find the flag for this endpoint (for use in the control context).  Use the
1156  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1157  * bit 1, etc.
1158  */
1159 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1160 {
1161 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1162 }
1163 
1164 /* Find the flag for this endpoint (for use in the control context).  Use the
1165  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1166  * bit 1, etc.
1167  */
1168 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1169 {
1170 	return 1 << (ep_index + 1);
1171 }
1172 
1173 /* Compute the last valid endpoint context index.  Basically, this is the
1174  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1175  * we find the most significant bit set in the added contexts flags.
1176  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1177  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1178  */
1179 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1180 {
1181 	return fls(added_ctxs) - 1;
1182 }
1183 
1184 /* Returns 1 if the arguments are OK;
1185  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1186  */
1187 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1188 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1189 		const char *func) {
1190 	struct xhci_hcd	*xhci;
1191 	struct xhci_virt_device	*virt_dev;
1192 
1193 	if (!hcd || (check_ep && !ep) || !udev) {
1194 		pr_debug("xHCI %s called with invalid args\n", func);
1195 		return -EINVAL;
1196 	}
1197 	if (!udev->parent) {
1198 		pr_debug("xHCI %s called for root hub\n", func);
1199 		return 0;
1200 	}
1201 
1202 	xhci = hcd_to_xhci(hcd);
1203 	if (check_virt_dev) {
1204 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1205 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1206 					func);
1207 			return -EINVAL;
1208 		}
1209 
1210 		virt_dev = xhci->devs[udev->slot_id];
1211 		if (virt_dev->udev != udev) {
1212 			xhci_dbg(xhci, "xHCI %s called with udev and "
1213 					  "virt_dev does not match\n", func);
1214 			return -EINVAL;
1215 		}
1216 	}
1217 
1218 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1219 		return -ENODEV;
1220 
1221 	return 1;
1222 }
1223 
1224 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1225 		struct usb_device *udev, struct xhci_command *command,
1226 		bool ctx_change, bool must_succeed);
1227 
1228 /*
1229  * Full speed devices may have a max packet size greater than 8 bytes, but the
1230  * USB core doesn't know that until it reads the first 8 bytes of the
1231  * descriptor.  If the usb_device's max packet size changes after that point,
1232  * we need to issue an evaluate context command and wait on it.
1233  */
1234 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1235 		unsigned int ep_index, struct urb *urb)
1236 {
1237 	struct xhci_container_ctx *out_ctx;
1238 	struct xhci_input_control_ctx *ctrl_ctx;
1239 	struct xhci_ep_ctx *ep_ctx;
1240 	struct xhci_command *command;
1241 	int max_packet_size;
1242 	int hw_max_packet_size;
1243 	int ret = 0;
1244 
1245 	out_ctx = xhci->devs[slot_id]->out_ctx;
1246 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1247 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1248 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1249 	if (hw_max_packet_size != max_packet_size) {
1250 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1251 				"Max Packet Size for ep 0 changed.");
1252 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1253 				"Max packet size in usb_device = %d",
1254 				max_packet_size);
1255 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1256 				"Max packet size in xHCI HW = %d",
1257 				hw_max_packet_size);
1258 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1259 				"Issuing evaluate context command.");
1260 
1261 		/* Set up the input context flags for the command */
1262 		/* FIXME: This won't work if a non-default control endpoint
1263 		 * changes max packet sizes.
1264 		 */
1265 
1266 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1267 		if (!command)
1268 			return -ENOMEM;
1269 
1270 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1271 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1272 		if (!ctrl_ctx) {
1273 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1274 					__func__);
1275 			ret = -ENOMEM;
1276 			goto command_cleanup;
1277 		}
1278 		/* Set up the modified control endpoint 0 */
1279 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1280 				xhci->devs[slot_id]->out_ctx, ep_index);
1281 
1282 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1283 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1284 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1285 
1286 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1287 		ctrl_ctx->drop_flags = 0;
1288 
1289 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1290 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1291 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1292 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1293 
1294 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1295 				true, false);
1296 
1297 		/* Clean up the input context for later use by bandwidth
1298 		 * functions.
1299 		 */
1300 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1301 command_cleanup:
1302 		kfree(command->completion);
1303 		kfree(command);
1304 	}
1305 	return ret;
1306 }
1307 
1308 /*
1309  * non-error returns are a promise to giveback() the urb later
1310  * we drop ownership so next owner (or urb unlink) can get it
1311  */
1312 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1313 {
1314 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1315 	struct xhci_td *buffer;
1316 	unsigned long flags;
1317 	int ret = 0;
1318 	unsigned int slot_id, ep_index;
1319 	struct urb_priv	*urb_priv;
1320 	int size, i;
1321 
1322 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1323 					true, true, __func__) <= 0)
1324 		return -EINVAL;
1325 
1326 	slot_id = urb->dev->slot_id;
1327 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1328 
1329 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1330 		if (!in_interrupt())
1331 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1332 		ret = -ESHUTDOWN;
1333 		goto exit;
1334 	}
1335 
1336 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1337 		size = urb->number_of_packets;
1338 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1339 	    urb->transfer_buffer_length > 0 &&
1340 	    urb->transfer_flags & URB_ZERO_PACKET &&
1341 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1342 		size = 2;
1343 	else
1344 		size = 1;
1345 
1346 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1347 				  size * sizeof(struct xhci_td *), mem_flags);
1348 	if (!urb_priv)
1349 		return -ENOMEM;
1350 
1351 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1352 	if (!buffer) {
1353 		kfree(urb_priv);
1354 		return -ENOMEM;
1355 	}
1356 
1357 	for (i = 0; i < size; i++) {
1358 		urb_priv->td[i] = buffer;
1359 		buffer++;
1360 	}
1361 
1362 	urb_priv->length = size;
1363 	urb_priv->td_cnt = 0;
1364 	urb->hcpriv = urb_priv;
1365 
1366 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1367 		/* Check to see if the max packet size for the default control
1368 		 * endpoint changed during FS device enumeration
1369 		 */
1370 		if (urb->dev->speed == USB_SPEED_FULL) {
1371 			ret = xhci_check_maxpacket(xhci, slot_id,
1372 					ep_index, urb);
1373 			if (ret < 0) {
1374 				xhci_urb_free_priv(urb_priv);
1375 				urb->hcpriv = NULL;
1376 				return ret;
1377 			}
1378 		}
1379 
1380 		/* We have a spinlock and interrupts disabled, so we must pass
1381 		 * atomic context to this function, which may allocate memory.
1382 		 */
1383 		spin_lock_irqsave(&xhci->lock, flags);
1384 		if (xhci->xhc_state & XHCI_STATE_DYING)
1385 			goto dying;
1386 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1387 				slot_id, ep_index);
1388 		if (ret)
1389 			goto free_priv;
1390 		spin_unlock_irqrestore(&xhci->lock, flags);
1391 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1392 		spin_lock_irqsave(&xhci->lock, flags);
1393 		if (xhci->xhc_state & XHCI_STATE_DYING)
1394 			goto dying;
1395 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1396 				EP_GETTING_STREAMS) {
1397 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1398 					"is transitioning to using streams.\n");
1399 			ret = -EINVAL;
1400 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1401 				EP_GETTING_NO_STREAMS) {
1402 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1403 					"is transitioning to "
1404 					"not having streams.\n");
1405 			ret = -EINVAL;
1406 		} else {
1407 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1408 					slot_id, ep_index);
1409 		}
1410 		if (ret)
1411 			goto free_priv;
1412 		spin_unlock_irqrestore(&xhci->lock, flags);
1413 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1414 		spin_lock_irqsave(&xhci->lock, flags);
1415 		if (xhci->xhc_state & XHCI_STATE_DYING)
1416 			goto dying;
1417 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1418 				slot_id, ep_index);
1419 		if (ret)
1420 			goto free_priv;
1421 		spin_unlock_irqrestore(&xhci->lock, flags);
1422 	} else {
1423 		spin_lock_irqsave(&xhci->lock, flags);
1424 		if (xhci->xhc_state & XHCI_STATE_DYING)
1425 			goto dying;
1426 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1427 				slot_id, ep_index);
1428 		if (ret)
1429 			goto free_priv;
1430 		spin_unlock_irqrestore(&xhci->lock, flags);
1431 	}
1432 exit:
1433 	return ret;
1434 dying:
1435 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1436 			"non-responsive xHCI host.\n",
1437 			urb->ep->desc.bEndpointAddress, urb);
1438 	ret = -ESHUTDOWN;
1439 free_priv:
1440 	xhci_urb_free_priv(urb_priv);
1441 	urb->hcpriv = NULL;
1442 	spin_unlock_irqrestore(&xhci->lock, flags);
1443 	return ret;
1444 }
1445 
1446 /* Get the right ring for the given URB.
1447  * If the endpoint supports streams, boundary check the URB's stream ID.
1448  * If the endpoint doesn't support streams, return the singular endpoint ring.
1449  */
1450 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1451 		struct urb *urb)
1452 {
1453 	unsigned int slot_id;
1454 	unsigned int ep_index;
1455 	unsigned int stream_id;
1456 	struct xhci_virt_ep *ep;
1457 
1458 	slot_id = urb->dev->slot_id;
1459 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1460 	stream_id = urb->stream_id;
1461 	ep = &xhci->devs[slot_id]->eps[ep_index];
1462 	/* Common case: no streams */
1463 	if (!(ep->ep_state & EP_HAS_STREAMS))
1464 		return ep->ring;
1465 
1466 	if (stream_id == 0) {
1467 		xhci_warn(xhci,
1468 				"WARN: Slot ID %u, ep index %u has streams, "
1469 				"but URB has no stream ID.\n",
1470 				slot_id, ep_index);
1471 		return NULL;
1472 	}
1473 
1474 	if (stream_id < ep->stream_info->num_streams)
1475 		return ep->stream_info->stream_rings[stream_id];
1476 
1477 	xhci_warn(xhci,
1478 			"WARN: Slot ID %u, ep index %u has "
1479 			"stream IDs 1 to %u allocated, "
1480 			"but stream ID %u is requested.\n",
1481 			slot_id, ep_index,
1482 			ep->stream_info->num_streams - 1,
1483 			stream_id);
1484 	return NULL;
1485 }
1486 
1487 /*
1488  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1489  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1490  * should pick up where it left off in the TD, unless a Set Transfer Ring
1491  * Dequeue Pointer is issued.
1492  *
1493  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1494  * the ring.  Since the ring is a contiguous structure, they can't be physically
1495  * removed.  Instead, there are two options:
1496  *
1497  *  1) If the HC is in the middle of processing the URB to be canceled, we
1498  *     simply move the ring's dequeue pointer past those TRBs using the Set
1499  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1500  *     when drivers timeout on the last submitted URB and attempt to cancel.
1501  *
1502  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1503  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1504  *     HC will need to invalidate the any TRBs it has cached after the stop
1505  *     endpoint command, as noted in the xHCI 0.95 errata.
1506  *
1507  *  3) The TD may have completed by the time the Stop Endpoint Command
1508  *     completes, so software needs to handle that case too.
1509  *
1510  * This function should protect against the TD enqueueing code ringing the
1511  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1512  * It also needs to account for multiple cancellations on happening at the same
1513  * time for the same endpoint.
1514  *
1515  * Note that this function can be called in any context, or so says
1516  * usb_hcd_unlink_urb()
1517  */
1518 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1519 {
1520 	unsigned long flags;
1521 	int ret, i;
1522 	u32 temp;
1523 	struct xhci_hcd *xhci;
1524 	struct urb_priv	*urb_priv;
1525 	struct xhci_td *td;
1526 	unsigned int ep_index;
1527 	struct xhci_ring *ep_ring;
1528 	struct xhci_virt_ep *ep;
1529 	struct xhci_command *command;
1530 
1531 	xhci = hcd_to_xhci(hcd);
1532 	spin_lock_irqsave(&xhci->lock, flags);
1533 	/* Make sure the URB hasn't completed or been unlinked already */
1534 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1535 	if (ret || !urb->hcpriv)
1536 		goto done;
1537 	temp = readl(&xhci->op_regs->status);
1538 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1539 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1540 				"HW died, freeing TD.");
1541 		urb_priv = urb->hcpriv;
1542 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1543 			td = urb_priv->td[i];
1544 			if (!list_empty(&td->td_list))
1545 				list_del_init(&td->td_list);
1546 			if (!list_empty(&td->cancelled_td_list))
1547 				list_del_init(&td->cancelled_td_list);
1548 		}
1549 
1550 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1551 		spin_unlock_irqrestore(&xhci->lock, flags);
1552 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1553 		xhci_urb_free_priv(urb_priv);
1554 		return ret;
1555 	}
1556 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1557 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1558 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1559 				"Ep 0x%x: URB %p to be canceled on "
1560 				"non-responsive xHCI host.",
1561 				urb->ep->desc.bEndpointAddress, urb);
1562 		/* Let the stop endpoint command watchdog timer (which set this
1563 		 * state) finish cleaning up the endpoint TD lists.  We must
1564 		 * have caught it in the middle of dropping a lock and giving
1565 		 * back an URB.
1566 		 */
1567 		goto done;
1568 	}
1569 
1570 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1571 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1572 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1573 	if (!ep_ring) {
1574 		ret = -EINVAL;
1575 		goto done;
1576 	}
1577 
1578 	urb_priv = urb->hcpriv;
1579 	i = urb_priv->td_cnt;
1580 	if (i < urb_priv->length)
1581 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1582 				"Cancel URB %p, dev %s, ep 0x%x, "
1583 				"starting at offset 0x%llx",
1584 				urb, urb->dev->devpath,
1585 				urb->ep->desc.bEndpointAddress,
1586 				(unsigned long long) xhci_trb_virt_to_dma(
1587 					urb_priv->td[i]->start_seg,
1588 					urb_priv->td[i]->first_trb));
1589 
1590 	for (; i < urb_priv->length; i++) {
1591 		td = urb_priv->td[i];
1592 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1593 	}
1594 
1595 	/* Queue a stop endpoint command, but only if this is
1596 	 * the first cancellation to be handled.
1597 	 */
1598 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1599 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1600 		if (!command) {
1601 			ret = -ENOMEM;
1602 			goto done;
1603 		}
1604 		ep->ep_state |= EP_HALT_PENDING;
1605 		ep->stop_cmds_pending++;
1606 		ep->stop_cmd_timer.expires = jiffies +
1607 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1608 		add_timer(&ep->stop_cmd_timer);
1609 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1610 					 ep_index, 0);
1611 		xhci_ring_cmd_db(xhci);
1612 	}
1613 done:
1614 	spin_unlock_irqrestore(&xhci->lock, flags);
1615 	return ret;
1616 }
1617 
1618 /* Drop an endpoint from a new bandwidth configuration for this device.
1619  * Only one call to this function is allowed per endpoint before
1620  * check_bandwidth() or reset_bandwidth() must be called.
1621  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1622  * add the endpoint to the schedule with possibly new parameters denoted by a
1623  * different endpoint descriptor in usb_host_endpoint.
1624  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1625  * not allowed.
1626  *
1627  * The USB core will not allow URBs to be queued to an endpoint that is being
1628  * disabled, so there's no need for mutual exclusion to protect
1629  * the xhci->devs[slot_id] structure.
1630  */
1631 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1632 		struct usb_host_endpoint *ep)
1633 {
1634 	struct xhci_hcd *xhci;
1635 	struct xhci_container_ctx *in_ctx, *out_ctx;
1636 	struct xhci_input_control_ctx *ctrl_ctx;
1637 	unsigned int ep_index;
1638 	struct xhci_ep_ctx *ep_ctx;
1639 	u32 drop_flag;
1640 	u32 new_add_flags, new_drop_flags;
1641 	int ret;
1642 
1643 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1644 	if (ret <= 0)
1645 		return ret;
1646 	xhci = hcd_to_xhci(hcd);
1647 	if (xhci->xhc_state & XHCI_STATE_DYING)
1648 		return -ENODEV;
1649 
1650 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1651 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1652 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1653 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1654 				__func__, drop_flag);
1655 		return 0;
1656 	}
1657 
1658 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1659 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1660 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1661 	if (!ctrl_ctx) {
1662 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1663 				__func__);
1664 		return 0;
1665 	}
1666 
1667 	ep_index = xhci_get_endpoint_index(&ep->desc);
1668 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1669 	/* If the HC already knows the endpoint is disabled,
1670 	 * or the HCD has noted it is disabled, ignore this request
1671 	 */
1672 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1673 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1674 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1675 	    xhci_get_endpoint_flag(&ep->desc)) {
1676 		/* Do not warn when called after a usb_device_reset */
1677 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1678 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1679 				  __func__, ep);
1680 		return 0;
1681 	}
1682 
1683 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1684 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1685 
1686 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1687 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1688 
1689 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1690 
1691 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1692 			(unsigned int) ep->desc.bEndpointAddress,
1693 			udev->slot_id,
1694 			(unsigned int) new_drop_flags,
1695 			(unsigned int) new_add_flags);
1696 	return 0;
1697 }
1698 
1699 /* Add an endpoint to a new possible bandwidth configuration for this device.
1700  * Only one call to this function is allowed per endpoint before
1701  * check_bandwidth() or reset_bandwidth() must be called.
1702  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1703  * add the endpoint to the schedule with possibly new parameters denoted by a
1704  * different endpoint descriptor in usb_host_endpoint.
1705  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1706  * not allowed.
1707  *
1708  * The USB core will not allow URBs to be queued to an endpoint until the
1709  * configuration or alt setting is installed in the device, so there's no need
1710  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1711  */
1712 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1713 		struct usb_host_endpoint *ep)
1714 {
1715 	struct xhci_hcd *xhci;
1716 	struct xhci_container_ctx *in_ctx;
1717 	unsigned int ep_index;
1718 	struct xhci_input_control_ctx *ctrl_ctx;
1719 	u32 added_ctxs;
1720 	u32 new_add_flags, new_drop_flags;
1721 	struct xhci_virt_device *virt_dev;
1722 	int ret = 0;
1723 
1724 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1725 	if (ret <= 0) {
1726 		/* So we won't queue a reset ep command for a root hub */
1727 		ep->hcpriv = NULL;
1728 		return ret;
1729 	}
1730 	xhci = hcd_to_xhci(hcd);
1731 	if (xhci->xhc_state & XHCI_STATE_DYING)
1732 		return -ENODEV;
1733 
1734 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1735 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1736 		/* FIXME when we have to issue an evaluate endpoint command to
1737 		 * deal with ep0 max packet size changing once we get the
1738 		 * descriptors
1739 		 */
1740 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1741 				__func__, added_ctxs);
1742 		return 0;
1743 	}
1744 
1745 	virt_dev = xhci->devs[udev->slot_id];
1746 	in_ctx = virt_dev->in_ctx;
1747 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1748 	if (!ctrl_ctx) {
1749 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1750 				__func__);
1751 		return 0;
1752 	}
1753 
1754 	ep_index = xhci_get_endpoint_index(&ep->desc);
1755 	/* If this endpoint is already in use, and the upper layers are trying
1756 	 * to add it again without dropping it, reject the addition.
1757 	 */
1758 	if (virt_dev->eps[ep_index].ring &&
1759 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1760 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1761 				"without dropping it.\n",
1762 				(unsigned int) ep->desc.bEndpointAddress);
1763 		return -EINVAL;
1764 	}
1765 
1766 	/* If the HCD has already noted the endpoint is enabled,
1767 	 * ignore this request.
1768 	 */
1769 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1770 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1771 				__func__, ep);
1772 		return 0;
1773 	}
1774 
1775 	/*
1776 	 * Configuration and alternate setting changes must be done in
1777 	 * process context, not interrupt context (or so documenation
1778 	 * for usb_set_interface() and usb_set_configuration() claim).
1779 	 */
1780 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1781 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1782 				__func__, ep->desc.bEndpointAddress);
1783 		return -ENOMEM;
1784 	}
1785 
1786 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1787 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1788 
1789 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1790 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1791 	 * this re-adds a new state for the endpoint from the new endpoint
1792 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1793 	 * drop flags alone.
1794 	 */
1795 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1796 
1797 	/* Store the usb_device pointer for later use */
1798 	ep->hcpriv = udev;
1799 
1800 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1801 			(unsigned int) ep->desc.bEndpointAddress,
1802 			udev->slot_id,
1803 			(unsigned int) new_drop_flags,
1804 			(unsigned int) new_add_flags);
1805 	return 0;
1806 }
1807 
1808 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1809 {
1810 	struct xhci_input_control_ctx *ctrl_ctx;
1811 	struct xhci_ep_ctx *ep_ctx;
1812 	struct xhci_slot_ctx *slot_ctx;
1813 	int i;
1814 
1815 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1816 	if (!ctrl_ctx) {
1817 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1818 				__func__);
1819 		return;
1820 	}
1821 
1822 	/* When a device's add flag and drop flag are zero, any subsequent
1823 	 * configure endpoint command will leave that endpoint's state
1824 	 * untouched.  Make sure we don't leave any old state in the input
1825 	 * endpoint contexts.
1826 	 */
1827 	ctrl_ctx->drop_flags = 0;
1828 	ctrl_ctx->add_flags = 0;
1829 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1830 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1831 	/* Endpoint 0 is always valid */
1832 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1833 	for (i = 1; i < 31; ++i) {
1834 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1835 		ep_ctx->ep_info = 0;
1836 		ep_ctx->ep_info2 = 0;
1837 		ep_ctx->deq = 0;
1838 		ep_ctx->tx_info = 0;
1839 	}
1840 }
1841 
1842 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1843 		struct usb_device *udev, u32 *cmd_status)
1844 {
1845 	int ret;
1846 
1847 	switch (*cmd_status) {
1848 	case COMP_CMD_ABORT:
1849 	case COMP_CMD_STOP:
1850 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1851 		ret = -ETIME;
1852 		break;
1853 	case COMP_ENOMEM:
1854 		dev_warn(&udev->dev,
1855 			 "Not enough host controller resources for new device state.\n");
1856 		ret = -ENOMEM;
1857 		/* FIXME: can we allocate more resources for the HC? */
1858 		break;
1859 	case COMP_BW_ERR:
1860 	case COMP_2ND_BW_ERR:
1861 		dev_warn(&udev->dev,
1862 			 "Not enough bandwidth for new device state.\n");
1863 		ret = -ENOSPC;
1864 		/* FIXME: can we go back to the old state? */
1865 		break;
1866 	case COMP_TRB_ERR:
1867 		/* the HCD set up something wrong */
1868 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1869 				"add flag = 1, "
1870 				"and endpoint is not disabled.\n");
1871 		ret = -EINVAL;
1872 		break;
1873 	case COMP_DEV_ERR:
1874 		dev_warn(&udev->dev,
1875 			 "ERROR: Incompatible device for endpoint configure command.\n");
1876 		ret = -ENODEV;
1877 		break;
1878 	case COMP_SUCCESS:
1879 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1880 				"Successful Endpoint Configure command");
1881 		ret = 0;
1882 		break;
1883 	default:
1884 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1885 				*cmd_status);
1886 		ret = -EINVAL;
1887 		break;
1888 	}
1889 	return ret;
1890 }
1891 
1892 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1893 		struct usb_device *udev, u32 *cmd_status)
1894 {
1895 	int ret;
1896 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1897 
1898 	switch (*cmd_status) {
1899 	case COMP_CMD_ABORT:
1900 	case COMP_CMD_STOP:
1901 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1902 		ret = -ETIME;
1903 		break;
1904 	case COMP_EINVAL:
1905 		dev_warn(&udev->dev,
1906 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1907 		ret = -EINVAL;
1908 		break;
1909 	case COMP_EBADSLT:
1910 		dev_warn(&udev->dev,
1911 			"WARN: slot not enabled for evaluate context command.\n");
1912 		ret = -EINVAL;
1913 		break;
1914 	case COMP_CTX_STATE:
1915 		dev_warn(&udev->dev,
1916 			"WARN: invalid context state for evaluate context command.\n");
1917 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1918 		ret = -EINVAL;
1919 		break;
1920 	case COMP_DEV_ERR:
1921 		dev_warn(&udev->dev,
1922 			"ERROR: Incompatible device for evaluate context command.\n");
1923 		ret = -ENODEV;
1924 		break;
1925 	case COMP_MEL_ERR:
1926 		/* Max Exit Latency too large error */
1927 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1928 		ret = -EINVAL;
1929 		break;
1930 	case COMP_SUCCESS:
1931 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1932 				"Successful evaluate context command");
1933 		ret = 0;
1934 		break;
1935 	default:
1936 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1937 			*cmd_status);
1938 		ret = -EINVAL;
1939 		break;
1940 	}
1941 	return ret;
1942 }
1943 
1944 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1945 		struct xhci_input_control_ctx *ctrl_ctx)
1946 {
1947 	u32 valid_add_flags;
1948 	u32 valid_drop_flags;
1949 
1950 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1951 	 * (bit 1).  The default control endpoint is added during the Address
1952 	 * Device command and is never removed until the slot is disabled.
1953 	 */
1954 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1955 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1956 
1957 	/* Use hweight32 to count the number of ones in the add flags, or
1958 	 * number of endpoints added.  Don't count endpoints that are changed
1959 	 * (both added and dropped).
1960 	 */
1961 	return hweight32(valid_add_flags) -
1962 		hweight32(valid_add_flags & valid_drop_flags);
1963 }
1964 
1965 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1966 		struct xhci_input_control_ctx *ctrl_ctx)
1967 {
1968 	u32 valid_add_flags;
1969 	u32 valid_drop_flags;
1970 
1971 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1972 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1973 
1974 	return hweight32(valid_drop_flags) -
1975 		hweight32(valid_add_flags & valid_drop_flags);
1976 }
1977 
1978 /*
1979  * We need to reserve the new number of endpoints before the configure endpoint
1980  * command completes.  We can't subtract the dropped endpoints from the number
1981  * of active endpoints until the command completes because we can oversubscribe
1982  * the host in this case:
1983  *
1984  *  - the first configure endpoint command drops more endpoints than it adds
1985  *  - a second configure endpoint command that adds more endpoints is queued
1986  *  - the first configure endpoint command fails, so the config is unchanged
1987  *  - the second command may succeed, even though there isn't enough resources
1988  *
1989  * Must be called with xhci->lock held.
1990  */
1991 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1992 		struct xhci_input_control_ctx *ctrl_ctx)
1993 {
1994 	u32 added_eps;
1995 
1996 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1997 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1998 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1999 				"Not enough ep ctxs: "
2000 				"%u active, need to add %u, limit is %u.",
2001 				xhci->num_active_eps, added_eps,
2002 				xhci->limit_active_eps);
2003 		return -ENOMEM;
2004 	}
2005 	xhci->num_active_eps += added_eps;
2006 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2007 			"Adding %u ep ctxs, %u now active.", added_eps,
2008 			xhci->num_active_eps);
2009 	return 0;
2010 }
2011 
2012 /*
2013  * The configure endpoint was failed by the xHC for some other reason, so we
2014  * need to revert the resources that failed configuration would have used.
2015  *
2016  * Must be called with xhci->lock held.
2017  */
2018 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2019 		struct xhci_input_control_ctx *ctrl_ctx)
2020 {
2021 	u32 num_failed_eps;
2022 
2023 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2024 	xhci->num_active_eps -= num_failed_eps;
2025 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2026 			"Removing %u failed ep ctxs, %u now active.",
2027 			num_failed_eps,
2028 			xhci->num_active_eps);
2029 }
2030 
2031 /*
2032  * Now that the command has completed, clean up the active endpoint count by
2033  * subtracting out the endpoints that were dropped (but not changed).
2034  *
2035  * Must be called with xhci->lock held.
2036  */
2037 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2038 		struct xhci_input_control_ctx *ctrl_ctx)
2039 {
2040 	u32 num_dropped_eps;
2041 
2042 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2043 	xhci->num_active_eps -= num_dropped_eps;
2044 	if (num_dropped_eps)
2045 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2046 				"Removing %u dropped ep ctxs, %u now active.",
2047 				num_dropped_eps,
2048 				xhci->num_active_eps);
2049 }
2050 
2051 static unsigned int xhci_get_block_size(struct usb_device *udev)
2052 {
2053 	switch (udev->speed) {
2054 	case USB_SPEED_LOW:
2055 	case USB_SPEED_FULL:
2056 		return FS_BLOCK;
2057 	case USB_SPEED_HIGH:
2058 		return HS_BLOCK;
2059 	case USB_SPEED_SUPER:
2060 		return SS_BLOCK;
2061 	case USB_SPEED_UNKNOWN:
2062 	case USB_SPEED_WIRELESS:
2063 	default:
2064 		/* Should never happen */
2065 		return 1;
2066 	}
2067 }
2068 
2069 static unsigned int
2070 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2071 {
2072 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2073 		return LS_OVERHEAD;
2074 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2075 		return FS_OVERHEAD;
2076 	return HS_OVERHEAD;
2077 }
2078 
2079 /* If we are changing a LS/FS device under a HS hub,
2080  * make sure (if we are activating a new TT) that the HS bus has enough
2081  * bandwidth for this new TT.
2082  */
2083 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2084 		struct xhci_virt_device *virt_dev,
2085 		int old_active_eps)
2086 {
2087 	struct xhci_interval_bw_table *bw_table;
2088 	struct xhci_tt_bw_info *tt_info;
2089 
2090 	/* Find the bandwidth table for the root port this TT is attached to. */
2091 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2092 	tt_info = virt_dev->tt_info;
2093 	/* If this TT already had active endpoints, the bandwidth for this TT
2094 	 * has already been added.  Removing all periodic endpoints (and thus
2095 	 * making the TT enactive) will only decrease the bandwidth used.
2096 	 */
2097 	if (old_active_eps)
2098 		return 0;
2099 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2100 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2101 			return -ENOMEM;
2102 		return 0;
2103 	}
2104 	/* Not sure why we would have no new active endpoints...
2105 	 *
2106 	 * Maybe because of an Evaluate Context change for a hub update or a
2107 	 * control endpoint 0 max packet size change?
2108 	 * FIXME: skip the bandwidth calculation in that case.
2109 	 */
2110 	return 0;
2111 }
2112 
2113 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2114 		struct xhci_virt_device *virt_dev)
2115 {
2116 	unsigned int bw_reserved;
2117 
2118 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2119 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2120 		return -ENOMEM;
2121 
2122 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2123 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2124 		return -ENOMEM;
2125 
2126 	return 0;
2127 }
2128 
2129 /*
2130  * This algorithm is a very conservative estimate of the worst-case scheduling
2131  * scenario for any one interval.  The hardware dynamically schedules the
2132  * packets, so we can't tell which microframe could be the limiting factor in
2133  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2134  *
2135  * Obviously, we can't solve an NP complete problem to find the minimum worst
2136  * case scenario.  Instead, we come up with an estimate that is no less than
2137  * the worst case bandwidth used for any one microframe, but may be an
2138  * over-estimate.
2139  *
2140  * We walk the requirements for each endpoint by interval, starting with the
2141  * smallest interval, and place packets in the schedule where there is only one
2142  * possible way to schedule packets for that interval.  In order to simplify
2143  * this algorithm, we record the largest max packet size for each interval, and
2144  * assume all packets will be that size.
2145  *
2146  * For interval 0, we obviously must schedule all packets for each interval.
2147  * The bandwidth for interval 0 is just the amount of data to be transmitted
2148  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2149  * the number of packets).
2150  *
2151  * For interval 1, we have two possible microframes to schedule those packets
2152  * in.  For this algorithm, if we can schedule the same number of packets for
2153  * each possible scheduling opportunity (each microframe), we will do so.  The
2154  * remaining number of packets will be saved to be transmitted in the gaps in
2155  * the next interval's scheduling sequence.
2156  *
2157  * As we move those remaining packets to be scheduled with interval 2 packets,
2158  * we have to double the number of remaining packets to transmit.  This is
2159  * because the intervals are actually powers of 2, and we would be transmitting
2160  * the previous interval's packets twice in this interval.  We also have to be
2161  * sure that when we look at the largest max packet size for this interval, we
2162  * also look at the largest max packet size for the remaining packets and take
2163  * the greater of the two.
2164  *
2165  * The algorithm continues to evenly distribute packets in each scheduling
2166  * opportunity, and push the remaining packets out, until we get to the last
2167  * interval.  Then those packets and their associated overhead are just added
2168  * to the bandwidth used.
2169  */
2170 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2171 		struct xhci_virt_device *virt_dev,
2172 		int old_active_eps)
2173 {
2174 	unsigned int bw_reserved;
2175 	unsigned int max_bandwidth;
2176 	unsigned int bw_used;
2177 	unsigned int block_size;
2178 	struct xhci_interval_bw_table *bw_table;
2179 	unsigned int packet_size = 0;
2180 	unsigned int overhead = 0;
2181 	unsigned int packets_transmitted = 0;
2182 	unsigned int packets_remaining = 0;
2183 	unsigned int i;
2184 
2185 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2186 		return xhci_check_ss_bw(xhci, virt_dev);
2187 
2188 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2189 		max_bandwidth = HS_BW_LIMIT;
2190 		/* Convert percent of bus BW reserved to blocks reserved */
2191 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2192 	} else {
2193 		max_bandwidth = FS_BW_LIMIT;
2194 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2195 	}
2196 
2197 	bw_table = virt_dev->bw_table;
2198 	/* We need to translate the max packet size and max ESIT payloads into
2199 	 * the units the hardware uses.
2200 	 */
2201 	block_size = xhci_get_block_size(virt_dev->udev);
2202 
2203 	/* If we are manipulating a LS/FS device under a HS hub, double check
2204 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2205 	 */
2206 	if (virt_dev->tt_info) {
2207 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2208 				"Recalculating BW for rootport %u",
2209 				virt_dev->real_port);
2210 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2211 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2212 					"newly activated TT.\n");
2213 			return -ENOMEM;
2214 		}
2215 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2216 				"Recalculating BW for TT slot %u port %u",
2217 				virt_dev->tt_info->slot_id,
2218 				virt_dev->tt_info->ttport);
2219 	} else {
2220 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2221 				"Recalculating BW for rootport %u",
2222 				virt_dev->real_port);
2223 	}
2224 
2225 	/* Add in how much bandwidth will be used for interval zero, or the
2226 	 * rounded max ESIT payload + number of packets * largest overhead.
2227 	 */
2228 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2229 		bw_table->interval_bw[0].num_packets *
2230 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2231 
2232 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2233 		unsigned int bw_added;
2234 		unsigned int largest_mps;
2235 		unsigned int interval_overhead;
2236 
2237 		/*
2238 		 * How many packets could we transmit in this interval?
2239 		 * If packets didn't fit in the previous interval, we will need
2240 		 * to transmit that many packets twice within this interval.
2241 		 */
2242 		packets_remaining = 2 * packets_remaining +
2243 			bw_table->interval_bw[i].num_packets;
2244 
2245 		/* Find the largest max packet size of this or the previous
2246 		 * interval.
2247 		 */
2248 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2249 			largest_mps = 0;
2250 		else {
2251 			struct xhci_virt_ep *virt_ep;
2252 			struct list_head *ep_entry;
2253 
2254 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2255 			virt_ep = list_entry(ep_entry,
2256 					struct xhci_virt_ep, bw_endpoint_list);
2257 			/* Convert to blocks, rounding up */
2258 			largest_mps = DIV_ROUND_UP(
2259 					virt_ep->bw_info.max_packet_size,
2260 					block_size);
2261 		}
2262 		if (largest_mps > packet_size)
2263 			packet_size = largest_mps;
2264 
2265 		/* Use the larger overhead of this or the previous interval. */
2266 		interval_overhead = xhci_get_largest_overhead(
2267 				&bw_table->interval_bw[i]);
2268 		if (interval_overhead > overhead)
2269 			overhead = interval_overhead;
2270 
2271 		/* How many packets can we evenly distribute across
2272 		 * (1 << (i + 1)) possible scheduling opportunities?
2273 		 */
2274 		packets_transmitted = packets_remaining >> (i + 1);
2275 
2276 		/* Add in the bandwidth used for those scheduled packets */
2277 		bw_added = packets_transmitted * (overhead + packet_size);
2278 
2279 		/* How many packets do we have remaining to transmit? */
2280 		packets_remaining = packets_remaining % (1 << (i + 1));
2281 
2282 		/* What largest max packet size should those packets have? */
2283 		/* If we've transmitted all packets, don't carry over the
2284 		 * largest packet size.
2285 		 */
2286 		if (packets_remaining == 0) {
2287 			packet_size = 0;
2288 			overhead = 0;
2289 		} else if (packets_transmitted > 0) {
2290 			/* Otherwise if we do have remaining packets, and we've
2291 			 * scheduled some packets in this interval, take the
2292 			 * largest max packet size from endpoints with this
2293 			 * interval.
2294 			 */
2295 			packet_size = largest_mps;
2296 			overhead = interval_overhead;
2297 		}
2298 		/* Otherwise carry over packet_size and overhead from the last
2299 		 * time we had a remainder.
2300 		 */
2301 		bw_used += bw_added;
2302 		if (bw_used > max_bandwidth) {
2303 			xhci_warn(xhci, "Not enough bandwidth. "
2304 					"Proposed: %u, Max: %u\n",
2305 				bw_used, max_bandwidth);
2306 			return -ENOMEM;
2307 		}
2308 	}
2309 	/*
2310 	 * Ok, we know we have some packets left over after even-handedly
2311 	 * scheduling interval 15.  We don't know which microframes they will
2312 	 * fit into, so we over-schedule and say they will be scheduled every
2313 	 * microframe.
2314 	 */
2315 	if (packets_remaining > 0)
2316 		bw_used += overhead + packet_size;
2317 
2318 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2319 		unsigned int port_index = virt_dev->real_port - 1;
2320 
2321 		/* OK, we're manipulating a HS device attached to a
2322 		 * root port bandwidth domain.  Include the number of active TTs
2323 		 * in the bandwidth used.
2324 		 */
2325 		bw_used += TT_HS_OVERHEAD *
2326 			xhci->rh_bw[port_index].num_active_tts;
2327 	}
2328 
2329 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2330 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2331 		"Available: %u " "percent",
2332 		bw_used, max_bandwidth, bw_reserved,
2333 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2334 		max_bandwidth);
2335 
2336 	bw_used += bw_reserved;
2337 	if (bw_used > max_bandwidth) {
2338 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2339 				bw_used, max_bandwidth);
2340 		return -ENOMEM;
2341 	}
2342 
2343 	bw_table->bw_used = bw_used;
2344 	return 0;
2345 }
2346 
2347 static bool xhci_is_async_ep(unsigned int ep_type)
2348 {
2349 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2350 					ep_type != ISOC_IN_EP &&
2351 					ep_type != INT_IN_EP);
2352 }
2353 
2354 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2355 {
2356 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2357 }
2358 
2359 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2360 {
2361 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2362 
2363 	if (ep_bw->ep_interval == 0)
2364 		return SS_OVERHEAD_BURST +
2365 			(ep_bw->mult * ep_bw->num_packets *
2366 					(SS_OVERHEAD + mps));
2367 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2368 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2369 				1 << ep_bw->ep_interval);
2370 
2371 }
2372 
2373 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2374 		struct xhci_bw_info *ep_bw,
2375 		struct xhci_interval_bw_table *bw_table,
2376 		struct usb_device *udev,
2377 		struct xhci_virt_ep *virt_ep,
2378 		struct xhci_tt_bw_info *tt_info)
2379 {
2380 	struct xhci_interval_bw	*interval_bw;
2381 	int normalized_interval;
2382 
2383 	if (xhci_is_async_ep(ep_bw->type))
2384 		return;
2385 
2386 	if (udev->speed == USB_SPEED_SUPER) {
2387 		if (xhci_is_sync_in_ep(ep_bw->type))
2388 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2389 				xhci_get_ss_bw_consumed(ep_bw);
2390 		else
2391 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2392 				xhci_get_ss_bw_consumed(ep_bw);
2393 		return;
2394 	}
2395 
2396 	/* SuperSpeed endpoints never get added to intervals in the table, so
2397 	 * this check is only valid for HS/FS/LS devices.
2398 	 */
2399 	if (list_empty(&virt_ep->bw_endpoint_list))
2400 		return;
2401 	/* For LS/FS devices, we need to translate the interval expressed in
2402 	 * microframes to frames.
2403 	 */
2404 	if (udev->speed == USB_SPEED_HIGH)
2405 		normalized_interval = ep_bw->ep_interval;
2406 	else
2407 		normalized_interval = ep_bw->ep_interval - 3;
2408 
2409 	if (normalized_interval == 0)
2410 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2411 	interval_bw = &bw_table->interval_bw[normalized_interval];
2412 	interval_bw->num_packets -= ep_bw->num_packets;
2413 	switch (udev->speed) {
2414 	case USB_SPEED_LOW:
2415 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2416 		break;
2417 	case USB_SPEED_FULL:
2418 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2419 		break;
2420 	case USB_SPEED_HIGH:
2421 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2422 		break;
2423 	case USB_SPEED_SUPER:
2424 	case USB_SPEED_UNKNOWN:
2425 	case USB_SPEED_WIRELESS:
2426 		/* Should never happen because only LS/FS/HS endpoints will get
2427 		 * added to the endpoint list.
2428 		 */
2429 		return;
2430 	}
2431 	if (tt_info)
2432 		tt_info->active_eps -= 1;
2433 	list_del_init(&virt_ep->bw_endpoint_list);
2434 }
2435 
2436 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2437 		struct xhci_bw_info *ep_bw,
2438 		struct xhci_interval_bw_table *bw_table,
2439 		struct usb_device *udev,
2440 		struct xhci_virt_ep *virt_ep,
2441 		struct xhci_tt_bw_info *tt_info)
2442 {
2443 	struct xhci_interval_bw	*interval_bw;
2444 	struct xhci_virt_ep *smaller_ep;
2445 	int normalized_interval;
2446 
2447 	if (xhci_is_async_ep(ep_bw->type))
2448 		return;
2449 
2450 	if (udev->speed == USB_SPEED_SUPER) {
2451 		if (xhci_is_sync_in_ep(ep_bw->type))
2452 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2453 				xhci_get_ss_bw_consumed(ep_bw);
2454 		else
2455 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2456 				xhci_get_ss_bw_consumed(ep_bw);
2457 		return;
2458 	}
2459 
2460 	/* For LS/FS devices, we need to translate the interval expressed in
2461 	 * microframes to frames.
2462 	 */
2463 	if (udev->speed == USB_SPEED_HIGH)
2464 		normalized_interval = ep_bw->ep_interval;
2465 	else
2466 		normalized_interval = ep_bw->ep_interval - 3;
2467 
2468 	if (normalized_interval == 0)
2469 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2470 	interval_bw = &bw_table->interval_bw[normalized_interval];
2471 	interval_bw->num_packets += ep_bw->num_packets;
2472 	switch (udev->speed) {
2473 	case USB_SPEED_LOW:
2474 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2475 		break;
2476 	case USB_SPEED_FULL:
2477 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2478 		break;
2479 	case USB_SPEED_HIGH:
2480 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2481 		break;
2482 	case USB_SPEED_SUPER:
2483 	case USB_SPEED_UNKNOWN:
2484 	case USB_SPEED_WIRELESS:
2485 		/* Should never happen because only LS/FS/HS endpoints will get
2486 		 * added to the endpoint list.
2487 		 */
2488 		return;
2489 	}
2490 
2491 	if (tt_info)
2492 		tt_info->active_eps += 1;
2493 	/* Insert the endpoint into the list, largest max packet size first. */
2494 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2495 			bw_endpoint_list) {
2496 		if (ep_bw->max_packet_size >=
2497 				smaller_ep->bw_info.max_packet_size) {
2498 			/* Add the new ep before the smaller endpoint */
2499 			list_add_tail(&virt_ep->bw_endpoint_list,
2500 					&smaller_ep->bw_endpoint_list);
2501 			return;
2502 		}
2503 	}
2504 	/* Add the new endpoint at the end of the list. */
2505 	list_add_tail(&virt_ep->bw_endpoint_list,
2506 			&interval_bw->endpoints);
2507 }
2508 
2509 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2510 		struct xhci_virt_device *virt_dev,
2511 		int old_active_eps)
2512 {
2513 	struct xhci_root_port_bw_info *rh_bw_info;
2514 	if (!virt_dev->tt_info)
2515 		return;
2516 
2517 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2518 	if (old_active_eps == 0 &&
2519 				virt_dev->tt_info->active_eps != 0) {
2520 		rh_bw_info->num_active_tts += 1;
2521 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2522 	} else if (old_active_eps != 0 &&
2523 				virt_dev->tt_info->active_eps == 0) {
2524 		rh_bw_info->num_active_tts -= 1;
2525 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2526 	}
2527 }
2528 
2529 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2530 		struct xhci_virt_device *virt_dev,
2531 		struct xhci_container_ctx *in_ctx)
2532 {
2533 	struct xhci_bw_info ep_bw_info[31];
2534 	int i;
2535 	struct xhci_input_control_ctx *ctrl_ctx;
2536 	int old_active_eps = 0;
2537 
2538 	if (virt_dev->tt_info)
2539 		old_active_eps = virt_dev->tt_info->active_eps;
2540 
2541 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2542 	if (!ctrl_ctx) {
2543 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2544 				__func__);
2545 		return -ENOMEM;
2546 	}
2547 
2548 	for (i = 0; i < 31; i++) {
2549 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2550 			continue;
2551 
2552 		/* Make a copy of the BW info in case we need to revert this */
2553 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2554 				sizeof(ep_bw_info[i]));
2555 		/* Drop the endpoint from the interval table if the endpoint is
2556 		 * being dropped or changed.
2557 		 */
2558 		if (EP_IS_DROPPED(ctrl_ctx, i))
2559 			xhci_drop_ep_from_interval_table(xhci,
2560 					&virt_dev->eps[i].bw_info,
2561 					virt_dev->bw_table,
2562 					virt_dev->udev,
2563 					&virt_dev->eps[i],
2564 					virt_dev->tt_info);
2565 	}
2566 	/* Overwrite the information stored in the endpoints' bw_info */
2567 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2568 	for (i = 0; i < 31; i++) {
2569 		/* Add any changed or added endpoints to the interval table */
2570 		if (EP_IS_ADDED(ctrl_ctx, i))
2571 			xhci_add_ep_to_interval_table(xhci,
2572 					&virt_dev->eps[i].bw_info,
2573 					virt_dev->bw_table,
2574 					virt_dev->udev,
2575 					&virt_dev->eps[i],
2576 					virt_dev->tt_info);
2577 	}
2578 
2579 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2580 		/* Ok, this fits in the bandwidth we have.
2581 		 * Update the number of active TTs.
2582 		 */
2583 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2584 		return 0;
2585 	}
2586 
2587 	/* We don't have enough bandwidth for this, revert the stored info. */
2588 	for (i = 0; i < 31; i++) {
2589 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2590 			continue;
2591 
2592 		/* Drop the new copies of any added or changed endpoints from
2593 		 * the interval table.
2594 		 */
2595 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2596 			xhci_drop_ep_from_interval_table(xhci,
2597 					&virt_dev->eps[i].bw_info,
2598 					virt_dev->bw_table,
2599 					virt_dev->udev,
2600 					&virt_dev->eps[i],
2601 					virt_dev->tt_info);
2602 		}
2603 		/* Revert the endpoint back to its old information */
2604 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2605 				sizeof(ep_bw_info[i]));
2606 		/* Add any changed or dropped endpoints back into the table */
2607 		if (EP_IS_DROPPED(ctrl_ctx, i))
2608 			xhci_add_ep_to_interval_table(xhci,
2609 					&virt_dev->eps[i].bw_info,
2610 					virt_dev->bw_table,
2611 					virt_dev->udev,
2612 					&virt_dev->eps[i],
2613 					virt_dev->tt_info);
2614 	}
2615 	return -ENOMEM;
2616 }
2617 
2618 
2619 /* Issue a configure endpoint command or evaluate context command
2620  * and wait for it to finish.
2621  */
2622 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2623 		struct usb_device *udev,
2624 		struct xhci_command *command,
2625 		bool ctx_change, bool must_succeed)
2626 {
2627 	int ret;
2628 	unsigned long flags;
2629 	struct xhci_input_control_ctx *ctrl_ctx;
2630 	struct xhci_virt_device *virt_dev;
2631 
2632 	if (!command)
2633 		return -EINVAL;
2634 
2635 	spin_lock_irqsave(&xhci->lock, flags);
2636 	virt_dev = xhci->devs[udev->slot_id];
2637 
2638 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2639 	if (!ctrl_ctx) {
2640 		spin_unlock_irqrestore(&xhci->lock, flags);
2641 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2642 				__func__);
2643 		return -ENOMEM;
2644 	}
2645 
2646 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2647 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2648 		spin_unlock_irqrestore(&xhci->lock, flags);
2649 		xhci_warn(xhci, "Not enough host resources, "
2650 				"active endpoint contexts = %u\n",
2651 				xhci->num_active_eps);
2652 		return -ENOMEM;
2653 	}
2654 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2655 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2656 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2657 			xhci_free_host_resources(xhci, ctrl_ctx);
2658 		spin_unlock_irqrestore(&xhci->lock, flags);
2659 		xhci_warn(xhci, "Not enough bandwidth\n");
2660 		return -ENOMEM;
2661 	}
2662 
2663 	if (!ctx_change)
2664 		ret = xhci_queue_configure_endpoint(xhci, command,
2665 				command->in_ctx->dma,
2666 				udev->slot_id, must_succeed);
2667 	else
2668 		ret = xhci_queue_evaluate_context(xhci, command,
2669 				command->in_ctx->dma,
2670 				udev->slot_id, must_succeed);
2671 	if (ret < 0) {
2672 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2673 			xhci_free_host_resources(xhci, ctrl_ctx);
2674 		spin_unlock_irqrestore(&xhci->lock, flags);
2675 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2676 				"FIXME allocate a new ring segment");
2677 		return -ENOMEM;
2678 	}
2679 	xhci_ring_cmd_db(xhci);
2680 	spin_unlock_irqrestore(&xhci->lock, flags);
2681 
2682 	/* Wait for the configure endpoint command to complete */
2683 	wait_for_completion(command->completion);
2684 
2685 	if (!ctx_change)
2686 		ret = xhci_configure_endpoint_result(xhci, udev,
2687 						     &command->status);
2688 	else
2689 		ret = xhci_evaluate_context_result(xhci, udev,
2690 						   &command->status);
2691 
2692 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2693 		spin_lock_irqsave(&xhci->lock, flags);
2694 		/* If the command failed, remove the reserved resources.
2695 		 * Otherwise, clean up the estimate to include dropped eps.
2696 		 */
2697 		if (ret)
2698 			xhci_free_host_resources(xhci, ctrl_ctx);
2699 		else
2700 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2701 		spin_unlock_irqrestore(&xhci->lock, flags);
2702 	}
2703 	return ret;
2704 }
2705 
2706 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2707 	struct xhci_virt_device *vdev, int i)
2708 {
2709 	struct xhci_virt_ep *ep = &vdev->eps[i];
2710 
2711 	if (ep->ep_state & EP_HAS_STREAMS) {
2712 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2713 				xhci_get_endpoint_address(i));
2714 		xhci_free_stream_info(xhci, ep->stream_info);
2715 		ep->stream_info = NULL;
2716 		ep->ep_state &= ~EP_HAS_STREAMS;
2717 	}
2718 }
2719 
2720 /* Called after one or more calls to xhci_add_endpoint() or
2721  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2722  * to call xhci_reset_bandwidth().
2723  *
2724  * Since we are in the middle of changing either configuration or
2725  * installing a new alt setting, the USB core won't allow URBs to be
2726  * enqueued for any endpoint on the old config or interface.  Nothing
2727  * else should be touching the xhci->devs[slot_id] structure, so we
2728  * don't need to take the xhci->lock for manipulating that.
2729  */
2730 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2731 {
2732 	int i;
2733 	int ret = 0;
2734 	struct xhci_hcd *xhci;
2735 	struct xhci_virt_device	*virt_dev;
2736 	struct xhci_input_control_ctx *ctrl_ctx;
2737 	struct xhci_slot_ctx *slot_ctx;
2738 	struct xhci_command *command;
2739 
2740 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2741 	if (ret <= 0)
2742 		return ret;
2743 	xhci = hcd_to_xhci(hcd);
2744 	if (xhci->xhc_state & XHCI_STATE_DYING)
2745 		return -ENODEV;
2746 
2747 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2748 	virt_dev = xhci->devs[udev->slot_id];
2749 
2750 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2751 	if (!command)
2752 		return -ENOMEM;
2753 
2754 	command->in_ctx = virt_dev->in_ctx;
2755 
2756 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2757 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2758 	if (!ctrl_ctx) {
2759 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2760 				__func__);
2761 		ret = -ENOMEM;
2762 		goto command_cleanup;
2763 	}
2764 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2765 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2766 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2767 
2768 	/* Don't issue the command if there's no endpoints to update. */
2769 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2770 	    ctrl_ctx->drop_flags == 0) {
2771 		ret = 0;
2772 		goto command_cleanup;
2773 	}
2774 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2775 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2776 	for (i = 31; i >= 1; i--) {
2777 		__le32 le32 = cpu_to_le32(BIT(i));
2778 
2779 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2780 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2781 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2782 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2783 			break;
2784 		}
2785 	}
2786 	xhci_dbg(xhci, "New Input Control Context:\n");
2787 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2788 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2789 
2790 	ret = xhci_configure_endpoint(xhci, udev, command,
2791 			false, false);
2792 	if (ret)
2793 		/* Callee should call reset_bandwidth() */
2794 		goto command_cleanup;
2795 
2796 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2797 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2798 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2799 
2800 	/* Free any rings that were dropped, but not changed. */
2801 	for (i = 1; i < 31; ++i) {
2802 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2803 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2804 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2805 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2806 		}
2807 	}
2808 	xhci_zero_in_ctx(xhci, virt_dev);
2809 	/*
2810 	 * Install any rings for completely new endpoints or changed endpoints,
2811 	 * and free or cache any old rings from changed endpoints.
2812 	 */
2813 	for (i = 1; i < 31; ++i) {
2814 		if (!virt_dev->eps[i].new_ring)
2815 			continue;
2816 		/* Only cache or free the old ring if it exists.
2817 		 * It may not if this is the first add of an endpoint.
2818 		 */
2819 		if (virt_dev->eps[i].ring) {
2820 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2821 		}
2822 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2823 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2824 		virt_dev->eps[i].new_ring = NULL;
2825 	}
2826 command_cleanup:
2827 	kfree(command->completion);
2828 	kfree(command);
2829 
2830 	return ret;
2831 }
2832 
2833 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2834 {
2835 	struct xhci_hcd *xhci;
2836 	struct xhci_virt_device	*virt_dev;
2837 	int i, ret;
2838 
2839 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2840 	if (ret <= 0)
2841 		return;
2842 	xhci = hcd_to_xhci(hcd);
2843 
2844 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2845 	virt_dev = xhci->devs[udev->slot_id];
2846 	/* Free any rings allocated for added endpoints */
2847 	for (i = 0; i < 31; ++i) {
2848 		if (virt_dev->eps[i].new_ring) {
2849 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2850 			virt_dev->eps[i].new_ring = NULL;
2851 		}
2852 	}
2853 	xhci_zero_in_ctx(xhci, virt_dev);
2854 }
2855 
2856 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2857 		struct xhci_container_ctx *in_ctx,
2858 		struct xhci_container_ctx *out_ctx,
2859 		struct xhci_input_control_ctx *ctrl_ctx,
2860 		u32 add_flags, u32 drop_flags)
2861 {
2862 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2863 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2864 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2865 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2866 
2867 	xhci_dbg(xhci, "Input Context:\n");
2868 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2869 }
2870 
2871 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2872 		unsigned int slot_id, unsigned int ep_index,
2873 		struct xhci_dequeue_state *deq_state)
2874 {
2875 	struct xhci_input_control_ctx *ctrl_ctx;
2876 	struct xhci_container_ctx *in_ctx;
2877 	struct xhci_ep_ctx *ep_ctx;
2878 	u32 added_ctxs;
2879 	dma_addr_t addr;
2880 
2881 	in_ctx = xhci->devs[slot_id]->in_ctx;
2882 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2883 	if (!ctrl_ctx) {
2884 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2885 				__func__);
2886 		return;
2887 	}
2888 
2889 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2890 			xhci->devs[slot_id]->out_ctx, ep_index);
2891 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2892 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2893 			deq_state->new_deq_ptr);
2894 	if (addr == 0) {
2895 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2896 				"reset ep command\n");
2897 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2898 				deq_state->new_deq_seg,
2899 				deq_state->new_deq_ptr);
2900 		return;
2901 	}
2902 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2903 
2904 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2905 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2906 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2907 			added_ctxs, added_ctxs);
2908 }
2909 
2910 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2911 			unsigned int ep_index, struct xhci_td *td)
2912 {
2913 	struct xhci_dequeue_state deq_state;
2914 	struct xhci_virt_ep *ep;
2915 	struct usb_device *udev = td->urb->dev;
2916 
2917 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2918 			"Cleaning up stalled endpoint ring");
2919 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2920 	/* We need to move the HW's dequeue pointer past this TD,
2921 	 * or it will attempt to resend it on the next doorbell ring.
2922 	 */
2923 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2924 			ep_index, ep->stopped_stream, td, &deq_state);
2925 
2926 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2927 		return;
2928 
2929 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2930 	 * issue a configure endpoint command later.
2931 	 */
2932 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2933 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2934 				"Queueing new dequeue state");
2935 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2936 				ep_index, ep->stopped_stream, &deq_state);
2937 	} else {
2938 		/* Better hope no one uses the input context between now and the
2939 		 * reset endpoint completion!
2940 		 * XXX: No idea how this hardware will react when stream rings
2941 		 * are enabled.
2942 		 */
2943 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2944 				"Setting up input context for "
2945 				"configure endpoint command");
2946 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2947 				ep_index, &deq_state);
2948 	}
2949 }
2950 
2951 /* Called when clearing halted device. The core should have sent the control
2952  * message to clear the device halt condition. The host side of the halt should
2953  * already be cleared with a reset endpoint command issued when the STALL tx
2954  * event was received.
2955  *
2956  * Context: in_interrupt
2957  */
2958 
2959 void xhci_endpoint_reset(struct usb_hcd *hcd,
2960 		struct usb_host_endpoint *ep)
2961 {
2962 	struct xhci_hcd *xhci;
2963 
2964 	xhci = hcd_to_xhci(hcd);
2965 
2966 	/*
2967 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2968 	 * The Reset Endpoint Command may only be issued to endpoints in the
2969 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2970 	 * Number of an endpoint that isn't in the Halted state, then software
2971 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2972 	 * for the target endpoint. that is in the Stopped state.
2973 	 */
2974 
2975 	/* For now just print debug to follow the situation */
2976 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2977 		 ep->desc.bEndpointAddress);
2978 }
2979 
2980 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2981 		struct usb_device *udev, struct usb_host_endpoint *ep,
2982 		unsigned int slot_id)
2983 {
2984 	int ret;
2985 	unsigned int ep_index;
2986 	unsigned int ep_state;
2987 
2988 	if (!ep)
2989 		return -EINVAL;
2990 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2991 	if (ret <= 0)
2992 		return -EINVAL;
2993 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2994 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2995 				" descriptor for ep 0x%x does not support streams\n",
2996 				ep->desc.bEndpointAddress);
2997 		return -EINVAL;
2998 	}
2999 
3000 	ep_index = xhci_get_endpoint_index(&ep->desc);
3001 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3002 	if (ep_state & EP_HAS_STREAMS ||
3003 			ep_state & EP_GETTING_STREAMS) {
3004 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3005 				"already has streams set up.\n",
3006 				ep->desc.bEndpointAddress);
3007 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3008 				"dynamic stream context array reallocation.\n");
3009 		return -EINVAL;
3010 	}
3011 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3012 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3013 				"endpoint 0x%x; URBs are pending.\n",
3014 				ep->desc.bEndpointAddress);
3015 		return -EINVAL;
3016 	}
3017 	return 0;
3018 }
3019 
3020 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3021 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3022 {
3023 	unsigned int max_streams;
3024 
3025 	/* The stream context array size must be a power of two */
3026 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3027 	/*
3028 	 * Find out how many primary stream array entries the host controller
3029 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3030 	 * level page entries), but that's an optional feature for xHCI host
3031 	 * controllers. xHCs must support at least 4 stream IDs.
3032 	 */
3033 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3034 	if (*num_stream_ctxs > max_streams) {
3035 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3036 				max_streams);
3037 		*num_stream_ctxs = max_streams;
3038 		*num_streams = max_streams;
3039 	}
3040 }
3041 
3042 /* Returns an error code if one of the endpoint already has streams.
3043  * This does not change any data structures, it only checks and gathers
3044  * information.
3045  */
3046 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3047 		struct usb_device *udev,
3048 		struct usb_host_endpoint **eps, unsigned int num_eps,
3049 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3050 {
3051 	unsigned int max_streams;
3052 	unsigned int endpoint_flag;
3053 	int i;
3054 	int ret;
3055 
3056 	for (i = 0; i < num_eps; i++) {
3057 		ret = xhci_check_streams_endpoint(xhci, udev,
3058 				eps[i], udev->slot_id);
3059 		if (ret < 0)
3060 			return ret;
3061 
3062 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3063 		if (max_streams < (*num_streams - 1)) {
3064 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3065 					eps[i]->desc.bEndpointAddress,
3066 					max_streams);
3067 			*num_streams = max_streams+1;
3068 		}
3069 
3070 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3071 		if (*changed_ep_bitmask & endpoint_flag)
3072 			return -EINVAL;
3073 		*changed_ep_bitmask |= endpoint_flag;
3074 	}
3075 	return 0;
3076 }
3077 
3078 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3079 		struct usb_device *udev,
3080 		struct usb_host_endpoint **eps, unsigned int num_eps)
3081 {
3082 	u32 changed_ep_bitmask = 0;
3083 	unsigned int slot_id;
3084 	unsigned int ep_index;
3085 	unsigned int ep_state;
3086 	int i;
3087 
3088 	slot_id = udev->slot_id;
3089 	if (!xhci->devs[slot_id])
3090 		return 0;
3091 
3092 	for (i = 0; i < num_eps; i++) {
3093 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3094 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3095 		/* Are streams already being freed for the endpoint? */
3096 		if (ep_state & EP_GETTING_NO_STREAMS) {
3097 			xhci_warn(xhci, "WARN Can't disable streams for "
3098 					"endpoint 0x%x, "
3099 					"streams are being disabled already\n",
3100 					eps[i]->desc.bEndpointAddress);
3101 			return 0;
3102 		}
3103 		/* Are there actually any streams to free? */
3104 		if (!(ep_state & EP_HAS_STREAMS) &&
3105 				!(ep_state & EP_GETTING_STREAMS)) {
3106 			xhci_warn(xhci, "WARN Can't disable streams for "
3107 					"endpoint 0x%x, "
3108 					"streams are already disabled!\n",
3109 					eps[i]->desc.bEndpointAddress);
3110 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3111 					"with non-streams endpoint\n");
3112 			return 0;
3113 		}
3114 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3115 	}
3116 	return changed_ep_bitmask;
3117 }
3118 
3119 /*
3120  * The USB device drivers use this function (through the HCD interface in USB
3121  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3122  * coordinate mass storage command queueing across multiple endpoints (basically
3123  * a stream ID == a task ID).
3124  *
3125  * Setting up streams involves allocating the same size stream context array
3126  * for each endpoint and issuing a configure endpoint command for all endpoints.
3127  *
3128  * Don't allow the call to succeed if one endpoint only supports one stream
3129  * (which means it doesn't support streams at all).
3130  *
3131  * Drivers may get less stream IDs than they asked for, if the host controller
3132  * hardware or endpoints claim they can't support the number of requested
3133  * stream IDs.
3134  */
3135 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3136 		struct usb_host_endpoint **eps, unsigned int num_eps,
3137 		unsigned int num_streams, gfp_t mem_flags)
3138 {
3139 	int i, ret;
3140 	struct xhci_hcd *xhci;
3141 	struct xhci_virt_device *vdev;
3142 	struct xhci_command *config_cmd;
3143 	struct xhci_input_control_ctx *ctrl_ctx;
3144 	unsigned int ep_index;
3145 	unsigned int num_stream_ctxs;
3146 	unsigned long flags;
3147 	u32 changed_ep_bitmask = 0;
3148 
3149 	if (!eps)
3150 		return -EINVAL;
3151 
3152 	/* Add one to the number of streams requested to account for
3153 	 * stream 0 that is reserved for xHCI usage.
3154 	 */
3155 	num_streams += 1;
3156 	xhci = hcd_to_xhci(hcd);
3157 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3158 			num_streams);
3159 
3160 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3161 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3162 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3163 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3164 		return -ENOSYS;
3165 	}
3166 
3167 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3168 	if (!config_cmd) {
3169 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3170 		return -ENOMEM;
3171 	}
3172 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3173 	if (!ctrl_ctx) {
3174 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3175 				__func__);
3176 		xhci_free_command(xhci, config_cmd);
3177 		return -ENOMEM;
3178 	}
3179 
3180 	/* Check to make sure all endpoints are not already configured for
3181 	 * streams.  While we're at it, find the maximum number of streams that
3182 	 * all the endpoints will support and check for duplicate endpoints.
3183 	 */
3184 	spin_lock_irqsave(&xhci->lock, flags);
3185 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3186 			num_eps, &num_streams, &changed_ep_bitmask);
3187 	if (ret < 0) {
3188 		xhci_free_command(xhci, config_cmd);
3189 		spin_unlock_irqrestore(&xhci->lock, flags);
3190 		return ret;
3191 	}
3192 	if (num_streams <= 1) {
3193 		xhci_warn(xhci, "WARN: endpoints can't handle "
3194 				"more than one stream.\n");
3195 		xhci_free_command(xhci, config_cmd);
3196 		spin_unlock_irqrestore(&xhci->lock, flags);
3197 		return -EINVAL;
3198 	}
3199 	vdev = xhci->devs[udev->slot_id];
3200 	/* Mark each endpoint as being in transition, so
3201 	 * xhci_urb_enqueue() will reject all URBs.
3202 	 */
3203 	for (i = 0; i < num_eps; i++) {
3204 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3205 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3206 	}
3207 	spin_unlock_irqrestore(&xhci->lock, flags);
3208 
3209 	/* Setup internal data structures and allocate HW data structures for
3210 	 * streams (but don't install the HW structures in the input context
3211 	 * until we're sure all memory allocation succeeded).
3212 	 */
3213 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3214 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3215 			num_stream_ctxs, num_streams);
3216 
3217 	for (i = 0; i < num_eps; i++) {
3218 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3219 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3220 				num_stream_ctxs,
3221 				num_streams, mem_flags);
3222 		if (!vdev->eps[ep_index].stream_info)
3223 			goto cleanup;
3224 		/* Set maxPstreams in endpoint context and update deq ptr to
3225 		 * point to stream context array. FIXME
3226 		 */
3227 	}
3228 
3229 	/* Set up the input context for a configure endpoint command. */
3230 	for (i = 0; i < num_eps; i++) {
3231 		struct xhci_ep_ctx *ep_ctx;
3232 
3233 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3234 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3235 
3236 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3237 				vdev->out_ctx, ep_index);
3238 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3239 				vdev->eps[ep_index].stream_info);
3240 	}
3241 	/* Tell the HW to drop its old copy of the endpoint context info
3242 	 * and add the updated copy from the input context.
3243 	 */
3244 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3245 			vdev->out_ctx, ctrl_ctx,
3246 			changed_ep_bitmask, changed_ep_bitmask);
3247 
3248 	/* Issue and wait for the configure endpoint command */
3249 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3250 			false, false);
3251 
3252 	/* xHC rejected the configure endpoint command for some reason, so we
3253 	 * leave the old ring intact and free our internal streams data
3254 	 * structure.
3255 	 */
3256 	if (ret < 0)
3257 		goto cleanup;
3258 
3259 	spin_lock_irqsave(&xhci->lock, flags);
3260 	for (i = 0; i < num_eps; i++) {
3261 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3262 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3263 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3264 			 udev->slot_id, ep_index);
3265 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3266 	}
3267 	xhci_free_command(xhci, config_cmd);
3268 	spin_unlock_irqrestore(&xhci->lock, flags);
3269 
3270 	/* Subtract 1 for stream 0, which drivers can't use */
3271 	return num_streams - 1;
3272 
3273 cleanup:
3274 	/* If it didn't work, free the streams! */
3275 	for (i = 0; i < num_eps; i++) {
3276 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3277 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3278 		vdev->eps[ep_index].stream_info = NULL;
3279 		/* FIXME Unset maxPstreams in endpoint context and
3280 		 * update deq ptr to point to normal string ring.
3281 		 */
3282 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3283 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3284 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3285 	}
3286 	xhci_free_command(xhci, config_cmd);
3287 	return -ENOMEM;
3288 }
3289 
3290 /* Transition the endpoint from using streams to being a "normal" endpoint
3291  * without streams.
3292  *
3293  * Modify the endpoint context state, submit a configure endpoint command,
3294  * and free all endpoint rings for streams if that completes successfully.
3295  */
3296 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3297 		struct usb_host_endpoint **eps, unsigned int num_eps,
3298 		gfp_t mem_flags)
3299 {
3300 	int i, ret;
3301 	struct xhci_hcd *xhci;
3302 	struct xhci_virt_device *vdev;
3303 	struct xhci_command *command;
3304 	struct xhci_input_control_ctx *ctrl_ctx;
3305 	unsigned int ep_index;
3306 	unsigned long flags;
3307 	u32 changed_ep_bitmask;
3308 
3309 	xhci = hcd_to_xhci(hcd);
3310 	vdev = xhci->devs[udev->slot_id];
3311 
3312 	/* Set up a configure endpoint command to remove the streams rings */
3313 	spin_lock_irqsave(&xhci->lock, flags);
3314 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3315 			udev, eps, num_eps);
3316 	if (changed_ep_bitmask == 0) {
3317 		spin_unlock_irqrestore(&xhci->lock, flags);
3318 		return -EINVAL;
3319 	}
3320 
3321 	/* Use the xhci_command structure from the first endpoint.  We may have
3322 	 * allocated too many, but the driver may call xhci_free_streams() for
3323 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3324 	 */
3325 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3326 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3327 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3328 	if (!ctrl_ctx) {
3329 		spin_unlock_irqrestore(&xhci->lock, flags);
3330 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3331 				__func__);
3332 		return -EINVAL;
3333 	}
3334 
3335 	for (i = 0; i < num_eps; i++) {
3336 		struct xhci_ep_ctx *ep_ctx;
3337 
3338 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3339 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3340 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3341 			EP_GETTING_NO_STREAMS;
3342 
3343 		xhci_endpoint_copy(xhci, command->in_ctx,
3344 				vdev->out_ctx, ep_index);
3345 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3346 				&vdev->eps[ep_index]);
3347 	}
3348 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3349 			vdev->out_ctx, ctrl_ctx,
3350 			changed_ep_bitmask, changed_ep_bitmask);
3351 	spin_unlock_irqrestore(&xhci->lock, flags);
3352 
3353 	/* Issue and wait for the configure endpoint command,
3354 	 * which must succeed.
3355 	 */
3356 	ret = xhci_configure_endpoint(xhci, udev, command,
3357 			false, true);
3358 
3359 	/* xHC rejected the configure endpoint command for some reason, so we
3360 	 * leave the streams rings intact.
3361 	 */
3362 	if (ret < 0)
3363 		return ret;
3364 
3365 	spin_lock_irqsave(&xhci->lock, flags);
3366 	for (i = 0; i < num_eps; i++) {
3367 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3368 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3369 		vdev->eps[ep_index].stream_info = NULL;
3370 		/* FIXME Unset maxPstreams in endpoint context and
3371 		 * update deq ptr to point to normal string ring.
3372 		 */
3373 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3374 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3375 	}
3376 	spin_unlock_irqrestore(&xhci->lock, flags);
3377 
3378 	return 0;
3379 }
3380 
3381 /*
3382  * Deletes endpoint resources for endpoints that were active before a Reset
3383  * Device command, or a Disable Slot command.  The Reset Device command leaves
3384  * the control endpoint intact, whereas the Disable Slot command deletes it.
3385  *
3386  * Must be called with xhci->lock held.
3387  */
3388 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3389 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3390 {
3391 	int i;
3392 	unsigned int num_dropped_eps = 0;
3393 	unsigned int drop_flags = 0;
3394 
3395 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3396 		if (virt_dev->eps[i].ring) {
3397 			drop_flags |= 1 << i;
3398 			num_dropped_eps++;
3399 		}
3400 	}
3401 	xhci->num_active_eps -= num_dropped_eps;
3402 	if (num_dropped_eps)
3403 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3404 				"Dropped %u ep ctxs, flags = 0x%x, "
3405 				"%u now active.",
3406 				num_dropped_eps, drop_flags,
3407 				xhci->num_active_eps);
3408 }
3409 
3410 /*
3411  * This submits a Reset Device Command, which will set the device state to 0,
3412  * set the device address to 0, and disable all the endpoints except the default
3413  * control endpoint.  The USB core should come back and call
3414  * xhci_address_device(), and then re-set up the configuration.  If this is
3415  * called because of a usb_reset_and_verify_device(), then the old alternate
3416  * settings will be re-installed through the normal bandwidth allocation
3417  * functions.
3418  *
3419  * Wait for the Reset Device command to finish.  Remove all structures
3420  * associated with the endpoints that were disabled.  Clear the input device
3421  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3422  *
3423  * If the virt_dev to be reset does not exist or does not match the udev,
3424  * it means the device is lost, possibly due to the xHC restore error and
3425  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3426  * re-allocate the device.
3427  */
3428 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3429 {
3430 	int ret, i;
3431 	unsigned long flags;
3432 	struct xhci_hcd *xhci;
3433 	unsigned int slot_id;
3434 	struct xhci_virt_device *virt_dev;
3435 	struct xhci_command *reset_device_cmd;
3436 	int last_freed_endpoint;
3437 	struct xhci_slot_ctx *slot_ctx;
3438 	int old_active_eps = 0;
3439 
3440 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3441 	if (ret <= 0)
3442 		return ret;
3443 	xhci = hcd_to_xhci(hcd);
3444 	slot_id = udev->slot_id;
3445 	virt_dev = xhci->devs[slot_id];
3446 	if (!virt_dev) {
3447 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3448 				"not exist. Re-allocate the device\n", slot_id);
3449 		ret = xhci_alloc_dev(hcd, udev);
3450 		if (ret == 1)
3451 			return 0;
3452 		else
3453 			return -EINVAL;
3454 	}
3455 
3456 	if (virt_dev->tt_info)
3457 		old_active_eps = virt_dev->tt_info->active_eps;
3458 
3459 	if (virt_dev->udev != udev) {
3460 		/* If the virt_dev and the udev does not match, this virt_dev
3461 		 * may belong to another udev.
3462 		 * Re-allocate the device.
3463 		 */
3464 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3465 				"not match the udev. Re-allocate the device\n",
3466 				slot_id);
3467 		ret = xhci_alloc_dev(hcd, udev);
3468 		if (ret == 1)
3469 			return 0;
3470 		else
3471 			return -EINVAL;
3472 	}
3473 
3474 	/* If device is not setup, there is no point in resetting it */
3475 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3476 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3477 						SLOT_STATE_DISABLED)
3478 		return 0;
3479 
3480 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3481 	/* Allocate the command structure that holds the struct completion.
3482 	 * Assume we're in process context, since the normal device reset
3483 	 * process has to wait for the device anyway.  Storage devices are
3484 	 * reset as part of error handling, so use GFP_NOIO instead of
3485 	 * GFP_KERNEL.
3486 	 */
3487 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3488 	if (!reset_device_cmd) {
3489 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3490 		return -ENOMEM;
3491 	}
3492 
3493 	/* Attempt to submit the Reset Device command to the command ring */
3494 	spin_lock_irqsave(&xhci->lock, flags);
3495 
3496 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3497 	if (ret) {
3498 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3499 		spin_unlock_irqrestore(&xhci->lock, flags);
3500 		goto command_cleanup;
3501 	}
3502 	xhci_ring_cmd_db(xhci);
3503 	spin_unlock_irqrestore(&xhci->lock, flags);
3504 
3505 	/* Wait for the Reset Device command to finish */
3506 	wait_for_completion(reset_device_cmd->completion);
3507 
3508 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3509 	 * unless we tried to reset a slot ID that wasn't enabled,
3510 	 * or the device wasn't in the addressed or configured state.
3511 	 */
3512 	ret = reset_device_cmd->status;
3513 	switch (ret) {
3514 	case COMP_CMD_ABORT:
3515 	case COMP_CMD_STOP:
3516 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3517 		ret = -ETIME;
3518 		goto command_cleanup;
3519 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3520 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3521 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3522 				slot_id,
3523 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3524 		xhci_dbg(xhci, "Not freeing device rings.\n");
3525 		/* Don't treat this as an error.  May change my mind later. */
3526 		ret = 0;
3527 		goto command_cleanup;
3528 	case COMP_SUCCESS:
3529 		xhci_dbg(xhci, "Successful reset device command.\n");
3530 		break;
3531 	default:
3532 		if (xhci_is_vendor_info_code(xhci, ret))
3533 			break;
3534 		xhci_warn(xhci, "Unknown completion code %u for "
3535 				"reset device command.\n", ret);
3536 		ret = -EINVAL;
3537 		goto command_cleanup;
3538 	}
3539 
3540 	/* Free up host controller endpoint resources */
3541 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3542 		spin_lock_irqsave(&xhci->lock, flags);
3543 		/* Don't delete the default control endpoint resources */
3544 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3545 		spin_unlock_irqrestore(&xhci->lock, flags);
3546 	}
3547 
3548 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3549 	last_freed_endpoint = 1;
3550 	for (i = 1; i < 31; ++i) {
3551 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3552 
3553 		if (ep->ep_state & EP_HAS_STREAMS) {
3554 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3555 					xhci_get_endpoint_address(i));
3556 			xhci_free_stream_info(xhci, ep->stream_info);
3557 			ep->stream_info = NULL;
3558 			ep->ep_state &= ~EP_HAS_STREAMS;
3559 		}
3560 
3561 		if (ep->ring) {
3562 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3563 			last_freed_endpoint = i;
3564 		}
3565 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3566 			xhci_drop_ep_from_interval_table(xhci,
3567 					&virt_dev->eps[i].bw_info,
3568 					virt_dev->bw_table,
3569 					udev,
3570 					&virt_dev->eps[i],
3571 					virt_dev->tt_info);
3572 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3573 	}
3574 	/* If necessary, update the number of active TTs on this root port */
3575 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3576 
3577 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3578 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3579 	ret = 0;
3580 
3581 command_cleanup:
3582 	xhci_free_command(xhci, reset_device_cmd);
3583 	return ret;
3584 }
3585 
3586 /*
3587  * At this point, the struct usb_device is about to go away, the device has
3588  * disconnected, and all traffic has been stopped and the endpoints have been
3589  * disabled.  Free any HC data structures associated with that device.
3590  */
3591 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3592 {
3593 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3594 	struct xhci_virt_device *virt_dev;
3595 	unsigned long flags;
3596 	u32 state;
3597 	int i, ret;
3598 	struct xhci_command *command;
3599 
3600 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3601 	if (!command)
3602 		return;
3603 
3604 #ifndef CONFIG_USB_DEFAULT_PERSIST
3605 	/*
3606 	 * We called pm_runtime_get_noresume when the device was attached.
3607 	 * Decrement the counter here to allow controller to runtime suspend
3608 	 * if no devices remain.
3609 	 */
3610 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3611 		pm_runtime_put_noidle(hcd->self.controller);
3612 #endif
3613 
3614 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3615 	/* If the host is halted due to driver unload, we still need to free the
3616 	 * device.
3617 	 */
3618 	if (ret <= 0 && ret != -ENODEV) {
3619 		kfree(command);
3620 		return;
3621 	}
3622 
3623 	virt_dev = xhci->devs[udev->slot_id];
3624 
3625 	/* Stop any wayward timer functions (which may grab the lock) */
3626 	for (i = 0; i < 31; ++i) {
3627 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3628 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3629 	}
3630 
3631 	spin_lock_irqsave(&xhci->lock, flags);
3632 	/* Don't disable the slot if the host controller is dead. */
3633 	state = readl(&xhci->op_regs->status);
3634 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3635 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3636 		xhci_free_virt_device(xhci, udev->slot_id);
3637 		spin_unlock_irqrestore(&xhci->lock, flags);
3638 		kfree(command);
3639 		return;
3640 	}
3641 
3642 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3643 				    udev->slot_id)) {
3644 		spin_unlock_irqrestore(&xhci->lock, flags);
3645 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3646 		return;
3647 	}
3648 	xhci_ring_cmd_db(xhci);
3649 	spin_unlock_irqrestore(&xhci->lock, flags);
3650 
3651 	/*
3652 	 * Event command completion handler will free any data structures
3653 	 * associated with the slot.  XXX Can free sleep?
3654 	 */
3655 }
3656 
3657 /*
3658  * Checks if we have enough host controller resources for the default control
3659  * endpoint.
3660  *
3661  * Must be called with xhci->lock held.
3662  */
3663 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3664 {
3665 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3666 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3667 				"Not enough ep ctxs: "
3668 				"%u active, need to add 1, limit is %u.",
3669 				xhci->num_active_eps, xhci->limit_active_eps);
3670 		return -ENOMEM;
3671 	}
3672 	xhci->num_active_eps += 1;
3673 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3674 			"Adding 1 ep ctx, %u now active.",
3675 			xhci->num_active_eps);
3676 	return 0;
3677 }
3678 
3679 
3680 /*
3681  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3682  * timed out, or allocating memory failed.  Returns 1 on success.
3683  */
3684 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3685 {
3686 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3687 	unsigned long flags;
3688 	int ret, slot_id;
3689 	struct xhci_command *command;
3690 
3691 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3692 	if (!command)
3693 		return 0;
3694 
3695 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3696 	mutex_lock(&xhci->mutex);
3697 	spin_lock_irqsave(&xhci->lock, flags);
3698 	command->completion = &xhci->addr_dev;
3699 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3700 	if (ret) {
3701 		spin_unlock_irqrestore(&xhci->lock, flags);
3702 		mutex_unlock(&xhci->mutex);
3703 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3704 		kfree(command);
3705 		return 0;
3706 	}
3707 	xhci_ring_cmd_db(xhci);
3708 	spin_unlock_irqrestore(&xhci->lock, flags);
3709 
3710 	wait_for_completion(command->completion);
3711 	slot_id = xhci->slot_id;
3712 	mutex_unlock(&xhci->mutex);
3713 
3714 	if (!slot_id || command->status != COMP_SUCCESS) {
3715 		xhci_err(xhci, "Error while assigning device slot ID\n");
3716 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3717 				HCS_MAX_SLOTS(
3718 					readl(&xhci->cap_regs->hcs_params1)));
3719 		kfree(command);
3720 		return 0;
3721 	}
3722 
3723 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3724 		spin_lock_irqsave(&xhci->lock, flags);
3725 		ret = xhci_reserve_host_control_ep_resources(xhci);
3726 		if (ret) {
3727 			spin_unlock_irqrestore(&xhci->lock, flags);
3728 			xhci_warn(xhci, "Not enough host resources, "
3729 					"active endpoint contexts = %u\n",
3730 					xhci->num_active_eps);
3731 			goto disable_slot;
3732 		}
3733 		spin_unlock_irqrestore(&xhci->lock, flags);
3734 	}
3735 	/* Use GFP_NOIO, since this function can be called from
3736 	 * xhci_discover_or_reset_device(), which may be called as part of
3737 	 * mass storage driver error handling.
3738 	 */
3739 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3740 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3741 		goto disable_slot;
3742 	}
3743 	udev->slot_id = slot_id;
3744 
3745 #ifndef CONFIG_USB_DEFAULT_PERSIST
3746 	/*
3747 	 * If resetting upon resume, we can't put the controller into runtime
3748 	 * suspend if there is a device attached.
3749 	 */
3750 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3751 		pm_runtime_get_noresume(hcd->self.controller);
3752 #endif
3753 
3754 
3755 	kfree(command);
3756 	/* Is this a LS or FS device under a HS hub? */
3757 	/* Hub or peripherial? */
3758 	return 1;
3759 
3760 disable_slot:
3761 	/* Disable slot, if we can do it without mem alloc */
3762 	spin_lock_irqsave(&xhci->lock, flags);
3763 	command->completion = NULL;
3764 	command->status = 0;
3765 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3766 				     udev->slot_id))
3767 		xhci_ring_cmd_db(xhci);
3768 	spin_unlock_irqrestore(&xhci->lock, flags);
3769 	return 0;
3770 }
3771 
3772 /*
3773  * Issue an Address Device command and optionally send a corresponding
3774  * SetAddress request to the device.
3775  */
3776 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3777 			     enum xhci_setup_dev setup)
3778 {
3779 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3780 	unsigned long flags;
3781 	struct xhci_virt_device *virt_dev;
3782 	int ret = 0;
3783 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3784 	struct xhci_slot_ctx *slot_ctx;
3785 	struct xhci_input_control_ctx *ctrl_ctx;
3786 	u64 temp_64;
3787 	struct xhci_command *command = NULL;
3788 
3789 	mutex_lock(&xhci->mutex);
3790 
3791 	if (xhci->xhc_state)	/* dying or halted */
3792 		goto out;
3793 
3794 	if (!udev->slot_id) {
3795 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3796 				"Bad Slot ID %d", udev->slot_id);
3797 		ret = -EINVAL;
3798 		goto out;
3799 	}
3800 
3801 	virt_dev = xhci->devs[udev->slot_id];
3802 
3803 	if (WARN_ON(!virt_dev)) {
3804 		/*
3805 		 * In plug/unplug torture test with an NEC controller,
3806 		 * a zero-dereference was observed once due to virt_dev = 0.
3807 		 * Print useful debug rather than crash if it is observed again!
3808 		 */
3809 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3810 			udev->slot_id);
3811 		ret = -EINVAL;
3812 		goto out;
3813 	}
3814 
3815 	if (setup == SETUP_CONTEXT_ONLY) {
3816 		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3817 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3818 		    SLOT_STATE_DEFAULT) {
3819 			xhci_dbg(xhci, "Slot already in default state\n");
3820 			goto out;
3821 		}
3822 	}
3823 
3824 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3825 	if (!command) {
3826 		ret = -ENOMEM;
3827 		goto out;
3828 	}
3829 
3830 	command->in_ctx = virt_dev->in_ctx;
3831 	command->completion = &xhci->addr_dev;
3832 
3833 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3834 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3835 	if (!ctrl_ctx) {
3836 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3837 				__func__);
3838 		ret = -EINVAL;
3839 		goto out;
3840 	}
3841 	/*
3842 	 * If this is the first Set Address since device plug-in or
3843 	 * virt_device realloaction after a resume with an xHCI power loss,
3844 	 * then set up the slot context.
3845 	 */
3846 	if (!slot_ctx->dev_info)
3847 		xhci_setup_addressable_virt_dev(xhci, udev);
3848 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3849 	else
3850 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3851 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3852 	ctrl_ctx->drop_flags = 0;
3853 
3854 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3855 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3856 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3857 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3858 
3859 	spin_lock_irqsave(&xhci->lock, flags);
3860 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3861 					udev->slot_id, setup);
3862 	if (ret) {
3863 		spin_unlock_irqrestore(&xhci->lock, flags);
3864 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3865 				"FIXME: allocate a command ring segment");
3866 		goto out;
3867 	}
3868 	xhci_ring_cmd_db(xhci);
3869 	spin_unlock_irqrestore(&xhci->lock, flags);
3870 
3871 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3872 	wait_for_completion(command->completion);
3873 
3874 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3875 	 * the SetAddress() "recovery interval" required by USB and aborting the
3876 	 * command on a timeout.
3877 	 */
3878 	switch (command->status) {
3879 	case COMP_CMD_ABORT:
3880 	case COMP_CMD_STOP:
3881 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3882 		ret = -ETIME;
3883 		break;
3884 	case COMP_CTX_STATE:
3885 	case COMP_EBADSLT:
3886 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3887 			 act, udev->slot_id);
3888 		ret = -EINVAL;
3889 		break;
3890 	case COMP_TX_ERR:
3891 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3892 		ret = -EPROTO;
3893 		break;
3894 	case COMP_DEV_ERR:
3895 		dev_warn(&udev->dev,
3896 			 "ERROR: Incompatible device for setup %s command\n", act);
3897 		ret = -ENODEV;
3898 		break;
3899 	case COMP_SUCCESS:
3900 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3901 			       "Successful setup %s command", act);
3902 		break;
3903 	default:
3904 		xhci_err(xhci,
3905 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3906 			 act, command->status);
3907 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3908 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3909 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3910 		ret = -EINVAL;
3911 		break;
3912 	}
3913 	if (ret)
3914 		goto out;
3915 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3916 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3917 			"Op regs DCBAA ptr = %#016llx", temp_64);
3918 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3919 		"Slot ID %d dcbaa entry @%p = %#016llx",
3920 		udev->slot_id,
3921 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3922 		(unsigned long long)
3923 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3924 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3925 			"Output Context DMA address = %#08llx",
3926 			(unsigned long long)virt_dev->out_ctx->dma);
3927 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3928 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3929 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3930 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3931 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3932 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3933 	/*
3934 	 * USB core uses address 1 for the roothubs, so we add one to the
3935 	 * address given back to us by the HC.
3936 	 */
3937 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3938 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3939 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3940 	/* Zero the input context control for later use */
3941 	ctrl_ctx->add_flags = 0;
3942 	ctrl_ctx->drop_flags = 0;
3943 
3944 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3945 		       "Internal device address = %d",
3946 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3947 out:
3948 	mutex_unlock(&xhci->mutex);
3949 	kfree(command);
3950 	return ret;
3951 }
3952 
3953 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3954 {
3955 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3956 }
3957 
3958 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3959 {
3960 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3961 }
3962 
3963 /*
3964  * Transfer the port index into real index in the HW port status
3965  * registers. Caculate offset between the port's PORTSC register
3966  * and port status base. Divide the number of per port register
3967  * to get the real index. The raw port number bases 1.
3968  */
3969 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3970 {
3971 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3972 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3973 	__le32 __iomem *addr;
3974 	int raw_port;
3975 
3976 	if (hcd->speed < HCD_USB3)
3977 		addr = xhci->usb2_ports[port1 - 1];
3978 	else
3979 		addr = xhci->usb3_ports[port1 - 1];
3980 
3981 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3982 	return raw_port;
3983 }
3984 
3985 /*
3986  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3987  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3988  */
3989 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3990 			struct usb_device *udev, u16 max_exit_latency)
3991 {
3992 	struct xhci_virt_device *virt_dev;
3993 	struct xhci_command *command;
3994 	struct xhci_input_control_ctx *ctrl_ctx;
3995 	struct xhci_slot_ctx *slot_ctx;
3996 	unsigned long flags;
3997 	int ret;
3998 
3999 	spin_lock_irqsave(&xhci->lock, flags);
4000 
4001 	virt_dev = xhci->devs[udev->slot_id];
4002 
4003 	/*
4004 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4005 	 * xHC was re-initialized. Exit latency will be set later after
4006 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4007 	 */
4008 
4009 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4010 		spin_unlock_irqrestore(&xhci->lock, flags);
4011 		return 0;
4012 	}
4013 
4014 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4015 	command = xhci->lpm_command;
4016 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4017 	if (!ctrl_ctx) {
4018 		spin_unlock_irqrestore(&xhci->lock, flags);
4019 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4020 				__func__);
4021 		return -ENOMEM;
4022 	}
4023 
4024 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4025 	spin_unlock_irqrestore(&xhci->lock, flags);
4026 
4027 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4028 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4029 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4030 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4031 	slot_ctx->dev_state = 0;
4032 
4033 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4034 			"Set up evaluate context for LPM MEL change.");
4035 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4036 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4037 
4038 	/* Issue and wait for the evaluate context command. */
4039 	ret = xhci_configure_endpoint(xhci, udev, command,
4040 			true, true);
4041 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4042 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4043 
4044 	if (!ret) {
4045 		spin_lock_irqsave(&xhci->lock, flags);
4046 		virt_dev->current_mel = max_exit_latency;
4047 		spin_unlock_irqrestore(&xhci->lock, flags);
4048 	}
4049 	return ret;
4050 }
4051 
4052 #ifdef CONFIG_PM
4053 
4054 /* BESL to HIRD Encoding array for USB2 LPM */
4055 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4056 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4057 
4058 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4059 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4060 					struct usb_device *udev)
4061 {
4062 	int u2del, besl, besl_host;
4063 	int besl_device = 0;
4064 	u32 field;
4065 
4066 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4067 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4068 
4069 	if (field & USB_BESL_SUPPORT) {
4070 		for (besl_host = 0; besl_host < 16; besl_host++) {
4071 			if (xhci_besl_encoding[besl_host] >= u2del)
4072 				break;
4073 		}
4074 		/* Use baseline BESL value as default */
4075 		if (field & USB_BESL_BASELINE_VALID)
4076 			besl_device = USB_GET_BESL_BASELINE(field);
4077 		else if (field & USB_BESL_DEEP_VALID)
4078 			besl_device = USB_GET_BESL_DEEP(field);
4079 	} else {
4080 		if (u2del <= 50)
4081 			besl_host = 0;
4082 		else
4083 			besl_host = (u2del - 51) / 75 + 1;
4084 	}
4085 
4086 	besl = besl_host + besl_device;
4087 	if (besl > 15)
4088 		besl = 15;
4089 
4090 	return besl;
4091 }
4092 
4093 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4094 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4095 {
4096 	u32 field;
4097 	int l1;
4098 	int besld = 0;
4099 	int hirdm = 0;
4100 
4101 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4102 
4103 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4104 	l1 = udev->l1_params.timeout / 256;
4105 
4106 	/* device has preferred BESLD */
4107 	if (field & USB_BESL_DEEP_VALID) {
4108 		besld = USB_GET_BESL_DEEP(field);
4109 		hirdm = 1;
4110 	}
4111 
4112 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4113 }
4114 
4115 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4116 			struct usb_device *udev, int enable)
4117 {
4118 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4119 	__le32 __iomem	**port_array;
4120 	__le32 __iomem	*pm_addr, *hlpm_addr;
4121 	u32		pm_val, hlpm_val, field;
4122 	unsigned int	port_num;
4123 	unsigned long	flags;
4124 	int		hird, exit_latency;
4125 	int		ret;
4126 
4127 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4128 			!udev->lpm_capable)
4129 		return -EPERM;
4130 
4131 	if (!udev->parent || udev->parent->parent ||
4132 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4133 		return -EPERM;
4134 
4135 	if (udev->usb2_hw_lpm_capable != 1)
4136 		return -EPERM;
4137 
4138 	spin_lock_irqsave(&xhci->lock, flags);
4139 
4140 	port_array = xhci->usb2_ports;
4141 	port_num = udev->portnum - 1;
4142 	pm_addr = port_array[port_num] + PORTPMSC;
4143 	pm_val = readl(pm_addr);
4144 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4145 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4146 
4147 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4148 			enable ? "enable" : "disable", port_num + 1);
4149 
4150 	if (enable) {
4151 		/* Host supports BESL timeout instead of HIRD */
4152 		if (udev->usb2_hw_lpm_besl_capable) {
4153 			/* if device doesn't have a preferred BESL value use a
4154 			 * default one which works with mixed HIRD and BESL
4155 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4156 			 */
4157 			if ((field & USB_BESL_SUPPORT) &&
4158 			    (field & USB_BESL_BASELINE_VALID))
4159 				hird = USB_GET_BESL_BASELINE(field);
4160 			else
4161 				hird = udev->l1_params.besl;
4162 
4163 			exit_latency = xhci_besl_encoding[hird];
4164 			spin_unlock_irqrestore(&xhci->lock, flags);
4165 
4166 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4167 			 * input context for link powermanagement evaluate
4168 			 * context commands. It is protected by hcd->bandwidth
4169 			 * mutex and is shared by all devices. We need to set
4170 			 * the max ext latency in USB 2 BESL LPM as well, so
4171 			 * use the same mutex and xhci_change_max_exit_latency()
4172 			 */
4173 			mutex_lock(hcd->bandwidth_mutex);
4174 			ret = xhci_change_max_exit_latency(xhci, udev,
4175 							   exit_latency);
4176 			mutex_unlock(hcd->bandwidth_mutex);
4177 
4178 			if (ret < 0)
4179 				return ret;
4180 			spin_lock_irqsave(&xhci->lock, flags);
4181 
4182 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4183 			writel(hlpm_val, hlpm_addr);
4184 			/* flush write */
4185 			readl(hlpm_addr);
4186 		} else {
4187 			hird = xhci_calculate_hird_besl(xhci, udev);
4188 		}
4189 
4190 		pm_val &= ~PORT_HIRD_MASK;
4191 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4192 		writel(pm_val, pm_addr);
4193 		pm_val = readl(pm_addr);
4194 		pm_val |= PORT_HLE;
4195 		writel(pm_val, pm_addr);
4196 		/* flush write */
4197 		readl(pm_addr);
4198 	} else {
4199 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4200 		writel(pm_val, pm_addr);
4201 		/* flush write */
4202 		readl(pm_addr);
4203 		if (udev->usb2_hw_lpm_besl_capable) {
4204 			spin_unlock_irqrestore(&xhci->lock, flags);
4205 			mutex_lock(hcd->bandwidth_mutex);
4206 			xhci_change_max_exit_latency(xhci, udev, 0);
4207 			mutex_unlock(hcd->bandwidth_mutex);
4208 			return 0;
4209 		}
4210 	}
4211 
4212 	spin_unlock_irqrestore(&xhci->lock, flags);
4213 	return 0;
4214 }
4215 
4216 /* check if a usb2 port supports a given extened capability protocol
4217  * only USB2 ports extended protocol capability values are cached.
4218  * Return 1 if capability is supported
4219  */
4220 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4221 					   unsigned capability)
4222 {
4223 	u32 port_offset, port_count;
4224 	int i;
4225 
4226 	for (i = 0; i < xhci->num_ext_caps; i++) {
4227 		if (xhci->ext_caps[i] & capability) {
4228 			/* port offsets starts at 1 */
4229 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4230 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4231 			if (port >= port_offset &&
4232 			    port < port_offset + port_count)
4233 				return 1;
4234 		}
4235 	}
4236 	return 0;
4237 }
4238 
4239 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4240 {
4241 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4242 	int		portnum = udev->portnum - 1;
4243 
4244 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4245 			!udev->lpm_capable)
4246 		return 0;
4247 
4248 	/* we only support lpm for non-hub device connected to root hub yet */
4249 	if (!udev->parent || udev->parent->parent ||
4250 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4251 		return 0;
4252 
4253 	if (xhci->hw_lpm_support == 1 &&
4254 			xhci_check_usb2_port_capability(
4255 				xhci, portnum, XHCI_HLC)) {
4256 		udev->usb2_hw_lpm_capable = 1;
4257 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4258 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4259 		if (xhci_check_usb2_port_capability(xhci, portnum,
4260 					XHCI_BLC))
4261 			udev->usb2_hw_lpm_besl_capable = 1;
4262 	}
4263 
4264 	return 0;
4265 }
4266 
4267 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4268 
4269 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4270 static unsigned long long xhci_service_interval_to_ns(
4271 		struct usb_endpoint_descriptor *desc)
4272 {
4273 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4274 }
4275 
4276 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4277 		enum usb3_link_state state)
4278 {
4279 	unsigned long long sel;
4280 	unsigned long long pel;
4281 	unsigned int max_sel_pel;
4282 	char *state_name;
4283 
4284 	switch (state) {
4285 	case USB3_LPM_U1:
4286 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4287 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4288 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4289 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4290 		state_name = "U1";
4291 		break;
4292 	case USB3_LPM_U2:
4293 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4294 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4295 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4296 		state_name = "U2";
4297 		break;
4298 	default:
4299 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4300 				__func__);
4301 		return USB3_LPM_DISABLED;
4302 	}
4303 
4304 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4305 		return USB3_LPM_DEVICE_INITIATED;
4306 
4307 	if (sel > max_sel_pel)
4308 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4309 				"due to long SEL %llu ms\n",
4310 				state_name, sel);
4311 	else
4312 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4313 				"due to long PEL %llu ms\n",
4314 				state_name, pel);
4315 	return USB3_LPM_DISABLED;
4316 }
4317 
4318 /* The U1 timeout should be the maximum of the following values:
4319  *  - For control endpoints, U1 system exit latency (SEL) * 3
4320  *  - For bulk endpoints, U1 SEL * 5
4321  *  - For interrupt endpoints:
4322  *    - Notification EPs, U1 SEL * 3
4323  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4324  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4325  */
4326 static unsigned long long xhci_calculate_intel_u1_timeout(
4327 		struct usb_device *udev,
4328 		struct usb_endpoint_descriptor *desc)
4329 {
4330 	unsigned long long timeout_ns;
4331 	int ep_type;
4332 	int intr_type;
4333 
4334 	ep_type = usb_endpoint_type(desc);
4335 	switch (ep_type) {
4336 	case USB_ENDPOINT_XFER_CONTROL:
4337 		timeout_ns = udev->u1_params.sel * 3;
4338 		break;
4339 	case USB_ENDPOINT_XFER_BULK:
4340 		timeout_ns = udev->u1_params.sel * 5;
4341 		break;
4342 	case USB_ENDPOINT_XFER_INT:
4343 		intr_type = usb_endpoint_interrupt_type(desc);
4344 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4345 			timeout_ns = udev->u1_params.sel * 3;
4346 			break;
4347 		}
4348 		/* Otherwise the calculation is the same as isoc eps */
4349 	case USB_ENDPOINT_XFER_ISOC:
4350 		timeout_ns = xhci_service_interval_to_ns(desc);
4351 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4352 		if (timeout_ns < udev->u1_params.sel * 2)
4353 			timeout_ns = udev->u1_params.sel * 2;
4354 		break;
4355 	default:
4356 		return 0;
4357 	}
4358 
4359 	return timeout_ns;
4360 }
4361 
4362 /* Returns the hub-encoded U1 timeout value. */
4363 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4364 		struct usb_device *udev,
4365 		struct usb_endpoint_descriptor *desc)
4366 {
4367 	unsigned long long timeout_ns;
4368 
4369 	if (xhci->quirks & XHCI_INTEL_HOST)
4370 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4371 	else
4372 		timeout_ns = udev->u1_params.sel;
4373 
4374 	/* The U1 timeout is encoded in 1us intervals.
4375 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4376 	 */
4377 	if (timeout_ns == USB3_LPM_DISABLED)
4378 		timeout_ns = 1;
4379 	else
4380 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4381 
4382 	/* If the necessary timeout value is bigger than what we can set in the
4383 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4384 	 */
4385 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4386 		return timeout_ns;
4387 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4388 			"due to long timeout %llu ms\n", timeout_ns);
4389 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4390 }
4391 
4392 /* The U2 timeout should be the maximum of:
4393  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4394  *  - largest bInterval of any active periodic endpoint (to avoid going
4395  *    into lower power link states between intervals).
4396  *  - the U2 Exit Latency of the device
4397  */
4398 static unsigned long long xhci_calculate_intel_u2_timeout(
4399 		struct usb_device *udev,
4400 		struct usb_endpoint_descriptor *desc)
4401 {
4402 	unsigned long long timeout_ns;
4403 	unsigned long long u2_del_ns;
4404 
4405 	timeout_ns = 10 * 1000 * 1000;
4406 
4407 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4408 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4409 		timeout_ns = xhci_service_interval_to_ns(desc);
4410 
4411 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4412 	if (u2_del_ns > timeout_ns)
4413 		timeout_ns = u2_del_ns;
4414 
4415 	return timeout_ns;
4416 }
4417 
4418 /* Returns the hub-encoded U2 timeout value. */
4419 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4420 		struct usb_device *udev,
4421 		struct usb_endpoint_descriptor *desc)
4422 {
4423 	unsigned long long timeout_ns;
4424 
4425 	if (xhci->quirks & XHCI_INTEL_HOST)
4426 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4427 	else
4428 		timeout_ns = udev->u2_params.sel;
4429 
4430 	/* The U2 timeout is encoded in 256us intervals */
4431 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4432 	/* If the necessary timeout value is bigger than what we can set in the
4433 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4434 	 */
4435 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4436 		return timeout_ns;
4437 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4438 			"due to long timeout %llu ms\n", timeout_ns);
4439 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4440 }
4441 
4442 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4443 		struct usb_device *udev,
4444 		struct usb_endpoint_descriptor *desc,
4445 		enum usb3_link_state state,
4446 		u16 *timeout)
4447 {
4448 	if (state == USB3_LPM_U1)
4449 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4450 	else if (state == USB3_LPM_U2)
4451 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4452 
4453 	return USB3_LPM_DISABLED;
4454 }
4455 
4456 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4457 		struct usb_device *udev,
4458 		struct usb_endpoint_descriptor *desc,
4459 		enum usb3_link_state state,
4460 		u16 *timeout)
4461 {
4462 	u16 alt_timeout;
4463 
4464 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4465 		desc, state, timeout);
4466 
4467 	/* If we found we can't enable hub-initiated LPM, or
4468 	 * the U1 or U2 exit latency was too high to allow
4469 	 * device-initiated LPM as well, just stop searching.
4470 	 */
4471 	if (alt_timeout == USB3_LPM_DISABLED ||
4472 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4473 		*timeout = alt_timeout;
4474 		return -E2BIG;
4475 	}
4476 	if (alt_timeout > *timeout)
4477 		*timeout = alt_timeout;
4478 	return 0;
4479 }
4480 
4481 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4482 		struct usb_device *udev,
4483 		struct usb_host_interface *alt,
4484 		enum usb3_link_state state,
4485 		u16 *timeout)
4486 {
4487 	int j;
4488 
4489 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4490 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4491 					&alt->endpoint[j].desc, state, timeout))
4492 			return -E2BIG;
4493 		continue;
4494 	}
4495 	return 0;
4496 }
4497 
4498 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4499 		enum usb3_link_state state)
4500 {
4501 	struct usb_device *parent;
4502 	unsigned int num_hubs;
4503 
4504 	if (state == USB3_LPM_U2)
4505 		return 0;
4506 
4507 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4508 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4509 			parent = parent->parent)
4510 		num_hubs++;
4511 
4512 	if (num_hubs < 2)
4513 		return 0;
4514 
4515 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4516 			" below second-tier hub.\n");
4517 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4518 			"to decrease power consumption.\n");
4519 	return -E2BIG;
4520 }
4521 
4522 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4523 		struct usb_device *udev,
4524 		enum usb3_link_state state)
4525 {
4526 	if (xhci->quirks & XHCI_INTEL_HOST)
4527 		return xhci_check_intel_tier_policy(udev, state);
4528 	else
4529 		return 0;
4530 }
4531 
4532 /* Returns the U1 or U2 timeout that should be enabled.
4533  * If the tier check or timeout setting functions return with a non-zero exit
4534  * code, that means the timeout value has been finalized and we shouldn't look
4535  * at any more endpoints.
4536  */
4537 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4538 			struct usb_device *udev, enum usb3_link_state state)
4539 {
4540 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4541 	struct usb_host_config *config;
4542 	char *state_name;
4543 	int i;
4544 	u16 timeout = USB3_LPM_DISABLED;
4545 
4546 	if (state == USB3_LPM_U1)
4547 		state_name = "U1";
4548 	else if (state == USB3_LPM_U2)
4549 		state_name = "U2";
4550 	else {
4551 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4552 				state);
4553 		return timeout;
4554 	}
4555 
4556 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4557 		return timeout;
4558 
4559 	/* Gather some information about the currently installed configuration
4560 	 * and alternate interface settings.
4561 	 */
4562 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4563 			state, &timeout))
4564 		return timeout;
4565 
4566 	config = udev->actconfig;
4567 	if (!config)
4568 		return timeout;
4569 
4570 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4571 		struct usb_driver *driver;
4572 		struct usb_interface *intf = config->interface[i];
4573 
4574 		if (!intf)
4575 			continue;
4576 
4577 		/* Check if any currently bound drivers want hub-initiated LPM
4578 		 * disabled.
4579 		 */
4580 		if (intf->dev.driver) {
4581 			driver = to_usb_driver(intf->dev.driver);
4582 			if (driver && driver->disable_hub_initiated_lpm) {
4583 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4584 						"at request of driver %s\n",
4585 						state_name, driver->name);
4586 				return xhci_get_timeout_no_hub_lpm(udev, state);
4587 			}
4588 		}
4589 
4590 		/* Not sure how this could happen... */
4591 		if (!intf->cur_altsetting)
4592 			continue;
4593 
4594 		if (xhci_update_timeout_for_interface(xhci, udev,
4595 					intf->cur_altsetting,
4596 					state, &timeout))
4597 			return timeout;
4598 	}
4599 	return timeout;
4600 }
4601 
4602 static int calculate_max_exit_latency(struct usb_device *udev,
4603 		enum usb3_link_state state_changed,
4604 		u16 hub_encoded_timeout)
4605 {
4606 	unsigned long long u1_mel_us = 0;
4607 	unsigned long long u2_mel_us = 0;
4608 	unsigned long long mel_us = 0;
4609 	bool disabling_u1;
4610 	bool disabling_u2;
4611 	bool enabling_u1;
4612 	bool enabling_u2;
4613 
4614 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4615 			hub_encoded_timeout == USB3_LPM_DISABLED);
4616 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4617 			hub_encoded_timeout == USB3_LPM_DISABLED);
4618 
4619 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4620 			hub_encoded_timeout != USB3_LPM_DISABLED);
4621 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4622 			hub_encoded_timeout != USB3_LPM_DISABLED);
4623 
4624 	/* If U1 was already enabled and we're not disabling it,
4625 	 * or we're going to enable U1, account for the U1 max exit latency.
4626 	 */
4627 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4628 			enabling_u1)
4629 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4630 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4631 			enabling_u2)
4632 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4633 
4634 	if (u1_mel_us > u2_mel_us)
4635 		mel_us = u1_mel_us;
4636 	else
4637 		mel_us = u2_mel_us;
4638 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4639 	if (mel_us > MAX_EXIT) {
4640 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4641 				"is too big.\n", mel_us);
4642 		return -E2BIG;
4643 	}
4644 	return mel_us;
4645 }
4646 
4647 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4648 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4649 			struct usb_device *udev, enum usb3_link_state state)
4650 {
4651 	struct xhci_hcd	*xhci;
4652 	u16 hub_encoded_timeout;
4653 	int mel;
4654 	int ret;
4655 
4656 	xhci = hcd_to_xhci(hcd);
4657 	/* The LPM timeout values are pretty host-controller specific, so don't
4658 	 * enable hub-initiated timeouts unless the vendor has provided
4659 	 * information about their timeout algorithm.
4660 	 */
4661 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4662 			!xhci->devs[udev->slot_id])
4663 		return USB3_LPM_DISABLED;
4664 
4665 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4666 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4667 	if (mel < 0) {
4668 		/* Max Exit Latency is too big, disable LPM. */
4669 		hub_encoded_timeout = USB3_LPM_DISABLED;
4670 		mel = 0;
4671 	}
4672 
4673 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4674 	if (ret)
4675 		return ret;
4676 	return hub_encoded_timeout;
4677 }
4678 
4679 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4680 			struct usb_device *udev, enum usb3_link_state state)
4681 {
4682 	struct xhci_hcd	*xhci;
4683 	u16 mel;
4684 
4685 	xhci = hcd_to_xhci(hcd);
4686 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4687 			!xhci->devs[udev->slot_id])
4688 		return 0;
4689 
4690 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4691 	return xhci_change_max_exit_latency(xhci, udev, mel);
4692 }
4693 #else /* CONFIG_PM */
4694 
4695 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4696 				struct usb_device *udev, int enable)
4697 {
4698 	return 0;
4699 }
4700 
4701 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4702 {
4703 	return 0;
4704 }
4705 
4706 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4707 			struct usb_device *udev, enum usb3_link_state state)
4708 {
4709 	return USB3_LPM_DISABLED;
4710 }
4711 
4712 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4713 			struct usb_device *udev, enum usb3_link_state state)
4714 {
4715 	return 0;
4716 }
4717 #endif	/* CONFIG_PM */
4718 
4719 /*-------------------------------------------------------------------------*/
4720 
4721 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4722  * internal data structures for the device.
4723  */
4724 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4725 			struct usb_tt *tt, gfp_t mem_flags)
4726 {
4727 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4728 	struct xhci_virt_device *vdev;
4729 	struct xhci_command *config_cmd;
4730 	struct xhci_input_control_ctx *ctrl_ctx;
4731 	struct xhci_slot_ctx *slot_ctx;
4732 	unsigned long flags;
4733 	unsigned think_time;
4734 	int ret;
4735 
4736 	/* Ignore root hubs */
4737 	if (!hdev->parent)
4738 		return 0;
4739 
4740 	vdev = xhci->devs[hdev->slot_id];
4741 	if (!vdev) {
4742 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4743 		return -EINVAL;
4744 	}
4745 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4746 	if (!config_cmd) {
4747 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4748 		return -ENOMEM;
4749 	}
4750 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4751 	if (!ctrl_ctx) {
4752 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4753 				__func__);
4754 		xhci_free_command(xhci, config_cmd);
4755 		return -ENOMEM;
4756 	}
4757 
4758 	spin_lock_irqsave(&xhci->lock, flags);
4759 	if (hdev->speed == USB_SPEED_HIGH &&
4760 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4761 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4762 		xhci_free_command(xhci, config_cmd);
4763 		spin_unlock_irqrestore(&xhci->lock, flags);
4764 		return -ENOMEM;
4765 	}
4766 
4767 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4768 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4769 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4770 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4771 	if (tt->multi)
4772 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4773 	if (xhci->hci_version > 0x95) {
4774 		xhci_dbg(xhci, "xHCI version %x needs hub "
4775 				"TT think time and number of ports\n",
4776 				(unsigned int) xhci->hci_version);
4777 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4778 		/* Set TT think time - convert from ns to FS bit times.
4779 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4780 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4781 		 *
4782 		 * xHCI 1.0: this field shall be 0 if the device is not a
4783 		 * High-spped hub.
4784 		 */
4785 		think_time = tt->think_time;
4786 		if (think_time != 0)
4787 			think_time = (think_time / 666) - 1;
4788 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4789 			slot_ctx->tt_info |=
4790 				cpu_to_le32(TT_THINK_TIME(think_time));
4791 	} else {
4792 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4793 				"TT think time or number of ports\n",
4794 				(unsigned int) xhci->hci_version);
4795 	}
4796 	slot_ctx->dev_state = 0;
4797 	spin_unlock_irqrestore(&xhci->lock, flags);
4798 
4799 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4800 			(xhci->hci_version > 0x95) ?
4801 			"configure endpoint" : "evaluate context");
4802 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4803 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4804 
4805 	/* Issue and wait for the configure endpoint or
4806 	 * evaluate context command.
4807 	 */
4808 	if (xhci->hci_version > 0x95)
4809 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4810 				false, false);
4811 	else
4812 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4813 				true, false);
4814 
4815 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4816 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4817 
4818 	xhci_free_command(xhci, config_cmd);
4819 	return ret;
4820 }
4821 
4822 int xhci_get_frame(struct usb_hcd *hcd)
4823 {
4824 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4825 	/* EHCI mods by the periodic size.  Why? */
4826 	return readl(&xhci->run_regs->microframe_index) >> 3;
4827 }
4828 
4829 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4830 {
4831 	struct xhci_hcd		*xhci;
4832 	struct device		*dev = hcd->self.controller;
4833 	int			retval;
4834 
4835 	/* Accept arbitrarily long scatter-gather lists */
4836 	hcd->self.sg_tablesize = ~0;
4837 
4838 	/* support to build packet from discontinuous buffers */
4839 	hcd->self.no_sg_constraint = 1;
4840 
4841 	/* XHCI controllers don't stop the ep queue on short packets :| */
4842 	hcd->self.no_stop_on_short = 1;
4843 
4844 	xhci = hcd_to_xhci(hcd);
4845 
4846 	if (usb_hcd_is_primary_hcd(hcd)) {
4847 		xhci->main_hcd = hcd;
4848 		/* Mark the first roothub as being USB 2.0.
4849 		 * The xHCI driver will register the USB 3.0 roothub.
4850 		 */
4851 		hcd->speed = HCD_USB2;
4852 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4853 		/*
4854 		 * USB 2.0 roothub under xHCI has an integrated TT,
4855 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4856 		 * companion controller.
4857 		 */
4858 		hcd->has_tt = 1;
4859 	} else {
4860 		if (xhci->sbrn == 0x31) {
4861 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4862 			hcd->speed = HCD_USB31;
4863 		}
4864 		/* xHCI private pointer was set in xhci_pci_probe for the second
4865 		 * registered roothub.
4866 		 */
4867 		return 0;
4868 	}
4869 
4870 	mutex_init(&xhci->mutex);
4871 	xhci->cap_regs = hcd->regs;
4872 	xhci->op_regs = hcd->regs +
4873 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4874 	xhci->run_regs = hcd->regs +
4875 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4876 	/* Cache read-only capability registers */
4877 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4878 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4879 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4880 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4881 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4882 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4883 	if (xhci->hci_version > 0x100)
4884 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4885 	xhci_print_registers(xhci);
4886 
4887 	xhci->quirks = quirks;
4888 
4889 	get_quirks(dev, xhci);
4890 
4891 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4892 	 * success event after a short transfer. This quirk will ignore such
4893 	 * spurious event.
4894 	 */
4895 	if (xhci->hci_version > 0x96)
4896 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4897 
4898 	/* Make sure the HC is halted. */
4899 	retval = xhci_halt(xhci);
4900 	if (retval)
4901 		return retval;
4902 
4903 	xhci_dbg(xhci, "Resetting HCD\n");
4904 	/* Reset the internal HC memory state and registers. */
4905 	retval = xhci_reset(xhci);
4906 	if (retval)
4907 		return retval;
4908 	xhci_dbg(xhci, "Reset complete\n");
4909 
4910 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4911 	 * if xHC supports 64-bit addressing */
4912 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4913 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4914 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4915 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4916 	} else {
4917 		/*
4918 		 * This is to avoid error in cases where a 32-bit USB
4919 		 * controller is used on a 64-bit capable system.
4920 		 */
4921 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4922 		if (retval)
4923 			return retval;
4924 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4925 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4926 	}
4927 
4928 	xhci_dbg(xhci, "Calling HCD init\n");
4929 	/* Initialize HCD and host controller data structures. */
4930 	retval = xhci_init(hcd);
4931 	if (retval)
4932 		return retval;
4933 	xhci_dbg(xhci, "Called HCD init\n");
4934 
4935 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4936 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4937 
4938 	return 0;
4939 }
4940 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4941 
4942 static const struct hc_driver xhci_hc_driver = {
4943 	.description =		"xhci-hcd",
4944 	.product_desc =		"xHCI Host Controller",
4945 	.hcd_priv_size =	sizeof(struct xhci_hcd *),
4946 
4947 	/*
4948 	 * generic hardware linkage
4949 	 */
4950 	.irq =			xhci_irq,
4951 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4952 
4953 	/*
4954 	 * basic lifecycle operations
4955 	 */
4956 	.reset =		NULL, /* set in xhci_init_driver() */
4957 	.start =		xhci_run,
4958 	.stop =			xhci_stop,
4959 	.shutdown =		xhci_shutdown,
4960 
4961 	/*
4962 	 * managing i/o requests and associated device resources
4963 	 */
4964 	.urb_enqueue =		xhci_urb_enqueue,
4965 	.urb_dequeue =		xhci_urb_dequeue,
4966 	.alloc_dev =		xhci_alloc_dev,
4967 	.free_dev =		xhci_free_dev,
4968 	.alloc_streams =	xhci_alloc_streams,
4969 	.free_streams =		xhci_free_streams,
4970 	.add_endpoint =		xhci_add_endpoint,
4971 	.drop_endpoint =	xhci_drop_endpoint,
4972 	.endpoint_reset =	xhci_endpoint_reset,
4973 	.check_bandwidth =	xhci_check_bandwidth,
4974 	.reset_bandwidth =	xhci_reset_bandwidth,
4975 	.address_device =	xhci_address_device,
4976 	.enable_device =	xhci_enable_device,
4977 	.update_hub_device =	xhci_update_hub_device,
4978 	.reset_device =		xhci_discover_or_reset_device,
4979 
4980 	/*
4981 	 * scheduling support
4982 	 */
4983 	.get_frame_number =	xhci_get_frame,
4984 
4985 	/*
4986 	 * root hub support
4987 	 */
4988 	.hub_control =		xhci_hub_control,
4989 	.hub_status_data =	xhci_hub_status_data,
4990 	.bus_suspend =		xhci_bus_suspend,
4991 	.bus_resume =		xhci_bus_resume,
4992 
4993 	/*
4994 	 * call back when device connected and addressed
4995 	 */
4996 	.update_device =        xhci_update_device,
4997 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
4998 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
4999 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5000 	.find_raw_port_number =	xhci_find_raw_port_number,
5001 };
5002 
5003 void xhci_init_driver(struct hc_driver *drv,
5004 		      const struct xhci_driver_overrides *over)
5005 {
5006 	BUG_ON(!over);
5007 
5008 	/* Copy the generic table to drv then apply the overrides */
5009 	*drv = xhci_hc_driver;
5010 
5011 	if (over) {
5012 		drv->hcd_priv_size += over->extra_priv_size;
5013 		if (over->reset)
5014 			drv->reset = over->reset;
5015 		if (over->start)
5016 			drv->start = over->start;
5017 	}
5018 }
5019 EXPORT_SYMBOL_GPL(xhci_init_driver);
5020 
5021 MODULE_DESCRIPTION(DRIVER_DESC);
5022 MODULE_AUTHOR(DRIVER_AUTHOR);
5023 MODULE_LICENSE("GPL");
5024 
5025 static int __init xhci_hcd_init(void)
5026 {
5027 	/*
5028 	 * Check the compiler generated sizes of structures that must be laid
5029 	 * out in specific ways for hardware access.
5030 	 */
5031 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5032 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5033 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5034 	/* xhci_device_control has eight fields, and also
5035 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5036 	 */
5037 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5038 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5039 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5040 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5041 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5042 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5043 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5044 	return 0;
5045 }
5046 
5047 /*
5048  * If an init function is provided, an exit function must also be provided
5049  * to allow module unload.
5050  */
5051 static void __exit xhci_hcd_fini(void) { }
5052 
5053 module_init(xhci_hcd_init);
5054 module_exit(xhci_hcd_fini);
5055