1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 35 #define DRIVER_AUTHOR "Sarah Sharp" 36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 37 38 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 39 40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 41 static int link_quirk; 42 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 44 45 static unsigned int quirks; 46 module_param(quirks, uint, S_IRUGO); 47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 48 49 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 50 /* 51 * xhci_handshake - spin reading hc until handshake completes or fails 52 * @ptr: address of hc register to be read 53 * @mask: bits to look at in result of read 54 * @done: value of those bits when handshake succeeds 55 * @usec: timeout in microseconds 56 * 57 * Returns negative errno, or zero on success 58 * 59 * Success happens when the "mask" bits have the specified value (hardware 60 * handshake done). There are two failure modes: "usec" have passed (major 61 * hardware flakeout), or the register reads as all-ones (hardware removed). 62 */ 63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 64 { 65 u32 result; 66 67 do { 68 result = readl(ptr); 69 if (result == ~(u32)0) /* card removed */ 70 return -ENODEV; 71 result &= mask; 72 if (result == done) 73 return 0; 74 udelay(1); 75 usec--; 76 } while (usec > 0); 77 return -ETIMEDOUT; 78 } 79 80 /* 81 * Disable interrupts and begin the xHCI halting process. 82 */ 83 void xhci_quiesce(struct xhci_hcd *xhci) 84 { 85 u32 halted; 86 u32 cmd; 87 u32 mask; 88 89 mask = ~(XHCI_IRQS); 90 halted = readl(&xhci->op_regs->status) & STS_HALT; 91 if (!halted) 92 mask &= ~CMD_RUN; 93 94 cmd = readl(&xhci->op_regs->command); 95 cmd &= mask; 96 writel(cmd, &xhci->op_regs->command); 97 } 98 99 /* 100 * Force HC into halt state. 101 * 102 * Disable any IRQs and clear the run/stop bit. 103 * HC will complete any current and actively pipelined transactions, and 104 * should halt within 16 ms of the run/stop bit being cleared. 105 * Read HC Halted bit in the status register to see when the HC is finished. 106 */ 107 int xhci_halt(struct xhci_hcd *xhci) 108 { 109 int ret; 110 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 111 xhci_quiesce(xhci); 112 113 ret = xhci_handshake(&xhci->op_regs->status, 114 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 115 if (!ret) { 116 xhci->xhc_state |= XHCI_STATE_HALTED; 117 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 118 } else 119 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 120 XHCI_MAX_HALT_USEC); 121 return ret; 122 } 123 124 /* 125 * Set the run bit and wait for the host to be running. 126 */ 127 static int xhci_start(struct xhci_hcd *xhci) 128 { 129 u32 temp; 130 int ret; 131 132 temp = readl(&xhci->op_regs->command); 133 temp |= (CMD_RUN); 134 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 135 temp); 136 writel(temp, &xhci->op_regs->command); 137 138 /* 139 * Wait for the HCHalted Status bit to be 0 to indicate the host is 140 * running. 141 */ 142 ret = xhci_handshake(&xhci->op_regs->status, 143 STS_HALT, 0, XHCI_MAX_HALT_USEC); 144 if (ret == -ETIMEDOUT) 145 xhci_err(xhci, "Host took too long to start, " 146 "waited %u microseconds.\n", 147 XHCI_MAX_HALT_USEC); 148 if (!ret) 149 xhci->xhc_state &= ~(XHCI_STATE_HALTED | XHCI_STATE_DYING); 150 151 return ret; 152 } 153 154 /* 155 * Reset a halted HC. 156 * 157 * This resets pipelines, timers, counters, state machines, etc. 158 * Transactions will be terminated immediately, and operational registers 159 * will be set to their defaults. 160 */ 161 int xhci_reset(struct xhci_hcd *xhci) 162 { 163 u32 command; 164 u32 state; 165 int ret, i; 166 167 state = readl(&xhci->op_regs->status); 168 if ((state & STS_HALT) == 0) { 169 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 170 return 0; 171 } 172 173 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 174 command = readl(&xhci->op_regs->command); 175 command |= CMD_RESET; 176 writel(command, &xhci->op_regs->command); 177 178 ret = xhci_handshake(&xhci->op_regs->command, 179 CMD_RESET, 0, 10 * 1000 * 1000); 180 if (ret) 181 return ret; 182 183 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 184 "Wait for controller to be ready for doorbell rings"); 185 /* 186 * xHCI cannot write to any doorbells or operational registers other 187 * than status until the "Controller Not Ready" flag is cleared. 188 */ 189 ret = xhci_handshake(&xhci->op_regs->status, 190 STS_CNR, 0, 10 * 1000 * 1000); 191 192 for (i = 0; i < 2; ++i) { 193 xhci->bus_state[i].port_c_suspend = 0; 194 xhci->bus_state[i].suspended_ports = 0; 195 xhci->bus_state[i].resuming_ports = 0; 196 } 197 198 return ret; 199 } 200 201 #ifdef CONFIG_PCI 202 static int xhci_free_msi(struct xhci_hcd *xhci) 203 { 204 int i; 205 206 if (!xhci->msix_entries) 207 return -EINVAL; 208 209 for (i = 0; i < xhci->msix_count; i++) 210 if (xhci->msix_entries[i].vector) 211 free_irq(xhci->msix_entries[i].vector, 212 xhci_to_hcd(xhci)); 213 return 0; 214 } 215 216 /* 217 * Set up MSI 218 */ 219 static int xhci_setup_msi(struct xhci_hcd *xhci) 220 { 221 int ret; 222 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 223 224 ret = pci_enable_msi(pdev); 225 if (ret) { 226 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 227 "failed to allocate MSI entry"); 228 return ret; 229 } 230 231 ret = request_irq(pdev->irq, xhci_msi_irq, 232 0, "xhci_hcd", xhci_to_hcd(xhci)); 233 if (ret) { 234 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 235 "disable MSI interrupt"); 236 pci_disable_msi(pdev); 237 } 238 239 return ret; 240 } 241 242 /* 243 * Free IRQs 244 * free all IRQs request 245 */ 246 static void xhci_free_irq(struct xhci_hcd *xhci) 247 { 248 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 249 int ret; 250 251 /* return if using legacy interrupt */ 252 if (xhci_to_hcd(xhci)->irq > 0) 253 return; 254 255 ret = xhci_free_msi(xhci); 256 if (!ret) 257 return; 258 if (pdev->irq > 0) 259 free_irq(pdev->irq, xhci_to_hcd(xhci)); 260 261 return; 262 } 263 264 /* 265 * Set up MSI-X 266 */ 267 static int xhci_setup_msix(struct xhci_hcd *xhci) 268 { 269 int i, ret = 0; 270 struct usb_hcd *hcd = xhci_to_hcd(xhci); 271 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 272 273 /* 274 * calculate number of msi-x vectors supported. 275 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 276 * with max number of interrupters based on the xhci HCSPARAMS1. 277 * - num_online_cpus: maximum msi-x vectors per CPUs core. 278 * Add additional 1 vector to ensure always available interrupt. 279 */ 280 xhci->msix_count = min(num_online_cpus() + 1, 281 HCS_MAX_INTRS(xhci->hcs_params1)); 282 283 xhci->msix_entries = 284 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 285 GFP_KERNEL); 286 if (!xhci->msix_entries) { 287 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 288 return -ENOMEM; 289 } 290 291 for (i = 0; i < xhci->msix_count; i++) { 292 xhci->msix_entries[i].entry = i; 293 xhci->msix_entries[i].vector = 0; 294 } 295 296 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count); 297 if (ret) { 298 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 299 "Failed to enable MSI-X"); 300 goto free_entries; 301 } 302 303 for (i = 0; i < xhci->msix_count; i++) { 304 ret = request_irq(xhci->msix_entries[i].vector, 305 xhci_msi_irq, 306 0, "xhci_hcd", xhci_to_hcd(xhci)); 307 if (ret) 308 goto disable_msix; 309 } 310 311 hcd->msix_enabled = 1; 312 return ret; 313 314 disable_msix: 315 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 316 xhci_free_irq(xhci); 317 pci_disable_msix(pdev); 318 free_entries: 319 kfree(xhci->msix_entries); 320 xhci->msix_entries = NULL; 321 return ret; 322 } 323 324 /* Free any IRQs and disable MSI-X */ 325 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 326 { 327 struct usb_hcd *hcd = xhci_to_hcd(xhci); 328 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 329 330 if (xhci->quirks & XHCI_PLAT) 331 return; 332 333 xhci_free_irq(xhci); 334 335 if (xhci->msix_entries) { 336 pci_disable_msix(pdev); 337 kfree(xhci->msix_entries); 338 xhci->msix_entries = NULL; 339 } else { 340 pci_disable_msi(pdev); 341 } 342 343 hcd->msix_enabled = 0; 344 return; 345 } 346 347 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 348 { 349 int i; 350 351 if (xhci->msix_entries) { 352 for (i = 0; i < xhci->msix_count; i++) 353 synchronize_irq(xhci->msix_entries[i].vector); 354 } 355 } 356 357 static int xhci_try_enable_msi(struct usb_hcd *hcd) 358 { 359 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 360 struct pci_dev *pdev; 361 int ret; 362 363 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 364 if (xhci->quirks & XHCI_PLAT) 365 return 0; 366 367 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 368 /* 369 * Some Fresco Logic host controllers advertise MSI, but fail to 370 * generate interrupts. Don't even try to enable MSI. 371 */ 372 if (xhci->quirks & XHCI_BROKEN_MSI) 373 goto legacy_irq; 374 375 /* unregister the legacy interrupt */ 376 if (hcd->irq) 377 free_irq(hcd->irq, hcd); 378 hcd->irq = 0; 379 380 ret = xhci_setup_msix(xhci); 381 if (ret) 382 /* fall back to msi*/ 383 ret = xhci_setup_msi(xhci); 384 385 if (!ret) 386 /* hcd->irq is 0, we have MSI */ 387 return 0; 388 389 if (!pdev->irq) { 390 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 391 return -EINVAL; 392 } 393 394 legacy_irq: 395 if (!strlen(hcd->irq_descr)) 396 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 397 hcd->driver->description, hcd->self.busnum); 398 399 /* fall back to legacy interrupt*/ 400 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 401 hcd->irq_descr, hcd); 402 if (ret) { 403 xhci_err(xhci, "request interrupt %d failed\n", 404 pdev->irq); 405 return ret; 406 } 407 hcd->irq = pdev->irq; 408 return 0; 409 } 410 411 #else 412 413 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 414 { 415 return 0; 416 } 417 418 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 419 { 420 } 421 422 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 423 { 424 } 425 426 #endif 427 428 static void compliance_mode_recovery(unsigned long arg) 429 { 430 struct xhci_hcd *xhci; 431 struct usb_hcd *hcd; 432 u32 temp; 433 int i; 434 435 xhci = (struct xhci_hcd *)arg; 436 437 for (i = 0; i < xhci->num_usb3_ports; i++) { 438 temp = readl(xhci->usb3_ports[i]); 439 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 440 /* 441 * Compliance Mode Detected. Letting USB Core 442 * handle the Warm Reset 443 */ 444 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 445 "Compliance mode detected->port %d", 446 i + 1); 447 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 448 "Attempting compliance mode recovery"); 449 hcd = xhci->shared_hcd; 450 451 if (hcd->state == HC_STATE_SUSPENDED) 452 usb_hcd_resume_root_hub(hcd); 453 454 usb_hcd_poll_rh_status(hcd); 455 } 456 } 457 458 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 459 mod_timer(&xhci->comp_mode_recovery_timer, 460 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 461 } 462 463 /* 464 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 465 * that causes ports behind that hardware to enter compliance mode sometimes. 466 * The quirk creates a timer that polls every 2 seconds the link state of 467 * each host controller's port and recovers it by issuing a Warm reset 468 * if Compliance mode is detected, otherwise the port will become "dead" (no 469 * device connections or disconnections will be detected anymore). Becasue no 470 * status event is generated when entering compliance mode (per xhci spec), 471 * this quirk is needed on systems that have the failing hardware installed. 472 */ 473 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 474 { 475 xhci->port_status_u0 = 0; 476 setup_timer(&xhci->comp_mode_recovery_timer, 477 compliance_mode_recovery, (unsigned long)xhci); 478 xhci->comp_mode_recovery_timer.expires = jiffies + 479 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 480 481 set_timer_slack(&xhci->comp_mode_recovery_timer, 482 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 483 add_timer(&xhci->comp_mode_recovery_timer); 484 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 485 "Compliance mode recovery timer initialized"); 486 } 487 488 /* 489 * This function identifies the systems that have installed the SN65LVPE502CP 490 * USB3.0 re-driver and that need the Compliance Mode Quirk. 491 * Systems: 492 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 493 */ 494 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 495 { 496 const char *dmi_product_name, *dmi_sys_vendor; 497 498 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 499 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 500 if (!dmi_product_name || !dmi_sys_vendor) 501 return false; 502 503 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 504 return false; 505 506 if (strstr(dmi_product_name, "Z420") || 507 strstr(dmi_product_name, "Z620") || 508 strstr(dmi_product_name, "Z820") || 509 strstr(dmi_product_name, "Z1 Workstation")) 510 return true; 511 512 return false; 513 } 514 515 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 516 { 517 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 518 } 519 520 521 /* 522 * Initialize memory for HCD and xHC (one-time init). 523 * 524 * Program the PAGESIZE register, initialize the device context array, create 525 * device contexts (?), set up a command ring segment (or two?), create event 526 * ring (one for now). 527 */ 528 int xhci_init(struct usb_hcd *hcd) 529 { 530 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 531 int retval = 0; 532 533 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 534 spin_lock_init(&xhci->lock); 535 if (xhci->hci_version == 0x95 && link_quirk) { 536 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 537 "QUIRK: Not clearing Link TRB chain bits."); 538 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 539 } else { 540 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 541 "xHCI doesn't need link TRB QUIRK"); 542 } 543 retval = xhci_mem_init(xhci, GFP_KERNEL); 544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 545 546 /* Initializing Compliance Mode Recovery Data If Needed */ 547 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 548 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 549 compliance_mode_recovery_timer_init(xhci); 550 } 551 552 return retval; 553 } 554 555 /*-------------------------------------------------------------------------*/ 556 557 558 static int xhci_run_finished(struct xhci_hcd *xhci) 559 { 560 if (xhci_start(xhci)) { 561 xhci_halt(xhci); 562 return -ENODEV; 563 } 564 xhci->shared_hcd->state = HC_STATE_RUNNING; 565 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 566 567 if (xhci->quirks & XHCI_NEC_HOST) 568 xhci_ring_cmd_db(xhci); 569 570 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 571 "Finished xhci_run for USB3 roothub"); 572 return 0; 573 } 574 575 /* 576 * Start the HC after it was halted. 577 * 578 * This function is called by the USB core when the HC driver is added. 579 * Its opposite is xhci_stop(). 580 * 581 * xhci_init() must be called once before this function can be called. 582 * Reset the HC, enable device slot contexts, program DCBAAP, and 583 * set command ring pointer and event ring pointer. 584 * 585 * Setup MSI-X vectors and enable interrupts. 586 */ 587 int xhci_run(struct usb_hcd *hcd) 588 { 589 u32 temp; 590 u64 temp_64; 591 int ret; 592 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 593 594 /* Start the xHCI host controller running only after the USB 2.0 roothub 595 * is setup. 596 */ 597 598 hcd->uses_new_polling = 1; 599 if (!usb_hcd_is_primary_hcd(hcd)) 600 return xhci_run_finished(xhci); 601 602 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 603 604 ret = xhci_try_enable_msi(hcd); 605 if (ret) 606 return ret; 607 608 xhci_dbg(xhci, "Command ring memory map follows:\n"); 609 xhci_debug_ring(xhci, xhci->cmd_ring); 610 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 611 xhci_dbg_cmd_ptrs(xhci); 612 613 xhci_dbg(xhci, "ERST memory map follows:\n"); 614 xhci_dbg_erst(xhci, &xhci->erst); 615 xhci_dbg(xhci, "Event ring:\n"); 616 xhci_debug_ring(xhci, xhci->event_ring); 617 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 618 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 619 temp_64 &= ~ERST_PTR_MASK; 620 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 621 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 622 623 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 624 "// Set the interrupt modulation register"); 625 temp = readl(&xhci->ir_set->irq_control); 626 temp &= ~ER_IRQ_INTERVAL_MASK; 627 temp |= (u32) 160; 628 writel(temp, &xhci->ir_set->irq_control); 629 630 /* Set the HCD state before we enable the irqs */ 631 temp = readl(&xhci->op_regs->command); 632 temp |= (CMD_EIE); 633 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 634 "// Enable interrupts, cmd = 0x%x.", temp); 635 writel(temp, &xhci->op_regs->command); 636 637 temp = readl(&xhci->ir_set->irq_pending); 638 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 639 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 640 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 641 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 642 xhci_print_ir_set(xhci, 0); 643 644 if (xhci->quirks & XHCI_NEC_HOST) { 645 struct xhci_command *command; 646 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 647 if (!command) 648 return -ENOMEM; 649 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 650 TRB_TYPE(TRB_NEC_GET_FW)); 651 } 652 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 653 "Finished xhci_run for USB2 roothub"); 654 return 0; 655 } 656 EXPORT_SYMBOL_GPL(xhci_run); 657 658 /* 659 * Stop xHCI driver. 660 * 661 * This function is called by the USB core when the HC driver is removed. 662 * Its opposite is xhci_run(). 663 * 664 * Disable device contexts, disable IRQs, and quiesce the HC. 665 * Reset the HC, finish any completed transactions, and cleanup memory. 666 */ 667 void xhci_stop(struct usb_hcd *hcd) 668 { 669 u32 temp; 670 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 671 672 if (xhci->xhc_state & XHCI_STATE_HALTED) 673 return; 674 675 mutex_lock(&xhci->mutex); 676 spin_lock_irq(&xhci->lock); 677 xhci->xhc_state |= XHCI_STATE_HALTED; 678 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 679 680 /* Make sure the xHC is halted for a USB3 roothub 681 * (xhci_stop() could be called as part of failed init). 682 */ 683 xhci_halt(xhci); 684 xhci_reset(xhci); 685 spin_unlock_irq(&xhci->lock); 686 687 xhci_cleanup_msix(xhci); 688 689 /* Deleting Compliance Mode Recovery Timer */ 690 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 691 (!(xhci_all_ports_seen_u0(xhci)))) { 692 del_timer_sync(&xhci->comp_mode_recovery_timer); 693 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 694 "%s: compliance mode recovery timer deleted", 695 __func__); 696 } 697 698 if (xhci->quirks & XHCI_AMD_PLL_FIX) 699 usb_amd_dev_put(); 700 701 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 702 "// Disabling event ring interrupts"); 703 temp = readl(&xhci->op_regs->status); 704 writel(temp & ~STS_EINT, &xhci->op_regs->status); 705 temp = readl(&xhci->ir_set->irq_pending); 706 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 707 xhci_print_ir_set(xhci, 0); 708 709 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 710 xhci_mem_cleanup(xhci); 711 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 712 "xhci_stop completed - status = %x", 713 readl(&xhci->op_regs->status)); 714 mutex_unlock(&xhci->mutex); 715 } 716 717 /* 718 * Shutdown HC (not bus-specific) 719 * 720 * This is called when the machine is rebooting or halting. We assume that the 721 * machine will be powered off, and the HC's internal state will be reset. 722 * Don't bother to free memory. 723 * 724 * This will only ever be called with the main usb_hcd (the USB3 roothub). 725 */ 726 void xhci_shutdown(struct usb_hcd *hcd) 727 { 728 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 729 730 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 731 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 732 733 spin_lock_irq(&xhci->lock); 734 xhci_halt(xhci); 735 /* Workaround for spurious wakeups at shutdown with HSW */ 736 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 737 xhci_reset(xhci); 738 spin_unlock_irq(&xhci->lock); 739 740 xhci_cleanup_msix(xhci); 741 742 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 743 "xhci_shutdown completed - status = %x", 744 readl(&xhci->op_regs->status)); 745 746 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 747 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 748 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 749 } 750 751 #ifdef CONFIG_PM 752 static void xhci_save_registers(struct xhci_hcd *xhci) 753 { 754 xhci->s3.command = readl(&xhci->op_regs->command); 755 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 756 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 757 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 758 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 759 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 760 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 761 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 762 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 763 } 764 765 static void xhci_restore_registers(struct xhci_hcd *xhci) 766 { 767 writel(xhci->s3.command, &xhci->op_regs->command); 768 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 769 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 770 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 771 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 772 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 773 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 774 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 775 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 776 } 777 778 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 779 { 780 u64 val_64; 781 782 /* step 2: initialize command ring buffer */ 783 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 784 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 785 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 786 xhci->cmd_ring->dequeue) & 787 (u64) ~CMD_RING_RSVD_BITS) | 788 xhci->cmd_ring->cycle_state; 789 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 790 "// Setting command ring address to 0x%llx", 791 (long unsigned long) val_64); 792 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 793 } 794 795 /* 796 * The whole command ring must be cleared to zero when we suspend the host. 797 * 798 * The host doesn't save the command ring pointer in the suspend well, so we 799 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 800 * aligned, because of the reserved bits in the command ring dequeue pointer 801 * register. Therefore, we can't just set the dequeue pointer back in the 802 * middle of the ring (TRBs are 16-byte aligned). 803 */ 804 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 805 { 806 struct xhci_ring *ring; 807 struct xhci_segment *seg; 808 809 ring = xhci->cmd_ring; 810 seg = ring->deq_seg; 811 do { 812 memset(seg->trbs, 0, 813 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 814 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 815 cpu_to_le32(~TRB_CYCLE); 816 seg = seg->next; 817 } while (seg != ring->deq_seg); 818 819 /* Reset the software enqueue and dequeue pointers */ 820 ring->deq_seg = ring->first_seg; 821 ring->dequeue = ring->first_seg->trbs; 822 ring->enq_seg = ring->deq_seg; 823 ring->enqueue = ring->dequeue; 824 825 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 826 /* 827 * Ring is now zeroed, so the HW should look for change of ownership 828 * when the cycle bit is set to 1. 829 */ 830 ring->cycle_state = 1; 831 832 /* 833 * Reset the hardware dequeue pointer. 834 * Yes, this will need to be re-written after resume, but we're paranoid 835 * and want to make sure the hardware doesn't access bogus memory 836 * because, say, the BIOS or an SMI started the host without changing 837 * the command ring pointers. 838 */ 839 xhci_set_cmd_ring_deq(xhci); 840 } 841 842 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 843 { 844 int port_index; 845 __le32 __iomem **port_array; 846 unsigned long flags; 847 u32 t1, t2; 848 849 spin_lock_irqsave(&xhci->lock, flags); 850 851 /* disble usb3 ports Wake bits*/ 852 port_index = xhci->num_usb3_ports; 853 port_array = xhci->usb3_ports; 854 while (port_index--) { 855 t1 = readl(port_array[port_index]); 856 t1 = xhci_port_state_to_neutral(t1); 857 t2 = t1 & ~PORT_WAKE_BITS; 858 if (t1 != t2) 859 writel(t2, port_array[port_index]); 860 } 861 862 /* disble usb2 ports Wake bits*/ 863 port_index = xhci->num_usb2_ports; 864 port_array = xhci->usb2_ports; 865 while (port_index--) { 866 t1 = readl(port_array[port_index]); 867 t1 = xhci_port_state_to_neutral(t1); 868 t2 = t1 & ~PORT_WAKE_BITS; 869 if (t1 != t2) 870 writel(t2, port_array[port_index]); 871 } 872 873 spin_unlock_irqrestore(&xhci->lock, flags); 874 } 875 876 /* 877 * Stop HC (not bus-specific) 878 * 879 * This is called when the machine transition into S3/S4 mode. 880 * 881 */ 882 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 883 { 884 int rc = 0; 885 unsigned int delay = XHCI_MAX_HALT_USEC; 886 struct usb_hcd *hcd = xhci_to_hcd(xhci); 887 u32 command; 888 889 if (!hcd->state) 890 return 0; 891 892 if (hcd->state != HC_STATE_SUSPENDED || 893 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 894 return -EINVAL; 895 896 /* Clear root port wake on bits if wakeup not allowed. */ 897 if (!do_wakeup) 898 xhci_disable_port_wake_on_bits(xhci); 899 900 /* Don't poll the roothubs on bus suspend. */ 901 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 902 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 903 del_timer_sync(&hcd->rh_timer); 904 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 905 del_timer_sync(&xhci->shared_hcd->rh_timer); 906 907 spin_lock_irq(&xhci->lock); 908 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 909 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 910 /* step 1: stop endpoint */ 911 /* skipped assuming that port suspend has done */ 912 913 /* step 2: clear Run/Stop bit */ 914 command = readl(&xhci->op_regs->command); 915 command &= ~CMD_RUN; 916 writel(command, &xhci->op_regs->command); 917 918 /* Some chips from Fresco Logic need an extraordinary delay */ 919 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 920 921 if (xhci_handshake(&xhci->op_regs->status, 922 STS_HALT, STS_HALT, delay)) { 923 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 924 spin_unlock_irq(&xhci->lock); 925 return -ETIMEDOUT; 926 } 927 xhci_clear_command_ring(xhci); 928 929 /* step 3: save registers */ 930 xhci_save_registers(xhci); 931 932 /* step 4: set CSS flag */ 933 command = readl(&xhci->op_regs->command); 934 command |= CMD_CSS; 935 writel(command, &xhci->op_regs->command); 936 if (xhci_handshake(&xhci->op_regs->status, 937 STS_SAVE, 0, 10 * 1000)) { 938 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 939 spin_unlock_irq(&xhci->lock); 940 return -ETIMEDOUT; 941 } 942 spin_unlock_irq(&xhci->lock); 943 944 /* 945 * Deleting Compliance Mode Recovery Timer because the xHCI Host 946 * is about to be suspended. 947 */ 948 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 949 (!(xhci_all_ports_seen_u0(xhci)))) { 950 del_timer_sync(&xhci->comp_mode_recovery_timer); 951 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 952 "%s: compliance mode recovery timer deleted", 953 __func__); 954 } 955 956 /* step 5: remove core well power */ 957 /* synchronize irq when using MSI-X */ 958 xhci_msix_sync_irqs(xhci); 959 960 return rc; 961 } 962 EXPORT_SYMBOL_GPL(xhci_suspend); 963 964 /* 965 * start xHC (not bus-specific) 966 * 967 * This is called when the machine transition from S3/S4 mode. 968 * 969 */ 970 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 971 { 972 u32 command, temp = 0, status; 973 struct usb_hcd *hcd = xhci_to_hcd(xhci); 974 struct usb_hcd *secondary_hcd; 975 int retval = 0; 976 bool comp_timer_running = false; 977 978 if (!hcd->state) 979 return 0; 980 981 /* Wait a bit if either of the roothubs need to settle from the 982 * transition into bus suspend. 983 */ 984 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 985 time_before(jiffies, 986 xhci->bus_state[1].next_statechange)) 987 msleep(100); 988 989 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 990 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 991 992 spin_lock_irq(&xhci->lock); 993 if (xhci->quirks & XHCI_RESET_ON_RESUME) 994 hibernated = true; 995 996 if (!hibernated) { 997 /* step 1: restore register */ 998 xhci_restore_registers(xhci); 999 /* step 2: initialize command ring buffer */ 1000 xhci_set_cmd_ring_deq(xhci); 1001 /* step 3: restore state and start state*/ 1002 /* step 3: set CRS flag */ 1003 command = readl(&xhci->op_regs->command); 1004 command |= CMD_CRS; 1005 writel(command, &xhci->op_regs->command); 1006 if (xhci_handshake(&xhci->op_regs->status, 1007 STS_RESTORE, 0, 10 * 1000)) { 1008 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1009 spin_unlock_irq(&xhci->lock); 1010 return -ETIMEDOUT; 1011 } 1012 temp = readl(&xhci->op_regs->status); 1013 } 1014 1015 /* If restore operation fails, re-initialize the HC during resume */ 1016 if ((temp & STS_SRE) || hibernated) { 1017 1018 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1019 !(xhci_all_ports_seen_u0(xhci))) { 1020 del_timer_sync(&xhci->comp_mode_recovery_timer); 1021 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1022 "Compliance Mode Recovery Timer deleted!"); 1023 } 1024 1025 /* Let the USB core know _both_ roothubs lost power. */ 1026 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1027 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1028 1029 xhci_dbg(xhci, "Stop HCD\n"); 1030 xhci_halt(xhci); 1031 xhci_reset(xhci); 1032 spin_unlock_irq(&xhci->lock); 1033 xhci_cleanup_msix(xhci); 1034 1035 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1036 temp = readl(&xhci->op_regs->status); 1037 writel(temp & ~STS_EINT, &xhci->op_regs->status); 1038 temp = readl(&xhci->ir_set->irq_pending); 1039 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1040 xhci_print_ir_set(xhci, 0); 1041 1042 xhci_dbg(xhci, "cleaning up memory\n"); 1043 xhci_mem_cleanup(xhci); 1044 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1045 readl(&xhci->op_regs->status)); 1046 1047 /* USB core calls the PCI reinit and start functions twice: 1048 * first with the primary HCD, and then with the secondary HCD. 1049 * If we don't do the same, the host will never be started. 1050 */ 1051 if (!usb_hcd_is_primary_hcd(hcd)) 1052 secondary_hcd = hcd; 1053 else 1054 secondary_hcd = xhci->shared_hcd; 1055 1056 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1057 retval = xhci_init(hcd->primary_hcd); 1058 if (retval) 1059 return retval; 1060 comp_timer_running = true; 1061 1062 xhci_dbg(xhci, "Start the primary HCD\n"); 1063 retval = xhci_run(hcd->primary_hcd); 1064 if (!retval) { 1065 xhci_dbg(xhci, "Start the secondary HCD\n"); 1066 retval = xhci_run(secondary_hcd); 1067 } 1068 hcd->state = HC_STATE_SUSPENDED; 1069 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1070 goto done; 1071 } 1072 1073 /* step 4: set Run/Stop bit */ 1074 command = readl(&xhci->op_regs->command); 1075 command |= CMD_RUN; 1076 writel(command, &xhci->op_regs->command); 1077 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1078 0, 250 * 1000); 1079 1080 /* step 5: walk topology and initialize portsc, 1081 * portpmsc and portli 1082 */ 1083 /* this is done in bus_resume */ 1084 1085 /* step 6: restart each of the previously 1086 * Running endpoints by ringing their doorbells 1087 */ 1088 1089 spin_unlock_irq(&xhci->lock); 1090 1091 done: 1092 if (retval == 0) { 1093 /* Resume root hubs only when have pending events. */ 1094 status = readl(&xhci->op_regs->status); 1095 if (status & STS_EINT) { 1096 usb_hcd_resume_root_hub(hcd); 1097 usb_hcd_resume_root_hub(xhci->shared_hcd); 1098 } 1099 } 1100 1101 /* 1102 * If system is subject to the Quirk, Compliance Mode Timer needs to 1103 * be re-initialized Always after a system resume. Ports are subject 1104 * to suffer the Compliance Mode issue again. It doesn't matter if 1105 * ports have entered previously to U0 before system's suspension. 1106 */ 1107 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1108 compliance_mode_recovery_timer_init(xhci); 1109 1110 /* Re-enable port polling. */ 1111 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1112 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1113 usb_hcd_poll_rh_status(hcd); 1114 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1115 usb_hcd_poll_rh_status(xhci->shared_hcd); 1116 1117 return retval; 1118 } 1119 EXPORT_SYMBOL_GPL(xhci_resume); 1120 #endif /* CONFIG_PM */ 1121 1122 /*-------------------------------------------------------------------------*/ 1123 1124 /** 1125 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1126 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1127 * value to right shift 1 for the bitmask. 1128 * 1129 * Index = (epnum * 2) + direction - 1, 1130 * where direction = 0 for OUT, 1 for IN. 1131 * For control endpoints, the IN index is used (OUT index is unused), so 1132 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1133 */ 1134 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1135 { 1136 unsigned int index; 1137 if (usb_endpoint_xfer_control(desc)) 1138 index = (unsigned int) (usb_endpoint_num(desc)*2); 1139 else 1140 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1141 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1142 return index; 1143 } 1144 1145 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1146 * address from the XHCI endpoint index. 1147 */ 1148 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1149 { 1150 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1151 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1152 return direction | number; 1153 } 1154 1155 /* Find the flag for this endpoint (for use in the control context). Use the 1156 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1157 * bit 1, etc. 1158 */ 1159 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1160 { 1161 return 1 << (xhci_get_endpoint_index(desc) + 1); 1162 } 1163 1164 /* Find the flag for this endpoint (for use in the control context). Use the 1165 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1166 * bit 1, etc. 1167 */ 1168 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1169 { 1170 return 1 << (ep_index + 1); 1171 } 1172 1173 /* Compute the last valid endpoint context index. Basically, this is the 1174 * endpoint index plus one. For slot contexts with more than valid endpoint, 1175 * we find the most significant bit set in the added contexts flags. 1176 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1177 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1178 */ 1179 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1180 { 1181 return fls(added_ctxs) - 1; 1182 } 1183 1184 /* Returns 1 if the arguments are OK; 1185 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1186 */ 1187 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1188 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1189 const char *func) { 1190 struct xhci_hcd *xhci; 1191 struct xhci_virt_device *virt_dev; 1192 1193 if (!hcd || (check_ep && !ep) || !udev) { 1194 pr_debug("xHCI %s called with invalid args\n", func); 1195 return -EINVAL; 1196 } 1197 if (!udev->parent) { 1198 pr_debug("xHCI %s called for root hub\n", func); 1199 return 0; 1200 } 1201 1202 xhci = hcd_to_xhci(hcd); 1203 if (check_virt_dev) { 1204 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1205 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1206 func); 1207 return -EINVAL; 1208 } 1209 1210 virt_dev = xhci->devs[udev->slot_id]; 1211 if (virt_dev->udev != udev) { 1212 xhci_dbg(xhci, "xHCI %s called with udev and " 1213 "virt_dev does not match\n", func); 1214 return -EINVAL; 1215 } 1216 } 1217 1218 if (xhci->xhc_state & XHCI_STATE_HALTED) 1219 return -ENODEV; 1220 1221 return 1; 1222 } 1223 1224 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1225 struct usb_device *udev, struct xhci_command *command, 1226 bool ctx_change, bool must_succeed); 1227 1228 /* 1229 * Full speed devices may have a max packet size greater than 8 bytes, but the 1230 * USB core doesn't know that until it reads the first 8 bytes of the 1231 * descriptor. If the usb_device's max packet size changes after that point, 1232 * we need to issue an evaluate context command and wait on it. 1233 */ 1234 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1235 unsigned int ep_index, struct urb *urb) 1236 { 1237 struct xhci_container_ctx *out_ctx; 1238 struct xhci_input_control_ctx *ctrl_ctx; 1239 struct xhci_ep_ctx *ep_ctx; 1240 struct xhci_command *command; 1241 int max_packet_size; 1242 int hw_max_packet_size; 1243 int ret = 0; 1244 1245 out_ctx = xhci->devs[slot_id]->out_ctx; 1246 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1247 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1248 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1249 if (hw_max_packet_size != max_packet_size) { 1250 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1251 "Max Packet Size for ep 0 changed."); 1252 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1253 "Max packet size in usb_device = %d", 1254 max_packet_size); 1255 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1256 "Max packet size in xHCI HW = %d", 1257 hw_max_packet_size); 1258 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1259 "Issuing evaluate context command."); 1260 1261 /* Set up the input context flags for the command */ 1262 /* FIXME: This won't work if a non-default control endpoint 1263 * changes max packet sizes. 1264 */ 1265 1266 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1267 if (!command) 1268 return -ENOMEM; 1269 1270 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1271 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1272 if (!ctrl_ctx) { 1273 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1274 __func__); 1275 ret = -ENOMEM; 1276 goto command_cleanup; 1277 } 1278 /* Set up the modified control endpoint 0 */ 1279 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1280 xhci->devs[slot_id]->out_ctx, ep_index); 1281 1282 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1283 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1284 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1285 1286 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1287 ctrl_ctx->drop_flags = 0; 1288 1289 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1290 xhci_dbg_ctx(xhci, command->in_ctx, ep_index); 1291 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1292 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1293 1294 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1295 true, false); 1296 1297 /* Clean up the input context for later use by bandwidth 1298 * functions. 1299 */ 1300 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1301 command_cleanup: 1302 kfree(command->completion); 1303 kfree(command); 1304 } 1305 return ret; 1306 } 1307 1308 /* 1309 * non-error returns are a promise to giveback() the urb later 1310 * we drop ownership so next owner (or urb unlink) can get it 1311 */ 1312 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1313 { 1314 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1315 struct xhci_td *buffer; 1316 unsigned long flags; 1317 int ret = 0; 1318 unsigned int slot_id, ep_index; 1319 struct urb_priv *urb_priv; 1320 int size, i; 1321 1322 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1323 true, true, __func__) <= 0) 1324 return -EINVAL; 1325 1326 slot_id = urb->dev->slot_id; 1327 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1328 1329 if (!HCD_HW_ACCESSIBLE(hcd)) { 1330 if (!in_interrupt()) 1331 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1332 ret = -ESHUTDOWN; 1333 goto exit; 1334 } 1335 1336 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1337 size = urb->number_of_packets; 1338 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1339 urb->transfer_buffer_length > 0 && 1340 urb->transfer_flags & URB_ZERO_PACKET && 1341 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1342 size = 2; 1343 else 1344 size = 1; 1345 1346 urb_priv = kzalloc(sizeof(struct urb_priv) + 1347 size * sizeof(struct xhci_td *), mem_flags); 1348 if (!urb_priv) 1349 return -ENOMEM; 1350 1351 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1352 if (!buffer) { 1353 kfree(urb_priv); 1354 return -ENOMEM; 1355 } 1356 1357 for (i = 0; i < size; i++) { 1358 urb_priv->td[i] = buffer; 1359 buffer++; 1360 } 1361 1362 urb_priv->length = size; 1363 urb_priv->td_cnt = 0; 1364 urb->hcpriv = urb_priv; 1365 1366 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1367 /* Check to see if the max packet size for the default control 1368 * endpoint changed during FS device enumeration 1369 */ 1370 if (urb->dev->speed == USB_SPEED_FULL) { 1371 ret = xhci_check_maxpacket(xhci, slot_id, 1372 ep_index, urb); 1373 if (ret < 0) { 1374 xhci_urb_free_priv(urb_priv); 1375 urb->hcpriv = NULL; 1376 return ret; 1377 } 1378 } 1379 1380 /* We have a spinlock and interrupts disabled, so we must pass 1381 * atomic context to this function, which may allocate memory. 1382 */ 1383 spin_lock_irqsave(&xhci->lock, flags); 1384 if (xhci->xhc_state & XHCI_STATE_DYING) 1385 goto dying; 1386 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1387 slot_id, ep_index); 1388 if (ret) 1389 goto free_priv; 1390 spin_unlock_irqrestore(&xhci->lock, flags); 1391 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1392 spin_lock_irqsave(&xhci->lock, flags); 1393 if (xhci->xhc_state & XHCI_STATE_DYING) 1394 goto dying; 1395 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1396 EP_GETTING_STREAMS) { 1397 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1398 "is transitioning to using streams.\n"); 1399 ret = -EINVAL; 1400 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1401 EP_GETTING_NO_STREAMS) { 1402 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1403 "is transitioning to " 1404 "not having streams.\n"); 1405 ret = -EINVAL; 1406 } else { 1407 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1408 slot_id, ep_index); 1409 } 1410 if (ret) 1411 goto free_priv; 1412 spin_unlock_irqrestore(&xhci->lock, flags); 1413 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1414 spin_lock_irqsave(&xhci->lock, flags); 1415 if (xhci->xhc_state & XHCI_STATE_DYING) 1416 goto dying; 1417 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1418 slot_id, ep_index); 1419 if (ret) 1420 goto free_priv; 1421 spin_unlock_irqrestore(&xhci->lock, flags); 1422 } else { 1423 spin_lock_irqsave(&xhci->lock, flags); 1424 if (xhci->xhc_state & XHCI_STATE_DYING) 1425 goto dying; 1426 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1427 slot_id, ep_index); 1428 if (ret) 1429 goto free_priv; 1430 spin_unlock_irqrestore(&xhci->lock, flags); 1431 } 1432 exit: 1433 return ret; 1434 dying: 1435 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1436 "non-responsive xHCI host.\n", 1437 urb->ep->desc.bEndpointAddress, urb); 1438 ret = -ESHUTDOWN; 1439 free_priv: 1440 xhci_urb_free_priv(urb_priv); 1441 urb->hcpriv = NULL; 1442 spin_unlock_irqrestore(&xhci->lock, flags); 1443 return ret; 1444 } 1445 1446 /* Get the right ring for the given URB. 1447 * If the endpoint supports streams, boundary check the URB's stream ID. 1448 * If the endpoint doesn't support streams, return the singular endpoint ring. 1449 */ 1450 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1451 struct urb *urb) 1452 { 1453 unsigned int slot_id; 1454 unsigned int ep_index; 1455 unsigned int stream_id; 1456 struct xhci_virt_ep *ep; 1457 1458 slot_id = urb->dev->slot_id; 1459 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1460 stream_id = urb->stream_id; 1461 ep = &xhci->devs[slot_id]->eps[ep_index]; 1462 /* Common case: no streams */ 1463 if (!(ep->ep_state & EP_HAS_STREAMS)) 1464 return ep->ring; 1465 1466 if (stream_id == 0) { 1467 xhci_warn(xhci, 1468 "WARN: Slot ID %u, ep index %u has streams, " 1469 "but URB has no stream ID.\n", 1470 slot_id, ep_index); 1471 return NULL; 1472 } 1473 1474 if (stream_id < ep->stream_info->num_streams) 1475 return ep->stream_info->stream_rings[stream_id]; 1476 1477 xhci_warn(xhci, 1478 "WARN: Slot ID %u, ep index %u has " 1479 "stream IDs 1 to %u allocated, " 1480 "but stream ID %u is requested.\n", 1481 slot_id, ep_index, 1482 ep->stream_info->num_streams - 1, 1483 stream_id); 1484 return NULL; 1485 } 1486 1487 /* 1488 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1489 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1490 * should pick up where it left off in the TD, unless a Set Transfer Ring 1491 * Dequeue Pointer is issued. 1492 * 1493 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1494 * the ring. Since the ring is a contiguous structure, they can't be physically 1495 * removed. Instead, there are two options: 1496 * 1497 * 1) If the HC is in the middle of processing the URB to be canceled, we 1498 * simply move the ring's dequeue pointer past those TRBs using the Set 1499 * Transfer Ring Dequeue Pointer command. This will be the common case, 1500 * when drivers timeout on the last submitted URB and attempt to cancel. 1501 * 1502 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1503 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1504 * HC will need to invalidate the any TRBs it has cached after the stop 1505 * endpoint command, as noted in the xHCI 0.95 errata. 1506 * 1507 * 3) The TD may have completed by the time the Stop Endpoint Command 1508 * completes, so software needs to handle that case too. 1509 * 1510 * This function should protect against the TD enqueueing code ringing the 1511 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1512 * It also needs to account for multiple cancellations on happening at the same 1513 * time for the same endpoint. 1514 * 1515 * Note that this function can be called in any context, or so says 1516 * usb_hcd_unlink_urb() 1517 */ 1518 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1519 { 1520 unsigned long flags; 1521 int ret, i; 1522 u32 temp; 1523 struct xhci_hcd *xhci; 1524 struct urb_priv *urb_priv; 1525 struct xhci_td *td; 1526 unsigned int ep_index; 1527 struct xhci_ring *ep_ring; 1528 struct xhci_virt_ep *ep; 1529 struct xhci_command *command; 1530 1531 xhci = hcd_to_xhci(hcd); 1532 spin_lock_irqsave(&xhci->lock, flags); 1533 /* Make sure the URB hasn't completed or been unlinked already */ 1534 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1535 if (ret || !urb->hcpriv) 1536 goto done; 1537 temp = readl(&xhci->op_regs->status); 1538 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1539 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1540 "HW died, freeing TD."); 1541 urb_priv = urb->hcpriv; 1542 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1543 td = urb_priv->td[i]; 1544 if (!list_empty(&td->td_list)) 1545 list_del_init(&td->td_list); 1546 if (!list_empty(&td->cancelled_td_list)) 1547 list_del_init(&td->cancelled_td_list); 1548 } 1549 1550 usb_hcd_unlink_urb_from_ep(hcd, urb); 1551 spin_unlock_irqrestore(&xhci->lock, flags); 1552 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1553 xhci_urb_free_priv(urb_priv); 1554 return ret; 1555 } 1556 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1557 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1558 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1559 "Ep 0x%x: URB %p to be canceled on " 1560 "non-responsive xHCI host.", 1561 urb->ep->desc.bEndpointAddress, urb); 1562 /* Let the stop endpoint command watchdog timer (which set this 1563 * state) finish cleaning up the endpoint TD lists. We must 1564 * have caught it in the middle of dropping a lock and giving 1565 * back an URB. 1566 */ 1567 goto done; 1568 } 1569 1570 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1571 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1572 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1573 if (!ep_ring) { 1574 ret = -EINVAL; 1575 goto done; 1576 } 1577 1578 urb_priv = urb->hcpriv; 1579 i = urb_priv->td_cnt; 1580 if (i < urb_priv->length) 1581 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1582 "Cancel URB %p, dev %s, ep 0x%x, " 1583 "starting at offset 0x%llx", 1584 urb, urb->dev->devpath, 1585 urb->ep->desc.bEndpointAddress, 1586 (unsigned long long) xhci_trb_virt_to_dma( 1587 urb_priv->td[i]->start_seg, 1588 urb_priv->td[i]->first_trb)); 1589 1590 for (; i < urb_priv->length; i++) { 1591 td = urb_priv->td[i]; 1592 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1593 } 1594 1595 /* Queue a stop endpoint command, but only if this is 1596 * the first cancellation to be handled. 1597 */ 1598 if (!(ep->ep_state & EP_HALT_PENDING)) { 1599 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1600 if (!command) { 1601 ret = -ENOMEM; 1602 goto done; 1603 } 1604 ep->ep_state |= EP_HALT_PENDING; 1605 ep->stop_cmds_pending++; 1606 ep->stop_cmd_timer.expires = jiffies + 1607 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1608 add_timer(&ep->stop_cmd_timer); 1609 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1610 ep_index, 0); 1611 xhci_ring_cmd_db(xhci); 1612 } 1613 done: 1614 spin_unlock_irqrestore(&xhci->lock, flags); 1615 return ret; 1616 } 1617 1618 /* Drop an endpoint from a new bandwidth configuration for this device. 1619 * Only one call to this function is allowed per endpoint before 1620 * check_bandwidth() or reset_bandwidth() must be called. 1621 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1622 * add the endpoint to the schedule with possibly new parameters denoted by a 1623 * different endpoint descriptor in usb_host_endpoint. 1624 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1625 * not allowed. 1626 * 1627 * The USB core will not allow URBs to be queued to an endpoint that is being 1628 * disabled, so there's no need for mutual exclusion to protect 1629 * the xhci->devs[slot_id] structure. 1630 */ 1631 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1632 struct usb_host_endpoint *ep) 1633 { 1634 struct xhci_hcd *xhci; 1635 struct xhci_container_ctx *in_ctx, *out_ctx; 1636 struct xhci_input_control_ctx *ctrl_ctx; 1637 unsigned int ep_index; 1638 struct xhci_ep_ctx *ep_ctx; 1639 u32 drop_flag; 1640 u32 new_add_flags, new_drop_flags; 1641 int ret; 1642 1643 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1644 if (ret <= 0) 1645 return ret; 1646 xhci = hcd_to_xhci(hcd); 1647 if (xhci->xhc_state & XHCI_STATE_DYING) 1648 return -ENODEV; 1649 1650 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1651 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1652 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1653 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1654 __func__, drop_flag); 1655 return 0; 1656 } 1657 1658 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1659 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1660 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1661 if (!ctrl_ctx) { 1662 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1663 __func__); 1664 return 0; 1665 } 1666 1667 ep_index = xhci_get_endpoint_index(&ep->desc); 1668 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1669 /* If the HC already knows the endpoint is disabled, 1670 * or the HCD has noted it is disabled, ignore this request 1671 */ 1672 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1673 cpu_to_le32(EP_STATE_DISABLED)) || 1674 le32_to_cpu(ctrl_ctx->drop_flags) & 1675 xhci_get_endpoint_flag(&ep->desc)) { 1676 /* Do not warn when called after a usb_device_reset */ 1677 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1678 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1679 __func__, ep); 1680 return 0; 1681 } 1682 1683 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1684 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1685 1686 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1687 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1688 1689 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1690 1691 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1692 (unsigned int) ep->desc.bEndpointAddress, 1693 udev->slot_id, 1694 (unsigned int) new_drop_flags, 1695 (unsigned int) new_add_flags); 1696 return 0; 1697 } 1698 1699 /* Add an endpoint to a new possible bandwidth configuration for this device. 1700 * Only one call to this function is allowed per endpoint before 1701 * check_bandwidth() or reset_bandwidth() must be called. 1702 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1703 * add the endpoint to the schedule with possibly new parameters denoted by a 1704 * different endpoint descriptor in usb_host_endpoint. 1705 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1706 * not allowed. 1707 * 1708 * The USB core will not allow URBs to be queued to an endpoint until the 1709 * configuration or alt setting is installed in the device, so there's no need 1710 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1711 */ 1712 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1713 struct usb_host_endpoint *ep) 1714 { 1715 struct xhci_hcd *xhci; 1716 struct xhci_container_ctx *in_ctx; 1717 unsigned int ep_index; 1718 struct xhci_input_control_ctx *ctrl_ctx; 1719 u32 added_ctxs; 1720 u32 new_add_flags, new_drop_flags; 1721 struct xhci_virt_device *virt_dev; 1722 int ret = 0; 1723 1724 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1725 if (ret <= 0) { 1726 /* So we won't queue a reset ep command for a root hub */ 1727 ep->hcpriv = NULL; 1728 return ret; 1729 } 1730 xhci = hcd_to_xhci(hcd); 1731 if (xhci->xhc_state & XHCI_STATE_DYING) 1732 return -ENODEV; 1733 1734 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1735 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1736 /* FIXME when we have to issue an evaluate endpoint command to 1737 * deal with ep0 max packet size changing once we get the 1738 * descriptors 1739 */ 1740 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1741 __func__, added_ctxs); 1742 return 0; 1743 } 1744 1745 virt_dev = xhci->devs[udev->slot_id]; 1746 in_ctx = virt_dev->in_ctx; 1747 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1748 if (!ctrl_ctx) { 1749 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1750 __func__); 1751 return 0; 1752 } 1753 1754 ep_index = xhci_get_endpoint_index(&ep->desc); 1755 /* If this endpoint is already in use, and the upper layers are trying 1756 * to add it again without dropping it, reject the addition. 1757 */ 1758 if (virt_dev->eps[ep_index].ring && 1759 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1760 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1761 "without dropping it.\n", 1762 (unsigned int) ep->desc.bEndpointAddress); 1763 return -EINVAL; 1764 } 1765 1766 /* If the HCD has already noted the endpoint is enabled, 1767 * ignore this request. 1768 */ 1769 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1770 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1771 __func__, ep); 1772 return 0; 1773 } 1774 1775 /* 1776 * Configuration and alternate setting changes must be done in 1777 * process context, not interrupt context (or so documenation 1778 * for usb_set_interface() and usb_set_configuration() claim). 1779 */ 1780 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1781 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1782 __func__, ep->desc.bEndpointAddress); 1783 return -ENOMEM; 1784 } 1785 1786 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1787 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1788 1789 /* If xhci_endpoint_disable() was called for this endpoint, but the 1790 * xHC hasn't been notified yet through the check_bandwidth() call, 1791 * this re-adds a new state for the endpoint from the new endpoint 1792 * descriptors. We must drop and re-add this endpoint, so we leave the 1793 * drop flags alone. 1794 */ 1795 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1796 1797 /* Store the usb_device pointer for later use */ 1798 ep->hcpriv = udev; 1799 1800 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1801 (unsigned int) ep->desc.bEndpointAddress, 1802 udev->slot_id, 1803 (unsigned int) new_drop_flags, 1804 (unsigned int) new_add_flags); 1805 return 0; 1806 } 1807 1808 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1809 { 1810 struct xhci_input_control_ctx *ctrl_ctx; 1811 struct xhci_ep_ctx *ep_ctx; 1812 struct xhci_slot_ctx *slot_ctx; 1813 int i; 1814 1815 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1816 if (!ctrl_ctx) { 1817 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1818 __func__); 1819 return; 1820 } 1821 1822 /* When a device's add flag and drop flag are zero, any subsequent 1823 * configure endpoint command will leave that endpoint's state 1824 * untouched. Make sure we don't leave any old state in the input 1825 * endpoint contexts. 1826 */ 1827 ctrl_ctx->drop_flags = 0; 1828 ctrl_ctx->add_flags = 0; 1829 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1830 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1831 /* Endpoint 0 is always valid */ 1832 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1833 for (i = 1; i < 31; ++i) { 1834 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1835 ep_ctx->ep_info = 0; 1836 ep_ctx->ep_info2 = 0; 1837 ep_ctx->deq = 0; 1838 ep_ctx->tx_info = 0; 1839 } 1840 } 1841 1842 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1843 struct usb_device *udev, u32 *cmd_status) 1844 { 1845 int ret; 1846 1847 switch (*cmd_status) { 1848 case COMP_CMD_ABORT: 1849 case COMP_CMD_STOP: 1850 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1851 ret = -ETIME; 1852 break; 1853 case COMP_ENOMEM: 1854 dev_warn(&udev->dev, 1855 "Not enough host controller resources for new device state.\n"); 1856 ret = -ENOMEM; 1857 /* FIXME: can we allocate more resources for the HC? */ 1858 break; 1859 case COMP_BW_ERR: 1860 case COMP_2ND_BW_ERR: 1861 dev_warn(&udev->dev, 1862 "Not enough bandwidth for new device state.\n"); 1863 ret = -ENOSPC; 1864 /* FIXME: can we go back to the old state? */ 1865 break; 1866 case COMP_TRB_ERR: 1867 /* the HCD set up something wrong */ 1868 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1869 "add flag = 1, " 1870 "and endpoint is not disabled.\n"); 1871 ret = -EINVAL; 1872 break; 1873 case COMP_DEV_ERR: 1874 dev_warn(&udev->dev, 1875 "ERROR: Incompatible device for endpoint configure command.\n"); 1876 ret = -ENODEV; 1877 break; 1878 case COMP_SUCCESS: 1879 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1880 "Successful Endpoint Configure command"); 1881 ret = 0; 1882 break; 1883 default: 1884 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1885 *cmd_status); 1886 ret = -EINVAL; 1887 break; 1888 } 1889 return ret; 1890 } 1891 1892 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1893 struct usb_device *udev, u32 *cmd_status) 1894 { 1895 int ret; 1896 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1897 1898 switch (*cmd_status) { 1899 case COMP_CMD_ABORT: 1900 case COMP_CMD_STOP: 1901 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1902 ret = -ETIME; 1903 break; 1904 case COMP_EINVAL: 1905 dev_warn(&udev->dev, 1906 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1907 ret = -EINVAL; 1908 break; 1909 case COMP_EBADSLT: 1910 dev_warn(&udev->dev, 1911 "WARN: slot not enabled for evaluate context command.\n"); 1912 ret = -EINVAL; 1913 break; 1914 case COMP_CTX_STATE: 1915 dev_warn(&udev->dev, 1916 "WARN: invalid context state for evaluate context command.\n"); 1917 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1918 ret = -EINVAL; 1919 break; 1920 case COMP_DEV_ERR: 1921 dev_warn(&udev->dev, 1922 "ERROR: Incompatible device for evaluate context command.\n"); 1923 ret = -ENODEV; 1924 break; 1925 case COMP_MEL_ERR: 1926 /* Max Exit Latency too large error */ 1927 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1928 ret = -EINVAL; 1929 break; 1930 case COMP_SUCCESS: 1931 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1932 "Successful evaluate context command"); 1933 ret = 0; 1934 break; 1935 default: 1936 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1937 *cmd_status); 1938 ret = -EINVAL; 1939 break; 1940 } 1941 return ret; 1942 } 1943 1944 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1945 struct xhci_input_control_ctx *ctrl_ctx) 1946 { 1947 u32 valid_add_flags; 1948 u32 valid_drop_flags; 1949 1950 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1951 * (bit 1). The default control endpoint is added during the Address 1952 * Device command and is never removed until the slot is disabled. 1953 */ 1954 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1955 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1956 1957 /* Use hweight32 to count the number of ones in the add flags, or 1958 * number of endpoints added. Don't count endpoints that are changed 1959 * (both added and dropped). 1960 */ 1961 return hweight32(valid_add_flags) - 1962 hweight32(valid_add_flags & valid_drop_flags); 1963 } 1964 1965 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1966 struct xhci_input_control_ctx *ctrl_ctx) 1967 { 1968 u32 valid_add_flags; 1969 u32 valid_drop_flags; 1970 1971 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1972 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1973 1974 return hweight32(valid_drop_flags) - 1975 hweight32(valid_add_flags & valid_drop_flags); 1976 } 1977 1978 /* 1979 * We need to reserve the new number of endpoints before the configure endpoint 1980 * command completes. We can't subtract the dropped endpoints from the number 1981 * of active endpoints until the command completes because we can oversubscribe 1982 * the host in this case: 1983 * 1984 * - the first configure endpoint command drops more endpoints than it adds 1985 * - a second configure endpoint command that adds more endpoints is queued 1986 * - the first configure endpoint command fails, so the config is unchanged 1987 * - the second command may succeed, even though there isn't enough resources 1988 * 1989 * Must be called with xhci->lock held. 1990 */ 1991 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1992 struct xhci_input_control_ctx *ctrl_ctx) 1993 { 1994 u32 added_eps; 1995 1996 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1997 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1998 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1999 "Not enough ep ctxs: " 2000 "%u active, need to add %u, limit is %u.", 2001 xhci->num_active_eps, added_eps, 2002 xhci->limit_active_eps); 2003 return -ENOMEM; 2004 } 2005 xhci->num_active_eps += added_eps; 2006 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2007 "Adding %u ep ctxs, %u now active.", added_eps, 2008 xhci->num_active_eps); 2009 return 0; 2010 } 2011 2012 /* 2013 * The configure endpoint was failed by the xHC for some other reason, so we 2014 * need to revert the resources that failed configuration would have used. 2015 * 2016 * Must be called with xhci->lock held. 2017 */ 2018 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2019 struct xhci_input_control_ctx *ctrl_ctx) 2020 { 2021 u32 num_failed_eps; 2022 2023 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2024 xhci->num_active_eps -= num_failed_eps; 2025 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2026 "Removing %u failed ep ctxs, %u now active.", 2027 num_failed_eps, 2028 xhci->num_active_eps); 2029 } 2030 2031 /* 2032 * Now that the command has completed, clean up the active endpoint count by 2033 * subtracting out the endpoints that were dropped (but not changed). 2034 * 2035 * Must be called with xhci->lock held. 2036 */ 2037 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2038 struct xhci_input_control_ctx *ctrl_ctx) 2039 { 2040 u32 num_dropped_eps; 2041 2042 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2043 xhci->num_active_eps -= num_dropped_eps; 2044 if (num_dropped_eps) 2045 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2046 "Removing %u dropped ep ctxs, %u now active.", 2047 num_dropped_eps, 2048 xhci->num_active_eps); 2049 } 2050 2051 static unsigned int xhci_get_block_size(struct usb_device *udev) 2052 { 2053 switch (udev->speed) { 2054 case USB_SPEED_LOW: 2055 case USB_SPEED_FULL: 2056 return FS_BLOCK; 2057 case USB_SPEED_HIGH: 2058 return HS_BLOCK; 2059 case USB_SPEED_SUPER: 2060 return SS_BLOCK; 2061 case USB_SPEED_UNKNOWN: 2062 case USB_SPEED_WIRELESS: 2063 default: 2064 /* Should never happen */ 2065 return 1; 2066 } 2067 } 2068 2069 static unsigned int 2070 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2071 { 2072 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2073 return LS_OVERHEAD; 2074 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2075 return FS_OVERHEAD; 2076 return HS_OVERHEAD; 2077 } 2078 2079 /* If we are changing a LS/FS device under a HS hub, 2080 * make sure (if we are activating a new TT) that the HS bus has enough 2081 * bandwidth for this new TT. 2082 */ 2083 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2084 struct xhci_virt_device *virt_dev, 2085 int old_active_eps) 2086 { 2087 struct xhci_interval_bw_table *bw_table; 2088 struct xhci_tt_bw_info *tt_info; 2089 2090 /* Find the bandwidth table for the root port this TT is attached to. */ 2091 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2092 tt_info = virt_dev->tt_info; 2093 /* If this TT already had active endpoints, the bandwidth for this TT 2094 * has already been added. Removing all periodic endpoints (and thus 2095 * making the TT enactive) will only decrease the bandwidth used. 2096 */ 2097 if (old_active_eps) 2098 return 0; 2099 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2100 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2101 return -ENOMEM; 2102 return 0; 2103 } 2104 /* Not sure why we would have no new active endpoints... 2105 * 2106 * Maybe because of an Evaluate Context change for a hub update or a 2107 * control endpoint 0 max packet size change? 2108 * FIXME: skip the bandwidth calculation in that case. 2109 */ 2110 return 0; 2111 } 2112 2113 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2114 struct xhci_virt_device *virt_dev) 2115 { 2116 unsigned int bw_reserved; 2117 2118 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2119 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2120 return -ENOMEM; 2121 2122 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2123 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2124 return -ENOMEM; 2125 2126 return 0; 2127 } 2128 2129 /* 2130 * This algorithm is a very conservative estimate of the worst-case scheduling 2131 * scenario for any one interval. The hardware dynamically schedules the 2132 * packets, so we can't tell which microframe could be the limiting factor in 2133 * the bandwidth scheduling. This only takes into account periodic endpoints. 2134 * 2135 * Obviously, we can't solve an NP complete problem to find the minimum worst 2136 * case scenario. Instead, we come up with an estimate that is no less than 2137 * the worst case bandwidth used for any one microframe, but may be an 2138 * over-estimate. 2139 * 2140 * We walk the requirements for each endpoint by interval, starting with the 2141 * smallest interval, and place packets in the schedule where there is only one 2142 * possible way to schedule packets for that interval. In order to simplify 2143 * this algorithm, we record the largest max packet size for each interval, and 2144 * assume all packets will be that size. 2145 * 2146 * For interval 0, we obviously must schedule all packets for each interval. 2147 * The bandwidth for interval 0 is just the amount of data to be transmitted 2148 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2149 * the number of packets). 2150 * 2151 * For interval 1, we have two possible microframes to schedule those packets 2152 * in. For this algorithm, if we can schedule the same number of packets for 2153 * each possible scheduling opportunity (each microframe), we will do so. The 2154 * remaining number of packets will be saved to be transmitted in the gaps in 2155 * the next interval's scheduling sequence. 2156 * 2157 * As we move those remaining packets to be scheduled with interval 2 packets, 2158 * we have to double the number of remaining packets to transmit. This is 2159 * because the intervals are actually powers of 2, and we would be transmitting 2160 * the previous interval's packets twice in this interval. We also have to be 2161 * sure that when we look at the largest max packet size for this interval, we 2162 * also look at the largest max packet size for the remaining packets and take 2163 * the greater of the two. 2164 * 2165 * The algorithm continues to evenly distribute packets in each scheduling 2166 * opportunity, and push the remaining packets out, until we get to the last 2167 * interval. Then those packets and their associated overhead are just added 2168 * to the bandwidth used. 2169 */ 2170 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2171 struct xhci_virt_device *virt_dev, 2172 int old_active_eps) 2173 { 2174 unsigned int bw_reserved; 2175 unsigned int max_bandwidth; 2176 unsigned int bw_used; 2177 unsigned int block_size; 2178 struct xhci_interval_bw_table *bw_table; 2179 unsigned int packet_size = 0; 2180 unsigned int overhead = 0; 2181 unsigned int packets_transmitted = 0; 2182 unsigned int packets_remaining = 0; 2183 unsigned int i; 2184 2185 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2186 return xhci_check_ss_bw(xhci, virt_dev); 2187 2188 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2189 max_bandwidth = HS_BW_LIMIT; 2190 /* Convert percent of bus BW reserved to blocks reserved */ 2191 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2192 } else { 2193 max_bandwidth = FS_BW_LIMIT; 2194 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2195 } 2196 2197 bw_table = virt_dev->bw_table; 2198 /* We need to translate the max packet size and max ESIT payloads into 2199 * the units the hardware uses. 2200 */ 2201 block_size = xhci_get_block_size(virt_dev->udev); 2202 2203 /* If we are manipulating a LS/FS device under a HS hub, double check 2204 * that the HS bus has enough bandwidth if we are activing a new TT. 2205 */ 2206 if (virt_dev->tt_info) { 2207 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2208 "Recalculating BW for rootport %u", 2209 virt_dev->real_port); 2210 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2211 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2212 "newly activated TT.\n"); 2213 return -ENOMEM; 2214 } 2215 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2216 "Recalculating BW for TT slot %u port %u", 2217 virt_dev->tt_info->slot_id, 2218 virt_dev->tt_info->ttport); 2219 } else { 2220 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2221 "Recalculating BW for rootport %u", 2222 virt_dev->real_port); 2223 } 2224 2225 /* Add in how much bandwidth will be used for interval zero, or the 2226 * rounded max ESIT payload + number of packets * largest overhead. 2227 */ 2228 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2229 bw_table->interval_bw[0].num_packets * 2230 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2231 2232 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2233 unsigned int bw_added; 2234 unsigned int largest_mps; 2235 unsigned int interval_overhead; 2236 2237 /* 2238 * How many packets could we transmit in this interval? 2239 * If packets didn't fit in the previous interval, we will need 2240 * to transmit that many packets twice within this interval. 2241 */ 2242 packets_remaining = 2 * packets_remaining + 2243 bw_table->interval_bw[i].num_packets; 2244 2245 /* Find the largest max packet size of this or the previous 2246 * interval. 2247 */ 2248 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2249 largest_mps = 0; 2250 else { 2251 struct xhci_virt_ep *virt_ep; 2252 struct list_head *ep_entry; 2253 2254 ep_entry = bw_table->interval_bw[i].endpoints.next; 2255 virt_ep = list_entry(ep_entry, 2256 struct xhci_virt_ep, bw_endpoint_list); 2257 /* Convert to blocks, rounding up */ 2258 largest_mps = DIV_ROUND_UP( 2259 virt_ep->bw_info.max_packet_size, 2260 block_size); 2261 } 2262 if (largest_mps > packet_size) 2263 packet_size = largest_mps; 2264 2265 /* Use the larger overhead of this or the previous interval. */ 2266 interval_overhead = xhci_get_largest_overhead( 2267 &bw_table->interval_bw[i]); 2268 if (interval_overhead > overhead) 2269 overhead = interval_overhead; 2270 2271 /* How many packets can we evenly distribute across 2272 * (1 << (i + 1)) possible scheduling opportunities? 2273 */ 2274 packets_transmitted = packets_remaining >> (i + 1); 2275 2276 /* Add in the bandwidth used for those scheduled packets */ 2277 bw_added = packets_transmitted * (overhead + packet_size); 2278 2279 /* How many packets do we have remaining to transmit? */ 2280 packets_remaining = packets_remaining % (1 << (i + 1)); 2281 2282 /* What largest max packet size should those packets have? */ 2283 /* If we've transmitted all packets, don't carry over the 2284 * largest packet size. 2285 */ 2286 if (packets_remaining == 0) { 2287 packet_size = 0; 2288 overhead = 0; 2289 } else if (packets_transmitted > 0) { 2290 /* Otherwise if we do have remaining packets, and we've 2291 * scheduled some packets in this interval, take the 2292 * largest max packet size from endpoints with this 2293 * interval. 2294 */ 2295 packet_size = largest_mps; 2296 overhead = interval_overhead; 2297 } 2298 /* Otherwise carry over packet_size and overhead from the last 2299 * time we had a remainder. 2300 */ 2301 bw_used += bw_added; 2302 if (bw_used > max_bandwidth) { 2303 xhci_warn(xhci, "Not enough bandwidth. " 2304 "Proposed: %u, Max: %u\n", 2305 bw_used, max_bandwidth); 2306 return -ENOMEM; 2307 } 2308 } 2309 /* 2310 * Ok, we know we have some packets left over after even-handedly 2311 * scheduling interval 15. We don't know which microframes they will 2312 * fit into, so we over-schedule and say they will be scheduled every 2313 * microframe. 2314 */ 2315 if (packets_remaining > 0) 2316 bw_used += overhead + packet_size; 2317 2318 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2319 unsigned int port_index = virt_dev->real_port - 1; 2320 2321 /* OK, we're manipulating a HS device attached to a 2322 * root port bandwidth domain. Include the number of active TTs 2323 * in the bandwidth used. 2324 */ 2325 bw_used += TT_HS_OVERHEAD * 2326 xhci->rh_bw[port_index].num_active_tts; 2327 } 2328 2329 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2330 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2331 "Available: %u " "percent", 2332 bw_used, max_bandwidth, bw_reserved, 2333 (max_bandwidth - bw_used - bw_reserved) * 100 / 2334 max_bandwidth); 2335 2336 bw_used += bw_reserved; 2337 if (bw_used > max_bandwidth) { 2338 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2339 bw_used, max_bandwidth); 2340 return -ENOMEM; 2341 } 2342 2343 bw_table->bw_used = bw_used; 2344 return 0; 2345 } 2346 2347 static bool xhci_is_async_ep(unsigned int ep_type) 2348 { 2349 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2350 ep_type != ISOC_IN_EP && 2351 ep_type != INT_IN_EP); 2352 } 2353 2354 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2355 { 2356 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2357 } 2358 2359 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2360 { 2361 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2362 2363 if (ep_bw->ep_interval == 0) 2364 return SS_OVERHEAD_BURST + 2365 (ep_bw->mult * ep_bw->num_packets * 2366 (SS_OVERHEAD + mps)); 2367 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2368 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2369 1 << ep_bw->ep_interval); 2370 2371 } 2372 2373 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2374 struct xhci_bw_info *ep_bw, 2375 struct xhci_interval_bw_table *bw_table, 2376 struct usb_device *udev, 2377 struct xhci_virt_ep *virt_ep, 2378 struct xhci_tt_bw_info *tt_info) 2379 { 2380 struct xhci_interval_bw *interval_bw; 2381 int normalized_interval; 2382 2383 if (xhci_is_async_ep(ep_bw->type)) 2384 return; 2385 2386 if (udev->speed == USB_SPEED_SUPER) { 2387 if (xhci_is_sync_in_ep(ep_bw->type)) 2388 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2389 xhci_get_ss_bw_consumed(ep_bw); 2390 else 2391 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2392 xhci_get_ss_bw_consumed(ep_bw); 2393 return; 2394 } 2395 2396 /* SuperSpeed endpoints never get added to intervals in the table, so 2397 * this check is only valid for HS/FS/LS devices. 2398 */ 2399 if (list_empty(&virt_ep->bw_endpoint_list)) 2400 return; 2401 /* For LS/FS devices, we need to translate the interval expressed in 2402 * microframes to frames. 2403 */ 2404 if (udev->speed == USB_SPEED_HIGH) 2405 normalized_interval = ep_bw->ep_interval; 2406 else 2407 normalized_interval = ep_bw->ep_interval - 3; 2408 2409 if (normalized_interval == 0) 2410 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2411 interval_bw = &bw_table->interval_bw[normalized_interval]; 2412 interval_bw->num_packets -= ep_bw->num_packets; 2413 switch (udev->speed) { 2414 case USB_SPEED_LOW: 2415 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2416 break; 2417 case USB_SPEED_FULL: 2418 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2419 break; 2420 case USB_SPEED_HIGH: 2421 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2422 break; 2423 case USB_SPEED_SUPER: 2424 case USB_SPEED_UNKNOWN: 2425 case USB_SPEED_WIRELESS: 2426 /* Should never happen because only LS/FS/HS endpoints will get 2427 * added to the endpoint list. 2428 */ 2429 return; 2430 } 2431 if (tt_info) 2432 tt_info->active_eps -= 1; 2433 list_del_init(&virt_ep->bw_endpoint_list); 2434 } 2435 2436 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2437 struct xhci_bw_info *ep_bw, 2438 struct xhci_interval_bw_table *bw_table, 2439 struct usb_device *udev, 2440 struct xhci_virt_ep *virt_ep, 2441 struct xhci_tt_bw_info *tt_info) 2442 { 2443 struct xhci_interval_bw *interval_bw; 2444 struct xhci_virt_ep *smaller_ep; 2445 int normalized_interval; 2446 2447 if (xhci_is_async_ep(ep_bw->type)) 2448 return; 2449 2450 if (udev->speed == USB_SPEED_SUPER) { 2451 if (xhci_is_sync_in_ep(ep_bw->type)) 2452 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2453 xhci_get_ss_bw_consumed(ep_bw); 2454 else 2455 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2456 xhci_get_ss_bw_consumed(ep_bw); 2457 return; 2458 } 2459 2460 /* For LS/FS devices, we need to translate the interval expressed in 2461 * microframes to frames. 2462 */ 2463 if (udev->speed == USB_SPEED_HIGH) 2464 normalized_interval = ep_bw->ep_interval; 2465 else 2466 normalized_interval = ep_bw->ep_interval - 3; 2467 2468 if (normalized_interval == 0) 2469 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2470 interval_bw = &bw_table->interval_bw[normalized_interval]; 2471 interval_bw->num_packets += ep_bw->num_packets; 2472 switch (udev->speed) { 2473 case USB_SPEED_LOW: 2474 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2475 break; 2476 case USB_SPEED_FULL: 2477 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2478 break; 2479 case USB_SPEED_HIGH: 2480 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2481 break; 2482 case USB_SPEED_SUPER: 2483 case USB_SPEED_UNKNOWN: 2484 case USB_SPEED_WIRELESS: 2485 /* Should never happen because only LS/FS/HS endpoints will get 2486 * added to the endpoint list. 2487 */ 2488 return; 2489 } 2490 2491 if (tt_info) 2492 tt_info->active_eps += 1; 2493 /* Insert the endpoint into the list, largest max packet size first. */ 2494 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2495 bw_endpoint_list) { 2496 if (ep_bw->max_packet_size >= 2497 smaller_ep->bw_info.max_packet_size) { 2498 /* Add the new ep before the smaller endpoint */ 2499 list_add_tail(&virt_ep->bw_endpoint_list, 2500 &smaller_ep->bw_endpoint_list); 2501 return; 2502 } 2503 } 2504 /* Add the new endpoint at the end of the list. */ 2505 list_add_tail(&virt_ep->bw_endpoint_list, 2506 &interval_bw->endpoints); 2507 } 2508 2509 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2510 struct xhci_virt_device *virt_dev, 2511 int old_active_eps) 2512 { 2513 struct xhci_root_port_bw_info *rh_bw_info; 2514 if (!virt_dev->tt_info) 2515 return; 2516 2517 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2518 if (old_active_eps == 0 && 2519 virt_dev->tt_info->active_eps != 0) { 2520 rh_bw_info->num_active_tts += 1; 2521 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2522 } else if (old_active_eps != 0 && 2523 virt_dev->tt_info->active_eps == 0) { 2524 rh_bw_info->num_active_tts -= 1; 2525 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2526 } 2527 } 2528 2529 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2530 struct xhci_virt_device *virt_dev, 2531 struct xhci_container_ctx *in_ctx) 2532 { 2533 struct xhci_bw_info ep_bw_info[31]; 2534 int i; 2535 struct xhci_input_control_ctx *ctrl_ctx; 2536 int old_active_eps = 0; 2537 2538 if (virt_dev->tt_info) 2539 old_active_eps = virt_dev->tt_info->active_eps; 2540 2541 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2542 if (!ctrl_ctx) { 2543 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2544 __func__); 2545 return -ENOMEM; 2546 } 2547 2548 for (i = 0; i < 31; i++) { 2549 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2550 continue; 2551 2552 /* Make a copy of the BW info in case we need to revert this */ 2553 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2554 sizeof(ep_bw_info[i])); 2555 /* Drop the endpoint from the interval table if the endpoint is 2556 * being dropped or changed. 2557 */ 2558 if (EP_IS_DROPPED(ctrl_ctx, i)) 2559 xhci_drop_ep_from_interval_table(xhci, 2560 &virt_dev->eps[i].bw_info, 2561 virt_dev->bw_table, 2562 virt_dev->udev, 2563 &virt_dev->eps[i], 2564 virt_dev->tt_info); 2565 } 2566 /* Overwrite the information stored in the endpoints' bw_info */ 2567 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2568 for (i = 0; i < 31; i++) { 2569 /* Add any changed or added endpoints to the interval table */ 2570 if (EP_IS_ADDED(ctrl_ctx, i)) 2571 xhci_add_ep_to_interval_table(xhci, 2572 &virt_dev->eps[i].bw_info, 2573 virt_dev->bw_table, 2574 virt_dev->udev, 2575 &virt_dev->eps[i], 2576 virt_dev->tt_info); 2577 } 2578 2579 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2580 /* Ok, this fits in the bandwidth we have. 2581 * Update the number of active TTs. 2582 */ 2583 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2584 return 0; 2585 } 2586 2587 /* We don't have enough bandwidth for this, revert the stored info. */ 2588 for (i = 0; i < 31; i++) { 2589 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2590 continue; 2591 2592 /* Drop the new copies of any added or changed endpoints from 2593 * the interval table. 2594 */ 2595 if (EP_IS_ADDED(ctrl_ctx, i)) { 2596 xhci_drop_ep_from_interval_table(xhci, 2597 &virt_dev->eps[i].bw_info, 2598 virt_dev->bw_table, 2599 virt_dev->udev, 2600 &virt_dev->eps[i], 2601 virt_dev->tt_info); 2602 } 2603 /* Revert the endpoint back to its old information */ 2604 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2605 sizeof(ep_bw_info[i])); 2606 /* Add any changed or dropped endpoints back into the table */ 2607 if (EP_IS_DROPPED(ctrl_ctx, i)) 2608 xhci_add_ep_to_interval_table(xhci, 2609 &virt_dev->eps[i].bw_info, 2610 virt_dev->bw_table, 2611 virt_dev->udev, 2612 &virt_dev->eps[i], 2613 virt_dev->tt_info); 2614 } 2615 return -ENOMEM; 2616 } 2617 2618 2619 /* Issue a configure endpoint command or evaluate context command 2620 * and wait for it to finish. 2621 */ 2622 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2623 struct usb_device *udev, 2624 struct xhci_command *command, 2625 bool ctx_change, bool must_succeed) 2626 { 2627 int ret; 2628 unsigned long flags; 2629 struct xhci_input_control_ctx *ctrl_ctx; 2630 struct xhci_virt_device *virt_dev; 2631 2632 if (!command) 2633 return -EINVAL; 2634 2635 spin_lock_irqsave(&xhci->lock, flags); 2636 virt_dev = xhci->devs[udev->slot_id]; 2637 2638 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2639 if (!ctrl_ctx) { 2640 spin_unlock_irqrestore(&xhci->lock, flags); 2641 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2642 __func__); 2643 return -ENOMEM; 2644 } 2645 2646 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2647 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2648 spin_unlock_irqrestore(&xhci->lock, flags); 2649 xhci_warn(xhci, "Not enough host resources, " 2650 "active endpoint contexts = %u\n", 2651 xhci->num_active_eps); 2652 return -ENOMEM; 2653 } 2654 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2655 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2656 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2657 xhci_free_host_resources(xhci, ctrl_ctx); 2658 spin_unlock_irqrestore(&xhci->lock, flags); 2659 xhci_warn(xhci, "Not enough bandwidth\n"); 2660 return -ENOMEM; 2661 } 2662 2663 if (!ctx_change) 2664 ret = xhci_queue_configure_endpoint(xhci, command, 2665 command->in_ctx->dma, 2666 udev->slot_id, must_succeed); 2667 else 2668 ret = xhci_queue_evaluate_context(xhci, command, 2669 command->in_ctx->dma, 2670 udev->slot_id, must_succeed); 2671 if (ret < 0) { 2672 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2673 xhci_free_host_resources(xhci, ctrl_ctx); 2674 spin_unlock_irqrestore(&xhci->lock, flags); 2675 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2676 "FIXME allocate a new ring segment"); 2677 return -ENOMEM; 2678 } 2679 xhci_ring_cmd_db(xhci); 2680 spin_unlock_irqrestore(&xhci->lock, flags); 2681 2682 /* Wait for the configure endpoint command to complete */ 2683 wait_for_completion(command->completion); 2684 2685 if (!ctx_change) 2686 ret = xhci_configure_endpoint_result(xhci, udev, 2687 &command->status); 2688 else 2689 ret = xhci_evaluate_context_result(xhci, udev, 2690 &command->status); 2691 2692 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2693 spin_lock_irqsave(&xhci->lock, flags); 2694 /* If the command failed, remove the reserved resources. 2695 * Otherwise, clean up the estimate to include dropped eps. 2696 */ 2697 if (ret) 2698 xhci_free_host_resources(xhci, ctrl_ctx); 2699 else 2700 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2701 spin_unlock_irqrestore(&xhci->lock, flags); 2702 } 2703 return ret; 2704 } 2705 2706 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2707 struct xhci_virt_device *vdev, int i) 2708 { 2709 struct xhci_virt_ep *ep = &vdev->eps[i]; 2710 2711 if (ep->ep_state & EP_HAS_STREAMS) { 2712 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2713 xhci_get_endpoint_address(i)); 2714 xhci_free_stream_info(xhci, ep->stream_info); 2715 ep->stream_info = NULL; 2716 ep->ep_state &= ~EP_HAS_STREAMS; 2717 } 2718 } 2719 2720 /* Called after one or more calls to xhci_add_endpoint() or 2721 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2722 * to call xhci_reset_bandwidth(). 2723 * 2724 * Since we are in the middle of changing either configuration or 2725 * installing a new alt setting, the USB core won't allow URBs to be 2726 * enqueued for any endpoint on the old config or interface. Nothing 2727 * else should be touching the xhci->devs[slot_id] structure, so we 2728 * don't need to take the xhci->lock for manipulating that. 2729 */ 2730 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2731 { 2732 int i; 2733 int ret = 0; 2734 struct xhci_hcd *xhci; 2735 struct xhci_virt_device *virt_dev; 2736 struct xhci_input_control_ctx *ctrl_ctx; 2737 struct xhci_slot_ctx *slot_ctx; 2738 struct xhci_command *command; 2739 2740 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2741 if (ret <= 0) 2742 return ret; 2743 xhci = hcd_to_xhci(hcd); 2744 if (xhci->xhc_state & XHCI_STATE_DYING) 2745 return -ENODEV; 2746 2747 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2748 virt_dev = xhci->devs[udev->slot_id]; 2749 2750 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2751 if (!command) 2752 return -ENOMEM; 2753 2754 command->in_ctx = virt_dev->in_ctx; 2755 2756 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2757 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2758 if (!ctrl_ctx) { 2759 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2760 __func__); 2761 ret = -ENOMEM; 2762 goto command_cleanup; 2763 } 2764 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2765 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2766 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2767 2768 /* Don't issue the command if there's no endpoints to update. */ 2769 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2770 ctrl_ctx->drop_flags == 0) { 2771 ret = 0; 2772 goto command_cleanup; 2773 } 2774 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2775 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2776 for (i = 31; i >= 1; i--) { 2777 __le32 le32 = cpu_to_le32(BIT(i)); 2778 2779 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2780 || (ctrl_ctx->add_flags & le32) || i == 1) { 2781 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2782 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2783 break; 2784 } 2785 } 2786 xhci_dbg(xhci, "New Input Control Context:\n"); 2787 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2788 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2789 2790 ret = xhci_configure_endpoint(xhci, udev, command, 2791 false, false); 2792 if (ret) 2793 /* Callee should call reset_bandwidth() */ 2794 goto command_cleanup; 2795 2796 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2797 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2798 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2799 2800 /* Free any rings that were dropped, but not changed. */ 2801 for (i = 1; i < 31; ++i) { 2802 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2803 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2804 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2805 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2806 } 2807 } 2808 xhci_zero_in_ctx(xhci, virt_dev); 2809 /* 2810 * Install any rings for completely new endpoints or changed endpoints, 2811 * and free or cache any old rings from changed endpoints. 2812 */ 2813 for (i = 1; i < 31; ++i) { 2814 if (!virt_dev->eps[i].new_ring) 2815 continue; 2816 /* Only cache or free the old ring if it exists. 2817 * It may not if this is the first add of an endpoint. 2818 */ 2819 if (virt_dev->eps[i].ring) { 2820 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2821 } 2822 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2823 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2824 virt_dev->eps[i].new_ring = NULL; 2825 } 2826 command_cleanup: 2827 kfree(command->completion); 2828 kfree(command); 2829 2830 return ret; 2831 } 2832 2833 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2834 { 2835 struct xhci_hcd *xhci; 2836 struct xhci_virt_device *virt_dev; 2837 int i, ret; 2838 2839 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2840 if (ret <= 0) 2841 return; 2842 xhci = hcd_to_xhci(hcd); 2843 2844 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2845 virt_dev = xhci->devs[udev->slot_id]; 2846 /* Free any rings allocated for added endpoints */ 2847 for (i = 0; i < 31; ++i) { 2848 if (virt_dev->eps[i].new_ring) { 2849 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2850 virt_dev->eps[i].new_ring = NULL; 2851 } 2852 } 2853 xhci_zero_in_ctx(xhci, virt_dev); 2854 } 2855 2856 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2857 struct xhci_container_ctx *in_ctx, 2858 struct xhci_container_ctx *out_ctx, 2859 struct xhci_input_control_ctx *ctrl_ctx, 2860 u32 add_flags, u32 drop_flags) 2861 { 2862 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2863 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2864 xhci_slot_copy(xhci, in_ctx, out_ctx); 2865 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2866 2867 xhci_dbg(xhci, "Input Context:\n"); 2868 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2869 } 2870 2871 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2872 unsigned int slot_id, unsigned int ep_index, 2873 struct xhci_dequeue_state *deq_state) 2874 { 2875 struct xhci_input_control_ctx *ctrl_ctx; 2876 struct xhci_container_ctx *in_ctx; 2877 struct xhci_ep_ctx *ep_ctx; 2878 u32 added_ctxs; 2879 dma_addr_t addr; 2880 2881 in_ctx = xhci->devs[slot_id]->in_ctx; 2882 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2883 if (!ctrl_ctx) { 2884 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2885 __func__); 2886 return; 2887 } 2888 2889 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2890 xhci->devs[slot_id]->out_ctx, ep_index); 2891 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2892 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2893 deq_state->new_deq_ptr); 2894 if (addr == 0) { 2895 xhci_warn(xhci, "WARN Cannot submit config ep after " 2896 "reset ep command\n"); 2897 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2898 deq_state->new_deq_seg, 2899 deq_state->new_deq_ptr); 2900 return; 2901 } 2902 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2903 2904 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2905 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2906 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2907 added_ctxs, added_ctxs); 2908 } 2909 2910 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2911 unsigned int ep_index, struct xhci_td *td) 2912 { 2913 struct xhci_dequeue_state deq_state; 2914 struct xhci_virt_ep *ep; 2915 struct usb_device *udev = td->urb->dev; 2916 2917 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2918 "Cleaning up stalled endpoint ring"); 2919 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2920 /* We need to move the HW's dequeue pointer past this TD, 2921 * or it will attempt to resend it on the next doorbell ring. 2922 */ 2923 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2924 ep_index, ep->stopped_stream, td, &deq_state); 2925 2926 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2927 return; 2928 2929 /* HW with the reset endpoint quirk will use the saved dequeue state to 2930 * issue a configure endpoint command later. 2931 */ 2932 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2933 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2934 "Queueing new dequeue state"); 2935 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2936 ep_index, ep->stopped_stream, &deq_state); 2937 } else { 2938 /* Better hope no one uses the input context between now and the 2939 * reset endpoint completion! 2940 * XXX: No idea how this hardware will react when stream rings 2941 * are enabled. 2942 */ 2943 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2944 "Setting up input context for " 2945 "configure endpoint command"); 2946 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2947 ep_index, &deq_state); 2948 } 2949 } 2950 2951 /* Called when clearing halted device. The core should have sent the control 2952 * message to clear the device halt condition. The host side of the halt should 2953 * already be cleared with a reset endpoint command issued when the STALL tx 2954 * event was received. 2955 * 2956 * Context: in_interrupt 2957 */ 2958 2959 void xhci_endpoint_reset(struct usb_hcd *hcd, 2960 struct usb_host_endpoint *ep) 2961 { 2962 struct xhci_hcd *xhci; 2963 2964 xhci = hcd_to_xhci(hcd); 2965 2966 /* 2967 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2968 * The Reset Endpoint Command may only be issued to endpoints in the 2969 * Halted state. If software wishes reset the Data Toggle or Sequence 2970 * Number of an endpoint that isn't in the Halted state, then software 2971 * may issue a Configure Endpoint Command with the Drop and Add bits set 2972 * for the target endpoint. that is in the Stopped state. 2973 */ 2974 2975 /* For now just print debug to follow the situation */ 2976 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 2977 ep->desc.bEndpointAddress); 2978 } 2979 2980 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2981 struct usb_device *udev, struct usb_host_endpoint *ep, 2982 unsigned int slot_id) 2983 { 2984 int ret; 2985 unsigned int ep_index; 2986 unsigned int ep_state; 2987 2988 if (!ep) 2989 return -EINVAL; 2990 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2991 if (ret <= 0) 2992 return -EINVAL; 2993 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2994 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2995 " descriptor for ep 0x%x does not support streams\n", 2996 ep->desc.bEndpointAddress); 2997 return -EINVAL; 2998 } 2999 3000 ep_index = xhci_get_endpoint_index(&ep->desc); 3001 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3002 if (ep_state & EP_HAS_STREAMS || 3003 ep_state & EP_GETTING_STREAMS) { 3004 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3005 "already has streams set up.\n", 3006 ep->desc.bEndpointAddress); 3007 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3008 "dynamic stream context array reallocation.\n"); 3009 return -EINVAL; 3010 } 3011 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3012 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3013 "endpoint 0x%x; URBs are pending.\n", 3014 ep->desc.bEndpointAddress); 3015 return -EINVAL; 3016 } 3017 return 0; 3018 } 3019 3020 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3021 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3022 { 3023 unsigned int max_streams; 3024 3025 /* The stream context array size must be a power of two */ 3026 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3027 /* 3028 * Find out how many primary stream array entries the host controller 3029 * supports. Later we may use secondary stream arrays (similar to 2nd 3030 * level page entries), but that's an optional feature for xHCI host 3031 * controllers. xHCs must support at least 4 stream IDs. 3032 */ 3033 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3034 if (*num_stream_ctxs > max_streams) { 3035 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3036 max_streams); 3037 *num_stream_ctxs = max_streams; 3038 *num_streams = max_streams; 3039 } 3040 } 3041 3042 /* Returns an error code if one of the endpoint already has streams. 3043 * This does not change any data structures, it only checks and gathers 3044 * information. 3045 */ 3046 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3047 struct usb_device *udev, 3048 struct usb_host_endpoint **eps, unsigned int num_eps, 3049 unsigned int *num_streams, u32 *changed_ep_bitmask) 3050 { 3051 unsigned int max_streams; 3052 unsigned int endpoint_flag; 3053 int i; 3054 int ret; 3055 3056 for (i = 0; i < num_eps; i++) { 3057 ret = xhci_check_streams_endpoint(xhci, udev, 3058 eps[i], udev->slot_id); 3059 if (ret < 0) 3060 return ret; 3061 3062 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3063 if (max_streams < (*num_streams - 1)) { 3064 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3065 eps[i]->desc.bEndpointAddress, 3066 max_streams); 3067 *num_streams = max_streams+1; 3068 } 3069 3070 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3071 if (*changed_ep_bitmask & endpoint_flag) 3072 return -EINVAL; 3073 *changed_ep_bitmask |= endpoint_flag; 3074 } 3075 return 0; 3076 } 3077 3078 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3079 struct usb_device *udev, 3080 struct usb_host_endpoint **eps, unsigned int num_eps) 3081 { 3082 u32 changed_ep_bitmask = 0; 3083 unsigned int slot_id; 3084 unsigned int ep_index; 3085 unsigned int ep_state; 3086 int i; 3087 3088 slot_id = udev->slot_id; 3089 if (!xhci->devs[slot_id]) 3090 return 0; 3091 3092 for (i = 0; i < num_eps; i++) { 3093 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3094 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3095 /* Are streams already being freed for the endpoint? */ 3096 if (ep_state & EP_GETTING_NO_STREAMS) { 3097 xhci_warn(xhci, "WARN Can't disable streams for " 3098 "endpoint 0x%x, " 3099 "streams are being disabled already\n", 3100 eps[i]->desc.bEndpointAddress); 3101 return 0; 3102 } 3103 /* Are there actually any streams to free? */ 3104 if (!(ep_state & EP_HAS_STREAMS) && 3105 !(ep_state & EP_GETTING_STREAMS)) { 3106 xhci_warn(xhci, "WARN Can't disable streams for " 3107 "endpoint 0x%x, " 3108 "streams are already disabled!\n", 3109 eps[i]->desc.bEndpointAddress); 3110 xhci_warn(xhci, "WARN xhci_free_streams() called " 3111 "with non-streams endpoint\n"); 3112 return 0; 3113 } 3114 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3115 } 3116 return changed_ep_bitmask; 3117 } 3118 3119 /* 3120 * The USB device drivers use this function (through the HCD interface in USB 3121 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3122 * coordinate mass storage command queueing across multiple endpoints (basically 3123 * a stream ID == a task ID). 3124 * 3125 * Setting up streams involves allocating the same size stream context array 3126 * for each endpoint and issuing a configure endpoint command for all endpoints. 3127 * 3128 * Don't allow the call to succeed if one endpoint only supports one stream 3129 * (which means it doesn't support streams at all). 3130 * 3131 * Drivers may get less stream IDs than they asked for, if the host controller 3132 * hardware or endpoints claim they can't support the number of requested 3133 * stream IDs. 3134 */ 3135 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3136 struct usb_host_endpoint **eps, unsigned int num_eps, 3137 unsigned int num_streams, gfp_t mem_flags) 3138 { 3139 int i, ret; 3140 struct xhci_hcd *xhci; 3141 struct xhci_virt_device *vdev; 3142 struct xhci_command *config_cmd; 3143 struct xhci_input_control_ctx *ctrl_ctx; 3144 unsigned int ep_index; 3145 unsigned int num_stream_ctxs; 3146 unsigned long flags; 3147 u32 changed_ep_bitmask = 0; 3148 3149 if (!eps) 3150 return -EINVAL; 3151 3152 /* Add one to the number of streams requested to account for 3153 * stream 0 that is reserved for xHCI usage. 3154 */ 3155 num_streams += 1; 3156 xhci = hcd_to_xhci(hcd); 3157 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3158 num_streams); 3159 3160 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3161 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3162 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3163 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3164 return -ENOSYS; 3165 } 3166 3167 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3168 if (!config_cmd) { 3169 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3170 return -ENOMEM; 3171 } 3172 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3173 if (!ctrl_ctx) { 3174 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3175 __func__); 3176 xhci_free_command(xhci, config_cmd); 3177 return -ENOMEM; 3178 } 3179 3180 /* Check to make sure all endpoints are not already configured for 3181 * streams. While we're at it, find the maximum number of streams that 3182 * all the endpoints will support and check for duplicate endpoints. 3183 */ 3184 spin_lock_irqsave(&xhci->lock, flags); 3185 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3186 num_eps, &num_streams, &changed_ep_bitmask); 3187 if (ret < 0) { 3188 xhci_free_command(xhci, config_cmd); 3189 spin_unlock_irqrestore(&xhci->lock, flags); 3190 return ret; 3191 } 3192 if (num_streams <= 1) { 3193 xhci_warn(xhci, "WARN: endpoints can't handle " 3194 "more than one stream.\n"); 3195 xhci_free_command(xhci, config_cmd); 3196 spin_unlock_irqrestore(&xhci->lock, flags); 3197 return -EINVAL; 3198 } 3199 vdev = xhci->devs[udev->slot_id]; 3200 /* Mark each endpoint as being in transition, so 3201 * xhci_urb_enqueue() will reject all URBs. 3202 */ 3203 for (i = 0; i < num_eps; i++) { 3204 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3205 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3206 } 3207 spin_unlock_irqrestore(&xhci->lock, flags); 3208 3209 /* Setup internal data structures and allocate HW data structures for 3210 * streams (but don't install the HW structures in the input context 3211 * until we're sure all memory allocation succeeded). 3212 */ 3213 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3214 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3215 num_stream_ctxs, num_streams); 3216 3217 for (i = 0; i < num_eps; i++) { 3218 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3219 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3220 num_stream_ctxs, 3221 num_streams, mem_flags); 3222 if (!vdev->eps[ep_index].stream_info) 3223 goto cleanup; 3224 /* Set maxPstreams in endpoint context and update deq ptr to 3225 * point to stream context array. FIXME 3226 */ 3227 } 3228 3229 /* Set up the input context for a configure endpoint command. */ 3230 for (i = 0; i < num_eps; i++) { 3231 struct xhci_ep_ctx *ep_ctx; 3232 3233 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3234 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3235 3236 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3237 vdev->out_ctx, ep_index); 3238 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3239 vdev->eps[ep_index].stream_info); 3240 } 3241 /* Tell the HW to drop its old copy of the endpoint context info 3242 * and add the updated copy from the input context. 3243 */ 3244 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3245 vdev->out_ctx, ctrl_ctx, 3246 changed_ep_bitmask, changed_ep_bitmask); 3247 3248 /* Issue and wait for the configure endpoint command */ 3249 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3250 false, false); 3251 3252 /* xHC rejected the configure endpoint command for some reason, so we 3253 * leave the old ring intact and free our internal streams data 3254 * structure. 3255 */ 3256 if (ret < 0) 3257 goto cleanup; 3258 3259 spin_lock_irqsave(&xhci->lock, flags); 3260 for (i = 0; i < num_eps; i++) { 3261 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3262 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3263 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3264 udev->slot_id, ep_index); 3265 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3266 } 3267 xhci_free_command(xhci, config_cmd); 3268 spin_unlock_irqrestore(&xhci->lock, flags); 3269 3270 /* Subtract 1 for stream 0, which drivers can't use */ 3271 return num_streams - 1; 3272 3273 cleanup: 3274 /* If it didn't work, free the streams! */ 3275 for (i = 0; i < num_eps; i++) { 3276 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3277 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3278 vdev->eps[ep_index].stream_info = NULL; 3279 /* FIXME Unset maxPstreams in endpoint context and 3280 * update deq ptr to point to normal string ring. 3281 */ 3282 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3283 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3284 xhci_endpoint_zero(xhci, vdev, eps[i]); 3285 } 3286 xhci_free_command(xhci, config_cmd); 3287 return -ENOMEM; 3288 } 3289 3290 /* Transition the endpoint from using streams to being a "normal" endpoint 3291 * without streams. 3292 * 3293 * Modify the endpoint context state, submit a configure endpoint command, 3294 * and free all endpoint rings for streams if that completes successfully. 3295 */ 3296 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3297 struct usb_host_endpoint **eps, unsigned int num_eps, 3298 gfp_t mem_flags) 3299 { 3300 int i, ret; 3301 struct xhci_hcd *xhci; 3302 struct xhci_virt_device *vdev; 3303 struct xhci_command *command; 3304 struct xhci_input_control_ctx *ctrl_ctx; 3305 unsigned int ep_index; 3306 unsigned long flags; 3307 u32 changed_ep_bitmask; 3308 3309 xhci = hcd_to_xhci(hcd); 3310 vdev = xhci->devs[udev->slot_id]; 3311 3312 /* Set up a configure endpoint command to remove the streams rings */ 3313 spin_lock_irqsave(&xhci->lock, flags); 3314 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3315 udev, eps, num_eps); 3316 if (changed_ep_bitmask == 0) { 3317 spin_unlock_irqrestore(&xhci->lock, flags); 3318 return -EINVAL; 3319 } 3320 3321 /* Use the xhci_command structure from the first endpoint. We may have 3322 * allocated too many, but the driver may call xhci_free_streams() for 3323 * each endpoint it grouped into one call to xhci_alloc_streams(). 3324 */ 3325 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3326 command = vdev->eps[ep_index].stream_info->free_streams_command; 3327 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3328 if (!ctrl_ctx) { 3329 spin_unlock_irqrestore(&xhci->lock, flags); 3330 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3331 __func__); 3332 return -EINVAL; 3333 } 3334 3335 for (i = 0; i < num_eps; i++) { 3336 struct xhci_ep_ctx *ep_ctx; 3337 3338 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3339 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3340 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3341 EP_GETTING_NO_STREAMS; 3342 3343 xhci_endpoint_copy(xhci, command->in_ctx, 3344 vdev->out_ctx, ep_index); 3345 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3346 &vdev->eps[ep_index]); 3347 } 3348 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3349 vdev->out_ctx, ctrl_ctx, 3350 changed_ep_bitmask, changed_ep_bitmask); 3351 spin_unlock_irqrestore(&xhci->lock, flags); 3352 3353 /* Issue and wait for the configure endpoint command, 3354 * which must succeed. 3355 */ 3356 ret = xhci_configure_endpoint(xhci, udev, command, 3357 false, true); 3358 3359 /* xHC rejected the configure endpoint command for some reason, so we 3360 * leave the streams rings intact. 3361 */ 3362 if (ret < 0) 3363 return ret; 3364 3365 spin_lock_irqsave(&xhci->lock, flags); 3366 for (i = 0; i < num_eps; i++) { 3367 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3368 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3369 vdev->eps[ep_index].stream_info = NULL; 3370 /* FIXME Unset maxPstreams in endpoint context and 3371 * update deq ptr to point to normal string ring. 3372 */ 3373 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3374 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3375 } 3376 spin_unlock_irqrestore(&xhci->lock, flags); 3377 3378 return 0; 3379 } 3380 3381 /* 3382 * Deletes endpoint resources for endpoints that were active before a Reset 3383 * Device command, or a Disable Slot command. The Reset Device command leaves 3384 * the control endpoint intact, whereas the Disable Slot command deletes it. 3385 * 3386 * Must be called with xhci->lock held. 3387 */ 3388 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3389 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3390 { 3391 int i; 3392 unsigned int num_dropped_eps = 0; 3393 unsigned int drop_flags = 0; 3394 3395 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3396 if (virt_dev->eps[i].ring) { 3397 drop_flags |= 1 << i; 3398 num_dropped_eps++; 3399 } 3400 } 3401 xhci->num_active_eps -= num_dropped_eps; 3402 if (num_dropped_eps) 3403 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3404 "Dropped %u ep ctxs, flags = 0x%x, " 3405 "%u now active.", 3406 num_dropped_eps, drop_flags, 3407 xhci->num_active_eps); 3408 } 3409 3410 /* 3411 * This submits a Reset Device Command, which will set the device state to 0, 3412 * set the device address to 0, and disable all the endpoints except the default 3413 * control endpoint. The USB core should come back and call 3414 * xhci_address_device(), and then re-set up the configuration. If this is 3415 * called because of a usb_reset_and_verify_device(), then the old alternate 3416 * settings will be re-installed through the normal bandwidth allocation 3417 * functions. 3418 * 3419 * Wait for the Reset Device command to finish. Remove all structures 3420 * associated with the endpoints that were disabled. Clear the input device 3421 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3422 * 3423 * If the virt_dev to be reset does not exist or does not match the udev, 3424 * it means the device is lost, possibly due to the xHC restore error and 3425 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3426 * re-allocate the device. 3427 */ 3428 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3429 { 3430 int ret, i; 3431 unsigned long flags; 3432 struct xhci_hcd *xhci; 3433 unsigned int slot_id; 3434 struct xhci_virt_device *virt_dev; 3435 struct xhci_command *reset_device_cmd; 3436 int last_freed_endpoint; 3437 struct xhci_slot_ctx *slot_ctx; 3438 int old_active_eps = 0; 3439 3440 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3441 if (ret <= 0) 3442 return ret; 3443 xhci = hcd_to_xhci(hcd); 3444 slot_id = udev->slot_id; 3445 virt_dev = xhci->devs[slot_id]; 3446 if (!virt_dev) { 3447 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3448 "not exist. Re-allocate the device\n", slot_id); 3449 ret = xhci_alloc_dev(hcd, udev); 3450 if (ret == 1) 3451 return 0; 3452 else 3453 return -EINVAL; 3454 } 3455 3456 if (virt_dev->tt_info) 3457 old_active_eps = virt_dev->tt_info->active_eps; 3458 3459 if (virt_dev->udev != udev) { 3460 /* If the virt_dev and the udev does not match, this virt_dev 3461 * may belong to another udev. 3462 * Re-allocate the device. 3463 */ 3464 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3465 "not match the udev. Re-allocate the device\n", 3466 slot_id); 3467 ret = xhci_alloc_dev(hcd, udev); 3468 if (ret == 1) 3469 return 0; 3470 else 3471 return -EINVAL; 3472 } 3473 3474 /* If device is not setup, there is no point in resetting it */ 3475 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3476 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3477 SLOT_STATE_DISABLED) 3478 return 0; 3479 3480 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3481 /* Allocate the command structure that holds the struct completion. 3482 * Assume we're in process context, since the normal device reset 3483 * process has to wait for the device anyway. Storage devices are 3484 * reset as part of error handling, so use GFP_NOIO instead of 3485 * GFP_KERNEL. 3486 */ 3487 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3488 if (!reset_device_cmd) { 3489 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3490 return -ENOMEM; 3491 } 3492 3493 /* Attempt to submit the Reset Device command to the command ring */ 3494 spin_lock_irqsave(&xhci->lock, flags); 3495 3496 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3497 if (ret) { 3498 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3499 spin_unlock_irqrestore(&xhci->lock, flags); 3500 goto command_cleanup; 3501 } 3502 xhci_ring_cmd_db(xhci); 3503 spin_unlock_irqrestore(&xhci->lock, flags); 3504 3505 /* Wait for the Reset Device command to finish */ 3506 wait_for_completion(reset_device_cmd->completion); 3507 3508 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3509 * unless we tried to reset a slot ID that wasn't enabled, 3510 * or the device wasn't in the addressed or configured state. 3511 */ 3512 ret = reset_device_cmd->status; 3513 switch (ret) { 3514 case COMP_CMD_ABORT: 3515 case COMP_CMD_STOP: 3516 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3517 ret = -ETIME; 3518 goto command_cleanup; 3519 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3520 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3521 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3522 slot_id, 3523 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3524 xhci_dbg(xhci, "Not freeing device rings.\n"); 3525 /* Don't treat this as an error. May change my mind later. */ 3526 ret = 0; 3527 goto command_cleanup; 3528 case COMP_SUCCESS: 3529 xhci_dbg(xhci, "Successful reset device command.\n"); 3530 break; 3531 default: 3532 if (xhci_is_vendor_info_code(xhci, ret)) 3533 break; 3534 xhci_warn(xhci, "Unknown completion code %u for " 3535 "reset device command.\n", ret); 3536 ret = -EINVAL; 3537 goto command_cleanup; 3538 } 3539 3540 /* Free up host controller endpoint resources */ 3541 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3542 spin_lock_irqsave(&xhci->lock, flags); 3543 /* Don't delete the default control endpoint resources */ 3544 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3545 spin_unlock_irqrestore(&xhci->lock, flags); 3546 } 3547 3548 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3549 last_freed_endpoint = 1; 3550 for (i = 1; i < 31; ++i) { 3551 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3552 3553 if (ep->ep_state & EP_HAS_STREAMS) { 3554 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3555 xhci_get_endpoint_address(i)); 3556 xhci_free_stream_info(xhci, ep->stream_info); 3557 ep->stream_info = NULL; 3558 ep->ep_state &= ~EP_HAS_STREAMS; 3559 } 3560 3561 if (ep->ring) { 3562 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3563 last_freed_endpoint = i; 3564 } 3565 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3566 xhci_drop_ep_from_interval_table(xhci, 3567 &virt_dev->eps[i].bw_info, 3568 virt_dev->bw_table, 3569 udev, 3570 &virt_dev->eps[i], 3571 virt_dev->tt_info); 3572 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3573 } 3574 /* If necessary, update the number of active TTs on this root port */ 3575 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3576 3577 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3578 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3579 ret = 0; 3580 3581 command_cleanup: 3582 xhci_free_command(xhci, reset_device_cmd); 3583 return ret; 3584 } 3585 3586 /* 3587 * At this point, the struct usb_device is about to go away, the device has 3588 * disconnected, and all traffic has been stopped and the endpoints have been 3589 * disabled. Free any HC data structures associated with that device. 3590 */ 3591 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3592 { 3593 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3594 struct xhci_virt_device *virt_dev; 3595 unsigned long flags; 3596 u32 state; 3597 int i, ret; 3598 struct xhci_command *command; 3599 3600 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3601 if (!command) 3602 return; 3603 3604 #ifndef CONFIG_USB_DEFAULT_PERSIST 3605 /* 3606 * We called pm_runtime_get_noresume when the device was attached. 3607 * Decrement the counter here to allow controller to runtime suspend 3608 * if no devices remain. 3609 */ 3610 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3611 pm_runtime_put_noidle(hcd->self.controller); 3612 #endif 3613 3614 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3615 /* If the host is halted due to driver unload, we still need to free the 3616 * device. 3617 */ 3618 if (ret <= 0 && ret != -ENODEV) { 3619 kfree(command); 3620 return; 3621 } 3622 3623 virt_dev = xhci->devs[udev->slot_id]; 3624 3625 /* Stop any wayward timer functions (which may grab the lock) */ 3626 for (i = 0; i < 31; ++i) { 3627 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3628 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3629 } 3630 3631 spin_lock_irqsave(&xhci->lock, flags); 3632 /* Don't disable the slot if the host controller is dead. */ 3633 state = readl(&xhci->op_regs->status); 3634 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3635 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3636 xhci_free_virt_device(xhci, udev->slot_id); 3637 spin_unlock_irqrestore(&xhci->lock, flags); 3638 kfree(command); 3639 return; 3640 } 3641 3642 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3643 udev->slot_id)) { 3644 spin_unlock_irqrestore(&xhci->lock, flags); 3645 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3646 return; 3647 } 3648 xhci_ring_cmd_db(xhci); 3649 spin_unlock_irqrestore(&xhci->lock, flags); 3650 3651 /* 3652 * Event command completion handler will free any data structures 3653 * associated with the slot. XXX Can free sleep? 3654 */ 3655 } 3656 3657 /* 3658 * Checks if we have enough host controller resources for the default control 3659 * endpoint. 3660 * 3661 * Must be called with xhci->lock held. 3662 */ 3663 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3664 { 3665 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3666 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3667 "Not enough ep ctxs: " 3668 "%u active, need to add 1, limit is %u.", 3669 xhci->num_active_eps, xhci->limit_active_eps); 3670 return -ENOMEM; 3671 } 3672 xhci->num_active_eps += 1; 3673 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3674 "Adding 1 ep ctx, %u now active.", 3675 xhci->num_active_eps); 3676 return 0; 3677 } 3678 3679 3680 /* 3681 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3682 * timed out, or allocating memory failed. Returns 1 on success. 3683 */ 3684 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3685 { 3686 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3687 unsigned long flags; 3688 int ret, slot_id; 3689 struct xhci_command *command; 3690 3691 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3692 if (!command) 3693 return 0; 3694 3695 /* xhci->slot_id and xhci->addr_dev are not thread-safe */ 3696 mutex_lock(&xhci->mutex); 3697 spin_lock_irqsave(&xhci->lock, flags); 3698 command->completion = &xhci->addr_dev; 3699 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3700 if (ret) { 3701 spin_unlock_irqrestore(&xhci->lock, flags); 3702 mutex_unlock(&xhci->mutex); 3703 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3704 kfree(command); 3705 return 0; 3706 } 3707 xhci_ring_cmd_db(xhci); 3708 spin_unlock_irqrestore(&xhci->lock, flags); 3709 3710 wait_for_completion(command->completion); 3711 slot_id = xhci->slot_id; 3712 mutex_unlock(&xhci->mutex); 3713 3714 if (!slot_id || command->status != COMP_SUCCESS) { 3715 xhci_err(xhci, "Error while assigning device slot ID\n"); 3716 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3717 HCS_MAX_SLOTS( 3718 readl(&xhci->cap_regs->hcs_params1))); 3719 kfree(command); 3720 return 0; 3721 } 3722 3723 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3724 spin_lock_irqsave(&xhci->lock, flags); 3725 ret = xhci_reserve_host_control_ep_resources(xhci); 3726 if (ret) { 3727 spin_unlock_irqrestore(&xhci->lock, flags); 3728 xhci_warn(xhci, "Not enough host resources, " 3729 "active endpoint contexts = %u\n", 3730 xhci->num_active_eps); 3731 goto disable_slot; 3732 } 3733 spin_unlock_irqrestore(&xhci->lock, flags); 3734 } 3735 /* Use GFP_NOIO, since this function can be called from 3736 * xhci_discover_or_reset_device(), which may be called as part of 3737 * mass storage driver error handling. 3738 */ 3739 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3740 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3741 goto disable_slot; 3742 } 3743 udev->slot_id = slot_id; 3744 3745 #ifndef CONFIG_USB_DEFAULT_PERSIST 3746 /* 3747 * If resetting upon resume, we can't put the controller into runtime 3748 * suspend if there is a device attached. 3749 */ 3750 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3751 pm_runtime_get_noresume(hcd->self.controller); 3752 #endif 3753 3754 3755 kfree(command); 3756 /* Is this a LS or FS device under a HS hub? */ 3757 /* Hub or peripherial? */ 3758 return 1; 3759 3760 disable_slot: 3761 /* Disable slot, if we can do it without mem alloc */ 3762 spin_lock_irqsave(&xhci->lock, flags); 3763 command->completion = NULL; 3764 command->status = 0; 3765 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3766 udev->slot_id)) 3767 xhci_ring_cmd_db(xhci); 3768 spin_unlock_irqrestore(&xhci->lock, flags); 3769 return 0; 3770 } 3771 3772 /* 3773 * Issue an Address Device command and optionally send a corresponding 3774 * SetAddress request to the device. 3775 */ 3776 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3777 enum xhci_setup_dev setup) 3778 { 3779 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3780 unsigned long flags; 3781 struct xhci_virt_device *virt_dev; 3782 int ret = 0; 3783 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3784 struct xhci_slot_ctx *slot_ctx; 3785 struct xhci_input_control_ctx *ctrl_ctx; 3786 u64 temp_64; 3787 struct xhci_command *command = NULL; 3788 3789 mutex_lock(&xhci->mutex); 3790 3791 if (xhci->xhc_state) /* dying or halted */ 3792 goto out; 3793 3794 if (!udev->slot_id) { 3795 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3796 "Bad Slot ID %d", udev->slot_id); 3797 ret = -EINVAL; 3798 goto out; 3799 } 3800 3801 virt_dev = xhci->devs[udev->slot_id]; 3802 3803 if (WARN_ON(!virt_dev)) { 3804 /* 3805 * In plug/unplug torture test with an NEC controller, 3806 * a zero-dereference was observed once due to virt_dev = 0. 3807 * Print useful debug rather than crash if it is observed again! 3808 */ 3809 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3810 udev->slot_id); 3811 ret = -EINVAL; 3812 goto out; 3813 } 3814 3815 if (setup == SETUP_CONTEXT_ONLY) { 3816 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3817 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3818 SLOT_STATE_DEFAULT) { 3819 xhci_dbg(xhci, "Slot already in default state\n"); 3820 goto out; 3821 } 3822 } 3823 3824 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3825 if (!command) { 3826 ret = -ENOMEM; 3827 goto out; 3828 } 3829 3830 command->in_ctx = virt_dev->in_ctx; 3831 command->completion = &xhci->addr_dev; 3832 3833 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3834 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3835 if (!ctrl_ctx) { 3836 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3837 __func__); 3838 ret = -EINVAL; 3839 goto out; 3840 } 3841 /* 3842 * If this is the first Set Address since device plug-in or 3843 * virt_device realloaction after a resume with an xHCI power loss, 3844 * then set up the slot context. 3845 */ 3846 if (!slot_ctx->dev_info) 3847 xhci_setup_addressable_virt_dev(xhci, udev); 3848 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3849 else 3850 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3851 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3852 ctrl_ctx->drop_flags = 0; 3853 3854 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3855 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3856 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3857 le32_to_cpu(slot_ctx->dev_info) >> 27); 3858 3859 spin_lock_irqsave(&xhci->lock, flags); 3860 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3861 udev->slot_id, setup); 3862 if (ret) { 3863 spin_unlock_irqrestore(&xhci->lock, flags); 3864 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3865 "FIXME: allocate a command ring segment"); 3866 goto out; 3867 } 3868 xhci_ring_cmd_db(xhci); 3869 spin_unlock_irqrestore(&xhci->lock, flags); 3870 3871 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3872 wait_for_completion(command->completion); 3873 3874 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3875 * the SetAddress() "recovery interval" required by USB and aborting the 3876 * command on a timeout. 3877 */ 3878 switch (command->status) { 3879 case COMP_CMD_ABORT: 3880 case COMP_CMD_STOP: 3881 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3882 ret = -ETIME; 3883 break; 3884 case COMP_CTX_STATE: 3885 case COMP_EBADSLT: 3886 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3887 act, udev->slot_id); 3888 ret = -EINVAL; 3889 break; 3890 case COMP_TX_ERR: 3891 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3892 ret = -EPROTO; 3893 break; 3894 case COMP_DEV_ERR: 3895 dev_warn(&udev->dev, 3896 "ERROR: Incompatible device for setup %s command\n", act); 3897 ret = -ENODEV; 3898 break; 3899 case COMP_SUCCESS: 3900 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3901 "Successful setup %s command", act); 3902 break; 3903 default: 3904 xhci_err(xhci, 3905 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3906 act, command->status); 3907 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3908 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3909 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3910 ret = -EINVAL; 3911 break; 3912 } 3913 if (ret) 3914 goto out; 3915 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3916 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3917 "Op regs DCBAA ptr = %#016llx", temp_64); 3918 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3919 "Slot ID %d dcbaa entry @%p = %#016llx", 3920 udev->slot_id, 3921 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3922 (unsigned long long) 3923 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3924 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3925 "Output Context DMA address = %#08llx", 3926 (unsigned long long)virt_dev->out_ctx->dma); 3927 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3928 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3929 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3930 le32_to_cpu(slot_ctx->dev_info) >> 27); 3931 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3932 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3933 /* 3934 * USB core uses address 1 for the roothubs, so we add one to the 3935 * address given back to us by the HC. 3936 */ 3937 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3938 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3939 le32_to_cpu(slot_ctx->dev_info) >> 27); 3940 /* Zero the input context control for later use */ 3941 ctrl_ctx->add_flags = 0; 3942 ctrl_ctx->drop_flags = 0; 3943 3944 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3945 "Internal device address = %d", 3946 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3947 out: 3948 mutex_unlock(&xhci->mutex); 3949 kfree(command); 3950 return ret; 3951 } 3952 3953 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3954 { 3955 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3956 } 3957 3958 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3959 { 3960 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3961 } 3962 3963 /* 3964 * Transfer the port index into real index in the HW port status 3965 * registers. Caculate offset between the port's PORTSC register 3966 * and port status base. Divide the number of per port register 3967 * to get the real index. The raw port number bases 1. 3968 */ 3969 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3970 { 3971 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3972 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3973 __le32 __iomem *addr; 3974 int raw_port; 3975 3976 if (hcd->speed < HCD_USB3) 3977 addr = xhci->usb2_ports[port1 - 1]; 3978 else 3979 addr = xhci->usb3_ports[port1 - 1]; 3980 3981 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3982 return raw_port; 3983 } 3984 3985 /* 3986 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3987 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3988 */ 3989 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3990 struct usb_device *udev, u16 max_exit_latency) 3991 { 3992 struct xhci_virt_device *virt_dev; 3993 struct xhci_command *command; 3994 struct xhci_input_control_ctx *ctrl_ctx; 3995 struct xhci_slot_ctx *slot_ctx; 3996 unsigned long flags; 3997 int ret; 3998 3999 spin_lock_irqsave(&xhci->lock, flags); 4000 4001 virt_dev = xhci->devs[udev->slot_id]; 4002 4003 /* 4004 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4005 * xHC was re-initialized. Exit latency will be set later after 4006 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4007 */ 4008 4009 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4010 spin_unlock_irqrestore(&xhci->lock, flags); 4011 return 0; 4012 } 4013 4014 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4015 command = xhci->lpm_command; 4016 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4017 if (!ctrl_ctx) { 4018 spin_unlock_irqrestore(&xhci->lock, flags); 4019 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4020 __func__); 4021 return -ENOMEM; 4022 } 4023 4024 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4025 spin_unlock_irqrestore(&xhci->lock, flags); 4026 4027 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4028 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4029 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4030 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4031 slot_ctx->dev_state = 0; 4032 4033 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4034 "Set up evaluate context for LPM MEL change."); 4035 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4036 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4037 4038 /* Issue and wait for the evaluate context command. */ 4039 ret = xhci_configure_endpoint(xhci, udev, command, 4040 true, true); 4041 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4042 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4043 4044 if (!ret) { 4045 spin_lock_irqsave(&xhci->lock, flags); 4046 virt_dev->current_mel = max_exit_latency; 4047 spin_unlock_irqrestore(&xhci->lock, flags); 4048 } 4049 return ret; 4050 } 4051 4052 #ifdef CONFIG_PM 4053 4054 /* BESL to HIRD Encoding array for USB2 LPM */ 4055 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4056 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4057 4058 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4059 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4060 struct usb_device *udev) 4061 { 4062 int u2del, besl, besl_host; 4063 int besl_device = 0; 4064 u32 field; 4065 4066 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4067 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4068 4069 if (field & USB_BESL_SUPPORT) { 4070 for (besl_host = 0; besl_host < 16; besl_host++) { 4071 if (xhci_besl_encoding[besl_host] >= u2del) 4072 break; 4073 } 4074 /* Use baseline BESL value as default */ 4075 if (field & USB_BESL_BASELINE_VALID) 4076 besl_device = USB_GET_BESL_BASELINE(field); 4077 else if (field & USB_BESL_DEEP_VALID) 4078 besl_device = USB_GET_BESL_DEEP(field); 4079 } else { 4080 if (u2del <= 50) 4081 besl_host = 0; 4082 else 4083 besl_host = (u2del - 51) / 75 + 1; 4084 } 4085 4086 besl = besl_host + besl_device; 4087 if (besl > 15) 4088 besl = 15; 4089 4090 return besl; 4091 } 4092 4093 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4094 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4095 { 4096 u32 field; 4097 int l1; 4098 int besld = 0; 4099 int hirdm = 0; 4100 4101 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4102 4103 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4104 l1 = udev->l1_params.timeout / 256; 4105 4106 /* device has preferred BESLD */ 4107 if (field & USB_BESL_DEEP_VALID) { 4108 besld = USB_GET_BESL_DEEP(field); 4109 hirdm = 1; 4110 } 4111 4112 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4113 } 4114 4115 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4116 struct usb_device *udev, int enable) 4117 { 4118 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4119 __le32 __iomem **port_array; 4120 __le32 __iomem *pm_addr, *hlpm_addr; 4121 u32 pm_val, hlpm_val, field; 4122 unsigned int port_num; 4123 unsigned long flags; 4124 int hird, exit_latency; 4125 int ret; 4126 4127 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4128 !udev->lpm_capable) 4129 return -EPERM; 4130 4131 if (!udev->parent || udev->parent->parent || 4132 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4133 return -EPERM; 4134 4135 if (udev->usb2_hw_lpm_capable != 1) 4136 return -EPERM; 4137 4138 spin_lock_irqsave(&xhci->lock, flags); 4139 4140 port_array = xhci->usb2_ports; 4141 port_num = udev->portnum - 1; 4142 pm_addr = port_array[port_num] + PORTPMSC; 4143 pm_val = readl(pm_addr); 4144 hlpm_addr = port_array[port_num] + PORTHLPMC; 4145 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4146 4147 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4148 enable ? "enable" : "disable", port_num + 1); 4149 4150 if (enable) { 4151 /* Host supports BESL timeout instead of HIRD */ 4152 if (udev->usb2_hw_lpm_besl_capable) { 4153 /* if device doesn't have a preferred BESL value use a 4154 * default one which works with mixed HIRD and BESL 4155 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4156 */ 4157 if ((field & USB_BESL_SUPPORT) && 4158 (field & USB_BESL_BASELINE_VALID)) 4159 hird = USB_GET_BESL_BASELINE(field); 4160 else 4161 hird = udev->l1_params.besl; 4162 4163 exit_latency = xhci_besl_encoding[hird]; 4164 spin_unlock_irqrestore(&xhci->lock, flags); 4165 4166 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4167 * input context for link powermanagement evaluate 4168 * context commands. It is protected by hcd->bandwidth 4169 * mutex and is shared by all devices. We need to set 4170 * the max ext latency in USB 2 BESL LPM as well, so 4171 * use the same mutex and xhci_change_max_exit_latency() 4172 */ 4173 mutex_lock(hcd->bandwidth_mutex); 4174 ret = xhci_change_max_exit_latency(xhci, udev, 4175 exit_latency); 4176 mutex_unlock(hcd->bandwidth_mutex); 4177 4178 if (ret < 0) 4179 return ret; 4180 spin_lock_irqsave(&xhci->lock, flags); 4181 4182 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4183 writel(hlpm_val, hlpm_addr); 4184 /* flush write */ 4185 readl(hlpm_addr); 4186 } else { 4187 hird = xhci_calculate_hird_besl(xhci, udev); 4188 } 4189 4190 pm_val &= ~PORT_HIRD_MASK; 4191 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4192 writel(pm_val, pm_addr); 4193 pm_val = readl(pm_addr); 4194 pm_val |= PORT_HLE; 4195 writel(pm_val, pm_addr); 4196 /* flush write */ 4197 readl(pm_addr); 4198 } else { 4199 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4200 writel(pm_val, pm_addr); 4201 /* flush write */ 4202 readl(pm_addr); 4203 if (udev->usb2_hw_lpm_besl_capable) { 4204 spin_unlock_irqrestore(&xhci->lock, flags); 4205 mutex_lock(hcd->bandwidth_mutex); 4206 xhci_change_max_exit_latency(xhci, udev, 0); 4207 mutex_unlock(hcd->bandwidth_mutex); 4208 return 0; 4209 } 4210 } 4211 4212 spin_unlock_irqrestore(&xhci->lock, flags); 4213 return 0; 4214 } 4215 4216 /* check if a usb2 port supports a given extened capability protocol 4217 * only USB2 ports extended protocol capability values are cached. 4218 * Return 1 if capability is supported 4219 */ 4220 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4221 unsigned capability) 4222 { 4223 u32 port_offset, port_count; 4224 int i; 4225 4226 for (i = 0; i < xhci->num_ext_caps; i++) { 4227 if (xhci->ext_caps[i] & capability) { 4228 /* port offsets starts at 1 */ 4229 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4230 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4231 if (port >= port_offset && 4232 port < port_offset + port_count) 4233 return 1; 4234 } 4235 } 4236 return 0; 4237 } 4238 4239 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4240 { 4241 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4242 int portnum = udev->portnum - 1; 4243 4244 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4245 !udev->lpm_capable) 4246 return 0; 4247 4248 /* we only support lpm for non-hub device connected to root hub yet */ 4249 if (!udev->parent || udev->parent->parent || 4250 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4251 return 0; 4252 4253 if (xhci->hw_lpm_support == 1 && 4254 xhci_check_usb2_port_capability( 4255 xhci, portnum, XHCI_HLC)) { 4256 udev->usb2_hw_lpm_capable = 1; 4257 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4258 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4259 if (xhci_check_usb2_port_capability(xhci, portnum, 4260 XHCI_BLC)) 4261 udev->usb2_hw_lpm_besl_capable = 1; 4262 } 4263 4264 return 0; 4265 } 4266 4267 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4268 4269 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4270 static unsigned long long xhci_service_interval_to_ns( 4271 struct usb_endpoint_descriptor *desc) 4272 { 4273 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4274 } 4275 4276 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4277 enum usb3_link_state state) 4278 { 4279 unsigned long long sel; 4280 unsigned long long pel; 4281 unsigned int max_sel_pel; 4282 char *state_name; 4283 4284 switch (state) { 4285 case USB3_LPM_U1: 4286 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4287 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4288 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4289 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4290 state_name = "U1"; 4291 break; 4292 case USB3_LPM_U2: 4293 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4294 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4295 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4296 state_name = "U2"; 4297 break; 4298 default: 4299 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4300 __func__); 4301 return USB3_LPM_DISABLED; 4302 } 4303 4304 if (sel <= max_sel_pel && pel <= max_sel_pel) 4305 return USB3_LPM_DEVICE_INITIATED; 4306 4307 if (sel > max_sel_pel) 4308 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4309 "due to long SEL %llu ms\n", 4310 state_name, sel); 4311 else 4312 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4313 "due to long PEL %llu ms\n", 4314 state_name, pel); 4315 return USB3_LPM_DISABLED; 4316 } 4317 4318 /* The U1 timeout should be the maximum of the following values: 4319 * - For control endpoints, U1 system exit latency (SEL) * 3 4320 * - For bulk endpoints, U1 SEL * 5 4321 * - For interrupt endpoints: 4322 * - Notification EPs, U1 SEL * 3 4323 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4324 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4325 */ 4326 static unsigned long long xhci_calculate_intel_u1_timeout( 4327 struct usb_device *udev, 4328 struct usb_endpoint_descriptor *desc) 4329 { 4330 unsigned long long timeout_ns; 4331 int ep_type; 4332 int intr_type; 4333 4334 ep_type = usb_endpoint_type(desc); 4335 switch (ep_type) { 4336 case USB_ENDPOINT_XFER_CONTROL: 4337 timeout_ns = udev->u1_params.sel * 3; 4338 break; 4339 case USB_ENDPOINT_XFER_BULK: 4340 timeout_ns = udev->u1_params.sel * 5; 4341 break; 4342 case USB_ENDPOINT_XFER_INT: 4343 intr_type = usb_endpoint_interrupt_type(desc); 4344 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4345 timeout_ns = udev->u1_params.sel * 3; 4346 break; 4347 } 4348 /* Otherwise the calculation is the same as isoc eps */ 4349 case USB_ENDPOINT_XFER_ISOC: 4350 timeout_ns = xhci_service_interval_to_ns(desc); 4351 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4352 if (timeout_ns < udev->u1_params.sel * 2) 4353 timeout_ns = udev->u1_params.sel * 2; 4354 break; 4355 default: 4356 return 0; 4357 } 4358 4359 return timeout_ns; 4360 } 4361 4362 /* Returns the hub-encoded U1 timeout value. */ 4363 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4364 struct usb_device *udev, 4365 struct usb_endpoint_descriptor *desc) 4366 { 4367 unsigned long long timeout_ns; 4368 4369 if (xhci->quirks & XHCI_INTEL_HOST) 4370 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4371 else 4372 timeout_ns = udev->u1_params.sel; 4373 4374 /* The U1 timeout is encoded in 1us intervals. 4375 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4376 */ 4377 if (timeout_ns == USB3_LPM_DISABLED) 4378 timeout_ns = 1; 4379 else 4380 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4381 4382 /* If the necessary timeout value is bigger than what we can set in the 4383 * USB 3.0 hub, we have to disable hub-initiated U1. 4384 */ 4385 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4386 return timeout_ns; 4387 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4388 "due to long timeout %llu ms\n", timeout_ns); 4389 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4390 } 4391 4392 /* The U2 timeout should be the maximum of: 4393 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4394 * - largest bInterval of any active periodic endpoint (to avoid going 4395 * into lower power link states between intervals). 4396 * - the U2 Exit Latency of the device 4397 */ 4398 static unsigned long long xhci_calculate_intel_u2_timeout( 4399 struct usb_device *udev, 4400 struct usb_endpoint_descriptor *desc) 4401 { 4402 unsigned long long timeout_ns; 4403 unsigned long long u2_del_ns; 4404 4405 timeout_ns = 10 * 1000 * 1000; 4406 4407 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4408 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4409 timeout_ns = xhci_service_interval_to_ns(desc); 4410 4411 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4412 if (u2_del_ns > timeout_ns) 4413 timeout_ns = u2_del_ns; 4414 4415 return timeout_ns; 4416 } 4417 4418 /* Returns the hub-encoded U2 timeout value. */ 4419 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4420 struct usb_device *udev, 4421 struct usb_endpoint_descriptor *desc) 4422 { 4423 unsigned long long timeout_ns; 4424 4425 if (xhci->quirks & XHCI_INTEL_HOST) 4426 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4427 else 4428 timeout_ns = udev->u2_params.sel; 4429 4430 /* The U2 timeout is encoded in 256us intervals */ 4431 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4432 /* If the necessary timeout value is bigger than what we can set in the 4433 * USB 3.0 hub, we have to disable hub-initiated U2. 4434 */ 4435 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4436 return timeout_ns; 4437 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4438 "due to long timeout %llu ms\n", timeout_ns); 4439 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4440 } 4441 4442 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4443 struct usb_device *udev, 4444 struct usb_endpoint_descriptor *desc, 4445 enum usb3_link_state state, 4446 u16 *timeout) 4447 { 4448 if (state == USB3_LPM_U1) 4449 return xhci_calculate_u1_timeout(xhci, udev, desc); 4450 else if (state == USB3_LPM_U2) 4451 return xhci_calculate_u2_timeout(xhci, udev, desc); 4452 4453 return USB3_LPM_DISABLED; 4454 } 4455 4456 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4457 struct usb_device *udev, 4458 struct usb_endpoint_descriptor *desc, 4459 enum usb3_link_state state, 4460 u16 *timeout) 4461 { 4462 u16 alt_timeout; 4463 4464 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4465 desc, state, timeout); 4466 4467 /* If we found we can't enable hub-initiated LPM, or 4468 * the U1 or U2 exit latency was too high to allow 4469 * device-initiated LPM as well, just stop searching. 4470 */ 4471 if (alt_timeout == USB3_LPM_DISABLED || 4472 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4473 *timeout = alt_timeout; 4474 return -E2BIG; 4475 } 4476 if (alt_timeout > *timeout) 4477 *timeout = alt_timeout; 4478 return 0; 4479 } 4480 4481 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4482 struct usb_device *udev, 4483 struct usb_host_interface *alt, 4484 enum usb3_link_state state, 4485 u16 *timeout) 4486 { 4487 int j; 4488 4489 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4490 if (xhci_update_timeout_for_endpoint(xhci, udev, 4491 &alt->endpoint[j].desc, state, timeout)) 4492 return -E2BIG; 4493 continue; 4494 } 4495 return 0; 4496 } 4497 4498 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4499 enum usb3_link_state state) 4500 { 4501 struct usb_device *parent; 4502 unsigned int num_hubs; 4503 4504 if (state == USB3_LPM_U2) 4505 return 0; 4506 4507 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4508 for (parent = udev->parent, num_hubs = 0; parent->parent; 4509 parent = parent->parent) 4510 num_hubs++; 4511 4512 if (num_hubs < 2) 4513 return 0; 4514 4515 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4516 " below second-tier hub.\n"); 4517 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4518 "to decrease power consumption.\n"); 4519 return -E2BIG; 4520 } 4521 4522 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4523 struct usb_device *udev, 4524 enum usb3_link_state state) 4525 { 4526 if (xhci->quirks & XHCI_INTEL_HOST) 4527 return xhci_check_intel_tier_policy(udev, state); 4528 else 4529 return 0; 4530 } 4531 4532 /* Returns the U1 or U2 timeout that should be enabled. 4533 * If the tier check or timeout setting functions return with a non-zero exit 4534 * code, that means the timeout value has been finalized and we shouldn't look 4535 * at any more endpoints. 4536 */ 4537 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4538 struct usb_device *udev, enum usb3_link_state state) 4539 { 4540 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4541 struct usb_host_config *config; 4542 char *state_name; 4543 int i; 4544 u16 timeout = USB3_LPM_DISABLED; 4545 4546 if (state == USB3_LPM_U1) 4547 state_name = "U1"; 4548 else if (state == USB3_LPM_U2) 4549 state_name = "U2"; 4550 else { 4551 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4552 state); 4553 return timeout; 4554 } 4555 4556 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4557 return timeout; 4558 4559 /* Gather some information about the currently installed configuration 4560 * and alternate interface settings. 4561 */ 4562 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4563 state, &timeout)) 4564 return timeout; 4565 4566 config = udev->actconfig; 4567 if (!config) 4568 return timeout; 4569 4570 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4571 struct usb_driver *driver; 4572 struct usb_interface *intf = config->interface[i]; 4573 4574 if (!intf) 4575 continue; 4576 4577 /* Check if any currently bound drivers want hub-initiated LPM 4578 * disabled. 4579 */ 4580 if (intf->dev.driver) { 4581 driver = to_usb_driver(intf->dev.driver); 4582 if (driver && driver->disable_hub_initiated_lpm) { 4583 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4584 "at request of driver %s\n", 4585 state_name, driver->name); 4586 return xhci_get_timeout_no_hub_lpm(udev, state); 4587 } 4588 } 4589 4590 /* Not sure how this could happen... */ 4591 if (!intf->cur_altsetting) 4592 continue; 4593 4594 if (xhci_update_timeout_for_interface(xhci, udev, 4595 intf->cur_altsetting, 4596 state, &timeout)) 4597 return timeout; 4598 } 4599 return timeout; 4600 } 4601 4602 static int calculate_max_exit_latency(struct usb_device *udev, 4603 enum usb3_link_state state_changed, 4604 u16 hub_encoded_timeout) 4605 { 4606 unsigned long long u1_mel_us = 0; 4607 unsigned long long u2_mel_us = 0; 4608 unsigned long long mel_us = 0; 4609 bool disabling_u1; 4610 bool disabling_u2; 4611 bool enabling_u1; 4612 bool enabling_u2; 4613 4614 disabling_u1 = (state_changed == USB3_LPM_U1 && 4615 hub_encoded_timeout == USB3_LPM_DISABLED); 4616 disabling_u2 = (state_changed == USB3_LPM_U2 && 4617 hub_encoded_timeout == USB3_LPM_DISABLED); 4618 4619 enabling_u1 = (state_changed == USB3_LPM_U1 && 4620 hub_encoded_timeout != USB3_LPM_DISABLED); 4621 enabling_u2 = (state_changed == USB3_LPM_U2 && 4622 hub_encoded_timeout != USB3_LPM_DISABLED); 4623 4624 /* If U1 was already enabled and we're not disabling it, 4625 * or we're going to enable U1, account for the U1 max exit latency. 4626 */ 4627 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4628 enabling_u1) 4629 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4630 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4631 enabling_u2) 4632 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4633 4634 if (u1_mel_us > u2_mel_us) 4635 mel_us = u1_mel_us; 4636 else 4637 mel_us = u2_mel_us; 4638 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4639 if (mel_us > MAX_EXIT) { 4640 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4641 "is too big.\n", mel_us); 4642 return -E2BIG; 4643 } 4644 return mel_us; 4645 } 4646 4647 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4648 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4649 struct usb_device *udev, enum usb3_link_state state) 4650 { 4651 struct xhci_hcd *xhci; 4652 u16 hub_encoded_timeout; 4653 int mel; 4654 int ret; 4655 4656 xhci = hcd_to_xhci(hcd); 4657 /* The LPM timeout values are pretty host-controller specific, so don't 4658 * enable hub-initiated timeouts unless the vendor has provided 4659 * information about their timeout algorithm. 4660 */ 4661 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4662 !xhci->devs[udev->slot_id]) 4663 return USB3_LPM_DISABLED; 4664 4665 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4666 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4667 if (mel < 0) { 4668 /* Max Exit Latency is too big, disable LPM. */ 4669 hub_encoded_timeout = USB3_LPM_DISABLED; 4670 mel = 0; 4671 } 4672 4673 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4674 if (ret) 4675 return ret; 4676 return hub_encoded_timeout; 4677 } 4678 4679 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4680 struct usb_device *udev, enum usb3_link_state state) 4681 { 4682 struct xhci_hcd *xhci; 4683 u16 mel; 4684 4685 xhci = hcd_to_xhci(hcd); 4686 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4687 !xhci->devs[udev->slot_id]) 4688 return 0; 4689 4690 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4691 return xhci_change_max_exit_latency(xhci, udev, mel); 4692 } 4693 #else /* CONFIG_PM */ 4694 4695 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4696 struct usb_device *udev, int enable) 4697 { 4698 return 0; 4699 } 4700 4701 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4702 { 4703 return 0; 4704 } 4705 4706 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4707 struct usb_device *udev, enum usb3_link_state state) 4708 { 4709 return USB3_LPM_DISABLED; 4710 } 4711 4712 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4713 struct usb_device *udev, enum usb3_link_state state) 4714 { 4715 return 0; 4716 } 4717 #endif /* CONFIG_PM */ 4718 4719 /*-------------------------------------------------------------------------*/ 4720 4721 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4722 * internal data structures for the device. 4723 */ 4724 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4725 struct usb_tt *tt, gfp_t mem_flags) 4726 { 4727 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4728 struct xhci_virt_device *vdev; 4729 struct xhci_command *config_cmd; 4730 struct xhci_input_control_ctx *ctrl_ctx; 4731 struct xhci_slot_ctx *slot_ctx; 4732 unsigned long flags; 4733 unsigned think_time; 4734 int ret; 4735 4736 /* Ignore root hubs */ 4737 if (!hdev->parent) 4738 return 0; 4739 4740 vdev = xhci->devs[hdev->slot_id]; 4741 if (!vdev) { 4742 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4743 return -EINVAL; 4744 } 4745 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4746 if (!config_cmd) { 4747 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4748 return -ENOMEM; 4749 } 4750 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4751 if (!ctrl_ctx) { 4752 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4753 __func__); 4754 xhci_free_command(xhci, config_cmd); 4755 return -ENOMEM; 4756 } 4757 4758 spin_lock_irqsave(&xhci->lock, flags); 4759 if (hdev->speed == USB_SPEED_HIGH && 4760 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4761 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4762 xhci_free_command(xhci, config_cmd); 4763 spin_unlock_irqrestore(&xhci->lock, flags); 4764 return -ENOMEM; 4765 } 4766 4767 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4768 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4769 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4770 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4771 if (tt->multi) 4772 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4773 if (xhci->hci_version > 0x95) { 4774 xhci_dbg(xhci, "xHCI version %x needs hub " 4775 "TT think time and number of ports\n", 4776 (unsigned int) xhci->hci_version); 4777 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4778 /* Set TT think time - convert from ns to FS bit times. 4779 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4780 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4781 * 4782 * xHCI 1.0: this field shall be 0 if the device is not a 4783 * High-spped hub. 4784 */ 4785 think_time = tt->think_time; 4786 if (think_time != 0) 4787 think_time = (think_time / 666) - 1; 4788 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4789 slot_ctx->tt_info |= 4790 cpu_to_le32(TT_THINK_TIME(think_time)); 4791 } else { 4792 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4793 "TT think time or number of ports\n", 4794 (unsigned int) xhci->hci_version); 4795 } 4796 slot_ctx->dev_state = 0; 4797 spin_unlock_irqrestore(&xhci->lock, flags); 4798 4799 xhci_dbg(xhci, "Set up %s for hub device.\n", 4800 (xhci->hci_version > 0x95) ? 4801 "configure endpoint" : "evaluate context"); 4802 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4803 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4804 4805 /* Issue and wait for the configure endpoint or 4806 * evaluate context command. 4807 */ 4808 if (xhci->hci_version > 0x95) 4809 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4810 false, false); 4811 else 4812 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4813 true, false); 4814 4815 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4816 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4817 4818 xhci_free_command(xhci, config_cmd); 4819 return ret; 4820 } 4821 4822 int xhci_get_frame(struct usb_hcd *hcd) 4823 { 4824 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4825 /* EHCI mods by the periodic size. Why? */ 4826 return readl(&xhci->run_regs->microframe_index) >> 3; 4827 } 4828 4829 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4830 { 4831 struct xhci_hcd *xhci; 4832 struct device *dev = hcd->self.controller; 4833 int retval; 4834 4835 /* Accept arbitrarily long scatter-gather lists */ 4836 hcd->self.sg_tablesize = ~0; 4837 4838 /* support to build packet from discontinuous buffers */ 4839 hcd->self.no_sg_constraint = 1; 4840 4841 /* XHCI controllers don't stop the ep queue on short packets :| */ 4842 hcd->self.no_stop_on_short = 1; 4843 4844 xhci = hcd_to_xhci(hcd); 4845 4846 if (usb_hcd_is_primary_hcd(hcd)) { 4847 xhci->main_hcd = hcd; 4848 /* Mark the first roothub as being USB 2.0. 4849 * The xHCI driver will register the USB 3.0 roothub. 4850 */ 4851 hcd->speed = HCD_USB2; 4852 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4853 /* 4854 * USB 2.0 roothub under xHCI has an integrated TT, 4855 * (rate matching hub) as opposed to having an OHCI/UHCI 4856 * companion controller. 4857 */ 4858 hcd->has_tt = 1; 4859 } else { 4860 if (xhci->sbrn == 0x31) { 4861 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n"); 4862 hcd->speed = HCD_USB31; 4863 } 4864 /* xHCI private pointer was set in xhci_pci_probe for the second 4865 * registered roothub. 4866 */ 4867 return 0; 4868 } 4869 4870 mutex_init(&xhci->mutex); 4871 xhci->cap_regs = hcd->regs; 4872 xhci->op_regs = hcd->regs + 4873 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4874 xhci->run_regs = hcd->regs + 4875 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4876 /* Cache read-only capability registers */ 4877 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4878 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4879 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4880 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4881 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4882 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4883 if (xhci->hci_version > 0x100) 4884 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4885 xhci_print_registers(xhci); 4886 4887 xhci->quirks = quirks; 4888 4889 get_quirks(dev, xhci); 4890 4891 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4892 * success event after a short transfer. This quirk will ignore such 4893 * spurious event. 4894 */ 4895 if (xhci->hci_version > 0x96) 4896 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4897 4898 /* Make sure the HC is halted. */ 4899 retval = xhci_halt(xhci); 4900 if (retval) 4901 return retval; 4902 4903 xhci_dbg(xhci, "Resetting HCD\n"); 4904 /* Reset the internal HC memory state and registers. */ 4905 retval = xhci_reset(xhci); 4906 if (retval) 4907 return retval; 4908 xhci_dbg(xhci, "Reset complete\n"); 4909 4910 /* Set dma_mask and coherent_dma_mask to 64-bits, 4911 * if xHC supports 64-bit addressing */ 4912 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4913 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4914 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4915 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4916 } else { 4917 /* 4918 * This is to avoid error in cases where a 32-bit USB 4919 * controller is used on a 64-bit capable system. 4920 */ 4921 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4922 if (retval) 4923 return retval; 4924 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4925 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4926 } 4927 4928 xhci_dbg(xhci, "Calling HCD init\n"); 4929 /* Initialize HCD and host controller data structures. */ 4930 retval = xhci_init(hcd); 4931 if (retval) 4932 return retval; 4933 xhci_dbg(xhci, "Called HCD init\n"); 4934 4935 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4936 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4937 4938 return 0; 4939 } 4940 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4941 4942 static const struct hc_driver xhci_hc_driver = { 4943 .description = "xhci-hcd", 4944 .product_desc = "xHCI Host Controller", 4945 .hcd_priv_size = sizeof(struct xhci_hcd *), 4946 4947 /* 4948 * generic hardware linkage 4949 */ 4950 .irq = xhci_irq, 4951 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4952 4953 /* 4954 * basic lifecycle operations 4955 */ 4956 .reset = NULL, /* set in xhci_init_driver() */ 4957 .start = xhci_run, 4958 .stop = xhci_stop, 4959 .shutdown = xhci_shutdown, 4960 4961 /* 4962 * managing i/o requests and associated device resources 4963 */ 4964 .urb_enqueue = xhci_urb_enqueue, 4965 .urb_dequeue = xhci_urb_dequeue, 4966 .alloc_dev = xhci_alloc_dev, 4967 .free_dev = xhci_free_dev, 4968 .alloc_streams = xhci_alloc_streams, 4969 .free_streams = xhci_free_streams, 4970 .add_endpoint = xhci_add_endpoint, 4971 .drop_endpoint = xhci_drop_endpoint, 4972 .endpoint_reset = xhci_endpoint_reset, 4973 .check_bandwidth = xhci_check_bandwidth, 4974 .reset_bandwidth = xhci_reset_bandwidth, 4975 .address_device = xhci_address_device, 4976 .enable_device = xhci_enable_device, 4977 .update_hub_device = xhci_update_hub_device, 4978 .reset_device = xhci_discover_or_reset_device, 4979 4980 /* 4981 * scheduling support 4982 */ 4983 .get_frame_number = xhci_get_frame, 4984 4985 /* 4986 * root hub support 4987 */ 4988 .hub_control = xhci_hub_control, 4989 .hub_status_data = xhci_hub_status_data, 4990 .bus_suspend = xhci_bus_suspend, 4991 .bus_resume = xhci_bus_resume, 4992 4993 /* 4994 * call back when device connected and addressed 4995 */ 4996 .update_device = xhci_update_device, 4997 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 4998 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 4999 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5000 .find_raw_port_number = xhci_find_raw_port_number, 5001 }; 5002 5003 void xhci_init_driver(struct hc_driver *drv, 5004 const struct xhci_driver_overrides *over) 5005 { 5006 BUG_ON(!over); 5007 5008 /* Copy the generic table to drv then apply the overrides */ 5009 *drv = xhci_hc_driver; 5010 5011 if (over) { 5012 drv->hcd_priv_size += over->extra_priv_size; 5013 if (over->reset) 5014 drv->reset = over->reset; 5015 if (over->start) 5016 drv->start = over->start; 5017 } 5018 } 5019 EXPORT_SYMBOL_GPL(xhci_init_driver); 5020 5021 MODULE_DESCRIPTION(DRIVER_DESC); 5022 MODULE_AUTHOR(DRIVER_AUTHOR); 5023 MODULE_LICENSE("GPL"); 5024 5025 static int __init xhci_hcd_init(void) 5026 { 5027 /* 5028 * Check the compiler generated sizes of structures that must be laid 5029 * out in specific ways for hardware access. 5030 */ 5031 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5032 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5033 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5034 /* xhci_device_control has eight fields, and also 5035 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5036 */ 5037 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5038 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5039 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5040 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5041 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5042 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5043 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5044 return 0; 5045 } 5046 5047 /* 5048 * If an init function is provided, an exit function must also be provided 5049 * to allow module unload. 5050 */ 5051 static void __exit xhci_hcd_fini(void) { } 5052 5053 module_init(xhci_hcd_init); 5054 module_exit(xhci_hcd_fini); 5055