xref: /linux/drivers/usb/host/xhci.c (revision 988b0c541ed8b1c633c4d4df7169010635942e18)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37 
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42 
43 static unsigned int quirks;
44 module_param(quirks, uint, S_IRUGO);
45 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
46 
47 /* TODO: copied from ehci-hcd.c - can this be refactored? */
48 /*
49  * xhci_handshake - spin reading hc until handshake completes or fails
50  * @ptr: address of hc register to be read
51  * @mask: bits to look at in result of read
52  * @done: value of those bits when handshake succeeds
53  * @usec: timeout in microseconds
54  *
55  * Returns negative errno, or zero on success
56  *
57  * Success happens when the "mask" bits have the specified value (hardware
58  * handshake done).  There are two failure modes:  "usec" have passed (major
59  * hardware flakeout), or the register reads as all-ones (hardware removed).
60  */
61 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
62 		      u32 mask, u32 done, int usec)
63 {
64 	u32	result;
65 
66 	do {
67 		result = readl(ptr);
68 		if (result == ~(u32)0)		/* card removed */
69 			return -ENODEV;
70 		result &= mask;
71 		if (result == done)
72 			return 0;
73 		udelay(1);
74 		usec--;
75 	} while (usec > 0);
76 	return -ETIMEDOUT;
77 }
78 
79 /*
80  * Disable interrupts and begin the xHCI halting process.
81  */
82 void xhci_quiesce(struct xhci_hcd *xhci)
83 {
84 	u32 halted;
85 	u32 cmd;
86 	u32 mask;
87 
88 	mask = ~(XHCI_IRQS);
89 	halted = readl(&xhci->op_regs->status) & STS_HALT;
90 	if (!halted)
91 		mask &= ~CMD_RUN;
92 
93 	cmd = readl(&xhci->op_regs->command);
94 	cmd &= mask;
95 	writel(cmd, &xhci->op_regs->command);
96 }
97 
98 /*
99  * Force HC into halt state.
100  *
101  * Disable any IRQs and clear the run/stop bit.
102  * HC will complete any current and actively pipelined transactions, and
103  * should halt within 16 ms of the run/stop bit being cleared.
104  * Read HC Halted bit in the status register to see when the HC is finished.
105  */
106 int xhci_halt(struct xhci_hcd *xhci)
107 {
108 	int ret;
109 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
110 	xhci_quiesce(xhci);
111 
112 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
113 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
114 	if (!ret) {
115 		xhci->xhc_state |= XHCI_STATE_HALTED;
116 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
117 	} else
118 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
119 				XHCI_MAX_HALT_USEC);
120 	return ret;
121 }
122 
123 /*
124  * Set the run bit and wait for the host to be running.
125  */
126 static int xhci_start(struct xhci_hcd *xhci)
127 {
128 	u32 temp;
129 	int ret;
130 
131 	temp = readl(&xhci->op_regs->command);
132 	temp |= (CMD_RUN);
133 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
134 			temp);
135 	writel(temp, &xhci->op_regs->command);
136 
137 	/*
138 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
139 	 * running.
140 	 */
141 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
142 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
143 	if (ret == -ETIMEDOUT)
144 		xhci_err(xhci, "Host took too long to start, "
145 				"waited %u microseconds.\n",
146 				XHCI_MAX_HALT_USEC);
147 	if (!ret)
148 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
149 	return ret;
150 }
151 
152 /*
153  * Reset a halted HC.
154  *
155  * This resets pipelines, timers, counters, state machines, etc.
156  * Transactions will be terminated immediately, and operational registers
157  * will be set to their defaults.
158  */
159 int xhci_reset(struct xhci_hcd *xhci)
160 {
161 	u32 command;
162 	u32 state;
163 	int ret, i;
164 
165 	state = readl(&xhci->op_regs->status);
166 	if ((state & STS_HALT) == 0) {
167 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 		return 0;
169 	}
170 
171 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 	command = readl(&xhci->op_regs->command);
173 	command |= CMD_RESET;
174 	writel(command, &xhci->op_regs->command);
175 
176 	ret = xhci_handshake(xhci, &xhci->op_regs->command,
177 			CMD_RESET, 0, 10 * 1000 * 1000);
178 	if (ret)
179 		return ret;
180 
181 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
182 			 "Wait for controller to be ready for doorbell rings");
183 	/*
184 	 * xHCI cannot write to any doorbells or operational registers other
185 	 * than status until the "Controller Not Ready" flag is cleared.
186 	 */
187 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
188 			STS_CNR, 0, 10 * 1000 * 1000);
189 
190 	for (i = 0; i < 2; ++i) {
191 		xhci->bus_state[i].port_c_suspend = 0;
192 		xhci->bus_state[i].suspended_ports = 0;
193 		xhci->bus_state[i].resuming_ports = 0;
194 	}
195 
196 	return ret;
197 }
198 
199 #ifdef CONFIG_PCI
200 static int xhci_free_msi(struct xhci_hcd *xhci)
201 {
202 	int i;
203 
204 	if (!xhci->msix_entries)
205 		return -EINVAL;
206 
207 	for (i = 0; i < xhci->msix_count; i++)
208 		if (xhci->msix_entries[i].vector)
209 			free_irq(xhci->msix_entries[i].vector,
210 					xhci_to_hcd(xhci));
211 	return 0;
212 }
213 
214 /*
215  * Set up MSI
216  */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219 	int ret;
220 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
221 
222 	ret = pci_enable_msi(pdev);
223 	if (ret) {
224 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
225 				"failed to allocate MSI entry");
226 		return ret;
227 	}
228 
229 	ret = request_irq(pdev->irq, xhci_msi_irq,
230 				0, "xhci_hcd", xhci_to_hcd(xhci));
231 	if (ret) {
232 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
233 				"disable MSI interrupt");
234 		pci_disable_msi(pdev);
235 	}
236 
237 	return ret;
238 }
239 
240 /*
241  * Free IRQs
242  * free all IRQs request
243  */
244 static void xhci_free_irq(struct xhci_hcd *xhci)
245 {
246 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
247 	int ret;
248 
249 	/* return if using legacy interrupt */
250 	if (xhci_to_hcd(xhci)->irq > 0)
251 		return;
252 
253 	ret = xhci_free_msi(xhci);
254 	if (!ret)
255 		return;
256 	if (pdev->irq > 0)
257 		free_irq(pdev->irq, xhci_to_hcd(xhci));
258 
259 	return;
260 }
261 
262 /*
263  * Set up MSI-X
264  */
265 static int xhci_setup_msix(struct xhci_hcd *xhci)
266 {
267 	int i, ret = 0;
268 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
269 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
270 
271 	/*
272 	 * calculate number of msi-x vectors supported.
273 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
274 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
275 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
276 	 *   Add additional 1 vector to ensure always available interrupt.
277 	 */
278 	xhci->msix_count = min(num_online_cpus() + 1,
279 				HCS_MAX_INTRS(xhci->hcs_params1));
280 
281 	xhci->msix_entries =
282 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
283 				GFP_KERNEL);
284 	if (!xhci->msix_entries) {
285 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
286 		return -ENOMEM;
287 	}
288 
289 	for (i = 0; i < xhci->msix_count; i++) {
290 		xhci->msix_entries[i].entry = i;
291 		xhci->msix_entries[i].vector = 0;
292 	}
293 
294 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
295 	if (ret) {
296 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
297 				"Failed to enable MSI-X");
298 		goto free_entries;
299 	}
300 
301 	for (i = 0; i < xhci->msix_count; i++) {
302 		ret = request_irq(xhci->msix_entries[i].vector,
303 				xhci_msi_irq,
304 				0, "xhci_hcd", xhci_to_hcd(xhci));
305 		if (ret)
306 			goto disable_msix;
307 	}
308 
309 	hcd->msix_enabled = 1;
310 	return ret;
311 
312 disable_msix:
313 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
314 	xhci_free_irq(xhci);
315 	pci_disable_msix(pdev);
316 free_entries:
317 	kfree(xhci->msix_entries);
318 	xhci->msix_entries = NULL;
319 	return ret;
320 }
321 
322 /* Free any IRQs and disable MSI-X */
323 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
324 {
325 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327 
328 	if (xhci->quirks & XHCI_PLAT)
329 		return;
330 
331 	xhci_free_irq(xhci);
332 
333 	if (xhci->msix_entries) {
334 		pci_disable_msix(pdev);
335 		kfree(xhci->msix_entries);
336 		xhci->msix_entries = NULL;
337 	} else {
338 		pci_disable_msi(pdev);
339 	}
340 
341 	hcd->msix_enabled = 0;
342 	return;
343 }
344 
345 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
346 {
347 	int i;
348 
349 	if (xhci->msix_entries) {
350 		for (i = 0; i < xhci->msix_count; i++)
351 			synchronize_irq(xhci->msix_entries[i].vector);
352 	}
353 }
354 
355 static int xhci_try_enable_msi(struct usb_hcd *hcd)
356 {
357 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
358 	struct pci_dev  *pdev;
359 	int ret;
360 
361 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
362 	if (xhci->quirks & XHCI_PLAT)
363 		return 0;
364 
365 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
366 	/*
367 	 * Some Fresco Logic host controllers advertise MSI, but fail to
368 	 * generate interrupts.  Don't even try to enable MSI.
369 	 */
370 	if (xhci->quirks & XHCI_BROKEN_MSI)
371 		goto legacy_irq;
372 
373 	/* unregister the legacy interrupt */
374 	if (hcd->irq)
375 		free_irq(hcd->irq, hcd);
376 	hcd->irq = 0;
377 
378 	ret = xhci_setup_msix(xhci);
379 	if (ret)
380 		/* fall back to msi*/
381 		ret = xhci_setup_msi(xhci);
382 
383 	if (!ret)
384 		/* hcd->irq is 0, we have MSI */
385 		return 0;
386 
387 	if (!pdev->irq) {
388 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
389 		return -EINVAL;
390 	}
391 
392  legacy_irq:
393 	if (!strlen(hcd->irq_descr))
394 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
395 			 hcd->driver->description, hcd->self.busnum);
396 
397 	/* fall back to legacy interrupt*/
398 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
399 			hcd->irq_descr, hcd);
400 	if (ret) {
401 		xhci_err(xhci, "request interrupt %d failed\n",
402 				pdev->irq);
403 		return ret;
404 	}
405 	hcd->irq = pdev->irq;
406 	return 0;
407 }
408 
409 #else
410 
411 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
412 {
413 	return 0;
414 }
415 
416 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
417 {
418 }
419 
420 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
421 {
422 }
423 
424 #endif
425 
426 static void compliance_mode_recovery(unsigned long arg)
427 {
428 	struct xhci_hcd *xhci;
429 	struct usb_hcd *hcd;
430 	u32 temp;
431 	int i;
432 
433 	xhci = (struct xhci_hcd *)arg;
434 
435 	for (i = 0; i < xhci->num_usb3_ports; i++) {
436 		temp = readl(xhci->usb3_ports[i]);
437 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
438 			/*
439 			 * Compliance Mode Detected. Letting USB Core
440 			 * handle the Warm Reset
441 			 */
442 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
443 					"Compliance mode detected->port %d",
444 					i + 1);
445 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
446 					"Attempting compliance mode recovery");
447 			hcd = xhci->shared_hcd;
448 
449 			if (hcd->state == HC_STATE_SUSPENDED)
450 				usb_hcd_resume_root_hub(hcd);
451 
452 			usb_hcd_poll_rh_status(hcd);
453 		}
454 	}
455 
456 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
457 		mod_timer(&xhci->comp_mode_recovery_timer,
458 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
459 }
460 
461 /*
462  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
463  * that causes ports behind that hardware to enter compliance mode sometimes.
464  * The quirk creates a timer that polls every 2 seconds the link state of
465  * each host controller's port and recovers it by issuing a Warm reset
466  * if Compliance mode is detected, otherwise the port will become "dead" (no
467  * device connections or disconnections will be detected anymore). Becasue no
468  * status event is generated when entering compliance mode (per xhci spec),
469  * this quirk is needed on systems that have the failing hardware installed.
470  */
471 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
472 {
473 	xhci->port_status_u0 = 0;
474 	init_timer(&xhci->comp_mode_recovery_timer);
475 
476 	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
477 	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
478 	xhci->comp_mode_recovery_timer.expires = jiffies +
479 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
480 
481 	set_timer_slack(&xhci->comp_mode_recovery_timer,
482 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
483 	add_timer(&xhci->comp_mode_recovery_timer);
484 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
485 			"Compliance mode recovery timer initialized");
486 }
487 
488 /*
489  * This function identifies the systems that have installed the SN65LVPE502CP
490  * USB3.0 re-driver and that need the Compliance Mode Quirk.
491  * Systems:
492  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
493  */
494 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
495 {
496 	const char *dmi_product_name, *dmi_sys_vendor;
497 
498 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
499 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
500 	if (!dmi_product_name || !dmi_sys_vendor)
501 		return false;
502 
503 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
504 		return false;
505 
506 	if (strstr(dmi_product_name, "Z420") ||
507 			strstr(dmi_product_name, "Z620") ||
508 			strstr(dmi_product_name, "Z820") ||
509 			strstr(dmi_product_name, "Z1 Workstation"))
510 		return true;
511 
512 	return false;
513 }
514 
515 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
516 {
517 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
518 }
519 
520 
521 /*
522  * Initialize memory for HCD and xHC (one-time init).
523  *
524  * Program the PAGESIZE register, initialize the device context array, create
525  * device contexts (?), set up a command ring segment (or two?), create event
526  * ring (one for now).
527  */
528 int xhci_init(struct usb_hcd *hcd)
529 {
530 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
531 	int retval = 0;
532 
533 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
534 	spin_lock_init(&xhci->lock);
535 	if (xhci->hci_version == 0x95 && link_quirk) {
536 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
537 				"QUIRK: Not clearing Link TRB chain bits.");
538 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
539 	} else {
540 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
541 				"xHCI doesn't need link TRB QUIRK");
542 	}
543 	retval = xhci_mem_init(xhci, GFP_KERNEL);
544 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
545 
546 	/* Initializing Compliance Mode Recovery Data If Needed */
547 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
548 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
549 		compliance_mode_recovery_timer_init(xhci);
550 	}
551 
552 	return retval;
553 }
554 
555 /*-------------------------------------------------------------------------*/
556 
557 
558 static int xhci_run_finished(struct xhci_hcd *xhci)
559 {
560 	if (xhci_start(xhci)) {
561 		xhci_halt(xhci);
562 		return -ENODEV;
563 	}
564 	xhci->shared_hcd->state = HC_STATE_RUNNING;
565 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
566 
567 	if (xhci->quirks & XHCI_NEC_HOST)
568 		xhci_ring_cmd_db(xhci);
569 
570 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
571 			"Finished xhci_run for USB3 roothub");
572 	return 0;
573 }
574 
575 /*
576  * Start the HC after it was halted.
577  *
578  * This function is called by the USB core when the HC driver is added.
579  * Its opposite is xhci_stop().
580  *
581  * xhci_init() must be called once before this function can be called.
582  * Reset the HC, enable device slot contexts, program DCBAAP, and
583  * set command ring pointer and event ring pointer.
584  *
585  * Setup MSI-X vectors and enable interrupts.
586  */
587 int xhci_run(struct usb_hcd *hcd)
588 {
589 	u32 temp;
590 	u64 temp_64;
591 	int ret;
592 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
593 
594 	/* Start the xHCI host controller running only after the USB 2.0 roothub
595 	 * is setup.
596 	 */
597 
598 	hcd->uses_new_polling = 1;
599 	if (!usb_hcd_is_primary_hcd(hcd))
600 		return xhci_run_finished(xhci);
601 
602 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
603 
604 	ret = xhci_try_enable_msi(hcd);
605 	if (ret)
606 		return ret;
607 
608 	xhci_dbg(xhci, "Command ring memory map follows:\n");
609 	xhci_debug_ring(xhci, xhci->cmd_ring);
610 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
611 	xhci_dbg_cmd_ptrs(xhci);
612 
613 	xhci_dbg(xhci, "ERST memory map follows:\n");
614 	xhci_dbg_erst(xhci, &xhci->erst);
615 	xhci_dbg(xhci, "Event ring:\n");
616 	xhci_debug_ring(xhci, xhci->event_ring);
617 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
618 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
619 	temp_64 &= ~ERST_PTR_MASK;
620 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
622 
623 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624 			"// Set the interrupt modulation register");
625 	temp = readl(&xhci->ir_set->irq_control);
626 	temp &= ~ER_IRQ_INTERVAL_MASK;
627 	temp |= (u32) 160;
628 	writel(temp, &xhci->ir_set->irq_control);
629 
630 	/* Set the HCD state before we enable the irqs */
631 	temp = readl(&xhci->op_regs->command);
632 	temp |= (CMD_EIE);
633 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634 			"// Enable interrupts, cmd = 0x%x.", temp);
635 	writel(temp, &xhci->op_regs->command);
636 
637 	temp = readl(&xhci->ir_set->irq_pending);
638 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
640 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
641 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
642 	xhci_print_ir_set(xhci, 0);
643 
644 	if (xhci->quirks & XHCI_NEC_HOST) {
645 		struct xhci_command *command;
646 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
647 		if (!command)
648 			return -ENOMEM;
649 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
650 				TRB_TYPE(TRB_NEC_GET_FW));
651 	}
652 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
653 			"Finished xhci_run for USB2 roothub");
654 	return 0;
655 }
656 
657 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
658 {
659 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
660 
661 	spin_lock_irq(&xhci->lock);
662 	xhci_halt(xhci);
663 
664 	/* The shared_hcd is going to be deallocated shortly (the USB core only
665 	 * calls this function when allocation fails in usb_add_hcd(), or
666 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
667 	 */
668 	xhci->shared_hcd = NULL;
669 	spin_unlock_irq(&xhci->lock);
670 }
671 
672 /*
673  * Stop xHCI driver.
674  *
675  * This function is called by the USB core when the HC driver is removed.
676  * Its opposite is xhci_run().
677  *
678  * Disable device contexts, disable IRQs, and quiesce the HC.
679  * Reset the HC, finish any completed transactions, and cleanup memory.
680  */
681 void xhci_stop(struct usb_hcd *hcd)
682 {
683 	u32 temp;
684 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
685 
686 	if (!usb_hcd_is_primary_hcd(hcd)) {
687 		xhci_only_stop_hcd(xhci->shared_hcd);
688 		return;
689 	}
690 
691 	spin_lock_irq(&xhci->lock);
692 	/* Make sure the xHC is halted for a USB3 roothub
693 	 * (xhci_stop() could be called as part of failed init).
694 	 */
695 	xhci_halt(xhci);
696 	xhci_reset(xhci);
697 	spin_unlock_irq(&xhci->lock);
698 
699 	xhci_cleanup_msix(xhci);
700 
701 	/* Deleting Compliance Mode Recovery Timer */
702 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
703 			(!(xhci_all_ports_seen_u0(xhci)))) {
704 		del_timer_sync(&xhci->comp_mode_recovery_timer);
705 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
706 				"%s: compliance mode recovery timer deleted",
707 				__func__);
708 	}
709 
710 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
711 		usb_amd_dev_put();
712 
713 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
714 			"// Disabling event ring interrupts");
715 	temp = readl(&xhci->op_regs->status);
716 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
717 	temp = readl(&xhci->ir_set->irq_pending);
718 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
719 	xhci_print_ir_set(xhci, 0);
720 
721 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
722 	xhci_mem_cleanup(xhci);
723 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
724 			"xhci_stop completed - status = %x",
725 			readl(&xhci->op_regs->status));
726 }
727 
728 /*
729  * Shutdown HC (not bus-specific)
730  *
731  * This is called when the machine is rebooting or halting.  We assume that the
732  * machine will be powered off, and the HC's internal state will be reset.
733  * Don't bother to free memory.
734  *
735  * This will only ever be called with the main usb_hcd (the USB3 roothub).
736  */
737 void xhci_shutdown(struct usb_hcd *hcd)
738 {
739 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
740 
741 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
742 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
743 
744 	spin_lock_irq(&xhci->lock);
745 	xhci_halt(xhci);
746 	/* Workaround for spurious wakeups at shutdown with HSW */
747 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
748 		xhci_reset(xhci);
749 	spin_unlock_irq(&xhci->lock);
750 
751 	xhci_cleanup_msix(xhci);
752 
753 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
754 			"xhci_shutdown completed - status = %x",
755 			readl(&xhci->op_regs->status));
756 
757 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
758 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
759 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
760 }
761 
762 #ifdef CONFIG_PM
763 static void xhci_save_registers(struct xhci_hcd *xhci)
764 {
765 	xhci->s3.command = readl(&xhci->op_regs->command);
766 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
767 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
768 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
769 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
770 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
771 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
772 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
773 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
774 }
775 
776 static void xhci_restore_registers(struct xhci_hcd *xhci)
777 {
778 	writel(xhci->s3.command, &xhci->op_regs->command);
779 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
780 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
781 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
782 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
783 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
784 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
785 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
786 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
787 }
788 
789 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
790 {
791 	u64	val_64;
792 
793 	/* step 2: initialize command ring buffer */
794 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
795 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
796 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
797 				      xhci->cmd_ring->dequeue) &
798 		 (u64) ~CMD_RING_RSVD_BITS) |
799 		xhci->cmd_ring->cycle_state;
800 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
801 			"// Setting command ring address to 0x%llx",
802 			(long unsigned long) val_64);
803 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
804 }
805 
806 /*
807  * The whole command ring must be cleared to zero when we suspend the host.
808  *
809  * The host doesn't save the command ring pointer in the suspend well, so we
810  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
811  * aligned, because of the reserved bits in the command ring dequeue pointer
812  * register.  Therefore, we can't just set the dequeue pointer back in the
813  * middle of the ring (TRBs are 16-byte aligned).
814  */
815 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
816 {
817 	struct xhci_ring *ring;
818 	struct xhci_segment *seg;
819 
820 	ring = xhci->cmd_ring;
821 	seg = ring->deq_seg;
822 	do {
823 		memset(seg->trbs, 0,
824 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
825 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
826 			cpu_to_le32(~TRB_CYCLE);
827 		seg = seg->next;
828 	} while (seg != ring->deq_seg);
829 
830 	/* Reset the software enqueue and dequeue pointers */
831 	ring->deq_seg = ring->first_seg;
832 	ring->dequeue = ring->first_seg->trbs;
833 	ring->enq_seg = ring->deq_seg;
834 	ring->enqueue = ring->dequeue;
835 
836 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
837 	/*
838 	 * Ring is now zeroed, so the HW should look for change of ownership
839 	 * when the cycle bit is set to 1.
840 	 */
841 	ring->cycle_state = 1;
842 
843 	/*
844 	 * Reset the hardware dequeue pointer.
845 	 * Yes, this will need to be re-written after resume, but we're paranoid
846 	 * and want to make sure the hardware doesn't access bogus memory
847 	 * because, say, the BIOS or an SMI started the host without changing
848 	 * the command ring pointers.
849 	 */
850 	xhci_set_cmd_ring_deq(xhci);
851 }
852 
853 /*
854  * Stop HC (not bus-specific)
855  *
856  * This is called when the machine transition into S3/S4 mode.
857  *
858  */
859 int xhci_suspend(struct xhci_hcd *xhci)
860 {
861 	int			rc = 0;
862 	unsigned int		delay = XHCI_MAX_HALT_USEC;
863 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
864 	u32			command;
865 
866 	if (hcd->state != HC_STATE_SUSPENDED ||
867 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
868 		return -EINVAL;
869 
870 	/* Don't poll the roothubs on bus suspend. */
871 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
872 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
873 	del_timer_sync(&hcd->rh_timer);
874 
875 	spin_lock_irq(&xhci->lock);
876 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
877 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
878 	/* step 1: stop endpoint */
879 	/* skipped assuming that port suspend has done */
880 
881 	/* step 2: clear Run/Stop bit */
882 	command = readl(&xhci->op_regs->command);
883 	command &= ~CMD_RUN;
884 	writel(command, &xhci->op_regs->command);
885 
886 	/* Some chips from Fresco Logic need an extraordinary delay */
887 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
888 
889 	if (xhci_handshake(xhci, &xhci->op_regs->status,
890 		      STS_HALT, STS_HALT, delay)) {
891 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
892 		spin_unlock_irq(&xhci->lock);
893 		return -ETIMEDOUT;
894 	}
895 	xhci_clear_command_ring(xhci);
896 
897 	/* step 3: save registers */
898 	xhci_save_registers(xhci);
899 
900 	/* step 4: set CSS flag */
901 	command = readl(&xhci->op_regs->command);
902 	command |= CMD_CSS;
903 	writel(command, &xhci->op_regs->command);
904 	if (xhci_handshake(xhci, &xhci->op_regs->status,
905 				STS_SAVE, 0, 10 * 1000)) {
906 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
907 		spin_unlock_irq(&xhci->lock);
908 		return -ETIMEDOUT;
909 	}
910 	spin_unlock_irq(&xhci->lock);
911 
912 	/*
913 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
914 	 * is about to be suspended.
915 	 */
916 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
917 			(!(xhci_all_ports_seen_u0(xhci)))) {
918 		del_timer_sync(&xhci->comp_mode_recovery_timer);
919 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
920 				"%s: compliance mode recovery timer deleted",
921 				__func__);
922 	}
923 
924 	/* step 5: remove core well power */
925 	/* synchronize irq when using MSI-X */
926 	xhci_msix_sync_irqs(xhci);
927 
928 	return rc;
929 }
930 
931 /*
932  * start xHC (not bus-specific)
933  *
934  * This is called when the machine transition from S3/S4 mode.
935  *
936  */
937 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
938 {
939 	u32			command, temp = 0, status;
940 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
941 	struct usb_hcd		*secondary_hcd;
942 	int			retval = 0;
943 	bool			comp_timer_running = false;
944 
945 	/* Wait a bit if either of the roothubs need to settle from the
946 	 * transition into bus suspend.
947 	 */
948 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
949 			time_before(jiffies,
950 				xhci->bus_state[1].next_statechange))
951 		msleep(100);
952 
953 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
954 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
955 
956 	spin_lock_irq(&xhci->lock);
957 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
958 		hibernated = true;
959 
960 	if (!hibernated) {
961 		/* step 1: restore register */
962 		xhci_restore_registers(xhci);
963 		/* step 2: initialize command ring buffer */
964 		xhci_set_cmd_ring_deq(xhci);
965 		/* step 3: restore state and start state*/
966 		/* step 3: set CRS flag */
967 		command = readl(&xhci->op_regs->command);
968 		command |= CMD_CRS;
969 		writel(command, &xhci->op_regs->command);
970 		if (xhci_handshake(xhci, &xhci->op_regs->status,
971 			      STS_RESTORE, 0, 10 * 1000)) {
972 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
973 			spin_unlock_irq(&xhci->lock);
974 			return -ETIMEDOUT;
975 		}
976 		temp = readl(&xhci->op_regs->status);
977 	}
978 
979 	/* If restore operation fails, re-initialize the HC during resume */
980 	if ((temp & STS_SRE) || hibernated) {
981 
982 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
983 				!(xhci_all_ports_seen_u0(xhci))) {
984 			del_timer_sync(&xhci->comp_mode_recovery_timer);
985 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
986 				"Compliance Mode Recovery Timer deleted!");
987 		}
988 
989 		/* Let the USB core know _both_ roothubs lost power. */
990 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
991 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
992 
993 		xhci_dbg(xhci, "Stop HCD\n");
994 		xhci_halt(xhci);
995 		xhci_reset(xhci);
996 		spin_unlock_irq(&xhci->lock);
997 		xhci_cleanup_msix(xhci);
998 
999 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1000 		temp = readl(&xhci->op_regs->status);
1001 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1002 		temp = readl(&xhci->ir_set->irq_pending);
1003 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1004 		xhci_print_ir_set(xhci, 0);
1005 
1006 		xhci_dbg(xhci, "cleaning up memory\n");
1007 		xhci_mem_cleanup(xhci);
1008 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1009 			    readl(&xhci->op_regs->status));
1010 
1011 		/* USB core calls the PCI reinit and start functions twice:
1012 		 * first with the primary HCD, and then with the secondary HCD.
1013 		 * If we don't do the same, the host will never be started.
1014 		 */
1015 		if (!usb_hcd_is_primary_hcd(hcd))
1016 			secondary_hcd = hcd;
1017 		else
1018 			secondary_hcd = xhci->shared_hcd;
1019 
1020 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1021 		retval = xhci_init(hcd->primary_hcd);
1022 		if (retval)
1023 			return retval;
1024 		comp_timer_running = true;
1025 
1026 		xhci_dbg(xhci, "Start the primary HCD\n");
1027 		retval = xhci_run(hcd->primary_hcd);
1028 		if (!retval) {
1029 			xhci_dbg(xhci, "Start the secondary HCD\n");
1030 			retval = xhci_run(secondary_hcd);
1031 		}
1032 		hcd->state = HC_STATE_SUSPENDED;
1033 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1034 		goto done;
1035 	}
1036 
1037 	/* step 4: set Run/Stop bit */
1038 	command = readl(&xhci->op_regs->command);
1039 	command |= CMD_RUN;
1040 	writel(command, &xhci->op_regs->command);
1041 	xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1042 		  0, 250 * 1000);
1043 
1044 	/* step 5: walk topology and initialize portsc,
1045 	 * portpmsc and portli
1046 	 */
1047 	/* this is done in bus_resume */
1048 
1049 	/* step 6: restart each of the previously
1050 	 * Running endpoints by ringing their doorbells
1051 	 */
1052 
1053 	spin_unlock_irq(&xhci->lock);
1054 
1055  done:
1056 	if (retval == 0) {
1057 		/* Resume root hubs only when have pending events. */
1058 		status = readl(&xhci->op_regs->status);
1059 		if (status & STS_EINT) {
1060 			usb_hcd_resume_root_hub(hcd);
1061 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1062 		}
1063 	}
1064 
1065 	/*
1066 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1067 	 * be re-initialized Always after a system resume. Ports are subject
1068 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1069 	 * ports have entered previously to U0 before system's suspension.
1070 	 */
1071 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1072 		compliance_mode_recovery_timer_init(xhci);
1073 
1074 	/* Re-enable port polling. */
1075 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1076 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1077 	usb_hcd_poll_rh_status(hcd);
1078 
1079 	return retval;
1080 }
1081 #endif	/* CONFIG_PM */
1082 
1083 /*-------------------------------------------------------------------------*/
1084 
1085 /**
1086  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1087  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1088  * value to right shift 1 for the bitmask.
1089  *
1090  * Index  = (epnum * 2) + direction - 1,
1091  * where direction = 0 for OUT, 1 for IN.
1092  * For control endpoints, the IN index is used (OUT index is unused), so
1093  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1094  */
1095 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1096 {
1097 	unsigned int index;
1098 	if (usb_endpoint_xfer_control(desc))
1099 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1100 	else
1101 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1102 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1103 	return index;
1104 }
1105 
1106 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1107  * address from the XHCI endpoint index.
1108  */
1109 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1110 {
1111 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1112 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1113 	return direction | number;
1114 }
1115 
1116 /* Find the flag for this endpoint (for use in the control context).  Use the
1117  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1118  * bit 1, etc.
1119  */
1120 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1121 {
1122 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1123 }
1124 
1125 /* Find the flag for this endpoint (for use in the control context).  Use the
1126  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1127  * bit 1, etc.
1128  */
1129 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1130 {
1131 	return 1 << (ep_index + 1);
1132 }
1133 
1134 /* Compute the last valid endpoint context index.  Basically, this is the
1135  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1136  * we find the most significant bit set in the added contexts flags.
1137  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1138  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1139  */
1140 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1141 {
1142 	return fls(added_ctxs) - 1;
1143 }
1144 
1145 /* Returns 1 if the arguments are OK;
1146  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1147  */
1148 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1149 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1150 		const char *func) {
1151 	struct xhci_hcd	*xhci;
1152 	struct xhci_virt_device	*virt_dev;
1153 
1154 	if (!hcd || (check_ep && !ep) || !udev) {
1155 		pr_debug("xHCI %s called with invalid args\n", func);
1156 		return -EINVAL;
1157 	}
1158 	if (!udev->parent) {
1159 		pr_debug("xHCI %s called for root hub\n", func);
1160 		return 0;
1161 	}
1162 
1163 	xhci = hcd_to_xhci(hcd);
1164 	if (check_virt_dev) {
1165 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1166 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1167 					func);
1168 			return -EINVAL;
1169 		}
1170 
1171 		virt_dev = xhci->devs[udev->slot_id];
1172 		if (virt_dev->udev != udev) {
1173 			xhci_dbg(xhci, "xHCI %s called with udev and "
1174 					  "virt_dev does not match\n", func);
1175 			return -EINVAL;
1176 		}
1177 	}
1178 
1179 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1180 		return -ENODEV;
1181 
1182 	return 1;
1183 }
1184 
1185 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1186 		struct usb_device *udev, struct xhci_command *command,
1187 		bool ctx_change, bool must_succeed);
1188 
1189 /*
1190  * Full speed devices may have a max packet size greater than 8 bytes, but the
1191  * USB core doesn't know that until it reads the first 8 bytes of the
1192  * descriptor.  If the usb_device's max packet size changes after that point,
1193  * we need to issue an evaluate context command and wait on it.
1194  */
1195 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1196 		unsigned int ep_index, struct urb *urb)
1197 {
1198 	struct xhci_container_ctx *out_ctx;
1199 	struct xhci_input_control_ctx *ctrl_ctx;
1200 	struct xhci_ep_ctx *ep_ctx;
1201 	struct xhci_command *command;
1202 	int max_packet_size;
1203 	int hw_max_packet_size;
1204 	int ret = 0;
1205 
1206 	out_ctx = xhci->devs[slot_id]->out_ctx;
1207 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1208 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1209 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1210 	if (hw_max_packet_size != max_packet_size) {
1211 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1212 				"Max Packet Size for ep 0 changed.");
1213 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1214 				"Max packet size in usb_device = %d",
1215 				max_packet_size);
1216 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1217 				"Max packet size in xHCI HW = %d",
1218 				hw_max_packet_size);
1219 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1220 				"Issuing evaluate context command.");
1221 
1222 		/* Set up the input context flags for the command */
1223 		/* FIXME: This won't work if a non-default control endpoint
1224 		 * changes max packet sizes.
1225 		 */
1226 
1227 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1228 		if (!command)
1229 			return -ENOMEM;
1230 
1231 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1232 		ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
1233 		if (!ctrl_ctx) {
1234 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1235 					__func__);
1236 			ret = -ENOMEM;
1237 			goto command_cleanup;
1238 		}
1239 		/* Set up the modified control endpoint 0 */
1240 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1241 				xhci->devs[slot_id]->out_ctx, ep_index);
1242 
1243 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1244 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1245 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1246 
1247 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1248 		ctrl_ctx->drop_flags = 0;
1249 
1250 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1251 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1252 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1253 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1254 
1255 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1256 				true, false);
1257 
1258 		/* Clean up the input context for later use by bandwidth
1259 		 * functions.
1260 		 */
1261 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1262 command_cleanup:
1263 		kfree(command->completion);
1264 		kfree(command);
1265 	}
1266 	return ret;
1267 }
1268 
1269 /*
1270  * non-error returns are a promise to giveback() the urb later
1271  * we drop ownership so next owner (or urb unlink) can get it
1272  */
1273 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1274 {
1275 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1276 	struct xhci_td *buffer;
1277 	unsigned long flags;
1278 	int ret = 0;
1279 	unsigned int slot_id, ep_index;
1280 	struct urb_priv	*urb_priv;
1281 	int size, i;
1282 
1283 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1284 					true, true, __func__) <= 0)
1285 		return -EINVAL;
1286 
1287 	slot_id = urb->dev->slot_id;
1288 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1289 
1290 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1291 		if (!in_interrupt())
1292 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1293 		ret = -ESHUTDOWN;
1294 		goto exit;
1295 	}
1296 
1297 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1298 		size = urb->number_of_packets;
1299 	else
1300 		size = 1;
1301 
1302 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1303 				  size * sizeof(struct xhci_td *), mem_flags);
1304 	if (!urb_priv)
1305 		return -ENOMEM;
1306 
1307 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1308 	if (!buffer) {
1309 		kfree(urb_priv);
1310 		return -ENOMEM;
1311 	}
1312 
1313 	for (i = 0; i < size; i++) {
1314 		urb_priv->td[i] = buffer;
1315 		buffer++;
1316 	}
1317 
1318 	urb_priv->length = size;
1319 	urb_priv->td_cnt = 0;
1320 	urb->hcpriv = urb_priv;
1321 
1322 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1323 		/* Check to see if the max packet size for the default control
1324 		 * endpoint changed during FS device enumeration
1325 		 */
1326 		if (urb->dev->speed == USB_SPEED_FULL) {
1327 			ret = xhci_check_maxpacket(xhci, slot_id,
1328 					ep_index, urb);
1329 			if (ret < 0) {
1330 				xhci_urb_free_priv(xhci, urb_priv);
1331 				urb->hcpriv = NULL;
1332 				return ret;
1333 			}
1334 		}
1335 
1336 		/* We have a spinlock and interrupts disabled, so we must pass
1337 		 * atomic context to this function, which may allocate memory.
1338 		 */
1339 		spin_lock_irqsave(&xhci->lock, flags);
1340 		if (xhci->xhc_state & XHCI_STATE_DYING)
1341 			goto dying;
1342 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1343 				slot_id, ep_index);
1344 		if (ret)
1345 			goto free_priv;
1346 		spin_unlock_irqrestore(&xhci->lock, flags);
1347 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1348 		spin_lock_irqsave(&xhci->lock, flags);
1349 		if (xhci->xhc_state & XHCI_STATE_DYING)
1350 			goto dying;
1351 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1352 				EP_GETTING_STREAMS) {
1353 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1354 					"is transitioning to using streams.\n");
1355 			ret = -EINVAL;
1356 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1357 				EP_GETTING_NO_STREAMS) {
1358 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1359 					"is transitioning to "
1360 					"not having streams.\n");
1361 			ret = -EINVAL;
1362 		} else {
1363 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1364 					slot_id, ep_index);
1365 		}
1366 		if (ret)
1367 			goto free_priv;
1368 		spin_unlock_irqrestore(&xhci->lock, flags);
1369 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1370 		spin_lock_irqsave(&xhci->lock, flags);
1371 		if (xhci->xhc_state & XHCI_STATE_DYING)
1372 			goto dying;
1373 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1374 				slot_id, ep_index);
1375 		if (ret)
1376 			goto free_priv;
1377 		spin_unlock_irqrestore(&xhci->lock, flags);
1378 	} else {
1379 		spin_lock_irqsave(&xhci->lock, flags);
1380 		if (xhci->xhc_state & XHCI_STATE_DYING)
1381 			goto dying;
1382 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1383 				slot_id, ep_index);
1384 		if (ret)
1385 			goto free_priv;
1386 		spin_unlock_irqrestore(&xhci->lock, flags);
1387 	}
1388 exit:
1389 	return ret;
1390 dying:
1391 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1392 			"non-responsive xHCI host.\n",
1393 			urb->ep->desc.bEndpointAddress, urb);
1394 	ret = -ESHUTDOWN;
1395 free_priv:
1396 	xhci_urb_free_priv(xhci, urb_priv);
1397 	urb->hcpriv = NULL;
1398 	spin_unlock_irqrestore(&xhci->lock, flags);
1399 	return ret;
1400 }
1401 
1402 /* Get the right ring for the given URB.
1403  * If the endpoint supports streams, boundary check the URB's stream ID.
1404  * If the endpoint doesn't support streams, return the singular endpoint ring.
1405  */
1406 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1407 		struct urb *urb)
1408 {
1409 	unsigned int slot_id;
1410 	unsigned int ep_index;
1411 	unsigned int stream_id;
1412 	struct xhci_virt_ep *ep;
1413 
1414 	slot_id = urb->dev->slot_id;
1415 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1416 	stream_id = urb->stream_id;
1417 	ep = &xhci->devs[slot_id]->eps[ep_index];
1418 	/* Common case: no streams */
1419 	if (!(ep->ep_state & EP_HAS_STREAMS))
1420 		return ep->ring;
1421 
1422 	if (stream_id == 0) {
1423 		xhci_warn(xhci,
1424 				"WARN: Slot ID %u, ep index %u has streams, "
1425 				"but URB has no stream ID.\n",
1426 				slot_id, ep_index);
1427 		return NULL;
1428 	}
1429 
1430 	if (stream_id < ep->stream_info->num_streams)
1431 		return ep->stream_info->stream_rings[stream_id];
1432 
1433 	xhci_warn(xhci,
1434 			"WARN: Slot ID %u, ep index %u has "
1435 			"stream IDs 1 to %u allocated, "
1436 			"but stream ID %u is requested.\n",
1437 			slot_id, ep_index,
1438 			ep->stream_info->num_streams - 1,
1439 			stream_id);
1440 	return NULL;
1441 }
1442 
1443 /*
1444  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1445  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1446  * should pick up where it left off in the TD, unless a Set Transfer Ring
1447  * Dequeue Pointer is issued.
1448  *
1449  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1450  * the ring.  Since the ring is a contiguous structure, they can't be physically
1451  * removed.  Instead, there are two options:
1452  *
1453  *  1) If the HC is in the middle of processing the URB to be canceled, we
1454  *     simply move the ring's dequeue pointer past those TRBs using the Set
1455  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1456  *     when drivers timeout on the last submitted URB and attempt to cancel.
1457  *
1458  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1459  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1460  *     HC will need to invalidate the any TRBs it has cached after the stop
1461  *     endpoint command, as noted in the xHCI 0.95 errata.
1462  *
1463  *  3) The TD may have completed by the time the Stop Endpoint Command
1464  *     completes, so software needs to handle that case too.
1465  *
1466  * This function should protect against the TD enqueueing code ringing the
1467  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1468  * It also needs to account for multiple cancellations on happening at the same
1469  * time for the same endpoint.
1470  *
1471  * Note that this function can be called in any context, or so says
1472  * usb_hcd_unlink_urb()
1473  */
1474 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1475 {
1476 	unsigned long flags;
1477 	int ret, i;
1478 	u32 temp;
1479 	struct xhci_hcd *xhci;
1480 	struct urb_priv	*urb_priv;
1481 	struct xhci_td *td;
1482 	unsigned int ep_index;
1483 	struct xhci_ring *ep_ring;
1484 	struct xhci_virt_ep *ep;
1485 	struct xhci_command *command;
1486 
1487 	xhci = hcd_to_xhci(hcd);
1488 	spin_lock_irqsave(&xhci->lock, flags);
1489 	/* Make sure the URB hasn't completed or been unlinked already */
1490 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1491 	if (ret || !urb->hcpriv)
1492 		goto done;
1493 	temp = readl(&xhci->op_regs->status);
1494 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1495 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1496 				"HW died, freeing TD.");
1497 		urb_priv = urb->hcpriv;
1498 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1499 			td = urb_priv->td[i];
1500 			if (!list_empty(&td->td_list))
1501 				list_del_init(&td->td_list);
1502 			if (!list_empty(&td->cancelled_td_list))
1503 				list_del_init(&td->cancelled_td_list);
1504 		}
1505 
1506 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1507 		spin_unlock_irqrestore(&xhci->lock, flags);
1508 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1509 		xhci_urb_free_priv(xhci, urb_priv);
1510 		return ret;
1511 	}
1512 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1513 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1514 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1515 				"Ep 0x%x: URB %p to be canceled on "
1516 				"non-responsive xHCI host.",
1517 				urb->ep->desc.bEndpointAddress, urb);
1518 		/* Let the stop endpoint command watchdog timer (which set this
1519 		 * state) finish cleaning up the endpoint TD lists.  We must
1520 		 * have caught it in the middle of dropping a lock and giving
1521 		 * back an URB.
1522 		 */
1523 		goto done;
1524 	}
1525 
1526 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1527 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1528 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1529 	if (!ep_ring) {
1530 		ret = -EINVAL;
1531 		goto done;
1532 	}
1533 
1534 	urb_priv = urb->hcpriv;
1535 	i = urb_priv->td_cnt;
1536 	if (i < urb_priv->length)
1537 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1538 				"Cancel URB %p, dev %s, ep 0x%x, "
1539 				"starting at offset 0x%llx",
1540 				urb, urb->dev->devpath,
1541 				urb->ep->desc.bEndpointAddress,
1542 				(unsigned long long) xhci_trb_virt_to_dma(
1543 					urb_priv->td[i]->start_seg,
1544 					urb_priv->td[i]->first_trb));
1545 
1546 	for (; i < urb_priv->length; i++) {
1547 		td = urb_priv->td[i];
1548 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1549 	}
1550 
1551 	/* Queue a stop endpoint command, but only if this is
1552 	 * the first cancellation to be handled.
1553 	 */
1554 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1555 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1556 		ep->ep_state |= EP_HALT_PENDING;
1557 		ep->stop_cmds_pending++;
1558 		ep->stop_cmd_timer.expires = jiffies +
1559 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1560 		add_timer(&ep->stop_cmd_timer);
1561 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1562 					 ep_index, 0);
1563 		xhci_ring_cmd_db(xhci);
1564 	}
1565 done:
1566 	spin_unlock_irqrestore(&xhci->lock, flags);
1567 	return ret;
1568 }
1569 
1570 /* Drop an endpoint from a new bandwidth configuration for this device.
1571  * Only one call to this function is allowed per endpoint before
1572  * check_bandwidth() or reset_bandwidth() must be called.
1573  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1574  * add the endpoint to the schedule with possibly new parameters denoted by a
1575  * different endpoint descriptor in usb_host_endpoint.
1576  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1577  * not allowed.
1578  *
1579  * The USB core will not allow URBs to be queued to an endpoint that is being
1580  * disabled, so there's no need for mutual exclusion to protect
1581  * the xhci->devs[slot_id] structure.
1582  */
1583 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1584 		struct usb_host_endpoint *ep)
1585 {
1586 	struct xhci_hcd *xhci;
1587 	struct xhci_container_ctx *in_ctx, *out_ctx;
1588 	struct xhci_input_control_ctx *ctrl_ctx;
1589 	struct xhci_slot_ctx *slot_ctx;
1590 	unsigned int last_ctx;
1591 	unsigned int ep_index;
1592 	struct xhci_ep_ctx *ep_ctx;
1593 	u32 drop_flag;
1594 	u32 new_add_flags, new_drop_flags, new_slot_info;
1595 	int ret;
1596 
1597 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1598 	if (ret <= 0)
1599 		return ret;
1600 	xhci = hcd_to_xhci(hcd);
1601 	if (xhci->xhc_state & XHCI_STATE_DYING)
1602 		return -ENODEV;
1603 
1604 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1605 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1606 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1607 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1608 				__func__, drop_flag);
1609 		return 0;
1610 	}
1611 
1612 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1613 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1614 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1615 	if (!ctrl_ctx) {
1616 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1617 				__func__);
1618 		return 0;
1619 	}
1620 
1621 	ep_index = xhci_get_endpoint_index(&ep->desc);
1622 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1623 	/* If the HC already knows the endpoint is disabled,
1624 	 * or the HCD has noted it is disabled, ignore this request
1625 	 */
1626 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1627 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1628 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1629 	    xhci_get_endpoint_flag(&ep->desc)) {
1630 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1631 				__func__, ep);
1632 		return 0;
1633 	}
1634 
1635 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1636 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1637 
1638 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1639 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1640 
1641 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1642 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1643 	/* Update the last valid endpoint context, if we deleted the last one */
1644 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1645 	    LAST_CTX(last_ctx)) {
1646 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1647 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1648 	}
1649 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1650 
1651 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1652 
1653 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1654 			(unsigned int) ep->desc.bEndpointAddress,
1655 			udev->slot_id,
1656 			(unsigned int) new_drop_flags,
1657 			(unsigned int) new_add_flags,
1658 			(unsigned int) new_slot_info);
1659 	return 0;
1660 }
1661 
1662 /* Add an endpoint to a new possible bandwidth configuration for this device.
1663  * Only one call to this function is allowed per endpoint before
1664  * check_bandwidth() or reset_bandwidth() must be called.
1665  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1666  * add the endpoint to the schedule with possibly new parameters denoted by a
1667  * different endpoint descriptor in usb_host_endpoint.
1668  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1669  * not allowed.
1670  *
1671  * The USB core will not allow URBs to be queued to an endpoint until the
1672  * configuration or alt setting is installed in the device, so there's no need
1673  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1674  */
1675 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1676 		struct usb_host_endpoint *ep)
1677 {
1678 	struct xhci_hcd *xhci;
1679 	struct xhci_container_ctx *in_ctx, *out_ctx;
1680 	unsigned int ep_index;
1681 	struct xhci_slot_ctx *slot_ctx;
1682 	struct xhci_input_control_ctx *ctrl_ctx;
1683 	u32 added_ctxs;
1684 	unsigned int last_ctx;
1685 	u32 new_add_flags, new_drop_flags, new_slot_info;
1686 	struct xhci_virt_device *virt_dev;
1687 	int ret = 0;
1688 
1689 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1690 	if (ret <= 0) {
1691 		/* So we won't queue a reset ep command for a root hub */
1692 		ep->hcpriv = NULL;
1693 		return ret;
1694 	}
1695 	xhci = hcd_to_xhci(hcd);
1696 	if (xhci->xhc_state & XHCI_STATE_DYING)
1697 		return -ENODEV;
1698 
1699 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1700 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1701 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1702 		/* FIXME when we have to issue an evaluate endpoint command to
1703 		 * deal with ep0 max packet size changing once we get the
1704 		 * descriptors
1705 		 */
1706 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1707 				__func__, added_ctxs);
1708 		return 0;
1709 	}
1710 
1711 	virt_dev = xhci->devs[udev->slot_id];
1712 	in_ctx = virt_dev->in_ctx;
1713 	out_ctx = virt_dev->out_ctx;
1714 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1715 	if (!ctrl_ctx) {
1716 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1717 				__func__);
1718 		return 0;
1719 	}
1720 
1721 	ep_index = xhci_get_endpoint_index(&ep->desc);
1722 	/* If this endpoint is already in use, and the upper layers are trying
1723 	 * to add it again without dropping it, reject the addition.
1724 	 */
1725 	if (virt_dev->eps[ep_index].ring &&
1726 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1727 				xhci_get_endpoint_flag(&ep->desc))) {
1728 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1729 				"without dropping it.\n",
1730 				(unsigned int) ep->desc.bEndpointAddress);
1731 		return -EINVAL;
1732 	}
1733 
1734 	/* If the HCD has already noted the endpoint is enabled,
1735 	 * ignore this request.
1736 	 */
1737 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1738 	    xhci_get_endpoint_flag(&ep->desc)) {
1739 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1740 				__func__, ep);
1741 		return 0;
1742 	}
1743 
1744 	/*
1745 	 * Configuration and alternate setting changes must be done in
1746 	 * process context, not interrupt context (or so documenation
1747 	 * for usb_set_interface() and usb_set_configuration() claim).
1748 	 */
1749 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1750 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1751 				__func__, ep->desc.bEndpointAddress);
1752 		return -ENOMEM;
1753 	}
1754 
1755 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1756 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1757 
1758 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1759 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1760 	 * this re-adds a new state for the endpoint from the new endpoint
1761 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1762 	 * drop flags alone.
1763 	 */
1764 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1765 
1766 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1767 	/* Update the last valid endpoint context, if we just added one past */
1768 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1769 	    LAST_CTX(last_ctx)) {
1770 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1771 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1772 	}
1773 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1774 
1775 	/* Store the usb_device pointer for later use */
1776 	ep->hcpriv = udev;
1777 
1778 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1779 			(unsigned int) ep->desc.bEndpointAddress,
1780 			udev->slot_id,
1781 			(unsigned int) new_drop_flags,
1782 			(unsigned int) new_add_flags,
1783 			(unsigned int) new_slot_info);
1784 	return 0;
1785 }
1786 
1787 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1788 {
1789 	struct xhci_input_control_ctx *ctrl_ctx;
1790 	struct xhci_ep_ctx *ep_ctx;
1791 	struct xhci_slot_ctx *slot_ctx;
1792 	int i;
1793 
1794 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1795 	if (!ctrl_ctx) {
1796 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1797 				__func__);
1798 		return;
1799 	}
1800 
1801 	/* When a device's add flag and drop flag are zero, any subsequent
1802 	 * configure endpoint command will leave that endpoint's state
1803 	 * untouched.  Make sure we don't leave any old state in the input
1804 	 * endpoint contexts.
1805 	 */
1806 	ctrl_ctx->drop_flags = 0;
1807 	ctrl_ctx->add_flags = 0;
1808 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1809 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1810 	/* Endpoint 0 is always valid */
1811 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1812 	for (i = 1; i < 31; ++i) {
1813 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1814 		ep_ctx->ep_info = 0;
1815 		ep_ctx->ep_info2 = 0;
1816 		ep_ctx->deq = 0;
1817 		ep_ctx->tx_info = 0;
1818 	}
1819 }
1820 
1821 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1822 		struct usb_device *udev, u32 *cmd_status)
1823 {
1824 	int ret;
1825 
1826 	switch (*cmd_status) {
1827 	case COMP_CMD_ABORT:
1828 	case COMP_CMD_STOP:
1829 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1830 		ret = -ETIME;
1831 		break;
1832 	case COMP_ENOMEM:
1833 		dev_warn(&udev->dev, "Not enough host controller resources "
1834 				"for new device state.\n");
1835 		ret = -ENOMEM;
1836 		/* FIXME: can we allocate more resources for the HC? */
1837 		break;
1838 	case COMP_BW_ERR:
1839 	case COMP_2ND_BW_ERR:
1840 		dev_warn(&udev->dev, "Not enough bandwidth "
1841 				"for new device state.\n");
1842 		ret = -ENOSPC;
1843 		/* FIXME: can we go back to the old state? */
1844 		break;
1845 	case COMP_TRB_ERR:
1846 		/* the HCD set up something wrong */
1847 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1848 				"add flag = 1, "
1849 				"and endpoint is not disabled.\n");
1850 		ret = -EINVAL;
1851 		break;
1852 	case COMP_DEV_ERR:
1853 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1854 				"configure command.\n");
1855 		ret = -ENODEV;
1856 		break;
1857 	case COMP_SUCCESS:
1858 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1859 				"Successful Endpoint Configure command");
1860 		ret = 0;
1861 		break;
1862 	default:
1863 		xhci_err(xhci, "ERROR: unexpected command completion "
1864 				"code 0x%x.\n", *cmd_status);
1865 		ret = -EINVAL;
1866 		break;
1867 	}
1868 	return ret;
1869 }
1870 
1871 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1872 		struct usb_device *udev, u32 *cmd_status)
1873 {
1874 	int ret;
1875 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1876 
1877 	switch (*cmd_status) {
1878 	case COMP_CMD_ABORT:
1879 	case COMP_CMD_STOP:
1880 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1881 		ret = -ETIME;
1882 		break;
1883 	case COMP_EINVAL:
1884 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1885 				"context command.\n");
1886 		ret = -EINVAL;
1887 		break;
1888 	case COMP_EBADSLT:
1889 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1890 				"evaluate context command.\n");
1891 		ret = -EINVAL;
1892 		break;
1893 	case COMP_CTX_STATE:
1894 		dev_warn(&udev->dev, "WARN: invalid context state for "
1895 				"evaluate context command.\n");
1896 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1897 		ret = -EINVAL;
1898 		break;
1899 	case COMP_DEV_ERR:
1900 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1901 				"context command.\n");
1902 		ret = -ENODEV;
1903 		break;
1904 	case COMP_MEL_ERR:
1905 		/* Max Exit Latency too large error */
1906 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1907 		ret = -EINVAL;
1908 		break;
1909 	case COMP_SUCCESS:
1910 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1911 				"Successful evaluate context command");
1912 		ret = 0;
1913 		break;
1914 	default:
1915 		xhci_err(xhci, "ERROR: unexpected command completion "
1916 				"code 0x%x.\n", *cmd_status);
1917 		ret = -EINVAL;
1918 		break;
1919 	}
1920 	return ret;
1921 }
1922 
1923 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1924 		struct xhci_input_control_ctx *ctrl_ctx)
1925 {
1926 	u32 valid_add_flags;
1927 	u32 valid_drop_flags;
1928 
1929 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1930 	 * (bit 1).  The default control endpoint is added during the Address
1931 	 * Device command and is never removed until the slot is disabled.
1932 	 */
1933 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1934 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1935 
1936 	/* Use hweight32 to count the number of ones in the add flags, or
1937 	 * number of endpoints added.  Don't count endpoints that are changed
1938 	 * (both added and dropped).
1939 	 */
1940 	return hweight32(valid_add_flags) -
1941 		hweight32(valid_add_flags & valid_drop_flags);
1942 }
1943 
1944 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1945 		struct xhci_input_control_ctx *ctrl_ctx)
1946 {
1947 	u32 valid_add_flags;
1948 	u32 valid_drop_flags;
1949 
1950 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1951 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1952 
1953 	return hweight32(valid_drop_flags) -
1954 		hweight32(valid_add_flags & valid_drop_flags);
1955 }
1956 
1957 /*
1958  * We need to reserve the new number of endpoints before the configure endpoint
1959  * command completes.  We can't subtract the dropped endpoints from the number
1960  * of active endpoints until the command completes because we can oversubscribe
1961  * the host in this case:
1962  *
1963  *  - the first configure endpoint command drops more endpoints than it adds
1964  *  - a second configure endpoint command that adds more endpoints is queued
1965  *  - the first configure endpoint command fails, so the config is unchanged
1966  *  - the second command may succeed, even though there isn't enough resources
1967  *
1968  * Must be called with xhci->lock held.
1969  */
1970 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1971 		struct xhci_input_control_ctx *ctrl_ctx)
1972 {
1973 	u32 added_eps;
1974 
1975 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1976 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1977 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1978 				"Not enough ep ctxs: "
1979 				"%u active, need to add %u, limit is %u.",
1980 				xhci->num_active_eps, added_eps,
1981 				xhci->limit_active_eps);
1982 		return -ENOMEM;
1983 	}
1984 	xhci->num_active_eps += added_eps;
1985 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1986 			"Adding %u ep ctxs, %u now active.", added_eps,
1987 			xhci->num_active_eps);
1988 	return 0;
1989 }
1990 
1991 /*
1992  * The configure endpoint was failed by the xHC for some other reason, so we
1993  * need to revert the resources that failed configuration would have used.
1994  *
1995  * Must be called with xhci->lock held.
1996  */
1997 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1998 		struct xhci_input_control_ctx *ctrl_ctx)
1999 {
2000 	u32 num_failed_eps;
2001 
2002 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2003 	xhci->num_active_eps -= num_failed_eps;
2004 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2005 			"Removing %u failed ep ctxs, %u now active.",
2006 			num_failed_eps,
2007 			xhci->num_active_eps);
2008 }
2009 
2010 /*
2011  * Now that the command has completed, clean up the active endpoint count by
2012  * subtracting out the endpoints that were dropped (but not changed).
2013  *
2014  * Must be called with xhci->lock held.
2015  */
2016 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2017 		struct xhci_input_control_ctx *ctrl_ctx)
2018 {
2019 	u32 num_dropped_eps;
2020 
2021 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2022 	xhci->num_active_eps -= num_dropped_eps;
2023 	if (num_dropped_eps)
2024 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2025 				"Removing %u dropped ep ctxs, %u now active.",
2026 				num_dropped_eps,
2027 				xhci->num_active_eps);
2028 }
2029 
2030 static unsigned int xhci_get_block_size(struct usb_device *udev)
2031 {
2032 	switch (udev->speed) {
2033 	case USB_SPEED_LOW:
2034 	case USB_SPEED_FULL:
2035 		return FS_BLOCK;
2036 	case USB_SPEED_HIGH:
2037 		return HS_BLOCK;
2038 	case USB_SPEED_SUPER:
2039 		return SS_BLOCK;
2040 	case USB_SPEED_UNKNOWN:
2041 	case USB_SPEED_WIRELESS:
2042 	default:
2043 		/* Should never happen */
2044 		return 1;
2045 	}
2046 }
2047 
2048 static unsigned int
2049 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2050 {
2051 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2052 		return LS_OVERHEAD;
2053 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2054 		return FS_OVERHEAD;
2055 	return HS_OVERHEAD;
2056 }
2057 
2058 /* If we are changing a LS/FS device under a HS hub,
2059  * make sure (if we are activating a new TT) that the HS bus has enough
2060  * bandwidth for this new TT.
2061  */
2062 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2063 		struct xhci_virt_device *virt_dev,
2064 		int old_active_eps)
2065 {
2066 	struct xhci_interval_bw_table *bw_table;
2067 	struct xhci_tt_bw_info *tt_info;
2068 
2069 	/* Find the bandwidth table for the root port this TT is attached to. */
2070 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2071 	tt_info = virt_dev->tt_info;
2072 	/* If this TT already had active endpoints, the bandwidth for this TT
2073 	 * has already been added.  Removing all periodic endpoints (and thus
2074 	 * making the TT enactive) will only decrease the bandwidth used.
2075 	 */
2076 	if (old_active_eps)
2077 		return 0;
2078 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2079 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2080 			return -ENOMEM;
2081 		return 0;
2082 	}
2083 	/* Not sure why we would have no new active endpoints...
2084 	 *
2085 	 * Maybe because of an Evaluate Context change for a hub update or a
2086 	 * control endpoint 0 max packet size change?
2087 	 * FIXME: skip the bandwidth calculation in that case.
2088 	 */
2089 	return 0;
2090 }
2091 
2092 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2093 		struct xhci_virt_device *virt_dev)
2094 {
2095 	unsigned int bw_reserved;
2096 
2097 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2098 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2099 		return -ENOMEM;
2100 
2101 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2102 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2103 		return -ENOMEM;
2104 
2105 	return 0;
2106 }
2107 
2108 /*
2109  * This algorithm is a very conservative estimate of the worst-case scheduling
2110  * scenario for any one interval.  The hardware dynamically schedules the
2111  * packets, so we can't tell which microframe could be the limiting factor in
2112  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2113  *
2114  * Obviously, we can't solve an NP complete problem to find the minimum worst
2115  * case scenario.  Instead, we come up with an estimate that is no less than
2116  * the worst case bandwidth used for any one microframe, but may be an
2117  * over-estimate.
2118  *
2119  * We walk the requirements for each endpoint by interval, starting with the
2120  * smallest interval, and place packets in the schedule where there is only one
2121  * possible way to schedule packets for that interval.  In order to simplify
2122  * this algorithm, we record the largest max packet size for each interval, and
2123  * assume all packets will be that size.
2124  *
2125  * For interval 0, we obviously must schedule all packets for each interval.
2126  * The bandwidth for interval 0 is just the amount of data to be transmitted
2127  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2128  * the number of packets).
2129  *
2130  * For interval 1, we have two possible microframes to schedule those packets
2131  * in.  For this algorithm, if we can schedule the same number of packets for
2132  * each possible scheduling opportunity (each microframe), we will do so.  The
2133  * remaining number of packets will be saved to be transmitted in the gaps in
2134  * the next interval's scheduling sequence.
2135  *
2136  * As we move those remaining packets to be scheduled with interval 2 packets,
2137  * we have to double the number of remaining packets to transmit.  This is
2138  * because the intervals are actually powers of 2, and we would be transmitting
2139  * the previous interval's packets twice in this interval.  We also have to be
2140  * sure that when we look at the largest max packet size for this interval, we
2141  * also look at the largest max packet size for the remaining packets and take
2142  * the greater of the two.
2143  *
2144  * The algorithm continues to evenly distribute packets in each scheduling
2145  * opportunity, and push the remaining packets out, until we get to the last
2146  * interval.  Then those packets and their associated overhead are just added
2147  * to the bandwidth used.
2148  */
2149 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2150 		struct xhci_virt_device *virt_dev,
2151 		int old_active_eps)
2152 {
2153 	unsigned int bw_reserved;
2154 	unsigned int max_bandwidth;
2155 	unsigned int bw_used;
2156 	unsigned int block_size;
2157 	struct xhci_interval_bw_table *bw_table;
2158 	unsigned int packet_size = 0;
2159 	unsigned int overhead = 0;
2160 	unsigned int packets_transmitted = 0;
2161 	unsigned int packets_remaining = 0;
2162 	unsigned int i;
2163 
2164 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2165 		return xhci_check_ss_bw(xhci, virt_dev);
2166 
2167 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2168 		max_bandwidth = HS_BW_LIMIT;
2169 		/* Convert percent of bus BW reserved to blocks reserved */
2170 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2171 	} else {
2172 		max_bandwidth = FS_BW_LIMIT;
2173 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2174 	}
2175 
2176 	bw_table = virt_dev->bw_table;
2177 	/* We need to translate the max packet size and max ESIT payloads into
2178 	 * the units the hardware uses.
2179 	 */
2180 	block_size = xhci_get_block_size(virt_dev->udev);
2181 
2182 	/* If we are manipulating a LS/FS device under a HS hub, double check
2183 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2184 	 */
2185 	if (virt_dev->tt_info) {
2186 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2187 				"Recalculating BW for rootport %u",
2188 				virt_dev->real_port);
2189 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2190 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2191 					"newly activated TT.\n");
2192 			return -ENOMEM;
2193 		}
2194 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2195 				"Recalculating BW for TT slot %u port %u",
2196 				virt_dev->tt_info->slot_id,
2197 				virt_dev->tt_info->ttport);
2198 	} else {
2199 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2200 				"Recalculating BW for rootport %u",
2201 				virt_dev->real_port);
2202 	}
2203 
2204 	/* Add in how much bandwidth will be used for interval zero, or the
2205 	 * rounded max ESIT payload + number of packets * largest overhead.
2206 	 */
2207 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2208 		bw_table->interval_bw[0].num_packets *
2209 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2210 
2211 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2212 		unsigned int bw_added;
2213 		unsigned int largest_mps;
2214 		unsigned int interval_overhead;
2215 
2216 		/*
2217 		 * How many packets could we transmit in this interval?
2218 		 * If packets didn't fit in the previous interval, we will need
2219 		 * to transmit that many packets twice within this interval.
2220 		 */
2221 		packets_remaining = 2 * packets_remaining +
2222 			bw_table->interval_bw[i].num_packets;
2223 
2224 		/* Find the largest max packet size of this or the previous
2225 		 * interval.
2226 		 */
2227 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2228 			largest_mps = 0;
2229 		else {
2230 			struct xhci_virt_ep *virt_ep;
2231 			struct list_head *ep_entry;
2232 
2233 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2234 			virt_ep = list_entry(ep_entry,
2235 					struct xhci_virt_ep, bw_endpoint_list);
2236 			/* Convert to blocks, rounding up */
2237 			largest_mps = DIV_ROUND_UP(
2238 					virt_ep->bw_info.max_packet_size,
2239 					block_size);
2240 		}
2241 		if (largest_mps > packet_size)
2242 			packet_size = largest_mps;
2243 
2244 		/* Use the larger overhead of this or the previous interval. */
2245 		interval_overhead = xhci_get_largest_overhead(
2246 				&bw_table->interval_bw[i]);
2247 		if (interval_overhead > overhead)
2248 			overhead = interval_overhead;
2249 
2250 		/* How many packets can we evenly distribute across
2251 		 * (1 << (i + 1)) possible scheduling opportunities?
2252 		 */
2253 		packets_transmitted = packets_remaining >> (i + 1);
2254 
2255 		/* Add in the bandwidth used for those scheduled packets */
2256 		bw_added = packets_transmitted * (overhead + packet_size);
2257 
2258 		/* How many packets do we have remaining to transmit? */
2259 		packets_remaining = packets_remaining % (1 << (i + 1));
2260 
2261 		/* What largest max packet size should those packets have? */
2262 		/* If we've transmitted all packets, don't carry over the
2263 		 * largest packet size.
2264 		 */
2265 		if (packets_remaining == 0) {
2266 			packet_size = 0;
2267 			overhead = 0;
2268 		} else if (packets_transmitted > 0) {
2269 			/* Otherwise if we do have remaining packets, and we've
2270 			 * scheduled some packets in this interval, take the
2271 			 * largest max packet size from endpoints with this
2272 			 * interval.
2273 			 */
2274 			packet_size = largest_mps;
2275 			overhead = interval_overhead;
2276 		}
2277 		/* Otherwise carry over packet_size and overhead from the last
2278 		 * time we had a remainder.
2279 		 */
2280 		bw_used += bw_added;
2281 		if (bw_used > max_bandwidth) {
2282 			xhci_warn(xhci, "Not enough bandwidth. "
2283 					"Proposed: %u, Max: %u\n",
2284 				bw_used, max_bandwidth);
2285 			return -ENOMEM;
2286 		}
2287 	}
2288 	/*
2289 	 * Ok, we know we have some packets left over after even-handedly
2290 	 * scheduling interval 15.  We don't know which microframes they will
2291 	 * fit into, so we over-schedule and say they will be scheduled every
2292 	 * microframe.
2293 	 */
2294 	if (packets_remaining > 0)
2295 		bw_used += overhead + packet_size;
2296 
2297 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2298 		unsigned int port_index = virt_dev->real_port - 1;
2299 
2300 		/* OK, we're manipulating a HS device attached to a
2301 		 * root port bandwidth domain.  Include the number of active TTs
2302 		 * in the bandwidth used.
2303 		 */
2304 		bw_used += TT_HS_OVERHEAD *
2305 			xhci->rh_bw[port_index].num_active_tts;
2306 	}
2307 
2308 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2309 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2310 		"Available: %u " "percent",
2311 		bw_used, max_bandwidth, bw_reserved,
2312 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2313 		max_bandwidth);
2314 
2315 	bw_used += bw_reserved;
2316 	if (bw_used > max_bandwidth) {
2317 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2318 				bw_used, max_bandwidth);
2319 		return -ENOMEM;
2320 	}
2321 
2322 	bw_table->bw_used = bw_used;
2323 	return 0;
2324 }
2325 
2326 static bool xhci_is_async_ep(unsigned int ep_type)
2327 {
2328 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2329 					ep_type != ISOC_IN_EP &&
2330 					ep_type != INT_IN_EP);
2331 }
2332 
2333 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2334 {
2335 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2336 }
2337 
2338 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2339 {
2340 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2341 
2342 	if (ep_bw->ep_interval == 0)
2343 		return SS_OVERHEAD_BURST +
2344 			(ep_bw->mult * ep_bw->num_packets *
2345 					(SS_OVERHEAD + mps));
2346 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2347 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2348 				1 << ep_bw->ep_interval);
2349 
2350 }
2351 
2352 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2353 		struct xhci_bw_info *ep_bw,
2354 		struct xhci_interval_bw_table *bw_table,
2355 		struct usb_device *udev,
2356 		struct xhci_virt_ep *virt_ep,
2357 		struct xhci_tt_bw_info *tt_info)
2358 {
2359 	struct xhci_interval_bw	*interval_bw;
2360 	int normalized_interval;
2361 
2362 	if (xhci_is_async_ep(ep_bw->type))
2363 		return;
2364 
2365 	if (udev->speed == USB_SPEED_SUPER) {
2366 		if (xhci_is_sync_in_ep(ep_bw->type))
2367 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2368 				xhci_get_ss_bw_consumed(ep_bw);
2369 		else
2370 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2371 				xhci_get_ss_bw_consumed(ep_bw);
2372 		return;
2373 	}
2374 
2375 	/* SuperSpeed endpoints never get added to intervals in the table, so
2376 	 * this check is only valid for HS/FS/LS devices.
2377 	 */
2378 	if (list_empty(&virt_ep->bw_endpoint_list))
2379 		return;
2380 	/* For LS/FS devices, we need to translate the interval expressed in
2381 	 * microframes to frames.
2382 	 */
2383 	if (udev->speed == USB_SPEED_HIGH)
2384 		normalized_interval = ep_bw->ep_interval;
2385 	else
2386 		normalized_interval = ep_bw->ep_interval - 3;
2387 
2388 	if (normalized_interval == 0)
2389 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2390 	interval_bw = &bw_table->interval_bw[normalized_interval];
2391 	interval_bw->num_packets -= ep_bw->num_packets;
2392 	switch (udev->speed) {
2393 	case USB_SPEED_LOW:
2394 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2395 		break;
2396 	case USB_SPEED_FULL:
2397 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2398 		break;
2399 	case USB_SPEED_HIGH:
2400 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2401 		break;
2402 	case USB_SPEED_SUPER:
2403 	case USB_SPEED_UNKNOWN:
2404 	case USB_SPEED_WIRELESS:
2405 		/* Should never happen because only LS/FS/HS endpoints will get
2406 		 * added to the endpoint list.
2407 		 */
2408 		return;
2409 	}
2410 	if (tt_info)
2411 		tt_info->active_eps -= 1;
2412 	list_del_init(&virt_ep->bw_endpoint_list);
2413 }
2414 
2415 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2416 		struct xhci_bw_info *ep_bw,
2417 		struct xhci_interval_bw_table *bw_table,
2418 		struct usb_device *udev,
2419 		struct xhci_virt_ep *virt_ep,
2420 		struct xhci_tt_bw_info *tt_info)
2421 {
2422 	struct xhci_interval_bw	*interval_bw;
2423 	struct xhci_virt_ep *smaller_ep;
2424 	int normalized_interval;
2425 
2426 	if (xhci_is_async_ep(ep_bw->type))
2427 		return;
2428 
2429 	if (udev->speed == USB_SPEED_SUPER) {
2430 		if (xhci_is_sync_in_ep(ep_bw->type))
2431 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2432 				xhci_get_ss_bw_consumed(ep_bw);
2433 		else
2434 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2435 				xhci_get_ss_bw_consumed(ep_bw);
2436 		return;
2437 	}
2438 
2439 	/* For LS/FS devices, we need to translate the interval expressed in
2440 	 * microframes to frames.
2441 	 */
2442 	if (udev->speed == USB_SPEED_HIGH)
2443 		normalized_interval = ep_bw->ep_interval;
2444 	else
2445 		normalized_interval = ep_bw->ep_interval - 3;
2446 
2447 	if (normalized_interval == 0)
2448 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2449 	interval_bw = &bw_table->interval_bw[normalized_interval];
2450 	interval_bw->num_packets += ep_bw->num_packets;
2451 	switch (udev->speed) {
2452 	case USB_SPEED_LOW:
2453 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2454 		break;
2455 	case USB_SPEED_FULL:
2456 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2457 		break;
2458 	case USB_SPEED_HIGH:
2459 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2460 		break;
2461 	case USB_SPEED_SUPER:
2462 	case USB_SPEED_UNKNOWN:
2463 	case USB_SPEED_WIRELESS:
2464 		/* Should never happen because only LS/FS/HS endpoints will get
2465 		 * added to the endpoint list.
2466 		 */
2467 		return;
2468 	}
2469 
2470 	if (tt_info)
2471 		tt_info->active_eps += 1;
2472 	/* Insert the endpoint into the list, largest max packet size first. */
2473 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2474 			bw_endpoint_list) {
2475 		if (ep_bw->max_packet_size >=
2476 				smaller_ep->bw_info.max_packet_size) {
2477 			/* Add the new ep before the smaller endpoint */
2478 			list_add_tail(&virt_ep->bw_endpoint_list,
2479 					&smaller_ep->bw_endpoint_list);
2480 			return;
2481 		}
2482 	}
2483 	/* Add the new endpoint at the end of the list. */
2484 	list_add_tail(&virt_ep->bw_endpoint_list,
2485 			&interval_bw->endpoints);
2486 }
2487 
2488 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2489 		struct xhci_virt_device *virt_dev,
2490 		int old_active_eps)
2491 {
2492 	struct xhci_root_port_bw_info *rh_bw_info;
2493 	if (!virt_dev->tt_info)
2494 		return;
2495 
2496 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2497 	if (old_active_eps == 0 &&
2498 				virt_dev->tt_info->active_eps != 0) {
2499 		rh_bw_info->num_active_tts += 1;
2500 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2501 	} else if (old_active_eps != 0 &&
2502 				virt_dev->tt_info->active_eps == 0) {
2503 		rh_bw_info->num_active_tts -= 1;
2504 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2505 	}
2506 }
2507 
2508 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2509 		struct xhci_virt_device *virt_dev,
2510 		struct xhci_container_ctx *in_ctx)
2511 {
2512 	struct xhci_bw_info ep_bw_info[31];
2513 	int i;
2514 	struct xhci_input_control_ctx *ctrl_ctx;
2515 	int old_active_eps = 0;
2516 
2517 	if (virt_dev->tt_info)
2518 		old_active_eps = virt_dev->tt_info->active_eps;
2519 
2520 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2521 	if (!ctrl_ctx) {
2522 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2523 				__func__);
2524 		return -ENOMEM;
2525 	}
2526 
2527 	for (i = 0; i < 31; i++) {
2528 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2529 			continue;
2530 
2531 		/* Make a copy of the BW info in case we need to revert this */
2532 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2533 				sizeof(ep_bw_info[i]));
2534 		/* Drop the endpoint from the interval table if the endpoint is
2535 		 * being dropped or changed.
2536 		 */
2537 		if (EP_IS_DROPPED(ctrl_ctx, i))
2538 			xhci_drop_ep_from_interval_table(xhci,
2539 					&virt_dev->eps[i].bw_info,
2540 					virt_dev->bw_table,
2541 					virt_dev->udev,
2542 					&virt_dev->eps[i],
2543 					virt_dev->tt_info);
2544 	}
2545 	/* Overwrite the information stored in the endpoints' bw_info */
2546 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2547 	for (i = 0; i < 31; i++) {
2548 		/* Add any changed or added endpoints to the interval table */
2549 		if (EP_IS_ADDED(ctrl_ctx, i))
2550 			xhci_add_ep_to_interval_table(xhci,
2551 					&virt_dev->eps[i].bw_info,
2552 					virt_dev->bw_table,
2553 					virt_dev->udev,
2554 					&virt_dev->eps[i],
2555 					virt_dev->tt_info);
2556 	}
2557 
2558 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2559 		/* Ok, this fits in the bandwidth we have.
2560 		 * Update the number of active TTs.
2561 		 */
2562 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2563 		return 0;
2564 	}
2565 
2566 	/* We don't have enough bandwidth for this, revert the stored info. */
2567 	for (i = 0; i < 31; i++) {
2568 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2569 			continue;
2570 
2571 		/* Drop the new copies of any added or changed endpoints from
2572 		 * the interval table.
2573 		 */
2574 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2575 			xhci_drop_ep_from_interval_table(xhci,
2576 					&virt_dev->eps[i].bw_info,
2577 					virt_dev->bw_table,
2578 					virt_dev->udev,
2579 					&virt_dev->eps[i],
2580 					virt_dev->tt_info);
2581 		}
2582 		/* Revert the endpoint back to its old information */
2583 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2584 				sizeof(ep_bw_info[i]));
2585 		/* Add any changed or dropped endpoints back into the table */
2586 		if (EP_IS_DROPPED(ctrl_ctx, i))
2587 			xhci_add_ep_to_interval_table(xhci,
2588 					&virt_dev->eps[i].bw_info,
2589 					virt_dev->bw_table,
2590 					virt_dev->udev,
2591 					&virt_dev->eps[i],
2592 					virt_dev->tt_info);
2593 	}
2594 	return -ENOMEM;
2595 }
2596 
2597 
2598 /* Issue a configure endpoint command or evaluate context command
2599  * and wait for it to finish.
2600  */
2601 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2602 		struct usb_device *udev,
2603 		struct xhci_command *command,
2604 		bool ctx_change, bool must_succeed)
2605 {
2606 	int ret;
2607 	unsigned long flags;
2608 	struct xhci_input_control_ctx *ctrl_ctx;
2609 	struct xhci_virt_device *virt_dev;
2610 
2611 	if (!command)
2612 		return -EINVAL;
2613 
2614 	spin_lock_irqsave(&xhci->lock, flags);
2615 	virt_dev = xhci->devs[udev->slot_id];
2616 
2617 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2618 	if (!ctrl_ctx) {
2619 		spin_unlock_irqrestore(&xhci->lock, flags);
2620 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2621 				__func__);
2622 		return -ENOMEM;
2623 	}
2624 
2625 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2626 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2627 		spin_unlock_irqrestore(&xhci->lock, flags);
2628 		xhci_warn(xhci, "Not enough host resources, "
2629 				"active endpoint contexts = %u\n",
2630 				xhci->num_active_eps);
2631 		return -ENOMEM;
2632 	}
2633 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2634 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2635 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2636 			xhci_free_host_resources(xhci, ctrl_ctx);
2637 		spin_unlock_irqrestore(&xhci->lock, flags);
2638 		xhci_warn(xhci, "Not enough bandwidth\n");
2639 		return -ENOMEM;
2640 	}
2641 
2642 	if (!ctx_change)
2643 		ret = xhci_queue_configure_endpoint(xhci, command,
2644 				command->in_ctx->dma,
2645 				udev->slot_id, must_succeed);
2646 	else
2647 		ret = xhci_queue_evaluate_context(xhci, command,
2648 				command->in_ctx->dma,
2649 				udev->slot_id, must_succeed);
2650 	if (ret < 0) {
2651 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2652 			xhci_free_host_resources(xhci, ctrl_ctx);
2653 		spin_unlock_irqrestore(&xhci->lock, flags);
2654 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2655 				"FIXME allocate a new ring segment");
2656 		return -ENOMEM;
2657 	}
2658 	xhci_ring_cmd_db(xhci);
2659 	spin_unlock_irqrestore(&xhci->lock, flags);
2660 
2661 	/* Wait for the configure endpoint command to complete */
2662 	wait_for_completion(command->completion);
2663 
2664 	if (!ctx_change)
2665 		ret = xhci_configure_endpoint_result(xhci, udev,
2666 						     &command->status);
2667 	else
2668 		ret = xhci_evaluate_context_result(xhci, udev,
2669 						   &command->status);
2670 
2671 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2672 		spin_lock_irqsave(&xhci->lock, flags);
2673 		/* If the command failed, remove the reserved resources.
2674 		 * Otherwise, clean up the estimate to include dropped eps.
2675 		 */
2676 		if (ret)
2677 			xhci_free_host_resources(xhci, ctrl_ctx);
2678 		else
2679 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2680 		spin_unlock_irqrestore(&xhci->lock, flags);
2681 	}
2682 	return ret;
2683 }
2684 
2685 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2686 	struct xhci_virt_device *vdev, int i)
2687 {
2688 	struct xhci_virt_ep *ep = &vdev->eps[i];
2689 
2690 	if (ep->ep_state & EP_HAS_STREAMS) {
2691 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2692 				xhci_get_endpoint_address(i));
2693 		xhci_free_stream_info(xhci, ep->stream_info);
2694 		ep->stream_info = NULL;
2695 		ep->ep_state &= ~EP_HAS_STREAMS;
2696 	}
2697 }
2698 
2699 /* Called after one or more calls to xhci_add_endpoint() or
2700  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2701  * to call xhci_reset_bandwidth().
2702  *
2703  * Since we are in the middle of changing either configuration or
2704  * installing a new alt setting, the USB core won't allow URBs to be
2705  * enqueued for any endpoint on the old config or interface.  Nothing
2706  * else should be touching the xhci->devs[slot_id] structure, so we
2707  * don't need to take the xhci->lock for manipulating that.
2708  */
2709 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2710 {
2711 	int i;
2712 	int ret = 0;
2713 	struct xhci_hcd *xhci;
2714 	struct xhci_virt_device	*virt_dev;
2715 	struct xhci_input_control_ctx *ctrl_ctx;
2716 	struct xhci_slot_ctx *slot_ctx;
2717 	struct xhci_command *command;
2718 
2719 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2720 	if (ret <= 0)
2721 		return ret;
2722 	xhci = hcd_to_xhci(hcd);
2723 	if (xhci->xhc_state & XHCI_STATE_DYING)
2724 		return -ENODEV;
2725 
2726 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2727 	virt_dev = xhci->devs[udev->slot_id];
2728 
2729 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2730 	if (!command)
2731 		return -ENOMEM;
2732 
2733 	command->in_ctx = virt_dev->in_ctx;
2734 
2735 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2736 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2737 	if (!ctrl_ctx) {
2738 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2739 				__func__);
2740 		ret = -ENOMEM;
2741 		goto command_cleanup;
2742 	}
2743 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2744 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2745 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2746 
2747 	/* Don't issue the command if there's no endpoints to update. */
2748 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2749 	    ctrl_ctx->drop_flags == 0) {
2750 		ret = 0;
2751 		goto command_cleanup;
2752 	}
2753 	xhci_dbg(xhci, "New Input Control Context:\n");
2754 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2755 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2756 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2757 
2758 	ret = xhci_configure_endpoint(xhci, udev, command,
2759 			false, false);
2760 	if (ret)
2761 		/* Callee should call reset_bandwidth() */
2762 		goto command_cleanup;
2763 
2764 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2765 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2766 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2767 
2768 	/* Free any rings that were dropped, but not changed. */
2769 	for (i = 1; i < 31; ++i) {
2770 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2771 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2772 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2773 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2774 		}
2775 	}
2776 	xhci_zero_in_ctx(xhci, virt_dev);
2777 	/*
2778 	 * Install any rings for completely new endpoints or changed endpoints,
2779 	 * and free or cache any old rings from changed endpoints.
2780 	 */
2781 	for (i = 1; i < 31; ++i) {
2782 		if (!virt_dev->eps[i].new_ring)
2783 			continue;
2784 		/* Only cache or free the old ring if it exists.
2785 		 * It may not if this is the first add of an endpoint.
2786 		 */
2787 		if (virt_dev->eps[i].ring) {
2788 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2789 		}
2790 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2791 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2792 		virt_dev->eps[i].new_ring = NULL;
2793 	}
2794 command_cleanup:
2795 	kfree(command->completion);
2796 	kfree(command);
2797 
2798 	return ret;
2799 }
2800 
2801 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2802 {
2803 	struct xhci_hcd *xhci;
2804 	struct xhci_virt_device	*virt_dev;
2805 	int i, ret;
2806 
2807 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2808 	if (ret <= 0)
2809 		return;
2810 	xhci = hcd_to_xhci(hcd);
2811 
2812 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2813 	virt_dev = xhci->devs[udev->slot_id];
2814 	/* Free any rings allocated for added endpoints */
2815 	for (i = 0; i < 31; ++i) {
2816 		if (virt_dev->eps[i].new_ring) {
2817 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2818 			virt_dev->eps[i].new_ring = NULL;
2819 		}
2820 	}
2821 	xhci_zero_in_ctx(xhci, virt_dev);
2822 }
2823 
2824 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2825 		struct xhci_container_ctx *in_ctx,
2826 		struct xhci_container_ctx *out_ctx,
2827 		struct xhci_input_control_ctx *ctrl_ctx,
2828 		u32 add_flags, u32 drop_flags)
2829 {
2830 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2831 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2832 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2833 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2834 
2835 	xhci_dbg(xhci, "Input Context:\n");
2836 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2837 }
2838 
2839 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2840 		unsigned int slot_id, unsigned int ep_index,
2841 		struct xhci_dequeue_state *deq_state)
2842 {
2843 	struct xhci_input_control_ctx *ctrl_ctx;
2844 	struct xhci_container_ctx *in_ctx;
2845 	struct xhci_ep_ctx *ep_ctx;
2846 	u32 added_ctxs;
2847 	dma_addr_t addr;
2848 
2849 	in_ctx = xhci->devs[slot_id]->in_ctx;
2850 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2851 	if (!ctrl_ctx) {
2852 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2853 				__func__);
2854 		return;
2855 	}
2856 
2857 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2858 			xhci->devs[slot_id]->out_ctx, ep_index);
2859 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2860 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2861 			deq_state->new_deq_ptr);
2862 	if (addr == 0) {
2863 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2864 				"reset ep command\n");
2865 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2866 				deq_state->new_deq_seg,
2867 				deq_state->new_deq_ptr);
2868 		return;
2869 	}
2870 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2871 
2872 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2873 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2874 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2875 			added_ctxs, added_ctxs);
2876 }
2877 
2878 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2879 		struct usb_device *udev, unsigned int ep_index)
2880 {
2881 	struct xhci_dequeue_state deq_state;
2882 	struct xhci_virt_ep *ep;
2883 
2884 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2885 			"Cleaning up stalled endpoint ring");
2886 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2887 	/* We need to move the HW's dequeue pointer past this TD,
2888 	 * or it will attempt to resend it on the next doorbell ring.
2889 	 */
2890 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2891 			ep_index, ep->stopped_stream, ep->stopped_td,
2892 			&deq_state);
2893 
2894 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2895 	 * issue a configure endpoint command later.
2896 	 */
2897 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2898 		struct xhci_command *command;
2899 		/* Can't sleep if we're called from cleanup_halted_endpoint() */
2900 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
2901 		if (!command)
2902 			return;
2903 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2904 				"Queueing new dequeue state");
2905 		xhci_queue_new_dequeue_state(xhci, command, udev->slot_id,
2906 				ep_index, ep->stopped_stream, &deq_state);
2907 	} else {
2908 		/* Better hope no one uses the input context between now and the
2909 		 * reset endpoint completion!
2910 		 * XXX: No idea how this hardware will react when stream rings
2911 		 * are enabled.
2912 		 */
2913 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2914 				"Setting up input context for "
2915 				"configure endpoint command");
2916 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2917 				ep_index, &deq_state);
2918 	}
2919 }
2920 
2921 /* Deal with stalled endpoints.  The core should have sent the control message
2922  * to clear the halt condition.  However, we need to make the xHCI hardware
2923  * reset its sequence number, since a device will expect a sequence number of
2924  * zero after the halt condition is cleared.
2925  * Context: in_interrupt
2926  */
2927 void xhci_endpoint_reset(struct usb_hcd *hcd,
2928 		struct usb_host_endpoint *ep)
2929 {
2930 	struct xhci_hcd *xhci;
2931 	struct usb_device *udev;
2932 	unsigned int ep_index;
2933 	unsigned long flags;
2934 	int ret;
2935 	struct xhci_virt_ep *virt_ep;
2936 	struct xhci_command *command;
2937 
2938 	xhci = hcd_to_xhci(hcd);
2939 	udev = (struct usb_device *) ep->hcpriv;
2940 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2941 	 * with xhci_add_endpoint()
2942 	 */
2943 	if (!ep->hcpriv)
2944 		return;
2945 	ep_index = xhci_get_endpoint_index(&ep->desc);
2946 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2947 	if (!virt_ep->stopped_td) {
2948 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2949 			"Endpoint 0x%x not halted, refusing to reset.",
2950 			ep->desc.bEndpointAddress);
2951 		return;
2952 	}
2953 	if (usb_endpoint_xfer_control(&ep->desc)) {
2954 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2955 				"Control endpoint stall already handled.");
2956 		return;
2957 	}
2958 
2959 	command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
2960 	if (!command)
2961 		return;
2962 
2963 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2964 			"Queueing reset endpoint command");
2965 	spin_lock_irqsave(&xhci->lock, flags);
2966 	ret = xhci_queue_reset_ep(xhci, command, udev->slot_id, ep_index);
2967 	/*
2968 	 * Can't change the ring dequeue pointer until it's transitioned to the
2969 	 * stopped state, which is only upon a successful reset endpoint
2970 	 * command.  Better hope that last command worked!
2971 	 */
2972 	if (!ret) {
2973 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2974 		kfree(virt_ep->stopped_td);
2975 		xhci_ring_cmd_db(xhci);
2976 	}
2977 	virt_ep->stopped_td = NULL;
2978 	virt_ep->stopped_stream = 0;
2979 	spin_unlock_irqrestore(&xhci->lock, flags);
2980 
2981 	if (ret)
2982 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2983 }
2984 
2985 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2986 		struct usb_device *udev, struct usb_host_endpoint *ep,
2987 		unsigned int slot_id)
2988 {
2989 	int ret;
2990 	unsigned int ep_index;
2991 	unsigned int ep_state;
2992 
2993 	if (!ep)
2994 		return -EINVAL;
2995 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2996 	if (ret <= 0)
2997 		return -EINVAL;
2998 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2999 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3000 				" descriptor for ep 0x%x does not support streams\n",
3001 				ep->desc.bEndpointAddress);
3002 		return -EINVAL;
3003 	}
3004 
3005 	ep_index = xhci_get_endpoint_index(&ep->desc);
3006 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3007 	if (ep_state & EP_HAS_STREAMS ||
3008 			ep_state & EP_GETTING_STREAMS) {
3009 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3010 				"already has streams set up.\n",
3011 				ep->desc.bEndpointAddress);
3012 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3013 				"dynamic stream context array reallocation.\n");
3014 		return -EINVAL;
3015 	}
3016 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3017 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3018 				"endpoint 0x%x; URBs are pending.\n",
3019 				ep->desc.bEndpointAddress);
3020 		return -EINVAL;
3021 	}
3022 	return 0;
3023 }
3024 
3025 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3026 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3027 {
3028 	unsigned int max_streams;
3029 
3030 	/* The stream context array size must be a power of two */
3031 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3032 	/*
3033 	 * Find out how many primary stream array entries the host controller
3034 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3035 	 * level page entries), but that's an optional feature for xHCI host
3036 	 * controllers. xHCs must support at least 4 stream IDs.
3037 	 */
3038 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3039 	if (*num_stream_ctxs > max_streams) {
3040 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3041 				max_streams);
3042 		*num_stream_ctxs = max_streams;
3043 		*num_streams = max_streams;
3044 	}
3045 }
3046 
3047 /* Returns an error code if one of the endpoint already has streams.
3048  * This does not change any data structures, it only checks and gathers
3049  * information.
3050  */
3051 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3052 		struct usb_device *udev,
3053 		struct usb_host_endpoint **eps, unsigned int num_eps,
3054 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3055 {
3056 	unsigned int max_streams;
3057 	unsigned int endpoint_flag;
3058 	int i;
3059 	int ret;
3060 
3061 	for (i = 0; i < num_eps; i++) {
3062 		ret = xhci_check_streams_endpoint(xhci, udev,
3063 				eps[i], udev->slot_id);
3064 		if (ret < 0)
3065 			return ret;
3066 
3067 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3068 		if (max_streams < (*num_streams - 1)) {
3069 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3070 					eps[i]->desc.bEndpointAddress,
3071 					max_streams);
3072 			*num_streams = max_streams+1;
3073 		}
3074 
3075 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3076 		if (*changed_ep_bitmask & endpoint_flag)
3077 			return -EINVAL;
3078 		*changed_ep_bitmask |= endpoint_flag;
3079 	}
3080 	return 0;
3081 }
3082 
3083 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3084 		struct usb_device *udev,
3085 		struct usb_host_endpoint **eps, unsigned int num_eps)
3086 {
3087 	u32 changed_ep_bitmask = 0;
3088 	unsigned int slot_id;
3089 	unsigned int ep_index;
3090 	unsigned int ep_state;
3091 	int i;
3092 
3093 	slot_id = udev->slot_id;
3094 	if (!xhci->devs[slot_id])
3095 		return 0;
3096 
3097 	for (i = 0; i < num_eps; i++) {
3098 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3099 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3100 		/* Are streams already being freed for the endpoint? */
3101 		if (ep_state & EP_GETTING_NO_STREAMS) {
3102 			xhci_warn(xhci, "WARN Can't disable streams for "
3103 					"endpoint 0x%x, "
3104 					"streams are being disabled already\n",
3105 					eps[i]->desc.bEndpointAddress);
3106 			return 0;
3107 		}
3108 		/* Are there actually any streams to free? */
3109 		if (!(ep_state & EP_HAS_STREAMS) &&
3110 				!(ep_state & EP_GETTING_STREAMS)) {
3111 			xhci_warn(xhci, "WARN Can't disable streams for "
3112 					"endpoint 0x%x, "
3113 					"streams are already disabled!\n",
3114 					eps[i]->desc.bEndpointAddress);
3115 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3116 					"with non-streams endpoint\n");
3117 			return 0;
3118 		}
3119 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3120 	}
3121 	return changed_ep_bitmask;
3122 }
3123 
3124 /*
3125  * The USB device drivers use this function (though the HCD interface in USB
3126  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3127  * coordinate mass storage command queueing across multiple endpoints (basically
3128  * a stream ID == a task ID).
3129  *
3130  * Setting up streams involves allocating the same size stream context array
3131  * for each endpoint and issuing a configure endpoint command for all endpoints.
3132  *
3133  * Don't allow the call to succeed if one endpoint only supports one stream
3134  * (which means it doesn't support streams at all).
3135  *
3136  * Drivers may get less stream IDs than they asked for, if the host controller
3137  * hardware or endpoints claim they can't support the number of requested
3138  * stream IDs.
3139  */
3140 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3141 		struct usb_host_endpoint **eps, unsigned int num_eps,
3142 		unsigned int num_streams, gfp_t mem_flags)
3143 {
3144 	int i, ret;
3145 	struct xhci_hcd *xhci;
3146 	struct xhci_virt_device *vdev;
3147 	struct xhci_command *config_cmd;
3148 	struct xhci_input_control_ctx *ctrl_ctx;
3149 	unsigned int ep_index;
3150 	unsigned int num_stream_ctxs;
3151 	unsigned long flags;
3152 	u32 changed_ep_bitmask = 0;
3153 
3154 	if (!eps)
3155 		return -EINVAL;
3156 
3157 	/* Add one to the number of streams requested to account for
3158 	 * stream 0 that is reserved for xHCI usage.
3159 	 */
3160 	num_streams += 1;
3161 	xhci = hcd_to_xhci(hcd);
3162 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3163 			num_streams);
3164 
3165 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3166 	if (HCC_MAX_PSA(xhci->hcc_params) < 4) {
3167 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3168 		return -ENOSYS;
3169 	}
3170 
3171 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3172 	if (!config_cmd) {
3173 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3174 		return -ENOMEM;
3175 	}
3176 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3177 	if (!ctrl_ctx) {
3178 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3179 				__func__);
3180 		xhci_free_command(xhci, config_cmd);
3181 		return -ENOMEM;
3182 	}
3183 
3184 	/* Check to make sure all endpoints are not already configured for
3185 	 * streams.  While we're at it, find the maximum number of streams that
3186 	 * all the endpoints will support and check for duplicate endpoints.
3187 	 */
3188 	spin_lock_irqsave(&xhci->lock, flags);
3189 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3190 			num_eps, &num_streams, &changed_ep_bitmask);
3191 	if (ret < 0) {
3192 		xhci_free_command(xhci, config_cmd);
3193 		spin_unlock_irqrestore(&xhci->lock, flags);
3194 		return ret;
3195 	}
3196 	if (num_streams <= 1) {
3197 		xhci_warn(xhci, "WARN: endpoints can't handle "
3198 				"more than one stream.\n");
3199 		xhci_free_command(xhci, config_cmd);
3200 		spin_unlock_irqrestore(&xhci->lock, flags);
3201 		return -EINVAL;
3202 	}
3203 	vdev = xhci->devs[udev->slot_id];
3204 	/* Mark each endpoint as being in transition, so
3205 	 * xhci_urb_enqueue() will reject all URBs.
3206 	 */
3207 	for (i = 0; i < num_eps; i++) {
3208 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3209 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3210 	}
3211 	spin_unlock_irqrestore(&xhci->lock, flags);
3212 
3213 	/* Setup internal data structures and allocate HW data structures for
3214 	 * streams (but don't install the HW structures in the input context
3215 	 * until we're sure all memory allocation succeeded).
3216 	 */
3217 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3218 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3219 			num_stream_ctxs, num_streams);
3220 
3221 	for (i = 0; i < num_eps; i++) {
3222 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3223 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3224 				num_stream_ctxs,
3225 				num_streams, mem_flags);
3226 		if (!vdev->eps[ep_index].stream_info)
3227 			goto cleanup;
3228 		/* Set maxPstreams in endpoint context and update deq ptr to
3229 		 * point to stream context array. FIXME
3230 		 */
3231 	}
3232 
3233 	/* Set up the input context for a configure endpoint command. */
3234 	for (i = 0; i < num_eps; i++) {
3235 		struct xhci_ep_ctx *ep_ctx;
3236 
3237 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3238 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3239 
3240 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3241 				vdev->out_ctx, ep_index);
3242 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3243 				vdev->eps[ep_index].stream_info);
3244 	}
3245 	/* Tell the HW to drop its old copy of the endpoint context info
3246 	 * and add the updated copy from the input context.
3247 	 */
3248 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3249 			vdev->out_ctx, ctrl_ctx,
3250 			changed_ep_bitmask, changed_ep_bitmask);
3251 
3252 	/* Issue and wait for the configure endpoint command */
3253 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3254 			false, false);
3255 
3256 	/* xHC rejected the configure endpoint command for some reason, so we
3257 	 * leave the old ring intact and free our internal streams data
3258 	 * structure.
3259 	 */
3260 	if (ret < 0)
3261 		goto cleanup;
3262 
3263 	spin_lock_irqsave(&xhci->lock, flags);
3264 	for (i = 0; i < num_eps; i++) {
3265 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3266 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3267 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3268 			 udev->slot_id, ep_index);
3269 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3270 	}
3271 	xhci_free_command(xhci, config_cmd);
3272 	spin_unlock_irqrestore(&xhci->lock, flags);
3273 
3274 	/* Subtract 1 for stream 0, which drivers can't use */
3275 	return num_streams - 1;
3276 
3277 cleanup:
3278 	/* If it didn't work, free the streams! */
3279 	for (i = 0; i < num_eps; i++) {
3280 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3281 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3282 		vdev->eps[ep_index].stream_info = NULL;
3283 		/* FIXME Unset maxPstreams in endpoint context and
3284 		 * update deq ptr to point to normal string ring.
3285 		 */
3286 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3287 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3288 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3289 	}
3290 	xhci_free_command(xhci, config_cmd);
3291 	return -ENOMEM;
3292 }
3293 
3294 /* Transition the endpoint from using streams to being a "normal" endpoint
3295  * without streams.
3296  *
3297  * Modify the endpoint context state, submit a configure endpoint command,
3298  * and free all endpoint rings for streams if that completes successfully.
3299  */
3300 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3301 		struct usb_host_endpoint **eps, unsigned int num_eps,
3302 		gfp_t mem_flags)
3303 {
3304 	int i, ret;
3305 	struct xhci_hcd *xhci;
3306 	struct xhci_virt_device *vdev;
3307 	struct xhci_command *command;
3308 	struct xhci_input_control_ctx *ctrl_ctx;
3309 	unsigned int ep_index;
3310 	unsigned long flags;
3311 	u32 changed_ep_bitmask;
3312 
3313 	xhci = hcd_to_xhci(hcd);
3314 	vdev = xhci->devs[udev->slot_id];
3315 
3316 	/* Set up a configure endpoint command to remove the streams rings */
3317 	spin_lock_irqsave(&xhci->lock, flags);
3318 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3319 			udev, eps, num_eps);
3320 	if (changed_ep_bitmask == 0) {
3321 		spin_unlock_irqrestore(&xhci->lock, flags);
3322 		return -EINVAL;
3323 	}
3324 
3325 	/* Use the xhci_command structure from the first endpoint.  We may have
3326 	 * allocated too many, but the driver may call xhci_free_streams() for
3327 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3328 	 */
3329 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3330 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3331 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3332 	if (!ctrl_ctx) {
3333 		spin_unlock_irqrestore(&xhci->lock, flags);
3334 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3335 				__func__);
3336 		return -EINVAL;
3337 	}
3338 
3339 	for (i = 0; i < num_eps; i++) {
3340 		struct xhci_ep_ctx *ep_ctx;
3341 
3342 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3343 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3344 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3345 			EP_GETTING_NO_STREAMS;
3346 
3347 		xhci_endpoint_copy(xhci, command->in_ctx,
3348 				vdev->out_ctx, ep_index);
3349 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3350 				&vdev->eps[ep_index]);
3351 	}
3352 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3353 			vdev->out_ctx, ctrl_ctx,
3354 			changed_ep_bitmask, changed_ep_bitmask);
3355 	spin_unlock_irqrestore(&xhci->lock, flags);
3356 
3357 	/* Issue and wait for the configure endpoint command,
3358 	 * which must succeed.
3359 	 */
3360 	ret = xhci_configure_endpoint(xhci, udev, command,
3361 			false, true);
3362 
3363 	/* xHC rejected the configure endpoint command for some reason, so we
3364 	 * leave the streams rings intact.
3365 	 */
3366 	if (ret < 0)
3367 		return ret;
3368 
3369 	spin_lock_irqsave(&xhci->lock, flags);
3370 	for (i = 0; i < num_eps; i++) {
3371 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3372 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3373 		vdev->eps[ep_index].stream_info = NULL;
3374 		/* FIXME Unset maxPstreams in endpoint context and
3375 		 * update deq ptr to point to normal string ring.
3376 		 */
3377 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3378 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3379 	}
3380 	spin_unlock_irqrestore(&xhci->lock, flags);
3381 
3382 	return 0;
3383 }
3384 
3385 /*
3386  * Deletes endpoint resources for endpoints that were active before a Reset
3387  * Device command, or a Disable Slot command.  The Reset Device command leaves
3388  * the control endpoint intact, whereas the Disable Slot command deletes it.
3389  *
3390  * Must be called with xhci->lock held.
3391  */
3392 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3393 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3394 {
3395 	int i;
3396 	unsigned int num_dropped_eps = 0;
3397 	unsigned int drop_flags = 0;
3398 
3399 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3400 		if (virt_dev->eps[i].ring) {
3401 			drop_flags |= 1 << i;
3402 			num_dropped_eps++;
3403 		}
3404 	}
3405 	xhci->num_active_eps -= num_dropped_eps;
3406 	if (num_dropped_eps)
3407 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3408 				"Dropped %u ep ctxs, flags = 0x%x, "
3409 				"%u now active.",
3410 				num_dropped_eps, drop_flags,
3411 				xhci->num_active_eps);
3412 }
3413 
3414 /*
3415  * This submits a Reset Device Command, which will set the device state to 0,
3416  * set the device address to 0, and disable all the endpoints except the default
3417  * control endpoint.  The USB core should come back and call
3418  * xhci_address_device(), and then re-set up the configuration.  If this is
3419  * called because of a usb_reset_and_verify_device(), then the old alternate
3420  * settings will be re-installed through the normal bandwidth allocation
3421  * functions.
3422  *
3423  * Wait for the Reset Device command to finish.  Remove all structures
3424  * associated with the endpoints that were disabled.  Clear the input device
3425  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3426  *
3427  * If the virt_dev to be reset does not exist or does not match the udev,
3428  * it means the device is lost, possibly due to the xHC restore error and
3429  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3430  * re-allocate the device.
3431  */
3432 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3433 {
3434 	int ret, i;
3435 	unsigned long flags;
3436 	struct xhci_hcd *xhci;
3437 	unsigned int slot_id;
3438 	struct xhci_virt_device *virt_dev;
3439 	struct xhci_command *reset_device_cmd;
3440 	int last_freed_endpoint;
3441 	struct xhci_slot_ctx *slot_ctx;
3442 	int old_active_eps = 0;
3443 
3444 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3445 	if (ret <= 0)
3446 		return ret;
3447 	xhci = hcd_to_xhci(hcd);
3448 	slot_id = udev->slot_id;
3449 	virt_dev = xhci->devs[slot_id];
3450 	if (!virt_dev) {
3451 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3452 				"not exist. Re-allocate the device\n", slot_id);
3453 		ret = xhci_alloc_dev(hcd, udev);
3454 		if (ret == 1)
3455 			return 0;
3456 		else
3457 			return -EINVAL;
3458 	}
3459 
3460 	if (virt_dev->udev != udev) {
3461 		/* If the virt_dev and the udev does not match, this virt_dev
3462 		 * may belong to another udev.
3463 		 * Re-allocate the device.
3464 		 */
3465 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3466 				"not match the udev. Re-allocate the device\n",
3467 				slot_id);
3468 		ret = xhci_alloc_dev(hcd, udev);
3469 		if (ret == 1)
3470 			return 0;
3471 		else
3472 			return -EINVAL;
3473 	}
3474 
3475 	/* If device is not setup, there is no point in resetting it */
3476 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3477 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3478 						SLOT_STATE_DISABLED)
3479 		return 0;
3480 
3481 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3482 	/* Allocate the command structure that holds the struct completion.
3483 	 * Assume we're in process context, since the normal device reset
3484 	 * process has to wait for the device anyway.  Storage devices are
3485 	 * reset as part of error handling, so use GFP_NOIO instead of
3486 	 * GFP_KERNEL.
3487 	 */
3488 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3489 	if (!reset_device_cmd) {
3490 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3491 		return -ENOMEM;
3492 	}
3493 
3494 	/* Attempt to submit the Reset Device command to the command ring */
3495 	spin_lock_irqsave(&xhci->lock, flags);
3496 
3497 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3498 	if (ret) {
3499 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3500 		spin_unlock_irqrestore(&xhci->lock, flags);
3501 		goto command_cleanup;
3502 	}
3503 	xhci_ring_cmd_db(xhci);
3504 	spin_unlock_irqrestore(&xhci->lock, flags);
3505 
3506 	/* Wait for the Reset Device command to finish */
3507 	wait_for_completion(reset_device_cmd->completion);
3508 
3509 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3510 	 * unless we tried to reset a slot ID that wasn't enabled,
3511 	 * or the device wasn't in the addressed or configured state.
3512 	 */
3513 	ret = reset_device_cmd->status;
3514 	switch (ret) {
3515 	case COMP_CMD_ABORT:
3516 	case COMP_CMD_STOP:
3517 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3518 		ret = -ETIME;
3519 		goto command_cleanup;
3520 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3521 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3522 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3523 				slot_id,
3524 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3525 		xhci_dbg(xhci, "Not freeing device rings.\n");
3526 		/* Don't treat this as an error.  May change my mind later. */
3527 		ret = 0;
3528 		goto command_cleanup;
3529 	case COMP_SUCCESS:
3530 		xhci_dbg(xhci, "Successful reset device command.\n");
3531 		break;
3532 	default:
3533 		if (xhci_is_vendor_info_code(xhci, ret))
3534 			break;
3535 		xhci_warn(xhci, "Unknown completion code %u for "
3536 				"reset device command.\n", ret);
3537 		ret = -EINVAL;
3538 		goto command_cleanup;
3539 	}
3540 
3541 	/* Free up host controller endpoint resources */
3542 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3543 		spin_lock_irqsave(&xhci->lock, flags);
3544 		/* Don't delete the default control endpoint resources */
3545 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3546 		spin_unlock_irqrestore(&xhci->lock, flags);
3547 	}
3548 
3549 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3550 	last_freed_endpoint = 1;
3551 	for (i = 1; i < 31; ++i) {
3552 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3553 
3554 		if (ep->ep_state & EP_HAS_STREAMS) {
3555 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3556 					xhci_get_endpoint_address(i));
3557 			xhci_free_stream_info(xhci, ep->stream_info);
3558 			ep->stream_info = NULL;
3559 			ep->ep_state &= ~EP_HAS_STREAMS;
3560 		}
3561 
3562 		if (ep->ring) {
3563 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3564 			last_freed_endpoint = i;
3565 		}
3566 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3567 			xhci_drop_ep_from_interval_table(xhci,
3568 					&virt_dev->eps[i].bw_info,
3569 					virt_dev->bw_table,
3570 					udev,
3571 					&virt_dev->eps[i],
3572 					virt_dev->tt_info);
3573 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3574 	}
3575 	/* If necessary, update the number of active TTs on this root port */
3576 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3577 
3578 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3579 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3580 	ret = 0;
3581 
3582 command_cleanup:
3583 	xhci_free_command(xhci, reset_device_cmd);
3584 	return ret;
3585 }
3586 
3587 /*
3588  * At this point, the struct usb_device is about to go away, the device has
3589  * disconnected, and all traffic has been stopped and the endpoints have been
3590  * disabled.  Free any HC data structures associated with that device.
3591  */
3592 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3593 {
3594 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3595 	struct xhci_virt_device *virt_dev;
3596 	unsigned long flags;
3597 	u32 state;
3598 	int i, ret;
3599 	struct xhci_command *command;
3600 
3601 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3602 	if (!command)
3603 		return;
3604 
3605 #ifndef CONFIG_USB_DEFAULT_PERSIST
3606 	/*
3607 	 * We called pm_runtime_get_noresume when the device was attached.
3608 	 * Decrement the counter here to allow controller to runtime suspend
3609 	 * if no devices remain.
3610 	 */
3611 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3612 		pm_runtime_put_noidle(hcd->self.controller);
3613 #endif
3614 
3615 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3616 	/* If the host is halted due to driver unload, we still need to free the
3617 	 * device.
3618 	 */
3619 	if (ret <= 0 && ret != -ENODEV) {
3620 		kfree(command);
3621 		return;
3622 	}
3623 
3624 	virt_dev = xhci->devs[udev->slot_id];
3625 
3626 	/* Stop any wayward timer functions (which may grab the lock) */
3627 	for (i = 0; i < 31; ++i) {
3628 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3629 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3630 	}
3631 
3632 	spin_lock_irqsave(&xhci->lock, flags);
3633 	/* Don't disable the slot if the host controller is dead. */
3634 	state = readl(&xhci->op_regs->status);
3635 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3636 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3637 		xhci_free_virt_device(xhci, udev->slot_id);
3638 		spin_unlock_irqrestore(&xhci->lock, flags);
3639 		kfree(command);
3640 		return;
3641 	}
3642 
3643 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3644 				    udev->slot_id)) {
3645 		spin_unlock_irqrestore(&xhci->lock, flags);
3646 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3647 		return;
3648 	}
3649 	xhci_ring_cmd_db(xhci);
3650 	spin_unlock_irqrestore(&xhci->lock, flags);
3651 
3652 	/*
3653 	 * Event command completion handler will free any data structures
3654 	 * associated with the slot.  XXX Can free sleep?
3655 	 */
3656 }
3657 
3658 /*
3659  * Checks if we have enough host controller resources for the default control
3660  * endpoint.
3661  *
3662  * Must be called with xhci->lock held.
3663  */
3664 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3665 {
3666 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3667 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3668 				"Not enough ep ctxs: "
3669 				"%u active, need to add 1, limit is %u.",
3670 				xhci->num_active_eps, xhci->limit_active_eps);
3671 		return -ENOMEM;
3672 	}
3673 	xhci->num_active_eps += 1;
3674 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3675 			"Adding 1 ep ctx, %u now active.",
3676 			xhci->num_active_eps);
3677 	return 0;
3678 }
3679 
3680 
3681 /*
3682  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3683  * timed out, or allocating memory failed.  Returns 1 on success.
3684  */
3685 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3686 {
3687 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3688 	unsigned long flags;
3689 	int ret;
3690 	struct xhci_command *command;
3691 
3692 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3693 	if (!command)
3694 		return 0;
3695 
3696 	spin_lock_irqsave(&xhci->lock, flags);
3697 	command->completion = &xhci->addr_dev;
3698 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3699 	if (ret) {
3700 		spin_unlock_irqrestore(&xhci->lock, flags);
3701 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3702 		kfree(command);
3703 		return 0;
3704 	}
3705 	xhci_ring_cmd_db(xhci);
3706 	spin_unlock_irqrestore(&xhci->lock, flags);
3707 
3708 	wait_for_completion(command->completion);
3709 
3710 	if (!xhci->slot_id || command->status != COMP_SUCCESS) {
3711 		xhci_err(xhci, "Error while assigning device slot ID\n");
3712 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3713 				HCS_MAX_SLOTS(
3714 					readl(&xhci->cap_regs->hcs_params1)));
3715 		kfree(command);
3716 		return 0;
3717 	}
3718 
3719 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3720 		spin_lock_irqsave(&xhci->lock, flags);
3721 		ret = xhci_reserve_host_control_ep_resources(xhci);
3722 		if (ret) {
3723 			spin_unlock_irqrestore(&xhci->lock, flags);
3724 			xhci_warn(xhci, "Not enough host resources, "
3725 					"active endpoint contexts = %u\n",
3726 					xhci->num_active_eps);
3727 			goto disable_slot;
3728 		}
3729 		spin_unlock_irqrestore(&xhci->lock, flags);
3730 	}
3731 	/* Use GFP_NOIO, since this function can be called from
3732 	 * xhci_discover_or_reset_device(), which may be called as part of
3733 	 * mass storage driver error handling.
3734 	 */
3735 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3736 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3737 		goto disable_slot;
3738 	}
3739 	udev->slot_id = xhci->slot_id;
3740 
3741 #ifndef CONFIG_USB_DEFAULT_PERSIST
3742 	/*
3743 	 * If resetting upon resume, we can't put the controller into runtime
3744 	 * suspend if there is a device attached.
3745 	 */
3746 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3747 		pm_runtime_get_noresume(hcd->self.controller);
3748 #endif
3749 
3750 
3751 	kfree(command);
3752 	/* Is this a LS or FS device under a HS hub? */
3753 	/* Hub or peripherial? */
3754 	return 1;
3755 
3756 disable_slot:
3757 	/* Disable slot, if we can do it without mem alloc */
3758 	spin_lock_irqsave(&xhci->lock, flags);
3759 	command->completion = NULL;
3760 	command->status = 0;
3761 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3762 				     udev->slot_id))
3763 		xhci_ring_cmd_db(xhci);
3764 	spin_unlock_irqrestore(&xhci->lock, flags);
3765 	return 0;
3766 }
3767 
3768 /*
3769  * Issue an Address Device command and optionally send a corresponding
3770  * SetAddress request to the device.
3771  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3772  * we should only issue and wait on one address command at the same time.
3773  */
3774 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3775 			     enum xhci_setup_dev setup)
3776 {
3777 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3778 	unsigned long flags;
3779 	struct xhci_virt_device *virt_dev;
3780 	int ret = 0;
3781 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3782 	struct xhci_slot_ctx *slot_ctx;
3783 	struct xhci_input_control_ctx *ctrl_ctx;
3784 	u64 temp_64;
3785 	struct xhci_command *command;
3786 
3787 	if (!udev->slot_id) {
3788 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3789 				"Bad Slot ID %d", udev->slot_id);
3790 		return -EINVAL;
3791 	}
3792 
3793 	virt_dev = xhci->devs[udev->slot_id];
3794 
3795 	if (WARN_ON(!virt_dev)) {
3796 		/*
3797 		 * In plug/unplug torture test with an NEC controller,
3798 		 * a zero-dereference was observed once due to virt_dev = 0.
3799 		 * Print useful debug rather than crash if it is observed again!
3800 		 */
3801 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3802 			udev->slot_id);
3803 		return -EINVAL;
3804 	}
3805 
3806 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3807 	if (!command)
3808 		return -ENOMEM;
3809 
3810 	command->in_ctx = virt_dev->in_ctx;
3811 	command->completion = &xhci->addr_dev;
3812 
3813 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3814 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3815 	if (!ctrl_ctx) {
3816 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3817 				__func__);
3818 		kfree(command);
3819 		return -EINVAL;
3820 	}
3821 	/*
3822 	 * If this is the first Set Address since device plug-in or
3823 	 * virt_device realloaction after a resume with an xHCI power loss,
3824 	 * then set up the slot context.
3825 	 */
3826 	if (!slot_ctx->dev_info)
3827 		xhci_setup_addressable_virt_dev(xhci, udev);
3828 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3829 	else
3830 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3831 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3832 	ctrl_ctx->drop_flags = 0;
3833 
3834 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3835 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3836 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3837 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3838 
3839 	spin_lock_irqsave(&xhci->lock, flags);
3840 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3841 					udev->slot_id, setup);
3842 	if (ret) {
3843 		spin_unlock_irqrestore(&xhci->lock, flags);
3844 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3845 				"FIXME: allocate a command ring segment");
3846 		kfree(command);
3847 		return ret;
3848 	}
3849 	xhci_ring_cmd_db(xhci);
3850 	spin_unlock_irqrestore(&xhci->lock, flags);
3851 
3852 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3853 	wait_for_completion(command->completion);
3854 
3855 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3856 	 * the SetAddress() "recovery interval" required by USB and aborting the
3857 	 * command on a timeout.
3858 	 */
3859 	switch (command->status) {
3860 	case COMP_CMD_ABORT:
3861 	case COMP_CMD_STOP:
3862 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3863 		ret = -ETIME;
3864 		break;
3865 	case COMP_CTX_STATE:
3866 	case COMP_EBADSLT:
3867 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3868 			 act, udev->slot_id);
3869 		ret = -EINVAL;
3870 		break;
3871 	case COMP_TX_ERR:
3872 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3873 		ret = -EPROTO;
3874 		break;
3875 	case COMP_DEV_ERR:
3876 		dev_warn(&udev->dev,
3877 			 "ERROR: Incompatible device for setup %s command\n", act);
3878 		ret = -ENODEV;
3879 		break;
3880 	case COMP_SUCCESS:
3881 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3882 			       "Successful setup %s command", act);
3883 		break;
3884 	default:
3885 		xhci_err(xhci,
3886 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3887 			 act, command->status);
3888 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3889 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3890 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3891 		ret = -EINVAL;
3892 		break;
3893 	}
3894 	if (ret) {
3895 		kfree(command);
3896 		return ret;
3897 	}
3898 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3899 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3900 			"Op regs DCBAA ptr = %#016llx", temp_64);
3901 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3902 		"Slot ID %d dcbaa entry @%p = %#016llx",
3903 		udev->slot_id,
3904 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3905 		(unsigned long long)
3906 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3907 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3908 			"Output Context DMA address = %#08llx",
3909 			(unsigned long long)virt_dev->out_ctx->dma);
3910 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3911 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3912 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3913 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3914 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3915 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3916 	/*
3917 	 * USB core uses address 1 for the roothubs, so we add one to the
3918 	 * address given back to us by the HC.
3919 	 */
3920 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3921 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3922 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3923 	/* Zero the input context control for later use */
3924 	ctrl_ctx->add_flags = 0;
3925 	ctrl_ctx->drop_flags = 0;
3926 
3927 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3928 		       "Internal device address = %d",
3929 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3930 	kfree(command);
3931 	return 0;
3932 }
3933 
3934 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3935 {
3936 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3937 }
3938 
3939 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3940 {
3941 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3942 }
3943 
3944 /*
3945  * Transfer the port index into real index in the HW port status
3946  * registers. Caculate offset between the port's PORTSC register
3947  * and port status base. Divide the number of per port register
3948  * to get the real index. The raw port number bases 1.
3949  */
3950 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3951 {
3952 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3953 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3954 	__le32 __iomem *addr;
3955 	int raw_port;
3956 
3957 	if (hcd->speed != HCD_USB3)
3958 		addr = xhci->usb2_ports[port1 - 1];
3959 	else
3960 		addr = xhci->usb3_ports[port1 - 1];
3961 
3962 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3963 	return raw_port;
3964 }
3965 
3966 /*
3967  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3968  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3969  */
3970 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3971 			struct usb_device *udev, u16 max_exit_latency)
3972 {
3973 	struct xhci_virt_device *virt_dev;
3974 	struct xhci_command *command;
3975 	struct xhci_input_control_ctx *ctrl_ctx;
3976 	struct xhci_slot_ctx *slot_ctx;
3977 	unsigned long flags;
3978 	int ret;
3979 
3980 	spin_lock_irqsave(&xhci->lock, flags);
3981 	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3982 		spin_unlock_irqrestore(&xhci->lock, flags);
3983 		return 0;
3984 	}
3985 
3986 	/* Attempt to issue an Evaluate Context command to change the MEL. */
3987 	virt_dev = xhci->devs[udev->slot_id];
3988 	command = xhci->lpm_command;
3989 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3990 	if (!ctrl_ctx) {
3991 		spin_unlock_irqrestore(&xhci->lock, flags);
3992 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3993 				__func__);
3994 		return -ENOMEM;
3995 	}
3996 
3997 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3998 	spin_unlock_irqrestore(&xhci->lock, flags);
3999 
4000 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4001 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4002 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4003 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4004 
4005 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4006 			"Set up evaluate context for LPM MEL change.");
4007 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4008 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4009 
4010 	/* Issue and wait for the evaluate context command. */
4011 	ret = xhci_configure_endpoint(xhci, udev, command,
4012 			true, true);
4013 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4014 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4015 
4016 	if (!ret) {
4017 		spin_lock_irqsave(&xhci->lock, flags);
4018 		virt_dev->current_mel = max_exit_latency;
4019 		spin_unlock_irqrestore(&xhci->lock, flags);
4020 	}
4021 	return ret;
4022 }
4023 
4024 #ifdef CONFIG_PM_RUNTIME
4025 
4026 /* BESL to HIRD Encoding array for USB2 LPM */
4027 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4028 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4029 
4030 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4031 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4032 					struct usb_device *udev)
4033 {
4034 	int u2del, besl, besl_host;
4035 	int besl_device = 0;
4036 	u32 field;
4037 
4038 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4039 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4040 
4041 	if (field & USB_BESL_SUPPORT) {
4042 		for (besl_host = 0; besl_host < 16; besl_host++) {
4043 			if (xhci_besl_encoding[besl_host] >= u2del)
4044 				break;
4045 		}
4046 		/* Use baseline BESL value as default */
4047 		if (field & USB_BESL_BASELINE_VALID)
4048 			besl_device = USB_GET_BESL_BASELINE(field);
4049 		else if (field & USB_BESL_DEEP_VALID)
4050 			besl_device = USB_GET_BESL_DEEP(field);
4051 	} else {
4052 		if (u2del <= 50)
4053 			besl_host = 0;
4054 		else
4055 			besl_host = (u2del - 51) / 75 + 1;
4056 	}
4057 
4058 	besl = besl_host + besl_device;
4059 	if (besl > 15)
4060 		besl = 15;
4061 
4062 	return besl;
4063 }
4064 
4065 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4066 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4067 {
4068 	u32 field;
4069 	int l1;
4070 	int besld = 0;
4071 	int hirdm = 0;
4072 
4073 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4074 
4075 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4076 	l1 = udev->l1_params.timeout / 256;
4077 
4078 	/* device has preferred BESLD */
4079 	if (field & USB_BESL_DEEP_VALID) {
4080 		besld = USB_GET_BESL_DEEP(field);
4081 		hirdm = 1;
4082 	}
4083 
4084 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4085 }
4086 
4087 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4088 			struct usb_device *udev, int enable)
4089 {
4090 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4091 	__le32 __iomem	**port_array;
4092 	__le32 __iomem	*pm_addr, *hlpm_addr;
4093 	u32		pm_val, hlpm_val, field;
4094 	unsigned int	port_num;
4095 	unsigned long	flags;
4096 	int		hird, exit_latency;
4097 	int		ret;
4098 
4099 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4100 			!udev->lpm_capable)
4101 		return -EPERM;
4102 
4103 	if (!udev->parent || udev->parent->parent ||
4104 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4105 		return -EPERM;
4106 
4107 	if (udev->usb2_hw_lpm_capable != 1)
4108 		return -EPERM;
4109 
4110 	spin_lock_irqsave(&xhci->lock, flags);
4111 
4112 	port_array = xhci->usb2_ports;
4113 	port_num = udev->portnum - 1;
4114 	pm_addr = port_array[port_num] + PORTPMSC;
4115 	pm_val = readl(pm_addr);
4116 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4117 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4118 
4119 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4120 			enable ? "enable" : "disable", port_num + 1);
4121 
4122 	if (enable) {
4123 		/* Host supports BESL timeout instead of HIRD */
4124 		if (udev->usb2_hw_lpm_besl_capable) {
4125 			/* if device doesn't have a preferred BESL value use a
4126 			 * default one which works with mixed HIRD and BESL
4127 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4128 			 */
4129 			if ((field & USB_BESL_SUPPORT) &&
4130 			    (field & USB_BESL_BASELINE_VALID))
4131 				hird = USB_GET_BESL_BASELINE(field);
4132 			else
4133 				hird = udev->l1_params.besl;
4134 
4135 			exit_latency = xhci_besl_encoding[hird];
4136 			spin_unlock_irqrestore(&xhci->lock, flags);
4137 
4138 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4139 			 * input context for link powermanagement evaluate
4140 			 * context commands. It is protected by hcd->bandwidth
4141 			 * mutex and is shared by all devices. We need to set
4142 			 * the max ext latency in USB 2 BESL LPM as well, so
4143 			 * use the same mutex and xhci_change_max_exit_latency()
4144 			 */
4145 			mutex_lock(hcd->bandwidth_mutex);
4146 			ret = xhci_change_max_exit_latency(xhci, udev,
4147 							   exit_latency);
4148 			mutex_unlock(hcd->bandwidth_mutex);
4149 
4150 			if (ret < 0)
4151 				return ret;
4152 			spin_lock_irqsave(&xhci->lock, flags);
4153 
4154 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4155 			writel(hlpm_val, hlpm_addr);
4156 			/* flush write */
4157 			readl(hlpm_addr);
4158 		} else {
4159 			hird = xhci_calculate_hird_besl(xhci, udev);
4160 		}
4161 
4162 		pm_val &= ~PORT_HIRD_MASK;
4163 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4164 		writel(pm_val, pm_addr);
4165 		pm_val = readl(pm_addr);
4166 		pm_val |= PORT_HLE;
4167 		writel(pm_val, pm_addr);
4168 		/* flush write */
4169 		readl(pm_addr);
4170 	} else {
4171 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4172 		writel(pm_val, pm_addr);
4173 		/* flush write */
4174 		readl(pm_addr);
4175 		if (udev->usb2_hw_lpm_besl_capable) {
4176 			spin_unlock_irqrestore(&xhci->lock, flags);
4177 			mutex_lock(hcd->bandwidth_mutex);
4178 			xhci_change_max_exit_latency(xhci, udev, 0);
4179 			mutex_unlock(hcd->bandwidth_mutex);
4180 			return 0;
4181 		}
4182 	}
4183 
4184 	spin_unlock_irqrestore(&xhci->lock, flags);
4185 	return 0;
4186 }
4187 
4188 /* check if a usb2 port supports a given extened capability protocol
4189  * only USB2 ports extended protocol capability values are cached.
4190  * Return 1 if capability is supported
4191  */
4192 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4193 					   unsigned capability)
4194 {
4195 	u32 port_offset, port_count;
4196 	int i;
4197 
4198 	for (i = 0; i < xhci->num_ext_caps; i++) {
4199 		if (xhci->ext_caps[i] & capability) {
4200 			/* port offsets starts at 1 */
4201 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4202 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4203 			if (port >= port_offset &&
4204 			    port < port_offset + port_count)
4205 				return 1;
4206 		}
4207 	}
4208 	return 0;
4209 }
4210 
4211 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4212 {
4213 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4214 	int		portnum = udev->portnum - 1;
4215 
4216 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4217 			!udev->lpm_capable)
4218 		return 0;
4219 
4220 	/* we only support lpm for non-hub device connected to root hub yet */
4221 	if (!udev->parent || udev->parent->parent ||
4222 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4223 		return 0;
4224 
4225 	if (xhci->hw_lpm_support == 1 &&
4226 			xhci_check_usb2_port_capability(
4227 				xhci, portnum, XHCI_HLC)) {
4228 		udev->usb2_hw_lpm_capable = 1;
4229 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4230 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4231 		if (xhci_check_usb2_port_capability(xhci, portnum,
4232 					XHCI_BLC))
4233 			udev->usb2_hw_lpm_besl_capable = 1;
4234 	}
4235 
4236 	return 0;
4237 }
4238 
4239 #else
4240 
4241 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4242 				struct usb_device *udev, int enable)
4243 {
4244 	return 0;
4245 }
4246 
4247 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4248 {
4249 	return 0;
4250 }
4251 
4252 #endif /* CONFIG_PM_RUNTIME */
4253 
4254 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4255 
4256 #ifdef CONFIG_PM
4257 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4258 static unsigned long long xhci_service_interval_to_ns(
4259 		struct usb_endpoint_descriptor *desc)
4260 {
4261 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4262 }
4263 
4264 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4265 		enum usb3_link_state state)
4266 {
4267 	unsigned long long sel;
4268 	unsigned long long pel;
4269 	unsigned int max_sel_pel;
4270 	char *state_name;
4271 
4272 	switch (state) {
4273 	case USB3_LPM_U1:
4274 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4275 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4276 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4277 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4278 		state_name = "U1";
4279 		break;
4280 	case USB3_LPM_U2:
4281 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4282 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4283 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4284 		state_name = "U2";
4285 		break;
4286 	default:
4287 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4288 				__func__);
4289 		return USB3_LPM_DISABLED;
4290 	}
4291 
4292 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4293 		return USB3_LPM_DEVICE_INITIATED;
4294 
4295 	if (sel > max_sel_pel)
4296 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4297 				"due to long SEL %llu ms\n",
4298 				state_name, sel);
4299 	else
4300 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4301 				"due to long PEL %llu ms\n",
4302 				state_name, pel);
4303 	return USB3_LPM_DISABLED;
4304 }
4305 
4306 /* Returns the hub-encoded U1 timeout value.
4307  * The U1 timeout should be the maximum of the following values:
4308  *  - For control endpoints, U1 system exit latency (SEL) * 3
4309  *  - For bulk endpoints, U1 SEL * 5
4310  *  - For interrupt endpoints:
4311  *    - Notification EPs, U1 SEL * 3
4312  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4313  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4314  */
4315 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4316 		struct usb_endpoint_descriptor *desc)
4317 {
4318 	unsigned long long timeout_ns;
4319 	int ep_type;
4320 	int intr_type;
4321 
4322 	ep_type = usb_endpoint_type(desc);
4323 	switch (ep_type) {
4324 	case USB_ENDPOINT_XFER_CONTROL:
4325 		timeout_ns = udev->u1_params.sel * 3;
4326 		break;
4327 	case USB_ENDPOINT_XFER_BULK:
4328 		timeout_ns = udev->u1_params.sel * 5;
4329 		break;
4330 	case USB_ENDPOINT_XFER_INT:
4331 		intr_type = usb_endpoint_interrupt_type(desc);
4332 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4333 			timeout_ns = udev->u1_params.sel * 3;
4334 			break;
4335 		}
4336 		/* Otherwise the calculation is the same as isoc eps */
4337 	case USB_ENDPOINT_XFER_ISOC:
4338 		timeout_ns = xhci_service_interval_to_ns(desc);
4339 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4340 		if (timeout_ns < udev->u1_params.sel * 2)
4341 			timeout_ns = udev->u1_params.sel * 2;
4342 		break;
4343 	default:
4344 		return 0;
4345 	}
4346 
4347 	/* The U1 timeout is encoded in 1us intervals. */
4348 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4349 	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4350 	if (timeout_ns == USB3_LPM_DISABLED)
4351 		timeout_ns++;
4352 
4353 	/* If the necessary timeout value is bigger than what we can set in the
4354 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4355 	 */
4356 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4357 		return timeout_ns;
4358 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4359 			"due to long timeout %llu ms\n", timeout_ns);
4360 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4361 }
4362 
4363 /* Returns the hub-encoded U2 timeout value.
4364  * The U2 timeout should be the maximum of:
4365  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4366  *  - largest bInterval of any active periodic endpoint (to avoid going
4367  *    into lower power link states between intervals).
4368  *  - the U2 Exit Latency of the device
4369  */
4370 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4371 		struct usb_endpoint_descriptor *desc)
4372 {
4373 	unsigned long long timeout_ns;
4374 	unsigned long long u2_del_ns;
4375 
4376 	timeout_ns = 10 * 1000 * 1000;
4377 
4378 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4379 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4380 		timeout_ns = xhci_service_interval_to_ns(desc);
4381 
4382 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4383 	if (u2_del_ns > timeout_ns)
4384 		timeout_ns = u2_del_ns;
4385 
4386 	/* The U2 timeout is encoded in 256us intervals */
4387 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4388 	/* If the necessary timeout value is bigger than what we can set in the
4389 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4390 	 */
4391 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4392 		return timeout_ns;
4393 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4394 			"due to long timeout %llu ms\n", timeout_ns);
4395 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4396 }
4397 
4398 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4399 		struct usb_device *udev,
4400 		struct usb_endpoint_descriptor *desc,
4401 		enum usb3_link_state state,
4402 		u16 *timeout)
4403 {
4404 	if (state == USB3_LPM_U1) {
4405 		if (xhci->quirks & XHCI_INTEL_HOST)
4406 			return xhci_calculate_intel_u1_timeout(udev, desc);
4407 	} else {
4408 		if (xhci->quirks & XHCI_INTEL_HOST)
4409 			return xhci_calculate_intel_u2_timeout(udev, desc);
4410 	}
4411 
4412 	return USB3_LPM_DISABLED;
4413 }
4414 
4415 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4416 		struct usb_device *udev,
4417 		struct usb_endpoint_descriptor *desc,
4418 		enum usb3_link_state state,
4419 		u16 *timeout)
4420 {
4421 	u16 alt_timeout;
4422 
4423 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4424 		desc, state, timeout);
4425 
4426 	/* If we found we can't enable hub-initiated LPM, or
4427 	 * the U1 or U2 exit latency was too high to allow
4428 	 * device-initiated LPM as well, just stop searching.
4429 	 */
4430 	if (alt_timeout == USB3_LPM_DISABLED ||
4431 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4432 		*timeout = alt_timeout;
4433 		return -E2BIG;
4434 	}
4435 	if (alt_timeout > *timeout)
4436 		*timeout = alt_timeout;
4437 	return 0;
4438 }
4439 
4440 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4441 		struct usb_device *udev,
4442 		struct usb_host_interface *alt,
4443 		enum usb3_link_state state,
4444 		u16 *timeout)
4445 {
4446 	int j;
4447 
4448 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4449 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4450 					&alt->endpoint[j].desc, state, timeout))
4451 			return -E2BIG;
4452 		continue;
4453 	}
4454 	return 0;
4455 }
4456 
4457 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4458 		enum usb3_link_state state)
4459 {
4460 	struct usb_device *parent;
4461 	unsigned int num_hubs;
4462 
4463 	if (state == USB3_LPM_U2)
4464 		return 0;
4465 
4466 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4467 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4468 			parent = parent->parent)
4469 		num_hubs++;
4470 
4471 	if (num_hubs < 2)
4472 		return 0;
4473 
4474 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4475 			" below second-tier hub.\n");
4476 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4477 			"to decrease power consumption.\n");
4478 	return -E2BIG;
4479 }
4480 
4481 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4482 		struct usb_device *udev,
4483 		enum usb3_link_state state)
4484 {
4485 	if (xhci->quirks & XHCI_INTEL_HOST)
4486 		return xhci_check_intel_tier_policy(udev, state);
4487 	return -EINVAL;
4488 }
4489 
4490 /* Returns the U1 or U2 timeout that should be enabled.
4491  * If the tier check or timeout setting functions return with a non-zero exit
4492  * code, that means the timeout value has been finalized and we shouldn't look
4493  * at any more endpoints.
4494  */
4495 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4496 			struct usb_device *udev, enum usb3_link_state state)
4497 {
4498 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4499 	struct usb_host_config *config;
4500 	char *state_name;
4501 	int i;
4502 	u16 timeout = USB3_LPM_DISABLED;
4503 
4504 	if (state == USB3_LPM_U1)
4505 		state_name = "U1";
4506 	else if (state == USB3_LPM_U2)
4507 		state_name = "U2";
4508 	else {
4509 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4510 				state);
4511 		return timeout;
4512 	}
4513 
4514 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4515 		return timeout;
4516 
4517 	/* Gather some information about the currently installed configuration
4518 	 * and alternate interface settings.
4519 	 */
4520 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4521 			state, &timeout))
4522 		return timeout;
4523 
4524 	config = udev->actconfig;
4525 	if (!config)
4526 		return timeout;
4527 
4528 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4529 		struct usb_driver *driver;
4530 		struct usb_interface *intf = config->interface[i];
4531 
4532 		if (!intf)
4533 			continue;
4534 
4535 		/* Check if any currently bound drivers want hub-initiated LPM
4536 		 * disabled.
4537 		 */
4538 		if (intf->dev.driver) {
4539 			driver = to_usb_driver(intf->dev.driver);
4540 			if (driver && driver->disable_hub_initiated_lpm) {
4541 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4542 						"at request of driver %s\n",
4543 						state_name, driver->name);
4544 				return xhci_get_timeout_no_hub_lpm(udev, state);
4545 			}
4546 		}
4547 
4548 		/* Not sure how this could happen... */
4549 		if (!intf->cur_altsetting)
4550 			continue;
4551 
4552 		if (xhci_update_timeout_for_interface(xhci, udev,
4553 					intf->cur_altsetting,
4554 					state, &timeout))
4555 			return timeout;
4556 	}
4557 	return timeout;
4558 }
4559 
4560 static int calculate_max_exit_latency(struct usb_device *udev,
4561 		enum usb3_link_state state_changed,
4562 		u16 hub_encoded_timeout)
4563 {
4564 	unsigned long long u1_mel_us = 0;
4565 	unsigned long long u2_mel_us = 0;
4566 	unsigned long long mel_us = 0;
4567 	bool disabling_u1;
4568 	bool disabling_u2;
4569 	bool enabling_u1;
4570 	bool enabling_u2;
4571 
4572 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4573 			hub_encoded_timeout == USB3_LPM_DISABLED);
4574 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4575 			hub_encoded_timeout == USB3_LPM_DISABLED);
4576 
4577 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4578 			hub_encoded_timeout != USB3_LPM_DISABLED);
4579 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4580 			hub_encoded_timeout != USB3_LPM_DISABLED);
4581 
4582 	/* If U1 was already enabled and we're not disabling it,
4583 	 * or we're going to enable U1, account for the U1 max exit latency.
4584 	 */
4585 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4586 			enabling_u1)
4587 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4588 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4589 			enabling_u2)
4590 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4591 
4592 	if (u1_mel_us > u2_mel_us)
4593 		mel_us = u1_mel_us;
4594 	else
4595 		mel_us = u2_mel_us;
4596 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4597 	if (mel_us > MAX_EXIT) {
4598 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4599 				"is too big.\n", mel_us);
4600 		return -E2BIG;
4601 	}
4602 	return mel_us;
4603 }
4604 
4605 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4606 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4607 			struct usb_device *udev, enum usb3_link_state state)
4608 {
4609 	struct xhci_hcd	*xhci;
4610 	u16 hub_encoded_timeout;
4611 	int mel;
4612 	int ret;
4613 
4614 	xhci = hcd_to_xhci(hcd);
4615 	/* The LPM timeout values are pretty host-controller specific, so don't
4616 	 * enable hub-initiated timeouts unless the vendor has provided
4617 	 * information about their timeout algorithm.
4618 	 */
4619 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4620 			!xhci->devs[udev->slot_id])
4621 		return USB3_LPM_DISABLED;
4622 
4623 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4624 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4625 	if (mel < 0) {
4626 		/* Max Exit Latency is too big, disable LPM. */
4627 		hub_encoded_timeout = USB3_LPM_DISABLED;
4628 		mel = 0;
4629 	}
4630 
4631 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4632 	if (ret)
4633 		return ret;
4634 	return hub_encoded_timeout;
4635 }
4636 
4637 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4638 			struct usb_device *udev, enum usb3_link_state state)
4639 {
4640 	struct xhci_hcd	*xhci;
4641 	u16 mel;
4642 	int ret;
4643 
4644 	xhci = hcd_to_xhci(hcd);
4645 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4646 			!xhci->devs[udev->slot_id])
4647 		return 0;
4648 
4649 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4650 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4651 	if (ret)
4652 		return ret;
4653 	return 0;
4654 }
4655 #else /* CONFIG_PM */
4656 
4657 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4658 			struct usb_device *udev, enum usb3_link_state state)
4659 {
4660 	return USB3_LPM_DISABLED;
4661 }
4662 
4663 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4664 			struct usb_device *udev, enum usb3_link_state state)
4665 {
4666 	return 0;
4667 }
4668 #endif	/* CONFIG_PM */
4669 
4670 /*-------------------------------------------------------------------------*/
4671 
4672 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4673  * internal data structures for the device.
4674  */
4675 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4676 			struct usb_tt *tt, gfp_t mem_flags)
4677 {
4678 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4679 	struct xhci_virt_device *vdev;
4680 	struct xhci_command *config_cmd;
4681 	struct xhci_input_control_ctx *ctrl_ctx;
4682 	struct xhci_slot_ctx *slot_ctx;
4683 	unsigned long flags;
4684 	unsigned think_time;
4685 	int ret;
4686 
4687 	/* Ignore root hubs */
4688 	if (!hdev->parent)
4689 		return 0;
4690 
4691 	vdev = xhci->devs[hdev->slot_id];
4692 	if (!vdev) {
4693 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4694 		return -EINVAL;
4695 	}
4696 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4697 	if (!config_cmd) {
4698 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4699 		return -ENOMEM;
4700 	}
4701 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4702 	if (!ctrl_ctx) {
4703 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4704 				__func__);
4705 		xhci_free_command(xhci, config_cmd);
4706 		return -ENOMEM;
4707 	}
4708 
4709 	spin_lock_irqsave(&xhci->lock, flags);
4710 	if (hdev->speed == USB_SPEED_HIGH &&
4711 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4712 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4713 		xhci_free_command(xhci, config_cmd);
4714 		spin_unlock_irqrestore(&xhci->lock, flags);
4715 		return -ENOMEM;
4716 	}
4717 
4718 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4719 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4720 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4721 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4722 	if (tt->multi)
4723 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4724 	if (xhci->hci_version > 0x95) {
4725 		xhci_dbg(xhci, "xHCI version %x needs hub "
4726 				"TT think time and number of ports\n",
4727 				(unsigned int) xhci->hci_version);
4728 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4729 		/* Set TT think time - convert from ns to FS bit times.
4730 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4731 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4732 		 *
4733 		 * xHCI 1.0: this field shall be 0 if the device is not a
4734 		 * High-spped hub.
4735 		 */
4736 		think_time = tt->think_time;
4737 		if (think_time != 0)
4738 			think_time = (think_time / 666) - 1;
4739 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4740 			slot_ctx->tt_info |=
4741 				cpu_to_le32(TT_THINK_TIME(think_time));
4742 	} else {
4743 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4744 				"TT think time or number of ports\n",
4745 				(unsigned int) xhci->hci_version);
4746 	}
4747 	slot_ctx->dev_state = 0;
4748 	spin_unlock_irqrestore(&xhci->lock, flags);
4749 
4750 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4751 			(xhci->hci_version > 0x95) ?
4752 			"configure endpoint" : "evaluate context");
4753 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4754 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4755 
4756 	/* Issue and wait for the configure endpoint or
4757 	 * evaluate context command.
4758 	 */
4759 	if (xhci->hci_version > 0x95)
4760 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4761 				false, false);
4762 	else
4763 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4764 				true, false);
4765 
4766 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4767 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4768 
4769 	xhci_free_command(xhci, config_cmd);
4770 	return ret;
4771 }
4772 
4773 int xhci_get_frame(struct usb_hcd *hcd)
4774 {
4775 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4776 	/* EHCI mods by the periodic size.  Why? */
4777 	return readl(&xhci->run_regs->microframe_index) >> 3;
4778 }
4779 
4780 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4781 {
4782 	struct xhci_hcd		*xhci;
4783 	struct device		*dev = hcd->self.controller;
4784 	int			retval;
4785 
4786 	/* Accept arbitrarily long scatter-gather lists */
4787 	hcd->self.sg_tablesize = ~0;
4788 
4789 	/* support to build packet from discontinuous buffers */
4790 	hcd->self.no_sg_constraint = 1;
4791 
4792 	/* XHCI controllers don't stop the ep queue on short packets :| */
4793 	hcd->self.no_stop_on_short = 1;
4794 
4795 	if (usb_hcd_is_primary_hcd(hcd)) {
4796 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4797 		if (!xhci)
4798 			return -ENOMEM;
4799 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4800 		xhci->main_hcd = hcd;
4801 		/* Mark the first roothub as being USB 2.0.
4802 		 * The xHCI driver will register the USB 3.0 roothub.
4803 		 */
4804 		hcd->speed = HCD_USB2;
4805 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4806 		/*
4807 		 * USB 2.0 roothub under xHCI has an integrated TT,
4808 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4809 		 * companion controller.
4810 		 */
4811 		hcd->has_tt = 1;
4812 	} else {
4813 		/* xHCI private pointer was set in xhci_pci_probe for the second
4814 		 * registered roothub.
4815 		 */
4816 		return 0;
4817 	}
4818 
4819 	xhci->cap_regs = hcd->regs;
4820 	xhci->op_regs = hcd->regs +
4821 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4822 	xhci->run_regs = hcd->regs +
4823 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4824 	/* Cache read-only capability registers */
4825 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4826 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4827 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4828 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4829 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4830 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4831 	xhci_print_registers(xhci);
4832 
4833 	xhci->quirks = quirks;
4834 
4835 	get_quirks(dev, xhci);
4836 
4837 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4838 	 * success event after a short transfer. This quirk will ignore such
4839 	 * spurious event.
4840 	 */
4841 	if (xhci->hci_version > 0x96)
4842 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4843 
4844 	/* Make sure the HC is halted. */
4845 	retval = xhci_halt(xhci);
4846 	if (retval)
4847 		goto error;
4848 
4849 	xhci_dbg(xhci, "Resetting HCD\n");
4850 	/* Reset the internal HC memory state and registers. */
4851 	retval = xhci_reset(xhci);
4852 	if (retval)
4853 		goto error;
4854 	xhci_dbg(xhci, "Reset complete\n");
4855 
4856 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4857 	 * if xHC supports 64-bit addressing */
4858 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4859 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4860 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4861 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4862 	}
4863 
4864 	xhci_dbg(xhci, "Calling HCD init\n");
4865 	/* Initialize HCD and host controller data structures. */
4866 	retval = xhci_init(hcd);
4867 	if (retval)
4868 		goto error;
4869 	xhci_dbg(xhci, "Called HCD init\n");
4870 	return 0;
4871 error:
4872 	kfree(xhci);
4873 	return retval;
4874 }
4875 
4876 MODULE_DESCRIPTION(DRIVER_DESC);
4877 MODULE_AUTHOR(DRIVER_AUTHOR);
4878 MODULE_LICENSE("GPL");
4879 
4880 static int __init xhci_hcd_init(void)
4881 {
4882 	int retval;
4883 
4884 	retval = xhci_register_pci();
4885 	if (retval < 0) {
4886 		pr_debug("Problem registering PCI driver.\n");
4887 		return retval;
4888 	}
4889 	retval = xhci_register_plat();
4890 	if (retval < 0) {
4891 		pr_debug("Problem registering platform driver.\n");
4892 		goto unreg_pci;
4893 	}
4894 	/*
4895 	 * Check the compiler generated sizes of structures that must be laid
4896 	 * out in specific ways for hardware access.
4897 	 */
4898 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4899 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4900 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4901 	/* xhci_device_control has eight fields, and also
4902 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4903 	 */
4904 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4905 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4906 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4907 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4908 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4909 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4910 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4911 	return 0;
4912 unreg_pci:
4913 	xhci_unregister_pci();
4914 	return retval;
4915 }
4916 module_init(xhci_hcd_init);
4917 
4918 static void __exit xhci_hcd_cleanup(void)
4919 {
4920 	xhci_unregister_pci();
4921 	xhci_unregister_plat();
4922 }
4923 module_exit(xhci_hcd_cleanup);
4924