xref: /linux/drivers/usb/host/xhci.c (revision 9429ec96c2718c0d1e3317cf60a87a0405223814)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 
31 #include "xhci.h"
32 
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35 
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40 
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43  * handshake - spin reading hc until handshake completes or fails
44  * @ptr: address of hc register to be read
45  * @mask: bits to look at in result of read
46  * @done: value of those bits when handshake succeeds
47  * @usec: timeout in microseconds
48  *
49  * Returns negative errno, or zero on success
50  *
51  * Success happens when the "mask" bits have the specified value (hardware
52  * handshake done).  There are two failure modes:  "usec" have passed (major
53  * hardware flakeout), or the register reads as all-ones (hardware removed).
54  */
55 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56 		      u32 mask, u32 done, int usec)
57 {
58 	u32	result;
59 
60 	do {
61 		result = xhci_readl(xhci, ptr);
62 		if (result == ~(u32)0)		/* card removed */
63 			return -ENODEV;
64 		result &= mask;
65 		if (result == done)
66 			return 0;
67 		udelay(1);
68 		usec--;
69 	} while (usec > 0);
70 	return -ETIMEDOUT;
71 }
72 
73 /*
74  * Disable interrupts and begin the xHCI halting process.
75  */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78 	u32 halted;
79 	u32 cmd;
80 	u32 mask;
81 
82 	mask = ~(XHCI_IRQS);
83 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84 	if (!halted)
85 		mask &= ~CMD_RUN;
86 
87 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
88 	cmd &= mask;
89 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91 
92 /*
93  * Force HC into halt state.
94  *
95  * Disable any IRQs and clear the run/stop bit.
96  * HC will complete any current and actively pipelined transactions, and
97  * should halt within 16 ms of the run/stop bit being cleared.
98  * Read HC Halted bit in the status register to see when the HC is finished.
99  */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102 	int ret;
103 	xhci_dbg(xhci, "// Halt the HC\n");
104 	xhci_quiesce(xhci);
105 
106 	ret = handshake(xhci, &xhci->op_regs->status,
107 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108 	if (!ret)
109 		xhci->xhc_state |= XHCI_STATE_HALTED;
110 	else
111 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
112 				XHCI_MAX_HALT_USEC);
113 	return ret;
114 }
115 
116 /*
117  * Set the run bit and wait for the host to be running.
118  */
119 static int xhci_start(struct xhci_hcd *xhci)
120 {
121 	u32 temp;
122 	int ret;
123 
124 	temp = xhci_readl(xhci, &xhci->op_regs->command);
125 	temp |= (CMD_RUN);
126 	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
127 			temp);
128 	xhci_writel(xhci, temp, &xhci->op_regs->command);
129 
130 	/*
131 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
132 	 * running.
133 	 */
134 	ret = handshake(xhci, &xhci->op_regs->status,
135 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
136 	if (ret == -ETIMEDOUT)
137 		xhci_err(xhci, "Host took too long to start, "
138 				"waited %u microseconds.\n",
139 				XHCI_MAX_HALT_USEC);
140 	if (!ret)
141 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
142 	return ret;
143 }
144 
145 /*
146  * Reset a halted HC.
147  *
148  * This resets pipelines, timers, counters, state machines, etc.
149  * Transactions will be terminated immediately, and operational registers
150  * will be set to their defaults.
151  */
152 int xhci_reset(struct xhci_hcd *xhci)
153 {
154 	u32 command;
155 	u32 state;
156 	int ret, i;
157 
158 	state = xhci_readl(xhci, &xhci->op_regs->status);
159 	if ((state & STS_HALT) == 0) {
160 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
161 		return 0;
162 	}
163 
164 	xhci_dbg(xhci, "// Reset the HC\n");
165 	command = xhci_readl(xhci, &xhci->op_regs->command);
166 	command |= CMD_RESET;
167 	xhci_writel(xhci, command, &xhci->op_regs->command);
168 
169 	ret = handshake(xhci, &xhci->op_regs->command,
170 			CMD_RESET, 0, 10 * 1000 * 1000);
171 	if (ret)
172 		return ret;
173 
174 	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
175 	/*
176 	 * xHCI cannot write to any doorbells or operational registers other
177 	 * than status until the "Controller Not Ready" flag is cleared.
178 	 */
179 	ret = handshake(xhci, &xhci->op_regs->status,
180 			STS_CNR, 0, 10 * 1000 * 1000);
181 
182 	for (i = 0; i < 2; ++i) {
183 		xhci->bus_state[i].port_c_suspend = 0;
184 		xhci->bus_state[i].suspended_ports = 0;
185 		xhci->bus_state[i].resuming_ports = 0;
186 	}
187 
188 	return ret;
189 }
190 
191 #ifdef CONFIG_PCI
192 static int xhci_free_msi(struct xhci_hcd *xhci)
193 {
194 	int i;
195 
196 	if (!xhci->msix_entries)
197 		return -EINVAL;
198 
199 	for (i = 0; i < xhci->msix_count; i++)
200 		if (xhci->msix_entries[i].vector)
201 			free_irq(xhci->msix_entries[i].vector,
202 					xhci_to_hcd(xhci));
203 	return 0;
204 }
205 
206 /*
207  * Set up MSI
208  */
209 static int xhci_setup_msi(struct xhci_hcd *xhci)
210 {
211 	int ret;
212 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
213 
214 	ret = pci_enable_msi(pdev);
215 	if (ret) {
216 		xhci_dbg(xhci, "failed to allocate MSI entry\n");
217 		return ret;
218 	}
219 
220 	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
221 				0, "xhci_hcd", xhci_to_hcd(xhci));
222 	if (ret) {
223 		xhci_dbg(xhci, "disable MSI interrupt\n");
224 		pci_disable_msi(pdev);
225 	}
226 
227 	return ret;
228 }
229 
230 /*
231  * Free IRQs
232  * free all IRQs request
233  */
234 static void xhci_free_irq(struct xhci_hcd *xhci)
235 {
236 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
237 	int ret;
238 
239 	/* return if using legacy interrupt */
240 	if (xhci_to_hcd(xhci)->irq > 0)
241 		return;
242 
243 	ret = xhci_free_msi(xhci);
244 	if (!ret)
245 		return;
246 	if (pdev->irq > 0)
247 		free_irq(pdev->irq, xhci_to_hcd(xhci));
248 
249 	return;
250 }
251 
252 /*
253  * Set up MSI-X
254  */
255 static int xhci_setup_msix(struct xhci_hcd *xhci)
256 {
257 	int i, ret = 0;
258 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
259 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
260 
261 	/*
262 	 * calculate number of msi-x vectors supported.
263 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
264 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
265 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
266 	 *   Add additional 1 vector to ensure always available interrupt.
267 	 */
268 	xhci->msix_count = min(num_online_cpus() + 1,
269 				HCS_MAX_INTRS(xhci->hcs_params1));
270 
271 	xhci->msix_entries =
272 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
273 				GFP_KERNEL);
274 	if (!xhci->msix_entries) {
275 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
276 		return -ENOMEM;
277 	}
278 
279 	for (i = 0; i < xhci->msix_count; i++) {
280 		xhci->msix_entries[i].entry = i;
281 		xhci->msix_entries[i].vector = 0;
282 	}
283 
284 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
285 	if (ret) {
286 		xhci_dbg(xhci, "Failed to enable MSI-X\n");
287 		goto free_entries;
288 	}
289 
290 	for (i = 0; i < xhci->msix_count; i++) {
291 		ret = request_irq(xhci->msix_entries[i].vector,
292 				(irq_handler_t)xhci_msi_irq,
293 				0, "xhci_hcd", xhci_to_hcd(xhci));
294 		if (ret)
295 			goto disable_msix;
296 	}
297 
298 	hcd->msix_enabled = 1;
299 	return ret;
300 
301 disable_msix:
302 	xhci_dbg(xhci, "disable MSI-X interrupt\n");
303 	xhci_free_irq(xhci);
304 	pci_disable_msix(pdev);
305 free_entries:
306 	kfree(xhci->msix_entries);
307 	xhci->msix_entries = NULL;
308 	return ret;
309 }
310 
311 /* Free any IRQs and disable MSI-X */
312 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
313 {
314 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
315 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
316 
317 	xhci_free_irq(xhci);
318 
319 	if (xhci->msix_entries) {
320 		pci_disable_msix(pdev);
321 		kfree(xhci->msix_entries);
322 		xhci->msix_entries = NULL;
323 	} else {
324 		pci_disable_msi(pdev);
325 	}
326 
327 	hcd->msix_enabled = 0;
328 	return;
329 }
330 
331 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
332 {
333 	int i;
334 
335 	if (xhci->msix_entries) {
336 		for (i = 0; i < xhci->msix_count; i++)
337 			synchronize_irq(xhci->msix_entries[i].vector);
338 	}
339 }
340 
341 static int xhci_try_enable_msi(struct usb_hcd *hcd)
342 {
343 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
344 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
345 	int ret;
346 
347 	/*
348 	 * Some Fresco Logic host controllers advertise MSI, but fail to
349 	 * generate interrupts.  Don't even try to enable MSI.
350 	 */
351 	if (xhci->quirks & XHCI_BROKEN_MSI)
352 		return 0;
353 
354 	/* unregister the legacy interrupt */
355 	if (hcd->irq)
356 		free_irq(hcd->irq, hcd);
357 	hcd->irq = 0;
358 
359 	ret = xhci_setup_msix(xhci);
360 	if (ret)
361 		/* fall back to msi*/
362 		ret = xhci_setup_msi(xhci);
363 
364 	if (!ret)
365 		/* hcd->irq is 0, we have MSI */
366 		return 0;
367 
368 	if (!pdev->irq) {
369 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
370 		return -EINVAL;
371 	}
372 
373 	/* fall back to legacy interrupt*/
374 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
375 			hcd->irq_descr, hcd);
376 	if (ret) {
377 		xhci_err(xhci, "request interrupt %d failed\n",
378 				pdev->irq);
379 		return ret;
380 	}
381 	hcd->irq = pdev->irq;
382 	return 0;
383 }
384 
385 #else
386 
387 static int xhci_try_enable_msi(struct usb_hcd *hcd)
388 {
389 	return 0;
390 }
391 
392 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
393 {
394 }
395 
396 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
397 {
398 }
399 
400 #endif
401 
402 static void compliance_mode_recovery(unsigned long arg)
403 {
404 	struct xhci_hcd *xhci;
405 	struct usb_hcd *hcd;
406 	u32 temp;
407 	int i;
408 
409 	xhci = (struct xhci_hcd *)arg;
410 
411 	for (i = 0; i < xhci->num_usb3_ports; i++) {
412 		temp = xhci_readl(xhci, xhci->usb3_ports[i]);
413 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
414 			/*
415 			 * Compliance Mode Detected. Letting USB Core
416 			 * handle the Warm Reset
417 			 */
418 			xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
419 					i + 1);
420 			xhci_dbg(xhci, "Attempting Recovery routine!\n");
421 			hcd = xhci->shared_hcd;
422 
423 			if (hcd->state == HC_STATE_SUSPENDED)
424 				usb_hcd_resume_root_hub(hcd);
425 
426 			usb_hcd_poll_rh_status(hcd);
427 		}
428 	}
429 
430 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
431 		mod_timer(&xhci->comp_mode_recovery_timer,
432 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
433 }
434 
435 /*
436  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
437  * that causes ports behind that hardware to enter compliance mode sometimes.
438  * The quirk creates a timer that polls every 2 seconds the link state of
439  * each host controller's port and recovers it by issuing a Warm reset
440  * if Compliance mode is detected, otherwise the port will become "dead" (no
441  * device connections or disconnections will be detected anymore). Becasue no
442  * status event is generated when entering compliance mode (per xhci spec),
443  * this quirk is needed on systems that have the failing hardware installed.
444  */
445 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
446 {
447 	xhci->port_status_u0 = 0;
448 	init_timer(&xhci->comp_mode_recovery_timer);
449 
450 	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
451 	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
452 	xhci->comp_mode_recovery_timer.expires = jiffies +
453 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
454 
455 	set_timer_slack(&xhci->comp_mode_recovery_timer,
456 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
457 	add_timer(&xhci->comp_mode_recovery_timer);
458 	xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
459 }
460 
461 /*
462  * This function identifies the systems that have installed the SN65LVPE502CP
463  * USB3.0 re-driver and that need the Compliance Mode Quirk.
464  * Systems:
465  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
466  */
467 static bool compliance_mode_recovery_timer_quirk_check(void)
468 {
469 	const char *dmi_product_name, *dmi_sys_vendor;
470 
471 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
472 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
473 
474 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
475 		return false;
476 
477 	if (strstr(dmi_product_name, "Z420") ||
478 			strstr(dmi_product_name, "Z620") ||
479 			strstr(dmi_product_name, "Z820"))
480 		return true;
481 
482 	return false;
483 }
484 
485 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
486 {
487 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
488 }
489 
490 
491 /*
492  * Initialize memory for HCD and xHC (one-time init).
493  *
494  * Program the PAGESIZE register, initialize the device context array, create
495  * device contexts (?), set up a command ring segment (or two?), create event
496  * ring (one for now).
497  */
498 int xhci_init(struct usb_hcd *hcd)
499 {
500 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
501 	int retval = 0;
502 
503 	xhci_dbg(xhci, "xhci_init\n");
504 	spin_lock_init(&xhci->lock);
505 	if (xhci->hci_version == 0x95 && link_quirk) {
506 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
507 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
508 	} else {
509 		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
510 	}
511 	retval = xhci_mem_init(xhci, GFP_KERNEL);
512 	xhci_dbg(xhci, "Finished xhci_init\n");
513 
514 	/* Initializing Compliance Mode Recovery Data If Needed */
515 	if (compliance_mode_recovery_timer_quirk_check()) {
516 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
517 		compliance_mode_recovery_timer_init(xhci);
518 	}
519 
520 	return retval;
521 }
522 
523 /*-------------------------------------------------------------------------*/
524 
525 
526 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
527 static void xhci_event_ring_work(unsigned long arg)
528 {
529 	unsigned long flags;
530 	int temp;
531 	u64 temp_64;
532 	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
533 	int i, j;
534 
535 	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
536 
537 	spin_lock_irqsave(&xhci->lock, flags);
538 	temp = xhci_readl(xhci, &xhci->op_regs->status);
539 	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
540 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
541 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
542 		xhci_dbg(xhci, "HW died, polling stopped.\n");
543 		spin_unlock_irqrestore(&xhci->lock, flags);
544 		return;
545 	}
546 
547 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
548 	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
549 	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
550 	xhci->error_bitmask = 0;
551 	xhci_dbg(xhci, "Event ring:\n");
552 	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
553 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
554 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
555 	temp_64 &= ~ERST_PTR_MASK;
556 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
557 	xhci_dbg(xhci, "Command ring:\n");
558 	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
559 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
560 	xhci_dbg_cmd_ptrs(xhci);
561 	for (i = 0; i < MAX_HC_SLOTS; ++i) {
562 		if (!xhci->devs[i])
563 			continue;
564 		for (j = 0; j < 31; ++j) {
565 			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
566 		}
567 	}
568 	spin_unlock_irqrestore(&xhci->lock, flags);
569 
570 	if (!xhci->zombie)
571 		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
572 	else
573 		xhci_dbg(xhci, "Quit polling the event ring.\n");
574 }
575 #endif
576 
577 static int xhci_run_finished(struct xhci_hcd *xhci)
578 {
579 	if (xhci_start(xhci)) {
580 		xhci_halt(xhci);
581 		return -ENODEV;
582 	}
583 	xhci->shared_hcd->state = HC_STATE_RUNNING;
584 
585 	if (xhci->quirks & XHCI_NEC_HOST)
586 		xhci_ring_cmd_db(xhci);
587 
588 	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
589 	return 0;
590 }
591 
592 /*
593  * Start the HC after it was halted.
594  *
595  * This function is called by the USB core when the HC driver is added.
596  * Its opposite is xhci_stop().
597  *
598  * xhci_init() must be called once before this function can be called.
599  * Reset the HC, enable device slot contexts, program DCBAAP, and
600  * set command ring pointer and event ring pointer.
601  *
602  * Setup MSI-X vectors and enable interrupts.
603  */
604 int xhci_run(struct usb_hcd *hcd)
605 {
606 	u32 temp;
607 	u64 temp_64;
608 	int ret;
609 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
610 
611 	/* Start the xHCI host controller running only after the USB 2.0 roothub
612 	 * is setup.
613 	 */
614 
615 	hcd->uses_new_polling = 1;
616 	if (!usb_hcd_is_primary_hcd(hcd))
617 		return xhci_run_finished(xhci);
618 
619 	xhci_dbg(xhci, "xhci_run\n");
620 
621 	ret = xhci_try_enable_msi(hcd);
622 	if (ret)
623 		return ret;
624 
625 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
626 	init_timer(&xhci->event_ring_timer);
627 	xhci->event_ring_timer.data = (unsigned long) xhci;
628 	xhci->event_ring_timer.function = xhci_event_ring_work;
629 	/* Poll the event ring */
630 	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
631 	xhci->zombie = 0;
632 	xhci_dbg(xhci, "Setting event ring polling timer\n");
633 	add_timer(&xhci->event_ring_timer);
634 #endif
635 
636 	xhci_dbg(xhci, "Command ring memory map follows:\n");
637 	xhci_debug_ring(xhci, xhci->cmd_ring);
638 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
639 	xhci_dbg_cmd_ptrs(xhci);
640 
641 	xhci_dbg(xhci, "ERST memory map follows:\n");
642 	xhci_dbg_erst(xhci, &xhci->erst);
643 	xhci_dbg(xhci, "Event ring:\n");
644 	xhci_debug_ring(xhci, xhci->event_ring);
645 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
646 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
647 	temp_64 &= ~ERST_PTR_MASK;
648 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
649 
650 	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
651 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
652 	temp &= ~ER_IRQ_INTERVAL_MASK;
653 	temp |= (u32) 160;
654 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
655 
656 	/* Set the HCD state before we enable the irqs */
657 	temp = xhci_readl(xhci, &xhci->op_regs->command);
658 	temp |= (CMD_EIE);
659 	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
660 			temp);
661 	xhci_writel(xhci, temp, &xhci->op_regs->command);
662 
663 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
664 	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
665 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
666 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
667 			&xhci->ir_set->irq_pending);
668 	xhci_print_ir_set(xhci, 0);
669 
670 	if (xhci->quirks & XHCI_NEC_HOST)
671 		xhci_queue_vendor_command(xhci, 0, 0, 0,
672 				TRB_TYPE(TRB_NEC_GET_FW));
673 
674 	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
675 	return 0;
676 }
677 
678 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
679 {
680 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
681 
682 	spin_lock_irq(&xhci->lock);
683 	xhci_halt(xhci);
684 
685 	/* The shared_hcd is going to be deallocated shortly (the USB core only
686 	 * calls this function when allocation fails in usb_add_hcd(), or
687 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
688 	 */
689 	xhci->shared_hcd = NULL;
690 	spin_unlock_irq(&xhci->lock);
691 }
692 
693 /*
694  * Stop xHCI driver.
695  *
696  * This function is called by the USB core when the HC driver is removed.
697  * Its opposite is xhci_run().
698  *
699  * Disable device contexts, disable IRQs, and quiesce the HC.
700  * Reset the HC, finish any completed transactions, and cleanup memory.
701  */
702 void xhci_stop(struct usb_hcd *hcd)
703 {
704 	u32 temp;
705 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
706 
707 	if (!usb_hcd_is_primary_hcd(hcd)) {
708 		xhci_only_stop_hcd(xhci->shared_hcd);
709 		return;
710 	}
711 
712 	spin_lock_irq(&xhci->lock);
713 	/* Make sure the xHC is halted for a USB3 roothub
714 	 * (xhci_stop() could be called as part of failed init).
715 	 */
716 	xhci_halt(xhci);
717 	xhci_reset(xhci);
718 	spin_unlock_irq(&xhci->lock);
719 
720 	xhci_cleanup_msix(xhci);
721 
722 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
723 	/* Tell the event ring poll function not to reschedule */
724 	xhci->zombie = 1;
725 	del_timer_sync(&xhci->event_ring_timer);
726 #endif
727 
728 	/* Deleting Compliance Mode Recovery Timer */
729 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
730 			(!(xhci_all_ports_seen_u0(xhci))))
731 		del_timer_sync(&xhci->comp_mode_recovery_timer);
732 
733 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
734 		usb_amd_dev_put();
735 
736 	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
737 	temp = xhci_readl(xhci, &xhci->op_regs->status);
738 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
739 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
740 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
741 			&xhci->ir_set->irq_pending);
742 	xhci_print_ir_set(xhci, 0);
743 
744 	xhci_dbg(xhci, "cleaning up memory\n");
745 	xhci_mem_cleanup(xhci);
746 	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
747 		    xhci_readl(xhci, &xhci->op_regs->status));
748 }
749 
750 /*
751  * Shutdown HC (not bus-specific)
752  *
753  * This is called when the machine is rebooting or halting.  We assume that the
754  * machine will be powered off, and the HC's internal state will be reset.
755  * Don't bother to free memory.
756  *
757  * This will only ever be called with the main usb_hcd (the USB3 roothub).
758  */
759 void xhci_shutdown(struct usb_hcd *hcd)
760 {
761 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
762 
763 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
764 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
765 
766 	spin_lock_irq(&xhci->lock);
767 	xhci_halt(xhci);
768 	spin_unlock_irq(&xhci->lock);
769 
770 	xhci_cleanup_msix(xhci);
771 
772 	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
773 		    xhci_readl(xhci, &xhci->op_regs->status));
774 }
775 
776 #ifdef CONFIG_PM
777 static void xhci_save_registers(struct xhci_hcd *xhci)
778 {
779 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
780 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
781 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
782 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
783 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
784 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
785 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
786 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
787 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
788 }
789 
790 static void xhci_restore_registers(struct xhci_hcd *xhci)
791 {
792 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
793 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
794 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
795 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
796 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
797 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
798 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
799 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
800 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
801 }
802 
803 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
804 {
805 	u64	val_64;
806 
807 	/* step 2: initialize command ring buffer */
808 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
809 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
810 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
811 				      xhci->cmd_ring->dequeue) &
812 		 (u64) ~CMD_RING_RSVD_BITS) |
813 		xhci->cmd_ring->cycle_state;
814 	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
815 			(long unsigned long) val_64);
816 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
817 }
818 
819 /*
820  * The whole command ring must be cleared to zero when we suspend the host.
821  *
822  * The host doesn't save the command ring pointer in the suspend well, so we
823  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
824  * aligned, because of the reserved bits in the command ring dequeue pointer
825  * register.  Therefore, we can't just set the dequeue pointer back in the
826  * middle of the ring (TRBs are 16-byte aligned).
827  */
828 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
829 {
830 	struct xhci_ring *ring;
831 	struct xhci_segment *seg;
832 
833 	ring = xhci->cmd_ring;
834 	seg = ring->deq_seg;
835 	do {
836 		memset(seg->trbs, 0,
837 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
838 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
839 			cpu_to_le32(~TRB_CYCLE);
840 		seg = seg->next;
841 	} while (seg != ring->deq_seg);
842 
843 	/* Reset the software enqueue and dequeue pointers */
844 	ring->deq_seg = ring->first_seg;
845 	ring->dequeue = ring->first_seg->trbs;
846 	ring->enq_seg = ring->deq_seg;
847 	ring->enqueue = ring->dequeue;
848 
849 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
850 	/*
851 	 * Ring is now zeroed, so the HW should look for change of ownership
852 	 * when the cycle bit is set to 1.
853 	 */
854 	ring->cycle_state = 1;
855 
856 	/*
857 	 * Reset the hardware dequeue pointer.
858 	 * Yes, this will need to be re-written after resume, but we're paranoid
859 	 * and want to make sure the hardware doesn't access bogus memory
860 	 * because, say, the BIOS or an SMI started the host without changing
861 	 * the command ring pointers.
862 	 */
863 	xhci_set_cmd_ring_deq(xhci);
864 }
865 
866 /*
867  * Stop HC (not bus-specific)
868  *
869  * This is called when the machine transition into S3/S4 mode.
870  *
871  */
872 int xhci_suspend(struct xhci_hcd *xhci)
873 {
874 	int			rc = 0;
875 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
876 	u32			command;
877 
878 	spin_lock_irq(&xhci->lock);
879 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
880 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
881 	/* step 1: stop endpoint */
882 	/* skipped assuming that port suspend has done */
883 
884 	/* step 2: clear Run/Stop bit */
885 	command = xhci_readl(xhci, &xhci->op_regs->command);
886 	command &= ~CMD_RUN;
887 	xhci_writel(xhci, command, &xhci->op_regs->command);
888 	if (handshake(xhci, &xhci->op_regs->status,
889 		      STS_HALT, STS_HALT, 100*100)) {
890 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
891 		spin_unlock_irq(&xhci->lock);
892 		return -ETIMEDOUT;
893 	}
894 	xhci_clear_command_ring(xhci);
895 
896 	/* step 3: save registers */
897 	xhci_save_registers(xhci);
898 
899 	/* step 4: set CSS flag */
900 	command = xhci_readl(xhci, &xhci->op_regs->command);
901 	command |= CMD_CSS;
902 	xhci_writel(xhci, command, &xhci->op_regs->command);
903 	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
904 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
905 		spin_unlock_irq(&xhci->lock);
906 		return -ETIMEDOUT;
907 	}
908 	spin_unlock_irq(&xhci->lock);
909 
910 	/*
911 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
912 	 * is about to be suspended.
913 	 */
914 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
915 			(!(xhci_all_ports_seen_u0(xhci)))) {
916 		del_timer_sync(&xhci->comp_mode_recovery_timer);
917 		xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
918 	}
919 
920 	/* step 5: remove core well power */
921 	/* synchronize irq when using MSI-X */
922 	xhci_msix_sync_irqs(xhci);
923 
924 	return rc;
925 }
926 
927 /*
928  * start xHC (not bus-specific)
929  *
930  * This is called when the machine transition from S3/S4 mode.
931  *
932  */
933 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
934 {
935 	u32			command, temp = 0;
936 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
937 	struct usb_hcd		*secondary_hcd;
938 	int			retval = 0;
939 
940 	/* Wait a bit if either of the roothubs need to settle from the
941 	 * transition into bus suspend.
942 	 */
943 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
944 			time_before(jiffies,
945 				xhci->bus_state[1].next_statechange))
946 		msleep(100);
947 
948 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
949 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
950 
951 	spin_lock_irq(&xhci->lock);
952 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
953 		hibernated = true;
954 
955 	if (!hibernated) {
956 		/* step 1: restore register */
957 		xhci_restore_registers(xhci);
958 		/* step 2: initialize command ring buffer */
959 		xhci_set_cmd_ring_deq(xhci);
960 		/* step 3: restore state and start state*/
961 		/* step 3: set CRS flag */
962 		command = xhci_readl(xhci, &xhci->op_regs->command);
963 		command |= CMD_CRS;
964 		xhci_writel(xhci, command, &xhci->op_regs->command);
965 		if (handshake(xhci, &xhci->op_regs->status,
966 			      STS_RESTORE, 0, 10 * 1000)) {
967 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
968 			spin_unlock_irq(&xhci->lock);
969 			return -ETIMEDOUT;
970 		}
971 		temp = xhci_readl(xhci, &xhci->op_regs->status);
972 	}
973 
974 	/* If restore operation fails, re-initialize the HC during resume */
975 	if ((temp & STS_SRE) || hibernated) {
976 		/* Let the USB core know _both_ roothubs lost power. */
977 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
978 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
979 
980 		xhci_dbg(xhci, "Stop HCD\n");
981 		xhci_halt(xhci);
982 		xhci_reset(xhci);
983 		spin_unlock_irq(&xhci->lock);
984 		xhci_cleanup_msix(xhci);
985 
986 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
987 		/* Tell the event ring poll function not to reschedule */
988 		xhci->zombie = 1;
989 		del_timer_sync(&xhci->event_ring_timer);
990 #endif
991 
992 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
993 		temp = xhci_readl(xhci, &xhci->op_regs->status);
994 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
995 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
996 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
997 				&xhci->ir_set->irq_pending);
998 		xhci_print_ir_set(xhci, 0);
999 
1000 		xhci_dbg(xhci, "cleaning up memory\n");
1001 		xhci_mem_cleanup(xhci);
1002 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1003 			    xhci_readl(xhci, &xhci->op_regs->status));
1004 
1005 		/* USB core calls the PCI reinit and start functions twice:
1006 		 * first with the primary HCD, and then with the secondary HCD.
1007 		 * If we don't do the same, the host will never be started.
1008 		 */
1009 		if (!usb_hcd_is_primary_hcd(hcd))
1010 			secondary_hcd = hcd;
1011 		else
1012 			secondary_hcd = xhci->shared_hcd;
1013 
1014 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1015 		retval = xhci_init(hcd->primary_hcd);
1016 		if (retval)
1017 			return retval;
1018 		xhci_dbg(xhci, "Start the primary HCD\n");
1019 		retval = xhci_run(hcd->primary_hcd);
1020 		if (!retval) {
1021 			xhci_dbg(xhci, "Start the secondary HCD\n");
1022 			retval = xhci_run(secondary_hcd);
1023 		}
1024 		hcd->state = HC_STATE_SUSPENDED;
1025 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1026 		goto done;
1027 	}
1028 
1029 	/* step 4: set Run/Stop bit */
1030 	command = xhci_readl(xhci, &xhci->op_regs->command);
1031 	command |= CMD_RUN;
1032 	xhci_writel(xhci, command, &xhci->op_regs->command);
1033 	handshake(xhci, &xhci->op_regs->status, STS_HALT,
1034 		  0, 250 * 1000);
1035 
1036 	/* step 5: walk topology and initialize portsc,
1037 	 * portpmsc and portli
1038 	 */
1039 	/* this is done in bus_resume */
1040 
1041 	/* step 6: restart each of the previously
1042 	 * Running endpoints by ringing their doorbells
1043 	 */
1044 
1045 	spin_unlock_irq(&xhci->lock);
1046 
1047  done:
1048 	if (retval == 0) {
1049 		usb_hcd_resume_root_hub(hcd);
1050 		usb_hcd_resume_root_hub(xhci->shared_hcd);
1051 	}
1052 
1053 	/*
1054 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1055 	 * be re-initialized Always after a system resume. Ports are subject
1056 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1057 	 * ports have entered previously to U0 before system's suspension.
1058 	 */
1059 	if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1060 		compliance_mode_recovery_timer_init(xhci);
1061 
1062 	return retval;
1063 }
1064 #endif	/* CONFIG_PM */
1065 
1066 /*-------------------------------------------------------------------------*/
1067 
1068 /**
1069  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1070  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1071  * value to right shift 1 for the bitmask.
1072  *
1073  * Index  = (epnum * 2) + direction - 1,
1074  * where direction = 0 for OUT, 1 for IN.
1075  * For control endpoints, the IN index is used (OUT index is unused), so
1076  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1077  */
1078 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1079 {
1080 	unsigned int index;
1081 	if (usb_endpoint_xfer_control(desc))
1082 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1083 	else
1084 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1085 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1086 	return index;
1087 }
1088 
1089 /* Find the flag for this endpoint (for use in the control context).  Use the
1090  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1091  * bit 1, etc.
1092  */
1093 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1094 {
1095 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1096 }
1097 
1098 /* Find the flag for this endpoint (for use in the control context).  Use the
1099  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1100  * bit 1, etc.
1101  */
1102 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1103 {
1104 	return 1 << (ep_index + 1);
1105 }
1106 
1107 /* Compute the last valid endpoint context index.  Basically, this is the
1108  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1109  * we find the most significant bit set in the added contexts flags.
1110  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1111  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1112  */
1113 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1114 {
1115 	return fls(added_ctxs) - 1;
1116 }
1117 
1118 /* Returns 1 if the arguments are OK;
1119  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1120  */
1121 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1122 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1123 		const char *func) {
1124 	struct xhci_hcd	*xhci;
1125 	struct xhci_virt_device	*virt_dev;
1126 
1127 	if (!hcd || (check_ep && !ep) || !udev) {
1128 		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1129 				func);
1130 		return -EINVAL;
1131 	}
1132 	if (!udev->parent) {
1133 		printk(KERN_DEBUG "xHCI %s called for root hub\n",
1134 				func);
1135 		return 0;
1136 	}
1137 
1138 	xhci = hcd_to_xhci(hcd);
1139 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1140 		return -ENODEV;
1141 
1142 	if (check_virt_dev) {
1143 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1144 			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1145 						"device\n", func);
1146 			return -EINVAL;
1147 		}
1148 
1149 		virt_dev = xhci->devs[udev->slot_id];
1150 		if (virt_dev->udev != udev) {
1151 			printk(KERN_DEBUG "xHCI %s called with udev and "
1152 					  "virt_dev does not match\n", func);
1153 			return -EINVAL;
1154 		}
1155 	}
1156 
1157 	return 1;
1158 }
1159 
1160 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1161 		struct usb_device *udev, struct xhci_command *command,
1162 		bool ctx_change, bool must_succeed);
1163 
1164 /*
1165  * Full speed devices may have a max packet size greater than 8 bytes, but the
1166  * USB core doesn't know that until it reads the first 8 bytes of the
1167  * descriptor.  If the usb_device's max packet size changes after that point,
1168  * we need to issue an evaluate context command and wait on it.
1169  */
1170 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1171 		unsigned int ep_index, struct urb *urb)
1172 {
1173 	struct xhci_container_ctx *in_ctx;
1174 	struct xhci_container_ctx *out_ctx;
1175 	struct xhci_input_control_ctx *ctrl_ctx;
1176 	struct xhci_ep_ctx *ep_ctx;
1177 	int max_packet_size;
1178 	int hw_max_packet_size;
1179 	int ret = 0;
1180 
1181 	out_ctx = xhci->devs[slot_id]->out_ctx;
1182 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1183 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1184 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1185 	if (hw_max_packet_size != max_packet_size) {
1186 		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1187 		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1188 				max_packet_size);
1189 		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1190 				hw_max_packet_size);
1191 		xhci_dbg(xhci, "Issuing evaluate context command.\n");
1192 
1193 		/* Set up the modified control endpoint 0 */
1194 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1195 				xhci->devs[slot_id]->out_ctx, ep_index);
1196 		in_ctx = xhci->devs[slot_id]->in_ctx;
1197 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1198 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1199 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1200 
1201 		/* Set up the input context flags for the command */
1202 		/* FIXME: This won't work if a non-default control endpoint
1203 		 * changes max packet sizes.
1204 		 */
1205 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1206 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1207 		ctrl_ctx->drop_flags = 0;
1208 
1209 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1210 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1211 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1212 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1213 
1214 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1215 				true, false);
1216 
1217 		/* Clean up the input context for later use by bandwidth
1218 		 * functions.
1219 		 */
1220 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1221 	}
1222 	return ret;
1223 }
1224 
1225 /*
1226  * non-error returns are a promise to giveback() the urb later
1227  * we drop ownership so next owner (or urb unlink) can get it
1228  */
1229 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1230 {
1231 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1232 	struct xhci_td *buffer;
1233 	unsigned long flags;
1234 	int ret = 0;
1235 	unsigned int slot_id, ep_index;
1236 	struct urb_priv	*urb_priv;
1237 	int size, i;
1238 
1239 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1240 					true, true, __func__) <= 0)
1241 		return -EINVAL;
1242 
1243 	slot_id = urb->dev->slot_id;
1244 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1245 
1246 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1247 		if (!in_interrupt())
1248 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1249 		ret = -ESHUTDOWN;
1250 		goto exit;
1251 	}
1252 
1253 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1254 		size = urb->number_of_packets;
1255 	else
1256 		size = 1;
1257 
1258 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1259 				  size * sizeof(struct xhci_td *), mem_flags);
1260 	if (!urb_priv)
1261 		return -ENOMEM;
1262 
1263 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1264 	if (!buffer) {
1265 		kfree(urb_priv);
1266 		return -ENOMEM;
1267 	}
1268 
1269 	for (i = 0; i < size; i++) {
1270 		urb_priv->td[i] = buffer;
1271 		buffer++;
1272 	}
1273 
1274 	urb_priv->length = size;
1275 	urb_priv->td_cnt = 0;
1276 	urb->hcpriv = urb_priv;
1277 
1278 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1279 		/* Check to see if the max packet size for the default control
1280 		 * endpoint changed during FS device enumeration
1281 		 */
1282 		if (urb->dev->speed == USB_SPEED_FULL) {
1283 			ret = xhci_check_maxpacket(xhci, slot_id,
1284 					ep_index, urb);
1285 			if (ret < 0) {
1286 				xhci_urb_free_priv(xhci, urb_priv);
1287 				urb->hcpriv = NULL;
1288 				return ret;
1289 			}
1290 		}
1291 
1292 		/* We have a spinlock and interrupts disabled, so we must pass
1293 		 * atomic context to this function, which may allocate memory.
1294 		 */
1295 		spin_lock_irqsave(&xhci->lock, flags);
1296 		if (xhci->xhc_state & XHCI_STATE_DYING)
1297 			goto dying;
1298 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1299 				slot_id, ep_index);
1300 		if (ret)
1301 			goto free_priv;
1302 		spin_unlock_irqrestore(&xhci->lock, flags);
1303 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1304 		spin_lock_irqsave(&xhci->lock, flags);
1305 		if (xhci->xhc_state & XHCI_STATE_DYING)
1306 			goto dying;
1307 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1308 				EP_GETTING_STREAMS) {
1309 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1310 					"is transitioning to using streams.\n");
1311 			ret = -EINVAL;
1312 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1313 				EP_GETTING_NO_STREAMS) {
1314 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1315 					"is transitioning to "
1316 					"not having streams.\n");
1317 			ret = -EINVAL;
1318 		} else {
1319 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1320 					slot_id, ep_index);
1321 		}
1322 		if (ret)
1323 			goto free_priv;
1324 		spin_unlock_irqrestore(&xhci->lock, flags);
1325 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1326 		spin_lock_irqsave(&xhci->lock, flags);
1327 		if (xhci->xhc_state & XHCI_STATE_DYING)
1328 			goto dying;
1329 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1330 				slot_id, ep_index);
1331 		if (ret)
1332 			goto free_priv;
1333 		spin_unlock_irqrestore(&xhci->lock, flags);
1334 	} else {
1335 		spin_lock_irqsave(&xhci->lock, flags);
1336 		if (xhci->xhc_state & XHCI_STATE_DYING)
1337 			goto dying;
1338 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1339 				slot_id, ep_index);
1340 		if (ret)
1341 			goto free_priv;
1342 		spin_unlock_irqrestore(&xhci->lock, flags);
1343 	}
1344 exit:
1345 	return ret;
1346 dying:
1347 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1348 			"non-responsive xHCI host.\n",
1349 			urb->ep->desc.bEndpointAddress, urb);
1350 	ret = -ESHUTDOWN;
1351 free_priv:
1352 	xhci_urb_free_priv(xhci, urb_priv);
1353 	urb->hcpriv = NULL;
1354 	spin_unlock_irqrestore(&xhci->lock, flags);
1355 	return ret;
1356 }
1357 
1358 /* Get the right ring for the given URB.
1359  * If the endpoint supports streams, boundary check the URB's stream ID.
1360  * If the endpoint doesn't support streams, return the singular endpoint ring.
1361  */
1362 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1363 		struct urb *urb)
1364 {
1365 	unsigned int slot_id;
1366 	unsigned int ep_index;
1367 	unsigned int stream_id;
1368 	struct xhci_virt_ep *ep;
1369 
1370 	slot_id = urb->dev->slot_id;
1371 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1372 	stream_id = urb->stream_id;
1373 	ep = &xhci->devs[slot_id]->eps[ep_index];
1374 	/* Common case: no streams */
1375 	if (!(ep->ep_state & EP_HAS_STREAMS))
1376 		return ep->ring;
1377 
1378 	if (stream_id == 0) {
1379 		xhci_warn(xhci,
1380 				"WARN: Slot ID %u, ep index %u has streams, "
1381 				"but URB has no stream ID.\n",
1382 				slot_id, ep_index);
1383 		return NULL;
1384 	}
1385 
1386 	if (stream_id < ep->stream_info->num_streams)
1387 		return ep->stream_info->stream_rings[stream_id];
1388 
1389 	xhci_warn(xhci,
1390 			"WARN: Slot ID %u, ep index %u has "
1391 			"stream IDs 1 to %u allocated, "
1392 			"but stream ID %u is requested.\n",
1393 			slot_id, ep_index,
1394 			ep->stream_info->num_streams - 1,
1395 			stream_id);
1396 	return NULL;
1397 }
1398 
1399 /*
1400  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1401  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1402  * should pick up where it left off in the TD, unless a Set Transfer Ring
1403  * Dequeue Pointer is issued.
1404  *
1405  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1406  * the ring.  Since the ring is a contiguous structure, they can't be physically
1407  * removed.  Instead, there are two options:
1408  *
1409  *  1) If the HC is in the middle of processing the URB to be canceled, we
1410  *     simply move the ring's dequeue pointer past those TRBs using the Set
1411  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1412  *     when drivers timeout on the last submitted URB and attempt to cancel.
1413  *
1414  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1415  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1416  *     HC will need to invalidate the any TRBs it has cached after the stop
1417  *     endpoint command, as noted in the xHCI 0.95 errata.
1418  *
1419  *  3) The TD may have completed by the time the Stop Endpoint Command
1420  *     completes, so software needs to handle that case too.
1421  *
1422  * This function should protect against the TD enqueueing code ringing the
1423  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1424  * It also needs to account for multiple cancellations on happening at the same
1425  * time for the same endpoint.
1426  *
1427  * Note that this function can be called in any context, or so says
1428  * usb_hcd_unlink_urb()
1429  */
1430 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1431 {
1432 	unsigned long flags;
1433 	int ret, i;
1434 	u32 temp;
1435 	struct xhci_hcd *xhci;
1436 	struct urb_priv	*urb_priv;
1437 	struct xhci_td *td;
1438 	unsigned int ep_index;
1439 	struct xhci_ring *ep_ring;
1440 	struct xhci_virt_ep *ep;
1441 
1442 	xhci = hcd_to_xhci(hcd);
1443 	spin_lock_irqsave(&xhci->lock, flags);
1444 	/* Make sure the URB hasn't completed or been unlinked already */
1445 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1446 	if (ret || !urb->hcpriv)
1447 		goto done;
1448 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1449 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1450 		xhci_dbg(xhci, "HW died, freeing TD.\n");
1451 		urb_priv = urb->hcpriv;
1452 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1453 			td = urb_priv->td[i];
1454 			if (!list_empty(&td->td_list))
1455 				list_del_init(&td->td_list);
1456 			if (!list_empty(&td->cancelled_td_list))
1457 				list_del_init(&td->cancelled_td_list);
1458 		}
1459 
1460 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1461 		spin_unlock_irqrestore(&xhci->lock, flags);
1462 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1463 		xhci_urb_free_priv(xhci, urb_priv);
1464 		return ret;
1465 	}
1466 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1467 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1468 		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1469 				"non-responsive xHCI host.\n",
1470 				urb->ep->desc.bEndpointAddress, urb);
1471 		/* Let the stop endpoint command watchdog timer (which set this
1472 		 * state) finish cleaning up the endpoint TD lists.  We must
1473 		 * have caught it in the middle of dropping a lock and giving
1474 		 * back an URB.
1475 		 */
1476 		goto done;
1477 	}
1478 
1479 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1480 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1481 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1482 	if (!ep_ring) {
1483 		ret = -EINVAL;
1484 		goto done;
1485 	}
1486 
1487 	urb_priv = urb->hcpriv;
1488 	i = urb_priv->td_cnt;
1489 	if (i < urb_priv->length)
1490 		xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1491 				"starting at offset 0x%llx\n",
1492 				urb, urb->dev->devpath,
1493 				urb->ep->desc.bEndpointAddress,
1494 				(unsigned long long) xhci_trb_virt_to_dma(
1495 					urb_priv->td[i]->start_seg,
1496 					urb_priv->td[i]->first_trb));
1497 
1498 	for (; i < urb_priv->length; i++) {
1499 		td = urb_priv->td[i];
1500 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1501 	}
1502 
1503 	/* Queue a stop endpoint command, but only if this is
1504 	 * the first cancellation to be handled.
1505 	 */
1506 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1507 		ep->ep_state |= EP_HALT_PENDING;
1508 		ep->stop_cmds_pending++;
1509 		ep->stop_cmd_timer.expires = jiffies +
1510 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1511 		add_timer(&ep->stop_cmd_timer);
1512 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1513 		xhci_ring_cmd_db(xhci);
1514 	}
1515 done:
1516 	spin_unlock_irqrestore(&xhci->lock, flags);
1517 	return ret;
1518 }
1519 
1520 /* Drop an endpoint from a new bandwidth configuration for this device.
1521  * Only one call to this function is allowed per endpoint before
1522  * check_bandwidth() or reset_bandwidth() must be called.
1523  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1524  * add the endpoint to the schedule with possibly new parameters denoted by a
1525  * different endpoint descriptor in usb_host_endpoint.
1526  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1527  * not allowed.
1528  *
1529  * The USB core will not allow URBs to be queued to an endpoint that is being
1530  * disabled, so there's no need for mutual exclusion to protect
1531  * the xhci->devs[slot_id] structure.
1532  */
1533 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1534 		struct usb_host_endpoint *ep)
1535 {
1536 	struct xhci_hcd *xhci;
1537 	struct xhci_container_ctx *in_ctx, *out_ctx;
1538 	struct xhci_input_control_ctx *ctrl_ctx;
1539 	struct xhci_slot_ctx *slot_ctx;
1540 	unsigned int last_ctx;
1541 	unsigned int ep_index;
1542 	struct xhci_ep_ctx *ep_ctx;
1543 	u32 drop_flag;
1544 	u32 new_add_flags, new_drop_flags, new_slot_info;
1545 	int ret;
1546 
1547 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1548 	if (ret <= 0)
1549 		return ret;
1550 	xhci = hcd_to_xhci(hcd);
1551 	if (xhci->xhc_state & XHCI_STATE_DYING)
1552 		return -ENODEV;
1553 
1554 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1555 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1556 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1557 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1558 				__func__, drop_flag);
1559 		return 0;
1560 	}
1561 
1562 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1563 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1564 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1565 	ep_index = xhci_get_endpoint_index(&ep->desc);
1566 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1567 	/* If the HC already knows the endpoint is disabled,
1568 	 * or the HCD has noted it is disabled, ignore this request
1569 	 */
1570 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1571 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1572 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1573 	    xhci_get_endpoint_flag(&ep->desc)) {
1574 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1575 				__func__, ep);
1576 		return 0;
1577 	}
1578 
1579 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1580 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1581 
1582 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1583 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1584 
1585 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1586 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1587 	/* Update the last valid endpoint context, if we deleted the last one */
1588 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1589 	    LAST_CTX(last_ctx)) {
1590 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1591 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1592 	}
1593 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1594 
1595 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1596 
1597 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1598 			(unsigned int) ep->desc.bEndpointAddress,
1599 			udev->slot_id,
1600 			(unsigned int) new_drop_flags,
1601 			(unsigned int) new_add_flags,
1602 			(unsigned int) new_slot_info);
1603 	return 0;
1604 }
1605 
1606 /* Add an endpoint to a new possible bandwidth configuration for this device.
1607  * Only one call to this function is allowed per endpoint before
1608  * check_bandwidth() or reset_bandwidth() must be called.
1609  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1610  * add the endpoint to the schedule with possibly new parameters denoted by a
1611  * different endpoint descriptor in usb_host_endpoint.
1612  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1613  * not allowed.
1614  *
1615  * The USB core will not allow URBs to be queued to an endpoint until the
1616  * configuration or alt setting is installed in the device, so there's no need
1617  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1618  */
1619 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1620 		struct usb_host_endpoint *ep)
1621 {
1622 	struct xhci_hcd *xhci;
1623 	struct xhci_container_ctx *in_ctx, *out_ctx;
1624 	unsigned int ep_index;
1625 	struct xhci_ep_ctx *ep_ctx;
1626 	struct xhci_slot_ctx *slot_ctx;
1627 	struct xhci_input_control_ctx *ctrl_ctx;
1628 	u32 added_ctxs;
1629 	unsigned int last_ctx;
1630 	u32 new_add_flags, new_drop_flags, new_slot_info;
1631 	struct xhci_virt_device *virt_dev;
1632 	int ret = 0;
1633 
1634 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1635 	if (ret <= 0) {
1636 		/* So we won't queue a reset ep command for a root hub */
1637 		ep->hcpriv = NULL;
1638 		return ret;
1639 	}
1640 	xhci = hcd_to_xhci(hcd);
1641 	if (xhci->xhc_state & XHCI_STATE_DYING)
1642 		return -ENODEV;
1643 
1644 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1645 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1646 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1647 		/* FIXME when we have to issue an evaluate endpoint command to
1648 		 * deal with ep0 max packet size changing once we get the
1649 		 * descriptors
1650 		 */
1651 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1652 				__func__, added_ctxs);
1653 		return 0;
1654 	}
1655 
1656 	virt_dev = xhci->devs[udev->slot_id];
1657 	in_ctx = virt_dev->in_ctx;
1658 	out_ctx = virt_dev->out_ctx;
1659 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1660 	ep_index = xhci_get_endpoint_index(&ep->desc);
1661 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1662 
1663 	/* If this endpoint is already in use, and the upper layers are trying
1664 	 * to add it again without dropping it, reject the addition.
1665 	 */
1666 	if (virt_dev->eps[ep_index].ring &&
1667 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1668 				xhci_get_endpoint_flag(&ep->desc))) {
1669 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1670 				"without dropping it.\n",
1671 				(unsigned int) ep->desc.bEndpointAddress);
1672 		return -EINVAL;
1673 	}
1674 
1675 	/* If the HCD has already noted the endpoint is enabled,
1676 	 * ignore this request.
1677 	 */
1678 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1679 	    xhci_get_endpoint_flag(&ep->desc)) {
1680 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1681 				__func__, ep);
1682 		return 0;
1683 	}
1684 
1685 	/*
1686 	 * Configuration and alternate setting changes must be done in
1687 	 * process context, not interrupt context (or so documenation
1688 	 * for usb_set_interface() and usb_set_configuration() claim).
1689 	 */
1690 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1691 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1692 				__func__, ep->desc.bEndpointAddress);
1693 		return -ENOMEM;
1694 	}
1695 
1696 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1697 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1698 
1699 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1700 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1701 	 * this re-adds a new state for the endpoint from the new endpoint
1702 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1703 	 * drop flags alone.
1704 	 */
1705 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1706 
1707 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1708 	/* Update the last valid endpoint context, if we just added one past */
1709 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1710 	    LAST_CTX(last_ctx)) {
1711 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1712 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1713 	}
1714 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1715 
1716 	/* Store the usb_device pointer for later use */
1717 	ep->hcpriv = udev;
1718 
1719 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1720 			(unsigned int) ep->desc.bEndpointAddress,
1721 			udev->slot_id,
1722 			(unsigned int) new_drop_flags,
1723 			(unsigned int) new_add_flags,
1724 			(unsigned int) new_slot_info);
1725 	return 0;
1726 }
1727 
1728 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1729 {
1730 	struct xhci_input_control_ctx *ctrl_ctx;
1731 	struct xhci_ep_ctx *ep_ctx;
1732 	struct xhci_slot_ctx *slot_ctx;
1733 	int i;
1734 
1735 	/* When a device's add flag and drop flag are zero, any subsequent
1736 	 * configure endpoint command will leave that endpoint's state
1737 	 * untouched.  Make sure we don't leave any old state in the input
1738 	 * endpoint contexts.
1739 	 */
1740 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1741 	ctrl_ctx->drop_flags = 0;
1742 	ctrl_ctx->add_flags = 0;
1743 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1744 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1745 	/* Endpoint 0 is always valid */
1746 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1747 	for (i = 1; i < 31; ++i) {
1748 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1749 		ep_ctx->ep_info = 0;
1750 		ep_ctx->ep_info2 = 0;
1751 		ep_ctx->deq = 0;
1752 		ep_ctx->tx_info = 0;
1753 	}
1754 }
1755 
1756 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1757 		struct usb_device *udev, u32 *cmd_status)
1758 {
1759 	int ret;
1760 
1761 	switch (*cmd_status) {
1762 	case COMP_ENOMEM:
1763 		dev_warn(&udev->dev, "Not enough host controller resources "
1764 				"for new device state.\n");
1765 		ret = -ENOMEM;
1766 		/* FIXME: can we allocate more resources for the HC? */
1767 		break;
1768 	case COMP_BW_ERR:
1769 	case COMP_2ND_BW_ERR:
1770 		dev_warn(&udev->dev, "Not enough bandwidth "
1771 				"for new device state.\n");
1772 		ret = -ENOSPC;
1773 		/* FIXME: can we go back to the old state? */
1774 		break;
1775 	case COMP_TRB_ERR:
1776 		/* the HCD set up something wrong */
1777 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1778 				"add flag = 1, "
1779 				"and endpoint is not disabled.\n");
1780 		ret = -EINVAL;
1781 		break;
1782 	case COMP_DEV_ERR:
1783 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1784 				"configure command.\n");
1785 		ret = -ENODEV;
1786 		break;
1787 	case COMP_SUCCESS:
1788 		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1789 		ret = 0;
1790 		break;
1791 	default:
1792 		xhci_err(xhci, "ERROR: unexpected command completion "
1793 				"code 0x%x.\n", *cmd_status);
1794 		ret = -EINVAL;
1795 		break;
1796 	}
1797 	return ret;
1798 }
1799 
1800 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1801 		struct usb_device *udev, u32 *cmd_status)
1802 {
1803 	int ret;
1804 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1805 
1806 	switch (*cmd_status) {
1807 	case COMP_EINVAL:
1808 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1809 				"context command.\n");
1810 		ret = -EINVAL;
1811 		break;
1812 	case COMP_EBADSLT:
1813 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1814 				"evaluate context command.\n");
1815 	case COMP_CTX_STATE:
1816 		dev_warn(&udev->dev, "WARN: invalid context state for "
1817 				"evaluate context command.\n");
1818 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1819 		ret = -EINVAL;
1820 		break;
1821 	case COMP_DEV_ERR:
1822 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1823 				"context command.\n");
1824 		ret = -ENODEV;
1825 		break;
1826 	case COMP_MEL_ERR:
1827 		/* Max Exit Latency too large error */
1828 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1829 		ret = -EINVAL;
1830 		break;
1831 	case COMP_SUCCESS:
1832 		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1833 		ret = 0;
1834 		break;
1835 	default:
1836 		xhci_err(xhci, "ERROR: unexpected command completion "
1837 				"code 0x%x.\n", *cmd_status);
1838 		ret = -EINVAL;
1839 		break;
1840 	}
1841 	return ret;
1842 }
1843 
1844 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1845 		struct xhci_container_ctx *in_ctx)
1846 {
1847 	struct xhci_input_control_ctx *ctrl_ctx;
1848 	u32 valid_add_flags;
1849 	u32 valid_drop_flags;
1850 
1851 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1852 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1853 	 * (bit 1).  The default control endpoint is added during the Address
1854 	 * Device command and is never removed until the slot is disabled.
1855 	 */
1856 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1857 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1858 
1859 	/* Use hweight32 to count the number of ones in the add flags, or
1860 	 * number of endpoints added.  Don't count endpoints that are changed
1861 	 * (both added and dropped).
1862 	 */
1863 	return hweight32(valid_add_flags) -
1864 		hweight32(valid_add_flags & valid_drop_flags);
1865 }
1866 
1867 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1868 		struct xhci_container_ctx *in_ctx)
1869 {
1870 	struct xhci_input_control_ctx *ctrl_ctx;
1871 	u32 valid_add_flags;
1872 	u32 valid_drop_flags;
1873 
1874 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1875 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1876 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1877 
1878 	return hweight32(valid_drop_flags) -
1879 		hweight32(valid_add_flags & valid_drop_flags);
1880 }
1881 
1882 /*
1883  * We need to reserve the new number of endpoints before the configure endpoint
1884  * command completes.  We can't subtract the dropped endpoints from the number
1885  * of active endpoints until the command completes because we can oversubscribe
1886  * the host in this case:
1887  *
1888  *  - the first configure endpoint command drops more endpoints than it adds
1889  *  - a second configure endpoint command that adds more endpoints is queued
1890  *  - the first configure endpoint command fails, so the config is unchanged
1891  *  - the second command may succeed, even though there isn't enough resources
1892  *
1893  * Must be called with xhci->lock held.
1894  */
1895 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1896 		struct xhci_container_ctx *in_ctx)
1897 {
1898 	u32 added_eps;
1899 
1900 	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1901 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1902 		xhci_dbg(xhci, "Not enough ep ctxs: "
1903 				"%u active, need to add %u, limit is %u.\n",
1904 				xhci->num_active_eps, added_eps,
1905 				xhci->limit_active_eps);
1906 		return -ENOMEM;
1907 	}
1908 	xhci->num_active_eps += added_eps;
1909 	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1910 			xhci->num_active_eps);
1911 	return 0;
1912 }
1913 
1914 /*
1915  * The configure endpoint was failed by the xHC for some other reason, so we
1916  * need to revert the resources that failed configuration would have used.
1917  *
1918  * Must be called with xhci->lock held.
1919  */
1920 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1921 		struct xhci_container_ctx *in_ctx)
1922 {
1923 	u32 num_failed_eps;
1924 
1925 	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1926 	xhci->num_active_eps -= num_failed_eps;
1927 	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1928 			num_failed_eps,
1929 			xhci->num_active_eps);
1930 }
1931 
1932 /*
1933  * Now that the command has completed, clean up the active endpoint count by
1934  * subtracting out the endpoints that were dropped (but not changed).
1935  *
1936  * Must be called with xhci->lock held.
1937  */
1938 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1939 		struct xhci_container_ctx *in_ctx)
1940 {
1941 	u32 num_dropped_eps;
1942 
1943 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1944 	xhci->num_active_eps -= num_dropped_eps;
1945 	if (num_dropped_eps)
1946 		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1947 				num_dropped_eps,
1948 				xhci->num_active_eps);
1949 }
1950 
1951 unsigned int xhci_get_block_size(struct usb_device *udev)
1952 {
1953 	switch (udev->speed) {
1954 	case USB_SPEED_LOW:
1955 	case USB_SPEED_FULL:
1956 		return FS_BLOCK;
1957 	case USB_SPEED_HIGH:
1958 		return HS_BLOCK;
1959 	case USB_SPEED_SUPER:
1960 		return SS_BLOCK;
1961 	case USB_SPEED_UNKNOWN:
1962 	case USB_SPEED_WIRELESS:
1963 	default:
1964 		/* Should never happen */
1965 		return 1;
1966 	}
1967 }
1968 
1969 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1970 {
1971 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1972 		return LS_OVERHEAD;
1973 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1974 		return FS_OVERHEAD;
1975 	return HS_OVERHEAD;
1976 }
1977 
1978 /* If we are changing a LS/FS device under a HS hub,
1979  * make sure (if we are activating a new TT) that the HS bus has enough
1980  * bandwidth for this new TT.
1981  */
1982 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1983 		struct xhci_virt_device *virt_dev,
1984 		int old_active_eps)
1985 {
1986 	struct xhci_interval_bw_table *bw_table;
1987 	struct xhci_tt_bw_info *tt_info;
1988 
1989 	/* Find the bandwidth table for the root port this TT is attached to. */
1990 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1991 	tt_info = virt_dev->tt_info;
1992 	/* If this TT already had active endpoints, the bandwidth for this TT
1993 	 * has already been added.  Removing all periodic endpoints (and thus
1994 	 * making the TT enactive) will only decrease the bandwidth used.
1995 	 */
1996 	if (old_active_eps)
1997 		return 0;
1998 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
1999 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2000 			return -ENOMEM;
2001 		return 0;
2002 	}
2003 	/* Not sure why we would have no new active endpoints...
2004 	 *
2005 	 * Maybe because of an Evaluate Context change for a hub update or a
2006 	 * control endpoint 0 max packet size change?
2007 	 * FIXME: skip the bandwidth calculation in that case.
2008 	 */
2009 	return 0;
2010 }
2011 
2012 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2013 		struct xhci_virt_device *virt_dev)
2014 {
2015 	unsigned int bw_reserved;
2016 
2017 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2018 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2019 		return -ENOMEM;
2020 
2021 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2022 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2023 		return -ENOMEM;
2024 
2025 	return 0;
2026 }
2027 
2028 /*
2029  * This algorithm is a very conservative estimate of the worst-case scheduling
2030  * scenario for any one interval.  The hardware dynamically schedules the
2031  * packets, so we can't tell which microframe could be the limiting factor in
2032  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2033  *
2034  * Obviously, we can't solve an NP complete problem to find the minimum worst
2035  * case scenario.  Instead, we come up with an estimate that is no less than
2036  * the worst case bandwidth used for any one microframe, but may be an
2037  * over-estimate.
2038  *
2039  * We walk the requirements for each endpoint by interval, starting with the
2040  * smallest interval, and place packets in the schedule where there is only one
2041  * possible way to schedule packets for that interval.  In order to simplify
2042  * this algorithm, we record the largest max packet size for each interval, and
2043  * assume all packets will be that size.
2044  *
2045  * For interval 0, we obviously must schedule all packets for each interval.
2046  * The bandwidth for interval 0 is just the amount of data to be transmitted
2047  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2048  * the number of packets).
2049  *
2050  * For interval 1, we have two possible microframes to schedule those packets
2051  * in.  For this algorithm, if we can schedule the same number of packets for
2052  * each possible scheduling opportunity (each microframe), we will do so.  The
2053  * remaining number of packets will be saved to be transmitted in the gaps in
2054  * the next interval's scheduling sequence.
2055  *
2056  * As we move those remaining packets to be scheduled with interval 2 packets,
2057  * we have to double the number of remaining packets to transmit.  This is
2058  * because the intervals are actually powers of 2, and we would be transmitting
2059  * the previous interval's packets twice in this interval.  We also have to be
2060  * sure that when we look at the largest max packet size for this interval, we
2061  * also look at the largest max packet size for the remaining packets and take
2062  * the greater of the two.
2063  *
2064  * The algorithm continues to evenly distribute packets in each scheduling
2065  * opportunity, and push the remaining packets out, until we get to the last
2066  * interval.  Then those packets and their associated overhead are just added
2067  * to the bandwidth used.
2068  */
2069 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2070 		struct xhci_virt_device *virt_dev,
2071 		int old_active_eps)
2072 {
2073 	unsigned int bw_reserved;
2074 	unsigned int max_bandwidth;
2075 	unsigned int bw_used;
2076 	unsigned int block_size;
2077 	struct xhci_interval_bw_table *bw_table;
2078 	unsigned int packet_size = 0;
2079 	unsigned int overhead = 0;
2080 	unsigned int packets_transmitted = 0;
2081 	unsigned int packets_remaining = 0;
2082 	unsigned int i;
2083 
2084 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2085 		return xhci_check_ss_bw(xhci, virt_dev);
2086 
2087 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2088 		max_bandwidth = HS_BW_LIMIT;
2089 		/* Convert percent of bus BW reserved to blocks reserved */
2090 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2091 	} else {
2092 		max_bandwidth = FS_BW_LIMIT;
2093 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2094 	}
2095 
2096 	bw_table = virt_dev->bw_table;
2097 	/* We need to translate the max packet size and max ESIT payloads into
2098 	 * the units the hardware uses.
2099 	 */
2100 	block_size = xhci_get_block_size(virt_dev->udev);
2101 
2102 	/* If we are manipulating a LS/FS device under a HS hub, double check
2103 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2104 	 */
2105 	if (virt_dev->tt_info) {
2106 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2107 				virt_dev->real_port);
2108 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2109 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2110 					"newly activated TT.\n");
2111 			return -ENOMEM;
2112 		}
2113 		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2114 				virt_dev->tt_info->slot_id,
2115 				virt_dev->tt_info->ttport);
2116 	} else {
2117 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2118 				virt_dev->real_port);
2119 	}
2120 
2121 	/* Add in how much bandwidth will be used for interval zero, or the
2122 	 * rounded max ESIT payload + number of packets * largest overhead.
2123 	 */
2124 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2125 		bw_table->interval_bw[0].num_packets *
2126 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2127 
2128 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2129 		unsigned int bw_added;
2130 		unsigned int largest_mps;
2131 		unsigned int interval_overhead;
2132 
2133 		/*
2134 		 * How many packets could we transmit in this interval?
2135 		 * If packets didn't fit in the previous interval, we will need
2136 		 * to transmit that many packets twice within this interval.
2137 		 */
2138 		packets_remaining = 2 * packets_remaining +
2139 			bw_table->interval_bw[i].num_packets;
2140 
2141 		/* Find the largest max packet size of this or the previous
2142 		 * interval.
2143 		 */
2144 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2145 			largest_mps = 0;
2146 		else {
2147 			struct xhci_virt_ep *virt_ep;
2148 			struct list_head *ep_entry;
2149 
2150 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2151 			virt_ep = list_entry(ep_entry,
2152 					struct xhci_virt_ep, bw_endpoint_list);
2153 			/* Convert to blocks, rounding up */
2154 			largest_mps = DIV_ROUND_UP(
2155 					virt_ep->bw_info.max_packet_size,
2156 					block_size);
2157 		}
2158 		if (largest_mps > packet_size)
2159 			packet_size = largest_mps;
2160 
2161 		/* Use the larger overhead of this or the previous interval. */
2162 		interval_overhead = xhci_get_largest_overhead(
2163 				&bw_table->interval_bw[i]);
2164 		if (interval_overhead > overhead)
2165 			overhead = interval_overhead;
2166 
2167 		/* How many packets can we evenly distribute across
2168 		 * (1 << (i + 1)) possible scheduling opportunities?
2169 		 */
2170 		packets_transmitted = packets_remaining >> (i + 1);
2171 
2172 		/* Add in the bandwidth used for those scheduled packets */
2173 		bw_added = packets_transmitted * (overhead + packet_size);
2174 
2175 		/* How many packets do we have remaining to transmit? */
2176 		packets_remaining = packets_remaining % (1 << (i + 1));
2177 
2178 		/* What largest max packet size should those packets have? */
2179 		/* If we've transmitted all packets, don't carry over the
2180 		 * largest packet size.
2181 		 */
2182 		if (packets_remaining == 0) {
2183 			packet_size = 0;
2184 			overhead = 0;
2185 		} else if (packets_transmitted > 0) {
2186 			/* Otherwise if we do have remaining packets, and we've
2187 			 * scheduled some packets in this interval, take the
2188 			 * largest max packet size from endpoints with this
2189 			 * interval.
2190 			 */
2191 			packet_size = largest_mps;
2192 			overhead = interval_overhead;
2193 		}
2194 		/* Otherwise carry over packet_size and overhead from the last
2195 		 * time we had a remainder.
2196 		 */
2197 		bw_used += bw_added;
2198 		if (bw_used > max_bandwidth) {
2199 			xhci_warn(xhci, "Not enough bandwidth. "
2200 					"Proposed: %u, Max: %u\n",
2201 				bw_used, max_bandwidth);
2202 			return -ENOMEM;
2203 		}
2204 	}
2205 	/*
2206 	 * Ok, we know we have some packets left over after even-handedly
2207 	 * scheduling interval 15.  We don't know which microframes they will
2208 	 * fit into, so we over-schedule and say they will be scheduled every
2209 	 * microframe.
2210 	 */
2211 	if (packets_remaining > 0)
2212 		bw_used += overhead + packet_size;
2213 
2214 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2215 		unsigned int port_index = virt_dev->real_port - 1;
2216 
2217 		/* OK, we're manipulating a HS device attached to a
2218 		 * root port bandwidth domain.  Include the number of active TTs
2219 		 * in the bandwidth used.
2220 		 */
2221 		bw_used += TT_HS_OVERHEAD *
2222 			xhci->rh_bw[port_index].num_active_tts;
2223 	}
2224 
2225 	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2226 		"Available: %u " "percent\n",
2227 		bw_used, max_bandwidth, bw_reserved,
2228 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2229 		max_bandwidth);
2230 
2231 	bw_used += bw_reserved;
2232 	if (bw_used > max_bandwidth) {
2233 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2234 				bw_used, max_bandwidth);
2235 		return -ENOMEM;
2236 	}
2237 
2238 	bw_table->bw_used = bw_used;
2239 	return 0;
2240 }
2241 
2242 static bool xhci_is_async_ep(unsigned int ep_type)
2243 {
2244 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2245 					ep_type != ISOC_IN_EP &&
2246 					ep_type != INT_IN_EP);
2247 }
2248 
2249 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2250 {
2251 	return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2252 }
2253 
2254 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2255 {
2256 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2257 
2258 	if (ep_bw->ep_interval == 0)
2259 		return SS_OVERHEAD_BURST +
2260 			(ep_bw->mult * ep_bw->num_packets *
2261 					(SS_OVERHEAD + mps));
2262 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2263 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2264 				1 << ep_bw->ep_interval);
2265 
2266 }
2267 
2268 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2269 		struct xhci_bw_info *ep_bw,
2270 		struct xhci_interval_bw_table *bw_table,
2271 		struct usb_device *udev,
2272 		struct xhci_virt_ep *virt_ep,
2273 		struct xhci_tt_bw_info *tt_info)
2274 {
2275 	struct xhci_interval_bw	*interval_bw;
2276 	int normalized_interval;
2277 
2278 	if (xhci_is_async_ep(ep_bw->type))
2279 		return;
2280 
2281 	if (udev->speed == USB_SPEED_SUPER) {
2282 		if (xhci_is_sync_in_ep(ep_bw->type))
2283 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2284 				xhci_get_ss_bw_consumed(ep_bw);
2285 		else
2286 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2287 				xhci_get_ss_bw_consumed(ep_bw);
2288 		return;
2289 	}
2290 
2291 	/* SuperSpeed endpoints never get added to intervals in the table, so
2292 	 * this check is only valid for HS/FS/LS devices.
2293 	 */
2294 	if (list_empty(&virt_ep->bw_endpoint_list))
2295 		return;
2296 	/* For LS/FS devices, we need to translate the interval expressed in
2297 	 * microframes to frames.
2298 	 */
2299 	if (udev->speed == USB_SPEED_HIGH)
2300 		normalized_interval = ep_bw->ep_interval;
2301 	else
2302 		normalized_interval = ep_bw->ep_interval - 3;
2303 
2304 	if (normalized_interval == 0)
2305 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2306 	interval_bw = &bw_table->interval_bw[normalized_interval];
2307 	interval_bw->num_packets -= ep_bw->num_packets;
2308 	switch (udev->speed) {
2309 	case USB_SPEED_LOW:
2310 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2311 		break;
2312 	case USB_SPEED_FULL:
2313 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2314 		break;
2315 	case USB_SPEED_HIGH:
2316 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2317 		break;
2318 	case USB_SPEED_SUPER:
2319 	case USB_SPEED_UNKNOWN:
2320 	case USB_SPEED_WIRELESS:
2321 		/* Should never happen because only LS/FS/HS endpoints will get
2322 		 * added to the endpoint list.
2323 		 */
2324 		return;
2325 	}
2326 	if (tt_info)
2327 		tt_info->active_eps -= 1;
2328 	list_del_init(&virt_ep->bw_endpoint_list);
2329 }
2330 
2331 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2332 		struct xhci_bw_info *ep_bw,
2333 		struct xhci_interval_bw_table *bw_table,
2334 		struct usb_device *udev,
2335 		struct xhci_virt_ep *virt_ep,
2336 		struct xhci_tt_bw_info *tt_info)
2337 {
2338 	struct xhci_interval_bw	*interval_bw;
2339 	struct xhci_virt_ep *smaller_ep;
2340 	int normalized_interval;
2341 
2342 	if (xhci_is_async_ep(ep_bw->type))
2343 		return;
2344 
2345 	if (udev->speed == USB_SPEED_SUPER) {
2346 		if (xhci_is_sync_in_ep(ep_bw->type))
2347 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2348 				xhci_get_ss_bw_consumed(ep_bw);
2349 		else
2350 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2351 				xhci_get_ss_bw_consumed(ep_bw);
2352 		return;
2353 	}
2354 
2355 	/* For LS/FS devices, we need to translate the interval expressed in
2356 	 * microframes to frames.
2357 	 */
2358 	if (udev->speed == USB_SPEED_HIGH)
2359 		normalized_interval = ep_bw->ep_interval;
2360 	else
2361 		normalized_interval = ep_bw->ep_interval - 3;
2362 
2363 	if (normalized_interval == 0)
2364 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2365 	interval_bw = &bw_table->interval_bw[normalized_interval];
2366 	interval_bw->num_packets += ep_bw->num_packets;
2367 	switch (udev->speed) {
2368 	case USB_SPEED_LOW:
2369 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2370 		break;
2371 	case USB_SPEED_FULL:
2372 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2373 		break;
2374 	case USB_SPEED_HIGH:
2375 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2376 		break;
2377 	case USB_SPEED_SUPER:
2378 	case USB_SPEED_UNKNOWN:
2379 	case USB_SPEED_WIRELESS:
2380 		/* Should never happen because only LS/FS/HS endpoints will get
2381 		 * added to the endpoint list.
2382 		 */
2383 		return;
2384 	}
2385 
2386 	if (tt_info)
2387 		tt_info->active_eps += 1;
2388 	/* Insert the endpoint into the list, largest max packet size first. */
2389 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2390 			bw_endpoint_list) {
2391 		if (ep_bw->max_packet_size >=
2392 				smaller_ep->bw_info.max_packet_size) {
2393 			/* Add the new ep before the smaller endpoint */
2394 			list_add_tail(&virt_ep->bw_endpoint_list,
2395 					&smaller_ep->bw_endpoint_list);
2396 			return;
2397 		}
2398 	}
2399 	/* Add the new endpoint at the end of the list. */
2400 	list_add_tail(&virt_ep->bw_endpoint_list,
2401 			&interval_bw->endpoints);
2402 }
2403 
2404 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2405 		struct xhci_virt_device *virt_dev,
2406 		int old_active_eps)
2407 {
2408 	struct xhci_root_port_bw_info *rh_bw_info;
2409 	if (!virt_dev->tt_info)
2410 		return;
2411 
2412 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2413 	if (old_active_eps == 0 &&
2414 				virt_dev->tt_info->active_eps != 0) {
2415 		rh_bw_info->num_active_tts += 1;
2416 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2417 	} else if (old_active_eps != 0 &&
2418 				virt_dev->tt_info->active_eps == 0) {
2419 		rh_bw_info->num_active_tts -= 1;
2420 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2421 	}
2422 }
2423 
2424 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2425 		struct xhci_virt_device *virt_dev,
2426 		struct xhci_container_ctx *in_ctx)
2427 {
2428 	struct xhci_bw_info ep_bw_info[31];
2429 	int i;
2430 	struct xhci_input_control_ctx *ctrl_ctx;
2431 	int old_active_eps = 0;
2432 
2433 	if (virt_dev->tt_info)
2434 		old_active_eps = virt_dev->tt_info->active_eps;
2435 
2436 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2437 
2438 	for (i = 0; i < 31; i++) {
2439 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2440 			continue;
2441 
2442 		/* Make a copy of the BW info in case we need to revert this */
2443 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2444 				sizeof(ep_bw_info[i]));
2445 		/* Drop the endpoint from the interval table if the endpoint is
2446 		 * being dropped or changed.
2447 		 */
2448 		if (EP_IS_DROPPED(ctrl_ctx, i))
2449 			xhci_drop_ep_from_interval_table(xhci,
2450 					&virt_dev->eps[i].bw_info,
2451 					virt_dev->bw_table,
2452 					virt_dev->udev,
2453 					&virt_dev->eps[i],
2454 					virt_dev->tt_info);
2455 	}
2456 	/* Overwrite the information stored in the endpoints' bw_info */
2457 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2458 	for (i = 0; i < 31; i++) {
2459 		/* Add any changed or added endpoints to the interval table */
2460 		if (EP_IS_ADDED(ctrl_ctx, i))
2461 			xhci_add_ep_to_interval_table(xhci,
2462 					&virt_dev->eps[i].bw_info,
2463 					virt_dev->bw_table,
2464 					virt_dev->udev,
2465 					&virt_dev->eps[i],
2466 					virt_dev->tt_info);
2467 	}
2468 
2469 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2470 		/* Ok, this fits in the bandwidth we have.
2471 		 * Update the number of active TTs.
2472 		 */
2473 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2474 		return 0;
2475 	}
2476 
2477 	/* We don't have enough bandwidth for this, revert the stored info. */
2478 	for (i = 0; i < 31; i++) {
2479 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2480 			continue;
2481 
2482 		/* Drop the new copies of any added or changed endpoints from
2483 		 * the interval table.
2484 		 */
2485 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2486 			xhci_drop_ep_from_interval_table(xhci,
2487 					&virt_dev->eps[i].bw_info,
2488 					virt_dev->bw_table,
2489 					virt_dev->udev,
2490 					&virt_dev->eps[i],
2491 					virt_dev->tt_info);
2492 		}
2493 		/* Revert the endpoint back to its old information */
2494 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2495 				sizeof(ep_bw_info[i]));
2496 		/* Add any changed or dropped endpoints back into the table */
2497 		if (EP_IS_DROPPED(ctrl_ctx, i))
2498 			xhci_add_ep_to_interval_table(xhci,
2499 					&virt_dev->eps[i].bw_info,
2500 					virt_dev->bw_table,
2501 					virt_dev->udev,
2502 					&virt_dev->eps[i],
2503 					virt_dev->tt_info);
2504 	}
2505 	return -ENOMEM;
2506 }
2507 
2508 
2509 /* Issue a configure endpoint command or evaluate context command
2510  * and wait for it to finish.
2511  */
2512 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2513 		struct usb_device *udev,
2514 		struct xhci_command *command,
2515 		bool ctx_change, bool must_succeed)
2516 {
2517 	int ret;
2518 	int timeleft;
2519 	unsigned long flags;
2520 	struct xhci_container_ctx *in_ctx;
2521 	struct completion *cmd_completion;
2522 	u32 *cmd_status;
2523 	struct xhci_virt_device *virt_dev;
2524 
2525 	spin_lock_irqsave(&xhci->lock, flags);
2526 	virt_dev = xhci->devs[udev->slot_id];
2527 
2528 	if (command)
2529 		in_ctx = command->in_ctx;
2530 	else
2531 		in_ctx = virt_dev->in_ctx;
2532 
2533 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2534 			xhci_reserve_host_resources(xhci, in_ctx)) {
2535 		spin_unlock_irqrestore(&xhci->lock, flags);
2536 		xhci_warn(xhci, "Not enough host resources, "
2537 				"active endpoint contexts = %u\n",
2538 				xhci->num_active_eps);
2539 		return -ENOMEM;
2540 	}
2541 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2542 			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2543 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2544 			xhci_free_host_resources(xhci, in_ctx);
2545 		spin_unlock_irqrestore(&xhci->lock, flags);
2546 		xhci_warn(xhci, "Not enough bandwidth\n");
2547 		return -ENOMEM;
2548 	}
2549 
2550 	if (command) {
2551 		cmd_completion = command->completion;
2552 		cmd_status = &command->status;
2553 		command->command_trb = xhci->cmd_ring->enqueue;
2554 
2555 		/* Enqueue pointer can be left pointing to the link TRB,
2556 		 * we must handle that
2557 		 */
2558 		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2559 			command->command_trb =
2560 				xhci->cmd_ring->enq_seg->next->trbs;
2561 
2562 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2563 	} else {
2564 		cmd_completion = &virt_dev->cmd_completion;
2565 		cmd_status = &virt_dev->cmd_status;
2566 	}
2567 	init_completion(cmd_completion);
2568 
2569 	if (!ctx_change)
2570 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2571 				udev->slot_id, must_succeed);
2572 	else
2573 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2574 				udev->slot_id, must_succeed);
2575 	if (ret < 0) {
2576 		if (command)
2577 			list_del(&command->cmd_list);
2578 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2579 			xhci_free_host_resources(xhci, in_ctx);
2580 		spin_unlock_irqrestore(&xhci->lock, flags);
2581 		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2582 		return -ENOMEM;
2583 	}
2584 	xhci_ring_cmd_db(xhci);
2585 	spin_unlock_irqrestore(&xhci->lock, flags);
2586 
2587 	/* Wait for the configure endpoint command to complete */
2588 	timeleft = wait_for_completion_interruptible_timeout(
2589 			cmd_completion,
2590 			USB_CTRL_SET_TIMEOUT);
2591 	if (timeleft <= 0) {
2592 		xhci_warn(xhci, "%s while waiting for %s command\n",
2593 				timeleft == 0 ? "Timeout" : "Signal",
2594 				ctx_change == 0 ?
2595 					"configure endpoint" :
2596 					"evaluate context");
2597 		/* FIXME cancel the configure endpoint command */
2598 		return -ETIME;
2599 	}
2600 
2601 	if (!ctx_change)
2602 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2603 	else
2604 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2605 
2606 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2607 		spin_lock_irqsave(&xhci->lock, flags);
2608 		/* If the command failed, remove the reserved resources.
2609 		 * Otherwise, clean up the estimate to include dropped eps.
2610 		 */
2611 		if (ret)
2612 			xhci_free_host_resources(xhci, in_ctx);
2613 		else
2614 			xhci_finish_resource_reservation(xhci, in_ctx);
2615 		spin_unlock_irqrestore(&xhci->lock, flags);
2616 	}
2617 	return ret;
2618 }
2619 
2620 /* Called after one or more calls to xhci_add_endpoint() or
2621  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2622  * to call xhci_reset_bandwidth().
2623  *
2624  * Since we are in the middle of changing either configuration or
2625  * installing a new alt setting, the USB core won't allow URBs to be
2626  * enqueued for any endpoint on the old config or interface.  Nothing
2627  * else should be touching the xhci->devs[slot_id] structure, so we
2628  * don't need to take the xhci->lock for manipulating that.
2629  */
2630 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2631 {
2632 	int i;
2633 	int ret = 0;
2634 	struct xhci_hcd *xhci;
2635 	struct xhci_virt_device	*virt_dev;
2636 	struct xhci_input_control_ctx *ctrl_ctx;
2637 	struct xhci_slot_ctx *slot_ctx;
2638 
2639 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2640 	if (ret <= 0)
2641 		return ret;
2642 	xhci = hcd_to_xhci(hcd);
2643 	if (xhci->xhc_state & XHCI_STATE_DYING)
2644 		return -ENODEV;
2645 
2646 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2647 	virt_dev = xhci->devs[udev->slot_id];
2648 
2649 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2650 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2651 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2652 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2653 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2654 
2655 	/* Don't issue the command if there's no endpoints to update. */
2656 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2657 			ctrl_ctx->drop_flags == 0)
2658 		return 0;
2659 
2660 	xhci_dbg(xhci, "New Input Control Context:\n");
2661 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2662 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2663 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2664 
2665 	ret = xhci_configure_endpoint(xhci, udev, NULL,
2666 			false, false);
2667 	if (ret) {
2668 		/* Callee should call reset_bandwidth() */
2669 		return ret;
2670 	}
2671 
2672 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2673 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2674 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2675 
2676 	/* Free any rings that were dropped, but not changed. */
2677 	for (i = 1; i < 31; ++i) {
2678 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2679 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2680 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2681 	}
2682 	xhci_zero_in_ctx(xhci, virt_dev);
2683 	/*
2684 	 * Install any rings for completely new endpoints or changed endpoints,
2685 	 * and free or cache any old rings from changed endpoints.
2686 	 */
2687 	for (i = 1; i < 31; ++i) {
2688 		if (!virt_dev->eps[i].new_ring)
2689 			continue;
2690 		/* Only cache or free the old ring if it exists.
2691 		 * It may not if this is the first add of an endpoint.
2692 		 */
2693 		if (virt_dev->eps[i].ring) {
2694 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2695 		}
2696 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2697 		virt_dev->eps[i].new_ring = NULL;
2698 	}
2699 
2700 	return ret;
2701 }
2702 
2703 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2704 {
2705 	struct xhci_hcd *xhci;
2706 	struct xhci_virt_device	*virt_dev;
2707 	int i, ret;
2708 
2709 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2710 	if (ret <= 0)
2711 		return;
2712 	xhci = hcd_to_xhci(hcd);
2713 
2714 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2715 	virt_dev = xhci->devs[udev->slot_id];
2716 	/* Free any rings allocated for added endpoints */
2717 	for (i = 0; i < 31; ++i) {
2718 		if (virt_dev->eps[i].new_ring) {
2719 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2720 			virt_dev->eps[i].new_ring = NULL;
2721 		}
2722 	}
2723 	xhci_zero_in_ctx(xhci, virt_dev);
2724 }
2725 
2726 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2727 		struct xhci_container_ctx *in_ctx,
2728 		struct xhci_container_ctx *out_ctx,
2729 		u32 add_flags, u32 drop_flags)
2730 {
2731 	struct xhci_input_control_ctx *ctrl_ctx;
2732 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2733 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2734 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2735 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2736 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2737 
2738 	xhci_dbg(xhci, "Input Context:\n");
2739 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2740 }
2741 
2742 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2743 		unsigned int slot_id, unsigned int ep_index,
2744 		struct xhci_dequeue_state *deq_state)
2745 {
2746 	struct xhci_container_ctx *in_ctx;
2747 	struct xhci_ep_ctx *ep_ctx;
2748 	u32 added_ctxs;
2749 	dma_addr_t addr;
2750 
2751 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2752 			xhci->devs[slot_id]->out_ctx, ep_index);
2753 	in_ctx = xhci->devs[slot_id]->in_ctx;
2754 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2755 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2756 			deq_state->new_deq_ptr);
2757 	if (addr == 0) {
2758 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2759 				"reset ep command\n");
2760 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2761 				deq_state->new_deq_seg,
2762 				deq_state->new_deq_ptr);
2763 		return;
2764 	}
2765 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2766 
2767 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2768 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2769 			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2770 }
2771 
2772 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2773 		struct usb_device *udev, unsigned int ep_index)
2774 {
2775 	struct xhci_dequeue_state deq_state;
2776 	struct xhci_virt_ep *ep;
2777 
2778 	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2779 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2780 	/* We need to move the HW's dequeue pointer past this TD,
2781 	 * or it will attempt to resend it on the next doorbell ring.
2782 	 */
2783 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2784 			ep_index, ep->stopped_stream, ep->stopped_td,
2785 			&deq_state);
2786 
2787 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2788 	 * issue a configure endpoint command later.
2789 	 */
2790 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2791 		xhci_dbg(xhci, "Queueing new dequeue state\n");
2792 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2793 				ep_index, ep->stopped_stream, &deq_state);
2794 	} else {
2795 		/* Better hope no one uses the input context between now and the
2796 		 * reset endpoint completion!
2797 		 * XXX: No idea how this hardware will react when stream rings
2798 		 * are enabled.
2799 		 */
2800 		xhci_dbg(xhci, "Setting up input context for "
2801 				"configure endpoint command\n");
2802 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2803 				ep_index, &deq_state);
2804 	}
2805 }
2806 
2807 /* Deal with stalled endpoints.  The core should have sent the control message
2808  * to clear the halt condition.  However, we need to make the xHCI hardware
2809  * reset its sequence number, since a device will expect a sequence number of
2810  * zero after the halt condition is cleared.
2811  * Context: in_interrupt
2812  */
2813 void xhci_endpoint_reset(struct usb_hcd *hcd,
2814 		struct usb_host_endpoint *ep)
2815 {
2816 	struct xhci_hcd *xhci;
2817 	struct usb_device *udev;
2818 	unsigned int ep_index;
2819 	unsigned long flags;
2820 	int ret;
2821 	struct xhci_virt_ep *virt_ep;
2822 
2823 	xhci = hcd_to_xhci(hcd);
2824 	udev = (struct usb_device *) ep->hcpriv;
2825 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2826 	 * with xhci_add_endpoint()
2827 	 */
2828 	if (!ep->hcpriv)
2829 		return;
2830 	ep_index = xhci_get_endpoint_index(&ep->desc);
2831 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2832 	if (!virt_ep->stopped_td) {
2833 		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2834 				ep->desc.bEndpointAddress);
2835 		return;
2836 	}
2837 	if (usb_endpoint_xfer_control(&ep->desc)) {
2838 		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2839 		return;
2840 	}
2841 
2842 	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2843 	spin_lock_irqsave(&xhci->lock, flags);
2844 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2845 	/*
2846 	 * Can't change the ring dequeue pointer until it's transitioned to the
2847 	 * stopped state, which is only upon a successful reset endpoint
2848 	 * command.  Better hope that last command worked!
2849 	 */
2850 	if (!ret) {
2851 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2852 		kfree(virt_ep->stopped_td);
2853 		xhci_ring_cmd_db(xhci);
2854 	}
2855 	virt_ep->stopped_td = NULL;
2856 	virt_ep->stopped_trb = NULL;
2857 	virt_ep->stopped_stream = 0;
2858 	spin_unlock_irqrestore(&xhci->lock, flags);
2859 
2860 	if (ret)
2861 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2862 }
2863 
2864 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2865 		struct usb_device *udev, struct usb_host_endpoint *ep,
2866 		unsigned int slot_id)
2867 {
2868 	int ret;
2869 	unsigned int ep_index;
2870 	unsigned int ep_state;
2871 
2872 	if (!ep)
2873 		return -EINVAL;
2874 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2875 	if (ret <= 0)
2876 		return -EINVAL;
2877 	if (ep->ss_ep_comp.bmAttributes == 0) {
2878 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2879 				" descriptor for ep 0x%x does not support streams\n",
2880 				ep->desc.bEndpointAddress);
2881 		return -EINVAL;
2882 	}
2883 
2884 	ep_index = xhci_get_endpoint_index(&ep->desc);
2885 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2886 	if (ep_state & EP_HAS_STREAMS ||
2887 			ep_state & EP_GETTING_STREAMS) {
2888 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2889 				"already has streams set up.\n",
2890 				ep->desc.bEndpointAddress);
2891 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2892 				"dynamic stream context array reallocation.\n");
2893 		return -EINVAL;
2894 	}
2895 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2896 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2897 				"endpoint 0x%x; URBs are pending.\n",
2898 				ep->desc.bEndpointAddress);
2899 		return -EINVAL;
2900 	}
2901 	return 0;
2902 }
2903 
2904 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2905 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2906 {
2907 	unsigned int max_streams;
2908 
2909 	/* The stream context array size must be a power of two */
2910 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2911 	/*
2912 	 * Find out how many primary stream array entries the host controller
2913 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2914 	 * level page entries), but that's an optional feature for xHCI host
2915 	 * controllers. xHCs must support at least 4 stream IDs.
2916 	 */
2917 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2918 	if (*num_stream_ctxs > max_streams) {
2919 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2920 				max_streams);
2921 		*num_stream_ctxs = max_streams;
2922 		*num_streams = max_streams;
2923 	}
2924 }
2925 
2926 /* Returns an error code if one of the endpoint already has streams.
2927  * This does not change any data structures, it only checks and gathers
2928  * information.
2929  */
2930 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2931 		struct usb_device *udev,
2932 		struct usb_host_endpoint **eps, unsigned int num_eps,
2933 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2934 {
2935 	unsigned int max_streams;
2936 	unsigned int endpoint_flag;
2937 	int i;
2938 	int ret;
2939 
2940 	for (i = 0; i < num_eps; i++) {
2941 		ret = xhci_check_streams_endpoint(xhci, udev,
2942 				eps[i], udev->slot_id);
2943 		if (ret < 0)
2944 			return ret;
2945 
2946 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2947 		if (max_streams < (*num_streams - 1)) {
2948 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2949 					eps[i]->desc.bEndpointAddress,
2950 					max_streams);
2951 			*num_streams = max_streams+1;
2952 		}
2953 
2954 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2955 		if (*changed_ep_bitmask & endpoint_flag)
2956 			return -EINVAL;
2957 		*changed_ep_bitmask |= endpoint_flag;
2958 	}
2959 	return 0;
2960 }
2961 
2962 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2963 		struct usb_device *udev,
2964 		struct usb_host_endpoint **eps, unsigned int num_eps)
2965 {
2966 	u32 changed_ep_bitmask = 0;
2967 	unsigned int slot_id;
2968 	unsigned int ep_index;
2969 	unsigned int ep_state;
2970 	int i;
2971 
2972 	slot_id = udev->slot_id;
2973 	if (!xhci->devs[slot_id])
2974 		return 0;
2975 
2976 	for (i = 0; i < num_eps; i++) {
2977 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2978 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2979 		/* Are streams already being freed for the endpoint? */
2980 		if (ep_state & EP_GETTING_NO_STREAMS) {
2981 			xhci_warn(xhci, "WARN Can't disable streams for "
2982 					"endpoint 0x%x\n, "
2983 					"streams are being disabled already.",
2984 					eps[i]->desc.bEndpointAddress);
2985 			return 0;
2986 		}
2987 		/* Are there actually any streams to free? */
2988 		if (!(ep_state & EP_HAS_STREAMS) &&
2989 				!(ep_state & EP_GETTING_STREAMS)) {
2990 			xhci_warn(xhci, "WARN Can't disable streams for "
2991 					"endpoint 0x%x\n, "
2992 					"streams are already disabled!",
2993 					eps[i]->desc.bEndpointAddress);
2994 			xhci_warn(xhci, "WARN xhci_free_streams() called "
2995 					"with non-streams endpoint\n");
2996 			return 0;
2997 		}
2998 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2999 	}
3000 	return changed_ep_bitmask;
3001 }
3002 
3003 /*
3004  * The USB device drivers use this function (though the HCD interface in USB
3005  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3006  * coordinate mass storage command queueing across multiple endpoints (basically
3007  * a stream ID == a task ID).
3008  *
3009  * Setting up streams involves allocating the same size stream context array
3010  * for each endpoint and issuing a configure endpoint command for all endpoints.
3011  *
3012  * Don't allow the call to succeed if one endpoint only supports one stream
3013  * (which means it doesn't support streams at all).
3014  *
3015  * Drivers may get less stream IDs than they asked for, if the host controller
3016  * hardware or endpoints claim they can't support the number of requested
3017  * stream IDs.
3018  */
3019 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3020 		struct usb_host_endpoint **eps, unsigned int num_eps,
3021 		unsigned int num_streams, gfp_t mem_flags)
3022 {
3023 	int i, ret;
3024 	struct xhci_hcd *xhci;
3025 	struct xhci_virt_device *vdev;
3026 	struct xhci_command *config_cmd;
3027 	unsigned int ep_index;
3028 	unsigned int num_stream_ctxs;
3029 	unsigned long flags;
3030 	u32 changed_ep_bitmask = 0;
3031 
3032 	if (!eps)
3033 		return -EINVAL;
3034 
3035 	/* Add one to the number of streams requested to account for
3036 	 * stream 0 that is reserved for xHCI usage.
3037 	 */
3038 	num_streams += 1;
3039 	xhci = hcd_to_xhci(hcd);
3040 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3041 			num_streams);
3042 
3043 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3044 	if (!config_cmd) {
3045 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3046 		return -ENOMEM;
3047 	}
3048 
3049 	/* Check to make sure all endpoints are not already configured for
3050 	 * streams.  While we're at it, find the maximum number of streams that
3051 	 * all the endpoints will support and check for duplicate endpoints.
3052 	 */
3053 	spin_lock_irqsave(&xhci->lock, flags);
3054 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3055 			num_eps, &num_streams, &changed_ep_bitmask);
3056 	if (ret < 0) {
3057 		xhci_free_command(xhci, config_cmd);
3058 		spin_unlock_irqrestore(&xhci->lock, flags);
3059 		return ret;
3060 	}
3061 	if (num_streams <= 1) {
3062 		xhci_warn(xhci, "WARN: endpoints can't handle "
3063 				"more than one stream.\n");
3064 		xhci_free_command(xhci, config_cmd);
3065 		spin_unlock_irqrestore(&xhci->lock, flags);
3066 		return -EINVAL;
3067 	}
3068 	vdev = xhci->devs[udev->slot_id];
3069 	/* Mark each endpoint as being in transition, so
3070 	 * xhci_urb_enqueue() will reject all URBs.
3071 	 */
3072 	for (i = 0; i < num_eps; i++) {
3073 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3074 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3075 	}
3076 	spin_unlock_irqrestore(&xhci->lock, flags);
3077 
3078 	/* Setup internal data structures and allocate HW data structures for
3079 	 * streams (but don't install the HW structures in the input context
3080 	 * until we're sure all memory allocation succeeded).
3081 	 */
3082 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3083 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3084 			num_stream_ctxs, num_streams);
3085 
3086 	for (i = 0; i < num_eps; i++) {
3087 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3088 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3089 				num_stream_ctxs,
3090 				num_streams, mem_flags);
3091 		if (!vdev->eps[ep_index].stream_info)
3092 			goto cleanup;
3093 		/* Set maxPstreams in endpoint context and update deq ptr to
3094 		 * point to stream context array. FIXME
3095 		 */
3096 	}
3097 
3098 	/* Set up the input context for a configure endpoint command. */
3099 	for (i = 0; i < num_eps; i++) {
3100 		struct xhci_ep_ctx *ep_ctx;
3101 
3102 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3103 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3104 
3105 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3106 				vdev->out_ctx, ep_index);
3107 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3108 				vdev->eps[ep_index].stream_info);
3109 	}
3110 	/* Tell the HW to drop its old copy of the endpoint context info
3111 	 * and add the updated copy from the input context.
3112 	 */
3113 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3114 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3115 
3116 	/* Issue and wait for the configure endpoint command */
3117 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3118 			false, false);
3119 
3120 	/* xHC rejected the configure endpoint command for some reason, so we
3121 	 * leave the old ring intact and free our internal streams data
3122 	 * structure.
3123 	 */
3124 	if (ret < 0)
3125 		goto cleanup;
3126 
3127 	spin_lock_irqsave(&xhci->lock, flags);
3128 	for (i = 0; i < num_eps; i++) {
3129 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3130 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3131 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3132 			 udev->slot_id, ep_index);
3133 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3134 	}
3135 	xhci_free_command(xhci, config_cmd);
3136 	spin_unlock_irqrestore(&xhci->lock, flags);
3137 
3138 	/* Subtract 1 for stream 0, which drivers can't use */
3139 	return num_streams - 1;
3140 
3141 cleanup:
3142 	/* If it didn't work, free the streams! */
3143 	for (i = 0; i < num_eps; i++) {
3144 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3145 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3146 		vdev->eps[ep_index].stream_info = NULL;
3147 		/* FIXME Unset maxPstreams in endpoint context and
3148 		 * update deq ptr to point to normal string ring.
3149 		 */
3150 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3151 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3152 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3153 	}
3154 	xhci_free_command(xhci, config_cmd);
3155 	return -ENOMEM;
3156 }
3157 
3158 /* Transition the endpoint from using streams to being a "normal" endpoint
3159  * without streams.
3160  *
3161  * Modify the endpoint context state, submit a configure endpoint command,
3162  * and free all endpoint rings for streams if that completes successfully.
3163  */
3164 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3165 		struct usb_host_endpoint **eps, unsigned int num_eps,
3166 		gfp_t mem_flags)
3167 {
3168 	int i, ret;
3169 	struct xhci_hcd *xhci;
3170 	struct xhci_virt_device *vdev;
3171 	struct xhci_command *command;
3172 	unsigned int ep_index;
3173 	unsigned long flags;
3174 	u32 changed_ep_bitmask;
3175 
3176 	xhci = hcd_to_xhci(hcd);
3177 	vdev = xhci->devs[udev->slot_id];
3178 
3179 	/* Set up a configure endpoint command to remove the streams rings */
3180 	spin_lock_irqsave(&xhci->lock, flags);
3181 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3182 			udev, eps, num_eps);
3183 	if (changed_ep_bitmask == 0) {
3184 		spin_unlock_irqrestore(&xhci->lock, flags);
3185 		return -EINVAL;
3186 	}
3187 
3188 	/* Use the xhci_command structure from the first endpoint.  We may have
3189 	 * allocated too many, but the driver may call xhci_free_streams() for
3190 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3191 	 */
3192 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3193 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3194 	for (i = 0; i < num_eps; i++) {
3195 		struct xhci_ep_ctx *ep_ctx;
3196 
3197 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3198 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3199 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3200 			EP_GETTING_NO_STREAMS;
3201 
3202 		xhci_endpoint_copy(xhci, command->in_ctx,
3203 				vdev->out_ctx, ep_index);
3204 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3205 				&vdev->eps[ep_index]);
3206 	}
3207 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3208 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3209 	spin_unlock_irqrestore(&xhci->lock, flags);
3210 
3211 	/* Issue and wait for the configure endpoint command,
3212 	 * which must succeed.
3213 	 */
3214 	ret = xhci_configure_endpoint(xhci, udev, command,
3215 			false, true);
3216 
3217 	/* xHC rejected the configure endpoint command for some reason, so we
3218 	 * leave the streams rings intact.
3219 	 */
3220 	if (ret < 0)
3221 		return ret;
3222 
3223 	spin_lock_irqsave(&xhci->lock, flags);
3224 	for (i = 0; i < num_eps; i++) {
3225 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3226 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3227 		vdev->eps[ep_index].stream_info = NULL;
3228 		/* FIXME Unset maxPstreams in endpoint context and
3229 		 * update deq ptr to point to normal string ring.
3230 		 */
3231 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3232 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3233 	}
3234 	spin_unlock_irqrestore(&xhci->lock, flags);
3235 
3236 	return 0;
3237 }
3238 
3239 /*
3240  * Deletes endpoint resources for endpoints that were active before a Reset
3241  * Device command, or a Disable Slot command.  The Reset Device command leaves
3242  * the control endpoint intact, whereas the Disable Slot command deletes it.
3243  *
3244  * Must be called with xhci->lock held.
3245  */
3246 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3247 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3248 {
3249 	int i;
3250 	unsigned int num_dropped_eps = 0;
3251 	unsigned int drop_flags = 0;
3252 
3253 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3254 		if (virt_dev->eps[i].ring) {
3255 			drop_flags |= 1 << i;
3256 			num_dropped_eps++;
3257 		}
3258 	}
3259 	xhci->num_active_eps -= num_dropped_eps;
3260 	if (num_dropped_eps)
3261 		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3262 				"%u now active.\n",
3263 				num_dropped_eps, drop_flags,
3264 				xhci->num_active_eps);
3265 }
3266 
3267 /*
3268  * This submits a Reset Device Command, which will set the device state to 0,
3269  * set the device address to 0, and disable all the endpoints except the default
3270  * control endpoint.  The USB core should come back and call
3271  * xhci_address_device(), and then re-set up the configuration.  If this is
3272  * called because of a usb_reset_and_verify_device(), then the old alternate
3273  * settings will be re-installed through the normal bandwidth allocation
3274  * functions.
3275  *
3276  * Wait for the Reset Device command to finish.  Remove all structures
3277  * associated with the endpoints that were disabled.  Clear the input device
3278  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3279  *
3280  * If the virt_dev to be reset does not exist or does not match the udev,
3281  * it means the device is lost, possibly due to the xHC restore error and
3282  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3283  * re-allocate the device.
3284  */
3285 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3286 {
3287 	int ret, i;
3288 	unsigned long flags;
3289 	struct xhci_hcd *xhci;
3290 	unsigned int slot_id;
3291 	struct xhci_virt_device *virt_dev;
3292 	struct xhci_command *reset_device_cmd;
3293 	int timeleft;
3294 	int last_freed_endpoint;
3295 	struct xhci_slot_ctx *slot_ctx;
3296 	int old_active_eps = 0;
3297 
3298 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3299 	if (ret <= 0)
3300 		return ret;
3301 	xhci = hcd_to_xhci(hcd);
3302 	slot_id = udev->slot_id;
3303 	virt_dev = xhci->devs[slot_id];
3304 	if (!virt_dev) {
3305 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3306 				"not exist. Re-allocate the device\n", slot_id);
3307 		ret = xhci_alloc_dev(hcd, udev);
3308 		if (ret == 1)
3309 			return 0;
3310 		else
3311 			return -EINVAL;
3312 	}
3313 
3314 	if (virt_dev->udev != udev) {
3315 		/* If the virt_dev and the udev does not match, this virt_dev
3316 		 * may belong to another udev.
3317 		 * Re-allocate the device.
3318 		 */
3319 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3320 				"not match the udev. Re-allocate the device\n",
3321 				slot_id);
3322 		ret = xhci_alloc_dev(hcd, udev);
3323 		if (ret == 1)
3324 			return 0;
3325 		else
3326 			return -EINVAL;
3327 	}
3328 
3329 	/* If device is not setup, there is no point in resetting it */
3330 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3331 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3332 						SLOT_STATE_DISABLED)
3333 		return 0;
3334 
3335 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3336 	/* Allocate the command structure that holds the struct completion.
3337 	 * Assume we're in process context, since the normal device reset
3338 	 * process has to wait for the device anyway.  Storage devices are
3339 	 * reset as part of error handling, so use GFP_NOIO instead of
3340 	 * GFP_KERNEL.
3341 	 */
3342 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3343 	if (!reset_device_cmd) {
3344 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3345 		return -ENOMEM;
3346 	}
3347 
3348 	/* Attempt to submit the Reset Device command to the command ring */
3349 	spin_lock_irqsave(&xhci->lock, flags);
3350 	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3351 
3352 	/* Enqueue pointer can be left pointing to the link TRB,
3353 	 * we must handle that
3354 	 */
3355 	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3356 		reset_device_cmd->command_trb =
3357 			xhci->cmd_ring->enq_seg->next->trbs;
3358 
3359 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3360 	ret = xhci_queue_reset_device(xhci, slot_id);
3361 	if (ret) {
3362 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3363 		list_del(&reset_device_cmd->cmd_list);
3364 		spin_unlock_irqrestore(&xhci->lock, flags);
3365 		goto command_cleanup;
3366 	}
3367 	xhci_ring_cmd_db(xhci);
3368 	spin_unlock_irqrestore(&xhci->lock, flags);
3369 
3370 	/* Wait for the Reset Device command to finish */
3371 	timeleft = wait_for_completion_interruptible_timeout(
3372 			reset_device_cmd->completion,
3373 			USB_CTRL_SET_TIMEOUT);
3374 	if (timeleft <= 0) {
3375 		xhci_warn(xhci, "%s while waiting for reset device command\n",
3376 				timeleft == 0 ? "Timeout" : "Signal");
3377 		spin_lock_irqsave(&xhci->lock, flags);
3378 		/* The timeout might have raced with the event ring handler, so
3379 		 * only delete from the list if the item isn't poisoned.
3380 		 */
3381 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3382 			list_del(&reset_device_cmd->cmd_list);
3383 		spin_unlock_irqrestore(&xhci->lock, flags);
3384 		ret = -ETIME;
3385 		goto command_cleanup;
3386 	}
3387 
3388 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3389 	 * unless we tried to reset a slot ID that wasn't enabled,
3390 	 * or the device wasn't in the addressed or configured state.
3391 	 */
3392 	ret = reset_device_cmd->status;
3393 	switch (ret) {
3394 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3395 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3396 		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3397 				slot_id,
3398 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3399 		xhci_info(xhci, "Not freeing device rings.\n");
3400 		/* Don't treat this as an error.  May change my mind later. */
3401 		ret = 0;
3402 		goto command_cleanup;
3403 	case COMP_SUCCESS:
3404 		xhci_dbg(xhci, "Successful reset device command.\n");
3405 		break;
3406 	default:
3407 		if (xhci_is_vendor_info_code(xhci, ret))
3408 			break;
3409 		xhci_warn(xhci, "Unknown completion code %u for "
3410 				"reset device command.\n", ret);
3411 		ret = -EINVAL;
3412 		goto command_cleanup;
3413 	}
3414 
3415 	/* Free up host controller endpoint resources */
3416 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3417 		spin_lock_irqsave(&xhci->lock, flags);
3418 		/* Don't delete the default control endpoint resources */
3419 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3420 		spin_unlock_irqrestore(&xhci->lock, flags);
3421 	}
3422 
3423 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3424 	last_freed_endpoint = 1;
3425 	for (i = 1; i < 31; ++i) {
3426 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3427 
3428 		if (ep->ep_state & EP_HAS_STREAMS) {
3429 			xhci_free_stream_info(xhci, ep->stream_info);
3430 			ep->stream_info = NULL;
3431 			ep->ep_state &= ~EP_HAS_STREAMS;
3432 		}
3433 
3434 		if (ep->ring) {
3435 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3436 			last_freed_endpoint = i;
3437 		}
3438 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3439 			xhci_drop_ep_from_interval_table(xhci,
3440 					&virt_dev->eps[i].bw_info,
3441 					virt_dev->bw_table,
3442 					udev,
3443 					&virt_dev->eps[i],
3444 					virt_dev->tt_info);
3445 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3446 	}
3447 	/* If necessary, update the number of active TTs on this root port */
3448 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3449 
3450 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3451 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3452 	ret = 0;
3453 
3454 command_cleanup:
3455 	xhci_free_command(xhci, reset_device_cmd);
3456 	return ret;
3457 }
3458 
3459 /*
3460  * At this point, the struct usb_device is about to go away, the device has
3461  * disconnected, and all traffic has been stopped and the endpoints have been
3462  * disabled.  Free any HC data structures associated with that device.
3463  */
3464 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3465 {
3466 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3467 	struct xhci_virt_device *virt_dev;
3468 	unsigned long flags;
3469 	u32 state;
3470 	int i, ret;
3471 
3472 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3473 	/* If the host is halted due to driver unload, we still need to free the
3474 	 * device.
3475 	 */
3476 	if (ret <= 0 && ret != -ENODEV)
3477 		return;
3478 
3479 	virt_dev = xhci->devs[udev->slot_id];
3480 
3481 	/* Stop any wayward timer functions (which may grab the lock) */
3482 	for (i = 0; i < 31; ++i) {
3483 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3484 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3485 	}
3486 
3487 	if (udev->usb2_hw_lpm_enabled) {
3488 		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3489 		udev->usb2_hw_lpm_enabled = 0;
3490 	}
3491 
3492 	spin_lock_irqsave(&xhci->lock, flags);
3493 	/* Don't disable the slot if the host controller is dead. */
3494 	state = xhci_readl(xhci, &xhci->op_regs->status);
3495 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3496 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3497 		xhci_free_virt_device(xhci, udev->slot_id);
3498 		spin_unlock_irqrestore(&xhci->lock, flags);
3499 		return;
3500 	}
3501 
3502 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3503 		spin_unlock_irqrestore(&xhci->lock, flags);
3504 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3505 		return;
3506 	}
3507 	xhci_ring_cmd_db(xhci);
3508 	spin_unlock_irqrestore(&xhci->lock, flags);
3509 	/*
3510 	 * Event command completion handler will free any data structures
3511 	 * associated with the slot.  XXX Can free sleep?
3512 	 */
3513 }
3514 
3515 /*
3516  * Checks if we have enough host controller resources for the default control
3517  * endpoint.
3518  *
3519  * Must be called with xhci->lock held.
3520  */
3521 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3522 {
3523 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3524 		xhci_dbg(xhci, "Not enough ep ctxs: "
3525 				"%u active, need to add 1, limit is %u.\n",
3526 				xhci->num_active_eps, xhci->limit_active_eps);
3527 		return -ENOMEM;
3528 	}
3529 	xhci->num_active_eps += 1;
3530 	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3531 			xhci->num_active_eps);
3532 	return 0;
3533 }
3534 
3535 
3536 /*
3537  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3538  * timed out, or allocating memory failed.  Returns 1 on success.
3539  */
3540 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3541 {
3542 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3543 	unsigned long flags;
3544 	int timeleft;
3545 	int ret;
3546 
3547 	spin_lock_irqsave(&xhci->lock, flags);
3548 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3549 	if (ret) {
3550 		spin_unlock_irqrestore(&xhci->lock, flags);
3551 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3552 		return 0;
3553 	}
3554 	xhci_ring_cmd_db(xhci);
3555 	spin_unlock_irqrestore(&xhci->lock, flags);
3556 
3557 	/* XXX: how much time for xHC slot assignment? */
3558 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3559 			USB_CTRL_SET_TIMEOUT);
3560 	if (timeleft <= 0) {
3561 		xhci_warn(xhci, "%s while waiting for a slot\n",
3562 				timeleft == 0 ? "Timeout" : "Signal");
3563 		/* FIXME cancel the enable slot request */
3564 		return 0;
3565 	}
3566 
3567 	if (!xhci->slot_id) {
3568 		xhci_err(xhci, "Error while assigning device slot ID\n");
3569 		return 0;
3570 	}
3571 
3572 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3573 		spin_lock_irqsave(&xhci->lock, flags);
3574 		ret = xhci_reserve_host_control_ep_resources(xhci);
3575 		if (ret) {
3576 			spin_unlock_irqrestore(&xhci->lock, flags);
3577 			xhci_warn(xhci, "Not enough host resources, "
3578 					"active endpoint contexts = %u\n",
3579 					xhci->num_active_eps);
3580 			goto disable_slot;
3581 		}
3582 		spin_unlock_irqrestore(&xhci->lock, flags);
3583 	}
3584 	/* Use GFP_NOIO, since this function can be called from
3585 	 * xhci_discover_or_reset_device(), which may be called as part of
3586 	 * mass storage driver error handling.
3587 	 */
3588 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3589 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3590 		goto disable_slot;
3591 	}
3592 	udev->slot_id = xhci->slot_id;
3593 	/* Is this a LS or FS device under a HS hub? */
3594 	/* Hub or peripherial? */
3595 	return 1;
3596 
3597 disable_slot:
3598 	/* Disable slot, if we can do it without mem alloc */
3599 	spin_lock_irqsave(&xhci->lock, flags);
3600 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3601 		xhci_ring_cmd_db(xhci);
3602 	spin_unlock_irqrestore(&xhci->lock, flags);
3603 	return 0;
3604 }
3605 
3606 /*
3607  * Issue an Address Device command (which will issue a SetAddress request to
3608  * the device).
3609  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3610  * we should only issue and wait on one address command at the same time.
3611  *
3612  * We add one to the device address issued by the hardware because the USB core
3613  * uses address 1 for the root hubs (even though they're not really devices).
3614  */
3615 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3616 {
3617 	unsigned long flags;
3618 	int timeleft;
3619 	struct xhci_virt_device *virt_dev;
3620 	int ret = 0;
3621 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3622 	struct xhci_slot_ctx *slot_ctx;
3623 	struct xhci_input_control_ctx *ctrl_ctx;
3624 	u64 temp_64;
3625 
3626 	if (!udev->slot_id) {
3627 		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3628 		return -EINVAL;
3629 	}
3630 
3631 	virt_dev = xhci->devs[udev->slot_id];
3632 
3633 	if (WARN_ON(!virt_dev)) {
3634 		/*
3635 		 * In plug/unplug torture test with an NEC controller,
3636 		 * a zero-dereference was observed once due to virt_dev = 0.
3637 		 * Print useful debug rather than crash if it is observed again!
3638 		 */
3639 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3640 			udev->slot_id);
3641 		return -EINVAL;
3642 	}
3643 
3644 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3645 	/*
3646 	 * If this is the first Set Address since device plug-in or
3647 	 * virt_device realloaction after a resume with an xHCI power loss,
3648 	 * then set up the slot context.
3649 	 */
3650 	if (!slot_ctx->dev_info)
3651 		xhci_setup_addressable_virt_dev(xhci, udev);
3652 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3653 	else
3654 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3655 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3656 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3657 	ctrl_ctx->drop_flags = 0;
3658 
3659 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3660 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3661 
3662 	spin_lock_irqsave(&xhci->lock, flags);
3663 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3664 					udev->slot_id);
3665 	if (ret) {
3666 		spin_unlock_irqrestore(&xhci->lock, flags);
3667 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3668 		return ret;
3669 	}
3670 	xhci_ring_cmd_db(xhci);
3671 	spin_unlock_irqrestore(&xhci->lock, flags);
3672 
3673 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3674 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3675 			USB_CTRL_SET_TIMEOUT);
3676 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3677 	 * the SetAddress() "recovery interval" required by USB and aborting the
3678 	 * command on a timeout.
3679 	 */
3680 	if (timeleft <= 0) {
3681 		xhci_warn(xhci, "%s while waiting for address device command\n",
3682 				timeleft == 0 ? "Timeout" : "Signal");
3683 		/* FIXME cancel the address device command */
3684 		return -ETIME;
3685 	}
3686 
3687 	switch (virt_dev->cmd_status) {
3688 	case COMP_CTX_STATE:
3689 	case COMP_EBADSLT:
3690 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3691 				udev->slot_id);
3692 		ret = -EINVAL;
3693 		break;
3694 	case COMP_TX_ERR:
3695 		dev_warn(&udev->dev, "Device not responding to set address.\n");
3696 		ret = -EPROTO;
3697 		break;
3698 	case COMP_DEV_ERR:
3699 		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3700 				"device command.\n");
3701 		ret = -ENODEV;
3702 		break;
3703 	case COMP_SUCCESS:
3704 		xhci_dbg(xhci, "Successful Address Device command\n");
3705 		break;
3706 	default:
3707 		xhci_err(xhci, "ERROR: unexpected command completion "
3708 				"code 0x%x.\n", virt_dev->cmd_status);
3709 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3710 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3711 		ret = -EINVAL;
3712 		break;
3713 	}
3714 	if (ret) {
3715 		return ret;
3716 	}
3717 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3718 	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3719 	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3720 		 udev->slot_id,
3721 		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3722 		 (unsigned long long)
3723 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3724 	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3725 			(unsigned long long)virt_dev->out_ctx->dma);
3726 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3727 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3728 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3729 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3730 	/*
3731 	 * USB core uses address 1 for the roothubs, so we add one to the
3732 	 * address given back to us by the HC.
3733 	 */
3734 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3735 	/* Use kernel assigned address for devices; store xHC assigned
3736 	 * address locally. */
3737 	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3738 		+ 1;
3739 	/* Zero the input context control for later use */
3740 	ctrl_ctx->add_flags = 0;
3741 	ctrl_ctx->drop_flags = 0;
3742 
3743 	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3744 
3745 	return 0;
3746 }
3747 
3748 #ifdef CONFIG_USB_SUSPEND
3749 
3750 /* BESL to HIRD Encoding array for USB2 LPM */
3751 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3752 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3753 
3754 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3755 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3756 					struct usb_device *udev)
3757 {
3758 	int u2del, besl, besl_host;
3759 	int besl_device = 0;
3760 	u32 field;
3761 
3762 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3763 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3764 
3765 	if (field & USB_BESL_SUPPORT) {
3766 		for (besl_host = 0; besl_host < 16; besl_host++) {
3767 			if (xhci_besl_encoding[besl_host] >= u2del)
3768 				break;
3769 		}
3770 		/* Use baseline BESL value as default */
3771 		if (field & USB_BESL_BASELINE_VALID)
3772 			besl_device = USB_GET_BESL_BASELINE(field);
3773 		else if (field & USB_BESL_DEEP_VALID)
3774 			besl_device = USB_GET_BESL_DEEP(field);
3775 	} else {
3776 		if (u2del <= 50)
3777 			besl_host = 0;
3778 		else
3779 			besl_host = (u2del - 51) / 75 + 1;
3780 	}
3781 
3782 	besl = besl_host + besl_device;
3783 	if (besl > 15)
3784 		besl = 15;
3785 
3786 	return besl;
3787 }
3788 
3789 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3790 					struct usb_device *udev)
3791 {
3792 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3793 	struct dev_info	*dev_info;
3794 	__le32 __iomem	**port_array;
3795 	__le32 __iomem	*addr, *pm_addr;
3796 	u32		temp, dev_id;
3797 	unsigned int	port_num;
3798 	unsigned long	flags;
3799 	int		hird;
3800 	int		ret;
3801 
3802 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3803 			!udev->lpm_capable)
3804 		return -EINVAL;
3805 
3806 	/* we only support lpm for non-hub device connected to root hub yet */
3807 	if (!udev->parent || udev->parent->parent ||
3808 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3809 		return -EINVAL;
3810 
3811 	spin_lock_irqsave(&xhci->lock, flags);
3812 
3813 	/* Look for devices in lpm_failed_devs list */
3814 	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3815 			le16_to_cpu(udev->descriptor.idProduct);
3816 	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3817 		if (dev_info->dev_id == dev_id) {
3818 			ret = -EINVAL;
3819 			goto finish;
3820 		}
3821 	}
3822 
3823 	port_array = xhci->usb2_ports;
3824 	port_num = udev->portnum - 1;
3825 
3826 	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3827 		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3828 		ret = -EINVAL;
3829 		goto finish;
3830 	}
3831 
3832 	/*
3833 	 * Test USB 2.0 software LPM.
3834 	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3835 	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3836 	 * in the June 2011 errata release.
3837 	 */
3838 	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3839 	/*
3840 	 * Set L1 Device Slot and HIRD/BESL.
3841 	 * Check device's USB 2.0 extension descriptor to determine whether
3842 	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3843 	 */
3844 	pm_addr = port_array[port_num] + 1;
3845 	hird = xhci_calculate_hird_besl(xhci, udev);
3846 	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3847 	xhci_writel(xhci, temp, pm_addr);
3848 
3849 	/* Set port link state to U2(L1) */
3850 	addr = port_array[port_num];
3851 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3852 
3853 	/* wait for ACK */
3854 	spin_unlock_irqrestore(&xhci->lock, flags);
3855 	msleep(10);
3856 	spin_lock_irqsave(&xhci->lock, flags);
3857 
3858 	/* Check L1 Status */
3859 	ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3860 	if (ret != -ETIMEDOUT) {
3861 		/* enter L1 successfully */
3862 		temp = xhci_readl(xhci, addr);
3863 		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3864 				port_num, temp);
3865 		ret = 0;
3866 	} else {
3867 		temp = xhci_readl(xhci, pm_addr);
3868 		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3869 				port_num, temp & PORT_L1S_MASK);
3870 		ret = -EINVAL;
3871 	}
3872 
3873 	/* Resume the port */
3874 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3875 
3876 	spin_unlock_irqrestore(&xhci->lock, flags);
3877 	msleep(10);
3878 	spin_lock_irqsave(&xhci->lock, flags);
3879 
3880 	/* Clear PLC */
3881 	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3882 
3883 	/* Check PORTSC to make sure the device is in the right state */
3884 	if (!ret) {
3885 		temp = xhci_readl(xhci, addr);
3886 		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
3887 		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3888 				(temp & PORT_PLS_MASK) != XDEV_U0) {
3889 			xhci_dbg(xhci, "port L1 resume fail\n");
3890 			ret = -EINVAL;
3891 		}
3892 	}
3893 
3894 	if (ret) {
3895 		/* Insert dev to lpm_failed_devs list */
3896 		xhci_warn(xhci, "device LPM test failed, may disconnect and "
3897 				"re-enumerate\n");
3898 		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3899 		if (!dev_info) {
3900 			ret = -ENOMEM;
3901 			goto finish;
3902 		}
3903 		dev_info->dev_id = dev_id;
3904 		INIT_LIST_HEAD(&dev_info->list);
3905 		list_add(&dev_info->list, &xhci->lpm_failed_devs);
3906 	} else {
3907 		xhci_ring_device(xhci, udev->slot_id);
3908 	}
3909 
3910 finish:
3911 	spin_unlock_irqrestore(&xhci->lock, flags);
3912 	return ret;
3913 }
3914 
3915 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3916 			struct usb_device *udev, int enable)
3917 {
3918 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3919 	__le32 __iomem	**port_array;
3920 	__le32 __iomem	*pm_addr;
3921 	u32		temp;
3922 	unsigned int	port_num;
3923 	unsigned long	flags;
3924 	int		hird;
3925 
3926 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3927 			!udev->lpm_capable)
3928 		return -EPERM;
3929 
3930 	if (!udev->parent || udev->parent->parent ||
3931 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3932 		return -EPERM;
3933 
3934 	if (udev->usb2_hw_lpm_capable != 1)
3935 		return -EPERM;
3936 
3937 	spin_lock_irqsave(&xhci->lock, flags);
3938 
3939 	port_array = xhci->usb2_ports;
3940 	port_num = udev->portnum - 1;
3941 	pm_addr = port_array[port_num] + 1;
3942 	temp = xhci_readl(xhci, pm_addr);
3943 
3944 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3945 			enable ? "enable" : "disable", port_num);
3946 
3947 	hird = xhci_calculate_hird_besl(xhci, udev);
3948 
3949 	if (enable) {
3950 		temp &= ~PORT_HIRD_MASK;
3951 		temp |= PORT_HIRD(hird) | PORT_RWE;
3952 		xhci_writel(xhci, temp, pm_addr);
3953 		temp = xhci_readl(xhci, pm_addr);
3954 		temp |= PORT_HLE;
3955 		xhci_writel(xhci, temp, pm_addr);
3956 	} else {
3957 		temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3958 		xhci_writel(xhci, temp, pm_addr);
3959 	}
3960 
3961 	spin_unlock_irqrestore(&xhci->lock, flags);
3962 	return 0;
3963 }
3964 
3965 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3966 {
3967 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3968 	int		ret;
3969 
3970 	ret = xhci_usb2_software_lpm_test(hcd, udev);
3971 	if (!ret) {
3972 		xhci_dbg(xhci, "software LPM test succeed\n");
3973 		if (xhci->hw_lpm_support == 1) {
3974 			udev->usb2_hw_lpm_capable = 1;
3975 			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3976 			if (!ret)
3977 				udev->usb2_hw_lpm_enabled = 1;
3978 		}
3979 	}
3980 
3981 	return 0;
3982 }
3983 
3984 #else
3985 
3986 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3987 				struct usb_device *udev, int enable)
3988 {
3989 	return 0;
3990 }
3991 
3992 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3993 {
3994 	return 0;
3995 }
3996 
3997 #endif /* CONFIG_USB_SUSPEND */
3998 
3999 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4000 
4001 #ifdef CONFIG_PM
4002 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4003 static unsigned long long xhci_service_interval_to_ns(
4004 		struct usb_endpoint_descriptor *desc)
4005 {
4006 	return (1 << (desc->bInterval - 1)) * 125 * 1000;
4007 }
4008 
4009 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4010 		enum usb3_link_state state)
4011 {
4012 	unsigned long long sel;
4013 	unsigned long long pel;
4014 	unsigned int max_sel_pel;
4015 	char *state_name;
4016 
4017 	switch (state) {
4018 	case USB3_LPM_U1:
4019 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4020 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4021 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4022 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4023 		state_name = "U1";
4024 		break;
4025 	case USB3_LPM_U2:
4026 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4027 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4028 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4029 		state_name = "U2";
4030 		break;
4031 	default:
4032 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4033 				__func__);
4034 		return USB3_LPM_DISABLED;
4035 	}
4036 
4037 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4038 		return USB3_LPM_DEVICE_INITIATED;
4039 
4040 	if (sel > max_sel_pel)
4041 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4042 				"due to long SEL %llu ms\n",
4043 				state_name, sel);
4044 	else
4045 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4046 				"due to long PEL %llu\n ms",
4047 				state_name, pel);
4048 	return USB3_LPM_DISABLED;
4049 }
4050 
4051 /* Returns the hub-encoded U1 timeout value.
4052  * The U1 timeout should be the maximum of the following values:
4053  *  - For control endpoints, U1 system exit latency (SEL) * 3
4054  *  - For bulk endpoints, U1 SEL * 5
4055  *  - For interrupt endpoints:
4056  *    - Notification EPs, U1 SEL * 3
4057  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4058  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4059  */
4060 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4061 		struct usb_endpoint_descriptor *desc)
4062 {
4063 	unsigned long long timeout_ns;
4064 	int ep_type;
4065 	int intr_type;
4066 
4067 	ep_type = usb_endpoint_type(desc);
4068 	switch (ep_type) {
4069 	case USB_ENDPOINT_XFER_CONTROL:
4070 		timeout_ns = udev->u1_params.sel * 3;
4071 		break;
4072 	case USB_ENDPOINT_XFER_BULK:
4073 		timeout_ns = udev->u1_params.sel * 5;
4074 		break;
4075 	case USB_ENDPOINT_XFER_INT:
4076 		intr_type = usb_endpoint_interrupt_type(desc);
4077 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4078 			timeout_ns = udev->u1_params.sel * 3;
4079 			break;
4080 		}
4081 		/* Otherwise the calculation is the same as isoc eps */
4082 	case USB_ENDPOINT_XFER_ISOC:
4083 		timeout_ns = xhci_service_interval_to_ns(desc);
4084 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4085 		if (timeout_ns < udev->u1_params.sel * 2)
4086 			timeout_ns = udev->u1_params.sel * 2;
4087 		break;
4088 	default:
4089 		return 0;
4090 	}
4091 
4092 	/* The U1 timeout is encoded in 1us intervals. */
4093 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4094 	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4095 	if (timeout_ns == USB3_LPM_DISABLED)
4096 		timeout_ns++;
4097 
4098 	/* If the necessary timeout value is bigger than what we can set in the
4099 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4100 	 */
4101 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4102 		return timeout_ns;
4103 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4104 			"due to long timeout %llu ms\n", timeout_ns);
4105 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4106 }
4107 
4108 /* Returns the hub-encoded U2 timeout value.
4109  * The U2 timeout should be the maximum of:
4110  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4111  *  - largest bInterval of any active periodic endpoint (to avoid going
4112  *    into lower power link states between intervals).
4113  *  - the U2 Exit Latency of the device
4114  */
4115 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4116 		struct usb_endpoint_descriptor *desc)
4117 {
4118 	unsigned long long timeout_ns;
4119 	unsigned long long u2_del_ns;
4120 
4121 	timeout_ns = 10 * 1000 * 1000;
4122 
4123 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4124 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4125 		timeout_ns = xhci_service_interval_to_ns(desc);
4126 
4127 	u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000;
4128 	if (u2_del_ns > timeout_ns)
4129 		timeout_ns = u2_del_ns;
4130 
4131 	/* The U2 timeout is encoded in 256us intervals */
4132 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4133 	/* If the necessary timeout value is bigger than what we can set in the
4134 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4135 	 */
4136 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4137 		return timeout_ns;
4138 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4139 			"due to long timeout %llu ms\n", timeout_ns);
4140 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4141 }
4142 
4143 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4144 		struct usb_device *udev,
4145 		struct usb_endpoint_descriptor *desc,
4146 		enum usb3_link_state state,
4147 		u16 *timeout)
4148 {
4149 	if (state == USB3_LPM_U1) {
4150 		if (xhci->quirks & XHCI_INTEL_HOST)
4151 			return xhci_calculate_intel_u1_timeout(udev, desc);
4152 	} else {
4153 		if (xhci->quirks & XHCI_INTEL_HOST)
4154 			return xhci_calculate_intel_u2_timeout(udev, desc);
4155 	}
4156 
4157 	return USB3_LPM_DISABLED;
4158 }
4159 
4160 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4161 		struct usb_device *udev,
4162 		struct usb_endpoint_descriptor *desc,
4163 		enum usb3_link_state state,
4164 		u16 *timeout)
4165 {
4166 	u16 alt_timeout;
4167 
4168 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4169 		desc, state, timeout);
4170 
4171 	/* If we found we can't enable hub-initiated LPM, or
4172 	 * the U1 or U2 exit latency was too high to allow
4173 	 * device-initiated LPM as well, just stop searching.
4174 	 */
4175 	if (alt_timeout == USB3_LPM_DISABLED ||
4176 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4177 		*timeout = alt_timeout;
4178 		return -E2BIG;
4179 	}
4180 	if (alt_timeout > *timeout)
4181 		*timeout = alt_timeout;
4182 	return 0;
4183 }
4184 
4185 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4186 		struct usb_device *udev,
4187 		struct usb_host_interface *alt,
4188 		enum usb3_link_state state,
4189 		u16 *timeout)
4190 {
4191 	int j;
4192 
4193 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4194 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4195 					&alt->endpoint[j].desc, state, timeout))
4196 			return -E2BIG;
4197 		continue;
4198 	}
4199 	return 0;
4200 }
4201 
4202 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4203 		enum usb3_link_state state)
4204 {
4205 	struct usb_device *parent;
4206 	unsigned int num_hubs;
4207 
4208 	if (state == USB3_LPM_U2)
4209 		return 0;
4210 
4211 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4212 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4213 			parent = parent->parent)
4214 		num_hubs++;
4215 
4216 	if (num_hubs < 2)
4217 		return 0;
4218 
4219 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4220 			" below second-tier hub.\n");
4221 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4222 			"to decrease power consumption.\n");
4223 	return -E2BIG;
4224 }
4225 
4226 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4227 		struct usb_device *udev,
4228 		enum usb3_link_state state)
4229 {
4230 	if (xhci->quirks & XHCI_INTEL_HOST)
4231 		return xhci_check_intel_tier_policy(udev, state);
4232 	return -EINVAL;
4233 }
4234 
4235 /* Returns the U1 or U2 timeout that should be enabled.
4236  * If the tier check or timeout setting functions return with a non-zero exit
4237  * code, that means the timeout value has been finalized and we shouldn't look
4238  * at any more endpoints.
4239  */
4240 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4241 			struct usb_device *udev, enum usb3_link_state state)
4242 {
4243 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4244 	struct usb_host_config *config;
4245 	char *state_name;
4246 	int i;
4247 	u16 timeout = USB3_LPM_DISABLED;
4248 
4249 	if (state == USB3_LPM_U1)
4250 		state_name = "U1";
4251 	else if (state == USB3_LPM_U2)
4252 		state_name = "U2";
4253 	else {
4254 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4255 				state);
4256 		return timeout;
4257 	}
4258 
4259 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4260 		return timeout;
4261 
4262 	/* Gather some information about the currently installed configuration
4263 	 * and alternate interface settings.
4264 	 */
4265 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4266 			state, &timeout))
4267 		return timeout;
4268 
4269 	config = udev->actconfig;
4270 	if (!config)
4271 		return timeout;
4272 
4273 	for (i = 0; i < USB_MAXINTERFACES; i++) {
4274 		struct usb_driver *driver;
4275 		struct usb_interface *intf = config->interface[i];
4276 
4277 		if (!intf)
4278 			continue;
4279 
4280 		/* Check if any currently bound drivers want hub-initiated LPM
4281 		 * disabled.
4282 		 */
4283 		if (intf->dev.driver) {
4284 			driver = to_usb_driver(intf->dev.driver);
4285 			if (driver && driver->disable_hub_initiated_lpm) {
4286 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4287 						"at request of driver %s\n",
4288 						state_name, driver->name);
4289 				return xhci_get_timeout_no_hub_lpm(udev, state);
4290 			}
4291 		}
4292 
4293 		/* Not sure how this could happen... */
4294 		if (!intf->cur_altsetting)
4295 			continue;
4296 
4297 		if (xhci_update_timeout_for_interface(xhci, udev,
4298 					intf->cur_altsetting,
4299 					state, &timeout))
4300 			return timeout;
4301 	}
4302 	return timeout;
4303 }
4304 
4305 /*
4306  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4307  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4308  */
4309 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4310 			struct usb_device *udev, u16 max_exit_latency)
4311 {
4312 	struct xhci_virt_device *virt_dev;
4313 	struct xhci_command *command;
4314 	struct xhci_input_control_ctx *ctrl_ctx;
4315 	struct xhci_slot_ctx *slot_ctx;
4316 	unsigned long flags;
4317 	int ret;
4318 
4319 	spin_lock_irqsave(&xhci->lock, flags);
4320 	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4321 		spin_unlock_irqrestore(&xhci->lock, flags);
4322 		return 0;
4323 	}
4324 
4325 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4326 	virt_dev = xhci->devs[udev->slot_id];
4327 	command = xhci->lpm_command;
4328 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4329 	spin_unlock_irqrestore(&xhci->lock, flags);
4330 
4331 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4332 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4333 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4334 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4335 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4336 
4337 	xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4338 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4339 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4340 
4341 	/* Issue and wait for the evaluate context command. */
4342 	ret = xhci_configure_endpoint(xhci, udev, command,
4343 			true, true);
4344 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4345 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4346 
4347 	if (!ret) {
4348 		spin_lock_irqsave(&xhci->lock, flags);
4349 		virt_dev->current_mel = max_exit_latency;
4350 		spin_unlock_irqrestore(&xhci->lock, flags);
4351 	}
4352 	return ret;
4353 }
4354 
4355 static int calculate_max_exit_latency(struct usb_device *udev,
4356 		enum usb3_link_state state_changed,
4357 		u16 hub_encoded_timeout)
4358 {
4359 	unsigned long long u1_mel_us = 0;
4360 	unsigned long long u2_mel_us = 0;
4361 	unsigned long long mel_us = 0;
4362 	bool disabling_u1;
4363 	bool disabling_u2;
4364 	bool enabling_u1;
4365 	bool enabling_u2;
4366 
4367 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4368 			hub_encoded_timeout == USB3_LPM_DISABLED);
4369 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4370 			hub_encoded_timeout == USB3_LPM_DISABLED);
4371 
4372 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4373 			hub_encoded_timeout != USB3_LPM_DISABLED);
4374 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4375 			hub_encoded_timeout != USB3_LPM_DISABLED);
4376 
4377 	/* If U1 was already enabled and we're not disabling it,
4378 	 * or we're going to enable U1, account for the U1 max exit latency.
4379 	 */
4380 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4381 			enabling_u1)
4382 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4383 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4384 			enabling_u2)
4385 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4386 
4387 	if (u1_mel_us > u2_mel_us)
4388 		mel_us = u1_mel_us;
4389 	else
4390 		mel_us = u2_mel_us;
4391 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4392 	if (mel_us > MAX_EXIT) {
4393 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4394 				"is too big.\n", mel_us);
4395 		return -E2BIG;
4396 	}
4397 	return mel_us;
4398 }
4399 
4400 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4401 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4402 			struct usb_device *udev, enum usb3_link_state state)
4403 {
4404 	struct xhci_hcd	*xhci;
4405 	u16 hub_encoded_timeout;
4406 	int mel;
4407 	int ret;
4408 
4409 	xhci = hcd_to_xhci(hcd);
4410 	/* The LPM timeout values are pretty host-controller specific, so don't
4411 	 * enable hub-initiated timeouts unless the vendor has provided
4412 	 * information about their timeout algorithm.
4413 	 */
4414 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4415 			!xhci->devs[udev->slot_id])
4416 		return USB3_LPM_DISABLED;
4417 
4418 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4419 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4420 	if (mel < 0) {
4421 		/* Max Exit Latency is too big, disable LPM. */
4422 		hub_encoded_timeout = USB3_LPM_DISABLED;
4423 		mel = 0;
4424 	}
4425 
4426 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4427 	if (ret)
4428 		return ret;
4429 	return hub_encoded_timeout;
4430 }
4431 
4432 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4433 			struct usb_device *udev, enum usb3_link_state state)
4434 {
4435 	struct xhci_hcd	*xhci;
4436 	u16 mel;
4437 	int ret;
4438 
4439 	xhci = hcd_to_xhci(hcd);
4440 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4441 			!xhci->devs[udev->slot_id])
4442 		return 0;
4443 
4444 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4445 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4446 	if (ret)
4447 		return ret;
4448 	return 0;
4449 }
4450 #else /* CONFIG_PM */
4451 
4452 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4453 			struct usb_device *udev, enum usb3_link_state state)
4454 {
4455 	return USB3_LPM_DISABLED;
4456 }
4457 
4458 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4459 			struct usb_device *udev, enum usb3_link_state state)
4460 {
4461 	return 0;
4462 }
4463 #endif	/* CONFIG_PM */
4464 
4465 /*-------------------------------------------------------------------------*/
4466 
4467 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4468  * internal data structures for the device.
4469  */
4470 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4471 			struct usb_tt *tt, gfp_t mem_flags)
4472 {
4473 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4474 	struct xhci_virt_device *vdev;
4475 	struct xhci_command *config_cmd;
4476 	struct xhci_input_control_ctx *ctrl_ctx;
4477 	struct xhci_slot_ctx *slot_ctx;
4478 	unsigned long flags;
4479 	unsigned think_time;
4480 	int ret;
4481 
4482 	/* Ignore root hubs */
4483 	if (!hdev->parent)
4484 		return 0;
4485 
4486 	vdev = xhci->devs[hdev->slot_id];
4487 	if (!vdev) {
4488 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4489 		return -EINVAL;
4490 	}
4491 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4492 	if (!config_cmd) {
4493 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4494 		return -ENOMEM;
4495 	}
4496 
4497 	spin_lock_irqsave(&xhci->lock, flags);
4498 	if (hdev->speed == USB_SPEED_HIGH &&
4499 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4500 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4501 		xhci_free_command(xhci, config_cmd);
4502 		spin_unlock_irqrestore(&xhci->lock, flags);
4503 		return -ENOMEM;
4504 	}
4505 
4506 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4507 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4508 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4509 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4510 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4511 	if (tt->multi)
4512 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4513 	if (xhci->hci_version > 0x95) {
4514 		xhci_dbg(xhci, "xHCI version %x needs hub "
4515 				"TT think time and number of ports\n",
4516 				(unsigned int) xhci->hci_version);
4517 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4518 		/* Set TT think time - convert from ns to FS bit times.
4519 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4520 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4521 		 *
4522 		 * xHCI 1.0: this field shall be 0 if the device is not a
4523 		 * High-spped hub.
4524 		 */
4525 		think_time = tt->think_time;
4526 		if (think_time != 0)
4527 			think_time = (think_time / 666) - 1;
4528 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4529 			slot_ctx->tt_info |=
4530 				cpu_to_le32(TT_THINK_TIME(think_time));
4531 	} else {
4532 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4533 				"TT think time or number of ports\n",
4534 				(unsigned int) xhci->hci_version);
4535 	}
4536 	slot_ctx->dev_state = 0;
4537 	spin_unlock_irqrestore(&xhci->lock, flags);
4538 
4539 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4540 			(xhci->hci_version > 0x95) ?
4541 			"configure endpoint" : "evaluate context");
4542 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4543 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4544 
4545 	/* Issue and wait for the configure endpoint or
4546 	 * evaluate context command.
4547 	 */
4548 	if (xhci->hci_version > 0x95)
4549 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4550 				false, false);
4551 	else
4552 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4553 				true, false);
4554 
4555 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4556 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4557 
4558 	xhci_free_command(xhci, config_cmd);
4559 	return ret;
4560 }
4561 
4562 int xhci_get_frame(struct usb_hcd *hcd)
4563 {
4564 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4565 	/* EHCI mods by the periodic size.  Why? */
4566 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4567 }
4568 
4569 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4570 {
4571 	struct xhci_hcd		*xhci;
4572 	struct device		*dev = hcd->self.controller;
4573 	int			retval;
4574 	u32			temp;
4575 
4576 	/* Accept arbitrarily long scatter-gather lists */
4577 	hcd->self.sg_tablesize = ~0;
4578 	/* XHCI controllers don't stop the ep queue on short packets :| */
4579 	hcd->self.no_stop_on_short = 1;
4580 
4581 	if (usb_hcd_is_primary_hcd(hcd)) {
4582 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4583 		if (!xhci)
4584 			return -ENOMEM;
4585 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4586 		xhci->main_hcd = hcd;
4587 		/* Mark the first roothub as being USB 2.0.
4588 		 * The xHCI driver will register the USB 3.0 roothub.
4589 		 */
4590 		hcd->speed = HCD_USB2;
4591 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4592 		/*
4593 		 * USB 2.0 roothub under xHCI has an integrated TT,
4594 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4595 		 * companion controller.
4596 		 */
4597 		hcd->has_tt = 1;
4598 	} else {
4599 		/* xHCI private pointer was set in xhci_pci_probe for the second
4600 		 * registered roothub.
4601 		 */
4602 		xhci = hcd_to_xhci(hcd);
4603 		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4604 		if (HCC_64BIT_ADDR(temp)) {
4605 			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4606 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4607 		} else {
4608 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4609 		}
4610 		return 0;
4611 	}
4612 
4613 	xhci->cap_regs = hcd->regs;
4614 	xhci->op_regs = hcd->regs +
4615 		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4616 	xhci->run_regs = hcd->regs +
4617 		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4618 	/* Cache read-only capability registers */
4619 	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4620 	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4621 	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4622 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4623 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4624 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4625 	xhci_print_registers(xhci);
4626 
4627 	get_quirks(dev, xhci);
4628 
4629 	/* Make sure the HC is halted. */
4630 	retval = xhci_halt(xhci);
4631 	if (retval)
4632 		goto error;
4633 
4634 	xhci_dbg(xhci, "Resetting HCD\n");
4635 	/* Reset the internal HC memory state and registers. */
4636 	retval = xhci_reset(xhci);
4637 	if (retval)
4638 		goto error;
4639 	xhci_dbg(xhci, "Reset complete\n");
4640 
4641 	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4642 	if (HCC_64BIT_ADDR(temp)) {
4643 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4644 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4645 	} else {
4646 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4647 	}
4648 
4649 	xhci_dbg(xhci, "Calling HCD init\n");
4650 	/* Initialize HCD and host controller data structures. */
4651 	retval = xhci_init(hcd);
4652 	if (retval)
4653 		goto error;
4654 	xhci_dbg(xhci, "Called HCD init\n");
4655 	return 0;
4656 error:
4657 	kfree(xhci);
4658 	return retval;
4659 }
4660 
4661 MODULE_DESCRIPTION(DRIVER_DESC);
4662 MODULE_AUTHOR(DRIVER_AUTHOR);
4663 MODULE_LICENSE("GPL");
4664 
4665 static int __init xhci_hcd_init(void)
4666 {
4667 	int retval;
4668 
4669 	retval = xhci_register_pci();
4670 	if (retval < 0) {
4671 		printk(KERN_DEBUG "Problem registering PCI driver.");
4672 		return retval;
4673 	}
4674 	retval = xhci_register_plat();
4675 	if (retval < 0) {
4676 		printk(KERN_DEBUG "Problem registering platform driver.");
4677 		goto unreg_pci;
4678 	}
4679 	/*
4680 	 * Check the compiler generated sizes of structures that must be laid
4681 	 * out in specific ways for hardware access.
4682 	 */
4683 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4684 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4685 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4686 	/* xhci_device_control has eight fields, and also
4687 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4688 	 */
4689 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4690 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4691 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4692 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4693 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4694 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4695 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4696 	return 0;
4697 unreg_pci:
4698 	xhci_unregister_pci();
4699 	return retval;
4700 }
4701 module_init(xhci_hcd_init);
4702 
4703 static void __exit xhci_hcd_cleanup(void)
4704 {
4705 	xhci_unregister_pci();
4706 	xhci_unregister_plat();
4707 }
4708 module_exit(xhci_hcd_cleanup);
4709