1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 31 #include "xhci.h" 32 33 #define DRIVER_AUTHOR "Sarah Sharp" 34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 35 36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 37 static int link_quirk; 38 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 40 41 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 42 /* 43 * handshake - spin reading hc until handshake completes or fails 44 * @ptr: address of hc register to be read 45 * @mask: bits to look at in result of read 46 * @done: value of those bits when handshake succeeds 47 * @usec: timeout in microseconds 48 * 49 * Returns negative errno, or zero on success 50 * 51 * Success happens when the "mask" bits have the specified value (hardware 52 * handshake done). There are two failure modes: "usec" have passed (major 53 * hardware flakeout), or the register reads as all-ones (hardware removed). 54 */ 55 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr, 56 u32 mask, u32 done, int usec) 57 { 58 u32 result; 59 60 do { 61 result = xhci_readl(xhci, ptr); 62 if (result == ~(u32)0) /* card removed */ 63 return -ENODEV; 64 result &= mask; 65 if (result == done) 66 return 0; 67 udelay(1); 68 usec--; 69 } while (usec > 0); 70 return -ETIMEDOUT; 71 } 72 73 /* 74 * Disable interrupts and begin the xHCI halting process. 75 */ 76 void xhci_quiesce(struct xhci_hcd *xhci) 77 { 78 u32 halted; 79 u32 cmd; 80 u32 mask; 81 82 mask = ~(XHCI_IRQS); 83 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; 84 if (!halted) 85 mask &= ~CMD_RUN; 86 87 cmd = xhci_readl(xhci, &xhci->op_regs->command); 88 cmd &= mask; 89 xhci_writel(xhci, cmd, &xhci->op_regs->command); 90 } 91 92 /* 93 * Force HC into halt state. 94 * 95 * Disable any IRQs and clear the run/stop bit. 96 * HC will complete any current and actively pipelined transactions, and 97 * should halt within 16 ms of the run/stop bit being cleared. 98 * Read HC Halted bit in the status register to see when the HC is finished. 99 */ 100 int xhci_halt(struct xhci_hcd *xhci) 101 { 102 int ret; 103 xhci_dbg(xhci, "// Halt the HC\n"); 104 xhci_quiesce(xhci); 105 106 ret = handshake(xhci, &xhci->op_regs->status, 107 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 108 if (!ret) 109 xhci->xhc_state |= XHCI_STATE_HALTED; 110 else 111 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 112 XHCI_MAX_HALT_USEC); 113 return ret; 114 } 115 116 /* 117 * Set the run bit and wait for the host to be running. 118 */ 119 static int xhci_start(struct xhci_hcd *xhci) 120 { 121 u32 temp; 122 int ret; 123 124 temp = xhci_readl(xhci, &xhci->op_regs->command); 125 temp |= (CMD_RUN); 126 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n", 127 temp); 128 xhci_writel(xhci, temp, &xhci->op_regs->command); 129 130 /* 131 * Wait for the HCHalted Status bit to be 0 to indicate the host is 132 * running. 133 */ 134 ret = handshake(xhci, &xhci->op_regs->status, 135 STS_HALT, 0, XHCI_MAX_HALT_USEC); 136 if (ret == -ETIMEDOUT) 137 xhci_err(xhci, "Host took too long to start, " 138 "waited %u microseconds.\n", 139 XHCI_MAX_HALT_USEC); 140 if (!ret) 141 xhci->xhc_state &= ~XHCI_STATE_HALTED; 142 return ret; 143 } 144 145 /* 146 * Reset a halted HC. 147 * 148 * This resets pipelines, timers, counters, state machines, etc. 149 * Transactions will be terminated immediately, and operational registers 150 * will be set to their defaults. 151 */ 152 int xhci_reset(struct xhci_hcd *xhci) 153 { 154 u32 command; 155 u32 state; 156 int ret, i; 157 158 state = xhci_readl(xhci, &xhci->op_regs->status); 159 if ((state & STS_HALT) == 0) { 160 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 161 return 0; 162 } 163 164 xhci_dbg(xhci, "// Reset the HC\n"); 165 command = xhci_readl(xhci, &xhci->op_regs->command); 166 command |= CMD_RESET; 167 xhci_writel(xhci, command, &xhci->op_regs->command); 168 169 ret = handshake(xhci, &xhci->op_regs->command, 170 CMD_RESET, 0, 10 * 1000 * 1000); 171 if (ret) 172 return ret; 173 174 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n"); 175 /* 176 * xHCI cannot write to any doorbells or operational registers other 177 * than status until the "Controller Not Ready" flag is cleared. 178 */ 179 ret = handshake(xhci, &xhci->op_regs->status, 180 STS_CNR, 0, 10 * 1000 * 1000); 181 182 for (i = 0; i < 2; ++i) { 183 xhci->bus_state[i].port_c_suspend = 0; 184 xhci->bus_state[i].suspended_ports = 0; 185 xhci->bus_state[i].resuming_ports = 0; 186 } 187 188 return ret; 189 } 190 191 #ifdef CONFIG_PCI 192 static int xhci_free_msi(struct xhci_hcd *xhci) 193 { 194 int i; 195 196 if (!xhci->msix_entries) 197 return -EINVAL; 198 199 for (i = 0; i < xhci->msix_count; i++) 200 if (xhci->msix_entries[i].vector) 201 free_irq(xhci->msix_entries[i].vector, 202 xhci_to_hcd(xhci)); 203 return 0; 204 } 205 206 /* 207 * Set up MSI 208 */ 209 static int xhci_setup_msi(struct xhci_hcd *xhci) 210 { 211 int ret; 212 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 213 214 ret = pci_enable_msi(pdev); 215 if (ret) { 216 xhci_dbg(xhci, "failed to allocate MSI entry\n"); 217 return ret; 218 } 219 220 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq, 221 0, "xhci_hcd", xhci_to_hcd(xhci)); 222 if (ret) { 223 xhci_dbg(xhci, "disable MSI interrupt\n"); 224 pci_disable_msi(pdev); 225 } 226 227 return ret; 228 } 229 230 /* 231 * Free IRQs 232 * free all IRQs request 233 */ 234 static void xhci_free_irq(struct xhci_hcd *xhci) 235 { 236 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 237 int ret; 238 239 /* return if using legacy interrupt */ 240 if (xhci_to_hcd(xhci)->irq > 0) 241 return; 242 243 ret = xhci_free_msi(xhci); 244 if (!ret) 245 return; 246 if (pdev->irq > 0) 247 free_irq(pdev->irq, xhci_to_hcd(xhci)); 248 249 return; 250 } 251 252 /* 253 * Set up MSI-X 254 */ 255 static int xhci_setup_msix(struct xhci_hcd *xhci) 256 { 257 int i, ret = 0; 258 struct usb_hcd *hcd = xhci_to_hcd(xhci); 259 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 260 261 /* 262 * calculate number of msi-x vectors supported. 263 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 264 * with max number of interrupters based on the xhci HCSPARAMS1. 265 * - num_online_cpus: maximum msi-x vectors per CPUs core. 266 * Add additional 1 vector to ensure always available interrupt. 267 */ 268 xhci->msix_count = min(num_online_cpus() + 1, 269 HCS_MAX_INTRS(xhci->hcs_params1)); 270 271 xhci->msix_entries = 272 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 273 GFP_KERNEL); 274 if (!xhci->msix_entries) { 275 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 276 return -ENOMEM; 277 } 278 279 for (i = 0; i < xhci->msix_count; i++) { 280 xhci->msix_entries[i].entry = i; 281 xhci->msix_entries[i].vector = 0; 282 } 283 284 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); 285 if (ret) { 286 xhci_dbg(xhci, "Failed to enable MSI-X\n"); 287 goto free_entries; 288 } 289 290 for (i = 0; i < xhci->msix_count; i++) { 291 ret = request_irq(xhci->msix_entries[i].vector, 292 (irq_handler_t)xhci_msi_irq, 293 0, "xhci_hcd", xhci_to_hcd(xhci)); 294 if (ret) 295 goto disable_msix; 296 } 297 298 hcd->msix_enabled = 1; 299 return ret; 300 301 disable_msix: 302 xhci_dbg(xhci, "disable MSI-X interrupt\n"); 303 xhci_free_irq(xhci); 304 pci_disable_msix(pdev); 305 free_entries: 306 kfree(xhci->msix_entries); 307 xhci->msix_entries = NULL; 308 return ret; 309 } 310 311 /* Free any IRQs and disable MSI-X */ 312 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 313 { 314 struct usb_hcd *hcd = xhci_to_hcd(xhci); 315 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 316 317 xhci_free_irq(xhci); 318 319 if (xhci->msix_entries) { 320 pci_disable_msix(pdev); 321 kfree(xhci->msix_entries); 322 xhci->msix_entries = NULL; 323 } else { 324 pci_disable_msi(pdev); 325 } 326 327 hcd->msix_enabled = 0; 328 return; 329 } 330 331 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 332 { 333 int i; 334 335 if (xhci->msix_entries) { 336 for (i = 0; i < xhci->msix_count; i++) 337 synchronize_irq(xhci->msix_entries[i].vector); 338 } 339 } 340 341 static int xhci_try_enable_msi(struct usb_hcd *hcd) 342 { 343 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 344 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 345 int ret; 346 347 /* 348 * Some Fresco Logic host controllers advertise MSI, but fail to 349 * generate interrupts. Don't even try to enable MSI. 350 */ 351 if (xhci->quirks & XHCI_BROKEN_MSI) 352 return 0; 353 354 /* unregister the legacy interrupt */ 355 if (hcd->irq) 356 free_irq(hcd->irq, hcd); 357 hcd->irq = 0; 358 359 ret = xhci_setup_msix(xhci); 360 if (ret) 361 /* fall back to msi*/ 362 ret = xhci_setup_msi(xhci); 363 364 if (!ret) 365 /* hcd->irq is 0, we have MSI */ 366 return 0; 367 368 if (!pdev->irq) { 369 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 370 return -EINVAL; 371 } 372 373 /* fall back to legacy interrupt*/ 374 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 375 hcd->irq_descr, hcd); 376 if (ret) { 377 xhci_err(xhci, "request interrupt %d failed\n", 378 pdev->irq); 379 return ret; 380 } 381 hcd->irq = pdev->irq; 382 return 0; 383 } 384 385 #else 386 387 static int xhci_try_enable_msi(struct usb_hcd *hcd) 388 { 389 return 0; 390 } 391 392 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 393 { 394 } 395 396 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 397 { 398 } 399 400 #endif 401 402 static void compliance_mode_recovery(unsigned long arg) 403 { 404 struct xhci_hcd *xhci; 405 struct usb_hcd *hcd; 406 u32 temp; 407 int i; 408 409 xhci = (struct xhci_hcd *)arg; 410 411 for (i = 0; i < xhci->num_usb3_ports; i++) { 412 temp = xhci_readl(xhci, xhci->usb3_ports[i]); 413 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 414 /* 415 * Compliance Mode Detected. Letting USB Core 416 * handle the Warm Reset 417 */ 418 xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n", 419 i + 1); 420 xhci_dbg(xhci, "Attempting Recovery routine!\n"); 421 hcd = xhci->shared_hcd; 422 423 if (hcd->state == HC_STATE_SUSPENDED) 424 usb_hcd_resume_root_hub(hcd); 425 426 usb_hcd_poll_rh_status(hcd); 427 } 428 } 429 430 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 431 mod_timer(&xhci->comp_mode_recovery_timer, 432 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 433 } 434 435 /* 436 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 437 * that causes ports behind that hardware to enter compliance mode sometimes. 438 * The quirk creates a timer that polls every 2 seconds the link state of 439 * each host controller's port and recovers it by issuing a Warm reset 440 * if Compliance mode is detected, otherwise the port will become "dead" (no 441 * device connections or disconnections will be detected anymore). Becasue no 442 * status event is generated when entering compliance mode (per xhci spec), 443 * this quirk is needed on systems that have the failing hardware installed. 444 */ 445 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 446 { 447 xhci->port_status_u0 = 0; 448 init_timer(&xhci->comp_mode_recovery_timer); 449 450 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci; 451 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery; 452 xhci->comp_mode_recovery_timer.expires = jiffies + 453 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 454 455 set_timer_slack(&xhci->comp_mode_recovery_timer, 456 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 457 add_timer(&xhci->comp_mode_recovery_timer); 458 xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n"); 459 } 460 461 /* 462 * This function identifies the systems that have installed the SN65LVPE502CP 463 * USB3.0 re-driver and that need the Compliance Mode Quirk. 464 * Systems: 465 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 466 */ 467 static bool compliance_mode_recovery_timer_quirk_check(void) 468 { 469 const char *dmi_product_name, *dmi_sys_vendor; 470 471 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 472 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 473 474 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 475 return false; 476 477 if (strstr(dmi_product_name, "Z420") || 478 strstr(dmi_product_name, "Z620") || 479 strstr(dmi_product_name, "Z820")) 480 return true; 481 482 return false; 483 } 484 485 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 486 { 487 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 488 } 489 490 491 /* 492 * Initialize memory for HCD and xHC (one-time init). 493 * 494 * Program the PAGESIZE register, initialize the device context array, create 495 * device contexts (?), set up a command ring segment (or two?), create event 496 * ring (one for now). 497 */ 498 int xhci_init(struct usb_hcd *hcd) 499 { 500 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 501 int retval = 0; 502 503 xhci_dbg(xhci, "xhci_init\n"); 504 spin_lock_init(&xhci->lock); 505 if (xhci->hci_version == 0x95 && link_quirk) { 506 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n"); 507 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 508 } else { 509 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n"); 510 } 511 retval = xhci_mem_init(xhci, GFP_KERNEL); 512 xhci_dbg(xhci, "Finished xhci_init\n"); 513 514 /* Initializing Compliance Mode Recovery Data If Needed */ 515 if (compliance_mode_recovery_timer_quirk_check()) { 516 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 517 compliance_mode_recovery_timer_init(xhci); 518 } 519 520 return retval; 521 } 522 523 /*-------------------------------------------------------------------------*/ 524 525 526 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 527 static void xhci_event_ring_work(unsigned long arg) 528 { 529 unsigned long flags; 530 int temp; 531 u64 temp_64; 532 struct xhci_hcd *xhci = (struct xhci_hcd *) arg; 533 int i, j; 534 535 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies); 536 537 spin_lock_irqsave(&xhci->lock, flags); 538 temp = xhci_readl(xhci, &xhci->op_regs->status); 539 xhci_dbg(xhci, "op reg status = 0x%x\n", temp); 540 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 541 (xhci->xhc_state & XHCI_STATE_HALTED)) { 542 xhci_dbg(xhci, "HW died, polling stopped.\n"); 543 spin_unlock_irqrestore(&xhci->lock, flags); 544 return; 545 } 546 547 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 548 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp); 549 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask); 550 xhci->error_bitmask = 0; 551 xhci_dbg(xhci, "Event ring:\n"); 552 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 553 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 554 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 555 temp_64 &= ~ERST_PTR_MASK; 556 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 557 xhci_dbg(xhci, "Command ring:\n"); 558 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg); 559 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 560 xhci_dbg_cmd_ptrs(xhci); 561 for (i = 0; i < MAX_HC_SLOTS; ++i) { 562 if (!xhci->devs[i]) 563 continue; 564 for (j = 0; j < 31; ++j) { 565 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]); 566 } 567 } 568 spin_unlock_irqrestore(&xhci->lock, flags); 569 570 if (!xhci->zombie) 571 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ); 572 else 573 xhci_dbg(xhci, "Quit polling the event ring.\n"); 574 } 575 #endif 576 577 static int xhci_run_finished(struct xhci_hcd *xhci) 578 { 579 if (xhci_start(xhci)) { 580 xhci_halt(xhci); 581 return -ENODEV; 582 } 583 xhci->shared_hcd->state = HC_STATE_RUNNING; 584 585 if (xhci->quirks & XHCI_NEC_HOST) 586 xhci_ring_cmd_db(xhci); 587 588 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n"); 589 return 0; 590 } 591 592 /* 593 * Start the HC after it was halted. 594 * 595 * This function is called by the USB core when the HC driver is added. 596 * Its opposite is xhci_stop(). 597 * 598 * xhci_init() must be called once before this function can be called. 599 * Reset the HC, enable device slot contexts, program DCBAAP, and 600 * set command ring pointer and event ring pointer. 601 * 602 * Setup MSI-X vectors and enable interrupts. 603 */ 604 int xhci_run(struct usb_hcd *hcd) 605 { 606 u32 temp; 607 u64 temp_64; 608 int ret; 609 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 610 611 /* Start the xHCI host controller running only after the USB 2.0 roothub 612 * is setup. 613 */ 614 615 hcd->uses_new_polling = 1; 616 if (!usb_hcd_is_primary_hcd(hcd)) 617 return xhci_run_finished(xhci); 618 619 xhci_dbg(xhci, "xhci_run\n"); 620 621 ret = xhci_try_enable_msi(hcd); 622 if (ret) 623 return ret; 624 625 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 626 init_timer(&xhci->event_ring_timer); 627 xhci->event_ring_timer.data = (unsigned long) xhci; 628 xhci->event_ring_timer.function = xhci_event_ring_work; 629 /* Poll the event ring */ 630 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ; 631 xhci->zombie = 0; 632 xhci_dbg(xhci, "Setting event ring polling timer\n"); 633 add_timer(&xhci->event_ring_timer); 634 #endif 635 636 xhci_dbg(xhci, "Command ring memory map follows:\n"); 637 xhci_debug_ring(xhci, xhci->cmd_ring); 638 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 639 xhci_dbg_cmd_ptrs(xhci); 640 641 xhci_dbg(xhci, "ERST memory map follows:\n"); 642 xhci_dbg_erst(xhci, &xhci->erst); 643 xhci_dbg(xhci, "Event ring:\n"); 644 xhci_debug_ring(xhci, xhci->event_ring); 645 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 646 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 647 temp_64 &= ~ERST_PTR_MASK; 648 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 649 650 xhci_dbg(xhci, "// Set the interrupt modulation register\n"); 651 temp = xhci_readl(xhci, &xhci->ir_set->irq_control); 652 temp &= ~ER_IRQ_INTERVAL_MASK; 653 temp |= (u32) 160; 654 xhci_writel(xhci, temp, &xhci->ir_set->irq_control); 655 656 /* Set the HCD state before we enable the irqs */ 657 temp = xhci_readl(xhci, &xhci->op_regs->command); 658 temp |= (CMD_EIE); 659 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n", 660 temp); 661 xhci_writel(xhci, temp, &xhci->op_regs->command); 662 663 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 664 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n", 665 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 666 xhci_writel(xhci, ER_IRQ_ENABLE(temp), 667 &xhci->ir_set->irq_pending); 668 xhci_print_ir_set(xhci, 0); 669 670 if (xhci->quirks & XHCI_NEC_HOST) 671 xhci_queue_vendor_command(xhci, 0, 0, 0, 672 TRB_TYPE(TRB_NEC_GET_FW)); 673 674 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n"); 675 return 0; 676 } 677 678 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 679 { 680 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 681 682 spin_lock_irq(&xhci->lock); 683 xhci_halt(xhci); 684 685 /* The shared_hcd is going to be deallocated shortly (the USB core only 686 * calls this function when allocation fails in usb_add_hcd(), or 687 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 688 */ 689 xhci->shared_hcd = NULL; 690 spin_unlock_irq(&xhci->lock); 691 } 692 693 /* 694 * Stop xHCI driver. 695 * 696 * This function is called by the USB core when the HC driver is removed. 697 * Its opposite is xhci_run(). 698 * 699 * Disable device contexts, disable IRQs, and quiesce the HC. 700 * Reset the HC, finish any completed transactions, and cleanup memory. 701 */ 702 void xhci_stop(struct usb_hcd *hcd) 703 { 704 u32 temp; 705 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 706 707 if (!usb_hcd_is_primary_hcd(hcd)) { 708 xhci_only_stop_hcd(xhci->shared_hcd); 709 return; 710 } 711 712 spin_lock_irq(&xhci->lock); 713 /* Make sure the xHC is halted for a USB3 roothub 714 * (xhci_stop() could be called as part of failed init). 715 */ 716 xhci_halt(xhci); 717 xhci_reset(xhci); 718 spin_unlock_irq(&xhci->lock); 719 720 xhci_cleanup_msix(xhci); 721 722 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 723 /* Tell the event ring poll function not to reschedule */ 724 xhci->zombie = 1; 725 del_timer_sync(&xhci->event_ring_timer); 726 #endif 727 728 /* Deleting Compliance Mode Recovery Timer */ 729 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 730 (!(xhci_all_ports_seen_u0(xhci)))) 731 del_timer_sync(&xhci->comp_mode_recovery_timer); 732 733 if (xhci->quirks & XHCI_AMD_PLL_FIX) 734 usb_amd_dev_put(); 735 736 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 737 temp = xhci_readl(xhci, &xhci->op_regs->status); 738 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 739 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 740 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 741 &xhci->ir_set->irq_pending); 742 xhci_print_ir_set(xhci, 0); 743 744 xhci_dbg(xhci, "cleaning up memory\n"); 745 xhci_mem_cleanup(xhci); 746 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 747 xhci_readl(xhci, &xhci->op_regs->status)); 748 } 749 750 /* 751 * Shutdown HC (not bus-specific) 752 * 753 * This is called when the machine is rebooting or halting. We assume that the 754 * machine will be powered off, and the HC's internal state will be reset. 755 * Don't bother to free memory. 756 * 757 * This will only ever be called with the main usb_hcd (the USB3 roothub). 758 */ 759 void xhci_shutdown(struct usb_hcd *hcd) 760 { 761 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 762 763 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 764 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 765 766 spin_lock_irq(&xhci->lock); 767 xhci_halt(xhci); 768 spin_unlock_irq(&xhci->lock); 769 770 xhci_cleanup_msix(xhci); 771 772 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n", 773 xhci_readl(xhci, &xhci->op_regs->status)); 774 } 775 776 #ifdef CONFIG_PM 777 static void xhci_save_registers(struct xhci_hcd *xhci) 778 { 779 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command); 780 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification); 781 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 782 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg); 783 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size); 784 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 785 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 786 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 787 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control); 788 } 789 790 static void xhci_restore_registers(struct xhci_hcd *xhci) 791 { 792 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command); 793 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 794 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 795 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg); 796 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size); 797 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 798 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 799 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 800 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control); 801 } 802 803 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 804 { 805 u64 val_64; 806 807 /* step 2: initialize command ring buffer */ 808 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 809 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 810 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 811 xhci->cmd_ring->dequeue) & 812 (u64) ~CMD_RING_RSVD_BITS) | 813 xhci->cmd_ring->cycle_state; 814 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n", 815 (long unsigned long) val_64); 816 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 817 } 818 819 /* 820 * The whole command ring must be cleared to zero when we suspend the host. 821 * 822 * The host doesn't save the command ring pointer in the suspend well, so we 823 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 824 * aligned, because of the reserved bits in the command ring dequeue pointer 825 * register. Therefore, we can't just set the dequeue pointer back in the 826 * middle of the ring (TRBs are 16-byte aligned). 827 */ 828 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 829 { 830 struct xhci_ring *ring; 831 struct xhci_segment *seg; 832 833 ring = xhci->cmd_ring; 834 seg = ring->deq_seg; 835 do { 836 memset(seg->trbs, 0, 837 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 838 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 839 cpu_to_le32(~TRB_CYCLE); 840 seg = seg->next; 841 } while (seg != ring->deq_seg); 842 843 /* Reset the software enqueue and dequeue pointers */ 844 ring->deq_seg = ring->first_seg; 845 ring->dequeue = ring->first_seg->trbs; 846 ring->enq_seg = ring->deq_seg; 847 ring->enqueue = ring->dequeue; 848 849 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 850 /* 851 * Ring is now zeroed, so the HW should look for change of ownership 852 * when the cycle bit is set to 1. 853 */ 854 ring->cycle_state = 1; 855 856 /* 857 * Reset the hardware dequeue pointer. 858 * Yes, this will need to be re-written after resume, but we're paranoid 859 * and want to make sure the hardware doesn't access bogus memory 860 * because, say, the BIOS or an SMI started the host without changing 861 * the command ring pointers. 862 */ 863 xhci_set_cmd_ring_deq(xhci); 864 } 865 866 /* 867 * Stop HC (not bus-specific) 868 * 869 * This is called when the machine transition into S3/S4 mode. 870 * 871 */ 872 int xhci_suspend(struct xhci_hcd *xhci) 873 { 874 int rc = 0; 875 struct usb_hcd *hcd = xhci_to_hcd(xhci); 876 u32 command; 877 878 spin_lock_irq(&xhci->lock); 879 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 880 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 881 /* step 1: stop endpoint */ 882 /* skipped assuming that port suspend has done */ 883 884 /* step 2: clear Run/Stop bit */ 885 command = xhci_readl(xhci, &xhci->op_regs->command); 886 command &= ~CMD_RUN; 887 xhci_writel(xhci, command, &xhci->op_regs->command); 888 if (handshake(xhci, &xhci->op_regs->status, 889 STS_HALT, STS_HALT, 100*100)) { 890 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 891 spin_unlock_irq(&xhci->lock); 892 return -ETIMEDOUT; 893 } 894 xhci_clear_command_ring(xhci); 895 896 /* step 3: save registers */ 897 xhci_save_registers(xhci); 898 899 /* step 4: set CSS flag */ 900 command = xhci_readl(xhci, &xhci->op_regs->command); 901 command |= CMD_CSS; 902 xhci_writel(xhci, command, &xhci->op_regs->command); 903 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) { 904 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 905 spin_unlock_irq(&xhci->lock); 906 return -ETIMEDOUT; 907 } 908 spin_unlock_irq(&xhci->lock); 909 910 /* 911 * Deleting Compliance Mode Recovery Timer because the xHCI Host 912 * is about to be suspended. 913 */ 914 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 915 (!(xhci_all_ports_seen_u0(xhci)))) { 916 del_timer_sync(&xhci->comp_mode_recovery_timer); 917 xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n"); 918 } 919 920 /* step 5: remove core well power */ 921 /* synchronize irq when using MSI-X */ 922 xhci_msix_sync_irqs(xhci); 923 924 return rc; 925 } 926 927 /* 928 * start xHC (not bus-specific) 929 * 930 * This is called when the machine transition from S3/S4 mode. 931 * 932 */ 933 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 934 { 935 u32 command, temp = 0; 936 struct usb_hcd *hcd = xhci_to_hcd(xhci); 937 struct usb_hcd *secondary_hcd; 938 int retval = 0; 939 940 /* Wait a bit if either of the roothubs need to settle from the 941 * transition into bus suspend. 942 */ 943 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 944 time_before(jiffies, 945 xhci->bus_state[1].next_statechange)) 946 msleep(100); 947 948 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 949 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 950 951 spin_lock_irq(&xhci->lock); 952 if (xhci->quirks & XHCI_RESET_ON_RESUME) 953 hibernated = true; 954 955 if (!hibernated) { 956 /* step 1: restore register */ 957 xhci_restore_registers(xhci); 958 /* step 2: initialize command ring buffer */ 959 xhci_set_cmd_ring_deq(xhci); 960 /* step 3: restore state and start state*/ 961 /* step 3: set CRS flag */ 962 command = xhci_readl(xhci, &xhci->op_regs->command); 963 command |= CMD_CRS; 964 xhci_writel(xhci, command, &xhci->op_regs->command); 965 if (handshake(xhci, &xhci->op_regs->status, 966 STS_RESTORE, 0, 10 * 1000)) { 967 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 968 spin_unlock_irq(&xhci->lock); 969 return -ETIMEDOUT; 970 } 971 temp = xhci_readl(xhci, &xhci->op_regs->status); 972 } 973 974 /* If restore operation fails, re-initialize the HC during resume */ 975 if ((temp & STS_SRE) || hibernated) { 976 /* Let the USB core know _both_ roothubs lost power. */ 977 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 978 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 979 980 xhci_dbg(xhci, "Stop HCD\n"); 981 xhci_halt(xhci); 982 xhci_reset(xhci); 983 spin_unlock_irq(&xhci->lock); 984 xhci_cleanup_msix(xhci); 985 986 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 987 /* Tell the event ring poll function not to reschedule */ 988 xhci->zombie = 1; 989 del_timer_sync(&xhci->event_ring_timer); 990 #endif 991 992 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 993 temp = xhci_readl(xhci, &xhci->op_regs->status); 994 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 995 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 996 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 997 &xhci->ir_set->irq_pending); 998 xhci_print_ir_set(xhci, 0); 999 1000 xhci_dbg(xhci, "cleaning up memory\n"); 1001 xhci_mem_cleanup(xhci); 1002 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1003 xhci_readl(xhci, &xhci->op_regs->status)); 1004 1005 /* USB core calls the PCI reinit and start functions twice: 1006 * first with the primary HCD, and then with the secondary HCD. 1007 * If we don't do the same, the host will never be started. 1008 */ 1009 if (!usb_hcd_is_primary_hcd(hcd)) 1010 secondary_hcd = hcd; 1011 else 1012 secondary_hcd = xhci->shared_hcd; 1013 1014 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1015 retval = xhci_init(hcd->primary_hcd); 1016 if (retval) 1017 return retval; 1018 xhci_dbg(xhci, "Start the primary HCD\n"); 1019 retval = xhci_run(hcd->primary_hcd); 1020 if (!retval) { 1021 xhci_dbg(xhci, "Start the secondary HCD\n"); 1022 retval = xhci_run(secondary_hcd); 1023 } 1024 hcd->state = HC_STATE_SUSPENDED; 1025 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1026 goto done; 1027 } 1028 1029 /* step 4: set Run/Stop bit */ 1030 command = xhci_readl(xhci, &xhci->op_regs->command); 1031 command |= CMD_RUN; 1032 xhci_writel(xhci, command, &xhci->op_regs->command); 1033 handshake(xhci, &xhci->op_regs->status, STS_HALT, 1034 0, 250 * 1000); 1035 1036 /* step 5: walk topology and initialize portsc, 1037 * portpmsc and portli 1038 */ 1039 /* this is done in bus_resume */ 1040 1041 /* step 6: restart each of the previously 1042 * Running endpoints by ringing their doorbells 1043 */ 1044 1045 spin_unlock_irq(&xhci->lock); 1046 1047 done: 1048 if (retval == 0) { 1049 usb_hcd_resume_root_hub(hcd); 1050 usb_hcd_resume_root_hub(xhci->shared_hcd); 1051 } 1052 1053 /* 1054 * If system is subject to the Quirk, Compliance Mode Timer needs to 1055 * be re-initialized Always after a system resume. Ports are subject 1056 * to suffer the Compliance Mode issue again. It doesn't matter if 1057 * ports have entered previously to U0 before system's suspension. 1058 */ 1059 if (xhci->quirks & XHCI_COMP_MODE_QUIRK) 1060 compliance_mode_recovery_timer_init(xhci); 1061 1062 return retval; 1063 } 1064 #endif /* CONFIG_PM */ 1065 1066 /*-------------------------------------------------------------------------*/ 1067 1068 /** 1069 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1070 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1071 * value to right shift 1 for the bitmask. 1072 * 1073 * Index = (epnum * 2) + direction - 1, 1074 * where direction = 0 for OUT, 1 for IN. 1075 * For control endpoints, the IN index is used (OUT index is unused), so 1076 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1077 */ 1078 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1079 { 1080 unsigned int index; 1081 if (usb_endpoint_xfer_control(desc)) 1082 index = (unsigned int) (usb_endpoint_num(desc)*2); 1083 else 1084 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1085 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1086 return index; 1087 } 1088 1089 /* Find the flag for this endpoint (for use in the control context). Use the 1090 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1091 * bit 1, etc. 1092 */ 1093 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1094 { 1095 return 1 << (xhci_get_endpoint_index(desc) + 1); 1096 } 1097 1098 /* Find the flag for this endpoint (for use in the control context). Use the 1099 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1100 * bit 1, etc. 1101 */ 1102 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1103 { 1104 return 1 << (ep_index + 1); 1105 } 1106 1107 /* Compute the last valid endpoint context index. Basically, this is the 1108 * endpoint index plus one. For slot contexts with more than valid endpoint, 1109 * we find the most significant bit set in the added contexts flags. 1110 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1111 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1112 */ 1113 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1114 { 1115 return fls(added_ctxs) - 1; 1116 } 1117 1118 /* Returns 1 if the arguments are OK; 1119 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1120 */ 1121 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1122 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1123 const char *func) { 1124 struct xhci_hcd *xhci; 1125 struct xhci_virt_device *virt_dev; 1126 1127 if (!hcd || (check_ep && !ep) || !udev) { 1128 printk(KERN_DEBUG "xHCI %s called with invalid args\n", 1129 func); 1130 return -EINVAL; 1131 } 1132 if (!udev->parent) { 1133 printk(KERN_DEBUG "xHCI %s called for root hub\n", 1134 func); 1135 return 0; 1136 } 1137 1138 xhci = hcd_to_xhci(hcd); 1139 if (xhci->xhc_state & XHCI_STATE_HALTED) 1140 return -ENODEV; 1141 1142 if (check_virt_dev) { 1143 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1144 printk(KERN_DEBUG "xHCI %s called with unaddressed " 1145 "device\n", func); 1146 return -EINVAL; 1147 } 1148 1149 virt_dev = xhci->devs[udev->slot_id]; 1150 if (virt_dev->udev != udev) { 1151 printk(KERN_DEBUG "xHCI %s called with udev and " 1152 "virt_dev does not match\n", func); 1153 return -EINVAL; 1154 } 1155 } 1156 1157 return 1; 1158 } 1159 1160 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1161 struct usb_device *udev, struct xhci_command *command, 1162 bool ctx_change, bool must_succeed); 1163 1164 /* 1165 * Full speed devices may have a max packet size greater than 8 bytes, but the 1166 * USB core doesn't know that until it reads the first 8 bytes of the 1167 * descriptor. If the usb_device's max packet size changes after that point, 1168 * we need to issue an evaluate context command and wait on it. 1169 */ 1170 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1171 unsigned int ep_index, struct urb *urb) 1172 { 1173 struct xhci_container_ctx *in_ctx; 1174 struct xhci_container_ctx *out_ctx; 1175 struct xhci_input_control_ctx *ctrl_ctx; 1176 struct xhci_ep_ctx *ep_ctx; 1177 int max_packet_size; 1178 int hw_max_packet_size; 1179 int ret = 0; 1180 1181 out_ctx = xhci->devs[slot_id]->out_ctx; 1182 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1183 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1184 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1185 if (hw_max_packet_size != max_packet_size) { 1186 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n"); 1187 xhci_dbg(xhci, "Max packet size in usb_device = %d\n", 1188 max_packet_size); 1189 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n", 1190 hw_max_packet_size); 1191 xhci_dbg(xhci, "Issuing evaluate context command.\n"); 1192 1193 /* Set up the modified control endpoint 0 */ 1194 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1195 xhci->devs[slot_id]->out_ctx, ep_index); 1196 in_ctx = xhci->devs[slot_id]->in_ctx; 1197 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1198 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1199 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1200 1201 /* Set up the input context flags for the command */ 1202 /* FIXME: This won't work if a non-default control endpoint 1203 * changes max packet sizes. 1204 */ 1205 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1206 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1207 ctrl_ctx->drop_flags = 0; 1208 1209 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1210 xhci_dbg_ctx(xhci, in_ctx, ep_index); 1211 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1212 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1213 1214 ret = xhci_configure_endpoint(xhci, urb->dev, NULL, 1215 true, false); 1216 1217 /* Clean up the input context for later use by bandwidth 1218 * functions. 1219 */ 1220 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1221 } 1222 return ret; 1223 } 1224 1225 /* 1226 * non-error returns are a promise to giveback() the urb later 1227 * we drop ownership so next owner (or urb unlink) can get it 1228 */ 1229 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1230 { 1231 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1232 struct xhci_td *buffer; 1233 unsigned long flags; 1234 int ret = 0; 1235 unsigned int slot_id, ep_index; 1236 struct urb_priv *urb_priv; 1237 int size, i; 1238 1239 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1240 true, true, __func__) <= 0) 1241 return -EINVAL; 1242 1243 slot_id = urb->dev->slot_id; 1244 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1245 1246 if (!HCD_HW_ACCESSIBLE(hcd)) { 1247 if (!in_interrupt()) 1248 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1249 ret = -ESHUTDOWN; 1250 goto exit; 1251 } 1252 1253 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1254 size = urb->number_of_packets; 1255 else 1256 size = 1; 1257 1258 urb_priv = kzalloc(sizeof(struct urb_priv) + 1259 size * sizeof(struct xhci_td *), mem_flags); 1260 if (!urb_priv) 1261 return -ENOMEM; 1262 1263 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1264 if (!buffer) { 1265 kfree(urb_priv); 1266 return -ENOMEM; 1267 } 1268 1269 for (i = 0; i < size; i++) { 1270 urb_priv->td[i] = buffer; 1271 buffer++; 1272 } 1273 1274 urb_priv->length = size; 1275 urb_priv->td_cnt = 0; 1276 urb->hcpriv = urb_priv; 1277 1278 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1279 /* Check to see if the max packet size for the default control 1280 * endpoint changed during FS device enumeration 1281 */ 1282 if (urb->dev->speed == USB_SPEED_FULL) { 1283 ret = xhci_check_maxpacket(xhci, slot_id, 1284 ep_index, urb); 1285 if (ret < 0) { 1286 xhci_urb_free_priv(xhci, urb_priv); 1287 urb->hcpriv = NULL; 1288 return ret; 1289 } 1290 } 1291 1292 /* We have a spinlock and interrupts disabled, so we must pass 1293 * atomic context to this function, which may allocate memory. 1294 */ 1295 spin_lock_irqsave(&xhci->lock, flags); 1296 if (xhci->xhc_state & XHCI_STATE_DYING) 1297 goto dying; 1298 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1299 slot_id, ep_index); 1300 if (ret) 1301 goto free_priv; 1302 spin_unlock_irqrestore(&xhci->lock, flags); 1303 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1304 spin_lock_irqsave(&xhci->lock, flags); 1305 if (xhci->xhc_state & XHCI_STATE_DYING) 1306 goto dying; 1307 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1308 EP_GETTING_STREAMS) { 1309 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1310 "is transitioning to using streams.\n"); 1311 ret = -EINVAL; 1312 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1313 EP_GETTING_NO_STREAMS) { 1314 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1315 "is transitioning to " 1316 "not having streams.\n"); 1317 ret = -EINVAL; 1318 } else { 1319 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1320 slot_id, ep_index); 1321 } 1322 if (ret) 1323 goto free_priv; 1324 spin_unlock_irqrestore(&xhci->lock, flags); 1325 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1326 spin_lock_irqsave(&xhci->lock, flags); 1327 if (xhci->xhc_state & XHCI_STATE_DYING) 1328 goto dying; 1329 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1330 slot_id, ep_index); 1331 if (ret) 1332 goto free_priv; 1333 spin_unlock_irqrestore(&xhci->lock, flags); 1334 } else { 1335 spin_lock_irqsave(&xhci->lock, flags); 1336 if (xhci->xhc_state & XHCI_STATE_DYING) 1337 goto dying; 1338 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1339 slot_id, ep_index); 1340 if (ret) 1341 goto free_priv; 1342 spin_unlock_irqrestore(&xhci->lock, flags); 1343 } 1344 exit: 1345 return ret; 1346 dying: 1347 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1348 "non-responsive xHCI host.\n", 1349 urb->ep->desc.bEndpointAddress, urb); 1350 ret = -ESHUTDOWN; 1351 free_priv: 1352 xhci_urb_free_priv(xhci, urb_priv); 1353 urb->hcpriv = NULL; 1354 spin_unlock_irqrestore(&xhci->lock, flags); 1355 return ret; 1356 } 1357 1358 /* Get the right ring for the given URB. 1359 * If the endpoint supports streams, boundary check the URB's stream ID. 1360 * If the endpoint doesn't support streams, return the singular endpoint ring. 1361 */ 1362 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1363 struct urb *urb) 1364 { 1365 unsigned int slot_id; 1366 unsigned int ep_index; 1367 unsigned int stream_id; 1368 struct xhci_virt_ep *ep; 1369 1370 slot_id = urb->dev->slot_id; 1371 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1372 stream_id = urb->stream_id; 1373 ep = &xhci->devs[slot_id]->eps[ep_index]; 1374 /* Common case: no streams */ 1375 if (!(ep->ep_state & EP_HAS_STREAMS)) 1376 return ep->ring; 1377 1378 if (stream_id == 0) { 1379 xhci_warn(xhci, 1380 "WARN: Slot ID %u, ep index %u has streams, " 1381 "but URB has no stream ID.\n", 1382 slot_id, ep_index); 1383 return NULL; 1384 } 1385 1386 if (stream_id < ep->stream_info->num_streams) 1387 return ep->stream_info->stream_rings[stream_id]; 1388 1389 xhci_warn(xhci, 1390 "WARN: Slot ID %u, ep index %u has " 1391 "stream IDs 1 to %u allocated, " 1392 "but stream ID %u is requested.\n", 1393 slot_id, ep_index, 1394 ep->stream_info->num_streams - 1, 1395 stream_id); 1396 return NULL; 1397 } 1398 1399 /* 1400 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1401 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1402 * should pick up where it left off in the TD, unless a Set Transfer Ring 1403 * Dequeue Pointer is issued. 1404 * 1405 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1406 * the ring. Since the ring is a contiguous structure, they can't be physically 1407 * removed. Instead, there are two options: 1408 * 1409 * 1) If the HC is in the middle of processing the URB to be canceled, we 1410 * simply move the ring's dequeue pointer past those TRBs using the Set 1411 * Transfer Ring Dequeue Pointer command. This will be the common case, 1412 * when drivers timeout on the last submitted URB and attempt to cancel. 1413 * 1414 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1415 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1416 * HC will need to invalidate the any TRBs it has cached after the stop 1417 * endpoint command, as noted in the xHCI 0.95 errata. 1418 * 1419 * 3) The TD may have completed by the time the Stop Endpoint Command 1420 * completes, so software needs to handle that case too. 1421 * 1422 * This function should protect against the TD enqueueing code ringing the 1423 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1424 * It also needs to account for multiple cancellations on happening at the same 1425 * time for the same endpoint. 1426 * 1427 * Note that this function can be called in any context, or so says 1428 * usb_hcd_unlink_urb() 1429 */ 1430 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1431 { 1432 unsigned long flags; 1433 int ret, i; 1434 u32 temp; 1435 struct xhci_hcd *xhci; 1436 struct urb_priv *urb_priv; 1437 struct xhci_td *td; 1438 unsigned int ep_index; 1439 struct xhci_ring *ep_ring; 1440 struct xhci_virt_ep *ep; 1441 1442 xhci = hcd_to_xhci(hcd); 1443 spin_lock_irqsave(&xhci->lock, flags); 1444 /* Make sure the URB hasn't completed or been unlinked already */ 1445 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1446 if (ret || !urb->hcpriv) 1447 goto done; 1448 temp = xhci_readl(xhci, &xhci->op_regs->status); 1449 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1450 xhci_dbg(xhci, "HW died, freeing TD.\n"); 1451 urb_priv = urb->hcpriv; 1452 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1453 td = urb_priv->td[i]; 1454 if (!list_empty(&td->td_list)) 1455 list_del_init(&td->td_list); 1456 if (!list_empty(&td->cancelled_td_list)) 1457 list_del_init(&td->cancelled_td_list); 1458 } 1459 1460 usb_hcd_unlink_urb_from_ep(hcd, urb); 1461 spin_unlock_irqrestore(&xhci->lock, flags); 1462 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1463 xhci_urb_free_priv(xhci, urb_priv); 1464 return ret; 1465 } 1466 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1467 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1468 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on " 1469 "non-responsive xHCI host.\n", 1470 urb->ep->desc.bEndpointAddress, urb); 1471 /* Let the stop endpoint command watchdog timer (which set this 1472 * state) finish cleaning up the endpoint TD lists. We must 1473 * have caught it in the middle of dropping a lock and giving 1474 * back an URB. 1475 */ 1476 goto done; 1477 } 1478 1479 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1480 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1481 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1482 if (!ep_ring) { 1483 ret = -EINVAL; 1484 goto done; 1485 } 1486 1487 urb_priv = urb->hcpriv; 1488 i = urb_priv->td_cnt; 1489 if (i < urb_priv->length) 1490 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, " 1491 "starting at offset 0x%llx\n", 1492 urb, urb->dev->devpath, 1493 urb->ep->desc.bEndpointAddress, 1494 (unsigned long long) xhci_trb_virt_to_dma( 1495 urb_priv->td[i]->start_seg, 1496 urb_priv->td[i]->first_trb)); 1497 1498 for (; i < urb_priv->length; i++) { 1499 td = urb_priv->td[i]; 1500 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1501 } 1502 1503 /* Queue a stop endpoint command, but only if this is 1504 * the first cancellation to be handled. 1505 */ 1506 if (!(ep->ep_state & EP_HALT_PENDING)) { 1507 ep->ep_state |= EP_HALT_PENDING; 1508 ep->stop_cmds_pending++; 1509 ep->stop_cmd_timer.expires = jiffies + 1510 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1511 add_timer(&ep->stop_cmd_timer); 1512 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0); 1513 xhci_ring_cmd_db(xhci); 1514 } 1515 done: 1516 spin_unlock_irqrestore(&xhci->lock, flags); 1517 return ret; 1518 } 1519 1520 /* Drop an endpoint from a new bandwidth configuration for this device. 1521 * Only one call to this function is allowed per endpoint before 1522 * check_bandwidth() or reset_bandwidth() must be called. 1523 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1524 * add the endpoint to the schedule with possibly new parameters denoted by a 1525 * different endpoint descriptor in usb_host_endpoint. 1526 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1527 * not allowed. 1528 * 1529 * The USB core will not allow URBs to be queued to an endpoint that is being 1530 * disabled, so there's no need for mutual exclusion to protect 1531 * the xhci->devs[slot_id] structure. 1532 */ 1533 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1534 struct usb_host_endpoint *ep) 1535 { 1536 struct xhci_hcd *xhci; 1537 struct xhci_container_ctx *in_ctx, *out_ctx; 1538 struct xhci_input_control_ctx *ctrl_ctx; 1539 struct xhci_slot_ctx *slot_ctx; 1540 unsigned int last_ctx; 1541 unsigned int ep_index; 1542 struct xhci_ep_ctx *ep_ctx; 1543 u32 drop_flag; 1544 u32 new_add_flags, new_drop_flags, new_slot_info; 1545 int ret; 1546 1547 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1548 if (ret <= 0) 1549 return ret; 1550 xhci = hcd_to_xhci(hcd); 1551 if (xhci->xhc_state & XHCI_STATE_DYING) 1552 return -ENODEV; 1553 1554 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1555 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1556 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1557 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1558 __func__, drop_flag); 1559 return 0; 1560 } 1561 1562 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1563 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1564 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1565 ep_index = xhci_get_endpoint_index(&ep->desc); 1566 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1567 /* If the HC already knows the endpoint is disabled, 1568 * or the HCD has noted it is disabled, ignore this request 1569 */ 1570 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1571 cpu_to_le32(EP_STATE_DISABLED)) || 1572 le32_to_cpu(ctrl_ctx->drop_flags) & 1573 xhci_get_endpoint_flag(&ep->desc)) { 1574 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1575 __func__, ep); 1576 return 0; 1577 } 1578 1579 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1580 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1581 1582 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1583 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1584 1585 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)); 1586 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1587 /* Update the last valid endpoint context, if we deleted the last one */ 1588 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) > 1589 LAST_CTX(last_ctx)) { 1590 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1591 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1592 } 1593 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1594 1595 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1596 1597 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1598 (unsigned int) ep->desc.bEndpointAddress, 1599 udev->slot_id, 1600 (unsigned int) new_drop_flags, 1601 (unsigned int) new_add_flags, 1602 (unsigned int) new_slot_info); 1603 return 0; 1604 } 1605 1606 /* Add an endpoint to a new possible bandwidth configuration for this device. 1607 * Only one call to this function is allowed per endpoint before 1608 * check_bandwidth() or reset_bandwidth() must be called. 1609 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1610 * add the endpoint to the schedule with possibly new parameters denoted by a 1611 * different endpoint descriptor in usb_host_endpoint. 1612 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1613 * not allowed. 1614 * 1615 * The USB core will not allow URBs to be queued to an endpoint until the 1616 * configuration or alt setting is installed in the device, so there's no need 1617 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1618 */ 1619 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1620 struct usb_host_endpoint *ep) 1621 { 1622 struct xhci_hcd *xhci; 1623 struct xhci_container_ctx *in_ctx, *out_ctx; 1624 unsigned int ep_index; 1625 struct xhci_ep_ctx *ep_ctx; 1626 struct xhci_slot_ctx *slot_ctx; 1627 struct xhci_input_control_ctx *ctrl_ctx; 1628 u32 added_ctxs; 1629 unsigned int last_ctx; 1630 u32 new_add_flags, new_drop_flags, new_slot_info; 1631 struct xhci_virt_device *virt_dev; 1632 int ret = 0; 1633 1634 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1635 if (ret <= 0) { 1636 /* So we won't queue a reset ep command for a root hub */ 1637 ep->hcpriv = NULL; 1638 return ret; 1639 } 1640 xhci = hcd_to_xhci(hcd); 1641 if (xhci->xhc_state & XHCI_STATE_DYING) 1642 return -ENODEV; 1643 1644 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1645 last_ctx = xhci_last_valid_endpoint(added_ctxs); 1646 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1647 /* FIXME when we have to issue an evaluate endpoint command to 1648 * deal with ep0 max packet size changing once we get the 1649 * descriptors 1650 */ 1651 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1652 __func__, added_ctxs); 1653 return 0; 1654 } 1655 1656 virt_dev = xhci->devs[udev->slot_id]; 1657 in_ctx = virt_dev->in_ctx; 1658 out_ctx = virt_dev->out_ctx; 1659 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1660 ep_index = xhci_get_endpoint_index(&ep->desc); 1661 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1662 1663 /* If this endpoint is already in use, and the upper layers are trying 1664 * to add it again without dropping it, reject the addition. 1665 */ 1666 if (virt_dev->eps[ep_index].ring && 1667 !(le32_to_cpu(ctrl_ctx->drop_flags) & 1668 xhci_get_endpoint_flag(&ep->desc))) { 1669 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1670 "without dropping it.\n", 1671 (unsigned int) ep->desc.bEndpointAddress); 1672 return -EINVAL; 1673 } 1674 1675 /* If the HCD has already noted the endpoint is enabled, 1676 * ignore this request. 1677 */ 1678 if (le32_to_cpu(ctrl_ctx->add_flags) & 1679 xhci_get_endpoint_flag(&ep->desc)) { 1680 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1681 __func__, ep); 1682 return 0; 1683 } 1684 1685 /* 1686 * Configuration and alternate setting changes must be done in 1687 * process context, not interrupt context (or so documenation 1688 * for usb_set_interface() and usb_set_configuration() claim). 1689 */ 1690 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1691 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1692 __func__, ep->desc.bEndpointAddress); 1693 return -ENOMEM; 1694 } 1695 1696 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1697 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1698 1699 /* If xhci_endpoint_disable() was called for this endpoint, but the 1700 * xHC hasn't been notified yet through the check_bandwidth() call, 1701 * this re-adds a new state for the endpoint from the new endpoint 1702 * descriptors. We must drop and re-add this endpoint, so we leave the 1703 * drop flags alone. 1704 */ 1705 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1706 1707 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1708 /* Update the last valid endpoint context, if we just added one past */ 1709 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) < 1710 LAST_CTX(last_ctx)) { 1711 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1712 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1713 } 1714 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1715 1716 /* Store the usb_device pointer for later use */ 1717 ep->hcpriv = udev; 1718 1719 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1720 (unsigned int) ep->desc.bEndpointAddress, 1721 udev->slot_id, 1722 (unsigned int) new_drop_flags, 1723 (unsigned int) new_add_flags, 1724 (unsigned int) new_slot_info); 1725 return 0; 1726 } 1727 1728 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1729 { 1730 struct xhci_input_control_ctx *ctrl_ctx; 1731 struct xhci_ep_ctx *ep_ctx; 1732 struct xhci_slot_ctx *slot_ctx; 1733 int i; 1734 1735 /* When a device's add flag and drop flag are zero, any subsequent 1736 * configure endpoint command will leave that endpoint's state 1737 * untouched. Make sure we don't leave any old state in the input 1738 * endpoint contexts. 1739 */ 1740 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1741 ctrl_ctx->drop_flags = 0; 1742 ctrl_ctx->add_flags = 0; 1743 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1744 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1745 /* Endpoint 0 is always valid */ 1746 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1747 for (i = 1; i < 31; ++i) { 1748 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1749 ep_ctx->ep_info = 0; 1750 ep_ctx->ep_info2 = 0; 1751 ep_ctx->deq = 0; 1752 ep_ctx->tx_info = 0; 1753 } 1754 } 1755 1756 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1757 struct usb_device *udev, u32 *cmd_status) 1758 { 1759 int ret; 1760 1761 switch (*cmd_status) { 1762 case COMP_ENOMEM: 1763 dev_warn(&udev->dev, "Not enough host controller resources " 1764 "for new device state.\n"); 1765 ret = -ENOMEM; 1766 /* FIXME: can we allocate more resources for the HC? */ 1767 break; 1768 case COMP_BW_ERR: 1769 case COMP_2ND_BW_ERR: 1770 dev_warn(&udev->dev, "Not enough bandwidth " 1771 "for new device state.\n"); 1772 ret = -ENOSPC; 1773 /* FIXME: can we go back to the old state? */ 1774 break; 1775 case COMP_TRB_ERR: 1776 /* the HCD set up something wrong */ 1777 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1778 "add flag = 1, " 1779 "and endpoint is not disabled.\n"); 1780 ret = -EINVAL; 1781 break; 1782 case COMP_DEV_ERR: 1783 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint " 1784 "configure command.\n"); 1785 ret = -ENODEV; 1786 break; 1787 case COMP_SUCCESS: 1788 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n"); 1789 ret = 0; 1790 break; 1791 default: 1792 xhci_err(xhci, "ERROR: unexpected command completion " 1793 "code 0x%x.\n", *cmd_status); 1794 ret = -EINVAL; 1795 break; 1796 } 1797 return ret; 1798 } 1799 1800 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1801 struct usb_device *udev, u32 *cmd_status) 1802 { 1803 int ret; 1804 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1805 1806 switch (*cmd_status) { 1807 case COMP_EINVAL: 1808 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " 1809 "context command.\n"); 1810 ret = -EINVAL; 1811 break; 1812 case COMP_EBADSLT: 1813 dev_warn(&udev->dev, "WARN: slot not enabled for" 1814 "evaluate context command.\n"); 1815 case COMP_CTX_STATE: 1816 dev_warn(&udev->dev, "WARN: invalid context state for " 1817 "evaluate context command.\n"); 1818 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1819 ret = -EINVAL; 1820 break; 1821 case COMP_DEV_ERR: 1822 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate " 1823 "context command.\n"); 1824 ret = -ENODEV; 1825 break; 1826 case COMP_MEL_ERR: 1827 /* Max Exit Latency too large error */ 1828 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1829 ret = -EINVAL; 1830 break; 1831 case COMP_SUCCESS: 1832 dev_dbg(&udev->dev, "Successful evaluate context command\n"); 1833 ret = 0; 1834 break; 1835 default: 1836 xhci_err(xhci, "ERROR: unexpected command completion " 1837 "code 0x%x.\n", *cmd_status); 1838 ret = -EINVAL; 1839 break; 1840 } 1841 return ret; 1842 } 1843 1844 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1845 struct xhci_container_ctx *in_ctx) 1846 { 1847 struct xhci_input_control_ctx *ctrl_ctx; 1848 u32 valid_add_flags; 1849 u32 valid_drop_flags; 1850 1851 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1852 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1853 * (bit 1). The default control endpoint is added during the Address 1854 * Device command and is never removed until the slot is disabled. 1855 */ 1856 valid_add_flags = ctrl_ctx->add_flags >> 2; 1857 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1858 1859 /* Use hweight32 to count the number of ones in the add flags, or 1860 * number of endpoints added. Don't count endpoints that are changed 1861 * (both added and dropped). 1862 */ 1863 return hweight32(valid_add_flags) - 1864 hweight32(valid_add_flags & valid_drop_flags); 1865 } 1866 1867 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1868 struct xhci_container_ctx *in_ctx) 1869 { 1870 struct xhci_input_control_ctx *ctrl_ctx; 1871 u32 valid_add_flags; 1872 u32 valid_drop_flags; 1873 1874 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1875 valid_add_flags = ctrl_ctx->add_flags >> 2; 1876 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1877 1878 return hweight32(valid_drop_flags) - 1879 hweight32(valid_add_flags & valid_drop_flags); 1880 } 1881 1882 /* 1883 * We need to reserve the new number of endpoints before the configure endpoint 1884 * command completes. We can't subtract the dropped endpoints from the number 1885 * of active endpoints until the command completes because we can oversubscribe 1886 * the host in this case: 1887 * 1888 * - the first configure endpoint command drops more endpoints than it adds 1889 * - a second configure endpoint command that adds more endpoints is queued 1890 * - the first configure endpoint command fails, so the config is unchanged 1891 * - the second command may succeed, even though there isn't enough resources 1892 * 1893 * Must be called with xhci->lock held. 1894 */ 1895 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1896 struct xhci_container_ctx *in_ctx) 1897 { 1898 u32 added_eps; 1899 1900 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx); 1901 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1902 xhci_dbg(xhci, "Not enough ep ctxs: " 1903 "%u active, need to add %u, limit is %u.\n", 1904 xhci->num_active_eps, added_eps, 1905 xhci->limit_active_eps); 1906 return -ENOMEM; 1907 } 1908 xhci->num_active_eps += added_eps; 1909 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps, 1910 xhci->num_active_eps); 1911 return 0; 1912 } 1913 1914 /* 1915 * The configure endpoint was failed by the xHC for some other reason, so we 1916 * need to revert the resources that failed configuration would have used. 1917 * 1918 * Must be called with xhci->lock held. 1919 */ 1920 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1921 struct xhci_container_ctx *in_ctx) 1922 { 1923 u32 num_failed_eps; 1924 1925 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx); 1926 xhci->num_active_eps -= num_failed_eps; 1927 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n", 1928 num_failed_eps, 1929 xhci->num_active_eps); 1930 } 1931 1932 /* 1933 * Now that the command has completed, clean up the active endpoint count by 1934 * subtracting out the endpoints that were dropped (but not changed). 1935 * 1936 * Must be called with xhci->lock held. 1937 */ 1938 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1939 struct xhci_container_ctx *in_ctx) 1940 { 1941 u32 num_dropped_eps; 1942 1943 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx); 1944 xhci->num_active_eps -= num_dropped_eps; 1945 if (num_dropped_eps) 1946 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n", 1947 num_dropped_eps, 1948 xhci->num_active_eps); 1949 } 1950 1951 unsigned int xhci_get_block_size(struct usb_device *udev) 1952 { 1953 switch (udev->speed) { 1954 case USB_SPEED_LOW: 1955 case USB_SPEED_FULL: 1956 return FS_BLOCK; 1957 case USB_SPEED_HIGH: 1958 return HS_BLOCK; 1959 case USB_SPEED_SUPER: 1960 return SS_BLOCK; 1961 case USB_SPEED_UNKNOWN: 1962 case USB_SPEED_WIRELESS: 1963 default: 1964 /* Should never happen */ 1965 return 1; 1966 } 1967 } 1968 1969 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 1970 { 1971 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 1972 return LS_OVERHEAD; 1973 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 1974 return FS_OVERHEAD; 1975 return HS_OVERHEAD; 1976 } 1977 1978 /* If we are changing a LS/FS device under a HS hub, 1979 * make sure (if we are activating a new TT) that the HS bus has enough 1980 * bandwidth for this new TT. 1981 */ 1982 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 1983 struct xhci_virt_device *virt_dev, 1984 int old_active_eps) 1985 { 1986 struct xhci_interval_bw_table *bw_table; 1987 struct xhci_tt_bw_info *tt_info; 1988 1989 /* Find the bandwidth table for the root port this TT is attached to. */ 1990 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 1991 tt_info = virt_dev->tt_info; 1992 /* If this TT already had active endpoints, the bandwidth for this TT 1993 * has already been added. Removing all periodic endpoints (and thus 1994 * making the TT enactive) will only decrease the bandwidth used. 1995 */ 1996 if (old_active_eps) 1997 return 0; 1998 if (old_active_eps == 0 && tt_info->active_eps != 0) { 1999 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2000 return -ENOMEM; 2001 return 0; 2002 } 2003 /* Not sure why we would have no new active endpoints... 2004 * 2005 * Maybe because of an Evaluate Context change for a hub update or a 2006 * control endpoint 0 max packet size change? 2007 * FIXME: skip the bandwidth calculation in that case. 2008 */ 2009 return 0; 2010 } 2011 2012 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2013 struct xhci_virt_device *virt_dev) 2014 { 2015 unsigned int bw_reserved; 2016 2017 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2018 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2019 return -ENOMEM; 2020 2021 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2022 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2023 return -ENOMEM; 2024 2025 return 0; 2026 } 2027 2028 /* 2029 * This algorithm is a very conservative estimate of the worst-case scheduling 2030 * scenario for any one interval. The hardware dynamically schedules the 2031 * packets, so we can't tell which microframe could be the limiting factor in 2032 * the bandwidth scheduling. This only takes into account periodic endpoints. 2033 * 2034 * Obviously, we can't solve an NP complete problem to find the minimum worst 2035 * case scenario. Instead, we come up with an estimate that is no less than 2036 * the worst case bandwidth used for any one microframe, but may be an 2037 * over-estimate. 2038 * 2039 * We walk the requirements for each endpoint by interval, starting with the 2040 * smallest interval, and place packets in the schedule where there is only one 2041 * possible way to schedule packets for that interval. In order to simplify 2042 * this algorithm, we record the largest max packet size for each interval, and 2043 * assume all packets will be that size. 2044 * 2045 * For interval 0, we obviously must schedule all packets for each interval. 2046 * The bandwidth for interval 0 is just the amount of data to be transmitted 2047 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2048 * the number of packets). 2049 * 2050 * For interval 1, we have two possible microframes to schedule those packets 2051 * in. For this algorithm, if we can schedule the same number of packets for 2052 * each possible scheduling opportunity (each microframe), we will do so. The 2053 * remaining number of packets will be saved to be transmitted in the gaps in 2054 * the next interval's scheduling sequence. 2055 * 2056 * As we move those remaining packets to be scheduled with interval 2 packets, 2057 * we have to double the number of remaining packets to transmit. This is 2058 * because the intervals are actually powers of 2, and we would be transmitting 2059 * the previous interval's packets twice in this interval. We also have to be 2060 * sure that when we look at the largest max packet size for this interval, we 2061 * also look at the largest max packet size for the remaining packets and take 2062 * the greater of the two. 2063 * 2064 * The algorithm continues to evenly distribute packets in each scheduling 2065 * opportunity, and push the remaining packets out, until we get to the last 2066 * interval. Then those packets and their associated overhead are just added 2067 * to the bandwidth used. 2068 */ 2069 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2070 struct xhci_virt_device *virt_dev, 2071 int old_active_eps) 2072 { 2073 unsigned int bw_reserved; 2074 unsigned int max_bandwidth; 2075 unsigned int bw_used; 2076 unsigned int block_size; 2077 struct xhci_interval_bw_table *bw_table; 2078 unsigned int packet_size = 0; 2079 unsigned int overhead = 0; 2080 unsigned int packets_transmitted = 0; 2081 unsigned int packets_remaining = 0; 2082 unsigned int i; 2083 2084 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2085 return xhci_check_ss_bw(xhci, virt_dev); 2086 2087 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2088 max_bandwidth = HS_BW_LIMIT; 2089 /* Convert percent of bus BW reserved to blocks reserved */ 2090 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2091 } else { 2092 max_bandwidth = FS_BW_LIMIT; 2093 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2094 } 2095 2096 bw_table = virt_dev->bw_table; 2097 /* We need to translate the max packet size and max ESIT payloads into 2098 * the units the hardware uses. 2099 */ 2100 block_size = xhci_get_block_size(virt_dev->udev); 2101 2102 /* If we are manipulating a LS/FS device under a HS hub, double check 2103 * that the HS bus has enough bandwidth if we are activing a new TT. 2104 */ 2105 if (virt_dev->tt_info) { 2106 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 2107 virt_dev->real_port); 2108 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2109 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2110 "newly activated TT.\n"); 2111 return -ENOMEM; 2112 } 2113 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n", 2114 virt_dev->tt_info->slot_id, 2115 virt_dev->tt_info->ttport); 2116 } else { 2117 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 2118 virt_dev->real_port); 2119 } 2120 2121 /* Add in how much bandwidth will be used for interval zero, or the 2122 * rounded max ESIT payload + number of packets * largest overhead. 2123 */ 2124 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2125 bw_table->interval_bw[0].num_packets * 2126 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2127 2128 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2129 unsigned int bw_added; 2130 unsigned int largest_mps; 2131 unsigned int interval_overhead; 2132 2133 /* 2134 * How many packets could we transmit in this interval? 2135 * If packets didn't fit in the previous interval, we will need 2136 * to transmit that many packets twice within this interval. 2137 */ 2138 packets_remaining = 2 * packets_remaining + 2139 bw_table->interval_bw[i].num_packets; 2140 2141 /* Find the largest max packet size of this or the previous 2142 * interval. 2143 */ 2144 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2145 largest_mps = 0; 2146 else { 2147 struct xhci_virt_ep *virt_ep; 2148 struct list_head *ep_entry; 2149 2150 ep_entry = bw_table->interval_bw[i].endpoints.next; 2151 virt_ep = list_entry(ep_entry, 2152 struct xhci_virt_ep, bw_endpoint_list); 2153 /* Convert to blocks, rounding up */ 2154 largest_mps = DIV_ROUND_UP( 2155 virt_ep->bw_info.max_packet_size, 2156 block_size); 2157 } 2158 if (largest_mps > packet_size) 2159 packet_size = largest_mps; 2160 2161 /* Use the larger overhead of this or the previous interval. */ 2162 interval_overhead = xhci_get_largest_overhead( 2163 &bw_table->interval_bw[i]); 2164 if (interval_overhead > overhead) 2165 overhead = interval_overhead; 2166 2167 /* How many packets can we evenly distribute across 2168 * (1 << (i + 1)) possible scheduling opportunities? 2169 */ 2170 packets_transmitted = packets_remaining >> (i + 1); 2171 2172 /* Add in the bandwidth used for those scheduled packets */ 2173 bw_added = packets_transmitted * (overhead + packet_size); 2174 2175 /* How many packets do we have remaining to transmit? */ 2176 packets_remaining = packets_remaining % (1 << (i + 1)); 2177 2178 /* What largest max packet size should those packets have? */ 2179 /* If we've transmitted all packets, don't carry over the 2180 * largest packet size. 2181 */ 2182 if (packets_remaining == 0) { 2183 packet_size = 0; 2184 overhead = 0; 2185 } else if (packets_transmitted > 0) { 2186 /* Otherwise if we do have remaining packets, and we've 2187 * scheduled some packets in this interval, take the 2188 * largest max packet size from endpoints with this 2189 * interval. 2190 */ 2191 packet_size = largest_mps; 2192 overhead = interval_overhead; 2193 } 2194 /* Otherwise carry over packet_size and overhead from the last 2195 * time we had a remainder. 2196 */ 2197 bw_used += bw_added; 2198 if (bw_used > max_bandwidth) { 2199 xhci_warn(xhci, "Not enough bandwidth. " 2200 "Proposed: %u, Max: %u\n", 2201 bw_used, max_bandwidth); 2202 return -ENOMEM; 2203 } 2204 } 2205 /* 2206 * Ok, we know we have some packets left over after even-handedly 2207 * scheduling interval 15. We don't know which microframes they will 2208 * fit into, so we over-schedule and say they will be scheduled every 2209 * microframe. 2210 */ 2211 if (packets_remaining > 0) 2212 bw_used += overhead + packet_size; 2213 2214 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2215 unsigned int port_index = virt_dev->real_port - 1; 2216 2217 /* OK, we're manipulating a HS device attached to a 2218 * root port bandwidth domain. Include the number of active TTs 2219 * in the bandwidth used. 2220 */ 2221 bw_used += TT_HS_OVERHEAD * 2222 xhci->rh_bw[port_index].num_active_tts; 2223 } 2224 2225 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2226 "Available: %u " "percent\n", 2227 bw_used, max_bandwidth, bw_reserved, 2228 (max_bandwidth - bw_used - bw_reserved) * 100 / 2229 max_bandwidth); 2230 2231 bw_used += bw_reserved; 2232 if (bw_used > max_bandwidth) { 2233 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2234 bw_used, max_bandwidth); 2235 return -ENOMEM; 2236 } 2237 2238 bw_table->bw_used = bw_used; 2239 return 0; 2240 } 2241 2242 static bool xhci_is_async_ep(unsigned int ep_type) 2243 { 2244 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2245 ep_type != ISOC_IN_EP && 2246 ep_type != INT_IN_EP); 2247 } 2248 2249 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2250 { 2251 return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP); 2252 } 2253 2254 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2255 { 2256 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2257 2258 if (ep_bw->ep_interval == 0) 2259 return SS_OVERHEAD_BURST + 2260 (ep_bw->mult * ep_bw->num_packets * 2261 (SS_OVERHEAD + mps)); 2262 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2263 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2264 1 << ep_bw->ep_interval); 2265 2266 } 2267 2268 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2269 struct xhci_bw_info *ep_bw, 2270 struct xhci_interval_bw_table *bw_table, 2271 struct usb_device *udev, 2272 struct xhci_virt_ep *virt_ep, 2273 struct xhci_tt_bw_info *tt_info) 2274 { 2275 struct xhci_interval_bw *interval_bw; 2276 int normalized_interval; 2277 2278 if (xhci_is_async_ep(ep_bw->type)) 2279 return; 2280 2281 if (udev->speed == USB_SPEED_SUPER) { 2282 if (xhci_is_sync_in_ep(ep_bw->type)) 2283 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2284 xhci_get_ss_bw_consumed(ep_bw); 2285 else 2286 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2287 xhci_get_ss_bw_consumed(ep_bw); 2288 return; 2289 } 2290 2291 /* SuperSpeed endpoints never get added to intervals in the table, so 2292 * this check is only valid for HS/FS/LS devices. 2293 */ 2294 if (list_empty(&virt_ep->bw_endpoint_list)) 2295 return; 2296 /* For LS/FS devices, we need to translate the interval expressed in 2297 * microframes to frames. 2298 */ 2299 if (udev->speed == USB_SPEED_HIGH) 2300 normalized_interval = ep_bw->ep_interval; 2301 else 2302 normalized_interval = ep_bw->ep_interval - 3; 2303 2304 if (normalized_interval == 0) 2305 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2306 interval_bw = &bw_table->interval_bw[normalized_interval]; 2307 interval_bw->num_packets -= ep_bw->num_packets; 2308 switch (udev->speed) { 2309 case USB_SPEED_LOW: 2310 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2311 break; 2312 case USB_SPEED_FULL: 2313 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2314 break; 2315 case USB_SPEED_HIGH: 2316 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2317 break; 2318 case USB_SPEED_SUPER: 2319 case USB_SPEED_UNKNOWN: 2320 case USB_SPEED_WIRELESS: 2321 /* Should never happen because only LS/FS/HS endpoints will get 2322 * added to the endpoint list. 2323 */ 2324 return; 2325 } 2326 if (tt_info) 2327 tt_info->active_eps -= 1; 2328 list_del_init(&virt_ep->bw_endpoint_list); 2329 } 2330 2331 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2332 struct xhci_bw_info *ep_bw, 2333 struct xhci_interval_bw_table *bw_table, 2334 struct usb_device *udev, 2335 struct xhci_virt_ep *virt_ep, 2336 struct xhci_tt_bw_info *tt_info) 2337 { 2338 struct xhci_interval_bw *interval_bw; 2339 struct xhci_virt_ep *smaller_ep; 2340 int normalized_interval; 2341 2342 if (xhci_is_async_ep(ep_bw->type)) 2343 return; 2344 2345 if (udev->speed == USB_SPEED_SUPER) { 2346 if (xhci_is_sync_in_ep(ep_bw->type)) 2347 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2348 xhci_get_ss_bw_consumed(ep_bw); 2349 else 2350 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2351 xhci_get_ss_bw_consumed(ep_bw); 2352 return; 2353 } 2354 2355 /* For LS/FS devices, we need to translate the interval expressed in 2356 * microframes to frames. 2357 */ 2358 if (udev->speed == USB_SPEED_HIGH) 2359 normalized_interval = ep_bw->ep_interval; 2360 else 2361 normalized_interval = ep_bw->ep_interval - 3; 2362 2363 if (normalized_interval == 0) 2364 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2365 interval_bw = &bw_table->interval_bw[normalized_interval]; 2366 interval_bw->num_packets += ep_bw->num_packets; 2367 switch (udev->speed) { 2368 case USB_SPEED_LOW: 2369 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2370 break; 2371 case USB_SPEED_FULL: 2372 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2373 break; 2374 case USB_SPEED_HIGH: 2375 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2376 break; 2377 case USB_SPEED_SUPER: 2378 case USB_SPEED_UNKNOWN: 2379 case USB_SPEED_WIRELESS: 2380 /* Should never happen because only LS/FS/HS endpoints will get 2381 * added to the endpoint list. 2382 */ 2383 return; 2384 } 2385 2386 if (tt_info) 2387 tt_info->active_eps += 1; 2388 /* Insert the endpoint into the list, largest max packet size first. */ 2389 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2390 bw_endpoint_list) { 2391 if (ep_bw->max_packet_size >= 2392 smaller_ep->bw_info.max_packet_size) { 2393 /* Add the new ep before the smaller endpoint */ 2394 list_add_tail(&virt_ep->bw_endpoint_list, 2395 &smaller_ep->bw_endpoint_list); 2396 return; 2397 } 2398 } 2399 /* Add the new endpoint at the end of the list. */ 2400 list_add_tail(&virt_ep->bw_endpoint_list, 2401 &interval_bw->endpoints); 2402 } 2403 2404 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2405 struct xhci_virt_device *virt_dev, 2406 int old_active_eps) 2407 { 2408 struct xhci_root_port_bw_info *rh_bw_info; 2409 if (!virt_dev->tt_info) 2410 return; 2411 2412 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2413 if (old_active_eps == 0 && 2414 virt_dev->tt_info->active_eps != 0) { 2415 rh_bw_info->num_active_tts += 1; 2416 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2417 } else if (old_active_eps != 0 && 2418 virt_dev->tt_info->active_eps == 0) { 2419 rh_bw_info->num_active_tts -= 1; 2420 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2421 } 2422 } 2423 2424 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2425 struct xhci_virt_device *virt_dev, 2426 struct xhci_container_ctx *in_ctx) 2427 { 2428 struct xhci_bw_info ep_bw_info[31]; 2429 int i; 2430 struct xhci_input_control_ctx *ctrl_ctx; 2431 int old_active_eps = 0; 2432 2433 if (virt_dev->tt_info) 2434 old_active_eps = virt_dev->tt_info->active_eps; 2435 2436 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2437 2438 for (i = 0; i < 31; i++) { 2439 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2440 continue; 2441 2442 /* Make a copy of the BW info in case we need to revert this */ 2443 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2444 sizeof(ep_bw_info[i])); 2445 /* Drop the endpoint from the interval table if the endpoint is 2446 * being dropped or changed. 2447 */ 2448 if (EP_IS_DROPPED(ctrl_ctx, i)) 2449 xhci_drop_ep_from_interval_table(xhci, 2450 &virt_dev->eps[i].bw_info, 2451 virt_dev->bw_table, 2452 virt_dev->udev, 2453 &virt_dev->eps[i], 2454 virt_dev->tt_info); 2455 } 2456 /* Overwrite the information stored in the endpoints' bw_info */ 2457 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2458 for (i = 0; i < 31; i++) { 2459 /* Add any changed or added endpoints to the interval table */ 2460 if (EP_IS_ADDED(ctrl_ctx, i)) 2461 xhci_add_ep_to_interval_table(xhci, 2462 &virt_dev->eps[i].bw_info, 2463 virt_dev->bw_table, 2464 virt_dev->udev, 2465 &virt_dev->eps[i], 2466 virt_dev->tt_info); 2467 } 2468 2469 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2470 /* Ok, this fits in the bandwidth we have. 2471 * Update the number of active TTs. 2472 */ 2473 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2474 return 0; 2475 } 2476 2477 /* We don't have enough bandwidth for this, revert the stored info. */ 2478 for (i = 0; i < 31; i++) { 2479 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2480 continue; 2481 2482 /* Drop the new copies of any added or changed endpoints from 2483 * the interval table. 2484 */ 2485 if (EP_IS_ADDED(ctrl_ctx, i)) { 2486 xhci_drop_ep_from_interval_table(xhci, 2487 &virt_dev->eps[i].bw_info, 2488 virt_dev->bw_table, 2489 virt_dev->udev, 2490 &virt_dev->eps[i], 2491 virt_dev->tt_info); 2492 } 2493 /* Revert the endpoint back to its old information */ 2494 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2495 sizeof(ep_bw_info[i])); 2496 /* Add any changed or dropped endpoints back into the table */ 2497 if (EP_IS_DROPPED(ctrl_ctx, i)) 2498 xhci_add_ep_to_interval_table(xhci, 2499 &virt_dev->eps[i].bw_info, 2500 virt_dev->bw_table, 2501 virt_dev->udev, 2502 &virt_dev->eps[i], 2503 virt_dev->tt_info); 2504 } 2505 return -ENOMEM; 2506 } 2507 2508 2509 /* Issue a configure endpoint command or evaluate context command 2510 * and wait for it to finish. 2511 */ 2512 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2513 struct usb_device *udev, 2514 struct xhci_command *command, 2515 bool ctx_change, bool must_succeed) 2516 { 2517 int ret; 2518 int timeleft; 2519 unsigned long flags; 2520 struct xhci_container_ctx *in_ctx; 2521 struct completion *cmd_completion; 2522 u32 *cmd_status; 2523 struct xhci_virt_device *virt_dev; 2524 2525 spin_lock_irqsave(&xhci->lock, flags); 2526 virt_dev = xhci->devs[udev->slot_id]; 2527 2528 if (command) 2529 in_ctx = command->in_ctx; 2530 else 2531 in_ctx = virt_dev->in_ctx; 2532 2533 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2534 xhci_reserve_host_resources(xhci, in_ctx)) { 2535 spin_unlock_irqrestore(&xhci->lock, flags); 2536 xhci_warn(xhci, "Not enough host resources, " 2537 "active endpoint contexts = %u\n", 2538 xhci->num_active_eps); 2539 return -ENOMEM; 2540 } 2541 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2542 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) { 2543 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2544 xhci_free_host_resources(xhci, in_ctx); 2545 spin_unlock_irqrestore(&xhci->lock, flags); 2546 xhci_warn(xhci, "Not enough bandwidth\n"); 2547 return -ENOMEM; 2548 } 2549 2550 if (command) { 2551 cmd_completion = command->completion; 2552 cmd_status = &command->status; 2553 command->command_trb = xhci->cmd_ring->enqueue; 2554 2555 /* Enqueue pointer can be left pointing to the link TRB, 2556 * we must handle that 2557 */ 2558 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control)) 2559 command->command_trb = 2560 xhci->cmd_ring->enq_seg->next->trbs; 2561 2562 list_add_tail(&command->cmd_list, &virt_dev->cmd_list); 2563 } else { 2564 cmd_completion = &virt_dev->cmd_completion; 2565 cmd_status = &virt_dev->cmd_status; 2566 } 2567 init_completion(cmd_completion); 2568 2569 if (!ctx_change) 2570 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, 2571 udev->slot_id, must_succeed); 2572 else 2573 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, 2574 udev->slot_id, must_succeed); 2575 if (ret < 0) { 2576 if (command) 2577 list_del(&command->cmd_list); 2578 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2579 xhci_free_host_resources(xhci, in_ctx); 2580 spin_unlock_irqrestore(&xhci->lock, flags); 2581 xhci_dbg(xhci, "FIXME allocate a new ring segment\n"); 2582 return -ENOMEM; 2583 } 2584 xhci_ring_cmd_db(xhci); 2585 spin_unlock_irqrestore(&xhci->lock, flags); 2586 2587 /* Wait for the configure endpoint command to complete */ 2588 timeleft = wait_for_completion_interruptible_timeout( 2589 cmd_completion, 2590 USB_CTRL_SET_TIMEOUT); 2591 if (timeleft <= 0) { 2592 xhci_warn(xhci, "%s while waiting for %s command\n", 2593 timeleft == 0 ? "Timeout" : "Signal", 2594 ctx_change == 0 ? 2595 "configure endpoint" : 2596 "evaluate context"); 2597 /* FIXME cancel the configure endpoint command */ 2598 return -ETIME; 2599 } 2600 2601 if (!ctx_change) 2602 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status); 2603 else 2604 ret = xhci_evaluate_context_result(xhci, udev, cmd_status); 2605 2606 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2607 spin_lock_irqsave(&xhci->lock, flags); 2608 /* If the command failed, remove the reserved resources. 2609 * Otherwise, clean up the estimate to include dropped eps. 2610 */ 2611 if (ret) 2612 xhci_free_host_resources(xhci, in_ctx); 2613 else 2614 xhci_finish_resource_reservation(xhci, in_ctx); 2615 spin_unlock_irqrestore(&xhci->lock, flags); 2616 } 2617 return ret; 2618 } 2619 2620 /* Called after one or more calls to xhci_add_endpoint() or 2621 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2622 * to call xhci_reset_bandwidth(). 2623 * 2624 * Since we are in the middle of changing either configuration or 2625 * installing a new alt setting, the USB core won't allow URBs to be 2626 * enqueued for any endpoint on the old config or interface. Nothing 2627 * else should be touching the xhci->devs[slot_id] structure, so we 2628 * don't need to take the xhci->lock for manipulating that. 2629 */ 2630 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2631 { 2632 int i; 2633 int ret = 0; 2634 struct xhci_hcd *xhci; 2635 struct xhci_virt_device *virt_dev; 2636 struct xhci_input_control_ctx *ctrl_ctx; 2637 struct xhci_slot_ctx *slot_ctx; 2638 2639 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2640 if (ret <= 0) 2641 return ret; 2642 xhci = hcd_to_xhci(hcd); 2643 if (xhci->xhc_state & XHCI_STATE_DYING) 2644 return -ENODEV; 2645 2646 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2647 virt_dev = xhci->devs[udev->slot_id]; 2648 2649 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2650 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 2651 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2652 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2653 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2654 2655 /* Don't issue the command if there's no endpoints to update. */ 2656 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2657 ctrl_ctx->drop_flags == 0) 2658 return 0; 2659 2660 xhci_dbg(xhci, "New Input Control Context:\n"); 2661 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2662 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2663 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2664 2665 ret = xhci_configure_endpoint(xhci, udev, NULL, 2666 false, false); 2667 if (ret) { 2668 /* Callee should call reset_bandwidth() */ 2669 return ret; 2670 } 2671 2672 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2673 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2674 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2675 2676 /* Free any rings that were dropped, but not changed. */ 2677 for (i = 1; i < 31; ++i) { 2678 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2679 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) 2680 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2681 } 2682 xhci_zero_in_ctx(xhci, virt_dev); 2683 /* 2684 * Install any rings for completely new endpoints or changed endpoints, 2685 * and free or cache any old rings from changed endpoints. 2686 */ 2687 for (i = 1; i < 31; ++i) { 2688 if (!virt_dev->eps[i].new_ring) 2689 continue; 2690 /* Only cache or free the old ring if it exists. 2691 * It may not if this is the first add of an endpoint. 2692 */ 2693 if (virt_dev->eps[i].ring) { 2694 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2695 } 2696 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2697 virt_dev->eps[i].new_ring = NULL; 2698 } 2699 2700 return ret; 2701 } 2702 2703 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2704 { 2705 struct xhci_hcd *xhci; 2706 struct xhci_virt_device *virt_dev; 2707 int i, ret; 2708 2709 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2710 if (ret <= 0) 2711 return; 2712 xhci = hcd_to_xhci(hcd); 2713 2714 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2715 virt_dev = xhci->devs[udev->slot_id]; 2716 /* Free any rings allocated for added endpoints */ 2717 for (i = 0; i < 31; ++i) { 2718 if (virt_dev->eps[i].new_ring) { 2719 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2720 virt_dev->eps[i].new_ring = NULL; 2721 } 2722 } 2723 xhci_zero_in_ctx(xhci, virt_dev); 2724 } 2725 2726 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2727 struct xhci_container_ctx *in_ctx, 2728 struct xhci_container_ctx *out_ctx, 2729 u32 add_flags, u32 drop_flags) 2730 { 2731 struct xhci_input_control_ctx *ctrl_ctx; 2732 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2733 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2734 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2735 xhci_slot_copy(xhci, in_ctx, out_ctx); 2736 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2737 2738 xhci_dbg(xhci, "Input Context:\n"); 2739 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2740 } 2741 2742 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2743 unsigned int slot_id, unsigned int ep_index, 2744 struct xhci_dequeue_state *deq_state) 2745 { 2746 struct xhci_container_ctx *in_ctx; 2747 struct xhci_ep_ctx *ep_ctx; 2748 u32 added_ctxs; 2749 dma_addr_t addr; 2750 2751 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2752 xhci->devs[slot_id]->out_ctx, ep_index); 2753 in_ctx = xhci->devs[slot_id]->in_ctx; 2754 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2755 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2756 deq_state->new_deq_ptr); 2757 if (addr == 0) { 2758 xhci_warn(xhci, "WARN Cannot submit config ep after " 2759 "reset ep command\n"); 2760 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2761 deq_state->new_deq_seg, 2762 deq_state->new_deq_ptr); 2763 return; 2764 } 2765 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2766 2767 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2768 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2769 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs); 2770 } 2771 2772 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2773 struct usb_device *udev, unsigned int ep_index) 2774 { 2775 struct xhci_dequeue_state deq_state; 2776 struct xhci_virt_ep *ep; 2777 2778 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n"); 2779 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2780 /* We need to move the HW's dequeue pointer past this TD, 2781 * or it will attempt to resend it on the next doorbell ring. 2782 */ 2783 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2784 ep_index, ep->stopped_stream, ep->stopped_td, 2785 &deq_state); 2786 2787 /* HW with the reset endpoint quirk will use the saved dequeue state to 2788 * issue a configure endpoint command later. 2789 */ 2790 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2791 xhci_dbg(xhci, "Queueing new dequeue state\n"); 2792 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2793 ep_index, ep->stopped_stream, &deq_state); 2794 } else { 2795 /* Better hope no one uses the input context between now and the 2796 * reset endpoint completion! 2797 * XXX: No idea how this hardware will react when stream rings 2798 * are enabled. 2799 */ 2800 xhci_dbg(xhci, "Setting up input context for " 2801 "configure endpoint command\n"); 2802 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2803 ep_index, &deq_state); 2804 } 2805 } 2806 2807 /* Deal with stalled endpoints. The core should have sent the control message 2808 * to clear the halt condition. However, we need to make the xHCI hardware 2809 * reset its sequence number, since a device will expect a sequence number of 2810 * zero after the halt condition is cleared. 2811 * Context: in_interrupt 2812 */ 2813 void xhci_endpoint_reset(struct usb_hcd *hcd, 2814 struct usb_host_endpoint *ep) 2815 { 2816 struct xhci_hcd *xhci; 2817 struct usb_device *udev; 2818 unsigned int ep_index; 2819 unsigned long flags; 2820 int ret; 2821 struct xhci_virt_ep *virt_ep; 2822 2823 xhci = hcd_to_xhci(hcd); 2824 udev = (struct usb_device *) ep->hcpriv; 2825 /* Called with a root hub endpoint (or an endpoint that wasn't added 2826 * with xhci_add_endpoint() 2827 */ 2828 if (!ep->hcpriv) 2829 return; 2830 ep_index = xhci_get_endpoint_index(&ep->desc); 2831 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2832 if (!virt_ep->stopped_td) { 2833 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n", 2834 ep->desc.bEndpointAddress); 2835 return; 2836 } 2837 if (usb_endpoint_xfer_control(&ep->desc)) { 2838 xhci_dbg(xhci, "Control endpoint stall already handled.\n"); 2839 return; 2840 } 2841 2842 xhci_dbg(xhci, "Queueing reset endpoint command\n"); 2843 spin_lock_irqsave(&xhci->lock, flags); 2844 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); 2845 /* 2846 * Can't change the ring dequeue pointer until it's transitioned to the 2847 * stopped state, which is only upon a successful reset endpoint 2848 * command. Better hope that last command worked! 2849 */ 2850 if (!ret) { 2851 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 2852 kfree(virt_ep->stopped_td); 2853 xhci_ring_cmd_db(xhci); 2854 } 2855 virt_ep->stopped_td = NULL; 2856 virt_ep->stopped_trb = NULL; 2857 virt_ep->stopped_stream = 0; 2858 spin_unlock_irqrestore(&xhci->lock, flags); 2859 2860 if (ret) 2861 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 2862 } 2863 2864 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2865 struct usb_device *udev, struct usb_host_endpoint *ep, 2866 unsigned int slot_id) 2867 { 2868 int ret; 2869 unsigned int ep_index; 2870 unsigned int ep_state; 2871 2872 if (!ep) 2873 return -EINVAL; 2874 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2875 if (ret <= 0) 2876 return -EINVAL; 2877 if (ep->ss_ep_comp.bmAttributes == 0) { 2878 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2879 " descriptor for ep 0x%x does not support streams\n", 2880 ep->desc.bEndpointAddress); 2881 return -EINVAL; 2882 } 2883 2884 ep_index = xhci_get_endpoint_index(&ep->desc); 2885 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2886 if (ep_state & EP_HAS_STREAMS || 2887 ep_state & EP_GETTING_STREAMS) { 2888 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2889 "already has streams set up.\n", 2890 ep->desc.bEndpointAddress); 2891 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2892 "dynamic stream context array reallocation.\n"); 2893 return -EINVAL; 2894 } 2895 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2896 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2897 "endpoint 0x%x; URBs are pending.\n", 2898 ep->desc.bEndpointAddress); 2899 return -EINVAL; 2900 } 2901 return 0; 2902 } 2903 2904 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2905 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2906 { 2907 unsigned int max_streams; 2908 2909 /* The stream context array size must be a power of two */ 2910 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2911 /* 2912 * Find out how many primary stream array entries the host controller 2913 * supports. Later we may use secondary stream arrays (similar to 2nd 2914 * level page entries), but that's an optional feature for xHCI host 2915 * controllers. xHCs must support at least 4 stream IDs. 2916 */ 2917 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2918 if (*num_stream_ctxs > max_streams) { 2919 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2920 max_streams); 2921 *num_stream_ctxs = max_streams; 2922 *num_streams = max_streams; 2923 } 2924 } 2925 2926 /* Returns an error code if one of the endpoint already has streams. 2927 * This does not change any data structures, it only checks and gathers 2928 * information. 2929 */ 2930 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 2931 struct usb_device *udev, 2932 struct usb_host_endpoint **eps, unsigned int num_eps, 2933 unsigned int *num_streams, u32 *changed_ep_bitmask) 2934 { 2935 unsigned int max_streams; 2936 unsigned int endpoint_flag; 2937 int i; 2938 int ret; 2939 2940 for (i = 0; i < num_eps; i++) { 2941 ret = xhci_check_streams_endpoint(xhci, udev, 2942 eps[i], udev->slot_id); 2943 if (ret < 0) 2944 return ret; 2945 2946 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 2947 if (max_streams < (*num_streams - 1)) { 2948 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 2949 eps[i]->desc.bEndpointAddress, 2950 max_streams); 2951 *num_streams = max_streams+1; 2952 } 2953 2954 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 2955 if (*changed_ep_bitmask & endpoint_flag) 2956 return -EINVAL; 2957 *changed_ep_bitmask |= endpoint_flag; 2958 } 2959 return 0; 2960 } 2961 2962 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 2963 struct usb_device *udev, 2964 struct usb_host_endpoint **eps, unsigned int num_eps) 2965 { 2966 u32 changed_ep_bitmask = 0; 2967 unsigned int slot_id; 2968 unsigned int ep_index; 2969 unsigned int ep_state; 2970 int i; 2971 2972 slot_id = udev->slot_id; 2973 if (!xhci->devs[slot_id]) 2974 return 0; 2975 2976 for (i = 0; i < num_eps; i++) { 2977 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2978 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2979 /* Are streams already being freed for the endpoint? */ 2980 if (ep_state & EP_GETTING_NO_STREAMS) { 2981 xhci_warn(xhci, "WARN Can't disable streams for " 2982 "endpoint 0x%x\n, " 2983 "streams are being disabled already.", 2984 eps[i]->desc.bEndpointAddress); 2985 return 0; 2986 } 2987 /* Are there actually any streams to free? */ 2988 if (!(ep_state & EP_HAS_STREAMS) && 2989 !(ep_state & EP_GETTING_STREAMS)) { 2990 xhci_warn(xhci, "WARN Can't disable streams for " 2991 "endpoint 0x%x\n, " 2992 "streams are already disabled!", 2993 eps[i]->desc.bEndpointAddress); 2994 xhci_warn(xhci, "WARN xhci_free_streams() called " 2995 "with non-streams endpoint\n"); 2996 return 0; 2997 } 2998 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 2999 } 3000 return changed_ep_bitmask; 3001 } 3002 3003 /* 3004 * The USB device drivers use this function (though the HCD interface in USB 3005 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3006 * coordinate mass storage command queueing across multiple endpoints (basically 3007 * a stream ID == a task ID). 3008 * 3009 * Setting up streams involves allocating the same size stream context array 3010 * for each endpoint and issuing a configure endpoint command for all endpoints. 3011 * 3012 * Don't allow the call to succeed if one endpoint only supports one stream 3013 * (which means it doesn't support streams at all). 3014 * 3015 * Drivers may get less stream IDs than they asked for, if the host controller 3016 * hardware or endpoints claim they can't support the number of requested 3017 * stream IDs. 3018 */ 3019 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3020 struct usb_host_endpoint **eps, unsigned int num_eps, 3021 unsigned int num_streams, gfp_t mem_flags) 3022 { 3023 int i, ret; 3024 struct xhci_hcd *xhci; 3025 struct xhci_virt_device *vdev; 3026 struct xhci_command *config_cmd; 3027 unsigned int ep_index; 3028 unsigned int num_stream_ctxs; 3029 unsigned long flags; 3030 u32 changed_ep_bitmask = 0; 3031 3032 if (!eps) 3033 return -EINVAL; 3034 3035 /* Add one to the number of streams requested to account for 3036 * stream 0 that is reserved for xHCI usage. 3037 */ 3038 num_streams += 1; 3039 xhci = hcd_to_xhci(hcd); 3040 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3041 num_streams); 3042 3043 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3044 if (!config_cmd) { 3045 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3046 return -ENOMEM; 3047 } 3048 3049 /* Check to make sure all endpoints are not already configured for 3050 * streams. While we're at it, find the maximum number of streams that 3051 * all the endpoints will support and check for duplicate endpoints. 3052 */ 3053 spin_lock_irqsave(&xhci->lock, flags); 3054 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3055 num_eps, &num_streams, &changed_ep_bitmask); 3056 if (ret < 0) { 3057 xhci_free_command(xhci, config_cmd); 3058 spin_unlock_irqrestore(&xhci->lock, flags); 3059 return ret; 3060 } 3061 if (num_streams <= 1) { 3062 xhci_warn(xhci, "WARN: endpoints can't handle " 3063 "more than one stream.\n"); 3064 xhci_free_command(xhci, config_cmd); 3065 spin_unlock_irqrestore(&xhci->lock, flags); 3066 return -EINVAL; 3067 } 3068 vdev = xhci->devs[udev->slot_id]; 3069 /* Mark each endpoint as being in transition, so 3070 * xhci_urb_enqueue() will reject all URBs. 3071 */ 3072 for (i = 0; i < num_eps; i++) { 3073 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3074 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3075 } 3076 spin_unlock_irqrestore(&xhci->lock, flags); 3077 3078 /* Setup internal data structures and allocate HW data structures for 3079 * streams (but don't install the HW structures in the input context 3080 * until we're sure all memory allocation succeeded). 3081 */ 3082 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3083 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3084 num_stream_ctxs, num_streams); 3085 3086 for (i = 0; i < num_eps; i++) { 3087 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3088 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3089 num_stream_ctxs, 3090 num_streams, mem_flags); 3091 if (!vdev->eps[ep_index].stream_info) 3092 goto cleanup; 3093 /* Set maxPstreams in endpoint context and update deq ptr to 3094 * point to stream context array. FIXME 3095 */ 3096 } 3097 3098 /* Set up the input context for a configure endpoint command. */ 3099 for (i = 0; i < num_eps; i++) { 3100 struct xhci_ep_ctx *ep_ctx; 3101 3102 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3103 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3104 3105 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3106 vdev->out_ctx, ep_index); 3107 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3108 vdev->eps[ep_index].stream_info); 3109 } 3110 /* Tell the HW to drop its old copy of the endpoint context info 3111 * and add the updated copy from the input context. 3112 */ 3113 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3114 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 3115 3116 /* Issue and wait for the configure endpoint command */ 3117 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3118 false, false); 3119 3120 /* xHC rejected the configure endpoint command for some reason, so we 3121 * leave the old ring intact and free our internal streams data 3122 * structure. 3123 */ 3124 if (ret < 0) 3125 goto cleanup; 3126 3127 spin_lock_irqsave(&xhci->lock, flags); 3128 for (i = 0; i < num_eps; i++) { 3129 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3130 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3131 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3132 udev->slot_id, ep_index); 3133 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3134 } 3135 xhci_free_command(xhci, config_cmd); 3136 spin_unlock_irqrestore(&xhci->lock, flags); 3137 3138 /* Subtract 1 for stream 0, which drivers can't use */ 3139 return num_streams - 1; 3140 3141 cleanup: 3142 /* If it didn't work, free the streams! */ 3143 for (i = 0; i < num_eps; i++) { 3144 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3145 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3146 vdev->eps[ep_index].stream_info = NULL; 3147 /* FIXME Unset maxPstreams in endpoint context and 3148 * update deq ptr to point to normal string ring. 3149 */ 3150 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3151 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3152 xhci_endpoint_zero(xhci, vdev, eps[i]); 3153 } 3154 xhci_free_command(xhci, config_cmd); 3155 return -ENOMEM; 3156 } 3157 3158 /* Transition the endpoint from using streams to being a "normal" endpoint 3159 * without streams. 3160 * 3161 * Modify the endpoint context state, submit a configure endpoint command, 3162 * and free all endpoint rings for streams if that completes successfully. 3163 */ 3164 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3165 struct usb_host_endpoint **eps, unsigned int num_eps, 3166 gfp_t mem_flags) 3167 { 3168 int i, ret; 3169 struct xhci_hcd *xhci; 3170 struct xhci_virt_device *vdev; 3171 struct xhci_command *command; 3172 unsigned int ep_index; 3173 unsigned long flags; 3174 u32 changed_ep_bitmask; 3175 3176 xhci = hcd_to_xhci(hcd); 3177 vdev = xhci->devs[udev->slot_id]; 3178 3179 /* Set up a configure endpoint command to remove the streams rings */ 3180 spin_lock_irqsave(&xhci->lock, flags); 3181 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3182 udev, eps, num_eps); 3183 if (changed_ep_bitmask == 0) { 3184 spin_unlock_irqrestore(&xhci->lock, flags); 3185 return -EINVAL; 3186 } 3187 3188 /* Use the xhci_command structure from the first endpoint. We may have 3189 * allocated too many, but the driver may call xhci_free_streams() for 3190 * each endpoint it grouped into one call to xhci_alloc_streams(). 3191 */ 3192 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3193 command = vdev->eps[ep_index].stream_info->free_streams_command; 3194 for (i = 0; i < num_eps; i++) { 3195 struct xhci_ep_ctx *ep_ctx; 3196 3197 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3198 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3199 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3200 EP_GETTING_NO_STREAMS; 3201 3202 xhci_endpoint_copy(xhci, command->in_ctx, 3203 vdev->out_ctx, ep_index); 3204 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 3205 &vdev->eps[ep_index]); 3206 } 3207 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3208 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 3209 spin_unlock_irqrestore(&xhci->lock, flags); 3210 3211 /* Issue and wait for the configure endpoint command, 3212 * which must succeed. 3213 */ 3214 ret = xhci_configure_endpoint(xhci, udev, command, 3215 false, true); 3216 3217 /* xHC rejected the configure endpoint command for some reason, so we 3218 * leave the streams rings intact. 3219 */ 3220 if (ret < 0) 3221 return ret; 3222 3223 spin_lock_irqsave(&xhci->lock, flags); 3224 for (i = 0; i < num_eps; i++) { 3225 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3226 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3227 vdev->eps[ep_index].stream_info = NULL; 3228 /* FIXME Unset maxPstreams in endpoint context and 3229 * update deq ptr to point to normal string ring. 3230 */ 3231 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3232 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3233 } 3234 spin_unlock_irqrestore(&xhci->lock, flags); 3235 3236 return 0; 3237 } 3238 3239 /* 3240 * Deletes endpoint resources for endpoints that were active before a Reset 3241 * Device command, or a Disable Slot command. The Reset Device command leaves 3242 * the control endpoint intact, whereas the Disable Slot command deletes it. 3243 * 3244 * Must be called with xhci->lock held. 3245 */ 3246 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3247 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3248 { 3249 int i; 3250 unsigned int num_dropped_eps = 0; 3251 unsigned int drop_flags = 0; 3252 3253 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3254 if (virt_dev->eps[i].ring) { 3255 drop_flags |= 1 << i; 3256 num_dropped_eps++; 3257 } 3258 } 3259 xhci->num_active_eps -= num_dropped_eps; 3260 if (num_dropped_eps) 3261 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, " 3262 "%u now active.\n", 3263 num_dropped_eps, drop_flags, 3264 xhci->num_active_eps); 3265 } 3266 3267 /* 3268 * This submits a Reset Device Command, which will set the device state to 0, 3269 * set the device address to 0, and disable all the endpoints except the default 3270 * control endpoint. The USB core should come back and call 3271 * xhci_address_device(), and then re-set up the configuration. If this is 3272 * called because of a usb_reset_and_verify_device(), then the old alternate 3273 * settings will be re-installed through the normal bandwidth allocation 3274 * functions. 3275 * 3276 * Wait for the Reset Device command to finish. Remove all structures 3277 * associated with the endpoints that were disabled. Clear the input device 3278 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3279 * 3280 * If the virt_dev to be reset does not exist or does not match the udev, 3281 * it means the device is lost, possibly due to the xHC restore error and 3282 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3283 * re-allocate the device. 3284 */ 3285 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3286 { 3287 int ret, i; 3288 unsigned long flags; 3289 struct xhci_hcd *xhci; 3290 unsigned int slot_id; 3291 struct xhci_virt_device *virt_dev; 3292 struct xhci_command *reset_device_cmd; 3293 int timeleft; 3294 int last_freed_endpoint; 3295 struct xhci_slot_ctx *slot_ctx; 3296 int old_active_eps = 0; 3297 3298 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3299 if (ret <= 0) 3300 return ret; 3301 xhci = hcd_to_xhci(hcd); 3302 slot_id = udev->slot_id; 3303 virt_dev = xhci->devs[slot_id]; 3304 if (!virt_dev) { 3305 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3306 "not exist. Re-allocate the device\n", slot_id); 3307 ret = xhci_alloc_dev(hcd, udev); 3308 if (ret == 1) 3309 return 0; 3310 else 3311 return -EINVAL; 3312 } 3313 3314 if (virt_dev->udev != udev) { 3315 /* If the virt_dev and the udev does not match, this virt_dev 3316 * may belong to another udev. 3317 * Re-allocate the device. 3318 */ 3319 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3320 "not match the udev. Re-allocate the device\n", 3321 slot_id); 3322 ret = xhci_alloc_dev(hcd, udev); 3323 if (ret == 1) 3324 return 0; 3325 else 3326 return -EINVAL; 3327 } 3328 3329 /* If device is not setup, there is no point in resetting it */ 3330 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3331 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3332 SLOT_STATE_DISABLED) 3333 return 0; 3334 3335 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3336 /* Allocate the command structure that holds the struct completion. 3337 * Assume we're in process context, since the normal device reset 3338 * process has to wait for the device anyway. Storage devices are 3339 * reset as part of error handling, so use GFP_NOIO instead of 3340 * GFP_KERNEL. 3341 */ 3342 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3343 if (!reset_device_cmd) { 3344 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3345 return -ENOMEM; 3346 } 3347 3348 /* Attempt to submit the Reset Device command to the command ring */ 3349 spin_lock_irqsave(&xhci->lock, flags); 3350 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue; 3351 3352 /* Enqueue pointer can be left pointing to the link TRB, 3353 * we must handle that 3354 */ 3355 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control)) 3356 reset_device_cmd->command_trb = 3357 xhci->cmd_ring->enq_seg->next->trbs; 3358 3359 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); 3360 ret = xhci_queue_reset_device(xhci, slot_id); 3361 if (ret) { 3362 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3363 list_del(&reset_device_cmd->cmd_list); 3364 spin_unlock_irqrestore(&xhci->lock, flags); 3365 goto command_cleanup; 3366 } 3367 xhci_ring_cmd_db(xhci); 3368 spin_unlock_irqrestore(&xhci->lock, flags); 3369 3370 /* Wait for the Reset Device command to finish */ 3371 timeleft = wait_for_completion_interruptible_timeout( 3372 reset_device_cmd->completion, 3373 USB_CTRL_SET_TIMEOUT); 3374 if (timeleft <= 0) { 3375 xhci_warn(xhci, "%s while waiting for reset device command\n", 3376 timeleft == 0 ? "Timeout" : "Signal"); 3377 spin_lock_irqsave(&xhci->lock, flags); 3378 /* The timeout might have raced with the event ring handler, so 3379 * only delete from the list if the item isn't poisoned. 3380 */ 3381 if (reset_device_cmd->cmd_list.next != LIST_POISON1) 3382 list_del(&reset_device_cmd->cmd_list); 3383 spin_unlock_irqrestore(&xhci->lock, flags); 3384 ret = -ETIME; 3385 goto command_cleanup; 3386 } 3387 3388 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3389 * unless we tried to reset a slot ID that wasn't enabled, 3390 * or the device wasn't in the addressed or configured state. 3391 */ 3392 ret = reset_device_cmd->status; 3393 switch (ret) { 3394 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3395 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3396 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n", 3397 slot_id, 3398 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3399 xhci_info(xhci, "Not freeing device rings.\n"); 3400 /* Don't treat this as an error. May change my mind later. */ 3401 ret = 0; 3402 goto command_cleanup; 3403 case COMP_SUCCESS: 3404 xhci_dbg(xhci, "Successful reset device command.\n"); 3405 break; 3406 default: 3407 if (xhci_is_vendor_info_code(xhci, ret)) 3408 break; 3409 xhci_warn(xhci, "Unknown completion code %u for " 3410 "reset device command.\n", ret); 3411 ret = -EINVAL; 3412 goto command_cleanup; 3413 } 3414 3415 /* Free up host controller endpoint resources */ 3416 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3417 spin_lock_irqsave(&xhci->lock, flags); 3418 /* Don't delete the default control endpoint resources */ 3419 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3420 spin_unlock_irqrestore(&xhci->lock, flags); 3421 } 3422 3423 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3424 last_freed_endpoint = 1; 3425 for (i = 1; i < 31; ++i) { 3426 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3427 3428 if (ep->ep_state & EP_HAS_STREAMS) { 3429 xhci_free_stream_info(xhci, ep->stream_info); 3430 ep->stream_info = NULL; 3431 ep->ep_state &= ~EP_HAS_STREAMS; 3432 } 3433 3434 if (ep->ring) { 3435 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3436 last_freed_endpoint = i; 3437 } 3438 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3439 xhci_drop_ep_from_interval_table(xhci, 3440 &virt_dev->eps[i].bw_info, 3441 virt_dev->bw_table, 3442 udev, 3443 &virt_dev->eps[i], 3444 virt_dev->tt_info); 3445 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3446 } 3447 /* If necessary, update the number of active TTs on this root port */ 3448 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3449 3450 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3451 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3452 ret = 0; 3453 3454 command_cleanup: 3455 xhci_free_command(xhci, reset_device_cmd); 3456 return ret; 3457 } 3458 3459 /* 3460 * At this point, the struct usb_device is about to go away, the device has 3461 * disconnected, and all traffic has been stopped and the endpoints have been 3462 * disabled. Free any HC data structures associated with that device. 3463 */ 3464 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3465 { 3466 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3467 struct xhci_virt_device *virt_dev; 3468 unsigned long flags; 3469 u32 state; 3470 int i, ret; 3471 3472 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3473 /* If the host is halted due to driver unload, we still need to free the 3474 * device. 3475 */ 3476 if (ret <= 0 && ret != -ENODEV) 3477 return; 3478 3479 virt_dev = xhci->devs[udev->slot_id]; 3480 3481 /* Stop any wayward timer functions (which may grab the lock) */ 3482 for (i = 0; i < 31; ++i) { 3483 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3484 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3485 } 3486 3487 if (udev->usb2_hw_lpm_enabled) { 3488 xhci_set_usb2_hardware_lpm(hcd, udev, 0); 3489 udev->usb2_hw_lpm_enabled = 0; 3490 } 3491 3492 spin_lock_irqsave(&xhci->lock, flags); 3493 /* Don't disable the slot if the host controller is dead. */ 3494 state = xhci_readl(xhci, &xhci->op_regs->status); 3495 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3496 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3497 xhci_free_virt_device(xhci, udev->slot_id); 3498 spin_unlock_irqrestore(&xhci->lock, flags); 3499 return; 3500 } 3501 3502 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { 3503 spin_unlock_irqrestore(&xhci->lock, flags); 3504 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3505 return; 3506 } 3507 xhci_ring_cmd_db(xhci); 3508 spin_unlock_irqrestore(&xhci->lock, flags); 3509 /* 3510 * Event command completion handler will free any data structures 3511 * associated with the slot. XXX Can free sleep? 3512 */ 3513 } 3514 3515 /* 3516 * Checks if we have enough host controller resources for the default control 3517 * endpoint. 3518 * 3519 * Must be called with xhci->lock held. 3520 */ 3521 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3522 { 3523 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3524 xhci_dbg(xhci, "Not enough ep ctxs: " 3525 "%u active, need to add 1, limit is %u.\n", 3526 xhci->num_active_eps, xhci->limit_active_eps); 3527 return -ENOMEM; 3528 } 3529 xhci->num_active_eps += 1; 3530 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n", 3531 xhci->num_active_eps); 3532 return 0; 3533 } 3534 3535 3536 /* 3537 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3538 * timed out, or allocating memory failed. Returns 1 on success. 3539 */ 3540 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3541 { 3542 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3543 unsigned long flags; 3544 int timeleft; 3545 int ret; 3546 3547 spin_lock_irqsave(&xhci->lock, flags); 3548 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); 3549 if (ret) { 3550 spin_unlock_irqrestore(&xhci->lock, flags); 3551 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3552 return 0; 3553 } 3554 xhci_ring_cmd_db(xhci); 3555 spin_unlock_irqrestore(&xhci->lock, flags); 3556 3557 /* XXX: how much time for xHC slot assignment? */ 3558 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3559 USB_CTRL_SET_TIMEOUT); 3560 if (timeleft <= 0) { 3561 xhci_warn(xhci, "%s while waiting for a slot\n", 3562 timeleft == 0 ? "Timeout" : "Signal"); 3563 /* FIXME cancel the enable slot request */ 3564 return 0; 3565 } 3566 3567 if (!xhci->slot_id) { 3568 xhci_err(xhci, "Error while assigning device slot ID\n"); 3569 return 0; 3570 } 3571 3572 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3573 spin_lock_irqsave(&xhci->lock, flags); 3574 ret = xhci_reserve_host_control_ep_resources(xhci); 3575 if (ret) { 3576 spin_unlock_irqrestore(&xhci->lock, flags); 3577 xhci_warn(xhci, "Not enough host resources, " 3578 "active endpoint contexts = %u\n", 3579 xhci->num_active_eps); 3580 goto disable_slot; 3581 } 3582 spin_unlock_irqrestore(&xhci->lock, flags); 3583 } 3584 /* Use GFP_NOIO, since this function can be called from 3585 * xhci_discover_or_reset_device(), which may be called as part of 3586 * mass storage driver error handling. 3587 */ 3588 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3589 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3590 goto disable_slot; 3591 } 3592 udev->slot_id = xhci->slot_id; 3593 /* Is this a LS or FS device under a HS hub? */ 3594 /* Hub or peripherial? */ 3595 return 1; 3596 3597 disable_slot: 3598 /* Disable slot, if we can do it without mem alloc */ 3599 spin_lock_irqsave(&xhci->lock, flags); 3600 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) 3601 xhci_ring_cmd_db(xhci); 3602 spin_unlock_irqrestore(&xhci->lock, flags); 3603 return 0; 3604 } 3605 3606 /* 3607 * Issue an Address Device command (which will issue a SetAddress request to 3608 * the device). 3609 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so 3610 * we should only issue and wait on one address command at the same time. 3611 * 3612 * We add one to the device address issued by the hardware because the USB core 3613 * uses address 1 for the root hubs (even though they're not really devices). 3614 */ 3615 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3616 { 3617 unsigned long flags; 3618 int timeleft; 3619 struct xhci_virt_device *virt_dev; 3620 int ret = 0; 3621 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3622 struct xhci_slot_ctx *slot_ctx; 3623 struct xhci_input_control_ctx *ctrl_ctx; 3624 u64 temp_64; 3625 3626 if (!udev->slot_id) { 3627 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id); 3628 return -EINVAL; 3629 } 3630 3631 virt_dev = xhci->devs[udev->slot_id]; 3632 3633 if (WARN_ON(!virt_dev)) { 3634 /* 3635 * In plug/unplug torture test with an NEC controller, 3636 * a zero-dereference was observed once due to virt_dev = 0. 3637 * Print useful debug rather than crash if it is observed again! 3638 */ 3639 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3640 udev->slot_id); 3641 return -EINVAL; 3642 } 3643 3644 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3645 /* 3646 * If this is the first Set Address since device plug-in or 3647 * virt_device realloaction after a resume with an xHCI power loss, 3648 * then set up the slot context. 3649 */ 3650 if (!slot_ctx->dev_info) 3651 xhci_setup_addressable_virt_dev(xhci, udev); 3652 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3653 else 3654 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3655 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 3656 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3657 ctrl_ctx->drop_flags = 0; 3658 3659 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3660 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3661 3662 spin_lock_irqsave(&xhci->lock, flags); 3663 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, 3664 udev->slot_id); 3665 if (ret) { 3666 spin_unlock_irqrestore(&xhci->lock, flags); 3667 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3668 return ret; 3669 } 3670 xhci_ring_cmd_db(xhci); 3671 spin_unlock_irqrestore(&xhci->lock, flags); 3672 3673 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3674 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3675 USB_CTRL_SET_TIMEOUT); 3676 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3677 * the SetAddress() "recovery interval" required by USB and aborting the 3678 * command on a timeout. 3679 */ 3680 if (timeleft <= 0) { 3681 xhci_warn(xhci, "%s while waiting for address device command\n", 3682 timeleft == 0 ? "Timeout" : "Signal"); 3683 /* FIXME cancel the address device command */ 3684 return -ETIME; 3685 } 3686 3687 switch (virt_dev->cmd_status) { 3688 case COMP_CTX_STATE: 3689 case COMP_EBADSLT: 3690 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", 3691 udev->slot_id); 3692 ret = -EINVAL; 3693 break; 3694 case COMP_TX_ERR: 3695 dev_warn(&udev->dev, "Device not responding to set address.\n"); 3696 ret = -EPROTO; 3697 break; 3698 case COMP_DEV_ERR: 3699 dev_warn(&udev->dev, "ERROR: Incompatible device for address " 3700 "device command.\n"); 3701 ret = -ENODEV; 3702 break; 3703 case COMP_SUCCESS: 3704 xhci_dbg(xhci, "Successful Address Device command\n"); 3705 break; 3706 default: 3707 xhci_err(xhci, "ERROR: unexpected command completion " 3708 "code 0x%x.\n", virt_dev->cmd_status); 3709 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3710 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3711 ret = -EINVAL; 3712 break; 3713 } 3714 if (ret) { 3715 return ret; 3716 } 3717 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3718 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64); 3719 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n", 3720 udev->slot_id, 3721 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3722 (unsigned long long) 3723 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3724 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n", 3725 (unsigned long long)virt_dev->out_ctx->dma); 3726 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3727 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3728 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3729 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3730 /* 3731 * USB core uses address 1 for the roothubs, so we add one to the 3732 * address given back to us by the HC. 3733 */ 3734 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3735 /* Use kernel assigned address for devices; store xHC assigned 3736 * address locally. */ 3737 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK) 3738 + 1; 3739 /* Zero the input context control for later use */ 3740 ctrl_ctx->add_flags = 0; 3741 ctrl_ctx->drop_flags = 0; 3742 3743 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address); 3744 3745 return 0; 3746 } 3747 3748 #ifdef CONFIG_USB_SUSPEND 3749 3750 /* BESL to HIRD Encoding array for USB2 LPM */ 3751 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3752 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3753 3754 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3755 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 3756 struct usb_device *udev) 3757 { 3758 int u2del, besl, besl_host; 3759 int besl_device = 0; 3760 u32 field; 3761 3762 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 3763 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 3764 3765 if (field & USB_BESL_SUPPORT) { 3766 for (besl_host = 0; besl_host < 16; besl_host++) { 3767 if (xhci_besl_encoding[besl_host] >= u2del) 3768 break; 3769 } 3770 /* Use baseline BESL value as default */ 3771 if (field & USB_BESL_BASELINE_VALID) 3772 besl_device = USB_GET_BESL_BASELINE(field); 3773 else if (field & USB_BESL_DEEP_VALID) 3774 besl_device = USB_GET_BESL_DEEP(field); 3775 } else { 3776 if (u2del <= 50) 3777 besl_host = 0; 3778 else 3779 besl_host = (u2del - 51) / 75 + 1; 3780 } 3781 3782 besl = besl_host + besl_device; 3783 if (besl > 15) 3784 besl = 15; 3785 3786 return besl; 3787 } 3788 3789 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd, 3790 struct usb_device *udev) 3791 { 3792 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3793 struct dev_info *dev_info; 3794 __le32 __iomem **port_array; 3795 __le32 __iomem *addr, *pm_addr; 3796 u32 temp, dev_id; 3797 unsigned int port_num; 3798 unsigned long flags; 3799 int hird; 3800 int ret; 3801 3802 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 3803 !udev->lpm_capable) 3804 return -EINVAL; 3805 3806 /* we only support lpm for non-hub device connected to root hub yet */ 3807 if (!udev->parent || udev->parent->parent || 3808 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 3809 return -EINVAL; 3810 3811 spin_lock_irqsave(&xhci->lock, flags); 3812 3813 /* Look for devices in lpm_failed_devs list */ 3814 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 | 3815 le16_to_cpu(udev->descriptor.idProduct); 3816 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) { 3817 if (dev_info->dev_id == dev_id) { 3818 ret = -EINVAL; 3819 goto finish; 3820 } 3821 } 3822 3823 port_array = xhci->usb2_ports; 3824 port_num = udev->portnum - 1; 3825 3826 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) { 3827 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum); 3828 ret = -EINVAL; 3829 goto finish; 3830 } 3831 3832 /* 3833 * Test USB 2.0 software LPM. 3834 * FIXME: some xHCI 1.0 hosts may implement a new register to set up 3835 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1 3836 * in the June 2011 errata release. 3837 */ 3838 xhci_dbg(xhci, "test port %d software LPM\n", port_num); 3839 /* 3840 * Set L1 Device Slot and HIRD/BESL. 3841 * Check device's USB 2.0 extension descriptor to determine whether 3842 * HIRD or BESL shoule be used. See USB2.0 LPM errata. 3843 */ 3844 pm_addr = port_array[port_num] + 1; 3845 hird = xhci_calculate_hird_besl(xhci, udev); 3846 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird); 3847 xhci_writel(xhci, temp, pm_addr); 3848 3849 /* Set port link state to U2(L1) */ 3850 addr = port_array[port_num]; 3851 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2); 3852 3853 /* wait for ACK */ 3854 spin_unlock_irqrestore(&xhci->lock, flags); 3855 msleep(10); 3856 spin_lock_irqsave(&xhci->lock, flags); 3857 3858 /* Check L1 Status */ 3859 ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125); 3860 if (ret != -ETIMEDOUT) { 3861 /* enter L1 successfully */ 3862 temp = xhci_readl(xhci, addr); 3863 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n", 3864 port_num, temp); 3865 ret = 0; 3866 } else { 3867 temp = xhci_readl(xhci, pm_addr); 3868 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n", 3869 port_num, temp & PORT_L1S_MASK); 3870 ret = -EINVAL; 3871 } 3872 3873 /* Resume the port */ 3874 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0); 3875 3876 spin_unlock_irqrestore(&xhci->lock, flags); 3877 msleep(10); 3878 spin_lock_irqsave(&xhci->lock, flags); 3879 3880 /* Clear PLC */ 3881 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC); 3882 3883 /* Check PORTSC to make sure the device is in the right state */ 3884 if (!ret) { 3885 temp = xhci_readl(xhci, addr); 3886 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp); 3887 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) || 3888 (temp & PORT_PLS_MASK) != XDEV_U0) { 3889 xhci_dbg(xhci, "port L1 resume fail\n"); 3890 ret = -EINVAL; 3891 } 3892 } 3893 3894 if (ret) { 3895 /* Insert dev to lpm_failed_devs list */ 3896 xhci_warn(xhci, "device LPM test failed, may disconnect and " 3897 "re-enumerate\n"); 3898 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC); 3899 if (!dev_info) { 3900 ret = -ENOMEM; 3901 goto finish; 3902 } 3903 dev_info->dev_id = dev_id; 3904 INIT_LIST_HEAD(&dev_info->list); 3905 list_add(&dev_info->list, &xhci->lpm_failed_devs); 3906 } else { 3907 xhci_ring_device(xhci, udev->slot_id); 3908 } 3909 3910 finish: 3911 spin_unlock_irqrestore(&xhci->lock, flags); 3912 return ret; 3913 } 3914 3915 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 3916 struct usb_device *udev, int enable) 3917 { 3918 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3919 __le32 __iomem **port_array; 3920 __le32 __iomem *pm_addr; 3921 u32 temp; 3922 unsigned int port_num; 3923 unsigned long flags; 3924 int hird; 3925 3926 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 3927 !udev->lpm_capable) 3928 return -EPERM; 3929 3930 if (!udev->parent || udev->parent->parent || 3931 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 3932 return -EPERM; 3933 3934 if (udev->usb2_hw_lpm_capable != 1) 3935 return -EPERM; 3936 3937 spin_lock_irqsave(&xhci->lock, flags); 3938 3939 port_array = xhci->usb2_ports; 3940 port_num = udev->portnum - 1; 3941 pm_addr = port_array[port_num] + 1; 3942 temp = xhci_readl(xhci, pm_addr); 3943 3944 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 3945 enable ? "enable" : "disable", port_num); 3946 3947 hird = xhci_calculate_hird_besl(xhci, udev); 3948 3949 if (enable) { 3950 temp &= ~PORT_HIRD_MASK; 3951 temp |= PORT_HIRD(hird) | PORT_RWE; 3952 xhci_writel(xhci, temp, pm_addr); 3953 temp = xhci_readl(xhci, pm_addr); 3954 temp |= PORT_HLE; 3955 xhci_writel(xhci, temp, pm_addr); 3956 } else { 3957 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK); 3958 xhci_writel(xhci, temp, pm_addr); 3959 } 3960 3961 spin_unlock_irqrestore(&xhci->lock, flags); 3962 return 0; 3963 } 3964 3965 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 3966 { 3967 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3968 int ret; 3969 3970 ret = xhci_usb2_software_lpm_test(hcd, udev); 3971 if (!ret) { 3972 xhci_dbg(xhci, "software LPM test succeed\n"); 3973 if (xhci->hw_lpm_support == 1) { 3974 udev->usb2_hw_lpm_capable = 1; 3975 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1); 3976 if (!ret) 3977 udev->usb2_hw_lpm_enabled = 1; 3978 } 3979 } 3980 3981 return 0; 3982 } 3983 3984 #else 3985 3986 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 3987 struct usb_device *udev, int enable) 3988 { 3989 return 0; 3990 } 3991 3992 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 3993 { 3994 return 0; 3995 } 3996 3997 #endif /* CONFIG_USB_SUSPEND */ 3998 3999 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4000 4001 #ifdef CONFIG_PM 4002 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4003 static unsigned long long xhci_service_interval_to_ns( 4004 struct usb_endpoint_descriptor *desc) 4005 { 4006 return (1 << (desc->bInterval - 1)) * 125 * 1000; 4007 } 4008 4009 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4010 enum usb3_link_state state) 4011 { 4012 unsigned long long sel; 4013 unsigned long long pel; 4014 unsigned int max_sel_pel; 4015 char *state_name; 4016 4017 switch (state) { 4018 case USB3_LPM_U1: 4019 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4020 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4021 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4022 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4023 state_name = "U1"; 4024 break; 4025 case USB3_LPM_U2: 4026 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4027 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4028 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4029 state_name = "U2"; 4030 break; 4031 default: 4032 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4033 __func__); 4034 return USB3_LPM_DISABLED; 4035 } 4036 4037 if (sel <= max_sel_pel && pel <= max_sel_pel) 4038 return USB3_LPM_DEVICE_INITIATED; 4039 4040 if (sel > max_sel_pel) 4041 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4042 "due to long SEL %llu ms\n", 4043 state_name, sel); 4044 else 4045 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4046 "due to long PEL %llu\n ms", 4047 state_name, pel); 4048 return USB3_LPM_DISABLED; 4049 } 4050 4051 /* Returns the hub-encoded U1 timeout value. 4052 * The U1 timeout should be the maximum of the following values: 4053 * - For control endpoints, U1 system exit latency (SEL) * 3 4054 * - For bulk endpoints, U1 SEL * 5 4055 * - For interrupt endpoints: 4056 * - Notification EPs, U1 SEL * 3 4057 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4058 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4059 */ 4060 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev, 4061 struct usb_endpoint_descriptor *desc) 4062 { 4063 unsigned long long timeout_ns; 4064 int ep_type; 4065 int intr_type; 4066 4067 ep_type = usb_endpoint_type(desc); 4068 switch (ep_type) { 4069 case USB_ENDPOINT_XFER_CONTROL: 4070 timeout_ns = udev->u1_params.sel * 3; 4071 break; 4072 case USB_ENDPOINT_XFER_BULK: 4073 timeout_ns = udev->u1_params.sel * 5; 4074 break; 4075 case USB_ENDPOINT_XFER_INT: 4076 intr_type = usb_endpoint_interrupt_type(desc); 4077 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4078 timeout_ns = udev->u1_params.sel * 3; 4079 break; 4080 } 4081 /* Otherwise the calculation is the same as isoc eps */ 4082 case USB_ENDPOINT_XFER_ISOC: 4083 timeout_ns = xhci_service_interval_to_ns(desc); 4084 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4085 if (timeout_ns < udev->u1_params.sel * 2) 4086 timeout_ns = udev->u1_params.sel * 2; 4087 break; 4088 default: 4089 return 0; 4090 } 4091 4092 /* The U1 timeout is encoded in 1us intervals. */ 4093 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4094 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */ 4095 if (timeout_ns == USB3_LPM_DISABLED) 4096 timeout_ns++; 4097 4098 /* If the necessary timeout value is bigger than what we can set in the 4099 * USB 3.0 hub, we have to disable hub-initiated U1. 4100 */ 4101 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4102 return timeout_ns; 4103 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4104 "due to long timeout %llu ms\n", timeout_ns); 4105 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4106 } 4107 4108 /* Returns the hub-encoded U2 timeout value. 4109 * The U2 timeout should be the maximum of: 4110 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4111 * - largest bInterval of any active periodic endpoint (to avoid going 4112 * into lower power link states between intervals). 4113 * - the U2 Exit Latency of the device 4114 */ 4115 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev, 4116 struct usb_endpoint_descriptor *desc) 4117 { 4118 unsigned long long timeout_ns; 4119 unsigned long long u2_del_ns; 4120 4121 timeout_ns = 10 * 1000 * 1000; 4122 4123 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4124 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4125 timeout_ns = xhci_service_interval_to_ns(desc); 4126 4127 u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000; 4128 if (u2_del_ns > timeout_ns) 4129 timeout_ns = u2_del_ns; 4130 4131 /* The U2 timeout is encoded in 256us intervals */ 4132 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4133 /* If the necessary timeout value is bigger than what we can set in the 4134 * USB 3.0 hub, we have to disable hub-initiated U2. 4135 */ 4136 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4137 return timeout_ns; 4138 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4139 "due to long timeout %llu ms\n", timeout_ns); 4140 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4141 } 4142 4143 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4144 struct usb_device *udev, 4145 struct usb_endpoint_descriptor *desc, 4146 enum usb3_link_state state, 4147 u16 *timeout) 4148 { 4149 if (state == USB3_LPM_U1) { 4150 if (xhci->quirks & XHCI_INTEL_HOST) 4151 return xhci_calculate_intel_u1_timeout(udev, desc); 4152 } else { 4153 if (xhci->quirks & XHCI_INTEL_HOST) 4154 return xhci_calculate_intel_u2_timeout(udev, desc); 4155 } 4156 4157 return USB3_LPM_DISABLED; 4158 } 4159 4160 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4161 struct usb_device *udev, 4162 struct usb_endpoint_descriptor *desc, 4163 enum usb3_link_state state, 4164 u16 *timeout) 4165 { 4166 u16 alt_timeout; 4167 4168 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4169 desc, state, timeout); 4170 4171 /* If we found we can't enable hub-initiated LPM, or 4172 * the U1 or U2 exit latency was too high to allow 4173 * device-initiated LPM as well, just stop searching. 4174 */ 4175 if (alt_timeout == USB3_LPM_DISABLED || 4176 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4177 *timeout = alt_timeout; 4178 return -E2BIG; 4179 } 4180 if (alt_timeout > *timeout) 4181 *timeout = alt_timeout; 4182 return 0; 4183 } 4184 4185 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4186 struct usb_device *udev, 4187 struct usb_host_interface *alt, 4188 enum usb3_link_state state, 4189 u16 *timeout) 4190 { 4191 int j; 4192 4193 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4194 if (xhci_update_timeout_for_endpoint(xhci, udev, 4195 &alt->endpoint[j].desc, state, timeout)) 4196 return -E2BIG; 4197 continue; 4198 } 4199 return 0; 4200 } 4201 4202 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4203 enum usb3_link_state state) 4204 { 4205 struct usb_device *parent; 4206 unsigned int num_hubs; 4207 4208 if (state == USB3_LPM_U2) 4209 return 0; 4210 4211 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4212 for (parent = udev->parent, num_hubs = 0; parent->parent; 4213 parent = parent->parent) 4214 num_hubs++; 4215 4216 if (num_hubs < 2) 4217 return 0; 4218 4219 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4220 " below second-tier hub.\n"); 4221 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4222 "to decrease power consumption.\n"); 4223 return -E2BIG; 4224 } 4225 4226 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4227 struct usb_device *udev, 4228 enum usb3_link_state state) 4229 { 4230 if (xhci->quirks & XHCI_INTEL_HOST) 4231 return xhci_check_intel_tier_policy(udev, state); 4232 return -EINVAL; 4233 } 4234 4235 /* Returns the U1 or U2 timeout that should be enabled. 4236 * If the tier check or timeout setting functions return with a non-zero exit 4237 * code, that means the timeout value has been finalized and we shouldn't look 4238 * at any more endpoints. 4239 */ 4240 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4241 struct usb_device *udev, enum usb3_link_state state) 4242 { 4243 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4244 struct usb_host_config *config; 4245 char *state_name; 4246 int i; 4247 u16 timeout = USB3_LPM_DISABLED; 4248 4249 if (state == USB3_LPM_U1) 4250 state_name = "U1"; 4251 else if (state == USB3_LPM_U2) 4252 state_name = "U2"; 4253 else { 4254 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4255 state); 4256 return timeout; 4257 } 4258 4259 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4260 return timeout; 4261 4262 /* Gather some information about the currently installed configuration 4263 * and alternate interface settings. 4264 */ 4265 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4266 state, &timeout)) 4267 return timeout; 4268 4269 config = udev->actconfig; 4270 if (!config) 4271 return timeout; 4272 4273 for (i = 0; i < USB_MAXINTERFACES; i++) { 4274 struct usb_driver *driver; 4275 struct usb_interface *intf = config->interface[i]; 4276 4277 if (!intf) 4278 continue; 4279 4280 /* Check if any currently bound drivers want hub-initiated LPM 4281 * disabled. 4282 */ 4283 if (intf->dev.driver) { 4284 driver = to_usb_driver(intf->dev.driver); 4285 if (driver && driver->disable_hub_initiated_lpm) { 4286 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4287 "at request of driver %s\n", 4288 state_name, driver->name); 4289 return xhci_get_timeout_no_hub_lpm(udev, state); 4290 } 4291 } 4292 4293 /* Not sure how this could happen... */ 4294 if (!intf->cur_altsetting) 4295 continue; 4296 4297 if (xhci_update_timeout_for_interface(xhci, udev, 4298 intf->cur_altsetting, 4299 state, &timeout)) 4300 return timeout; 4301 } 4302 return timeout; 4303 } 4304 4305 /* 4306 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4307 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4308 */ 4309 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4310 struct usb_device *udev, u16 max_exit_latency) 4311 { 4312 struct xhci_virt_device *virt_dev; 4313 struct xhci_command *command; 4314 struct xhci_input_control_ctx *ctrl_ctx; 4315 struct xhci_slot_ctx *slot_ctx; 4316 unsigned long flags; 4317 int ret; 4318 4319 spin_lock_irqsave(&xhci->lock, flags); 4320 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) { 4321 spin_unlock_irqrestore(&xhci->lock, flags); 4322 return 0; 4323 } 4324 4325 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4326 virt_dev = xhci->devs[udev->slot_id]; 4327 command = xhci->lpm_command; 4328 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4329 spin_unlock_irqrestore(&xhci->lock, flags); 4330 4331 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 4332 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4333 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4334 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4335 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4336 4337 xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n"); 4338 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4339 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4340 4341 /* Issue and wait for the evaluate context command. */ 4342 ret = xhci_configure_endpoint(xhci, udev, command, 4343 true, true); 4344 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4345 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4346 4347 if (!ret) { 4348 spin_lock_irqsave(&xhci->lock, flags); 4349 virt_dev->current_mel = max_exit_latency; 4350 spin_unlock_irqrestore(&xhci->lock, flags); 4351 } 4352 return ret; 4353 } 4354 4355 static int calculate_max_exit_latency(struct usb_device *udev, 4356 enum usb3_link_state state_changed, 4357 u16 hub_encoded_timeout) 4358 { 4359 unsigned long long u1_mel_us = 0; 4360 unsigned long long u2_mel_us = 0; 4361 unsigned long long mel_us = 0; 4362 bool disabling_u1; 4363 bool disabling_u2; 4364 bool enabling_u1; 4365 bool enabling_u2; 4366 4367 disabling_u1 = (state_changed == USB3_LPM_U1 && 4368 hub_encoded_timeout == USB3_LPM_DISABLED); 4369 disabling_u2 = (state_changed == USB3_LPM_U2 && 4370 hub_encoded_timeout == USB3_LPM_DISABLED); 4371 4372 enabling_u1 = (state_changed == USB3_LPM_U1 && 4373 hub_encoded_timeout != USB3_LPM_DISABLED); 4374 enabling_u2 = (state_changed == USB3_LPM_U2 && 4375 hub_encoded_timeout != USB3_LPM_DISABLED); 4376 4377 /* If U1 was already enabled and we're not disabling it, 4378 * or we're going to enable U1, account for the U1 max exit latency. 4379 */ 4380 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4381 enabling_u1) 4382 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4383 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4384 enabling_u2) 4385 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4386 4387 if (u1_mel_us > u2_mel_us) 4388 mel_us = u1_mel_us; 4389 else 4390 mel_us = u2_mel_us; 4391 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4392 if (mel_us > MAX_EXIT) { 4393 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4394 "is too big.\n", mel_us); 4395 return -E2BIG; 4396 } 4397 return mel_us; 4398 } 4399 4400 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4401 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4402 struct usb_device *udev, enum usb3_link_state state) 4403 { 4404 struct xhci_hcd *xhci; 4405 u16 hub_encoded_timeout; 4406 int mel; 4407 int ret; 4408 4409 xhci = hcd_to_xhci(hcd); 4410 /* The LPM timeout values are pretty host-controller specific, so don't 4411 * enable hub-initiated timeouts unless the vendor has provided 4412 * information about their timeout algorithm. 4413 */ 4414 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4415 !xhci->devs[udev->slot_id]) 4416 return USB3_LPM_DISABLED; 4417 4418 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4419 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4420 if (mel < 0) { 4421 /* Max Exit Latency is too big, disable LPM. */ 4422 hub_encoded_timeout = USB3_LPM_DISABLED; 4423 mel = 0; 4424 } 4425 4426 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4427 if (ret) 4428 return ret; 4429 return hub_encoded_timeout; 4430 } 4431 4432 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4433 struct usb_device *udev, enum usb3_link_state state) 4434 { 4435 struct xhci_hcd *xhci; 4436 u16 mel; 4437 int ret; 4438 4439 xhci = hcd_to_xhci(hcd); 4440 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4441 !xhci->devs[udev->slot_id]) 4442 return 0; 4443 4444 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4445 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4446 if (ret) 4447 return ret; 4448 return 0; 4449 } 4450 #else /* CONFIG_PM */ 4451 4452 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4453 struct usb_device *udev, enum usb3_link_state state) 4454 { 4455 return USB3_LPM_DISABLED; 4456 } 4457 4458 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4459 struct usb_device *udev, enum usb3_link_state state) 4460 { 4461 return 0; 4462 } 4463 #endif /* CONFIG_PM */ 4464 4465 /*-------------------------------------------------------------------------*/ 4466 4467 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4468 * internal data structures for the device. 4469 */ 4470 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4471 struct usb_tt *tt, gfp_t mem_flags) 4472 { 4473 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4474 struct xhci_virt_device *vdev; 4475 struct xhci_command *config_cmd; 4476 struct xhci_input_control_ctx *ctrl_ctx; 4477 struct xhci_slot_ctx *slot_ctx; 4478 unsigned long flags; 4479 unsigned think_time; 4480 int ret; 4481 4482 /* Ignore root hubs */ 4483 if (!hdev->parent) 4484 return 0; 4485 4486 vdev = xhci->devs[hdev->slot_id]; 4487 if (!vdev) { 4488 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4489 return -EINVAL; 4490 } 4491 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4492 if (!config_cmd) { 4493 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4494 return -ENOMEM; 4495 } 4496 4497 spin_lock_irqsave(&xhci->lock, flags); 4498 if (hdev->speed == USB_SPEED_HIGH && 4499 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4500 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4501 xhci_free_command(xhci, config_cmd); 4502 spin_unlock_irqrestore(&xhci->lock, flags); 4503 return -ENOMEM; 4504 } 4505 4506 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4507 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 4508 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4509 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4510 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4511 if (tt->multi) 4512 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4513 if (xhci->hci_version > 0x95) { 4514 xhci_dbg(xhci, "xHCI version %x needs hub " 4515 "TT think time and number of ports\n", 4516 (unsigned int) xhci->hci_version); 4517 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4518 /* Set TT think time - convert from ns to FS bit times. 4519 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4520 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4521 * 4522 * xHCI 1.0: this field shall be 0 if the device is not a 4523 * High-spped hub. 4524 */ 4525 think_time = tt->think_time; 4526 if (think_time != 0) 4527 think_time = (think_time / 666) - 1; 4528 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4529 slot_ctx->tt_info |= 4530 cpu_to_le32(TT_THINK_TIME(think_time)); 4531 } else { 4532 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4533 "TT think time or number of ports\n", 4534 (unsigned int) xhci->hci_version); 4535 } 4536 slot_ctx->dev_state = 0; 4537 spin_unlock_irqrestore(&xhci->lock, flags); 4538 4539 xhci_dbg(xhci, "Set up %s for hub device.\n", 4540 (xhci->hci_version > 0x95) ? 4541 "configure endpoint" : "evaluate context"); 4542 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4543 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4544 4545 /* Issue and wait for the configure endpoint or 4546 * evaluate context command. 4547 */ 4548 if (xhci->hci_version > 0x95) 4549 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4550 false, false); 4551 else 4552 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4553 true, false); 4554 4555 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4556 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4557 4558 xhci_free_command(xhci, config_cmd); 4559 return ret; 4560 } 4561 4562 int xhci_get_frame(struct usb_hcd *hcd) 4563 { 4564 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4565 /* EHCI mods by the periodic size. Why? */ 4566 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; 4567 } 4568 4569 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4570 { 4571 struct xhci_hcd *xhci; 4572 struct device *dev = hcd->self.controller; 4573 int retval; 4574 u32 temp; 4575 4576 /* Accept arbitrarily long scatter-gather lists */ 4577 hcd->self.sg_tablesize = ~0; 4578 /* XHCI controllers don't stop the ep queue on short packets :| */ 4579 hcd->self.no_stop_on_short = 1; 4580 4581 if (usb_hcd_is_primary_hcd(hcd)) { 4582 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 4583 if (!xhci) 4584 return -ENOMEM; 4585 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 4586 xhci->main_hcd = hcd; 4587 /* Mark the first roothub as being USB 2.0. 4588 * The xHCI driver will register the USB 3.0 roothub. 4589 */ 4590 hcd->speed = HCD_USB2; 4591 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4592 /* 4593 * USB 2.0 roothub under xHCI has an integrated TT, 4594 * (rate matching hub) as opposed to having an OHCI/UHCI 4595 * companion controller. 4596 */ 4597 hcd->has_tt = 1; 4598 } else { 4599 /* xHCI private pointer was set in xhci_pci_probe for the second 4600 * registered roothub. 4601 */ 4602 xhci = hcd_to_xhci(hcd); 4603 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4604 if (HCC_64BIT_ADDR(temp)) { 4605 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4606 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4607 } else { 4608 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4609 } 4610 return 0; 4611 } 4612 4613 xhci->cap_regs = hcd->regs; 4614 xhci->op_regs = hcd->regs + 4615 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase)); 4616 xhci->run_regs = hcd->regs + 4617 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4618 /* Cache read-only capability registers */ 4619 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1); 4620 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2); 4621 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3); 4622 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); 4623 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4624 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4625 xhci_print_registers(xhci); 4626 4627 get_quirks(dev, xhci); 4628 4629 /* Make sure the HC is halted. */ 4630 retval = xhci_halt(xhci); 4631 if (retval) 4632 goto error; 4633 4634 xhci_dbg(xhci, "Resetting HCD\n"); 4635 /* Reset the internal HC memory state and registers. */ 4636 retval = xhci_reset(xhci); 4637 if (retval) 4638 goto error; 4639 xhci_dbg(xhci, "Reset complete\n"); 4640 4641 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4642 if (HCC_64BIT_ADDR(temp)) { 4643 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4644 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4645 } else { 4646 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4647 } 4648 4649 xhci_dbg(xhci, "Calling HCD init\n"); 4650 /* Initialize HCD and host controller data structures. */ 4651 retval = xhci_init(hcd); 4652 if (retval) 4653 goto error; 4654 xhci_dbg(xhci, "Called HCD init\n"); 4655 return 0; 4656 error: 4657 kfree(xhci); 4658 return retval; 4659 } 4660 4661 MODULE_DESCRIPTION(DRIVER_DESC); 4662 MODULE_AUTHOR(DRIVER_AUTHOR); 4663 MODULE_LICENSE("GPL"); 4664 4665 static int __init xhci_hcd_init(void) 4666 { 4667 int retval; 4668 4669 retval = xhci_register_pci(); 4670 if (retval < 0) { 4671 printk(KERN_DEBUG "Problem registering PCI driver."); 4672 return retval; 4673 } 4674 retval = xhci_register_plat(); 4675 if (retval < 0) { 4676 printk(KERN_DEBUG "Problem registering platform driver."); 4677 goto unreg_pci; 4678 } 4679 /* 4680 * Check the compiler generated sizes of structures that must be laid 4681 * out in specific ways for hardware access. 4682 */ 4683 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4684 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4685 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4686 /* xhci_device_control has eight fields, and also 4687 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4688 */ 4689 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4690 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4691 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4692 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 4693 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4694 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4695 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4696 return 0; 4697 unreg_pci: 4698 xhci_unregister_pci(); 4699 return retval; 4700 } 4701 module_init(xhci_hcd_init); 4702 4703 static void __exit xhci_hcd_cleanup(void) 4704 { 4705 xhci_unregister_pci(); 4706 xhci_unregister_plat(); 4707 } 4708 module_exit(xhci_hcd_cleanup); 4709