1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 41 { 42 struct xhci_segment *seg = ring->first_seg; 43 44 if (!td || !td->start_seg) 45 return false; 46 do { 47 if (seg == td->start_seg) 48 return true; 49 seg = seg->next; 50 } while (seg && seg != ring->first_seg); 51 52 return false; 53 } 54 55 /* 56 * xhci_handshake - spin reading hc until handshake completes or fails 57 * @ptr: address of hc register to be read 58 * @mask: bits to look at in result of read 59 * @done: value of those bits when handshake succeeds 60 * @usec: timeout in microseconds 61 * 62 * Returns negative errno, or zero on success 63 * 64 * Success happens when the "mask" bits have the specified value (hardware 65 * handshake done). There are two failure modes: "usec" have passed (major 66 * hardware flakeout), or the register reads as all-ones (hardware removed). 67 */ 68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 69 { 70 u32 result; 71 int ret; 72 73 ret = readl_poll_timeout_atomic(ptr, result, 74 (result & mask) == done || 75 result == U32_MAX, 76 1, timeout_us); 77 if (result == U32_MAX) /* card removed */ 78 return -ENODEV; 79 80 return ret; 81 } 82 83 /* 84 * Disable interrupts and begin the xHCI halting process. 85 */ 86 void xhci_quiesce(struct xhci_hcd *xhci) 87 { 88 u32 halted; 89 u32 cmd; 90 u32 mask; 91 92 mask = ~(XHCI_IRQS); 93 halted = readl(&xhci->op_regs->status) & STS_HALT; 94 if (!halted) 95 mask &= ~CMD_RUN; 96 97 cmd = readl(&xhci->op_regs->command); 98 cmd &= mask; 99 writel(cmd, &xhci->op_regs->command); 100 } 101 102 /* 103 * Force HC into halt state. 104 * 105 * Disable any IRQs and clear the run/stop bit. 106 * HC will complete any current and actively pipelined transactions, and 107 * should halt within 16 ms of the run/stop bit being cleared. 108 * Read HC Halted bit in the status register to see when the HC is finished. 109 */ 110 int xhci_halt(struct xhci_hcd *xhci) 111 { 112 int ret; 113 114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 115 xhci_quiesce(xhci); 116 117 ret = xhci_handshake(&xhci->op_regs->status, 118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 119 if (ret) { 120 xhci_warn(xhci, "Host halt failed, %d\n", ret); 121 return ret; 122 } 123 124 xhci->xhc_state |= XHCI_STATE_HALTED; 125 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 126 127 return ret; 128 } 129 130 /* 131 * Set the run bit and wait for the host to be running. 132 */ 133 int xhci_start(struct xhci_hcd *xhci) 134 { 135 u32 temp; 136 int ret; 137 138 temp = readl(&xhci->op_regs->command); 139 temp |= (CMD_RUN); 140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 141 temp); 142 writel(temp, &xhci->op_regs->command); 143 144 /* 145 * Wait for the HCHalted Status bit to be 0 to indicate the host is 146 * running. 147 */ 148 ret = xhci_handshake(&xhci->op_regs->status, 149 STS_HALT, 0, XHCI_MAX_HALT_USEC); 150 if (ret == -ETIMEDOUT) 151 xhci_err(xhci, "Host took too long to start, " 152 "waited %u microseconds.\n", 153 XHCI_MAX_HALT_USEC); 154 if (!ret) { 155 /* clear state flags. Including dying, halted or removing */ 156 xhci->xhc_state = 0; 157 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 158 } 159 160 return ret; 161 } 162 163 /* 164 * Reset a halted HC. 165 * 166 * This resets pipelines, timers, counters, state machines, etc. 167 * Transactions will be terminated immediately, and operational registers 168 * will be set to their defaults. 169 */ 170 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 171 { 172 u32 command; 173 u32 state; 174 int ret; 175 176 state = readl(&xhci->op_regs->status); 177 178 if (state == ~(u32)0) { 179 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 180 return -ENODEV; 181 } 182 183 if ((state & STS_HALT) == 0) { 184 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 185 return 0; 186 } 187 188 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 189 command = readl(&xhci->op_regs->command); 190 command |= CMD_RESET; 191 writel(command, &xhci->op_regs->command); 192 193 /* Existing Intel xHCI controllers require a delay of 1 mS, 194 * after setting the CMD_RESET bit, and before accessing any 195 * HC registers. This allows the HC to complete the 196 * reset operation and be ready for HC register access. 197 * Without this delay, the subsequent HC register access, 198 * may result in a system hang very rarely. 199 */ 200 if (xhci->quirks & XHCI_INTEL_HOST) 201 udelay(1000); 202 203 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us); 204 if (ret) 205 return ret; 206 207 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 208 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 209 210 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 211 "Wait for controller to be ready for doorbell rings"); 212 /* 213 * xHCI cannot write to any doorbells or operational registers other 214 * than status until the "Controller Not Ready" flag is cleared. 215 */ 216 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 217 218 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 219 xhci->usb2_rhub.bus_state.suspended_ports = 0; 220 xhci->usb2_rhub.bus_state.resuming_ports = 0; 221 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 222 xhci->usb3_rhub.bus_state.suspended_ports = 0; 223 xhci->usb3_rhub.bus_state.resuming_ports = 0; 224 225 return ret; 226 } 227 228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 229 { 230 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 231 int err, i; 232 u64 val; 233 u32 intrs; 234 235 /* 236 * Some Renesas controllers get into a weird state if they are 237 * reset while programmed with 64bit addresses (they will preserve 238 * the top half of the address in internal, non visible 239 * registers). You end up with half the address coming from the 240 * kernel, and the other half coming from the firmware. Also, 241 * changing the programming leads to extra accesses even if the 242 * controller is supposed to be halted. The controller ends up with 243 * a fatal fault, and is then ripe for being properly reset. 244 * 245 * Special care is taken to only apply this if the device is behind 246 * an iommu. Doing anything when there is no iommu is definitely 247 * unsafe... 248 */ 249 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 250 return; 251 252 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 253 254 /* Clear HSEIE so that faults do not get signaled */ 255 val = readl(&xhci->op_regs->command); 256 val &= ~CMD_HSEIE; 257 writel(val, &xhci->op_regs->command); 258 259 /* Clear HSE (aka FATAL) */ 260 val = readl(&xhci->op_regs->status); 261 val |= STS_FATAL; 262 writel(val, &xhci->op_regs->status); 263 264 /* Now zero the registers, and brace for impact */ 265 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 266 if (upper_32_bits(val)) 267 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 268 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 269 if (upper_32_bits(val)) 270 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 271 272 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 273 ARRAY_SIZE(xhci->run_regs->ir_set)); 274 275 for (i = 0; i < intrs; i++) { 276 struct xhci_intr_reg __iomem *ir; 277 278 ir = &xhci->run_regs->ir_set[i]; 279 val = xhci_read_64(xhci, &ir->erst_base); 280 if (upper_32_bits(val)) 281 xhci_write_64(xhci, 0, &ir->erst_base); 282 val= xhci_read_64(xhci, &ir->erst_dequeue); 283 if (upper_32_bits(val)) 284 xhci_write_64(xhci, 0, &ir->erst_dequeue); 285 } 286 287 /* Wait for the fault to appear. It will be cleared on reset */ 288 err = xhci_handshake(&xhci->op_regs->status, 289 STS_FATAL, STS_FATAL, 290 XHCI_MAX_HALT_USEC); 291 if (!err) 292 xhci_info(xhci, "Fault detected\n"); 293 } 294 295 #ifdef CONFIG_USB_PCI 296 /* 297 * Set up MSI 298 */ 299 static int xhci_setup_msi(struct xhci_hcd *xhci) 300 { 301 int ret; 302 /* 303 * TODO:Check with MSI Soc for sysdev 304 */ 305 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 306 307 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 308 if (ret < 0) { 309 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 310 "failed to allocate MSI entry"); 311 return ret; 312 } 313 314 ret = request_irq(pdev->irq, xhci_msi_irq, 315 0, "xhci_hcd", xhci_to_hcd(xhci)); 316 if (ret) { 317 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 318 "disable MSI interrupt"); 319 pci_free_irq_vectors(pdev); 320 } 321 322 return ret; 323 } 324 325 /* 326 * Set up MSI-X 327 */ 328 static int xhci_setup_msix(struct xhci_hcd *xhci) 329 { 330 int i, ret; 331 struct usb_hcd *hcd = xhci_to_hcd(xhci); 332 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 333 334 /* 335 * calculate number of msi-x vectors supported. 336 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 337 * with max number of interrupters based on the xhci HCSPARAMS1. 338 * - num_online_cpus: maximum msi-x vectors per CPUs core. 339 * Add additional 1 vector to ensure always available interrupt. 340 */ 341 xhci->msix_count = min(num_online_cpus() + 1, 342 HCS_MAX_INTRS(xhci->hcs_params1)); 343 344 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 345 PCI_IRQ_MSIX); 346 if (ret < 0) { 347 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 348 "Failed to enable MSI-X"); 349 return ret; 350 } 351 352 for (i = 0; i < xhci->msix_count; i++) { 353 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 354 "xhci_hcd", xhci_to_hcd(xhci)); 355 if (ret) 356 goto disable_msix; 357 } 358 359 hcd->msix_enabled = 1; 360 return ret; 361 362 disable_msix: 363 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 364 while (--i >= 0) 365 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 366 pci_free_irq_vectors(pdev); 367 return ret; 368 } 369 370 /* Free any IRQs and disable MSI-X */ 371 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 372 { 373 struct usb_hcd *hcd = xhci_to_hcd(xhci); 374 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 375 376 if (xhci->quirks & XHCI_PLAT) 377 return; 378 379 /* return if using legacy interrupt */ 380 if (hcd->irq > 0) 381 return; 382 383 if (hcd->msix_enabled) { 384 int i; 385 386 for (i = 0; i < xhci->msix_count; i++) 387 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 388 } else { 389 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 390 } 391 392 pci_free_irq_vectors(pdev); 393 hcd->msix_enabled = 0; 394 } 395 396 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 397 { 398 struct usb_hcd *hcd = xhci_to_hcd(xhci); 399 400 if (hcd->msix_enabled) { 401 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 402 int i; 403 404 for (i = 0; i < xhci->msix_count; i++) 405 synchronize_irq(pci_irq_vector(pdev, i)); 406 } 407 } 408 409 static int xhci_try_enable_msi(struct usb_hcd *hcd) 410 { 411 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 412 struct pci_dev *pdev; 413 int ret; 414 415 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 416 if (xhci->quirks & XHCI_PLAT) 417 return 0; 418 419 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 420 /* 421 * Some Fresco Logic host controllers advertise MSI, but fail to 422 * generate interrupts. Don't even try to enable MSI. 423 */ 424 if (xhci->quirks & XHCI_BROKEN_MSI) 425 goto legacy_irq; 426 427 /* unregister the legacy interrupt */ 428 if (hcd->irq) 429 free_irq(hcd->irq, hcd); 430 hcd->irq = 0; 431 432 ret = xhci_setup_msix(xhci); 433 if (ret) 434 /* fall back to msi*/ 435 ret = xhci_setup_msi(xhci); 436 437 if (!ret) { 438 hcd->msi_enabled = 1; 439 return 0; 440 } 441 442 if (!pdev->irq) { 443 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 444 return -EINVAL; 445 } 446 447 legacy_irq: 448 if (!strlen(hcd->irq_descr)) 449 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 450 hcd->driver->description, hcd->self.busnum); 451 452 /* fall back to legacy interrupt*/ 453 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 454 hcd->irq_descr, hcd); 455 if (ret) { 456 xhci_err(xhci, "request interrupt %d failed\n", 457 pdev->irq); 458 return ret; 459 } 460 hcd->irq = pdev->irq; 461 return 0; 462 } 463 464 #else 465 466 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 467 { 468 return 0; 469 } 470 471 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 472 { 473 } 474 475 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 476 { 477 } 478 479 #endif 480 481 static void compliance_mode_recovery(struct timer_list *t) 482 { 483 struct xhci_hcd *xhci; 484 struct usb_hcd *hcd; 485 struct xhci_hub *rhub; 486 u32 temp; 487 int i; 488 489 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 490 rhub = &xhci->usb3_rhub; 491 hcd = rhub->hcd; 492 493 if (!hcd) 494 return; 495 496 for (i = 0; i < rhub->num_ports; i++) { 497 temp = readl(rhub->ports[i]->addr); 498 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 499 /* 500 * Compliance Mode Detected. Letting USB Core 501 * handle the Warm Reset 502 */ 503 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 504 "Compliance mode detected->port %d", 505 i + 1); 506 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 507 "Attempting compliance mode recovery"); 508 509 if (hcd->state == HC_STATE_SUSPENDED) 510 usb_hcd_resume_root_hub(hcd); 511 512 usb_hcd_poll_rh_status(hcd); 513 } 514 } 515 516 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 517 mod_timer(&xhci->comp_mode_recovery_timer, 518 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 519 } 520 521 /* 522 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 523 * that causes ports behind that hardware to enter compliance mode sometimes. 524 * The quirk creates a timer that polls every 2 seconds the link state of 525 * each host controller's port and recovers it by issuing a Warm reset 526 * if Compliance mode is detected, otherwise the port will become "dead" (no 527 * device connections or disconnections will be detected anymore). Becasue no 528 * status event is generated when entering compliance mode (per xhci spec), 529 * this quirk is needed on systems that have the failing hardware installed. 530 */ 531 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 532 { 533 xhci->port_status_u0 = 0; 534 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 535 0); 536 xhci->comp_mode_recovery_timer.expires = jiffies + 537 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 538 539 add_timer(&xhci->comp_mode_recovery_timer); 540 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 541 "Compliance mode recovery timer initialized"); 542 } 543 544 /* 545 * This function identifies the systems that have installed the SN65LVPE502CP 546 * USB3.0 re-driver and that need the Compliance Mode Quirk. 547 * Systems: 548 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 549 */ 550 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 551 { 552 const char *dmi_product_name, *dmi_sys_vendor; 553 554 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 555 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 556 if (!dmi_product_name || !dmi_sys_vendor) 557 return false; 558 559 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 560 return false; 561 562 if (strstr(dmi_product_name, "Z420") || 563 strstr(dmi_product_name, "Z620") || 564 strstr(dmi_product_name, "Z820") || 565 strstr(dmi_product_name, "Z1 Workstation")) 566 return true; 567 568 return false; 569 } 570 571 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 572 { 573 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 574 } 575 576 577 /* 578 * Initialize memory for HCD and xHC (one-time init). 579 * 580 * Program the PAGESIZE register, initialize the device context array, create 581 * device contexts (?), set up a command ring segment (or two?), create event 582 * ring (one for now). 583 */ 584 static int xhci_init(struct usb_hcd *hcd) 585 { 586 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 587 int retval; 588 589 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 590 spin_lock_init(&xhci->lock); 591 if (xhci->hci_version == 0x95 && link_quirk) { 592 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 593 "QUIRK: Not clearing Link TRB chain bits."); 594 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 595 } else { 596 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 597 "xHCI doesn't need link TRB QUIRK"); 598 } 599 retval = xhci_mem_init(xhci, GFP_KERNEL); 600 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 601 602 /* Initializing Compliance Mode Recovery Data If Needed */ 603 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 604 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 605 compliance_mode_recovery_timer_init(xhci); 606 } 607 608 return retval; 609 } 610 611 /*-------------------------------------------------------------------------*/ 612 613 614 static int xhci_run_finished(struct xhci_hcd *xhci) 615 { 616 unsigned long flags; 617 u32 temp; 618 619 /* 620 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 621 * Protect the short window before host is running with a lock 622 */ 623 spin_lock_irqsave(&xhci->lock, flags); 624 625 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 626 temp = readl(&xhci->op_regs->command); 627 temp |= (CMD_EIE); 628 writel(temp, &xhci->op_regs->command); 629 630 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 631 temp = readl(&xhci->ir_set->irq_pending); 632 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 633 634 if (xhci_start(xhci)) { 635 xhci_halt(xhci); 636 spin_unlock_irqrestore(&xhci->lock, flags); 637 return -ENODEV; 638 } 639 640 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 641 642 if (xhci->quirks & XHCI_NEC_HOST) 643 xhci_ring_cmd_db(xhci); 644 645 spin_unlock_irqrestore(&xhci->lock, flags); 646 647 return 0; 648 } 649 650 /* 651 * Start the HC after it was halted. 652 * 653 * This function is called by the USB core when the HC driver is added. 654 * Its opposite is xhci_stop(). 655 * 656 * xhci_init() must be called once before this function can be called. 657 * Reset the HC, enable device slot contexts, program DCBAAP, and 658 * set command ring pointer and event ring pointer. 659 * 660 * Setup MSI-X vectors and enable interrupts. 661 */ 662 int xhci_run(struct usb_hcd *hcd) 663 { 664 u32 temp; 665 u64 temp_64; 666 int ret; 667 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 668 669 /* Start the xHCI host controller running only after the USB 2.0 roothub 670 * is setup. 671 */ 672 673 hcd->uses_new_polling = 1; 674 if (!usb_hcd_is_primary_hcd(hcd)) 675 return xhci_run_finished(xhci); 676 677 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 678 679 ret = xhci_try_enable_msi(hcd); 680 if (ret) 681 return ret; 682 683 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 684 temp_64 &= ~ERST_PTR_MASK; 685 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 686 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 687 688 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 689 "// Set the interrupt modulation register"); 690 temp = readl(&xhci->ir_set->irq_control); 691 temp &= ~ER_IRQ_INTERVAL_MASK; 692 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 693 writel(temp, &xhci->ir_set->irq_control); 694 695 if (xhci->quirks & XHCI_NEC_HOST) { 696 struct xhci_command *command; 697 698 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 699 if (!command) 700 return -ENOMEM; 701 702 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 703 TRB_TYPE(TRB_NEC_GET_FW)); 704 if (ret) 705 xhci_free_command(xhci, command); 706 } 707 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 708 "Finished %s for main hcd", __func__); 709 710 xhci_create_dbc_dev(xhci); 711 712 xhci_debugfs_init(xhci); 713 714 if (xhci_has_one_roothub(xhci)) 715 return xhci_run_finished(xhci); 716 717 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 718 719 return 0; 720 } 721 EXPORT_SYMBOL_GPL(xhci_run); 722 723 /* 724 * Stop xHCI driver. 725 * 726 * This function is called by the USB core when the HC driver is removed. 727 * Its opposite is xhci_run(). 728 * 729 * Disable device contexts, disable IRQs, and quiesce the HC. 730 * Reset the HC, finish any completed transactions, and cleanup memory. 731 */ 732 static void xhci_stop(struct usb_hcd *hcd) 733 { 734 u32 temp; 735 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 736 737 mutex_lock(&xhci->mutex); 738 739 /* Only halt host and free memory after both hcds are removed */ 740 if (!usb_hcd_is_primary_hcd(hcd)) { 741 mutex_unlock(&xhci->mutex); 742 return; 743 } 744 745 xhci_remove_dbc_dev(xhci); 746 747 spin_lock_irq(&xhci->lock); 748 xhci->xhc_state |= XHCI_STATE_HALTED; 749 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 750 xhci_halt(xhci); 751 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 752 spin_unlock_irq(&xhci->lock); 753 754 xhci_cleanup_msix(xhci); 755 756 /* Deleting Compliance Mode Recovery Timer */ 757 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 758 (!(xhci_all_ports_seen_u0(xhci)))) { 759 del_timer_sync(&xhci->comp_mode_recovery_timer); 760 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 761 "%s: compliance mode recovery timer deleted", 762 __func__); 763 } 764 765 if (xhci->quirks & XHCI_AMD_PLL_FIX) 766 usb_amd_dev_put(); 767 768 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 769 "// Disabling event ring interrupts"); 770 temp = readl(&xhci->op_regs->status); 771 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 772 temp = readl(&xhci->ir_set->irq_pending); 773 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 774 775 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 776 xhci_mem_cleanup(xhci); 777 xhci_debugfs_exit(xhci); 778 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 779 "xhci_stop completed - status = %x", 780 readl(&xhci->op_regs->status)); 781 mutex_unlock(&xhci->mutex); 782 } 783 784 /* 785 * Shutdown HC (not bus-specific) 786 * 787 * This is called when the machine is rebooting or halting. We assume that the 788 * machine will be powered off, and the HC's internal state will be reset. 789 * Don't bother to free memory. 790 * 791 * This will only ever be called with the main usb_hcd (the USB3 roothub). 792 */ 793 void xhci_shutdown(struct usb_hcd *hcd) 794 { 795 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 796 797 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 798 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 799 800 /* Don't poll the roothubs after shutdown. */ 801 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 802 __func__, hcd->self.busnum); 803 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 804 del_timer_sync(&hcd->rh_timer); 805 806 if (xhci->shared_hcd) { 807 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 808 del_timer_sync(&xhci->shared_hcd->rh_timer); 809 } 810 811 spin_lock_irq(&xhci->lock); 812 xhci_halt(xhci); 813 /* Workaround for spurious wakeups at shutdown with HSW */ 814 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 815 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 816 spin_unlock_irq(&xhci->lock); 817 818 xhci_cleanup_msix(xhci); 819 820 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 821 "xhci_shutdown completed - status = %x", 822 readl(&xhci->op_regs->status)); 823 } 824 EXPORT_SYMBOL_GPL(xhci_shutdown); 825 826 #ifdef CONFIG_PM 827 static void xhci_save_registers(struct xhci_hcd *xhci) 828 { 829 xhci->s3.command = readl(&xhci->op_regs->command); 830 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 831 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 832 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 833 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 834 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 835 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 836 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 837 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 838 } 839 840 static void xhci_restore_registers(struct xhci_hcd *xhci) 841 { 842 writel(xhci->s3.command, &xhci->op_regs->command); 843 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 844 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 845 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 846 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 847 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 848 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 849 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 850 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 851 } 852 853 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 854 { 855 u64 val_64; 856 857 /* step 2: initialize command ring buffer */ 858 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 859 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 860 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 861 xhci->cmd_ring->dequeue) & 862 (u64) ~CMD_RING_RSVD_BITS) | 863 xhci->cmd_ring->cycle_state; 864 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 865 "// Setting command ring address to 0x%llx", 866 (long unsigned long) val_64); 867 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 868 } 869 870 /* 871 * The whole command ring must be cleared to zero when we suspend the host. 872 * 873 * The host doesn't save the command ring pointer in the suspend well, so we 874 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 875 * aligned, because of the reserved bits in the command ring dequeue pointer 876 * register. Therefore, we can't just set the dequeue pointer back in the 877 * middle of the ring (TRBs are 16-byte aligned). 878 */ 879 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 880 { 881 struct xhci_ring *ring; 882 struct xhci_segment *seg; 883 884 ring = xhci->cmd_ring; 885 seg = ring->deq_seg; 886 do { 887 memset(seg->trbs, 0, 888 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 889 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 890 cpu_to_le32(~TRB_CYCLE); 891 seg = seg->next; 892 } while (seg != ring->deq_seg); 893 894 /* Reset the software enqueue and dequeue pointers */ 895 ring->deq_seg = ring->first_seg; 896 ring->dequeue = ring->first_seg->trbs; 897 ring->enq_seg = ring->deq_seg; 898 ring->enqueue = ring->dequeue; 899 900 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 901 /* 902 * Ring is now zeroed, so the HW should look for change of ownership 903 * when the cycle bit is set to 1. 904 */ 905 ring->cycle_state = 1; 906 907 /* 908 * Reset the hardware dequeue pointer. 909 * Yes, this will need to be re-written after resume, but we're paranoid 910 * and want to make sure the hardware doesn't access bogus memory 911 * because, say, the BIOS or an SMI started the host without changing 912 * the command ring pointers. 913 */ 914 xhci_set_cmd_ring_deq(xhci); 915 } 916 917 /* 918 * Disable port wake bits if do_wakeup is not set. 919 * 920 * Also clear a possible internal port wake state left hanging for ports that 921 * detected termination but never successfully enumerated (trained to 0U). 922 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 923 * at enumeration clears this wake, force one here as well for unconnected ports 924 */ 925 926 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 927 struct xhci_hub *rhub, 928 bool do_wakeup) 929 { 930 unsigned long flags; 931 u32 t1, t2, portsc; 932 int i; 933 934 spin_lock_irqsave(&xhci->lock, flags); 935 936 for (i = 0; i < rhub->num_ports; i++) { 937 portsc = readl(rhub->ports[i]->addr); 938 t1 = xhci_port_state_to_neutral(portsc); 939 t2 = t1; 940 941 /* clear wake bits if do_wake is not set */ 942 if (!do_wakeup) 943 t2 &= ~PORT_WAKE_BITS; 944 945 /* Don't touch csc bit if connected or connect change is set */ 946 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 947 t2 |= PORT_CSC; 948 949 if (t1 != t2) { 950 writel(t2, rhub->ports[i]->addr); 951 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 952 rhub->hcd->self.busnum, i + 1, portsc, t2); 953 } 954 } 955 spin_unlock_irqrestore(&xhci->lock, flags); 956 } 957 958 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 959 { 960 struct xhci_port **ports; 961 int port_index; 962 u32 status; 963 u32 portsc; 964 965 status = readl(&xhci->op_regs->status); 966 if (status & STS_EINT) 967 return true; 968 /* 969 * Checking STS_EINT is not enough as there is a lag between a change 970 * bit being set and the Port Status Change Event that it generated 971 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 972 */ 973 974 port_index = xhci->usb2_rhub.num_ports; 975 ports = xhci->usb2_rhub.ports; 976 while (port_index--) { 977 portsc = readl(ports[port_index]->addr); 978 if (portsc & PORT_CHANGE_MASK || 979 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 980 return true; 981 } 982 port_index = xhci->usb3_rhub.num_ports; 983 ports = xhci->usb3_rhub.ports; 984 while (port_index--) { 985 portsc = readl(ports[port_index]->addr); 986 if (portsc & PORT_CHANGE_MASK || 987 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 988 return true; 989 } 990 return false; 991 } 992 993 /* 994 * Stop HC (not bus-specific) 995 * 996 * This is called when the machine transition into S3/S4 mode. 997 * 998 */ 999 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 1000 { 1001 int rc = 0; 1002 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 1003 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1004 u32 command; 1005 u32 res; 1006 1007 if (!hcd->state) 1008 return 0; 1009 1010 if (hcd->state != HC_STATE_SUSPENDED || 1011 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 1012 return -EINVAL; 1013 1014 /* Clear root port wake on bits if wakeup not allowed. */ 1015 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 1016 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 1017 1018 if (!HCD_HW_ACCESSIBLE(hcd)) 1019 return 0; 1020 1021 xhci_dbc_suspend(xhci); 1022 1023 /* Don't poll the roothubs on bus suspend. */ 1024 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 1025 __func__, hcd->self.busnum); 1026 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1027 del_timer_sync(&hcd->rh_timer); 1028 if (xhci->shared_hcd) { 1029 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1030 del_timer_sync(&xhci->shared_hcd->rh_timer); 1031 } 1032 1033 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1034 usleep_range(1000, 1500); 1035 1036 spin_lock_irq(&xhci->lock); 1037 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1038 if (xhci->shared_hcd) 1039 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1040 /* step 1: stop endpoint */ 1041 /* skipped assuming that port suspend has done */ 1042 1043 /* step 2: clear Run/Stop bit */ 1044 command = readl(&xhci->op_regs->command); 1045 command &= ~CMD_RUN; 1046 writel(command, &xhci->op_regs->command); 1047 1048 /* Some chips from Fresco Logic need an extraordinary delay */ 1049 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1050 1051 if (xhci_handshake(&xhci->op_regs->status, 1052 STS_HALT, STS_HALT, delay)) { 1053 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1054 spin_unlock_irq(&xhci->lock); 1055 return -ETIMEDOUT; 1056 } 1057 xhci_clear_command_ring(xhci); 1058 1059 /* step 3: save registers */ 1060 xhci_save_registers(xhci); 1061 1062 /* step 4: set CSS flag */ 1063 command = readl(&xhci->op_regs->command); 1064 command |= CMD_CSS; 1065 writel(command, &xhci->op_regs->command); 1066 xhci->broken_suspend = 0; 1067 if (xhci_handshake(&xhci->op_regs->status, 1068 STS_SAVE, 0, 20 * 1000)) { 1069 /* 1070 * AMD SNPS xHC 3.0 occasionally does not clear the 1071 * SSS bit of USBSTS and when driver tries to poll 1072 * to see if the xHC clears BIT(8) which never happens 1073 * and driver assumes that controller is not responding 1074 * and times out. To workaround this, its good to check 1075 * if SRE and HCE bits are not set (as per xhci 1076 * Section 5.4.2) and bypass the timeout. 1077 */ 1078 res = readl(&xhci->op_regs->status); 1079 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1080 (((res & STS_SRE) == 0) && 1081 ((res & STS_HCE) == 0))) { 1082 xhci->broken_suspend = 1; 1083 } else { 1084 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1085 spin_unlock_irq(&xhci->lock); 1086 return -ETIMEDOUT; 1087 } 1088 } 1089 spin_unlock_irq(&xhci->lock); 1090 1091 /* 1092 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1093 * is about to be suspended. 1094 */ 1095 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1096 (!(xhci_all_ports_seen_u0(xhci)))) { 1097 del_timer_sync(&xhci->comp_mode_recovery_timer); 1098 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1099 "%s: compliance mode recovery timer deleted", 1100 __func__); 1101 } 1102 1103 /* step 5: remove core well power */ 1104 /* synchronize irq when using MSI-X */ 1105 xhci_msix_sync_irqs(xhci); 1106 1107 return rc; 1108 } 1109 EXPORT_SYMBOL_GPL(xhci_suspend); 1110 1111 /* 1112 * start xHC (not bus-specific) 1113 * 1114 * This is called when the machine transition from S3/S4 mode. 1115 * 1116 */ 1117 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1118 { 1119 u32 command, temp = 0; 1120 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1121 int retval = 0; 1122 bool comp_timer_running = false; 1123 bool pending_portevent = false; 1124 bool reinit_xhc = false; 1125 1126 if (!hcd->state) 1127 return 0; 1128 1129 /* Wait a bit if either of the roothubs need to settle from the 1130 * transition into bus suspend. 1131 */ 1132 1133 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1134 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1135 msleep(100); 1136 1137 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1138 if (xhci->shared_hcd) 1139 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1140 1141 spin_lock_irq(&xhci->lock); 1142 1143 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1144 reinit_xhc = true; 1145 1146 if (!reinit_xhc) { 1147 /* 1148 * Some controllers might lose power during suspend, so wait 1149 * for controller not ready bit to clear, just as in xHC init. 1150 */ 1151 retval = xhci_handshake(&xhci->op_regs->status, 1152 STS_CNR, 0, 10 * 1000 * 1000); 1153 if (retval) { 1154 xhci_warn(xhci, "Controller not ready at resume %d\n", 1155 retval); 1156 spin_unlock_irq(&xhci->lock); 1157 return retval; 1158 } 1159 /* step 1: restore register */ 1160 xhci_restore_registers(xhci); 1161 /* step 2: initialize command ring buffer */ 1162 xhci_set_cmd_ring_deq(xhci); 1163 /* step 3: restore state and start state*/ 1164 /* step 3: set CRS flag */ 1165 command = readl(&xhci->op_regs->command); 1166 command |= CMD_CRS; 1167 writel(command, &xhci->op_regs->command); 1168 /* 1169 * Some controllers take up to 55+ ms to complete the controller 1170 * restore so setting the timeout to 100ms. Xhci specification 1171 * doesn't mention any timeout value. 1172 */ 1173 if (xhci_handshake(&xhci->op_regs->status, 1174 STS_RESTORE, 0, 100 * 1000)) { 1175 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1176 spin_unlock_irq(&xhci->lock); 1177 return -ETIMEDOUT; 1178 } 1179 } 1180 1181 temp = readl(&xhci->op_regs->status); 1182 1183 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1184 if (temp & (STS_SRE | STS_HCE)) { 1185 reinit_xhc = true; 1186 if (!xhci->broken_suspend) 1187 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1188 } 1189 1190 if (reinit_xhc) { 1191 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1192 !(xhci_all_ports_seen_u0(xhci))) { 1193 del_timer_sync(&xhci->comp_mode_recovery_timer); 1194 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1195 "Compliance Mode Recovery Timer deleted!"); 1196 } 1197 1198 /* Let the USB core know _both_ roothubs lost power. */ 1199 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1200 if (xhci->shared_hcd) 1201 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1202 1203 xhci_dbg(xhci, "Stop HCD\n"); 1204 xhci_halt(xhci); 1205 xhci_zero_64b_regs(xhci); 1206 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1207 spin_unlock_irq(&xhci->lock); 1208 if (retval) 1209 return retval; 1210 xhci_cleanup_msix(xhci); 1211 1212 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1213 temp = readl(&xhci->op_regs->status); 1214 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1215 temp = readl(&xhci->ir_set->irq_pending); 1216 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1217 1218 xhci_dbg(xhci, "cleaning up memory\n"); 1219 xhci_mem_cleanup(xhci); 1220 xhci_debugfs_exit(xhci); 1221 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1222 readl(&xhci->op_regs->status)); 1223 1224 /* USB core calls the PCI reinit and start functions twice: 1225 * first with the primary HCD, and then with the secondary HCD. 1226 * If we don't do the same, the host will never be started. 1227 */ 1228 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1229 retval = xhci_init(hcd); 1230 if (retval) 1231 return retval; 1232 comp_timer_running = true; 1233 1234 xhci_dbg(xhci, "Start the primary HCD\n"); 1235 retval = xhci_run(hcd); 1236 if (!retval && xhci->shared_hcd) { 1237 xhci_dbg(xhci, "Start the secondary HCD\n"); 1238 retval = xhci_run(xhci->shared_hcd); 1239 } 1240 1241 hcd->state = HC_STATE_SUSPENDED; 1242 if (xhci->shared_hcd) 1243 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1244 goto done; 1245 } 1246 1247 /* step 4: set Run/Stop bit */ 1248 command = readl(&xhci->op_regs->command); 1249 command |= CMD_RUN; 1250 writel(command, &xhci->op_regs->command); 1251 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1252 0, 250 * 1000); 1253 1254 /* step 5: walk topology and initialize portsc, 1255 * portpmsc and portli 1256 */ 1257 /* this is done in bus_resume */ 1258 1259 /* step 6: restart each of the previously 1260 * Running endpoints by ringing their doorbells 1261 */ 1262 1263 spin_unlock_irq(&xhci->lock); 1264 1265 xhci_dbc_resume(xhci); 1266 1267 done: 1268 if (retval == 0) { 1269 /* 1270 * Resume roothubs only if there are pending events. 1271 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1272 * the first wake signalling failed, give it that chance. 1273 */ 1274 pending_portevent = xhci_pending_portevent(xhci); 1275 if (!pending_portevent) { 1276 msleep(120); 1277 pending_portevent = xhci_pending_portevent(xhci); 1278 } 1279 1280 if (pending_portevent) { 1281 if (xhci->shared_hcd) 1282 usb_hcd_resume_root_hub(xhci->shared_hcd); 1283 usb_hcd_resume_root_hub(hcd); 1284 } 1285 } 1286 /* 1287 * If system is subject to the Quirk, Compliance Mode Timer needs to 1288 * be re-initialized Always after a system resume. Ports are subject 1289 * to suffer the Compliance Mode issue again. It doesn't matter if 1290 * ports have entered previously to U0 before system's suspension. 1291 */ 1292 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1293 compliance_mode_recovery_timer_init(xhci); 1294 1295 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1296 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1297 1298 /* Re-enable port polling. */ 1299 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1300 __func__, hcd->self.busnum); 1301 if (xhci->shared_hcd) { 1302 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1303 usb_hcd_poll_rh_status(xhci->shared_hcd); 1304 } 1305 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1306 usb_hcd_poll_rh_status(hcd); 1307 1308 return retval; 1309 } 1310 EXPORT_SYMBOL_GPL(xhci_resume); 1311 #endif /* CONFIG_PM */ 1312 1313 /*-------------------------------------------------------------------------*/ 1314 1315 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1316 { 1317 void *temp; 1318 int ret = 0; 1319 unsigned int buf_len; 1320 enum dma_data_direction dir; 1321 1322 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1323 buf_len = urb->transfer_buffer_length; 1324 1325 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1326 dev_to_node(hcd->self.sysdev)); 1327 1328 if (usb_urb_dir_out(urb)) 1329 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1330 temp, buf_len, 0); 1331 1332 urb->transfer_buffer = temp; 1333 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1334 urb->transfer_buffer, 1335 urb->transfer_buffer_length, 1336 dir); 1337 1338 if (dma_mapping_error(hcd->self.sysdev, 1339 urb->transfer_dma)) { 1340 ret = -EAGAIN; 1341 kfree(temp); 1342 } else { 1343 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1344 } 1345 1346 return ret; 1347 } 1348 1349 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1350 struct urb *urb) 1351 { 1352 bool ret = false; 1353 unsigned int i; 1354 unsigned int len = 0; 1355 unsigned int trb_size; 1356 unsigned int max_pkt; 1357 struct scatterlist *sg; 1358 struct scatterlist *tail_sg; 1359 1360 tail_sg = urb->sg; 1361 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1362 1363 if (!urb->num_sgs) 1364 return ret; 1365 1366 if (urb->dev->speed >= USB_SPEED_SUPER) 1367 trb_size = TRB_CACHE_SIZE_SS; 1368 else 1369 trb_size = TRB_CACHE_SIZE_HS; 1370 1371 if (urb->transfer_buffer_length != 0 && 1372 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1373 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1374 len = len + sg->length; 1375 if (i > trb_size - 2) { 1376 len = len - tail_sg->length; 1377 if (len < max_pkt) { 1378 ret = true; 1379 break; 1380 } 1381 1382 tail_sg = sg_next(tail_sg); 1383 } 1384 } 1385 } 1386 return ret; 1387 } 1388 1389 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1390 { 1391 unsigned int len; 1392 unsigned int buf_len; 1393 enum dma_data_direction dir; 1394 1395 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1396 1397 buf_len = urb->transfer_buffer_length; 1398 1399 if (IS_ENABLED(CONFIG_HAS_DMA) && 1400 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1401 dma_unmap_single(hcd->self.sysdev, 1402 urb->transfer_dma, 1403 urb->transfer_buffer_length, 1404 dir); 1405 1406 if (usb_urb_dir_in(urb)) { 1407 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1408 urb->transfer_buffer, 1409 buf_len, 1410 0); 1411 if (len != buf_len) { 1412 xhci_dbg(hcd_to_xhci(hcd), 1413 "Copy from tmp buf to urb sg list failed\n"); 1414 urb->actual_length = len; 1415 } 1416 } 1417 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1418 kfree(urb->transfer_buffer); 1419 urb->transfer_buffer = NULL; 1420 } 1421 1422 /* 1423 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1424 * we'll copy the actual data into the TRB address register. This is limited to 1425 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1426 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1427 */ 1428 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1429 gfp_t mem_flags) 1430 { 1431 struct xhci_hcd *xhci; 1432 1433 xhci = hcd_to_xhci(hcd); 1434 1435 if (xhci_urb_suitable_for_idt(urb)) 1436 return 0; 1437 1438 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1439 if (xhci_urb_temp_buffer_required(hcd, urb)) 1440 return xhci_map_temp_buffer(hcd, urb); 1441 } 1442 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1443 } 1444 1445 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1446 { 1447 struct xhci_hcd *xhci; 1448 bool unmap_temp_buf = false; 1449 1450 xhci = hcd_to_xhci(hcd); 1451 1452 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1453 unmap_temp_buf = true; 1454 1455 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1456 xhci_unmap_temp_buf(hcd, urb); 1457 else 1458 usb_hcd_unmap_urb_for_dma(hcd, urb); 1459 } 1460 1461 /** 1462 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1463 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1464 * value to right shift 1 for the bitmask. 1465 * 1466 * Index = (epnum * 2) + direction - 1, 1467 * where direction = 0 for OUT, 1 for IN. 1468 * For control endpoints, the IN index is used (OUT index is unused), so 1469 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1470 */ 1471 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1472 { 1473 unsigned int index; 1474 if (usb_endpoint_xfer_control(desc)) 1475 index = (unsigned int) (usb_endpoint_num(desc)*2); 1476 else 1477 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1478 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1479 return index; 1480 } 1481 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1482 1483 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1484 * address from the XHCI endpoint index. 1485 */ 1486 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1487 { 1488 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1489 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1490 return direction | number; 1491 } 1492 1493 /* Find the flag for this endpoint (for use in the control context). Use the 1494 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1495 * bit 1, etc. 1496 */ 1497 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1498 { 1499 return 1 << (xhci_get_endpoint_index(desc) + 1); 1500 } 1501 1502 /* Compute the last valid endpoint context index. Basically, this is the 1503 * endpoint index plus one. For slot contexts with more than valid endpoint, 1504 * we find the most significant bit set in the added contexts flags. 1505 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1506 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1507 */ 1508 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1509 { 1510 return fls(added_ctxs) - 1; 1511 } 1512 1513 /* Returns 1 if the arguments are OK; 1514 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1515 */ 1516 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1517 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1518 const char *func) { 1519 struct xhci_hcd *xhci; 1520 struct xhci_virt_device *virt_dev; 1521 1522 if (!hcd || (check_ep && !ep) || !udev) { 1523 pr_debug("xHCI %s called with invalid args\n", func); 1524 return -EINVAL; 1525 } 1526 if (!udev->parent) { 1527 pr_debug("xHCI %s called for root hub\n", func); 1528 return 0; 1529 } 1530 1531 xhci = hcd_to_xhci(hcd); 1532 if (check_virt_dev) { 1533 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1534 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1535 func); 1536 return -EINVAL; 1537 } 1538 1539 virt_dev = xhci->devs[udev->slot_id]; 1540 if (virt_dev->udev != udev) { 1541 xhci_dbg(xhci, "xHCI %s called with udev and " 1542 "virt_dev does not match\n", func); 1543 return -EINVAL; 1544 } 1545 } 1546 1547 if (xhci->xhc_state & XHCI_STATE_HALTED) 1548 return -ENODEV; 1549 1550 return 1; 1551 } 1552 1553 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1554 struct usb_device *udev, struct xhci_command *command, 1555 bool ctx_change, bool must_succeed); 1556 1557 /* 1558 * Full speed devices may have a max packet size greater than 8 bytes, but the 1559 * USB core doesn't know that until it reads the first 8 bytes of the 1560 * descriptor. If the usb_device's max packet size changes after that point, 1561 * we need to issue an evaluate context command and wait on it. 1562 */ 1563 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1564 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1565 { 1566 struct xhci_container_ctx *out_ctx; 1567 struct xhci_input_control_ctx *ctrl_ctx; 1568 struct xhci_ep_ctx *ep_ctx; 1569 struct xhci_command *command; 1570 int max_packet_size; 1571 int hw_max_packet_size; 1572 int ret = 0; 1573 1574 out_ctx = xhci->devs[slot_id]->out_ctx; 1575 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1576 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1577 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1578 if (hw_max_packet_size != max_packet_size) { 1579 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1580 "Max Packet Size for ep 0 changed."); 1581 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1582 "Max packet size in usb_device = %d", 1583 max_packet_size); 1584 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1585 "Max packet size in xHCI HW = %d", 1586 hw_max_packet_size); 1587 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1588 "Issuing evaluate context command."); 1589 1590 /* Set up the input context flags for the command */ 1591 /* FIXME: This won't work if a non-default control endpoint 1592 * changes max packet sizes. 1593 */ 1594 1595 command = xhci_alloc_command(xhci, true, mem_flags); 1596 if (!command) 1597 return -ENOMEM; 1598 1599 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1600 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1601 if (!ctrl_ctx) { 1602 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1603 __func__); 1604 ret = -ENOMEM; 1605 goto command_cleanup; 1606 } 1607 /* Set up the modified control endpoint 0 */ 1608 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1609 xhci->devs[slot_id]->out_ctx, ep_index); 1610 1611 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1612 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1613 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1614 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1615 1616 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1617 ctrl_ctx->drop_flags = 0; 1618 1619 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1620 true, false); 1621 1622 /* Clean up the input context for later use by bandwidth 1623 * functions. 1624 */ 1625 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1626 command_cleanup: 1627 kfree(command->completion); 1628 kfree(command); 1629 } 1630 return ret; 1631 } 1632 1633 /* 1634 * non-error returns are a promise to giveback() the urb later 1635 * we drop ownership so next owner (or urb unlink) can get it 1636 */ 1637 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1638 { 1639 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1640 unsigned long flags; 1641 int ret = 0; 1642 unsigned int slot_id, ep_index; 1643 unsigned int *ep_state; 1644 struct urb_priv *urb_priv; 1645 int num_tds; 1646 1647 if (!urb) 1648 return -EINVAL; 1649 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1650 true, true, __func__); 1651 if (ret <= 0) 1652 return ret ? ret : -EINVAL; 1653 1654 slot_id = urb->dev->slot_id; 1655 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1656 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1657 1658 if (!HCD_HW_ACCESSIBLE(hcd)) 1659 return -ESHUTDOWN; 1660 1661 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1662 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1663 return -ENODEV; 1664 } 1665 1666 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1667 num_tds = urb->number_of_packets; 1668 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1669 urb->transfer_buffer_length > 0 && 1670 urb->transfer_flags & URB_ZERO_PACKET && 1671 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1672 num_tds = 2; 1673 else 1674 num_tds = 1; 1675 1676 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1677 if (!urb_priv) 1678 return -ENOMEM; 1679 1680 urb_priv->num_tds = num_tds; 1681 urb_priv->num_tds_done = 0; 1682 urb->hcpriv = urb_priv; 1683 1684 trace_xhci_urb_enqueue(urb); 1685 1686 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1687 /* Check to see if the max packet size for the default control 1688 * endpoint changed during FS device enumeration 1689 */ 1690 if (urb->dev->speed == USB_SPEED_FULL) { 1691 ret = xhci_check_maxpacket(xhci, slot_id, 1692 ep_index, urb, mem_flags); 1693 if (ret < 0) { 1694 xhci_urb_free_priv(urb_priv); 1695 urb->hcpriv = NULL; 1696 return ret; 1697 } 1698 } 1699 } 1700 1701 spin_lock_irqsave(&xhci->lock, flags); 1702 1703 if (xhci->xhc_state & XHCI_STATE_DYING) { 1704 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1705 urb->ep->desc.bEndpointAddress, urb); 1706 ret = -ESHUTDOWN; 1707 goto free_priv; 1708 } 1709 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1710 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1711 *ep_state); 1712 ret = -EINVAL; 1713 goto free_priv; 1714 } 1715 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1716 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1717 ret = -EINVAL; 1718 goto free_priv; 1719 } 1720 1721 switch (usb_endpoint_type(&urb->ep->desc)) { 1722 1723 case USB_ENDPOINT_XFER_CONTROL: 1724 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1725 slot_id, ep_index); 1726 break; 1727 case USB_ENDPOINT_XFER_BULK: 1728 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1729 slot_id, ep_index); 1730 break; 1731 case USB_ENDPOINT_XFER_INT: 1732 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1733 slot_id, ep_index); 1734 break; 1735 case USB_ENDPOINT_XFER_ISOC: 1736 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1737 slot_id, ep_index); 1738 } 1739 1740 if (ret) { 1741 free_priv: 1742 xhci_urb_free_priv(urb_priv); 1743 urb->hcpriv = NULL; 1744 } 1745 spin_unlock_irqrestore(&xhci->lock, flags); 1746 return ret; 1747 } 1748 1749 /* 1750 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1751 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1752 * should pick up where it left off in the TD, unless a Set Transfer Ring 1753 * Dequeue Pointer is issued. 1754 * 1755 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1756 * the ring. Since the ring is a contiguous structure, they can't be physically 1757 * removed. Instead, there are two options: 1758 * 1759 * 1) If the HC is in the middle of processing the URB to be canceled, we 1760 * simply move the ring's dequeue pointer past those TRBs using the Set 1761 * Transfer Ring Dequeue Pointer command. This will be the common case, 1762 * when drivers timeout on the last submitted URB and attempt to cancel. 1763 * 1764 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1765 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1766 * HC will need to invalidate the any TRBs it has cached after the stop 1767 * endpoint command, as noted in the xHCI 0.95 errata. 1768 * 1769 * 3) The TD may have completed by the time the Stop Endpoint Command 1770 * completes, so software needs to handle that case too. 1771 * 1772 * This function should protect against the TD enqueueing code ringing the 1773 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1774 * It also needs to account for multiple cancellations on happening at the same 1775 * time for the same endpoint. 1776 * 1777 * Note that this function can be called in any context, or so says 1778 * usb_hcd_unlink_urb() 1779 */ 1780 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1781 { 1782 unsigned long flags; 1783 int ret, i; 1784 u32 temp; 1785 struct xhci_hcd *xhci; 1786 struct urb_priv *urb_priv; 1787 struct xhci_td *td; 1788 unsigned int ep_index; 1789 struct xhci_ring *ep_ring; 1790 struct xhci_virt_ep *ep; 1791 struct xhci_command *command; 1792 struct xhci_virt_device *vdev; 1793 1794 xhci = hcd_to_xhci(hcd); 1795 spin_lock_irqsave(&xhci->lock, flags); 1796 1797 trace_xhci_urb_dequeue(urb); 1798 1799 /* Make sure the URB hasn't completed or been unlinked already */ 1800 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1801 if (ret) 1802 goto done; 1803 1804 /* give back URB now if we can't queue it for cancel */ 1805 vdev = xhci->devs[urb->dev->slot_id]; 1806 urb_priv = urb->hcpriv; 1807 if (!vdev || !urb_priv) 1808 goto err_giveback; 1809 1810 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1811 ep = &vdev->eps[ep_index]; 1812 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1813 if (!ep || !ep_ring) 1814 goto err_giveback; 1815 1816 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1817 temp = readl(&xhci->op_regs->status); 1818 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1819 xhci_hc_died(xhci); 1820 goto done; 1821 } 1822 1823 /* 1824 * check ring is not re-allocated since URB was enqueued. If it is, then 1825 * make sure none of the ring related pointers in this URB private data 1826 * are touched, such as td_list, otherwise we overwrite freed data 1827 */ 1828 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1829 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1830 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1831 td = &urb_priv->td[i]; 1832 if (!list_empty(&td->cancelled_td_list)) 1833 list_del_init(&td->cancelled_td_list); 1834 } 1835 goto err_giveback; 1836 } 1837 1838 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1839 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1840 "HC halted, freeing TD manually."); 1841 for (i = urb_priv->num_tds_done; 1842 i < urb_priv->num_tds; 1843 i++) { 1844 td = &urb_priv->td[i]; 1845 if (!list_empty(&td->td_list)) 1846 list_del_init(&td->td_list); 1847 if (!list_empty(&td->cancelled_td_list)) 1848 list_del_init(&td->cancelled_td_list); 1849 } 1850 goto err_giveback; 1851 } 1852 1853 i = urb_priv->num_tds_done; 1854 if (i < urb_priv->num_tds) 1855 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1856 "Cancel URB %p, dev %s, ep 0x%x, " 1857 "starting at offset 0x%llx", 1858 urb, urb->dev->devpath, 1859 urb->ep->desc.bEndpointAddress, 1860 (unsigned long long) xhci_trb_virt_to_dma( 1861 urb_priv->td[i].start_seg, 1862 urb_priv->td[i].first_trb)); 1863 1864 for (; i < urb_priv->num_tds; i++) { 1865 td = &urb_priv->td[i]; 1866 /* TD can already be on cancelled list if ep halted on it */ 1867 if (list_empty(&td->cancelled_td_list)) { 1868 td->cancel_status = TD_DIRTY; 1869 list_add_tail(&td->cancelled_td_list, 1870 &ep->cancelled_td_list); 1871 } 1872 } 1873 1874 /* Queue a stop endpoint command, but only if this is 1875 * the first cancellation to be handled. 1876 */ 1877 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1878 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1879 if (!command) { 1880 ret = -ENOMEM; 1881 goto done; 1882 } 1883 ep->ep_state |= EP_STOP_CMD_PENDING; 1884 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1885 ep_index, 0); 1886 xhci_ring_cmd_db(xhci); 1887 } 1888 done: 1889 spin_unlock_irqrestore(&xhci->lock, flags); 1890 return ret; 1891 1892 err_giveback: 1893 if (urb_priv) 1894 xhci_urb_free_priv(urb_priv); 1895 usb_hcd_unlink_urb_from_ep(hcd, urb); 1896 spin_unlock_irqrestore(&xhci->lock, flags); 1897 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1898 return ret; 1899 } 1900 1901 /* Drop an endpoint from a new bandwidth configuration for this device. 1902 * Only one call to this function is allowed per endpoint before 1903 * check_bandwidth() or reset_bandwidth() must be called. 1904 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1905 * add the endpoint to the schedule with possibly new parameters denoted by a 1906 * different endpoint descriptor in usb_host_endpoint. 1907 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1908 * not allowed. 1909 * 1910 * The USB core will not allow URBs to be queued to an endpoint that is being 1911 * disabled, so there's no need for mutual exclusion to protect 1912 * the xhci->devs[slot_id] structure. 1913 */ 1914 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1915 struct usb_host_endpoint *ep) 1916 { 1917 struct xhci_hcd *xhci; 1918 struct xhci_container_ctx *in_ctx, *out_ctx; 1919 struct xhci_input_control_ctx *ctrl_ctx; 1920 unsigned int ep_index; 1921 struct xhci_ep_ctx *ep_ctx; 1922 u32 drop_flag; 1923 u32 new_add_flags, new_drop_flags; 1924 int ret; 1925 1926 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1927 if (ret <= 0) 1928 return ret; 1929 xhci = hcd_to_xhci(hcd); 1930 if (xhci->xhc_state & XHCI_STATE_DYING) 1931 return -ENODEV; 1932 1933 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1934 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1935 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1936 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1937 __func__, drop_flag); 1938 return 0; 1939 } 1940 1941 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1942 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1943 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1944 if (!ctrl_ctx) { 1945 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1946 __func__); 1947 return 0; 1948 } 1949 1950 ep_index = xhci_get_endpoint_index(&ep->desc); 1951 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1952 /* If the HC already knows the endpoint is disabled, 1953 * or the HCD has noted it is disabled, ignore this request 1954 */ 1955 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1956 le32_to_cpu(ctrl_ctx->drop_flags) & 1957 xhci_get_endpoint_flag(&ep->desc)) { 1958 /* Do not warn when called after a usb_device_reset */ 1959 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1960 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1961 __func__, ep); 1962 return 0; 1963 } 1964 1965 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1966 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1967 1968 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1969 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1970 1971 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1972 1973 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1974 1975 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1976 (unsigned int) ep->desc.bEndpointAddress, 1977 udev->slot_id, 1978 (unsigned int) new_drop_flags, 1979 (unsigned int) new_add_flags); 1980 return 0; 1981 } 1982 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1983 1984 /* Add an endpoint to a new possible bandwidth configuration for this device. 1985 * Only one call to this function is allowed per endpoint before 1986 * check_bandwidth() or reset_bandwidth() must be called. 1987 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1988 * add the endpoint to the schedule with possibly new parameters denoted by a 1989 * different endpoint descriptor in usb_host_endpoint. 1990 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1991 * not allowed. 1992 * 1993 * The USB core will not allow URBs to be queued to an endpoint until the 1994 * configuration or alt setting is installed in the device, so there's no need 1995 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1996 */ 1997 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1998 struct usb_host_endpoint *ep) 1999 { 2000 struct xhci_hcd *xhci; 2001 struct xhci_container_ctx *in_ctx; 2002 unsigned int ep_index; 2003 struct xhci_input_control_ctx *ctrl_ctx; 2004 struct xhci_ep_ctx *ep_ctx; 2005 u32 added_ctxs; 2006 u32 new_add_flags, new_drop_flags; 2007 struct xhci_virt_device *virt_dev; 2008 int ret = 0; 2009 2010 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 2011 if (ret <= 0) { 2012 /* So we won't queue a reset ep command for a root hub */ 2013 ep->hcpriv = NULL; 2014 return ret; 2015 } 2016 xhci = hcd_to_xhci(hcd); 2017 if (xhci->xhc_state & XHCI_STATE_DYING) 2018 return -ENODEV; 2019 2020 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 2021 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 2022 /* FIXME when we have to issue an evaluate endpoint command to 2023 * deal with ep0 max packet size changing once we get the 2024 * descriptors 2025 */ 2026 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 2027 __func__, added_ctxs); 2028 return 0; 2029 } 2030 2031 virt_dev = xhci->devs[udev->slot_id]; 2032 in_ctx = virt_dev->in_ctx; 2033 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2034 if (!ctrl_ctx) { 2035 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2036 __func__); 2037 return 0; 2038 } 2039 2040 ep_index = xhci_get_endpoint_index(&ep->desc); 2041 /* If this endpoint is already in use, and the upper layers are trying 2042 * to add it again without dropping it, reject the addition. 2043 */ 2044 if (virt_dev->eps[ep_index].ring && 2045 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 2046 xhci_warn(xhci, "Trying to add endpoint 0x%x " 2047 "without dropping it.\n", 2048 (unsigned int) ep->desc.bEndpointAddress); 2049 return -EINVAL; 2050 } 2051 2052 /* If the HCD has already noted the endpoint is enabled, 2053 * ignore this request. 2054 */ 2055 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2056 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2057 __func__, ep); 2058 return 0; 2059 } 2060 2061 /* 2062 * Configuration and alternate setting changes must be done in 2063 * process context, not interrupt context (or so documenation 2064 * for usb_set_interface() and usb_set_configuration() claim). 2065 */ 2066 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2067 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2068 __func__, ep->desc.bEndpointAddress); 2069 return -ENOMEM; 2070 } 2071 2072 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2073 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2074 2075 /* If xhci_endpoint_disable() was called for this endpoint, but the 2076 * xHC hasn't been notified yet through the check_bandwidth() call, 2077 * this re-adds a new state for the endpoint from the new endpoint 2078 * descriptors. We must drop and re-add this endpoint, so we leave the 2079 * drop flags alone. 2080 */ 2081 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2082 2083 /* Store the usb_device pointer for later use */ 2084 ep->hcpriv = udev; 2085 2086 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2087 trace_xhci_add_endpoint(ep_ctx); 2088 2089 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2090 (unsigned int) ep->desc.bEndpointAddress, 2091 udev->slot_id, 2092 (unsigned int) new_drop_flags, 2093 (unsigned int) new_add_flags); 2094 return 0; 2095 } 2096 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2097 2098 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2099 { 2100 struct xhci_input_control_ctx *ctrl_ctx; 2101 struct xhci_ep_ctx *ep_ctx; 2102 struct xhci_slot_ctx *slot_ctx; 2103 int i; 2104 2105 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2106 if (!ctrl_ctx) { 2107 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2108 __func__); 2109 return; 2110 } 2111 2112 /* When a device's add flag and drop flag are zero, any subsequent 2113 * configure endpoint command will leave that endpoint's state 2114 * untouched. Make sure we don't leave any old state in the input 2115 * endpoint contexts. 2116 */ 2117 ctrl_ctx->drop_flags = 0; 2118 ctrl_ctx->add_flags = 0; 2119 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2120 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2121 /* Endpoint 0 is always valid */ 2122 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2123 for (i = 1; i < 31; i++) { 2124 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2125 ep_ctx->ep_info = 0; 2126 ep_ctx->ep_info2 = 0; 2127 ep_ctx->deq = 0; 2128 ep_ctx->tx_info = 0; 2129 } 2130 } 2131 2132 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2133 struct usb_device *udev, u32 *cmd_status) 2134 { 2135 int ret; 2136 2137 switch (*cmd_status) { 2138 case COMP_COMMAND_ABORTED: 2139 case COMP_COMMAND_RING_STOPPED: 2140 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2141 ret = -ETIME; 2142 break; 2143 case COMP_RESOURCE_ERROR: 2144 dev_warn(&udev->dev, 2145 "Not enough host controller resources for new device state.\n"); 2146 ret = -ENOMEM; 2147 /* FIXME: can we allocate more resources for the HC? */ 2148 break; 2149 case COMP_BANDWIDTH_ERROR: 2150 case COMP_SECONDARY_BANDWIDTH_ERROR: 2151 dev_warn(&udev->dev, 2152 "Not enough bandwidth for new device state.\n"); 2153 ret = -ENOSPC; 2154 /* FIXME: can we go back to the old state? */ 2155 break; 2156 case COMP_TRB_ERROR: 2157 /* the HCD set up something wrong */ 2158 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2159 "add flag = 1, " 2160 "and endpoint is not disabled.\n"); 2161 ret = -EINVAL; 2162 break; 2163 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2164 dev_warn(&udev->dev, 2165 "ERROR: Incompatible device for endpoint configure command.\n"); 2166 ret = -ENODEV; 2167 break; 2168 case COMP_SUCCESS: 2169 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2170 "Successful Endpoint Configure command"); 2171 ret = 0; 2172 break; 2173 default: 2174 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2175 *cmd_status); 2176 ret = -EINVAL; 2177 break; 2178 } 2179 return ret; 2180 } 2181 2182 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2183 struct usb_device *udev, u32 *cmd_status) 2184 { 2185 int ret; 2186 2187 switch (*cmd_status) { 2188 case COMP_COMMAND_ABORTED: 2189 case COMP_COMMAND_RING_STOPPED: 2190 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2191 ret = -ETIME; 2192 break; 2193 case COMP_PARAMETER_ERROR: 2194 dev_warn(&udev->dev, 2195 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2196 ret = -EINVAL; 2197 break; 2198 case COMP_SLOT_NOT_ENABLED_ERROR: 2199 dev_warn(&udev->dev, 2200 "WARN: slot not enabled for evaluate context command.\n"); 2201 ret = -EINVAL; 2202 break; 2203 case COMP_CONTEXT_STATE_ERROR: 2204 dev_warn(&udev->dev, 2205 "WARN: invalid context state for evaluate context command.\n"); 2206 ret = -EINVAL; 2207 break; 2208 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2209 dev_warn(&udev->dev, 2210 "ERROR: Incompatible device for evaluate context command.\n"); 2211 ret = -ENODEV; 2212 break; 2213 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2214 /* Max Exit Latency too large error */ 2215 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2216 ret = -EINVAL; 2217 break; 2218 case COMP_SUCCESS: 2219 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2220 "Successful evaluate context command"); 2221 ret = 0; 2222 break; 2223 default: 2224 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2225 *cmd_status); 2226 ret = -EINVAL; 2227 break; 2228 } 2229 return ret; 2230 } 2231 2232 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2233 struct xhci_input_control_ctx *ctrl_ctx) 2234 { 2235 u32 valid_add_flags; 2236 u32 valid_drop_flags; 2237 2238 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2239 * (bit 1). The default control endpoint is added during the Address 2240 * Device command and is never removed until the slot is disabled. 2241 */ 2242 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2243 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2244 2245 /* Use hweight32 to count the number of ones in the add flags, or 2246 * number of endpoints added. Don't count endpoints that are changed 2247 * (both added and dropped). 2248 */ 2249 return hweight32(valid_add_flags) - 2250 hweight32(valid_add_flags & valid_drop_flags); 2251 } 2252 2253 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2254 struct xhci_input_control_ctx *ctrl_ctx) 2255 { 2256 u32 valid_add_flags; 2257 u32 valid_drop_flags; 2258 2259 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2260 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2261 2262 return hweight32(valid_drop_flags) - 2263 hweight32(valid_add_flags & valid_drop_flags); 2264 } 2265 2266 /* 2267 * We need to reserve the new number of endpoints before the configure endpoint 2268 * command completes. We can't subtract the dropped endpoints from the number 2269 * of active endpoints until the command completes because we can oversubscribe 2270 * the host in this case: 2271 * 2272 * - the first configure endpoint command drops more endpoints than it adds 2273 * - a second configure endpoint command that adds more endpoints is queued 2274 * - the first configure endpoint command fails, so the config is unchanged 2275 * - the second command may succeed, even though there isn't enough resources 2276 * 2277 * Must be called with xhci->lock held. 2278 */ 2279 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2280 struct xhci_input_control_ctx *ctrl_ctx) 2281 { 2282 u32 added_eps; 2283 2284 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2285 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2286 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2287 "Not enough ep ctxs: " 2288 "%u active, need to add %u, limit is %u.", 2289 xhci->num_active_eps, added_eps, 2290 xhci->limit_active_eps); 2291 return -ENOMEM; 2292 } 2293 xhci->num_active_eps += added_eps; 2294 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2295 "Adding %u ep ctxs, %u now active.", added_eps, 2296 xhci->num_active_eps); 2297 return 0; 2298 } 2299 2300 /* 2301 * The configure endpoint was failed by the xHC for some other reason, so we 2302 * need to revert the resources that failed configuration would have used. 2303 * 2304 * Must be called with xhci->lock held. 2305 */ 2306 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2307 struct xhci_input_control_ctx *ctrl_ctx) 2308 { 2309 u32 num_failed_eps; 2310 2311 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2312 xhci->num_active_eps -= num_failed_eps; 2313 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2314 "Removing %u failed ep ctxs, %u now active.", 2315 num_failed_eps, 2316 xhci->num_active_eps); 2317 } 2318 2319 /* 2320 * Now that the command has completed, clean up the active endpoint count by 2321 * subtracting out the endpoints that were dropped (but not changed). 2322 * 2323 * Must be called with xhci->lock held. 2324 */ 2325 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2326 struct xhci_input_control_ctx *ctrl_ctx) 2327 { 2328 u32 num_dropped_eps; 2329 2330 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2331 xhci->num_active_eps -= num_dropped_eps; 2332 if (num_dropped_eps) 2333 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2334 "Removing %u dropped ep ctxs, %u now active.", 2335 num_dropped_eps, 2336 xhci->num_active_eps); 2337 } 2338 2339 static unsigned int xhci_get_block_size(struct usb_device *udev) 2340 { 2341 switch (udev->speed) { 2342 case USB_SPEED_LOW: 2343 case USB_SPEED_FULL: 2344 return FS_BLOCK; 2345 case USB_SPEED_HIGH: 2346 return HS_BLOCK; 2347 case USB_SPEED_SUPER: 2348 case USB_SPEED_SUPER_PLUS: 2349 return SS_BLOCK; 2350 case USB_SPEED_UNKNOWN: 2351 case USB_SPEED_WIRELESS: 2352 default: 2353 /* Should never happen */ 2354 return 1; 2355 } 2356 } 2357 2358 static unsigned int 2359 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2360 { 2361 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2362 return LS_OVERHEAD; 2363 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2364 return FS_OVERHEAD; 2365 return HS_OVERHEAD; 2366 } 2367 2368 /* If we are changing a LS/FS device under a HS hub, 2369 * make sure (if we are activating a new TT) that the HS bus has enough 2370 * bandwidth for this new TT. 2371 */ 2372 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2373 struct xhci_virt_device *virt_dev, 2374 int old_active_eps) 2375 { 2376 struct xhci_interval_bw_table *bw_table; 2377 struct xhci_tt_bw_info *tt_info; 2378 2379 /* Find the bandwidth table for the root port this TT is attached to. */ 2380 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2381 tt_info = virt_dev->tt_info; 2382 /* If this TT already had active endpoints, the bandwidth for this TT 2383 * has already been added. Removing all periodic endpoints (and thus 2384 * making the TT enactive) will only decrease the bandwidth used. 2385 */ 2386 if (old_active_eps) 2387 return 0; 2388 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2389 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2390 return -ENOMEM; 2391 return 0; 2392 } 2393 /* Not sure why we would have no new active endpoints... 2394 * 2395 * Maybe because of an Evaluate Context change for a hub update or a 2396 * control endpoint 0 max packet size change? 2397 * FIXME: skip the bandwidth calculation in that case. 2398 */ 2399 return 0; 2400 } 2401 2402 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2403 struct xhci_virt_device *virt_dev) 2404 { 2405 unsigned int bw_reserved; 2406 2407 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2408 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2409 return -ENOMEM; 2410 2411 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2412 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2413 return -ENOMEM; 2414 2415 return 0; 2416 } 2417 2418 /* 2419 * This algorithm is a very conservative estimate of the worst-case scheduling 2420 * scenario for any one interval. The hardware dynamically schedules the 2421 * packets, so we can't tell which microframe could be the limiting factor in 2422 * the bandwidth scheduling. This only takes into account periodic endpoints. 2423 * 2424 * Obviously, we can't solve an NP complete problem to find the minimum worst 2425 * case scenario. Instead, we come up with an estimate that is no less than 2426 * the worst case bandwidth used for any one microframe, but may be an 2427 * over-estimate. 2428 * 2429 * We walk the requirements for each endpoint by interval, starting with the 2430 * smallest interval, and place packets in the schedule where there is only one 2431 * possible way to schedule packets for that interval. In order to simplify 2432 * this algorithm, we record the largest max packet size for each interval, and 2433 * assume all packets will be that size. 2434 * 2435 * For interval 0, we obviously must schedule all packets for each interval. 2436 * The bandwidth for interval 0 is just the amount of data to be transmitted 2437 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2438 * the number of packets). 2439 * 2440 * For interval 1, we have two possible microframes to schedule those packets 2441 * in. For this algorithm, if we can schedule the same number of packets for 2442 * each possible scheduling opportunity (each microframe), we will do so. The 2443 * remaining number of packets will be saved to be transmitted in the gaps in 2444 * the next interval's scheduling sequence. 2445 * 2446 * As we move those remaining packets to be scheduled with interval 2 packets, 2447 * we have to double the number of remaining packets to transmit. This is 2448 * because the intervals are actually powers of 2, and we would be transmitting 2449 * the previous interval's packets twice in this interval. We also have to be 2450 * sure that when we look at the largest max packet size for this interval, we 2451 * also look at the largest max packet size for the remaining packets and take 2452 * the greater of the two. 2453 * 2454 * The algorithm continues to evenly distribute packets in each scheduling 2455 * opportunity, and push the remaining packets out, until we get to the last 2456 * interval. Then those packets and their associated overhead are just added 2457 * to the bandwidth used. 2458 */ 2459 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2460 struct xhci_virt_device *virt_dev, 2461 int old_active_eps) 2462 { 2463 unsigned int bw_reserved; 2464 unsigned int max_bandwidth; 2465 unsigned int bw_used; 2466 unsigned int block_size; 2467 struct xhci_interval_bw_table *bw_table; 2468 unsigned int packet_size = 0; 2469 unsigned int overhead = 0; 2470 unsigned int packets_transmitted = 0; 2471 unsigned int packets_remaining = 0; 2472 unsigned int i; 2473 2474 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2475 return xhci_check_ss_bw(xhci, virt_dev); 2476 2477 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2478 max_bandwidth = HS_BW_LIMIT; 2479 /* Convert percent of bus BW reserved to blocks reserved */ 2480 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2481 } else { 2482 max_bandwidth = FS_BW_LIMIT; 2483 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2484 } 2485 2486 bw_table = virt_dev->bw_table; 2487 /* We need to translate the max packet size and max ESIT payloads into 2488 * the units the hardware uses. 2489 */ 2490 block_size = xhci_get_block_size(virt_dev->udev); 2491 2492 /* If we are manipulating a LS/FS device under a HS hub, double check 2493 * that the HS bus has enough bandwidth if we are activing a new TT. 2494 */ 2495 if (virt_dev->tt_info) { 2496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2497 "Recalculating BW for rootport %u", 2498 virt_dev->real_port); 2499 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2500 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2501 "newly activated TT.\n"); 2502 return -ENOMEM; 2503 } 2504 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2505 "Recalculating BW for TT slot %u port %u", 2506 virt_dev->tt_info->slot_id, 2507 virt_dev->tt_info->ttport); 2508 } else { 2509 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2510 "Recalculating BW for rootport %u", 2511 virt_dev->real_port); 2512 } 2513 2514 /* Add in how much bandwidth will be used for interval zero, or the 2515 * rounded max ESIT payload + number of packets * largest overhead. 2516 */ 2517 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2518 bw_table->interval_bw[0].num_packets * 2519 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2520 2521 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2522 unsigned int bw_added; 2523 unsigned int largest_mps; 2524 unsigned int interval_overhead; 2525 2526 /* 2527 * How many packets could we transmit in this interval? 2528 * If packets didn't fit in the previous interval, we will need 2529 * to transmit that many packets twice within this interval. 2530 */ 2531 packets_remaining = 2 * packets_remaining + 2532 bw_table->interval_bw[i].num_packets; 2533 2534 /* Find the largest max packet size of this or the previous 2535 * interval. 2536 */ 2537 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2538 largest_mps = 0; 2539 else { 2540 struct xhci_virt_ep *virt_ep; 2541 struct list_head *ep_entry; 2542 2543 ep_entry = bw_table->interval_bw[i].endpoints.next; 2544 virt_ep = list_entry(ep_entry, 2545 struct xhci_virt_ep, bw_endpoint_list); 2546 /* Convert to blocks, rounding up */ 2547 largest_mps = DIV_ROUND_UP( 2548 virt_ep->bw_info.max_packet_size, 2549 block_size); 2550 } 2551 if (largest_mps > packet_size) 2552 packet_size = largest_mps; 2553 2554 /* Use the larger overhead of this or the previous interval. */ 2555 interval_overhead = xhci_get_largest_overhead( 2556 &bw_table->interval_bw[i]); 2557 if (interval_overhead > overhead) 2558 overhead = interval_overhead; 2559 2560 /* How many packets can we evenly distribute across 2561 * (1 << (i + 1)) possible scheduling opportunities? 2562 */ 2563 packets_transmitted = packets_remaining >> (i + 1); 2564 2565 /* Add in the bandwidth used for those scheduled packets */ 2566 bw_added = packets_transmitted * (overhead + packet_size); 2567 2568 /* How many packets do we have remaining to transmit? */ 2569 packets_remaining = packets_remaining % (1 << (i + 1)); 2570 2571 /* What largest max packet size should those packets have? */ 2572 /* If we've transmitted all packets, don't carry over the 2573 * largest packet size. 2574 */ 2575 if (packets_remaining == 0) { 2576 packet_size = 0; 2577 overhead = 0; 2578 } else if (packets_transmitted > 0) { 2579 /* Otherwise if we do have remaining packets, and we've 2580 * scheduled some packets in this interval, take the 2581 * largest max packet size from endpoints with this 2582 * interval. 2583 */ 2584 packet_size = largest_mps; 2585 overhead = interval_overhead; 2586 } 2587 /* Otherwise carry over packet_size and overhead from the last 2588 * time we had a remainder. 2589 */ 2590 bw_used += bw_added; 2591 if (bw_used > max_bandwidth) { 2592 xhci_warn(xhci, "Not enough bandwidth. " 2593 "Proposed: %u, Max: %u\n", 2594 bw_used, max_bandwidth); 2595 return -ENOMEM; 2596 } 2597 } 2598 /* 2599 * Ok, we know we have some packets left over after even-handedly 2600 * scheduling interval 15. We don't know which microframes they will 2601 * fit into, so we over-schedule and say they will be scheduled every 2602 * microframe. 2603 */ 2604 if (packets_remaining > 0) 2605 bw_used += overhead + packet_size; 2606 2607 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2608 unsigned int port_index = virt_dev->real_port - 1; 2609 2610 /* OK, we're manipulating a HS device attached to a 2611 * root port bandwidth domain. Include the number of active TTs 2612 * in the bandwidth used. 2613 */ 2614 bw_used += TT_HS_OVERHEAD * 2615 xhci->rh_bw[port_index].num_active_tts; 2616 } 2617 2618 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2619 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2620 "Available: %u " "percent", 2621 bw_used, max_bandwidth, bw_reserved, 2622 (max_bandwidth - bw_used - bw_reserved) * 100 / 2623 max_bandwidth); 2624 2625 bw_used += bw_reserved; 2626 if (bw_used > max_bandwidth) { 2627 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2628 bw_used, max_bandwidth); 2629 return -ENOMEM; 2630 } 2631 2632 bw_table->bw_used = bw_used; 2633 return 0; 2634 } 2635 2636 static bool xhci_is_async_ep(unsigned int ep_type) 2637 { 2638 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2639 ep_type != ISOC_IN_EP && 2640 ep_type != INT_IN_EP); 2641 } 2642 2643 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2644 { 2645 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2646 } 2647 2648 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2649 { 2650 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2651 2652 if (ep_bw->ep_interval == 0) 2653 return SS_OVERHEAD_BURST + 2654 (ep_bw->mult * ep_bw->num_packets * 2655 (SS_OVERHEAD + mps)); 2656 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2657 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2658 1 << ep_bw->ep_interval); 2659 2660 } 2661 2662 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2663 struct xhci_bw_info *ep_bw, 2664 struct xhci_interval_bw_table *bw_table, 2665 struct usb_device *udev, 2666 struct xhci_virt_ep *virt_ep, 2667 struct xhci_tt_bw_info *tt_info) 2668 { 2669 struct xhci_interval_bw *interval_bw; 2670 int normalized_interval; 2671 2672 if (xhci_is_async_ep(ep_bw->type)) 2673 return; 2674 2675 if (udev->speed >= USB_SPEED_SUPER) { 2676 if (xhci_is_sync_in_ep(ep_bw->type)) 2677 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2678 xhci_get_ss_bw_consumed(ep_bw); 2679 else 2680 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2681 xhci_get_ss_bw_consumed(ep_bw); 2682 return; 2683 } 2684 2685 /* SuperSpeed endpoints never get added to intervals in the table, so 2686 * this check is only valid for HS/FS/LS devices. 2687 */ 2688 if (list_empty(&virt_ep->bw_endpoint_list)) 2689 return; 2690 /* For LS/FS devices, we need to translate the interval expressed in 2691 * microframes to frames. 2692 */ 2693 if (udev->speed == USB_SPEED_HIGH) 2694 normalized_interval = ep_bw->ep_interval; 2695 else 2696 normalized_interval = ep_bw->ep_interval - 3; 2697 2698 if (normalized_interval == 0) 2699 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2700 interval_bw = &bw_table->interval_bw[normalized_interval]; 2701 interval_bw->num_packets -= ep_bw->num_packets; 2702 switch (udev->speed) { 2703 case USB_SPEED_LOW: 2704 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2705 break; 2706 case USB_SPEED_FULL: 2707 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2708 break; 2709 case USB_SPEED_HIGH: 2710 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2711 break; 2712 case USB_SPEED_SUPER: 2713 case USB_SPEED_SUPER_PLUS: 2714 case USB_SPEED_UNKNOWN: 2715 case USB_SPEED_WIRELESS: 2716 /* Should never happen because only LS/FS/HS endpoints will get 2717 * added to the endpoint list. 2718 */ 2719 return; 2720 } 2721 if (tt_info) 2722 tt_info->active_eps -= 1; 2723 list_del_init(&virt_ep->bw_endpoint_list); 2724 } 2725 2726 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2727 struct xhci_bw_info *ep_bw, 2728 struct xhci_interval_bw_table *bw_table, 2729 struct usb_device *udev, 2730 struct xhci_virt_ep *virt_ep, 2731 struct xhci_tt_bw_info *tt_info) 2732 { 2733 struct xhci_interval_bw *interval_bw; 2734 struct xhci_virt_ep *smaller_ep; 2735 int normalized_interval; 2736 2737 if (xhci_is_async_ep(ep_bw->type)) 2738 return; 2739 2740 if (udev->speed == USB_SPEED_SUPER) { 2741 if (xhci_is_sync_in_ep(ep_bw->type)) 2742 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2743 xhci_get_ss_bw_consumed(ep_bw); 2744 else 2745 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2746 xhci_get_ss_bw_consumed(ep_bw); 2747 return; 2748 } 2749 2750 /* For LS/FS devices, we need to translate the interval expressed in 2751 * microframes to frames. 2752 */ 2753 if (udev->speed == USB_SPEED_HIGH) 2754 normalized_interval = ep_bw->ep_interval; 2755 else 2756 normalized_interval = ep_bw->ep_interval - 3; 2757 2758 if (normalized_interval == 0) 2759 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2760 interval_bw = &bw_table->interval_bw[normalized_interval]; 2761 interval_bw->num_packets += ep_bw->num_packets; 2762 switch (udev->speed) { 2763 case USB_SPEED_LOW: 2764 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2765 break; 2766 case USB_SPEED_FULL: 2767 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2768 break; 2769 case USB_SPEED_HIGH: 2770 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2771 break; 2772 case USB_SPEED_SUPER: 2773 case USB_SPEED_SUPER_PLUS: 2774 case USB_SPEED_UNKNOWN: 2775 case USB_SPEED_WIRELESS: 2776 /* Should never happen because only LS/FS/HS endpoints will get 2777 * added to the endpoint list. 2778 */ 2779 return; 2780 } 2781 2782 if (tt_info) 2783 tt_info->active_eps += 1; 2784 /* Insert the endpoint into the list, largest max packet size first. */ 2785 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2786 bw_endpoint_list) { 2787 if (ep_bw->max_packet_size >= 2788 smaller_ep->bw_info.max_packet_size) { 2789 /* Add the new ep before the smaller endpoint */ 2790 list_add_tail(&virt_ep->bw_endpoint_list, 2791 &smaller_ep->bw_endpoint_list); 2792 return; 2793 } 2794 } 2795 /* Add the new endpoint at the end of the list. */ 2796 list_add_tail(&virt_ep->bw_endpoint_list, 2797 &interval_bw->endpoints); 2798 } 2799 2800 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2801 struct xhci_virt_device *virt_dev, 2802 int old_active_eps) 2803 { 2804 struct xhci_root_port_bw_info *rh_bw_info; 2805 if (!virt_dev->tt_info) 2806 return; 2807 2808 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2809 if (old_active_eps == 0 && 2810 virt_dev->tt_info->active_eps != 0) { 2811 rh_bw_info->num_active_tts += 1; 2812 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2813 } else if (old_active_eps != 0 && 2814 virt_dev->tt_info->active_eps == 0) { 2815 rh_bw_info->num_active_tts -= 1; 2816 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2817 } 2818 } 2819 2820 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2821 struct xhci_virt_device *virt_dev, 2822 struct xhci_container_ctx *in_ctx) 2823 { 2824 struct xhci_bw_info ep_bw_info[31]; 2825 int i; 2826 struct xhci_input_control_ctx *ctrl_ctx; 2827 int old_active_eps = 0; 2828 2829 if (virt_dev->tt_info) 2830 old_active_eps = virt_dev->tt_info->active_eps; 2831 2832 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2833 if (!ctrl_ctx) { 2834 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2835 __func__); 2836 return -ENOMEM; 2837 } 2838 2839 for (i = 0; i < 31; i++) { 2840 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2841 continue; 2842 2843 /* Make a copy of the BW info in case we need to revert this */ 2844 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2845 sizeof(ep_bw_info[i])); 2846 /* Drop the endpoint from the interval table if the endpoint is 2847 * being dropped or changed. 2848 */ 2849 if (EP_IS_DROPPED(ctrl_ctx, i)) 2850 xhci_drop_ep_from_interval_table(xhci, 2851 &virt_dev->eps[i].bw_info, 2852 virt_dev->bw_table, 2853 virt_dev->udev, 2854 &virt_dev->eps[i], 2855 virt_dev->tt_info); 2856 } 2857 /* Overwrite the information stored in the endpoints' bw_info */ 2858 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2859 for (i = 0; i < 31; i++) { 2860 /* Add any changed or added endpoints to the interval table */ 2861 if (EP_IS_ADDED(ctrl_ctx, i)) 2862 xhci_add_ep_to_interval_table(xhci, 2863 &virt_dev->eps[i].bw_info, 2864 virt_dev->bw_table, 2865 virt_dev->udev, 2866 &virt_dev->eps[i], 2867 virt_dev->tt_info); 2868 } 2869 2870 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2871 /* Ok, this fits in the bandwidth we have. 2872 * Update the number of active TTs. 2873 */ 2874 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2875 return 0; 2876 } 2877 2878 /* We don't have enough bandwidth for this, revert the stored info. */ 2879 for (i = 0; i < 31; i++) { 2880 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2881 continue; 2882 2883 /* Drop the new copies of any added or changed endpoints from 2884 * the interval table. 2885 */ 2886 if (EP_IS_ADDED(ctrl_ctx, i)) { 2887 xhci_drop_ep_from_interval_table(xhci, 2888 &virt_dev->eps[i].bw_info, 2889 virt_dev->bw_table, 2890 virt_dev->udev, 2891 &virt_dev->eps[i], 2892 virt_dev->tt_info); 2893 } 2894 /* Revert the endpoint back to its old information */ 2895 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2896 sizeof(ep_bw_info[i])); 2897 /* Add any changed or dropped endpoints back into the table */ 2898 if (EP_IS_DROPPED(ctrl_ctx, i)) 2899 xhci_add_ep_to_interval_table(xhci, 2900 &virt_dev->eps[i].bw_info, 2901 virt_dev->bw_table, 2902 virt_dev->udev, 2903 &virt_dev->eps[i], 2904 virt_dev->tt_info); 2905 } 2906 return -ENOMEM; 2907 } 2908 2909 2910 /* Issue a configure endpoint command or evaluate context command 2911 * and wait for it to finish. 2912 */ 2913 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2914 struct usb_device *udev, 2915 struct xhci_command *command, 2916 bool ctx_change, bool must_succeed) 2917 { 2918 int ret; 2919 unsigned long flags; 2920 struct xhci_input_control_ctx *ctrl_ctx; 2921 struct xhci_virt_device *virt_dev; 2922 struct xhci_slot_ctx *slot_ctx; 2923 2924 if (!command) 2925 return -EINVAL; 2926 2927 spin_lock_irqsave(&xhci->lock, flags); 2928 2929 if (xhci->xhc_state & XHCI_STATE_DYING) { 2930 spin_unlock_irqrestore(&xhci->lock, flags); 2931 return -ESHUTDOWN; 2932 } 2933 2934 virt_dev = xhci->devs[udev->slot_id]; 2935 2936 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2937 if (!ctrl_ctx) { 2938 spin_unlock_irqrestore(&xhci->lock, flags); 2939 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2940 __func__); 2941 return -ENOMEM; 2942 } 2943 2944 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2945 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2946 spin_unlock_irqrestore(&xhci->lock, flags); 2947 xhci_warn(xhci, "Not enough host resources, " 2948 "active endpoint contexts = %u\n", 2949 xhci->num_active_eps); 2950 return -ENOMEM; 2951 } 2952 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2953 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2954 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2955 xhci_free_host_resources(xhci, ctrl_ctx); 2956 spin_unlock_irqrestore(&xhci->lock, flags); 2957 xhci_warn(xhci, "Not enough bandwidth\n"); 2958 return -ENOMEM; 2959 } 2960 2961 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2962 2963 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2964 trace_xhci_configure_endpoint(slot_ctx); 2965 2966 if (!ctx_change) 2967 ret = xhci_queue_configure_endpoint(xhci, command, 2968 command->in_ctx->dma, 2969 udev->slot_id, must_succeed); 2970 else 2971 ret = xhci_queue_evaluate_context(xhci, command, 2972 command->in_ctx->dma, 2973 udev->slot_id, must_succeed); 2974 if (ret < 0) { 2975 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2976 xhci_free_host_resources(xhci, ctrl_ctx); 2977 spin_unlock_irqrestore(&xhci->lock, flags); 2978 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2979 "FIXME allocate a new ring segment"); 2980 return -ENOMEM; 2981 } 2982 xhci_ring_cmd_db(xhci); 2983 spin_unlock_irqrestore(&xhci->lock, flags); 2984 2985 /* Wait for the configure endpoint command to complete */ 2986 wait_for_completion(command->completion); 2987 2988 if (!ctx_change) 2989 ret = xhci_configure_endpoint_result(xhci, udev, 2990 &command->status); 2991 else 2992 ret = xhci_evaluate_context_result(xhci, udev, 2993 &command->status); 2994 2995 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2996 spin_lock_irqsave(&xhci->lock, flags); 2997 /* If the command failed, remove the reserved resources. 2998 * Otherwise, clean up the estimate to include dropped eps. 2999 */ 3000 if (ret) 3001 xhci_free_host_resources(xhci, ctrl_ctx); 3002 else 3003 xhci_finish_resource_reservation(xhci, ctrl_ctx); 3004 spin_unlock_irqrestore(&xhci->lock, flags); 3005 } 3006 return ret; 3007 } 3008 3009 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 3010 struct xhci_virt_device *vdev, int i) 3011 { 3012 struct xhci_virt_ep *ep = &vdev->eps[i]; 3013 3014 if (ep->ep_state & EP_HAS_STREAMS) { 3015 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 3016 xhci_get_endpoint_address(i)); 3017 xhci_free_stream_info(xhci, ep->stream_info); 3018 ep->stream_info = NULL; 3019 ep->ep_state &= ~EP_HAS_STREAMS; 3020 } 3021 } 3022 3023 /* Called after one or more calls to xhci_add_endpoint() or 3024 * xhci_drop_endpoint(). If this call fails, the USB core is expected 3025 * to call xhci_reset_bandwidth(). 3026 * 3027 * Since we are in the middle of changing either configuration or 3028 * installing a new alt setting, the USB core won't allow URBs to be 3029 * enqueued for any endpoint on the old config or interface. Nothing 3030 * else should be touching the xhci->devs[slot_id] structure, so we 3031 * don't need to take the xhci->lock for manipulating that. 3032 */ 3033 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3034 { 3035 int i; 3036 int ret = 0; 3037 struct xhci_hcd *xhci; 3038 struct xhci_virt_device *virt_dev; 3039 struct xhci_input_control_ctx *ctrl_ctx; 3040 struct xhci_slot_ctx *slot_ctx; 3041 struct xhci_command *command; 3042 3043 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3044 if (ret <= 0) 3045 return ret; 3046 xhci = hcd_to_xhci(hcd); 3047 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3048 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3049 return -ENODEV; 3050 3051 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3052 virt_dev = xhci->devs[udev->slot_id]; 3053 3054 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3055 if (!command) 3056 return -ENOMEM; 3057 3058 command->in_ctx = virt_dev->in_ctx; 3059 3060 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3061 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3062 if (!ctrl_ctx) { 3063 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3064 __func__); 3065 ret = -ENOMEM; 3066 goto command_cleanup; 3067 } 3068 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3069 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3070 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3071 3072 /* Don't issue the command if there's no endpoints to update. */ 3073 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3074 ctrl_ctx->drop_flags == 0) { 3075 ret = 0; 3076 goto command_cleanup; 3077 } 3078 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3079 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3080 for (i = 31; i >= 1; i--) { 3081 __le32 le32 = cpu_to_le32(BIT(i)); 3082 3083 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3084 || (ctrl_ctx->add_flags & le32) || i == 1) { 3085 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3086 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3087 break; 3088 } 3089 } 3090 3091 ret = xhci_configure_endpoint(xhci, udev, command, 3092 false, false); 3093 if (ret) 3094 /* Callee should call reset_bandwidth() */ 3095 goto command_cleanup; 3096 3097 /* Free any rings that were dropped, but not changed. */ 3098 for (i = 1; i < 31; i++) { 3099 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3100 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3101 xhci_free_endpoint_ring(xhci, virt_dev, i); 3102 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3103 } 3104 } 3105 xhci_zero_in_ctx(xhci, virt_dev); 3106 /* 3107 * Install any rings for completely new endpoints or changed endpoints, 3108 * and free any old rings from changed endpoints. 3109 */ 3110 for (i = 1; i < 31; i++) { 3111 if (!virt_dev->eps[i].new_ring) 3112 continue; 3113 /* Only free the old ring if it exists. 3114 * It may not if this is the first add of an endpoint. 3115 */ 3116 if (virt_dev->eps[i].ring) { 3117 xhci_free_endpoint_ring(xhci, virt_dev, i); 3118 } 3119 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3120 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3121 virt_dev->eps[i].new_ring = NULL; 3122 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3123 } 3124 command_cleanup: 3125 kfree(command->completion); 3126 kfree(command); 3127 3128 return ret; 3129 } 3130 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3131 3132 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3133 { 3134 struct xhci_hcd *xhci; 3135 struct xhci_virt_device *virt_dev; 3136 int i, ret; 3137 3138 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3139 if (ret <= 0) 3140 return; 3141 xhci = hcd_to_xhci(hcd); 3142 3143 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3144 virt_dev = xhci->devs[udev->slot_id]; 3145 /* Free any rings allocated for added endpoints */ 3146 for (i = 0; i < 31; i++) { 3147 if (virt_dev->eps[i].new_ring) { 3148 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3149 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3150 virt_dev->eps[i].new_ring = NULL; 3151 } 3152 } 3153 xhci_zero_in_ctx(xhci, virt_dev); 3154 } 3155 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3156 3157 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3158 struct xhci_container_ctx *in_ctx, 3159 struct xhci_container_ctx *out_ctx, 3160 struct xhci_input_control_ctx *ctrl_ctx, 3161 u32 add_flags, u32 drop_flags) 3162 { 3163 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3164 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3165 xhci_slot_copy(xhci, in_ctx, out_ctx); 3166 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3167 } 3168 3169 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3170 struct usb_host_endpoint *host_ep) 3171 { 3172 struct xhci_hcd *xhci; 3173 struct xhci_virt_device *vdev; 3174 struct xhci_virt_ep *ep; 3175 struct usb_device *udev; 3176 unsigned long flags; 3177 unsigned int ep_index; 3178 3179 xhci = hcd_to_xhci(hcd); 3180 rescan: 3181 spin_lock_irqsave(&xhci->lock, flags); 3182 3183 udev = (struct usb_device *)host_ep->hcpriv; 3184 if (!udev || !udev->slot_id) 3185 goto done; 3186 3187 vdev = xhci->devs[udev->slot_id]; 3188 if (!vdev) 3189 goto done; 3190 3191 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3192 ep = &vdev->eps[ep_index]; 3193 3194 /* wait for hub_tt_work to finish clearing hub TT */ 3195 if (ep->ep_state & EP_CLEARING_TT) { 3196 spin_unlock_irqrestore(&xhci->lock, flags); 3197 schedule_timeout_uninterruptible(1); 3198 goto rescan; 3199 } 3200 3201 if (ep->ep_state) 3202 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3203 ep->ep_state); 3204 done: 3205 host_ep->hcpriv = NULL; 3206 spin_unlock_irqrestore(&xhci->lock, flags); 3207 } 3208 3209 /* 3210 * Called after usb core issues a clear halt control message. 3211 * The host side of the halt should already be cleared by a reset endpoint 3212 * command issued when the STALL event was received. 3213 * 3214 * The reset endpoint command may only be issued to endpoints in the halted 3215 * state. For software that wishes to reset the data toggle or sequence number 3216 * of an endpoint that isn't in the halted state this function will issue a 3217 * configure endpoint command with the Drop and Add bits set for the target 3218 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3219 */ 3220 3221 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3222 struct usb_host_endpoint *host_ep) 3223 { 3224 struct xhci_hcd *xhci; 3225 struct usb_device *udev; 3226 struct xhci_virt_device *vdev; 3227 struct xhci_virt_ep *ep; 3228 struct xhci_input_control_ctx *ctrl_ctx; 3229 struct xhci_command *stop_cmd, *cfg_cmd; 3230 unsigned int ep_index; 3231 unsigned long flags; 3232 u32 ep_flag; 3233 int err; 3234 3235 xhci = hcd_to_xhci(hcd); 3236 if (!host_ep->hcpriv) 3237 return; 3238 udev = (struct usb_device *) host_ep->hcpriv; 3239 vdev = xhci->devs[udev->slot_id]; 3240 3241 /* 3242 * vdev may be lost due to xHC restore error and re-initialization 3243 * during S3/S4 resume. A new vdev will be allocated later by 3244 * xhci_discover_or_reset_device() 3245 */ 3246 if (!udev->slot_id || !vdev) 3247 return; 3248 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3249 ep = &vdev->eps[ep_index]; 3250 3251 /* Bail out if toggle is already being cleared by a endpoint reset */ 3252 spin_lock_irqsave(&xhci->lock, flags); 3253 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3254 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3255 spin_unlock_irqrestore(&xhci->lock, flags); 3256 return; 3257 } 3258 spin_unlock_irqrestore(&xhci->lock, flags); 3259 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3260 if (usb_endpoint_xfer_control(&host_ep->desc) || 3261 usb_endpoint_xfer_isoc(&host_ep->desc)) 3262 return; 3263 3264 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3265 3266 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3267 return; 3268 3269 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3270 if (!stop_cmd) 3271 return; 3272 3273 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3274 if (!cfg_cmd) 3275 goto cleanup; 3276 3277 spin_lock_irqsave(&xhci->lock, flags); 3278 3279 /* block queuing new trbs and ringing ep doorbell */ 3280 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3281 3282 /* 3283 * Make sure endpoint ring is empty before resetting the toggle/seq. 3284 * Driver is required to synchronously cancel all transfer request. 3285 * Stop the endpoint to force xHC to update the output context 3286 */ 3287 3288 if (!list_empty(&ep->ring->td_list)) { 3289 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3290 spin_unlock_irqrestore(&xhci->lock, flags); 3291 xhci_free_command(xhci, cfg_cmd); 3292 goto cleanup; 3293 } 3294 3295 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3296 ep_index, 0); 3297 if (err < 0) { 3298 spin_unlock_irqrestore(&xhci->lock, flags); 3299 xhci_free_command(xhci, cfg_cmd); 3300 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3301 __func__, err); 3302 goto cleanup; 3303 } 3304 3305 xhci_ring_cmd_db(xhci); 3306 spin_unlock_irqrestore(&xhci->lock, flags); 3307 3308 wait_for_completion(stop_cmd->completion); 3309 3310 spin_lock_irqsave(&xhci->lock, flags); 3311 3312 /* config ep command clears toggle if add and drop ep flags are set */ 3313 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3314 if (!ctrl_ctx) { 3315 spin_unlock_irqrestore(&xhci->lock, flags); 3316 xhci_free_command(xhci, cfg_cmd); 3317 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3318 __func__); 3319 goto cleanup; 3320 } 3321 3322 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3323 ctrl_ctx, ep_flag, ep_flag); 3324 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3325 3326 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3327 udev->slot_id, false); 3328 if (err < 0) { 3329 spin_unlock_irqrestore(&xhci->lock, flags); 3330 xhci_free_command(xhci, cfg_cmd); 3331 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3332 __func__, err); 3333 goto cleanup; 3334 } 3335 3336 xhci_ring_cmd_db(xhci); 3337 spin_unlock_irqrestore(&xhci->lock, flags); 3338 3339 wait_for_completion(cfg_cmd->completion); 3340 3341 xhci_free_command(xhci, cfg_cmd); 3342 cleanup: 3343 xhci_free_command(xhci, stop_cmd); 3344 spin_lock_irqsave(&xhci->lock, flags); 3345 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3346 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3347 spin_unlock_irqrestore(&xhci->lock, flags); 3348 } 3349 3350 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3351 struct usb_device *udev, struct usb_host_endpoint *ep, 3352 unsigned int slot_id) 3353 { 3354 int ret; 3355 unsigned int ep_index; 3356 unsigned int ep_state; 3357 3358 if (!ep) 3359 return -EINVAL; 3360 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3361 if (ret <= 0) 3362 return ret ? ret : -EINVAL; 3363 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3364 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3365 " descriptor for ep 0x%x does not support streams\n", 3366 ep->desc.bEndpointAddress); 3367 return -EINVAL; 3368 } 3369 3370 ep_index = xhci_get_endpoint_index(&ep->desc); 3371 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3372 if (ep_state & EP_HAS_STREAMS || 3373 ep_state & EP_GETTING_STREAMS) { 3374 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3375 "already has streams set up.\n", 3376 ep->desc.bEndpointAddress); 3377 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3378 "dynamic stream context array reallocation.\n"); 3379 return -EINVAL; 3380 } 3381 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3382 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3383 "endpoint 0x%x; URBs are pending.\n", 3384 ep->desc.bEndpointAddress); 3385 return -EINVAL; 3386 } 3387 return 0; 3388 } 3389 3390 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3391 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3392 { 3393 unsigned int max_streams; 3394 3395 /* The stream context array size must be a power of two */ 3396 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3397 /* 3398 * Find out how many primary stream array entries the host controller 3399 * supports. Later we may use secondary stream arrays (similar to 2nd 3400 * level page entries), but that's an optional feature for xHCI host 3401 * controllers. xHCs must support at least 4 stream IDs. 3402 */ 3403 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3404 if (*num_stream_ctxs > max_streams) { 3405 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3406 max_streams); 3407 *num_stream_ctxs = max_streams; 3408 *num_streams = max_streams; 3409 } 3410 } 3411 3412 /* Returns an error code if one of the endpoint already has streams. 3413 * This does not change any data structures, it only checks and gathers 3414 * information. 3415 */ 3416 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3417 struct usb_device *udev, 3418 struct usb_host_endpoint **eps, unsigned int num_eps, 3419 unsigned int *num_streams, u32 *changed_ep_bitmask) 3420 { 3421 unsigned int max_streams; 3422 unsigned int endpoint_flag; 3423 int i; 3424 int ret; 3425 3426 for (i = 0; i < num_eps; i++) { 3427 ret = xhci_check_streams_endpoint(xhci, udev, 3428 eps[i], udev->slot_id); 3429 if (ret < 0) 3430 return ret; 3431 3432 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3433 if (max_streams < (*num_streams - 1)) { 3434 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3435 eps[i]->desc.bEndpointAddress, 3436 max_streams); 3437 *num_streams = max_streams+1; 3438 } 3439 3440 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3441 if (*changed_ep_bitmask & endpoint_flag) 3442 return -EINVAL; 3443 *changed_ep_bitmask |= endpoint_flag; 3444 } 3445 return 0; 3446 } 3447 3448 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3449 struct usb_device *udev, 3450 struct usb_host_endpoint **eps, unsigned int num_eps) 3451 { 3452 u32 changed_ep_bitmask = 0; 3453 unsigned int slot_id; 3454 unsigned int ep_index; 3455 unsigned int ep_state; 3456 int i; 3457 3458 slot_id = udev->slot_id; 3459 if (!xhci->devs[slot_id]) 3460 return 0; 3461 3462 for (i = 0; i < num_eps; i++) { 3463 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3464 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3465 /* Are streams already being freed for the endpoint? */ 3466 if (ep_state & EP_GETTING_NO_STREAMS) { 3467 xhci_warn(xhci, "WARN Can't disable streams for " 3468 "endpoint 0x%x, " 3469 "streams are being disabled already\n", 3470 eps[i]->desc.bEndpointAddress); 3471 return 0; 3472 } 3473 /* Are there actually any streams to free? */ 3474 if (!(ep_state & EP_HAS_STREAMS) && 3475 !(ep_state & EP_GETTING_STREAMS)) { 3476 xhci_warn(xhci, "WARN Can't disable streams for " 3477 "endpoint 0x%x, " 3478 "streams are already disabled!\n", 3479 eps[i]->desc.bEndpointAddress); 3480 xhci_warn(xhci, "WARN xhci_free_streams() called " 3481 "with non-streams endpoint\n"); 3482 return 0; 3483 } 3484 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3485 } 3486 return changed_ep_bitmask; 3487 } 3488 3489 /* 3490 * The USB device drivers use this function (through the HCD interface in USB 3491 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3492 * coordinate mass storage command queueing across multiple endpoints (basically 3493 * a stream ID == a task ID). 3494 * 3495 * Setting up streams involves allocating the same size stream context array 3496 * for each endpoint and issuing a configure endpoint command for all endpoints. 3497 * 3498 * Don't allow the call to succeed if one endpoint only supports one stream 3499 * (which means it doesn't support streams at all). 3500 * 3501 * Drivers may get less stream IDs than they asked for, if the host controller 3502 * hardware or endpoints claim they can't support the number of requested 3503 * stream IDs. 3504 */ 3505 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3506 struct usb_host_endpoint **eps, unsigned int num_eps, 3507 unsigned int num_streams, gfp_t mem_flags) 3508 { 3509 int i, ret; 3510 struct xhci_hcd *xhci; 3511 struct xhci_virt_device *vdev; 3512 struct xhci_command *config_cmd; 3513 struct xhci_input_control_ctx *ctrl_ctx; 3514 unsigned int ep_index; 3515 unsigned int num_stream_ctxs; 3516 unsigned int max_packet; 3517 unsigned long flags; 3518 u32 changed_ep_bitmask = 0; 3519 3520 if (!eps) 3521 return -EINVAL; 3522 3523 /* Add one to the number of streams requested to account for 3524 * stream 0 that is reserved for xHCI usage. 3525 */ 3526 num_streams += 1; 3527 xhci = hcd_to_xhci(hcd); 3528 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3529 num_streams); 3530 3531 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3532 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3533 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3534 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3535 return -ENOSYS; 3536 } 3537 3538 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3539 if (!config_cmd) 3540 return -ENOMEM; 3541 3542 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3543 if (!ctrl_ctx) { 3544 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3545 __func__); 3546 xhci_free_command(xhci, config_cmd); 3547 return -ENOMEM; 3548 } 3549 3550 /* Check to make sure all endpoints are not already configured for 3551 * streams. While we're at it, find the maximum number of streams that 3552 * all the endpoints will support and check for duplicate endpoints. 3553 */ 3554 spin_lock_irqsave(&xhci->lock, flags); 3555 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3556 num_eps, &num_streams, &changed_ep_bitmask); 3557 if (ret < 0) { 3558 xhci_free_command(xhci, config_cmd); 3559 spin_unlock_irqrestore(&xhci->lock, flags); 3560 return ret; 3561 } 3562 if (num_streams <= 1) { 3563 xhci_warn(xhci, "WARN: endpoints can't handle " 3564 "more than one stream.\n"); 3565 xhci_free_command(xhci, config_cmd); 3566 spin_unlock_irqrestore(&xhci->lock, flags); 3567 return -EINVAL; 3568 } 3569 vdev = xhci->devs[udev->slot_id]; 3570 /* Mark each endpoint as being in transition, so 3571 * xhci_urb_enqueue() will reject all URBs. 3572 */ 3573 for (i = 0; i < num_eps; i++) { 3574 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3575 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3576 } 3577 spin_unlock_irqrestore(&xhci->lock, flags); 3578 3579 /* Setup internal data structures and allocate HW data structures for 3580 * streams (but don't install the HW structures in the input context 3581 * until we're sure all memory allocation succeeded). 3582 */ 3583 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3584 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3585 num_stream_ctxs, num_streams); 3586 3587 for (i = 0; i < num_eps; i++) { 3588 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3589 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3590 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3591 num_stream_ctxs, 3592 num_streams, 3593 max_packet, mem_flags); 3594 if (!vdev->eps[ep_index].stream_info) 3595 goto cleanup; 3596 /* Set maxPstreams in endpoint context and update deq ptr to 3597 * point to stream context array. FIXME 3598 */ 3599 } 3600 3601 /* Set up the input context for a configure endpoint command. */ 3602 for (i = 0; i < num_eps; i++) { 3603 struct xhci_ep_ctx *ep_ctx; 3604 3605 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3606 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3607 3608 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3609 vdev->out_ctx, ep_index); 3610 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3611 vdev->eps[ep_index].stream_info); 3612 } 3613 /* Tell the HW to drop its old copy of the endpoint context info 3614 * and add the updated copy from the input context. 3615 */ 3616 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3617 vdev->out_ctx, ctrl_ctx, 3618 changed_ep_bitmask, changed_ep_bitmask); 3619 3620 /* Issue and wait for the configure endpoint command */ 3621 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3622 false, false); 3623 3624 /* xHC rejected the configure endpoint command for some reason, so we 3625 * leave the old ring intact and free our internal streams data 3626 * structure. 3627 */ 3628 if (ret < 0) 3629 goto cleanup; 3630 3631 spin_lock_irqsave(&xhci->lock, flags); 3632 for (i = 0; i < num_eps; i++) { 3633 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3634 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3635 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3636 udev->slot_id, ep_index); 3637 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3638 } 3639 xhci_free_command(xhci, config_cmd); 3640 spin_unlock_irqrestore(&xhci->lock, flags); 3641 3642 for (i = 0; i < num_eps; i++) { 3643 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3644 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3645 } 3646 /* Subtract 1 for stream 0, which drivers can't use */ 3647 return num_streams - 1; 3648 3649 cleanup: 3650 /* If it didn't work, free the streams! */ 3651 for (i = 0; i < num_eps; i++) { 3652 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3653 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3654 vdev->eps[ep_index].stream_info = NULL; 3655 /* FIXME Unset maxPstreams in endpoint context and 3656 * update deq ptr to point to normal string ring. 3657 */ 3658 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3659 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3660 xhci_endpoint_zero(xhci, vdev, eps[i]); 3661 } 3662 xhci_free_command(xhci, config_cmd); 3663 return -ENOMEM; 3664 } 3665 3666 /* Transition the endpoint from using streams to being a "normal" endpoint 3667 * without streams. 3668 * 3669 * Modify the endpoint context state, submit a configure endpoint command, 3670 * and free all endpoint rings for streams if that completes successfully. 3671 */ 3672 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3673 struct usb_host_endpoint **eps, unsigned int num_eps, 3674 gfp_t mem_flags) 3675 { 3676 int i, ret; 3677 struct xhci_hcd *xhci; 3678 struct xhci_virt_device *vdev; 3679 struct xhci_command *command; 3680 struct xhci_input_control_ctx *ctrl_ctx; 3681 unsigned int ep_index; 3682 unsigned long flags; 3683 u32 changed_ep_bitmask; 3684 3685 xhci = hcd_to_xhci(hcd); 3686 vdev = xhci->devs[udev->slot_id]; 3687 3688 /* Set up a configure endpoint command to remove the streams rings */ 3689 spin_lock_irqsave(&xhci->lock, flags); 3690 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3691 udev, eps, num_eps); 3692 if (changed_ep_bitmask == 0) { 3693 spin_unlock_irqrestore(&xhci->lock, flags); 3694 return -EINVAL; 3695 } 3696 3697 /* Use the xhci_command structure from the first endpoint. We may have 3698 * allocated too many, but the driver may call xhci_free_streams() for 3699 * each endpoint it grouped into one call to xhci_alloc_streams(). 3700 */ 3701 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3702 command = vdev->eps[ep_index].stream_info->free_streams_command; 3703 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3704 if (!ctrl_ctx) { 3705 spin_unlock_irqrestore(&xhci->lock, flags); 3706 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3707 __func__); 3708 return -EINVAL; 3709 } 3710 3711 for (i = 0; i < num_eps; i++) { 3712 struct xhci_ep_ctx *ep_ctx; 3713 3714 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3715 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3716 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3717 EP_GETTING_NO_STREAMS; 3718 3719 xhci_endpoint_copy(xhci, command->in_ctx, 3720 vdev->out_ctx, ep_index); 3721 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3722 &vdev->eps[ep_index]); 3723 } 3724 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3725 vdev->out_ctx, ctrl_ctx, 3726 changed_ep_bitmask, changed_ep_bitmask); 3727 spin_unlock_irqrestore(&xhci->lock, flags); 3728 3729 /* Issue and wait for the configure endpoint command, 3730 * which must succeed. 3731 */ 3732 ret = xhci_configure_endpoint(xhci, udev, command, 3733 false, true); 3734 3735 /* xHC rejected the configure endpoint command for some reason, so we 3736 * leave the streams rings intact. 3737 */ 3738 if (ret < 0) 3739 return ret; 3740 3741 spin_lock_irqsave(&xhci->lock, flags); 3742 for (i = 0; i < num_eps; i++) { 3743 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3744 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3745 vdev->eps[ep_index].stream_info = NULL; 3746 /* FIXME Unset maxPstreams in endpoint context and 3747 * update deq ptr to point to normal string ring. 3748 */ 3749 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3750 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3751 } 3752 spin_unlock_irqrestore(&xhci->lock, flags); 3753 3754 return 0; 3755 } 3756 3757 /* 3758 * Deletes endpoint resources for endpoints that were active before a Reset 3759 * Device command, or a Disable Slot command. The Reset Device command leaves 3760 * the control endpoint intact, whereas the Disable Slot command deletes it. 3761 * 3762 * Must be called with xhci->lock held. 3763 */ 3764 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3765 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3766 { 3767 int i; 3768 unsigned int num_dropped_eps = 0; 3769 unsigned int drop_flags = 0; 3770 3771 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3772 if (virt_dev->eps[i].ring) { 3773 drop_flags |= 1 << i; 3774 num_dropped_eps++; 3775 } 3776 } 3777 xhci->num_active_eps -= num_dropped_eps; 3778 if (num_dropped_eps) 3779 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3780 "Dropped %u ep ctxs, flags = 0x%x, " 3781 "%u now active.", 3782 num_dropped_eps, drop_flags, 3783 xhci->num_active_eps); 3784 } 3785 3786 /* 3787 * This submits a Reset Device Command, which will set the device state to 0, 3788 * set the device address to 0, and disable all the endpoints except the default 3789 * control endpoint. The USB core should come back and call 3790 * xhci_address_device(), and then re-set up the configuration. If this is 3791 * called because of a usb_reset_and_verify_device(), then the old alternate 3792 * settings will be re-installed through the normal bandwidth allocation 3793 * functions. 3794 * 3795 * Wait for the Reset Device command to finish. Remove all structures 3796 * associated with the endpoints that were disabled. Clear the input device 3797 * structure? Reset the control endpoint 0 max packet size? 3798 * 3799 * If the virt_dev to be reset does not exist or does not match the udev, 3800 * it means the device is lost, possibly due to the xHC restore error and 3801 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3802 * re-allocate the device. 3803 */ 3804 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3805 struct usb_device *udev) 3806 { 3807 int ret, i; 3808 unsigned long flags; 3809 struct xhci_hcd *xhci; 3810 unsigned int slot_id; 3811 struct xhci_virt_device *virt_dev; 3812 struct xhci_command *reset_device_cmd; 3813 struct xhci_slot_ctx *slot_ctx; 3814 int old_active_eps = 0; 3815 3816 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3817 if (ret <= 0) 3818 return ret; 3819 xhci = hcd_to_xhci(hcd); 3820 slot_id = udev->slot_id; 3821 virt_dev = xhci->devs[slot_id]; 3822 if (!virt_dev) { 3823 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3824 "not exist. Re-allocate the device\n", slot_id); 3825 ret = xhci_alloc_dev(hcd, udev); 3826 if (ret == 1) 3827 return 0; 3828 else 3829 return -EINVAL; 3830 } 3831 3832 if (virt_dev->tt_info) 3833 old_active_eps = virt_dev->tt_info->active_eps; 3834 3835 if (virt_dev->udev != udev) { 3836 /* If the virt_dev and the udev does not match, this virt_dev 3837 * may belong to another udev. 3838 * Re-allocate the device. 3839 */ 3840 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3841 "not match the udev. Re-allocate the device\n", 3842 slot_id); 3843 ret = xhci_alloc_dev(hcd, udev); 3844 if (ret == 1) 3845 return 0; 3846 else 3847 return -EINVAL; 3848 } 3849 3850 /* If device is not setup, there is no point in resetting it */ 3851 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3852 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3853 SLOT_STATE_DISABLED) 3854 return 0; 3855 3856 trace_xhci_discover_or_reset_device(slot_ctx); 3857 3858 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3859 /* Allocate the command structure that holds the struct completion. 3860 * Assume we're in process context, since the normal device reset 3861 * process has to wait for the device anyway. Storage devices are 3862 * reset as part of error handling, so use GFP_NOIO instead of 3863 * GFP_KERNEL. 3864 */ 3865 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3866 if (!reset_device_cmd) { 3867 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3868 return -ENOMEM; 3869 } 3870 3871 /* Attempt to submit the Reset Device command to the command ring */ 3872 spin_lock_irqsave(&xhci->lock, flags); 3873 3874 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3875 if (ret) { 3876 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3877 spin_unlock_irqrestore(&xhci->lock, flags); 3878 goto command_cleanup; 3879 } 3880 xhci_ring_cmd_db(xhci); 3881 spin_unlock_irqrestore(&xhci->lock, flags); 3882 3883 /* Wait for the Reset Device command to finish */ 3884 wait_for_completion(reset_device_cmd->completion); 3885 3886 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3887 * unless we tried to reset a slot ID that wasn't enabled, 3888 * or the device wasn't in the addressed or configured state. 3889 */ 3890 ret = reset_device_cmd->status; 3891 switch (ret) { 3892 case COMP_COMMAND_ABORTED: 3893 case COMP_COMMAND_RING_STOPPED: 3894 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3895 ret = -ETIME; 3896 goto command_cleanup; 3897 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3898 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3899 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3900 slot_id, 3901 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3902 xhci_dbg(xhci, "Not freeing device rings.\n"); 3903 /* Don't treat this as an error. May change my mind later. */ 3904 ret = 0; 3905 goto command_cleanup; 3906 case COMP_SUCCESS: 3907 xhci_dbg(xhci, "Successful reset device command.\n"); 3908 break; 3909 default: 3910 if (xhci_is_vendor_info_code(xhci, ret)) 3911 break; 3912 xhci_warn(xhci, "Unknown completion code %u for " 3913 "reset device command.\n", ret); 3914 ret = -EINVAL; 3915 goto command_cleanup; 3916 } 3917 3918 /* Free up host controller endpoint resources */ 3919 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3920 spin_lock_irqsave(&xhci->lock, flags); 3921 /* Don't delete the default control endpoint resources */ 3922 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3923 spin_unlock_irqrestore(&xhci->lock, flags); 3924 } 3925 3926 /* Everything but endpoint 0 is disabled, so free the rings. */ 3927 for (i = 1; i < 31; i++) { 3928 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3929 3930 if (ep->ep_state & EP_HAS_STREAMS) { 3931 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3932 xhci_get_endpoint_address(i)); 3933 xhci_free_stream_info(xhci, ep->stream_info); 3934 ep->stream_info = NULL; 3935 ep->ep_state &= ~EP_HAS_STREAMS; 3936 } 3937 3938 if (ep->ring) { 3939 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3940 xhci_free_endpoint_ring(xhci, virt_dev, i); 3941 } 3942 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3943 xhci_drop_ep_from_interval_table(xhci, 3944 &virt_dev->eps[i].bw_info, 3945 virt_dev->bw_table, 3946 udev, 3947 &virt_dev->eps[i], 3948 virt_dev->tt_info); 3949 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3950 } 3951 /* If necessary, update the number of active TTs on this root port */ 3952 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3953 virt_dev->flags = 0; 3954 ret = 0; 3955 3956 command_cleanup: 3957 xhci_free_command(xhci, reset_device_cmd); 3958 return ret; 3959 } 3960 3961 /* 3962 * At this point, the struct usb_device is about to go away, the device has 3963 * disconnected, and all traffic has been stopped and the endpoints have been 3964 * disabled. Free any HC data structures associated with that device. 3965 */ 3966 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3967 { 3968 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3969 struct xhci_virt_device *virt_dev; 3970 struct xhci_slot_ctx *slot_ctx; 3971 int i, ret; 3972 3973 /* 3974 * We called pm_runtime_get_noresume when the device was attached. 3975 * Decrement the counter here to allow controller to runtime suspend 3976 * if no devices remain. 3977 */ 3978 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3979 pm_runtime_put_noidle(hcd->self.controller); 3980 3981 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3982 /* If the host is halted due to driver unload, we still need to free the 3983 * device. 3984 */ 3985 if (ret <= 0 && ret != -ENODEV) 3986 return; 3987 3988 virt_dev = xhci->devs[udev->slot_id]; 3989 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3990 trace_xhci_free_dev(slot_ctx); 3991 3992 /* Stop any wayward timer functions (which may grab the lock) */ 3993 for (i = 0; i < 31; i++) 3994 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3995 virt_dev->udev = NULL; 3996 xhci_disable_slot(xhci, udev->slot_id); 3997 xhci_free_virt_device(xhci, udev->slot_id); 3998 } 3999 4000 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 4001 { 4002 struct xhci_command *command; 4003 unsigned long flags; 4004 u32 state; 4005 int ret; 4006 4007 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4008 if (!command) 4009 return -ENOMEM; 4010 4011 xhci_debugfs_remove_slot(xhci, slot_id); 4012 4013 spin_lock_irqsave(&xhci->lock, flags); 4014 /* Don't disable the slot if the host controller is dead. */ 4015 state = readl(&xhci->op_regs->status); 4016 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 4017 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4018 spin_unlock_irqrestore(&xhci->lock, flags); 4019 kfree(command); 4020 return -ENODEV; 4021 } 4022 4023 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 4024 slot_id); 4025 if (ret) { 4026 spin_unlock_irqrestore(&xhci->lock, flags); 4027 kfree(command); 4028 return ret; 4029 } 4030 xhci_ring_cmd_db(xhci); 4031 spin_unlock_irqrestore(&xhci->lock, flags); 4032 4033 wait_for_completion(command->completion); 4034 4035 if (command->status != COMP_SUCCESS) 4036 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4037 slot_id, command->status); 4038 4039 xhci_free_command(xhci, command); 4040 4041 return 0; 4042 } 4043 4044 /* 4045 * Checks if we have enough host controller resources for the default control 4046 * endpoint. 4047 * 4048 * Must be called with xhci->lock held. 4049 */ 4050 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4051 { 4052 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4053 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4054 "Not enough ep ctxs: " 4055 "%u active, need to add 1, limit is %u.", 4056 xhci->num_active_eps, xhci->limit_active_eps); 4057 return -ENOMEM; 4058 } 4059 xhci->num_active_eps += 1; 4060 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4061 "Adding 1 ep ctx, %u now active.", 4062 xhci->num_active_eps); 4063 return 0; 4064 } 4065 4066 4067 /* 4068 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4069 * timed out, or allocating memory failed. Returns 1 on success. 4070 */ 4071 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4072 { 4073 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4074 struct xhci_virt_device *vdev; 4075 struct xhci_slot_ctx *slot_ctx; 4076 unsigned long flags; 4077 int ret, slot_id; 4078 struct xhci_command *command; 4079 4080 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4081 if (!command) 4082 return 0; 4083 4084 spin_lock_irqsave(&xhci->lock, flags); 4085 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4086 if (ret) { 4087 spin_unlock_irqrestore(&xhci->lock, flags); 4088 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4089 xhci_free_command(xhci, command); 4090 return 0; 4091 } 4092 xhci_ring_cmd_db(xhci); 4093 spin_unlock_irqrestore(&xhci->lock, flags); 4094 4095 wait_for_completion(command->completion); 4096 slot_id = command->slot_id; 4097 4098 if (!slot_id || command->status != COMP_SUCCESS) { 4099 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 4100 xhci_trb_comp_code_string(command->status)); 4101 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4102 HCS_MAX_SLOTS( 4103 readl(&xhci->cap_regs->hcs_params1))); 4104 xhci_free_command(xhci, command); 4105 return 0; 4106 } 4107 4108 xhci_free_command(xhci, command); 4109 4110 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4111 spin_lock_irqsave(&xhci->lock, flags); 4112 ret = xhci_reserve_host_control_ep_resources(xhci); 4113 if (ret) { 4114 spin_unlock_irqrestore(&xhci->lock, flags); 4115 xhci_warn(xhci, "Not enough host resources, " 4116 "active endpoint contexts = %u\n", 4117 xhci->num_active_eps); 4118 goto disable_slot; 4119 } 4120 spin_unlock_irqrestore(&xhci->lock, flags); 4121 } 4122 /* Use GFP_NOIO, since this function can be called from 4123 * xhci_discover_or_reset_device(), which may be called as part of 4124 * mass storage driver error handling. 4125 */ 4126 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4127 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4128 goto disable_slot; 4129 } 4130 vdev = xhci->devs[slot_id]; 4131 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4132 trace_xhci_alloc_dev(slot_ctx); 4133 4134 udev->slot_id = slot_id; 4135 4136 xhci_debugfs_create_slot(xhci, slot_id); 4137 4138 /* 4139 * If resetting upon resume, we can't put the controller into runtime 4140 * suspend if there is a device attached. 4141 */ 4142 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4143 pm_runtime_get_noresume(hcd->self.controller); 4144 4145 /* Is this a LS or FS device under a HS hub? */ 4146 /* Hub or peripherial? */ 4147 return 1; 4148 4149 disable_slot: 4150 xhci_disable_slot(xhci, udev->slot_id); 4151 xhci_free_virt_device(xhci, udev->slot_id); 4152 4153 return 0; 4154 } 4155 4156 /* 4157 * Issue an Address Device command and optionally send a corresponding 4158 * SetAddress request to the device. 4159 */ 4160 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4161 enum xhci_setup_dev setup) 4162 { 4163 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4164 unsigned long flags; 4165 struct xhci_virt_device *virt_dev; 4166 int ret = 0; 4167 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4168 struct xhci_slot_ctx *slot_ctx; 4169 struct xhci_input_control_ctx *ctrl_ctx; 4170 u64 temp_64; 4171 struct xhci_command *command = NULL; 4172 4173 mutex_lock(&xhci->mutex); 4174 4175 if (xhci->xhc_state) { /* dying, removing or halted */ 4176 ret = -ESHUTDOWN; 4177 goto out; 4178 } 4179 4180 if (!udev->slot_id) { 4181 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4182 "Bad Slot ID %d", udev->slot_id); 4183 ret = -EINVAL; 4184 goto out; 4185 } 4186 4187 virt_dev = xhci->devs[udev->slot_id]; 4188 4189 if (WARN_ON(!virt_dev)) { 4190 /* 4191 * In plug/unplug torture test with an NEC controller, 4192 * a zero-dereference was observed once due to virt_dev = 0. 4193 * Print useful debug rather than crash if it is observed again! 4194 */ 4195 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4196 udev->slot_id); 4197 ret = -EINVAL; 4198 goto out; 4199 } 4200 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4201 trace_xhci_setup_device_slot(slot_ctx); 4202 4203 if (setup == SETUP_CONTEXT_ONLY) { 4204 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4205 SLOT_STATE_DEFAULT) { 4206 xhci_dbg(xhci, "Slot already in default state\n"); 4207 goto out; 4208 } 4209 } 4210 4211 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4212 if (!command) { 4213 ret = -ENOMEM; 4214 goto out; 4215 } 4216 4217 command->in_ctx = virt_dev->in_ctx; 4218 4219 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4220 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4221 if (!ctrl_ctx) { 4222 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4223 __func__); 4224 ret = -EINVAL; 4225 goto out; 4226 } 4227 /* 4228 * If this is the first Set Address since device plug-in or 4229 * virt_device realloaction after a resume with an xHCI power loss, 4230 * then set up the slot context. 4231 */ 4232 if (!slot_ctx->dev_info) 4233 xhci_setup_addressable_virt_dev(xhci, udev); 4234 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4235 else 4236 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4237 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4238 ctrl_ctx->drop_flags = 0; 4239 4240 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4241 le32_to_cpu(slot_ctx->dev_info) >> 27); 4242 4243 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4244 spin_lock_irqsave(&xhci->lock, flags); 4245 trace_xhci_setup_device(virt_dev); 4246 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4247 udev->slot_id, setup); 4248 if (ret) { 4249 spin_unlock_irqrestore(&xhci->lock, flags); 4250 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4251 "FIXME: allocate a command ring segment"); 4252 goto out; 4253 } 4254 xhci_ring_cmd_db(xhci); 4255 spin_unlock_irqrestore(&xhci->lock, flags); 4256 4257 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4258 wait_for_completion(command->completion); 4259 4260 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4261 * the SetAddress() "recovery interval" required by USB and aborting the 4262 * command on a timeout. 4263 */ 4264 switch (command->status) { 4265 case COMP_COMMAND_ABORTED: 4266 case COMP_COMMAND_RING_STOPPED: 4267 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4268 ret = -ETIME; 4269 break; 4270 case COMP_CONTEXT_STATE_ERROR: 4271 case COMP_SLOT_NOT_ENABLED_ERROR: 4272 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4273 act, udev->slot_id); 4274 ret = -EINVAL; 4275 break; 4276 case COMP_USB_TRANSACTION_ERROR: 4277 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4278 4279 mutex_unlock(&xhci->mutex); 4280 ret = xhci_disable_slot(xhci, udev->slot_id); 4281 xhci_free_virt_device(xhci, udev->slot_id); 4282 if (!ret) 4283 xhci_alloc_dev(hcd, udev); 4284 kfree(command->completion); 4285 kfree(command); 4286 return -EPROTO; 4287 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4288 dev_warn(&udev->dev, 4289 "ERROR: Incompatible device for setup %s command\n", act); 4290 ret = -ENODEV; 4291 break; 4292 case COMP_SUCCESS: 4293 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4294 "Successful setup %s command", act); 4295 break; 4296 default: 4297 xhci_err(xhci, 4298 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4299 act, command->status); 4300 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4301 ret = -EINVAL; 4302 break; 4303 } 4304 if (ret) 4305 goto out; 4306 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4307 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4308 "Op regs DCBAA ptr = %#016llx", temp_64); 4309 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4310 "Slot ID %d dcbaa entry @%p = %#016llx", 4311 udev->slot_id, 4312 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4313 (unsigned long long) 4314 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4315 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4316 "Output Context DMA address = %#08llx", 4317 (unsigned long long)virt_dev->out_ctx->dma); 4318 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4319 le32_to_cpu(slot_ctx->dev_info) >> 27); 4320 /* 4321 * USB core uses address 1 for the roothubs, so we add one to the 4322 * address given back to us by the HC. 4323 */ 4324 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4325 le32_to_cpu(slot_ctx->dev_info) >> 27); 4326 /* Zero the input context control for later use */ 4327 ctrl_ctx->add_flags = 0; 4328 ctrl_ctx->drop_flags = 0; 4329 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4330 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4331 4332 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4333 "Internal device address = %d", 4334 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4335 out: 4336 mutex_unlock(&xhci->mutex); 4337 if (command) { 4338 kfree(command->completion); 4339 kfree(command); 4340 } 4341 return ret; 4342 } 4343 4344 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4345 { 4346 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4347 } 4348 4349 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4350 { 4351 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4352 } 4353 4354 /* 4355 * Transfer the port index into real index in the HW port status 4356 * registers. Caculate offset between the port's PORTSC register 4357 * and port status base. Divide the number of per port register 4358 * to get the real index. The raw port number bases 1. 4359 */ 4360 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4361 { 4362 struct xhci_hub *rhub; 4363 4364 rhub = xhci_get_rhub(hcd); 4365 return rhub->ports[port1 - 1]->hw_portnum + 1; 4366 } 4367 4368 /* 4369 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4370 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4371 */ 4372 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4373 struct usb_device *udev, u16 max_exit_latency) 4374 { 4375 struct xhci_virt_device *virt_dev; 4376 struct xhci_command *command; 4377 struct xhci_input_control_ctx *ctrl_ctx; 4378 struct xhci_slot_ctx *slot_ctx; 4379 unsigned long flags; 4380 int ret; 4381 4382 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4383 if (!command) 4384 return -ENOMEM; 4385 4386 spin_lock_irqsave(&xhci->lock, flags); 4387 4388 virt_dev = xhci->devs[udev->slot_id]; 4389 4390 /* 4391 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4392 * xHC was re-initialized. Exit latency will be set later after 4393 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4394 */ 4395 4396 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4397 spin_unlock_irqrestore(&xhci->lock, flags); 4398 return 0; 4399 } 4400 4401 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4402 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4403 if (!ctrl_ctx) { 4404 spin_unlock_irqrestore(&xhci->lock, flags); 4405 xhci_free_command(xhci, command); 4406 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4407 __func__); 4408 return -ENOMEM; 4409 } 4410 4411 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4412 spin_unlock_irqrestore(&xhci->lock, flags); 4413 4414 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4415 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4416 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4417 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4418 slot_ctx->dev_state = 0; 4419 4420 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4421 "Set up evaluate context for LPM MEL change."); 4422 4423 /* Issue and wait for the evaluate context command. */ 4424 ret = xhci_configure_endpoint(xhci, udev, command, 4425 true, true); 4426 4427 if (!ret) { 4428 spin_lock_irqsave(&xhci->lock, flags); 4429 virt_dev->current_mel = max_exit_latency; 4430 spin_unlock_irqrestore(&xhci->lock, flags); 4431 } 4432 4433 xhci_free_command(xhci, command); 4434 4435 return ret; 4436 } 4437 4438 #ifdef CONFIG_PM 4439 4440 /* BESL to HIRD Encoding array for USB2 LPM */ 4441 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4442 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4443 4444 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4445 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4446 struct usb_device *udev) 4447 { 4448 int u2del, besl, besl_host; 4449 int besl_device = 0; 4450 u32 field; 4451 4452 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4453 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4454 4455 if (field & USB_BESL_SUPPORT) { 4456 for (besl_host = 0; besl_host < 16; besl_host++) { 4457 if (xhci_besl_encoding[besl_host] >= u2del) 4458 break; 4459 } 4460 /* Use baseline BESL value as default */ 4461 if (field & USB_BESL_BASELINE_VALID) 4462 besl_device = USB_GET_BESL_BASELINE(field); 4463 else if (field & USB_BESL_DEEP_VALID) 4464 besl_device = USB_GET_BESL_DEEP(field); 4465 } else { 4466 if (u2del <= 50) 4467 besl_host = 0; 4468 else 4469 besl_host = (u2del - 51) / 75 + 1; 4470 } 4471 4472 besl = besl_host + besl_device; 4473 if (besl > 15) 4474 besl = 15; 4475 4476 return besl; 4477 } 4478 4479 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4480 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4481 { 4482 u32 field; 4483 int l1; 4484 int besld = 0; 4485 int hirdm = 0; 4486 4487 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4488 4489 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4490 l1 = udev->l1_params.timeout / 256; 4491 4492 /* device has preferred BESLD */ 4493 if (field & USB_BESL_DEEP_VALID) { 4494 besld = USB_GET_BESL_DEEP(field); 4495 hirdm = 1; 4496 } 4497 4498 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4499 } 4500 4501 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4502 struct usb_device *udev, int enable) 4503 { 4504 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4505 struct xhci_port **ports; 4506 __le32 __iomem *pm_addr, *hlpm_addr; 4507 u32 pm_val, hlpm_val, field; 4508 unsigned int port_num; 4509 unsigned long flags; 4510 int hird, exit_latency; 4511 int ret; 4512 4513 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4514 return -EPERM; 4515 4516 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4517 !udev->lpm_capable) 4518 return -EPERM; 4519 4520 if (!udev->parent || udev->parent->parent || 4521 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4522 return -EPERM; 4523 4524 if (udev->usb2_hw_lpm_capable != 1) 4525 return -EPERM; 4526 4527 spin_lock_irqsave(&xhci->lock, flags); 4528 4529 ports = xhci->usb2_rhub.ports; 4530 port_num = udev->portnum - 1; 4531 pm_addr = ports[port_num]->addr + PORTPMSC; 4532 pm_val = readl(pm_addr); 4533 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4534 4535 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4536 enable ? "enable" : "disable", port_num + 1); 4537 4538 if (enable) { 4539 /* Host supports BESL timeout instead of HIRD */ 4540 if (udev->usb2_hw_lpm_besl_capable) { 4541 /* if device doesn't have a preferred BESL value use a 4542 * default one which works with mixed HIRD and BESL 4543 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4544 */ 4545 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4546 if ((field & USB_BESL_SUPPORT) && 4547 (field & USB_BESL_BASELINE_VALID)) 4548 hird = USB_GET_BESL_BASELINE(field); 4549 else 4550 hird = udev->l1_params.besl; 4551 4552 exit_latency = xhci_besl_encoding[hird]; 4553 spin_unlock_irqrestore(&xhci->lock, flags); 4554 4555 ret = xhci_change_max_exit_latency(xhci, udev, 4556 exit_latency); 4557 if (ret < 0) 4558 return ret; 4559 spin_lock_irqsave(&xhci->lock, flags); 4560 4561 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4562 writel(hlpm_val, hlpm_addr); 4563 /* flush write */ 4564 readl(hlpm_addr); 4565 } else { 4566 hird = xhci_calculate_hird_besl(xhci, udev); 4567 } 4568 4569 pm_val &= ~PORT_HIRD_MASK; 4570 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4571 writel(pm_val, pm_addr); 4572 pm_val = readl(pm_addr); 4573 pm_val |= PORT_HLE; 4574 writel(pm_val, pm_addr); 4575 /* flush write */ 4576 readl(pm_addr); 4577 } else { 4578 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4579 writel(pm_val, pm_addr); 4580 /* flush write */ 4581 readl(pm_addr); 4582 if (udev->usb2_hw_lpm_besl_capable) { 4583 spin_unlock_irqrestore(&xhci->lock, flags); 4584 xhci_change_max_exit_latency(xhci, udev, 0); 4585 readl_poll_timeout(ports[port_num]->addr, pm_val, 4586 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4587 100, 10000); 4588 return 0; 4589 } 4590 } 4591 4592 spin_unlock_irqrestore(&xhci->lock, flags); 4593 return 0; 4594 } 4595 4596 /* check if a usb2 port supports a given extened capability protocol 4597 * only USB2 ports extended protocol capability values are cached. 4598 * Return 1 if capability is supported 4599 */ 4600 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4601 unsigned capability) 4602 { 4603 u32 port_offset, port_count; 4604 int i; 4605 4606 for (i = 0; i < xhci->num_ext_caps; i++) { 4607 if (xhci->ext_caps[i] & capability) { 4608 /* port offsets starts at 1 */ 4609 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4610 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4611 if (port >= port_offset && 4612 port < port_offset + port_count) 4613 return 1; 4614 } 4615 } 4616 return 0; 4617 } 4618 4619 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4620 { 4621 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4622 int portnum = udev->portnum - 1; 4623 4624 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4625 return 0; 4626 4627 /* we only support lpm for non-hub device connected to root hub yet */ 4628 if (!udev->parent || udev->parent->parent || 4629 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4630 return 0; 4631 4632 if (xhci->hw_lpm_support == 1 && 4633 xhci_check_usb2_port_capability( 4634 xhci, portnum, XHCI_HLC)) { 4635 udev->usb2_hw_lpm_capable = 1; 4636 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4637 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4638 if (xhci_check_usb2_port_capability(xhci, portnum, 4639 XHCI_BLC)) 4640 udev->usb2_hw_lpm_besl_capable = 1; 4641 } 4642 4643 return 0; 4644 } 4645 4646 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4647 4648 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4649 static unsigned long long xhci_service_interval_to_ns( 4650 struct usb_endpoint_descriptor *desc) 4651 { 4652 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4653 } 4654 4655 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4656 enum usb3_link_state state) 4657 { 4658 unsigned long long sel; 4659 unsigned long long pel; 4660 unsigned int max_sel_pel; 4661 char *state_name; 4662 4663 switch (state) { 4664 case USB3_LPM_U1: 4665 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4666 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4667 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4668 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4669 state_name = "U1"; 4670 break; 4671 case USB3_LPM_U2: 4672 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4673 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4674 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4675 state_name = "U2"; 4676 break; 4677 default: 4678 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4679 __func__); 4680 return USB3_LPM_DISABLED; 4681 } 4682 4683 if (sel <= max_sel_pel && pel <= max_sel_pel) 4684 return USB3_LPM_DEVICE_INITIATED; 4685 4686 if (sel > max_sel_pel) 4687 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4688 "due to long SEL %llu ms\n", 4689 state_name, sel); 4690 else 4691 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4692 "due to long PEL %llu ms\n", 4693 state_name, pel); 4694 return USB3_LPM_DISABLED; 4695 } 4696 4697 /* The U1 timeout should be the maximum of the following values: 4698 * - For control endpoints, U1 system exit latency (SEL) * 3 4699 * - For bulk endpoints, U1 SEL * 5 4700 * - For interrupt endpoints: 4701 * - Notification EPs, U1 SEL * 3 4702 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4703 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4704 */ 4705 static unsigned long long xhci_calculate_intel_u1_timeout( 4706 struct usb_device *udev, 4707 struct usb_endpoint_descriptor *desc) 4708 { 4709 unsigned long long timeout_ns; 4710 int ep_type; 4711 int intr_type; 4712 4713 ep_type = usb_endpoint_type(desc); 4714 switch (ep_type) { 4715 case USB_ENDPOINT_XFER_CONTROL: 4716 timeout_ns = udev->u1_params.sel * 3; 4717 break; 4718 case USB_ENDPOINT_XFER_BULK: 4719 timeout_ns = udev->u1_params.sel * 5; 4720 break; 4721 case USB_ENDPOINT_XFER_INT: 4722 intr_type = usb_endpoint_interrupt_type(desc); 4723 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4724 timeout_ns = udev->u1_params.sel * 3; 4725 break; 4726 } 4727 /* Otherwise the calculation is the same as isoc eps */ 4728 fallthrough; 4729 case USB_ENDPOINT_XFER_ISOC: 4730 timeout_ns = xhci_service_interval_to_ns(desc); 4731 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4732 if (timeout_ns < udev->u1_params.sel * 2) 4733 timeout_ns = udev->u1_params.sel * 2; 4734 break; 4735 default: 4736 return 0; 4737 } 4738 4739 return timeout_ns; 4740 } 4741 4742 /* Returns the hub-encoded U1 timeout value. */ 4743 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4744 struct usb_device *udev, 4745 struct usb_endpoint_descriptor *desc) 4746 { 4747 unsigned long long timeout_ns; 4748 4749 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4750 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4751 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4752 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4753 return USB3_LPM_DISABLED; 4754 } 4755 } 4756 4757 if (xhci->quirks & XHCI_INTEL_HOST) 4758 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4759 else 4760 timeout_ns = udev->u1_params.sel; 4761 4762 /* The U1 timeout is encoded in 1us intervals. 4763 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4764 */ 4765 if (timeout_ns == USB3_LPM_DISABLED) 4766 timeout_ns = 1; 4767 else 4768 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4769 4770 /* If the necessary timeout value is bigger than what we can set in the 4771 * USB 3.0 hub, we have to disable hub-initiated U1. 4772 */ 4773 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4774 return timeout_ns; 4775 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4776 "due to long timeout %llu ms\n", timeout_ns); 4777 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4778 } 4779 4780 /* The U2 timeout should be the maximum of: 4781 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4782 * - largest bInterval of any active periodic endpoint (to avoid going 4783 * into lower power link states between intervals). 4784 * - the U2 Exit Latency of the device 4785 */ 4786 static unsigned long long xhci_calculate_intel_u2_timeout( 4787 struct usb_device *udev, 4788 struct usb_endpoint_descriptor *desc) 4789 { 4790 unsigned long long timeout_ns; 4791 unsigned long long u2_del_ns; 4792 4793 timeout_ns = 10 * 1000 * 1000; 4794 4795 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4796 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4797 timeout_ns = xhci_service_interval_to_ns(desc); 4798 4799 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4800 if (u2_del_ns > timeout_ns) 4801 timeout_ns = u2_del_ns; 4802 4803 return timeout_ns; 4804 } 4805 4806 /* Returns the hub-encoded U2 timeout value. */ 4807 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4808 struct usb_device *udev, 4809 struct usb_endpoint_descriptor *desc) 4810 { 4811 unsigned long long timeout_ns; 4812 4813 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4814 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4815 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4816 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4817 return USB3_LPM_DISABLED; 4818 } 4819 } 4820 4821 if (xhci->quirks & XHCI_INTEL_HOST) 4822 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4823 else 4824 timeout_ns = udev->u2_params.sel; 4825 4826 /* The U2 timeout is encoded in 256us intervals */ 4827 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4828 /* If the necessary timeout value is bigger than what we can set in the 4829 * USB 3.0 hub, we have to disable hub-initiated U2. 4830 */ 4831 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4832 return timeout_ns; 4833 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4834 "due to long timeout %llu ms\n", timeout_ns); 4835 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4836 } 4837 4838 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4839 struct usb_device *udev, 4840 struct usb_endpoint_descriptor *desc, 4841 enum usb3_link_state state, 4842 u16 *timeout) 4843 { 4844 if (state == USB3_LPM_U1) 4845 return xhci_calculate_u1_timeout(xhci, udev, desc); 4846 else if (state == USB3_LPM_U2) 4847 return xhci_calculate_u2_timeout(xhci, udev, desc); 4848 4849 return USB3_LPM_DISABLED; 4850 } 4851 4852 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4853 struct usb_device *udev, 4854 struct usb_endpoint_descriptor *desc, 4855 enum usb3_link_state state, 4856 u16 *timeout) 4857 { 4858 u16 alt_timeout; 4859 4860 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4861 desc, state, timeout); 4862 4863 /* If we found we can't enable hub-initiated LPM, and 4864 * the U1 or U2 exit latency was too high to allow 4865 * device-initiated LPM as well, then we will disable LPM 4866 * for this device, so stop searching any further. 4867 */ 4868 if (alt_timeout == USB3_LPM_DISABLED) { 4869 *timeout = alt_timeout; 4870 return -E2BIG; 4871 } 4872 if (alt_timeout > *timeout) 4873 *timeout = alt_timeout; 4874 return 0; 4875 } 4876 4877 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4878 struct usb_device *udev, 4879 struct usb_host_interface *alt, 4880 enum usb3_link_state state, 4881 u16 *timeout) 4882 { 4883 int j; 4884 4885 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4886 if (xhci_update_timeout_for_endpoint(xhci, udev, 4887 &alt->endpoint[j].desc, state, timeout)) 4888 return -E2BIG; 4889 } 4890 return 0; 4891 } 4892 4893 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4894 enum usb3_link_state state) 4895 { 4896 struct usb_device *parent; 4897 unsigned int num_hubs; 4898 4899 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4900 for (parent = udev->parent, num_hubs = 0; parent->parent; 4901 parent = parent->parent) 4902 num_hubs++; 4903 4904 if (num_hubs < 2) 4905 return 0; 4906 4907 dev_dbg(&udev->dev, "Disabling U1/U2 link state for device" 4908 " below second-tier hub.\n"); 4909 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4910 "to decrease power consumption.\n"); 4911 return -E2BIG; 4912 } 4913 4914 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4915 struct usb_device *udev, 4916 enum usb3_link_state state) 4917 { 4918 if (xhci->quirks & XHCI_INTEL_HOST) 4919 return xhci_check_intel_tier_policy(udev, state); 4920 else 4921 return 0; 4922 } 4923 4924 /* Returns the U1 or U2 timeout that should be enabled. 4925 * If the tier check or timeout setting functions return with a non-zero exit 4926 * code, that means the timeout value has been finalized and we shouldn't look 4927 * at any more endpoints. 4928 */ 4929 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4930 struct usb_device *udev, enum usb3_link_state state) 4931 { 4932 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4933 struct usb_host_config *config; 4934 char *state_name; 4935 int i; 4936 u16 timeout = USB3_LPM_DISABLED; 4937 4938 if (state == USB3_LPM_U1) 4939 state_name = "U1"; 4940 else if (state == USB3_LPM_U2) 4941 state_name = "U2"; 4942 else { 4943 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4944 state); 4945 return timeout; 4946 } 4947 4948 /* Gather some information about the currently installed configuration 4949 * and alternate interface settings. 4950 */ 4951 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4952 state, &timeout)) 4953 return timeout; 4954 4955 config = udev->actconfig; 4956 if (!config) 4957 return timeout; 4958 4959 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4960 struct usb_driver *driver; 4961 struct usb_interface *intf = config->interface[i]; 4962 4963 if (!intf) 4964 continue; 4965 4966 /* Check if any currently bound drivers want hub-initiated LPM 4967 * disabled. 4968 */ 4969 if (intf->dev.driver) { 4970 driver = to_usb_driver(intf->dev.driver); 4971 if (driver && driver->disable_hub_initiated_lpm) { 4972 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4973 state_name, driver->name); 4974 timeout = xhci_get_timeout_no_hub_lpm(udev, 4975 state); 4976 if (timeout == USB3_LPM_DISABLED) 4977 return timeout; 4978 } 4979 } 4980 4981 /* Not sure how this could happen... */ 4982 if (!intf->cur_altsetting) 4983 continue; 4984 4985 if (xhci_update_timeout_for_interface(xhci, udev, 4986 intf->cur_altsetting, 4987 state, &timeout)) 4988 return timeout; 4989 } 4990 return timeout; 4991 } 4992 4993 static int calculate_max_exit_latency(struct usb_device *udev, 4994 enum usb3_link_state state_changed, 4995 u16 hub_encoded_timeout) 4996 { 4997 unsigned long long u1_mel_us = 0; 4998 unsigned long long u2_mel_us = 0; 4999 unsigned long long mel_us = 0; 5000 bool disabling_u1; 5001 bool disabling_u2; 5002 bool enabling_u1; 5003 bool enabling_u2; 5004 5005 disabling_u1 = (state_changed == USB3_LPM_U1 && 5006 hub_encoded_timeout == USB3_LPM_DISABLED); 5007 disabling_u2 = (state_changed == USB3_LPM_U2 && 5008 hub_encoded_timeout == USB3_LPM_DISABLED); 5009 5010 enabling_u1 = (state_changed == USB3_LPM_U1 && 5011 hub_encoded_timeout != USB3_LPM_DISABLED); 5012 enabling_u2 = (state_changed == USB3_LPM_U2 && 5013 hub_encoded_timeout != USB3_LPM_DISABLED); 5014 5015 /* If U1 was already enabled and we're not disabling it, 5016 * or we're going to enable U1, account for the U1 max exit latency. 5017 */ 5018 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 5019 enabling_u1) 5020 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 5021 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 5022 enabling_u2) 5023 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5024 5025 mel_us = max(u1_mel_us, u2_mel_us); 5026 5027 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5028 if (mel_us > MAX_EXIT) { 5029 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5030 "is too big.\n", mel_us); 5031 return -E2BIG; 5032 } 5033 return mel_us; 5034 } 5035 5036 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5037 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5038 struct usb_device *udev, enum usb3_link_state state) 5039 { 5040 struct xhci_hcd *xhci; 5041 u16 hub_encoded_timeout; 5042 int mel; 5043 int ret; 5044 5045 xhci = hcd_to_xhci(hcd); 5046 /* The LPM timeout values are pretty host-controller specific, so don't 5047 * enable hub-initiated timeouts unless the vendor has provided 5048 * information about their timeout algorithm. 5049 */ 5050 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5051 !xhci->devs[udev->slot_id]) 5052 return USB3_LPM_DISABLED; 5053 5054 if (xhci_check_tier_policy(xhci, udev, state) < 0) 5055 return USB3_LPM_DISABLED; 5056 5057 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5058 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5059 if (mel < 0) { 5060 /* Max Exit Latency is too big, disable LPM. */ 5061 hub_encoded_timeout = USB3_LPM_DISABLED; 5062 mel = 0; 5063 } 5064 5065 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5066 if (ret) 5067 return ret; 5068 return hub_encoded_timeout; 5069 } 5070 5071 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5072 struct usb_device *udev, enum usb3_link_state state) 5073 { 5074 struct xhci_hcd *xhci; 5075 u16 mel; 5076 5077 xhci = hcd_to_xhci(hcd); 5078 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5079 !xhci->devs[udev->slot_id]) 5080 return 0; 5081 5082 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5083 return xhci_change_max_exit_latency(xhci, udev, mel); 5084 } 5085 #else /* CONFIG_PM */ 5086 5087 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5088 struct usb_device *udev, int enable) 5089 { 5090 return 0; 5091 } 5092 5093 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5094 { 5095 return 0; 5096 } 5097 5098 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5099 struct usb_device *udev, enum usb3_link_state state) 5100 { 5101 return USB3_LPM_DISABLED; 5102 } 5103 5104 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5105 struct usb_device *udev, enum usb3_link_state state) 5106 { 5107 return 0; 5108 } 5109 #endif /* CONFIG_PM */ 5110 5111 /*-------------------------------------------------------------------------*/ 5112 5113 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5114 * internal data structures for the device. 5115 */ 5116 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5117 struct usb_tt *tt, gfp_t mem_flags) 5118 { 5119 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5120 struct xhci_virt_device *vdev; 5121 struct xhci_command *config_cmd; 5122 struct xhci_input_control_ctx *ctrl_ctx; 5123 struct xhci_slot_ctx *slot_ctx; 5124 unsigned long flags; 5125 unsigned think_time; 5126 int ret; 5127 5128 /* Ignore root hubs */ 5129 if (!hdev->parent) 5130 return 0; 5131 5132 vdev = xhci->devs[hdev->slot_id]; 5133 if (!vdev) { 5134 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5135 return -EINVAL; 5136 } 5137 5138 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5139 if (!config_cmd) 5140 return -ENOMEM; 5141 5142 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5143 if (!ctrl_ctx) { 5144 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5145 __func__); 5146 xhci_free_command(xhci, config_cmd); 5147 return -ENOMEM; 5148 } 5149 5150 spin_lock_irqsave(&xhci->lock, flags); 5151 if (hdev->speed == USB_SPEED_HIGH && 5152 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5153 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5154 xhci_free_command(xhci, config_cmd); 5155 spin_unlock_irqrestore(&xhci->lock, flags); 5156 return -ENOMEM; 5157 } 5158 5159 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5160 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5161 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5162 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5163 /* 5164 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5165 * but it may be already set to 1 when setup an xHCI virtual 5166 * device, so clear it anyway. 5167 */ 5168 if (tt->multi) 5169 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5170 else if (hdev->speed == USB_SPEED_FULL) 5171 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5172 5173 if (xhci->hci_version > 0x95) { 5174 xhci_dbg(xhci, "xHCI version %x needs hub " 5175 "TT think time and number of ports\n", 5176 (unsigned int) xhci->hci_version); 5177 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5178 /* Set TT think time - convert from ns to FS bit times. 5179 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5180 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5181 * 5182 * xHCI 1.0: this field shall be 0 if the device is not a 5183 * High-spped hub. 5184 */ 5185 think_time = tt->think_time; 5186 if (think_time != 0) 5187 think_time = (think_time / 666) - 1; 5188 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5189 slot_ctx->tt_info |= 5190 cpu_to_le32(TT_THINK_TIME(think_time)); 5191 } else { 5192 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5193 "TT think time or number of ports\n", 5194 (unsigned int) xhci->hci_version); 5195 } 5196 slot_ctx->dev_state = 0; 5197 spin_unlock_irqrestore(&xhci->lock, flags); 5198 5199 xhci_dbg(xhci, "Set up %s for hub device.\n", 5200 (xhci->hci_version > 0x95) ? 5201 "configure endpoint" : "evaluate context"); 5202 5203 /* Issue and wait for the configure endpoint or 5204 * evaluate context command. 5205 */ 5206 if (xhci->hci_version > 0x95) 5207 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5208 false, false); 5209 else 5210 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5211 true, false); 5212 5213 xhci_free_command(xhci, config_cmd); 5214 return ret; 5215 } 5216 5217 static int xhci_get_frame(struct usb_hcd *hcd) 5218 { 5219 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5220 /* EHCI mods by the periodic size. Why? */ 5221 return readl(&xhci->run_regs->microframe_index) >> 3; 5222 } 5223 5224 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5225 { 5226 xhci->usb2_rhub.hcd = hcd; 5227 hcd->speed = HCD_USB2; 5228 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5229 /* 5230 * USB 2.0 roothub under xHCI has an integrated TT, 5231 * (rate matching hub) as opposed to having an OHCI/UHCI 5232 * companion controller. 5233 */ 5234 hcd->has_tt = 1; 5235 } 5236 5237 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5238 { 5239 unsigned int minor_rev; 5240 5241 /* 5242 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5243 * should return 0x31 for sbrn, or that the minor revision 5244 * is a two digit BCD containig minor and sub-minor numbers. 5245 * This was later clarified in xHCI 1.2. 5246 * 5247 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5248 * minor revision set to 0x1 instead of 0x10. 5249 */ 5250 if (xhci->usb3_rhub.min_rev == 0x1) 5251 minor_rev = 1; 5252 else 5253 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5254 5255 switch (minor_rev) { 5256 case 2: 5257 hcd->speed = HCD_USB32; 5258 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5259 hcd->self.root_hub->rx_lanes = 2; 5260 hcd->self.root_hub->tx_lanes = 2; 5261 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5262 break; 5263 case 1: 5264 hcd->speed = HCD_USB31; 5265 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5266 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5267 break; 5268 } 5269 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5270 minor_rev, minor_rev ? "Enhanced " : ""); 5271 5272 xhci->usb3_rhub.hcd = hcd; 5273 } 5274 5275 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5276 { 5277 struct xhci_hcd *xhci; 5278 /* 5279 * TODO: Check with DWC3 clients for sysdev according to 5280 * quirks 5281 */ 5282 struct device *dev = hcd->self.sysdev; 5283 int retval; 5284 5285 /* Accept arbitrarily long scatter-gather lists */ 5286 hcd->self.sg_tablesize = ~0; 5287 5288 /* support to build packet from discontinuous buffers */ 5289 hcd->self.no_sg_constraint = 1; 5290 5291 /* XHCI controllers don't stop the ep queue on short packets :| */ 5292 hcd->self.no_stop_on_short = 1; 5293 5294 xhci = hcd_to_xhci(hcd); 5295 5296 if (!usb_hcd_is_primary_hcd(hcd)) { 5297 xhci_hcd_init_usb3_data(xhci, hcd); 5298 return 0; 5299 } 5300 5301 mutex_init(&xhci->mutex); 5302 xhci->main_hcd = hcd; 5303 xhci->cap_regs = hcd->regs; 5304 xhci->op_regs = hcd->regs + 5305 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5306 xhci->run_regs = hcd->regs + 5307 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5308 /* Cache read-only capability registers */ 5309 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5310 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5311 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5312 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5313 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5314 if (xhci->hci_version > 0x100) 5315 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5316 5317 xhci->quirks |= quirks; 5318 5319 get_quirks(dev, xhci); 5320 5321 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5322 * success event after a short transfer. This quirk will ignore such 5323 * spurious event. 5324 */ 5325 if (xhci->hci_version > 0x96) 5326 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5327 5328 /* Make sure the HC is halted. */ 5329 retval = xhci_halt(xhci); 5330 if (retval) 5331 return retval; 5332 5333 xhci_zero_64b_regs(xhci); 5334 5335 xhci_dbg(xhci, "Resetting HCD\n"); 5336 /* Reset the internal HC memory state and registers. */ 5337 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5338 if (retval) 5339 return retval; 5340 xhci_dbg(xhci, "Reset complete\n"); 5341 5342 /* 5343 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5344 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5345 * address memory pointers actually. So, this driver clears the AC64 5346 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5347 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5348 */ 5349 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5350 xhci->hcc_params &= ~BIT(0); 5351 5352 /* Set dma_mask and coherent_dma_mask to 64-bits, 5353 * if xHC supports 64-bit addressing */ 5354 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5355 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5356 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5357 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5358 } else { 5359 /* 5360 * This is to avoid error in cases where a 32-bit USB 5361 * controller is used on a 64-bit capable system. 5362 */ 5363 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5364 if (retval) 5365 return retval; 5366 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5367 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5368 } 5369 5370 xhci_dbg(xhci, "Calling HCD init\n"); 5371 /* Initialize HCD and host controller data structures. */ 5372 retval = xhci_init(hcd); 5373 if (retval) 5374 return retval; 5375 xhci_dbg(xhci, "Called HCD init\n"); 5376 5377 if (xhci_hcd_is_usb3(hcd)) 5378 xhci_hcd_init_usb3_data(xhci, hcd); 5379 else 5380 xhci_hcd_init_usb2_data(xhci, hcd); 5381 5382 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5383 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5384 5385 return 0; 5386 } 5387 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5388 5389 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5390 struct usb_host_endpoint *ep) 5391 { 5392 struct xhci_hcd *xhci; 5393 struct usb_device *udev; 5394 unsigned int slot_id; 5395 unsigned int ep_index; 5396 unsigned long flags; 5397 5398 xhci = hcd_to_xhci(hcd); 5399 5400 spin_lock_irqsave(&xhci->lock, flags); 5401 udev = (struct usb_device *)ep->hcpriv; 5402 slot_id = udev->slot_id; 5403 ep_index = xhci_get_endpoint_index(&ep->desc); 5404 5405 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5406 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5407 spin_unlock_irqrestore(&xhci->lock, flags); 5408 } 5409 5410 static const struct hc_driver xhci_hc_driver = { 5411 .description = "xhci-hcd", 5412 .product_desc = "xHCI Host Controller", 5413 .hcd_priv_size = sizeof(struct xhci_hcd), 5414 5415 /* 5416 * generic hardware linkage 5417 */ 5418 .irq = xhci_irq, 5419 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5420 HCD_BH, 5421 5422 /* 5423 * basic lifecycle operations 5424 */ 5425 .reset = NULL, /* set in xhci_init_driver() */ 5426 .start = xhci_run, 5427 .stop = xhci_stop, 5428 .shutdown = xhci_shutdown, 5429 5430 /* 5431 * managing i/o requests and associated device resources 5432 */ 5433 .map_urb_for_dma = xhci_map_urb_for_dma, 5434 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5435 .urb_enqueue = xhci_urb_enqueue, 5436 .urb_dequeue = xhci_urb_dequeue, 5437 .alloc_dev = xhci_alloc_dev, 5438 .free_dev = xhci_free_dev, 5439 .alloc_streams = xhci_alloc_streams, 5440 .free_streams = xhci_free_streams, 5441 .add_endpoint = xhci_add_endpoint, 5442 .drop_endpoint = xhci_drop_endpoint, 5443 .endpoint_disable = xhci_endpoint_disable, 5444 .endpoint_reset = xhci_endpoint_reset, 5445 .check_bandwidth = xhci_check_bandwidth, 5446 .reset_bandwidth = xhci_reset_bandwidth, 5447 .address_device = xhci_address_device, 5448 .enable_device = xhci_enable_device, 5449 .update_hub_device = xhci_update_hub_device, 5450 .reset_device = xhci_discover_or_reset_device, 5451 5452 /* 5453 * scheduling support 5454 */ 5455 .get_frame_number = xhci_get_frame, 5456 5457 /* 5458 * root hub support 5459 */ 5460 .hub_control = xhci_hub_control, 5461 .hub_status_data = xhci_hub_status_data, 5462 .bus_suspend = xhci_bus_suspend, 5463 .bus_resume = xhci_bus_resume, 5464 .get_resuming_ports = xhci_get_resuming_ports, 5465 5466 /* 5467 * call back when device connected and addressed 5468 */ 5469 .update_device = xhci_update_device, 5470 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5471 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5472 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5473 .find_raw_port_number = xhci_find_raw_port_number, 5474 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5475 }; 5476 5477 void xhci_init_driver(struct hc_driver *drv, 5478 const struct xhci_driver_overrides *over) 5479 { 5480 BUG_ON(!over); 5481 5482 /* Copy the generic table to drv then apply the overrides */ 5483 *drv = xhci_hc_driver; 5484 5485 if (over) { 5486 drv->hcd_priv_size += over->extra_priv_size; 5487 if (over->reset) 5488 drv->reset = over->reset; 5489 if (over->start) 5490 drv->start = over->start; 5491 if (over->add_endpoint) 5492 drv->add_endpoint = over->add_endpoint; 5493 if (over->drop_endpoint) 5494 drv->drop_endpoint = over->drop_endpoint; 5495 if (over->check_bandwidth) 5496 drv->check_bandwidth = over->check_bandwidth; 5497 if (over->reset_bandwidth) 5498 drv->reset_bandwidth = over->reset_bandwidth; 5499 } 5500 } 5501 EXPORT_SYMBOL_GPL(xhci_init_driver); 5502 5503 MODULE_DESCRIPTION(DRIVER_DESC); 5504 MODULE_AUTHOR(DRIVER_AUTHOR); 5505 MODULE_LICENSE("GPL"); 5506 5507 static int __init xhci_hcd_init(void) 5508 { 5509 /* 5510 * Check the compiler generated sizes of structures that must be laid 5511 * out in specific ways for hardware access. 5512 */ 5513 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5514 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5515 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5516 /* xhci_device_control has eight fields, and also 5517 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5518 */ 5519 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5520 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5521 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5522 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5523 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5524 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5525 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5526 5527 if (usb_disabled()) 5528 return -ENODEV; 5529 5530 xhci_debugfs_create_root(); 5531 xhci_dbc_init(); 5532 5533 return 0; 5534 } 5535 5536 /* 5537 * If an init function is provided, an exit function must also be provided 5538 * to allow module unload. 5539 */ 5540 static void __exit xhci_hcd_fini(void) 5541 { 5542 xhci_debugfs_remove_root(); 5543 xhci_dbc_exit(); 5544 } 5545 5546 module_init(xhci_hcd_init); 5547 module_exit(xhci_hcd_fini); 5548