xref: /linux/drivers/usb/host/xhci.c (revision 90e0d94d369d342e735a75174439482119b6c393)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 	struct xhci_segment *seg = ring->first_seg;
43 
44 	if (!td || !td->start_seg)
45 		return false;
46 	do {
47 		if (seg == td->start_seg)
48 			return true;
49 		seg = seg->next;
50 	} while (seg && seg != ring->first_seg);
51 
52 	return false;
53 }
54 
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
69 {
70 	u32	result;
71 	int	ret;
72 
73 	ret = readl_poll_timeout_atomic(ptr, result,
74 					(result & mask) == done ||
75 					result == U32_MAX,
76 					1, timeout_us);
77 	if (result == U32_MAX)		/* card removed */
78 		return -ENODEV;
79 
80 	return ret;
81 }
82 
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88 	u32 halted;
89 	u32 cmd;
90 	u32 mask;
91 
92 	mask = ~(XHCI_IRQS);
93 	halted = readl(&xhci->op_regs->status) & STS_HALT;
94 	if (!halted)
95 		mask &= ~CMD_RUN;
96 
97 	cmd = readl(&xhci->op_regs->command);
98 	cmd &= mask;
99 	writel(cmd, &xhci->op_regs->command);
100 }
101 
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112 	int ret;
113 
114 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 	xhci_quiesce(xhci);
116 
117 	ret = xhci_handshake(&xhci->op_regs->status,
118 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 	if (ret) {
120 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 		return ret;
122 	}
123 
124 	xhci->xhc_state |= XHCI_STATE_HALTED;
125 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
126 
127 	return ret;
128 }
129 
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135 	u32 temp;
136 	int ret;
137 
138 	temp = readl(&xhci->op_regs->command);
139 	temp |= (CMD_RUN);
140 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141 			temp);
142 	writel(temp, &xhci->op_regs->command);
143 
144 	/*
145 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
146 	 * running.
147 	 */
148 	ret = xhci_handshake(&xhci->op_regs->status,
149 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
150 	if (ret == -ETIMEDOUT)
151 		xhci_err(xhci, "Host took too long to start, "
152 				"waited %u microseconds.\n",
153 				XHCI_MAX_HALT_USEC);
154 	if (!ret) {
155 		/* clear state flags. Including dying, halted or removing */
156 		xhci->xhc_state = 0;
157 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
158 	}
159 
160 	return ret;
161 }
162 
163 /*
164  * Reset a halted HC.
165  *
166  * This resets pipelines, timers, counters, state machines, etc.
167  * Transactions will be terminated immediately, and operational registers
168  * will be set to their defaults.
169  */
170 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
171 {
172 	u32 command;
173 	u32 state;
174 	int ret;
175 
176 	state = readl(&xhci->op_regs->status);
177 
178 	if (state == ~(u32)0) {
179 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
180 		return -ENODEV;
181 	}
182 
183 	if ((state & STS_HALT) == 0) {
184 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
185 		return 0;
186 	}
187 
188 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
189 	command = readl(&xhci->op_regs->command);
190 	command |= CMD_RESET;
191 	writel(command, &xhci->op_regs->command);
192 
193 	/* Existing Intel xHCI controllers require a delay of 1 mS,
194 	 * after setting the CMD_RESET bit, and before accessing any
195 	 * HC registers. This allows the HC to complete the
196 	 * reset operation and be ready for HC register access.
197 	 * Without this delay, the subsequent HC register access,
198 	 * may result in a system hang very rarely.
199 	 */
200 	if (xhci->quirks & XHCI_INTEL_HOST)
201 		udelay(1000);
202 
203 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
204 	if (ret)
205 		return ret;
206 
207 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
208 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
209 
210 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
211 			 "Wait for controller to be ready for doorbell rings");
212 	/*
213 	 * xHCI cannot write to any doorbells or operational registers other
214 	 * than status until the "Controller Not Ready" flag is cleared.
215 	 */
216 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
217 
218 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
219 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
220 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
221 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
222 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
223 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
224 
225 	return ret;
226 }
227 
228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
229 {
230 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
231 	int err, i;
232 	u64 val;
233 	u32 intrs;
234 
235 	/*
236 	 * Some Renesas controllers get into a weird state if they are
237 	 * reset while programmed with 64bit addresses (they will preserve
238 	 * the top half of the address in internal, non visible
239 	 * registers). You end up with half the address coming from the
240 	 * kernel, and the other half coming from the firmware. Also,
241 	 * changing the programming leads to extra accesses even if the
242 	 * controller is supposed to be halted. The controller ends up with
243 	 * a fatal fault, and is then ripe for being properly reset.
244 	 *
245 	 * Special care is taken to only apply this if the device is behind
246 	 * an iommu. Doing anything when there is no iommu is definitely
247 	 * unsafe...
248 	 */
249 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
250 		return;
251 
252 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
253 
254 	/* Clear HSEIE so that faults do not get signaled */
255 	val = readl(&xhci->op_regs->command);
256 	val &= ~CMD_HSEIE;
257 	writel(val, &xhci->op_regs->command);
258 
259 	/* Clear HSE (aka FATAL) */
260 	val = readl(&xhci->op_regs->status);
261 	val |= STS_FATAL;
262 	writel(val, &xhci->op_regs->status);
263 
264 	/* Now zero the registers, and brace for impact */
265 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
266 	if (upper_32_bits(val))
267 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
268 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
269 	if (upper_32_bits(val))
270 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
271 
272 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
273 		      ARRAY_SIZE(xhci->run_regs->ir_set));
274 
275 	for (i = 0; i < intrs; i++) {
276 		struct xhci_intr_reg __iomem *ir;
277 
278 		ir = &xhci->run_regs->ir_set[i];
279 		val = xhci_read_64(xhci, &ir->erst_base);
280 		if (upper_32_bits(val))
281 			xhci_write_64(xhci, 0, &ir->erst_base);
282 		val= xhci_read_64(xhci, &ir->erst_dequeue);
283 		if (upper_32_bits(val))
284 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
285 	}
286 
287 	/* Wait for the fault to appear. It will be cleared on reset */
288 	err = xhci_handshake(&xhci->op_regs->status,
289 			     STS_FATAL, STS_FATAL,
290 			     XHCI_MAX_HALT_USEC);
291 	if (!err)
292 		xhci_info(xhci, "Fault detected\n");
293 }
294 
295 #ifdef CONFIG_USB_PCI
296 /*
297  * Set up MSI
298  */
299 static int xhci_setup_msi(struct xhci_hcd *xhci)
300 {
301 	int ret;
302 	/*
303 	 * TODO:Check with MSI Soc for sysdev
304 	 */
305 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
306 
307 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
308 	if (ret < 0) {
309 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310 				"failed to allocate MSI entry");
311 		return ret;
312 	}
313 
314 	ret = request_irq(pdev->irq, xhci_msi_irq,
315 				0, "xhci_hcd", xhci_to_hcd(xhci));
316 	if (ret) {
317 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
318 				"disable MSI interrupt");
319 		pci_free_irq_vectors(pdev);
320 	}
321 
322 	return ret;
323 }
324 
325 /*
326  * Set up MSI-X
327  */
328 static int xhci_setup_msix(struct xhci_hcd *xhci)
329 {
330 	int i, ret;
331 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
332 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
333 
334 	/*
335 	 * calculate number of msi-x vectors supported.
336 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
337 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
338 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
339 	 *   Add additional 1 vector to ensure always available interrupt.
340 	 */
341 	xhci->msix_count = min(num_online_cpus() + 1,
342 				HCS_MAX_INTRS(xhci->hcs_params1));
343 
344 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
345 			PCI_IRQ_MSIX);
346 	if (ret < 0) {
347 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
348 				"Failed to enable MSI-X");
349 		return ret;
350 	}
351 
352 	for (i = 0; i < xhci->msix_count; i++) {
353 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
354 				"xhci_hcd", xhci_to_hcd(xhci));
355 		if (ret)
356 			goto disable_msix;
357 	}
358 
359 	hcd->msix_enabled = 1;
360 	return ret;
361 
362 disable_msix:
363 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
364 	while (--i >= 0)
365 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
366 	pci_free_irq_vectors(pdev);
367 	return ret;
368 }
369 
370 /* Free any IRQs and disable MSI-X */
371 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
372 {
373 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
374 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
375 
376 	if (xhci->quirks & XHCI_PLAT)
377 		return;
378 
379 	/* return if using legacy interrupt */
380 	if (hcd->irq > 0)
381 		return;
382 
383 	if (hcd->msix_enabled) {
384 		int i;
385 
386 		for (i = 0; i < xhci->msix_count; i++)
387 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
388 	} else {
389 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
390 	}
391 
392 	pci_free_irq_vectors(pdev);
393 	hcd->msix_enabled = 0;
394 }
395 
396 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
397 {
398 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
399 
400 	if (hcd->msix_enabled) {
401 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
402 		int i;
403 
404 		for (i = 0; i < xhci->msix_count; i++)
405 			synchronize_irq(pci_irq_vector(pdev, i));
406 	}
407 }
408 
409 static int xhci_try_enable_msi(struct usb_hcd *hcd)
410 {
411 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
412 	struct pci_dev  *pdev;
413 	int ret;
414 
415 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
416 	if (xhci->quirks & XHCI_PLAT)
417 		return 0;
418 
419 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
420 	/*
421 	 * Some Fresco Logic host controllers advertise MSI, but fail to
422 	 * generate interrupts.  Don't even try to enable MSI.
423 	 */
424 	if (xhci->quirks & XHCI_BROKEN_MSI)
425 		goto legacy_irq;
426 
427 	/* unregister the legacy interrupt */
428 	if (hcd->irq)
429 		free_irq(hcd->irq, hcd);
430 	hcd->irq = 0;
431 
432 	ret = xhci_setup_msix(xhci);
433 	if (ret)
434 		/* fall back to msi*/
435 		ret = xhci_setup_msi(xhci);
436 
437 	if (!ret) {
438 		hcd->msi_enabled = 1;
439 		return 0;
440 	}
441 
442 	if (!pdev->irq) {
443 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
444 		return -EINVAL;
445 	}
446 
447  legacy_irq:
448 	if (!strlen(hcd->irq_descr))
449 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
450 			 hcd->driver->description, hcd->self.busnum);
451 
452 	/* fall back to legacy interrupt*/
453 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
454 			hcd->irq_descr, hcd);
455 	if (ret) {
456 		xhci_err(xhci, "request interrupt %d failed\n",
457 				pdev->irq);
458 		return ret;
459 	}
460 	hcd->irq = pdev->irq;
461 	return 0;
462 }
463 
464 #else
465 
466 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
467 {
468 	return 0;
469 }
470 
471 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
472 {
473 }
474 
475 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
476 {
477 }
478 
479 #endif
480 
481 static void compliance_mode_recovery(struct timer_list *t)
482 {
483 	struct xhci_hcd *xhci;
484 	struct usb_hcd *hcd;
485 	struct xhci_hub *rhub;
486 	u32 temp;
487 	int i;
488 
489 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
490 	rhub = &xhci->usb3_rhub;
491 	hcd = rhub->hcd;
492 
493 	if (!hcd)
494 		return;
495 
496 	for (i = 0; i < rhub->num_ports; i++) {
497 		temp = readl(rhub->ports[i]->addr);
498 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
499 			/*
500 			 * Compliance Mode Detected. Letting USB Core
501 			 * handle the Warm Reset
502 			 */
503 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
504 					"Compliance mode detected->port %d",
505 					i + 1);
506 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
507 					"Attempting compliance mode recovery");
508 
509 			if (hcd->state == HC_STATE_SUSPENDED)
510 				usb_hcd_resume_root_hub(hcd);
511 
512 			usb_hcd_poll_rh_status(hcd);
513 		}
514 	}
515 
516 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
517 		mod_timer(&xhci->comp_mode_recovery_timer,
518 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
519 }
520 
521 /*
522  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
523  * that causes ports behind that hardware to enter compliance mode sometimes.
524  * The quirk creates a timer that polls every 2 seconds the link state of
525  * each host controller's port and recovers it by issuing a Warm reset
526  * if Compliance mode is detected, otherwise the port will become "dead" (no
527  * device connections or disconnections will be detected anymore). Becasue no
528  * status event is generated when entering compliance mode (per xhci spec),
529  * this quirk is needed on systems that have the failing hardware installed.
530  */
531 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
532 {
533 	xhci->port_status_u0 = 0;
534 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
535 		    0);
536 	xhci->comp_mode_recovery_timer.expires = jiffies +
537 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
538 
539 	add_timer(&xhci->comp_mode_recovery_timer);
540 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
541 			"Compliance mode recovery timer initialized");
542 }
543 
544 /*
545  * This function identifies the systems that have installed the SN65LVPE502CP
546  * USB3.0 re-driver and that need the Compliance Mode Quirk.
547  * Systems:
548  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
549  */
550 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
551 {
552 	const char *dmi_product_name, *dmi_sys_vendor;
553 
554 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
555 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
556 	if (!dmi_product_name || !dmi_sys_vendor)
557 		return false;
558 
559 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
560 		return false;
561 
562 	if (strstr(dmi_product_name, "Z420") ||
563 			strstr(dmi_product_name, "Z620") ||
564 			strstr(dmi_product_name, "Z820") ||
565 			strstr(dmi_product_name, "Z1 Workstation"))
566 		return true;
567 
568 	return false;
569 }
570 
571 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
572 {
573 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
574 }
575 
576 
577 /*
578  * Initialize memory for HCD and xHC (one-time init).
579  *
580  * Program the PAGESIZE register, initialize the device context array, create
581  * device contexts (?), set up a command ring segment (or two?), create event
582  * ring (one for now).
583  */
584 static int xhci_init(struct usb_hcd *hcd)
585 {
586 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
587 	int retval;
588 
589 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
590 	spin_lock_init(&xhci->lock);
591 	if (xhci->hci_version == 0x95 && link_quirk) {
592 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
593 				"QUIRK: Not clearing Link TRB chain bits.");
594 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
595 	} else {
596 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
597 				"xHCI doesn't need link TRB QUIRK");
598 	}
599 	retval = xhci_mem_init(xhci, GFP_KERNEL);
600 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
601 
602 	/* Initializing Compliance Mode Recovery Data If Needed */
603 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
604 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
605 		compliance_mode_recovery_timer_init(xhci);
606 	}
607 
608 	return retval;
609 }
610 
611 /*-------------------------------------------------------------------------*/
612 
613 
614 static int xhci_run_finished(struct xhci_hcd *xhci)
615 {
616 	unsigned long	flags;
617 	u32		temp;
618 
619 	/*
620 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
621 	 * Protect the short window before host is running with a lock
622 	 */
623 	spin_lock_irqsave(&xhci->lock, flags);
624 
625 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
626 	temp = readl(&xhci->op_regs->command);
627 	temp |= (CMD_EIE);
628 	writel(temp, &xhci->op_regs->command);
629 
630 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
631 	temp = readl(&xhci->ir_set->irq_pending);
632 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
633 
634 	if (xhci_start(xhci)) {
635 		xhci_halt(xhci);
636 		spin_unlock_irqrestore(&xhci->lock, flags);
637 		return -ENODEV;
638 	}
639 
640 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
641 
642 	if (xhci->quirks & XHCI_NEC_HOST)
643 		xhci_ring_cmd_db(xhci);
644 
645 	spin_unlock_irqrestore(&xhci->lock, flags);
646 
647 	return 0;
648 }
649 
650 /*
651  * Start the HC after it was halted.
652  *
653  * This function is called by the USB core when the HC driver is added.
654  * Its opposite is xhci_stop().
655  *
656  * xhci_init() must be called once before this function can be called.
657  * Reset the HC, enable device slot contexts, program DCBAAP, and
658  * set command ring pointer and event ring pointer.
659  *
660  * Setup MSI-X vectors and enable interrupts.
661  */
662 int xhci_run(struct usb_hcd *hcd)
663 {
664 	u32 temp;
665 	u64 temp_64;
666 	int ret;
667 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
668 
669 	/* Start the xHCI host controller running only after the USB 2.0 roothub
670 	 * is setup.
671 	 */
672 
673 	hcd->uses_new_polling = 1;
674 	if (!usb_hcd_is_primary_hcd(hcd))
675 		return xhci_run_finished(xhci);
676 
677 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
678 
679 	ret = xhci_try_enable_msi(hcd);
680 	if (ret)
681 		return ret;
682 
683 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
684 	temp_64 &= ~ERST_PTR_MASK;
685 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
686 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
687 
688 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
689 			"// Set the interrupt modulation register");
690 	temp = readl(&xhci->ir_set->irq_control);
691 	temp &= ~ER_IRQ_INTERVAL_MASK;
692 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
693 	writel(temp, &xhci->ir_set->irq_control);
694 
695 	if (xhci->quirks & XHCI_NEC_HOST) {
696 		struct xhci_command *command;
697 
698 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
699 		if (!command)
700 			return -ENOMEM;
701 
702 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
703 				TRB_TYPE(TRB_NEC_GET_FW));
704 		if (ret)
705 			xhci_free_command(xhci, command);
706 	}
707 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
708 			"Finished %s for main hcd", __func__);
709 
710 	xhci_create_dbc_dev(xhci);
711 
712 	xhci_debugfs_init(xhci);
713 
714 	if (xhci_has_one_roothub(xhci))
715 		return xhci_run_finished(xhci);
716 
717 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
718 
719 	return 0;
720 }
721 EXPORT_SYMBOL_GPL(xhci_run);
722 
723 /*
724  * Stop xHCI driver.
725  *
726  * This function is called by the USB core when the HC driver is removed.
727  * Its opposite is xhci_run().
728  *
729  * Disable device contexts, disable IRQs, and quiesce the HC.
730  * Reset the HC, finish any completed transactions, and cleanup memory.
731  */
732 static void xhci_stop(struct usb_hcd *hcd)
733 {
734 	u32 temp;
735 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
736 
737 	mutex_lock(&xhci->mutex);
738 
739 	/* Only halt host and free memory after both hcds are removed */
740 	if (!usb_hcd_is_primary_hcd(hcd)) {
741 		mutex_unlock(&xhci->mutex);
742 		return;
743 	}
744 
745 	xhci_remove_dbc_dev(xhci);
746 
747 	spin_lock_irq(&xhci->lock);
748 	xhci->xhc_state |= XHCI_STATE_HALTED;
749 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
750 	xhci_halt(xhci);
751 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
752 	spin_unlock_irq(&xhci->lock);
753 
754 	xhci_cleanup_msix(xhci);
755 
756 	/* Deleting Compliance Mode Recovery Timer */
757 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
758 			(!(xhci_all_ports_seen_u0(xhci)))) {
759 		del_timer_sync(&xhci->comp_mode_recovery_timer);
760 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
761 				"%s: compliance mode recovery timer deleted",
762 				__func__);
763 	}
764 
765 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
766 		usb_amd_dev_put();
767 
768 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
769 			"// Disabling event ring interrupts");
770 	temp = readl(&xhci->op_regs->status);
771 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
772 	temp = readl(&xhci->ir_set->irq_pending);
773 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
774 
775 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
776 	xhci_mem_cleanup(xhci);
777 	xhci_debugfs_exit(xhci);
778 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
779 			"xhci_stop completed - status = %x",
780 			readl(&xhci->op_regs->status));
781 	mutex_unlock(&xhci->mutex);
782 }
783 
784 /*
785  * Shutdown HC (not bus-specific)
786  *
787  * This is called when the machine is rebooting or halting.  We assume that the
788  * machine will be powered off, and the HC's internal state will be reset.
789  * Don't bother to free memory.
790  *
791  * This will only ever be called with the main usb_hcd (the USB3 roothub).
792  */
793 void xhci_shutdown(struct usb_hcd *hcd)
794 {
795 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
796 
797 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
798 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
799 
800 	/* Don't poll the roothubs after shutdown. */
801 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
802 			__func__, hcd->self.busnum);
803 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
804 	del_timer_sync(&hcd->rh_timer);
805 
806 	if (xhci->shared_hcd) {
807 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
808 		del_timer_sync(&xhci->shared_hcd->rh_timer);
809 	}
810 
811 	spin_lock_irq(&xhci->lock);
812 	xhci_halt(xhci);
813 	/* Workaround for spurious wakeups at shutdown with HSW */
814 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
815 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
816 	spin_unlock_irq(&xhci->lock);
817 
818 	xhci_cleanup_msix(xhci);
819 
820 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
821 			"xhci_shutdown completed - status = %x",
822 			readl(&xhci->op_regs->status));
823 }
824 EXPORT_SYMBOL_GPL(xhci_shutdown);
825 
826 #ifdef CONFIG_PM
827 static void xhci_save_registers(struct xhci_hcd *xhci)
828 {
829 	xhci->s3.command = readl(&xhci->op_regs->command);
830 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
831 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
832 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
833 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
834 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
835 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
836 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
837 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
838 }
839 
840 static void xhci_restore_registers(struct xhci_hcd *xhci)
841 {
842 	writel(xhci->s3.command, &xhci->op_regs->command);
843 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
844 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
845 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
846 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
847 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
848 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
849 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
850 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
851 }
852 
853 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
854 {
855 	u64	val_64;
856 
857 	/* step 2: initialize command ring buffer */
858 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
859 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
860 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
861 				      xhci->cmd_ring->dequeue) &
862 		 (u64) ~CMD_RING_RSVD_BITS) |
863 		xhci->cmd_ring->cycle_state;
864 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
865 			"// Setting command ring address to 0x%llx",
866 			(long unsigned long) val_64);
867 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
868 }
869 
870 /*
871  * The whole command ring must be cleared to zero when we suspend the host.
872  *
873  * The host doesn't save the command ring pointer in the suspend well, so we
874  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
875  * aligned, because of the reserved bits in the command ring dequeue pointer
876  * register.  Therefore, we can't just set the dequeue pointer back in the
877  * middle of the ring (TRBs are 16-byte aligned).
878  */
879 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
880 {
881 	struct xhci_ring *ring;
882 	struct xhci_segment *seg;
883 
884 	ring = xhci->cmd_ring;
885 	seg = ring->deq_seg;
886 	do {
887 		memset(seg->trbs, 0,
888 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
889 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
890 			cpu_to_le32(~TRB_CYCLE);
891 		seg = seg->next;
892 	} while (seg != ring->deq_seg);
893 
894 	/* Reset the software enqueue and dequeue pointers */
895 	ring->deq_seg = ring->first_seg;
896 	ring->dequeue = ring->first_seg->trbs;
897 	ring->enq_seg = ring->deq_seg;
898 	ring->enqueue = ring->dequeue;
899 
900 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
901 	/*
902 	 * Ring is now zeroed, so the HW should look for change of ownership
903 	 * when the cycle bit is set to 1.
904 	 */
905 	ring->cycle_state = 1;
906 
907 	/*
908 	 * Reset the hardware dequeue pointer.
909 	 * Yes, this will need to be re-written after resume, but we're paranoid
910 	 * and want to make sure the hardware doesn't access bogus memory
911 	 * because, say, the BIOS or an SMI started the host without changing
912 	 * the command ring pointers.
913 	 */
914 	xhci_set_cmd_ring_deq(xhci);
915 }
916 
917 /*
918  * Disable port wake bits if do_wakeup is not set.
919  *
920  * Also clear a possible internal port wake state left hanging for ports that
921  * detected termination but never successfully enumerated (trained to 0U).
922  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
923  * at enumeration clears this wake, force one here as well for unconnected ports
924  */
925 
926 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
927 				       struct xhci_hub *rhub,
928 				       bool do_wakeup)
929 {
930 	unsigned long flags;
931 	u32 t1, t2, portsc;
932 	int i;
933 
934 	spin_lock_irqsave(&xhci->lock, flags);
935 
936 	for (i = 0; i < rhub->num_ports; i++) {
937 		portsc = readl(rhub->ports[i]->addr);
938 		t1 = xhci_port_state_to_neutral(portsc);
939 		t2 = t1;
940 
941 		/* clear wake bits if do_wake is not set */
942 		if (!do_wakeup)
943 			t2 &= ~PORT_WAKE_BITS;
944 
945 		/* Don't touch csc bit if connected or connect change is set */
946 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
947 			t2 |= PORT_CSC;
948 
949 		if (t1 != t2) {
950 			writel(t2, rhub->ports[i]->addr);
951 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
952 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
953 		}
954 	}
955 	spin_unlock_irqrestore(&xhci->lock, flags);
956 }
957 
958 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
959 {
960 	struct xhci_port	**ports;
961 	int			port_index;
962 	u32			status;
963 	u32			portsc;
964 
965 	status = readl(&xhci->op_regs->status);
966 	if (status & STS_EINT)
967 		return true;
968 	/*
969 	 * Checking STS_EINT is not enough as there is a lag between a change
970 	 * bit being set and the Port Status Change Event that it generated
971 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
972 	 */
973 
974 	port_index = xhci->usb2_rhub.num_ports;
975 	ports = xhci->usb2_rhub.ports;
976 	while (port_index--) {
977 		portsc = readl(ports[port_index]->addr);
978 		if (portsc & PORT_CHANGE_MASK ||
979 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
980 			return true;
981 	}
982 	port_index = xhci->usb3_rhub.num_ports;
983 	ports = xhci->usb3_rhub.ports;
984 	while (port_index--) {
985 		portsc = readl(ports[port_index]->addr);
986 		if (portsc & PORT_CHANGE_MASK ||
987 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
988 			return true;
989 	}
990 	return false;
991 }
992 
993 /*
994  * Stop HC (not bus-specific)
995  *
996  * This is called when the machine transition into S3/S4 mode.
997  *
998  */
999 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
1000 {
1001 	int			rc = 0;
1002 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
1003 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1004 	u32			command;
1005 	u32			res;
1006 
1007 	if (!hcd->state)
1008 		return 0;
1009 
1010 	if (hcd->state != HC_STATE_SUSPENDED ||
1011 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1012 		return -EINVAL;
1013 
1014 	/* Clear root port wake on bits if wakeup not allowed. */
1015 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1016 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1017 
1018 	if (!HCD_HW_ACCESSIBLE(hcd))
1019 		return 0;
1020 
1021 	xhci_dbc_suspend(xhci);
1022 
1023 	/* Don't poll the roothubs on bus suspend. */
1024 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1025 		 __func__, hcd->self.busnum);
1026 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1027 	del_timer_sync(&hcd->rh_timer);
1028 	if (xhci->shared_hcd) {
1029 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1030 		del_timer_sync(&xhci->shared_hcd->rh_timer);
1031 	}
1032 
1033 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1034 		usleep_range(1000, 1500);
1035 
1036 	spin_lock_irq(&xhci->lock);
1037 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1038 	if (xhci->shared_hcd)
1039 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1040 	/* step 1: stop endpoint */
1041 	/* skipped assuming that port suspend has done */
1042 
1043 	/* step 2: clear Run/Stop bit */
1044 	command = readl(&xhci->op_regs->command);
1045 	command &= ~CMD_RUN;
1046 	writel(command, &xhci->op_regs->command);
1047 
1048 	/* Some chips from Fresco Logic need an extraordinary delay */
1049 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1050 
1051 	if (xhci_handshake(&xhci->op_regs->status,
1052 		      STS_HALT, STS_HALT, delay)) {
1053 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1054 		spin_unlock_irq(&xhci->lock);
1055 		return -ETIMEDOUT;
1056 	}
1057 	xhci_clear_command_ring(xhci);
1058 
1059 	/* step 3: save registers */
1060 	xhci_save_registers(xhci);
1061 
1062 	/* step 4: set CSS flag */
1063 	command = readl(&xhci->op_regs->command);
1064 	command |= CMD_CSS;
1065 	writel(command, &xhci->op_regs->command);
1066 	xhci->broken_suspend = 0;
1067 	if (xhci_handshake(&xhci->op_regs->status,
1068 				STS_SAVE, 0, 20 * 1000)) {
1069 	/*
1070 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1071 	 * SSS bit of USBSTS and when driver tries to poll
1072 	 * to see if the xHC clears BIT(8) which never happens
1073 	 * and driver assumes that controller is not responding
1074 	 * and times out. To workaround this, its good to check
1075 	 * if SRE and HCE bits are not set (as per xhci
1076 	 * Section 5.4.2) and bypass the timeout.
1077 	 */
1078 		res = readl(&xhci->op_regs->status);
1079 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1080 		    (((res & STS_SRE) == 0) &&
1081 				((res & STS_HCE) == 0))) {
1082 			xhci->broken_suspend = 1;
1083 		} else {
1084 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1085 			spin_unlock_irq(&xhci->lock);
1086 			return -ETIMEDOUT;
1087 		}
1088 	}
1089 	spin_unlock_irq(&xhci->lock);
1090 
1091 	/*
1092 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1093 	 * is about to be suspended.
1094 	 */
1095 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1096 			(!(xhci_all_ports_seen_u0(xhci)))) {
1097 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1098 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1099 				"%s: compliance mode recovery timer deleted",
1100 				__func__);
1101 	}
1102 
1103 	/* step 5: remove core well power */
1104 	/* synchronize irq when using MSI-X */
1105 	xhci_msix_sync_irqs(xhci);
1106 
1107 	return rc;
1108 }
1109 EXPORT_SYMBOL_GPL(xhci_suspend);
1110 
1111 /*
1112  * start xHC (not bus-specific)
1113  *
1114  * This is called when the machine transition from S3/S4 mode.
1115  *
1116  */
1117 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1118 {
1119 	u32			command, temp = 0;
1120 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1121 	int			retval = 0;
1122 	bool			comp_timer_running = false;
1123 	bool			pending_portevent = false;
1124 	bool			reinit_xhc = false;
1125 
1126 	if (!hcd->state)
1127 		return 0;
1128 
1129 	/* Wait a bit if either of the roothubs need to settle from the
1130 	 * transition into bus suspend.
1131 	 */
1132 
1133 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1134 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1135 		msleep(100);
1136 
1137 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1138 	if (xhci->shared_hcd)
1139 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1140 
1141 	spin_lock_irq(&xhci->lock);
1142 
1143 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1144 		reinit_xhc = true;
1145 
1146 	if (!reinit_xhc) {
1147 		/*
1148 		 * Some controllers might lose power during suspend, so wait
1149 		 * for controller not ready bit to clear, just as in xHC init.
1150 		 */
1151 		retval = xhci_handshake(&xhci->op_regs->status,
1152 					STS_CNR, 0, 10 * 1000 * 1000);
1153 		if (retval) {
1154 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1155 				  retval);
1156 			spin_unlock_irq(&xhci->lock);
1157 			return retval;
1158 		}
1159 		/* step 1: restore register */
1160 		xhci_restore_registers(xhci);
1161 		/* step 2: initialize command ring buffer */
1162 		xhci_set_cmd_ring_deq(xhci);
1163 		/* step 3: restore state and start state*/
1164 		/* step 3: set CRS flag */
1165 		command = readl(&xhci->op_regs->command);
1166 		command |= CMD_CRS;
1167 		writel(command, &xhci->op_regs->command);
1168 		/*
1169 		 * Some controllers take up to 55+ ms to complete the controller
1170 		 * restore so setting the timeout to 100ms. Xhci specification
1171 		 * doesn't mention any timeout value.
1172 		 */
1173 		if (xhci_handshake(&xhci->op_regs->status,
1174 			      STS_RESTORE, 0, 100 * 1000)) {
1175 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1176 			spin_unlock_irq(&xhci->lock);
1177 			return -ETIMEDOUT;
1178 		}
1179 	}
1180 
1181 	temp = readl(&xhci->op_regs->status);
1182 
1183 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1184 	if (temp & (STS_SRE | STS_HCE)) {
1185 		reinit_xhc = true;
1186 		if (!xhci->broken_suspend)
1187 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1188 	}
1189 
1190 	if (reinit_xhc) {
1191 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1192 				!(xhci_all_ports_seen_u0(xhci))) {
1193 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1194 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1195 				"Compliance Mode Recovery Timer deleted!");
1196 		}
1197 
1198 		/* Let the USB core know _both_ roothubs lost power. */
1199 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1200 		if (xhci->shared_hcd)
1201 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1202 
1203 		xhci_dbg(xhci, "Stop HCD\n");
1204 		xhci_halt(xhci);
1205 		xhci_zero_64b_regs(xhci);
1206 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1207 		spin_unlock_irq(&xhci->lock);
1208 		if (retval)
1209 			return retval;
1210 		xhci_cleanup_msix(xhci);
1211 
1212 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1213 		temp = readl(&xhci->op_regs->status);
1214 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1215 		temp = readl(&xhci->ir_set->irq_pending);
1216 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1217 
1218 		xhci_dbg(xhci, "cleaning up memory\n");
1219 		xhci_mem_cleanup(xhci);
1220 		xhci_debugfs_exit(xhci);
1221 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1222 			    readl(&xhci->op_regs->status));
1223 
1224 		/* USB core calls the PCI reinit and start functions twice:
1225 		 * first with the primary HCD, and then with the secondary HCD.
1226 		 * If we don't do the same, the host will never be started.
1227 		 */
1228 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1229 		retval = xhci_init(hcd);
1230 		if (retval)
1231 			return retval;
1232 		comp_timer_running = true;
1233 
1234 		xhci_dbg(xhci, "Start the primary HCD\n");
1235 		retval = xhci_run(hcd);
1236 		if (!retval && xhci->shared_hcd) {
1237 			xhci_dbg(xhci, "Start the secondary HCD\n");
1238 			retval = xhci_run(xhci->shared_hcd);
1239 		}
1240 
1241 		hcd->state = HC_STATE_SUSPENDED;
1242 		if (xhci->shared_hcd)
1243 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1244 		goto done;
1245 	}
1246 
1247 	/* step 4: set Run/Stop bit */
1248 	command = readl(&xhci->op_regs->command);
1249 	command |= CMD_RUN;
1250 	writel(command, &xhci->op_regs->command);
1251 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1252 		  0, 250 * 1000);
1253 
1254 	/* step 5: walk topology and initialize portsc,
1255 	 * portpmsc and portli
1256 	 */
1257 	/* this is done in bus_resume */
1258 
1259 	/* step 6: restart each of the previously
1260 	 * Running endpoints by ringing their doorbells
1261 	 */
1262 
1263 	spin_unlock_irq(&xhci->lock);
1264 
1265 	xhci_dbc_resume(xhci);
1266 
1267  done:
1268 	if (retval == 0) {
1269 		/*
1270 		 * Resume roothubs only if there are pending events.
1271 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1272 		 * the first wake signalling failed, give it that chance.
1273 		 */
1274 		pending_portevent = xhci_pending_portevent(xhci);
1275 		if (!pending_portevent) {
1276 			msleep(120);
1277 			pending_portevent = xhci_pending_portevent(xhci);
1278 		}
1279 
1280 		if (pending_portevent) {
1281 			if (xhci->shared_hcd)
1282 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1283 			usb_hcd_resume_root_hub(hcd);
1284 		}
1285 	}
1286 	/*
1287 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1288 	 * be re-initialized Always after a system resume. Ports are subject
1289 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1290 	 * ports have entered previously to U0 before system's suspension.
1291 	 */
1292 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1293 		compliance_mode_recovery_timer_init(xhci);
1294 
1295 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1296 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1297 
1298 	/* Re-enable port polling. */
1299 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1300 		 __func__, hcd->self.busnum);
1301 	if (xhci->shared_hcd) {
1302 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1303 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1304 	}
1305 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1306 	usb_hcd_poll_rh_status(hcd);
1307 
1308 	return retval;
1309 }
1310 EXPORT_SYMBOL_GPL(xhci_resume);
1311 #endif	/* CONFIG_PM */
1312 
1313 /*-------------------------------------------------------------------------*/
1314 
1315 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1316 {
1317 	void *temp;
1318 	int ret = 0;
1319 	unsigned int buf_len;
1320 	enum dma_data_direction dir;
1321 
1322 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1323 	buf_len = urb->transfer_buffer_length;
1324 
1325 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1326 			    dev_to_node(hcd->self.sysdev));
1327 
1328 	if (usb_urb_dir_out(urb))
1329 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1330 				   temp, buf_len, 0);
1331 
1332 	urb->transfer_buffer = temp;
1333 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1334 					   urb->transfer_buffer,
1335 					   urb->transfer_buffer_length,
1336 					   dir);
1337 
1338 	if (dma_mapping_error(hcd->self.sysdev,
1339 			      urb->transfer_dma)) {
1340 		ret = -EAGAIN;
1341 		kfree(temp);
1342 	} else {
1343 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1344 	}
1345 
1346 	return ret;
1347 }
1348 
1349 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1350 					  struct urb *urb)
1351 {
1352 	bool ret = false;
1353 	unsigned int i;
1354 	unsigned int len = 0;
1355 	unsigned int trb_size;
1356 	unsigned int max_pkt;
1357 	struct scatterlist *sg;
1358 	struct scatterlist *tail_sg;
1359 
1360 	tail_sg = urb->sg;
1361 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1362 
1363 	if (!urb->num_sgs)
1364 		return ret;
1365 
1366 	if (urb->dev->speed >= USB_SPEED_SUPER)
1367 		trb_size = TRB_CACHE_SIZE_SS;
1368 	else
1369 		trb_size = TRB_CACHE_SIZE_HS;
1370 
1371 	if (urb->transfer_buffer_length != 0 &&
1372 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1373 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1374 			len = len + sg->length;
1375 			if (i > trb_size - 2) {
1376 				len = len - tail_sg->length;
1377 				if (len < max_pkt) {
1378 					ret = true;
1379 					break;
1380 				}
1381 
1382 				tail_sg = sg_next(tail_sg);
1383 			}
1384 		}
1385 	}
1386 	return ret;
1387 }
1388 
1389 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1390 {
1391 	unsigned int len;
1392 	unsigned int buf_len;
1393 	enum dma_data_direction dir;
1394 
1395 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1396 
1397 	buf_len = urb->transfer_buffer_length;
1398 
1399 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1400 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1401 		dma_unmap_single(hcd->self.sysdev,
1402 				 urb->transfer_dma,
1403 				 urb->transfer_buffer_length,
1404 				 dir);
1405 
1406 	if (usb_urb_dir_in(urb)) {
1407 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1408 					   urb->transfer_buffer,
1409 					   buf_len,
1410 					   0);
1411 		if (len != buf_len) {
1412 			xhci_dbg(hcd_to_xhci(hcd),
1413 				 "Copy from tmp buf to urb sg list failed\n");
1414 			urb->actual_length = len;
1415 		}
1416 	}
1417 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1418 	kfree(urb->transfer_buffer);
1419 	urb->transfer_buffer = NULL;
1420 }
1421 
1422 /*
1423  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1424  * we'll copy the actual data into the TRB address register. This is limited to
1425  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1426  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1427  */
1428 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1429 				gfp_t mem_flags)
1430 {
1431 	struct xhci_hcd *xhci;
1432 
1433 	xhci = hcd_to_xhci(hcd);
1434 
1435 	if (xhci_urb_suitable_for_idt(urb))
1436 		return 0;
1437 
1438 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1439 		if (xhci_urb_temp_buffer_required(hcd, urb))
1440 			return xhci_map_temp_buffer(hcd, urb);
1441 	}
1442 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1443 }
1444 
1445 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1446 {
1447 	struct xhci_hcd *xhci;
1448 	bool unmap_temp_buf = false;
1449 
1450 	xhci = hcd_to_xhci(hcd);
1451 
1452 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1453 		unmap_temp_buf = true;
1454 
1455 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1456 		xhci_unmap_temp_buf(hcd, urb);
1457 	else
1458 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1459 }
1460 
1461 /**
1462  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1463  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1464  * value to right shift 1 for the bitmask.
1465  *
1466  * Index  = (epnum * 2) + direction - 1,
1467  * where direction = 0 for OUT, 1 for IN.
1468  * For control endpoints, the IN index is used (OUT index is unused), so
1469  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1470  */
1471 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1472 {
1473 	unsigned int index;
1474 	if (usb_endpoint_xfer_control(desc))
1475 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1476 	else
1477 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1478 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1479 	return index;
1480 }
1481 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1482 
1483 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1484  * address from the XHCI endpoint index.
1485  */
1486 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1487 {
1488 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1489 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1490 	return direction | number;
1491 }
1492 
1493 /* Find the flag for this endpoint (for use in the control context).  Use the
1494  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1495  * bit 1, etc.
1496  */
1497 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1498 {
1499 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1500 }
1501 
1502 /* Compute the last valid endpoint context index.  Basically, this is the
1503  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1504  * we find the most significant bit set in the added contexts flags.
1505  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1506  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1507  */
1508 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1509 {
1510 	return fls(added_ctxs) - 1;
1511 }
1512 
1513 /* Returns 1 if the arguments are OK;
1514  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1515  */
1516 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1517 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1518 		const char *func) {
1519 	struct xhci_hcd	*xhci;
1520 	struct xhci_virt_device	*virt_dev;
1521 
1522 	if (!hcd || (check_ep && !ep) || !udev) {
1523 		pr_debug("xHCI %s called with invalid args\n", func);
1524 		return -EINVAL;
1525 	}
1526 	if (!udev->parent) {
1527 		pr_debug("xHCI %s called for root hub\n", func);
1528 		return 0;
1529 	}
1530 
1531 	xhci = hcd_to_xhci(hcd);
1532 	if (check_virt_dev) {
1533 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1534 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1535 					func);
1536 			return -EINVAL;
1537 		}
1538 
1539 		virt_dev = xhci->devs[udev->slot_id];
1540 		if (virt_dev->udev != udev) {
1541 			xhci_dbg(xhci, "xHCI %s called with udev and "
1542 					  "virt_dev does not match\n", func);
1543 			return -EINVAL;
1544 		}
1545 	}
1546 
1547 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1548 		return -ENODEV;
1549 
1550 	return 1;
1551 }
1552 
1553 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1554 		struct usb_device *udev, struct xhci_command *command,
1555 		bool ctx_change, bool must_succeed);
1556 
1557 /*
1558  * Full speed devices may have a max packet size greater than 8 bytes, but the
1559  * USB core doesn't know that until it reads the first 8 bytes of the
1560  * descriptor.  If the usb_device's max packet size changes after that point,
1561  * we need to issue an evaluate context command and wait on it.
1562  */
1563 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1564 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1565 {
1566 	struct xhci_container_ctx *out_ctx;
1567 	struct xhci_input_control_ctx *ctrl_ctx;
1568 	struct xhci_ep_ctx *ep_ctx;
1569 	struct xhci_command *command;
1570 	int max_packet_size;
1571 	int hw_max_packet_size;
1572 	int ret = 0;
1573 
1574 	out_ctx = xhci->devs[slot_id]->out_ctx;
1575 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1576 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1577 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1578 	if (hw_max_packet_size != max_packet_size) {
1579 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1580 				"Max Packet Size for ep 0 changed.");
1581 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1582 				"Max packet size in usb_device = %d",
1583 				max_packet_size);
1584 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1585 				"Max packet size in xHCI HW = %d",
1586 				hw_max_packet_size);
1587 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1588 				"Issuing evaluate context command.");
1589 
1590 		/* Set up the input context flags for the command */
1591 		/* FIXME: This won't work if a non-default control endpoint
1592 		 * changes max packet sizes.
1593 		 */
1594 
1595 		command = xhci_alloc_command(xhci, true, mem_flags);
1596 		if (!command)
1597 			return -ENOMEM;
1598 
1599 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1600 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1601 		if (!ctrl_ctx) {
1602 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1603 					__func__);
1604 			ret = -ENOMEM;
1605 			goto command_cleanup;
1606 		}
1607 		/* Set up the modified control endpoint 0 */
1608 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1609 				xhci->devs[slot_id]->out_ctx, ep_index);
1610 
1611 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1612 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1613 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1614 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1615 
1616 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1617 		ctrl_ctx->drop_flags = 0;
1618 
1619 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1620 				true, false);
1621 
1622 		/* Clean up the input context for later use by bandwidth
1623 		 * functions.
1624 		 */
1625 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1626 command_cleanup:
1627 		kfree(command->completion);
1628 		kfree(command);
1629 	}
1630 	return ret;
1631 }
1632 
1633 /*
1634  * non-error returns are a promise to giveback() the urb later
1635  * we drop ownership so next owner (or urb unlink) can get it
1636  */
1637 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1638 {
1639 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1640 	unsigned long flags;
1641 	int ret = 0;
1642 	unsigned int slot_id, ep_index;
1643 	unsigned int *ep_state;
1644 	struct urb_priv	*urb_priv;
1645 	int num_tds;
1646 
1647 	if (!urb)
1648 		return -EINVAL;
1649 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1650 					true, true, __func__);
1651 	if (ret <= 0)
1652 		return ret ? ret : -EINVAL;
1653 
1654 	slot_id = urb->dev->slot_id;
1655 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1656 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1657 
1658 	if (!HCD_HW_ACCESSIBLE(hcd))
1659 		return -ESHUTDOWN;
1660 
1661 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1662 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1663 		return -ENODEV;
1664 	}
1665 
1666 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1667 		num_tds = urb->number_of_packets;
1668 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1669 	    urb->transfer_buffer_length > 0 &&
1670 	    urb->transfer_flags & URB_ZERO_PACKET &&
1671 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1672 		num_tds = 2;
1673 	else
1674 		num_tds = 1;
1675 
1676 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1677 	if (!urb_priv)
1678 		return -ENOMEM;
1679 
1680 	urb_priv->num_tds = num_tds;
1681 	urb_priv->num_tds_done = 0;
1682 	urb->hcpriv = urb_priv;
1683 
1684 	trace_xhci_urb_enqueue(urb);
1685 
1686 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1687 		/* Check to see if the max packet size for the default control
1688 		 * endpoint changed during FS device enumeration
1689 		 */
1690 		if (urb->dev->speed == USB_SPEED_FULL) {
1691 			ret = xhci_check_maxpacket(xhci, slot_id,
1692 					ep_index, urb, mem_flags);
1693 			if (ret < 0) {
1694 				xhci_urb_free_priv(urb_priv);
1695 				urb->hcpriv = NULL;
1696 				return ret;
1697 			}
1698 		}
1699 	}
1700 
1701 	spin_lock_irqsave(&xhci->lock, flags);
1702 
1703 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1704 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1705 			 urb->ep->desc.bEndpointAddress, urb);
1706 		ret = -ESHUTDOWN;
1707 		goto free_priv;
1708 	}
1709 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1710 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1711 			  *ep_state);
1712 		ret = -EINVAL;
1713 		goto free_priv;
1714 	}
1715 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1716 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1717 		ret = -EINVAL;
1718 		goto free_priv;
1719 	}
1720 
1721 	switch (usb_endpoint_type(&urb->ep->desc)) {
1722 
1723 	case USB_ENDPOINT_XFER_CONTROL:
1724 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1725 					 slot_id, ep_index);
1726 		break;
1727 	case USB_ENDPOINT_XFER_BULK:
1728 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1729 					 slot_id, ep_index);
1730 		break;
1731 	case USB_ENDPOINT_XFER_INT:
1732 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1733 				slot_id, ep_index);
1734 		break;
1735 	case USB_ENDPOINT_XFER_ISOC:
1736 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1737 				slot_id, ep_index);
1738 	}
1739 
1740 	if (ret) {
1741 free_priv:
1742 		xhci_urb_free_priv(urb_priv);
1743 		urb->hcpriv = NULL;
1744 	}
1745 	spin_unlock_irqrestore(&xhci->lock, flags);
1746 	return ret;
1747 }
1748 
1749 /*
1750  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1751  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1752  * should pick up where it left off in the TD, unless a Set Transfer Ring
1753  * Dequeue Pointer is issued.
1754  *
1755  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1756  * the ring.  Since the ring is a contiguous structure, they can't be physically
1757  * removed.  Instead, there are two options:
1758  *
1759  *  1) If the HC is in the middle of processing the URB to be canceled, we
1760  *     simply move the ring's dequeue pointer past those TRBs using the Set
1761  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1762  *     when drivers timeout on the last submitted URB and attempt to cancel.
1763  *
1764  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1765  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1766  *     HC will need to invalidate the any TRBs it has cached after the stop
1767  *     endpoint command, as noted in the xHCI 0.95 errata.
1768  *
1769  *  3) The TD may have completed by the time the Stop Endpoint Command
1770  *     completes, so software needs to handle that case too.
1771  *
1772  * This function should protect against the TD enqueueing code ringing the
1773  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1774  * It also needs to account for multiple cancellations on happening at the same
1775  * time for the same endpoint.
1776  *
1777  * Note that this function can be called in any context, or so says
1778  * usb_hcd_unlink_urb()
1779  */
1780 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1781 {
1782 	unsigned long flags;
1783 	int ret, i;
1784 	u32 temp;
1785 	struct xhci_hcd *xhci;
1786 	struct urb_priv	*urb_priv;
1787 	struct xhci_td *td;
1788 	unsigned int ep_index;
1789 	struct xhci_ring *ep_ring;
1790 	struct xhci_virt_ep *ep;
1791 	struct xhci_command *command;
1792 	struct xhci_virt_device *vdev;
1793 
1794 	xhci = hcd_to_xhci(hcd);
1795 	spin_lock_irqsave(&xhci->lock, flags);
1796 
1797 	trace_xhci_urb_dequeue(urb);
1798 
1799 	/* Make sure the URB hasn't completed or been unlinked already */
1800 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1801 	if (ret)
1802 		goto done;
1803 
1804 	/* give back URB now if we can't queue it for cancel */
1805 	vdev = xhci->devs[urb->dev->slot_id];
1806 	urb_priv = urb->hcpriv;
1807 	if (!vdev || !urb_priv)
1808 		goto err_giveback;
1809 
1810 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1811 	ep = &vdev->eps[ep_index];
1812 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1813 	if (!ep || !ep_ring)
1814 		goto err_giveback;
1815 
1816 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1817 	temp = readl(&xhci->op_regs->status);
1818 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1819 		xhci_hc_died(xhci);
1820 		goto done;
1821 	}
1822 
1823 	/*
1824 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1825 	 * make sure none of the ring related pointers in this URB private data
1826 	 * are touched, such as td_list, otherwise we overwrite freed data
1827 	 */
1828 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1829 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1830 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1831 			td = &urb_priv->td[i];
1832 			if (!list_empty(&td->cancelled_td_list))
1833 				list_del_init(&td->cancelled_td_list);
1834 		}
1835 		goto err_giveback;
1836 	}
1837 
1838 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1839 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1840 				"HC halted, freeing TD manually.");
1841 		for (i = urb_priv->num_tds_done;
1842 		     i < urb_priv->num_tds;
1843 		     i++) {
1844 			td = &urb_priv->td[i];
1845 			if (!list_empty(&td->td_list))
1846 				list_del_init(&td->td_list);
1847 			if (!list_empty(&td->cancelled_td_list))
1848 				list_del_init(&td->cancelled_td_list);
1849 		}
1850 		goto err_giveback;
1851 	}
1852 
1853 	i = urb_priv->num_tds_done;
1854 	if (i < urb_priv->num_tds)
1855 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1856 				"Cancel URB %p, dev %s, ep 0x%x, "
1857 				"starting at offset 0x%llx",
1858 				urb, urb->dev->devpath,
1859 				urb->ep->desc.bEndpointAddress,
1860 				(unsigned long long) xhci_trb_virt_to_dma(
1861 					urb_priv->td[i].start_seg,
1862 					urb_priv->td[i].first_trb));
1863 
1864 	for (; i < urb_priv->num_tds; i++) {
1865 		td = &urb_priv->td[i];
1866 		/* TD can already be on cancelled list if ep halted on it */
1867 		if (list_empty(&td->cancelled_td_list)) {
1868 			td->cancel_status = TD_DIRTY;
1869 			list_add_tail(&td->cancelled_td_list,
1870 				      &ep->cancelled_td_list);
1871 		}
1872 	}
1873 
1874 	/* Queue a stop endpoint command, but only if this is
1875 	 * the first cancellation to be handled.
1876 	 */
1877 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1878 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1879 		if (!command) {
1880 			ret = -ENOMEM;
1881 			goto done;
1882 		}
1883 		ep->ep_state |= EP_STOP_CMD_PENDING;
1884 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1885 					 ep_index, 0);
1886 		xhci_ring_cmd_db(xhci);
1887 	}
1888 done:
1889 	spin_unlock_irqrestore(&xhci->lock, flags);
1890 	return ret;
1891 
1892 err_giveback:
1893 	if (urb_priv)
1894 		xhci_urb_free_priv(urb_priv);
1895 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1896 	spin_unlock_irqrestore(&xhci->lock, flags);
1897 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1898 	return ret;
1899 }
1900 
1901 /* Drop an endpoint from a new bandwidth configuration for this device.
1902  * Only one call to this function is allowed per endpoint before
1903  * check_bandwidth() or reset_bandwidth() must be called.
1904  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1905  * add the endpoint to the schedule with possibly new parameters denoted by a
1906  * different endpoint descriptor in usb_host_endpoint.
1907  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1908  * not allowed.
1909  *
1910  * The USB core will not allow URBs to be queued to an endpoint that is being
1911  * disabled, so there's no need for mutual exclusion to protect
1912  * the xhci->devs[slot_id] structure.
1913  */
1914 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1915 		       struct usb_host_endpoint *ep)
1916 {
1917 	struct xhci_hcd *xhci;
1918 	struct xhci_container_ctx *in_ctx, *out_ctx;
1919 	struct xhci_input_control_ctx *ctrl_ctx;
1920 	unsigned int ep_index;
1921 	struct xhci_ep_ctx *ep_ctx;
1922 	u32 drop_flag;
1923 	u32 new_add_flags, new_drop_flags;
1924 	int ret;
1925 
1926 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1927 	if (ret <= 0)
1928 		return ret;
1929 	xhci = hcd_to_xhci(hcd);
1930 	if (xhci->xhc_state & XHCI_STATE_DYING)
1931 		return -ENODEV;
1932 
1933 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1934 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1935 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1936 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1937 				__func__, drop_flag);
1938 		return 0;
1939 	}
1940 
1941 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1942 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1943 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1944 	if (!ctrl_ctx) {
1945 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1946 				__func__);
1947 		return 0;
1948 	}
1949 
1950 	ep_index = xhci_get_endpoint_index(&ep->desc);
1951 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1952 	/* If the HC already knows the endpoint is disabled,
1953 	 * or the HCD has noted it is disabled, ignore this request
1954 	 */
1955 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1956 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1957 	    xhci_get_endpoint_flag(&ep->desc)) {
1958 		/* Do not warn when called after a usb_device_reset */
1959 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1960 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1961 				  __func__, ep);
1962 		return 0;
1963 	}
1964 
1965 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1966 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1967 
1968 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1969 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1970 
1971 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1972 
1973 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1974 
1975 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1976 			(unsigned int) ep->desc.bEndpointAddress,
1977 			udev->slot_id,
1978 			(unsigned int) new_drop_flags,
1979 			(unsigned int) new_add_flags);
1980 	return 0;
1981 }
1982 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1983 
1984 /* Add an endpoint to a new possible bandwidth configuration for this device.
1985  * Only one call to this function is allowed per endpoint before
1986  * check_bandwidth() or reset_bandwidth() must be called.
1987  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1988  * add the endpoint to the schedule with possibly new parameters denoted by a
1989  * different endpoint descriptor in usb_host_endpoint.
1990  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1991  * not allowed.
1992  *
1993  * The USB core will not allow URBs to be queued to an endpoint until the
1994  * configuration or alt setting is installed in the device, so there's no need
1995  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1996  */
1997 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1998 		      struct usb_host_endpoint *ep)
1999 {
2000 	struct xhci_hcd *xhci;
2001 	struct xhci_container_ctx *in_ctx;
2002 	unsigned int ep_index;
2003 	struct xhci_input_control_ctx *ctrl_ctx;
2004 	struct xhci_ep_ctx *ep_ctx;
2005 	u32 added_ctxs;
2006 	u32 new_add_flags, new_drop_flags;
2007 	struct xhci_virt_device *virt_dev;
2008 	int ret = 0;
2009 
2010 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2011 	if (ret <= 0) {
2012 		/* So we won't queue a reset ep command for a root hub */
2013 		ep->hcpriv = NULL;
2014 		return ret;
2015 	}
2016 	xhci = hcd_to_xhci(hcd);
2017 	if (xhci->xhc_state & XHCI_STATE_DYING)
2018 		return -ENODEV;
2019 
2020 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2021 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2022 		/* FIXME when we have to issue an evaluate endpoint command to
2023 		 * deal with ep0 max packet size changing once we get the
2024 		 * descriptors
2025 		 */
2026 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2027 				__func__, added_ctxs);
2028 		return 0;
2029 	}
2030 
2031 	virt_dev = xhci->devs[udev->slot_id];
2032 	in_ctx = virt_dev->in_ctx;
2033 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2034 	if (!ctrl_ctx) {
2035 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2036 				__func__);
2037 		return 0;
2038 	}
2039 
2040 	ep_index = xhci_get_endpoint_index(&ep->desc);
2041 	/* If this endpoint is already in use, and the upper layers are trying
2042 	 * to add it again without dropping it, reject the addition.
2043 	 */
2044 	if (virt_dev->eps[ep_index].ring &&
2045 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2046 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2047 				"without dropping it.\n",
2048 				(unsigned int) ep->desc.bEndpointAddress);
2049 		return -EINVAL;
2050 	}
2051 
2052 	/* If the HCD has already noted the endpoint is enabled,
2053 	 * ignore this request.
2054 	 */
2055 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2056 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2057 				__func__, ep);
2058 		return 0;
2059 	}
2060 
2061 	/*
2062 	 * Configuration and alternate setting changes must be done in
2063 	 * process context, not interrupt context (or so documenation
2064 	 * for usb_set_interface() and usb_set_configuration() claim).
2065 	 */
2066 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2067 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2068 				__func__, ep->desc.bEndpointAddress);
2069 		return -ENOMEM;
2070 	}
2071 
2072 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2073 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2074 
2075 	/* If xhci_endpoint_disable() was called for this endpoint, but the
2076 	 * xHC hasn't been notified yet through the check_bandwidth() call,
2077 	 * this re-adds a new state for the endpoint from the new endpoint
2078 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2079 	 * drop flags alone.
2080 	 */
2081 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2082 
2083 	/* Store the usb_device pointer for later use */
2084 	ep->hcpriv = udev;
2085 
2086 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2087 	trace_xhci_add_endpoint(ep_ctx);
2088 
2089 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2090 			(unsigned int) ep->desc.bEndpointAddress,
2091 			udev->slot_id,
2092 			(unsigned int) new_drop_flags,
2093 			(unsigned int) new_add_flags);
2094 	return 0;
2095 }
2096 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2097 
2098 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2099 {
2100 	struct xhci_input_control_ctx *ctrl_ctx;
2101 	struct xhci_ep_ctx *ep_ctx;
2102 	struct xhci_slot_ctx *slot_ctx;
2103 	int i;
2104 
2105 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2106 	if (!ctrl_ctx) {
2107 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2108 				__func__);
2109 		return;
2110 	}
2111 
2112 	/* When a device's add flag and drop flag are zero, any subsequent
2113 	 * configure endpoint command will leave that endpoint's state
2114 	 * untouched.  Make sure we don't leave any old state in the input
2115 	 * endpoint contexts.
2116 	 */
2117 	ctrl_ctx->drop_flags = 0;
2118 	ctrl_ctx->add_flags = 0;
2119 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2120 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2121 	/* Endpoint 0 is always valid */
2122 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2123 	for (i = 1; i < 31; i++) {
2124 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2125 		ep_ctx->ep_info = 0;
2126 		ep_ctx->ep_info2 = 0;
2127 		ep_ctx->deq = 0;
2128 		ep_ctx->tx_info = 0;
2129 	}
2130 }
2131 
2132 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2133 		struct usb_device *udev, u32 *cmd_status)
2134 {
2135 	int ret;
2136 
2137 	switch (*cmd_status) {
2138 	case COMP_COMMAND_ABORTED:
2139 	case COMP_COMMAND_RING_STOPPED:
2140 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2141 		ret = -ETIME;
2142 		break;
2143 	case COMP_RESOURCE_ERROR:
2144 		dev_warn(&udev->dev,
2145 			 "Not enough host controller resources for new device state.\n");
2146 		ret = -ENOMEM;
2147 		/* FIXME: can we allocate more resources for the HC? */
2148 		break;
2149 	case COMP_BANDWIDTH_ERROR:
2150 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2151 		dev_warn(&udev->dev,
2152 			 "Not enough bandwidth for new device state.\n");
2153 		ret = -ENOSPC;
2154 		/* FIXME: can we go back to the old state? */
2155 		break;
2156 	case COMP_TRB_ERROR:
2157 		/* the HCD set up something wrong */
2158 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2159 				"add flag = 1, "
2160 				"and endpoint is not disabled.\n");
2161 		ret = -EINVAL;
2162 		break;
2163 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2164 		dev_warn(&udev->dev,
2165 			 "ERROR: Incompatible device for endpoint configure command.\n");
2166 		ret = -ENODEV;
2167 		break;
2168 	case COMP_SUCCESS:
2169 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2170 				"Successful Endpoint Configure command");
2171 		ret = 0;
2172 		break;
2173 	default:
2174 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2175 				*cmd_status);
2176 		ret = -EINVAL;
2177 		break;
2178 	}
2179 	return ret;
2180 }
2181 
2182 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2183 		struct usb_device *udev, u32 *cmd_status)
2184 {
2185 	int ret;
2186 
2187 	switch (*cmd_status) {
2188 	case COMP_COMMAND_ABORTED:
2189 	case COMP_COMMAND_RING_STOPPED:
2190 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2191 		ret = -ETIME;
2192 		break;
2193 	case COMP_PARAMETER_ERROR:
2194 		dev_warn(&udev->dev,
2195 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2196 		ret = -EINVAL;
2197 		break;
2198 	case COMP_SLOT_NOT_ENABLED_ERROR:
2199 		dev_warn(&udev->dev,
2200 			"WARN: slot not enabled for evaluate context command.\n");
2201 		ret = -EINVAL;
2202 		break;
2203 	case COMP_CONTEXT_STATE_ERROR:
2204 		dev_warn(&udev->dev,
2205 			"WARN: invalid context state for evaluate context command.\n");
2206 		ret = -EINVAL;
2207 		break;
2208 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2209 		dev_warn(&udev->dev,
2210 			"ERROR: Incompatible device for evaluate context command.\n");
2211 		ret = -ENODEV;
2212 		break;
2213 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2214 		/* Max Exit Latency too large error */
2215 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2216 		ret = -EINVAL;
2217 		break;
2218 	case COMP_SUCCESS:
2219 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2220 				"Successful evaluate context command");
2221 		ret = 0;
2222 		break;
2223 	default:
2224 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2225 			*cmd_status);
2226 		ret = -EINVAL;
2227 		break;
2228 	}
2229 	return ret;
2230 }
2231 
2232 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2233 		struct xhci_input_control_ctx *ctrl_ctx)
2234 {
2235 	u32 valid_add_flags;
2236 	u32 valid_drop_flags;
2237 
2238 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2239 	 * (bit 1).  The default control endpoint is added during the Address
2240 	 * Device command and is never removed until the slot is disabled.
2241 	 */
2242 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2243 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2244 
2245 	/* Use hweight32 to count the number of ones in the add flags, or
2246 	 * number of endpoints added.  Don't count endpoints that are changed
2247 	 * (both added and dropped).
2248 	 */
2249 	return hweight32(valid_add_flags) -
2250 		hweight32(valid_add_flags & valid_drop_flags);
2251 }
2252 
2253 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2254 		struct xhci_input_control_ctx *ctrl_ctx)
2255 {
2256 	u32 valid_add_flags;
2257 	u32 valid_drop_flags;
2258 
2259 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2260 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2261 
2262 	return hweight32(valid_drop_flags) -
2263 		hweight32(valid_add_flags & valid_drop_flags);
2264 }
2265 
2266 /*
2267  * We need to reserve the new number of endpoints before the configure endpoint
2268  * command completes.  We can't subtract the dropped endpoints from the number
2269  * of active endpoints until the command completes because we can oversubscribe
2270  * the host in this case:
2271  *
2272  *  - the first configure endpoint command drops more endpoints than it adds
2273  *  - a second configure endpoint command that adds more endpoints is queued
2274  *  - the first configure endpoint command fails, so the config is unchanged
2275  *  - the second command may succeed, even though there isn't enough resources
2276  *
2277  * Must be called with xhci->lock held.
2278  */
2279 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2280 		struct xhci_input_control_ctx *ctrl_ctx)
2281 {
2282 	u32 added_eps;
2283 
2284 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2285 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2286 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2287 				"Not enough ep ctxs: "
2288 				"%u active, need to add %u, limit is %u.",
2289 				xhci->num_active_eps, added_eps,
2290 				xhci->limit_active_eps);
2291 		return -ENOMEM;
2292 	}
2293 	xhci->num_active_eps += added_eps;
2294 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2295 			"Adding %u ep ctxs, %u now active.", added_eps,
2296 			xhci->num_active_eps);
2297 	return 0;
2298 }
2299 
2300 /*
2301  * The configure endpoint was failed by the xHC for some other reason, so we
2302  * need to revert the resources that failed configuration would have used.
2303  *
2304  * Must be called with xhci->lock held.
2305  */
2306 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2307 		struct xhci_input_control_ctx *ctrl_ctx)
2308 {
2309 	u32 num_failed_eps;
2310 
2311 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2312 	xhci->num_active_eps -= num_failed_eps;
2313 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2314 			"Removing %u failed ep ctxs, %u now active.",
2315 			num_failed_eps,
2316 			xhci->num_active_eps);
2317 }
2318 
2319 /*
2320  * Now that the command has completed, clean up the active endpoint count by
2321  * subtracting out the endpoints that were dropped (but not changed).
2322  *
2323  * Must be called with xhci->lock held.
2324  */
2325 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2326 		struct xhci_input_control_ctx *ctrl_ctx)
2327 {
2328 	u32 num_dropped_eps;
2329 
2330 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2331 	xhci->num_active_eps -= num_dropped_eps;
2332 	if (num_dropped_eps)
2333 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2334 				"Removing %u dropped ep ctxs, %u now active.",
2335 				num_dropped_eps,
2336 				xhci->num_active_eps);
2337 }
2338 
2339 static unsigned int xhci_get_block_size(struct usb_device *udev)
2340 {
2341 	switch (udev->speed) {
2342 	case USB_SPEED_LOW:
2343 	case USB_SPEED_FULL:
2344 		return FS_BLOCK;
2345 	case USB_SPEED_HIGH:
2346 		return HS_BLOCK;
2347 	case USB_SPEED_SUPER:
2348 	case USB_SPEED_SUPER_PLUS:
2349 		return SS_BLOCK;
2350 	case USB_SPEED_UNKNOWN:
2351 	case USB_SPEED_WIRELESS:
2352 	default:
2353 		/* Should never happen */
2354 		return 1;
2355 	}
2356 }
2357 
2358 static unsigned int
2359 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2360 {
2361 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2362 		return LS_OVERHEAD;
2363 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2364 		return FS_OVERHEAD;
2365 	return HS_OVERHEAD;
2366 }
2367 
2368 /* If we are changing a LS/FS device under a HS hub,
2369  * make sure (if we are activating a new TT) that the HS bus has enough
2370  * bandwidth for this new TT.
2371  */
2372 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2373 		struct xhci_virt_device *virt_dev,
2374 		int old_active_eps)
2375 {
2376 	struct xhci_interval_bw_table *bw_table;
2377 	struct xhci_tt_bw_info *tt_info;
2378 
2379 	/* Find the bandwidth table for the root port this TT is attached to. */
2380 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2381 	tt_info = virt_dev->tt_info;
2382 	/* If this TT already had active endpoints, the bandwidth for this TT
2383 	 * has already been added.  Removing all periodic endpoints (and thus
2384 	 * making the TT enactive) will only decrease the bandwidth used.
2385 	 */
2386 	if (old_active_eps)
2387 		return 0;
2388 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2389 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2390 			return -ENOMEM;
2391 		return 0;
2392 	}
2393 	/* Not sure why we would have no new active endpoints...
2394 	 *
2395 	 * Maybe because of an Evaluate Context change for a hub update or a
2396 	 * control endpoint 0 max packet size change?
2397 	 * FIXME: skip the bandwidth calculation in that case.
2398 	 */
2399 	return 0;
2400 }
2401 
2402 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2403 		struct xhci_virt_device *virt_dev)
2404 {
2405 	unsigned int bw_reserved;
2406 
2407 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2408 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2409 		return -ENOMEM;
2410 
2411 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2412 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2413 		return -ENOMEM;
2414 
2415 	return 0;
2416 }
2417 
2418 /*
2419  * This algorithm is a very conservative estimate of the worst-case scheduling
2420  * scenario for any one interval.  The hardware dynamically schedules the
2421  * packets, so we can't tell which microframe could be the limiting factor in
2422  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2423  *
2424  * Obviously, we can't solve an NP complete problem to find the minimum worst
2425  * case scenario.  Instead, we come up with an estimate that is no less than
2426  * the worst case bandwidth used for any one microframe, but may be an
2427  * over-estimate.
2428  *
2429  * We walk the requirements for each endpoint by interval, starting with the
2430  * smallest interval, and place packets in the schedule where there is only one
2431  * possible way to schedule packets for that interval.  In order to simplify
2432  * this algorithm, we record the largest max packet size for each interval, and
2433  * assume all packets will be that size.
2434  *
2435  * For interval 0, we obviously must schedule all packets for each interval.
2436  * The bandwidth for interval 0 is just the amount of data to be transmitted
2437  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2438  * the number of packets).
2439  *
2440  * For interval 1, we have two possible microframes to schedule those packets
2441  * in.  For this algorithm, if we can schedule the same number of packets for
2442  * each possible scheduling opportunity (each microframe), we will do so.  The
2443  * remaining number of packets will be saved to be transmitted in the gaps in
2444  * the next interval's scheduling sequence.
2445  *
2446  * As we move those remaining packets to be scheduled with interval 2 packets,
2447  * we have to double the number of remaining packets to transmit.  This is
2448  * because the intervals are actually powers of 2, and we would be transmitting
2449  * the previous interval's packets twice in this interval.  We also have to be
2450  * sure that when we look at the largest max packet size for this interval, we
2451  * also look at the largest max packet size for the remaining packets and take
2452  * the greater of the two.
2453  *
2454  * The algorithm continues to evenly distribute packets in each scheduling
2455  * opportunity, and push the remaining packets out, until we get to the last
2456  * interval.  Then those packets and their associated overhead are just added
2457  * to the bandwidth used.
2458  */
2459 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2460 		struct xhci_virt_device *virt_dev,
2461 		int old_active_eps)
2462 {
2463 	unsigned int bw_reserved;
2464 	unsigned int max_bandwidth;
2465 	unsigned int bw_used;
2466 	unsigned int block_size;
2467 	struct xhci_interval_bw_table *bw_table;
2468 	unsigned int packet_size = 0;
2469 	unsigned int overhead = 0;
2470 	unsigned int packets_transmitted = 0;
2471 	unsigned int packets_remaining = 0;
2472 	unsigned int i;
2473 
2474 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2475 		return xhci_check_ss_bw(xhci, virt_dev);
2476 
2477 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2478 		max_bandwidth = HS_BW_LIMIT;
2479 		/* Convert percent of bus BW reserved to blocks reserved */
2480 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2481 	} else {
2482 		max_bandwidth = FS_BW_LIMIT;
2483 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2484 	}
2485 
2486 	bw_table = virt_dev->bw_table;
2487 	/* We need to translate the max packet size and max ESIT payloads into
2488 	 * the units the hardware uses.
2489 	 */
2490 	block_size = xhci_get_block_size(virt_dev->udev);
2491 
2492 	/* If we are manipulating a LS/FS device under a HS hub, double check
2493 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2494 	 */
2495 	if (virt_dev->tt_info) {
2496 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2497 				"Recalculating BW for rootport %u",
2498 				virt_dev->real_port);
2499 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2500 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2501 					"newly activated TT.\n");
2502 			return -ENOMEM;
2503 		}
2504 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2505 				"Recalculating BW for TT slot %u port %u",
2506 				virt_dev->tt_info->slot_id,
2507 				virt_dev->tt_info->ttport);
2508 	} else {
2509 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2510 				"Recalculating BW for rootport %u",
2511 				virt_dev->real_port);
2512 	}
2513 
2514 	/* Add in how much bandwidth will be used for interval zero, or the
2515 	 * rounded max ESIT payload + number of packets * largest overhead.
2516 	 */
2517 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2518 		bw_table->interval_bw[0].num_packets *
2519 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2520 
2521 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2522 		unsigned int bw_added;
2523 		unsigned int largest_mps;
2524 		unsigned int interval_overhead;
2525 
2526 		/*
2527 		 * How many packets could we transmit in this interval?
2528 		 * If packets didn't fit in the previous interval, we will need
2529 		 * to transmit that many packets twice within this interval.
2530 		 */
2531 		packets_remaining = 2 * packets_remaining +
2532 			bw_table->interval_bw[i].num_packets;
2533 
2534 		/* Find the largest max packet size of this or the previous
2535 		 * interval.
2536 		 */
2537 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2538 			largest_mps = 0;
2539 		else {
2540 			struct xhci_virt_ep *virt_ep;
2541 			struct list_head *ep_entry;
2542 
2543 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2544 			virt_ep = list_entry(ep_entry,
2545 					struct xhci_virt_ep, bw_endpoint_list);
2546 			/* Convert to blocks, rounding up */
2547 			largest_mps = DIV_ROUND_UP(
2548 					virt_ep->bw_info.max_packet_size,
2549 					block_size);
2550 		}
2551 		if (largest_mps > packet_size)
2552 			packet_size = largest_mps;
2553 
2554 		/* Use the larger overhead of this or the previous interval. */
2555 		interval_overhead = xhci_get_largest_overhead(
2556 				&bw_table->interval_bw[i]);
2557 		if (interval_overhead > overhead)
2558 			overhead = interval_overhead;
2559 
2560 		/* How many packets can we evenly distribute across
2561 		 * (1 << (i + 1)) possible scheduling opportunities?
2562 		 */
2563 		packets_transmitted = packets_remaining >> (i + 1);
2564 
2565 		/* Add in the bandwidth used for those scheduled packets */
2566 		bw_added = packets_transmitted * (overhead + packet_size);
2567 
2568 		/* How many packets do we have remaining to transmit? */
2569 		packets_remaining = packets_remaining % (1 << (i + 1));
2570 
2571 		/* What largest max packet size should those packets have? */
2572 		/* If we've transmitted all packets, don't carry over the
2573 		 * largest packet size.
2574 		 */
2575 		if (packets_remaining == 0) {
2576 			packet_size = 0;
2577 			overhead = 0;
2578 		} else if (packets_transmitted > 0) {
2579 			/* Otherwise if we do have remaining packets, and we've
2580 			 * scheduled some packets in this interval, take the
2581 			 * largest max packet size from endpoints with this
2582 			 * interval.
2583 			 */
2584 			packet_size = largest_mps;
2585 			overhead = interval_overhead;
2586 		}
2587 		/* Otherwise carry over packet_size and overhead from the last
2588 		 * time we had a remainder.
2589 		 */
2590 		bw_used += bw_added;
2591 		if (bw_used > max_bandwidth) {
2592 			xhci_warn(xhci, "Not enough bandwidth. "
2593 					"Proposed: %u, Max: %u\n",
2594 				bw_used, max_bandwidth);
2595 			return -ENOMEM;
2596 		}
2597 	}
2598 	/*
2599 	 * Ok, we know we have some packets left over after even-handedly
2600 	 * scheduling interval 15.  We don't know which microframes they will
2601 	 * fit into, so we over-schedule and say they will be scheduled every
2602 	 * microframe.
2603 	 */
2604 	if (packets_remaining > 0)
2605 		bw_used += overhead + packet_size;
2606 
2607 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2608 		unsigned int port_index = virt_dev->real_port - 1;
2609 
2610 		/* OK, we're manipulating a HS device attached to a
2611 		 * root port bandwidth domain.  Include the number of active TTs
2612 		 * in the bandwidth used.
2613 		 */
2614 		bw_used += TT_HS_OVERHEAD *
2615 			xhci->rh_bw[port_index].num_active_tts;
2616 	}
2617 
2618 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2619 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2620 		"Available: %u " "percent",
2621 		bw_used, max_bandwidth, bw_reserved,
2622 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2623 		max_bandwidth);
2624 
2625 	bw_used += bw_reserved;
2626 	if (bw_used > max_bandwidth) {
2627 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2628 				bw_used, max_bandwidth);
2629 		return -ENOMEM;
2630 	}
2631 
2632 	bw_table->bw_used = bw_used;
2633 	return 0;
2634 }
2635 
2636 static bool xhci_is_async_ep(unsigned int ep_type)
2637 {
2638 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2639 					ep_type != ISOC_IN_EP &&
2640 					ep_type != INT_IN_EP);
2641 }
2642 
2643 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2644 {
2645 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2646 }
2647 
2648 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2649 {
2650 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2651 
2652 	if (ep_bw->ep_interval == 0)
2653 		return SS_OVERHEAD_BURST +
2654 			(ep_bw->mult * ep_bw->num_packets *
2655 					(SS_OVERHEAD + mps));
2656 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2657 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2658 				1 << ep_bw->ep_interval);
2659 
2660 }
2661 
2662 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2663 		struct xhci_bw_info *ep_bw,
2664 		struct xhci_interval_bw_table *bw_table,
2665 		struct usb_device *udev,
2666 		struct xhci_virt_ep *virt_ep,
2667 		struct xhci_tt_bw_info *tt_info)
2668 {
2669 	struct xhci_interval_bw	*interval_bw;
2670 	int normalized_interval;
2671 
2672 	if (xhci_is_async_ep(ep_bw->type))
2673 		return;
2674 
2675 	if (udev->speed >= USB_SPEED_SUPER) {
2676 		if (xhci_is_sync_in_ep(ep_bw->type))
2677 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2678 				xhci_get_ss_bw_consumed(ep_bw);
2679 		else
2680 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2681 				xhci_get_ss_bw_consumed(ep_bw);
2682 		return;
2683 	}
2684 
2685 	/* SuperSpeed endpoints never get added to intervals in the table, so
2686 	 * this check is only valid for HS/FS/LS devices.
2687 	 */
2688 	if (list_empty(&virt_ep->bw_endpoint_list))
2689 		return;
2690 	/* For LS/FS devices, we need to translate the interval expressed in
2691 	 * microframes to frames.
2692 	 */
2693 	if (udev->speed == USB_SPEED_HIGH)
2694 		normalized_interval = ep_bw->ep_interval;
2695 	else
2696 		normalized_interval = ep_bw->ep_interval - 3;
2697 
2698 	if (normalized_interval == 0)
2699 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2700 	interval_bw = &bw_table->interval_bw[normalized_interval];
2701 	interval_bw->num_packets -= ep_bw->num_packets;
2702 	switch (udev->speed) {
2703 	case USB_SPEED_LOW:
2704 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2705 		break;
2706 	case USB_SPEED_FULL:
2707 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2708 		break;
2709 	case USB_SPEED_HIGH:
2710 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2711 		break;
2712 	case USB_SPEED_SUPER:
2713 	case USB_SPEED_SUPER_PLUS:
2714 	case USB_SPEED_UNKNOWN:
2715 	case USB_SPEED_WIRELESS:
2716 		/* Should never happen because only LS/FS/HS endpoints will get
2717 		 * added to the endpoint list.
2718 		 */
2719 		return;
2720 	}
2721 	if (tt_info)
2722 		tt_info->active_eps -= 1;
2723 	list_del_init(&virt_ep->bw_endpoint_list);
2724 }
2725 
2726 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2727 		struct xhci_bw_info *ep_bw,
2728 		struct xhci_interval_bw_table *bw_table,
2729 		struct usb_device *udev,
2730 		struct xhci_virt_ep *virt_ep,
2731 		struct xhci_tt_bw_info *tt_info)
2732 {
2733 	struct xhci_interval_bw	*interval_bw;
2734 	struct xhci_virt_ep *smaller_ep;
2735 	int normalized_interval;
2736 
2737 	if (xhci_is_async_ep(ep_bw->type))
2738 		return;
2739 
2740 	if (udev->speed == USB_SPEED_SUPER) {
2741 		if (xhci_is_sync_in_ep(ep_bw->type))
2742 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2743 				xhci_get_ss_bw_consumed(ep_bw);
2744 		else
2745 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2746 				xhci_get_ss_bw_consumed(ep_bw);
2747 		return;
2748 	}
2749 
2750 	/* For LS/FS devices, we need to translate the interval expressed in
2751 	 * microframes to frames.
2752 	 */
2753 	if (udev->speed == USB_SPEED_HIGH)
2754 		normalized_interval = ep_bw->ep_interval;
2755 	else
2756 		normalized_interval = ep_bw->ep_interval - 3;
2757 
2758 	if (normalized_interval == 0)
2759 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2760 	interval_bw = &bw_table->interval_bw[normalized_interval];
2761 	interval_bw->num_packets += ep_bw->num_packets;
2762 	switch (udev->speed) {
2763 	case USB_SPEED_LOW:
2764 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2765 		break;
2766 	case USB_SPEED_FULL:
2767 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2768 		break;
2769 	case USB_SPEED_HIGH:
2770 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2771 		break;
2772 	case USB_SPEED_SUPER:
2773 	case USB_SPEED_SUPER_PLUS:
2774 	case USB_SPEED_UNKNOWN:
2775 	case USB_SPEED_WIRELESS:
2776 		/* Should never happen because only LS/FS/HS endpoints will get
2777 		 * added to the endpoint list.
2778 		 */
2779 		return;
2780 	}
2781 
2782 	if (tt_info)
2783 		tt_info->active_eps += 1;
2784 	/* Insert the endpoint into the list, largest max packet size first. */
2785 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2786 			bw_endpoint_list) {
2787 		if (ep_bw->max_packet_size >=
2788 				smaller_ep->bw_info.max_packet_size) {
2789 			/* Add the new ep before the smaller endpoint */
2790 			list_add_tail(&virt_ep->bw_endpoint_list,
2791 					&smaller_ep->bw_endpoint_list);
2792 			return;
2793 		}
2794 	}
2795 	/* Add the new endpoint at the end of the list. */
2796 	list_add_tail(&virt_ep->bw_endpoint_list,
2797 			&interval_bw->endpoints);
2798 }
2799 
2800 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2801 		struct xhci_virt_device *virt_dev,
2802 		int old_active_eps)
2803 {
2804 	struct xhci_root_port_bw_info *rh_bw_info;
2805 	if (!virt_dev->tt_info)
2806 		return;
2807 
2808 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2809 	if (old_active_eps == 0 &&
2810 				virt_dev->tt_info->active_eps != 0) {
2811 		rh_bw_info->num_active_tts += 1;
2812 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2813 	} else if (old_active_eps != 0 &&
2814 				virt_dev->tt_info->active_eps == 0) {
2815 		rh_bw_info->num_active_tts -= 1;
2816 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2817 	}
2818 }
2819 
2820 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2821 		struct xhci_virt_device *virt_dev,
2822 		struct xhci_container_ctx *in_ctx)
2823 {
2824 	struct xhci_bw_info ep_bw_info[31];
2825 	int i;
2826 	struct xhci_input_control_ctx *ctrl_ctx;
2827 	int old_active_eps = 0;
2828 
2829 	if (virt_dev->tt_info)
2830 		old_active_eps = virt_dev->tt_info->active_eps;
2831 
2832 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2833 	if (!ctrl_ctx) {
2834 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2835 				__func__);
2836 		return -ENOMEM;
2837 	}
2838 
2839 	for (i = 0; i < 31; i++) {
2840 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2841 			continue;
2842 
2843 		/* Make a copy of the BW info in case we need to revert this */
2844 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2845 				sizeof(ep_bw_info[i]));
2846 		/* Drop the endpoint from the interval table if the endpoint is
2847 		 * being dropped or changed.
2848 		 */
2849 		if (EP_IS_DROPPED(ctrl_ctx, i))
2850 			xhci_drop_ep_from_interval_table(xhci,
2851 					&virt_dev->eps[i].bw_info,
2852 					virt_dev->bw_table,
2853 					virt_dev->udev,
2854 					&virt_dev->eps[i],
2855 					virt_dev->tt_info);
2856 	}
2857 	/* Overwrite the information stored in the endpoints' bw_info */
2858 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2859 	for (i = 0; i < 31; i++) {
2860 		/* Add any changed or added endpoints to the interval table */
2861 		if (EP_IS_ADDED(ctrl_ctx, i))
2862 			xhci_add_ep_to_interval_table(xhci,
2863 					&virt_dev->eps[i].bw_info,
2864 					virt_dev->bw_table,
2865 					virt_dev->udev,
2866 					&virt_dev->eps[i],
2867 					virt_dev->tt_info);
2868 	}
2869 
2870 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2871 		/* Ok, this fits in the bandwidth we have.
2872 		 * Update the number of active TTs.
2873 		 */
2874 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2875 		return 0;
2876 	}
2877 
2878 	/* We don't have enough bandwidth for this, revert the stored info. */
2879 	for (i = 0; i < 31; i++) {
2880 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2881 			continue;
2882 
2883 		/* Drop the new copies of any added or changed endpoints from
2884 		 * the interval table.
2885 		 */
2886 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2887 			xhci_drop_ep_from_interval_table(xhci,
2888 					&virt_dev->eps[i].bw_info,
2889 					virt_dev->bw_table,
2890 					virt_dev->udev,
2891 					&virt_dev->eps[i],
2892 					virt_dev->tt_info);
2893 		}
2894 		/* Revert the endpoint back to its old information */
2895 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2896 				sizeof(ep_bw_info[i]));
2897 		/* Add any changed or dropped endpoints back into the table */
2898 		if (EP_IS_DROPPED(ctrl_ctx, i))
2899 			xhci_add_ep_to_interval_table(xhci,
2900 					&virt_dev->eps[i].bw_info,
2901 					virt_dev->bw_table,
2902 					virt_dev->udev,
2903 					&virt_dev->eps[i],
2904 					virt_dev->tt_info);
2905 	}
2906 	return -ENOMEM;
2907 }
2908 
2909 
2910 /* Issue a configure endpoint command or evaluate context command
2911  * and wait for it to finish.
2912  */
2913 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2914 		struct usb_device *udev,
2915 		struct xhci_command *command,
2916 		bool ctx_change, bool must_succeed)
2917 {
2918 	int ret;
2919 	unsigned long flags;
2920 	struct xhci_input_control_ctx *ctrl_ctx;
2921 	struct xhci_virt_device *virt_dev;
2922 	struct xhci_slot_ctx *slot_ctx;
2923 
2924 	if (!command)
2925 		return -EINVAL;
2926 
2927 	spin_lock_irqsave(&xhci->lock, flags);
2928 
2929 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2930 		spin_unlock_irqrestore(&xhci->lock, flags);
2931 		return -ESHUTDOWN;
2932 	}
2933 
2934 	virt_dev = xhci->devs[udev->slot_id];
2935 
2936 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2937 	if (!ctrl_ctx) {
2938 		spin_unlock_irqrestore(&xhci->lock, flags);
2939 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2940 				__func__);
2941 		return -ENOMEM;
2942 	}
2943 
2944 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2945 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2946 		spin_unlock_irqrestore(&xhci->lock, flags);
2947 		xhci_warn(xhci, "Not enough host resources, "
2948 				"active endpoint contexts = %u\n",
2949 				xhci->num_active_eps);
2950 		return -ENOMEM;
2951 	}
2952 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2953 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2954 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2955 			xhci_free_host_resources(xhci, ctrl_ctx);
2956 		spin_unlock_irqrestore(&xhci->lock, flags);
2957 		xhci_warn(xhci, "Not enough bandwidth\n");
2958 		return -ENOMEM;
2959 	}
2960 
2961 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2962 
2963 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2964 	trace_xhci_configure_endpoint(slot_ctx);
2965 
2966 	if (!ctx_change)
2967 		ret = xhci_queue_configure_endpoint(xhci, command,
2968 				command->in_ctx->dma,
2969 				udev->slot_id, must_succeed);
2970 	else
2971 		ret = xhci_queue_evaluate_context(xhci, command,
2972 				command->in_ctx->dma,
2973 				udev->slot_id, must_succeed);
2974 	if (ret < 0) {
2975 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2976 			xhci_free_host_resources(xhci, ctrl_ctx);
2977 		spin_unlock_irqrestore(&xhci->lock, flags);
2978 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2979 				"FIXME allocate a new ring segment");
2980 		return -ENOMEM;
2981 	}
2982 	xhci_ring_cmd_db(xhci);
2983 	spin_unlock_irqrestore(&xhci->lock, flags);
2984 
2985 	/* Wait for the configure endpoint command to complete */
2986 	wait_for_completion(command->completion);
2987 
2988 	if (!ctx_change)
2989 		ret = xhci_configure_endpoint_result(xhci, udev,
2990 						     &command->status);
2991 	else
2992 		ret = xhci_evaluate_context_result(xhci, udev,
2993 						   &command->status);
2994 
2995 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2996 		spin_lock_irqsave(&xhci->lock, flags);
2997 		/* If the command failed, remove the reserved resources.
2998 		 * Otherwise, clean up the estimate to include dropped eps.
2999 		 */
3000 		if (ret)
3001 			xhci_free_host_resources(xhci, ctrl_ctx);
3002 		else
3003 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
3004 		spin_unlock_irqrestore(&xhci->lock, flags);
3005 	}
3006 	return ret;
3007 }
3008 
3009 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3010 	struct xhci_virt_device *vdev, int i)
3011 {
3012 	struct xhci_virt_ep *ep = &vdev->eps[i];
3013 
3014 	if (ep->ep_state & EP_HAS_STREAMS) {
3015 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3016 				xhci_get_endpoint_address(i));
3017 		xhci_free_stream_info(xhci, ep->stream_info);
3018 		ep->stream_info = NULL;
3019 		ep->ep_state &= ~EP_HAS_STREAMS;
3020 	}
3021 }
3022 
3023 /* Called after one or more calls to xhci_add_endpoint() or
3024  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3025  * to call xhci_reset_bandwidth().
3026  *
3027  * Since we are in the middle of changing either configuration or
3028  * installing a new alt setting, the USB core won't allow URBs to be
3029  * enqueued for any endpoint on the old config or interface.  Nothing
3030  * else should be touching the xhci->devs[slot_id] structure, so we
3031  * don't need to take the xhci->lock for manipulating that.
3032  */
3033 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3034 {
3035 	int i;
3036 	int ret = 0;
3037 	struct xhci_hcd *xhci;
3038 	struct xhci_virt_device	*virt_dev;
3039 	struct xhci_input_control_ctx *ctrl_ctx;
3040 	struct xhci_slot_ctx *slot_ctx;
3041 	struct xhci_command *command;
3042 
3043 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3044 	if (ret <= 0)
3045 		return ret;
3046 	xhci = hcd_to_xhci(hcd);
3047 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3048 		(xhci->xhc_state & XHCI_STATE_REMOVING))
3049 		return -ENODEV;
3050 
3051 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3052 	virt_dev = xhci->devs[udev->slot_id];
3053 
3054 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3055 	if (!command)
3056 		return -ENOMEM;
3057 
3058 	command->in_ctx = virt_dev->in_ctx;
3059 
3060 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3061 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3062 	if (!ctrl_ctx) {
3063 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3064 				__func__);
3065 		ret = -ENOMEM;
3066 		goto command_cleanup;
3067 	}
3068 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3069 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3070 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3071 
3072 	/* Don't issue the command if there's no endpoints to update. */
3073 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3074 	    ctrl_ctx->drop_flags == 0) {
3075 		ret = 0;
3076 		goto command_cleanup;
3077 	}
3078 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3079 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3080 	for (i = 31; i >= 1; i--) {
3081 		__le32 le32 = cpu_to_le32(BIT(i));
3082 
3083 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3084 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3085 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3086 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3087 			break;
3088 		}
3089 	}
3090 
3091 	ret = xhci_configure_endpoint(xhci, udev, command,
3092 			false, false);
3093 	if (ret)
3094 		/* Callee should call reset_bandwidth() */
3095 		goto command_cleanup;
3096 
3097 	/* Free any rings that were dropped, but not changed. */
3098 	for (i = 1; i < 31; i++) {
3099 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3100 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3101 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3102 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3103 		}
3104 	}
3105 	xhci_zero_in_ctx(xhci, virt_dev);
3106 	/*
3107 	 * Install any rings for completely new endpoints or changed endpoints,
3108 	 * and free any old rings from changed endpoints.
3109 	 */
3110 	for (i = 1; i < 31; i++) {
3111 		if (!virt_dev->eps[i].new_ring)
3112 			continue;
3113 		/* Only free the old ring if it exists.
3114 		 * It may not if this is the first add of an endpoint.
3115 		 */
3116 		if (virt_dev->eps[i].ring) {
3117 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3118 		}
3119 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3120 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3121 		virt_dev->eps[i].new_ring = NULL;
3122 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3123 	}
3124 command_cleanup:
3125 	kfree(command->completion);
3126 	kfree(command);
3127 
3128 	return ret;
3129 }
3130 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3131 
3132 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3133 {
3134 	struct xhci_hcd *xhci;
3135 	struct xhci_virt_device	*virt_dev;
3136 	int i, ret;
3137 
3138 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3139 	if (ret <= 0)
3140 		return;
3141 	xhci = hcd_to_xhci(hcd);
3142 
3143 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3144 	virt_dev = xhci->devs[udev->slot_id];
3145 	/* Free any rings allocated for added endpoints */
3146 	for (i = 0; i < 31; i++) {
3147 		if (virt_dev->eps[i].new_ring) {
3148 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3149 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3150 			virt_dev->eps[i].new_ring = NULL;
3151 		}
3152 	}
3153 	xhci_zero_in_ctx(xhci, virt_dev);
3154 }
3155 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3156 
3157 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3158 		struct xhci_container_ctx *in_ctx,
3159 		struct xhci_container_ctx *out_ctx,
3160 		struct xhci_input_control_ctx *ctrl_ctx,
3161 		u32 add_flags, u32 drop_flags)
3162 {
3163 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3164 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3165 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3166 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3167 }
3168 
3169 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3170 				  struct usb_host_endpoint *host_ep)
3171 {
3172 	struct xhci_hcd		*xhci;
3173 	struct xhci_virt_device	*vdev;
3174 	struct xhci_virt_ep	*ep;
3175 	struct usb_device	*udev;
3176 	unsigned long		flags;
3177 	unsigned int		ep_index;
3178 
3179 	xhci = hcd_to_xhci(hcd);
3180 rescan:
3181 	spin_lock_irqsave(&xhci->lock, flags);
3182 
3183 	udev = (struct usb_device *)host_ep->hcpriv;
3184 	if (!udev || !udev->slot_id)
3185 		goto done;
3186 
3187 	vdev = xhci->devs[udev->slot_id];
3188 	if (!vdev)
3189 		goto done;
3190 
3191 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3192 	ep = &vdev->eps[ep_index];
3193 
3194 	/* wait for hub_tt_work to finish clearing hub TT */
3195 	if (ep->ep_state & EP_CLEARING_TT) {
3196 		spin_unlock_irqrestore(&xhci->lock, flags);
3197 		schedule_timeout_uninterruptible(1);
3198 		goto rescan;
3199 	}
3200 
3201 	if (ep->ep_state)
3202 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3203 			 ep->ep_state);
3204 done:
3205 	host_ep->hcpriv = NULL;
3206 	spin_unlock_irqrestore(&xhci->lock, flags);
3207 }
3208 
3209 /*
3210  * Called after usb core issues a clear halt control message.
3211  * The host side of the halt should already be cleared by a reset endpoint
3212  * command issued when the STALL event was received.
3213  *
3214  * The reset endpoint command may only be issued to endpoints in the halted
3215  * state. For software that wishes to reset the data toggle or sequence number
3216  * of an endpoint that isn't in the halted state this function will issue a
3217  * configure endpoint command with the Drop and Add bits set for the target
3218  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3219  */
3220 
3221 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3222 		struct usb_host_endpoint *host_ep)
3223 {
3224 	struct xhci_hcd *xhci;
3225 	struct usb_device *udev;
3226 	struct xhci_virt_device *vdev;
3227 	struct xhci_virt_ep *ep;
3228 	struct xhci_input_control_ctx *ctrl_ctx;
3229 	struct xhci_command *stop_cmd, *cfg_cmd;
3230 	unsigned int ep_index;
3231 	unsigned long flags;
3232 	u32 ep_flag;
3233 	int err;
3234 
3235 	xhci = hcd_to_xhci(hcd);
3236 	if (!host_ep->hcpriv)
3237 		return;
3238 	udev = (struct usb_device *) host_ep->hcpriv;
3239 	vdev = xhci->devs[udev->slot_id];
3240 
3241 	/*
3242 	 * vdev may be lost due to xHC restore error and re-initialization
3243 	 * during S3/S4 resume. A new vdev will be allocated later by
3244 	 * xhci_discover_or_reset_device()
3245 	 */
3246 	if (!udev->slot_id || !vdev)
3247 		return;
3248 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3249 	ep = &vdev->eps[ep_index];
3250 
3251 	/* Bail out if toggle is already being cleared by a endpoint reset */
3252 	spin_lock_irqsave(&xhci->lock, flags);
3253 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3254 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3255 		spin_unlock_irqrestore(&xhci->lock, flags);
3256 		return;
3257 	}
3258 	spin_unlock_irqrestore(&xhci->lock, flags);
3259 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3260 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3261 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3262 		return;
3263 
3264 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3265 
3266 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3267 		return;
3268 
3269 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3270 	if (!stop_cmd)
3271 		return;
3272 
3273 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3274 	if (!cfg_cmd)
3275 		goto cleanup;
3276 
3277 	spin_lock_irqsave(&xhci->lock, flags);
3278 
3279 	/* block queuing new trbs and ringing ep doorbell */
3280 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3281 
3282 	/*
3283 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3284 	 * Driver is required to synchronously cancel all transfer request.
3285 	 * Stop the endpoint to force xHC to update the output context
3286 	 */
3287 
3288 	if (!list_empty(&ep->ring->td_list)) {
3289 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3290 		spin_unlock_irqrestore(&xhci->lock, flags);
3291 		xhci_free_command(xhci, cfg_cmd);
3292 		goto cleanup;
3293 	}
3294 
3295 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3296 					ep_index, 0);
3297 	if (err < 0) {
3298 		spin_unlock_irqrestore(&xhci->lock, flags);
3299 		xhci_free_command(xhci, cfg_cmd);
3300 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3301 				__func__, err);
3302 		goto cleanup;
3303 	}
3304 
3305 	xhci_ring_cmd_db(xhci);
3306 	spin_unlock_irqrestore(&xhci->lock, flags);
3307 
3308 	wait_for_completion(stop_cmd->completion);
3309 
3310 	spin_lock_irqsave(&xhci->lock, flags);
3311 
3312 	/* config ep command clears toggle if add and drop ep flags are set */
3313 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3314 	if (!ctrl_ctx) {
3315 		spin_unlock_irqrestore(&xhci->lock, flags);
3316 		xhci_free_command(xhci, cfg_cmd);
3317 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3318 				__func__);
3319 		goto cleanup;
3320 	}
3321 
3322 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3323 					   ctrl_ctx, ep_flag, ep_flag);
3324 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3325 
3326 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3327 				      udev->slot_id, false);
3328 	if (err < 0) {
3329 		spin_unlock_irqrestore(&xhci->lock, flags);
3330 		xhci_free_command(xhci, cfg_cmd);
3331 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3332 				__func__, err);
3333 		goto cleanup;
3334 	}
3335 
3336 	xhci_ring_cmd_db(xhci);
3337 	spin_unlock_irqrestore(&xhci->lock, flags);
3338 
3339 	wait_for_completion(cfg_cmd->completion);
3340 
3341 	xhci_free_command(xhci, cfg_cmd);
3342 cleanup:
3343 	xhci_free_command(xhci, stop_cmd);
3344 	spin_lock_irqsave(&xhci->lock, flags);
3345 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3346 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3347 	spin_unlock_irqrestore(&xhci->lock, flags);
3348 }
3349 
3350 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3351 		struct usb_device *udev, struct usb_host_endpoint *ep,
3352 		unsigned int slot_id)
3353 {
3354 	int ret;
3355 	unsigned int ep_index;
3356 	unsigned int ep_state;
3357 
3358 	if (!ep)
3359 		return -EINVAL;
3360 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3361 	if (ret <= 0)
3362 		return ret ? ret : -EINVAL;
3363 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3364 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3365 				" descriptor for ep 0x%x does not support streams\n",
3366 				ep->desc.bEndpointAddress);
3367 		return -EINVAL;
3368 	}
3369 
3370 	ep_index = xhci_get_endpoint_index(&ep->desc);
3371 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3372 	if (ep_state & EP_HAS_STREAMS ||
3373 			ep_state & EP_GETTING_STREAMS) {
3374 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3375 				"already has streams set up.\n",
3376 				ep->desc.bEndpointAddress);
3377 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3378 				"dynamic stream context array reallocation.\n");
3379 		return -EINVAL;
3380 	}
3381 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3382 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3383 				"endpoint 0x%x; URBs are pending.\n",
3384 				ep->desc.bEndpointAddress);
3385 		return -EINVAL;
3386 	}
3387 	return 0;
3388 }
3389 
3390 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3391 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3392 {
3393 	unsigned int max_streams;
3394 
3395 	/* The stream context array size must be a power of two */
3396 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3397 	/*
3398 	 * Find out how many primary stream array entries the host controller
3399 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3400 	 * level page entries), but that's an optional feature for xHCI host
3401 	 * controllers. xHCs must support at least 4 stream IDs.
3402 	 */
3403 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3404 	if (*num_stream_ctxs > max_streams) {
3405 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3406 				max_streams);
3407 		*num_stream_ctxs = max_streams;
3408 		*num_streams = max_streams;
3409 	}
3410 }
3411 
3412 /* Returns an error code if one of the endpoint already has streams.
3413  * This does not change any data structures, it only checks and gathers
3414  * information.
3415  */
3416 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3417 		struct usb_device *udev,
3418 		struct usb_host_endpoint **eps, unsigned int num_eps,
3419 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3420 {
3421 	unsigned int max_streams;
3422 	unsigned int endpoint_flag;
3423 	int i;
3424 	int ret;
3425 
3426 	for (i = 0; i < num_eps; i++) {
3427 		ret = xhci_check_streams_endpoint(xhci, udev,
3428 				eps[i], udev->slot_id);
3429 		if (ret < 0)
3430 			return ret;
3431 
3432 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3433 		if (max_streams < (*num_streams - 1)) {
3434 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3435 					eps[i]->desc.bEndpointAddress,
3436 					max_streams);
3437 			*num_streams = max_streams+1;
3438 		}
3439 
3440 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3441 		if (*changed_ep_bitmask & endpoint_flag)
3442 			return -EINVAL;
3443 		*changed_ep_bitmask |= endpoint_flag;
3444 	}
3445 	return 0;
3446 }
3447 
3448 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3449 		struct usb_device *udev,
3450 		struct usb_host_endpoint **eps, unsigned int num_eps)
3451 {
3452 	u32 changed_ep_bitmask = 0;
3453 	unsigned int slot_id;
3454 	unsigned int ep_index;
3455 	unsigned int ep_state;
3456 	int i;
3457 
3458 	slot_id = udev->slot_id;
3459 	if (!xhci->devs[slot_id])
3460 		return 0;
3461 
3462 	for (i = 0; i < num_eps; i++) {
3463 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3464 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3465 		/* Are streams already being freed for the endpoint? */
3466 		if (ep_state & EP_GETTING_NO_STREAMS) {
3467 			xhci_warn(xhci, "WARN Can't disable streams for "
3468 					"endpoint 0x%x, "
3469 					"streams are being disabled already\n",
3470 					eps[i]->desc.bEndpointAddress);
3471 			return 0;
3472 		}
3473 		/* Are there actually any streams to free? */
3474 		if (!(ep_state & EP_HAS_STREAMS) &&
3475 				!(ep_state & EP_GETTING_STREAMS)) {
3476 			xhci_warn(xhci, "WARN Can't disable streams for "
3477 					"endpoint 0x%x, "
3478 					"streams are already disabled!\n",
3479 					eps[i]->desc.bEndpointAddress);
3480 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3481 					"with non-streams endpoint\n");
3482 			return 0;
3483 		}
3484 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3485 	}
3486 	return changed_ep_bitmask;
3487 }
3488 
3489 /*
3490  * The USB device drivers use this function (through the HCD interface in USB
3491  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3492  * coordinate mass storage command queueing across multiple endpoints (basically
3493  * a stream ID == a task ID).
3494  *
3495  * Setting up streams involves allocating the same size stream context array
3496  * for each endpoint and issuing a configure endpoint command for all endpoints.
3497  *
3498  * Don't allow the call to succeed if one endpoint only supports one stream
3499  * (which means it doesn't support streams at all).
3500  *
3501  * Drivers may get less stream IDs than they asked for, if the host controller
3502  * hardware or endpoints claim they can't support the number of requested
3503  * stream IDs.
3504  */
3505 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3506 		struct usb_host_endpoint **eps, unsigned int num_eps,
3507 		unsigned int num_streams, gfp_t mem_flags)
3508 {
3509 	int i, ret;
3510 	struct xhci_hcd *xhci;
3511 	struct xhci_virt_device *vdev;
3512 	struct xhci_command *config_cmd;
3513 	struct xhci_input_control_ctx *ctrl_ctx;
3514 	unsigned int ep_index;
3515 	unsigned int num_stream_ctxs;
3516 	unsigned int max_packet;
3517 	unsigned long flags;
3518 	u32 changed_ep_bitmask = 0;
3519 
3520 	if (!eps)
3521 		return -EINVAL;
3522 
3523 	/* Add one to the number of streams requested to account for
3524 	 * stream 0 that is reserved for xHCI usage.
3525 	 */
3526 	num_streams += 1;
3527 	xhci = hcd_to_xhci(hcd);
3528 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3529 			num_streams);
3530 
3531 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3532 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3533 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3534 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3535 		return -ENOSYS;
3536 	}
3537 
3538 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3539 	if (!config_cmd)
3540 		return -ENOMEM;
3541 
3542 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3543 	if (!ctrl_ctx) {
3544 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3545 				__func__);
3546 		xhci_free_command(xhci, config_cmd);
3547 		return -ENOMEM;
3548 	}
3549 
3550 	/* Check to make sure all endpoints are not already configured for
3551 	 * streams.  While we're at it, find the maximum number of streams that
3552 	 * all the endpoints will support and check for duplicate endpoints.
3553 	 */
3554 	spin_lock_irqsave(&xhci->lock, flags);
3555 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3556 			num_eps, &num_streams, &changed_ep_bitmask);
3557 	if (ret < 0) {
3558 		xhci_free_command(xhci, config_cmd);
3559 		spin_unlock_irqrestore(&xhci->lock, flags);
3560 		return ret;
3561 	}
3562 	if (num_streams <= 1) {
3563 		xhci_warn(xhci, "WARN: endpoints can't handle "
3564 				"more than one stream.\n");
3565 		xhci_free_command(xhci, config_cmd);
3566 		spin_unlock_irqrestore(&xhci->lock, flags);
3567 		return -EINVAL;
3568 	}
3569 	vdev = xhci->devs[udev->slot_id];
3570 	/* Mark each endpoint as being in transition, so
3571 	 * xhci_urb_enqueue() will reject all URBs.
3572 	 */
3573 	for (i = 0; i < num_eps; i++) {
3574 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3575 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3576 	}
3577 	spin_unlock_irqrestore(&xhci->lock, flags);
3578 
3579 	/* Setup internal data structures and allocate HW data structures for
3580 	 * streams (but don't install the HW structures in the input context
3581 	 * until we're sure all memory allocation succeeded).
3582 	 */
3583 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3584 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3585 			num_stream_ctxs, num_streams);
3586 
3587 	for (i = 0; i < num_eps; i++) {
3588 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3589 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3590 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3591 				num_stream_ctxs,
3592 				num_streams,
3593 				max_packet, mem_flags);
3594 		if (!vdev->eps[ep_index].stream_info)
3595 			goto cleanup;
3596 		/* Set maxPstreams in endpoint context and update deq ptr to
3597 		 * point to stream context array. FIXME
3598 		 */
3599 	}
3600 
3601 	/* Set up the input context for a configure endpoint command. */
3602 	for (i = 0; i < num_eps; i++) {
3603 		struct xhci_ep_ctx *ep_ctx;
3604 
3605 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3606 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3607 
3608 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3609 				vdev->out_ctx, ep_index);
3610 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3611 				vdev->eps[ep_index].stream_info);
3612 	}
3613 	/* Tell the HW to drop its old copy of the endpoint context info
3614 	 * and add the updated copy from the input context.
3615 	 */
3616 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3617 			vdev->out_ctx, ctrl_ctx,
3618 			changed_ep_bitmask, changed_ep_bitmask);
3619 
3620 	/* Issue and wait for the configure endpoint command */
3621 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3622 			false, false);
3623 
3624 	/* xHC rejected the configure endpoint command for some reason, so we
3625 	 * leave the old ring intact and free our internal streams data
3626 	 * structure.
3627 	 */
3628 	if (ret < 0)
3629 		goto cleanup;
3630 
3631 	spin_lock_irqsave(&xhci->lock, flags);
3632 	for (i = 0; i < num_eps; i++) {
3633 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3634 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3635 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3636 			 udev->slot_id, ep_index);
3637 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3638 	}
3639 	xhci_free_command(xhci, config_cmd);
3640 	spin_unlock_irqrestore(&xhci->lock, flags);
3641 
3642 	for (i = 0; i < num_eps; i++) {
3643 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3644 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3645 	}
3646 	/* Subtract 1 for stream 0, which drivers can't use */
3647 	return num_streams - 1;
3648 
3649 cleanup:
3650 	/* If it didn't work, free the streams! */
3651 	for (i = 0; i < num_eps; i++) {
3652 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3653 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3654 		vdev->eps[ep_index].stream_info = NULL;
3655 		/* FIXME Unset maxPstreams in endpoint context and
3656 		 * update deq ptr to point to normal string ring.
3657 		 */
3658 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3659 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3660 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3661 	}
3662 	xhci_free_command(xhci, config_cmd);
3663 	return -ENOMEM;
3664 }
3665 
3666 /* Transition the endpoint from using streams to being a "normal" endpoint
3667  * without streams.
3668  *
3669  * Modify the endpoint context state, submit a configure endpoint command,
3670  * and free all endpoint rings for streams if that completes successfully.
3671  */
3672 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3673 		struct usb_host_endpoint **eps, unsigned int num_eps,
3674 		gfp_t mem_flags)
3675 {
3676 	int i, ret;
3677 	struct xhci_hcd *xhci;
3678 	struct xhci_virt_device *vdev;
3679 	struct xhci_command *command;
3680 	struct xhci_input_control_ctx *ctrl_ctx;
3681 	unsigned int ep_index;
3682 	unsigned long flags;
3683 	u32 changed_ep_bitmask;
3684 
3685 	xhci = hcd_to_xhci(hcd);
3686 	vdev = xhci->devs[udev->slot_id];
3687 
3688 	/* Set up a configure endpoint command to remove the streams rings */
3689 	spin_lock_irqsave(&xhci->lock, flags);
3690 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3691 			udev, eps, num_eps);
3692 	if (changed_ep_bitmask == 0) {
3693 		spin_unlock_irqrestore(&xhci->lock, flags);
3694 		return -EINVAL;
3695 	}
3696 
3697 	/* Use the xhci_command structure from the first endpoint.  We may have
3698 	 * allocated too many, but the driver may call xhci_free_streams() for
3699 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3700 	 */
3701 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3702 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3703 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3704 	if (!ctrl_ctx) {
3705 		spin_unlock_irqrestore(&xhci->lock, flags);
3706 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3707 				__func__);
3708 		return -EINVAL;
3709 	}
3710 
3711 	for (i = 0; i < num_eps; i++) {
3712 		struct xhci_ep_ctx *ep_ctx;
3713 
3714 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3715 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3716 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3717 			EP_GETTING_NO_STREAMS;
3718 
3719 		xhci_endpoint_copy(xhci, command->in_ctx,
3720 				vdev->out_ctx, ep_index);
3721 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3722 				&vdev->eps[ep_index]);
3723 	}
3724 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3725 			vdev->out_ctx, ctrl_ctx,
3726 			changed_ep_bitmask, changed_ep_bitmask);
3727 	spin_unlock_irqrestore(&xhci->lock, flags);
3728 
3729 	/* Issue and wait for the configure endpoint command,
3730 	 * which must succeed.
3731 	 */
3732 	ret = xhci_configure_endpoint(xhci, udev, command,
3733 			false, true);
3734 
3735 	/* xHC rejected the configure endpoint command for some reason, so we
3736 	 * leave the streams rings intact.
3737 	 */
3738 	if (ret < 0)
3739 		return ret;
3740 
3741 	spin_lock_irqsave(&xhci->lock, flags);
3742 	for (i = 0; i < num_eps; i++) {
3743 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3744 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3745 		vdev->eps[ep_index].stream_info = NULL;
3746 		/* FIXME Unset maxPstreams in endpoint context and
3747 		 * update deq ptr to point to normal string ring.
3748 		 */
3749 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3750 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3751 	}
3752 	spin_unlock_irqrestore(&xhci->lock, flags);
3753 
3754 	return 0;
3755 }
3756 
3757 /*
3758  * Deletes endpoint resources for endpoints that were active before a Reset
3759  * Device command, or a Disable Slot command.  The Reset Device command leaves
3760  * the control endpoint intact, whereas the Disable Slot command deletes it.
3761  *
3762  * Must be called with xhci->lock held.
3763  */
3764 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3765 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3766 {
3767 	int i;
3768 	unsigned int num_dropped_eps = 0;
3769 	unsigned int drop_flags = 0;
3770 
3771 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3772 		if (virt_dev->eps[i].ring) {
3773 			drop_flags |= 1 << i;
3774 			num_dropped_eps++;
3775 		}
3776 	}
3777 	xhci->num_active_eps -= num_dropped_eps;
3778 	if (num_dropped_eps)
3779 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3780 				"Dropped %u ep ctxs, flags = 0x%x, "
3781 				"%u now active.",
3782 				num_dropped_eps, drop_flags,
3783 				xhci->num_active_eps);
3784 }
3785 
3786 /*
3787  * This submits a Reset Device Command, which will set the device state to 0,
3788  * set the device address to 0, and disable all the endpoints except the default
3789  * control endpoint.  The USB core should come back and call
3790  * xhci_address_device(), and then re-set up the configuration.  If this is
3791  * called because of a usb_reset_and_verify_device(), then the old alternate
3792  * settings will be re-installed through the normal bandwidth allocation
3793  * functions.
3794  *
3795  * Wait for the Reset Device command to finish.  Remove all structures
3796  * associated with the endpoints that were disabled.  Clear the input device
3797  * structure? Reset the control endpoint 0 max packet size?
3798  *
3799  * If the virt_dev to be reset does not exist or does not match the udev,
3800  * it means the device is lost, possibly due to the xHC restore error and
3801  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3802  * re-allocate the device.
3803  */
3804 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3805 		struct usb_device *udev)
3806 {
3807 	int ret, i;
3808 	unsigned long flags;
3809 	struct xhci_hcd *xhci;
3810 	unsigned int slot_id;
3811 	struct xhci_virt_device *virt_dev;
3812 	struct xhci_command *reset_device_cmd;
3813 	struct xhci_slot_ctx *slot_ctx;
3814 	int old_active_eps = 0;
3815 
3816 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3817 	if (ret <= 0)
3818 		return ret;
3819 	xhci = hcd_to_xhci(hcd);
3820 	slot_id = udev->slot_id;
3821 	virt_dev = xhci->devs[slot_id];
3822 	if (!virt_dev) {
3823 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3824 				"not exist. Re-allocate the device\n", slot_id);
3825 		ret = xhci_alloc_dev(hcd, udev);
3826 		if (ret == 1)
3827 			return 0;
3828 		else
3829 			return -EINVAL;
3830 	}
3831 
3832 	if (virt_dev->tt_info)
3833 		old_active_eps = virt_dev->tt_info->active_eps;
3834 
3835 	if (virt_dev->udev != udev) {
3836 		/* If the virt_dev and the udev does not match, this virt_dev
3837 		 * may belong to another udev.
3838 		 * Re-allocate the device.
3839 		 */
3840 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3841 				"not match the udev. Re-allocate the device\n",
3842 				slot_id);
3843 		ret = xhci_alloc_dev(hcd, udev);
3844 		if (ret == 1)
3845 			return 0;
3846 		else
3847 			return -EINVAL;
3848 	}
3849 
3850 	/* If device is not setup, there is no point in resetting it */
3851 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3852 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3853 						SLOT_STATE_DISABLED)
3854 		return 0;
3855 
3856 	trace_xhci_discover_or_reset_device(slot_ctx);
3857 
3858 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3859 	/* Allocate the command structure that holds the struct completion.
3860 	 * Assume we're in process context, since the normal device reset
3861 	 * process has to wait for the device anyway.  Storage devices are
3862 	 * reset as part of error handling, so use GFP_NOIO instead of
3863 	 * GFP_KERNEL.
3864 	 */
3865 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3866 	if (!reset_device_cmd) {
3867 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3868 		return -ENOMEM;
3869 	}
3870 
3871 	/* Attempt to submit the Reset Device command to the command ring */
3872 	spin_lock_irqsave(&xhci->lock, flags);
3873 
3874 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3875 	if (ret) {
3876 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3877 		spin_unlock_irqrestore(&xhci->lock, flags);
3878 		goto command_cleanup;
3879 	}
3880 	xhci_ring_cmd_db(xhci);
3881 	spin_unlock_irqrestore(&xhci->lock, flags);
3882 
3883 	/* Wait for the Reset Device command to finish */
3884 	wait_for_completion(reset_device_cmd->completion);
3885 
3886 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3887 	 * unless we tried to reset a slot ID that wasn't enabled,
3888 	 * or the device wasn't in the addressed or configured state.
3889 	 */
3890 	ret = reset_device_cmd->status;
3891 	switch (ret) {
3892 	case COMP_COMMAND_ABORTED:
3893 	case COMP_COMMAND_RING_STOPPED:
3894 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3895 		ret = -ETIME;
3896 		goto command_cleanup;
3897 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3898 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3899 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3900 				slot_id,
3901 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3902 		xhci_dbg(xhci, "Not freeing device rings.\n");
3903 		/* Don't treat this as an error.  May change my mind later. */
3904 		ret = 0;
3905 		goto command_cleanup;
3906 	case COMP_SUCCESS:
3907 		xhci_dbg(xhci, "Successful reset device command.\n");
3908 		break;
3909 	default:
3910 		if (xhci_is_vendor_info_code(xhci, ret))
3911 			break;
3912 		xhci_warn(xhci, "Unknown completion code %u for "
3913 				"reset device command.\n", ret);
3914 		ret = -EINVAL;
3915 		goto command_cleanup;
3916 	}
3917 
3918 	/* Free up host controller endpoint resources */
3919 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3920 		spin_lock_irqsave(&xhci->lock, flags);
3921 		/* Don't delete the default control endpoint resources */
3922 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3923 		spin_unlock_irqrestore(&xhci->lock, flags);
3924 	}
3925 
3926 	/* Everything but endpoint 0 is disabled, so free the rings. */
3927 	for (i = 1; i < 31; i++) {
3928 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3929 
3930 		if (ep->ep_state & EP_HAS_STREAMS) {
3931 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3932 					xhci_get_endpoint_address(i));
3933 			xhci_free_stream_info(xhci, ep->stream_info);
3934 			ep->stream_info = NULL;
3935 			ep->ep_state &= ~EP_HAS_STREAMS;
3936 		}
3937 
3938 		if (ep->ring) {
3939 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3940 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3941 		}
3942 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3943 			xhci_drop_ep_from_interval_table(xhci,
3944 					&virt_dev->eps[i].bw_info,
3945 					virt_dev->bw_table,
3946 					udev,
3947 					&virt_dev->eps[i],
3948 					virt_dev->tt_info);
3949 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3950 	}
3951 	/* If necessary, update the number of active TTs on this root port */
3952 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3953 	virt_dev->flags = 0;
3954 	ret = 0;
3955 
3956 command_cleanup:
3957 	xhci_free_command(xhci, reset_device_cmd);
3958 	return ret;
3959 }
3960 
3961 /*
3962  * At this point, the struct usb_device is about to go away, the device has
3963  * disconnected, and all traffic has been stopped and the endpoints have been
3964  * disabled.  Free any HC data structures associated with that device.
3965  */
3966 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3967 {
3968 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3969 	struct xhci_virt_device *virt_dev;
3970 	struct xhci_slot_ctx *slot_ctx;
3971 	int i, ret;
3972 
3973 	/*
3974 	 * We called pm_runtime_get_noresume when the device was attached.
3975 	 * Decrement the counter here to allow controller to runtime suspend
3976 	 * if no devices remain.
3977 	 */
3978 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3979 		pm_runtime_put_noidle(hcd->self.controller);
3980 
3981 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3982 	/* If the host is halted due to driver unload, we still need to free the
3983 	 * device.
3984 	 */
3985 	if (ret <= 0 && ret != -ENODEV)
3986 		return;
3987 
3988 	virt_dev = xhci->devs[udev->slot_id];
3989 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3990 	trace_xhci_free_dev(slot_ctx);
3991 
3992 	/* Stop any wayward timer functions (which may grab the lock) */
3993 	for (i = 0; i < 31; i++)
3994 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3995 	virt_dev->udev = NULL;
3996 	xhci_disable_slot(xhci, udev->slot_id);
3997 	xhci_free_virt_device(xhci, udev->slot_id);
3998 }
3999 
4000 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4001 {
4002 	struct xhci_command *command;
4003 	unsigned long flags;
4004 	u32 state;
4005 	int ret;
4006 
4007 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4008 	if (!command)
4009 		return -ENOMEM;
4010 
4011 	xhci_debugfs_remove_slot(xhci, slot_id);
4012 
4013 	spin_lock_irqsave(&xhci->lock, flags);
4014 	/* Don't disable the slot if the host controller is dead. */
4015 	state = readl(&xhci->op_regs->status);
4016 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4017 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
4018 		spin_unlock_irqrestore(&xhci->lock, flags);
4019 		kfree(command);
4020 		return -ENODEV;
4021 	}
4022 
4023 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4024 				slot_id);
4025 	if (ret) {
4026 		spin_unlock_irqrestore(&xhci->lock, flags);
4027 		kfree(command);
4028 		return ret;
4029 	}
4030 	xhci_ring_cmd_db(xhci);
4031 	spin_unlock_irqrestore(&xhci->lock, flags);
4032 
4033 	wait_for_completion(command->completion);
4034 
4035 	if (command->status != COMP_SUCCESS)
4036 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4037 			  slot_id, command->status);
4038 
4039 	xhci_free_command(xhci, command);
4040 
4041 	return 0;
4042 }
4043 
4044 /*
4045  * Checks if we have enough host controller resources for the default control
4046  * endpoint.
4047  *
4048  * Must be called with xhci->lock held.
4049  */
4050 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4051 {
4052 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4053 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4054 				"Not enough ep ctxs: "
4055 				"%u active, need to add 1, limit is %u.",
4056 				xhci->num_active_eps, xhci->limit_active_eps);
4057 		return -ENOMEM;
4058 	}
4059 	xhci->num_active_eps += 1;
4060 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4061 			"Adding 1 ep ctx, %u now active.",
4062 			xhci->num_active_eps);
4063 	return 0;
4064 }
4065 
4066 
4067 /*
4068  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4069  * timed out, or allocating memory failed.  Returns 1 on success.
4070  */
4071 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4072 {
4073 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4074 	struct xhci_virt_device *vdev;
4075 	struct xhci_slot_ctx *slot_ctx;
4076 	unsigned long flags;
4077 	int ret, slot_id;
4078 	struct xhci_command *command;
4079 
4080 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4081 	if (!command)
4082 		return 0;
4083 
4084 	spin_lock_irqsave(&xhci->lock, flags);
4085 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4086 	if (ret) {
4087 		spin_unlock_irqrestore(&xhci->lock, flags);
4088 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4089 		xhci_free_command(xhci, command);
4090 		return 0;
4091 	}
4092 	xhci_ring_cmd_db(xhci);
4093 	spin_unlock_irqrestore(&xhci->lock, flags);
4094 
4095 	wait_for_completion(command->completion);
4096 	slot_id = command->slot_id;
4097 
4098 	if (!slot_id || command->status != COMP_SUCCESS) {
4099 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4100 			 xhci_trb_comp_code_string(command->status));
4101 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4102 				HCS_MAX_SLOTS(
4103 					readl(&xhci->cap_regs->hcs_params1)));
4104 		xhci_free_command(xhci, command);
4105 		return 0;
4106 	}
4107 
4108 	xhci_free_command(xhci, command);
4109 
4110 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4111 		spin_lock_irqsave(&xhci->lock, flags);
4112 		ret = xhci_reserve_host_control_ep_resources(xhci);
4113 		if (ret) {
4114 			spin_unlock_irqrestore(&xhci->lock, flags);
4115 			xhci_warn(xhci, "Not enough host resources, "
4116 					"active endpoint contexts = %u\n",
4117 					xhci->num_active_eps);
4118 			goto disable_slot;
4119 		}
4120 		spin_unlock_irqrestore(&xhci->lock, flags);
4121 	}
4122 	/* Use GFP_NOIO, since this function can be called from
4123 	 * xhci_discover_or_reset_device(), which may be called as part of
4124 	 * mass storage driver error handling.
4125 	 */
4126 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4127 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4128 		goto disable_slot;
4129 	}
4130 	vdev = xhci->devs[slot_id];
4131 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4132 	trace_xhci_alloc_dev(slot_ctx);
4133 
4134 	udev->slot_id = slot_id;
4135 
4136 	xhci_debugfs_create_slot(xhci, slot_id);
4137 
4138 	/*
4139 	 * If resetting upon resume, we can't put the controller into runtime
4140 	 * suspend if there is a device attached.
4141 	 */
4142 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4143 		pm_runtime_get_noresume(hcd->self.controller);
4144 
4145 	/* Is this a LS or FS device under a HS hub? */
4146 	/* Hub or peripherial? */
4147 	return 1;
4148 
4149 disable_slot:
4150 	xhci_disable_slot(xhci, udev->slot_id);
4151 	xhci_free_virt_device(xhci, udev->slot_id);
4152 
4153 	return 0;
4154 }
4155 
4156 /*
4157  * Issue an Address Device command and optionally send a corresponding
4158  * SetAddress request to the device.
4159  */
4160 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4161 			     enum xhci_setup_dev setup)
4162 {
4163 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4164 	unsigned long flags;
4165 	struct xhci_virt_device *virt_dev;
4166 	int ret = 0;
4167 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4168 	struct xhci_slot_ctx *slot_ctx;
4169 	struct xhci_input_control_ctx *ctrl_ctx;
4170 	u64 temp_64;
4171 	struct xhci_command *command = NULL;
4172 
4173 	mutex_lock(&xhci->mutex);
4174 
4175 	if (xhci->xhc_state) {	/* dying, removing or halted */
4176 		ret = -ESHUTDOWN;
4177 		goto out;
4178 	}
4179 
4180 	if (!udev->slot_id) {
4181 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4182 				"Bad Slot ID %d", udev->slot_id);
4183 		ret = -EINVAL;
4184 		goto out;
4185 	}
4186 
4187 	virt_dev = xhci->devs[udev->slot_id];
4188 
4189 	if (WARN_ON(!virt_dev)) {
4190 		/*
4191 		 * In plug/unplug torture test with an NEC controller,
4192 		 * a zero-dereference was observed once due to virt_dev = 0.
4193 		 * Print useful debug rather than crash if it is observed again!
4194 		 */
4195 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4196 			udev->slot_id);
4197 		ret = -EINVAL;
4198 		goto out;
4199 	}
4200 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4201 	trace_xhci_setup_device_slot(slot_ctx);
4202 
4203 	if (setup == SETUP_CONTEXT_ONLY) {
4204 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4205 		    SLOT_STATE_DEFAULT) {
4206 			xhci_dbg(xhci, "Slot already in default state\n");
4207 			goto out;
4208 		}
4209 	}
4210 
4211 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4212 	if (!command) {
4213 		ret = -ENOMEM;
4214 		goto out;
4215 	}
4216 
4217 	command->in_ctx = virt_dev->in_ctx;
4218 
4219 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4220 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4221 	if (!ctrl_ctx) {
4222 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4223 				__func__);
4224 		ret = -EINVAL;
4225 		goto out;
4226 	}
4227 	/*
4228 	 * If this is the first Set Address since device plug-in or
4229 	 * virt_device realloaction after a resume with an xHCI power loss,
4230 	 * then set up the slot context.
4231 	 */
4232 	if (!slot_ctx->dev_info)
4233 		xhci_setup_addressable_virt_dev(xhci, udev);
4234 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4235 	else
4236 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4237 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4238 	ctrl_ctx->drop_flags = 0;
4239 
4240 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4241 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4242 
4243 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4244 	spin_lock_irqsave(&xhci->lock, flags);
4245 	trace_xhci_setup_device(virt_dev);
4246 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4247 					udev->slot_id, setup);
4248 	if (ret) {
4249 		spin_unlock_irqrestore(&xhci->lock, flags);
4250 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4251 				"FIXME: allocate a command ring segment");
4252 		goto out;
4253 	}
4254 	xhci_ring_cmd_db(xhci);
4255 	spin_unlock_irqrestore(&xhci->lock, flags);
4256 
4257 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4258 	wait_for_completion(command->completion);
4259 
4260 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4261 	 * the SetAddress() "recovery interval" required by USB and aborting the
4262 	 * command on a timeout.
4263 	 */
4264 	switch (command->status) {
4265 	case COMP_COMMAND_ABORTED:
4266 	case COMP_COMMAND_RING_STOPPED:
4267 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4268 		ret = -ETIME;
4269 		break;
4270 	case COMP_CONTEXT_STATE_ERROR:
4271 	case COMP_SLOT_NOT_ENABLED_ERROR:
4272 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4273 			 act, udev->slot_id);
4274 		ret = -EINVAL;
4275 		break;
4276 	case COMP_USB_TRANSACTION_ERROR:
4277 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4278 
4279 		mutex_unlock(&xhci->mutex);
4280 		ret = xhci_disable_slot(xhci, udev->slot_id);
4281 		xhci_free_virt_device(xhci, udev->slot_id);
4282 		if (!ret)
4283 			xhci_alloc_dev(hcd, udev);
4284 		kfree(command->completion);
4285 		kfree(command);
4286 		return -EPROTO;
4287 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4288 		dev_warn(&udev->dev,
4289 			 "ERROR: Incompatible device for setup %s command\n", act);
4290 		ret = -ENODEV;
4291 		break;
4292 	case COMP_SUCCESS:
4293 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4294 			       "Successful setup %s command", act);
4295 		break;
4296 	default:
4297 		xhci_err(xhci,
4298 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4299 			 act, command->status);
4300 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4301 		ret = -EINVAL;
4302 		break;
4303 	}
4304 	if (ret)
4305 		goto out;
4306 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4307 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4308 			"Op regs DCBAA ptr = %#016llx", temp_64);
4309 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4310 		"Slot ID %d dcbaa entry @%p = %#016llx",
4311 		udev->slot_id,
4312 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4313 		(unsigned long long)
4314 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4315 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4316 			"Output Context DMA address = %#08llx",
4317 			(unsigned long long)virt_dev->out_ctx->dma);
4318 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4319 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4320 	/*
4321 	 * USB core uses address 1 for the roothubs, so we add one to the
4322 	 * address given back to us by the HC.
4323 	 */
4324 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4325 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4326 	/* Zero the input context control for later use */
4327 	ctrl_ctx->add_flags = 0;
4328 	ctrl_ctx->drop_flags = 0;
4329 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4330 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4331 
4332 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4333 		       "Internal device address = %d",
4334 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4335 out:
4336 	mutex_unlock(&xhci->mutex);
4337 	if (command) {
4338 		kfree(command->completion);
4339 		kfree(command);
4340 	}
4341 	return ret;
4342 }
4343 
4344 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4345 {
4346 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4347 }
4348 
4349 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4350 {
4351 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4352 }
4353 
4354 /*
4355  * Transfer the port index into real index in the HW port status
4356  * registers. Caculate offset between the port's PORTSC register
4357  * and port status base. Divide the number of per port register
4358  * to get the real index. The raw port number bases 1.
4359  */
4360 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4361 {
4362 	struct xhci_hub *rhub;
4363 
4364 	rhub = xhci_get_rhub(hcd);
4365 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4366 }
4367 
4368 /*
4369  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4370  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4371  */
4372 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4373 			struct usb_device *udev, u16 max_exit_latency)
4374 {
4375 	struct xhci_virt_device *virt_dev;
4376 	struct xhci_command *command;
4377 	struct xhci_input_control_ctx *ctrl_ctx;
4378 	struct xhci_slot_ctx *slot_ctx;
4379 	unsigned long flags;
4380 	int ret;
4381 
4382 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4383 	if (!command)
4384 		return -ENOMEM;
4385 
4386 	spin_lock_irqsave(&xhci->lock, flags);
4387 
4388 	virt_dev = xhci->devs[udev->slot_id];
4389 
4390 	/*
4391 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4392 	 * xHC was re-initialized. Exit latency will be set later after
4393 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4394 	 */
4395 
4396 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4397 		spin_unlock_irqrestore(&xhci->lock, flags);
4398 		return 0;
4399 	}
4400 
4401 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4402 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4403 	if (!ctrl_ctx) {
4404 		spin_unlock_irqrestore(&xhci->lock, flags);
4405 		xhci_free_command(xhci, command);
4406 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4407 				__func__);
4408 		return -ENOMEM;
4409 	}
4410 
4411 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4412 	spin_unlock_irqrestore(&xhci->lock, flags);
4413 
4414 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4415 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4416 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4417 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4418 	slot_ctx->dev_state = 0;
4419 
4420 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4421 			"Set up evaluate context for LPM MEL change.");
4422 
4423 	/* Issue and wait for the evaluate context command. */
4424 	ret = xhci_configure_endpoint(xhci, udev, command,
4425 			true, true);
4426 
4427 	if (!ret) {
4428 		spin_lock_irqsave(&xhci->lock, flags);
4429 		virt_dev->current_mel = max_exit_latency;
4430 		spin_unlock_irqrestore(&xhci->lock, flags);
4431 	}
4432 
4433 	xhci_free_command(xhci, command);
4434 
4435 	return ret;
4436 }
4437 
4438 #ifdef CONFIG_PM
4439 
4440 /* BESL to HIRD Encoding array for USB2 LPM */
4441 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4442 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4443 
4444 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4445 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4446 					struct usb_device *udev)
4447 {
4448 	int u2del, besl, besl_host;
4449 	int besl_device = 0;
4450 	u32 field;
4451 
4452 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4453 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4454 
4455 	if (field & USB_BESL_SUPPORT) {
4456 		for (besl_host = 0; besl_host < 16; besl_host++) {
4457 			if (xhci_besl_encoding[besl_host] >= u2del)
4458 				break;
4459 		}
4460 		/* Use baseline BESL value as default */
4461 		if (field & USB_BESL_BASELINE_VALID)
4462 			besl_device = USB_GET_BESL_BASELINE(field);
4463 		else if (field & USB_BESL_DEEP_VALID)
4464 			besl_device = USB_GET_BESL_DEEP(field);
4465 	} else {
4466 		if (u2del <= 50)
4467 			besl_host = 0;
4468 		else
4469 			besl_host = (u2del - 51) / 75 + 1;
4470 	}
4471 
4472 	besl = besl_host + besl_device;
4473 	if (besl > 15)
4474 		besl = 15;
4475 
4476 	return besl;
4477 }
4478 
4479 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4480 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4481 {
4482 	u32 field;
4483 	int l1;
4484 	int besld = 0;
4485 	int hirdm = 0;
4486 
4487 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4488 
4489 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4490 	l1 = udev->l1_params.timeout / 256;
4491 
4492 	/* device has preferred BESLD */
4493 	if (field & USB_BESL_DEEP_VALID) {
4494 		besld = USB_GET_BESL_DEEP(field);
4495 		hirdm = 1;
4496 	}
4497 
4498 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4499 }
4500 
4501 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4502 			struct usb_device *udev, int enable)
4503 {
4504 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4505 	struct xhci_port **ports;
4506 	__le32 __iomem	*pm_addr, *hlpm_addr;
4507 	u32		pm_val, hlpm_val, field;
4508 	unsigned int	port_num;
4509 	unsigned long	flags;
4510 	int		hird, exit_latency;
4511 	int		ret;
4512 
4513 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4514 		return -EPERM;
4515 
4516 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4517 			!udev->lpm_capable)
4518 		return -EPERM;
4519 
4520 	if (!udev->parent || udev->parent->parent ||
4521 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4522 		return -EPERM;
4523 
4524 	if (udev->usb2_hw_lpm_capable != 1)
4525 		return -EPERM;
4526 
4527 	spin_lock_irqsave(&xhci->lock, flags);
4528 
4529 	ports = xhci->usb2_rhub.ports;
4530 	port_num = udev->portnum - 1;
4531 	pm_addr = ports[port_num]->addr + PORTPMSC;
4532 	pm_val = readl(pm_addr);
4533 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4534 
4535 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4536 			enable ? "enable" : "disable", port_num + 1);
4537 
4538 	if (enable) {
4539 		/* Host supports BESL timeout instead of HIRD */
4540 		if (udev->usb2_hw_lpm_besl_capable) {
4541 			/* if device doesn't have a preferred BESL value use a
4542 			 * default one which works with mixed HIRD and BESL
4543 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4544 			 */
4545 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4546 			if ((field & USB_BESL_SUPPORT) &&
4547 			    (field & USB_BESL_BASELINE_VALID))
4548 				hird = USB_GET_BESL_BASELINE(field);
4549 			else
4550 				hird = udev->l1_params.besl;
4551 
4552 			exit_latency = xhci_besl_encoding[hird];
4553 			spin_unlock_irqrestore(&xhci->lock, flags);
4554 
4555 			ret = xhci_change_max_exit_latency(xhci, udev,
4556 							   exit_latency);
4557 			if (ret < 0)
4558 				return ret;
4559 			spin_lock_irqsave(&xhci->lock, flags);
4560 
4561 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4562 			writel(hlpm_val, hlpm_addr);
4563 			/* flush write */
4564 			readl(hlpm_addr);
4565 		} else {
4566 			hird = xhci_calculate_hird_besl(xhci, udev);
4567 		}
4568 
4569 		pm_val &= ~PORT_HIRD_MASK;
4570 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4571 		writel(pm_val, pm_addr);
4572 		pm_val = readl(pm_addr);
4573 		pm_val |= PORT_HLE;
4574 		writel(pm_val, pm_addr);
4575 		/* flush write */
4576 		readl(pm_addr);
4577 	} else {
4578 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4579 		writel(pm_val, pm_addr);
4580 		/* flush write */
4581 		readl(pm_addr);
4582 		if (udev->usb2_hw_lpm_besl_capable) {
4583 			spin_unlock_irqrestore(&xhci->lock, flags);
4584 			xhci_change_max_exit_latency(xhci, udev, 0);
4585 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4586 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4587 					   100, 10000);
4588 			return 0;
4589 		}
4590 	}
4591 
4592 	spin_unlock_irqrestore(&xhci->lock, flags);
4593 	return 0;
4594 }
4595 
4596 /* check if a usb2 port supports a given extened capability protocol
4597  * only USB2 ports extended protocol capability values are cached.
4598  * Return 1 if capability is supported
4599  */
4600 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4601 					   unsigned capability)
4602 {
4603 	u32 port_offset, port_count;
4604 	int i;
4605 
4606 	for (i = 0; i < xhci->num_ext_caps; i++) {
4607 		if (xhci->ext_caps[i] & capability) {
4608 			/* port offsets starts at 1 */
4609 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4610 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4611 			if (port >= port_offset &&
4612 			    port < port_offset + port_count)
4613 				return 1;
4614 		}
4615 	}
4616 	return 0;
4617 }
4618 
4619 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4620 {
4621 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4622 	int		portnum = udev->portnum - 1;
4623 
4624 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4625 		return 0;
4626 
4627 	/* we only support lpm for non-hub device connected to root hub yet */
4628 	if (!udev->parent || udev->parent->parent ||
4629 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4630 		return 0;
4631 
4632 	if (xhci->hw_lpm_support == 1 &&
4633 			xhci_check_usb2_port_capability(
4634 				xhci, portnum, XHCI_HLC)) {
4635 		udev->usb2_hw_lpm_capable = 1;
4636 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4637 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4638 		if (xhci_check_usb2_port_capability(xhci, portnum,
4639 					XHCI_BLC))
4640 			udev->usb2_hw_lpm_besl_capable = 1;
4641 	}
4642 
4643 	return 0;
4644 }
4645 
4646 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4647 
4648 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4649 static unsigned long long xhci_service_interval_to_ns(
4650 		struct usb_endpoint_descriptor *desc)
4651 {
4652 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4653 }
4654 
4655 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4656 		enum usb3_link_state state)
4657 {
4658 	unsigned long long sel;
4659 	unsigned long long pel;
4660 	unsigned int max_sel_pel;
4661 	char *state_name;
4662 
4663 	switch (state) {
4664 	case USB3_LPM_U1:
4665 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4666 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4667 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4668 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4669 		state_name = "U1";
4670 		break;
4671 	case USB3_LPM_U2:
4672 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4673 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4674 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4675 		state_name = "U2";
4676 		break;
4677 	default:
4678 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4679 				__func__);
4680 		return USB3_LPM_DISABLED;
4681 	}
4682 
4683 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4684 		return USB3_LPM_DEVICE_INITIATED;
4685 
4686 	if (sel > max_sel_pel)
4687 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4688 				"due to long SEL %llu ms\n",
4689 				state_name, sel);
4690 	else
4691 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4692 				"due to long PEL %llu ms\n",
4693 				state_name, pel);
4694 	return USB3_LPM_DISABLED;
4695 }
4696 
4697 /* The U1 timeout should be the maximum of the following values:
4698  *  - For control endpoints, U1 system exit latency (SEL) * 3
4699  *  - For bulk endpoints, U1 SEL * 5
4700  *  - For interrupt endpoints:
4701  *    - Notification EPs, U1 SEL * 3
4702  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4703  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4704  */
4705 static unsigned long long xhci_calculate_intel_u1_timeout(
4706 		struct usb_device *udev,
4707 		struct usb_endpoint_descriptor *desc)
4708 {
4709 	unsigned long long timeout_ns;
4710 	int ep_type;
4711 	int intr_type;
4712 
4713 	ep_type = usb_endpoint_type(desc);
4714 	switch (ep_type) {
4715 	case USB_ENDPOINT_XFER_CONTROL:
4716 		timeout_ns = udev->u1_params.sel * 3;
4717 		break;
4718 	case USB_ENDPOINT_XFER_BULK:
4719 		timeout_ns = udev->u1_params.sel * 5;
4720 		break;
4721 	case USB_ENDPOINT_XFER_INT:
4722 		intr_type = usb_endpoint_interrupt_type(desc);
4723 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4724 			timeout_ns = udev->u1_params.sel * 3;
4725 			break;
4726 		}
4727 		/* Otherwise the calculation is the same as isoc eps */
4728 		fallthrough;
4729 	case USB_ENDPOINT_XFER_ISOC:
4730 		timeout_ns = xhci_service_interval_to_ns(desc);
4731 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4732 		if (timeout_ns < udev->u1_params.sel * 2)
4733 			timeout_ns = udev->u1_params.sel * 2;
4734 		break;
4735 	default:
4736 		return 0;
4737 	}
4738 
4739 	return timeout_ns;
4740 }
4741 
4742 /* Returns the hub-encoded U1 timeout value. */
4743 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4744 		struct usb_device *udev,
4745 		struct usb_endpoint_descriptor *desc)
4746 {
4747 	unsigned long long timeout_ns;
4748 
4749 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4750 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4751 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4752 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4753 			return USB3_LPM_DISABLED;
4754 		}
4755 	}
4756 
4757 	if (xhci->quirks & XHCI_INTEL_HOST)
4758 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4759 	else
4760 		timeout_ns = udev->u1_params.sel;
4761 
4762 	/* The U1 timeout is encoded in 1us intervals.
4763 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4764 	 */
4765 	if (timeout_ns == USB3_LPM_DISABLED)
4766 		timeout_ns = 1;
4767 	else
4768 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4769 
4770 	/* If the necessary timeout value is bigger than what we can set in the
4771 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4772 	 */
4773 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4774 		return timeout_ns;
4775 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4776 			"due to long timeout %llu ms\n", timeout_ns);
4777 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4778 }
4779 
4780 /* The U2 timeout should be the maximum of:
4781  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4782  *  - largest bInterval of any active periodic endpoint (to avoid going
4783  *    into lower power link states between intervals).
4784  *  - the U2 Exit Latency of the device
4785  */
4786 static unsigned long long xhci_calculate_intel_u2_timeout(
4787 		struct usb_device *udev,
4788 		struct usb_endpoint_descriptor *desc)
4789 {
4790 	unsigned long long timeout_ns;
4791 	unsigned long long u2_del_ns;
4792 
4793 	timeout_ns = 10 * 1000 * 1000;
4794 
4795 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4796 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4797 		timeout_ns = xhci_service_interval_to_ns(desc);
4798 
4799 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4800 	if (u2_del_ns > timeout_ns)
4801 		timeout_ns = u2_del_ns;
4802 
4803 	return timeout_ns;
4804 }
4805 
4806 /* Returns the hub-encoded U2 timeout value. */
4807 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4808 		struct usb_device *udev,
4809 		struct usb_endpoint_descriptor *desc)
4810 {
4811 	unsigned long long timeout_ns;
4812 
4813 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4814 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4815 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4816 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4817 			return USB3_LPM_DISABLED;
4818 		}
4819 	}
4820 
4821 	if (xhci->quirks & XHCI_INTEL_HOST)
4822 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4823 	else
4824 		timeout_ns = udev->u2_params.sel;
4825 
4826 	/* The U2 timeout is encoded in 256us intervals */
4827 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4828 	/* If the necessary timeout value is bigger than what we can set in the
4829 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4830 	 */
4831 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4832 		return timeout_ns;
4833 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4834 			"due to long timeout %llu ms\n", timeout_ns);
4835 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4836 }
4837 
4838 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4839 		struct usb_device *udev,
4840 		struct usb_endpoint_descriptor *desc,
4841 		enum usb3_link_state state,
4842 		u16 *timeout)
4843 {
4844 	if (state == USB3_LPM_U1)
4845 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4846 	else if (state == USB3_LPM_U2)
4847 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4848 
4849 	return USB3_LPM_DISABLED;
4850 }
4851 
4852 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4853 		struct usb_device *udev,
4854 		struct usb_endpoint_descriptor *desc,
4855 		enum usb3_link_state state,
4856 		u16 *timeout)
4857 {
4858 	u16 alt_timeout;
4859 
4860 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4861 		desc, state, timeout);
4862 
4863 	/* If we found we can't enable hub-initiated LPM, and
4864 	 * the U1 or U2 exit latency was too high to allow
4865 	 * device-initiated LPM as well, then we will disable LPM
4866 	 * for this device, so stop searching any further.
4867 	 */
4868 	if (alt_timeout == USB3_LPM_DISABLED) {
4869 		*timeout = alt_timeout;
4870 		return -E2BIG;
4871 	}
4872 	if (alt_timeout > *timeout)
4873 		*timeout = alt_timeout;
4874 	return 0;
4875 }
4876 
4877 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4878 		struct usb_device *udev,
4879 		struct usb_host_interface *alt,
4880 		enum usb3_link_state state,
4881 		u16 *timeout)
4882 {
4883 	int j;
4884 
4885 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4886 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4887 					&alt->endpoint[j].desc, state, timeout))
4888 			return -E2BIG;
4889 	}
4890 	return 0;
4891 }
4892 
4893 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4894 		enum usb3_link_state state)
4895 {
4896 	struct usb_device *parent;
4897 	unsigned int num_hubs;
4898 
4899 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4900 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4901 			parent = parent->parent)
4902 		num_hubs++;
4903 
4904 	if (num_hubs < 2)
4905 		return 0;
4906 
4907 	dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4908 			" below second-tier hub.\n");
4909 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4910 			"to decrease power consumption.\n");
4911 	return -E2BIG;
4912 }
4913 
4914 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4915 		struct usb_device *udev,
4916 		enum usb3_link_state state)
4917 {
4918 	if (xhci->quirks & XHCI_INTEL_HOST)
4919 		return xhci_check_intel_tier_policy(udev, state);
4920 	else
4921 		return 0;
4922 }
4923 
4924 /* Returns the U1 or U2 timeout that should be enabled.
4925  * If the tier check or timeout setting functions return with a non-zero exit
4926  * code, that means the timeout value has been finalized and we shouldn't look
4927  * at any more endpoints.
4928  */
4929 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4930 			struct usb_device *udev, enum usb3_link_state state)
4931 {
4932 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4933 	struct usb_host_config *config;
4934 	char *state_name;
4935 	int i;
4936 	u16 timeout = USB3_LPM_DISABLED;
4937 
4938 	if (state == USB3_LPM_U1)
4939 		state_name = "U1";
4940 	else if (state == USB3_LPM_U2)
4941 		state_name = "U2";
4942 	else {
4943 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4944 				state);
4945 		return timeout;
4946 	}
4947 
4948 	/* Gather some information about the currently installed configuration
4949 	 * and alternate interface settings.
4950 	 */
4951 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4952 			state, &timeout))
4953 		return timeout;
4954 
4955 	config = udev->actconfig;
4956 	if (!config)
4957 		return timeout;
4958 
4959 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4960 		struct usb_driver *driver;
4961 		struct usb_interface *intf = config->interface[i];
4962 
4963 		if (!intf)
4964 			continue;
4965 
4966 		/* Check if any currently bound drivers want hub-initiated LPM
4967 		 * disabled.
4968 		 */
4969 		if (intf->dev.driver) {
4970 			driver = to_usb_driver(intf->dev.driver);
4971 			if (driver && driver->disable_hub_initiated_lpm) {
4972 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4973 					state_name, driver->name);
4974 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4975 								      state);
4976 				if (timeout == USB3_LPM_DISABLED)
4977 					return timeout;
4978 			}
4979 		}
4980 
4981 		/* Not sure how this could happen... */
4982 		if (!intf->cur_altsetting)
4983 			continue;
4984 
4985 		if (xhci_update_timeout_for_interface(xhci, udev,
4986 					intf->cur_altsetting,
4987 					state, &timeout))
4988 			return timeout;
4989 	}
4990 	return timeout;
4991 }
4992 
4993 static int calculate_max_exit_latency(struct usb_device *udev,
4994 		enum usb3_link_state state_changed,
4995 		u16 hub_encoded_timeout)
4996 {
4997 	unsigned long long u1_mel_us = 0;
4998 	unsigned long long u2_mel_us = 0;
4999 	unsigned long long mel_us = 0;
5000 	bool disabling_u1;
5001 	bool disabling_u2;
5002 	bool enabling_u1;
5003 	bool enabling_u2;
5004 
5005 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
5006 			hub_encoded_timeout == USB3_LPM_DISABLED);
5007 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
5008 			hub_encoded_timeout == USB3_LPM_DISABLED);
5009 
5010 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
5011 			hub_encoded_timeout != USB3_LPM_DISABLED);
5012 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
5013 			hub_encoded_timeout != USB3_LPM_DISABLED);
5014 
5015 	/* If U1 was already enabled and we're not disabling it,
5016 	 * or we're going to enable U1, account for the U1 max exit latency.
5017 	 */
5018 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5019 			enabling_u1)
5020 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5021 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5022 			enabling_u2)
5023 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5024 
5025 	mel_us = max(u1_mel_us, u2_mel_us);
5026 
5027 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5028 	if (mel_us > MAX_EXIT) {
5029 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5030 				"is too big.\n", mel_us);
5031 		return -E2BIG;
5032 	}
5033 	return mel_us;
5034 }
5035 
5036 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5037 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5038 			struct usb_device *udev, enum usb3_link_state state)
5039 {
5040 	struct xhci_hcd	*xhci;
5041 	u16 hub_encoded_timeout;
5042 	int mel;
5043 	int ret;
5044 
5045 	xhci = hcd_to_xhci(hcd);
5046 	/* The LPM timeout values are pretty host-controller specific, so don't
5047 	 * enable hub-initiated timeouts unless the vendor has provided
5048 	 * information about their timeout algorithm.
5049 	 */
5050 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5051 			!xhci->devs[udev->slot_id])
5052 		return USB3_LPM_DISABLED;
5053 
5054 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
5055 		return USB3_LPM_DISABLED;
5056 
5057 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5058 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5059 	if (mel < 0) {
5060 		/* Max Exit Latency is too big, disable LPM. */
5061 		hub_encoded_timeout = USB3_LPM_DISABLED;
5062 		mel = 0;
5063 	}
5064 
5065 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5066 	if (ret)
5067 		return ret;
5068 	return hub_encoded_timeout;
5069 }
5070 
5071 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5072 			struct usb_device *udev, enum usb3_link_state state)
5073 {
5074 	struct xhci_hcd	*xhci;
5075 	u16 mel;
5076 
5077 	xhci = hcd_to_xhci(hcd);
5078 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5079 			!xhci->devs[udev->slot_id])
5080 		return 0;
5081 
5082 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5083 	return xhci_change_max_exit_latency(xhci, udev, mel);
5084 }
5085 #else /* CONFIG_PM */
5086 
5087 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5088 				struct usb_device *udev, int enable)
5089 {
5090 	return 0;
5091 }
5092 
5093 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5094 {
5095 	return 0;
5096 }
5097 
5098 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5099 			struct usb_device *udev, enum usb3_link_state state)
5100 {
5101 	return USB3_LPM_DISABLED;
5102 }
5103 
5104 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5105 			struct usb_device *udev, enum usb3_link_state state)
5106 {
5107 	return 0;
5108 }
5109 #endif	/* CONFIG_PM */
5110 
5111 /*-------------------------------------------------------------------------*/
5112 
5113 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5114  * internal data structures for the device.
5115  */
5116 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5117 			struct usb_tt *tt, gfp_t mem_flags)
5118 {
5119 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5120 	struct xhci_virt_device *vdev;
5121 	struct xhci_command *config_cmd;
5122 	struct xhci_input_control_ctx *ctrl_ctx;
5123 	struct xhci_slot_ctx *slot_ctx;
5124 	unsigned long flags;
5125 	unsigned think_time;
5126 	int ret;
5127 
5128 	/* Ignore root hubs */
5129 	if (!hdev->parent)
5130 		return 0;
5131 
5132 	vdev = xhci->devs[hdev->slot_id];
5133 	if (!vdev) {
5134 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5135 		return -EINVAL;
5136 	}
5137 
5138 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5139 	if (!config_cmd)
5140 		return -ENOMEM;
5141 
5142 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5143 	if (!ctrl_ctx) {
5144 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5145 				__func__);
5146 		xhci_free_command(xhci, config_cmd);
5147 		return -ENOMEM;
5148 	}
5149 
5150 	spin_lock_irqsave(&xhci->lock, flags);
5151 	if (hdev->speed == USB_SPEED_HIGH &&
5152 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5153 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5154 		xhci_free_command(xhci, config_cmd);
5155 		spin_unlock_irqrestore(&xhci->lock, flags);
5156 		return -ENOMEM;
5157 	}
5158 
5159 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5160 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5161 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5162 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5163 	/*
5164 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5165 	 * but it may be already set to 1 when setup an xHCI virtual
5166 	 * device, so clear it anyway.
5167 	 */
5168 	if (tt->multi)
5169 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5170 	else if (hdev->speed == USB_SPEED_FULL)
5171 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5172 
5173 	if (xhci->hci_version > 0x95) {
5174 		xhci_dbg(xhci, "xHCI version %x needs hub "
5175 				"TT think time and number of ports\n",
5176 				(unsigned int) xhci->hci_version);
5177 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5178 		/* Set TT think time - convert from ns to FS bit times.
5179 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5180 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5181 		 *
5182 		 * xHCI 1.0: this field shall be 0 if the device is not a
5183 		 * High-spped hub.
5184 		 */
5185 		think_time = tt->think_time;
5186 		if (think_time != 0)
5187 			think_time = (think_time / 666) - 1;
5188 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5189 			slot_ctx->tt_info |=
5190 				cpu_to_le32(TT_THINK_TIME(think_time));
5191 	} else {
5192 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5193 				"TT think time or number of ports\n",
5194 				(unsigned int) xhci->hci_version);
5195 	}
5196 	slot_ctx->dev_state = 0;
5197 	spin_unlock_irqrestore(&xhci->lock, flags);
5198 
5199 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5200 			(xhci->hci_version > 0x95) ?
5201 			"configure endpoint" : "evaluate context");
5202 
5203 	/* Issue and wait for the configure endpoint or
5204 	 * evaluate context command.
5205 	 */
5206 	if (xhci->hci_version > 0x95)
5207 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5208 				false, false);
5209 	else
5210 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5211 				true, false);
5212 
5213 	xhci_free_command(xhci, config_cmd);
5214 	return ret;
5215 }
5216 
5217 static int xhci_get_frame(struct usb_hcd *hcd)
5218 {
5219 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5220 	/* EHCI mods by the periodic size.  Why? */
5221 	return readl(&xhci->run_regs->microframe_index) >> 3;
5222 }
5223 
5224 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5225 {
5226 	xhci->usb2_rhub.hcd = hcd;
5227 	hcd->speed = HCD_USB2;
5228 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5229 	/*
5230 	 * USB 2.0 roothub under xHCI has an integrated TT,
5231 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5232 	 * companion controller.
5233 	 */
5234 	hcd->has_tt = 1;
5235 }
5236 
5237 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5238 {
5239 	unsigned int minor_rev;
5240 
5241 	/*
5242 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5243 	 * should return 0x31 for sbrn, or that the minor revision
5244 	 * is a two digit BCD containig minor and sub-minor numbers.
5245 	 * This was later clarified in xHCI 1.2.
5246 	 *
5247 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5248 	 * minor revision set to 0x1 instead of 0x10.
5249 	 */
5250 	if (xhci->usb3_rhub.min_rev == 0x1)
5251 		minor_rev = 1;
5252 	else
5253 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5254 
5255 	switch (minor_rev) {
5256 	case 2:
5257 		hcd->speed = HCD_USB32;
5258 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5259 		hcd->self.root_hub->rx_lanes = 2;
5260 		hcd->self.root_hub->tx_lanes = 2;
5261 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5262 		break;
5263 	case 1:
5264 		hcd->speed = HCD_USB31;
5265 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5266 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5267 		break;
5268 	}
5269 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5270 		  minor_rev, minor_rev ? "Enhanced " : "");
5271 
5272 	xhci->usb3_rhub.hcd = hcd;
5273 }
5274 
5275 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5276 {
5277 	struct xhci_hcd		*xhci;
5278 	/*
5279 	 * TODO: Check with DWC3 clients for sysdev according to
5280 	 * quirks
5281 	 */
5282 	struct device		*dev = hcd->self.sysdev;
5283 	int			retval;
5284 
5285 	/* Accept arbitrarily long scatter-gather lists */
5286 	hcd->self.sg_tablesize = ~0;
5287 
5288 	/* support to build packet from discontinuous buffers */
5289 	hcd->self.no_sg_constraint = 1;
5290 
5291 	/* XHCI controllers don't stop the ep queue on short packets :| */
5292 	hcd->self.no_stop_on_short = 1;
5293 
5294 	xhci = hcd_to_xhci(hcd);
5295 
5296 	if (!usb_hcd_is_primary_hcd(hcd)) {
5297 		xhci_hcd_init_usb3_data(xhci, hcd);
5298 		return 0;
5299 	}
5300 
5301 	mutex_init(&xhci->mutex);
5302 	xhci->main_hcd = hcd;
5303 	xhci->cap_regs = hcd->regs;
5304 	xhci->op_regs = hcd->regs +
5305 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5306 	xhci->run_regs = hcd->regs +
5307 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5308 	/* Cache read-only capability registers */
5309 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5310 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5311 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5312 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5313 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5314 	if (xhci->hci_version > 0x100)
5315 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5316 
5317 	xhci->quirks |= quirks;
5318 
5319 	get_quirks(dev, xhci);
5320 
5321 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5322 	 * success event after a short transfer. This quirk will ignore such
5323 	 * spurious event.
5324 	 */
5325 	if (xhci->hci_version > 0x96)
5326 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5327 
5328 	/* Make sure the HC is halted. */
5329 	retval = xhci_halt(xhci);
5330 	if (retval)
5331 		return retval;
5332 
5333 	xhci_zero_64b_regs(xhci);
5334 
5335 	xhci_dbg(xhci, "Resetting HCD\n");
5336 	/* Reset the internal HC memory state and registers. */
5337 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5338 	if (retval)
5339 		return retval;
5340 	xhci_dbg(xhci, "Reset complete\n");
5341 
5342 	/*
5343 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5344 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5345 	 * address memory pointers actually. So, this driver clears the AC64
5346 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5347 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5348 	 */
5349 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5350 		xhci->hcc_params &= ~BIT(0);
5351 
5352 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5353 	 * if xHC supports 64-bit addressing */
5354 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5355 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5356 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5357 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5358 	} else {
5359 		/*
5360 		 * This is to avoid error in cases where a 32-bit USB
5361 		 * controller is used on a 64-bit capable system.
5362 		 */
5363 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5364 		if (retval)
5365 			return retval;
5366 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5367 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5368 	}
5369 
5370 	xhci_dbg(xhci, "Calling HCD init\n");
5371 	/* Initialize HCD and host controller data structures. */
5372 	retval = xhci_init(hcd);
5373 	if (retval)
5374 		return retval;
5375 	xhci_dbg(xhci, "Called HCD init\n");
5376 
5377 	if (xhci_hcd_is_usb3(hcd))
5378 		xhci_hcd_init_usb3_data(xhci, hcd);
5379 	else
5380 		xhci_hcd_init_usb2_data(xhci, hcd);
5381 
5382 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5383 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5384 
5385 	return 0;
5386 }
5387 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5388 
5389 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5390 		struct usb_host_endpoint *ep)
5391 {
5392 	struct xhci_hcd *xhci;
5393 	struct usb_device *udev;
5394 	unsigned int slot_id;
5395 	unsigned int ep_index;
5396 	unsigned long flags;
5397 
5398 	xhci = hcd_to_xhci(hcd);
5399 
5400 	spin_lock_irqsave(&xhci->lock, flags);
5401 	udev = (struct usb_device *)ep->hcpriv;
5402 	slot_id = udev->slot_id;
5403 	ep_index = xhci_get_endpoint_index(&ep->desc);
5404 
5405 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5406 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5407 	spin_unlock_irqrestore(&xhci->lock, flags);
5408 }
5409 
5410 static const struct hc_driver xhci_hc_driver = {
5411 	.description =		"xhci-hcd",
5412 	.product_desc =		"xHCI Host Controller",
5413 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5414 
5415 	/*
5416 	 * generic hardware linkage
5417 	 */
5418 	.irq =			xhci_irq,
5419 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5420 				HCD_BH,
5421 
5422 	/*
5423 	 * basic lifecycle operations
5424 	 */
5425 	.reset =		NULL, /* set in xhci_init_driver() */
5426 	.start =		xhci_run,
5427 	.stop =			xhci_stop,
5428 	.shutdown =		xhci_shutdown,
5429 
5430 	/*
5431 	 * managing i/o requests and associated device resources
5432 	 */
5433 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5434 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5435 	.urb_enqueue =		xhci_urb_enqueue,
5436 	.urb_dequeue =		xhci_urb_dequeue,
5437 	.alloc_dev =		xhci_alloc_dev,
5438 	.free_dev =		xhci_free_dev,
5439 	.alloc_streams =	xhci_alloc_streams,
5440 	.free_streams =		xhci_free_streams,
5441 	.add_endpoint =		xhci_add_endpoint,
5442 	.drop_endpoint =	xhci_drop_endpoint,
5443 	.endpoint_disable =	xhci_endpoint_disable,
5444 	.endpoint_reset =	xhci_endpoint_reset,
5445 	.check_bandwidth =	xhci_check_bandwidth,
5446 	.reset_bandwidth =	xhci_reset_bandwidth,
5447 	.address_device =	xhci_address_device,
5448 	.enable_device =	xhci_enable_device,
5449 	.update_hub_device =	xhci_update_hub_device,
5450 	.reset_device =		xhci_discover_or_reset_device,
5451 
5452 	/*
5453 	 * scheduling support
5454 	 */
5455 	.get_frame_number =	xhci_get_frame,
5456 
5457 	/*
5458 	 * root hub support
5459 	 */
5460 	.hub_control =		xhci_hub_control,
5461 	.hub_status_data =	xhci_hub_status_data,
5462 	.bus_suspend =		xhci_bus_suspend,
5463 	.bus_resume =		xhci_bus_resume,
5464 	.get_resuming_ports =	xhci_get_resuming_ports,
5465 
5466 	/*
5467 	 * call back when device connected and addressed
5468 	 */
5469 	.update_device =        xhci_update_device,
5470 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5471 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5472 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5473 	.find_raw_port_number =	xhci_find_raw_port_number,
5474 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5475 };
5476 
5477 void xhci_init_driver(struct hc_driver *drv,
5478 		      const struct xhci_driver_overrides *over)
5479 {
5480 	BUG_ON(!over);
5481 
5482 	/* Copy the generic table to drv then apply the overrides */
5483 	*drv = xhci_hc_driver;
5484 
5485 	if (over) {
5486 		drv->hcd_priv_size += over->extra_priv_size;
5487 		if (over->reset)
5488 			drv->reset = over->reset;
5489 		if (over->start)
5490 			drv->start = over->start;
5491 		if (over->add_endpoint)
5492 			drv->add_endpoint = over->add_endpoint;
5493 		if (over->drop_endpoint)
5494 			drv->drop_endpoint = over->drop_endpoint;
5495 		if (over->check_bandwidth)
5496 			drv->check_bandwidth = over->check_bandwidth;
5497 		if (over->reset_bandwidth)
5498 			drv->reset_bandwidth = over->reset_bandwidth;
5499 	}
5500 }
5501 EXPORT_SYMBOL_GPL(xhci_init_driver);
5502 
5503 MODULE_DESCRIPTION(DRIVER_DESC);
5504 MODULE_AUTHOR(DRIVER_AUTHOR);
5505 MODULE_LICENSE("GPL");
5506 
5507 static int __init xhci_hcd_init(void)
5508 {
5509 	/*
5510 	 * Check the compiler generated sizes of structures that must be laid
5511 	 * out in specific ways for hardware access.
5512 	 */
5513 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5514 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5515 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5516 	/* xhci_device_control has eight fields, and also
5517 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5518 	 */
5519 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5520 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5521 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5522 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5523 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5524 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5525 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5526 
5527 	if (usb_disabled())
5528 		return -ENODEV;
5529 
5530 	xhci_debugfs_create_root();
5531 	xhci_dbc_init();
5532 
5533 	return 0;
5534 }
5535 
5536 /*
5537  * If an init function is provided, an exit function must also be provided
5538  * to allow module unload.
5539  */
5540 static void __exit xhci_hcd_fini(void)
5541 {
5542 	xhci_debugfs_remove_root();
5543 	xhci_dbc_exit();
5544 }
5545 
5546 module_init(xhci_hcd_init);
5547 module_exit(xhci_hcd_fini);
5548