1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 41 { 42 struct xhci_segment *seg = ring->first_seg; 43 44 if (!td || !td->start_seg) 45 return false; 46 do { 47 if (seg == td->start_seg) 48 return true; 49 seg = seg->next; 50 } while (seg && seg != ring->first_seg); 51 52 return false; 53 } 54 55 /* 56 * xhci_handshake - spin reading hc until handshake completes or fails 57 * @ptr: address of hc register to be read 58 * @mask: bits to look at in result of read 59 * @done: value of those bits when handshake succeeds 60 * @usec: timeout in microseconds 61 * 62 * Returns negative errno, or zero on success 63 * 64 * Success happens when the "mask" bits have the specified value (hardware 65 * handshake done). There are two failure modes: "usec" have passed (major 66 * hardware flakeout), or the register reads as all-ones (hardware removed). 67 */ 68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 69 { 70 u32 result; 71 int ret; 72 73 ret = readl_poll_timeout_atomic(ptr, result, 74 (result & mask) == done || 75 result == U32_MAX, 76 1, timeout_us); 77 if (result == U32_MAX) /* card removed */ 78 return -ENODEV; 79 80 return ret; 81 } 82 83 /* 84 * Disable interrupts and begin the xHCI halting process. 85 */ 86 void xhci_quiesce(struct xhci_hcd *xhci) 87 { 88 u32 halted; 89 u32 cmd; 90 u32 mask; 91 92 mask = ~(XHCI_IRQS); 93 halted = readl(&xhci->op_regs->status) & STS_HALT; 94 if (!halted) 95 mask &= ~CMD_RUN; 96 97 cmd = readl(&xhci->op_regs->command); 98 cmd &= mask; 99 writel(cmd, &xhci->op_regs->command); 100 } 101 102 /* 103 * Force HC into halt state. 104 * 105 * Disable any IRQs and clear the run/stop bit. 106 * HC will complete any current and actively pipelined transactions, and 107 * should halt within 16 ms of the run/stop bit being cleared. 108 * Read HC Halted bit in the status register to see when the HC is finished. 109 */ 110 int xhci_halt(struct xhci_hcd *xhci) 111 { 112 int ret; 113 114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 115 xhci_quiesce(xhci); 116 117 ret = xhci_handshake(&xhci->op_regs->status, 118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 119 if (ret) { 120 xhci_warn(xhci, "Host halt failed, %d\n", ret); 121 return ret; 122 } 123 124 xhci->xhc_state |= XHCI_STATE_HALTED; 125 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 126 127 return ret; 128 } 129 130 /* 131 * Set the run bit and wait for the host to be running. 132 */ 133 int xhci_start(struct xhci_hcd *xhci) 134 { 135 u32 temp; 136 int ret; 137 138 temp = readl(&xhci->op_regs->command); 139 temp |= (CMD_RUN); 140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 141 temp); 142 writel(temp, &xhci->op_regs->command); 143 144 /* 145 * Wait for the HCHalted Status bit to be 0 to indicate the host is 146 * running. 147 */ 148 ret = xhci_handshake(&xhci->op_regs->status, 149 STS_HALT, 0, XHCI_MAX_HALT_USEC); 150 if (ret == -ETIMEDOUT) 151 xhci_err(xhci, "Host took too long to start, " 152 "waited %u microseconds.\n", 153 XHCI_MAX_HALT_USEC); 154 if (!ret) 155 /* clear state flags. Including dying, halted or removing */ 156 xhci->xhc_state = 0; 157 158 return ret; 159 } 160 161 /* 162 * Reset a halted HC. 163 * 164 * This resets pipelines, timers, counters, state machines, etc. 165 * Transactions will be terminated immediately, and operational registers 166 * will be set to their defaults. 167 */ 168 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 169 { 170 u32 command; 171 u32 state; 172 int ret; 173 174 state = readl(&xhci->op_regs->status); 175 176 if (state == ~(u32)0) { 177 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 178 return -ENODEV; 179 } 180 181 if ((state & STS_HALT) == 0) { 182 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 183 return 0; 184 } 185 186 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 187 command = readl(&xhci->op_regs->command); 188 command |= CMD_RESET; 189 writel(command, &xhci->op_regs->command); 190 191 /* Existing Intel xHCI controllers require a delay of 1 mS, 192 * after setting the CMD_RESET bit, and before accessing any 193 * HC registers. This allows the HC to complete the 194 * reset operation and be ready for HC register access. 195 * Without this delay, the subsequent HC register access, 196 * may result in a system hang very rarely. 197 */ 198 if (xhci->quirks & XHCI_INTEL_HOST) 199 udelay(1000); 200 201 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us); 202 if (ret) 203 return ret; 204 205 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 206 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 207 208 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 209 "Wait for controller to be ready for doorbell rings"); 210 /* 211 * xHCI cannot write to any doorbells or operational registers other 212 * than status until the "Controller Not Ready" flag is cleared. 213 */ 214 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 215 216 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 217 xhci->usb2_rhub.bus_state.suspended_ports = 0; 218 xhci->usb2_rhub.bus_state.resuming_ports = 0; 219 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 220 xhci->usb3_rhub.bus_state.suspended_ports = 0; 221 xhci->usb3_rhub.bus_state.resuming_ports = 0; 222 223 return ret; 224 } 225 226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 227 { 228 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 229 int err, i; 230 u64 val; 231 u32 intrs; 232 233 /* 234 * Some Renesas controllers get into a weird state if they are 235 * reset while programmed with 64bit addresses (they will preserve 236 * the top half of the address in internal, non visible 237 * registers). You end up with half the address coming from the 238 * kernel, and the other half coming from the firmware. Also, 239 * changing the programming leads to extra accesses even if the 240 * controller is supposed to be halted. The controller ends up with 241 * a fatal fault, and is then ripe for being properly reset. 242 * 243 * Special care is taken to only apply this if the device is behind 244 * an iommu. Doing anything when there is no iommu is definitely 245 * unsafe... 246 */ 247 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 248 return; 249 250 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 251 252 /* Clear HSEIE so that faults do not get signaled */ 253 val = readl(&xhci->op_regs->command); 254 val &= ~CMD_HSEIE; 255 writel(val, &xhci->op_regs->command); 256 257 /* Clear HSE (aka FATAL) */ 258 val = readl(&xhci->op_regs->status); 259 val |= STS_FATAL; 260 writel(val, &xhci->op_regs->status); 261 262 /* Now zero the registers, and brace for impact */ 263 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 264 if (upper_32_bits(val)) 265 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 266 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 267 if (upper_32_bits(val)) 268 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 269 270 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 271 ARRAY_SIZE(xhci->run_regs->ir_set)); 272 273 for (i = 0; i < intrs; i++) { 274 struct xhci_intr_reg __iomem *ir; 275 276 ir = &xhci->run_regs->ir_set[i]; 277 val = xhci_read_64(xhci, &ir->erst_base); 278 if (upper_32_bits(val)) 279 xhci_write_64(xhci, 0, &ir->erst_base); 280 val= xhci_read_64(xhci, &ir->erst_dequeue); 281 if (upper_32_bits(val)) 282 xhci_write_64(xhci, 0, &ir->erst_dequeue); 283 } 284 285 /* Wait for the fault to appear. It will be cleared on reset */ 286 err = xhci_handshake(&xhci->op_regs->status, 287 STS_FATAL, STS_FATAL, 288 XHCI_MAX_HALT_USEC); 289 if (!err) 290 xhci_info(xhci, "Fault detected\n"); 291 } 292 293 #ifdef CONFIG_USB_PCI 294 /* 295 * Set up MSI 296 */ 297 static int xhci_setup_msi(struct xhci_hcd *xhci) 298 { 299 int ret; 300 /* 301 * TODO:Check with MSI Soc for sysdev 302 */ 303 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 304 305 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 306 if (ret < 0) { 307 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 308 "failed to allocate MSI entry"); 309 return ret; 310 } 311 312 ret = request_irq(pdev->irq, xhci_msi_irq, 313 0, "xhci_hcd", xhci_to_hcd(xhci)); 314 if (ret) { 315 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 316 "disable MSI interrupt"); 317 pci_free_irq_vectors(pdev); 318 } 319 320 return ret; 321 } 322 323 /* 324 * Set up MSI-X 325 */ 326 static int xhci_setup_msix(struct xhci_hcd *xhci) 327 { 328 int i, ret; 329 struct usb_hcd *hcd = xhci_to_hcd(xhci); 330 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 331 332 /* 333 * calculate number of msi-x vectors supported. 334 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 335 * with max number of interrupters based on the xhci HCSPARAMS1. 336 * - num_online_cpus: maximum msi-x vectors per CPUs core. 337 * Add additional 1 vector to ensure always available interrupt. 338 */ 339 xhci->msix_count = min(num_online_cpus() + 1, 340 HCS_MAX_INTRS(xhci->hcs_params1)); 341 342 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 343 PCI_IRQ_MSIX); 344 if (ret < 0) { 345 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 346 "Failed to enable MSI-X"); 347 return ret; 348 } 349 350 for (i = 0; i < xhci->msix_count; i++) { 351 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 352 "xhci_hcd", xhci_to_hcd(xhci)); 353 if (ret) 354 goto disable_msix; 355 } 356 357 hcd->msix_enabled = 1; 358 return ret; 359 360 disable_msix: 361 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 362 while (--i >= 0) 363 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 364 pci_free_irq_vectors(pdev); 365 return ret; 366 } 367 368 /* Free any IRQs and disable MSI-X */ 369 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 370 { 371 struct usb_hcd *hcd = xhci_to_hcd(xhci); 372 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 373 374 if (xhci->quirks & XHCI_PLAT) 375 return; 376 377 /* return if using legacy interrupt */ 378 if (hcd->irq > 0) 379 return; 380 381 if (hcd->msix_enabled) { 382 int i; 383 384 for (i = 0; i < xhci->msix_count; i++) 385 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 386 } else { 387 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 388 } 389 390 pci_free_irq_vectors(pdev); 391 hcd->msix_enabled = 0; 392 } 393 394 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 395 { 396 struct usb_hcd *hcd = xhci_to_hcd(xhci); 397 398 if (hcd->msix_enabled) { 399 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 400 int i; 401 402 for (i = 0; i < xhci->msix_count; i++) 403 synchronize_irq(pci_irq_vector(pdev, i)); 404 } 405 } 406 407 static int xhci_try_enable_msi(struct usb_hcd *hcd) 408 { 409 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 410 struct pci_dev *pdev; 411 int ret; 412 413 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 414 if (xhci->quirks & XHCI_PLAT) 415 return 0; 416 417 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 418 /* 419 * Some Fresco Logic host controllers advertise MSI, but fail to 420 * generate interrupts. Don't even try to enable MSI. 421 */ 422 if (xhci->quirks & XHCI_BROKEN_MSI) 423 goto legacy_irq; 424 425 /* unregister the legacy interrupt */ 426 if (hcd->irq) 427 free_irq(hcd->irq, hcd); 428 hcd->irq = 0; 429 430 ret = xhci_setup_msix(xhci); 431 if (ret) 432 /* fall back to msi*/ 433 ret = xhci_setup_msi(xhci); 434 435 if (!ret) { 436 hcd->msi_enabled = 1; 437 return 0; 438 } 439 440 if (!pdev->irq) { 441 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 442 return -EINVAL; 443 } 444 445 legacy_irq: 446 if (!strlen(hcd->irq_descr)) 447 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 448 hcd->driver->description, hcd->self.busnum); 449 450 /* fall back to legacy interrupt*/ 451 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 452 hcd->irq_descr, hcd); 453 if (ret) { 454 xhci_err(xhci, "request interrupt %d failed\n", 455 pdev->irq); 456 return ret; 457 } 458 hcd->irq = pdev->irq; 459 return 0; 460 } 461 462 #else 463 464 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 465 { 466 return 0; 467 } 468 469 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 470 { 471 } 472 473 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 474 { 475 } 476 477 #endif 478 479 static void compliance_mode_recovery(struct timer_list *t) 480 { 481 struct xhci_hcd *xhci; 482 struct usb_hcd *hcd; 483 struct xhci_hub *rhub; 484 u32 temp; 485 int i; 486 487 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 488 rhub = &xhci->usb3_rhub; 489 hcd = rhub->hcd; 490 491 if (!hcd) 492 return; 493 494 for (i = 0; i < rhub->num_ports; i++) { 495 temp = readl(rhub->ports[i]->addr); 496 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 497 /* 498 * Compliance Mode Detected. Letting USB Core 499 * handle the Warm Reset 500 */ 501 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 502 "Compliance mode detected->port %d", 503 i + 1); 504 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 505 "Attempting compliance mode recovery"); 506 507 if (hcd->state == HC_STATE_SUSPENDED) 508 usb_hcd_resume_root_hub(hcd); 509 510 usb_hcd_poll_rh_status(hcd); 511 } 512 } 513 514 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 515 mod_timer(&xhci->comp_mode_recovery_timer, 516 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 517 } 518 519 /* 520 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 521 * that causes ports behind that hardware to enter compliance mode sometimes. 522 * The quirk creates a timer that polls every 2 seconds the link state of 523 * each host controller's port and recovers it by issuing a Warm reset 524 * if Compliance mode is detected, otherwise the port will become "dead" (no 525 * device connections or disconnections will be detected anymore). Becasue no 526 * status event is generated when entering compliance mode (per xhci spec), 527 * this quirk is needed on systems that have the failing hardware installed. 528 */ 529 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 530 { 531 xhci->port_status_u0 = 0; 532 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 533 0); 534 xhci->comp_mode_recovery_timer.expires = jiffies + 535 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 536 537 add_timer(&xhci->comp_mode_recovery_timer); 538 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 539 "Compliance mode recovery timer initialized"); 540 } 541 542 /* 543 * This function identifies the systems that have installed the SN65LVPE502CP 544 * USB3.0 re-driver and that need the Compliance Mode Quirk. 545 * Systems: 546 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 547 */ 548 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 549 { 550 const char *dmi_product_name, *dmi_sys_vendor; 551 552 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 553 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 554 if (!dmi_product_name || !dmi_sys_vendor) 555 return false; 556 557 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 558 return false; 559 560 if (strstr(dmi_product_name, "Z420") || 561 strstr(dmi_product_name, "Z620") || 562 strstr(dmi_product_name, "Z820") || 563 strstr(dmi_product_name, "Z1 Workstation")) 564 return true; 565 566 return false; 567 } 568 569 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 570 { 571 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 572 } 573 574 575 /* 576 * Initialize memory for HCD and xHC (one-time init). 577 * 578 * Program the PAGESIZE register, initialize the device context array, create 579 * device contexts (?), set up a command ring segment (or two?), create event 580 * ring (one for now). 581 */ 582 static int xhci_init(struct usb_hcd *hcd) 583 { 584 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 585 int retval; 586 587 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 588 spin_lock_init(&xhci->lock); 589 if (xhci->hci_version == 0x95 && link_quirk) { 590 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 591 "QUIRK: Not clearing Link TRB chain bits."); 592 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 593 } else { 594 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 595 "xHCI doesn't need link TRB QUIRK"); 596 } 597 retval = xhci_mem_init(xhci, GFP_KERNEL); 598 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 599 600 /* Initializing Compliance Mode Recovery Data If Needed */ 601 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 602 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 603 compliance_mode_recovery_timer_init(xhci); 604 } 605 606 return retval; 607 } 608 609 /*-------------------------------------------------------------------------*/ 610 611 612 static int xhci_run_finished(struct xhci_hcd *xhci) 613 { 614 unsigned long flags; 615 u32 temp; 616 617 /* 618 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 619 * Protect the short window before host is running with a lock 620 */ 621 spin_lock_irqsave(&xhci->lock, flags); 622 623 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 624 temp = readl(&xhci->op_regs->command); 625 temp |= (CMD_EIE); 626 writel(temp, &xhci->op_regs->command); 627 628 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 629 temp = readl(&xhci->ir_set->irq_pending); 630 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 631 632 if (xhci_start(xhci)) { 633 xhci_halt(xhci); 634 spin_unlock_irqrestore(&xhci->lock, flags); 635 return -ENODEV; 636 } 637 638 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 639 640 if (xhci->quirks & XHCI_NEC_HOST) 641 xhci_ring_cmd_db(xhci); 642 643 spin_unlock_irqrestore(&xhci->lock, flags); 644 645 return 0; 646 } 647 648 /* 649 * Start the HC after it was halted. 650 * 651 * This function is called by the USB core when the HC driver is added. 652 * Its opposite is xhci_stop(). 653 * 654 * xhci_init() must be called once before this function can be called. 655 * Reset the HC, enable device slot contexts, program DCBAAP, and 656 * set command ring pointer and event ring pointer. 657 * 658 * Setup MSI-X vectors and enable interrupts. 659 */ 660 int xhci_run(struct usb_hcd *hcd) 661 { 662 u32 temp; 663 u64 temp_64; 664 int ret; 665 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 666 667 /* Start the xHCI host controller running only after the USB 2.0 roothub 668 * is setup. 669 */ 670 671 hcd->uses_new_polling = 1; 672 if (!usb_hcd_is_primary_hcd(hcd)) 673 return xhci_run_finished(xhci); 674 675 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 676 677 ret = xhci_try_enable_msi(hcd); 678 if (ret) 679 return ret; 680 681 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 682 temp_64 &= ~ERST_PTR_MASK; 683 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 684 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 685 686 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 687 "// Set the interrupt modulation register"); 688 temp = readl(&xhci->ir_set->irq_control); 689 temp &= ~ER_IRQ_INTERVAL_MASK; 690 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 691 writel(temp, &xhci->ir_set->irq_control); 692 693 if (xhci->quirks & XHCI_NEC_HOST) { 694 struct xhci_command *command; 695 696 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 697 if (!command) 698 return -ENOMEM; 699 700 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 701 TRB_TYPE(TRB_NEC_GET_FW)); 702 if (ret) 703 xhci_free_command(xhci, command); 704 } 705 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 706 "Finished %s for main hcd", __func__); 707 708 xhci_create_dbc_dev(xhci); 709 710 xhci_debugfs_init(xhci); 711 712 if (xhci_has_one_roothub(xhci)) 713 return xhci_run_finished(xhci); 714 715 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 716 717 return 0; 718 } 719 EXPORT_SYMBOL_GPL(xhci_run); 720 721 /* 722 * Stop xHCI driver. 723 * 724 * This function is called by the USB core when the HC driver is removed. 725 * Its opposite is xhci_run(). 726 * 727 * Disable device contexts, disable IRQs, and quiesce the HC. 728 * Reset the HC, finish any completed transactions, and cleanup memory. 729 */ 730 static void xhci_stop(struct usb_hcd *hcd) 731 { 732 u32 temp; 733 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 734 735 mutex_lock(&xhci->mutex); 736 737 /* Only halt host and free memory after both hcds are removed */ 738 if (!usb_hcd_is_primary_hcd(hcd)) { 739 mutex_unlock(&xhci->mutex); 740 return; 741 } 742 743 xhci_remove_dbc_dev(xhci); 744 745 spin_lock_irq(&xhci->lock); 746 xhci->xhc_state |= XHCI_STATE_HALTED; 747 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 748 xhci_halt(xhci); 749 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 750 spin_unlock_irq(&xhci->lock); 751 752 xhci_cleanup_msix(xhci); 753 754 /* Deleting Compliance Mode Recovery Timer */ 755 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 756 (!(xhci_all_ports_seen_u0(xhci)))) { 757 del_timer_sync(&xhci->comp_mode_recovery_timer); 758 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 759 "%s: compliance mode recovery timer deleted", 760 __func__); 761 } 762 763 if (xhci->quirks & XHCI_AMD_PLL_FIX) 764 usb_amd_dev_put(); 765 766 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 767 "// Disabling event ring interrupts"); 768 temp = readl(&xhci->op_regs->status); 769 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 770 temp = readl(&xhci->ir_set->irq_pending); 771 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 772 773 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 774 xhci_mem_cleanup(xhci); 775 xhci_debugfs_exit(xhci); 776 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 777 "xhci_stop completed - status = %x", 778 readl(&xhci->op_regs->status)); 779 mutex_unlock(&xhci->mutex); 780 } 781 782 /* 783 * Shutdown HC (not bus-specific) 784 * 785 * This is called when the machine is rebooting or halting. We assume that the 786 * machine will be powered off, and the HC's internal state will be reset. 787 * Don't bother to free memory. 788 * 789 * This will only ever be called with the main usb_hcd (the USB3 roothub). 790 */ 791 void xhci_shutdown(struct usb_hcd *hcd) 792 { 793 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 794 unsigned long flags; 795 int i; 796 797 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 798 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 799 800 /* Don't poll the roothubs after shutdown. */ 801 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 802 __func__, hcd->self.busnum); 803 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 804 del_timer_sync(&hcd->rh_timer); 805 806 if (xhci->shared_hcd) { 807 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 808 del_timer_sync(&xhci->shared_hcd->rh_timer); 809 } 810 811 spin_lock_irqsave(&xhci->lock, flags); 812 xhci_halt(xhci); 813 814 /* Power off USB2 ports*/ 815 for (i = 0; i < xhci->usb2_rhub.num_ports; i++) 816 xhci_set_port_power(xhci, xhci->main_hcd, i, false, &flags); 817 818 /* Power off USB3 ports*/ 819 for (i = 0; i < xhci->usb3_rhub.num_ports; i++) 820 xhci_set_port_power(xhci, xhci->shared_hcd, i, false, &flags); 821 822 /* Workaround for spurious wakeups at shutdown with HSW */ 823 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 824 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 825 spin_unlock_irqrestore(&xhci->lock, flags); 826 827 xhci_cleanup_msix(xhci); 828 829 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 830 "xhci_shutdown completed - status = %x", 831 readl(&xhci->op_regs->status)); 832 } 833 EXPORT_SYMBOL_GPL(xhci_shutdown); 834 835 #ifdef CONFIG_PM 836 static void xhci_save_registers(struct xhci_hcd *xhci) 837 { 838 xhci->s3.command = readl(&xhci->op_regs->command); 839 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 840 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 841 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 842 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 843 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 844 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 845 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 846 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 847 } 848 849 static void xhci_restore_registers(struct xhci_hcd *xhci) 850 { 851 writel(xhci->s3.command, &xhci->op_regs->command); 852 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 853 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 854 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 855 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 856 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 857 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 858 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 859 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 860 } 861 862 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 863 { 864 u64 val_64; 865 866 /* step 2: initialize command ring buffer */ 867 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 868 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 869 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 870 xhci->cmd_ring->dequeue) & 871 (u64) ~CMD_RING_RSVD_BITS) | 872 xhci->cmd_ring->cycle_state; 873 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 874 "// Setting command ring address to 0x%llx", 875 (long unsigned long) val_64); 876 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 877 } 878 879 /* 880 * The whole command ring must be cleared to zero when we suspend the host. 881 * 882 * The host doesn't save the command ring pointer in the suspend well, so we 883 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 884 * aligned, because of the reserved bits in the command ring dequeue pointer 885 * register. Therefore, we can't just set the dequeue pointer back in the 886 * middle of the ring (TRBs are 16-byte aligned). 887 */ 888 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 889 { 890 struct xhci_ring *ring; 891 struct xhci_segment *seg; 892 893 ring = xhci->cmd_ring; 894 seg = ring->deq_seg; 895 do { 896 memset(seg->trbs, 0, 897 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 898 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 899 cpu_to_le32(~TRB_CYCLE); 900 seg = seg->next; 901 } while (seg != ring->deq_seg); 902 903 /* Reset the software enqueue and dequeue pointers */ 904 ring->deq_seg = ring->first_seg; 905 ring->dequeue = ring->first_seg->trbs; 906 ring->enq_seg = ring->deq_seg; 907 ring->enqueue = ring->dequeue; 908 909 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 910 /* 911 * Ring is now zeroed, so the HW should look for change of ownership 912 * when the cycle bit is set to 1. 913 */ 914 ring->cycle_state = 1; 915 916 /* 917 * Reset the hardware dequeue pointer. 918 * Yes, this will need to be re-written after resume, but we're paranoid 919 * and want to make sure the hardware doesn't access bogus memory 920 * because, say, the BIOS or an SMI started the host without changing 921 * the command ring pointers. 922 */ 923 xhci_set_cmd_ring_deq(xhci); 924 } 925 926 /* 927 * Disable port wake bits if do_wakeup is not set. 928 * 929 * Also clear a possible internal port wake state left hanging for ports that 930 * detected termination but never successfully enumerated (trained to 0U). 931 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 932 * at enumeration clears this wake, force one here as well for unconnected ports 933 */ 934 935 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 936 struct xhci_hub *rhub, 937 bool do_wakeup) 938 { 939 unsigned long flags; 940 u32 t1, t2, portsc; 941 int i; 942 943 spin_lock_irqsave(&xhci->lock, flags); 944 945 for (i = 0; i < rhub->num_ports; i++) { 946 portsc = readl(rhub->ports[i]->addr); 947 t1 = xhci_port_state_to_neutral(portsc); 948 t2 = t1; 949 950 /* clear wake bits if do_wake is not set */ 951 if (!do_wakeup) 952 t2 &= ~PORT_WAKE_BITS; 953 954 /* Don't touch csc bit if connected or connect change is set */ 955 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 956 t2 |= PORT_CSC; 957 958 if (t1 != t2) { 959 writel(t2, rhub->ports[i]->addr); 960 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 961 rhub->hcd->self.busnum, i + 1, portsc, t2); 962 } 963 } 964 spin_unlock_irqrestore(&xhci->lock, flags); 965 } 966 967 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 968 { 969 struct xhci_port **ports; 970 int port_index; 971 u32 status; 972 u32 portsc; 973 974 status = readl(&xhci->op_regs->status); 975 if (status & STS_EINT) 976 return true; 977 /* 978 * Checking STS_EINT is not enough as there is a lag between a change 979 * bit being set and the Port Status Change Event that it generated 980 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 981 */ 982 983 port_index = xhci->usb2_rhub.num_ports; 984 ports = xhci->usb2_rhub.ports; 985 while (port_index--) { 986 portsc = readl(ports[port_index]->addr); 987 if (portsc & PORT_CHANGE_MASK || 988 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 989 return true; 990 } 991 port_index = xhci->usb3_rhub.num_ports; 992 ports = xhci->usb3_rhub.ports; 993 while (port_index--) { 994 portsc = readl(ports[port_index]->addr); 995 if (portsc & PORT_CHANGE_MASK || 996 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 997 return true; 998 } 999 return false; 1000 } 1001 1002 /* 1003 * Stop HC (not bus-specific) 1004 * 1005 * This is called when the machine transition into S3/S4 mode. 1006 * 1007 */ 1008 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 1009 { 1010 int rc = 0; 1011 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 1012 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1013 u32 command; 1014 u32 res; 1015 1016 if (!hcd->state) 1017 return 0; 1018 1019 if (hcd->state != HC_STATE_SUSPENDED || 1020 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 1021 return -EINVAL; 1022 1023 /* Clear root port wake on bits if wakeup not allowed. */ 1024 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 1025 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 1026 1027 if (!HCD_HW_ACCESSIBLE(hcd)) 1028 return 0; 1029 1030 xhci_dbc_suspend(xhci); 1031 1032 /* Don't poll the roothubs on bus suspend. */ 1033 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 1034 __func__, hcd->self.busnum); 1035 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1036 del_timer_sync(&hcd->rh_timer); 1037 if (xhci->shared_hcd) { 1038 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1039 del_timer_sync(&xhci->shared_hcd->rh_timer); 1040 } 1041 1042 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1043 usleep_range(1000, 1500); 1044 1045 spin_lock_irq(&xhci->lock); 1046 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1047 if (xhci->shared_hcd) 1048 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1049 /* step 1: stop endpoint */ 1050 /* skipped assuming that port suspend has done */ 1051 1052 /* step 2: clear Run/Stop bit */ 1053 command = readl(&xhci->op_regs->command); 1054 command &= ~CMD_RUN; 1055 writel(command, &xhci->op_regs->command); 1056 1057 /* Some chips from Fresco Logic need an extraordinary delay */ 1058 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1059 1060 if (xhci_handshake(&xhci->op_regs->status, 1061 STS_HALT, STS_HALT, delay)) { 1062 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1063 spin_unlock_irq(&xhci->lock); 1064 return -ETIMEDOUT; 1065 } 1066 xhci_clear_command_ring(xhci); 1067 1068 /* step 3: save registers */ 1069 xhci_save_registers(xhci); 1070 1071 /* step 4: set CSS flag */ 1072 command = readl(&xhci->op_regs->command); 1073 command |= CMD_CSS; 1074 writel(command, &xhci->op_regs->command); 1075 xhci->broken_suspend = 0; 1076 if (xhci_handshake(&xhci->op_regs->status, 1077 STS_SAVE, 0, 20 * 1000)) { 1078 /* 1079 * AMD SNPS xHC 3.0 occasionally does not clear the 1080 * SSS bit of USBSTS and when driver tries to poll 1081 * to see if the xHC clears BIT(8) which never happens 1082 * and driver assumes that controller is not responding 1083 * and times out. To workaround this, its good to check 1084 * if SRE and HCE bits are not set (as per xhci 1085 * Section 5.4.2) and bypass the timeout. 1086 */ 1087 res = readl(&xhci->op_regs->status); 1088 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1089 (((res & STS_SRE) == 0) && 1090 ((res & STS_HCE) == 0))) { 1091 xhci->broken_suspend = 1; 1092 } else { 1093 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1094 spin_unlock_irq(&xhci->lock); 1095 return -ETIMEDOUT; 1096 } 1097 } 1098 spin_unlock_irq(&xhci->lock); 1099 1100 /* 1101 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1102 * is about to be suspended. 1103 */ 1104 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1105 (!(xhci_all_ports_seen_u0(xhci)))) { 1106 del_timer_sync(&xhci->comp_mode_recovery_timer); 1107 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1108 "%s: compliance mode recovery timer deleted", 1109 __func__); 1110 } 1111 1112 /* step 5: remove core well power */ 1113 /* synchronize irq when using MSI-X */ 1114 xhci_msix_sync_irqs(xhci); 1115 1116 return rc; 1117 } 1118 EXPORT_SYMBOL_GPL(xhci_suspend); 1119 1120 /* 1121 * start xHC (not bus-specific) 1122 * 1123 * This is called when the machine transition from S3/S4 mode. 1124 * 1125 */ 1126 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1127 { 1128 u32 command, temp = 0; 1129 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1130 int retval = 0; 1131 bool comp_timer_running = false; 1132 bool pending_portevent = false; 1133 bool reinit_xhc = false; 1134 1135 if (!hcd->state) 1136 return 0; 1137 1138 /* Wait a bit if either of the roothubs need to settle from the 1139 * transition into bus suspend. 1140 */ 1141 1142 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1143 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1144 msleep(100); 1145 1146 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1147 if (xhci->shared_hcd) 1148 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1149 1150 spin_lock_irq(&xhci->lock); 1151 1152 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1153 reinit_xhc = true; 1154 1155 if (!reinit_xhc) { 1156 /* 1157 * Some controllers might lose power during suspend, so wait 1158 * for controller not ready bit to clear, just as in xHC init. 1159 */ 1160 retval = xhci_handshake(&xhci->op_regs->status, 1161 STS_CNR, 0, 10 * 1000 * 1000); 1162 if (retval) { 1163 xhci_warn(xhci, "Controller not ready at resume %d\n", 1164 retval); 1165 spin_unlock_irq(&xhci->lock); 1166 return retval; 1167 } 1168 /* step 1: restore register */ 1169 xhci_restore_registers(xhci); 1170 /* step 2: initialize command ring buffer */ 1171 xhci_set_cmd_ring_deq(xhci); 1172 /* step 3: restore state and start state*/ 1173 /* step 3: set CRS flag */ 1174 command = readl(&xhci->op_regs->command); 1175 command |= CMD_CRS; 1176 writel(command, &xhci->op_regs->command); 1177 /* 1178 * Some controllers take up to 55+ ms to complete the controller 1179 * restore so setting the timeout to 100ms. Xhci specification 1180 * doesn't mention any timeout value. 1181 */ 1182 if (xhci_handshake(&xhci->op_regs->status, 1183 STS_RESTORE, 0, 100 * 1000)) { 1184 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1185 spin_unlock_irq(&xhci->lock); 1186 return -ETIMEDOUT; 1187 } 1188 } 1189 1190 temp = readl(&xhci->op_regs->status); 1191 1192 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1193 if (temp & (STS_SRE | STS_HCE)) { 1194 reinit_xhc = true; 1195 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1196 } 1197 1198 if (reinit_xhc) { 1199 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1200 !(xhci_all_ports_seen_u0(xhci))) { 1201 del_timer_sync(&xhci->comp_mode_recovery_timer); 1202 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1203 "Compliance Mode Recovery Timer deleted!"); 1204 } 1205 1206 /* Let the USB core know _both_ roothubs lost power. */ 1207 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1208 if (xhci->shared_hcd) 1209 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1210 1211 xhci_dbg(xhci, "Stop HCD\n"); 1212 xhci_halt(xhci); 1213 xhci_zero_64b_regs(xhci); 1214 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1215 spin_unlock_irq(&xhci->lock); 1216 if (retval) 1217 return retval; 1218 xhci_cleanup_msix(xhci); 1219 1220 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1221 temp = readl(&xhci->op_regs->status); 1222 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1223 temp = readl(&xhci->ir_set->irq_pending); 1224 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1225 1226 xhci_dbg(xhci, "cleaning up memory\n"); 1227 xhci_mem_cleanup(xhci); 1228 xhci_debugfs_exit(xhci); 1229 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1230 readl(&xhci->op_regs->status)); 1231 1232 /* USB core calls the PCI reinit and start functions twice: 1233 * first with the primary HCD, and then with the secondary HCD. 1234 * If we don't do the same, the host will never be started. 1235 */ 1236 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1237 retval = xhci_init(hcd); 1238 if (retval) 1239 return retval; 1240 comp_timer_running = true; 1241 1242 xhci_dbg(xhci, "Start the primary HCD\n"); 1243 retval = xhci_run(hcd); 1244 if (!retval && xhci->shared_hcd) { 1245 xhci_dbg(xhci, "Start the secondary HCD\n"); 1246 retval = xhci_run(xhci->shared_hcd); 1247 } 1248 1249 hcd->state = HC_STATE_SUSPENDED; 1250 if (xhci->shared_hcd) 1251 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1252 goto done; 1253 } 1254 1255 /* step 4: set Run/Stop bit */ 1256 command = readl(&xhci->op_regs->command); 1257 command |= CMD_RUN; 1258 writel(command, &xhci->op_regs->command); 1259 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1260 0, 250 * 1000); 1261 1262 /* step 5: walk topology and initialize portsc, 1263 * portpmsc and portli 1264 */ 1265 /* this is done in bus_resume */ 1266 1267 /* step 6: restart each of the previously 1268 * Running endpoints by ringing their doorbells 1269 */ 1270 1271 spin_unlock_irq(&xhci->lock); 1272 1273 xhci_dbc_resume(xhci); 1274 1275 done: 1276 if (retval == 0) { 1277 /* 1278 * Resume roothubs only if there are pending events. 1279 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1280 * the first wake signalling failed, give it that chance. 1281 */ 1282 pending_portevent = xhci_pending_portevent(xhci); 1283 if (!pending_portevent) { 1284 msleep(120); 1285 pending_portevent = xhci_pending_portevent(xhci); 1286 } 1287 1288 if (pending_portevent) { 1289 if (xhci->shared_hcd) 1290 usb_hcd_resume_root_hub(xhci->shared_hcd); 1291 usb_hcd_resume_root_hub(hcd); 1292 } 1293 } 1294 /* 1295 * If system is subject to the Quirk, Compliance Mode Timer needs to 1296 * be re-initialized Always after a system resume. Ports are subject 1297 * to suffer the Compliance Mode issue again. It doesn't matter if 1298 * ports have entered previously to U0 before system's suspension. 1299 */ 1300 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1301 compliance_mode_recovery_timer_init(xhci); 1302 1303 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1304 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1305 1306 /* Re-enable port polling. */ 1307 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1308 __func__, hcd->self.busnum); 1309 if (xhci->shared_hcd) { 1310 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1311 usb_hcd_poll_rh_status(xhci->shared_hcd); 1312 } 1313 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1314 usb_hcd_poll_rh_status(hcd); 1315 1316 return retval; 1317 } 1318 EXPORT_SYMBOL_GPL(xhci_resume); 1319 #endif /* CONFIG_PM */ 1320 1321 /*-------------------------------------------------------------------------*/ 1322 1323 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1324 { 1325 void *temp; 1326 int ret = 0; 1327 unsigned int buf_len; 1328 enum dma_data_direction dir; 1329 1330 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1331 buf_len = urb->transfer_buffer_length; 1332 1333 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1334 dev_to_node(hcd->self.sysdev)); 1335 1336 if (usb_urb_dir_out(urb)) 1337 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1338 temp, buf_len, 0); 1339 1340 urb->transfer_buffer = temp; 1341 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1342 urb->transfer_buffer, 1343 urb->transfer_buffer_length, 1344 dir); 1345 1346 if (dma_mapping_error(hcd->self.sysdev, 1347 urb->transfer_dma)) { 1348 ret = -EAGAIN; 1349 kfree(temp); 1350 } else { 1351 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1352 } 1353 1354 return ret; 1355 } 1356 1357 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1358 struct urb *urb) 1359 { 1360 bool ret = false; 1361 unsigned int i; 1362 unsigned int len = 0; 1363 unsigned int trb_size; 1364 unsigned int max_pkt; 1365 struct scatterlist *sg; 1366 struct scatterlist *tail_sg; 1367 1368 tail_sg = urb->sg; 1369 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1370 1371 if (!urb->num_sgs) 1372 return ret; 1373 1374 if (urb->dev->speed >= USB_SPEED_SUPER) 1375 trb_size = TRB_CACHE_SIZE_SS; 1376 else 1377 trb_size = TRB_CACHE_SIZE_HS; 1378 1379 if (urb->transfer_buffer_length != 0 && 1380 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1381 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1382 len = len + sg->length; 1383 if (i > trb_size - 2) { 1384 len = len - tail_sg->length; 1385 if (len < max_pkt) { 1386 ret = true; 1387 break; 1388 } 1389 1390 tail_sg = sg_next(tail_sg); 1391 } 1392 } 1393 } 1394 return ret; 1395 } 1396 1397 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1398 { 1399 unsigned int len; 1400 unsigned int buf_len; 1401 enum dma_data_direction dir; 1402 1403 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1404 1405 buf_len = urb->transfer_buffer_length; 1406 1407 if (IS_ENABLED(CONFIG_HAS_DMA) && 1408 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1409 dma_unmap_single(hcd->self.sysdev, 1410 urb->transfer_dma, 1411 urb->transfer_buffer_length, 1412 dir); 1413 1414 if (usb_urb_dir_in(urb)) { 1415 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1416 urb->transfer_buffer, 1417 buf_len, 1418 0); 1419 if (len != buf_len) { 1420 xhci_dbg(hcd_to_xhci(hcd), 1421 "Copy from tmp buf to urb sg list failed\n"); 1422 urb->actual_length = len; 1423 } 1424 } 1425 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1426 kfree(urb->transfer_buffer); 1427 urb->transfer_buffer = NULL; 1428 } 1429 1430 /* 1431 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1432 * we'll copy the actual data into the TRB address register. This is limited to 1433 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1434 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1435 */ 1436 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1437 gfp_t mem_flags) 1438 { 1439 struct xhci_hcd *xhci; 1440 1441 xhci = hcd_to_xhci(hcd); 1442 1443 if (xhci_urb_suitable_for_idt(urb)) 1444 return 0; 1445 1446 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1447 if (xhci_urb_temp_buffer_required(hcd, urb)) 1448 return xhci_map_temp_buffer(hcd, urb); 1449 } 1450 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1451 } 1452 1453 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1454 { 1455 struct xhci_hcd *xhci; 1456 bool unmap_temp_buf = false; 1457 1458 xhci = hcd_to_xhci(hcd); 1459 1460 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1461 unmap_temp_buf = true; 1462 1463 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1464 xhci_unmap_temp_buf(hcd, urb); 1465 else 1466 usb_hcd_unmap_urb_for_dma(hcd, urb); 1467 } 1468 1469 /** 1470 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1471 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1472 * value to right shift 1 for the bitmask. 1473 * 1474 * Index = (epnum * 2) + direction - 1, 1475 * where direction = 0 for OUT, 1 for IN. 1476 * For control endpoints, the IN index is used (OUT index is unused), so 1477 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1478 */ 1479 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1480 { 1481 unsigned int index; 1482 if (usb_endpoint_xfer_control(desc)) 1483 index = (unsigned int) (usb_endpoint_num(desc)*2); 1484 else 1485 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1486 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1487 return index; 1488 } 1489 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1490 1491 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1492 * address from the XHCI endpoint index. 1493 */ 1494 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1495 { 1496 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1497 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1498 return direction | number; 1499 } 1500 1501 /* Find the flag for this endpoint (for use in the control context). Use the 1502 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1503 * bit 1, etc. 1504 */ 1505 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1506 { 1507 return 1 << (xhci_get_endpoint_index(desc) + 1); 1508 } 1509 1510 /* Compute the last valid endpoint context index. Basically, this is the 1511 * endpoint index plus one. For slot contexts with more than valid endpoint, 1512 * we find the most significant bit set in the added contexts flags. 1513 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1514 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1515 */ 1516 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1517 { 1518 return fls(added_ctxs) - 1; 1519 } 1520 1521 /* Returns 1 if the arguments are OK; 1522 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1523 */ 1524 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1525 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1526 const char *func) { 1527 struct xhci_hcd *xhci; 1528 struct xhci_virt_device *virt_dev; 1529 1530 if (!hcd || (check_ep && !ep) || !udev) { 1531 pr_debug("xHCI %s called with invalid args\n", func); 1532 return -EINVAL; 1533 } 1534 if (!udev->parent) { 1535 pr_debug("xHCI %s called for root hub\n", func); 1536 return 0; 1537 } 1538 1539 xhci = hcd_to_xhci(hcd); 1540 if (check_virt_dev) { 1541 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1542 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1543 func); 1544 return -EINVAL; 1545 } 1546 1547 virt_dev = xhci->devs[udev->slot_id]; 1548 if (virt_dev->udev != udev) { 1549 xhci_dbg(xhci, "xHCI %s called with udev and " 1550 "virt_dev does not match\n", func); 1551 return -EINVAL; 1552 } 1553 } 1554 1555 if (xhci->xhc_state & XHCI_STATE_HALTED) 1556 return -ENODEV; 1557 1558 return 1; 1559 } 1560 1561 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1562 struct usb_device *udev, struct xhci_command *command, 1563 bool ctx_change, bool must_succeed); 1564 1565 /* 1566 * Full speed devices may have a max packet size greater than 8 bytes, but the 1567 * USB core doesn't know that until it reads the first 8 bytes of the 1568 * descriptor. If the usb_device's max packet size changes after that point, 1569 * we need to issue an evaluate context command and wait on it. 1570 */ 1571 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1572 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1573 { 1574 struct xhci_container_ctx *out_ctx; 1575 struct xhci_input_control_ctx *ctrl_ctx; 1576 struct xhci_ep_ctx *ep_ctx; 1577 struct xhci_command *command; 1578 int max_packet_size; 1579 int hw_max_packet_size; 1580 int ret = 0; 1581 1582 out_ctx = xhci->devs[slot_id]->out_ctx; 1583 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1584 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1585 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1586 if (hw_max_packet_size != max_packet_size) { 1587 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1588 "Max Packet Size for ep 0 changed."); 1589 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1590 "Max packet size in usb_device = %d", 1591 max_packet_size); 1592 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1593 "Max packet size in xHCI HW = %d", 1594 hw_max_packet_size); 1595 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1596 "Issuing evaluate context command."); 1597 1598 /* Set up the input context flags for the command */ 1599 /* FIXME: This won't work if a non-default control endpoint 1600 * changes max packet sizes. 1601 */ 1602 1603 command = xhci_alloc_command(xhci, true, mem_flags); 1604 if (!command) 1605 return -ENOMEM; 1606 1607 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1608 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1609 if (!ctrl_ctx) { 1610 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1611 __func__); 1612 ret = -ENOMEM; 1613 goto command_cleanup; 1614 } 1615 /* Set up the modified control endpoint 0 */ 1616 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1617 xhci->devs[slot_id]->out_ctx, ep_index); 1618 1619 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1620 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1621 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1622 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1623 1624 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1625 ctrl_ctx->drop_flags = 0; 1626 1627 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1628 true, false); 1629 1630 /* Clean up the input context for later use by bandwidth 1631 * functions. 1632 */ 1633 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1634 command_cleanup: 1635 kfree(command->completion); 1636 kfree(command); 1637 } 1638 return ret; 1639 } 1640 1641 /* 1642 * non-error returns are a promise to giveback() the urb later 1643 * we drop ownership so next owner (or urb unlink) can get it 1644 */ 1645 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1646 { 1647 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1648 unsigned long flags; 1649 int ret = 0; 1650 unsigned int slot_id, ep_index; 1651 unsigned int *ep_state; 1652 struct urb_priv *urb_priv; 1653 int num_tds; 1654 1655 if (!urb) 1656 return -EINVAL; 1657 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1658 true, true, __func__); 1659 if (ret <= 0) 1660 return ret ? ret : -EINVAL; 1661 1662 slot_id = urb->dev->slot_id; 1663 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1664 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1665 1666 if (!HCD_HW_ACCESSIBLE(hcd)) 1667 return -ESHUTDOWN; 1668 1669 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1670 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1671 return -ENODEV; 1672 } 1673 1674 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1675 num_tds = urb->number_of_packets; 1676 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1677 urb->transfer_buffer_length > 0 && 1678 urb->transfer_flags & URB_ZERO_PACKET && 1679 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1680 num_tds = 2; 1681 else 1682 num_tds = 1; 1683 1684 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1685 if (!urb_priv) 1686 return -ENOMEM; 1687 1688 urb_priv->num_tds = num_tds; 1689 urb_priv->num_tds_done = 0; 1690 urb->hcpriv = urb_priv; 1691 1692 trace_xhci_urb_enqueue(urb); 1693 1694 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1695 /* Check to see if the max packet size for the default control 1696 * endpoint changed during FS device enumeration 1697 */ 1698 if (urb->dev->speed == USB_SPEED_FULL) { 1699 ret = xhci_check_maxpacket(xhci, slot_id, 1700 ep_index, urb, mem_flags); 1701 if (ret < 0) { 1702 xhci_urb_free_priv(urb_priv); 1703 urb->hcpriv = NULL; 1704 return ret; 1705 } 1706 } 1707 } 1708 1709 spin_lock_irqsave(&xhci->lock, flags); 1710 1711 if (xhci->xhc_state & XHCI_STATE_DYING) { 1712 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1713 urb->ep->desc.bEndpointAddress, urb); 1714 ret = -ESHUTDOWN; 1715 goto free_priv; 1716 } 1717 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1718 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1719 *ep_state); 1720 ret = -EINVAL; 1721 goto free_priv; 1722 } 1723 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1724 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1725 ret = -EINVAL; 1726 goto free_priv; 1727 } 1728 1729 switch (usb_endpoint_type(&urb->ep->desc)) { 1730 1731 case USB_ENDPOINT_XFER_CONTROL: 1732 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1733 slot_id, ep_index); 1734 break; 1735 case USB_ENDPOINT_XFER_BULK: 1736 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1737 slot_id, ep_index); 1738 break; 1739 case USB_ENDPOINT_XFER_INT: 1740 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1741 slot_id, ep_index); 1742 break; 1743 case USB_ENDPOINT_XFER_ISOC: 1744 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1745 slot_id, ep_index); 1746 } 1747 1748 if (ret) { 1749 free_priv: 1750 xhci_urb_free_priv(urb_priv); 1751 urb->hcpriv = NULL; 1752 } 1753 spin_unlock_irqrestore(&xhci->lock, flags); 1754 return ret; 1755 } 1756 1757 /* 1758 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1759 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1760 * should pick up where it left off in the TD, unless a Set Transfer Ring 1761 * Dequeue Pointer is issued. 1762 * 1763 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1764 * the ring. Since the ring is a contiguous structure, they can't be physically 1765 * removed. Instead, there are two options: 1766 * 1767 * 1) If the HC is in the middle of processing the URB to be canceled, we 1768 * simply move the ring's dequeue pointer past those TRBs using the Set 1769 * Transfer Ring Dequeue Pointer command. This will be the common case, 1770 * when drivers timeout on the last submitted URB and attempt to cancel. 1771 * 1772 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1773 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1774 * HC will need to invalidate the any TRBs it has cached after the stop 1775 * endpoint command, as noted in the xHCI 0.95 errata. 1776 * 1777 * 3) The TD may have completed by the time the Stop Endpoint Command 1778 * completes, so software needs to handle that case too. 1779 * 1780 * This function should protect against the TD enqueueing code ringing the 1781 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1782 * It also needs to account for multiple cancellations on happening at the same 1783 * time for the same endpoint. 1784 * 1785 * Note that this function can be called in any context, or so says 1786 * usb_hcd_unlink_urb() 1787 */ 1788 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1789 { 1790 unsigned long flags; 1791 int ret, i; 1792 u32 temp; 1793 struct xhci_hcd *xhci; 1794 struct urb_priv *urb_priv; 1795 struct xhci_td *td; 1796 unsigned int ep_index; 1797 struct xhci_ring *ep_ring; 1798 struct xhci_virt_ep *ep; 1799 struct xhci_command *command; 1800 struct xhci_virt_device *vdev; 1801 1802 xhci = hcd_to_xhci(hcd); 1803 spin_lock_irqsave(&xhci->lock, flags); 1804 1805 trace_xhci_urb_dequeue(urb); 1806 1807 /* Make sure the URB hasn't completed or been unlinked already */ 1808 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1809 if (ret) 1810 goto done; 1811 1812 /* give back URB now if we can't queue it for cancel */ 1813 vdev = xhci->devs[urb->dev->slot_id]; 1814 urb_priv = urb->hcpriv; 1815 if (!vdev || !urb_priv) 1816 goto err_giveback; 1817 1818 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1819 ep = &vdev->eps[ep_index]; 1820 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1821 if (!ep || !ep_ring) 1822 goto err_giveback; 1823 1824 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1825 temp = readl(&xhci->op_regs->status); 1826 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1827 xhci_hc_died(xhci); 1828 goto done; 1829 } 1830 1831 /* 1832 * check ring is not re-allocated since URB was enqueued. If it is, then 1833 * make sure none of the ring related pointers in this URB private data 1834 * are touched, such as td_list, otherwise we overwrite freed data 1835 */ 1836 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1837 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1838 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1839 td = &urb_priv->td[i]; 1840 if (!list_empty(&td->cancelled_td_list)) 1841 list_del_init(&td->cancelled_td_list); 1842 } 1843 goto err_giveback; 1844 } 1845 1846 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1847 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1848 "HC halted, freeing TD manually."); 1849 for (i = urb_priv->num_tds_done; 1850 i < urb_priv->num_tds; 1851 i++) { 1852 td = &urb_priv->td[i]; 1853 if (!list_empty(&td->td_list)) 1854 list_del_init(&td->td_list); 1855 if (!list_empty(&td->cancelled_td_list)) 1856 list_del_init(&td->cancelled_td_list); 1857 } 1858 goto err_giveback; 1859 } 1860 1861 i = urb_priv->num_tds_done; 1862 if (i < urb_priv->num_tds) 1863 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1864 "Cancel URB %p, dev %s, ep 0x%x, " 1865 "starting at offset 0x%llx", 1866 urb, urb->dev->devpath, 1867 urb->ep->desc.bEndpointAddress, 1868 (unsigned long long) xhci_trb_virt_to_dma( 1869 urb_priv->td[i].start_seg, 1870 urb_priv->td[i].first_trb)); 1871 1872 for (; i < urb_priv->num_tds; i++) { 1873 td = &urb_priv->td[i]; 1874 /* TD can already be on cancelled list if ep halted on it */ 1875 if (list_empty(&td->cancelled_td_list)) { 1876 td->cancel_status = TD_DIRTY; 1877 list_add_tail(&td->cancelled_td_list, 1878 &ep->cancelled_td_list); 1879 } 1880 } 1881 1882 /* Queue a stop endpoint command, but only if this is 1883 * the first cancellation to be handled. 1884 */ 1885 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1886 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1887 if (!command) { 1888 ret = -ENOMEM; 1889 goto done; 1890 } 1891 ep->ep_state |= EP_STOP_CMD_PENDING; 1892 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1893 ep_index, 0); 1894 xhci_ring_cmd_db(xhci); 1895 } 1896 done: 1897 spin_unlock_irqrestore(&xhci->lock, flags); 1898 return ret; 1899 1900 err_giveback: 1901 if (urb_priv) 1902 xhci_urb_free_priv(urb_priv); 1903 usb_hcd_unlink_urb_from_ep(hcd, urb); 1904 spin_unlock_irqrestore(&xhci->lock, flags); 1905 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1906 return ret; 1907 } 1908 1909 /* Drop an endpoint from a new bandwidth configuration for this device. 1910 * Only one call to this function is allowed per endpoint before 1911 * check_bandwidth() or reset_bandwidth() must be called. 1912 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1913 * add the endpoint to the schedule with possibly new parameters denoted by a 1914 * different endpoint descriptor in usb_host_endpoint. 1915 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1916 * not allowed. 1917 * 1918 * The USB core will not allow URBs to be queued to an endpoint that is being 1919 * disabled, so there's no need for mutual exclusion to protect 1920 * the xhci->devs[slot_id] structure. 1921 */ 1922 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1923 struct usb_host_endpoint *ep) 1924 { 1925 struct xhci_hcd *xhci; 1926 struct xhci_container_ctx *in_ctx, *out_ctx; 1927 struct xhci_input_control_ctx *ctrl_ctx; 1928 unsigned int ep_index; 1929 struct xhci_ep_ctx *ep_ctx; 1930 u32 drop_flag; 1931 u32 new_add_flags, new_drop_flags; 1932 int ret; 1933 1934 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1935 if (ret <= 0) 1936 return ret; 1937 xhci = hcd_to_xhci(hcd); 1938 if (xhci->xhc_state & XHCI_STATE_DYING) 1939 return -ENODEV; 1940 1941 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1942 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1943 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1944 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1945 __func__, drop_flag); 1946 return 0; 1947 } 1948 1949 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1950 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1951 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1952 if (!ctrl_ctx) { 1953 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1954 __func__); 1955 return 0; 1956 } 1957 1958 ep_index = xhci_get_endpoint_index(&ep->desc); 1959 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1960 /* If the HC already knows the endpoint is disabled, 1961 * or the HCD has noted it is disabled, ignore this request 1962 */ 1963 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1964 le32_to_cpu(ctrl_ctx->drop_flags) & 1965 xhci_get_endpoint_flag(&ep->desc)) { 1966 /* Do not warn when called after a usb_device_reset */ 1967 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1968 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1969 __func__, ep); 1970 return 0; 1971 } 1972 1973 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1974 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1975 1976 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1977 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1978 1979 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1980 1981 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1982 1983 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1984 (unsigned int) ep->desc.bEndpointAddress, 1985 udev->slot_id, 1986 (unsigned int) new_drop_flags, 1987 (unsigned int) new_add_flags); 1988 return 0; 1989 } 1990 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1991 1992 /* Add an endpoint to a new possible bandwidth configuration for this device. 1993 * Only one call to this function is allowed per endpoint before 1994 * check_bandwidth() or reset_bandwidth() must be called. 1995 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1996 * add the endpoint to the schedule with possibly new parameters denoted by a 1997 * different endpoint descriptor in usb_host_endpoint. 1998 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1999 * not allowed. 2000 * 2001 * The USB core will not allow URBs to be queued to an endpoint until the 2002 * configuration or alt setting is installed in the device, so there's no need 2003 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 2004 */ 2005 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 2006 struct usb_host_endpoint *ep) 2007 { 2008 struct xhci_hcd *xhci; 2009 struct xhci_container_ctx *in_ctx; 2010 unsigned int ep_index; 2011 struct xhci_input_control_ctx *ctrl_ctx; 2012 struct xhci_ep_ctx *ep_ctx; 2013 u32 added_ctxs; 2014 u32 new_add_flags, new_drop_flags; 2015 struct xhci_virt_device *virt_dev; 2016 int ret = 0; 2017 2018 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 2019 if (ret <= 0) { 2020 /* So we won't queue a reset ep command for a root hub */ 2021 ep->hcpriv = NULL; 2022 return ret; 2023 } 2024 xhci = hcd_to_xhci(hcd); 2025 if (xhci->xhc_state & XHCI_STATE_DYING) 2026 return -ENODEV; 2027 2028 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 2029 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 2030 /* FIXME when we have to issue an evaluate endpoint command to 2031 * deal with ep0 max packet size changing once we get the 2032 * descriptors 2033 */ 2034 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 2035 __func__, added_ctxs); 2036 return 0; 2037 } 2038 2039 virt_dev = xhci->devs[udev->slot_id]; 2040 in_ctx = virt_dev->in_ctx; 2041 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2042 if (!ctrl_ctx) { 2043 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2044 __func__); 2045 return 0; 2046 } 2047 2048 ep_index = xhci_get_endpoint_index(&ep->desc); 2049 /* If this endpoint is already in use, and the upper layers are trying 2050 * to add it again without dropping it, reject the addition. 2051 */ 2052 if (virt_dev->eps[ep_index].ring && 2053 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 2054 xhci_warn(xhci, "Trying to add endpoint 0x%x " 2055 "without dropping it.\n", 2056 (unsigned int) ep->desc.bEndpointAddress); 2057 return -EINVAL; 2058 } 2059 2060 /* If the HCD has already noted the endpoint is enabled, 2061 * ignore this request. 2062 */ 2063 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2064 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2065 __func__, ep); 2066 return 0; 2067 } 2068 2069 /* 2070 * Configuration and alternate setting changes must be done in 2071 * process context, not interrupt context (or so documenation 2072 * for usb_set_interface() and usb_set_configuration() claim). 2073 */ 2074 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2075 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2076 __func__, ep->desc.bEndpointAddress); 2077 return -ENOMEM; 2078 } 2079 2080 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2081 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2082 2083 /* If xhci_endpoint_disable() was called for this endpoint, but the 2084 * xHC hasn't been notified yet through the check_bandwidth() call, 2085 * this re-adds a new state for the endpoint from the new endpoint 2086 * descriptors. We must drop and re-add this endpoint, so we leave the 2087 * drop flags alone. 2088 */ 2089 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2090 2091 /* Store the usb_device pointer for later use */ 2092 ep->hcpriv = udev; 2093 2094 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2095 trace_xhci_add_endpoint(ep_ctx); 2096 2097 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2098 (unsigned int) ep->desc.bEndpointAddress, 2099 udev->slot_id, 2100 (unsigned int) new_drop_flags, 2101 (unsigned int) new_add_flags); 2102 return 0; 2103 } 2104 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2105 2106 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2107 { 2108 struct xhci_input_control_ctx *ctrl_ctx; 2109 struct xhci_ep_ctx *ep_ctx; 2110 struct xhci_slot_ctx *slot_ctx; 2111 int i; 2112 2113 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2114 if (!ctrl_ctx) { 2115 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2116 __func__); 2117 return; 2118 } 2119 2120 /* When a device's add flag and drop flag are zero, any subsequent 2121 * configure endpoint command will leave that endpoint's state 2122 * untouched. Make sure we don't leave any old state in the input 2123 * endpoint contexts. 2124 */ 2125 ctrl_ctx->drop_flags = 0; 2126 ctrl_ctx->add_flags = 0; 2127 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2128 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2129 /* Endpoint 0 is always valid */ 2130 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2131 for (i = 1; i < 31; i++) { 2132 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2133 ep_ctx->ep_info = 0; 2134 ep_ctx->ep_info2 = 0; 2135 ep_ctx->deq = 0; 2136 ep_ctx->tx_info = 0; 2137 } 2138 } 2139 2140 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2141 struct usb_device *udev, u32 *cmd_status) 2142 { 2143 int ret; 2144 2145 switch (*cmd_status) { 2146 case COMP_COMMAND_ABORTED: 2147 case COMP_COMMAND_RING_STOPPED: 2148 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2149 ret = -ETIME; 2150 break; 2151 case COMP_RESOURCE_ERROR: 2152 dev_warn(&udev->dev, 2153 "Not enough host controller resources for new device state.\n"); 2154 ret = -ENOMEM; 2155 /* FIXME: can we allocate more resources for the HC? */ 2156 break; 2157 case COMP_BANDWIDTH_ERROR: 2158 case COMP_SECONDARY_BANDWIDTH_ERROR: 2159 dev_warn(&udev->dev, 2160 "Not enough bandwidth for new device state.\n"); 2161 ret = -ENOSPC; 2162 /* FIXME: can we go back to the old state? */ 2163 break; 2164 case COMP_TRB_ERROR: 2165 /* the HCD set up something wrong */ 2166 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2167 "add flag = 1, " 2168 "and endpoint is not disabled.\n"); 2169 ret = -EINVAL; 2170 break; 2171 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2172 dev_warn(&udev->dev, 2173 "ERROR: Incompatible device for endpoint configure command.\n"); 2174 ret = -ENODEV; 2175 break; 2176 case COMP_SUCCESS: 2177 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2178 "Successful Endpoint Configure command"); 2179 ret = 0; 2180 break; 2181 default: 2182 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2183 *cmd_status); 2184 ret = -EINVAL; 2185 break; 2186 } 2187 return ret; 2188 } 2189 2190 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2191 struct usb_device *udev, u32 *cmd_status) 2192 { 2193 int ret; 2194 2195 switch (*cmd_status) { 2196 case COMP_COMMAND_ABORTED: 2197 case COMP_COMMAND_RING_STOPPED: 2198 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2199 ret = -ETIME; 2200 break; 2201 case COMP_PARAMETER_ERROR: 2202 dev_warn(&udev->dev, 2203 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2204 ret = -EINVAL; 2205 break; 2206 case COMP_SLOT_NOT_ENABLED_ERROR: 2207 dev_warn(&udev->dev, 2208 "WARN: slot not enabled for evaluate context command.\n"); 2209 ret = -EINVAL; 2210 break; 2211 case COMP_CONTEXT_STATE_ERROR: 2212 dev_warn(&udev->dev, 2213 "WARN: invalid context state for evaluate context command.\n"); 2214 ret = -EINVAL; 2215 break; 2216 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2217 dev_warn(&udev->dev, 2218 "ERROR: Incompatible device for evaluate context command.\n"); 2219 ret = -ENODEV; 2220 break; 2221 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2222 /* Max Exit Latency too large error */ 2223 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2224 ret = -EINVAL; 2225 break; 2226 case COMP_SUCCESS: 2227 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2228 "Successful evaluate context command"); 2229 ret = 0; 2230 break; 2231 default: 2232 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2233 *cmd_status); 2234 ret = -EINVAL; 2235 break; 2236 } 2237 return ret; 2238 } 2239 2240 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2241 struct xhci_input_control_ctx *ctrl_ctx) 2242 { 2243 u32 valid_add_flags; 2244 u32 valid_drop_flags; 2245 2246 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2247 * (bit 1). The default control endpoint is added during the Address 2248 * Device command and is never removed until the slot is disabled. 2249 */ 2250 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2251 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2252 2253 /* Use hweight32 to count the number of ones in the add flags, or 2254 * number of endpoints added. Don't count endpoints that are changed 2255 * (both added and dropped). 2256 */ 2257 return hweight32(valid_add_flags) - 2258 hweight32(valid_add_flags & valid_drop_flags); 2259 } 2260 2261 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2262 struct xhci_input_control_ctx *ctrl_ctx) 2263 { 2264 u32 valid_add_flags; 2265 u32 valid_drop_flags; 2266 2267 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2268 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2269 2270 return hweight32(valid_drop_flags) - 2271 hweight32(valid_add_flags & valid_drop_flags); 2272 } 2273 2274 /* 2275 * We need to reserve the new number of endpoints before the configure endpoint 2276 * command completes. We can't subtract the dropped endpoints from the number 2277 * of active endpoints until the command completes because we can oversubscribe 2278 * the host in this case: 2279 * 2280 * - the first configure endpoint command drops more endpoints than it adds 2281 * - a second configure endpoint command that adds more endpoints is queued 2282 * - the first configure endpoint command fails, so the config is unchanged 2283 * - the second command may succeed, even though there isn't enough resources 2284 * 2285 * Must be called with xhci->lock held. 2286 */ 2287 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2288 struct xhci_input_control_ctx *ctrl_ctx) 2289 { 2290 u32 added_eps; 2291 2292 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2293 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2294 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2295 "Not enough ep ctxs: " 2296 "%u active, need to add %u, limit is %u.", 2297 xhci->num_active_eps, added_eps, 2298 xhci->limit_active_eps); 2299 return -ENOMEM; 2300 } 2301 xhci->num_active_eps += added_eps; 2302 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2303 "Adding %u ep ctxs, %u now active.", added_eps, 2304 xhci->num_active_eps); 2305 return 0; 2306 } 2307 2308 /* 2309 * The configure endpoint was failed by the xHC for some other reason, so we 2310 * need to revert the resources that failed configuration would have used. 2311 * 2312 * Must be called with xhci->lock held. 2313 */ 2314 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2315 struct xhci_input_control_ctx *ctrl_ctx) 2316 { 2317 u32 num_failed_eps; 2318 2319 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2320 xhci->num_active_eps -= num_failed_eps; 2321 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2322 "Removing %u failed ep ctxs, %u now active.", 2323 num_failed_eps, 2324 xhci->num_active_eps); 2325 } 2326 2327 /* 2328 * Now that the command has completed, clean up the active endpoint count by 2329 * subtracting out the endpoints that were dropped (but not changed). 2330 * 2331 * Must be called with xhci->lock held. 2332 */ 2333 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2334 struct xhci_input_control_ctx *ctrl_ctx) 2335 { 2336 u32 num_dropped_eps; 2337 2338 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2339 xhci->num_active_eps -= num_dropped_eps; 2340 if (num_dropped_eps) 2341 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2342 "Removing %u dropped ep ctxs, %u now active.", 2343 num_dropped_eps, 2344 xhci->num_active_eps); 2345 } 2346 2347 static unsigned int xhci_get_block_size(struct usb_device *udev) 2348 { 2349 switch (udev->speed) { 2350 case USB_SPEED_LOW: 2351 case USB_SPEED_FULL: 2352 return FS_BLOCK; 2353 case USB_SPEED_HIGH: 2354 return HS_BLOCK; 2355 case USB_SPEED_SUPER: 2356 case USB_SPEED_SUPER_PLUS: 2357 return SS_BLOCK; 2358 case USB_SPEED_UNKNOWN: 2359 case USB_SPEED_WIRELESS: 2360 default: 2361 /* Should never happen */ 2362 return 1; 2363 } 2364 } 2365 2366 static unsigned int 2367 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2368 { 2369 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2370 return LS_OVERHEAD; 2371 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2372 return FS_OVERHEAD; 2373 return HS_OVERHEAD; 2374 } 2375 2376 /* If we are changing a LS/FS device under a HS hub, 2377 * make sure (if we are activating a new TT) that the HS bus has enough 2378 * bandwidth for this new TT. 2379 */ 2380 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2381 struct xhci_virt_device *virt_dev, 2382 int old_active_eps) 2383 { 2384 struct xhci_interval_bw_table *bw_table; 2385 struct xhci_tt_bw_info *tt_info; 2386 2387 /* Find the bandwidth table for the root port this TT is attached to. */ 2388 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2389 tt_info = virt_dev->tt_info; 2390 /* If this TT already had active endpoints, the bandwidth for this TT 2391 * has already been added. Removing all periodic endpoints (and thus 2392 * making the TT enactive) will only decrease the bandwidth used. 2393 */ 2394 if (old_active_eps) 2395 return 0; 2396 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2397 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2398 return -ENOMEM; 2399 return 0; 2400 } 2401 /* Not sure why we would have no new active endpoints... 2402 * 2403 * Maybe because of an Evaluate Context change for a hub update or a 2404 * control endpoint 0 max packet size change? 2405 * FIXME: skip the bandwidth calculation in that case. 2406 */ 2407 return 0; 2408 } 2409 2410 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2411 struct xhci_virt_device *virt_dev) 2412 { 2413 unsigned int bw_reserved; 2414 2415 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2416 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2417 return -ENOMEM; 2418 2419 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2420 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2421 return -ENOMEM; 2422 2423 return 0; 2424 } 2425 2426 /* 2427 * This algorithm is a very conservative estimate of the worst-case scheduling 2428 * scenario for any one interval. The hardware dynamically schedules the 2429 * packets, so we can't tell which microframe could be the limiting factor in 2430 * the bandwidth scheduling. This only takes into account periodic endpoints. 2431 * 2432 * Obviously, we can't solve an NP complete problem to find the minimum worst 2433 * case scenario. Instead, we come up with an estimate that is no less than 2434 * the worst case bandwidth used for any one microframe, but may be an 2435 * over-estimate. 2436 * 2437 * We walk the requirements for each endpoint by interval, starting with the 2438 * smallest interval, and place packets in the schedule where there is only one 2439 * possible way to schedule packets for that interval. In order to simplify 2440 * this algorithm, we record the largest max packet size for each interval, and 2441 * assume all packets will be that size. 2442 * 2443 * For interval 0, we obviously must schedule all packets for each interval. 2444 * The bandwidth for interval 0 is just the amount of data to be transmitted 2445 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2446 * the number of packets). 2447 * 2448 * For interval 1, we have two possible microframes to schedule those packets 2449 * in. For this algorithm, if we can schedule the same number of packets for 2450 * each possible scheduling opportunity (each microframe), we will do so. The 2451 * remaining number of packets will be saved to be transmitted in the gaps in 2452 * the next interval's scheduling sequence. 2453 * 2454 * As we move those remaining packets to be scheduled with interval 2 packets, 2455 * we have to double the number of remaining packets to transmit. This is 2456 * because the intervals are actually powers of 2, and we would be transmitting 2457 * the previous interval's packets twice in this interval. We also have to be 2458 * sure that when we look at the largest max packet size for this interval, we 2459 * also look at the largest max packet size for the remaining packets and take 2460 * the greater of the two. 2461 * 2462 * The algorithm continues to evenly distribute packets in each scheduling 2463 * opportunity, and push the remaining packets out, until we get to the last 2464 * interval. Then those packets and their associated overhead are just added 2465 * to the bandwidth used. 2466 */ 2467 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2468 struct xhci_virt_device *virt_dev, 2469 int old_active_eps) 2470 { 2471 unsigned int bw_reserved; 2472 unsigned int max_bandwidth; 2473 unsigned int bw_used; 2474 unsigned int block_size; 2475 struct xhci_interval_bw_table *bw_table; 2476 unsigned int packet_size = 0; 2477 unsigned int overhead = 0; 2478 unsigned int packets_transmitted = 0; 2479 unsigned int packets_remaining = 0; 2480 unsigned int i; 2481 2482 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2483 return xhci_check_ss_bw(xhci, virt_dev); 2484 2485 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2486 max_bandwidth = HS_BW_LIMIT; 2487 /* Convert percent of bus BW reserved to blocks reserved */ 2488 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2489 } else { 2490 max_bandwidth = FS_BW_LIMIT; 2491 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2492 } 2493 2494 bw_table = virt_dev->bw_table; 2495 /* We need to translate the max packet size and max ESIT payloads into 2496 * the units the hardware uses. 2497 */ 2498 block_size = xhci_get_block_size(virt_dev->udev); 2499 2500 /* If we are manipulating a LS/FS device under a HS hub, double check 2501 * that the HS bus has enough bandwidth if we are activing a new TT. 2502 */ 2503 if (virt_dev->tt_info) { 2504 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2505 "Recalculating BW for rootport %u", 2506 virt_dev->real_port); 2507 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2508 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2509 "newly activated TT.\n"); 2510 return -ENOMEM; 2511 } 2512 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2513 "Recalculating BW for TT slot %u port %u", 2514 virt_dev->tt_info->slot_id, 2515 virt_dev->tt_info->ttport); 2516 } else { 2517 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2518 "Recalculating BW for rootport %u", 2519 virt_dev->real_port); 2520 } 2521 2522 /* Add in how much bandwidth will be used for interval zero, or the 2523 * rounded max ESIT payload + number of packets * largest overhead. 2524 */ 2525 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2526 bw_table->interval_bw[0].num_packets * 2527 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2528 2529 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2530 unsigned int bw_added; 2531 unsigned int largest_mps; 2532 unsigned int interval_overhead; 2533 2534 /* 2535 * How many packets could we transmit in this interval? 2536 * If packets didn't fit in the previous interval, we will need 2537 * to transmit that many packets twice within this interval. 2538 */ 2539 packets_remaining = 2 * packets_remaining + 2540 bw_table->interval_bw[i].num_packets; 2541 2542 /* Find the largest max packet size of this or the previous 2543 * interval. 2544 */ 2545 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2546 largest_mps = 0; 2547 else { 2548 struct xhci_virt_ep *virt_ep; 2549 struct list_head *ep_entry; 2550 2551 ep_entry = bw_table->interval_bw[i].endpoints.next; 2552 virt_ep = list_entry(ep_entry, 2553 struct xhci_virt_ep, bw_endpoint_list); 2554 /* Convert to blocks, rounding up */ 2555 largest_mps = DIV_ROUND_UP( 2556 virt_ep->bw_info.max_packet_size, 2557 block_size); 2558 } 2559 if (largest_mps > packet_size) 2560 packet_size = largest_mps; 2561 2562 /* Use the larger overhead of this or the previous interval. */ 2563 interval_overhead = xhci_get_largest_overhead( 2564 &bw_table->interval_bw[i]); 2565 if (interval_overhead > overhead) 2566 overhead = interval_overhead; 2567 2568 /* How many packets can we evenly distribute across 2569 * (1 << (i + 1)) possible scheduling opportunities? 2570 */ 2571 packets_transmitted = packets_remaining >> (i + 1); 2572 2573 /* Add in the bandwidth used for those scheduled packets */ 2574 bw_added = packets_transmitted * (overhead + packet_size); 2575 2576 /* How many packets do we have remaining to transmit? */ 2577 packets_remaining = packets_remaining % (1 << (i + 1)); 2578 2579 /* What largest max packet size should those packets have? */ 2580 /* If we've transmitted all packets, don't carry over the 2581 * largest packet size. 2582 */ 2583 if (packets_remaining == 0) { 2584 packet_size = 0; 2585 overhead = 0; 2586 } else if (packets_transmitted > 0) { 2587 /* Otherwise if we do have remaining packets, and we've 2588 * scheduled some packets in this interval, take the 2589 * largest max packet size from endpoints with this 2590 * interval. 2591 */ 2592 packet_size = largest_mps; 2593 overhead = interval_overhead; 2594 } 2595 /* Otherwise carry over packet_size and overhead from the last 2596 * time we had a remainder. 2597 */ 2598 bw_used += bw_added; 2599 if (bw_used > max_bandwidth) { 2600 xhci_warn(xhci, "Not enough bandwidth. " 2601 "Proposed: %u, Max: %u\n", 2602 bw_used, max_bandwidth); 2603 return -ENOMEM; 2604 } 2605 } 2606 /* 2607 * Ok, we know we have some packets left over after even-handedly 2608 * scheduling interval 15. We don't know which microframes they will 2609 * fit into, so we over-schedule and say they will be scheduled every 2610 * microframe. 2611 */ 2612 if (packets_remaining > 0) 2613 bw_used += overhead + packet_size; 2614 2615 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2616 unsigned int port_index = virt_dev->real_port - 1; 2617 2618 /* OK, we're manipulating a HS device attached to a 2619 * root port bandwidth domain. Include the number of active TTs 2620 * in the bandwidth used. 2621 */ 2622 bw_used += TT_HS_OVERHEAD * 2623 xhci->rh_bw[port_index].num_active_tts; 2624 } 2625 2626 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2627 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2628 "Available: %u " "percent", 2629 bw_used, max_bandwidth, bw_reserved, 2630 (max_bandwidth - bw_used - bw_reserved) * 100 / 2631 max_bandwidth); 2632 2633 bw_used += bw_reserved; 2634 if (bw_used > max_bandwidth) { 2635 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2636 bw_used, max_bandwidth); 2637 return -ENOMEM; 2638 } 2639 2640 bw_table->bw_used = bw_used; 2641 return 0; 2642 } 2643 2644 static bool xhci_is_async_ep(unsigned int ep_type) 2645 { 2646 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2647 ep_type != ISOC_IN_EP && 2648 ep_type != INT_IN_EP); 2649 } 2650 2651 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2652 { 2653 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2654 } 2655 2656 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2657 { 2658 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2659 2660 if (ep_bw->ep_interval == 0) 2661 return SS_OVERHEAD_BURST + 2662 (ep_bw->mult * ep_bw->num_packets * 2663 (SS_OVERHEAD + mps)); 2664 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2665 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2666 1 << ep_bw->ep_interval); 2667 2668 } 2669 2670 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2671 struct xhci_bw_info *ep_bw, 2672 struct xhci_interval_bw_table *bw_table, 2673 struct usb_device *udev, 2674 struct xhci_virt_ep *virt_ep, 2675 struct xhci_tt_bw_info *tt_info) 2676 { 2677 struct xhci_interval_bw *interval_bw; 2678 int normalized_interval; 2679 2680 if (xhci_is_async_ep(ep_bw->type)) 2681 return; 2682 2683 if (udev->speed >= USB_SPEED_SUPER) { 2684 if (xhci_is_sync_in_ep(ep_bw->type)) 2685 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2686 xhci_get_ss_bw_consumed(ep_bw); 2687 else 2688 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2689 xhci_get_ss_bw_consumed(ep_bw); 2690 return; 2691 } 2692 2693 /* SuperSpeed endpoints never get added to intervals in the table, so 2694 * this check is only valid for HS/FS/LS devices. 2695 */ 2696 if (list_empty(&virt_ep->bw_endpoint_list)) 2697 return; 2698 /* For LS/FS devices, we need to translate the interval expressed in 2699 * microframes to frames. 2700 */ 2701 if (udev->speed == USB_SPEED_HIGH) 2702 normalized_interval = ep_bw->ep_interval; 2703 else 2704 normalized_interval = ep_bw->ep_interval - 3; 2705 2706 if (normalized_interval == 0) 2707 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2708 interval_bw = &bw_table->interval_bw[normalized_interval]; 2709 interval_bw->num_packets -= ep_bw->num_packets; 2710 switch (udev->speed) { 2711 case USB_SPEED_LOW: 2712 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2713 break; 2714 case USB_SPEED_FULL: 2715 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2716 break; 2717 case USB_SPEED_HIGH: 2718 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2719 break; 2720 case USB_SPEED_SUPER: 2721 case USB_SPEED_SUPER_PLUS: 2722 case USB_SPEED_UNKNOWN: 2723 case USB_SPEED_WIRELESS: 2724 /* Should never happen because only LS/FS/HS endpoints will get 2725 * added to the endpoint list. 2726 */ 2727 return; 2728 } 2729 if (tt_info) 2730 tt_info->active_eps -= 1; 2731 list_del_init(&virt_ep->bw_endpoint_list); 2732 } 2733 2734 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2735 struct xhci_bw_info *ep_bw, 2736 struct xhci_interval_bw_table *bw_table, 2737 struct usb_device *udev, 2738 struct xhci_virt_ep *virt_ep, 2739 struct xhci_tt_bw_info *tt_info) 2740 { 2741 struct xhci_interval_bw *interval_bw; 2742 struct xhci_virt_ep *smaller_ep; 2743 int normalized_interval; 2744 2745 if (xhci_is_async_ep(ep_bw->type)) 2746 return; 2747 2748 if (udev->speed == USB_SPEED_SUPER) { 2749 if (xhci_is_sync_in_ep(ep_bw->type)) 2750 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2751 xhci_get_ss_bw_consumed(ep_bw); 2752 else 2753 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2754 xhci_get_ss_bw_consumed(ep_bw); 2755 return; 2756 } 2757 2758 /* For LS/FS devices, we need to translate the interval expressed in 2759 * microframes to frames. 2760 */ 2761 if (udev->speed == USB_SPEED_HIGH) 2762 normalized_interval = ep_bw->ep_interval; 2763 else 2764 normalized_interval = ep_bw->ep_interval - 3; 2765 2766 if (normalized_interval == 0) 2767 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2768 interval_bw = &bw_table->interval_bw[normalized_interval]; 2769 interval_bw->num_packets += ep_bw->num_packets; 2770 switch (udev->speed) { 2771 case USB_SPEED_LOW: 2772 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2773 break; 2774 case USB_SPEED_FULL: 2775 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2776 break; 2777 case USB_SPEED_HIGH: 2778 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2779 break; 2780 case USB_SPEED_SUPER: 2781 case USB_SPEED_SUPER_PLUS: 2782 case USB_SPEED_UNKNOWN: 2783 case USB_SPEED_WIRELESS: 2784 /* Should never happen because only LS/FS/HS endpoints will get 2785 * added to the endpoint list. 2786 */ 2787 return; 2788 } 2789 2790 if (tt_info) 2791 tt_info->active_eps += 1; 2792 /* Insert the endpoint into the list, largest max packet size first. */ 2793 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2794 bw_endpoint_list) { 2795 if (ep_bw->max_packet_size >= 2796 smaller_ep->bw_info.max_packet_size) { 2797 /* Add the new ep before the smaller endpoint */ 2798 list_add_tail(&virt_ep->bw_endpoint_list, 2799 &smaller_ep->bw_endpoint_list); 2800 return; 2801 } 2802 } 2803 /* Add the new endpoint at the end of the list. */ 2804 list_add_tail(&virt_ep->bw_endpoint_list, 2805 &interval_bw->endpoints); 2806 } 2807 2808 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2809 struct xhci_virt_device *virt_dev, 2810 int old_active_eps) 2811 { 2812 struct xhci_root_port_bw_info *rh_bw_info; 2813 if (!virt_dev->tt_info) 2814 return; 2815 2816 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2817 if (old_active_eps == 0 && 2818 virt_dev->tt_info->active_eps != 0) { 2819 rh_bw_info->num_active_tts += 1; 2820 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2821 } else if (old_active_eps != 0 && 2822 virt_dev->tt_info->active_eps == 0) { 2823 rh_bw_info->num_active_tts -= 1; 2824 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2825 } 2826 } 2827 2828 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2829 struct xhci_virt_device *virt_dev, 2830 struct xhci_container_ctx *in_ctx) 2831 { 2832 struct xhci_bw_info ep_bw_info[31]; 2833 int i; 2834 struct xhci_input_control_ctx *ctrl_ctx; 2835 int old_active_eps = 0; 2836 2837 if (virt_dev->tt_info) 2838 old_active_eps = virt_dev->tt_info->active_eps; 2839 2840 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2841 if (!ctrl_ctx) { 2842 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2843 __func__); 2844 return -ENOMEM; 2845 } 2846 2847 for (i = 0; i < 31; i++) { 2848 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2849 continue; 2850 2851 /* Make a copy of the BW info in case we need to revert this */ 2852 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2853 sizeof(ep_bw_info[i])); 2854 /* Drop the endpoint from the interval table if the endpoint is 2855 * being dropped or changed. 2856 */ 2857 if (EP_IS_DROPPED(ctrl_ctx, i)) 2858 xhci_drop_ep_from_interval_table(xhci, 2859 &virt_dev->eps[i].bw_info, 2860 virt_dev->bw_table, 2861 virt_dev->udev, 2862 &virt_dev->eps[i], 2863 virt_dev->tt_info); 2864 } 2865 /* Overwrite the information stored in the endpoints' bw_info */ 2866 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2867 for (i = 0; i < 31; i++) { 2868 /* Add any changed or added endpoints to the interval table */ 2869 if (EP_IS_ADDED(ctrl_ctx, i)) 2870 xhci_add_ep_to_interval_table(xhci, 2871 &virt_dev->eps[i].bw_info, 2872 virt_dev->bw_table, 2873 virt_dev->udev, 2874 &virt_dev->eps[i], 2875 virt_dev->tt_info); 2876 } 2877 2878 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2879 /* Ok, this fits in the bandwidth we have. 2880 * Update the number of active TTs. 2881 */ 2882 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2883 return 0; 2884 } 2885 2886 /* We don't have enough bandwidth for this, revert the stored info. */ 2887 for (i = 0; i < 31; i++) { 2888 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2889 continue; 2890 2891 /* Drop the new copies of any added or changed endpoints from 2892 * the interval table. 2893 */ 2894 if (EP_IS_ADDED(ctrl_ctx, i)) { 2895 xhci_drop_ep_from_interval_table(xhci, 2896 &virt_dev->eps[i].bw_info, 2897 virt_dev->bw_table, 2898 virt_dev->udev, 2899 &virt_dev->eps[i], 2900 virt_dev->tt_info); 2901 } 2902 /* Revert the endpoint back to its old information */ 2903 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2904 sizeof(ep_bw_info[i])); 2905 /* Add any changed or dropped endpoints back into the table */ 2906 if (EP_IS_DROPPED(ctrl_ctx, i)) 2907 xhci_add_ep_to_interval_table(xhci, 2908 &virt_dev->eps[i].bw_info, 2909 virt_dev->bw_table, 2910 virt_dev->udev, 2911 &virt_dev->eps[i], 2912 virt_dev->tt_info); 2913 } 2914 return -ENOMEM; 2915 } 2916 2917 2918 /* Issue a configure endpoint command or evaluate context command 2919 * and wait for it to finish. 2920 */ 2921 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2922 struct usb_device *udev, 2923 struct xhci_command *command, 2924 bool ctx_change, bool must_succeed) 2925 { 2926 int ret; 2927 unsigned long flags; 2928 struct xhci_input_control_ctx *ctrl_ctx; 2929 struct xhci_virt_device *virt_dev; 2930 struct xhci_slot_ctx *slot_ctx; 2931 2932 if (!command) 2933 return -EINVAL; 2934 2935 spin_lock_irqsave(&xhci->lock, flags); 2936 2937 if (xhci->xhc_state & XHCI_STATE_DYING) { 2938 spin_unlock_irqrestore(&xhci->lock, flags); 2939 return -ESHUTDOWN; 2940 } 2941 2942 virt_dev = xhci->devs[udev->slot_id]; 2943 2944 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2945 if (!ctrl_ctx) { 2946 spin_unlock_irqrestore(&xhci->lock, flags); 2947 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2948 __func__); 2949 return -ENOMEM; 2950 } 2951 2952 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2953 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2954 spin_unlock_irqrestore(&xhci->lock, flags); 2955 xhci_warn(xhci, "Not enough host resources, " 2956 "active endpoint contexts = %u\n", 2957 xhci->num_active_eps); 2958 return -ENOMEM; 2959 } 2960 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2961 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2962 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2963 xhci_free_host_resources(xhci, ctrl_ctx); 2964 spin_unlock_irqrestore(&xhci->lock, flags); 2965 xhci_warn(xhci, "Not enough bandwidth\n"); 2966 return -ENOMEM; 2967 } 2968 2969 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2970 2971 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2972 trace_xhci_configure_endpoint(slot_ctx); 2973 2974 if (!ctx_change) 2975 ret = xhci_queue_configure_endpoint(xhci, command, 2976 command->in_ctx->dma, 2977 udev->slot_id, must_succeed); 2978 else 2979 ret = xhci_queue_evaluate_context(xhci, command, 2980 command->in_ctx->dma, 2981 udev->slot_id, must_succeed); 2982 if (ret < 0) { 2983 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2984 xhci_free_host_resources(xhci, ctrl_ctx); 2985 spin_unlock_irqrestore(&xhci->lock, flags); 2986 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2987 "FIXME allocate a new ring segment"); 2988 return -ENOMEM; 2989 } 2990 xhci_ring_cmd_db(xhci); 2991 spin_unlock_irqrestore(&xhci->lock, flags); 2992 2993 /* Wait for the configure endpoint command to complete */ 2994 wait_for_completion(command->completion); 2995 2996 if (!ctx_change) 2997 ret = xhci_configure_endpoint_result(xhci, udev, 2998 &command->status); 2999 else 3000 ret = xhci_evaluate_context_result(xhci, udev, 3001 &command->status); 3002 3003 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3004 spin_lock_irqsave(&xhci->lock, flags); 3005 /* If the command failed, remove the reserved resources. 3006 * Otherwise, clean up the estimate to include dropped eps. 3007 */ 3008 if (ret) 3009 xhci_free_host_resources(xhci, ctrl_ctx); 3010 else 3011 xhci_finish_resource_reservation(xhci, ctrl_ctx); 3012 spin_unlock_irqrestore(&xhci->lock, flags); 3013 } 3014 return ret; 3015 } 3016 3017 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 3018 struct xhci_virt_device *vdev, int i) 3019 { 3020 struct xhci_virt_ep *ep = &vdev->eps[i]; 3021 3022 if (ep->ep_state & EP_HAS_STREAMS) { 3023 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 3024 xhci_get_endpoint_address(i)); 3025 xhci_free_stream_info(xhci, ep->stream_info); 3026 ep->stream_info = NULL; 3027 ep->ep_state &= ~EP_HAS_STREAMS; 3028 } 3029 } 3030 3031 /* Called after one or more calls to xhci_add_endpoint() or 3032 * xhci_drop_endpoint(). If this call fails, the USB core is expected 3033 * to call xhci_reset_bandwidth(). 3034 * 3035 * Since we are in the middle of changing either configuration or 3036 * installing a new alt setting, the USB core won't allow URBs to be 3037 * enqueued for any endpoint on the old config or interface. Nothing 3038 * else should be touching the xhci->devs[slot_id] structure, so we 3039 * don't need to take the xhci->lock for manipulating that. 3040 */ 3041 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3042 { 3043 int i; 3044 int ret = 0; 3045 struct xhci_hcd *xhci; 3046 struct xhci_virt_device *virt_dev; 3047 struct xhci_input_control_ctx *ctrl_ctx; 3048 struct xhci_slot_ctx *slot_ctx; 3049 struct xhci_command *command; 3050 3051 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3052 if (ret <= 0) 3053 return ret; 3054 xhci = hcd_to_xhci(hcd); 3055 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3056 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3057 return -ENODEV; 3058 3059 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3060 virt_dev = xhci->devs[udev->slot_id]; 3061 3062 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3063 if (!command) 3064 return -ENOMEM; 3065 3066 command->in_ctx = virt_dev->in_ctx; 3067 3068 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3069 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3070 if (!ctrl_ctx) { 3071 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3072 __func__); 3073 ret = -ENOMEM; 3074 goto command_cleanup; 3075 } 3076 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3077 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3078 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3079 3080 /* Don't issue the command if there's no endpoints to update. */ 3081 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3082 ctrl_ctx->drop_flags == 0) { 3083 ret = 0; 3084 goto command_cleanup; 3085 } 3086 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3087 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3088 for (i = 31; i >= 1; i--) { 3089 __le32 le32 = cpu_to_le32(BIT(i)); 3090 3091 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3092 || (ctrl_ctx->add_flags & le32) || i == 1) { 3093 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3094 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3095 break; 3096 } 3097 } 3098 3099 ret = xhci_configure_endpoint(xhci, udev, command, 3100 false, false); 3101 if (ret) 3102 /* Callee should call reset_bandwidth() */ 3103 goto command_cleanup; 3104 3105 /* Free any rings that were dropped, but not changed. */ 3106 for (i = 1; i < 31; i++) { 3107 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3108 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3109 xhci_free_endpoint_ring(xhci, virt_dev, i); 3110 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3111 } 3112 } 3113 xhci_zero_in_ctx(xhci, virt_dev); 3114 /* 3115 * Install any rings for completely new endpoints or changed endpoints, 3116 * and free any old rings from changed endpoints. 3117 */ 3118 for (i = 1; i < 31; i++) { 3119 if (!virt_dev->eps[i].new_ring) 3120 continue; 3121 /* Only free the old ring if it exists. 3122 * It may not if this is the first add of an endpoint. 3123 */ 3124 if (virt_dev->eps[i].ring) { 3125 xhci_free_endpoint_ring(xhci, virt_dev, i); 3126 } 3127 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3128 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3129 virt_dev->eps[i].new_ring = NULL; 3130 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3131 } 3132 command_cleanup: 3133 kfree(command->completion); 3134 kfree(command); 3135 3136 return ret; 3137 } 3138 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3139 3140 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3141 { 3142 struct xhci_hcd *xhci; 3143 struct xhci_virt_device *virt_dev; 3144 int i, ret; 3145 3146 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3147 if (ret <= 0) 3148 return; 3149 xhci = hcd_to_xhci(hcd); 3150 3151 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3152 virt_dev = xhci->devs[udev->slot_id]; 3153 /* Free any rings allocated for added endpoints */ 3154 for (i = 0; i < 31; i++) { 3155 if (virt_dev->eps[i].new_ring) { 3156 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3157 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3158 virt_dev->eps[i].new_ring = NULL; 3159 } 3160 } 3161 xhci_zero_in_ctx(xhci, virt_dev); 3162 } 3163 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3164 3165 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3166 struct xhci_container_ctx *in_ctx, 3167 struct xhci_container_ctx *out_ctx, 3168 struct xhci_input_control_ctx *ctrl_ctx, 3169 u32 add_flags, u32 drop_flags) 3170 { 3171 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3172 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3173 xhci_slot_copy(xhci, in_ctx, out_ctx); 3174 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3175 } 3176 3177 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3178 struct usb_host_endpoint *host_ep) 3179 { 3180 struct xhci_hcd *xhci; 3181 struct xhci_virt_device *vdev; 3182 struct xhci_virt_ep *ep; 3183 struct usb_device *udev; 3184 unsigned long flags; 3185 unsigned int ep_index; 3186 3187 xhci = hcd_to_xhci(hcd); 3188 rescan: 3189 spin_lock_irqsave(&xhci->lock, flags); 3190 3191 udev = (struct usb_device *)host_ep->hcpriv; 3192 if (!udev || !udev->slot_id) 3193 goto done; 3194 3195 vdev = xhci->devs[udev->slot_id]; 3196 if (!vdev) 3197 goto done; 3198 3199 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3200 ep = &vdev->eps[ep_index]; 3201 3202 /* wait for hub_tt_work to finish clearing hub TT */ 3203 if (ep->ep_state & EP_CLEARING_TT) { 3204 spin_unlock_irqrestore(&xhci->lock, flags); 3205 schedule_timeout_uninterruptible(1); 3206 goto rescan; 3207 } 3208 3209 if (ep->ep_state) 3210 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3211 ep->ep_state); 3212 done: 3213 host_ep->hcpriv = NULL; 3214 spin_unlock_irqrestore(&xhci->lock, flags); 3215 } 3216 3217 /* 3218 * Called after usb core issues a clear halt control message. 3219 * The host side of the halt should already be cleared by a reset endpoint 3220 * command issued when the STALL event was received. 3221 * 3222 * The reset endpoint command may only be issued to endpoints in the halted 3223 * state. For software that wishes to reset the data toggle or sequence number 3224 * of an endpoint that isn't in the halted state this function will issue a 3225 * configure endpoint command with the Drop and Add bits set for the target 3226 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3227 */ 3228 3229 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3230 struct usb_host_endpoint *host_ep) 3231 { 3232 struct xhci_hcd *xhci; 3233 struct usb_device *udev; 3234 struct xhci_virt_device *vdev; 3235 struct xhci_virt_ep *ep; 3236 struct xhci_input_control_ctx *ctrl_ctx; 3237 struct xhci_command *stop_cmd, *cfg_cmd; 3238 unsigned int ep_index; 3239 unsigned long flags; 3240 u32 ep_flag; 3241 int err; 3242 3243 xhci = hcd_to_xhci(hcd); 3244 if (!host_ep->hcpriv) 3245 return; 3246 udev = (struct usb_device *) host_ep->hcpriv; 3247 vdev = xhci->devs[udev->slot_id]; 3248 3249 /* 3250 * vdev may be lost due to xHC restore error and re-initialization 3251 * during S3/S4 resume. A new vdev will be allocated later by 3252 * xhci_discover_or_reset_device() 3253 */ 3254 if (!udev->slot_id || !vdev) 3255 return; 3256 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3257 ep = &vdev->eps[ep_index]; 3258 3259 /* Bail out if toggle is already being cleared by a endpoint reset */ 3260 spin_lock_irqsave(&xhci->lock, flags); 3261 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3262 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3263 spin_unlock_irqrestore(&xhci->lock, flags); 3264 return; 3265 } 3266 spin_unlock_irqrestore(&xhci->lock, flags); 3267 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3268 if (usb_endpoint_xfer_control(&host_ep->desc) || 3269 usb_endpoint_xfer_isoc(&host_ep->desc)) 3270 return; 3271 3272 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3273 3274 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3275 return; 3276 3277 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3278 if (!stop_cmd) 3279 return; 3280 3281 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3282 if (!cfg_cmd) 3283 goto cleanup; 3284 3285 spin_lock_irqsave(&xhci->lock, flags); 3286 3287 /* block queuing new trbs and ringing ep doorbell */ 3288 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3289 3290 /* 3291 * Make sure endpoint ring is empty before resetting the toggle/seq. 3292 * Driver is required to synchronously cancel all transfer request. 3293 * Stop the endpoint to force xHC to update the output context 3294 */ 3295 3296 if (!list_empty(&ep->ring->td_list)) { 3297 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3298 spin_unlock_irqrestore(&xhci->lock, flags); 3299 xhci_free_command(xhci, cfg_cmd); 3300 goto cleanup; 3301 } 3302 3303 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3304 ep_index, 0); 3305 if (err < 0) { 3306 spin_unlock_irqrestore(&xhci->lock, flags); 3307 xhci_free_command(xhci, cfg_cmd); 3308 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3309 __func__, err); 3310 goto cleanup; 3311 } 3312 3313 xhci_ring_cmd_db(xhci); 3314 spin_unlock_irqrestore(&xhci->lock, flags); 3315 3316 wait_for_completion(stop_cmd->completion); 3317 3318 spin_lock_irqsave(&xhci->lock, flags); 3319 3320 /* config ep command clears toggle if add and drop ep flags are set */ 3321 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3322 if (!ctrl_ctx) { 3323 spin_unlock_irqrestore(&xhci->lock, flags); 3324 xhci_free_command(xhci, cfg_cmd); 3325 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3326 __func__); 3327 goto cleanup; 3328 } 3329 3330 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3331 ctrl_ctx, ep_flag, ep_flag); 3332 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3333 3334 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3335 udev->slot_id, false); 3336 if (err < 0) { 3337 spin_unlock_irqrestore(&xhci->lock, flags); 3338 xhci_free_command(xhci, cfg_cmd); 3339 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3340 __func__, err); 3341 goto cleanup; 3342 } 3343 3344 xhci_ring_cmd_db(xhci); 3345 spin_unlock_irqrestore(&xhci->lock, flags); 3346 3347 wait_for_completion(cfg_cmd->completion); 3348 3349 xhci_free_command(xhci, cfg_cmd); 3350 cleanup: 3351 xhci_free_command(xhci, stop_cmd); 3352 spin_lock_irqsave(&xhci->lock, flags); 3353 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3354 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3355 spin_unlock_irqrestore(&xhci->lock, flags); 3356 } 3357 3358 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3359 struct usb_device *udev, struct usb_host_endpoint *ep, 3360 unsigned int slot_id) 3361 { 3362 int ret; 3363 unsigned int ep_index; 3364 unsigned int ep_state; 3365 3366 if (!ep) 3367 return -EINVAL; 3368 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3369 if (ret <= 0) 3370 return ret ? ret : -EINVAL; 3371 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3372 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3373 " descriptor for ep 0x%x does not support streams\n", 3374 ep->desc.bEndpointAddress); 3375 return -EINVAL; 3376 } 3377 3378 ep_index = xhci_get_endpoint_index(&ep->desc); 3379 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3380 if (ep_state & EP_HAS_STREAMS || 3381 ep_state & EP_GETTING_STREAMS) { 3382 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3383 "already has streams set up.\n", 3384 ep->desc.bEndpointAddress); 3385 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3386 "dynamic stream context array reallocation.\n"); 3387 return -EINVAL; 3388 } 3389 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3390 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3391 "endpoint 0x%x; URBs are pending.\n", 3392 ep->desc.bEndpointAddress); 3393 return -EINVAL; 3394 } 3395 return 0; 3396 } 3397 3398 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3399 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3400 { 3401 unsigned int max_streams; 3402 3403 /* The stream context array size must be a power of two */ 3404 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3405 /* 3406 * Find out how many primary stream array entries the host controller 3407 * supports. Later we may use secondary stream arrays (similar to 2nd 3408 * level page entries), but that's an optional feature for xHCI host 3409 * controllers. xHCs must support at least 4 stream IDs. 3410 */ 3411 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3412 if (*num_stream_ctxs > max_streams) { 3413 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3414 max_streams); 3415 *num_stream_ctxs = max_streams; 3416 *num_streams = max_streams; 3417 } 3418 } 3419 3420 /* Returns an error code if one of the endpoint already has streams. 3421 * This does not change any data structures, it only checks and gathers 3422 * information. 3423 */ 3424 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3425 struct usb_device *udev, 3426 struct usb_host_endpoint **eps, unsigned int num_eps, 3427 unsigned int *num_streams, u32 *changed_ep_bitmask) 3428 { 3429 unsigned int max_streams; 3430 unsigned int endpoint_flag; 3431 int i; 3432 int ret; 3433 3434 for (i = 0; i < num_eps; i++) { 3435 ret = xhci_check_streams_endpoint(xhci, udev, 3436 eps[i], udev->slot_id); 3437 if (ret < 0) 3438 return ret; 3439 3440 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3441 if (max_streams < (*num_streams - 1)) { 3442 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3443 eps[i]->desc.bEndpointAddress, 3444 max_streams); 3445 *num_streams = max_streams+1; 3446 } 3447 3448 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3449 if (*changed_ep_bitmask & endpoint_flag) 3450 return -EINVAL; 3451 *changed_ep_bitmask |= endpoint_flag; 3452 } 3453 return 0; 3454 } 3455 3456 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3457 struct usb_device *udev, 3458 struct usb_host_endpoint **eps, unsigned int num_eps) 3459 { 3460 u32 changed_ep_bitmask = 0; 3461 unsigned int slot_id; 3462 unsigned int ep_index; 3463 unsigned int ep_state; 3464 int i; 3465 3466 slot_id = udev->slot_id; 3467 if (!xhci->devs[slot_id]) 3468 return 0; 3469 3470 for (i = 0; i < num_eps; i++) { 3471 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3472 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3473 /* Are streams already being freed for the endpoint? */ 3474 if (ep_state & EP_GETTING_NO_STREAMS) { 3475 xhci_warn(xhci, "WARN Can't disable streams for " 3476 "endpoint 0x%x, " 3477 "streams are being disabled already\n", 3478 eps[i]->desc.bEndpointAddress); 3479 return 0; 3480 } 3481 /* Are there actually any streams to free? */ 3482 if (!(ep_state & EP_HAS_STREAMS) && 3483 !(ep_state & EP_GETTING_STREAMS)) { 3484 xhci_warn(xhci, "WARN Can't disable streams for " 3485 "endpoint 0x%x, " 3486 "streams are already disabled!\n", 3487 eps[i]->desc.bEndpointAddress); 3488 xhci_warn(xhci, "WARN xhci_free_streams() called " 3489 "with non-streams endpoint\n"); 3490 return 0; 3491 } 3492 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3493 } 3494 return changed_ep_bitmask; 3495 } 3496 3497 /* 3498 * The USB device drivers use this function (through the HCD interface in USB 3499 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3500 * coordinate mass storage command queueing across multiple endpoints (basically 3501 * a stream ID == a task ID). 3502 * 3503 * Setting up streams involves allocating the same size stream context array 3504 * for each endpoint and issuing a configure endpoint command for all endpoints. 3505 * 3506 * Don't allow the call to succeed if one endpoint only supports one stream 3507 * (which means it doesn't support streams at all). 3508 * 3509 * Drivers may get less stream IDs than they asked for, if the host controller 3510 * hardware or endpoints claim they can't support the number of requested 3511 * stream IDs. 3512 */ 3513 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3514 struct usb_host_endpoint **eps, unsigned int num_eps, 3515 unsigned int num_streams, gfp_t mem_flags) 3516 { 3517 int i, ret; 3518 struct xhci_hcd *xhci; 3519 struct xhci_virt_device *vdev; 3520 struct xhci_command *config_cmd; 3521 struct xhci_input_control_ctx *ctrl_ctx; 3522 unsigned int ep_index; 3523 unsigned int num_stream_ctxs; 3524 unsigned int max_packet; 3525 unsigned long flags; 3526 u32 changed_ep_bitmask = 0; 3527 3528 if (!eps) 3529 return -EINVAL; 3530 3531 /* Add one to the number of streams requested to account for 3532 * stream 0 that is reserved for xHCI usage. 3533 */ 3534 num_streams += 1; 3535 xhci = hcd_to_xhci(hcd); 3536 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3537 num_streams); 3538 3539 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3540 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3541 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3542 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3543 return -ENOSYS; 3544 } 3545 3546 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3547 if (!config_cmd) 3548 return -ENOMEM; 3549 3550 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3551 if (!ctrl_ctx) { 3552 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3553 __func__); 3554 xhci_free_command(xhci, config_cmd); 3555 return -ENOMEM; 3556 } 3557 3558 /* Check to make sure all endpoints are not already configured for 3559 * streams. While we're at it, find the maximum number of streams that 3560 * all the endpoints will support and check for duplicate endpoints. 3561 */ 3562 spin_lock_irqsave(&xhci->lock, flags); 3563 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3564 num_eps, &num_streams, &changed_ep_bitmask); 3565 if (ret < 0) { 3566 xhci_free_command(xhci, config_cmd); 3567 spin_unlock_irqrestore(&xhci->lock, flags); 3568 return ret; 3569 } 3570 if (num_streams <= 1) { 3571 xhci_warn(xhci, "WARN: endpoints can't handle " 3572 "more than one stream.\n"); 3573 xhci_free_command(xhci, config_cmd); 3574 spin_unlock_irqrestore(&xhci->lock, flags); 3575 return -EINVAL; 3576 } 3577 vdev = xhci->devs[udev->slot_id]; 3578 /* Mark each endpoint as being in transition, so 3579 * xhci_urb_enqueue() will reject all URBs. 3580 */ 3581 for (i = 0; i < num_eps; i++) { 3582 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3583 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3584 } 3585 spin_unlock_irqrestore(&xhci->lock, flags); 3586 3587 /* Setup internal data structures and allocate HW data structures for 3588 * streams (but don't install the HW structures in the input context 3589 * until we're sure all memory allocation succeeded). 3590 */ 3591 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3592 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3593 num_stream_ctxs, num_streams); 3594 3595 for (i = 0; i < num_eps; i++) { 3596 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3597 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3598 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3599 num_stream_ctxs, 3600 num_streams, 3601 max_packet, mem_flags); 3602 if (!vdev->eps[ep_index].stream_info) 3603 goto cleanup; 3604 /* Set maxPstreams in endpoint context and update deq ptr to 3605 * point to stream context array. FIXME 3606 */ 3607 } 3608 3609 /* Set up the input context for a configure endpoint command. */ 3610 for (i = 0; i < num_eps; i++) { 3611 struct xhci_ep_ctx *ep_ctx; 3612 3613 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3614 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3615 3616 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3617 vdev->out_ctx, ep_index); 3618 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3619 vdev->eps[ep_index].stream_info); 3620 } 3621 /* Tell the HW to drop its old copy of the endpoint context info 3622 * and add the updated copy from the input context. 3623 */ 3624 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3625 vdev->out_ctx, ctrl_ctx, 3626 changed_ep_bitmask, changed_ep_bitmask); 3627 3628 /* Issue and wait for the configure endpoint command */ 3629 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3630 false, false); 3631 3632 /* xHC rejected the configure endpoint command for some reason, so we 3633 * leave the old ring intact and free our internal streams data 3634 * structure. 3635 */ 3636 if (ret < 0) 3637 goto cleanup; 3638 3639 spin_lock_irqsave(&xhci->lock, flags); 3640 for (i = 0; i < num_eps; i++) { 3641 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3642 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3643 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3644 udev->slot_id, ep_index); 3645 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3646 } 3647 xhci_free_command(xhci, config_cmd); 3648 spin_unlock_irqrestore(&xhci->lock, flags); 3649 3650 for (i = 0; i < num_eps; i++) { 3651 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3652 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3653 } 3654 /* Subtract 1 for stream 0, which drivers can't use */ 3655 return num_streams - 1; 3656 3657 cleanup: 3658 /* If it didn't work, free the streams! */ 3659 for (i = 0; i < num_eps; i++) { 3660 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3661 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3662 vdev->eps[ep_index].stream_info = NULL; 3663 /* FIXME Unset maxPstreams in endpoint context and 3664 * update deq ptr to point to normal string ring. 3665 */ 3666 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3667 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3668 xhci_endpoint_zero(xhci, vdev, eps[i]); 3669 } 3670 xhci_free_command(xhci, config_cmd); 3671 return -ENOMEM; 3672 } 3673 3674 /* Transition the endpoint from using streams to being a "normal" endpoint 3675 * without streams. 3676 * 3677 * Modify the endpoint context state, submit a configure endpoint command, 3678 * and free all endpoint rings for streams if that completes successfully. 3679 */ 3680 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3681 struct usb_host_endpoint **eps, unsigned int num_eps, 3682 gfp_t mem_flags) 3683 { 3684 int i, ret; 3685 struct xhci_hcd *xhci; 3686 struct xhci_virt_device *vdev; 3687 struct xhci_command *command; 3688 struct xhci_input_control_ctx *ctrl_ctx; 3689 unsigned int ep_index; 3690 unsigned long flags; 3691 u32 changed_ep_bitmask; 3692 3693 xhci = hcd_to_xhci(hcd); 3694 vdev = xhci->devs[udev->slot_id]; 3695 3696 /* Set up a configure endpoint command to remove the streams rings */ 3697 spin_lock_irqsave(&xhci->lock, flags); 3698 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3699 udev, eps, num_eps); 3700 if (changed_ep_bitmask == 0) { 3701 spin_unlock_irqrestore(&xhci->lock, flags); 3702 return -EINVAL; 3703 } 3704 3705 /* Use the xhci_command structure from the first endpoint. We may have 3706 * allocated too many, but the driver may call xhci_free_streams() for 3707 * each endpoint it grouped into one call to xhci_alloc_streams(). 3708 */ 3709 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3710 command = vdev->eps[ep_index].stream_info->free_streams_command; 3711 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3712 if (!ctrl_ctx) { 3713 spin_unlock_irqrestore(&xhci->lock, flags); 3714 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3715 __func__); 3716 return -EINVAL; 3717 } 3718 3719 for (i = 0; i < num_eps; i++) { 3720 struct xhci_ep_ctx *ep_ctx; 3721 3722 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3723 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3724 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3725 EP_GETTING_NO_STREAMS; 3726 3727 xhci_endpoint_copy(xhci, command->in_ctx, 3728 vdev->out_ctx, ep_index); 3729 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3730 &vdev->eps[ep_index]); 3731 } 3732 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3733 vdev->out_ctx, ctrl_ctx, 3734 changed_ep_bitmask, changed_ep_bitmask); 3735 spin_unlock_irqrestore(&xhci->lock, flags); 3736 3737 /* Issue and wait for the configure endpoint command, 3738 * which must succeed. 3739 */ 3740 ret = xhci_configure_endpoint(xhci, udev, command, 3741 false, true); 3742 3743 /* xHC rejected the configure endpoint command for some reason, so we 3744 * leave the streams rings intact. 3745 */ 3746 if (ret < 0) 3747 return ret; 3748 3749 spin_lock_irqsave(&xhci->lock, flags); 3750 for (i = 0; i < num_eps; i++) { 3751 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3752 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3753 vdev->eps[ep_index].stream_info = NULL; 3754 /* FIXME Unset maxPstreams in endpoint context and 3755 * update deq ptr to point to normal string ring. 3756 */ 3757 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3758 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3759 } 3760 spin_unlock_irqrestore(&xhci->lock, flags); 3761 3762 return 0; 3763 } 3764 3765 /* 3766 * Deletes endpoint resources for endpoints that were active before a Reset 3767 * Device command, or a Disable Slot command. The Reset Device command leaves 3768 * the control endpoint intact, whereas the Disable Slot command deletes it. 3769 * 3770 * Must be called with xhci->lock held. 3771 */ 3772 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3773 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3774 { 3775 int i; 3776 unsigned int num_dropped_eps = 0; 3777 unsigned int drop_flags = 0; 3778 3779 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3780 if (virt_dev->eps[i].ring) { 3781 drop_flags |= 1 << i; 3782 num_dropped_eps++; 3783 } 3784 } 3785 xhci->num_active_eps -= num_dropped_eps; 3786 if (num_dropped_eps) 3787 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3788 "Dropped %u ep ctxs, flags = 0x%x, " 3789 "%u now active.", 3790 num_dropped_eps, drop_flags, 3791 xhci->num_active_eps); 3792 } 3793 3794 /* 3795 * This submits a Reset Device Command, which will set the device state to 0, 3796 * set the device address to 0, and disable all the endpoints except the default 3797 * control endpoint. The USB core should come back and call 3798 * xhci_address_device(), and then re-set up the configuration. If this is 3799 * called because of a usb_reset_and_verify_device(), then the old alternate 3800 * settings will be re-installed through the normal bandwidth allocation 3801 * functions. 3802 * 3803 * Wait for the Reset Device command to finish. Remove all structures 3804 * associated with the endpoints that were disabled. Clear the input device 3805 * structure? Reset the control endpoint 0 max packet size? 3806 * 3807 * If the virt_dev to be reset does not exist or does not match the udev, 3808 * it means the device is lost, possibly due to the xHC restore error and 3809 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3810 * re-allocate the device. 3811 */ 3812 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3813 struct usb_device *udev) 3814 { 3815 int ret, i; 3816 unsigned long flags; 3817 struct xhci_hcd *xhci; 3818 unsigned int slot_id; 3819 struct xhci_virt_device *virt_dev; 3820 struct xhci_command *reset_device_cmd; 3821 struct xhci_slot_ctx *slot_ctx; 3822 int old_active_eps = 0; 3823 3824 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3825 if (ret <= 0) 3826 return ret; 3827 xhci = hcd_to_xhci(hcd); 3828 slot_id = udev->slot_id; 3829 virt_dev = xhci->devs[slot_id]; 3830 if (!virt_dev) { 3831 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3832 "not exist. Re-allocate the device\n", slot_id); 3833 ret = xhci_alloc_dev(hcd, udev); 3834 if (ret == 1) 3835 return 0; 3836 else 3837 return -EINVAL; 3838 } 3839 3840 if (virt_dev->tt_info) 3841 old_active_eps = virt_dev->tt_info->active_eps; 3842 3843 if (virt_dev->udev != udev) { 3844 /* If the virt_dev and the udev does not match, this virt_dev 3845 * may belong to another udev. 3846 * Re-allocate the device. 3847 */ 3848 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3849 "not match the udev. Re-allocate the device\n", 3850 slot_id); 3851 ret = xhci_alloc_dev(hcd, udev); 3852 if (ret == 1) 3853 return 0; 3854 else 3855 return -EINVAL; 3856 } 3857 3858 /* If device is not setup, there is no point in resetting it */ 3859 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3860 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3861 SLOT_STATE_DISABLED) 3862 return 0; 3863 3864 trace_xhci_discover_or_reset_device(slot_ctx); 3865 3866 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3867 /* Allocate the command structure that holds the struct completion. 3868 * Assume we're in process context, since the normal device reset 3869 * process has to wait for the device anyway. Storage devices are 3870 * reset as part of error handling, so use GFP_NOIO instead of 3871 * GFP_KERNEL. 3872 */ 3873 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3874 if (!reset_device_cmd) { 3875 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3876 return -ENOMEM; 3877 } 3878 3879 /* Attempt to submit the Reset Device command to the command ring */ 3880 spin_lock_irqsave(&xhci->lock, flags); 3881 3882 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3883 if (ret) { 3884 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3885 spin_unlock_irqrestore(&xhci->lock, flags); 3886 goto command_cleanup; 3887 } 3888 xhci_ring_cmd_db(xhci); 3889 spin_unlock_irqrestore(&xhci->lock, flags); 3890 3891 /* Wait for the Reset Device command to finish */ 3892 wait_for_completion(reset_device_cmd->completion); 3893 3894 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3895 * unless we tried to reset a slot ID that wasn't enabled, 3896 * or the device wasn't in the addressed or configured state. 3897 */ 3898 ret = reset_device_cmd->status; 3899 switch (ret) { 3900 case COMP_COMMAND_ABORTED: 3901 case COMP_COMMAND_RING_STOPPED: 3902 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3903 ret = -ETIME; 3904 goto command_cleanup; 3905 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3906 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3907 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3908 slot_id, 3909 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3910 xhci_dbg(xhci, "Not freeing device rings.\n"); 3911 /* Don't treat this as an error. May change my mind later. */ 3912 ret = 0; 3913 goto command_cleanup; 3914 case COMP_SUCCESS: 3915 xhci_dbg(xhci, "Successful reset device command.\n"); 3916 break; 3917 default: 3918 if (xhci_is_vendor_info_code(xhci, ret)) 3919 break; 3920 xhci_warn(xhci, "Unknown completion code %u for " 3921 "reset device command.\n", ret); 3922 ret = -EINVAL; 3923 goto command_cleanup; 3924 } 3925 3926 /* Free up host controller endpoint resources */ 3927 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3928 spin_lock_irqsave(&xhci->lock, flags); 3929 /* Don't delete the default control endpoint resources */ 3930 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3931 spin_unlock_irqrestore(&xhci->lock, flags); 3932 } 3933 3934 /* Everything but endpoint 0 is disabled, so free the rings. */ 3935 for (i = 1; i < 31; i++) { 3936 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3937 3938 if (ep->ep_state & EP_HAS_STREAMS) { 3939 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3940 xhci_get_endpoint_address(i)); 3941 xhci_free_stream_info(xhci, ep->stream_info); 3942 ep->stream_info = NULL; 3943 ep->ep_state &= ~EP_HAS_STREAMS; 3944 } 3945 3946 if (ep->ring) { 3947 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3948 xhci_free_endpoint_ring(xhci, virt_dev, i); 3949 } 3950 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3951 xhci_drop_ep_from_interval_table(xhci, 3952 &virt_dev->eps[i].bw_info, 3953 virt_dev->bw_table, 3954 udev, 3955 &virt_dev->eps[i], 3956 virt_dev->tt_info); 3957 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3958 } 3959 /* If necessary, update the number of active TTs on this root port */ 3960 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3961 virt_dev->flags = 0; 3962 ret = 0; 3963 3964 command_cleanup: 3965 xhci_free_command(xhci, reset_device_cmd); 3966 return ret; 3967 } 3968 3969 /* 3970 * At this point, the struct usb_device is about to go away, the device has 3971 * disconnected, and all traffic has been stopped and the endpoints have been 3972 * disabled. Free any HC data structures associated with that device. 3973 */ 3974 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3975 { 3976 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3977 struct xhci_virt_device *virt_dev; 3978 struct xhci_slot_ctx *slot_ctx; 3979 int i, ret; 3980 3981 /* 3982 * We called pm_runtime_get_noresume when the device was attached. 3983 * Decrement the counter here to allow controller to runtime suspend 3984 * if no devices remain. 3985 */ 3986 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3987 pm_runtime_put_noidle(hcd->self.controller); 3988 3989 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3990 /* If the host is halted due to driver unload, we still need to free the 3991 * device. 3992 */ 3993 if (ret <= 0 && ret != -ENODEV) 3994 return; 3995 3996 virt_dev = xhci->devs[udev->slot_id]; 3997 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3998 trace_xhci_free_dev(slot_ctx); 3999 4000 /* Stop any wayward timer functions (which may grab the lock) */ 4001 for (i = 0; i < 31; i++) 4002 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 4003 virt_dev->udev = NULL; 4004 xhci_disable_slot(xhci, udev->slot_id); 4005 xhci_free_virt_device(xhci, udev->slot_id); 4006 } 4007 4008 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 4009 { 4010 struct xhci_command *command; 4011 unsigned long flags; 4012 u32 state; 4013 int ret; 4014 4015 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4016 if (!command) 4017 return -ENOMEM; 4018 4019 xhci_debugfs_remove_slot(xhci, slot_id); 4020 4021 spin_lock_irqsave(&xhci->lock, flags); 4022 /* Don't disable the slot if the host controller is dead. */ 4023 state = readl(&xhci->op_regs->status); 4024 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 4025 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4026 spin_unlock_irqrestore(&xhci->lock, flags); 4027 kfree(command); 4028 return -ENODEV; 4029 } 4030 4031 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 4032 slot_id); 4033 if (ret) { 4034 spin_unlock_irqrestore(&xhci->lock, flags); 4035 kfree(command); 4036 return ret; 4037 } 4038 xhci_ring_cmd_db(xhci); 4039 spin_unlock_irqrestore(&xhci->lock, flags); 4040 4041 wait_for_completion(command->completion); 4042 4043 if (command->status != COMP_SUCCESS) 4044 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4045 slot_id, command->status); 4046 4047 xhci_free_command(xhci, command); 4048 4049 return 0; 4050 } 4051 4052 /* 4053 * Checks if we have enough host controller resources for the default control 4054 * endpoint. 4055 * 4056 * Must be called with xhci->lock held. 4057 */ 4058 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4059 { 4060 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4061 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4062 "Not enough ep ctxs: " 4063 "%u active, need to add 1, limit is %u.", 4064 xhci->num_active_eps, xhci->limit_active_eps); 4065 return -ENOMEM; 4066 } 4067 xhci->num_active_eps += 1; 4068 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4069 "Adding 1 ep ctx, %u now active.", 4070 xhci->num_active_eps); 4071 return 0; 4072 } 4073 4074 4075 /* 4076 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4077 * timed out, or allocating memory failed. Returns 1 on success. 4078 */ 4079 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4080 { 4081 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4082 struct xhci_virt_device *vdev; 4083 struct xhci_slot_ctx *slot_ctx; 4084 unsigned long flags; 4085 int ret, slot_id; 4086 struct xhci_command *command; 4087 4088 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4089 if (!command) 4090 return 0; 4091 4092 spin_lock_irqsave(&xhci->lock, flags); 4093 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4094 if (ret) { 4095 spin_unlock_irqrestore(&xhci->lock, flags); 4096 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4097 xhci_free_command(xhci, command); 4098 return 0; 4099 } 4100 xhci_ring_cmd_db(xhci); 4101 spin_unlock_irqrestore(&xhci->lock, flags); 4102 4103 wait_for_completion(command->completion); 4104 slot_id = command->slot_id; 4105 4106 if (!slot_id || command->status != COMP_SUCCESS) { 4107 xhci_err(xhci, "Error while assigning device slot ID\n"); 4108 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4109 HCS_MAX_SLOTS( 4110 readl(&xhci->cap_regs->hcs_params1))); 4111 xhci_free_command(xhci, command); 4112 return 0; 4113 } 4114 4115 xhci_free_command(xhci, command); 4116 4117 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4118 spin_lock_irqsave(&xhci->lock, flags); 4119 ret = xhci_reserve_host_control_ep_resources(xhci); 4120 if (ret) { 4121 spin_unlock_irqrestore(&xhci->lock, flags); 4122 xhci_warn(xhci, "Not enough host resources, " 4123 "active endpoint contexts = %u\n", 4124 xhci->num_active_eps); 4125 goto disable_slot; 4126 } 4127 spin_unlock_irqrestore(&xhci->lock, flags); 4128 } 4129 /* Use GFP_NOIO, since this function can be called from 4130 * xhci_discover_or_reset_device(), which may be called as part of 4131 * mass storage driver error handling. 4132 */ 4133 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4134 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4135 goto disable_slot; 4136 } 4137 vdev = xhci->devs[slot_id]; 4138 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4139 trace_xhci_alloc_dev(slot_ctx); 4140 4141 udev->slot_id = slot_id; 4142 4143 xhci_debugfs_create_slot(xhci, slot_id); 4144 4145 /* 4146 * If resetting upon resume, we can't put the controller into runtime 4147 * suspend if there is a device attached. 4148 */ 4149 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4150 pm_runtime_get_noresume(hcd->self.controller); 4151 4152 /* Is this a LS or FS device under a HS hub? */ 4153 /* Hub or peripherial? */ 4154 return 1; 4155 4156 disable_slot: 4157 xhci_disable_slot(xhci, udev->slot_id); 4158 xhci_free_virt_device(xhci, udev->slot_id); 4159 4160 return 0; 4161 } 4162 4163 /* 4164 * Issue an Address Device command and optionally send a corresponding 4165 * SetAddress request to the device. 4166 */ 4167 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4168 enum xhci_setup_dev setup) 4169 { 4170 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4171 unsigned long flags; 4172 struct xhci_virt_device *virt_dev; 4173 int ret = 0; 4174 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4175 struct xhci_slot_ctx *slot_ctx; 4176 struct xhci_input_control_ctx *ctrl_ctx; 4177 u64 temp_64; 4178 struct xhci_command *command = NULL; 4179 4180 mutex_lock(&xhci->mutex); 4181 4182 if (xhci->xhc_state) { /* dying, removing or halted */ 4183 ret = -ESHUTDOWN; 4184 goto out; 4185 } 4186 4187 if (!udev->slot_id) { 4188 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4189 "Bad Slot ID %d", udev->slot_id); 4190 ret = -EINVAL; 4191 goto out; 4192 } 4193 4194 virt_dev = xhci->devs[udev->slot_id]; 4195 4196 if (WARN_ON(!virt_dev)) { 4197 /* 4198 * In plug/unplug torture test with an NEC controller, 4199 * a zero-dereference was observed once due to virt_dev = 0. 4200 * Print useful debug rather than crash if it is observed again! 4201 */ 4202 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4203 udev->slot_id); 4204 ret = -EINVAL; 4205 goto out; 4206 } 4207 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4208 trace_xhci_setup_device_slot(slot_ctx); 4209 4210 if (setup == SETUP_CONTEXT_ONLY) { 4211 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4212 SLOT_STATE_DEFAULT) { 4213 xhci_dbg(xhci, "Slot already in default state\n"); 4214 goto out; 4215 } 4216 } 4217 4218 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4219 if (!command) { 4220 ret = -ENOMEM; 4221 goto out; 4222 } 4223 4224 command->in_ctx = virt_dev->in_ctx; 4225 4226 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4227 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4228 if (!ctrl_ctx) { 4229 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4230 __func__); 4231 ret = -EINVAL; 4232 goto out; 4233 } 4234 /* 4235 * If this is the first Set Address since device plug-in or 4236 * virt_device realloaction after a resume with an xHCI power loss, 4237 * then set up the slot context. 4238 */ 4239 if (!slot_ctx->dev_info) 4240 xhci_setup_addressable_virt_dev(xhci, udev); 4241 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4242 else 4243 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4244 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4245 ctrl_ctx->drop_flags = 0; 4246 4247 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4248 le32_to_cpu(slot_ctx->dev_info) >> 27); 4249 4250 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4251 spin_lock_irqsave(&xhci->lock, flags); 4252 trace_xhci_setup_device(virt_dev); 4253 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4254 udev->slot_id, setup); 4255 if (ret) { 4256 spin_unlock_irqrestore(&xhci->lock, flags); 4257 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4258 "FIXME: allocate a command ring segment"); 4259 goto out; 4260 } 4261 xhci_ring_cmd_db(xhci); 4262 spin_unlock_irqrestore(&xhci->lock, flags); 4263 4264 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4265 wait_for_completion(command->completion); 4266 4267 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4268 * the SetAddress() "recovery interval" required by USB and aborting the 4269 * command on a timeout. 4270 */ 4271 switch (command->status) { 4272 case COMP_COMMAND_ABORTED: 4273 case COMP_COMMAND_RING_STOPPED: 4274 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4275 ret = -ETIME; 4276 break; 4277 case COMP_CONTEXT_STATE_ERROR: 4278 case COMP_SLOT_NOT_ENABLED_ERROR: 4279 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4280 act, udev->slot_id); 4281 ret = -EINVAL; 4282 break; 4283 case COMP_USB_TRANSACTION_ERROR: 4284 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4285 4286 mutex_unlock(&xhci->mutex); 4287 ret = xhci_disable_slot(xhci, udev->slot_id); 4288 xhci_free_virt_device(xhci, udev->slot_id); 4289 if (!ret) 4290 xhci_alloc_dev(hcd, udev); 4291 kfree(command->completion); 4292 kfree(command); 4293 return -EPROTO; 4294 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4295 dev_warn(&udev->dev, 4296 "ERROR: Incompatible device for setup %s command\n", act); 4297 ret = -ENODEV; 4298 break; 4299 case COMP_SUCCESS: 4300 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4301 "Successful setup %s command", act); 4302 break; 4303 default: 4304 xhci_err(xhci, 4305 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4306 act, command->status); 4307 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4308 ret = -EINVAL; 4309 break; 4310 } 4311 if (ret) 4312 goto out; 4313 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4314 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4315 "Op regs DCBAA ptr = %#016llx", temp_64); 4316 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4317 "Slot ID %d dcbaa entry @%p = %#016llx", 4318 udev->slot_id, 4319 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4320 (unsigned long long) 4321 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4322 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4323 "Output Context DMA address = %#08llx", 4324 (unsigned long long)virt_dev->out_ctx->dma); 4325 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4326 le32_to_cpu(slot_ctx->dev_info) >> 27); 4327 /* 4328 * USB core uses address 1 for the roothubs, so we add one to the 4329 * address given back to us by the HC. 4330 */ 4331 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4332 le32_to_cpu(slot_ctx->dev_info) >> 27); 4333 /* Zero the input context control for later use */ 4334 ctrl_ctx->add_flags = 0; 4335 ctrl_ctx->drop_flags = 0; 4336 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4337 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4338 4339 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4340 "Internal device address = %d", 4341 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4342 out: 4343 mutex_unlock(&xhci->mutex); 4344 if (command) { 4345 kfree(command->completion); 4346 kfree(command); 4347 } 4348 return ret; 4349 } 4350 4351 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4352 { 4353 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4354 } 4355 4356 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4357 { 4358 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4359 } 4360 4361 /* 4362 * Transfer the port index into real index in the HW port status 4363 * registers. Caculate offset between the port's PORTSC register 4364 * and port status base. Divide the number of per port register 4365 * to get the real index. The raw port number bases 1. 4366 */ 4367 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4368 { 4369 struct xhci_hub *rhub; 4370 4371 rhub = xhci_get_rhub(hcd); 4372 return rhub->ports[port1 - 1]->hw_portnum + 1; 4373 } 4374 4375 /* 4376 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4377 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4378 */ 4379 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4380 struct usb_device *udev, u16 max_exit_latency) 4381 { 4382 struct xhci_virt_device *virt_dev; 4383 struct xhci_command *command; 4384 struct xhci_input_control_ctx *ctrl_ctx; 4385 struct xhci_slot_ctx *slot_ctx; 4386 unsigned long flags; 4387 int ret; 4388 4389 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4390 if (!command) 4391 return -ENOMEM; 4392 4393 spin_lock_irqsave(&xhci->lock, flags); 4394 4395 virt_dev = xhci->devs[udev->slot_id]; 4396 4397 /* 4398 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4399 * xHC was re-initialized. Exit latency will be set later after 4400 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4401 */ 4402 4403 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4404 spin_unlock_irqrestore(&xhci->lock, flags); 4405 return 0; 4406 } 4407 4408 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4409 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4410 if (!ctrl_ctx) { 4411 spin_unlock_irqrestore(&xhci->lock, flags); 4412 xhci_free_command(xhci, command); 4413 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4414 __func__); 4415 return -ENOMEM; 4416 } 4417 4418 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4419 spin_unlock_irqrestore(&xhci->lock, flags); 4420 4421 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4422 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4423 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4424 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4425 slot_ctx->dev_state = 0; 4426 4427 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4428 "Set up evaluate context for LPM MEL change."); 4429 4430 /* Issue and wait for the evaluate context command. */ 4431 ret = xhci_configure_endpoint(xhci, udev, command, 4432 true, true); 4433 4434 if (!ret) { 4435 spin_lock_irqsave(&xhci->lock, flags); 4436 virt_dev->current_mel = max_exit_latency; 4437 spin_unlock_irqrestore(&xhci->lock, flags); 4438 } 4439 4440 xhci_free_command(xhci, command); 4441 4442 return ret; 4443 } 4444 4445 #ifdef CONFIG_PM 4446 4447 /* BESL to HIRD Encoding array for USB2 LPM */ 4448 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4449 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4450 4451 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4452 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4453 struct usb_device *udev) 4454 { 4455 int u2del, besl, besl_host; 4456 int besl_device = 0; 4457 u32 field; 4458 4459 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4460 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4461 4462 if (field & USB_BESL_SUPPORT) { 4463 for (besl_host = 0; besl_host < 16; besl_host++) { 4464 if (xhci_besl_encoding[besl_host] >= u2del) 4465 break; 4466 } 4467 /* Use baseline BESL value as default */ 4468 if (field & USB_BESL_BASELINE_VALID) 4469 besl_device = USB_GET_BESL_BASELINE(field); 4470 else if (field & USB_BESL_DEEP_VALID) 4471 besl_device = USB_GET_BESL_DEEP(field); 4472 } else { 4473 if (u2del <= 50) 4474 besl_host = 0; 4475 else 4476 besl_host = (u2del - 51) / 75 + 1; 4477 } 4478 4479 besl = besl_host + besl_device; 4480 if (besl > 15) 4481 besl = 15; 4482 4483 return besl; 4484 } 4485 4486 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4487 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4488 { 4489 u32 field; 4490 int l1; 4491 int besld = 0; 4492 int hirdm = 0; 4493 4494 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4495 4496 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4497 l1 = udev->l1_params.timeout / 256; 4498 4499 /* device has preferred BESLD */ 4500 if (field & USB_BESL_DEEP_VALID) { 4501 besld = USB_GET_BESL_DEEP(field); 4502 hirdm = 1; 4503 } 4504 4505 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4506 } 4507 4508 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4509 struct usb_device *udev, int enable) 4510 { 4511 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4512 struct xhci_port **ports; 4513 __le32 __iomem *pm_addr, *hlpm_addr; 4514 u32 pm_val, hlpm_val, field; 4515 unsigned int port_num; 4516 unsigned long flags; 4517 int hird, exit_latency; 4518 int ret; 4519 4520 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4521 return -EPERM; 4522 4523 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4524 !udev->lpm_capable) 4525 return -EPERM; 4526 4527 if (!udev->parent || udev->parent->parent || 4528 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4529 return -EPERM; 4530 4531 if (udev->usb2_hw_lpm_capable != 1) 4532 return -EPERM; 4533 4534 spin_lock_irqsave(&xhci->lock, flags); 4535 4536 ports = xhci->usb2_rhub.ports; 4537 port_num = udev->portnum - 1; 4538 pm_addr = ports[port_num]->addr + PORTPMSC; 4539 pm_val = readl(pm_addr); 4540 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4541 4542 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4543 enable ? "enable" : "disable", port_num + 1); 4544 4545 if (enable) { 4546 /* Host supports BESL timeout instead of HIRD */ 4547 if (udev->usb2_hw_lpm_besl_capable) { 4548 /* if device doesn't have a preferred BESL value use a 4549 * default one which works with mixed HIRD and BESL 4550 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4551 */ 4552 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4553 if ((field & USB_BESL_SUPPORT) && 4554 (field & USB_BESL_BASELINE_VALID)) 4555 hird = USB_GET_BESL_BASELINE(field); 4556 else 4557 hird = udev->l1_params.besl; 4558 4559 exit_latency = xhci_besl_encoding[hird]; 4560 spin_unlock_irqrestore(&xhci->lock, flags); 4561 4562 ret = xhci_change_max_exit_latency(xhci, udev, 4563 exit_latency); 4564 if (ret < 0) 4565 return ret; 4566 spin_lock_irqsave(&xhci->lock, flags); 4567 4568 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4569 writel(hlpm_val, hlpm_addr); 4570 /* flush write */ 4571 readl(hlpm_addr); 4572 } else { 4573 hird = xhci_calculate_hird_besl(xhci, udev); 4574 } 4575 4576 pm_val &= ~PORT_HIRD_MASK; 4577 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4578 writel(pm_val, pm_addr); 4579 pm_val = readl(pm_addr); 4580 pm_val |= PORT_HLE; 4581 writel(pm_val, pm_addr); 4582 /* flush write */ 4583 readl(pm_addr); 4584 } else { 4585 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4586 writel(pm_val, pm_addr); 4587 /* flush write */ 4588 readl(pm_addr); 4589 if (udev->usb2_hw_lpm_besl_capable) { 4590 spin_unlock_irqrestore(&xhci->lock, flags); 4591 xhci_change_max_exit_latency(xhci, udev, 0); 4592 readl_poll_timeout(ports[port_num]->addr, pm_val, 4593 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4594 100, 10000); 4595 return 0; 4596 } 4597 } 4598 4599 spin_unlock_irqrestore(&xhci->lock, flags); 4600 return 0; 4601 } 4602 4603 /* check if a usb2 port supports a given extened capability protocol 4604 * only USB2 ports extended protocol capability values are cached. 4605 * Return 1 if capability is supported 4606 */ 4607 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4608 unsigned capability) 4609 { 4610 u32 port_offset, port_count; 4611 int i; 4612 4613 for (i = 0; i < xhci->num_ext_caps; i++) { 4614 if (xhci->ext_caps[i] & capability) { 4615 /* port offsets starts at 1 */ 4616 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4617 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4618 if (port >= port_offset && 4619 port < port_offset + port_count) 4620 return 1; 4621 } 4622 } 4623 return 0; 4624 } 4625 4626 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4627 { 4628 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4629 int portnum = udev->portnum - 1; 4630 4631 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4632 return 0; 4633 4634 /* we only support lpm for non-hub device connected to root hub yet */ 4635 if (!udev->parent || udev->parent->parent || 4636 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4637 return 0; 4638 4639 if (xhci->hw_lpm_support == 1 && 4640 xhci_check_usb2_port_capability( 4641 xhci, portnum, XHCI_HLC)) { 4642 udev->usb2_hw_lpm_capable = 1; 4643 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4644 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4645 if (xhci_check_usb2_port_capability(xhci, portnum, 4646 XHCI_BLC)) 4647 udev->usb2_hw_lpm_besl_capable = 1; 4648 } 4649 4650 return 0; 4651 } 4652 4653 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4654 4655 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4656 static unsigned long long xhci_service_interval_to_ns( 4657 struct usb_endpoint_descriptor *desc) 4658 { 4659 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4660 } 4661 4662 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4663 enum usb3_link_state state) 4664 { 4665 unsigned long long sel; 4666 unsigned long long pel; 4667 unsigned int max_sel_pel; 4668 char *state_name; 4669 4670 switch (state) { 4671 case USB3_LPM_U1: 4672 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4673 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4674 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4675 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4676 state_name = "U1"; 4677 break; 4678 case USB3_LPM_U2: 4679 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4680 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4681 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4682 state_name = "U2"; 4683 break; 4684 default: 4685 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4686 __func__); 4687 return USB3_LPM_DISABLED; 4688 } 4689 4690 if (sel <= max_sel_pel && pel <= max_sel_pel) 4691 return USB3_LPM_DEVICE_INITIATED; 4692 4693 if (sel > max_sel_pel) 4694 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4695 "due to long SEL %llu ms\n", 4696 state_name, sel); 4697 else 4698 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4699 "due to long PEL %llu ms\n", 4700 state_name, pel); 4701 return USB3_LPM_DISABLED; 4702 } 4703 4704 /* The U1 timeout should be the maximum of the following values: 4705 * - For control endpoints, U1 system exit latency (SEL) * 3 4706 * - For bulk endpoints, U1 SEL * 5 4707 * - For interrupt endpoints: 4708 * - Notification EPs, U1 SEL * 3 4709 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4710 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4711 */ 4712 static unsigned long long xhci_calculate_intel_u1_timeout( 4713 struct usb_device *udev, 4714 struct usb_endpoint_descriptor *desc) 4715 { 4716 unsigned long long timeout_ns; 4717 int ep_type; 4718 int intr_type; 4719 4720 ep_type = usb_endpoint_type(desc); 4721 switch (ep_type) { 4722 case USB_ENDPOINT_XFER_CONTROL: 4723 timeout_ns = udev->u1_params.sel * 3; 4724 break; 4725 case USB_ENDPOINT_XFER_BULK: 4726 timeout_ns = udev->u1_params.sel * 5; 4727 break; 4728 case USB_ENDPOINT_XFER_INT: 4729 intr_type = usb_endpoint_interrupt_type(desc); 4730 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4731 timeout_ns = udev->u1_params.sel * 3; 4732 break; 4733 } 4734 /* Otherwise the calculation is the same as isoc eps */ 4735 fallthrough; 4736 case USB_ENDPOINT_XFER_ISOC: 4737 timeout_ns = xhci_service_interval_to_ns(desc); 4738 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4739 if (timeout_ns < udev->u1_params.sel * 2) 4740 timeout_ns = udev->u1_params.sel * 2; 4741 break; 4742 default: 4743 return 0; 4744 } 4745 4746 return timeout_ns; 4747 } 4748 4749 /* Returns the hub-encoded U1 timeout value. */ 4750 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4751 struct usb_device *udev, 4752 struct usb_endpoint_descriptor *desc) 4753 { 4754 unsigned long long timeout_ns; 4755 4756 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4757 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4758 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4759 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4760 return USB3_LPM_DISABLED; 4761 } 4762 } 4763 4764 if (xhci->quirks & XHCI_INTEL_HOST) 4765 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4766 else 4767 timeout_ns = udev->u1_params.sel; 4768 4769 /* The U1 timeout is encoded in 1us intervals. 4770 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4771 */ 4772 if (timeout_ns == USB3_LPM_DISABLED) 4773 timeout_ns = 1; 4774 else 4775 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4776 4777 /* If the necessary timeout value is bigger than what we can set in the 4778 * USB 3.0 hub, we have to disable hub-initiated U1. 4779 */ 4780 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4781 return timeout_ns; 4782 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4783 "due to long timeout %llu ms\n", timeout_ns); 4784 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4785 } 4786 4787 /* The U2 timeout should be the maximum of: 4788 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4789 * - largest bInterval of any active periodic endpoint (to avoid going 4790 * into lower power link states between intervals). 4791 * - the U2 Exit Latency of the device 4792 */ 4793 static unsigned long long xhci_calculate_intel_u2_timeout( 4794 struct usb_device *udev, 4795 struct usb_endpoint_descriptor *desc) 4796 { 4797 unsigned long long timeout_ns; 4798 unsigned long long u2_del_ns; 4799 4800 timeout_ns = 10 * 1000 * 1000; 4801 4802 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4803 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4804 timeout_ns = xhci_service_interval_to_ns(desc); 4805 4806 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4807 if (u2_del_ns > timeout_ns) 4808 timeout_ns = u2_del_ns; 4809 4810 return timeout_ns; 4811 } 4812 4813 /* Returns the hub-encoded U2 timeout value. */ 4814 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4815 struct usb_device *udev, 4816 struct usb_endpoint_descriptor *desc) 4817 { 4818 unsigned long long timeout_ns; 4819 4820 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4821 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4822 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4823 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4824 return USB3_LPM_DISABLED; 4825 } 4826 } 4827 4828 if (xhci->quirks & XHCI_INTEL_HOST) 4829 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4830 else 4831 timeout_ns = udev->u2_params.sel; 4832 4833 /* The U2 timeout is encoded in 256us intervals */ 4834 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4835 /* If the necessary timeout value is bigger than what we can set in the 4836 * USB 3.0 hub, we have to disable hub-initiated U2. 4837 */ 4838 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4839 return timeout_ns; 4840 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4841 "due to long timeout %llu ms\n", timeout_ns); 4842 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4843 } 4844 4845 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4846 struct usb_device *udev, 4847 struct usb_endpoint_descriptor *desc, 4848 enum usb3_link_state state, 4849 u16 *timeout) 4850 { 4851 if (state == USB3_LPM_U1) 4852 return xhci_calculate_u1_timeout(xhci, udev, desc); 4853 else if (state == USB3_LPM_U2) 4854 return xhci_calculate_u2_timeout(xhci, udev, desc); 4855 4856 return USB3_LPM_DISABLED; 4857 } 4858 4859 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4860 struct usb_device *udev, 4861 struct usb_endpoint_descriptor *desc, 4862 enum usb3_link_state state, 4863 u16 *timeout) 4864 { 4865 u16 alt_timeout; 4866 4867 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4868 desc, state, timeout); 4869 4870 /* If we found we can't enable hub-initiated LPM, and 4871 * the U1 or U2 exit latency was too high to allow 4872 * device-initiated LPM as well, then we will disable LPM 4873 * for this device, so stop searching any further. 4874 */ 4875 if (alt_timeout == USB3_LPM_DISABLED) { 4876 *timeout = alt_timeout; 4877 return -E2BIG; 4878 } 4879 if (alt_timeout > *timeout) 4880 *timeout = alt_timeout; 4881 return 0; 4882 } 4883 4884 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4885 struct usb_device *udev, 4886 struct usb_host_interface *alt, 4887 enum usb3_link_state state, 4888 u16 *timeout) 4889 { 4890 int j; 4891 4892 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4893 if (xhci_update_timeout_for_endpoint(xhci, udev, 4894 &alt->endpoint[j].desc, state, timeout)) 4895 return -E2BIG; 4896 } 4897 return 0; 4898 } 4899 4900 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4901 enum usb3_link_state state) 4902 { 4903 struct usb_device *parent; 4904 unsigned int num_hubs; 4905 4906 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4907 for (parent = udev->parent, num_hubs = 0; parent->parent; 4908 parent = parent->parent) 4909 num_hubs++; 4910 4911 if (num_hubs < 2) 4912 return 0; 4913 4914 dev_dbg(&udev->dev, "Disabling U1/U2 link state for device" 4915 " below second-tier hub.\n"); 4916 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4917 "to decrease power consumption.\n"); 4918 return -E2BIG; 4919 } 4920 4921 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4922 struct usb_device *udev, 4923 enum usb3_link_state state) 4924 { 4925 if (xhci->quirks & XHCI_INTEL_HOST) 4926 return xhci_check_intel_tier_policy(udev, state); 4927 else 4928 return 0; 4929 } 4930 4931 /* Returns the U1 or U2 timeout that should be enabled. 4932 * If the tier check or timeout setting functions return with a non-zero exit 4933 * code, that means the timeout value has been finalized and we shouldn't look 4934 * at any more endpoints. 4935 */ 4936 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4937 struct usb_device *udev, enum usb3_link_state state) 4938 { 4939 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4940 struct usb_host_config *config; 4941 char *state_name; 4942 int i; 4943 u16 timeout = USB3_LPM_DISABLED; 4944 4945 if (state == USB3_LPM_U1) 4946 state_name = "U1"; 4947 else if (state == USB3_LPM_U2) 4948 state_name = "U2"; 4949 else { 4950 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4951 state); 4952 return timeout; 4953 } 4954 4955 /* Gather some information about the currently installed configuration 4956 * and alternate interface settings. 4957 */ 4958 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4959 state, &timeout)) 4960 return timeout; 4961 4962 config = udev->actconfig; 4963 if (!config) 4964 return timeout; 4965 4966 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4967 struct usb_driver *driver; 4968 struct usb_interface *intf = config->interface[i]; 4969 4970 if (!intf) 4971 continue; 4972 4973 /* Check if any currently bound drivers want hub-initiated LPM 4974 * disabled. 4975 */ 4976 if (intf->dev.driver) { 4977 driver = to_usb_driver(intf->dev.driver); 4978 if (driver && driver->disable_hub_initiated_lpm) { 4979 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4980 state_name, driver->name); 4981 timeout = xhci_get_timeout_no_hub_lpm(udev, 4982 state); 4983 if (timeout == USB3_LPM_DISABLED) 4984 return timeout; 4985 } 4986 } 4987 4988 /* Not sure how this could happen... */ 4989 if (!intf->cur_altsetting) 4990 continue; 4991 4992 if (xhci_update_timeout_for_interface(xhci, udev, 4993 intf->cur_altsetting, 4994 state, &timeout)) 4995 return timeout; 4996 } 4997 return timeout; 4998 } 4999 5000 static int calculate_max_exit_latency(struct usb_device *udev, 5001 enum usb3_link_state state_changed, 5002 u16 hub_encoded_timeout) 5003 { 5004 unsigned long long u1_mel_us = 0; 5005 unsigned long long u2_mel_us = 0; 5006 unsigned long long mel_us = 0; 5007 bool disabling_u1; 5008 bool disabling_u2; 5009 bool enabling_u1; 5010 bool enabling_u2; 5011 5012 disabling_u1 = (state_changed == USB3_LPM_U1 && 5013 hub_encoded_timeout == USB3_LPM_DISABLED); 5014 disabling_u2 = (state_changed == USB3_LPM_U2 && 5015 hub_encoded_timeout == USB3_LPM_DISABLED); 5016 5017 enabling_u1 = (state_changed == USB3_LPM_U1 && 5018 hub_encoded_timeout != USB3_LPM_DISABLED); 5019 enabling_u2 = (state_changed == USB3_LPM_U2 && 5020 hub_encoded_timeout != USB3_LPM_DISABLED); 5021 5022 /* If U1 was already enabled and we're not disabling it, 5023 * or we're going to enable U1, account for the U1 max exit latency. 5024 */ 5025 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 5026 enabling_u1) 5027 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 5028 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 5029 enabling_u2) 5030 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5031 5032 mel_us = max(u1_mel_us, u2_mel_us); 5033 5034 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5035 if (mel_us > MAX_EXIT) { 5036 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5037 "is too big.\n", mel_us); 5038 return -E2BIG; 5039 } 5040 return mel_us; 5041 } 5042 5043 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5044 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5045 struct usb_device *udev, enum usb3_link_state state) 5046 { 5047 struct xhci_hcd *xhci; 5048 u16 hub_encoded_timeout; 5049 int mel; 5050 int ret; 5051 5052 xhci = hcd_to_xhci(hcd); 5053 /* The LPM timeout values are pretty host-controller specific, so don't 5054 * enable hub-initiated timeouts unless the vendor has provided 5055 * information about their timeout algorithm. 5056 */ 5057 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5058 !xhci->devs[udev->slot_id]) 5059 return USB3_LPM_DISABLED; 5060 5061 if (xhci_check_tier_policy(xhci, udev, state) < 0) 5062 return USB3_LPM_DISABLED; 5063 5064 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5065 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5066 if (mel < 0) { 5067 /* Max Exit Latency is too big, disable LPM. */ 5068 hub_encoded_timeout = USB3_LPM_DISABLED; 5069 mel = 0; 5070 } 5071 5072 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5073 if (ret) 5074 return ret; 5075 return hub_encoded_timeout; 5076 } 5077 5078 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5079 struct usb_device *udev, enum usb3_link_state state) 5080 { 5081 struct xhci_hcd *xhci; 5082 u16 mel; 5083 5084 xhci = hcd_to_xhci(hcd); 5085 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5086 !xhci->devs[udev->slot_id]) 5087 return 0; 5088 5089 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5090 return xhci_change_max_exit_latency(xhci, udev, mel); 5091 } 5092 #else /* CONFIG_PM */ 5093 5094 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5095 struct usb_device *udev, int enable) 5096 { 5097 return 0; 5098 } 5099 5100 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5101 { 5102 return 0; 5103 } 5104 5105 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5106 struct usb_device *udev, enum usb3_link_state state) 5107 { 5108 return USB3_LPM_DISABLED; 5109 } 5110 5111 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5112 struct usb_device *udev, enum usb3_link_state state) 5113 { 5114 return 0; 5115 } 5116 #endif /* CONFIG_PM */ 5117 5118 /*-------------------------------------------------------------------------*/ 5119 5120 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5121 * internal data structures for the device. 5122 */ 5123 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5124 struct usb_tt *tt, gfp_t mem_flags) 5125 { 5126 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5127 struct xhci_virt_device *vdev; 5128 struct xhci_command *config_cmd; 5129 struct xhci_input_control_ctx *ctrl_ctx; 5130 struct xhci_slot_ctx *slot_ctx; 5131 unsigned long flags; 5132 unsigned think_time; 5133 int ret; 5134 5135 /* Ignore root hubs */ 5136 if (!hdev->parent) 5137 return 0; 5138 5139 vdev = xhci->devs[hdev->slot_id]; 5140 if (!vdev) { 5141 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5142 return -EINVAL; 5143 } 5144 5145 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5146 if (!config_cmd) 5147 return -ENOMEM; 5148 5149 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5150 if (!ctrl_ctx) { 5151 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5152 __func__); 5153 xhci_free_command(xhci, config_cmd); 5154 return -ENOMEM; 5155 } 5156 5157 spin_lock_irqsave(&xhci->lock, flags); 5158 if (hdev->speed == USB_SPEED_HIGH && 5159 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5160 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5161 xhci_free_command(xhci, config_cmd); 5162 spin_unlock_irqrestore(&xhci->lock, flags); 5163 return -ENOMEM; 5164 } 5165 5166 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5167 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5168 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5169 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5170 /* 5171 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5172 * but it may be already set to 1 when setup an xHCI virtual 5173 * device, so clear it anyway. 5174 */ 5175 if (tt->multi) 5176 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5177 else if (hdev->speed == USB_SPEED_FULL) 5178 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5179 5180 if (xhci->hci_version > 0x95) { 5181 xhci_dbg(xhci, "xHCI version %x needs hub " 5182 "TT think time and number of ports\n", 5183 (unsigned int) xhci->hci_version); 5184 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5185 /* Set TT think time - convert from ns to FS bit times. 5186 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5187 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5188 * 5189 * xHCI 1.0: this field shall be 0 if the device is not a 5190 * High-spped hub. 5191 */ 5192 think_time = tt->think_time; 5193 if (think_time != 0) 5194 think_time = (think_time / 666) - 1; 5195 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5196 slot_ctx->tt_info |= 5197 cpu_to_le32(TT_THINK_TIME(think_time)); 5198 } else { 5199 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5200 "TT think time or number of ports\n", 5201 (unsigned int) xhci->hci_version); 5202 } 5203 slot_ctx->dev_state = 0; 5204 spin_unlock_irqrestore(&xhci->lock, flags); 5205 5206 xhci_dbg(xhci, "Set up %s for hub device.\n", 5207 (xhci->hci_version > 0x95) ? 5208 "configure endpoint" : "evaluate context"); 5209 5210 /* Issue and wait for the configure endpoint or 5211 * evaluate context command. 5212 */ 5213 if (xhci->hci_version > 0x95) 5214 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5215 false, false); 5216 else 5217 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5218 true, false); 5219 5220 xhci_free_command(xhci, config_cmd); 5221 return ret; 5222 } 5223 5224 static int xhci_get_frame(struct usb_hcd *hcd) 5225 { 5226 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5227 /* EHCI mods by the periodic size. Why? */ 5228 return readl(&xhci->run_regs->microframe_index) >> 3; 5229 } 5230 5231 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5232 { 5233 xhci->usb2_rhub.hcd = hcd; 5234 hcd->speed = HCD_USB2; 5235 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5236 /* 5237 * USB 2.0 roothub under xHCI has an integrated TT, 5238 * (rate matching hub) as opposed to having an OHCI/UHCI 5239 * companion controller. 5240 */ 5241 hcd->has_tt = 1; 5242 } 5243 5244 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5245 { 5246 unsigned int minor_rev; 5247 5248 /* 5249 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5250 * should return 0x31 for sbrn, or that the minor revision 5251 * is a two digit BCD containig minor and sub-minor numbers. 5252 * This was later clarified in xHCI 1.2. 5253 * 5254 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5255 * minor revision set to 0x1 instead of 0x10. 5256 */ 5257 if (xhci->usb3_rhub.min_rev == 0x1) 5258 minor_rev = 1; 5259 else 5260 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5261 5262 switch (minor_rev) { 5263 case 2: 5264 hcd->speed = HCD_USB32; 5265 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5266 hcd->self.root_hub->rx_lanes = 2; 5267 hcd->self.root_hub->tx_lanes = 2; 5268 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5269 break; 5270 case 1: 5271 hcd->speed = HCD_USB31; 5272 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5273 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5274 break; 5275 } 5276 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5277 minor_rev, minor_rev ? "Enhanced " : ""); 5278 5279 xhci->usb3_rhub.hcd = hcd; 5280 } 5281 5282 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5283 { 5284 struct xhci_hcd *xhci; 5285 /* 5286 * TODO: Check with DWC3 clients for sysdev according to 5287 * quirks 5288 */ 5289 struct device *dev = hcd->self.sysdev; 5290 int retval; 5291 5292 /* Accept arbitrarily long scatter-gather lists */ 5293 hcd->self.sg_tablesize = ~0; 5294 5295 /* support to build packet from discontinuous buffers */ 5296 hcd->self.no_sg_constraint = 1; 5297 5298 /* XHCI controllers don't stop the ep queue on short packets :| */ 5299 hcd->self.no_stop_on_short = 1; 5300 5301 xhci = hcd_to_xhci(hcd); 5302 5303 if (!usb_hcd_is_primary_hcd(hcd)) { 5304 xhci_hcd_init_usb3_data(xhci, hcd); 5305 return 0; 5306 } 5307 5308 mutex_init(&xhci->mutex); 5309 xhci->main_hcd = hcd; 5310 xhci->cap_regs = hcd->regs; 5311 xhci->op_regs = hcd->regs + 5312 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5313 xhci->run_regs = hcd->regs + 5314 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5315 /* Cache read-only capability registers */ 5316 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5317 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5318 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5319 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5320 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5321 if (xhci->hci_version > 0x100) 5322 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5323 5324 xhci->quirks |= quirks; 5325 5326 get_quirks(dev, xhci); 5327 5328 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5329 * success event after a short transfer. This quirk will ignore such 5330 * spurious event. 5331 */ 5332 if (xhci->hci_version > 0x96) 5333 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5334 5335 /* Make sure the HC is halted. */ 5336 retval = xhci_halt(xhci); 5337 if (retval) 5338 return retval; 5339 5340 xhci_zero_64b_regs(xhci); 5341 5342 xhci_dbg(xhci, "Resetting HCD\n"); 5343 /* Reset the internal HC memory state and registers. */ 5344 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5345 if (retval) 5346 return retval; 5347 xhci_dbg(xhci, "Reset complete\n"); 5348 5349 /* 5350 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5351 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5352 * address memory pointers actually. So, this driver clears the AC64 5353 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5354 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5355 */ 5356 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5357 xhci->hcc_params &= ~BIT(0); 5358 5359 /* Set dma_mask and coherent_dma_mask to 64-bits, 5360 * if xHC supports 64-bit addressing */ 5361 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5362 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5363 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5364 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5365 } else { 5366 /* 5367 * This is to avoid error in cases where a 32-bit USB 5368 * controller is used on a 64-bit capable system. 5369 */ 5370 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5371 if (retval) 5372 return retval; 5373 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5374 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5375 } 5376 5377 xhci_dbg(xhci, "Calling HCD init\n"); 5378 /* Initialize HCD and host controller data structures. */ 5379 retval = xhci_init(hcd); 5380 if (retval) 5381 return retval; 5382 xhci_dbg(xhci, "Called HCD init\n"); 5383 5384 if (xhci_hcd_is_usb3(hcd)) 5385 xhci_hcd_init_usb3_data(xhci, hcd); 5386 else 5387 xhci_hcd_init_usb2_data(xhci, hcd); 5388 5389 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5390 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5391 5392 return 0; 5393 } 5394 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5395 5396 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5397 struct usb_host_endpoint *ep) 5398 { 5399 struct xhci_hcd *xhci; 5400 struct usb_device *udev; 5401 unsigned int slot_id; 5402 unsigned int ep_index; 5403 unsigned long flags; 5404 5405 xhci = hcd_to_xhci(hcd); 5406 5407 spin_lock_irqsave(&xhci->lock, flags); 5408 udev = (struct usb_device *)ep->hcpriv; 5409 slot_id = udev->slot_id; 5410 ep_index = xhci_get_endpoint_index(&ep->desc); 5411 5412 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5413 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5414 spin_unlock_irqrestore(&xhci->lock, flags); 5415 } 5416 5417 static const struct hc_driver xhci_hc_driver = { 5418 .description = "xhci-hcd", 5419 .product_desc = "xHCI Host Controller", 5420 .hcd_priv_size = sizeof(struct xhci_hcd), 5421 5422 /* 5423 * generic hardware linkage 5424 */ 5425 .irq = xhci_irq, 5426 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5427 HCD_BH, 5428 5429 /* 5430 * basic lifecycle operations 5431 */ 5432 .reset = NULL, /* set in xhci_init_driver() */ 5433 .start = xhci_run, 5434 .stop = xhci_stop, 5435 .shutdown = xhci_shutdown, 5436 5437 /* 5438 * managing i/o requests and associated device resources 5439 */ 5440 .map_urb_for_dma = xhci_map_urb_for_dma, 5441 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5442 .urb_enqueue = xhci_urb_enqueue, 5443 .urb_dequeue = xhci_urb_dequeue, 5444 .alloc_dev = xhci_alloc_dev, 5445 .free_dev = xhci_free_dev, 5446 .alloc_streams = xhci_alloc_streams, 5447 .free_streams = xhci_free_streams, 5448 .add_endpoint = xhci_add_endpoint, 5449 .drop_endpoint = xhci_drop_endpoint, 5450 .endpoint_disable = xhci_endpoint_disable, 5451 .endpoint_reset = xhci_endpoint_reset, 5452 .check_bandwidth = xhci_check_bandwidth, 5453 .reset_bandwidth = xhci_reset_bandwidth, 5454 .address_device = xhci_address_device, 5455 .enable_device = xhci_enable_device, 5456 .update_hub_device = xhci_update_hub_device, 5457 .reset_device = xhci_discover_or_reset_device, 5458 5459 /* 5460 * scheduling support 5461 */ 5462 .get_frame_number = xhci_get_frame, 5463 5464 /* 5465 * root hub support 5466 */ 5467 .hub_control = xhci_hub_control, 5468 .hub_status_data = xhci_hub_status_data, 5469 .bus_suspend = xhci_bus_suspend, 5470 .bus_resume = xhci_bus_resume, 5471 .get_resuming_ports = xhci_get_resuming_ports, 5472 5473 /* 5474 * call back when device connected and addressed 5475 */ 5476 .update_device = xhci_update_device, 5477 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5478 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5479 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5480 .find_raw_port_number = xhci_find_raw_port_number, 5481 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5482 }; 5483 5484 void xhci_init_driver(struct hc_driver *drv, 5485 const struct xhci_driver_overrides *over) 5486 { 5487 BUG_ON(!over); 5488 5489 /* Copy the generic table to drv then apply the overrides */ 5490 *drv = xhci_hc_driver; 5491 5492 if (over) { 5493 drv->hcd_priv_size += over->extra_priv_size; 5494 if (over->reset) 5495 drv->reset = over->reset; 5496 if (over->start) 5497 drv->start = over->start; 5498 if (over->add_endpoint) 5499 drv->add_endpoint = over->add_endpoint; 5500 if (over->drop_endpoint) 5501 drv->drop_endpoint = over->drop_endpoint; 5502 if (over->check_bandwidth) 5503 drv->check_bandwidth = over->check_bandwidth; 5504 if (over->reset_bandwidth) 5505 drv->reset_bandwidth = over->reset_bandwidth; 5506 } 5507 } 5508 EXPORT_SYMBOL_GPL(xhci_init_driver); 5509 5510 MODULE_DESCRIPTION(DRIVER_DESC); 5511 MODULE_AUTHOR(DRIVER_AUTHOR); 5512 MODULE_LICENSE("GPL"); 5513 5514 static int __init xhci_hcd_init(void) 5515 { 5516 /* 5517 * Check the compiler generated sizes of structures that must be laid 5518 * out in specific ways for hardware access. 5519 */ 5520 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5521 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5522 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5523 /* xhci_device_control has eight fields, and also 5524 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5525 */ 5526 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5527 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5528 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5529 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5530 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5531 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5532 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5533 5534 if (usb_disabled()) 5535 return -ENODEV; 5536 5537 xhci_debugfs_create_root(); 5538 xhci_dbc_init(); 5539 5540 return 0; 5541 } 5542 5543 /* 5544 * If an init function is provided, an exit function must also be provided 5545 * to allow module unload. 5546 */ 5547 static void __exit xhci_hcd_fini(void) 5548 { 5549 xhci_debugfs_remove_root(); 5550 xhci_dbc_exit(); 5551 } 5552 5553 module_init(xhci_hcd_init); 5554 module_exit(xhci_hcd_fini); 5555