1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/jiffies.h> 12 #include <linux/pci.h> 13 #include <linux/iommu.h> 14 #include <linux/iopoll.h> 15 #include <linux/irq.h> 16 #include <linux/log2.h> 17 #include <linux/module.h> 18 #include <linux/moduleparam.h> 19 #include <linux/slab.h> 20 #include <linux/dmi.h> 21 #include <linux/dma-mapping.h> 22 23 #include "xhci.h" 24 #include "xhci-trace.h" 25 #include "xhci-debugfs.h" 26 #include "xhci-dbgcap.h" 27 28 #define DRIVER_AUTHOR "Sarah Sharp" 29 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 30 31 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 32 33 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 34 static int link_quirk; 35 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 36 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 37 38 static unsigned long long quirks; 39 module_param(quirks, ullong, S_IRUGO); 40 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 41 42 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 43 { 44 struct xhci_segment *seg; 45 46 if (!td || !td->start_seg) 47 return false; 48 49 xhci_for_each_ring_seg(ring->first_seg, seg) { 50 if (seg == td->start_seg) 51 return true; 52 } 53 54 return false; 55 } 56 57 /* 58 * xhci_handshake - spin reading hc until handshake completes or fails 59 * @ptr: address of hc register to be read 60 * @mask: bits to look at in result of read 61 * @done: value of those bits when handshake succeeds 62 * @usec: timeout in microseconds 63 * 64 * Returns negative errno, or zero on success 65 * 66 * Success happens when the "mask" bits have the specified value (hardware 67 * handshake done). There are two failure modes: "usec" have passed (major 68 * hardware flakeout), or the register reads as all-ones (hardware removed). 69 */ 70 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 71 { 72 u32 result; 73 int ret; 74 75 ret = readl_poll_timeout_atomic(ptr, result, 76 (result & mask) == done || 77 result == U32_MAX, 78 1, timeout_us); 79 if (result == U32_MAX) /* card removed */ 80 return -ENODEV; 81 82 return ret; 83 } 84 85 /* 86 * xhci_handshake_check_state - same as xhci_handshake but takes an additional 87 * exit_state parameter, and bails out with an error immediately when xhc_state 88 * has exit_state flag set. 89 */ 90 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr, 91 u32 mask, u32 done, int usec, unsigned int exit_state) 92 { 93 u32 result; 94 int ret; 95 96 ret = readl_poll_timeout_atomic(ptr, result, 97 (result & mask) == done || 98 result == U32_MAX || 99 xhci->xhc_state & exit_state, 100 1, usec); 101 102 if (result == U32_MAX || xhci->xhc_state & exit_state) 103 return -ENODEV; 104 105 return ret; 106 } 107 108 /* 109 * Disable interrupts and begin the xHCI halting process. 110 */ 111 void xhci_quiesce(struct xhci_hcd *xhci) 112 { 113 u32 halted; 114 u32 cmd; 115 u32 mask; 116 117 mask = ~(XHCI_IRQS); 118 halted = readl(&xhci->op_regs->status) & STS_HALT; 119 if (!halted) 120 mask &= ~CMD_RUN; 121 122 cmd = readl(&xhci->op_regs->command); 123 cmd &= mask; 124 writel(cmd, &xhci->op_regs->command); 125 } 126 127 /* 128 * Force HC into halt state. 129 * 130 * Disable any IRQs and clear the run/stop bit. 131 * HC will complete any current and actively pipelined transactions, and 132 * should halt within 16 ms of the run/stop bit being cleared. 133 * Read HC Halted bit in the status register to see when the HC is finished. 134 */ 135 int xhci_halt(struct xhci_hcd *xhci) 136 { 137 int ret; 138 139 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 140 xhci_quiesce(xhci); 141 142 ret = xhci_handshake(&xhci->op_regs->status, 143 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 144 if (ret) { 145 xhci_warn(xhci, "Host halt failed, %d\n", ret); 146 return ret; 147 } 148 149 xhci->xhc_state |= XHCI_STATE_HALTED; 150 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 151 152 return ret; 153 } 154 155 /* 156 * Set the run bit and wait for the host to be running. 157 */ 158 int xhci_start(struct xhci_hcd *xhci) 159 { 160 u32 temp; 161 int ret; 162 163 temp = readl(&xhci->op_regs->command); 164 temp |= (CMD_RUN); 165 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 166 temp); 167 writel(temp, &xhci->op_regs->command); 168 169 /* 170 * Wait for the HCHalted Status bit to be 0 to indicate the host is 171 * running. 172 */ 173 ret = xhci_handshake(&xhci->op_regs->status, 174 STS_HALT, 0, XHCI_MAX_HALT_USEC); 175 if (ret == -ETIMEDOUT) 176 xhci_err(xhci, "Host took too long to start, " 177 "waited %u microseconds.\n", 178 XHCI_MAX_HALT_USEC); 179 if (!ret) { 180 /* clear state flags. Including dying, halted or removing */ 181 xhci->xhc_state = 0; 182 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 183 } 184 185 return ret; 186 } 187 188 /* 189 * Reset a halted HC. 190 * 191 * This resets pipelines, timers, counters, state machines, etc. 192 * Transactions will be terminated immediately, and operational registers 193 * will be set to their defaults. 194 */ 195 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 196 { 197 u32 command; 198 u32 state; 199 int ret; 200 201 state = readl(&xhci->op_regs->status); 202 203 if (state == ~(u32)0) { 204 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 205 return -ENODEV; 206 } 207 208 if ((state & STS_HALT) == 0) { 209 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 210 return 0; 211 } 212 213 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 214 command = readl(&xhci->op_regs->command); 215 command |= CMD_RESET; 216 writel(command, &xhci->op_regs->command); 217 218 /* Existing Intel xHCI controllers require a delay of 1 mS, 219 * after setting the CMD_RESET bit, and before accessing any 220 * HC registers. This allows the HC to complete the 221 * reset operation and be ready for HC register access. 222 * Without this delay, the subsequent HC register access, 223 * may result in a system hang very rarely. 224 */ 225 if (xhci->quirks & XHCI_INTEL_HOST) 226 udelay(1000); 227 228 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command, 229 CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING); 230 if (ret) 231 return ret; 232 233 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 234 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 235 236 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 237 "Wait for controller to be ready for doorbell rings"); 238 /* 239 * xHCI cannot write to any doorbells or operational registers other 240 * than status until the "Controller Not Ready" flag is cleared. 241 */ 242 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 243 244 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 245 xhci->usb2_rhub.bus_state.suspended_ports = 0; 246 xhci->usb2_rhub.bus_state.resuming_ports = 0; 247 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 248 xhci->usb3_rhub.bus_state.suspended_ports = 0; 249 xhci->usb3_rhub.bus_state.resuming_ports = 0; 250 251 return ret; 252 } 253 254 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 255 { 256 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 257 struct iommu_domain *domain; 258 int err, i; 259 u64 val; 260 u32 intrs; 261 262 /* 263 * Some Renesas controllers get into a weird state if they are 264 * reset while programmed with 64bit addresses (they will preserve 265 * the top half of the address in internal, non visible 266 * registers). You end up with half the address coming from the 267 * kernel, and the other half coming from the firmware. Also, 268 * changing the programming leads to extra accesses even if the 269 * controller is supposed to be halted. The controller ends up with 270 * a fatal fault, and is then ripe for being properly reset. 271 * 272 * Special care is taken to only apply this if the device is behind 273 * an iommu. Doing anything when there is no iommu is definitely 274 * unsafe... 275 */ 276 domain = iommu_get_domain_for_dev(dev); 277 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || 278 domain->type == IOMMU_DOMAIN_IDENTITY) 279 return; 280 281 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 282 283 /* Clear HSEIE so that faults do not get signaled */ 284 val = readl(&xhci->op_regs->command); 285 val &= ~CMD_HSEIE; 286 writel(val, &xhci->op_regs->command); 287 288 /* Clear HSE (aka FATAL) */ 289 val = readl(&xhci->op_regs->status); 290 val |= STS_FATAL; 291 writel(val, &xhci->op_regs->status); 292 293 /* Now zero the registers, and brace for impact */ 294 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 295 if (upper_32_bits(val)) 296 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 297 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 298 if (upper_32_bits(val)) 299 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 300 301 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 302 ARRAY_SIZE(xhci->run_regs->ir_set)); 303 304 for (i = 0; i < intrs; i++) { 305 struct xhci_intr_reg __iomem *ir; 306 307 ir = &xhci->run_regs->ir_set[i]; 308 val = xhci_read_64(xhci, &ir->erst_base); 309 if (upper_32_bits(val)) 310 xhci_write_64(xhci, 0, &ir->erst_base); 311 val= xhci_read_64(xhci, &ir->erst_dequeue); 312 if (upper_32_bits(val)) 313 xhci_write_64(xhci, 0, &ir->erst_dequeue); 314 } 315 316 /* Wait for the fault to appear. It will be cleared on reset */ 317 err = xhci_handshake(&xhci->op_regs->status, 318 STS_FATAL, STS_FATAL, 319 XHCI_MAX_HALT_USEC); 320 if (!err) 321 xhci_info(xhci, "Fault detected\n"); 322 } 323 324 static int xhci_enable_interrupter(struct xhci_interrupter *ir) 325 { 326 u32 iman; 327 328 if (!ir || !ir->ir_set) 329 return -EINVAL; 330 331 iman = readl(&ir->ir_set->irq_pending); 332 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending); 333 334 return 0; 335 } 336 337 static int xhci_disable_interrupter(struct xhci_interrupter *ir) 338 { 339 u32 iman; 340 341 if (!ir || !ir->ir_set) 342 return -EINVAL; 343 344 iman = readl(&ir->ir_set->irq_pending); 345 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending); 346 347 return 0; 348 } 349 350 /* interrupt moderation interval imod_interval in nanoseconds */ 351 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir, 352 u32 imod_interval) 353 { 354 u32 imod; 355 356 if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250) 357 return -EINVAL; 358 359 imod = readl(&ir->ir_set->irq_control); 360 imod &= ~ER_IRQ_INTERVAL_MASK; 361 imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 362 writel(imod, &ir->ir_set->irq_control); 363 364 return 0; 365 } 366 367 static void compliance_mode_recovery(struct timer_list *t) 368 { 369 struct xhci_hcd *xhci; 370 struct usb_hcd *hcd; 371 struct xhci_hub *rhub; 372 u32 temp; 373 int i; 374 375 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 376 rhub = &xhci->usb3_rhub; 377 hcd = rhub->hcd; 378 379 if (!hcd) 380 return; 381 382 for (i = 0; i < rhub->num_ports; i++) { 383 temp = readl(rhub->ports[i]->addr); 384 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 385 /* 386 * Compliance Mode Detected. Letting USB Core 387 * handle the Warm Reset 388 */ 389 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 390 "Compliance mode detected->port %d", 391 i + 1); 392 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 393 "Attempting compliance mode recovery"); 394 395 if (hcd->state == HC_STATE_SUSPENDED) 396 usb_hcd_resume_root_hub(hcd); 397 398 usb_hcd_poll_rh_status(hcd); 399 } 400 } 401 402 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 403 mod_timer(&xhci->comp_mode_recovery_timer, 404 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 405 } 406 407 /* 408 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 409 * that causes ports behind that hardware to enter compliance mode sometimes. 410 * The quirk creates a timer that polls every 2 seconds the link state of 411 * each host controller's port and recovers it by issuing a Warm reset 412 * if Compliance mode is detected, otherwise the port will become "dead" (no 413 * device connections or disconnections will be detected anymore). Becasue no 414 * status event is generated when entering compliance mode (per xhci spec), 415 * this quirk is needed on systems that have the failing hardware installed. 416 */ 417 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 418 { 419 xhci->port_status_u0 = 0; 420 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 421 0); 422 xhci->comp_mode_recovery_timer.expires = jiffies + 423 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 424 425 add_timer(&xhci->comp_mode_recovery_timer); 426 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 427 "Compliance mode recovery timer initialized"); 428 } 429 430 /* 431 * This function identifies the systems that have installed the SN65LVPE502CP 432 * USB3.0 re-driver and that need the Compliance Mode Quirk. 433 * Systems: 434 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 435 */ 436 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 437 { 438 const char *dmi_product_name, *dmi_sys_vendor; 439 440 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 441 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 442 if (!dmi_product_name || !dmi_sys_vendor) 443 return false; 444 445 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 446 return false; 447 448 if (strstr(dmi_product_name, "Z420") || 449 strstr(dmi_product_name, "Z620") || 450 strstr(dmi_product_name, "Z820") || 451 strstr(dmi_product_name, "Z1 Workstation")) 452 return true; 453 454 return false; 455 } 456 457 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 458 { 459 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 460 } 461 462 463 /* 464 * Initialize memory for HCD and xHC (one-time init). 465 * 466 * Program the PAGESIZE register, initialize the device context array, create 467 * device contexts (?), set up a command ring segment (or two?), create event 468 * ring (one for now). 469 */ 470 static int xhci_init(struct usb_hcd *hcd) 471 { 472 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 473 int retval; 474 475 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 476 spin_lock_init(&xhci->lock); 477 478 retval = xhci_mem_init(xhci, GFP_KERNEL); 479 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 480 481 /* Initializing Compliance Mode Recovery Data If Needed */ 482 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 483 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 484 compliance_mode_recovery_timer_init(xhci); 485 } 486 487 return retval; 488 } 489 490 /*-------------------------------------------------------------------------*/ 491 492 static int xhci_run_finished(struct xhci_hcd *xhci) 493 { 494 struct xhci_interrupter *ir = xhci->interrupters[0]; 495 unsigned long flags; 496 u32 temp; 497 498 /* 499 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 500 * Protect the short window before host is running with a lock 501 */ 502 spin_lock_irqsave(&xhci->lock, flags); 503 504 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 505 temp = readl(&xhci->op_regs->command); 506 temp |= (CMD_EIE); 507 writel(temp, &xhci->op_regs->command); 508 509 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 510 xhci_enable_interrupter(ir); 511 512 if (xhci_start(xhci)) { 513 xhci_halt(xhci); 514 spin_unlock_irqrestore(&xhci->lock, flags); 515 return -ENODEV; 516 } 517 518 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 519 520 if (xhci->quirks & XHCI_NEC_HOST) 521 xhci_ring_cmd_db(xhci); 522 523 spin_unlock_irqrestore(&xhci->lock, flags); 524 525 return 0; 526 } 527 528 /* 529 * Start the HC after it was halted. 530 * 531 * This function is called by the USB core when the HC driver is added. 532 * Its opposite is xhci_stop(). 533 * 534 * xhci_init() must be called once before this function can be called. 535 * Reset the HC, enable device slot contexts, program DCBAAP, and 536 * set command ring pointer and event ring pointer. 537 * 538 * Setup MSI-X vectors and enable interrupts. 539 */ 540 int xhci_run(struct usb_hcd *hcd) 541 { 542 u64 temp_64; 543 int ret; 544 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 545 struct xhci_interrupter *ir = xhci->interrupters[0]; 546 /* Start the xHCI host controller running only after the USB 2.0 roothub 547 * is setup. 548 */ 549 550 hcd->uses_new_polling = 1; 551 if (hcd->msi_enabled) 552 ir->ip_autoclear = true; 553 554 if (!usb_hcd_is_primary_hcd(hcd)) 555 return xhci_run_finished(xhci); 556 557 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 558 559 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 560 temp_64 &= ERST_PTR_MASK; 561 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 562 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 563 564 xhci_set_interrupter_moderation(ir, xhci->imod_interval); 565 566 if (xhci->quirks & XHCI_NEC_HOST) { 567 struct xhci_command *command; 568 569 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 570 if (!command) 571 return -ENOMEM; 572 573 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 574 TRB_TYPE(TRB_NEC_GET_FW)); 575 if (ret) 576 xhci_free_command(xhci, command); 577 } 578 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 579 "Finished %s for main hcd", __func__); 580 581 xhci_create_dbc_dev(xhci); 582 583 xhci_debugfs_init(xhci); 584 585 if (xhci_has_one_roothub(xhci)) 586 return xhci_run_finished(xhci); 587 588 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 589 590 return 0; 591 } 592 EXPORT_SYMBOL_GPL(xhci_run); 593 594 /* 595 * Stop xHCI driver. 596 * 597 * This function is called by the USB core when the HC driver is removed. 598 * Its opposite is xhci_run(). 599 * 600 * Disable device contexts, disable IRQs, and quiesce the HC. 601 * Reset the HC, finish any completed transactions, and cleanup memory. 602 */ 603 void xhci_stop(struct usb_hcd *hcd) 604 { 605 u32 temp; 606 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 607 struct xhci_interrupter *ir = xhci->interrupters[0]; 608 609 mutex_lock(&xhci->mutex); 610 611 /* Only halt host and free memory after both hcds are removed */ 612 if (!usb_hcd_is_primary_hcd(hcd)) { 613 mutex_unlock(&xhci->mutex); 614 return; 615 } 616 617 xhci_remove_dbc_dev(xhci); 618 619 spin_lock_irq(&xhci->lock); 620 xhci->xhc_state |= XHCI_STATE_HALTED; 621 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 622 xhci_halt(xhci); 623 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 624 spin_unlock_irq(&xhci->lock); 625 626 /* Deleting Compliance Mode Recovery Timer */ 627 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 628 (!(xhci_all_ports_seen_u0(xhci)))) { 629 del_timer_sync(&xhci->comp_mode_recovery_timer); 630 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 631 "%s: compliance mode recovery timer deleted", 632 __func__); 633 } 634 635 if (xhci->quirks & XHCI_AMD_PLL_FIX) 636 usb_amd_dev_put(); 637 638 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 639 "// Disabling event ring interrupts"); 640 temp = readl(&xhci->op_regs->status); 641 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 642 xhci_disable_interrupter(ir); 643 644 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 645 xhci_mem_cleanup(xhci); 646 xhci_debugfs_exit(xhci); 647 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 648 "xhci_stop completed - status = %x", 649 readl(&xhci->op_regs->status)); 650 mutex_unlock(&xhci->mutex); 651 } 652 EXPORT_SYMBOL_GPL(xhci_stop); 653 654 /* 655 * Shutdown HC (not bus-specific) 656 * 657 * This is called when the machine is rebooting or halting. We assume that the 658 * machine will be powered off, and the HC's internal state will be reset. 659 * Don't bother to free memory. 660 * 661 * This will only ever be called with the main usb_hcd (the USB3 roothub). 662 */ 663 void xhci_shutdown(struct usb_hcd *hcd) 664 { 665 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 666 667 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 668 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 669 670 /* Don't poll the roothubs after shutdown. */ 671 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 672 __func__, hcd->self.busnum); 673 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 674 del_timer_sync(&hcd->rh_timer); 675 676 if (xhci->shared_hcd) { 677 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 678 del_timer_sync(&xhci->shared_hcd->rh_timer); 679 } 680 681 spin_lock_irq(&xhci->lock); 682 xhci_halt(xhci); 683 684 /* 685 * Workaround for spurious wakeps at shutdown with HSW, and for boot 686 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 687 */ 688 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 689 xhci->quirks & XHCI_RESET_TO_DEFAULT) 690 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 691 692 spin_unlock_irq(&xhci->lock); 693 694 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 695 "xhci_shutdown completed - status = %x", 696 readl(&xhci->op_regs->status)); 697 } 698 EXPORT_SYMBOL_GPL(xhci_shutdown); 699 700 #ifdef CONFIG_PM 701 static void xhci_save_registers(struct xhci_hcd *xhci) 702 { 703 struct xhci_interrupter *ir; 704 unsigned int i; 705 706 xhci->s3.command = readl(&xhci->op_regs->command); 707 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 708 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 709 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 710 711 /* save both primary and all secondary interrupters */ 712 /* fixme, shold we lock to prevent race with remove secondary interrupter? */ 713 for (i = 0; i < xhci->max_interrupters; i++) { 714 ir = xhci->interrupters[i]; 715 if (!ir) 716 continue; 717 718 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 719 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 720 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 721 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending); 722 ir->s3_irq_control = readl(&ir->ir_set->irq_control); 723 } 724 } 725 726 static void xhci_restore_registers(struct xhci_hcd *xhci) 727 { 728 struct xhci_interrupter *ir; 729 unsigned int i; 730 731 writel(xhci->s3.command, &xhci->op_regs->command); 732 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 733 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 734 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 735 736 /* FIXME should we lock to protect against freeing of interrupters */ 737 for (i = 0; i < xhci->max_interrupters; i++) { 738 ir = xhci->interrupters[i]; 739 if (!ir) 740 continue; 741 742 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 743 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 744 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 745 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending); 746 writel(ir->s3_irq_control, &ir->ir_set->irq_control); 747 } 748 } 749 750 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 751 { 752 u64 val_64; 753 754 /* step 2: initialize command ring buffer */ 755 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 756 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 757 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 758 xhci->cmd_ring->dequeue) & 759 (u64) ~CMD_RING_RSVD_BITS) | 760 xhci->cmd_ring->cycle_state; 761 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 762 "// Setting command ring address to 0x%llx", 763 (long unsigned long) val_64); 764 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 765 } 766 767 /* 768 * The whole command ring must be cleared to zero when we suspend the host. 769 * 770 * The host doesn't save the command ring pointer in the suspend well, so we 771 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 772 * aligned, because of the reserved bits in the command ring dequeue pointer 773 * register. Therefore, we can't just set the dequeue pointer back in the 774 * middle of the ring (TRBs are 16-byte aligned). 775 */ 776 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 777 { 778 struct xhci_ring *ring; 779 struct xhci_segment *seg; 780 781 ring = xhci->cmd_ring; 782 xhci_for_each_ring_seg(ring->first_seg, seg) 783 memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 784 785 xhci_initialize_ring_info(ring); 786 /* 787 * Reset the hardware dequeue pointer. 788 * Yes, this will need to be re-written after resume, but we're paranoid 789 * and want to make sure the hardware doesn't access bogus memory 790 * because, say, the BIOS or an SMI started the host without changing 791 * the command ring pointers. 792 */ 793 xhci_set_cmd_ring_deq(xhci); 794 } 795 796 /* 797 * Disable port wake bits if do_wakeup is not set. 798 * 799 * Also clear a possible internal port wake state left hanging for ports that 800 * detected termination but never successfully enumerated (trained to 0U). 801 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 802 * at enumeration clears this wake, force one here as well for unconnected ports 803 */ 804 805 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 806 struct xhci_hub *rhub, 807 bool do_wakeup) 808 { 809 unsigned long flags; 810 u32 t1, t2, portsc; 811 int i; 812 813 spin_lock_irqsave(&xhci->lock, flags); 814 815 for (i = 0; i < rhub->num_ports; i++) { 816 portsc = readl(rhub->ports[i]->addr); 817 t1 = xhci_port_state_to_neutral(portsc); 818 t2 = t1; 819 820 /* clear wake bits if do_wake is not set */ 821 if (!do_wakeup) 822 t2 &= ~PORT_WAKE_BITS; 823 824 /* Don't touch csc bit if connected or connect change is set */ 825 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 826 t2 |= PORT_CSC; 827 828 if (t1 != t2) { 829 writel(t2, rhub->ports[i]->addr); 830 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 831 rhub->hcd->self.busnum, i + 1, portsc, t2); 832 } 833 } 834 spin_unlock_irqrestore(&xhci->lock, flags); 835 } 836 837 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 838 { 839 struct xhci_port **ports; 840 int port_index; 841 u32 status; 842 u32 portsc; 843 844 status = readl(&xhci->op_regs->status); 845 if (status & STS_EINT) 846 return true; 847 /* 848 * Checking STS_EINT is not enough as there is a lag between a change 849 * bit being set and the Port Status Change Event that it generated 850 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 851 */ 852 853 port_index = xhci->usb2_rhub.num_ports; 854 ports = xhci->usb2_rhub.ports; 855 while (port_index--) { 856 portsc = readl(ports[port_index]->addr); 857 if (portsc & PORT_CHANGE_MASK || 858 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 859 return true; 860 } 861 port_index = xhci->usb3_rhub.num_ports; 862 ports = xhci->usb3_rhub.ports; 863 while (port_index--) { 864 portsc = readl(ports[port_index]->addr); 865 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) || 866 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 867 return true; 868 } 869 return false; 870 } 871 872 /* 873 * Stop HC (not bus-specific) 874 * 875 * This is called when the machine transition into S3/S4 mode. 876 * 877 */ 878 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 879 { 880 int rc = 0; 881 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 882 struct usb_hcd *hcd = xhci_to_hcd(xhci); 883 u32 command; 884 u32 res; 885 886 if (!hcd->state) 887 return 0; 888 889 if (hcd->state != HC_STATE_SUSPENDED || 890 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 891 return -EINVAL; 892 893 /* Clear root port wake on bits if wakeup not allowed. */ 894 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 895 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 896 897 if (!HCD_HW_ACCESSIBLE(hcd)) 898 return 0; 899 900 xhci_dbc_suspend(xhci); 901 902 /* Don't poll the roothubs on bus suspend. */ 903 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 904 __func__, hcd->self.busnum); 905 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 906 del_timer_sync(&hcd->rh_timer); 907 if (xhci->shared_hcd) { 908 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 909 del_timer_sync(&xhci->shared_hcd->rh_timer); 910 } 911 912 if (xhci->quirks & XHCI_SUSPEND_DELAY) 913 usleep_range(1000, 1500); 914 915 spin_lock_irq(&xhci->lock); 916 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 917 if (xhci->shared_hcd) 918 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 919 /* step 1: stop endpoint */ 920 /* skipped assuming that port suspend has done */ 921 922 /* step 2: clear Run/Stop bit */ 923 command = readl(&xhci->op_regs->command); 924 command &= ~CMD_RUN; 925 writel(command, &xhci->op_regs->command); 926 927 /* Some chips from Fresco Logic need an extraordinary delay */ 928 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 929 930 if (xhci_handshake(&xhci->op_regs->status, 931 STS_HALT, STS_HALT, delay)) { 932 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 933 spin_unlock_irq(&xhci->lock); 934 return -ETIMEDOUT; 935 } 936 xhci_clear_command_ring(xhci); 937 938 /* step 3: save registers */ 939 xhci_save_registers(xhci); 940 941 /* step 4: set CSS flag */ 942 command = readl(&xhci->op_regs->command); 943 command |= CMD_CSS; 944 writel(command, &xhci->op_regs->command); 945 xhci->broken_suspend = 0; 946 if (xhci_handshake(&xhci->op_regs->status, 947 STS_SAVE, 0, 20 * 1000)) { 948 /* 949 * AMD SNPS xHC 3.0 occasionally does not clear the 950 * SSS bit of USBSTS and when driver tries to poll 951 * to see if the xHC clears BIT(8) which never happens 952 * and driver assumes that controller is not responding 953 * and times out. To workaround this, its good to check 954 * if SRE and HCE bits are not set (as per xhci 955 * Section 5.4.2) and bypass the timeout. 956 */ 957 res = readl(&xhci->op_regs->status); 958 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 959 (((res & STS_SRE) == 0) && 960 ((res & STS_HCE) == 0))) { 961 xhci->broken_suspend = 1; 962 } else { 963 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 964 spin_unlock_irq(&xhci->lock); 965 return -ETIMEDOUT; 966 } 967 } 968 spin_unlock_irq(&xhci->lock); 969 970 /* 971 * Deleting Compliance Mode Recovery Timer because the xHCI Host 972 * is about to be suspended. 973 */ 974 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 975 (!(xhci_all_ports_seen_u0(xhci)))) { 976 del_timer_sync(&xhci->comp_mode_recovery_timer); 977 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 978 "%s: compliance mode recovery timer deleted", 979 __func__); 980 } 981 982 return rc; 983 } 984 EXPORT_SYMBOL_GPL(xhci_suspend); 985 986 /* 987 * start xHC (not bus-specific) 988 * 989 * This is called when the machine transition from S3/S4 mode. 990 * 991 */ 992 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg) 993 { 994 bool hibernated = (msg.event == PM_EVENT_RESTORE); 995 u32 command, temp = 0; 996 struct usb_hcd *hcd = xhci_to_hcd(xhci); 997 int retval = 0; 998 bool comp_timer_running = false; 999 bool pending_portevent = false; 1000 bool suspended_usb3_devs = false; 1001 bool reinit_xhc = false; 1002 1003 if (!hcd->state) 1004 return 0; 1005 1006 /* Wait a bit if either of the roothubs need to settle from the 1007 * transition into bus suspend. 1008 */ 1009 1010 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1011 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1012 msleep(100); 1013 1014 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1015 if (xhci->shared_hcd) 1016 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1017 1018 spin_lock_irq(&xhci->lock); 1019 1020 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1021 reinit_xhc = true; 1022 1023 if (!reinit_xhc) { 1024 /* 1025 * Some controllers might lose power during suspend, so wait 1026 * for controller not ready bit to clear, just as in xHC init. 1027 */ 1028 retval = xhci_handshake(&xhci->op_regs->status, 1029 STS_CNR, 0, 10 * 1000 * 1000); 1030 if (retval) { 1031 xhci_warn(xhci, "Controller not ready at resume %d\n", 1032 retval); 1033 spin_unlock_irq(&xhci->lock); 1034 return retval; 1035 } 1036 /* step 1: restore register */ 1037 xhci_restore_registers(xhci); 1038 /* step 2: initialize command ring buffer */ 1039 xhci_set_cmd_ring_deq(xhci); 1040 /* step 3: restore state and start state*/ 1041 /* step 3: set CRS flag */ 1042 command = readl(&xhci->op_regs->command); 1043 command |= CMD_CRS; 1044 writel(command, &xhci->op_regs->command); 1045 /* 1046 * Some controllers take up to 55+ ms to complete the controller 1047 * restore so setting the timeout to 100ms. Xhci specification 1048 * doesn't mention any timeout value. 1049 */ 1050 if (xhci_handshake(&xhci->op_regs->status, 1051 STS_RESTORE, 0, 100 * 1000)) { 1052 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1053 spin_unlock_irq(&xhci->lock); 1054 return -ETIMEDOUT; 1055 } 1056 } 1057 1058 temp = readl(&xhci->op_regs->status); 1059 1060 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1061 if ((temp & (STS_SRE | STS_HCE)) && 1062 !(xhci->xhc_state & XHCI_STATE_REMOVING)) { 1063 reinit_xhc = true; 1064 if (!xhci->broken_suspend) 1065 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1066 } 1067 1068 if (reinit_xhc) { 1069 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1070 !(xhci_all_ports_seen_u0(xhci))) { 1071 del_timer_sync(&xhci->comp_mode_recovery_timer); 1072 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1073 "Compliance Mode Recovery Timer deleted!"); 1074 } 1075 1076 /* Let the USB core know _both_ roothubs lost power. */ 1077 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1078 if (xhci->shared_hcd) 1079 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1080 1081 xhci_dbg(xhci, "Stop HCD\n"); 1082 xhci_halt(xhci); 1083 xhci_zero_64b_regs(xhci); 1084 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1085 spin_unlock_irq(&xhci->lock); 1086 if (retval) 1087 return retval; 1088 1089 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1090 temp = readl(&xhci->op_regs->status); 1091 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1092 xhci_disable_interrupter(xhci->interrupters[0]); 1093 1094 xhci_dbg(xhci, "cleaning up memory\n"); 1095 xhci_mem_cleanup(xhci); 1096 xhci_debugfs_exit(xhci); 1097 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1098 readl(&xhci->op_regs->status)); 1099 1100 /* USB core calls the PCI reinit and start functions twice: 1101 * first with the primary HCD, and then with the secondary HCD. 1102 * If we don't do the same, the host will never be started. 1103 */ 1104 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1105 retval = xhci_init(hcd); 1106 if (retval) 1107 return retval; 1108 comp_timer_running = true; 1109 1110 xhci_dbg(xhci, "Start the primary HCD\n"); 1111 retval = xhci_run(hcd); 1112 if (!retval && xhci->shared_hcd) { 1113 xhci_dbg(xhci, "Start the secondary HCD\n"); 1114 retval = xhci_run(xhci->shared_hcd); 1115 } 1116 if (retval) 1117 return retval; 1118 /* 1119 * Resume roothubs unconditionally as PORTSC change bits are not 1120 * immediately visible after xHC reset 1121 */ 1122 hcd->state = HC_STATE_SUSPENDED; 1123 1124 if (xhci->shared_hcd) { 1125 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1126 usb_hcd_resume_root_hub(xhci->shared_hcd); 1127 } 1128 usb_hcd_resume_root_hub(hcd); 1129 1130 goto done; 1131 } 1132 1133 /* step 4: set Run/Stop bit */ 1134 command = readl(&xhci->op_regs->command); 1135 command |= CMD_RUN; 1136 writel(command, &xhci->op_regs->command); 1137 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1138 0, 250 * 1000); 1139 1140 /* step 5: walk topology and initialize portsc, 1141 * portpmsc and portli 1142 */ 1143 /* this is done in bus_resume */ 1144 1145 /* step 6: restart each of the previously 1146 * Running endpoints by ringing their doorbells 1147 */ 1148 1149 spin_unlock_irq(&xhci->lock); 1150 1151 xhci_dbc_resume(xhci); 1152 1153 if (retval == 0) { 1154 /* 1155 * Resume roothubs only if there are pending events. 1156 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1157 * the first wake signalling failed, give it that chance if 1158 * there are suspended USB 3 devices. 1159 */ 1160 if (xhci->usb3_rhub.bus_state.suspended_ports || 1161 xhci->usb3_rhub.bus_state.bus_suspended) 1162 suspended_usb3_devs = true; 1163 1164 pending_portevent = xhci_pending_portevent(xhci); 1165 1166 if (suspended_usb3_devs && !pending_portevent && 1167 msg.event == PM_EVENT_AUTO_RESUME) { 1168 msleep(120); 1169 pending_portevent = xhci_pending_portevent(xhci); 1170 } 1171 1172 if (pending_portevent) { 1173 if (xhci->shared_hcd) 1174 usb_hcd_resume_root_hub(xhci->shared_hcd); 1175 usb_hcd_resume_root_hub(hcd); 1176 } 1177 } 1178 done: 1179 /* 1180 * If system is subject to the Quirk, Compliance Mode Timer needs to 1181 * be re-initialized Always after a system resume. Ports are subject 1182 * to suffer the Compliance Mode issue again. It doesn't matter if 1183 * ports have entered previously to U0 before system's suspension. 1184 */ 1185 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1186 compliance_mode_recovery_timer_init(xhci); 1187 1188 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1189 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1190 1191 /* Re-enable port polling. */ 1192 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1193 __func__, hcd->self.busnum); 1194 if (xhci->shared_hcd) { 1195 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1196 usb_hcd_poll_rh_status(xhci->shared_hcd); 1197 } 1198 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1199 usb_hcd_poll_rh_status(hcd); 1200 1201 return retval; 1202 } 1203 EXPORT_SYMBOL_GPL(xhci_resume); 1204 #endif /* CONFIG_PM */ 1205 1206 /*-------------------------------------------------------------------------*/ 1207 1208 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1209 { 1210 void *temp; 1211 int ret = 0; 1212 unsigned int buf_len; 1213 enum dma_data_direction dir; 1214 1215 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1216 buf_len = urb->transfer_buffer_length; 1217 1218 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1219 dev_to_node(hcd->self.sysdev)); 1220 if (!temp) 1221 return -ENOMEM; 1222 1223 if (usb_urb_dir_out(urb)) 1224 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1225 temp, buf_len, 0); 1226 1227 urb->transfer_buffer = temp; 1228 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1229 urb->transfer_buffer, 1230 urb->transfer_buffer_length, 1231 dir); 1232 1233 if (dma_mapping_error(hcd->self.sysdev, 1234 urb->transfer_dma)) { 1235 ret = -EAGAIN; 1236 kfree(temp); 1237 } else { 1238 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1239 } 1240 1241 return ret; 1242 } 1243 1244 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1245 struct urb *urb) 1246 { 1247 bool ret = false; 1248 unsigned int i; 1249 unsigned int len = 0; 1250 unsigned int trb_size; 1251 unsigned int max_pkt; 1252 struct scatterlist *sg; 1253 struct scatterlist *tail_sg; 1254 1255 tail_sg = urb->sg; 1256 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1257 1258 if (!urb->num_sgs) 1259 return ret; 1260 1261 if (urb->dev->speed >= USB_SPEED_SUPER) 1262 trb_size = TRB_CACHE_SIZE_SS; 1263 else 1264 trb_size = TRB_CACHE_SIZE_HS; 1265 1266 if (urb->transfer_buffer_length != 0 && 1267 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1268 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1269 len = len + sg->length; 1270 if (i > trb_size - 2) { 1271 len = len - tail_sg->length; 1272 if (len < max_pkt) { 1273 ret = true; 1274 break; 1275 } 1276 1277 tail_sg = sg_next(tail_sg); 1278 } 1279 } 1280 } 1281 return ret; 1282 } 1283 1284 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1285 { 1286 unsigned int len; 1287 unsigned int buf_len; 1288 enum dma_data_direction dir; 1289 1290 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1291 1292 buf_len = urb->transfer_buffer_length; 1293 1294 if (IS_ENABLED(CONFIG_HAS_DMA) && 1295 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1296 dma_unmap_single(hcd->self.sysdev, 1297 urb->transfer_dma, 1298 urb->transfer_buffer_length, 1299 dir); 1300 1301 if (usb_urb_dir_in(urb)) { 1302 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1303 urb->transfer_buffer, 1304 buf_len, 1305 0); 1306 if (len != buf_len) { 1307 xhci_dbg(hcd_to_xhci(hcd), 1308 "Copy from tmp buf to urb sg list failed\n"); 1309 urb->actual_length = len; 1310 } 1311 } 1312 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1313 kfree(urb->transfer_buffer); 1314 urb->transfer_buffer = NULL; 1315 } 1316 1317 /* 1318 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1319 * we'll copy the actual data into the TRB address register. This is limited to 1320 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1321 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1322 */ 1323 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1324 gfp_t mem_flags) 1325 { 1326 struct xhci_hcd *xhci; 1327 1328 xhci = hcd_to_xhci(hcd); 1329 1330 if (xhci_urb_suitable_for_idt(urb)) 1331 return 0; 1332 1333 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1334 if (xhci_urb_temp_buffer_required(hcd, urb)) 1335 return xhci_map_temp_buffer(hcd, urb); 1336 } 1337 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1338 } 1339 1340 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1341 { 1342 struct xhci_hcd *xhci; 1343 bool unmap_temp_buf = false; 1344 1345 xhci = hcd_to_xhci(hcd); 1346 1347 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1348 unmap_temp_buf = true; 1349 1350 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1351 xhci_unmap_temp_buf(hcd, urb); 1352 else 1353 usb_hcd_unmap_urb_for_dma(hcd, urb); 1354 } 1355 1356 /** 1357 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1358 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1359 * value to right shift 1 for the bitmask. 1360 * 1361 * Index = (epnum * 2) + direction - 1, 1362 * where direction = 0 for OUT, 1 for IN. 1363 * For control endpoints, the IN index is used (OUT index is unused), so 1364 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1365 */ 1366 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1367 { 1368 unsigned int index; 1369 if (usb_endpoint_xfer_control(desc)) 1370 index = (unsigned int) (usb_endpoint_num(desc)*2); 1371 else 1372 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1373 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1374 return index; 1375 } 1376 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1377 1378 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1379 * address from the XHCI endpoint index. 1380 */ 1381 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1382 { 1383 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1384 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1385 return direction | number; 1386 } 1387 1388 /* Find the flag for this endpoint (for use in the control context). Use the 1389 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1390 * bit 1, etc. 1391 */ 1392 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1393 { 1394 return 1 << (xhci_get_endpoint_index(desc) + 1); 1395 } 1396 1397 /* Compute the last valid endpoint context index. Basically, this is the 1398 * endpoint index plus one. For slot contexts with more than valid endpoint, 1399 * we find the most significant bit set in the added contexts flags. 1400 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1401 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1402 */ 1403 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1404 { 1405 return fls(added_ctxs) - 1; 1406 } 1407 1408 /* Returns 1 if the arguments are OK; 1409 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1410 */ 1411 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1412 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1413 const char *func) { 1414 struct xhci_hcd *xhci; 1415 struct xhci_virt_device *virt_dev; 1416 1417 if (!hcd || (check_ep && !ep) || !udev) { 1418 pr_debug("xHCI %s called with invalid args\n", func); 1419 return -EINVAL; 1420 } 1421 if (!udev->parent) { 1422 pr_debug("xHCI %s called for root hub\n", func); 1423 return 0; 1424 } 1425 1426 xhci = hcd_to_xhci(hcd); 1427 if (check_virt_dev) { 1428 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1429 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1430 func); 1431 return -EINVAL; 1432 } 1433 1434 virt_dev = xhci->devs[udev->slot_id]; 1435 if (virt_dev->udev != udev) { 1436 xhci_dbg(xhci, "xHCI %s called with udev and " 1437 "virt_dev does not match\n", func); 1438 return -EINVAL; 1439 } 1440 } 1441 1442 if (xhci->xhc_state & XHCI_STATE_HALTED) 1443 return -ENODEV; 1444 1445 return 1; 1446 } 1447 1448 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1449 struct usb_device *udev, struct xhci_command *command, 1450 bool ctx_change, bool must_succeed); 1451 1452 /* 1453 * Full speed devices may have a max packet size greater than 8 bytes, but the 1454 * USB core doesn't know that until it reads the first 8 bytes of the 1455 * descriptor. If the usb_device's max packet size changes after that point, 1456 * we need to issue an evaluate context command and wait on it. 1457 */ 1458 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev) 1459 { 1460 struct xhci_input_control_ctx *ctrl_ctx; 1461 struct xhci_ep_ctx *ep_ctx; 1462 struct xhci_command *command; 1463 int max_packet_size; 1464 int hw_max_packet_size; 1465 int ret = 0; 1466 1467 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0); 1468 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1469 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc); 1470 1471 if (hw_max_packet_size == max_packet_size) 1472 return 0; 1473 1474 switch (max_packet_size) { 1475 case 8: case 16: case 32: case 64: case 9: 1476 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1477 "Max Packet Size for ep 0 changed."); 1478 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1479 "Max packet size in usb_device = %d", 1480 max_packet_size); 1481 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1482 "Max packet size in xHCI HW = %d", 1483 hw_max_packet_size); 1484 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1485 "Issuing evaluate context command."); 1486 1487 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1488 if (!command) 1489 return -ENOMEM; 1490 1491 command->in_ctx = vdev->in_ctx; 1492 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1493 if (!ctrl_ctx) { 1494 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1495 __func__); 1496 ret = -ENOMEM; 1497 break; 1498 } 1499 /* Set up the modified control endpoint 0 */ 1500 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0); 1501 1502 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0); 1503 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1504 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1505 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1506 1507 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1508 ctrl_ctx->drop_flags = 0; 1509 1510 ret = xhci_configure_endpoint(xhci, vdev->udev, command, 1511 true, false); 1512 /* Clean up the input context for later use by bandwidth functions */ 1513 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1514 break; 1515 default: 1516 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n", 1517 max_packet_size); 1518 return -EINVAL; 1519 } 1520 1521 kfree(command->completion); 1522 kfree(command); 1523 1524 return ret; 1525 } 1526 1527 /* 1528 * non-error returns are a promise to giveback() the urb later 1529 * we drop ownership so next owner (or urb unlink) can get it 1530 */ 1531 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1532 { 1533 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1534 unsigned long flags; 1535 int ret = 0; 1536 unsigned int slot_id, ep_index; 1537 unsigned int *ep_state; 1538 struct urb_priv *urb_priv; 1539 int num_tds; 1540 1541 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1542 1543 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1544 num_tds = urb->number_of_packets; 1545 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1546 urb->transfer_buffer_length > 0 && 1547 urb->transfer_flags & URB_ZERO_PACKET && 1548 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1549 num_tds = 2; 1550 else 1551 num_tds = 1; 1552 1553 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1554 if (!urb_priv) 1555 return -ENOMEM; 1556 1557 urb_priv->num_tds = num_tds; 1558 urb_priv->num_tds_done = 0; 1559 urb->hcpriv = urb_priv; 1560 1561 trace_xhci_urb_enqueue(urb); 1562 1563 spin_lock_irqsave(&xhci->lock, flags); 1564 1565 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1566 true, true, __func__); 1567 if (ret <= 0) { 1568 ret = ret ? ret : -EINVAL; 1569 goto free_priv; 1570 } 1571 1572 slot_id = urb->dev->slot_id; 1573 1574 if (!HCD_HW_ACCESSIBLE(hcd)) { 1575 ret = -ESHUTDOWN; 1576 goto free_priv; 1577 } 1578 1579 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1580 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1581 ret = -ENODEV; 1582 goto free_priv; 1583 } 1584 1585 if (xhci->xhc_state & XHCI_STATE_DYING) { 1586 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1587 urb->ep->desc.bEndpointAddress, urb); 1588 ret = -ESHUTDOWN; 1589 goto free_priv; 1590 } 1591 1592 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1593 1594 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1595 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1596 *ep_state); 1597 ret = -EINVAL; 1598 goto free_priv; 1599 } 1600 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1601 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1602 ret = -EINVAL; 1603 goto free_priv; 1604 } 1605 1606 switch (usb_endpoint_type(&urb->ep->desc)) { 1607 1608 case USB_ENDPOINT_XFER_CONTROL: 1609 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1610 slot_id, ep_index); 1611 break; 1612 case USB_ENDPOINT_XFER_BULK: 1613 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1614 slot_id, ep_index); 1615 break; 1616 case USB_ENDPOINT_XFER_INT: 1617 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1618 slot_id, ep_index); 1619 break; 1620 case USB_ENDPOINT_XFER_ISOC: 1621 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1622 slot_id, ep_index); 1623 } 1624 1625 if (ret) { 1626 free_priv: 1627 xhci_urb_free_priv(urb_priv); 1628 urb->hcpriv = NULL; 1629 } 1630 spin_unlock_irqrestore(&xhci->lock, flags); 1631 return ret; 1632 } 1633 1634 /* 1635 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1636 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1637 * should pick up where it left off in the TD, unless a Set Transfer Ring 1638 * Dequeue Pointer is issued. 1639 * 1640 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1641 * the ring. Since the ring is a contiguous structure, they can't be physically 1642 * removed. Instead, there are two options: 1643 * 1644 * 1) If the HC is in the middle of processing the URB to be canceled, we 1645 * simply move the ring's dequeue pointer past those TRBs using the Set 1646 * Transfer Ring Dequeue Pointer command. This will be the common case, 1647 * when drivers timeout on the last submitted URB and attempt to cancel. 1648 * 1649 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1650 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1651 * HC will need to invalidate the any TRBs it has cached after the stop 1652 * endpoint command, as noted in the xHCI 0.95 errata. 1653 * 1654 * 3) The TD may have completed by the time the Stop Endpoint Command 1655 * completes, so software needs to handle that case too. 1656 * 1657 * This function should protect against the TD enqueueing code ringing the 1658 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1659 * It also needs to account for multiple cancellations on happening at the same 1660 * time for the same endpoint. 1661 * 1662 * Note that this function can be called in any context, or so says 1663 * usb_hcd_unlink_urb() 1664 */ 1665 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1666 { 1667 unsigned long flags; 1668 int ret, i; 1669 u32 temp; 1670 struct xhci_hcd *xhci; 1671 struct urb_priv *urb_priv; 1672 struct xhci_td *td; 1673 unsigned int ep_index; 1674 struct xhci_ring *ep_ring; 1675 struct xhci_virt_ep *ep; 1676 struct xhci_command *command; 1677 struct xhci_virt_device *vdev; 1678 1679 xhci = hcd_to_xhci(hcd); 1680 spin_lock_irqsave(&xhci->lock, flags); 1681 1682 trace_xhci_urb_dequeue(urb); 1683 1684 /* Make sure the URB hasn't completed or been unlinked already */ 1685 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1686 if (ret) 1687 goto done; 1688 1689 /* give back URB now if we can't queue it for cancel */ 1690 vdev = xhci->devs[urb->dev->slot_id]; 1691 urb_priv = urb->hcpriv; 1692 if (!vdev || !urb_priv) 1693 goto err_giveback; 1694 1695 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1696 ep = &vdev->eps[ep_index]; 1697 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1698 if (!ep || !ep_ring) 1699 goto err_giveback; 1700 1701 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1702 temp = readl(&xhci->op_regs->status); 1703 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1704 xhci_hc_died(xhci); 1705 goto done; 1706 } 1707 1708 /* 1709 * check ring is not re-allocated since URB was enqueued. If it is, then 1710 * make sure none of the ring related pointers in this URB private data 1711 * are touched, such as td_list, otherwise we overwrite freed data 1712 */ 1713 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1714 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1715 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1716 td = &urb_priv->td[i]; 1717 if (!list_empty(&td->cancelled_td_list)) 1718 list_del_init(&td->cancelled_td_list); 1719 } 1720 goto err_giveback; 1721 } 1722 1723 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1724 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1725 "HC halted, freeing TD manually."); 1726 for (i = urb_priv->num_tds_done; 1727 i < urb_priv->num_tds; 1728 i++) { 1729 td = &urb_priv->td[i]; 1730 if (!list_empty(&td->td_list)) 1731 list_del_init(&td->td_list); 1732 if (!list_empty(&td->cancelled_td_list)) 1733 list_del_init(&td->cancelled_td_list); 1734 } 1735 goto err_giveback; 1736 } 1737 1738 i = urb_priv->num_tds_done; 1739 if (i < urb_priv->num_tds) 1740 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1741 "Cancel URB %p, dev %s, ep 0x%x, " 1742 "starting at offset 0x%llx", 1743 urb, urb->dev->devpath, 1744 urb->ep->desc.bEndpointAddress, 1745 (unsigned long long) xhci_trb_virt_to_dma( 1746 urb_priv->td[i].start_seg, 1747 urb_priv->td[i].start_trb)); 1748 1749 for (; i < urb_priv->num_tds; i++) { 1750 td = &urb_priv->td[i]; 1751 /* TD can already be on cancelled list if ep halted on it */ 1752 if (list_empty(&td->cancelled_td_list)) { 1753 td->cancel_status = TD_DIRTY; 1754 list_add_tail(&td->cancelled_td_list, 1755 &ep->cancelled_td_list); 1756 } 1757 } 1758 1759 /* These completion handlers will sort out cancelled TDs for us */ 1760 if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) { 1761 xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n", 1762 urb->dev->slot_id, ep_index, ep->ep_state); 1763 goto done; 1764 } 1765 1766 /* In this case no commands are pending but the endpoint is stopped */ 1767 if (ep->ep_state & EP_CLEARING_TT) { 1768 /* and cancelled TDs can be given back right away */ 1769 xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n", 1770 urb->dev->slot_id, ep_index, ep->ep_state); 1771 xhci_process_cancelled_tds(ep); 1772 } else { 1773 /* Otherwise, queue a new Stop Endpoint command */ 1774 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1775 if (!command) { 1776 ret = -ENOMEM; 1777 goto done; 1778 } 1779 ep->stop_time = jiffies; 1780 ep->ep_state |= EP_STOP_CMD_PENDING; 1781 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1782 ep_index, 0); 1783 xhci_ring_cmd_db(xhci); 1784 } 1785 done: 1786 spin_unlock_irqrestore(&xhci->lock, flags); 1787 return ret; 1788 1789 err_giveback: 1790 if (urb_priv) 1791 xhci_urb_free_priv(urb_priv); 1792 usb_hcd_unlink_urb_from_ep(hcd, urb); 1793 spin_unlock_irqrestore(&xhci->lock, flags); 1794 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1795 return ret; 1796 } 1797 1798 /* Drop an endpoint from a new bandwidth configuration for this device. 1799 * Only one call to this function is allowed per endpoint before 1800 * check_bandwidth() or reset_bandwidth() must be called. 1801 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1802 * add the endpoint to the schedule with possibly new parameters denoted by a 1803 * different endpoint descriptor in usb_host_endpoint. 1804 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1805 * not allowed. 1806 * 1807 * The USB core will not allow URBs to be queued to an endpoint that is being 1808 * disabled, so there's no need for mutual exclusion to protect 1809 * the xhci->devs[slot_id] structure. 1810 */ 1811 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1812 struct usb_host_endpoint *ep) 1813 { 1814 struct xhci_hcd *xhci; 1815 struct xhci_container_ctx *in_ctx, *out_ctx; 1816 struct xhci_input_control_ctx *ctrl_ctx; 1817 unsigned int ep_index; 1818 struct xhci_ep_ctx *ep_ctx; 1819 u32 drop_flag; 1820 u32 new_add_flags, new_drop_flags; 1821 int ret; 1822 1823 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1824 if (ret <= 0) 1825 return ret; 1826 xhci = hcd_to_xhci(hcd); 1827 if (xhci->xhc_state & XHCI_STATE_DYING) 1828 return -ENODEV; 1829 1830 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1831 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1832 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1833 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1834 __func__, drop_flag); 1835 return 0; 1836 } 1837 1838 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1839 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1840 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1841 if (!ctrl_ctx) { 1842 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1843 __func__); 1844 return 0; 1845 } 1846 1847 ep_index = xhci_get_endpoint_index(&ep->desc); 1848 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1849 /* If the HC already knows the endpoint is disabled, 1850 * or the HCD has noted it is disabled, ignore this request 1851 */ 1852 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1853 le32_to_cpu(ctrl_ctx->drop_flags) & 1854 xhci_get_endpoint_flag(&ep->desc)) { 1855 /* Do not warn when called after a usb_device_reset */ 1856 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1857 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1858 __func__, ep); 1859 return 0; 1860 } 1861 1862 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1863 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1864 1865 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1866 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1867 1868 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1869 1870 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1871 1872 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1873 (unsigned int) ep->desc.bEndpointAddress, 1874 udev->slot_id, 1875 (unsigned int) new_drop_flags, 1876 (unsigned int) new_add_flags); 1877 return 0; 1878 } 1879 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1880 1881 /* Add an endpoint to a new possible bandwidth configuration for this device. 1882 * Only one call to this function is allowed per endpoint before 1883 * check_bandwidth() or reset_bandwidth() must be called. 1884 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1885 * add the endpoint to the schedule with possibly new parameters denoted by a 1886 * different endpoint descriptor in usb_host_endpoint. 1887 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1888 * not allowed. 1889 * 1890 * The USB core will not allow URBs to be queued to an endpoint until the 1891 * configuration or alt setting is installed in the device, so there's no need 1892 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1893 */ 1894 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1895 struct usb_host_endpoint *ep) 1896 { 1897 struct xhci_hcd *xhci; 1898 struct xhci_container_ctx *in_ctx; 1899 unsigned int ep_index; 1900 struct xhci_input_control_ctx *ctrl_ctx; 1901 struct xhci_ep_ctx *ep_ctx; 1902 u32 added_ctxs; 1903 u32 new_add_flags, new_drop_flags; 1904 struct xhci_virt_device *virt_dev; 1905 int ret = 0; 1906 1907 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1908 if (ret <= 0) { 1909 /* So we won't queue a reset ep command for a root hub */ 1910 ep->hcpriv = NULL; 1911 return ret; 1912 } 1913 xhci = hcd_to_xhci(hcd); 1914 if (xhci->xhc_state & XHCI_STATE_DYING) 1915 return -ENODEV; 1916 1917 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1918 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1919 /* FIXME when we have to issue an evaluate endpoint command to 1920 * deal with ep0 max packet size changing once we get the 1921 * descriptors 1922 */ 1923 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1924 __func__, added_ctxs); 1925 return 0; 1926 } 1927 1928 virt_dev = xhci->devs[udev->slot_id]; 1929 in_ctx = virt_dev->in_ctx; 1930 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1931 if (!ctrl_ctx) { 1932 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1933 __func__); 1934 return 0; 1935 } 1936 1937 ep_index = xhci_get_endpoint_index(&ep->desc); 1938 /* If this endpoint is already in use, and the upper layers are trying 1939 * to add it again without dropping it, reject the addition. 1940 */ 1941 if (virt_dev->eps[ep_index].ring && 1942 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1943 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1944 "without dropping it.\n", 1945 (unsigned int) ep->desc.bEndpointAddress); 1946 return -EINVAL; 1947 } 1948 1949 /* If the HCD has already noted the endpoint is enabled, 1950 * ignore this request. 1951 */ 1952 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1953 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1954 __func__, ep); 1955 return 0; 1956 } 1957 1958 /* 1959 * Configuration and alternate setting changes must be done in 1960 * process context, not interrupt context (or so documenation 1961 * for usb_set_interface() and usb_set_configuration() claim). 1962 */ 1963 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1964 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1965 __func__, ep->desc.bEndpointAddress); 1966 return -ENOMEM; 1967 } 1968 1969 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1970 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1971 1972 /* If xhci_endpoint_disable() was called for this endpoint, but the 1973 * xHC hasn't been notified yet through the check_bandwidth() call, 1974 * this re-adds a new state for the endpoint from the new endpoint 1975 * descriptors. We must drop and re-add this endpoint, so we leave the 1976 * drop flags alone. 1977 */ 1978 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1979 1980 /* Store the usb_device pointer for later use */ 1981 ep->hcpriv = udev; 1982 1983 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1984 trace_xhci_add_endpoint(ep_ctx); 1985 1986 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1987 (unsigned int) ep->desc.bEndpointAddress, 1988 udev->slot_id, 1989 (unsigned int) new_drop_flags, 1990 (unsigned int) new_add_flags); 1991 return 0; 1992 } 1993 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 1994 1995 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1996 { 1997 struct xhci_input_control_ctx *ctrl_ctx; 1998 struct xhci_ep_ctx *ep_ctx; 1999 struct xhci_slot_ctx *slot_ctx; 2000 int i; 2001 2002 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2003 if (!ctrl_ctx) { 2004 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2005 __func__); 2006 return; 2007 } 2008 2009 /* When a device's add flag and drop flag are zero, any subsequent 2010 * configure endpoint command will leave that endpoint's state 2011 * untouched. Make sure we don't leave any old state in the input 2012 * endpoint contexts. 2013 */ 2014 ctrl_ctx->drop_flags = 0; 2015 ctrl_ctx->add_flags = 0; 2016 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2017 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2018 /* Endpoint 0 is always valid */ 2019 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2020 for (i = 1; i < 31; i++) { 2021 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2022 ep_ctx->ep_info = 0; 2023 ep_ctx->ep_info2 = 0; 2024 ep_ctx->deq = 0; 2025 ep_ctx->tx_info = 0; 2026 } 2027 } 2028 2029 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2030 struct usb_device *udev, u32 *cmd_status) 2031 { 2032 int ret; 2033 2034 switch (*cmd_status) { 2035 case COMP_COMMAND_ABORTED: 2036 case COMP_COMMAND_RING_STOPPED: 2037 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2038 ret = -ETIME; 2039 break; 2040 case COMP_RESOURCE_ERROR: 2041 dev_warn(&udev->dev, 2042 "Not enough host controller resources for new device state.\n"); 2043 ret = -ENOMEM; 2044 /* FIXME: can we allocate more resources for the HC? */ 2045 break; 2046 case COMP_BANDWIDTH_ERROR: 2047 case COMP_SECONDARY_BANDWIDTH_ERROR: 2048 dev_warn(&udev->dev, 2049 "Not enough bandwidth for new device state.\n"); 2050 ret = -ENOSPC; 2051 /* FIXME: can we go back to the old state? */ 2052 break; 2053 case COMP_TRB_ERROR: 2054 /* the HCD set up something wrong */ 2055 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2056 "add flag = 1, " 2057 "and endpoint is not disabled.\n"); 2058 ret = -EINVAL; 2059 break; 2060 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2061 dev_warn(&udev->dev, 2062 "ERROR: Incompatible device for endpoint configure command.\n"); 2063 ret = -ENODEV; 2064 break; 2065 case COMP_SUCCESS: 2066 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2067 "Successful Endpoint Configure command"); 2068 ret = 0; 2069 break; 2070 default: 2071 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2072 *cmd_status); 2073 ret = -EINVAL; 2074 break; 2075 } 2076 return ret; 2077 } 2078 2079 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2080 struct usb_device *udev, u32 *cmd_status) 2081 { 2082 int ret; 2083 2084 switch (*cmd_status) { 2085 case COMP_COMMAND_ABORTED: 2086 case COMP_COMMAND_RING_STOPPED: 2087 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2088 ret = -ETIME; 2089 break; 2090 case COMP_PARAMETER_ERROR: 2091 dev_warn(&udev->dev, 2092 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2093 ret = -EINVAL; 2094 break; 2095 case COMP_SLOT_NOT_ENABLED_ERROR: 2096 dev_warn(&udev->dev, 2097 "WARN: slot not enabled for evaluate context command.\n"); 2098 ret = -EINVAL; 2099 break; 2100 case COMP_CONTEXT_STATE_ERROR: 2101 dev_warn(&udev->dev, 2102 "WARN: invalid context state for evaluate context command.\n"); 2103 ret = -EINVAL; 2104 break; 2105 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2106 dev_warn(&udev->dev, 2107 "ERROR: Incompatible device for evaluate context command.\n"); 2108 ret = -ENODEV; 2109 break; 2110 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2111 /* Max Exit Latency too large error */ 2112 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2113 ret = -EINVAL; 2114 break; 2115 case COMP_SUCCESS: 2116 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2117 "Successful evaluate context command"); 2118 ret = 0; 2119 break; 2120 default: 2121 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2122 *cmd_status); 2123 ret = -EINVAL; 2124 break; 2125 } 2126 return ret; 2127 } 2128 2129 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2130 struct xhci_input_control_ctx *ctrl_ctx) 2131 { 2132 u32 valid_add_flags; 2133 u32 valid_drop_flags; 2134 2135 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2136 * (bit 1). The default control endpoint is added during the Address 2137 * Device command and is never removed until the slot is disabled. 2138 */ 2139 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2140 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2141 2142 /* Use hweight32 to count the number of ones in the add flags, or 2143 * number of endpoints added. Don't count endpoints that are changed 2144 * (both added and dropped). 2145 */ 2146 return hweight32(valid_add_flags) - 2147 hweight32(valid_add_flags & valid_drop_flags); 2148 } 2149 2150 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2151 struct xhci_input_control_ctx *ctrl_ctx) 2152 { 2153 u32 valid_add_flags; 2154 u32 valid_drop_flags; 2155 2156 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2157 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2158 2159 return hweight32(valid_drop_flags) - 2160 hweight32(valid_add_flags & valid_drop_flags); 2161 } 2162 2163 /* 2164 * We need to reserve the new number of endpoints before the configure endpoint 2165 * command completes. We can't subtract the dropped endpoints from the number 2166 * of active endpoints until the command completes because we can oversubscribe 2167 * the host in this case: 2168 * 2169 * - the first configure endpoint command drops more endpoints than it adds 2170 * - a second configure endpoint command that adds more endpoints is queued 2171 * - the first configure endpoint command fails, so the config is unchanged 2172 * - the second command may succeed, even though there isn't enough resources 2173 * 2174 * Must be called with xhci->lock held. 2175 */ 2176 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2177 struct xhci_input_control_ctx *ctrl_ctx) 2178 { 2179 u32 added_eps; 2180 2181 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2182 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2183 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2184 "Not enough ep ctxs: " 2185 "%u active, need to add %u, limit is %u.", 2186 xhci->num_active_eps, added_eps, 2187 xhci->limit_active_eps); 2188 return -ENOMEM; 2189 } 2190 xhci->num_active_eps += added_eps; 2191 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2192 "Adding %u ep ctxs, %u now active.", added_eps, 2193 xhci->num_active_eps); 2194 return 0; 2195 } 2196 2197 /* 2198 * The configure endpoint was failed by the xHC for some other reason, so we 2199 * need to revert the resources that failed configuration would have used. 2200 * 2201 * Must be called with xhci->lock held. 2202 */ 2203 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2204 struct xhci_input_control_ctx *ctrl_ctx) 2205 { 2206 u32 num_failed_eps; 2207 2208 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2209 xhci->num_active_eps -= num_failed_eps; 2210 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2211 "Removing %u failed ep ctxs, %u now active.", 2212 num_failed_eps, 2213 xhci->num_active_eps); 2214 } 2215 2216 /* 2217 * Now that the command has completed, clean up the active endpoint count by 2218 * subtracting out the endpoints that were dropped (but not changed). 2219 * 2220 * Must be called with xhci->lock held. 2221 */ 2222 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2223 struct xhci_input_control_ctx *ctrl_ctx) 2224 { 2225 u32 num_dropped_eps; 2226 2227 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2228 xhci->num_active_eps -= num_dropped_eps; 2229 if (num_dropped_eps) 2230 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2231 "Removing %u dropped ep ctxs, %u now active.", 2232 num_dropped_eps, 2233 xhci->num_active_eps); 2234 } 2235 2236 static unsigned int xhci_get_block_size(struct usb_device *udev) 2237 { 2238 switch (udev->speed) { 2239 case USB_SPEED_LOW: 2240 case USB_SPEED_FULL: 2241 return FS_BLOCK; 2242 case USB_SPEED_HIGH: 2243 return HS_BLOCK; 2244 case USB_SPEED_SUPER: 2245 case USB_SPEED_SUPER_PLUS: 2246 return SS_BLOCK; 2247 case USB_SPEED_UNKNOWN: 2248 default: 2249 /* Should never happen */ 2250 return 1; 2251 } 2252 } 2253 2254 static unsigned int 2255 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2256 { 2257 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2258 return LS_OVERHEAD; 2259 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2260 return FS_OVERHEAD; 2261 return HS_OVERHEAD; 2262 } 2263 2264 /* If we are changing a LS/FS device under a HS hub, 2265 * make sure (if we are activating a new TT) that the HS bus has enough 2266 * bandwidth for this new TT. 2267 */ 2268 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2269 struct xhci_virt_device *virt_dev, 2270 int old_active_eps) 2271 { 2272 struct xhci_interval_bw_table *bw_table; 2273 struct xhci_tt_bw_info *tt_info; 2274 2275 /* Find the bandwidth table for the root port this TT is attached to. */ 2276 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table; 2277 tt_info = virt_dev->tt_info; 2278 /* If this TT already had active endpoints, the bandwidth for this TT 2279 * has already been added. Removing all periodic endpoints (and thus 2280 * making the TT enactive) will only decrease the bandwidth used. 2281 */ 2282 if (old_active_eps) 2283 return 0; 2284 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2285 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2286 return -ENOMEM; 2287 return 0; 2288 } 2289 /* Not sure why we would have no new active endpoints... 2290 * 2291 * Maybe because of an Evaluate Context change for a hub update or a 2292 * control endpoint 0 max packet size change? 2293 * FIXME: skip the bandwidth calculation in that case. 2294 */ 2295 return 0; 2296 } 2297 2298 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2299 struct xhci_virt_device *virt_dev) 2300 { 2301 unsigned int bw_reserved; 2302 2303 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2304 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2305 return -ENOMEM; 2306 2307 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2308 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2309 return -ENOMEM; 2310 2311 return 0; 2312 } 2313 2314 /* 2315 * This algorithm is a very conservative estimate of the worst-case scheduling 2316 * scenario for any one interval. The hardware dynamically schedules the 2317 * packets, so we can't tell which microframe could be the limiting factor in 2318 * the bandwidth scheduling. This only takes into account periodic endpoints. 2319 * 2320 * Obviously, we can't solve an NP complete problem to find the minimum worst 2321 * case scenario. Instead, we come up with an estimate that is no less than 2322 * the worst case bandwidth used for any one microframe, but may be an 2323 * over-estimate. 2324 * 2325 * We walk the requirements for each endpoint by interval, starting with the 2326 * smallest interval, and place packets in the schedule where there is only one 2327 * possible way to schedule packets for that interval. In order to simplify 2328 * this algorithm, we record the largest max packet size for each interval, and 2329 * assume all packets will be that size. 2330 * 2331 * For interval 0, we obviously must schedule all packets for each interval. 2332 * The bandwidth for interval 0 is just the amount of data to be transmitted 2333 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2334 * the number of packets). 2335 * 2336 * For interval 1, we have two possible microframes to schedule those packets 2337 * in. For this algorithm, if we can schedule the same number of packets for 2338 * each possible scheduling opportunity (each microframe), we will do so. The 2339 * remaining number of packets will be saved to be transmitted in the gaps in 2340 * the next interval's scheduling sequence. 2341 * 2342 * As we move those remaining packets to be scheduled with interval 2 packets, 2343 * we have to double the number of remaining packets to transmit. This is 2344 * because the intervals are actually powers of 2, and we would be transmitting 2345 * the previous interval's packets twice in this interval. We also have to be 2346 * sure that when we look at the largest max packet size for this interval, we 2347 * also look at the largest max packet size for the remaining packets and take 2348 * the greater of the two. 2349 * 2350 * The algorithm continues to evenly distribute packets in each scheduling 2351 * opportunity, and push the remaining packets out, until we get to the last 2352 * interval. Then those packets and their associated overhead are just added 2353 * to the bandwidth used. 2354 */ 2355 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2356 struct xhci_virt_device *virt_dev, 2357 int old_active_eps) 2358 { 2359 unsigned int bw_reserved; 2360 unsigned int max_bandwidth; 2361 unsigned int bw_used; 2362 unsigned int block_size; 2363 struct xhci_interval_bw_table *bw_table; 2364 unsigned int packet_size = 0; 2365 unsigned int overhead = 0; 2366 unsigned int packets_transmitted = 0; 2367 unsigned int packets_remaining = 0; 2368 unsigned int i; 2369 2370 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2371 return xhci_check_ss_bw(xhci, virt_dev); 2372 2373 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2374 max_bandwidth = HS_BW_LIMIT; 2375 /* Convert percent of bus BW reserved to blocks reserved */ 2376 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2377 } else { 2378 max_bandwidth = FS_BW_LIMIT; 2379 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2380 } 2381 2382 bw_table = virt_dev->bw_table; 2383 /* We need to translate the max packet size and max ESIT payloads into 2384 * the units the hardware uses. 2385 */ 2386 block_size = xhci_get_block_size(virt_dev->udev); 2387 2388 /* If we are manipulating a LS/FS device under a HS hub, double check 2389 * that the HS bus has enough bandwidth if we are activing a new TT. 2390 */ 2391 if (virt_dev->tt_info) { 2392 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2393 "Recalculating BW for rootport %u", 2394 virt_dev->rhub_port->hw_portnum + 1); 2395 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2396 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2397 "newly activated TT.\n"); 2398 return -ENOMEM; 2399 } 2400 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2401 "Recalculating BW for TT slot %u port %u", 2402 virt_dev->tt_info->slot_id, 2403 virt_dev->tt_info->ttport); 2404 } else { 2405 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2406 "Recalculating BW for rootport %u", 2407 virt_dev->rhub_port->hw_portnum + 1); 2408 } 2409 2410 /* Add in how much bandwidth will be used for interval zero, or the 2411 * rounded max ESIT payload + number of packets * largest overhead. 2412 */ 2413 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2414 bw_table->interval_bw[0].num_packets * 2415 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2416 2417 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2418 unsigned int bw_added; 2419 unsigned int largest_mps; 2420 unsigned int interval_overhead; 2421 2422 /* 2423 * How many packets could we transmit in this interval? 2424 * If packets didn't fit in the previous interval, we will need 2425 * to transmit that many packets twice within this interval. 2426 */ 2427 packets_remaining = 2 * packets_remaining + 2428 bw_table->interval_bw[i].num_packets; 2429 2430 /* Find the largest max packet size of this or the previous 2431 * interval. 2432 */ 2433 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2434 largest_mps = 0; 2435 else { 2436 struct xhci_virt_ep *virt_ep; 2437 struct list_head *ep_entry; 2438 2439 ep_entry = bw_table->interval_bw[i].endpoints.next; 2440 virt_ep = list_entry(ep_entry, 2441 struct xhci_virt_ep, bw_endpoint_list); 2442 /* Convert to blocks, rounding up */ 2443 largest_mps = DIV_ROUND_UP( 2444 virt_ep->bw_info.max_packet_size, 2445 block_size); 2446 } 2447 if (largest_mps > packet_size) 2448 packet_size = largest_mps; 2449 2450 /* Use the larger overhead of this or the previous interval. */ 2451 interval_overhead = xhci_get_largest_overhead( 2452 &bw_table->interval_bw[i]); 2453 if (interval_overhead > overhead) 2454 overhead = interval_overhead; 2455 2456 /* How many packets can we evenly distribute across 2457 * (1 << (i + 1)) possible scheduling opportunities? 2458 */ 2459 packets_transmitted = packets_remaining >> (i + 1); 2460 2461 /* Add in the bandwidth used for those scheduled packets */ 2462 bw_added = packets_transmitted * (overhead + packet_size); 2463 2464 /* How many packets do we have remaining to transmit? */ 2465 packets_remaining = packets_remaining % (1 << (i + 1)); 2466 2467 /* What largest max packet size should those packets have? */ 2468 /* If we've transmitted all packets, don't carry over the 2469 * largest packet size. 2470 */ 2471 if (packets_remaining == 0) { 2472 packet_size = 0; 2473 overhead = 0; 2474 } else if (packets_transmitted > 0) { 2475 /* Otherwise if we do have remaining packets, and we've 2476 * scheduled some packets in this interval, take the 2477 * largest max packet size from endpoints with this 2478 * interval. 2479 */ 2480 packet_size = largest_mps; 2481 overhead = interval_overhead; 2482 } 2483 /* Otherwise carry over packet_size and overhead from the last 2484 * time we had a remainder. 2485 */ 2486 bw_used += bw_added; 2487 if (bw_used > max_bandwidth) { 2488 xhci_warn(xhci, "Not enough bandwidth. " 2489 "Proposed: %u, Max: %u\n", 2490 bw_used, max_bandwidth); 2491 return -ENOMEM; 2492 } 2493 } 2494 /* 2495 * Ok, we know we have some packets left over after even-handedly 2496 * scheduling interval 15. We don't know which microframes they will 2497 * fit into, so we over-schedule and say they will be scheduled every 2498 * microframe. 2499 */ 2500 if (packets_remaining > 0) 2501 bw_used += overhead + packet_size; 2502 2503 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2504 /* OK, we're manipulating a HS device attached to a 2505 * root port bandwidth domain. Include the number of active TTs 2506 * in the bandwidth used. 2507 */ 2508 bw_used += TT_HS_OVERHEAD * 2509 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts; 2510 } 2511 2512 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2513 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2514 "Available: %u " "percent", 2515 bw_used, max_bandwidth, bw_reserved, 2516 (max_bandwidth - bw_used - bw_reserved) * 100 / 2517 max_bandwidth); 2518 2519 bw_used += bw_reserved; 2520 if (bw_used > max_bandwidth) { 2521 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2522 bw_used, max_bandwidth); 2523 return -ENOMEM; 2524 } 2525 2526 bw_table->bw_used = bw_used; 2527 return 0; 2528 } 2529 2530 static bool xhci_is_async_ep(unsigned int ep_type) 2531 { 2532 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2533 ep_type != ISOC_IN_EP && 2534 ep_type != INT_IN_EP); 2535 } 2536 2537 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2538 { 2539 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2540 } 2541 2542 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2543 { 2544 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2545 2546 if (ep_bw->ep_interval == 0) 2547 return SS_OVERHEAD_BURST + 2548 (ep_bw->mult * ep_bw->num_packets * 2549 (SS_OVERHEAD + mps)); 2550 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2551 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2552 1 << ep_bw->ep_interval); 2553 2554 } 2555 2556 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2557 struct xhci_bw_info *ep_bw, 2558 struct xhci_interval_bw_table *bw_table, 2559 struct usb_device *udev, 2560 struct xhci_virt_ep *virt_ep, 2561 struct xhci_tt_bw_info *tt_info) 2562 { 2563 struct xhci_interval_bw *interval_bw; 2564 int normalized_interval; 2565 2566 if (xhci_is_async_ep(ep_bw->type)) 2567 return; 2568 2569 if (udev->speed >= USB_SPEED_SUPER) { 2570 if (xhci_is_sync_in_ep(ep_bw->type)) 2571 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2572 xhci_get_ss_bw_consumed(ep_bw); 2573 else 2574 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2575 xhci_get_ss_bw_consumed(ep_bw); 2576 return; 2577 } 2578 2579 /* SuperSpeed endpoints never get added to intervals in the table, so 2580 * this check is only valid for HS/FS/LS devices. 2581 */ 2582 if (list_empty(&virt_ep->bw_endpoint_list)) 2583 return; 2584 /* For LS/FS devices, we need to translate the interval expressed in 2585 * microframes to frames. 2586 */ 2587 if (udev->speed == USB_SPEED_HIGH) 2588 normalized_interval = ep_bw->ep_interval; 2589 else 2590 normalized_interval = ep_bw->ep_interval - 3; 2591 2592 if (normalized_interval == 0) 2593 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2594 interval_bw = &bw_table->interval_bw[normalized_interval]; 2595 interval_bw->num_packets -= ep_bw->num_packets; 2596 switch (udev->speed) { 2597 case USB_SPEED_LOW: 2598 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2599 break; 2600 case USB_SPEED_FULL: 2601 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2602 break; 2603 case USB_SPEED_HIGH: 2604 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2605 break; 2606 default: 2607 /* Should never happen because only LS/FS/HS endpoints will get 2608 * added to the endpoint list. 2609 */ 2610 return; 2611 } 2612 if (tt_info) 2613 tt_info->active_eps -= 1; 2614 list_del_init(&virt_ep->bw_endpoint_list); 2615 } 2616 2617 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2618 struct xhci_bw_info *ep_bw, 2619 struct xhci_interval_bw_table *bw_table, 2620 struct usb_device *udev, 2621 struct xhci_virt_ep *virt_ep, 2622 struct xhci_tt_bw_info *tt_info) 2623 { 2624 struct xhci_interval_bw *interval_bw; 2625 struct xhci_virt_ep *smaller_ep; 2626 int normalized_interval; 2627 2628 if (xhci_is_async_ep(ep_bw->type)) 2629 return; 2630 2631 if (udev->speed == USB_SPEED_SUPER) { 2632 if (xhci_is_sync_in_ep(ep_bw->type)) 2633 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2634 xhci_get_ss_bw_consumed(ep_bw); 2635 else 2636 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2637 xhci_get_ss_bw_consumed(ep_bw); 2638 return; 2639 } 2640 2641 /* For LS/FS devices, we need to translate the interval expressed in 2642 * microframes to frames. 2643 */ 2644 if (udev->speed == USB_SPEED_HIGH) 2645 normalized_interval = ep_bw->ep_interval; 2646 else 2647 normalized_interval = ep_bw->ep_interval - 3; 2648 2649 if (normalized_interval == 0) 2650 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2651 interval_bw = &bw_table->interval_bw[normalized_interval]; 2652 interval_bw->num_packets += ep_bw->num_packets; 2653 switch (udev->speed) { 2654 case USB_SPEED_LOW: 2655 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2656 break; 2657 case USB_SPEED_FULL: 2658 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2659 break; 2660 case USB_SPEED_HIGH: 2661 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2662 break; 2663 default: 2664 /* Should never happen because only LS/FS/HS endpoints will get 2665 * added to the endpoint list. 2666 */ 2667 return; 2668 } 2669 2670 if (tt_info) 2671 tt_info->active_eps += 1; 2672 /* Insert the endpoint into the list, largest max packet size first. */ 2673 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2674 bw_endpoint_list) { 2675 if (ep_bw->max_packet_size >= 2676 smaller_ep->bw_info.max_packet_size) { 2677 /* Add the new ep before the smaller endpoint */ 2678 list_add_tail(&virt_ep->bw_endpoint_list, 2679 &smaller_ep->bw_endpoint_list); 2680 return; 2681 } 2682 } 2683 /* Add the new endpoint at the end of the list. */ 2684 list_add_tail(&virt_ep->bw_endpoint_list, 2685 &interval_bw->endpoints); 2686 } 2687 2688 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2689 struct xhci_virt_device *virt_dev, 2690 int old_active_eps) 2691 { 2692 struct xhci_root_port_bw_info *rh_bw_info; 2693 if (!virt_dev->tt_info) 2694 return; 2695 2696 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum]; 2697 if (old_active_eps == 0 && 2698 virt_dev->tt_info->active_eps != 0) { 2699 rh_bw_info->num_active_tts += 1; 2700 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2701 } else if (old_active_eps != 0 && 2702 virt_dev->tt_info->active_eps == 0) { 2703 rh_bw_info->num_active_tts -= 1; 2704 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2705 } 2706 } 2707 2708 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2709 struct xhci_virt_device *virt_dev, 2710 struct xhci_container_ctx *in_ctx) 2711 { 2712 struct xhci_bw_info ep_bw_info[31]; 2713 int i; 2714 struct xhci_input_control_ctx *ctrl_ctx; 2715 int old_active_eps = 0; 2716 2717 if (virt_dev->tt_info) 2718 old_active_eps = virt_dev->tt_info->active_eps; 2719 2720 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2721 if (!ctrl_ctx) { 2722 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2723 __func__); 2724 return -ENOMEM; 2725 } 2726 2727 for (i = 0; i < 31; i++) { 2728 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2729 continue; 2730 2731 /* Make a copy of the BW info in case we need to revert this */ 2732 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2733 sizeof(ep_bw_info[i])); 2734 /* Drop the endpoint from the interval table if the endpoint is 2735 * being dropped or changed. 2736 */ 2737 if (EP_IS_DROPPED(ctrl_ctx, i)) 2738 xhci_drop_ep_from_interval_table(xhci, 2739 &virt_dev->eps[i].bw_info, 2740 virt_dev->bw_table, 2741 virt_dev->udev, 2742 &virt_dev->eps[i], 2743 virt_dev->tt_info); 2744 } 2745 /* Overwrite the information stored in the endpoints' bw_info */ 2746 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2747 for (i = 0; i < 31; i++) { 2748 /* Add any changed or added endpoints to the interval table */ 2749 if (EP_IS_ADDED(ctrl_ctx, i)) 2750 xhci_add_ep_to_interval_table(xhci, 2751 &virt_dev->eps[i].bw_info, 2752 virt_dev->bw_table, 2753 virt_dev->udev, 2754 &virt_dev->eps[i], 2755 virt_dev->tt_info); 2756 } 2757 2758 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2759 /* Ok, this fits in the bandwidth we have. 2760 * Update the number of active TTs. 2761 */ 2762 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2763 return 0; 2764 } 2765 2766 /* We don't have enough bandwidth for this, revert the stored info. */ 2767 for (i = 0; i < 31; i++) { 2768 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2769 continue; 2770 2771 /* Drop the new copies of any added or changed endpoints from 2772 * the interval table. 2773 */ 2774 if (EP_IS_ADDED(ctrl_ctx, i)) { 2775 xhci_drop_ep_from_interval_table(xhci, 2776 &virt_dev->eps[i].bw_info, 2777 virt_dev->bw_table, 2778 virt_dev->udev, 2779 &virt_dev->eps[i], 2780 virt_dev->tt_info); 2781 } 2782 /* Revert the endpoint back to its old information */ 2783 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2784 sizeof(ep_bw_info[i])); 2785 /* Add any changed or dropped endpoints back into the table */ 2786 if (EP_IS_DROPPED(ctrl_ctx, i)) 2787 xhci_add_ep_to_interval_table(xhci, 2788 &virt_dev->eps[i].bw_info, 2789 virt_dev->bw_table, 2790 virt_dev->udev, 2791 &virt_dev->eps[i], 2792 virt_dev->tt_info); 2793 } 2794 return -ENOMEM; 2795 } 2796 2797 /* 2798 * Synchronous XHCI stop endpoint helper. Issues the stop endpoint command and 2799 * waits for the command completion before returning. This does not call 2800 * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error' 2801 * cases, along with transfer ring cleanup. 2802 * 2803 * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage 2804 * their own transfer ring, such as offload situations. 2805 */ 2806 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend, 2807 gfp_t gfp_flags) 2808 { 2809 struct xhci_command *command; 2810 unsigned long flags; 2811 int ret; 2812 2813 command = xhci_alloc_command(xhci, true, gfp_flags); 2814 if (!command) 2815 return -ENOMEM; 2816 2817 spin_lock_irqsave(&xhci->lock, flags); 2818 ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id, 2819 ep->ep_index, suspend); 2820 if (ret < 0) { 2821 spin_unlock_irqrestore(&xhci->lock, flags); 2822 goto out; 2823 } 2824 2825 xhci_ring_cmd_db(xhci); 2826 spin_unlock_irqrestore(&xhci->lock, flags); 2827 2828 wait_for_completion(command->completion); 2829 2830 /* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/ 2831 if (command->status == COMP_COMMAND_ABORTED || 2832 command->status == COMP_COMMAND_RING_STOPPED) { 2833 xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n"); 2834 ret = -ETIME; 2835 } 2836 out: 2837 xhci_free_command(xhci, command); 2838 2839 return ret; 2840 } 2841 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync); 2842 2843 /* Issue a configure endpoint command or evaluate context command 2844 * and wait for it to finish. 2845 */ 2846 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2847 struct usb_device *udev, 2848 struct xhci_command *command, 2849 bool ctx_change, bool must_succeed) 2850 { 2851 int ret; 2852 unsigned long flags; 2853 struct xhci_input_control_ctx *ctrl_ctx; 2854 struct xhci_virt_device *virt_dev; 2855 struct xhci_slot_ctx *slot_ctx; 2856 2857 if (!command) 2858 return -EINVAL; 2859 2860 spin_lock_irqsave(&xhci->lock, flags); 2861 2862 if (xhci->xhc_state & XHCI_STATE_DYING) { 2863 spin_unlock_irqrestore(&xhci->lock, flags); 2864 return -ESHUTDOWN; 2865 } 2866 2867 virt_dev = xhci->devs[udev->slot_id]; 2868 2869 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2870 if (!ctrl_ctx) { 2871 spin_unlock_irqrestore(&xhci->lock, flags); 2872 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2873 __func__); 2874 return -ENOMEM; 2875 } 2876 2877 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2878 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2879 spin_unlock_irqrestore(&xhci->lock, flags); 2880 xhci_warn(xhci, "Not enough host resources, " 2881 "active endpoint contexts = %u\n", 2882 xhci->num_active_eps); 2883 return -ENOMEM; 2884 } 2885 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change && 2886 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2887 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2888 xhci_free_host_resources(xhci, ctrl_ctx); 2889 spin_unlock_irqrestore(&xhci->lock, flags); 2890 xhci_warn(xhci, "Not enough bandwidth\n"); 2891 return -ENOMEM; 2892 } 2893 2894 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2895 2896 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2897 trace_xhci_configure_endpoint(slot_ctx); 2898 2899 if (!ctx_change) 2900 ret = xhci_queue_configure_endpoint(xhci, command, 2901 command->in_ctx->dma, 2902 udev->slot_id, must_succeed); 2903 else 2904 ret = xhci_queue_evaluate_context(xhci, command, 2905 command->in_ctx->dma, 2906 udev->slot_id, must_succeed); 2907 if (ret < 0) { 2908 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2909 xhci_free_host_resources(xhci, ctrl_ctx); 2910 spin_unlock_irqrestore(&xhci->lock, flags); 2911 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2912 "FIXME allocate a new ring segment"); 2913 return -ENOMEM; 2914 } 2915 xhci_ring_cmd_db(xhci); 2916 spin_unlock_irqrestore(&xhci->lock, flags); 2917 2918 /* Wait for the configure endpoint command to complete */ 2919 wait_for_completion(command->completion); 2920 2921 if (!ctx_change) 2922 ret = xhci_configure_endpoint_result(xhci, udev, 2923 &command->status); 2924 else 2925 ret = xhci_evaluate_context_result(xhci, udev, 2926 &command->status); 2927 2928 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2929 spin_lock_irqsave(&xhci->lock, flags); 2930 /* If the command failed, remove the reserved resources. 2931 * Otherwise, clean up the estimate to include dropped eps. 2932 */ 2933 if (ret) 2934 xhci_free_host_resources(xhci, ctrl_ctx); 2935 else 2936 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2937 spin_unlock_irqrestore(&xhci->lock, flags); 2938 } 2939 return ret; 2940 } 2941 2942 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2943 struct xhci_virt_device *vdev, int i) 2944 { 2945 struct xhci_virt_ep *ep = &vdev->eps[i]; 2946 2947 if (ep->ep_state & EP_HAS_STREAMS) { 2948 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2949 xhci_get_endpoint_address(i)); 2950 xhci_free_stream_info(xhci, ep->stream_info); 2951 ep->stream_info = NULL; 2952 ep->ep_state &= ~EP_HAS_STREAMS; 2953 } 2954 } 2955 2956 /* Called after one or more calls to xhci_add_endpoint() or 2957 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2958 * to call xhci_reset_bandwidth(). 2959 * 2960 * Since we are in the middle of changing either configuration or 2961 * installing a new alt setting, the USB core won't allow URBs to be 2962 * enqueued for any endpoint on the old config or interface. Nothing 2963 * else should be touching the xhci->devs[slot_id] structure, so we 2964 * don't need to take the xhci->lock for manipulating that. 2965 */ 2966 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2967 { 2968 int i; 2969 int ret = 0; 2970 struct xhci_hcd *xhci; 2971 struct xhci_virt_device *virt_dev; 2972 struct xhci_input_control_ctx *ctrl_ctx; 2973 struct xhci_slot_ctx *slot_ctx; 2974 struct xhci_command *command; 2975 2976 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2977 if (ret <= 0) 2978 return ret; 2979 xhci = hcd_to_xhci(hcd); 2980 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2981 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2982 return -ENODEV; 2983 2984 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2985 virt_dev = xhci->devs[udev->slot_id]; 2986 2987 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2988 if (!command) 2989 return -ENOMEM; 2990 2991 command->in_ctx = virt_dev->in_ctx; 2992 2993 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2994 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2995 if (!ctrl_ctx) { 2996 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2997 __func__); 2998 ret = -ENOMEM; 2999 goto command_cleanup; 3000 } 3001 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3002 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3003 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3004 3005 /* Don't issue the command if there's no endpoints to update. */ 3006 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3007 ctrl_ctx->drop_flags == 0) { 3008 ret = 0; 3009 goto command_cleanup; 3010 } 3011 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3012 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3013 for (i = 31; i >= 1; i--) { 3014 __le32 le32 = cpu_to_le32(BIT(i)); 3015 3016 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3017 || (ctrl_ctx->add_flags & le32) || i == 1) { 3018 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3019 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3020 break; 3021 } 3022 } 3023 3024 ret = xhci_configure_endpoint(xhci, udev, command, 3025 false, false); 3026 if (ret) 3027 /* Callee should call reset_bandwidth() */ 3028 goto command_cleanup; 3029 3030 /* Free any rings that were dropped, but not changed. */ 3031 for (i = 1; i < 31; i++) { 3032 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3033 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3034 xhci_free_endpoint_ring(xhci, virt_dev, i); 3035 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3036 } 3037 } 3038 xhci_zero_in_ctx(xhci, virt_dev); 3039 /* 3040 * Install any rings for completely new endpoints or changed endpoints, 3041 * and free any old rings from changed endpoints. 3042 */ 3043 for (i = 1; i < 31; i++) { 3044 if (!virt_dev->eps[i].new_ring) 3045 continue; 3046 /* Only free the old ring if it exists. 3047 * It may not if this is the first add of an endpoint. 3048 */ 3049 if (virt_dev->eps[i].ring) { 3050 xhci_free_endpoint_ring(xhci, virt_dev, i); 3051 } 3052 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3053 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3054 virt_dev->eps[i].new_ring = NULL; 3055 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3056 } 3057 command_cleanup: 3058 kfree(command->completion); 3059 kfree(command); 3060 3061 return ret; 3062 } 3063 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3064 3065 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3066 { 3067 struct xhci_hcd *xhci; 3068 struct xhci_virt_device *virt_dev; 3069 int i, ret; 3070 3071 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3072 if (ret <= 0) 3073 return; 3074 xhci = hcd_to_xhci(hcd); 3075 3076 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3077 virt_dev = xhci->devs[udev->slot_id]; 3078 /* Free any rings allocated for added endpoints */ 3079 for (i = 0; i < 31; i++) { 3080 if (virt_dev->eps[i].new_ring) { 3081 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3082 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3083 virt_dev->eps[i].new_ring = NULL; 3084 } 3085 } 3086 xhci_zero_in_ctx(xhci, virt_dev); 3087 } 3088 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3089 3090 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3091 struct xhci_container_ctx *in_ctx, 3092 struct xhci_container_ctx *out_ctx, 3093 struct xhci_input_control_ctx *ctrl_ctx, 3094 u32 add_flags, u32 drop_flags) 3095 { 3096 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3097 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3098 xhci_slot_copy(xhci, in_ctx, out_ctx); 3099 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3100 } 3101 3102 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3103 struct usb_host_endpoint *host_ep) 3104 { 3105 struct xhci_hcd *xhci; 3106 struct xhci_virt_device *vdev; 3107 struct xhci_virt_ep *ep; 3108 struct usb_device *udev; 3109 unsigned long flags; 3110 unsigned int ep_index; 3111 3112 xhci = hcd_to_xhci(hcd); 3113 rescan: 3114 spin_lock_irqsave(&xhci->lock, flags); 3115 3116 udev = (struct usb_device *)host_ep->hcpriv; 3117 if (!udev || !udev->slot_id) 3118 goto done; 3119 3120 vdev = xhci->devs[udev->slot_id]; 3121 if (!vdev) 3122 goto done; 3123 3124 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3125 ep = &vdev->eps[ep_index]; 3126 3127 /* wait for hub_tt_work to finish clearing hub TT */ 3128 if (ep->ep_state & EP_CLEARING_TT) { 3129 spin_unlock_irqrestore(&xhci->lock, flags); 3130 schedule_timeout_uninterruptible(1); 3131 goto rescan; 3132 } 3133 3134 if (ep->ep_state) 3135 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3136 ep->ep_state); 3137 done: 3138 host_ep->hcpriv = NULL; 3139 spin_unlock_irqrestore(&xhci->lock, flags); 3140 } 3141 3142 /* 3143 * Called after usb core issues a clear halt control message. 3144 * The host side of the halt should already be cleared by a reset endpoint 3145 * command issued when the STALL event was received. 3146 * 3147 * The reset endpoint command may only be issued to endpoints in the halted 3148 * state. For software that wishes to reset the data toggle or sequence number 3149 * of an endpoint that isn't in the halted state this function will issue a 3150 * configure endpoint command with the Drop and Add bits set for the target 3151 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3152 * 3153 * vdev may be lost due to xHC restore error and re-initialization during S3/S4 3154 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device() 3155 */ 3156 3157 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3158 struct usb_host_endpoint *host_ep) 3159 { 3160 struct xhci_hcd *xhci; 3161 struct usb_device *udev; 3162 struct xhci_virt_device *vdev; 3163 struct xhci_virt_ep *ep; 3164 struct xhci_input_control_ctx *ctrl_ctx; 3165 struct xhci_command *stop_cmd, *cfg_cmd; 3166 unsigned int ep_index; 3167 unsigned long flags; 3168 u32 ep_flag; 3169 int err; 3170 3171 xhci = hcd_to_xhci(hcd); 3172 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3173 3174 /* 3175 * Usb core assumes a max packet value for ep0 on FS devices until the 3176 * real value is read from the descriptor. Core resets Ep0 if values 3177 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case 3178 */ 3179 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) { 3180 3181 udev = container_of(host_ep, struct usb_device, ep0); 3182 if (udev->speed != USB_SPEED_FULL || !udev->slot_id) 3183 return; 3184 3185 vdev = xhci->devs[udev->slot_id]; 3186 if (!vdev || vdev->udev != udev) 3187 return; 3188 3189 xhci_check_ep0_maxpacket(xhci, vdev); 3190 3191 /* Nothing else should be done here for ep0 during ep reset */ 3192 return; 3193 } 3194 3195 if (!host_ep->hcpriv) 3196 return; 3197 udev = (struct usb_device *) host_ep->hcpriv; 3198 vdev = xhci->devs[udev->slot_id]; 3199 3200 if (!udev->slot_id || !vdev) 3201 return; 3202 3203 ep = &vdev->eps[ep_index]; 3204 3205 /* Bail out if toggle is already being cleared by a endpoint reset */ 3206 spin_lock_irqsave(&xhci->lock, flags); 3207 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3208 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3209 spin_unlock_irqrestore(&xhci->lock, flags); 3210 return; 3211 } 3212 spin_unlock_irqrestore(&xhci->lock, flags); 3213 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3214 if (usb_endpoint_xfer_control(&host_ep->desc) || 3215 usb_endpoint_xfer_isoc(&host_ep->desc)) 3216 return; 3217 3218 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3219 3220 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3221 return; 3222 3223 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3224 if (!stop_cmd) 3225 return; 3226 3227 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3228 if (!cfg_cmd) 3229 goto cleanup; 3230 3231 spin_lock_irqsave(&xhci->lock, flags); 3232 3233 /* block queuing new trbs and ringing ep doorbell */ 3234 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3235 3236 /* 3237 * Make sure endpoint ring is empty before resetting the toggle/seq. 3238 * Driver is required to synchronously cancel all transfer request. 3239 * Stop the endpoint to force xHC to update the output context 3240 */ 3241 3242 if (!list_empty(&ep->ring->td_list)) { 3243 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3244 spin_unlock_irqrestore(&xhci->lock, flags); 3245 xhci_free_command(xhci, cfg_cmd); 3246 goto cleanup; 3247 } 3248 3249 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3250 ep_index, 0); 3251 if (err < 0) { 3252 spin_unlock_irqrestore(&xhci->lock, flags); 3253 xhci_free_command(xhci, cfg_cmd); 3254 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3255 __func__, err); 3256 goto cleanup; 3257 } 3258 3259 xhci_ring_cmd_db(xhci); 3260 spin_unlock_irqrestore(&xhci->lock, flags); 3261 3262 wait_for_completion(stop_cmd->completion); 3263 3264 spin_lock_irqsave(&xhci->lock, flags); 3265 3266 /* config ep command clears toggle if add and drop ep flags are set */ 3267 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3268 if (!ctrl_ctx) { 3269 spin_unlock_irqrestore(&xhci->lock, flags); 3270 xhci_free_command(xhci, cfg_cmd); 3271 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3272 __func__); 3273 goto cleanup; 3274 } 3275 3276 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3277 ctrl_ctx, ep_flag, ep_flag); 3278 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3279 3280 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3281 udev->slot_id, false); 3282 if (err < 0) { 3283 spin_unlock_irqrestore(&xhci->lock, flags); 3284 xhci_free_command(xhci, cfg_cmd); 3285 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3286 __func__, err); 3287 goto cleanup; 3288 } 3289 3290 xhci_ring_cmd_db(xhci); 3291 spin_unlock_irqrestore(&xhci->lock, flags); 3292 3293 wait_for_completion(cfg_cmd->completion); 3294 3295 xhci_free_command(xhci, cfg_cmd); 3296 cleanup: 3297 xhci_free_command(xhci, stop_cmd); 3298 spin_lock_irqsave(&xhci->lock, flags); 3299 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3300 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3301 spin_unlock_irqrestore(&xhci->lock, flags); 3302 } 3303 3304 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3305 struct usb_device *udev, struct usb_host_endpoint *ep, 3306 unsigned int slot_id) 3307 { 3308 int ret; 3309 unsigned int ep_index; 3310 unsigned int ep_state; 3311 3312 if (!ep) 3313 return -EINVAL; 3314 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3315 if (ret <= 0) 3316 return ret ? ret : -EINVAL; 3317 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3318 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3319 " descriptor for ep 0x%x does not support streams\n", 3320 ep->desc.bEndpointAddress); 3321 return -EINVAL; 3322 } 3323 3324 ep_index = xhci_get_endpoint_index(&ep->desc); 3325 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3326 if (ep_state & EP_HAS_STREAMS || 3327 ep_state & EP_GETTING_STREAMS) { 3328 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3329 "already has streams set up.\n", 3330 ep->desc.bEndpointAddress); 3331 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3332 "dynamic stream context array reallocation.\n"); 3333 return -EINVAL; 3334 } 3335 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3336 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3337 "endpoint 0x%x; URBs are pending.\n", 3338 ep->desc.bEndpointAddress); 3339 return -EINVAL; 3340 } 3341 return 0; 3342 } 3343 3344 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3345 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3346 { 3347 unsigned int max_streams; 3348 3349 /* The stream context array size must be a power of two */ 3350 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3351 /* 3352 * Find out how many primary stream array entries the host controller 3353 * supports. Later we may use secondary stream arrays (similar to 2nd 3354 * level page entries), but that's an optional feature for xHCI host 3355 * controllers. xHCs must support at least 4 stream IDs. 3356 */ 3357 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3358 if (*num_stream_ctxs > max_streams) { 3359 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3360 max_streams); 3361 *num_stream_ctxs = max_streams; 3362 *num_streams = max_streams; 3363 } 3364 } 3365 3366 /* Returns an error code if one of the endpoint already has streams. 3367 * This does not change any data structures, it only checks and gathers 3368 * information. 3369 */ 3370 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3371 struct usb_device *udev, 3372 struct usb_host_endpoint **eps, unsigned int num_eps, 3373 unsigned int *num_streams, u32 *changed_ep_bitmask) 3374 { 3375 unsigned int max_streams; 3376 unsigned int endpoint_flag; 3377 int i; 3378 int ret; 3379 3380 for (i = 0; i < num_eps; i++) { 3381 ret = xhci_check_streams_endpoint(xhci, udev, 3382 eps[i], udev->slot_id); 3383 if (ret < 0) 3384 return ret; 3385 3386 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3387 if (max_streams < (*num_streams - 1)) { 3388 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3389 eps[i]->desc.bEndpointAddress, 3390 max_streams); 3391 *num_streams = max_streams+1; 3392 } 3393 3394 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3395 if (*changed_ep_bitmask & endpoint_flag) 3396 return -EINVAL; 3397 *changed_ep_bitmask |= endpoint_flag; 3398 } 3399 return 0; 3400 } 3401 3402 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3403 struct usb_device *udev, 3404 struct usb_host_endpoint **eps, unsigned int num_eps) 3405 { 3406 u32 changed_ep_bitmask = 0; 3407 unsigned int slot_id; 3408 unsigned int ep_index; 3409 unsigned int ep_state; 3410 int i; 3411 3412 slot_id = udev->slot_id; 3413 if (!xhci->devs[slot_id]) 3414 return 0; 3415 3416 for (i = 0; i < num_eps; i++) { 3417 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3418 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3419 /* Are streams already being freed for the endpoint? */ 3420 if (ep_state & EP_GETTING_NO_STREAMS) { 3421 xhci_warn(xhci, "WARN Can't disable streams for " 3422 "endpoint 0x%x, " 3423 "streams are being disabled already\n", 3424 eps[i]->desc.bEndpointAddress); 3425 return 0; 3426 } 3427 /* Are there actually any streams to free? */ 3428 if (!(ep_state & EP_HAS_STREAMS) && 3429 !(ep_state & EP_GETTING_STREAMS)) { 3430 xhci_warn(xhci, "WARN Can't disable streams for " 3431 "endpoint 0x%x, " 3432 "streams are already disabled!\n", 3433 eps[i]->desc.bEndpointAddress); 3434 xhci_warn(xhci, "WARN xhci_free_streams() called " 3435 "with non-streams endpoint\n"); 3436 return 0; 3437 } 3438 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3439 } 3440 return changed_ep_bitmask; 3441 } 3442 3443 /* 3444 * The USB device drivers use this function (through the HCD interface in USB 3445 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3446 * coordinate mass storage command queueing across multiple endpoints (basically 3447 * a stream ID == a task ID). 3448 * 3449 * Setting up streams involves allocating the same size stream context array 3450 * for each endpoint and issuing a configure endpoint command for all endpoints. 3451 * 3452 * Don't allow the call to succeed if one endpoint only supports one stream 3453 * (which means it doesn't support streams at all). 3454 * 3455 * Drivers may get less stream IDs than they asked for, if the host controller 3456 * hardware or endpoints claim they can't support the number of requested 3457 * stream IDs. 3458 */ 3459 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3460 struct usb_host_endpoint **eps, unsigned int num_eps, 3461 unsigned int num_streams, gfp_t mem_flags) 3462 { 3463 int i, ret; 3464 struct xhci_hcd *xhci; 3465 struct xhci_virt_device *vdev; 3466 struct xhci_command *config_cmd; 3467 struct xhci_input_control_ctx *ctrl_ctx; 3468 unsigned int ep_index; 3469 unsigned int num_stream_ctxs; 3470 unsigned int max_packet; 3471 unsigned long flags; 3472 u32 changed_ep_bitmask = 0; 3473 3474 if (!eps) 3475 return -EINVAL; 3476 3477 /* Add one to the number of streams requested to account for 3478 * stream 0 that is reserved for xHCI usage. 3479 */ 3480 num_streams += 1; 3481 xhci = hcd_to_xhci(hcd); 3482 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3483 num_streams); 3484 3485 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3486 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3487 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3488 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3489 return -ENOSYS; 3490 } 3491 3492 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3493 if (!config_cmd) 3494 return -ENOMEM; 3495 3496 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3497 if (!ctrl_ctx) { 3498 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3499 __func__); 3500 xhci_free_command(xhci, config_cmd); 3501 return -ENOMEM; 3502 } 3503 3504 /* Check to make sure all endpoints are not already configured for 3505 * streams. While we're at it, find the maximum number of streams that 3506 * all the endpoints will support and check for duplicate endpoints. 3507 */ 3508 spin_lock_irqsave(&xhci->lock, flags); 3509 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3510 num_eps, &num_streams, &changed_ep_bitmask); 3511 if (ret < 0) { 3512 xhci_free_command(xhci, config_cmd); 3513 spin_unlock_irqrestore(&xhci->lock, flags); 3514 return ret; 3515 } 3516 if (num_streams <= 1) { 3517 xhci_warn(xhci, "WARN: endpoints can't handle " 3518 "more than one stream.\n"); 3519 xhci_free_command(xhci, config_cmd); 3520 spin_unlock_irqrestore(&xhci->lock, flags); 3521 return -EINVAL; 3522 } 3523 vdev = xhci->devs[udev->slot_id]; 3524 /* Mark each endpoint as being in transition, so 3525 * xhci_urb_enqueue() will reject all URBs. 3526 */ 3527 for (i = 0; i < num_eps; i++) { 3528 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3529 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3530 } 3531 spin_unlock_irqrestore(&xhci->lock, flags); 3532 3533 /* Setup internal data structures and allocate HW data structures for 3534 * streams (but don't install the HW structures in the input context 3535 * until we're sure all memory allocation succeeded). 3536 */ 3537 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3538 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3539 num_stream_ctxs, num_streams); 3540 3541 for (i = 0; i < num_eps; i++) { 3542 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3543 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3544 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3545 num_stream_ctxs, 3546 num_streams, 3547 max_packet, mem_flags); 3548 if (!vdev->eps[ep_index].stream_info) 3549 goto cleanup; 3550 /* Set maxPstreams in endpoint context and update deq ptr to 3551 * point to stream context array. FIXME 3552 */ 3553 } 3554 3555 /* Set up the input context for a configure endpoint command. */ 3556 for (i = 0; i < num_eps; i++) { 3557 struct xhci_ep_ctx *ep_ctx; 3558 3559 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3560 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3561 3562 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3563 vdev->out_ctx, ep_index); 3564 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3565 vdev->eps[ep_index].stream_info); 3566 } 3567 /* Tell the HW to drop its old copy of the endpoint context info 3568 * and add the updated copy from the input context. 3569 */ 3570 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3571 vdev->out_ctx, ctrl_ctx, 3572 changed_ep_bitmask, changed_ep_bitmask); 3573 3574 /* Issue and wait for the configure endpoint command */ 3575 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3576 false, false); 3577 3578 /* xHC rejected the configure endpoint command for some reason, so we 3579 * leave the old ring intact and free our internal streams data 3580 * structure. 3581 */ 3582 if (ret < 0) 3583 goto cleanup; 3584 3585 spin_lock_irqsave(&xhci->lock, flags); 3586 for (i = 0; i < num_eps; i++) { 3587 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3588 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3589 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3590 udev->slot_id, ep_index); 3591 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3592 } 3593 xhci_free_command(xhci, config_cmd); 3594 spin_unlock_irqrestore(&xhci->lock, flags); 3595 3596 for (i = 0; i < num_eps; i++) { 3597 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3598 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3599 } 3600 /* Subtract 1 for stream 0, which drivers can't use */ 3601 return num_streams - 1; 3602 3603 cleanup: 3604 /* If it didn't work, free the streams! */ 3605 for (i = 0; i < num_eps; i++) { 3606 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3607 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3608 vdev->eps[ep_index].stream_info = NULL; 3609 /* FIXME Unset maxPstreams in endpoint context and 3610 * update deq ptr to point to normal string ring. 3611 */ 3612 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3613 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3614 xhci_endpoint_zero(xhci, vdev, eps[i]); 3615 } 3616 xhci_free_command(xhci, config_cmd); 3617 return -ENOMEM; 3618 } 3619 3620 /* Transition the endpoint from using streams to being a "normal" endpoint 3621 * without streams. 3622 * 3623 * Modify the endpoint context state, submit a configure endpoint command, 3624 * and free all endpoint rings for streams if that completes successfully. 3625 */ 3626 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3627 struct usb_host_endpoint **eps, unsigned int num_eps, 3628 gfp_t mem_flags) 3629 { 3630 int i, ret; 3631 struct xhci_hcd *xhci; 3632 struct xhci_virt_device *vdev; 3633 struct xhci_command *command; 3634 struct xhci_input_control_ctx *ctrl_ctx; 3635 unsigned int ep_index; 3636 unsigned long flags; 3637 u32 changed_ep_bitmask; 3638 3639 xhci = hcd_to_xhci(hcd); 3640 vdev = xhci->devs[udev->slot_id]; 3641 3642 /* Set up a configure endpoint command to remove the streams rings */ 3643 spin_lock_irqsave(&xhci->lock, flags); 3644 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3645 udev, eps, num_eps); 3646 if (changed_ep_bitmask == 0) { 3647 spin_unlock_irqrestore(&xhci->lock, flags); 3648 return -EINVAL; 3649 } 3650 3651 /* Use the xhci_command structure from the first endpoint. We may have 3652 * allocated too many, but the driver may call xhci_free_streams() for 3653 * each endpoint it grouped into one call to xhci_alloc_streams(). 3654 */ 3655 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3656 command = vdev->eps[ep_index].stream_info->free_streams_command; 3657 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3658 if (!ctrl_ctx) { 3659 spin_unlock_irqrestore(&xhci->lock, flags); 3660 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3661 __func__); 3662 return -EINVAL; 3663 } 3664 3665 for (i = 0; i < num_eps; i++) { 3666 struct xhci_ep_ctx *ep_ctx; 3667 3668 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3669 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3670 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3671 EP_GETTING_NO_STREAMS; 3672 3673 xhci_endpoint_copy(xhci, command->in_ctx, 3674 vdev->out_ctx, ep_index); 3675 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3676 &vdev->eps[ep_index]); 3677 } 3678 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3679 vdev->out_ctx, ctrl_ctx, 3680 changed_ep_bitmask, changed_ep_bitmask); 3681 spin_unlock_irqrestore(&xhci->lock, flags); 3682 3683 /* Issue and wait for the configure endpoint command, 3684 * which must succeed. 3685 */ 3686 ret = xhci_configure_endpoint(xhci, udev, command, 3687 false, true); 3688 3689 /* xHC rejected the configure endpoint command for some reason, so we 3690 * leave the streams rings intact. 3691 */ 3692 if (ret < 0) 3693 return ret; 3694 3695 spin_lock_irqsave(&xhci->lock, flags); 3696 for (i = 0; i < num_eps; i++) { 3697 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3698 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3699 vdev->eps[ep_index].stream_info = NULL; 3700 /* FIXME Unset maxPstreams in endpoint context and 3701 * update deq ptr to point to normal string ring. 3702 */ 3703 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3704 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3705 } 3706 spin_unlock_irqrestore(&xhci->lock, flags); 3707 3708 return 0; 3709 } 3710 3711 /* 3712 * Deletes endpoint resources for endpoints that were active before a Reset 3713 * Device command, or a Disable Slot command. The Reset Device command leaves 3714 * the control endpoint intact, whereas the Disable Slot command deletes it. 3715 * 3716 * Must be called with xhci->lock held. 3717 */ 3718 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3719 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3720 { 3721 int i; 3722 unsigned int num_dropped_eps = 0; 3723 unsigned int drop_flags = 0; 3724 3725 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3726 if (virt_dev->eps[i].ring) { 3727 drop_flags |= 1 << i; 3728 num_dropped_eps++; 3729 } 3730 } 3731 xhci->num_active_eps -= num_dropped_eps; 3732 if (num_dropped_eps) 3733 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3734 "Dropped %u ep ctxs, flags = 0x%x, " 3735 "%u now active.", 3736 num_dropped_eps, drop_flags, 3737 xhci->num_active_eps); 3738 } 3739 3740 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev); 3741 3742 /* 3743 * This submits a Reset Device Command, which will set the device state to 0, 3744 * set the device address to 0, and disable all the endpoints except the default 3745 * control endpoint. The USB core should come back and call 3746 * xhci_address_device(), and then re-set up the configuration. If this is 3747 * called because of a usb_reset_and_verify_device(), then the old alternate 3748 * settings will be re-installed through the normal bandwidth allocation 3749 * functions. 3750 * 3751 * Wait for the Reset Device command to finish. Remove all structures 3752 * associated with the endpoints that were disabled. Clear the input device 3753 * structure? Reset the control endpoint 0 max packet size? 3754 * 3755 * If the virt_dev to be reset does not exist or does not match the udev, 3756 * it means the device is lost, possibly due to the xHC restore error and 3757 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3758 * re-allocate the device. 3759 */ 3760 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3761 struct usb_device *udev) 3762 { 3763 int ret, i; 3764 unsigned long flags; 3765 struct xhci_hcd *xhci; 3766 unsigned int slot_id; 3767 struct xhci_virt_device *virt_dev; 3768 struct xhci_command *reset_device_cmd; 3769 struct xhci_slot_ctx *slot_ctx; 3770 int old_active_eps = 0; 3771 3772 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3773 if (ret <= 0) 3774 return ret; 3775 xhci = hcd_to_xhci(hcd); 3776 slot_id = udev->slot_id; 3777 virt_dev = xhci->devs[slot_id]; 3778 if (!virt_dev) { 3779 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3780 "not exist. Re-allocate the device\n", slot_id); 3781 ret = xhci_alloc_dev(hcd, udev); 3782 if (ret == 1) 3783 return 0; 3784 else 3785 return -EINVAL; 3786 } 3787 3788 if (virt_dev->tt_info) 3789 old_active_eps = virt_dev->tt_info->active_eps; 3790 3791 if (virt_dev->udev != udev) { 3792 /* If the virt_dev and the udev does not match, this virt_dev 3793 * may belong to another udev. 3794 * Re-allocate the device. 3795 */ 3796 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3797 "not match the udev. Re-allocate the device\n", 3798 slot_id); 3799 ret = xhci_alloc_dev(hcd, udev); 3800 if (ret == 1) 3801 return 0; 3802 else 3803 return -EINVAL; 3804 } 3805 3806 /* If device is not setup, there is no point in resetting it */ 3807 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3808 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3809 SLOT_STATE_DISABLED) 3810 return 0; 3811 3812 if (xhci->quirks & XHCI_ETRON_HOST) { 3813 /* 3814 * Obtaining a new device slot to inform the xHCI host that 3815 * the USB device has been reset. 3816 */ 3817 ret = xhci_disable_slot(xhci, udev->slot_id); 3818 xhci_free_virt_device(xhci, udev->slot_id); 3819 if (!ret) { 3820 ret = xhci_alloc_dev(hcd, udev); 3821 if (ret == 1) 3822 ret = 0; 3823 else 3824 ret = -EINVAL; 3825 } 3826 return ret; 3827 } 3828 3829 trace_xhci_discover_or_reset_device(slot_ctx); 3830 3831 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3832 /* Allocate the command structure that holds the struct completion. 3833 * Assume we're in process context, since the normal device reset 3834 * process has to wait for the device anyway. Storage devices are 3835 * reset as part of error handling, so use GFP_NOIO instead of 3836 * GFP_KERNEL. 3837 */ 3838 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3839 if (!reset_device_cmd) { 3840 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3841 return -ENOMEM; 3842 } 3843 3844 /* Attempt to submit the Reset Device command to the command ring */ 3845 spin_lock_irqsave(&xhci->lock, flags); 3846 3847 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3848 if (ret) { 3849 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3850 spin_unlock_irqrestore(&xhci->lock, flags); 3851 goto command_cleanup; 3852 } 3853 xhci_ring_cmd_db(xhci); 3854 spin_unlock_irqrestore(&xhci->lock, flags); 3855 3856 /* Wait for the Reset Device command to finish */ 3857 wait_for_completion(reset_device_cmd->completion); 3858 3859 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3860 * unless we tried to reset a slot ID that wasn't enabled, 3861 * or the device wasn't in the addressed or configured state. 3862 */ 3863 ret = reset_device_cmd->status; 3864 switch (ret) { 3865 case COMP_COMMAND_ABORTED: 3866 case COMP_COMMAND_RING_STOPPED: 3867 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3868 ret = -ETIME; 3869 goto command_cleanup; 3870 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3871 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3872 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3873 slot_id, 3874 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3875 xhci_dbg(xhci, "Not freeing device rings.\n"); 3876 /* Don't treat this as an error. May change my mind later. */ 3877 ret = 0; 3878 goto command_cleanup; 3879 case COMP_SUCCESS: 3880 xhci_dbg(xhci, "Successful reset device command.\n"); 3881 break; 3882 default: 3883 if (xhci_is_vendor_info_code(xhci, ret)) 3884 break; 3885 xhci_warn(xhci, "Unknown completion code %u for " 3886 "reset device command.\n", ret); 3887 ret = -EINVAL; 3888 goto command_cleanup; 3889 } 3890 3891 /* Free up host controller endpoint resources */ 3892 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3893 spin_lock_irqsave(&xhci->lock, flags); 3894 /* Don't delete the default control endpoint resources */ 3895 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3896 spin_unlock_irqrestore(&xhci->lock, flags); 3897 } 3898 3899 /* Everything but endpoint 0 is disabled, so free the rings. */ 3900 for (i = 1; i < 31; i++) { 3901 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3902 3903 if (ep->ep_state & EP_HAS_STREAMS) { 3904 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3905 xhci_get_endpoint_address(i)); 3906 xhci_free_stream_info(xhci, ep->stream_info); 3907 ep->stream_info = NULL; 3908 ep->ep_state &= ~EP_HAS_STREAMS; 3909 } 3910 3911 if (ep->ring) { 3912 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3913 xhci_free_endpoint_ring(xhci, virt_dev, i); 3914 } 3915 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3916 xhci_drop_ep_from_interval_table(xhci, 3917 &virt_dev->eps[i].bw_info, 3918 virt_dev->bw_table, 3919 udev, 3920 &virt_dev->eps[i], 3921 virt_dev->tt_info); 3922 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3923 } 3924 /* If necessary, update the number of active TTs on this root port */ 3925 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3926 virt_dev->flags = 0; 3927 ret = 0; 3928 3929 command_cleanup: 3930 xhci_free_command(xhci, reset_device_cmd); 3931 return ret; 3932 } 3933 3934 /* 3935 * At this point, the struct usb_device is about to go away, the device has 3936 * disconnected, and all traffic has been stopped and the endpoints have been 3937 * disabled. Free any HC data structures associated with that device. 3938 */ 3939 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3940 { 3941 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3942 struct xhci_virt_device *virt_dev; 3943 struct xhci_slot_ctx *slot_ctx; 3944 unsigned long flags; 3945 int i, ret; 3946 3947 /* 3948 * We called pm_runtime_get_noresume when the device was attached. 3949 * Decrement the counter here to allow controller to runtime suspend 3950 * if no devices remain. 3951 */ 3952 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3953 pm_runtime_put_noidle(hcd->self.controller); 3954 3955 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3956 /* If the host is halted due to driver unload, we still need to free the 3957 * device. 3958 */ 3959 if (ret <= 0 && ret != -ENODEV) 3960 return; 3961 3962 virt_dev = xhci->devs[udev->slot_id]; 3963 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3964 trace_xhci_free_dev(slot_ctx); 3965 3966 /* Stop any wayward timer functions (which may grab the lock) */ 3967 for (i = 0; i < 31; i++) 3968 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3969 virt_dev->udev = NULL; 3970 xhci_disable_slot(xhci, udev->slot_id); 3971 3972 spin_lock_irqsave(&xhci->lock, flags); 3973 xhci_free_virt_device(xhci, udev->slot_id); 3974 spin_unlock_irqrestore(&xhci->lock, flags); 3975 3976 } 3977 3978 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3979 { 3980 struct xhci_command *command; 3981 unsigned long flags; 3982 u32 state; 3983 int ret; 3984 3985 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3986 if (!command) 3987 return -ENOMEM; 3988 3989 xhci_debugfs_remove_slot(xhci, slot_id); 3990 3991 spin_lock_irqsave(&xhci->lock, flags); 3992 /* Don't disable the slot if the host controller is dead. */ 3993 state = readl(&xhci->op_regs->status); 3994 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3995 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3996 spin_unlock_irqrestore(&xhci->lock, flags); 3997 kfree(command); 3998 return -ENODEV; 3999 } 4000 4001 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 4002 slot_id); 4003 if (ret) { 4004 spin_unlock_irqrestore(&xhci->lock, flags); 4005 kfree(command); 4006 return ret; 4007 } 4008 xhci_ring_cmd_db(xhci); 4009 spin_unlock_irqrestore(&xhci->lock, flags); 4010 4011 wait_for_completion(command->completion); 4012 4013 if (command->status != COMP_SUCCESS) 4014 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4015 slot_id, command->status); 4016 4017 xhci_free_command(xhci, command); 4018 4019 return 0; 4020 } 4021 4022 /* 4023 * Checks if we have enough host controller resources for the default control 4024 * endpoint. 4025 * 4026 * Must be called with xhci->lock held. 4027 */ 4028 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4029 { 4030 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4031 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4032 "Not enough ep ctxs: " 4033 "%u active, need to add 1, limit is %u.", 4034 xhci->num_active_eps, xhci->limit_active_eps); 4035 return -ENOMEM; 4036 } 4037 xhci->num_active_eps += 1; 4038 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4039 "Adding 1 ep ctx, %u now active.", 4040 xhci->num_active_eps); 4041 return 0; 4042 } 4043 4044 4045 /* 4046 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4047 * timed out, or allocating memory failed. Returns 1 on success. 4048 */ 4049 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4050 { 4051 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4052 struct xhci_virt_device *vdev; 4053 struct xhci_slot_ctx *slot_ctx; 4054 unsigned long flags; 4055 int ret, slot_id; 4056 struct xhci_command *command; 4057 4058 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4059 if (!command) 4060 return 0; 4061 4062 spin_lock_irqsave(&xhci->lock, flags); 4063 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4064 if (ret) { 4065 spin_unlock_irqrestore(&xhci->lock, flags); 4066 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4067 xhci_free_command(xhci, command); 4068 return 0; 4069 } 4070 xhci_ring_cmd_db(xhci); 4071 spin_unlock_irqrestore(&xhci->lock, flags); 4072 4073 wait_for_completion(command->completion); 4074 slot_id = command->slot_id; 4075 4076 if (!slot_id || command->status != COMP_SUCCESS) { 4077 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 4078 xhci_trb_comp_code_string(command->status)); 4079 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4080 HCS_MAX_SLOTS( 4081 readl(&xhci->cap_regs->hcs_params1))); 4082 xhci_free_command(xhci, command); 4083 return 0; 4084 } 4085 4086 xhci_free_command(xhci, command); 4087 4088 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4089 spin_lock_irqsave(&xhci->lock, flags); 4090 ret = xhci_reserve_host_control_ep_resources(xhci); 4091 if (ret) { 4092 spin_unlock_irqrestore(&xhci->lock, flags); 4093 xhci_warn(xhci, "Not enough host resources, " 4094 "active endpoint contexts = %u\n", 4095 xhci->num_active_eps); 4096 goto disable_slot; 4097 } 4098 spin_unlock_irqrestore(&xhci->lock, flags); 4099 } 4100 /* Use GFP_NOIO, since this function can be called from 4101 * xhci_discover_or_reset_device(), which may be called as part of 4102 * mass storage driver error handling. 4103 */ 4104 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4105 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4106 goto disable_slot; 4107 } 4108 vdev = xhci->devs[slot_id]; 4109 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4110 trace_xhci_alloc_dev(slot_ctx); 4111 4112 udev->slot_id = slot_id; 4113 4114 xhci_debugfs_create_slot(xhci, slot_id); 4115 4116 /* 4117 * If resetting upon resume, we can't put the controller into runtime 4118 * suspend if there is a device attached. 4119 */ 4120 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4121 pm_runtime_get_noresume(hcd->self.controller); 4122 4123 /* Is this a LS or FS device under a HS hub? */ 4124 /* Hub or peripherial? */ 4125 return 1; 4126 4127 disable_slot: 4128 xhci_disable_slot(xhci, udev->slot_id); 4129 xhci_free_virt_device(xhci, udev->slot_id); 4130 4131 return 0; 4132 } 4133 4134 /** 4135 * xhci_setup_device - issues an Address Device command to assign a unique 4136 * USB bus address. 4137 * @hcd: USB host controller data structure. 4138 * @udev: USB dev structure representing the connected device. 4139 * @setup: Enum specifying setup mode: address only or with context. 4140 * @timeout_ms: Max wait time (ms) for the command operation to complete. 4141 * 4142 * Return: 0 if successful; otherwise, negative error code. 4143 */ 4144 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4145 enum xhci_setup_dev setup, unsigned int timeout_ms) 4146 { 4147 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4148 unsigned long flags; 4149 struct xhci_virt_device *virt_dev; 4150 int ret = 0; 4151 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4152 struct xhci_slot_ctx *slot_ctx; 4153 struct xhci_input_control_ctx *ctrl_ctx; 4154 u64 temp_64; 4155 struct xhci_command *command = NULL; 4156 4157 mutex_lock(&xhci->mutex); 4158 4159 if (xhci->xhc_state) { /* dying, removing or halted */ 4160 ret = -ESHUTDOWN; 4161 goto out; 4162 } 4163 4164 if (!udev->slot_id) { 4165 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4166 "Bad Slot ID %d", udev->slot_id); 4167 ret = -EINVAL; 4168 goto out; 4169 } 4170 4171 virt_dev = xhci->devs[udev->slot_id]; 4172 4173 if (WARN_ON(!virt_dev)) { 4174 /* 4175 * In plug/unplug torture test with an NEC controller, 4176 * a zero-dereference was observed once due to virt_dev = 0. 4177 * Print useful debug rather than crash if it is observed again! 4178 */ 4179 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4180 udev->slot_id); 4181 ret = -EINVAL; 4182 goto out; 4183 } 4184 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4185 trace_xhci_setup_device_slot(slot_ctx); 4186 4187 if (setup == SETUP_CONTEXT_ONLY) { 4188 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4189 SLOT_STATE_DEFAULT) { 4190 xhci_dbg(xhci, "Slot already in default state\n"); 4191 goto out; 4192 } 4193 } 4194 4195 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4196 if (!command) { 4197 ret = -ENOMEM; 4198 goto out; 4199 } 4200 4201 command->in_ctx = virt_dev->in_ctx; 4202 command->timeout_ms = timeout_ms; 4203 4204 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4205 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4206 if (!ctrl_ctx) { 4207 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4208 __func__); 4209 ret = -EINVAL; 4210 goto out; 4211 } 4212 /* 4213 * If this is the first Set Address since device plug-in or 4214 * virt_device realloaction after a resume with an xHCI power loss, 4215 * then set up the slot context. 4216 */ 4217 if (!slot_ctx->dev_info) 4218 xhci_setup_addressable_virt_dev(xhci, udev); 4219 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4220 else 4221 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4222 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4223 ctrl_ctx->drop_flags = 0; 4224 4225 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4226 le32_to_cpu(slot_ctx->dev_info) >> 27); 4227 4228 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4229 spin_lock_irqsave(&xhci->lock, flags); 4230 trace_xhci_setup_device(virt_dev); 4231 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4232 udev->slot_id, setup); 4233 if (ret) { 4234 spin_unlock_irqrestore(&xhci->lock, flags); 4235 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4236 "FIXME: allocate a command ring segment"); 4237 goto out; 4238 } 4239 xhci_ring_cmd_db(xhci); 4240 spin_unlock_irqrestore(&xhci->lock, flags); 4241 4242 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4243 wait_for_completion(command->completion); 4244 4245 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4246 * the SetAddress() "recovery interval" required by USB and aborting the 4247 * command on a timeout. 4248 */ 4249 switch (command->status) { 4250 case COMP_COMMAND_ABORTED: 4251 case COMP_COMMAND_RING_STOPPED: 4252 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4253 ret = -ETIME; 4254 break; 4255 case COMP_CONTEXT_STATE_ERROR: 4256 case COMP_SLOT_NOT_ENABLED_ERROR: 4257 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4258 act, udev->slot_id); 4259 ret = -EINVAL; 4260 break; 4261 case COMP_USB_TRANSACTION_ERROR: 4262 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4263 4264 mutex_unlock(&xhci->mutex); 4265 ret = xhci_disable_slot(xhci, udev->slot_id); 4266 xhci_free_virt_device(xhci, udev->slot_id); 4267 if (!ret) { 4268 if (xhci_alloc_dev(hcd, udev) == 1) 4269 xhci_setup_addressable_virt_dev(xhci, udev); 4270 } 4271 kfree(command->completion); 4272 kfree(command); 4273 return -EPROTO; 4274 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4275 dev_warn(&udev->dev, 4276 "ERROR: Incompatible device for setup %s command\n", act); 4277 ret = -ENODEV; 4278 break; 4279 case COMP_SUCCESS: 4280 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4281 "Successful setup %s command", act); 4282 break; 4283 default: 4284 xhci_err(xhci, 4285 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4286 act, command->status); 4287 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4288 ret = -EINVAL; 4289 break; 4290 } 4291 if (ret) 4292 goto out; 4293 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4294 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4295 "Op regs DCBAA ptr = %#016llx", temp_64); 4296 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4297 "Slot ID %d dcbaa entry @%p = %#016llx", 4298 udev->slot_id, 4299 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4300 (unsigned long long) 4301 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4302 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4303 "Output Context DMA address = %#08llx", 4304 (unsigned long long)virt_dev->out_ctx->dma); 4305 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4306 le32_to_cpu(slot_ctx->dev_info) >> 27); 4307 /* 4308 * USB core uses address 1 for the roothubs, so we add one to the 4309 * address given back to us by the HC. 4310 */ 4311 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4312 le32_to_cpu(slot_ctx->dev_info) >> 27); 4313 /* Zero the input context control for later use */ 4314 ctrl_ctx->add_flags = 0; 4315 ctrl_ctx->drop_flags = 0; 4316 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4317 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4318 4319 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4320 "Internal device address = %d", 4321 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4322 out: 4323 mutex_unlock(&xhci->mutex); 4324 if (command) { 4325 kfree(command->completion); 4326 kfree(command); 4327 } 4328 return ret; 4329 } 4330 4331 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev, 4332 unsigned int timeout_ms) 4333 { 4334 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms); 4335 } 4336 4337 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4338 { 4339 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY, 4340 XHCI_CMD_DEFAULT_TIMEOUT); 4341 } 4342 4343 /* 4344 * Transfer the port index into real index in the HW port status 4345 * registers. Caculate offset between the port's PORTSC register 4346 * and port status base. Divide the number of per port register 4347 * to get the real index. The raw port number bases 1. 4348 */ 4349 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4350 { 4351 struct xhci_hub *rhub; 4352 4353 rhub = xhci_get_rhub(hcd); 4354 return rhub->ports[port1 - 1]->hw_portnum + 1; 4355 } 4356 4357 /* 4358 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4359 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4360 */ 4361 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4362 struct usb_device *udev, u16 max_exit_latency) 4363 { 4364 struct xhci_virt_device *virt_dev; 4365 struct xhci_command *command; 4366 struct xhci_input_control_ctx *ctrl_ctx; 4367 struct xhci_slot_ctx *slot_ctx; 4368 unsigned long flags; 4369 int ret; 4370 4371 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4372 if (!command) 4373 return -ENOMEM; 4374 4375 spin_lock_irqsave(&xhci->lock, flags); 4376 4377 virt_dev = xhci->devs[udev->slot_id]; 4378 4379 /* 4380 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4381 * xHC was re-initialized. Exit latency will be set later after 4382 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4383 */ 4384 4385 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4386 spin_unlock_irqrestore(&xhci->lock, flags); 4387 xhci_free_command(xhci, command); 4388 return 0; 4389 } 4390 4391 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4392 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4393 if (!ctrl_ctx) { 4394 spin_unlock_irqrestore(&xhci->lock, flags); 4395 xhci_free_command(xhci, command); 4396 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4397 __func__); 4398 return -ENOMEM; 4399 } 4400 4401 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4402 spin_unlock_irqrestore(&xhci->lock, flags); 4403 4404 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4405 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4406 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4407 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4408 slot_ctx->dev_state = 0; 4409 4410 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4411 "Set up evaluate context for LPM MEL change."); 4412 4413 /* Issue and wait for the evaluate context command. */ 4414 ret = xhci_configure_endpoint(xhci, udev, command, 4415 true, true); 4416 4417 if (!ret) { 4418 spin_lock_irqsave(&xhci->lock, flags); 4419 virt_dev->current_mel = max_exit_latency; 4420 spin_unlock_irqrestore(&xhci->lock, flags); 4421 } 4422 4423 xhci_free_command(xhci, command); 4424 4425 return ret; 4426 } 4427 4428 #ifdef CONFIG_PM 4429 4430 /* BESL to HIRD Encoding array for USB2 LPM */ 4431 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4432 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4433 4434 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4435 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4436 struct usb_device *udev) 4437 { 4438 int u2del, besl, besl_host; 4439 int besl_device = 0; 4440 u32 field; 4441 4442 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4443 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4444 4445 if (field & USB_BESL_SUPPORT) { 4446 for (besl_host = 0; besl_host < 16; besl_host++) { 4447 if (xhci_besl_encoding[besl_host] >= u2del) 4448 break; 4449 } 4450 /* Use baseline BESL value as default */ 4451 if (field & USB_BESL_BASELINE_VALID) 4452 besl_device = USB_GET_BESL_BASELINE(field); 4453 else if (field & USB_BESL_DEEP_VALID) 4454 besl_device = USB_GET_BESL_DEEP(field); 4455 } else { 4456 if (u2del <= 50) 4457 besl_host = 0; 4458 else 4459 besl_host = (u2del - 51) / 75 + 1; 4460 } 4461 4462 besl = besl_host + besl_device; 4463 if (besl > 15) 4464 besl = 15; 4465 4466 return besl; 4467 } 4468 4469 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4470 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4471 { 4472 u32 field; 4473 int l1; 4474 int besld = 0; 4475 int hirdm = 0; 4476 4477 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4478 4479 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4480 l1 = udev->l1_params.timeout / 256; 4481 4482 /* device has preferred BESLD */ 4483 if (field & USB_BESL_DEEP_VALID) { 4484 besld = USB_GET_BESL_DEEP(field); 4485 hirdm = 1; 4486 } 4487 4488 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4489 } 4490 4491 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4492 struct usb_device *udev, int enable) 4493 { 4494 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4495 struct xhci_port **ports; 4496 __le32 __iomem *pm_addr, *hlpm_addr; 4497 u32 pm_val, hlpm_val, field; 4498 unsigned int port_num; 4499 unsigned long flags; 4500 int hird, exit_latency; 4501 int ret; 4502 4503 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4504 return -EPERM; 4505 4506 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4507 !udev->lpm_capable) 4508 return -EPERM; 4509 4510 if (!udev->parent || udev->parent->parent || 4511 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4512 return -EPERM; 4513 4514 if (udev->usb2_hw_lpm_capable != 1) 4515 return -EPERM; 4516 4517 spin_lock_irqsave(&xhci->lock, flags); 4518 4519 ports = xhci->usb2_rhub.ports; 4520 port_num = udev->portnum - 1; 4521 pm_addr = ports[port_num]->addr + PORTPMSC; 4522 pm_val = readl(pm_addr); 4523 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4524 4525 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4526 enable ? "enable" : "disable", port_num + 1); 4527 4528 if (enable) { 4529 /* Host supports BESL timeout instead of HIRD */ 4530 if (udev->usb2_hw_lpm_besl_capable) { 4531 /* if device doesn't have a preferred BESL value use a 4532 * default one which works with mixed HIRD and BESL 4533 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4534 */ 4535 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4536 if ((field & USB_BESL_SUPPORT) && 4537 (field & USB_BESL_BASELINE_VALID)) 4538 hird = USB_GET_BESL_BASELINE(field); 4539 else 4540 hird = udev->l1_params.besl; 4541 4542 exit_latency = xhci_besl_encoding[hird]; 4543 spin_unlock_irqrestore(&xhci->lock, flags); 4544 4545 ret = xhci_change_max_exit_latency(xhci, udev, 4546 exit_latency); 4547 if (ret < 0) 4548 return ret; 4549 spin_lock_irqsave(&xhci->lock, flags); 4550 4551 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4552 writel(hlpm_val, hlpm_addr); 4553 /* flush write */ 4554 readl(hlpm_addr); 4555 } else { 4556 hird = xhci_calculate_hird_besl(xhci, udev); 4557 } 4558 4559 pm_val &= ~PORT_HIRD_MASK; 4560 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4561 writel(pm_val, pm_addr); 4562 pm_val = readl(pm_addr); 4563 pm_val |= PORT_HLE; 4564 writel(pm_val, pm_addr); 4565 /* flush write */ 4566 readl(pm_addr); 4567 } else { 4568 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4569 writel(pm_val, pm_addr); 4570 /* flush write */ 4571 readl(pm_addr); 4572 if (udev->usb2_hw_lpm_besl_capable) { 4573 spin_unlock_irqrestore(&xhci->lock, flags); 4574 xhci_change_max_exit_latency(xhci, udev, 0); 4575 readl_poll_timeout(ports[port_num]->addr, pm_val, 4576 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4577 100, 10000); 4578 return 0; 4579 } 4580 } 4581 4582 spin_unlock_irqrestore(&xhci->lock, flags); 4583 return 0; 4584 } 4585 4586 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4587 { 4588 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4589 struct xhci_port *port; 4590 u32 capability; 4591 4592 /* Check if USB3 device at root port is tunneled over USB4 */ 4593 if (hcd->speed >= HCD_USB3 && !udev->parent->parent) { 4594 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 4595 4596 udev->tunnel_mode = xhci_port_is_tunneled(xhci, port); 4597 if (udev->tunnel_mode == USB_LINK_UNKNOWN) 4598 dev_dbg(&udev->dev, "link tunnel state unknown\n"); 4599 else if (udev->tunnel_mode == USB_LINK_TUNNELED) 4600 dev_dbg(&udev->dev, "tunneled over USB4 link\n"); 4601 else if (udev->tunnel_mode == USB_LINK_NATIVE) 4602 dev_dbg(&udev->dev, "native USB 3.x link\n"); 4603 return 0; 4604 } 4605 4606 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support) 4607 return 0; 4608 4609 /* we only support lpm for non-hub device connected to root hub yet */ 4610 if (!udev->parent || udev->parent->parent || 4611 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4612 return 0; 4613 4614 port = xhci->usb2_rhub.ports[udev->portnum - 1]; 4615 capability = port->port_cap->protocol_caps; 4616 4617 if (capability & XHCI_HLC) { 4618 udev->usb2_hw_lpm_capable = 1; 4619 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4620 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4621 if (capability & XHCI_BLC) 4622 udev->usb2_hw_lpm_besl_capable = 1; 4623 } 4624 4625 return 0; 4626 } 4627 4628 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4629 4630 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4631 static unsigned long long xhci_service_interval_to_ns( 4632 struct usb_endpoint_descriptor *desc) 4633 { 4634 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4635 } 4636 4637 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4638 enum usb3_link_state state) 4639 { 4640 unsigned long long sel; 4641 unsigned long long pel; 4642 unsigned int max_sel_pel; 4643 char *state_name; 4644 4645 switch (state) { 4646 case USB3_LPM_U1: 4647 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4648 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4649 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4650 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4651 state_name = "U1"; 4652 break; 4653 case USB3_LPM_U2: 4654 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4655 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4656 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4657 state_name = "U2"; 4658 break; 4659 default: 4660 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4661 __func__); 4662 return USB3_LPM_DISABLED; 4663 } 4664 4665 if (sel <= max_sel_pel && pel <= max_sel_pel) 4666 return USB3_LPM_DEVICE_INITIATED; 4667 4668 if (sel > max_sel_pel) 4669 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4670 "due to long SEL %llu ms\n", 4671 state_name, sel); 4672 else 4673 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4674 "due to long PEL %llu ms\n", 4675 state_name, pel); 4676 return USB3_LPM_DISABLED; 4677 } 4678 4679 /* The U1 timeout should be the maximum of the following values: 4680 * - For control endpoints, U1 system exit latency (SEL) * 3 4681 * - For bulk endpoints, U1 SEL * 5 4682 * - For interrupt endpoints: 4683 * - Notification EPs, U1 SEL * 3 4684 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4685 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4686 */ 4687 static unsigned long long xhci_calculate_intel_u1_timeout( 4688 struct usb_device *udev, 4689 struct usb_endpoint_descriptor *desc) 4690 { 4691 unsigned long long timeout_ns; 4692 int ep_type; 4693 int intr_type; 4694 4695 ep_type = usb_endpoint_type(desc); 4696 switch (ep_type) { 4697 case USB_ENDPOINT_XFER_CONTROL: 4698 timeout_ns = udev->u1_params.sel * 3; 4699 break; 4700 case USB_ENDPOINT_XFER_BULK: 4701 timeout_ns = udev->u1_params.sel * 5; 4702 break; 4703 case USB_ENDPOINT_XFER_INT: 4704 intr_type = usb_endpoint_interrupt_type(desc); 4705 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4706 timeout_ns = udev->u1_params.sel * 3; 4707 break; 4708 } 4709 /* Otherwise the calculation is the same as isoc eps */ 4710 fallthrough; 4711 case USB_ENDPOINT_XFER_ISOC: 4712 timeout_ns = xhci_service_interval_to_ns(desc); 4713 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4714 if (timeout_ns < udev->u1_params.sel * 2) 4715 timeout_ns = udev->u1_params.sel * 2; 4716 break; 4717 default: 4718 return 0; 4719 } 4720 4721 return timeout_ns; 4722 } 4723 4724 /* Returns the hub-encoded U1 timeout value. */ 4725 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4726 struct usb_device *udev, 4727 struct usb_endpoint_descriptor *desc) 4728 { 4729 unsigned long long timeout_ns; 4730 4731 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4732 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4733 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4734 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4735 return USB3_LPM_DISABLED; 4736 } 4737 } 4738 4739 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4740 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4741 else 4742 timeout_ns = udev->u1_params.sel; 4743 4744 /* The U1 timeout is encoded in 1us intervals. 4745 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4746 */ 4747 if (timeout_ns == USB3_LPM_DISABLED) 4748 timeout_ns = 1; 4749 else 4750 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4751 4752 /* If the necessary timeout value is bigger than what we can set in the 4753 * USB 3.0 hub, we have to disable hub-initiated U1. 4754 */ 4755 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4756 return timeout_ns; 4757 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4758 "due to long timeout %llu ms\n", timeout_ns); 4759 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4760 } 4761 4762 /* The U2 timeout should be the maximum of: 4763 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4764 * - largest bInterval of any active periodic endpoint (to avoid going 4765 * into lower power link states between intervals). 4766 * - the U2 Exit Latency of the device 4767 */ 4768 static unsigned long long xhci_calculate_intel_u2_timeout( 4769 struct usb_device *udev, 4770 struct usb_endpoint_descriptor *desc) 4771 { 4772 unsigned long long timeout_ns; 4773 unsigned long long u2_del_ns; 4774 4775 timeout_ns = 10 * 1000 * 1000; 4776 4777 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4778 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4779 timeout_ns = xhci_service_interval_to_ns(desc); 4780 4781 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4782 if (u2_del_ns > timeout_ns) 4783 timeout_ns = u2_del_ns; 4784 4785 return timeout_ns; 4786 } 4787 4788 /* Returns the hub-encoded U2 timeout value. */ 4789 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4790 struct usb_device *udev, 4791 struct usb_endpoint_descriptor *desc) 4792 { 4793 unsigned long long timeout_ns; 4794 4795 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4796 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4797 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4798 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4799 return USB3_LPM_DISABLED; 4800 } 4801 } 4802 4803 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4804 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4805 else 4806 timeout_ns = udev->u2_params.sel; 4807 4808 /* The U2 timeout is encoded in 256us intervals */ 4809 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4810 /* If the necessary timeout value is bigger than what we can set in the 4811 * USB 3.0 hub, we have to disable hub-initiated U2. 4812 */ 4813 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4814 return timeout_ns; 4815 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4816 "due to long timeout %llu ms\n", timeout_ns); 4817 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4818 } 4819 4820 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4821 struct usb_device *udev, 4822 struct usb_endpoint_descriptor *desc, 4823 enum usb3_link_state state, 4824 u16 *timeout) 4825 { 4826 if (state == USB3_LPM_U1) 4827 return xhci_calculate_u1_timeout(xhci, udev, desc); 4828 else if (state == USB3_LPM_U2) 4829 return xhci_calculate_u2_timeout(xhci, udev, desc); 4830 4831 return USB3_LPM_DISABLED; 4832 } 4833 4834 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4835 struct usb_device *udev, 4836 struct usb_endpoint_descriptor *desc, 4837 enum usb3_link_state state, 4838 u16 *timeout) 4839 { 4840 u16 alt_timeout; 4841 4842 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4843 desc, state, timeout); 4844 4845 /* If we found we can't enable hub-initiated LPM, and 4846 * the U1 or U2 exit latency was too high to allow 4847 * device-initiated LPM as well, then we will disable LPM 4848 * for this device, so stop searching any further. 4849 */ 4850 if (alt_timeout == USB3_LPM_DISABLED) { 4851 *timeout = alt_timeout; 4852 return -E2BIG; 4853 } 4854 if (alt_timeout > *timeout) 4855 *timeout = alt_timeout; 4856 return 0; 4857 } 4858 4859 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4860 struct usb_device *udev, 4861 struct usb_host_interface *alt, 4862 enum usb3_link_state state, 4863 u16 *timeout) 4864 { 4865 int j; 4866 4867 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4868 if (xhci_update_timeout_for_endpoint(xhci, udev, 4869 &alt->endpoint[j].desc, state, timeout)) 4870 return -E2BIG; 4871 } 4872 return 0; 4873 } 4874 4875 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4876 struct usb_device *udev, 4877 enum usb3_link_state state) 4878 { 4879 struct usb_device *parent = udev->parent; 4880 int tier = 1; /* roothub is tier1 */ 4881 4882 while (parent) { 4883 parent = parent->parent; 4884 tier++; 4885 } 4886 4887 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3) 4888 goto fail; 4889 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2) 4890 goto fail; 4891 4892 return 0; 4893 fail: 4894 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n", 4895 tier); 4896 return -E2BIG; 4897 } 4898 4899 /* Returns the U1 or U2 timeout that should be enabled. 4900 * If the tier check or timeout setting functions return with a non-zero exit 4901 * code, that means the timeout value has been finalized and we shouldn't look 4902 * at any more endpoints. 4903 */ 4904 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4905 struct usb_device *udev, enum usb3_link_state state) 4906 { 4907 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4908 struct usb_host_config *config; 4909 char *state_name; 4910 int i; 4911 u16 timeout = USB3_LPM_DISABLED; 4912 4913 if (state == USB3_LPM_U1) 4914 state_name = "U1"; 4915 else if (state == USB3_LPM_U2) 4916 state_name = "U2"; 4917 else { 4918 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4919 state); 4920 return timeout; 4921 } 4922 4923 /* Gather some information about the currently installed configuration 4924 * and alternate interface settings. 4925 */ 4926 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4927 state, &timeout)) 4928 return timeout; 4929 4930 config = udev->actconfig; 4931 if (!config) 4932 return timeout; 4933 4934 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4935 struct usb_driver *driver; 4936 struct usb_interface *intf = config->interface[i]; 4937 4938 if (!intf) 4939 continue; 4940 4941 /* Check if any currently bound drivers want hub-initiated LPM 4942 * disabled. 4943 */ 4944 if (intf->dev.driver) { 4945 driver = to_usb_driver(intf->dev.driver); 4946 if (driver && driver->disable_hub_initiated_lpm) { 4947 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4948 state_name, driver->name); 4949 timeout = xhci_get_timeout_no_hub_lpm(udev, 4950 state); 4951 if (timeout == USB3_LPM_DISABLED) 4952 return timeout; 4953 } 4954 } 4955 4956 /* Not sure how this could happen... */ 4957 if (!intf->cur_altsetting) 4958 continue; 4959 4960 if (xhci_update_timeout_for_interface(xhci, udev, 4961 intf->cur_altsetting, 4962 state, &timeout)) 4963 return timeout; 4964 } 4965 return timeout; 4966 } 4967 4968 static int calculate_max_exit_latency(struct usb_device *udev, 4969 enum usb3_link_state state_changed, 4970 u16 hub_encoded_timeout) 4971 { 4972 unsigned long long u1_mel_us = 0; 4973 unsigned long long u2_mel_us = 0; 4974 unsigned long long mel_us = 0; 4975 bool disabling_u1; 4976 bool disabling_u2; 4977 bool enabling_u1; 4978 bool enabling_u2; 4979 4980 disabling_u1 = (state_changed == USB3_LPM_U1 && 4981 hub_encoded_timeout == USB3_LPM_DISABLED); 4982 disabling_u2 = (state_changed == USB3_LPM_U2 && 4983 hub_encoded_timeout == USB3_LPM_DISABLED); 4984 4985 enabling_u1 = (state_changed == USB3_LPM_U1 && 4986 hub_encoded_timeout != USB3_LPM_DISABLED); 4987 enabling_u2 = (state_changed == USB3_LPM_U2 && 4988 hub_encoded_timeout != USB3_LPM_DISABLED); 4989 4990 /* If U1 was already enabled and we're not disabling it, 4991 * or we're going to enable U1, account for the U1 max exit latency. 4992 */ 4993 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4994 enabling_u1) 4995 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4996 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4997 enabling_u2) 4998 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4999 5000 mel_us = max(u1_mel_us, u2_mel_us); 5001 5002 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5003 if (mel_us > MAX_EXIT) { 5004 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5005 "is too big.\n", mel_us); 5006 return -E2BIG; 5007 } 5008 return mel_us; 5009 } 5010 5011 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5012 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5013 struct usb_device *udev, enum usb3_link_state state) 5014 { 5015 struct xhci_hcd *xhci; 5016 struct xhci_port *port; 5017 u16 hub_encoded_timeout; 5018 int mel; 5019 int ret; 5020 5021 xhci = hcd_to_xhci(hcd); 5022 /* The LPM timeout values are pretty host-controller specific, so don't 5023 * enable hub-initiated timeouts unless the vendor has provided 5024 * information about their timeout algorithm. 5025 */ 5026 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5027 !xhci->devs[udev->slot_id]) 5028 return USB3_LPM_DISABLED; 5029 5030 if (xhci_check_tier_policy(xhci, udev, state) < 0) 5031 return USB3_LPM_DISABLED; 5032 5033 /* If connected to root port then check port can handle lpm */ 5034 if (udev->parent && !udev->parent->parent) { 5035 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 5036 if (port->lpm_incapable) 5037 return USB3_LPM_DISABLED; 5038 } 5039 5040 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5041 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5042 if (mel < 0) { 5043 /* Max Exit Latency is too big, disable LPM. */ 5044 hub_encoded_timeout = USB3_LPM_DISABLED; 5045 mel = 0; 5046 } 5047 5048 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5049 if (ret) 5050 return ret; 5051 return hub_encoded_timeout; 5052 } 5053 5054 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5055 struct usb_device *udev, enum usb3_link_state state) 5056 { 5057 struct xhci_hcd *xhci; 5058 u16 mel; 5059 5060 xhci = hcd_to_xhci(hcd); 5061 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5062 !xhci->devs[udev->slot_id]) 5063 return 0; 5064 5065 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5066 return xhci_change_max_exit_latency(xhci, udev, mel); 5067 } 5068 #else /* CONFIG_PM */ 5069 5070 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5071 struct usb_device *udev, int enable) 5072 { 5073 return 0; 5074 } 5075 5076 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5077 { 5078 return 0; 5079 } 5080 5081 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5082 struct usb_device *udev, enum usb3_link_state state) 5083 { 5084 return USB3_LPM_DISABLED; 5085 } 5086 5087 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5088 struct usb_device *udev, enum usb3_link_state state) 5089 { 5090 return 0; 5091 } 5092 #endif /* CONFIG_PM */ 5093 5094 /*-------------------------------------------------------------------------*/ 5095 5096 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5097 * internal data structures for the device. 5098 */ 5099 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5100 struct usb_tt *tt, gfp_t mem_flags) 5101 { 5102 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5103 struct xhci_virt_device *vdev; 5104 struct xhci_command *config_cmd; 5105 struct xhci_input_control_ctx *ctrl_ctx; 5106 struct xhci_slot_ctx *slot_ctx; 5107 unsigned long flags; 5108 unsigned think_time; 5109 int ret; 5110 5111 /* Ignore root hubs */ 5112 if (!hdev->parent) 5113 return 0; 5114 5115 vdev = xhci->devs[hdev->slot_id]; 5116 if (!vdev) { 5117 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5118 return -EINVAL; 5119 } 5120 5121 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5122 if (!config_cmd) 5123 return -ENOMEM; 5124 5125 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5126 if (!ctrl_ctx) { 5127 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5128 __func__); 5129 xhci_free_command(xhci, config_cmd); 5130 return -ENOMEM; 5131 } 5132 5133 spin_lock_irqsave(&xhci->lock, flags); 5134 if (hdev->speed == USB_SPEED_HIGH && 5135 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5136 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5137 xhci_free_command(xhci, config_cmd); 5138 spin_unlock_irqrestore(&xhci->lock, flags); 5139 return -ENOMEM; 5140 } 5141 5142 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5143 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5144 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5145 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5146 /* 5147 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5148 * but it may be already set to 1 when setup an xHCI virtual 5149 * device, so clear it anyway. 5150 */ 5151 if (tt->multi) 5152 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5153 else if (hdev->speed == USB_SPEED_FULL) 5154 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5155 5156 if (xhci->hci_version > 0x95) { 5157 xhci_dbg(xhci, "xHCI version %x needs hub " 5158 "TT think time and number of ports\n", 5159 (unsigned int) xhci->hci_version); 5160 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5161 /* Set TT think time - convert from ns to FS bit times. 5162 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5163 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5164 * 5165 * xHCI 1.0: this field shall be 0 if the device is not a 5166 * High-spped hub. 5167 */ 5168 think_time = tt->think_time; 5169 if (think_time != 0) 5170 think_time = (think_time / 666) - 1; 5171 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5172 slot_ctx->tt_info |= 5173 cpu_to_le32(TT_THINK_TIME(think_time)); 5174 } else { 5175 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5176 "TT think time or number of ports\n", 5177 (unsigned int) xhci->hci_version); 5178 } 5179 slot_ctx->dev_state = 0; 5180 spin_unlock_irqrestore(&xhci->lock, flags); 5181 5182 xhci_dbg(xhci, "Set up %s for hub device.\n", 5183 (xhci->hci_version > 0x95) ? 5184 "configure endpoint" : "evaluate context"); 5185 5186 /* Issue and wait for the configure endpoint or 5187 * evaluate context command. 5188 */ 5189 if (xhci->hci_version > 0x95) 5190 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5191 false, false); 5192 else 5193 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5194 true, false); 5195 5196 xhci_free_command(xhci, config_cmd); 5197 return ret; 5198 } 5199 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5200 5201 static int xhci_get_frame(struct usb_hcd *hcd) 5202 { 5203 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5204 /* EHCI mods by the periodic size. Why? */ 5205 return readl(&xhci->run_regs->microframe_index) >> 3; 5206 } 5207 5208 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5209 { 5210 xhci->usb2_rhub.hcd = hcd; 5211 hcd->speed = HCD_USB2; 5212 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5213 /* 5214 * USB 2.0 roothub under xHCI has an integrated TT, 5215 * (rate matching hub) as opposed to having an OHCI/UHCI 5216 * companion controller. 5217 */ 5218 hcd->has_tt = 1; 5219 } 5220 5221 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5222 { 5223 unsigned int minor_rev; 5224 5225 /* 5226 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5227 * should return 0x31 for sbrn, or that the minor revision 5228 * is a two digit BCD containig minor and sub-minor numbers. 5229 * This was later clarified in xHCI 1.2. 5230 * 5231 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5232 * minor revision set to 0x1 instead of 0x10. 5233 */ 5234 if (xhci->usb3_rhub.min_rev == 0x1) 5235 minor_rev = 1; 5236 else 5237 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5238 5239 switch (minor_rev) { 5240 case 2: 5241 hcd->speed = HCD_USB32; 5242 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5243 hcd->self.root_hub->rx_lanes = 2; 5244 hcd->self.root_hub->tx_lanes = 2; 5245 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5246 break; 5247 case 1: 5248 hcd->speed = HCD_USB31; 5249 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5250 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5251 break; 5252 } 5253 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5254 minor_rev, minor_rev ? "Enhanced " : ""); 5255 5256 xhci->usb3_rhub.hcd = hcd; 5257 } 5258 5259 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5260 { 5261 struct xhci_hcd *xhci; 5262 /* 5263 * TODO: Check with DWC3 clients for sysdev according to 5264 * quirks 5265 */ 5266 struct device *dev = hcd->self.sysdev; 5267 int retval; 5268 5269 /* Accept arbitrarily long scatter-gather lists */ 5270 hcd->self.sg_tablesize = ~0; 5271 5272 /* support to build packet from discontinuous buffers */ 5273 hcd->self.no_sg_constraint = 1; 5274 5275 /* XHCI controllers don't stop the ep queue on short packets :| */ 5276 hcd->self.no_stop_on_short = 1; 5277 5278 xhci = hcd_to_xhci(hcd); 5279 5280 if (!usb_hcd_is_primary_hcd(hcd)) { 5281 xhci_hcd_init_usb3_data(xhci, hcd); 5282 return 0; 5283 } 5284 5285 mutex_init(&xhci->mutex); 5286 xhci->main_hcd = hcd; 5287 xhci->cap_regs = hcd->regs; 5288 xhci->op_regs = hcd->regs + 5289 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5290 xhci->run_regs = hcd->regs + 5291 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5292 /* Cache read-only capability registers */ 5293 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5294 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5295 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5296 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5297 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5298 if (xhci->hci_version > 0x100) 5299 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5300 5301 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5302 if ((!xhci->max_interrupters) || 5303 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1)) 5304 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1); 5305 5306 xhci->quirks |= quirks; 5307 5308 if (get_quirks) 5309 get_quirks(dev, xhci); 5310 5311 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5312 * success event after a short transfer. This quirk will ignore such 5313 * spurious event. 5314 */ 5315 if (xhci->hci_version > 0x96) 5316 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5317 5318 if (xhci->hci_version == 0x95 && link_quirk) { 5319 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits"); 5320 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 5321 } 5322 5323 /* Make sure the HC is halted. */ 5324 retval = xhci_halt(xhci); 5325 if (retval) 5326 return retval; 5327 5328 xhci_zero_64b_regs(xhci); 5329 5330 xhci_dbg(xhci, "Resetting HCD\n"); 5331 /* Reset the internal HC memory state and registers. */ 5332 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5333 if (retval) 5334 return retval; 5335 xhci_dbg(xhci, "Reset complete\n"); 5336 5337 /* 5338 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5339 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5340 * address memory pointers actually. So, this driver clears the AC64 5341 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5342 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5343 */ 5344 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5345 xhci->hcc_params &= ~BIT(0); 5346 5347 /* Set dma_mask and coherent_dma_mask to 64-bits, 5348 * if xHC supports 64-bit addressing */ 5349 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5350 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5351 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5352 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5353 } else { 5354 /* 5355 * This is to avoid error in cases where a 32-bit USB 5356 * controller is used on a 64-bit capable system. 5357 */ 5358 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5359 if (retval) 5360 return retval; 5361 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5362 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5363 } 5364 5365 xhci_dbg(xhci, "Calling HCD init\n"); 5366 /* Initialize HCD and host controller data structures. */ 5367 retval = xhci_init(hcd); 5368 if (retval) 5369 return retval; 5370 xhci_dbg(xhci, "Called HCD init\n"); 5371 5372 if (xhci_hcd_is_usb3(hcd)) 5373 xhci_hcd_init_usb3_data(xhci, hcd); 5374 else 5375 xhci_hcd_init_usb2_data(xhci, hcd); 5376 5377 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5378 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5379 5380 return 0; 5381 } 5382 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5383 5384 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5385 struct usb_host_endpoint *ep) 5386 { 5387 struct xhci_hcd *xhci; 5388 struct usb_device *udev; 5389 unsigned int slot_id; 5390 unsigned int ep_index; 5391 unsigned long flags; 5392 5393 xhci = hcd_to_xhci(hcd); 5394 5395 spin_lock_irqsave(&xhci->lock, flags); 5396 udev = (struct usb_device *)ep->hcpriv; 5397 slot_id = udev->slot_id; 5398 ep_index = xhci_get_endpoint_index(&ep->desc); 5399 5400 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5401 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5402 spin_unlock_irqrestore(&xhci->lock, flags); 5403 } 5404 5405 static const struct hc_driver xhci_hc_driver = { 5406 .description = "xhci-hcd", 5407 .product_desc = "xHCI Host Controller", 5408 .hcd_priv_size = sizeof(struct xhci_hcd), 5409 5410 /* 5411 * generic hardware linkage 5412 */ 5413 .irq = xhci_irq, 5414 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5415 HCD_BH, 5416 5417 /* 5418 * basic lifecycle operations 5419 */ 5420 .reset = NULL, /* set in xhci_init_driver() */ 5421 .start = xhci_run, 5422 .stop = xhci_stop, 5423 .shutdown = xhci_shutdown, 5424 5425 /* 5426 * managing i/o requests and associated device resources 5427 */ 5428 .map_urb_for_dma = xhci_map_urb_for_dma, 5429 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5430 .urb_enqueue = xhci_urb_enqueue, 5431 .urb_dequeue = xhci_urb_dequeue, 5432 .alloc_dev = xhci_alloc_dev, 5433 .free_dev = xhci_free_dev, 5434 .alloc_streams = xhci_alloc_streams, 5435 .free_streams = xhci_free_streams, 5436 .add_endpoint = xhci_add_endpoint, 5437 .drop_endpoint = xhci_drop_endpoint, 5438 .endpoint_disable = xhci_endpoint_disable, 5439 .endpoint_reset = xhci_endpoint_reset, 5440 .check_bandwidth = xhci_check_bandwidth, 5441 .reset_bandwidth = xhci_reset_bandwidth, 5442 .address_device = xhci_address_device, 5443 .enable_device = xhci_enable_device, 5444 .update_hub_device = xhci_update_hub_device, 5445 .reset_device = xhci_discover_or_reset_device, 5446 5447 /* 5448 * scheduling support 5449 */ 5450 .get_frame_number = xhci_get_frame, 5451 5452 /* 5453 * root hub support 5454 */ 5455 .hub_control = xhci_hub_control, 5456 .hub_status_data = xhci_hub_status_data, 5457 .bus_suspend = xhci_bus_suspend, 5458 .bus_resume = xhci_bus_resume, 5459 .get_resuming_ports = xhci_get_resuming_ports, 5460 5461 /* 5462 * call back when device connected and addressed 5463 */ 5464 .update_device = xhci_update_device, 5465 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5466 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5467 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5468 .find_raw_port_number = xhci_find_raw_port_number, 5469 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5470 }; 5471 5472 void xhci_init_driver(struct hc_driver *drv, 5473 const struct xhci_driver_overrides *over) 5474 { 5475 BUG_ON(!over); 5476 5477 /* Copy the generic table to drv then apply the overrides */ 5478 *drv = xhci_hc_driver; 5479 5480 if (over) { 5481 drv->hcd_priv_size += over->extra_priv_size; 5482 if (over->reset) 5483 drv->reset = over->reset; 5484 if (over->start) 5485 drv->start = over->start; 5486 if (over->add_endpoint) 5487 drv->add_endpoint = over->add_endpoint; 5488 if (over->drop_endpoint) 5489 drv->drop_endpoint = over->drop_endpoint; 5490 if (over->check_bandwidth) 5491 drv->check_bandwidth = over->check_bandwidth; 5492 if (over->reset_bandwidth) 5493 drv->reset_bandwidth = over->reset_bandwidth; 5494 if (over->update_hub_device) 5495 drv->update_hub_device = over->update_hub_device; 5496 if (over->hub_control) 5497 drv->hub_control = over->hub_control; 5498 } 5499 } 5500 EXPORT_SYMBOL_GPL(xhci_init_driver); 5501 5502 MODULE_DESCRIPTION(DRIVER_DESC); 5503 MODULE_AUTHOR(DRIVER_AUTHOR); 5504 MODULE_LICENSE("GPL"); 5505 5506 static int __init xhci_hcd_init(void) 5507 { 5508 /* 5509 * Check the compiler generated sizes of structures that must be laid 5510 * out in specific ways for hardware access. 5511 */ 5512 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5513 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5514 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5515 /* xhci_device_control has eight fields, and also 5516 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5517 */ 5518 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5519 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5520 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5521 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5522 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5523 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5524 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5525 5526 if (usb_disabled()) 5527 return -ENODEV; 5528 5529 xhci_debugfs_create_root(); 5530 xhci_dbc_init(); 5531 5532 return 0; 5533 } 5534 5535 /* 5536 * If an init function is provided, an exit function must also be provided 5537 * to allow module unload. 5538 */ 5539 static void __exit xhci_hcd_fini(void) 5540 { 5541 xhci_debugfs_remove_root(); 5542 xhci_dbc_exit(); 5543 } 5544 5545 module_init(xhci_hcd_init); 5546 module_exit(xhci_hcd_fini); 5547