xref: /linux/drivers/usb/host/xhci.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/jiffies.h>
12 #include <linux/pci.h>
13 #include <linux/iommu.h>
14 #include <linux/iopoll.h>
15 #include <linux/irq.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/slab.h>
20 #include <linux/dmi.h>
21 #include <linux/dma-mapping.h>
22 
23 #include "xhci.h"
24 #include "xhci-trace.h"
25 #include "xhci-debugfs.h"
26 #include "xhci-dbgcap.h"
27 
28 #define DRIVER_AUTHOR "Sarah Sharp"
29 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
30 
31 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
32 
33 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
34 static int link_quirk;
35 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
36 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
37 
38 static unsigned long long quirks;
39 module_param(quirks, ullong, S_IRUGO);
40 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
41 
42 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
43 {
44 	struct xhci_segment *seg;
45 
46 	if (!td || !td->start_seg)
47 		return false;
48 
49 	xhci_for_each_ring_seg(ring->first_seg, seg) {
50 		if (seg == td->start_seg)
51 			return true;
52 	}
53 
54 	return false;
55 }
56 
57 /*
58  * xhci_handshake - spin reading hc until handshake completes or fails
59  * @ptr: address of hc register to be read
60  * @mask: bits to look at in result of read
61  * @done: value of those bits when handshake succeeds
62  * @usec: timeout in microseconds
63  *
64  * Returns negative errno, or zero on success
65  *
66  * Success happens when the "mask" bits have the specified value (hardware
67  * handshake done).  There are two failure modes:  "usec" have passed (major
68  * hardware flakeout), or the register reads as all-ones (hardware removed).
69  */
70 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
71 {
72 	u32	result;
73 	int	ret;
74 
75 	ret = readl_poll_timeout_atomic(ptr, result,
76 					(result & mask) == done ||
77 					result == U32_MAX,
78 					1, timeout_us);
79 	if (result == U32_MAX)		/* card removed */
80 		return -ENODEV;
81 
82 	return ret;
83 }
84 
85 /*
86  * xhci_handshake_check_state - same as xhci_handshake but takes an additional
87  * exit_state parameter, and bails out with an error immediately when xhc_state
88  * has exit_state flag set.
89  */
90 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
91 		u32 mask, u32 done, int usec, unsigned int exit_state)
92 {
93 	u32	result;
94 	int	ret;
95 
96 	ret = readl_poll_timeout_atomic(ptr, result,
97 				(result & mask) == done ||
98 				result == U32_MAX ||
99 				xhci->xhc_state & exit_state,
100 				1, usec);
101 
102 	if (result == U32_MAX || xhci->xhc_state & exit_state)
103 		return -ENODEV;
104 
105 	return ret;
106 }
107 
108 /*
109  * Disable interrupts and begin the xHCI halting process.
110  */
111 void xhci_quiesce(struct xhci_hcd *xhci)
112 {
113 	u32 halted;
114 	u32 cmd;
115 	u32 mask;
116 
117 	mask = ~(XHCI_IRQS);
118 	halted = readl(&xhci->op_regs->status) & STS_HALT;
119 	if (!halted)
120 		mask &= ~CMD_RUN;
121 
122 	cmd = readl(&xhci->op_regs->command);
123 	cmd &= mask;
124 	writel(cmd, &xhci->op_regs->command);
125 }
126 
127 /*
128  * Force HC into halt state.
129  *
130  * Disable any IRQs and clear the run/stop bit.
131  * HC will complete any current and actively pipelined transactions, and
132  * should halt within 16 ms of the run/stop bit being cleared.
133  * Read HC Halted bit in the status register to see when the HC is finished.
134  */
135 int xhci_halt(struct xhci_hcd *xhci)
136 {
137 	int ret;
138 
139 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
140 	xhci_quiesce(xhci);
141 
142 	ret = xhci_handshake(&xhci->op_regs->status,
143 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
144 	if (ret) {
145 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
146 		return ret;
147 	}
148 
149 	xhci->xhc_state |= XHCI_STATE_HALTED;
150 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
151 
152 	return ret;
153 }
154 
155 /*
156  * Set the run bit and wait for the host to be running.
157  */
158 int xhci_start(struct xhci_hcd *xhci)
159 {
160 	u32 temp;
161 	int ret;
162 
163 	temp = readl(&xhci->op_regs->command);
164 	temp |= (CMD_RUN);
165 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
166 			temp);
167 	writel(temp, &xhci->op_regs->command);
168 
169 	/*
170 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
171 	 * running.
172 	 */
173 	ret = xhci_handshake(&xhci->op_regs->status,
174 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
175 	if (ret == -ETIMEDOUT)
176 		xhci_err(xhci, "Host took too long to start, "
177 				"waited %u microseconds.\n",
178 				XHCI_MAX_HALT_USEC);
179 	if (!ret) {
180 		/* clear state flags. Including dying, halted or removing */
181 		xhci->xhc_state = 0;
182 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
183 	}
184 
185 	return ret;
186 }
187 
188 /*
189  * Reset a halted HC.
190  *
191  * This resets pipelines, timers, counters, state machines, etc.
192  * Transactions will be terminated immediately, and operational registers
193  * will be set to their defaults.
194  */
195 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
196 {
197 	u32 command;
198 	u32 state;
199 	int ret;
200 
201 	state = readl(&xhci->op_regs->status);
202 
203 	if (state == ~(u32)0) {
204 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
205 		return -ENODEV;
206 	}
207 
208 	if ((state & STS_HALT) == 0) {
209 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
210 		return 0;
211 	}
212 
213 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
214 	command = readl(&xhci->op_regs->command);
215 	command |= CMD_RESET;
216 	writel(command, &xhci->op_regs->command);
217 
218 	/* Existing Intel xHCI controllers require a delay of 1 mS,
219 	 * after setting the CMD_RESET bit, and before accessing any
220 	 * HC registers. This allows the HC to complete the
221 	 * reset operation and be ready for HC register access.
222 	 * Without this delay, the subsequent HC register access,
223 	 * may result in a system hang very rarely.
224 	 */
225 	if (xhci->quirks & XHCI_INTEL_HOST)
226 		udelay(1000);
227 
228 	ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
229 				CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
230 	if (ret)
231 		return ret;
232 
233 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
234 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
235 
236 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
237 			 "Wait for controller to be ready for doorbell rings");
238 	/*
239 	 * xHCI cannot write to any doorbells or operational registers other
240 	 * than status until the "Controller Not Ready" flag is cleared.
241 	 */
242 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
243 
244 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
245 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
246 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
247 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
248 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
249 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
250 
251 	return ret;
252 }
253 
254 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
255 {
256 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
257 	struct iommu_domain *domain;
258 	int err, i;
259 	u64 val;
260 	u32 intrs;
261 
262 	/*
263 	 * Some Renesas controllers get into a weird state if they are
264 	 * reset while programmed with 64bit addresses (they will preserve
265 	 * the top half of the address in internal, non visible
266 	 * registers). You end up with half the address coming from the
267 	 * kernel, and the other half coming from the firmware. Also,
268 	 * changing the programming leads to extra accesses even if the
269 	 * controller is supposed to be halted. The controller ends up with
270 	 * a fatal fault, and is then ripe for being properly reset.
271 	 *
272 	 * Special care is taken to only apply this if the device is behind
273 	 * an iommu. Doing anything when there is no iommu is definitely
274 	 * unsafe...
275 	 */
276 	domain = iommu_get_domain_for_dev(dev);
277 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
278 	    domain->type == IOMMU_DOMAIN_IDENTITY)
279 		return;
280 
281 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
282 
283 	/* Clear HSEIE so that faults do not get signaled */
284 	val = readl(&xhci->op_regs->command);
285 	val &= ~CMD_HSEIE;
286 	writel(val, &xhci->op_regs->command);
287 
288 	/* Clear HSE (aka FATAL) */
289 	val = readl(&xhci->op_regs->status);
290 	val |= STS_FATAL;
291 	writel(val, &xhci->op_regs->status);
292 
293 	/* Now zero the registers, and brace for impact */
294 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
295 	if (upper_32_bits(val))
296 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
297 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
298 	if (upper_32_bits(val))
299 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
300 
301 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
302 		      ARRAY_SIZE(xhci->run_regs->ir_set));
303 
304 	for (i = 0; i < intrs; i++) {
305 		struct xhci_intr_reg __iomem *ir;
306 
307 		ir = &xhci->run_regs->ir_set[i];
308 		val = xhci_read_64(xhci, &ir->erst_base);
309 		if (upper_32_bits(val))
310 			xhci_write_64(xhci, 0, &ir->erst_base);
311 		val= xhci_read_64(xhci, &ir->erst_dequeue);
312 		if (upper_32_bits(val))
313 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
314 	}
315 
316 	/* Wait for the fault to appear. It will be cleared on reset */
317 	err = xhci_handshake(&xhci->op_regs->status,
318 			     STS_FATAL, STS_FATAL,
319 			     XHCI_MAX_HALT_USEC);
320 	if (!err)
321 		xhci_info(xhci, "Fault detected\n");
322 }
323 
324 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
325 {
326 	u32 iman;
327 
328 	if (!ir || !ir->ir_set)
329 		return -EINVAL;
330 
331 	iman = readl(&ir->ir_set->irq_pending);
332 	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
333 
334 	return 0;
335 }
336 
337 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
338 {
339 	u32 iman;
340 
341 	if (!ir || !ir->ir_set)
342 		return -EINVAL;
343 
344 	iman = readl(&ir->ir_set->irq_pending);
345 	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
346 
347 	return 0;
348 }
349 
350 /* interrupt moderation interval imod_interval in nanoseconds */
351 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
352 				    u32 imod_interval)
353 {
354 	u32 imod;
355 
356 	if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250)
357 		return -EINVAL;
358 
359 	imod = readl(&ir->ir_set->irq_control);
360 	imod &= ~ER_IRQ_INTERVAL_MASK;
361 	imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
362 	writel(imod, &ir->ir_set->irq_control);
363 
364 	return 0;
365 }
366 
367 static void compliance_mode_recovery(struct timer_list *t)
368 {
369 	struct xhci_hcd *xhci;
370 	struct usb_hcd *hcd;
371 	struct xhci_hub *rhub;
372 	u32 temp;
373 	int i;
374 
375 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
376 	rhub = &xhci->usb3_rhub;
377 	hcd = rhub->hcd;
378 
379 	if (!hcd)
380 		return;
381 
382 	for (i = 0; i < rhub->num_ports; i++) {
383 		temp = readl(rhub->ports[i]->addr);
384 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
385 			/*
386 			 * Compliance Mode Detected. Letting USB Core
387 			 * handle the Warm Reset
388 			 */
389 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
390 					"Compliance mode detected->port %d",
391 					i + 1);
392 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
393 					"Attempting compliance mode recovery");
394 
395 			if (hcd->state == HC_STATE_SUSPENDED)
396 				usb_hcd_resume_root_hub(hcd);
397 
398 			usb_hcd_poll_rh_status(hcd);
399 		}
400 	}
401 
402 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
403 		mod_timer(&xhci->comp_mode_recovery_timer,
404 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
405 }
406 
407 /*
408  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
409  * that causes ports behind that hardware to enter compliance mode sometimes.
410  * The quirk creates a timer that polls every 2 seconds the link state of
411  * each host controller's port and recovers it by issuing a Warm reset
412  * if Compliance mode is detected, otherwise the port will become "dead" (no
413  * device connections or disconnections will be detected anymore). Becasue no
414  * status event is generated when entering compliance mode (per xhci spec),
415  * this quirk is needed on systems that have the failing hardware installed.
416  */
417 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
418 {
419 	xhci->port_status_u0 = 0;
420 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
421 		    0);
422 	xhci->comp_mode_recovery_timer.expires = jiffies +
423 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
424 
425 	add_timer(&xhci->comp_mode_recovery_timer);
426 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
427 			"Compliance mode recovery timer initialized");
428 }
429 
430 /*
431  * This function identifies the systems that have installed the SN65LVPE502CP
432  * USB3.0 re-driver and that need the Compliance Mode Quirk.
433  * Systems:
434  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
435  */
436 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
437 {
438 	const char *dmi_product_name, *dmi_sys_vendor;
439 
440 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
441 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
442 	if (!dmi_product_name || !dmi_sys_vendor)
443 		return false;
444 
445 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
446 		return false;
447 
448 	if (strstr(dmi_product_name, "Z420") ||
449 			strstr(dmi_product_name, "Z620") ||
450 			strstr(dmi_product_name, "Z820") ||
451 			strstr(dmi_product_name, "Z1 Workstation"))
452 		return true;
453 
454 	return false;
455 }
456 
457 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
458 {
459 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
460 }
461 
462 
463 /*
464  * Initialize memory for HCD and xHC (one-time init).
465  *
466  * Program the PAGESIZE register, initialize the device context array, create
467  * device contexts (?), set up a command ring segment (or two?), create event
468  * ring (one for now).
469  */
470 static int xhci_init(struct usb_hcd *hcd)
471 {
472 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
473 	int retval;
474 
475 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
476 	spin_lock_init(&xhci->lock);
477 
478 	retval = xhci_mem_init(xhci, GFP_KERNEL);
479 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
480 
481 	/* Initializing Compliance Mode Recovery Data If Needed */
482 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
483 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
484 		compliance_mode_recovery_timer_init(xhci);
485 	}
486 
487 	return retval;
488 }
489 
490 /*-------------------------------------------------------------------------*/
491 
492 static int xhci_run_finished(struct xhci_hcd *xhci)
493 {
494 	struct xhci_interrupter *ir = xhci->interrupters[0];
495 	unsigned long	flags;
496 	u32		temp;
497 
498 	/*
499 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
500 	 * Protect the short window before host is running with a lock
501 	 */
502 	spin_lock_irqsave(&xhci->lock, flags);
503 
504 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
505 	temp = readl(&xhci->op_regs->command);
506 	temp |= (CMD_EIE);
507 	writel(temp, &xhci->op_regs->command);
508 
509 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
510 	xhci_enable_interrupter(ir);
511 
512 	if (xhci_start(xhci)) {
513 		xhci_halt(xhci);
514 		spin_unlock_irqrestore(&xhci->lock, flags);
515 		return -ENODEV;
516 	}
517 
518 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
519 
520 	if (xhci->quirks & XHCI_NEC_HOST)
521 		xhci_ring_cmd_db(xhci);
522 
523 	spin_unlock_irqrestore(&xhci->lock, flags);
524 
525 	return 0;
526 }
527 
528 /*
529  * Start the HC after it was halted.
530  *
531  * This function is called by the USB core when the HC driver is added.
532  * Its opposite is xhci_stop().
533  *
534  * xhci_init() must be called once before this function can be called.
535  * Reset the HC, enable device slot contexts, program DCBAAP, and
536  * set command ring pointer and event ring pointer.
537  *
538  * Setup MSI-X vectors and enable interrupts.
539  */
540 int xhci_run(struct usb_hcd *hcd)
541 {
542 	u64 temp_64;
543 	int ret;
544 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
545 	struct xhci_interrupter *ir = xhci->interrupters[0];
546 	/* Start the xHCI host controller running only after the USB 2.0 roothub
547 	 * is setup.
548 	 */
549 
550 	hcd->uses_new_polling = 1;
551 	if (hcd->msi_enabled)
552 		ir->ip_autoclear = true;
553 
554 	if (!usb_hcd_is_primary_hcd(hcd))
555 		return xhci_run_finished(xhci);
556 
557 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
558 
559 	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
560 	temp_64 &= ERST_PTR_MASK;
561 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
562 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
563 
564 	xhci_set_interrupter_moderation(ir, xhci->imod_interval);
565 
566 	if (xhci->quirks & XHCI_NEC_HOST) {
567 		struct xhci_command *command;
568 
569 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
570 		if (!command)
571 			return -ENOMEM;
572 
573 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
574 				TRB_TYPE(TRB_NEC_GET_FW));
575 		if (ret)
576 			xhci_free_command(xhci, command);
577 	}
578 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
579 			"Finished %s for main hcd", __func__);
580 
581 	xhci_create_dbc_dev(xhci);
582 
583 	xhci_debugfs_init(xhci);
584 
585 	if (xhci_has_one_roothub(xhci))
586 		return xhci_run_finished(xhci);
587 
588 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
589 
590 	return 0;
591 }
592 EXPORT_SYMBOL_GPL(xhci_run);
593 
594 /*
595  * Stop xHCI driver.
596  *
597  * This function is called by the USB core when the HC driver is removed.
598  * Its opposite is xhci_run().
599  *
600  * Disable device contexts, disable IRQs, and quiesce the HC.
601  * Reset the HC, finish any completed transactions, and cleanup memory.
602  */
603 void xhci_stop(struct usb_hcd *hcd)
604 {
605 	u32 temp;
606 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
607 	struct xhci_interrupter *ir = xhci->interrupters[0];
608 
609 	mutex_lock(&xhci->mutex);
610 
611 	/* Only halt host and free memory after both hcds are removed */
612 	if (!usb_hcd_is_primary_hcd(hcd)) {
613 		mutex_unlock(&xhci->mutex);
614 		return;
615 	}
616 
617 	xhci_remove_dbc_dev(xhci);
618 
619 	spin_lock_irq(&xhci->lock);
620 	xhci->xhc_state |= XHCI_STATE_HALTED;
621 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
622 	xhci_halt(xhci);
623 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
624 	spin_unlock_irq(&xhci->lock);
625 
626 	/* Deleting Compliance Mode Recovery Timer */
627 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
628 			(!(xhci_all_ports_seen_u0(xhci)))) {
629 		del_timer_sync(&xhci->comp_mode_recovery_timer);
630 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
631 				"%s: compliance mode recovery timer deleted",
632 				__func__);
633 	}
634 
635 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
636 		usb_amd_dev_put();
637 
638 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639 			"// Disabling event ring interrupts");
640 	temp = readl(&xhci->op_regs->status);
641 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
642 	xhci_disable_interrupter(ir);
643 
644 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
645 	xhci_mem_cleanup(xhci);
646 	xhci_debugfs_exit(xhci);
647 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
648 			"xhci_stop completed - status = %x",
649 			readl(&xhci->op_regs->status));
650 	mutex_unlock(&xhci->mutex);
651 }
652 EXPORT_SYMBOL_GPL(xhci_stop);
653 
654 /*
655  * Shutdown HC (not bus-specific)
656  *
657  * This is called when the machine is rebooting or halting.  We assume that the
658  * machine will be powered off, and the HC's internal state will be reset.
659  * Don't bother to free memory.
660  *
661  * This will only ever be called with the main usb_hcd (the USB3 roothub).
662  */
663 void xhci_shutdown(struct usb_hcd *hcd)
664 {
665 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
666 
667 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
668 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
669 
670 	/* Don't poll the roothubs after shutdown. */
671 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
672 			__func__, hcd->self.busnum);
673 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
674 	del_timer_sync(&hcd->rh_timer);
675 
676 	if (xhci->shared_hcd) {
677 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
678 		del_timer_sync(&xhci->shared_hcd->rh_timer);
679 	}
680 
681 	spin_lock_irq(&xhci->lock);
682 	xhci_halt(xhci);
683 
684 	/*
685 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
686 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
687 	 */
688 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
689 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
690 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
691 
692 	spin_unlock_irq(&xhci->lock);
693 
694 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
695 			"xhci_shutdown completed - status = %x",
696 			readl(&xhci->op_regs->status));
697 }
698 EXPORT_SYMBOL_GPL(xhci_shutdown);
699 
700 #ifdef CONFIG_PM
701 static void xhci_save_registers(struct xhci_hcd *xhci)
702 {
703 	struct xhci_interrupter *ir;
704 	unsigned int i;
705 
706 	xhci->s3.command = readl(&xhci->op_regs->command);
707 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
708 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
709 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
710 
711 	/* save both primary and all secondary interrupters */
712 	/* fixme, shold we lock  to prevent race with remove secondary interrupter? */
713 	for (i = 0; i < xhci->max_interrupters; i++) {
714 		ir = xhci->interrupters[i];
715 		if (!ir)
716 			continue;
717 
718 		ir->s3_erst_size = readl(&ir->ir_set->erst_size);
719 		ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
720 		ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
721 		ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
722 		ir->s3_irq_control = readl(&ir->ir_set->irq_control);
723 	}
724 }
725 
726 static void xhci_restore_registers(struct xhci_hcd *xhci)
727 {
728 	struct xhci_interrupter *ir;
729 	unsigned int i;
730 
731 	writel(xhci->s3.command, &xhci->op_regs->command);
732 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
733 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
734 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
735 
736 	/* FIXME should we lock to protect against freeing of interrupters */
737 	for (i = 0; i < xhci->max_interrupters; i++) {
738 		ir = xhci->interrupters[i];
739 		if (!ir)
740 			continue;
741 
742 		writel(ir->s3_erst_size, &ir->ir_set->erst_size);
743 		xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
744 		xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
745 		writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
746 		writel(ir->s3_irq_control, &ir->ir_set->irq_control);
747 	}
748 }
749 
750 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
751 {
752 	u64	val_64;
753 
754 	/* step 2: initialize command ring buffer */
755 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
756 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
757 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
758 				      xhci->cmd_ring->dequeue) &
759 		 (u64) ~CMD_RING_RSVD_BITS) |
760 		xhci->cmd_ring->cycle_state;
761 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
762 			"// Setting command ring address to 0x%llx",
763 			(long unsigned long) val_64);
764 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
765 }
766 
767 /*
768  * The whole command ring must be cleared to zero when we suspend the host.
769  *
770  * The host doesn't save the command ring pointer in the suspend well, so we
771  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
772  * aligned, because of the reserved bits in the command ring dequeue pointer
773  * register.  Therefore, we can't just set the dequeue pointer back in the
774  * middle of the ring (TRBs are 16-byte aligned).
775  */
776 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
777 {
778 	struct xhci_ring *ring;
779 	struct xhci_segment *seg;
780 
781 	ring = xhci->cmd_ring;
782 	xhci_for_each_ring_seg(ring->first_seg, seg)
783 		memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
784 
785 	xhci_initialize_ring_info(ring);
786 	/*
787 	 * Reset the hardware dequeue pointer.
788 	 * Yes, this will need to be re-written after resume, but we're paranoid
789 	 * and want to make sure the hardware doesn't access bogus memory
790 	 * because, say, the BIOS or an SMI started the host without changing
791 	 * the command ring pointers.
792 	 */
793 	xhci_set_cmd_ring_deq(xhci);
794 }
795 
796 /*
797  * Disable port wake bits if do_wakeup is not set.
798  *
799  * Also clear a possible internal port wake state left hanging for ports that
800  * detected termination but never successfully enumerated (trained to 0U).
801  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
802  * at enumeration clears this wake, force one here as well for unconnected ports
803  */
804 
805 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
806 				       struct xhci_hub *rhub,
807 				       bool do_wakeup)
808 {
809 	unsigned long flags;
810 	u32 t1, t2, portsc;
811 	int i;
812 
813 	spin_lock_irqsave(&xhci->lock, flags);
814 
815 	for (i = 0; i < rhub->num_ports; i++) {
816 		portsc = readl(rhub->ports[i]->addr);
817 		t1 = xhci_port_state_to_neutral(portsc);
818 		t2 = t1;
819 
820 		/* clear wake bits if do_wake is not set */
821 		if (!do_wakeup)
822 			t2 &= ~PORT_WAKE_BITS;
823 
824 		/* Don't touch csc bit if connected or connect change is set */
825 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
826 			t2 |= PORT_CSC;
827 
828 		if (t1 != t2) {
829 			writel(t2, rhub->ports[i]->addr);
830 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
831 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
832 		}
833 	}
834 	spin_unlock_irqrestore(&xhci->lock, flags);
835 }
836 
837 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
838 {
839 	struct xhci_port	**ports;
840 	int			port_index;
841 	u32			status;
842 	u32			portsc;
843 
844 	status = readl(&xhci->op_regs->status);
845 	if (status & STS_EINT)
846 		return true;
847 	/*
848 	 * Checking STS_EINT is not enough as there is a lag between a change
849 	 * bit being set and the Port Status Change Event that it generated
850 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
851 	 */
852 
853 	port_index = xhci->usb2_rhub.num_ports;
854 	ports = xhci->usb2_rhub.ports;
855 	while (port_index--) {
856 		portsc = readl(ports[port_index]->addr);
857 		if (portsc & PORT_CHANGE_MASK ||
858 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
859 			return true;
860 	}
861 	port_index = xhci->usb3_rhub.num_ports;
862 	ports = xhci->usb3_rhub.ports;
863 	while (port_index--) {
864 		portsc = readl(ports[port_index]->addr);
865 		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
866 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
867 			return true;
868 	}
869 	return false;
870 }
871 
872 /*
873  * Stop HC (not bus-specific)
874  *
875  * This is called when the machine transition into S3/S4 mode.
876  *
877  */
878 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
879 {
880 	int			rc = 0;
881 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
882 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
883 	u32			command;
884 	u32			res;
885 
886 	if (!hcd->state)
887 		return 0;
888 
889 	if (hcd->state != HC_STATE_SUSPENDED ||
890 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
891 		return -EINVAL;
892 
893 	/* Clear root port wake on bits if wakeup not allowed. */
894 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
895 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
896 
897 	if (!HCD_HW_ACCESSIBLE(hcd))
898 		return 0;
899 
900 	xhci_dbc_suspend(xhci);
901 
902 	/* Don't poll the roothubs on bus suspend. */
903 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
904 		 __func__, hcd->self.busnum);
905 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
906 	del_timer_sync(&hcd->rh_timer);
907 	if (xhci->shared_hcd) {
908 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
909 		del_timer_sync(&xhci->shared_hcd->rh_timer);
910 	}
911 
912 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
913 		usleep_range(1000, 1500);
914 
915 	spin_lock_irq(&xhci->lock);
916 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
917 	if (xhci->shared_hcd)
918 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
919 	/* step 1: stop endpoint */
920 	/* skipped assuming that port suspend has done */
921 
922 	/* step 2: clear Run/Stop bit */
923 	command = readl(&xhci->op_regs->command);
924 	command &= ~CMD_RUN;
925 	writel(command, &xhci->op_regs->command);
926 
927 	/* Some chips from Fresco Logic need an extraordinary delay */
928 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
929 
930 	if (xhci_handshake(&xhci->op_regs->status,
931 		      STS_HALT, STS_HALT, delay)) {
932 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
933 		spin_unlock_irq(&xhci->lock);
934 		return -ETIMEDOUT;
935 	}
936 	xhci_clear_command_ring(xhci);
937 
938 	/* step 3: save registers */
939 	xhci_save_registers(xhci);
940 
941 	/* step 4: set CSS flag */
942 	command = readl(&xhci->op_regs->command);
943 	command |= CMD_CSS;
944 	writel(command, &xhci->op_regs->command);
945 	xhci->broken_suspend = 0;
946 	if (xhci_handshake(&xhci->op_regs->status,
947 				STS_SAVE, 0, 20 * 1000)) {
948 	/*
949 	 * AMD SNPS xHC 3.0 occasionally does not clear the
950 	 * SSS bit of USBSTS and when driver tries to poll
951 	 * to see if the xHC clears BIT(8) which never happens
952 	 * and driver assumes that controller is not responding
953 	 * and times out. To workaround this, its good to check
954 	 * if SRE and HCE bits are not set (as per xhci
955 	 * Section 5.4.2) and bypass the timeout.
956 	 */
957 		res = readl(&xhci->op_regs->status);
958 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
959 		    (((res & STS_SRE) == 0) &&
960 				((res & STS_HCE) == 0))) {
961 			xhci->broken_suspend = 1;
962 		} else {
963 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
964 			spin_unlock_irq(&xhci->lock);
965 			return -ETIMEDOUT;
966 		}
967 	}
968 	spin_unlock_irq(&xhci->lock);
969 
970 	/*
971 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
972 	 * is about to be suspended.
973 	 */
974 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
975 			(!(xhci_all_ports_seen_u0(xhci)))) {
976 		del_timer_sync(&xhci->comp_mode_recovery_timer);
977 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
978 				"%s: compliance mode recovery timer deleted",
979 				__func__);
980 	}
981 
982 	return rc;
983 }
984 EXPORT_SYMBOL_GPL(xhci_suspend);
985 
986 /*
987  * start xHC (not bus-specific)
988  *
989  * This is called when the machine transition from S3/S4 mode.
990  *
991  */
992 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
993 {
994 	bool			hibernated = (msg.event == PM_EVENT_RESTORE);
995 	u32			command, temp = 0;
996 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
997 	int			retval = 0;
998 	bool			comp_timer_running = false;
999 	bool			pending_portevent = false;
1000 	bool			suspended_usb3_devs = false;
1001 	bool			reinit_xhc = false;
1002 
1003 	if (!hcd->state)
1004 		return 0;
1005 
1006 	/* Wait a bit if either of the roothubs need to settle from the
1007 	 * transition into bus suspend.
1008 	 */
1009 
1010 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1011 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1012 		msleep(100);
1013 
1014 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1015 	if (xhci->shared_hcd)
1016 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1017 
1018 	spin_lock_irq(&xhci->lock);
1019 
1020 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1021 		reinit_xhc = true;
1022 
1023 	if (!reinit_xhc) {
1024 		/*
1025 		 * Some controllers might lose power during suspend, so wait
1026 		 * for controller not ready bit to clear, just as in xHC init.
1027 		 */
1028 		retval = xhci_handshake(&xhci->op_regs->status,
1029 					STS_CNR, 0, 10 * 1000 * 1000);
1030 		if (retval) {
1031 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1032 				  retval);
1033 			spin_unlock_irq(&xhci->lock);
1034 			return retval;
1035 		}
1036 		/* step 1: restore register */
1037 		xhci_restore_registers(xhci);
1038 		/* step 2: initialize command ring buffer */
1039 		xhci_set_cmd_ring_deq(xhci);
1040 		/* step 3: restore state and start state*/
1041 		/* step 3: set CRS flag */
1042 		command = readl(&xhci->op_regs->command);
1043 		command |= CMD_CRS;
1044 		writel(command, &xhci->op_regs->command);
1045 		/*
1046 		 * Some controllers take up to 55+ ms to complete the controller
1047 		 * restore so setting the timeout to 100ms. Xhci specification
1048 		 * doesn't mention any timeout value.
1049 		 */
1050 		if (xhci_handshake(&xhci->op_regs->status,
1051 			      STS_RESTORE, 0, 100 * 1000)) {
1052 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1053 			spin_unlock_irq(&xhci->lock);
1054 			return -ETIMEDOUT;
1055 		}
1056 	}
1057 
1058 	temp = readl(&xhci->op_regs->status);
1059 
1060 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1061 	if ((temp & (STS_SRE | STS_HCE)) &&
1062 	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1063 		reinit_xhc = true;
1064 		if (!xhci->broken_suspend)
1065 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1066 	}
1067 
1068 	if (reinit_xhc) {
1069 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1070 				!(xhci_all_ports_seen_u0(xhci))) {
1071 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1072 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1073 				"Compliance Mode Recovery Timer deleted!");
1074 		}
1075 
1076 		/* Let the USB core know _both_ roothubs lost power. */
1077 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1078 		if (xhci->shared_hcd)
1079 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1080 
1081 		xhci_dbg(xhci, "Stop HCD\n");
1082 		xhci_halt(xhci);
1083 		xhci_zero_64b_regs(xhci);
1084 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1085 		spin_unlock_irq(&xhci->lock);
1086 		if (retval)
1087 			return retval;
1088 
1089 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1090 		temp = readl(&xhci->op_regs->status);
1091 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1092 		xhci_disable_interrupter(xhci->interrupters[0]);
1093 
1094 		xhci_dbg(xhci, "cleaning up memory\n");
1095 		xhci_mem_cleanup(xhci);
1096 		xhci_debugfs_exit(xhci);
1097 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1098 			    readl(&xhci->op_regs->status));
1099 
1100 		/* USB core calls the PCI reinit and start functions twice:
1101 		 * first with the primary HCD, and then with the secondary HCD.
1102 		 * If we don't do the same, the host will never be started.
1103 		 */
1104 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1105 		retval = xhci_init(hcd);
1106 		if (retval)
1107 			return retval;
1108 		comp_timer_running = true;
1109 
1110 		xhci_dbg(xhci, "Start the primary HCD\n");
1111 		retval = xhci_run(hcd);
1112 		if (!retval && xhci->shared_hcd) {
1113 			xhci_dbg(xhci, "Start the secondary HCD\n");
1114 			retval = xhci_run(xhci->shared_hcd);
1115 		}
1116 		if (retval)
1117 			return retval;
1118 		/*
1119 		 * Resume roothubs unconditionally as PORTSC change bits are not
1120 		 * immediately visible after xHC reset
1121 		 */
1122 		hcd->state = HC_STATE_SUSPENDED;
1123 
1124 		if (xhci->shared_hcd) {
1125 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1126 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1127 		}
1128 		usb_hcd_resume_root_hub(hcd);
1129 
1130 		goto done;
1131 	}
1132 
1133 	/* step 4: set Run/Stop bit */
1134 	command = readl(&xhci->op_regs->command);
1135 	command |= CMD_RUN;
1136 	writel(command, &xhci->op_regs->command);
1137 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1138 		  0, 250 * 1000);
1139 
1140 	/* step 5: walk topology and initialize portsc,
1141 	 * portpmsc and portli
1142 	 */
1143 	/* this is done in bus_resume */
1144 
1145 	/* step 6: restart each of the previously
1146 	 * Running endpoints by ringing their doorbells
1147 	 */
1148 
1149 	spin_unlock_irq(&xhci->lock);
1150 
1151 	xhci_dbc_resume(xhci);
1152 
1153 	if (retval == 0) {
1154 		/*
1155 		 * Resume roothubs only if there are pending events.
1156 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1157 		 * the first wake signalling failed, give it that chance if
1158 		 * there are suspended USB 3 devices.
1159 		 */
1160 		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1161 		    xhci->usb3_rhub.bus_state.bus_suspended)
1162 			suspended_usb3_devs = true;
1163 
1164 		pending_portevent = xhci_pending_portevent(xhci);
1165 
1166 		if (suspended_usb3_devs && !pending_portevent &&
1167 		    msg.event == PM_EVENT_AUTO_RESUME) {
1168 			msleep(120);
1169 			pending_portevent = xhci_pending_portevent(xhci);
1170 		}
1171 
1172 		if (pending_portevent) {
1173 			if (xhci->shared_hcd)
1174 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1175 			usb_hcd_resume_root_hub(hcd);
1176 		}
1177 	}
1178 done:
1179 	/*
1180 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1181 	 * be re-initialized Always after a system resume. Ports are subject
1182 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1183 	 * ports have entered previously to U0 before system's suspension.
1184 	 */
1185 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1186 		compliance_mode_recovery_timer_init(xhci);
1187 
1188 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1189 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1190 
1191 	/* Re-enable port polling. */
1192 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1193 		 __func__, hcd->self.busnum);
1194 	if (xhci->shared_hcd) {
1195 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1196 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1197 	}
1198 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1199 	usb_hcd_poll_rh_status(hcd);
1200 
1201 	return retval;
1202 }
1203 EXPORT_SYMBOL_GPL(xhci_resume);
1204 #endif	/* CONFIG_PM */
1205 
1206 /*-------------------------------------------------------------------------*/
1207 
1208 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1209 {
1210 	void *temp;
1211 	int ret = 0;
1212 	unsigned int buf_len;
1213 	enum dma_data_direction dir;
1214 
1215 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1216 	buf_len = urb->transfer_buffer_length;
1217 
1218 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1219 			    dev_to_node(hcd->self.sysdev));
1220 	if (!temp)
1221 		return -ENOMEM;
1222 
1223 	if (usb_urb_dir_out(urb))
1224 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1225 				   temp, buf_len, 0);
1226 
1227 	urb->transfer_buffer = temp;
1228 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1229 					   urb->transfer_buffer,
1230 					   urb->transfer_buffer_length,
1231 					   dir);
1232 
1233 	if (dma_mapping_error(hcd->self.sysdev,
1234 			      urb->transfer_dma)) {
1235 		ret = -EAGAIN;
1236 		kfree(temp);
1237 	} else {
1238 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1239 	}
1240 
1241 	return ret;
1242 }
1243 
1244 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1245 					  struct urb *urb)
1246 {
1247 	bool ret = false;
1248 	unsigned int i;
1249 	unsigned int len = 0;
1250 	unsigned int trb_size;
1251 	unsigned int max_pkt;
1252 	struct scatterlist *sg;
1253 	struct scatterlist *tail_sg;
1254 
1255 	tail_sg = urb->sg;
1256 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1257 
1258 	if (!urb->num_sgs)
1259 		return ret;
1260 
1261 	if (urb->dev->speed >= USB_SPEED_SUPER)
1262 		trb_size = TRB_CACHE_SIZE_SS;
1263 	else
1264 		trb_size = TRB_CACHE_SIZE_HS;
1265 
1266 	if (urb->transfer_buffer_length != 0 &&
1267 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1268 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1269 			len = len + sg->length;
1270 			if (i > trb_size - 2) {
1271 				len = len - tail_sg->length;
1272 				if (len < max_pkt) {
1273 					ret = true;
1274 					break;
1275 				}
1276 
1277 				tail_sg = sg_next(tail_sg);
1278 			}
1279 		}
1280 	}
1281 	return ret;
1282 }
1283 
1284 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1285 {
1286 	unsigned int len;
1287 	unsigned int buf_len;
1288 	enum dma_data_direction dir;
1289 
1290 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1291 
1292 	buf_len = urb->transfer_buffer_length;
1293 
1294 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1295 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1296 		dma_unmap_single(hcd->self.sysdev,
1297 				 urb->transfer_dma,
1298 				 urb->transfer_buffer_length,
1299 				 dir);
1300 
1301 	if (usb_urb_dir_in(urb)) {
1302 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1303 					   urb->transfer_buffer,
1304 					   buf_len,
1305 					   0);
1306 		if (len != buf_len) {
1307 			xhci_dbg(hcd_to_xhci(hcd),
1308 				 "Copy from tmp buf to urb sg list failed\n");
1309 			urb->actual_length = len;
1310 		}
1311 	}
1312 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1313 	kfree(urb->transfer_buffer);
1314 	urb->transfer_buffer = NULL;
1315 }
1316 
1317 /*
1318  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1319  * we'll copy the actual data into the TRB address register. This is limited to
1320  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1321  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1322  */
1323 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1324 				gfp_t mem_flags)
1325 {
1326 	struct xhci_hcd *xhci;
1327 
1328 	xhci = hcd_to_xhci(hcd);
1329 
1330 	if (xhci_urb_suitable_for_idt(urb))
1331 		return 0;
1332 
1333 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1334 		if (xhci_urb_temp_buffer_required(hcd, urb))
1335 			return xhci_map_temp_buffer(hcd, urb);
1336 	}
1337 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1338 }
1339 
1340 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1341 {
1342 	struct xhci_hcd *xhci;
1343 	bool unmap_temp_buf = false;
1344 
1345 	xhci = hcd_to_xhci(hcd);
1346 
1347 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1348 		unmap_temp_buf = true;
1349 
1350 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1351 		xhci_unmap_temp_buf(hcd, urb);
1352 	else
1353 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1354 }
1355 
1356 /**
1357  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1358  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1359  * value to right shift 1 for the bitmask.
1360  *
1361  * Index  = (epnum * 2) + direction - 1,
1362  * where direction = 0 for OUT, 1 for IN.
1363  * For control endpoints, the IN index is used (OUT index is unused), so
1364  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1365  */
1366 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1367 {
1368 	unsigned int index;
1369 	if (usb_endpoint_xfer_control(desc))
1370 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1371 	else
1372 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1373 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1374 	return index;
1375 }
1376 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1377 
1378 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1379  * address from the XHCI endpoint index.
1380  */
1381 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1382 {
1383 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1384 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1385 	return direction | number;
1386 }
1387 
1388 /* Find the flag for this endpoint (for use in the control context).  Use the
1389  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1390  * bit 1, etc.
1391  */
1392 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1393 {
1394 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1395 }
1396 
1397 /* Compute the last valid endpoint context index.  Basically, this is the
1398  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1399  * we find the most significant bit set in the added contexts flags.
1400  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1401  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1402  */
1403 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1404 {
1405 	return fls(added_ctxs) - 1;
1406 }
1407 
1408 /* Returns 1 if the arguments are OK;
1409  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1410  */
1411 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1412 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1413 		const char *func) {
1414 	struct xhci_hcd	*xhci;
1415 	struct xhci_virt_device	*virt_dev;
1416 
1417 	if (!hcd || (check_ep && !ep) || !udev) {
1418 		pr_debug("xHCI %s called with invalid args\n", func);
1419 		return -EINVAL;
1420 	}
1421 	if (!udev->parent) {
1422 		pr_debug("xHCI %s called for root hub\n", func);
1423 		return 0;
1424 	}
1425 
1426 	xhci = hcd_to_xhci(hcd);
1427 	if (check_virt_dev) {
1428 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1429 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1430 					func);
1431 			return -EINVAL;
1432 		}
1433 
1434 		virt_dev = xhci->devs[udev->slot_id];
1435 		if (virt_dev->udev != udev) {
1436 			xhci_dbg(xhci, "xHCI %s called with udev and "
1437 					  "virt_dev does not match\n", func);
1438 			return -EINVAL;
1439 		}
1440 	}
1441 
1442 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1443 		return -ENODEV;
1444 
1445 	return 1;
1446 }
1447 
1448 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1449 		struct usb_device *udev, struct xhci_command *command,
1450 		bool ctx_change, bool must_succeed);
1451 
1452 /*
1453  * Full speed devices may have a max packet size greater than 8 bytes, but the
1454  * USB core doesn't know that until it reads the first 8 bytes of the
1455  * descriptor.  If the usb_device's max packet size changes after that point,
1456  * we need to issue an evaluate context command and wait on it.
1457  */
1458 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1459 {
1460 	struct xhci_input_control_ctx *ctrl_ctx;
1461 	struct xhci_ep_ctx *ep_ctx;
1462 	struct xhci_command *command;
1463 	int max_packet_size;
1464 	int hw_max_packet_size;
1465 	int ret = 0;
1466 
1467 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1468 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1469 	max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1470 
1471 	if (hw_max_packet_size == max_packet_size)
1472 		return 0;
1473 
1474 	switch (max_packet_size) {
1475 	case 8: case 16: case 32: case 64: case 9:
1476 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1477 				"Max Packet Size for ep 0 changed.");
1478 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1479 				"Max packet size in usb_device = %d",
1480 				max_packet_size);
1481 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1482 				"Max packet size in xHCI HW = %d",
1483 				hw_max_packet_size);
1484 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1485 				"Issuing evaluate context command.");
1486 
1487 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1488 		if (!command)
1489 			return -ENOMEM;
1490 
1491 		command->in_ctx = vdev->in_ctx;
1492 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1493 		if (!ctrl_ctx) {
1494 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1495 					__func__);
1496 			ret = -ENOMEM;
1497 			break;
1498 		}
1499 		/* Set up the modified control endpoint 0 */
1500 		xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1501 
1502 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1503 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1504 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1505 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1506 
1507 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1508 		ctrl_ctx->drop_flags = 0;
1509 
1510 		ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1511 					      true, false);
1512 		/* Clean up the input context for later use by bandwidth functions */
1513 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1514 		break;
1515 	default:
1516 		dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1517 			max_packet_size);
1518 		return -EINVAL;
1519 	}
1520 
1521 	kfree(command->completion);
1522 	kfree(command);
1523 
1524 	return ret;
1525 }
1526 
1527 /*
1528  * non-error returns are a promise to giveback() the urb later
1529  * we drop ownership so next owner (or urb unlink) can get it
1530  */
1531 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1532 {
1533 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1534 	unsigned long flags;
1535 	int ret = 0;
1536 	unsigned int slot_id, ep_index;
1537 	unsigned int *ep_state;
1538 	struct urb_priv	*urb_priv;
1539 	int num_tds;
1540 
1541 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1542 
1543 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1544 		num_tds = urb->number_of_packets;
1545 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1546 	    urb->transfer_buffer_length > 0 &&
1547 	    urb->transfer_flags & URB_ZERO_PACKET &&
1548 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1549 		num_tds = 2;
1550 	else
1551 		num_tds = 1;
1552 
1553 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1554 	if (!urb_priv)
1555 		return -ENOMEM;
1556 
1557 	urb_priv->num_tds = num_tds;
1558 	urb_priv->num_tds_done = 0;
1559 	urb->hcpriv = urb_priv;
1560 
1561 	trace_xhci_urb_enqueue(urb);
1562 
1563 	spin_lock_irqsave(&xhci->lock, flags);
1564 
1565 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1566 			      true, true, __func__);
1567 	if (ret <= 0) {
1568 		ret = ret ? ret : -EINVAL;
1569 		goto free_priv;
1570 	}
1571 
1572 	slot_id = urb->dev->slot_id;
1573 
1574 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1575 		ret = -ESHUTDOWN;
1576 		goto free_priv;
1577 	}
1578 
1579 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1580 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1581 		ret = -ENODEV;
1582 		goto free_priv;
1583 	}
1584 
1585 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1586 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1587 			 urb->ep->desc.bEndpointAddress, urb);
1588 		ret = -ESHUTDOWN;
1589 		goto free_priv;
1590 	}
1591 
1592 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1593 
1594 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1595 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1596 			  *ep_state);
1597 		ret = -EINVAL;
1598 		goto free_priv;
1599 	}
1600 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1601 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1602 		ret = -EINVAL;
1603 		goto free_priv;
1604 	}
1605 
1606 	switch (usb_endpoint_type(&urb->ep->desc)) {
1607 
1608 	case USB_ENDPOINT_XFER_CONTROL:
1609 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1610 					 slot_id, ep_index);
1611 		break;
1612 	case USB_ENDPOINT_XFER_BULK:
1613 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1614 					 slot_id, ep_index);
1615 		break;
1616 	case USB_ENDPOINT_XFER_INT:
1617 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1618 				slot_id, ep_index);
1619 		break;
1620 	case USB_ENDPOINT_XFER_ISOC:
1621 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1622 				slot_id, ep_index);
1623 	}
1624 
1625 	if (ret) {
1626 free_priv:
1627 		xhci_urb_free_priv(urb_priv);
1628 		urb->hcpriv = NULL;
1629 	}
1630 	spin_unlock_irqrestore(&xhci->lock, flags);
1631 	return ret;
1632 }
1633 
1634 /*
1635  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1636  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1637  * should pick up where it left off in the TD, unless a Set Transfer Ring
1638  * Dequeue Pointer is issued.
1639  *
1640  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1641  * the ring.  Since the ring is a contiguous structure, they can't be physically
1642  * removed.  Instead, there are two options:
1643  *
1644  *  1) If the HC is in the middle of processing the URB to be canceled, we
1645  *     simply move the ring's dequeue pointer past those TRBs using the Set
1646  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1647  *     when drivers timeout on the last submitted URB and attempt to cancel.
1648  *
1649  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1650  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1651  *     HC will need to invalidate the any TRBs it has cached after the stop
1652  *     endpoint command, as noted in the xHCI 0.95 errata.
1653  *
1654  *  3) The TD may have completed by the time the Stop Endpoint Command
1655  *     completes, so software needs to handle that case too.
1656  *
1657  * This function should protect against the TD enqueueing code ringing the
1658  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1659  * It also needs to account for multiple cancellations on happening at the same
1660  * time for the same endpoint.
1661  *
1662  * Note that this function can be called in any context, or so says
1663  * usb_hcd_unlink_urb()
1664  */
1665 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1666 {
1667 	unsigned long flags;
1668 	int ret, i;
1669 	u32 temp;
1670 	struct xhci_hcd *xhci;
1671 	struct urb_priv	*urb_priv;
1672 	struct xhci_td *td;
1673 	unsigned int ep_index;
1674 	struct xhci_ring *ep_ring;
1675 	struct xhci_virt_ep *ep;
1676 	struct xhci_command *command;
1677 	struct xhci_virt_device *vdev;
1678 
1679 	xhci = hcd_to_xhci(hcd);
1680 	spin_lock_irqsave(&xhci->lock, flags);
1681 
1682 	trace_xhci_urb_dequeue(urb);
1683 
1684 	/* Make sure the URB hasn't completed or been unlinked already */
1685 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1686 	if (ret)
1687 		goto done;
1688 
1689 	/* give back URB now if we can't queue it for cancel */
1690 	vdev = xhci->devs[urb->dev->slot_id];
1691 	urb_priv = urb->hcpriv;
1692 	if (!vdev || !urb_priv)
1693 		goto err_giveback;
1694 
1695 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1696 	ep = &vdev->eps[ep_index];
1697 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1698 	if (!ep || !ep_ring)
1699 		goto err_giveback;
1700 
1701 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1702 	temp = readl(&xhci->op_regs->status);
1703 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1704 		xhci_hc_died(xhci);
1705 		goto done;
1706 	}
1707 
1708 	/*
1709 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1710 	 * make sure none of the ring related pointers in this URB private data
1711 	 * are touched, such as td_list, otherwise we overwrite freed data
1712 	 */
1713 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1714 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1715 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1716 			td = &urb_priv->td[i];
1717 			if (!list_empty(&td->cancelled_td_list))
1718 				list_del_init(&td->cancelled_td_list);
1719 		}
1720 		goto err_giveback;
1721 	}
1722 
1723 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1724 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1725 				"HC halted, freeing TD manually.");
1726 		for (i = urb_priv->num_tds_done;
1727 		     i < urb_priv->num_tds;
1728 		     i++) {
1729 			td = &urb_priv->td[i];
1730 			if (!list_empty(&td->td_list))
1731 				list_del_init(&td->td_list);
1732 			if (!list_empty(&td->cancelled_td_list))
1733 				list_del_init(&td->cancelled_td_list);
1734 		}
1735 		goto err_giveback;
1736 	}
1737 
1738 	i = urb_priv->num_tds_done;
1739 	if (i < urb_priv->num_tds)
1740 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1741 				"Cancel URB %p, dev %s, ep 0x%x, "
1742 				"starting at offset 0x%llx",
1743 				urb, urb->dev->devpath,
1744 				urb->ep->desc.bEndpointAddress,
1745 				(unsigned long long) xhci_trb_virt_to_dma(
1746 					urb_priv->td[i].start_seg,
1747 					urb_priv->td[i].start_trb));
1748 
1749 	for (; i < urb_priv->num_tds; i++) {
1750 		td = &urb_priv->td[i];
1751 		/* TD can already be on cancelled list if ep halted on it */
1752 		if (list_empty(&td->cancelled_td_list)) {
1753 			td->cancel_status = TD_DIRTY;
1754 			list_add_tail(&td->cancelled_td_list,
1755 				      &ep->cancelled_td_list);
1756 		}
1757 	}
1758 
1759 	/* These completion handlers will sort out cancelled TDs for us */
1760 	if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) {
1761 		xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n",
1762 				urb->dev->slot_id, ep_index, ep->ep_state);
1763 		goto done;
1764 	}
1765 
1766 	/* In this case no commands are pending but the endpoint is stopped */
1767 	if (ep->ep_state & EP_CLEARING_TT) {
1768 		/* and cancelled TDs can be given back right away */
1769 		xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n",
1770 				urb->dev->slot_id, ep_index, ep->ep_state);
1771 		xhci_process_cancelled_tds(ep);
1772 	} else {
1773 		/* Otherwise, queue a new Stop Endpoint command */
1774 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1775 		if (!command) {
1776 			ret = -ENOMEM;
1777 			goto done;
1778 		}
1779 		ep->stop_time = jiffies;
1780 		ep->ep_state |= EP_STOP_CMD_PENDING;
1781 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1782 					 ep_index, 0);
1783 		xhci_ring_cmd_db(xhci);
1784 	}
1785 done:
1786 	spin_unlock_irqrestore(&xhci->lock, flags);
1787 	return ret;
1788 
1789 err_giveback:
1790 	if (urb_priv)
1791 		xhci_urb_free_priv(urb_priv);
1792 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1793 	spin_unlock_irqrestore(&xhci->lock, flags);
1794 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1795 	return ret;
1796 }
1797 
1798 /* Drop an endpoint from a new bandwidth configuration for this device.
1799  * Only one call to this function is allowed per endpoint before
1800  * check_bandwidth() or reset_bandwidth() must be called.
1801  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1802  * add the endpoint to the schedule with possibly new parameters denoted by a
1803  * different endpoint descriptor in usb_host_endpoint.
1804  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1805  * not allowed.
1806  *
1807  * The USB core will not allow URBs to be queued to an endpoint that is being
1808  * disabled, so there's no need for mutual exclusion to protect
1809  * the xhci->devs[slot_id] structure.
1810  */
1811 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1812 		       struct usb_host_endpoint *ep)
1813 {
1814 	struct xhci_hcd *xhci;
1815 	struct xhci_container_ctx *in_ctx, *out_ctx;
1816 	struct xhci_input_control_ctx *ctrl_ctx;
1817 	unsigned int ep_index;
1818 	struct xhci_ep_ctx *ep_ctx;
1819 	u32 drop_flag;
1820 	u32 new_add_flags, new_drop_flags;
1821 	int ret;
1822 
1823 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1824 	if (ret <= 0)
1825 		return ret;
1826 	xhci = hcd_to_xhci(hcd);
1827 	if (xhci->xhc_state & XHCI_STATE_DYING)
1828 		return -ENODEV;
1829 
1830 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1831 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1832 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1833 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1834 				__func__, drop_flag);
1835 		return 0;
1836 	}
1837 
1838 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1839 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1840 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1841 	if (!ctrl_ctx) {
1842 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1843 				__func__);
1844 		return 0;
1845 	}
1846 
1847 	ep_index = xhci_get_endpoint_index(&ep->desc);
1848 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1849 	/* If the HC already knows the endpoint is disabled,
1850 	 * or the HCD has noted it is disabled, ignore this request
1851 	 */
1852 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1853 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1854 	    xhci_get_endpoint_flag(&ep->desc)) {
1855 		/* Do not warn when called after a usb_device_reset */
1856 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1857 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1858 				  __func__, ep);
1859 		return 0;
1860 	}
1861 
1862 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1863 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1864 
1865 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1866 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1867 
1868 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1869 
1870 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1871 
1872 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1873 			(unsigned int) ep->desc.bEndpointAddress,
1874 			udev->slot_id,
1875 			(unsigned int) new_drop_flags,
1876 			(unsigned int) new_add_flags);
1877 	return 0;
1878 }
1879 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1880 
1881 /* Add an endpoint to a new possible bandwidth configuration for this device.
1882  * Only one call to this function is allowed per endpoint before
1883  * check_bandwidth() or reset_bandwidth() must be called.
1884  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1885  * add the endpoint to the schedule with possibly new parameters denoted by a
1886  * different endpoint descriptor in usb_host_endpoint.
1887  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1888  * not allowed.
1889  *
1890  * The USB core will not allow URBs to be queued to an endpoint until the
1891  * configuration or alt setting is installed in the device, so there's no need
1892  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1893  */
1894 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1895 		      struct usb_host_endpoint *ep)
1896 {
1897 	struct xhci_hcd *xhci;
1898 	struct xhci_container_ctx *in_ctx;
1899 	unsigned int ep_index;
1900 	struct xhci_input_control_ctx *ctrl_ctx;
1901 	struct xhci_ep_ctx *ep_ctx;
1902 	u32 added_ctxs;
1903 	u32 new_add_flags, new_drop_flags;
1904 	struct xhci_virt_device *virt_dev;
1905 	int ret = 0;
1906 
1907 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1908 	if (ret <= 0) {
1909 		/* So we won't queue a reset ep command for a root hub */
1910 		ep->hcpriv = NULL;
1911 		return ret;
1912 	}
1913 	xhci = hcd_to_xhci(hcd);
1914 	if (xhci->xhc_state & XHCI_STATE_DYING)
1915 		return -ENODEV;
1916 
1917 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1918 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1919 		/* FIXME when we have to issue an evaluate endpoint command to
1920 		 * deal with ep0 max packet size changing once we get the
1921 		 * descriptors
1922 		 */
1923 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1924 				__func__, added_ctxs);
1925 		return 0;
1926 	}
1927 
1928 	virt_dev = xhci->devs[udev->slot_id];
1929 	in_ctx = virt_dev->in_ctx;
1930 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1931 	if (!ctrl_ctx) {
1932 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1933 				__func__);
1934 		return 0;
1935 	}
1936 
1937 	ep_index = xhci_get_endpoint_index(&ep->desc);
1938 	/* If this endpoint is already in use, and the upper layers are trying
1939 	 * to add it again without dropping it, reject the addition.
1940 	 */
1941 	if (virt_dev->eps[ep_index].ring &&
1942 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1943 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1944 				"without dropping it.\n",
1945 				(unsigned int) ep->desc.bEndpointAddress);
1946 		return -EINVAL;
1947 	}
1948 
1949 	/* If the HCD has already noted the endpoint is enabled,
1950 	 * ignore this request.
1951 	 */
1952 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1953 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1954 				__func__, ep);
1955 		return 0;
1956 	}
1957 
1958 	/*
1959 	 * Configuration and alternate setting changes must be done in
1960 	 * process context, not interrupt context (or so documenation
1961 	 * for usb_set_interface() and usb_set_configuration() claim).
1962 	 */
1963 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1964 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1965 				__func__, ep->desc.bEndpointAddress);
1966 		return -ENOMEM;
1967 	}
1968 
1969 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1970 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1971 
1972 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1973 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1974 	 * this re-adds a new state for the endpoint from the new endpoint
1975 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1976 	 * drop flags alone.
1977 	 */
1978 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1979 
1980 	/* Store the usb_device pointer for later use */
1981 	ep->hcpriv = udev;
1982 
1983 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1984 	trace_xhci_add_endpoint(ep_ctx);
1985 
1986 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1987 			(unsigned int) ep->desc.bEndpointAddress,
1988 			udev->slot_id,
1989 			(unsigned int) new_drop_flags,
1990 			(unsigned int) new_add_flags);
1991 	return 0;
1992 }
1993 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1994 
1995 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1996 {
1997 	struct xhci_input_control_ctx *ctrl_ctx;
1998 	struct xhci_ep_ctx *ep_ctx;
1999 	struct xhci_slot_ctx *slot_ctx;
2000 	int i;
2001 
2002 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2003 	if (!ctrl_ctx) {
2004 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2005 				__func__);
2006 		return;
2007 	}
2008 
2009 	/* When a device's add flag and drop flag are zero, any subsequent
2010 	 * configure endpoint command will leave that endpoint's state
2011 	 * untouched.  Make sure we don't leave any old state in the input
2012 	 * endpoint contexts.
2013 	 */
2014 	ctrl_ctx->drop_flags = 0;
2015 	ctrl_ctx->add_flags = 0;
2016 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2017 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2018 	/* Endpoint 0 is always valid */
2019 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2020 	for (i = 1; i < 31; i++) {
2021 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2022 		ep_ctx->ep_info = 0;
2023 		ep_ctx->ep_info2 = 0;
2024 		ep_ctx->deq = 0;
2025 		ep_ctx->tx_info = 0;
2026 	}
2027 }
2028 
2029 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2030 		struct usb_device *udev, u32 *cmd_status)
2031 {
2032 	int ret;
2033 
2034 	switch (*cmd_status) {
2035 	case COMP_COMMAND_ABORTED:
2036 	case COMP_COMMAND_RING_STOPPED:
2037 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2038 		ret = -ETIME;
2039 		break;
2040 	case COMP_RESOURCE_ERROR:
2041 		dev_warn(&udev->dev,
2042 			 "Not enough host controller resources for new device state.\n");
2043 		ret = -ENOMEM;
2044 		/* FIXME: can we allocate more resources for the HC? */
2045 		break;
2046 	case COMP_BANDWIDTH_ERROR:
2047 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2048 		dev_warn(&udev->dev,
2049 			 "Not enough bandwidth for new device state.\n");
2050 		ret = -ENOSPC;
2051 		/* FIXME: can we go back to the old state? */
2052 		break;
2053 	case COMP_TRB_ERROR:
2054 		/* the HCD set up something wrong */
2055 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2056 				"add flag = 1, "
2057 				"and endpoint is not disabled.\n");
2058 		ret = -EINVAL;
2059 		break;
2060 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2061 		dev_warn(&udev->dev,
2062 			 "ERROR: Incompatible device for endpoint configure command.\n");
2063 		ret = -ENODEV;
2064 		break;
2065 	case COMP_SUCCESS:
2066 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2067 				"Successful Endpoint Configure command");
2068 		ret = 0;
2069 		break;
2070 	default:
2071 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2072 				*cmd_status);
2073 		ret = -EINVAL;
2074 		break;
2075 	}
2076 	return ret;
2077 }
2078 
2079 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2080 		struct usb_device *udev, u32 *cmd_status)
2081 {
2082 	int ret;
2083 
2084 	switch (*cmd_status) {
2085 	case COMP_COMMAND_ABORTED:
2086 	case COMP_COMMAND_RING_STOPPED:
2087 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2088 		ret = -ETIME;
2089 		break;
2090 	case COMP_PARAMETER_ERROR:
2091 		dev_warn(&udev->dev,
2092 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2093 		ret = -EINVAL;
2094 		break;
2095 	case COMP_SLOT_NOT_ENABLED_ERROR:
2096 		dev_warn(&udev->dev,
2097 			"WARN: slot not enabled for evaluate context command.\n");
2098 		ret = -EINVAL;
2099 		break;
2100 	case COMP_CONTEXT_STATE_ERROR:
2101 		dev_warn(&udev->dev,
2102 			"WARN: invalid context state for evaluate context command.\n");
2103 		ret = -EINVAL;
2104 		break;
2105 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2106 		dev_warn(&udev->dev,
2107 			"ERROR: Incompatible device for evaluate context command.\n");
2108 		ret = -ENODEV;
2109 		break;
2110 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2111 		/* Max Exit Latency too large error */
2112 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2113 		ret = -EINVAL;
2114 		break;
2115 	case COMP_SUCCESS:
2116 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2117 				"Successful evaluate context command");
2118 		ret = 0;
2119 		break;
2120 	default:
2121 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2122 			*cmd_status);
2123 		ret = -EINVAL;
2124 		break;
2125 	}
2126 	return ret;
2127 }
2128 
2129 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2130 		struct xhci_input_control_ctx *ctrl_ctx)
2131 {
2132 	u32 valid_add_flags;
2133 	u32 valid_drop_flags;
2134 
2135 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2136 	 * (bit 1).  The default control endpoint is added during the Address
2137 	 * Device command and is never removed until the slot is disabled.
2138 	 */
2139 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2140 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2141 
2142 	/* Use hweight32 to count the number of ones in the add flags, or
2143 	 * number of endpoints added.  Don't count endpoints that are changed
2144 	 * (both added and dropped).
2145 	 */
2146 	return hweight32(valid_add_flags) -
2147 		hweight32(valid_add_flags & valid_drop_flags);
2148 }
2149 
2150 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2151 		struct xhci_input_control_ctx *ctrl_ctx)
2152 {
2153 	u32 valid_add_flags;
2154 	u32 valid_drop_flags;
2155 
2156 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2157 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2158 
2159 	return hweight32(valid_drop_flags) -
2160 		hweight32(valid_add_flags & valid_drop_flags);
2161 }
2162 
2163 /*
2164  * We need to reserve the new number of endpoints before the configure endpoint
2165  * command completes.  We can't subtract the dropped endpoints from the number
2166  * of active endpoints until the command completes because we can oversubscribe
2167  * the host in this case:
2168  *
2169  *  - the first configure endpoint command drops more endpoints than it adds
2170  *  - a second configure endpoint command that adds more endpoints is queued
2171  *  - the first configure endpoint command fails, so the config is unchanged
2172  *  - the second command may succeed, even though there isn't enough resources
2173  *
2174  * Must be called with xhci->lock held.
2175  */
2176 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2177 		struct xhci_input_control_ctx *ctrl_ctx)
2178 {
2179 	u32 added_eps;
2180 
2181 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2182 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2183 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2184 				"Not enough ep ctxs: "
2185 				"%u active, need to add %u, limit is %u.",
2186 				xhci->num_active_eps, added_eps,
2187 				xhci->limit_active_eps);
2188 		return -ENOMEM;
2189 	}
2190 	xhci->num_active_eps += added_eps;
2191 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2192 			"Adding %u ep ctxs, %u now active.", added_eps,
2193 			xhci->num_active_eps);
2194 	return 0;
2195 }
2196 
2197 /*
2198  * The configure endpoint was failed by the xHC for some other reason, so we
2199  * need to revert the resources that failed configuration would have used.
2200  *
2201  * Must be called with xhci->lock held.
2202  */
2203 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2204 		struct xhci_input_control_ctx *ctrl_ctx)
2205 {
2206 	u32 num_failed_eps;
2207 
2208 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2209 	xhci->num_active_eps -= num_failed_eps;
2210 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2211 			"Removing %u failed ep ctxs, %u now active.",
2212 			num_failed_eps,
2213 			xhci->num_active_eps);
2214 }
2215 
2216 /*
2217  * Now that the command has completed, clean up the active endpoint count by
2218  * subtracting out the endpoints that were dropped (but not changed).
2219  *
2220  * Must be called with xhci->lock held.
2221  */
2222 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2223 		struct xhci_input_control_ctx *ctrl_ctx)
2224 {
2225 	u32 num_dropped_eps;
2226 
2227 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2228 	xhci->num_active_eps -= num_dropped_eps;
2229 	if (num_dropped_eps)
2230 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2231 				"Removing %u dropped ep ctxs, %u now active.",
2232 				num_dropped_eps,
2233 				xhci->num_active_eps);
2234 }
2235 
2236 static unsigned int xhci_get_block_size(struct usb_device *udev)
2237 {
2238 	switch (udev->speed) {
2239 	case USB_SPEED_LOW:
2240 	case USB_SPEED_FULL:
2241 		return FS_BLOCK;
2242 	case USB_SPEED_HIGH:
2243 		return HS_BLOCK;
2244 	case USB_SPEED_SUPER:
2245 	case USB_SPEED_SUPER_PLUS:
2246 		return SS_BLOCK;
2247 	case USB_SPEED_UNKNOWN:
2248 	default:
2249 		/* Should never happen */
2250 		return 1;
2251 	}
2252 }
2253 
2254 static unsigned int
2255 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2256 {
2257 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2258 		return LS_OVERHEAD;
2259 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2260 		return FS_OVERHEAD;
2261 	return HS_OVERHEAD;
2262 }
2263 
2264 /* If we are changing a LS/FS device under a HS hub,
2265  * make sure (if we are activating a new TT) that the HS bus has enough
2266  * bandwidth for this new TT.
2267  */
2268 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2269 		struct xhci_virt_device *virt_dev,
2270 		int old_active_eps)
2271 {
2272 	struct xhci_interval_bw_table *bw_table;
2273 	struct xhci_tt_bw_info *tt_info;
2274 
2275 	/* Find the bandwidth table for the root port this TT is attached to. */
2276 	bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2277 	tt_info = virt_dev->tt_info;
2278 	/* If this TT already had active endpoints, the bandwidth for this TT
2279 	 * has already been added.  Removing all periodic endpoints (and thus
2280 	 * making the TT enactive) will only decrease the bandwidth used.
2281 	 */
2282 	if (old_active_eps)
2283 		return 0;
2284 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2285 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2286 			return -ENOMEM;
2287 		return 0;
2288 	}
2289 	/* Not sure why we would have no new active endpoints...
2290 	 *
2291 	 * Maybe because of an Evaluate Context change for a hub update or a
2292 	 * control endpoint 0 max packet size change?
2293 	 * FIXME: skip the bandwidth calculation in that case.
2294 	 */
2295 	return 0;
2296 }
2297 
2298 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2299 		struct xhci_virt_device *virt_dev)
2300 {
2301 	unsigned int bw_reserved;
2302 
2303 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2304 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2305 		return -ENOMEM;
2306 
2307 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2308 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2309 		return -ENOMEM;
2310 
2311 	return 0;
2312 }
2313 
2314 /*
2315  * This algorithm is a very conservative estimate of the worst-case scheduling
2316  * scenario for any one interval.  The hardware dynamically schedules the
2317  * packets, so we can't tell which microframe could be the limiting factor in
2318  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2319  *
2320  * Obviously, we can't solve an NP complete problem to find the minimum worst
2321  * case scenario.  Instead, we come up with an estimate that is no less than
2322  * the worst case bandwidth used for any one microframe, but may be an
2323  * over-estimate.
2324  *
2325  * We walk the requirements for each endpoint by interval, starting with the
2326  * smallest interval, and place packets in the schedule where there is only one
2327  * possible way to schedule packets for that interval.  In order to simplify
2328  * this algorithm, we record the largest max packet size for each interval, and
2329  * assume all packets will be that size.
2330  *
2331  * For interval 0, we obviously must schedule all packets for each interval.
2332  * The bandwidth for interval 0 is just the amount of data to be transmitted
2333  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2334  * the number of packets).
2335  *
2336  * For interval 1, we have two possible microframes to schedule those packets
2337  * in.  For this algorithm, if we can schedule the same number of packets for
2338  * each possible scheduling opportunity (each microframe), we will do so.  The
2339  * remaining number of packets will be saved to be transmitted in the gaps in
2340  * the next interval's scheduling sequence.
2341  *
2342  * As we move those remaining packets to be scheduled with interval 2 packets,
2343  * we have to double the number of remaining packets to transmit.  This is
2344  * because the intervals are actually powers of 2, and we would be transmitting
2345  * the previous interval's packets twice in this interval.  We also have to be
2346  * sure that when we look at the largest max packet size for this interval, we
2347  * also look at the largest max packet size for the remaining packets and take
2348  * the greater of the two.
2349  *
2350  * The algorithm continues to evenly distribute packets in each scheduling
2351  * opportunity, and push the remaining packets out, until we get to the last
2352  * interval.  Then those packets and their associated overhead are just added
2353  * to the bandwidth used.
2354  */
2355 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2356 		struct xhci_virt_device *virt_dev,
2357 		int old_active_eps)
2358 {
2359 	unsigned int bw_reserved;
2360 	unsigned int max_bandwidth;
2361 	unsigned int bw_used;
2362 	unsigned int block_size;
2363 	struct xhci_interval_bw_table *bw_table;
2364 	unsigned int packet_size = 0;
2365 	unsigned int overhead = 0;
2366 	unsigned int packets_transmitted = 0;
2367 	unsigned int packets_remaining = 0;
2368 	unsigned int i;
2369 
2370 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2371 		return xhci_check_ss_bw(xhci, virt_dev);
2372 
2373 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2374 		max_bandwidth = HS_BW_LIMIT;
2375 		/* Convert percent of bus BW reserved to blocks reserved */
2376 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2377 	} else {
2378 		max_bandwidth = FS_BW_LIMIT;
2379 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2380 	}
2381 
2382 	bw_table = virt_dev->bw_table;
2383 	/* We need to translate the max packet size and max ESIT payloads into
2384 	 * the units the hardware uses.
2385 	 */
2386 	block_size = xhci_get_block_size(virt_dev->udev);
2387 
2388 	/* If we are manipulating a LS/FS device under a HS hub, double check
2389 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2390 	 */
2391 	if (virt_dev->tt_info) {
2392 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2393 				"Recalculating BW for rootport %u",
2394 				virt_dev->rhub_port->hw_portnum + 1);
2395 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2396 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2397 					"newly activated TT.\n");
2398 			return -ENOMEM;
2399 		}
2400 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2401 				"Recalculating BW for TT slot %u port %u",
2402 				virt_dev->tt_info->slot_id,
2403 				virt_dev->tt_info->ttport);
2404 	} else {
2405 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2406 				"Recalculating BW for rootport %u",
2407 				virt_dev->rhub_port->hw_portnum + 1);
2408 	}
2409 
2410 	/* Add in how much bandwidth will be used for interval zero, or the
2411 	 * rounded max ESIT payload + number of packets * largest overhead.
2412 	 */
2413 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2414 		bw_table->interval_bw[0].num_packets *
2415 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2416 
2417 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2418 		unsigned int bw_added;
2419 		unsigned int largest_mps;
2420 		unsigned int interval_overhead;
2421 
2422 		/*
2423 		 * How many packets could we transmit in this interval?
2424 		 * If packets didn't fit in the previous interval, we will need
2425 		 * to transmit that many packets twice within this interval.
2426 		 */
2427 		packets_remaining = 2 * packets_remaining +
2428 			bw_table->interval_bw[i].num_packets;
2429 
2430 		/* Find the largest max packet size of this or the previous
2431 		 * interval.
2432 		 */
2433 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2434 			largest_mps = 0;
2435 		else {
2436 			struct xhci_virt_ep *virt_ep;
2437 			struct list_head *ep_entry;
2438 
2439 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2440 			virt_ep = list_entry(ep_entry,
2441 					struct xhci_virt_ep, bw_endpoint_list);
2442 			/* Convert to blocks, rounding up */
2443 			largest_mps = DIV_ROUND_UP(
2444 					virt_ep->bw_info.max_packet_size,
2445 					block_size);
2446 		}
2447 		if (largest_mps > packet_size)
2448 			packet_size = largest_mps;
2449 
2450 		/* Use the larger overhead of this or the previous interval. */
2451 		interval_overhead = xhci_get_largest_overhead(
2452 				&bw_table->interval_bw[i]);
2453 		if (interval_overhead > overhead)
2454 			overhead = interval_overhead;
2455 
2456 		/* How many packets can we evenly distribute across
2457 		 * (1 << (i + 1)) possible scheduling opportunities?
2458 		 */
2459 		packets_transmitted = packets_remaining >> (i + 1);
2460 
2461 		/* Add in the bandwidth used for those scheduled packets */
2462 		bw_added = packets_transmitted * (overhead + packet_size);
2463 
2464 		/* How many packets do we have remaining to transmit? */
2465 		packets_remaining = packets_remaining % (1 << (i + 1));
2466 
2467 		/* What largest max packet size should those packets have? */
2468 		/* If we've transmitted all packets, don't carry over the
2469 		 * largest packet size.
2470 		 */
2471 		if (packets_remaining == 0) {
2472 			packet_size = 0;
2473 			overhead = 0;
2474 		} else if (packets_transmitted > 0) {
2475 			/* Otherwise if we do have remaining packets, and we've
2476 			 * scheduled some packets in this interval, take the
2477 			 * largest max packet size from endpoints with this
2478 			 * interval.
2479 			 */
2480 			packet_size = largest_mps;
2481 			overhead = interval_overhead;
2482 		}
2483 		/* Otherwise carry over packet_size and overhead from the last
2484 		 * time we had a remainder.
2485 		 */
2486 		bw_used += bw_added;
2487 		if (bw_used > max_bandwidth) {
2488 			xhci_warn(xhci, "Not enough bandwidth. "
2489 					"Proposed: %u, Max: %u\n",
2490 				bw_used, max_bandwidth);
2491 			return -ENOMEM;
2492 		}
2493 	}
2494 	/*
2495 	 * Ok, we know we have some packets left over after even-handedly
2496 	 * scheduling interval 15.  We don't know which microframes they will
2497 	 * fit into, so we over-schedule and say they will be scheduled every
2498 	 * microframe.
2499 	 */
2500 	if (packets_remaining > 0)
2501 		bw_used += overhead + packet_size;
2502 
2503 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2504 		/* OK, we're manipulating a HS device attached to a
2505 		 * root port bandwidth domain.  Include the number of active TTs
2506 		 * in the bandwidth used.
2507 		 */
2508 		bw_used += TT_HS_OVERHEAD *
2509 			xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2510 	}
2511 
2512 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2513 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2514 		"Available: %u " "percent",
2515 		bw_used, max_bandwidth, bw_reserved,
2516 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2517 		max_bandwidth);
2518 
2519 	bw_used += bw_reserved;
2520 	if (bw_used > max_bandwidth) {
2521 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2522 				bw_used, max_bandwidth);
2523 		return -ENOMEM;
2524 	}
2525 
2526 	bw_table->bw_used = bw_used;
2527 	return 0;
2528 }
2529 
2530 static bool xhci_is_async_ep(unsigned int ep_type)
2531 {
2532 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2533 					ep_type != ISOC_IN_EP &&
2534 					ep_type != INT_IN_EP);
2535 }
2536 
2537 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2538 {
2539 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2540 }
2541 
2542 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2543 {
2544 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2545 
2546 	if (ep_bw->ep_interval == 0)
2547 		return SS_OVERHEAD_BURST +
2548 			(ep_bw->mult * ep_bw->num_packets *
2549 					(SS_OVERHEAD + mps));
2550 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2551 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2552 				1 << ep_bw->ep_interval);
2553 
2554 }
2555 
2556 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2557 		struct xhci_bw_info *ep_bw,
2558 		struct xhci_interval_bw_table *bw_table,
2559 		struct usb_device *udev,
2560 		struct xhci_virt_ep *virt_ep,
2561 		struct xhci_tt_bw_info *tt_info)
2562 {
2563 	struct xhci_interval_bw	*interval_bw;
2564 	int normalized_interval;
2565 
2566 	if (xhci_is_async_ep(ep_bw->type))
2567 		return;
2568 
2569 	if (udev->speed >= USB_SPEED_SUPER) {
2570 		if (xhci_is_sync_in_ep(ep_bw->type))
2571 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2572 				xhci_get_ss_bw_consumed(ep_bw);
2573 		else
2574 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2575 				xhci_get_ss_bw_consumed(ep_bw);
2576 		return;
2577 	}
2578 
2579 	/* SuperSpeed endpoints never get added to intervals in the table, so
2580 	 * this check is only valid for HS/FS/LS devices.
2581 	 */
2582 	if (list_empty(&virt_ep->bw_endpoint_list))
2583 		return;
2584 	/* For LS/FS devices, we need to translate the interval expressed in
2585 	 * microframes to frames.
2586 	 */
2587 	if (udev->speed == USB_SPEED_HIGH)
2588 		normalized_interval = ep_bw->ep_interval;
2589 	else
2590 		normalized_interval = ep_bw->ep_interval - 3;
2591 
2592 	if (normalized_interval == 0)
2593 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2594 	interval_bw = &bw_table->interval_bw[normalized_interval];
2595 	interval_bw->num_packets -= ep_bw->num_packets;
2596 	switch (udev->speed) {
2597 	case USB_SPEED_LOW:
2598 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2599 		break;
2600 	case USB_SPEED_FULL:
2601 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2602 		break;
2603 	case USB_SPEED_HIGH:
2604 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2605 		break;
2606 	default:
2607 		/* Should never happen because only LS/FS/HS endpoints will get
2608 		 * added to the endpoint list.
2609 		 */
2610 		return;
2611 	}
2612 	if (tt_info)
2613 		tt_info->active_eps -= 1;
2614 	list_del_init(&virt_ep->bw_endpoint_list);
2615 }
2616 
2617 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2618 		struct xhci_bw_info *ep_bw,
2619 		struct xhci_interval_bw_table *bw_table,
2620 		struct usb_device *udev,
2621 		struct xhci_virt_ep *virt_ep,
2622 		struct xhci_tt_bw_info *tt_info)
2623 {
2624 	struct xhci_interval_bw	*interval_bw;
2625 	struct xhci_virt_ep *smaller_ep;
2626 	int normalized_interval;
2627 
2628 	if (xhci_is_async_ep(ep_bw->type))
2629 		return;
2630 
2631 	if (udev->speed == USB_SPEED_SUPER) {
2632 		if (xhci_is_sync_in_ep(ep_bw->type))
2633 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2634 				xhci_get_ss_bw_consumed(ep_bw);
2635 		else
2636 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2637 				xhci_get_ss_bw_consumed(ep_bw);
2638 		return;
2639 	}
2640 
2641 	/* For LS/FS devices, we need to translate the interval expressed in
2642 	 * microframes to frames.
2643 	 */
2644 	if (udev->speed == USB_SPEED_HIGH)
2645 		normalized_interval = ep_bw->ep_interval;
2646 	else
2647 		normalized_interval = ep_bw->ep_interval - 3;
2648 
2649 	if (normalized_interval == 0)
2650 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2651 	interval_bw = &bw_table->interval_bw[normalized_interval];
2652 	interval_bw->num_packets += ep_bw->num_packets;
2653 	switch (udev->speed) {
2654 	case USB_SPEED_LOW:
2655 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2656 		break;
2657 	case USB_SPEED_FULL:
2658 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2659 		break;
2660 	case USB_SPEED_HIGH:
2661 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2662 		break;
2663 	default:
2664 		/* Should never happen because only LS/FS/HS endpoints will get
2665 		 * added to the endpoint list.
2666 		 */
2667 		return;
2668 	}
2669 
2670 	if (tt_info)
2671 		tt_info->active_eps += 1;
2672 	/* Insert the endpoint into the list, largest max packet size first. */
2673 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2674 			bw_endpoint_list) {
2675 		if (ep_bw->max_packet_size >=
2676 				smaller_ep->bw_info.max_packet_size) {
2677 			/* Add the new ep before the smaller endpoint */
2678 			list_add_tail(&virt_ep->bw_endpoint_list,
2679 					&smaller_ep->bw_endpoint_list);
2680 			return;
2681 		}
2682 	}
2683 	/* Add the new endpoint at the end of the list. */
2684 	list_add_tail(&virt_ep->bw_endpoint_list,
2685 			&interval_bw->endpoints);
2686 }
2687 
2688 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2689 		struct xhci_virt_device *virt_dev,
2690 		int old_active_eps)
2691 {
2692 	struct xhci_root_port_bw_info *rh_bw_info;
2693 	if (!virt_dev->tt_info)
2694 		return;
2695 
2696 	rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2697 	if (old_active_eps == 0 &&
2698 				virt_dev->tt_info->active_eps != 0) {
2699 		rh_bw_info->num_active_tts += 1;
2700 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2701 	} else if (old_active_eps != 0 &&
2702 				virt_dev->tt_info->active_eps == 0) {
2703 		rh_bw_info->num_active_tts -= 1;
2704 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2705 	}
2706 }
2707 
2708 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2709 		struct xhci_virt_device *virt_dev,
2710 		struct xhci_container_ctx *in_ctx)
2711 {
2712 	struct xhci_bw_info ep_bw_info[31];
2713 	int i;
2714 	struct xhci_input_control_ctx *ctrl_ctx;
2715 	int old_active_eps = 0;
2716 
2717 	if (virt_dev->tt_info)
2718 		old_active_eps = virt_dev->tt_info->active_eps;
2719 
2720 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2721 	if (!ctrl_ctx) {
2722 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2723 				__func__);
2724 		return -ENOMEM;
2725 	}
2726 
2727 	for (i = 0; i < 31; i++) {
2728 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2729 			continue;
2730 
2731 		/* Make a copy of the BW info in case we need to revert this */
2732 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2733 				sizeof(ep_bw_info[i]));
2734 		/* Drop the endpoint from the interval table if the endpoint is
2735 		 * being dropped or changed.
2736 		 */
2737 		if (EP_IS_DROPPED(ctrl_ctx, i))
2738 			xhci_drop_ep_from_interval_table(xhci,
2739 					&virt_dev->eps[i].bw_info,
2740 					virt_dev->bw_table,
2741 					virt_dev->udev,
2742 					&virt_dev->eps[i],
2743 					virt_dev->tt_info);
2744 	}
2745 	/* Overwrite the information stored in the endpoints' bw_info */
2746 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2747 	for (i = 0; i < 31; i++) {
2748 		/* Add any changed or added endpoints to the interval table */
2749 		if (EP_IS_ADDED(ctrl_ctx, i))
2750 			xhci_add_ep_to_interval_table(xhci,
2751 					&virt_dev->eps[i].bw_info,
2752 					virt_dev->bw_table,
2753 					virt_dev->udev,
2754 					&virt_dev->eps[i],
2755 					virt_dev->tt_info);
2756 	}
2757 
2758 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2759 		/* Ok, this fits in the bandwidth we have.
2760 		 * Update the number of active TTs.
2761 		 */
2762 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2763 		return 0;
2764 	}
2765 
2766 	/* We don't have enough bandwidth for this, revert the stored info. */
2767 	for (i = 0; i < 31; i++) {
2768 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2769 			continue;
2770 
2771 		/* Drop the new copies of any added or changed endpoints from
2772 		 * the interval table.
2773 		 */
2774 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2775 			xhci_drop_ep_from_interval_table(xhci,
2776 					&virt_dev->eps[i].bw_info,
2777 					virt_dev->bw_table,
2778 					virt_dev->udev,
2779 					&virt_dev->eps[i],
2780 					virt_dev->tt_info);
2781 		}
2782 		/* Revert the endpoint back to its old information */
2783 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2784 				sizeof(ep_bw_info[i]));
2785 		/* Add any changed or dropped endpoints back into the table */
2786 		if (EP_IS_DROPPED(ctrl_ctx, i))
2787 			xhci_add_ep_to_interval_table(xhci,
2788 					&virt_dev->eps[i].bw_info,
2789 					virt_dev->bw_table,
2790 					virt_dev->udev,
2791 					&virt_dev->eps[i],
2792 					virt_dev->tt_info);
2793 	}
2794 	return -ENOMEM;
2795 }
2796 
2797 /*
2798  * Synchronous XHCI stop endpoint helper.  Issues the stop endpoint command and
2799  * waits for the command completion before returning.  This does not call
2800  * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error'
2801  * cases, along with transfer ring cleanup.
2802  *
2803  * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage
2804  * their own transfer ring, such as offload situations.
2805  */
2806 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend,
2807 			    gfp_t gfp_flags)
2808 {
2809 	struct xhci_command *command;
2810 	unsigned long flags;
2811 	int ret;
2812 
2813 	command = xhci_alloc_command(xhci, true, gfp_flags);
2814 	if (!command)
2815 		return -ENOMEM;
2816 
2817 	spin_lock_irqsave(&xhci->lock, flags);
2818 	ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id,
2819 				       ep->ep_index, suspend);
2820 	if (ret < 0) {
2821 		spin_unlock_irqrestore(&xhci->lock, flags);
2822 		goto out;
2823 	}
2824 
2825 	xhci_ring_cmd_db(xhci);
2826 	spin_unlock_irqrestore(&xhci->lock, flags);
2827 
2828 	wait_for_completion(command->completion);
2829 
2830 	/* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/
2831 	if (command->status == COMP_COMMAND_ABORTED ||
2832 	    command->status == COMP_COMMAND_RING_STOPPED) {
2833 		xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n");
2834 		ret = -ETIME;
2835 	}
2836 out:
2837 	xhci_free_command(xhci, command);
2838 
2839 	return ret;
2840 }
2841 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync);
2842 
2843 /* Issue a configure endpoint command or evaluate context command
2844  * and wait for it to finish.
2845  */
2846 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2847 		struct usb_device *udev,
2848 		struct xhci_command *command,
2849 		bool ctx_change, bool must_succeed)
2850 {
2851 	int ret;
2852 	unsigned long flags;
2853 	struct xhci_input_control_ctx *ctrl_ctx;
2854 	struct xhci_virt_device *virt_dev;
2855 	struct xhci_slot_ctx *slot_ctx;
2856 
2857 	if (!command)
2858 		return -EINVAL;
2859 
2860 	spin_lock_irqsave(&xhci->lock, flags);
2861 
2862 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2863 		spin_unlock_irqrestore(&xhci->lock, flags);
2864 		return -ESHUTDOWN;
2865 	}
2866 
2867 	virt_dev = xhci->devs[udev->slot_id];
2868 
2869 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2870 	if (!ctrl_ctx) {
2871 		spin_unlock_irqrestore(&xhci->lock, flags);
2872 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2873 				__func__);
2874 		return -ENOMEM;
2875 	}
2876 
2877 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2878 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2879 		spin_unlock_irqrestore(&xhci->lock, flags);
2880 		xhci_warn(xhci, "Not enough host resources, "
2881 				"active endpoint contexts = %u\n",
2882 				xhci->num_active_eps);
2883 		return -ENOMEM;
2884 	}
2885 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2886 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2887 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2888 			xhci_free_host_resources(xhci, ctrl_ctx);
2889 		spin_unlock_irqrestore(&xhci->lock, flags);
2890 		xhci_warn(xhci, "Not enough bandwidth\n");
2891 		return -ENOMEM;
2892 	}
2893 
2894 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2895 
2896 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2897 	trace_xhci_configure_endpoint(slot_ctx);
2898 
2899 	if (!ctx_change)
2900 		ret = xhci_queue_configure_endpoint(xhci, command,
2901 				command->in_ctx->dma,
2902 				udev->slot_id, must_succeed);
2903 	else
2904 		ret = xhci_queue_evaluate_context(xhci, command,
2905 				command->in_ctx->dma,
2906 				udev->slot_id, must_succeed);
2907 	if (ret < 0) {
2908 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2909 			xhci_free_host_resources(xhci, ctrl_ctx);
2910 		spin_unlock_irqrestore(&xhci->lock, flags);
2911 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2912 				"FIXME allocate a new ring segment");
2913 		return -ENOMEM;
2914 	}
2915 	xhci_ring_cmd_db(xhci);
2916 	spin_unlock_irqrestore(&xhci->lock, flags);
2917 
2918 	/* Wait for the configure endpoint command to complete */
2919 	wait_for_completion(command->completion);
2920 
2921 	if (!ctx_change)
2922 		ret = xhci_configure_endpoint_result(xhci, udev,
2923 						     &command->status);
2924 	else
2925 		ret = xhci_evaluate_context_result(xhci, udev,
2926 						   &command->status);
2927 
2928 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2929 		spin_lock_irqsave(&xhci->lock, flags);
2930 		/* If the command failed, remove the reserved resources.
2931 		 * Otherwise, clean up the estimate to include dropped eps.
2932 		 */
2933 		if (ret)
2934 			xhci_free_host_resources(xhci, ctrl_ctx);
2935 		else
2936 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2937 		spin_unlock_irqrestore(&xhci->lock, flags);
2938 	}
2939 	return ret;
2940 }
2941 
2942 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2943 	struct xhci_virt_device *vdev, int i)
2944 {
2945 	struct xhci_virt_ep *ep = &vdev->eps[i];
2946 
2947 	if (ep->ep_state & EP_HAS_STREAMS) {
2948 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2949 				xhci_get_endpoint_address(i));
2950 		xhci_free_stream_info(xhci, ep->stream_info);
2951 		ep->stream_info = NULL;
2952 		ep->ep_state &= ~EP_HAS_STREAMS;
2953 	}
2954 }
2955 
2956 /* Called after one or more calls to xhci_add_endpoint() or
2957  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2958  * to call xhci_reset_bandwidth().
2959  *
2960  * Since we are in the middle of changing either configuration or
2961  * installing a new alt setting, the USB core won't allow URBs to be
2962  * enqueued for any endpoint on the old config or interface.  Nothing
2963  * else should be touching the xhci->devs[slot_id] structure, so we
2964  * don't need to take the xhci->lock for manipulating that.
2965  */
2966 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2967 {
2968 	int i;
2969 	int ret = 0;
2970 	struct xhci_hcd *xhci;
2971 	struct xhci_virt_device	*virt_dev;
2972 	struct xhci_input_control_ctx *ctrl_ctx;
2973 	struct xhci_slot_ctx *slot_ctx;
2974 	struct xhci_command *command;
2975 
2976 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2977 	if (ret <= 0)
2978 		return ret;
2979 	xhci = hcd_to_xhci(hcd);
2980 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2981 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2982 		return -ENODEV;
2983 
2984 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2985 	virt_dev = xhci->devs[udev->slot_id];
2986 
2987 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2988 	if (!command)
2989 		return -ENOMEM;
2990 
2991 	command->in_ctx = virt_dev->in_ctx;
2992 
2993 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2994 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2995 	if (!ctrl_ctx) {
2996 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2997 				__func__);
2998 		ret = -ENOMEM;
2999 		goto command_cleanup;
3000 	}
3001 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3002 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3003 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3004 
3005 	/* Don't issue the command if there's no endpoints to update. */
3006 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3007 	    ctrl_ctx->drop_flags == 0) {
3008 		ret = 0;
3009 		goto command_cleanup;
3010 	}
3011 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3012 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3013 	for (i = 31; i >= 1; i--) {
3014 		__le32 le32 = cpu_to_le32(BIT(i));
3015 
3016 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3017 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3018 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3019 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3020 			break;
3021 		}
3022 	}
3023 
3024 	ret = xhci_configure_endpoint(xhci, udev, command,
3025 			false, false);
3026 	if (ret)
3027 		/* Callee should call reset_bandwidth() */
3028 		goto command_cleanup;
3029 
3030 	/* Free any rings that were dropped, but not changed. */
3031 	for (i = 1; i < 31; i++) {
3032 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3033 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3034 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3035 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3036 		}
3037 	}
3038 	xhci_zero_in_ctx(xhci, virt_dev);
3039 	/*
3040 	 * Install any rings for completely new endpoints or changed endpoints,
3041 	 * and free any old rings from changed endpoints.
3042 	 */
3043 	for (i = 1; i < 31; i++) {
3044 		if (!virt_dev->eps[i].new_ring)
3045 			continue;
3046 		/* Only free the old ring if it exists.
3047 		 * It may not if this is the first add of an endpoint.
3048 		 */
3049 		if (virt_dev->eps[i].ring) {
3050 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3051 		}
3052 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3053 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3054 		virt_dev->eps[i].new_ring = NULL;
3055 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3056 	}
3057 command_cleanup:
3058 	kfree(command->completion);
3059 	kfree(command);
3060 
3061 	return ret;
3062 }
3063 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3064 
3065 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3066 {
3067 	struct xhci_hcd *xhci;
3068 	struct xhci_virt_device	*virt_dev;
3069 	int i, ret;
3070 
3071 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3072 	if (ret <= 0)
3073 		return;
3074 	xhci = hcd_to_xhci(hcd);
3075 
3076 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3077 	virt_dev = xhci->devs[udev->slot_id];
3078 	/* Free any rings allocated for added endpoints */
3079 	for (i = 0; i < 31; i++) {
3080 		if (virt_dev->eps[i].new_ring) {
3081 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3082 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3083 			virt_dev->eps[i].new_ring = NULL;
3084 		}
3085 	}
3086 	xhci_zero_in_ctx(xhci, virt_dev);
3087 }
3088 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3089 
3090 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3091 		struct xhci_container_ctx *in_ctx,
3092 		struct xhci_container_ctx *out_ctx,
3093 		struct xhci_input_control_ctx *ctrl_ctx,
3094 		u32 add_flags, u32 drop_flags)
3095 {
3096 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3097 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3098 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3099 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3100 }
3101 
3102 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3103 				  struct usb_host_endpoint *host_ep)
3104 {
3105 	struct xhci_hcd		*xhci;
3106 	struct xhci_virt_device	*vdev;
3107 	struct xhci_virt_ep	*ep;
3108 	struct usb_device	*udev;
3109 	unsigned long		flags;
3110 	unsigned int		ep_index;
3111 
3112 	xhci = hcd_to_xhci(hcd);
3113 rescan:
3114 	spin_lock_irqsave(&xhci->lock, flags);
3115 
3116 	udev = (struct usb_device *)host_ep->hcpriv;
3117 	if (!udev || !udev->slot_id)
3118 		goto done;
3119 
3120 	vdev = xhci->devs[udev->slot_id];
3121 	if (!vdev)
3122 		goto done;
3123 
3124 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3125 	ep = &vdev->eps[ep_index];
3126 
3127 	/* wait for hub_tt_work to finish clearing hub TT */
3128 	if (ep->ep_state & EP_CLEARING_TT) {
3129 		spin_unlock_irqrestore(&xhci->lock, flags);
3130 		schedule_timeout_uninterruptible(1);
3131 		goto rescan;
3132 	}
3133 
3134 	if (ep->ep_state)
3135 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3136 			 ep->ep_state);
3137 done:
3138 	host_ep->hcpriv = NULL;
3139 	spin_unlock_irqrestore(&xhci->lock, flags);
3140 }
3141 
3142 /*
3143  * Called after usb core issues a clear halt control message.
3144  * The host side of the halt should already be cleared by a reset endpoint
3145  * command issued when the STALL event was received.
3146  *
3147  * The reset endpoint command may only be issued to endpoints in the halted
3148  * state. For software that wishes to reset the data toggle or sequence number
3149  * of an endpoint that isn't in the halted state this function will issue a
3150  * configure endpoint command with the Drop and Add bits set for the target
3151  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3152  *
3153  * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3154  * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3155  */
3156 
3157 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3158 		struct usb_host_endpoint *host_ep)
3159 {
3160 	struct xhci_hcd *xhci;
3161 	struct usb_device *udev;
3162 	struct xhci_virt_device *vdev;
3163 	struct xhci_virt_ep *ep;
3164 	struct xhci_input_control_ctx *ctrl_ctx;
3165 	struct xhci_command *stop_cmd, *cfg_cmd;
3166 	unsigned int ep_index;
3167 	unsigned long flags;
3168 	u32 ep_flag;
3169 	int err;
3170 
3171 	xhci = hcd_to_xhci(hcd);
3172 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3173 
3174 	/*
3175 	 * Usb core assumes a max packet value for ep0 on FS devices until the
3176 	 * real value is read from the descriptor. Core resets Ep0 if values
3177 	 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3178 	 */
3179 	if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3180 
3181 		udev = container_of(host_ep, struct usb_device, ep0);
3182 		if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3183 			return;
3184 
3185 		vdev = xhci->devs[udev->slot_id];
3186 		if (!vdev || vdev->udev != udev)
3187 			return;
3188 
3189 		xhci_check_ep0_maxpacket(xhci, vdev);
3190 
3191 		/* Nothing else should be done here for ep0 during ep reset */
3192 		return;
3193 	}
3194 
3195 	if (!host_ep->hcpriv)
3196 		return;
3197 	udev = (struct usb_device *) host_ep->hcpriv;
3198 	vdev = xhci->devs[udev->slot_id];
3199 
3200 	if (!udev->slot_id || !vdev)
3201 		return;
3202 
3203 	ep = &vdev->eps[ep_index];
3204 
3205 	/* Bail out if toggle is already being cleared by a endpoint reset */
3206 	spin_lock_irqsave(&xhci->lock, flags);
3207 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3208 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3209 		spin_unlock_irqrestore(&xhci->lock, flags);
3210 		return;
3211 	}
3212 	spin_unlock_irqrestore(&xhci->lock, flags);
3213 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3214 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3215 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3216 		return;
3217 
3218 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3219 
3220 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3221 		return;
3222 
3223 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3224 	if (!stop_cmd)
3225 		return;
3226 
3227 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3228 	if (!cfg_cmd)
3229 		goto cleanup;
3230 
3231 	spin_lock_irqsave(&xhci->lock, flags);
3232 
3233 	/* block queuing new trbs and ringing ep doorbell */
3234 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3235 
3236 	/*
3237 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3238 	 * Driver is required to synchronously cancel all transfer request.
3239 	 * Stop the endpoint to force xHC to update the output context
3240 	 */
3241 
3242 	if (!list_empty(&ep->ring->td_list)) {
3243 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3244 		spin_unlock_irqrestore(&xhci->lock, flags);
3245 		xhci_free_command(xhci, cfg_cmd);
3246 		goto cleanup;
3247 	}
3248 
3249 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3250 					ep_index, 0);
3251 	if (err < 0) {
3252 		spin_unlock_irqrestore(&xhci->lock, flags);
3253 		xhci_free_command(xhci, cfg_cmd);
3254 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3255 				__func__, err);
3256 		goto cleanup;
3257 	}
3258 
3259 	xhci_ring_cmd_db(xhci);
3260 	spin_unlock_irqrestore(&xhci->lock, flags);
3261 
3262 	wait_for_completion(stop_cmd->completion);
3263 
3264 	spin_lock_irqsave(&xhci->lock, flags);
3265 
3266 	/* config ep command clears toggle if add and drop ep flags are set */
3267 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3268 	if (!ctrl_ctx) {
3269 		spin_unlock_irqrestore(&xhci->lock, flags);
3270 		xhci_free_command(xhci, cfg_cmd);
3271 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3272 				__func__);
3273 		goto cleanup;
3274 	}
3275 
3276 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3277 					   ctrl_ctx, ep_flag, ep_flag);
3278 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3279 
3280 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3281 				      udev->slot_id, false);
3282 	if (err < 0) {
3283 		spin_unlock_irqrestore(&xhci->lock, flags);
3284 		xhci_free_command(xhci, cfg_cmd);
3285 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3286 				__func__, err);
3287 		goto cleanup;
3288 	}
3289 
3290 	xhci_ring_cmd_db(xhci);
3291 	spin_unlock_irqrestore(&xhci->lock, flags);
3292 
3293 	wait_for_completion(cfg_cmd->completion);
3294 
3295 	xhci_free_command(xhci, cfg_cmd);
3296 cleanup:
3297 	xhci_free_command(xhci, stop_cmd);
3298 	spin_lock_irqsave(&xhci->lock, flags);
3299 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3300 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3301 	spin_unlock_irqrestore(&xhci->lock, flags);
3302 }
3303 
3304 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3305 		struct usb_device *udev, struct usb_host_endpoint *ep,
3306 		unsigned int slot_id)
3307 {
3308 	int ret;
3309 	unsigned int ep_index;
3310 	unsigned int ep_state;
3311 
3312 	if (!ep)
3313 		return -EINVAL;
3314 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3315 	if (ret <= 0)
3316 		return ret ? ret : -EINVAL;
3317 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3318 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3319 				" descriptor for ep 0x%x does not support streams\n",
3320 				ep->desc.bEndpointAddress);
3321 		return -EINVAL;
3322 	}
3323 
3324 	ep_index = xhci_get_endpoint_index(&ep->desc);
3325 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3326 	if (ep_state & EP_HAS_STREAMS ||
3327 			ep_state & EP_GETTING_STREAMS) {
3328 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3329 				"already has streams set up.\n",
3330 				ep->desc.bEndpointAddress);
3331 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3332 				"dynamic stream context array reallocation.\n");
3333 		return -EINVAL;
3334 	}
3335 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3336 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3337 				"endpoint 0x%x; URBs are pending.\n",
3338 				ep->desc.bEndpointAddress);
3339 		return -EINVAL;
3340 	}
3341 	return 0;
3342 }
3343 
3344 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3345 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3346 {
3347 	unsigned int max_streams;
3348 
3349 	/* The stream context array size must be a power of two */
3350 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3351 	/*
3352 	 * Find out how many primary stream array entries the host controller
3353 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3354 	 * level page entries), but that's an optional feature for xHCI host
3355 	 * controllers. xHCs must support at least 4 stream IDs.
3356 	 */
3357 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3358 	if (*num_stream_ctxs > max_streams) {
3359 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3360 				max_streams);
3361 		*num_stream_ctxs = max_streams;
3362 		*num_streams = max_streams;
3363 	}
3364 }
3365 
3366 /* Returns an error code if one of the endpoint already has streams.
3367  * This does not change any data structures, it only checks and gathers
3368  * information.
3369  */
3370 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3371 		struct usb_device *udev,
3372 		struct usb_host_endpoint **eps, unsigned int num_eps,
3373 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3374 {
3375 	unsigned int max_streams;
3376 	unsigned int endpoint_flag;
3377 	int i;
3378 	int ret;
3379 
3380 	for (i = 0; i < num_eps; i++) {
3381 		ret = xhci_check_streams_endpoint(xhci, udev,
3382 				eps[i], udev->slot_id);
3383 		if (ret < 0)
3384 			return ret;
3385 
3386 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3387 		if (max_streams < (*num_streams - 1)) {
3388 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3389 					eps[i]->desc.bEndpointAddress,
3390 					max_streams);
3391 			*num_streams = max_streams+1;
3392 		}
3393 
3394 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3395 		if (*changed_ep_bitmask & endpoint_flag)
3396 			return -EINVAL;
3397 		*changed_ep_bitmask |= endpoint_flag;
3398 	}
3399 	return 0;
3400 }
3401 
3402 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3403 		struct usb_device *udev,
3404 		struct usb_host_endpoint **eps, unsigned int num_eps)
3405 {
3406 	u32 changed_ep_bitmask = 0;
3407 	unsigned int slot_id;
3408 	unsigned int ep_index;
3409 	unsigned int ep_state;
3410 	int i;
3411 
3412 	slot_id = udev->slot_id;
3413 	if (!xhci->devs[slot_id])
3414 		return 0;
3415 
3416 	for (i = 0; i < num_eps; i++) {
3417 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3418 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3419 		/* Are streams already being freed for the endpoint? */
3420 		if (ep_state & EP_GETTING_NO_STREAMS) {
3421 			xhci_warn(xhci, "WARN Can't disable streams for "
3422 					"endpoint 0x%x, "
3423 					"streams are being disabled already\n",
3424 					eps[i]->desc.bEndpointAddress);
3425 			return 0;
3426 		}
3427 		/* Are there actually any streams to free? */
3428 		if (!(ep_state & EP_HAS_STREAMS) &&
3429 				!(ep_state & EP_GETTING_STREAMS)) {
3430 			xhci_warn(xhci, "WARN Can't disable streams for "
3431 					"endpoint 0x%x, "
3432 					"streams are already disabled!\n",
3433 					eps[i]->desc.bEndpointAddress);
3434 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3435 					"with non-streams endpoint\n");
3436 			return 0;
3437 		}
3438 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3439 	}
3440 	return changed_ep_bitmask;
3441 }
3442 
3443 /*
3444  * The USB device drivers use this function (through the HCD interface in USB
3445  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3446  * coordinate mass storage command queueing across multiple endpoints (basically
3447  * a stream ID == a task ID).
3448  *
3449  * Setting up streams involves allocating the same size stream context array
3450  * for each endpoint and issuing a configure endpoint command for all endpoints.
3451  *
3452  * Don't allow the call to succeed if one endpoint only supports one stream
3453  * (which means it doesn't support streams at all).
3454  *
3455  * Drivers may get less stream IDs than they asked for, if the host controller
3456  * hardware or endpoints claim they can't support the number of requested
3457  * stream IDs.
3458  */
3459 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3460 		struct usb_host_endpoint **eps, unsigned int num_eps,
3461 		unsigned int num_streams, gfp_t mem_flags)
3462 {
3463 	int i, ret;
3464 	struct xhci_hcd *xhci;
3465 	struct xhci_virt_device *vdev;
3466 	struct xhci_command *config_cmd;
3467 	struct xhci_input_control_ctx *ctrl_ctx;
3468 	unsigned int ep_index;
3469 	unsigned int num_stream_ctxs;
3470 	unsigned int max_packet;
3471 	unsigned long flags;
3472 	u32 changed_ep_bitmask = 0;
3473 
3474 	if (!eps)
3475 		return -EINVAL;
3476 
3477 	/* Add one to the number of streams requested to account for
3478 	 * stream 0 that is reserved for xHCI usage.
3479 	 */
3480 	num_streams += 1;
3481 	xhci = hcd_to_xhci(hcd);
3482 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3483 			num_streams);
3484 
3485 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3486 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3487 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3488 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3489 		return -ENOSYS;
3490 	}
3491 
3492 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3493 	if (!config_cmd)
3494 		return -ENOMEM;
3495 
3496 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3497 	if (!ctrl_ctx) {
3498 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3499 				__func__);
3500 		xhci_free_command(xhci, config_cmd);
3501 		return -ENOMEM;
3502 	}
3503 
3504 	/* Check to make sure all endpoints are not already configured for
3505 	 * streams.  While we're at it, find the maximum number of streams that
3506 	 * all the endpoints will support and check for duplicate endpoints.
3507 	 */
3508 	spin_lock_irqsave(&xhci->lock, flags);
3509 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3510 			num_eps, &num_streams, &changed_ep_bitmask);
3511 	if (ret < 0) {
3512 		xhci_free_command(xhci, config_cmd);
3513 		spin_unlock_irqrestore(&xhci->lock, flags);
3514 		return ret;
3515 	}
3516 	if (num_streams <= 1) {
3517 		xhci_warn(xhci, "WARN: endpoints can't handle "
3518 				"more than one stream.\n");
3519 		xhci_free_command(xhci, config_cmd);
3520 		spin_unlock_irqrestore(&xhci->lock, flags);
3521 		return -EINVAL;
3522 	}
3523 	vdev = xhci->devs[udev->slot_id];
3524 	/* Mark each endpoint as being in transition, so
3525 	 * xhci_urb_enqueue() will reject all URBs.
3526 	 */
3527 	for (i = 0; i < num_eps; i++) {
3528 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3529 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3530 	}
3531 	spin_unlock_irqrestore(&xhci->lock, flags);
3532 
3533 	/* Setup internal data structures and allocate HW data structures for
3534 	 * streams (but don't install the HW structures in the input context
3535 	 * until we're sure all memory allocation succeeded).
3536 	 */
3537 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3538 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3539 			num_stream_ctxs, num_streams);
3540 
3541 	for (i = 0; i < num_eps; i++) {
3542 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3543 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3544 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3545 				num_stream_ctxs,
3546 				num_streams,
3547 				max_packet, mem_flags);
3548 		if (!vdev->eps[ep_index].stream_info)
3549 			goto cleanup;
3550 		/* Set maxPstreams in endpoint context and update deq ptr to
3551 		 * point to stream context array. FIXME
3552 		 */
3553 	}
3554 
3555 	/* Set up the input context for a configure endpoint command. */
3556 	for (i = 0; i < num_eps; i++) {
3557 		struct xhci_ep_ctx *ep_ctx;
3558 
3559 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3560 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3561 
3562 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3563 				vdev->out_ctx, ep_index);
3564 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3565 				vdev->eps[ep_index].stream_info);
3566 	}
3567 	/* Tell the HW to drop its old copy of the endpoint context info
3568 	 * and add the updated copy from the input context.
3569 	 */
3570 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3571 			vdev->out_ctx, ctrl_ctx,
3572 			changed_ep_bitmask, changed_ep_bitmask);
3573 
3574 	/* Issue and wait for the configure endpoint command */
3575 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3576 			false, false);
3577 
3578 	/* xHC rejected the configure endpoint command for some reason, so we
3579 	 * leave the old ring intact and free our internal streams data
3580 	 * structure.
3581 	 */
3582 	if (ret < 0)
3583 		goto cleanup;
3584 
3585 	spin_lock_irqsave(&xhci->lock, flags);
3586 	for (i = 0; i < num_eps; i++) {
3587 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3588 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3589 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3590 			 udev->slot_id, ep_index);
3591 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3592 	}
3593 	xhci_free_command(xhci, config_cmd);
3594 	spin_unlock_irqrestore(&xhci->lock, flags);
3595 
3596 	for (i = 0; i < num_eps; i++) {
3597 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3598 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3599 	}
3600 	/* Subtract 1 for stream 0, which drivers can't use */
3601 	return num_streams - 1;
3602 
3603 cleanup:
3604 	/* If it didn't work, free the streams! */
3605 	for (i = 0; i < num_eps; i++) {
3606 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3607 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3608 		vdev->eps[ep_index].stream_info = NULL;
3609 		/* FIXME Unset maxPstreams in endpoint context and
3610 		 * update deq ptr to point to normal string ring.
3611 		 */
3612 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3613 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3614 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3615 	}
3616 	xhci_free_command(xhci, config_cmd);
3617 	return -ENOMEM;
3618 }
3619 
3620 /* Transition the endpoint from using streams to being a "normal" endpoint
3621  * without streams.
3622  *
3623  * Modify the endpoint context state, submit a configure endpoint command,
3624  * and free all endpoint rings for streams if that completes successfully.
3625  */
3626 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3627 		struct usb_host_endpoint **eps, unsigned int num_eps,
3628 		gfp_t mem_flags)
3629 {
3630 	int i, ret;
3631 	struct xhci_hcd *xhci;
3632 	struct xhci_virt_device *vdev;
3633 	struct xhci_command *command;
3634 	struct xhci_input_control_ctx *ctrl_ctx;
3635 	unsigned int ep_index;
3636 	unsigned long flags;
3637 	u32 changed_ep_bitmask;
3638 
3639 	xhci = hcd_to_xhci(hcd);
3640 	vdev = xhci->devs[udev->slot_id];
3641 
3642 	/* Set up a configure endpoint command to remove the streams rings */
3643 	spin_lock_irqsave(&xhci->lock, flags);
3644 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3645 			udev, eps, num_eps);
3646 	if (changed_ep_bitmask == 0) {
3647 		spin_unlock_irqrestore(&xhci->lock, flags);
3648 		return -EINVAL;
3649 	}
3650 
3651 	/* Use the xhci_command structure from the first endpoint.  We may have
3652 	 * allocated too many, but the driver may call xhci_free_streams() for
3653 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3654 	 */
3655 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3656 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3657 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3658 	if (!ctrl_ctx) {
3659 		spin_unlock_irqrestore(&xhci->lock, flags);
3660 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3661 				__func__);
3662 		return -EINVAL;
3663 	}
3664 
3665 	for (i = 0; i < num_eps; i++) {
3666 		struct xhci_ep_ctx *ep_ctx;
3667 
3668 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3669 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3670 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3671 			EP_GETTING_NO_STREAMS;
3672 
3673 		xhci_endpoint_copy(xhci, command->in_ctx,
3674 				vdev->out_ctx, ep_index);
3675 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3676 				&vdev->eps[ep_index]);
3677 	}
3678 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3679 			vdev->out_ctx, ctrl_ctx,
3680 			changed_ep_bitmask, changed_ep_bitmask);
3681 	spin_unlock_irqrestore(&xhci->lock, flags);
3682 
3683 	/* Issue and wait for the configure endpoint command,
3684 	 * which must succeed.
3685 	 */
3686 	ret = xhci_configure_endpoint(xhci, udev, command,
3687 			false, true);
3688 
3689 	/* xHC rejected the configure endpoint command for some reason, so we
3690 	 * leave the streams rings intact.
3691 	 */
3692 	if (ret < 0)
3693 		return ret;
3694 
3695 	spin_lock_irqsave(&xhci->lock, flags);
3696 	for (i = 0; i < num_eps; i++) {
3697 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3698 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3699 		vdev->eps[ep_index].stream_info = NULL;
3700 		/* FIXME Unset maxPstreams in endpoint context and
3701 		 * update deq ptr to point to normal string ring.
3702 		 */
3703 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3704 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3705 	}
3706 	spin_unlock_irqrestore(&xhci->lock, flags);
3707 
3708 	return 0;
3709 }
3710 
3711 /*
3712  * Deletes endpoint resources for endpoints that were active before a Reset
3713  * Device command, or a Disable Slot command.  The Reset Device command leaves
3714  * the control endpoint intact, whereas the Disable Slot command deletes it.
3715  *
3716  * Must be called with xhci->lock held.
3717  */
3718 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3719 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3720 {
3721 	int i;
3722 	unsigned int num_dropped_eps = 0;
3723 	unsigned int drop_flags = 0;
3724 
3725 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3726 		if (virt_dev->eps[i].ring) {
3727 			drop_flags |= 1 << i;
3728 			num_dropped_eps++;
3729 		}
3730 	}
3731 	xhci->num_active_eps -= num_dropped_eps;
3732 	if (num_dropped_eps)
3733 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3734 				"Dropped %u ep ctxs, flags = 0x%x, "
3735 				"%u now active.",
3736 				num_dropped_eps, drop_flags,
3737 				xhci->num_active_eps);
3738 }
3739 
3740 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
3741 
3742 /*
3743  * This submits a Reset Device Command, which will set the device state to 0,
3744  * set the device address to 0, and disable all the endpoints except the default
3745  * control endpoint.  The USB core should come back and call
3746  * xhci_address_device(), and then re-set up the configuration.  If this is
3747  * called because of a usb_reset_and_verify_device(), then the old alternate
3748  * settings will be re-installed through the normal bandwidth allocation
3749  * functions.
3750  *
3751  * Wait for the Reset Device command to finish.  Remove all structures
3752  * associated with the endpoints that were disabled.  Clear the input device
3753  * structure? Reset the control endpoint 0 max packet size?
3754  *
3755  * If the virt_dev to be reset does not exist or does not match the udev,
3756  * it means the device is lost, possibly due to the xHC restore error and
3757  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3758  * re-allocate the device.
3759  */
3760 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3761 		struct usb_device *udev)
3762 {
3763 	int ret, i;
3764 	unsigned long flags;
3765 	struct xhci_hcd *xhci;
3766 	unsigned int slot_id;
3767 	struct xhci_virt_device *virt_dev;
3768 	struct xhci_command *reset_device_cmd;
3769 	struct xhci_slot_ctx *slot_ctx;
3770 	int old_active_eps = 0;
3771 
3772 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3773 	if (ret <= 0)
3774 		return ret;
3775 	xhci = hcd_to_xhci(hcd);
3776 	slot_id = udev->slot_id;
3777 	virt_dev = xhci->devs[slot_id];
3778 	if (!virt_dev) {
3779 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3780 				"not exist. Re-allocate the device\n", slot_id);
3781 		ret = xhci_alloc_dev(hcd, udev);
3782 		if (ret == 1)
3783 			return 0;
3784 		else
3785 			return -EINVAL;
3786 	}
3787 
3788 	if (virt_dev->tt_info)
3789 		old_active_eps = virt_dev->tt_info->active_eps;
3790 
3791 	if (virt_dev->udev != udev) {
3792 		/* If the virt_dev and the udev does not match, this virt_dev
3793 		 * may belong to another udev.
3794 		 * Re-allocate the device.
3795 		 */
3796 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3797 				"not match the udev. Re-allocate the device\n",
3798 				slot_id);
3799 		ret = xhci_alloc_dev(hcd, udev);
3800 		if (ret == 1)
3801 			return 0;
3802 		else
3803 			return -EINVAL;
3804 	}
3805 
3806 	/* If device is not setup, there is no point in resetting it */
3807 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3808 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3809 						SLOT_STATE_DISABLED)
3810 		return 0;
3811 
3812 	if (xhci->quirks & XHCI_ETRON_HOST) {
3813 		/*
3814 		 * Obtaining a new device slot to inform the xHCI host that
3815 		 * the USB device has been reset.
3816 		 */
3817 		ret = xhci_disable_slot(xhci, udev->slot_id);
3818 		xhci_free_virt_device(xhci, udev->slot_id);
3819 		if (!ret) {
3820 			ret = xhci_alloc_dev(hcd, udev);
3821 			if (ret == 1)
3822 				ret = 0;
3823 			else
3824 				ret = -EINVAL;
3825 		}
3826 		return ret;
3827 	}
3828 
3829 	trace_xhci_discover_or_reset_device(slot_ctx);
3830 
3831 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3832 	/* Allocate the command structure that holds the struct completion.
3833 	 * Assume we're in process context, since the normal device reset
3834 	 * process has to wait for the device anyway.  Storage devices are
3835 	 * reset as part of error handling, so use GFP_NOIO instead of
3836 	 * GFP_KERNEL.
3837 	 */
3838 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3839 	if (!reset_device_cmd) {
3840 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3841 		return -ENOMEM;
3842 	}
3843 
3844 	/* Attempt to submit the Reset Device command to the command ring */
3845 	spin_lock_irqsave(&xhci->lock, flags);
3846 
3847 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3848 	if (ret) {
3849 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3850 		spin_unlock_irqrestore(&xhci->lock, flags);
3851 		goto command_cleanup;
3852 	}
3853 	xhci_ring_cmd_db(xhci);
3854 	spin_unlock_irqrestore(&xhci->lock, flags);
3855 
3856 	/* Wait for the Reset Device command to finish */
3857 	wait_for_completion(reset_device_cmd->completion);
3858 
3859 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3860 	 * unless we tried to reset a slot ID that wasn't enabled,
3861 	 * or the device wasn't in the addressed or configured state.
3862 	 */
3863 	ret = reset_device_cmd->status;
3864 	switch (ret) {
3865 	case COMP_COMMAND_ABORTED:
3866 	case COMP_COMMAND_RING_STOPPED:
3867 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3868 		ret = -ETIME;
3869 		goto command_cleanup;
3870 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3871 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3872 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3873 				slot_id,
3874 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3875 		xhci_dbg(xhci, "Not freeing device rings.\n");
3876 		/* Don't treat this as an error.  May change my mind later. */
3877 		ret = 0;
3878 		goto command_cleanup;
3879 	case COMP_SUCCESS:
3880 		xhci_dbg(xhci, "Successful reset device command.\n");
3881 		break;
3882 	default:
3883 		if (xhci_is_vendor_info_code(xhci, ret))
3884 			break;
3885 		xhci_warn(xhci, "Unknown completion code %u for "
3886 				"reset device command.\n", ret);
3887 		ret = -EINVAL;
3888 		goto command_cleanup;
3889 	}
3890 
3891 	/* Free up host controller endpoint resources */
3892 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3893 		spin_lock_irqsave(&xhci->lock, flags);
3894 		/* Don't delete the default control endpoint resources */
3895 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3896 		spin_unlock_irqrestore(&xhci->lock, flags);
3897 	}
3898 
3899 	/* Everything but endpoint 0 is disabled, so free the rings. */
3900 	for (i = 1; i < 31; i++) {
3901 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3902 
3903 		if (ep->ep_state & EP_HAS_STREAMS) {
3904 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3905 					xhci_get_endpoint_address(i));
3906 			xhci_free_stream_info(xhci, ep->stream_info);
3907 			ep->stream_info = NULL;
3908 			ep->ep_state &= ~EP_HAS_STREAMS;
3909 		}
3910 
3911 		if (ep->ring) {
3912 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3913 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3914 		}
3915 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3916 			xhci_drop_ep_from_interval_table(xhci,
3917 					&virt_dev->eps[i].bw_info,
3918 					virt_dev->bw_table,
3919 					udev,
3920 					&virt_dev->eps[i],
3921 					virt_dev->tt_info);
3922 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3923 	}
3924 	/* If necessary, update the number of active TTs on this root port */
3925 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3926 	virt_dev->flags = 0;
3927 	ret = 0;
3928 
3929 command_cleanup:
3930 	xhci_free_command(xhci, reset_device_cmd);
3931 	return ret;
3932 }
3933 
3934 /*
3935  * At this point, the struct usb_device is about to go away, the device has
3936  * disconnected, and all traffic has been stopped and the endpoints have been
3937  * disabled.  Free any HC data structures associated with that device.
3938  */
3939 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3940 {
3941 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3942 	struct xhci_virt_device *virt_dev;
3943 	struct xhci_slot_ctx *slot_ctx;
3944 	unsigned long flags;
3945 	int i, ret;
3946 
3947 	/*
3948 	 * We called pm_runtime_get_noresume when the device was attached.
3949 	 * Decrement the counter here to allow controller to runtime suspend
3950 	 * if no devices remain.
3951 	 */
3952 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3953 		pm_runtime_put_noidle(hcd->self.controller);
3954 
3955 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3956 	/* If the host is halted due to driver unload, we still need to free the
3957 	 * device.
3958 	 */
3959 	if (ret <= 0 && ret != -ENODEV)
3960 		return;
3961 
3962 	virt_dev = xhci->devs[udev->slot_id];
3963 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3964 	trace_xhci_free_dev(slot_ctx);
3965 
3966 	/* Stop any wayward timer functions (which may grab the lock) */
3967 	for (i = 0; i < 31; i++)
3968 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3969 	virt_dev->udev = NULL;
3970 	xhci_disable_slot(xhci, udev->slot_id);
3971 
3972 	spin_lock_irqsave(&xhci->lock, flags);
3973 	xhci_free_virt_device(xhci, udev->slot_id);
3974 	spin_unlock_irqrestore(&xhci->lock, flags);
3975 
3976 }
3977 
3978 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3979 {
3980 	struct xhci_command *command;
3981 	unsigned long flags;
3982 	u32 state;
3983 	int ret;
3984 
3985 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3986 	if (!command)
3987 		return -ENOMEM;
3988 
3989 	xhci_debugfs_remove_slot(xhci, slot_id);
3990 
3991 	spin_lock_irqsave(&xhci->lock, flags);
3992 	/* Don't disable the slot if the host controller is dead. */
3993 	state = readl(&xhci->op_regs->status);
3994 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3995 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3996 		spin_unlock_irqrestore(&xhci->lock, flags);
3997 		kfree(command);
3998 		return -ENODEV;
3999 	}
4000 
4001 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4002 				slot_id);
4003 	if (ret) {
4004 		spin_unlock_irqrestore(&xhci->lock, flags);
4005 		kfree(command);
4006 		return ret;
4007 	}
4008 	xhci_ring_cmd_db(xhci);
4009 	spin_unlock_irqrestore(&xhci->lock, flags);
4010 
4011 	wait_for_completion(command->completion);
4012 
4013 	if (command->status != COMP_SUCCESS)
4014 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4015 			  slot_id, command->status);
4016 
4017 	xhci_free_command(xhci, command);
4018 
4019 	return 0;
4020 }
4021 
4022 /*
4023  * Checks if we have enough host controller resources for the default control
4024  * endpoint.
4025  *
4026  * Must be called with xhci->lock held.
4027  */
4028 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4029 {
4030 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4031 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4032 				"Not enough ep ctxs: "
4033 				"%u active, need to add 1, limit is %u.",
4034 				xhci->num_active_eps, xhci->limit_active_eps);
4035 		return -ENOMEM;
4036 	}
4037 	xhci->num_active_eps += 1;
4038 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4039 			"Adding 1 ep ctx, %u now active.",
4040 			xhci->num_active_eps);
4041 	return 0;
4042 }
4043 
4044 
4045 /*
4046  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4047  * timed out, or allocating memory failed.  Returns 1 on success.
4048  */
4049 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4050 {
4051 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4052 	struct xhci_virt_device *vdev;
4053 	struct xhci_slot_ctx *slot_ctx;
4054 	unsigned long flags;
4055 	int ret, slot_id;
4056 	struct xhci_command *command;
4057 
4058 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4059 	if (!command)
4060 		return 0;
4061 
4062 	spin_lock_irqsave(&xhci->lock, flags);
4063 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4064 	if (ret) {
4065 		spin_unlock_irqrestore(&xhci->lock, flags);
4066 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4067 		xhci_free_command(xhci, command);
4068 		return 0;
4069 	}
4070 	xhci_ring_cmd_db(xhci);
4071 	spin_unlock_irqrestore(&xhci->lock, flags);
4072 
4073 	wait_for_completion(command->completion);
4074 	slot_id = command->slot_id;
4075 
4076 	if (!slot_id || command->status != COMP_SUCCESS) {
4077 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4078 			 xhci_trb_comp_code_string(command->status));
4079 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4080 				HCS_MAX_SLOTS(
4081 					readl(&xhci->cap_regs->hcs_params1)));
4082 		xhci_free_command(xhci, command);
4083 		return 0;
4084 	}
4085 
4086 	xhci_free_command(xhci, command);
4087 
4088 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4089 		spin_lock_irqsave(&xhci->lock, flags);
4090 		ret = xhci_reserve_host_control_ep_resources(xhci);
4091 		if (ret) {
4092 			spin_unlock_irqrestore(&xhci->lock, flags);
4093 			xhci_warn(xhci, "Not enough host resources, "
4094 					"active endpoint contexts = %u\n",
4095 					xhci->num_active_eps);
4096 			goto disable_slot;
4097 		}
4098 		spin_unlock_irqrestore(&xhci->lock, flags);
4099 	}
4100 	/* Use GFP_NOIO, since this function can be called from
4101 	 * xhci_discover_or_reset_device(), which may be called as part of
4102 	 * mass storage driver error handling.
4103 	 */
4104 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4105 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4106 		goto disable_slot;
4107 	}
4108 	vdev = xhci->devs[slot_id];
4109 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4110 	trace_xhci_alloc_dev(slot_ctx);
4111 
4112 	udev->slot_id = slot_id;
4113 
4114 	xhci_debugfs_create_slot(xhci, slot_id);
4115 
4116 	/*
4117 	 * If resetting upon resume, we can't put the controller into runtime
4118 	 * suspend if there is a device attached.
4119 	 */
4120 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4121 		pm_runtime_get_noresume(hcd->self.controller);
4122 
4123 	/* Is this a LS or FS device under a HS hub? */
4124 	/* Hub or peripherial? */
4125 	return 1;
4126 
4127 disable_slot:
4128 	xhci_disable_slot(xhci, udev->slot_id);
4129 	xhci_free_virt_device(xhci, udev->slot_id);
4130 
4131 	return 0;
4132 }
4133 
4134 /**
4135  * xhci_setup_device - issues an Address Device command to assign a unique
4136  *			USB bus address.
4137  * @hcd: USB host controller data structure.
4138  * @udev: USB dev structure representing the connected device.
4139  * @setup: Enum specifying setup mode: address only or with context.
4140  * @timeout_ms: Max wait time (ms) for the command operation to complete.
4141  *
4142  * Return: 0 if successful; otherwise, negative error code.
4143  */
4144 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4145 			     enum xhci_setup_dev setup, unsigned int timeout_ms)
4146 {
4147 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4148 	unsigned long flags;
4149 	struct xhci_virt_device *virt_dev;
4150 	int ret = 0;
4151 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4152 	struct xhci_slot_ctx *slot_ctx;
4153 	struct xhci_input_control_ctx *ctrl_ctx;
4154 	u64 temp_64;
4155 	struct xhci_command *command = NULL;
4156 
4157 	mutex_lock(&xhci->mutex);
4158 
4159 	if (xhci->xhc_state) {	/* dying, removing or halted */
4160 		ret = -ESHUTDOWN;
4161 		goto out;
4162 	}
4163 
4164 	if (!udev->slot_id) {
4165 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4166 				"Bad Slot ID %d", udev->slot_id);
4167 		ret = -EINVAL;
4168 		goto out;
4169 	}
4170 
4171 	virt_dev = xhci->devs[udev->slot_id];
4172 
4173 	if (WARN_ON(!virt_dev)) {
4174 		/*
4175 		 * In plug/unplug torture test with an NEC controller,
4176 		 * a zero-dereference was observed once due to virt_dev = 0.
4177 		 * Print useful debug rather than crash if it is observed again!
4178 		 */
4179 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4180 			udev->slot_id);
4181 		ret = -EINVAL;
4182 		goto out;
4183 	}
4184 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4185 	trace_xhci_setup_device_slot(slot_ctx);
4186 
4187 	if (setup == SETUP_CONTEXT_ONLY) {
4188 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4189 		    SLOT_STATE_DEFAULT) {
4190 			xhci_dbg(xhci, "Slot already in default state\n");
4191 			goto out;
4192 		}
4193 	}
4194 
4195 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4196 	if (!command) {
4197 		ret = -ENOMEM;
4198 		goto out;
4199 	}
4200 
4201 	command->in_ctx = virt_dev->in_ctx;
4202 	command->timeout_ms = timeout_ms;
4203 
4204 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4205 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4206 	if (!ctrl_ctx) {
4207 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4208 				__func__);
4209 		ret = -EINVAL;
4210 		goto out;
4211 	}
4212 	/*
4213 	 * If this is the first Set Address since device plug-in or
4214 	 * virt_device realloaction after a resume with an xHCI power loss,
4215 	 * then set up the slot context.
4216 	 */
4217 	if (!slot_ctx->dev_info)
4218 		xhci_setup_addressable_virt_dev(xhci, udev);
4219 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4220 	else
4221 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4222 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4223 	ctrl_ctx->drop_flags = 0;
4224 
4225 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4226 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4227 
4228 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4229 	spin_lock_irqsave(&xhci->lock, flags);
4230 	trace_xhci_setup_device(virt_dev);
4231 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4232 					udev->slot_id, setup);
4233 	if (ret) {
4234 		spin_unlock_irqrestore(&xhci->lock, flags);
4235 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4236 				"FIXME: allocate a command ring segment");
4237 		goto out;
4238 	}
4239 	xhci_ring_cmd_db(xhci);
4240 	spin_unlock_irqrestore(&xhci->lock, flags);
4241 
4242 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4243 	wait_for_completion(command->completion);
4244 
4245 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4246 	 * the SetAddress() "recovery interval" required by USB and aborting the
4247 	 * command on a timeout.
4248 	 */
4249 	switch (command->status) {
4250 	case COMP_COMMAND_ABORTED:
4251 	case COMP_COMMAND_RING_STOPPED:
4252 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4253 		ret = -ETIME;
4254 		break;
4255 	case COMP_CONTEXT_STATE_ERROR:
4256 	case COMP_SLOT_NOT_ENABLED_ERROR:
4257 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4258 			 act, udev->slot_id);
4259 		ret = -EINVAL;
4260 		break;
4261 	case COMP_USB_TRANSACTION_ERROR:
4262 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4263 
4264 		mutex_unlock(&xhci->mutex);
4265 		ret = xhci_disable_slot(xhci, udev->slot_id);
4266 		xhci_free_virt_device(xhci, udev->slot_id);
4267 		if (!ret) {
4268 			if (xhci_alloc_dev(hcd, udev) == 1)
4269 				xhci_setup_addressable_virt_dev(xhci, udev);
4270 		}
4271 		kfree(command->completion);
4272 		kfree(command);
4273 		return -EPROTO;
4274 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4275 		dev_warn(&udev->dev,
4276 			 "ERROR: Incompatible device for setup %s command\n", act);
4277 		ret = -ENODEV;
4278 		break;
4279 	case COMP_SUCCESS:
4280 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4281 			       "Successful setup %s command", act);
4282 		break;
4283 	default:
4284 		xhci_err(xhci,
4285 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4286 			 act, command->status);
4287 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4288 		ret = -EINVAL;
4289 		break;
4290 	}
4291 	if (ret)
4292 		goto out;
4293 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4294 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4295 			"Op regs DCBAA ptr = %#016llx", temp_64);
4296 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4297 		"Slot ID %d dcbaa entry @%p = %#016llx",
4298 		udev->slot_id,
4299 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4300 		(unsigned long long)
4301 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4302 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4303 			"Output Context DMA address = %#08llx",
4304 			(unsigned long long)virt_dev->out_ctx->dma);
4305 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4306 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4307 	/*
4308 	 * USB core uses address 1 for the roothubs, so we add one to the
4309 	 * address given back to us by the HC.
4310 	 */
4311 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4312 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4313 	/* Zero the input context control for later use */
4314 	ctrl_ctx->add_flags = 0;
4315 	ctrl_ctx->drop_flags = 0;
4316 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4317 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4318 
4319 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4320 		       "Internal device address = %d",
4321 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4322 out:
4323 	mutex_unlock(&xhci->mutex);
4324 	if (command) {
4325 		kfree(command->completion);
4326 		kfree(command);
4327 	}
4328 	return ret;
4329 }
4330 
4331 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4332 			       unsigned int timeout_ms)
4333 {
4334 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4335 }
4336 
4337 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4338 {
4339 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4340 				 XHCI_CMD_DEFAULT_TIMEOUT);
4341 }
4342 
4343 /*
4344  * Transfer the port index into real index in the HW port status
4345  * registers. Caculate offset between the port's PORTSC register
4346  * and port status base. Divide the number of per port register
4347  * to get the real index. The raw port number bases 1.
4348  */
4349 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4350 {
4351 	struct xhci_hub *rhub;
4352 
4353 	rhub = xhci_get_rhub(hcd);
4354 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4355 }
4356 
4357 /*
4358  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4359  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4360  */
4361 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4362 			struct usb_device *udev, u16 max_exit_latency)
4363 {
4364 	struct xhci_virt_device *virt_dev;
4365 	struct xhci_command *command;
4366 	struct xhci_input_control_ctx *ctrl_ctx;
4367 	struct xhci_slot_ctx *slot_ctx;
4368 	unsigned long flags;
4369 	int ret;
4370 
4371 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4372 	if (!command)
4373 		return -ENOMEM;
4374 
4375 	spin_lock_irqsave(&xhci->lock, flags);
4376 
4377 	virt_dev = xhci->devs[udev->slot_id];
4378 
4379 	/*
4380 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4381 	 * xHC was re-initialized. Exit latency will be set later after
4382 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4383 	 */
4384 
4385 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4386 		spin_unlock_irqrestore(&xhci->lock, flags);
4387 		xhci_free_command(xhci, command);
4388 		return 0;
4389 	}
4390 
4391 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4392 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4393 	if (!ctrl_ctx) {
4394 		spin_unlock_irqrestore(&xhci->lock, flags);
4395 		xhci_free_command(xhci, command);
4396 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4397 				__func__);
4398 		return -ENOMEM;
4399 	}
4400 
4401 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4402 	spin_unlock_irqrestore(&xhci->lock, flags);
4403 
4404 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4405 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4406 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4407 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4408 	slot_ctx->dev_state = 0;
4409 
4410 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4411 			"Set up evaluate context for LPM MEL change.");
4412 
4413 	/* Issue and wait for the evaluate context command. */
4414 	ret = xhci_configure_endpoint(xhci, udev, command,
4415 			true, true);
4416 
4417 	if (!ret) {
4418 		spin_lock_irqsave(&xhci->lock, flags);
4419 		virt_dev->current_mel = max_exit_latency;
4420 		spin_unlock_irqrestore(&xhci->lock, flags);
4421 	}
4422 
4423 	xhci_free_command(xhci, command);
4424 
4425 	return ret;
4426 }
4427 
4428 #ifdef CONFIG_PM
4429 
4430 /* BESL to HIRD Encoding array for USB2 LPM */
4431 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4432 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4433 
4434 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4435 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4436 					struct usb_device *udev)
4437 {
4438 	int u2del, besl, besl_host;
4439 	int besl_device = 0;
4440 	u32 field;
4441 
4442 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4443 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4444 
4445 	if (field & USB_BESL_SUPPORT) {
4446 		for (besl_host = 0; besl_host < 16; besl_host++) {
4447 			if (xhci_besl_encoding[besl_host] >= u2del)
4448 				break;
4449 		}
4450 		/* Use baseline BESL value as default */
4451 		if (field & USB_BESL_BASELINE_VALID)
4452 			besl_device = USB_GET_BESL_BASELINE(field);
4453 		else if (field & USB_BESL_DEEP_VALID)
4454 			besl_device = USB_GET_BESL_DEEP(field);
4455 	} else {
4456 		if (u2del <= 50)
4457 			besl_host = 0;
4458 		else
4459 			besl_host = (u2del - 51) / 75 + 1;
4460 	}
4461 
4462 	besl = besl_host + besl_device;
4463 	if (besl > 15)
4464 		besl = 15;
4465 
4466 	return besl;
4467 }
4468 
4469 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4470 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4471 {
4472 	u32 field;
4473 	int l1;
4474 	int besld = 0;
4475 	int hirdm = 0;
4476 
4477 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4478 
4479 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4480 	l1 = udev->l1_params.timeout / 256;
4481 
4482 	/* device has preferred BESLD */
4483 	if (field & USB_BESL_DEEP_VALID) {
4484 		besld = USB_GET_BESL_DEEP(field);
4485 		hirdm = 1;
4486 	}
4487 
4488 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4489 }
4490 
4491 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4492 			struct usb_device *udev, int enable)
4493 {
4494 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4495 	struct xhci_port **ports;
4496 	__le32 __iomem	*pm_addr, *hlpm_addr;
4497 	u32		pm_val, hlpm_val, field;
4498 	unsigned int	port_num;
4499 	unsigned long	flags;
4500 	int		hird, exit_latency;
4501 	int		ret;
4502 
4503 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4504 		return -EPERM;
4505 
4506 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4507 			!udev->lpm_capable)
4508 		return -EPERM;
4509 
4510 	if (!udev->parent || udev->parent->parent ||
4511 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4512 		return -EPERM;
4513 
4514 	if (udev->usb2_hw_lpm_capable != 1)
4515 		return -EPERM;
4516 
4517 	spin_lock_irqsave(&xhci->lock, flags);
4518 
4519 	ports = xhci->usb2_rhub.ports;
4520 	port_num = udev->portnum - 1;
4521 	pm_addr = ports[port_num]->addr + PORTPMSC;
4522 	pm_val = readl(pm_addr);
4523 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4524 
4525 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4526 			enable ? "enable" : "disable", port_num + 1);
4527 
4528 	if (enable) {
4529 		/* Host supports BESL timeout instead of HIRD */
4530 		if (udev->usb2_hw_lpm_besl_capable) {
4531 			/* if device doesn't have a preferred BESL value use a
4532 			 * default one which works with mixed HIRD and BESL
4533 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4534 			 */
4535 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4536 			if ((field & USB_BESL_SUPPORT) &&
4537 			    (field & USB_BESL_BASELINE_VALID))
4538 				hird = USB_GET_BESL_BASELINE(field);
4539 			else
4540 				hird = udev->l1_params.besl;
4541 
4542 			exit_latency = xhci_besl_encoding[hird];
4543 			spin_unlock_irqrestore(&xhci->lock, flags);
4544 
4545 			ret = xhci_change_max_exit_latency(xhci, udev,
4546 							   exit_latency);
4547 			if (ret < 0)
4548 				return ret;
4549 			spin_lock_irqsave(&xhci->lock, flags);
4550 
4551 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4552 			writel(hlpm_val, hlpm_addr);
4553 			/* flush write */
4554 			readl(hlpm_addr);
4555 		} else {
4556 			hird = xhci_calculate_hird_besl(xhci, udev);
4557 		}
4558 
4559 		pm_val &= ~PORT_HIRD_MASK;
4560 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4561 		writel(pm_val, pm_addr);
4562 		pm_val = readl(pm_addr);
4563 		pm_val |= PORT_HLE;
4564 		writel(pm_val, pm_addr);
4565 		/* flush write */
4566 		readl(pm_addr);
4567 	} else {
4568 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4569 		writel(pm_val, pm_addr);
4570 		/* flush write */
4571 		readl(pm_addr);
4572 		if (udev->usb2_hw_lpm_besl_capable) {
4573 			spin_unlock_irqrestore(&xhci->lock, flags);
4574 			xhci_change_max_exit_latency(xhci, udev, 0);
4575 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4576 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4577 					   100, 10000);
4578 			return 0;
4579 		}
4580 	}
4581 
4582 	spin_unlock_irqrestore(&xhci->lock, flags);
4583 	return 0;
4584 }
4585 
4586 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4587 {
4588 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4589 	struct xhci_port *port;
4590 	u32 capability;
4591 
4592 	/* Check if USB3 device at root port is tunneled over USB4 */
4593 	if (hcd->speed >= HCD_USB3 && !udev->parent->parent) {
4594 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4595 
4596 		udev->tunnel_mode = xhci_port_is_tunneled(xhci, port);
4597 		if (udev->tunnel_mode == USB_LINK_UNKNOWN)
4598 			dev_dbg(&udev->dev, "link tunnel state unknown\n");
4599 		else if (udev->tunnel_mode == USB_LINK_TUNNELED)
4600 			dev_dbg(&udev->dev, "tunneled over USB4 link\n");
4601 		else if (udev->tunnel_mode == USB_LINK_NATIVE)
4602 			dev_dbg(&udev->dev, "native USB 3.x link\n");
4603 		return 0;
4604 	}
4605 
4606 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support)
4607 		return 0;
4608 
4609 	/* we only support lpm for non-hub device connected to root hub yet */
4610 	if (!udev->parent || udev->parent->parent ||
4611 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4612 		return 0;
4613 
4614 	port = xhci->usb2_rhub.ports[udev->portnum - 1];
4615 	capability = port->port_cap->protocol_caps;
4616 
4617 	if (capability & XHCI_HLC) {
4618 		udev->usb2_hw_lpm_capable = 1;
4619 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4620 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4621 		if (capability & XHCI_BLC)
4622 			udev->usb2_hw_lpm_besl_capable = 1;
4623 	}
4624 
4625 	return 0;
4626 }
4627 
4628 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4629 
4630 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4631 static unsigned long long xhci_service_interval_to_ns(
4632 		struct usb_endpoint_descriptor *desc)
4633 {
4634 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4635 }
4636 
4637 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4638 		enum usb3_link_state state)
4639 {
4640 	unsigned long long sel;
4641 	unsigned long long pel;
4642 	unsigned int max_sel_pel;
4643 	char *state_name;
4644 
4645 	switch (state) {
4646 	case USB3_LPM_U1:
4647 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4648 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4649 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4650 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4651 		state_name = "U1";
4652 		break;
4653 	case USB3_LPM_U2:
4654 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4655 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4656 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4657 		state_name = "U2";
4658 		break;
4659 	default:
4660 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4661 				__func__);
4662 		return USB3_LPM_DISABLED;
4663 	}
4664 
4665 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4666 		return USB3_LPM_DEVICE_INITIATED;
4667 
4668 	if (sel > max_sel_pel)
4669 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4670 				"due to long SEL %llu ms\n",
4671 				state_name, sel);
4672 	else
4673 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4674 				"due to long PEL %llu ms\n",
4675 				state_name, pel);
4676 	return USB3_LPM_DISABLED;
4677 }
4678 
4679 /* The U1 timeout should be the maximum of the following values:
4680  *  - For control endpoints, U1 system exit latency (SEL) * 3
4681  *  - For bulk endpoints, U1 SEL * 5
4682  *  - For interrupt endpoints:
4683  *    - Notification EPs, U1 SEL * 3
4684  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4685  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4686  */
4687 static unsigned long long xhci_calculate_intel_u1_timeout(
4688 		struct usb_device *udev,
4689 		struct usb_endpoint_descriptor *desc)
4690 {
4691 	unsigned long long timeout_ns;
4692 	int ep_type;
4693 	int intr_type;
4694 
4695 	ep_type = usb_endpoint_type(desc);
4696 	switch (ep_type) {
4697 	case USB_ENDPOINT_XFER_CONTROL:
4698 		timeout_ns = udev->u1_params.sel * 3;
4699 		break;
4700 	case USB_ENDPOINT_XFER_BULK:
4701 		timeout_ns = udev->u1_params.sel * 5;
4702 		break;
4703 	case USB_ENDPOINT_XFER_INT:
4704 		intr_type = usb_endpoint_interrupt_type(desc);
4705 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4706 			timeout_ns = udev->u1_params.sel * 3;
4707 			break;
4708 		}
4709 		/* Otherwise the calculation is the same as isoc eps */
4710 		fallthrough;
4711 	case USB_ENDPOINT_XFER_ISOC:
4712 		timeout_ns = xhci_service_interval_to_ns(desc);
4713 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4714 		if (timeout_ns < udev->u1_params.sel * 2)
4715 			timeout_ns = udev->u1_params.sel * 2;
4716 		break;
4717 	default:
4718 		return 0;
4719 	}
4720 
4721 	return timeout_ns;
4722 }
4723 
4724 /* Returns the hub-encoded U1 timeout value. */
4725 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4726 		struct usb_device *udev,
4727 		struct usb_endpoint_descriptor *desc)
4728 {
4729 	unsigned long long timeout_ns;
4730 
4731 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4732 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4733 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4734 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4735 			return USB3_LPM_DISABLED;
4736 		}
4737 	}
4738 
4739 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4740 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4741 	else
4742 		timeout_ns = udev->u1_params.sel;
4743 
4744 	/* The U1 timeout is encoded in 1us intervals.
4745 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4746 	 */
4747 	if (timeout_ns == USB3_LPM_DISABLED)
4748 		timeout_ns = 1;
4749 	else
4750 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4751 
4752 	/* If the necessary timeout value is bigger than what we can set in the
4753 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4754 	 */
4755 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4756 		return timeout_ns;
4757 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4758 			"due to long timeout %llu ms\n", timeout_ns);
4759 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4760 }
4761 
4762 /* The U2 timeout should be the maximum of:
4763  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4764  *  - largest bInterval of any active periodic endpoint (to avoid going
4765  *    into lower power link states between intervals).
4766  *  - the U2 Exit Latency of the device
4767  */
4768 static unsigned long long xhci_calculate_intel_u2_timeout(
4769 		struct usb_device *udev,
4770 		struct usb_endpoint_descriptor *desc)
4771 {
4772 	unsigned long long timeout_ns;
4773 	unsigned long long u2_del_ns;
4774 
4775 	timeout_ns = 10 * 1000 * 1000;
4776 
4777 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4778 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4779 		timeout_ns = xhci_service_interval_to_ns(desc);
4780 
4781 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4782 	if (u2_del_ns > timeout_ns)
4783 		timeout_ns = u2_del_ns;
4784 
4785 	return timeout_ns;
4786 }
4787 
4788 /* Returns the hub-encoded U2 timeout value. */
4789 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4790 		struct usb_device *udev,
4791 		struct usb_endpoint_descriptor *desc)
4792 {
4793 	unsigned long long timeout_ns;
4794 
4795 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4796 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4797 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4798 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4799 			return USB3_LPM_DISABLED;
4800 		}
4801 	}
4802 
4803 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4804 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4805 	else
4806 		timeout_ns = udev->u2_params.sel;
4807 
4808 	/* The U2 timeout is encoded in 256us intervals */
4809 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4810 	/* If the necessary timeout value is bigger than what we can set in the
4811 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4812 	 */
4813 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4814 		return timeout_ns;
4815 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4816 			"due to long timeout %llu ms\n", timeout_ns);
4817 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4818 }
4819 
4820 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4821 		struct usb_device *udev,
4822 		struct usb_endpoint_descriptor *desc,
4823 		enum usb3_link_state state,
4824 		u16 *timeout)
4825 {
4826 	if (state == USB3_LPM_U1)
4827 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4828 	else if (state == USB3_LPM_U2)
4829 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4830 
4831 	return USB3_LPM_DISABLED;
4832 }
4833 
4834 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4835 		struct usb_device *udev,
4836 		struct usb_endpoint_descriptor *desc,
4837 		enum usb3_link_state state,
4838 		u16 *timeout)
4839 {
4840 	u16 alt_timeout;
4841 
4842 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4843 		desc, state, timeout);
4844 
4845 	/* If we found we can't enable hub-initiated LPM, and
4846 	 * the U1 or U2 exit latency was too high to allow
4847 	 * device-initiated LPM as well, then we will disable LPM
4848 	 * for this device, so stop searching any further.
4849 	 */
4850 	if (alt_timeout == USB3_LPM_DISABLED) {
4851 		*timeout = alt_timeout;
4852 		return -E2BIG;
4853 	}
4854 	if (alt_timeout > *timeout)
4855 		*timeout = alt_timeout;
4856 	return 0;
4857 }
4858 
4859 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4860 		struct usb_device *udev,
4861 		struct usb_host_interface *alt,
4862 		enum usb3_link_state state,
4863 		u16 *timeout)
4864 {
4865 	int j;
4866 
4867 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4868 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4869 					&alt->endpoint[j].desc, state, timeout))
4870 			return -E2BIG;
4871 	}
4872 	return 0;
4873 }
4874 
4875 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4876 		struct usb_device *udev,
4877 		enum usb3_link_state state)
4878 {
4879 	struct usb_device *parent = udev->parent;
4880 	int tier = 1; /* roothub is tier1 */
4881 
4882 	while (parent) {
4883 		parent = parent->parent;
4884 		tier++;
4885 	}
4886 
4887 	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4888 		goto fail;
4889 	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4890 		goto fail;
4891 
4892 	return 0;
4893 fail:
4894 	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4895 			tier);
4896 	return -E2BIG;
4897 }
4898 
4899 /* Returns the U1 or U2 timeout that should be enabled.
4900  * If the tier check or timeout setting functions return with a non-zero exit
4901  * code, that means the timeout value has been finalized and we shouldn't look
4902  * at any more endpoints.
4903  */
4904 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4905 			struct usb_device *udev, enum usb3_link_state state)
4906 {
4907 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4908 	struct usb_host_config *config;
4909 	char *state_name;
4910 	int i;
4911 	u16 timeout = USB3_LPM_DISABLED;
4912 
4913 	if (state == USB3_LPM_U1)
4914 		state_name = "U1";
4915 	else if (state == USB3_LPM_U2)
4916 		state_name = "U2";
4917 	else {
4918 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4919 				state);
4920 		return timeout;
4921 	}
4922 
4923 	/* Gather some information about the currently installed configuration
4924 	 * and alternate interface settings.
4925 	 */
4926 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4927 			state, &timeout))
4928 		return timeout;
4929 
4930 	config = udev->actconfig;
4931 	if (!config)
4932 		return timeout;
4933 
4934 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4935 		struct usb_driver *driver;
4936 		struct usb_interface *intf = config->interface[i];
4937 
4938 		if (!intf)
4939 			continue;
4940 
4941 		/* Check if any currently bound drivers want hub-initiated LPM
4942 		 * disabled.
4943 		 */
4944 		if (intf->dev.driver) {
4945 			driver = to_usb_driver(intf->dev.driver);
4946 			if (driver && driver->disable_hub_initiated_lpm) {
4947 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4948 					state_name, driver->name);
4949 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4950 								      state);
4951 				if (timeout == USB3_LPM_DISABLED)
4952 					return timeout;
4953 			}
4954 		}
4955 
4956 		/* Not sure how this could happen... */
4957 		if (!intf->cur_altsetting)
4958 			continue;
4959 
4960 		if (xhci_update_timeout_for_interface(xhci, udev,
4961 					intf->cur_altsetting,
4962 					state, &timeout))
4963 			return timeout;
4964 	}
4965 	return timeout;
4966 }
4967 
4968 static int calculate_max_exit_latency(struct usb_device *udev,
4969 		enum usb3_link_state state_changed,
4970 		u16 hub_encoded_timeout)
4971 {
4972 	unsigned long long u1_mel_us = 0;
4973 	unsigned long long u2_mel_us = 0;
4974 	unsigned long long mel_us = 0;
4975 	bool disabling_u1;
4976 	bool disabling_u2;
4977 	bool enabling_u1;
4978 	bool enabling_u2;
4979 
4980 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4981 			hub_encoded_timeout == USB3_LPM_DISABLED);
4982 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4983 			hub_encoded_timeout == USB3_LPM_DISABLED);
4984 
4985 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4986 			hub_encoded_timeout != USB3_LPM_DISABLED);
4987 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4988 			hub_encoded_timeout != USB3_LPM_DISABLED);
4989 
4990 	/* If U1 was already enabled and we're not disabling it,
4991 	 * or we're going to enable U1, account for the U1 max exit latency.
4992 	 */
4993 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4994 			enabling_u1)
4995 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4996 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4997 			enabling_u2)
4998 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4999 
5000 	mel_us = max(u1_mel_us, u2_mel_us);
5001 
5002 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5003 	if (mel_us > MAX_EXIT) {
5004 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5005 				"is too big.\n", mel_us);
5006 		return -E2BIG;
5007 	}
5008 	return mel_us;
5009 }
5010 
5011 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5012 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5013 			struct usb_device *udev, enum usb3_link_state state)
5014 {
5015 	struct xhci_hcd	*xhci;
5016 	struct xhci_port *port;
5017 	u16 hub_encoded_timeout;
5018 	int mel;
5019 	int ret;
5020 
5021 	xhci = hcd_to_xhci(hcd);
5022 	/* The LPM timeout values are pretty host-controller specific, so don't
5023 	 * enable hub-initiated timeouts unless the vendor has provided
5024 	 * information about their timeout algorithm.
5025 	 */
5026 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5027 			!xhci->devs[udev->slot_id])
5028 		return USB3_LPM_DISABLED;
5029 
5030 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
5031 		return USB3_LPM_DISABLED;
5032 
5033 	/* If connected to root port then check port can handle lpm */
5034 	if (udev->parent && !udev->parent->parent) {
5035 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
5036 		if (port->lpm_incapable)
5037 			return USB3_LPM_DISABLED;
5038 	}
5039 
5040 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5041 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5042 	if (mel < 0) {
5043 		/* Max Exit Latency is too big, disable LPM. */
5044 		hub_encoded_timeout = USB3_LPM_DISABLED;
5045 		mel = 0;
5046 	}
5047 
5048 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5049 	if (ret)
5050 		return ret;
5051 	return hub_encoded_timeout;
5052 }
5053 
5054 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5055 			struct usb_device *udev, enum usb3_link_state state)
5056 {
5057 	struct xhci_hcd	*xhci;
5058 	u16 mel;
5059 
5060 	xhci = hcd_to_xhci(hcd);
5061 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5062 			!xhci->devs[udev->slot_id])
5063 		return 0;
5064 
5065 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5066 	return xhci_change_max_exit_latency(xhci, udev, mel);
5067 }
5068 #else /* CONFIG_PM */
5069 
5070 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5071 				struct usb_device *udev, int enable)
5072 {
5073 	return 0;
5074 }
5075 
5076 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5077 {
5078 	return 0;
5079 }
5080 
5081 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5082 			struct usb_device *udev, enum usb3_link_state state)
5083 {
5084 	return USB3_LPM_DISABLED;
5085 }
5086 
5087 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5088 			struct usb_device *udev, enum usb3_link_state state)
5089 {
5090 	return 0;
5091 }
5092 #endif	/* CONFIG_PM */
5093 
5094 /*-------------------------------------------------------------------------*/
5095 
5096 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5097  * internal data structures for the device.
5098  */
5099 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5100 			struct usb_tt *tt, gfp_t mem_flags)
5101 {
5102 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5103 	struct xhci_virt_device *vdev;
5104 	struct xhci_command *config_cmd;
5105 	struct xhci_input_control_ctx *ctrl_ctx;
5106 	struct xhci_slot_ctx *slot_ctx;
5107 	unsigned long flags;
5108 	unsigned think_time;
5109 	int ret;
5110 
5111 	/* Ignore root hubs */
5112 	if (!hdev->parent)
5113 		return 0;
5114 
5115 	vdev = xhci->devs[hdev->slot_id];
5116 	if (!vdev) {
5117 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5118 		return -EINVAL;
5119 	}
5120 
5121 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5122 	if (!config_cmd)
5123 		return -ENOMEM;
5124 
5125 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5126 	if (!ctrl_ctx) {
5127 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5128 				__func__);
5129 		xhci_free_command(xhci, config_cmd);
5130 		return -ENOMEM;
5131 	}
5132 
5133 	spin_lock_irqsave(&xhci->lock, flags);
5134 	if (hdev->speed == USB_SPEED_HIGH &&
5135 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5136 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5137 		xhci_free_command(xhci, config_cmd);
5138 		spin_unlock_irqrestore(&xhci->lock, flags);
5139 		return -ENOMEM;
5140 	}
5141 
5142 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5143 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5144 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5145 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5146 	/*
5147 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5148 	 * but it may be already set to 1 when setup an xHCI virtual
5149 	 * device, so clear it anyway.
5150 	 */
5151 	if (tt->multi)
5152 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5153 	else if (hdev->speed == USB_SPEED_FULL)
5154 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5155 
5156 	if (xhci->hci_version > 0x95) {
5157 		xhci_dbg(xhci, "xHCI version %x needs hub "
5158 				"TT think time and number of ports\n",
5159 				(unsigned int) xhci->hci_version);
5160 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5161 		/* Set TT think time - convert from ns to FS bit times.
5162 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5163 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5164 		 *
5165 		 * xHCI 1.0: this field shall be 0 if the device is not a
5166 		 * High-spped hub.
5167 		 */
5168 		think_time = tt->think_time;
5169 		if (think_time != 0)
5170 			think_time = (think_time / 666) - 1;
5171 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5172 			slot_ctx->tt_info |=
5173 				cpu_to_le32(TT_THINK_TIME(think_time));
5174 	} else {
5175 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5176 				"TT think time or number of ports\n",
5177 				(unsigned int) xhci->hci_version);
5178 	}
5179 	slot_ctx->dev_state = 0;
5180 	spin_unlock_irqrestore(&xhci->lock, flags);
5181 
5182 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5183 			(xhci->hci_version > 0x95) ?
5184 			"configure endpoint" : "evaluate context");
5185 
5186 	/* Issue and wait for the configure endpoint or
5187 	 * evaluate context command.
5188 	 */
5189 	if (xhci->hci_version > 0x95)
5190 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5191 				false, false);
5192 	else
5193 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5194 				true, false);
5195 
5196 	xhci_free_command(xhci, config_cmd);
5197 	return ret;
5198 }
5199 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5200 
5201 static int xhci_get_frame(struct usb_hcd *hcd)
5202 {
5203 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5204 	/* EHCI mods by the periodic size.  Why? */
5205 	return readl(&xhci->run_regs->microframe_index) >> 3;
5206 }
5207 
5208 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5209 {
5210 	xhci->usb2_rhub.hcd = hcd;
5211 	hcd->speed = HCD_USB2;
5212 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5213 	/*
5214 	 * USB 2.0 roothub under xHCI has an integrated TT,
5215 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5216 	 * companion controller.
5217 	 */
5218 	hcd->has_tt = 1;
5219 }
5220 
5221 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5222 {
5223 	unsigned int minor_rev;
5224 
5225 	/*
5226 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5227 	 * should return 0x31 for sbrn, or that the minor revision
5228 	 * is a two digit BCD containig minor and sub-minor numbers.
5229 	 * This was later clarified in xHCI 1.2.
5230 	 *
5231 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5232 	 * minor revision set to 0x1 instead of 0x10.
5233 	 */
5234 	if (xhci->usb3_rhub.min_rev == 0x1)
5235 		minor_rev = 1;
5236 	else
5237 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5238 
5239 	switch (minor_rev) {
5240 	case 2:
5241 		hcd->speed = HCD_USB32;
5242 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5243 		hcd->self.root_hub->rx_lanes = 2;
5244 		hcd->self.root_hub->tx_lanes = 2;
5245 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5246 		break;
5247 	case 1:
5248 		hcd->speed = HCD_USB31;
5249 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5250 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5251 		break;
5252 	}
5253 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5254 		  minor_rev, minor_rev ? "Enhanced " : "");
5255 
5256 	xhci->usb3_rhub.hcd = hcd;
5257 }
5258 
5259 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5260 {
5261 	struct xhci_hcd		*xhci;
5262 	/*
5263 	 * TODO: Check with DWC3 clients for sysdev according to
5264 	 * quirks
5265 	 */
5266 	struct device		*dev = hcd->self.sysdev;
5267 	int			retval;
5268 
5269 	/* Accept arbitrarily long scatter-gather lists */
5270 	hcd->self.sg_tablesize = ~0;
5271 
5272 	/* support to build packet from discontinuous buffers */
5273 	hcd->self.no_sg_constraint = 1;
5274 
5275 	/* XHCI controllers don't stop the ep queue on short packets :| */
5276 	hcd->self.no_stop_on_short = 1;
5277 
5278 	xhci = hcd_to_xhci(hcd);
5279 
5280 	if (!usb_hcd_is_primary_hcd(hcd)) {
5281 		xhci_hcd_init_usb3_data(xhci, hcd);
5282 		return 0;
5283 	}
5284 
5285 	mutex_init(&xhci->mutex);
5286 	xhci->main_hcd = hcd;
5287 	xhci->cap_regs = hcd->regs;
5288 	xhci->op_regs = hcd->regs +
5289 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5290 	xhci->run_regs = hcd->regs +
5291 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5292 	/* Cache read-only capability registers */
5293 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5294 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5295 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5296 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5297 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5298 	if (xhci->hci_version > 0x100)
5299 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5300 
5301 	/* xhci-plat or xhci-pci might have set max_interrupters already */
5302 	if ((!xhci->max_interrupters) ||
5303 	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5304 		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5305 
5306 	xhci->quirks |= quirks;
5307 
5308 	if (get_quirks)
5309 		get_quirks(dev, xhci);
5310 
5311 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5312 	 * success event after a short transfer. This quirk will ignore such
5313 	 * spurious event.
5314 	 */
5315 	if (xhci->hci_version > 0x96)
5316 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5317 
5318 	if (xhci->hci_version == 0x95 && link_quirk) {
5319 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits");
5320 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
5321 	}
5322 
5323 	/* Make sure the HC is halted. */
5324 	retval = xhci_halt(xhci);
5325 	if (retval)
5326 		return retval;
5327 
5328 	xhci_zero_64b_regs(xhci);
5329 
5330 	xhci_dbg(xhci, "Resetting HCD\n");
5331 	/* Reset the internal HC memory state and registers. */
5332 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5333 	if (retval)
5334 		return retval;
5335 	xhci_dbg(xhci, "Reset complete\n");
5336 
5337 	/*
5338 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5339 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5340 	 * address memory pointers actually. So, this driver clears the AC64
5341 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5342 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5343 	 */
5344 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5345 		xhci->hcc_params &= ~BIT(0);
5346 
5347 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5348 	 * if xHC supports 64-bit addressing */
5349 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5350 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5351 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5352 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5353 	} else {
5354 		/*
5355 		 * This is to avoid error in cases where a 32-bit USB
5356 		 * controller is used on a 64-bit capable system.
5357 		 */
5358 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5359 		if (retval)
5360 			return retval;
5361 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5362 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5363 	}
5364 
5365 	xhci_dbg(xhci, "Calling HCD init\n");
5366 	/* Initialize HCD and host controller data structures. */
5367 	retval = xhci_init(hcd);
5368 	if (retval)
5369 		return retval;
5370 	xhci_dbg(xhci, "Called HCD init\n");
5371 
5372 	if (xhci_hcd_is_usb3(hcd))
5373 		xhci_hcd_init_usb3_data(xhci, hcd);
5374 	else
5375 		xhci_hcd_init_usb2_data(xhci, hcd);
5376 
5377 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5378 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5379 
5380 	return 0;
5381 }
5382 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5383 
5384 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5385 		struct usb_host_endpoint *ep)
5386 {
5387 	struct xhci_hcd *xhci;
5388 	struct usb_device *udev;
5389 	unsigned int slot_id;
5390 	unsigned int ep_index;
5391 	unsigned long flags;
5392 
5393 	xhci = hcd_to_xhci(hcd);
5394 
5395 	spin_lock_irqsave(&xhci->lock, flags);
5396 	udev = (struct usb_device *)ep->hcpriv;
5397 	slot_id = udev->slot_id;
5398 	ep_index = xhci_get_endpoint_index(&ep->desc);
5399 
5400 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5401 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5402 	spin_unlock_irqrestore(&xhci->lock, flags);
5403 }
5404 
5405 static const struct hc_driver xhci_hc_driver = {
5406 	.description =		"xhci-hcd",
5407 	.product_desc =		"xHCI Host Controller",
5408 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5409 
5410 	/*
5411 	 * generic hardware linkage
5412 	 */
5413 	.irq =			xhci_irq,
5414 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5415 				HCD_BH,
5416 
5417 	/*
5418 	 * basic lifecycle operations
5419 	 */
5420 	.reset =		NULL, /* set in xhci_init_driver() */
5421 	.start =		xhci_run,
5422 	.stop =			xhci_stop,
5423 	.shutdown =		xhci_shutdown,
5424 
5425 	/*
5426 	 * managing i/o requests and associated device resources
5427 	 */
5428 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5429 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5430 	.urb_enqueue =		xhci_urb_enqueue,
5431 	.urb_dequeue =		xhci_urb_dequeue,
5432 	.alloc_dev =		xhci_alloc_dev,
5433 	.free_dev =		xhci_free_dev,
5434 	.alloc_streams =	xhci_alloc_streams,
5435 	.free_streams =		xhci_free_streams,
5436 	.add_endpoint =		xhci_add_endpoint,
5437 	.drop_endpoint =	xhci_drop_endpoint,
5438 	.endpoint_disable =	xhci_endpoint_disable,
5439 	.endpoint_reset =	xhci_endpoint_reset,
5440 	.check_bandwidth =	xhci_check_bandwidth,
5441 	.reset_bandwidth =	xhci_reset_bandwidth,
5442 	.address_device =	xhci_address_device,
5443 	.enable_device =	xhci_enable_device,
5444 	.update_hub_device =	xhci_update_hub_device,
5445 	.reset_device =		xhci_discover_or_reset_device,
5446 
5447 	/*
5448 	 * scheduling support
5449 	 */
5450 	.get_frame_number =	xhci_get_frame,
5451 
5452 	/*
5453 	 * root hub support
5454 	 */
5455 	.hub_control =		xhci_hub_control,
5456 	.hub_status_data =	xhci_hub_status_data,
5457 	.bus_suspend =		xhci_bus_suspend,
5458 	.bus_resume =		xhci_bus_resume,
5459 	.get_resuming_ports =	xhci_get_resuming_ports,
5460 
5461 	/*
5462 	 * call back when device connected and addressed
5463 	 */
5464 	.update_device =        xhci_update_device,
5465 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5466 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5467 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5468 	.find_raw_port_number =	xhci_find_raw_port_number,
5469 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5470 };
5471 
5472 void xhci_init_driver(struct hc_driver *drv,
5473 		      const struct xhci_driver_overrides *over)
5474 {
5475 	BUG_ON(!over);
5476 
5477 	/* Copy the generic table to drv then apply the overrides */
5478 	*drv = xhci_hc_driver;
5479 
5480 	if (over) {
5481 		drv->hcd_priv_size += over->extra_priv_size;
5482 		if (over->reset)
5483 			drv->reset = over->reset;
5484 		if (over->start)
5485 			drv->start = over->start;
5486 		if (over->add_endpoint)
5487 			drv->add_endpoint = over->add_endpoint;
5488 		if (over->drop_endpoint)
5489 			drv->drop_endpoint = over->drop_endpoint;
5490 		if (over->check_bandwidth)
5491 			drv->check_bandwidth = over->check_bandwidth;
5492 		if (over->reset_bandwidth)
5493 			drv->reset_bandwidth = over->reset_bandwidth;
5494 		if (over->update_hub_device)
5495 			drv->update_hub_device = over->update_hub_device;
5496 		if (over->hub_control)
5497 			drv->hub_control = over->hub_control;
5498 	}
5499 }
5500 EXPORT_SYMBOL_GPL(xhci_init_driver);
5501 
5502 MODULE_DESCRIPTION(DRIVER_DESC);
5503 MODULE_AUTHOR(DRIVER_AUTHOR);
5504 MODULE_LICENSE("GPL");
5505 
5506 static int __init xhci_hcd_init(void)
5507 {
5508 	/*
5509 	 * Check the compiler generated sizes of structures that must be laid
5510 	 * out in specific ways for hardware access.
5511 	 */
5512 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5513 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5514 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5515 	/* xhci_device_control has eight fields, and also
5516 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5517 	 */
5518 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5519 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5520 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5521 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5522 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5523 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5524 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5525 
5526 	if (usb_disabled())
5527 		return -ENODEV;
5528 
5529 	xhci_debugfs_create_root();
5530 	xhci_dbc_init();
5531 
5532 	return 0;
5533 }
5534 
5535 /*
5536  * If an init function is provided, an exit function must also be provided
5537  * to allow module unload.
5538  */
5539 static void __exit xhci_hcd_fini(void)
5540 {
5541 	xhci_debugfs_remove_root();
5542 	xhci_dbc_exit();
5543 }
5544 
5545 module_init(xhci_hcd_init);
5546 module_exit(xhci_hcd_fini);
5547