1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/log2.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/slab.h> 17 #include <linux/dmi.h> 18 #include <linux/dma-mapping.h> 19 20 #include "xhci.h" 21 #include "xhci-trace.h" 22 #include "xhci-mtk.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 41 /* 42 * xhci_handshake - spin reading hc until handshake completes or fails 43 * @ptr: address of hc register to be read 44 * @mask: bits to look at in result of read 45 * @done: value of those bits when handshake succeeds 46 * @usec: timeout in microseconds 47 * 48 * Returns negative errno, or zero on success 49 * 50 * Success happens when the "mask" bits have the specified value (hardware 51 * handshake done). There are two failure modes: "usec" have passed (major 52 * hardware flakeout), or the register reads as all-ones (hardware removed). 53 */ 54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 55 { 56 u32 result; 57 58 do { 59 result = readl(ptr); 60 if (result == ~(u32)0) /* card removed */ 61 return -ENODEV; 62 result &= mask; 63 if (result == done) 64 return 0; 65 udelay(1); 66 usec--; 67 } while (usec > 0); 68 return -ETIMEDOUT; 69 } 70 71 /* 72 * Disable interrupts and begin the xHCI halting process. 73 */ 74 void xhci_quiesce(struct xhci_hcd *xhci) 75 { 76 u32 halted; 77 u32 cmd; 78 u32 mask; 79 80 mask = ~(XHCI_IRQS); 81 halted = readl(&xhci->op_regs->status) & STS_HALT; 82 if (!halted) 83 mask &= ~CMD_RUN; 84 85 cmd = readl(&xhci->op_regs->command); 86 cmd &= mask; 87 writel(cmd, &xhci->op_regs->command); 88 } 89 90 /* 91 * Force HC into halt state. 92 * 93 * Disable any IRQs and clear the run/stop bit. 94 * HC will complete any current and actively pipelined transactions, and 95 * should halt within 16 ms of the run/stop bit being cleared. 96 * Read HC Halted bit in the status register to see when the HC is finished. 97 */ 98 int xhci_halt(struct xhci_hcd *xhci) 99 { 100 int ret; 101 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 102 xhci_quiesce(xhci); 103 104 ret = xhci_handshake(&xhci->op_regs->status, 105 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 106 if (ret) { 107 xhci_warn(xhci, "Host halt failed, %d\n", ret); 108 return ret; 109 } 110 xhci->xhc_state |= XHCI_STATE_HALTED; 111 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 112 return ret; 113 } 114 115 /* 116 * Set the run bit and wait for the host to be running. 117 */ 118 int xhci_start(struct xhci_hcd *xhci) 119 { 120 u32 temp; 121 int ret; 122 123 temp = readl(&xhci->op_regs->command); 124 temp |= (CMD_RUN); 125 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 126 temp); 127 writel(temp, &xhci->op_regs->command); 128 129 /* 130 * Wait for the HCHalted Status bit to be 0 to indicate the host is 131 * running. 132 */ 133 ret = xhci_handshake(&xhci->op_regs->status, 134 STS_HALT, 0, XHCI_MAX_HALT_USEC); 135 if (ret == -ETIMEDOUT) 136 xhci_err(xhci, "Host took too long to start, " 137 "waited %u microseconds.\n", 138 XHCI_MAX_HALT_USEC); 139 if (!ret) 140 /* clear state flags. Including dying, halted or removing */ 141 xhci->xhc_state = 0; 142 143 return ret; 144 } 145 146 /* 147 * Reset a halted HC. 148 * 149 * This resets pipelines, timers, counters, state machines, etc. 150 * Transactions will be terminated immediately, and operational registers 151 * will be set to their defaults. 152 */ 153 int xhci_reset(struct xhci_hcd *xhci) 154 { 155 u32 command; 156 u32 state; 157 int ret, i; 158 159 state = readl(&xhci->op_regs->status); 160 161 if (state == ~(u32)0) { 162 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 163 return -ENODEV; 164 } 165 166 if ((state & STS_HALT) == 0) { 167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 168 return 0; 169 } 170 171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 172 command = readl(&xhci->op_regs->command); 173 command |= CMD_RESET; 174 writel(command, &xhci->op_regs->command); 175 176 /* Existing Intel xHCI controllers require a delay of 1 mS, 177 * after setting the CMD_RESET bit, and before accessing any 178 * HC registers. This allows the HC to complete the 179 * reset operation and be ready for HC register access. 180 * Without this delay, the subsequent HC register access, 181 * may result in a system hang very rarely. 182 */ 183 if (xhci->quirks & XHCI_INTEL_HOST) 184 udelay(1000); 185 186 ret = xhci_handshake(&xhci->op_regs->command, 187 CMD_RESET, 0, 10 * 1000 * 1000); 188 if (ret) 189 return ret; 190 191 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 192 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 193 194 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 195 "Wait for controller to be ready for doorbell rings"); 196 /* 197 * xHCI cannot write to any doorbells or operational registers other 198 * than status until the "Controller Not Ready" flag is cleared. 199 */ 200 ret = xhci_handshake(&xhci->op_regs->status, 201 STS_CNR, 0, 10 * 1000 * 1000); 202 203 for (i = 0; i < 2; i++) { 204 xhci->bus_state[i].port_c_suspend = 0; 205 xhci->bus_state[i].suspended_ports = 0; 206 xhci->bus_state[i].resuming_ports = 0; 207 } 208 209 return ret; 210 } 211 212 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 213 { 214 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 215 int err, i; 216 u64 val; 217 218 /* 219 * Some Renesas controllers get into a weird state if they are 220 * reset while programmed with 64bit addresses (they will preserve 221 * the top half of the address in internal, non visible 222 * registers). You end up with half the address coming from the 223 * kernel, and the other half coming from the firmware. Also, 224 * changing the programming leads to extra accesses even if the 225 * controller is supposed to be halted. The controller ends up with 226 * a fatal fault, and is then ripe for being properly reset. 227 * 228 * Special care is taken to only apply this if the device is behind 229 * an iommu. Doing anything when there is no iommu is definitely 230 * unsafe... 231 */ 232 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !dev->iommu_group) 233 return; 234 235 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 236 237 /* Clear HSEIE so that faults do not get signaled */ 238 val = readl(&xhci->op_regs->command); 239 val &= ~CMD_HSEIE; 240 writel(val, &xhci->op_regs->command); 241 242 /* Clear HSE (aka FATAL) */ 243 val = readl(&xhci->op_regs->status); 244 val |= STS_FATAL; 245 writel(val, &xhci->op_regs->status); 246 247 /* Now zero the registers, and brace for impact */ 248 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 249 if (upper_32_bits(val)) 250 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 251 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 252 if (upper_32_bits(val)) 253 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 254 255 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) { 256 struct xhci_intr_reg __iomem *ir; 257 258 ir = &xhci->run_regs->ir_set[i]; 259 val = xhci_read_64(xhci, &ir->erst_base); 260 if (upper_32_bits(val)) 261 xhci_write_64(xhci, 0, &ir->erst_base); 262 val= xhci_read_64(xhci, &ir->erst_dequeue); 263 if (upper_32_bits(val)) 264 xhci_write_64(xhci, 0, &ir->erst_dequeue); 265 } 266 267 /* Wait for the fault to appear. It will be cleared on reset */ 268 err = xhci_handshake(&xhci->op_regs->status, 269 STS_FATAL, STS_FATAL, 270 XHCI_MAX_HALT_USEC); 271 if (!err) 272 xhci_info(xhci, "Fault detected\n"); 273 } 274 275 #ifdef CONFIG_USB_PCI 276 /* 277 * Set up MSI 278 */ 279 static int xhci_setup_msi(struct xhci_hcd *xhci) 280 { 281 int ret; 282 /* 283 * TODO:Check with MSI Soc for sysdev 284 */ 285 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 286 287 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 288 if (ret < 0) { 289 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 290 "failed to allocate MSI entry"); 291 return ret; 292 } 293 294 ret = request_irq(pdev->irq, xhci_msi_irq, 295 0, "xhci_hcd", xhci_to_hcd(xhci)); 296 if (ret) { 297 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 298 "disable MSI interrupt"); 299 pci_free_irq_vectors(pdev); 300 } 301 302 return ret; 303 } 304 305 /* 306 * Set up MSI-X 307 */ 308 static int xhci_setup_msix(struct xhci_hcd *xhci) 309 { 310 int i, ret = 0; 311 struct usb_hcd *hcd = xhci_to_hcd(xhci); 312 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 313 314 /* 315 * calculate number of msi-x vectors supported. 316 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 317 * with max number of interrupters based on the xhci HCSPARAMS1. 318 * - num_online_cpus: maximum msi-x vectors per CPUs core. 319 * Add additional 1 vector to ensure always available interrupt. 320 */ 321 xhci->msix_count = min(num_online_cpus() + 1, 322 HCS_MAX_INTRS(xhci->hcs_params1)); 323 324 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 325 PCI_IRQ_MSIX); 326 if (ret < 0) { 327 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 328 "Failed to enable MSI-X"); 329 return ret; 330 } 331 332 for (i = 0; i < xhci->msix_count; i++) { 333 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 334 "xhci_hcd", xhci_to_hcd(xhci)); 335 if (ret) 336 goto disable_msix; 337 } 338 339 hcd->msix_enabled = 1; 340 return ret; 341 342 disable_msix: 343 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 344 while (--i >= 0) 345 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 346 pci_free_irq_vectors(pdev); 347 return ret; 348 } 349 350 /* Free any IRQs and disable MSI-X */ 351 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 352 { 353 struct usb_hcd *hcd = xhci_to_hcd(xhci); 354 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 355 356 if (xhci->quirks & XHCI_PLAT) 357 return; 358 359 /* return if using legacy interrupt */ 360 if (hcd->irq > 0) 361 return; 362 363 if (hcd->msix_enabled) { 364 int i; 365 366 for (i = 0; i < xhci->msix_count; i++) 367 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 368 } else { 369 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 370 } 371 372 pci_free_irq_vectors(pdev); 373 hcd->msix_enabled = 0; 374 } 375 376 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 377 { 378 struct usb_hcd *hcd = xhci_to_hcd(xhci); 379 380 if (hcd->msix_enabled) { 381 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 382 int i; 383 384 for (i = 0; i < xhci->msix_count; i++) 385 synchronize_irq(pci_irq_vector(pdev, i)); 386 } 387 } 388 389 static int xhci_try_enable_msi(struct usb_hcd *hcd) 390 { 391 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 392 struct pci_dev *pdev; 393 int ret; 394 395 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 396 if (xhci->quirks & XHCI_PLAT) 397 return 0; 398 399 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 400 /* 401 * Some Fresco Logic host controllers advertise MSI, but fail to 402 * generate interrupts. Don't even try to enable MSI. 403 */ 404 if (xhci->quirks & XHCI_BROKEN_MSI) 405 goto legacy_irq; 406 407 /* unregister the legacy interrupt */ 408 if (hcd->irq) 409 free_irq(hcd->irq, hcd); 410 hcd->irq = 0; 411 412 ret = xhci_setup_msix(xhci); 413 if (ret) 414 /* fall back to msi*/ 415 ret = xhci_setup_msi(xhci); 416 417 if (!ret) { 418 hcd->msi_enabled = 1; 419 return 0; 420 } 421 422 if (!pdev->irq) { 423 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 424 return -EINVAL; 425 } 426 427 legacy_irq: 428 if (!strlen(hcd->irq_descr)) 429 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 430 hcd->driver->description, hcd->self.busnum); 431 432 /* fall back to legacy interrupt*/ 433 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 434 hcd->irq_descr, hcd); 435 if (ret) { 436 xhci_err(xhci, "request interrupt %d failed\n", 437 pdev->irq); 438 return ret; 439 } 440 hcd->irq = pdev->irq; 441 return 0; 442 } 443 444 #else 445 446 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 447 { 448 return 0; 449 } 450 451 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 452 { 453 } 454 455 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 456 { 457 } 458 459 #endif 460 461 static void compliance_mode_recovery(struct timer_list *t) 462 { 463 struct xhci_hcd *xhci; 464 struct usb_hcd *hcd; 465 struct xhci_hub *rhub; 466 u32 temp; 467 int i; 468 469 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 470 rhub = &xhci->usb3_rhub; 471 472 for (i = 0; i < rhub->num_ports; i++) { 473 temp = readl(rhub->ports[i]->addr); 474 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 475 /* 476 * Compliance Mode Detected. Letting USB Core 477 * handle the Warm Reset 478 */ 479 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 480 "Compliance mode detected->port %d", 481 i + 1); 482 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 483 "Attempting compliance mode recovery"); 484 hcd = xhci->shared_hcd; 485 486 if (hcd->state == HC_STATE_SUSPENDED) 487 usb_hcd_resume_root_hub(hcd); 488 489 usb_hcd_poll_rh_status(hcd); 490 } 491 } 492 493 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 494 mod_timer(&xhci->comp_mode_recovery_timer, 495 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 496 } 497 498 /* 499 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 500 * that causes ports behind that hardware to enter compliance mode sometimes. 501 * The quirk creates a timer that polls every 2 seconds the link state of 502 * each host controller's port and recovers it by issuing a Warm reset 503 * if Compliance mode is detected, otherwise the port will become "dead" (no 504 * device connections or disconnections will be detected anymore). Becasue no 505 * status event is generated when entering compliance mode (per xhci spec), 506 * this quirk is needed on systems that have the failing hardware installed. 507 */ 508 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 509 { 510 xhci->port_status_u0 = 0; 511 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 512 0); 513 xhci->comp_mode_recovery_timer.expires = jiffies + 514 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 515 516 add_timer(&xhci->comp_mode_recovery_timer); 517 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 518 "Compliance mode recovery timer initialized"); 519 } 520 521 /* 522 * This function identifies the systems that have installed the SN65LVPE502CP 523 * USB3.0 re-driver and that need the Compliance Mode Quirk. 524 * Systems: 525 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 526 */ 527 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 528 { 529 const char *dmi_product_name, *dmi_sys_vendor; 530 531 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 532 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 533 if (!dmi_product_name || !dmi_sys_vendor) 534 return false; 535 536 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 537 return false; 538 539 if (strstr(dmi_product_name, "Z420") || 540 strstr(dmi_product_name, "Z620") || 541 strstr(dmi_product_name, "Z820") || 542 strstr(dmi_product_name, "Z1 Workstation")) 543 return true; 544 545 return false; 546 } 547 548 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 549 { 550 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 551 } 552 553 554 /* 555 * Initialize memory for HCD and xHC (one-time init). 556 * 557 * Program the PAGESIZE register, initialize the device context array, create 558 * device contexts (?), set up a command ring segment (or two?), create event 559 * ring (one for now). 560 */ 561 static int xhci_init(struct usb_hcd *hcd) 562 { 563 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 564 int retval = 0; 565 566 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 567 spin_lock_init(&xhci->lock); 568 if (xhci->hci_version == 0x95 && link_quirk) { 569 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 570 "QUIRK: Not clearing Link TRB chain bits."); 571 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 572 } else { 573 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 574 "xHCI doesn't need link TRB QUIRK"); 575 } 576 retval = xhci_mem_init(xhci, GFP_KERNEL); 577 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 578 579 /* Initializing Compliance Mode Recovery Data If Needed */ 580 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 581 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 582 compliance_mode_recovery_timer_init(xhci); 583 } 584 585 return retval; 586 } 587 588 /*-------------------------------------------------------------------------*/ 589 590 591 static int xhci_run_finished(struct xhci_hcd *xhci) 592 { 593 if (xhci_start(xhci)) { 594 xhci_halt(xhci); 595 return -ENODEV; 596 } 597 xhci->shared_hcd->state = HC_STATE_RUNNING; 598 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 599 600 if (xhci->quirks & XHCI_NEC_HOST) 601 xhci_ring_cmd_db(xhci); 602 603 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 604 "Finished xhci_run for USB3 roothub"); 605 return 0; 606 } 607 608 /* 609 * Start the HC after it was halted. 610 * 611 * This function is called by the USB core when the HC driver is added. 612 * Its opposite is xhci_stop(). 613 * 614 * xhci_init() must be called once before this function can be called. 615 * Reset the HC, enable device slot contexts, program DCBAAP, and 616 * set command ring pointer and event ring pointer. 617 * 618 * Setup MSI-X vectors and enable interrupts. 619 */ 620 int xhci_run(struct usb_hcd *hcd) 621 { 622 u32 temp; 623 u64 temp_64; 624 int ret; 625 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 626 627 /* Start the xHCI host controller running only after the USB 2.0 roothub 628 * is setup. 629 */ 630 631 hcd->uses_new_polling = 1; 632 if (!usb_hcd_is_primary_hcd(hcd)) 633 return xhci_run_finished(xhci); 634 635 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 636 637 ret = xhci_try_enable_msi(hcd); 638 if (ret) 639 return ret; 640 641 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 642 temp_64 &= ~ERST_PTR_MASK; 643 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 644 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 645 646 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 647 "// Set the interrupt modulation register"); 648 temp = readl(&xhci->ir_set->irq_control); 649 temp &= ~ER_IRQ_INTERVAL_MASK; 650 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 651 writel(temp, &xhci->ir_set->irq_control); 652 653 /* Set the HCD state before we enable the irqs */ 654 temp = readl(&xhci->op_regs->command); 655 temp |= (CMD_EIE); 656 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 657 "// Enable interrupts, cmd = 0x%x.", temp); 658 writel(temp, &xhci->op_regs->command); 659 660 temp = readl(&xhci->ir_set->irq_pending); 661 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 662 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 663 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 664 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 665 666 if (xhci->quirks & XHCI_NEC_HOST) { 667 struct xhci_command *command; 668 669 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 670 if (!command) 671 return -ENOMEM; 672 673 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 674 TRB_TYPE(TRB_NEC_GET_FW)); 675 if (ret) 676 xhci_free_command(xhci, command); 677 } 678 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 679 "Finished xhci_run for USB2 roothub"); 680 681 xhci_dbc_init(xhci); 682 683 xhci_debugfs_init(xhci); 684 685 return 0; 686 } 687 EXPORT_SYMBOL_GPL(xhci_run); 688 689 /* 690 * Stop xHCI driver. 691 * 692 * This function is called by the USB core when the HC driver is removed. 693 * Its opposite is xhci_run(). 694 * 695 * Disable device contexts, disable IRQs, and quiesce the HC. 696 * Reset the HC, finish any completed transactions, and cleanup memory. 697 */ 698 static void xhci_stop(struct usb_hcd *hcd) 699 { 700 u32 temp; 701 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 702 703 mutex_lock(&xhci->mutex); 704 705 /* Only halt host and free memory after both hcds are removed */ 706 if (!usb_hcd_is_primary_hcd(hcd)) { 707 /* usb core will free this hcd shortly, unset pointer */ 708 xhci->shared_hcd = NULL; 709 mutex_unlock(&xhci->mutex); 710 return; 711 } 712 713 xhci_dbc_exit(xhci); 714 715 spin_lock_irq(&xhci->lock); 716 xhci->xhc_state |= XHCI_STATE_HALTED; 717 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 718 xhci_halt(xhci); 719 xhci_reset(xhci); 720 spin_unlock_irq(&xhci->lock); 721 722 xhci_cleanup_msix(xhci); 723 724 /* Deleting Compliance Mode Recovery Timer */ 725 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 726 (!(xhci_all_ports_seen_u0(xhci)))) { 727 del_timer_sync(&xhci->comp_mode_recovery_timer); 728 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 729 "%s: compliance mode recovery timer deleted", 730 __func__); 731 } 732 733 if (xhci->quirks & XHCI_AMD_PLL_FIX) 734 usb_amd_dev_put(); 735 736 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 737 "// Disabling event ring interrupts"); 738 temp = readl(&xhci->op_regs->status); 739 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 740 temp = readl(&xhci->ir_set->irq_pending); 741 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 742 743 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 744 xhci_mem_cleanup(xhci); 745 xhci_debugfs_exit(xhci); 746 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 747 "xhci_stop completed - status = %x", 748 readl(&xhci->op_regs->status)); 749 mutex_unlock(&xhci->mutex); 750 } 751 752 /* 753 * Shutdown HC (not bus-specific) 754 * 755 * This is called when the machine is rebooting or halting. We assume that the 756 * machine will be powered off, and the HC's internal state will be reset. 757 * Don't bother to free memory. 758 * 759 * This will only ever be called with the main usb_hcd (the USB3 roothub). 760 */ 761 static void xhci_shutdown(struct usb_hcd *hcd) 762 { 763 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 764 765 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 766 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 767 768 spin_lock_irq(&xhci->lock); 769 xhci_halt(xhci); 770 /* Workaround for spurious wakeups at shutdown with HSW */ 771 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 772 xhci_reset(xhci); 773 spin_unlock_irq(&xhci->lock); 774 775 xhci_cleanup_msix(xhci); 776 777 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 778 "xhci_shutdown completed - status = %x", 779 readl(&xhci->op_regs->status)); 780 781 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 782 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 783 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot); 784 } 785 786 #ifdef CONFIG_PM 787 static void xhci_save_registers(struct xhci_hcd *xhci) 788 { 789 xhci->s3.command = readl(&xhci->op_regs->command); 790 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 791 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 792 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 793 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 794 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 795 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 796 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 797 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 798 } 799 800 static void xhci_restore_registers(struct xhci_hcd *xhci) 801 { 802 writel(xhci->s3.command, &xhci->op_regs->command); 803 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 804 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 805 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 806 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 807 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 808 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 809 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 810 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 811 } 812 813 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 814 { 815 u64 val_64; 816 817 /* step 2: initialize command ring buffer */ 818 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 819 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 820 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 821 xhci->cmd_ring->dequeue) & 822 (u64) ~CMD_RING_RSVD_BITS) | 823 xhci->cmd_ring->cycle_state; 824 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 825 "// Setting command ring address to 0x%llx", 826 (long unsigned long) val_64); 827 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 828 } 829 830 /* 831 * The whole command ring must be cleared to zero when we suspend the host. 832 * 833 * The host doesn't save the command ring pointer in the suspend well, so we 834 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 835 * aligned, because of the reserved bits in the command ring dequeue pointer 836 * register. Therefore, we can't just set the dequeue pointer back in the 837 * middle of the ring (TRBs are 16-byte aligned). 838 */ 839 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 840 { 841 struct xhci_ring *ring; 842 struct xhci_segment *seg; 843 844 ring = xhci->cmd_ring; 845 seg = ring->deq_seg; 846 do { 847 memset(seg->trbs, 0, 848 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 849 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 850 cpu_to_le32(~TRB_CYCLE); 851 seg = seg->next; 852 } while (seg != ring->deq_seg); 853 854 /* Reset the software enqueue and dequeue pointers */ 855 ring->deq_seg = ring->first_seg; 856 ring->dequeue = ring->first_seg->trbs; 857 ring->enq_seg = ring->deq_seg; 858 ring->enqueue = ring->dequeue; 859 860 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 861 /* 862 * Ring is now zeroed, so the HW should look for change of ownership 863 * when the cycle bit is set to 1. 864 */ 865 ring->cycle_state = 1; 866 867 /* 868 * Reset the hardware dequeue pointer. 869 * Yes, this will need to be re-written after resume, but we're paranoid 870 * and want to make sure the hardware doesn't access bogus memory 871 * because, say, the BIOS or an SMI started the host without changing 872 * the command ring pointers. 873 */ 874 xhci_set_cmd_ring_deq(xhci); 875 } 876 877 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 878 { 879 struct xhci_port **ports; 880 int port_index; 881 unsigned long flags; 882 u32 t1, t2; 883 884 spin_lock_irqsave(&xhci->lock, flags); 885 886 /* disable usb3 ports Wake bits */ 887 port_index = xhci->usb3_rhub.num_ports; 888 ports = xhci->usb3_rhub.ports; 889 while (port_index--) { 890 t1 = readl(ports[port_index]->addr); 891 t1 = xhci_port_state_to_neutral(t1); 892 t2 = t1 & ~PORT_WAKE_BITS; 893 if (t1 != t2) 894 writel(t2, ports[port_index]->addr); 895 } 896 897 /* disable usb2 ports Wake bits */ 898 port_index = xhci->usb2_rhub.num_ports; 899 ports = xhci->usb2_rhub.ports; 900 while (port_index--) { 901 t1 = readl(ports[port_index]->addr); 902 t1 = xhci_port_state_to_neutral(t1); 903 t2 = t1 & ~PORT_WAKE_BITS; 904 if (t1 != t2) 905 writel(t2, ports[port_index]->addr); 906 } 907 908 spin_unlock_irqrestore(&xhci->lock, flags); 909 } 910 911 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 912 { 913 struct xhci_port **ports; 914 int port_index; 915 u32 status; 916 u32 portsc; 917 918 status = readl(&xhci->op_regs->status); 919 if (status & STS_EINT) 920 return true; 921 /* 922 * Checking STS_EINT is not enough as there is a lag between a change 923 * bit being set and the Port Status Change Event that it generated 924 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 925 */ 926 927 port_index = xhci->usb2_rhub.num_ports; 928 ports = xhci->usb2_rhub.ports; 929 while (port_index--) { 930 portsc = readl(ports[port_index]->addr); 931 if (portsc & PORT_CHANGE_MASK || 932 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 933 return true; 934 } 935 port_index = xhci->usb3_rhub.num_ports; 936 ports = xhci->usb3_rhub.ports; 937 while (port_index--) { 938 portsc = readl(ports[port_index]->addr); 939 if (portsc & PORT_CHANGE_MASK || 940 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 941 return true; 942 } 943 return false; 944 } 945 946 /* 947 * Stop HC (not bus-specific) 948 * 949 * This is called when the machine transition into S3/S4 mode. 950 * 951 */ 952 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 953 { 954 int rc = 0; 955 unsigned int delay = XHCI_MAX_HALT_USEC; 956 struct usb_hcd *hcd = xhci_to_hcd(xhci); 957 u32 command; 958 959 if (!hcd->state) 960 return 0; 961 962 if (hcd->state != HC_STATE_SUSPENDED || 963 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 964 return -EINVAL; 965 966 xhci_dbc_suspend(xhci); 967 968 /* Clear root port wake on bits if wakeup not allowed. */ 969 if (!do_wakeup) 970 xhci_disable_port_wake_on_bits(xhci); 971 972 /* Don't poll the roothubs on bus suspend. */ 973 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 974 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 975 del_timer_sync(&hcd->rh_timer); 976 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 977 del_timer_sync(&xhci->shared_hcd->rh_timer); 978 979 if (xhci->quirks & XHCI_SUSPEND_DELAY) 980 usleep_range(1000, 1500); 981 982 spin_lock_irq(&xhci->lock); 983 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 984 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 985 /* step 1: stop endpoint */ 986 /* skipped assuming that port suspend has done */ 987 988 /* step 2: clear Run/Stop bit */ 989 command = readl(&xhci->op_regs->command); 990 command &= ~CMD_RUN; 991 writel(command, &xhci->op_regs->command); 992 993 /* Some chips from Fresco Logic need an extraordinary delay */ 994 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 995 996 if (xhci_handshake(&xhci->op_regs->status, 997 STS_HALT, STS_HALT, delay)) { 998 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 999 spin_unlock_irq(&xhci->lock); 1000 return -ETIMEDOUT; 1001 } 1002 xhci_clear_command_ring(xhci); 1003 1004 /* step 3: save registers */ 1005 xhci_save_registers(xhci); 1006 1007 /* step 4: set CSS flag */ 1008 command = readl(&xhci->op_regs->command); 1009 command |= CMD_CSS; 1010 writel(command, &xhci->op_regs->command); 1011 if (xhci_handshake(&xhci->op_regs->status, 1012 STS_SAVE, 0, 10 * 1000)) { 1013 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1014 spin_unlock_irq(&xhci->lock); 1015 return -ETIMEDOUT; 1016 } 1017 spin_unlock_irq(&xhci->lock); 1018 1019 /* 1020 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1021 * is about to be suspended. 1022 */ 1023 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1024 (!(xhci_all_ports_seen_u0(xhci)))) { 1025 del_timer_sync(&xhci->comp_mode_recovery_timer); 1026 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1027 "%s: compliance mode recovery timer deleted", 1028 __func__); 1029 } 1030 1031 /* step 5: remove core well power */ 1032 /* synchronize irq when using MSI-X */ 1033 xhci_msix_sync_irqs(xhci); 1034 1035 return rc; 1036 } 1037 EXPORT_SYMBOL_GPL(xhci_suspend); 1038 1039 /* 1040 * start xHC (not bus-specific) 1041 * 1042 * This is called when the machine transition from S3/S4 mode. 1043 * 1044 */ 1045 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1046 { 1047 u32 command, temp = 0; 1048 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1049 struct usb_hcd *secondary_hcd; 1050 int retval = 0; 1051 bool comp_timer_running = false; 1052 1053 if (!hcd->state) 1054 return 0; 1055 1056 /* Wait a bit if either of the roothubs need to settle from the 1057 * transition into bus suspend. 1058 */ 1059 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 1060 time_before(jiffies, 1061 xhci->bus_state[1].next_statechange)) 1062 msleep(100); 1063 1064 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1065 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1066 1067 spin_lock_irq(&xhci->lock); 1068 if (xhci->quirks & XHCI_RESET_ON_RESUME) 1069 hibernated = true; 1070 1071 if (!hibernated) { 1072 /* step 1: restore register */ 1073 xhci_restore_registers(xhci); 1074 /* step 2: initialize command ring buffer */ 1075 xhci_set_cmd_ring_deq(xhci); 1076 /* step 3: restore state and start state*/ 1077 /* step 3: set CRS flag */ 1078 command = readl(&xhci->op_regs->command); 1079 command |= CMD_CRS; 1080 writel(command, &xhci->op_regs->command); 1081 /* 1082 * Some controllers take up to 55+ ms to complete the controller 1083 * restore so setting the timeout to 100ms. Xhci specification 1084 * doesn't mention any timeout value. 1085 */ 1086 if (xhci_handshake(&xhci->op_regs->status, 1087 STS_RESTORE, 0, 100 * 1000)) { 1088 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1089 spin_unlock_irq(&xhci->lock); 1090 return -ETIMEDOUT; 1091 } 1092 temp = readl(&xhci->op_regs->status); 1093 } 1094 1095 /* If restore operation fails, re-initialize the HC during resume */ 1096 if ((temp & STS_SRE) || hibernated) { 1097 1098 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1099 !(xhci_all_ports_seen_u0(xhci))) { 1100 del_timer_sync(&xhci->comp_mode_recovery_timer); 1101 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1102 "Compliance Mode Recovery Timer deleted!"); 1103 } 1104 1105 /* Let the USB core know _both_ roothubs lost power. */ 1106 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1107 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1108 1109 xhci_dbg(xhci, "Stop HCD\n"); 1110 xhci_halt(xhci); 1111 xhci_zero_64b_regs(xhci); 1112 xhci_reset(xhci); 1113 spin_unlock_irq(&xhci->lock); 1114 xhci_cleanup_msix(xhci); 1115 1116 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1117 temp = readl(&xhci->op_regs->status); 1118 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1119 temp = readl(&xhci->ir_set->irq_pending); 1120 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1121 1122 xhci_dbg(xhci, "cleaning up memory\n"); 1123 xhci_mem_cleanup(xhci); 1124 xhci_debugfs_exit(xhci); 1125 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1126 readl(&xhci->op_regs->status)); 1127 1128 /* USB core calls the PCI reinit and start functions twice: 1129 * first with the primary HCD, and then with the secondary HCD. 1130 * If we don't do the same, the host will never be started. 1131 */ 1132 if (!usb_hcd_is_primary_hcd(hcd)) 1133 secondary_hcd = hcd; 1134 else 1135 secondary_hcd = xhci->shared_hcd; 1136 1137 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1138 retval = xhci_init(hcd->primary_hcd); 1139 if (retval) 1140 return retval; 1141 comp_timer_running = true; 1142 1143 xhci_dbg(xhci, "Start the primary HCD\n"); 1144 retval = xhci_run(hcd->primary_hcd); 1145 if (!retval) { 1146 xhci_dbg(xhci, "Start the secondary HCD\n"); 1147 retval = xhci_run(secondary_hcd); 1148 } 1149 hcd->state = HC_STATE_SUSPENDED; 1150 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1151 goto done; 1152 } 1153 1154 /* step 4: set Run/Stop bit */ 1155 command = readl(&xhci->op_regs->command); 1156 command |= CMD_RUN; 1157 writel(command, &xhci->op_regs->command); 1158 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1159 0, 250 * 1000); 1160 1161 /* step 5: walk topology and initialize portsc, 1162 * portpmsc and portli 1163 */ 1164 /* this is done in bus_resume */ 1165 1166 /* step 6: restart each of the previously 1167 * Running endpoints by ringing their doorbells 1168 */ 1169 1170 spin_unlock_irq(&xhci->lock); 1171 1172 xhci_dbc_resume(xhci); 1173 1174 done: 1175 if (retval == 0) { 1176 /* Resume root hubs only when have pending events. */ 1177 if (xhci_pending_portevent(xhci)) { 1178 usb_hcd_resume_root_hub(xhci->shared_hcd); 1179 usb_hcd_resume_root_hub(hcd); 1180 } 1181 } 1182 1183 /* 1184 * If system is subject to the Quirk, Compliance Mode Timer needs to 1185 * be re-initialized Always after a system resume. Ports are subject 1186 * to suffer the Compliance Mode issue again. It doesn't matter if 1187 * ports have entered previously to U0 before system's suspension. 1188 */ 1189 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1190 compliance_mode_recovery_timer_init(xhci); 1191 1192 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1193 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1194 1195 /* Re-enable port polling. */ 1196 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1197 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1198 usb_hcd_poll_rh_status(xhci->shared_hcd); 1199 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1200 usb_hcd_poll_rh_status(hcd); 1201 1202 return retval; 1203 } 1204 EXPORT_SYMBOL_GPL(xhci_resume); 1205 #endif /* CONFIG_PM */ 1206 1207 /*-------------------------------------------------------------------------*/ 1208 1209 /** 1210 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1211 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1212 * value to right shift 1 for the bitmask. 1213 * 1214 * Index = (epnum * 2) + direction - 1, 1215 * where direction = 0 for OUT, 1 for IN. 1216 * For control endpoints, the IN index is used (OUT index is unused), so 1217 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1218 */ 1219 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1220 { 1221 unsigned int index; 1222 if (usb_endpoint_xfer_control(desc)) 1223 index = (unsigned int) (usb_endpoint_num(desc)*2); 1224 else 1225 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1226 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1227 return index; 1228 } 1229 1230 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1231 * address from the XHCI endpoint index. 1232 */ 1233 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1234 { 1235 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1236 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1237 return direction | number; 1238 } 1239 1240 /* Find the flag for this endpoint (for use in the control context). Use the 1241 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1242 * bit 1, etc. 1243 */ 1244 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1245 { 1246 return 1 << (xhci_get_endpoint_index(desc) + 1); 1247 } 1248 1249 /* Find the flag for this endpoint (for use in the control context). Use the 1250 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1251 * bit 1, etc. 1252 */ 1253 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1254 { 1255 return 1 << (ep_index + 1); 1256 } 1257 1258 /* Compute the last valid endpoint context index. Basically, this is the 1259 * endpoint index plus one. For slot contexts with more than valid endpoint, 1260 * we find the most significant bit set in the added contexts flags. 1261 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1262 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1263 */ 1264 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1265 { 1266 return fls(added_ctxs) - 1; 1267 } 1268 1269 /* Returns 1 if the arguments are OK; 1270 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1271 */ 1272 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1273 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1274 const char *func) { 1275 struct xhci_hcd *xhci; 1276 struct xhci_virt_device *virt_dev; 1277 1278 if (!hcd || (check_ep && !ep) || !udev) { 1279 pr_debug("xHCI %s called with invalid args\n", func); 1280 return -EINVAL; 1281 } 1282 if (!udev->parent) { 1283 pr_debug("xHCI %s called for root hub\n", func); 1284 return 0; 1285 } 1286 1287 xhci = hcd_to_xhci(hcd); 1288 if (check_virt_dev) { 1289 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1290 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1291 func); 1292 return -EINVAL; 1293 } 1294 1295 virt_dev = xhci->devs[udev->slot_id]; 1296 if (virt_dev->udev != udev) { 1297 xhci_dbg(xhci, "xHCI %s called with udev and " 1298 "virt_dev does not match\n", func); 1299 return -EINVAL; 1300 } 1301 } 1302 1303 if (xhci->xhc_state & XHCI_STATE_HALTED) 1304 return -ENODEV; 1305 1306 return 1; 1307 } 1308 1309 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1310 struct usb_device *udev, struct xhci_command *command, 1311 bool ctx_change, bool must_succeed); 1312 1313 /* 1314 * Full speed devices may have a max packet size greater than 8 bytes, but the 1315 * USB core doesn't know that until it reads the first 8 bytes of the 1316 * descriptor. If the usb_device's max packet size changes after that point, 1317 * we need to issue an evaluate context command and wait on it. 1318 */ 1319 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1320 unsigned int ep_index, struct urb *urb) 1321 { 1322 struct xhci_container_ctx *out_ctx; 1323 struct xhci_input_control_ctx *ctrl_ctx; 1324 struct xhci_ep_ctx *ep_ctx; 1325 struct xhci_command *command; 1326 int max_packet_size; 1327 int hw_max_packet_size; 1328 int ret = 0; 1329 1330 out_ctx = xhci->devs[slot_id]->out_ctx; 1331 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1332 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1333 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1334 if (hw_max_packet_size != max_packet_size) { 1335 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1336 "Max Packet Size for ep 0 changed."); 1337 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1338 "Max packet size in usb_device = %d", 1339 max_packet_size); 1340 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1341 "Max packet size in xHCI HW = %d", 1342 hw_max_packet_size); 1343 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1344 "Issuing evaluate context command."); 1345 1346 /* Set up the input context flags for the command */ 1347 /* FIXME: This won't work if a non-default control endpoint 1348 * changes max packet sizes. 1349 */ 1350 1351 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1352 if (!command) 1353 return -ENOMEM; 1354 1355 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1356 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1357 if (!ctrl_ctx) { 1358 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1359 __func__); 1360 ret = -ENOMEM; 1361 goto command_cleanup; 1362 } 1363 /* Set up the modified control endpoint 0 */ 1364 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1365 xhci->devs[slot_id]->out_ctx, ep_index); 1366 1367 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1368 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1369 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1370 1371 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1372 ctrl_ctx->drop_flags = 0; 1373 1374 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1375 true, false); 1376 1377 /* Clean up the input context for later use by bandwidth 1378 * functions. 1379 */ 1380 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1381 command_cleanup: 1382 kfree(command->completion); 1383 kfree(command); 1384 } 1385 return ret; 1386 } 1387 1388 /* 1389 * non-error returns are a promise to giveback() the urb later 1390 * we drop ownership so next owner (or urb unlink) can get it 1391 */ 1392 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1393 { 1394 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1395 unsigned long flags; 1396 int ret = 0; 1397 unsigned int slot_id, ep_index; 1398 unsigned int *ep_state; 1399 struct urb_priv *urb_priv; 1400 int num_tds; 1401 1402 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1403 true, true, __func__) <= 0) 1404 return -EINVAL; 1405 1406 slot_id = urb->dev->slot_id; 1407 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1408 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1409 1410 if (!HCD_HW_ACCESSIBLE(hcd)) { 1411 if (!in_interrupt()) 1412 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1413 return -ESHUTDOWN; 1414 } 1415 1416 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1417 num_tds = urb->number_of_packets; 1418 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1419 urb->transfer_buffer_length > 0 && 1420 urb->transfer_flags & URB_ZERO_PACKET && 1421 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1422 num_tds = 2; 1423 else 1424 num_tds = 1; 1425 1426 urb_priv = kzalloc(sizeof(struct urb_priv) + 1427 num_tds * sizeof(struct xhci_td), mem_flags); 1428 if (!urb_priv) 1429 return -ENOMEM; 1430 1431 urb_priv->num_tds = num_tds; 1432 urb_priv->num_tds_done = 0; 1433 urb->hcpriv = urb_priv; 1434 1435 trace_xhci_urb_enqueue(urb); 1436 1437 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1438 /* Check to see if the max packet size for the default control 1439 * endpoint changed during FS device enumeration 1440 */ 1441 if (urb->dev->speed == USB_SPEED_FULL) { 1442 ret = xhci_check_maxpacket(xhci, slot_id, 1443 ep_index, urb); 1444 if (ret < 0) { 1445 xhci_urb_free_priv(urb_priv); 1446 urb->hcpriv = NULL; 1447 return ret; 1448 } 1449 } 1450 } 1451 1452 spin_lock_irqsave(&xhci->lock, flags); 1453 1454 if (xhci->xhc_state & XHCI_STATE_DYING) { 1455 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1456 urb->ep->desc.bEndpointAddress, urb); 1457 ret = -ESHUTDOWN; 1458 goto free_priv; 1459 } 1460 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1461 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1462 *ep_state); 1463 ret = -EINVAL; 1464 goto free_priv; 1465 } 1466 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1467 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1468 ret = -EINVAL; 1469 goto free_priv; 1470 } 1471 1472 switch (usb_endpoint_type(&urb->ep->desc)) { 1473 1474 case USB_ENDPOINT_XFER_CONTROL: 1475 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1476 slot_id, ep_index); 1477 break; 1478 case USB_ENDPOINT_XFER_BULK: 1479 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1480 slot_id, ep_index); 1481 break; 1482 case USB_ENDPOINT_XFER_INT: 1483 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1484 slot_id, ep_index); 1485 break; 1486 case USB_ENDPOINT_XFER_ISOC: 1487 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1488 slot_id, ep_index); 1489 } 1490 1491 if (ret) { 1492 free_priv: 1493 xhci_urb_free_priv(urb_priv); 1494 urb->hcpriv = NULL; 1495 } 1496 spin_unlock_irqrestore(&xhci->lock, flags); 1497 return ret; 1498 } 1499 1500 /* 1501 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1502 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1503 * should pick up where it left off in the TD, unless a Set Transfer Ring 1504 * Dequeue Pointer is issued. 1505 * 1506 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1507 * the ring. Since the ring is a contiguous structure, they can't be physically 1508 * removed. Instead, there are two options: 1509 * 1510 * 1) If the HC is in the middle of processing the URB to be canceled, we 1511 * simply move the ring's dequeue pointer past those TRBs using the Set 1512 * Transfer Ring Dequeue Pointer command. This will be the common case, 1513 * when drivers timeout on the last submitted URB and attempt to cancel. 1514 * 1515 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1516 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1517 * HC will need to invalidate the any TRBs it has cached after the stop 1518 * endpoint command, as noted in the xHCI 0.95 errata. 1519 * 1520 * 3) The TD may have completed by the time the Stop Endpoint Command 1521 * completes, so software needs to handle that case too. 1522 * 1523 * This function should protect against the TD enqueueing code ringing the 1524 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1525 * It also needs to account for multiple cancellations on happening at the same 1526 * time for the same endpoint. 1527 * 1528 * Note that this function can be called in any context, or so says 1529 * usb_hcd_unlink_urb() 1530 */ 1531 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1532 { 1533 unsigned long flags; 1534 int ret, i; 1535 u32 temp; 1536 struct xhci_hcd *xhci; 1537 struct urb_priv *urb_priv; 1538 struct xhci_td *td; 1539 unsigned int ep_index; 1540 struct xhci_ring *ep_ring; 1541 struct xhci_virt_ep *ep; 1542 struct xhci_command *command; 1543 struct xhci_virt_device *vdev; 1544 1545 xhci = hcd_to_xhci(hcd); 1546 spin_lock_irqsave(&xhci->lock, flags); 1547 1548 trace_xhci_urb_dequeue(urb); 1549 1550 /* Make sure the URB hasn't completed or been unlinked already */ 1551 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1552 if (ret) 1553 goto done; 1554 1555 /* give back URB now if we can't queue it for cancel */ 1556 vdev = xhci->devs[urb->dev->slot_id]; 1557 urb_priv = urb->hcpriv; 1558 if (!vdev || !urb_priv) 1559 goto err_giveback; 1560 1561 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1562 ep = &vdev->eps[ep_index]; 1563 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1564 if (!ep || !ep_ring) 1565 goto err_giveback; 1566 1567 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1568 temp = readl(&xhci->op_regs->status); 1569 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1570 xhci_hc_died(xhci); 1571 goto done; 1572 } 1573 1574 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1575 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1576 "HC halted, freeing TD manually."); 1577 for (i = urb_priv->num_tds_done; 1578 i < urb_priv->num_tds; 1579 i++) { 1580 td = &urb_priv->td[i]; 1581 if (!list_empty(&td->td_list)) 1582 list_del_init(&td->td_list); 1583 if (!list_empty(&td->cancelled_td_list)) 1584 list_del_init(&td->cancelled_td_list); 1585 } 1586 goto err_giveback; 1587 } 1588 1589 i = urb_priv->num_tds_done; 1590 if (i < urb_priv->num_tds) 1591 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1592 "Cancel URB %p, dev %s, ep 0x%x, " 1593 "starting at offset 0x%llx", 1594 urb, urb->dev->devpath, 1595 urb->ep->desc.bEndpointAddress, 1596 (unsigned long long) xhci_trb_virt_to_dma( 1597 urb_priv->td[i].start_seg, 1598 urb_priv->td[i].first_trb)); 1599 1600 for (; i < urb_priv->num_tds; i++) { 1601 td = &urb_priv->td[i]; 1602 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1603 } 1604 1605 /* Queue a stop endpoint command, but only if this is 1606 * the first cancellation to be handled. 1607 */ 1608 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1609 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1610 if (!command) { 1611 ret = -ENOMEM; 1612 goto done; 1613 } 1614 ep->ep_state |= EP_STOP_CMD_PENDING; 1615 ep->stop_cmd_timer.expires = jiffies + 1616 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1617 add_timer(&ep->stop_cmd_timer); 1618 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1619 ep_index, 0); 1620 xhci_ring_cmd_db(xhci); 1621 } 1622 done: 1623 spin_unlock_irqrestore(&xhci->lock, flags); 1624 return ret; 1625 1626 err_giveback: 1627 if (urb_priv) 1628 xhci_urb_free_priv(urb_priv); 1629 usb_hcd_unlink_urb_from_ep(hcd, urb); 1630 spin_unlock_irqrestore(&xhci->lock, flags); 1631 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1632 return ret; 1633 } 1634 1635 /* Drop an endpoint from a new bandwidth configuration for this device. 1636 * Only one call to this function is allowed per endpoint before 1637 * check_bandwidth() or reset_bandwidth() must be called. 1638 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1639 * add the endpoint to the schedule with possibly new parameters denoted by a 1640 * different endpoint descriptor in usb_host_endpoint. 1641 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1642 * not allowed. 1643 * 1644 * The USB core will not allow URBs to be queued to an endpoint that is being 1645 * disabled, so there's no need for mutual exclusion to protect 1646 * the xhci->devs[slot_id] structure. 1647 */ 1648 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1649 struct usb_host_endpoint *ep) 1650 { 1651 struct xhci_hcd *xhci; 1652 struct xhci_container_ctx *in_ctx, *out_ctx; 1653 struct xhci_input_control_ctx *ctrl_ctx; 1654 unsigned int ep_index; 1655 struct xhci_ep_ctx *ep_ctx; 1656 u32 drop_flag; 1657 u32 new_add_flags, new_drop_flags; 1658 int ret; 1659 1660 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1661 if (ret <= 0) 1662 return ret; 1663 xhci = hcd_to_xhci(hcd); 1664 if (xhci->xhc_state & XHCI_STATE_DYING) 1665 return -ENODEV; 1666 1667 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1668 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1669 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1670 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1671 __func__, drop_flag); 1672 return 0; 1673 } 1674 1675 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1676 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1677 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1678 if (!ctrl_ctx) { 1679 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1680 __func__); 1681 return 0; 1682 } 1683 1684 ep_index = xhci_get_endpoint_index(&ep->desc); 1685 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1686 /* If the HC already knows the endpoint is disabled, 1687 * or the HCD has noted it is disabled, ignore this request 1688 */ 1689 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1690 le32_to_cpu(ctrl_ctx->drop_flags) & 1691 xhci_get_endpoint_flag(&ep->desc)) { 1692 /* Do not warn when called after a usb_device_reset */ 1693 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1694 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1695 __func__, ep); 1696 return 0; 1697 } 1698 1699 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1700 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1701 1702 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1703 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1704 1705 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1706 1707 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1708 1709 if (xhci->quirks & XHCI_MTK_HOST) 1710 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1711 1712 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1713 (unsigned int) ep->desc.bEndpointAddress, 1714 udev->slot_id, 1715 (unsigned int) new_drop_flags, 1716 (unsigned int) new_add_flags); 1717 return 0; 1718 } 1719 1720 /* Add an endpoint to a new possible bandwidth configuration for this device. 1721 * Only one call to this function is allowed per endpoint before 1722 * check_bandwidth() or reset_bandwidth() must be called. 1723 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1724 * add the endpoint to the schedule with possibly new parameters denoted by a 1725 * different endpoint descriptor in usb_host_endpoint. 1726 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1727 * not allowed. 1728 * 1729 * The USB core will not allow URBs to be queued to an endpoint until the 1730 * configuration or alt setting is installed in the device, so there's no need 1731 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1732 */ 1733 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1734 struct usb_host_endpoint *ep) 1735 { 1736 struct xhci_hcd *xhci; 1737 struct xhci_container_ctx *in_ctx; 1738 unsigned int ep_index; 1739 struct xhci_input_control_ctx *ctrl_ctx; 1740 u32 added_ctxs; 1741 u32 new_add_flags, new_drop_flags; 1742 struct xhci_virt_device *virt_dev; 1743 int ret = 0; 1744 1745 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1746 if (ret <= 0) { 1747 /* So we won't queue a reset ep command for a root hub */ 1748 ep->hcpriv = NULL; 1749 return ret; 1750 } 1751 xhci = hcd_to_xhci(hcd); 1752 if (xhci->xhc_state & XHCI_STATE_DYING) 1753 return -ENODEV; 1754 1755 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1756 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1757 /* FIXME when we have to issue an evaluate endpoint command to 1758 * deal with ep0 max packet size changing once we get the 1759 * descriptors 1760 */ 1761 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1762 __func__, added_ctxs); 1763 return 0; 1764 } 1765 1766 virt_dev = xhci->devs[udev->slot_id]; 1767 in_ctx = virt_dev->in_ctx; 1768 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1769 if (!ctrl_ctx) { 1770 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1771 __func__); 1772 return 0; 1773 } 1774 1775 ep_index = xhci_get_endpoint_index(&ep->desc); 1776 /* If this endpoint is already in use, and the upper layers are trying 1777 * to add it again without dropping it, reject the addition. 1778 */ 1779 if (virt_dev->eps[ep_index].ring && 1780 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1781 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1782 "without dropping it.\n", 1783 (unsigned int) ep->desc.bEndpointAddress); 1784 return -EINVAL; 1785 } 1786 1787 /* If the HCD has already noted the endpoint is enabled, 1788 * ignore this request. 1789 */ 1790 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1791 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1792 __func__, ep); 1793 return 0; 1794 } 1795 1796 /* 1797 * Configuration and alternate setting changes must be done in 1798 * process context, not interrupt context (or so documenation 1799 * for usb_set_interface() and usb_set_configuration() claim). 1800 */ 1801 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1802 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1803 __func__, ep->desc.bEndpointAddress); 1804 return -ENOMEM; 1805 } 1806 1807 if (xhci->quirks & XHCI_MTK_HOST) { 1808 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1809 if (ret < 0) { 1810 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring); 1811 virt_dev->eps[ep_index].new_ring = NULL; 1812 return ret; 1813 } 1814 } 1815 1816 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1817 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1818 1819 /* If xhci_endpoint_disable() was called for this endpoint, but the 1820 * xHC hasn't been notified yet through the check_bandwidth() call, 1821 * this re-adds a new state for the endpoint from the new endpoint 1822 * descriptors. We must drop and re-add this endpoint, so we leave the 1823 * drop flags alone. 1824 */ 1825 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1826 1827 /* Store the usb_device pointer for later use */ 1828 ep->hcpriv = udev; 1829 1830 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index); 1831 1832 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1833 (unsigned int) ep->desc.bEndpointAddress, 1834 udev->slot_id, 1835 (unsigned int) new_drop_flags, 1836 (unsigned int) new_add_flags); 1837 return 0; 1838 } 1839 1840 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1841 { 1842 struct xhci_input_control_ctx *ctrl_ctx; 1843 struct xhci_ep_ctx *ep_ctx; 1844 struct xhci_slot_ctx *slot_ctx; 1845 int i; 1846 1847 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1848 if (!ctrl_ctx) { 1849 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1850 __func__); 1851 return; 1852 } 1853 1854 /* When a device's add flag and drop flag are zero, any subsequent 1855 * configure endpoint command will leave that endpoint's state 1856 * untouched. Make sure we don't leave any old state in the input 1857 * endpoint contexts. 1858 */ 1859 ctrl_ctx->drop_flags = 0; 1860 ctrl_ctx->add_flags = 0; 1861 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1862 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1863 /* Endpoint 0 is always valid */ 1864 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1865 for (i = 1; i < 31; i++) { 1866 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1867 ep_ctx->ep_info = 0; 1868 ep_ctx->ep_info2 = 0; 1869 ep_ctx->deq = 0; 1870 ep_ctx->tx_info = 0; 1871 } 1872 } 1873 1874 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1875 struct usb_device *udev, u32 *cmd_status) 1876 { 1877 int ret; 1878 1879 switch (*cmd_status) { 1880 case COMP_COMMAND_ABORTED: 1881 case COMP_COMMAND_RING_STOPPED: 1882 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1883 ret = -ETIME; 1884 break; 1885 case COMP_RESOURCE_ERROR: 1886 dev_warn(&udev->dev, 1887 "Not enough host controller resources for new device state.\n"); 1888 ret = -ENOMEM; 1889 /* FIXME: can we allocate more resources for the HC? */ 1890 break; 1891 case COMP_BANDWIDTH_ERROR: 1892 case COMP_SECONDARY_BANDWIDTH_ERROR: 1893 dev_warn(&udev->dev, 1894 "Not enough bandwidth for new device state.\n"); 1895 ret = -ENOSPC; 1896 /* FIXME: can we go back to the old state? */ 1897 break; 1898 case COMP_TRB_ERROR: 1899 /* the HCD set up something wrong */ 1900 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1901 "add flag = 1, " 1902 "and endpoint is not disabled.\n"); 1903 ret = -EINVAL; 1904 break; 1905 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1906 dev_warn(&udev->dev, 1907 "ERROR: Incompatible device for endpoint configure command.\n"); 1908 ret = -ENODEV; 1909 break; 1910 case COMP_SUCCESS: 1911 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1912 "Successful Endpoint Configure command"); 1913 ret = 0; 1914 break; 1915 default: 1916 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1917 *cmd_status); 1918 ret = -EINVAL; 1919 break; 1920 } 1921 return ret; 1922 } 1923 1924 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1925 struct usb_device *udev, u32 *cmd_status) 1926 { 1927 int ret; 1928 1929 switch (*cmd_status) { 1930 case COMP_COMMAND_ABORTED: 1931 case COMP_COMMAND_RING_STOPPED: 1932 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1933 ret = -ETIME; 1934 break; 1935 case COMP_PARAMETER_ERROR: 1936 dev_warn(&udev->dev, 1937 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1938 ret = -EINVAL; 1939 break; 1940 case COMP_SLOT_NOT_ENABLED_ERROR: 1941 dev_warn(&udev->dev, 1942 "WARN: slot not enabled for evaluate context command.\n"); 1943 ret = -EINVAL; 1944 break; 1945 case COMP_CONTEXT_STATE_ERROR: 1946 dev_warn(&udev->dev, 1947 "WARN: invalid context state for evaluate context command.\n"); 1948 ret = -EINVAL; 1949 break; 1950 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1951 dev_warn(&udev->dev, 1952 "ERROR: Incompatible device for evaluate context command.\n"); 1953 ret = -ENODEV; 1954 break; 1955 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 1956 /* Max Exit Latency too large error */ 1957 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1958 ret = -EINVAL; 1959 break; 1960 case COMP_SUCCESS: 1961 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1962 "Successful evaluate context command"); 1963 ret = 0; 1964 break; 1965 default: 1966 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1967 *cmd_status); 1968 ret = -EINVAL; 1969 break; 1970 } 1971 return ret; 1972 } 1973 1974 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1975 struct xhci_input_control_ctx *ctrl_ctx) 1976 { 1977 u32 valid_add_flags; 1978 u32 valid_drop_flags; 1979 1980 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1981 * (bit 1). The default control endpoint is added during the Address 1982 * Device command and is never removed until the slot is disabled. 1983 */ 1984 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1985 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1986 1987 /* Use hweight32 to count the number of ones in the add flags, or 1988 * number of endpoints added. Don't count endpoints that are changed 1989 * (both added and dropped). 1990 */ 1991 return hweight32(valid_add_flags) - 1992 hweight32(valid_add_flags & valid_drop_flags); 1993 } 1994 1995 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1996 struct xhci_input_control_ctx *ctrl_ctx) 1997 { 1998 u32 valid_add_flags; 1999 u32 valid_drop_flags; 2000 2001 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2002 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2003 2004 return hweight32(valid_drop_flags) - 2005 hweight32(valid_add_flags & valid_drop_flags); 2006 } 2007 2008 /* 2009 * We need to reserve the new number of endpoints before the configure endpoint 2010 * command completes. We can't subtract the dropped endpoints from the number 2011 * of active endpoints until the command completes because we can oversubscribe 2012 * the host in this case: 2013 * 2014 * - the first configure endpoint command drops more endpoints than it adds 2015 * - a second configure endpoint command that adds more endpoints is queued 2016 * - the first configure endpoint command fails, so the config is unchanged 2017 * - the second command may succeed, even though there isn't enough resources 2018 * 2019 * Must be called with xhci->lock held. 2020 */ 2021 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2022 struct xhci_input_control_ctx *ctrl_ctx) 2023 { 2024 u32 added_eps; 2025 2026 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2027 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2028 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2029 "Not enough ep ctxs: " 2030 "%u active, need to add %u, limit is %u.", 2031 xhci->num_active_eps, added_eps, 2032 xhci->limit_active_eps); 2033 return -ENOMEM; 2034 } 2035 xhci->num_active_eps += added_eps; 2036 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2037 "Adding %u ep ctxs, %u now active.", added_eps, 2038 xhci->num_active_eps); 2039 return 0; 2040 } 2041 2042 /* 2043 * The configure endpoint was failed by the xHC for some other reason, so we 2044 * need to revert the resources that failed configuration would have used. 2045 * 2046 * Must be called with xhci->lock held. 2047 */ 2048 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2049 struct xhci_input_control_ctx *ctrl_ctx) 2050 { 2051 u32 num_failed_eps; 2052 2053 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2054 xhci->num_active_eps -= num_failed_eps; 2055 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2056 "Removing %u failed ep ctxs, %u now active.", 2057 num_failed_eps, 2058 xhci->num_active_eps); 2059 } 2060 2061 /* 2062 * Now that the command has completed, clean up the active endpoint count by 2063 * subtracting out the endpoints that were dropped (but not changed). 2064 * 2065 * Must be called with xhci->lock held. 2066 */ 2067 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2068 struct xhci_input_control_ctx *ctrl_ctx) 2069 { 2070 u32 num_dropped_eps; 2071 2072 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2073 xhci->num_active_eps -= num_dropped_eps; 2074 if (num_dropped_eps) 2075 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2076 "Removing %u dropped ep ctxs, %u now active.", 2077 num_dropped_eps, 2078 xhci->num_active_eps); 2079 } 2080 2081 static unsigned int xhci_get_block_size(struct usb_device *udev) 2082 { 2083 switch (udev->speed) { 2084 case USB_SPEED_LOW: 2085 case USB_SPEED_FULL: 2086 return FS_BLOCK; 2087 case USB_SPEED_HIGH: 2088 return HS_BLOCK; 2089 case USB_SPEED_SUPER: 2090 case USB_SPEED_SUPER_PLUS: 2091 return SS_BLOCK; 2092 case USB_SPEED_UNKNOWN: 2093 case USB_SPEED_WIRELESS: 2094 default: 2095 /* Should never happen */ 2096 return 1; 2097 } 2098 } 2099 2100 static unsigned int 2101 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2102 { 2103 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2104 return LS_OVERHEAD; 2105 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2106 return FS_OVERHEAD; 2107 return HS_OVERHEAD; 2108 } 2109 2110 /* If we are changing a LS/FS device under a HS hub, 2111 * make sure (if we are activating a new TT) that the HS bus has enough 2112 * bandwidth for this new TT. 2113 */ 2114 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2115 struct xhci_virt_device *virt_dev, 2116 int old_active_eps) 2117 { 2118 struct xhci_interval_bw_table *bw_table; 2119 struct xhci_tt_bw_info *tt_info; 2120 2121 /* Find the bandwidth table for the root port this TT is attached to. */ 2122 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2123 tt_info = virt_dev->tt_info; 2124 /* If this TT already had active endpoints, the bandwidth for this TT 2125 * has already been added. Removing all periodic endpoints (and thus 2126 * making the TT enactive) will only decrease the bandwidth used. 2127 */ 2128 if (old_active_eps) 2129 return 0; 2130 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2131 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2132 return -ENOMEM; 2133 return 0; 2134 } 2135 /* Not sure why we would have no new active endpoints... 2136 * 2137 * Maybe because of an Evaluate Context change for a hub update or a 2138 * control endpoint 0 max packet size change? 2139 * FIXME: skip the bandwidth calculation in that case. 2140 */ 2141 return 0; 2142 } 2143 2144 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2145 struct xhci_virt_device *virt_dev) 2146 { 2147 unsigned int bw_reserved; 2148 2149 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2150 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2151 return -ENOMEM; 2152 2153 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2154 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2155 return -ENOMEM; 2156 2157 return 0; 2158 } 2159 2160 /* 2161 * This algorithm is a very conservative estimate of the worst-case scheduling 2162 * scenario for any one interval. The hardware dynamically schedules the 2163 * packets, so we can't tell which microframe could be the limiting factor in 2164 * the bandwidth scheduling. This only takes into account periodic endpoints. 2165 * 2166 * Obviously, we can't solve an NP complete problem to find the minimum worst 2167 * case scenario. Instead, we come up with an estimate that is no less than 2168 * the worst case bandwidth used for any one microframe, but may be an 2169 * over-estimate. 2170 * 2171 * We walk the requirements for each endpoint by interval, starting with the 2172 * smallest interval, and place packets in the schedule where there is only one 2173 * possible way to schedule packets for that interval. In order to simplify 2174 * this algorithm, we record the largest max packet size for each interval, and 2175 * assume all packets will be that size. 2176 * 2177 * For interval 0, we obviously must schedule all packets for each interval. 2178 * The bandwidth for interval 0 is just the amount of data to be transmitted 2179 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2180 * the number of packets). 2181 * 2182 * For interval 1, we have two possible microframes to schedule those packets 2183 * in. For this algorithm, if we can schedule the same number of packets for 2184 * each possible scheduling opportunity (each microframe), we will do so. The 2185 * remaining number of packets will be saved to be transmitted in the gaps in 2186 * the next interval's scheduling sequence. 2187 * 2188 * As we move those remaining packets to be scheduled with interval 2 packets, 2189 * we have to double the number of remaining packets to transmit. This is 2190 * because the intervals are actually powers of 2, and we would be transmitting 2191 * the previous interval's packets twice in this interval. We also have to be 2192 * sure that when we look at the largest max packet size for this interval, we 2193 * also look at the largest max packet size for the remaining packets and take 2194 * the greater of the two. 2195 * 2196 * The algorithm continues to evenly distribute packets in each scheduling 2197 * opportunity, and push the remaining packets out, until we get to the last 2198 * interval. Then those packets and their associated overhead are just added 2199 * to the bandwidth used. 2200 */ 2201 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2202 struct xhci_virt_device *virt_dev, 2203 int old_active_eps) 2204 { 2205 unsigned int bw_reserved; 2206 unsigned int max_bandwidth; 2207 unsigned int bw_used; 2208 unsigned int block_size; 2209 struct xhci_interval_bw_table *bw_table; 2210 unsigned int packet_size = 0; 2211 unsigned int overhead = 0; 2212 unsigned int packets_transmitted = 0; 2213 unsigned int packets_remaining = 0; 2214 unsigned int i; 2215 2216 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2217 return xhci_check_ss_bw(xhci, virt_dev); 2218 2219 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2220 max_bandwidth = HS_BW_LIMIT; 2221 /* Convert percent of bus BW reserved to blocks reserved */ 2222 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2223 } else { 2224 max_bandwidth = FS_BW_LIMIT; 2225 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2226 } 2227 2228 bw_table = virt_dev->bw_table; 2229 /* We need to translate the max packet size and max ESIT payloads into 2230 * the units the hardware uses. 2231 */ 2232 block_size = xhci_get_block_size(virt_dev->udev); 2233 2234 /* If we are manipulating a LS/FS device under a HS hub, double check 2235 * that the HS bus has enough bandwidth if we are activing a new TT. 2236 */ 2237 if (virt_dev->tt_info) { 2238 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2239 "Recalculating BW for rootport %u", 2240 virt_dev->real_port); 2241 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2242 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2243 "newly activated TT.\n"); 2244 return -ENOMEM; 2245 } 2246 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2247 "Recalculating BW for TT slot %u port %u", 2248 virt_dev->tt_info->slot_id, 2249 virt_dev->tt_info->ttport); 2250 } else { 2251 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2252 "Recalculating BW for rootport %u", 2253 virt_dev->real_port); 2254 } 2255 2256 /* Add in how much bandwidth will be used for interval zero, or the 2257 * rounded max ESIT payload + number of packets * largest overhead. 2258 */ 2259 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2260 bw_table->interval_bw[0].num_packets * 2261 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2262 2263 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2264 unsigned int bw_added; 2265 unsigned int largest_mps; 2266 unsigned int interval_overhead; 2267 2268 /* 2269 * How many packets could we transmit in this interval? 2270 * If packets didn't fit in the previous interval, we will need 2271 * to transmit that many packets twice within this interval. 2272 */ 2273 packets_remaining = 2 * packets_remaining + 2274 bw_table->interval_bw[i].num_packets; 2275 2276 /* Find the largest max packet size of this or the previous 2277 * interval. 2278 */ 2279 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2280 largest_mps = 0; 2281 else { 2282 struct xhci_virt_ep *virt_ep; 2283 struct list_head *ep_entry; 2284 2285 ep_entry = bw_table->interval_bw[i].endpoints.next; 2286 virt_ep = list_entry(ep_entry, 2287 struct xhci_virt_ep, bw_endpoint_list); 2288 /* Convert to blocks, rounding up */ 2289 largest_mps = DIV_ROUND_UP( 2290 virt_ep->bw_info.max_packet_size, 2291 block_size); 2292 } 2293 if (largest_mps > packet_size) 2294 packet_size = largest_mps; 2295 2296 /* Use the larger overhead of this or the previous interval. */ 2297 interval_overhead = xhci_get_largest_overhead( 2298 &bw_table->interval_bw[i]); 2299 if (interval_overhead > overhead) 2300 overhead = interval_overhead; 2301 2302 /* How many packets can we evenly distribute across 2303 * (1 << (i + 1)) possible scheduling opportunities? 2304 */ 2305 packets_transmitted = packets_remaining >> (i + 1); 2306 2307 /* Add in the bandwidth used for those scheduled packets */ 2308 bw_added = packets_transmitted * (overhead + packet_size); 2309 2310 /* How many packets do we have remaining to transmit? */ 2311 packets_remaining = packets_remaining % (1 << (i + 1)); 2312 2313 /* What largest max packet size should those packets have? */ 2314 /* If we've transmitted all packets, don't carry over the 2315 * largest packet size. 2316 */ 2317 if (packets_remaining == 0) { 2318 packet_size = 0; 2319 overhead = 0; 2320 } else if (packets_transmitted > 0) { 2321 /* Otherwise if we do have remaining packets, and we've 2322 * scheduled some packets in this interval, take the 2323 * largest max packet size from endpoints with this 2324 * interval. 2325 */ 2326 packet_size = largest_mps; 2327 overhead = interval_overhead; 2328 } 2329 /* Otherwise carry over packet_size and overhead from the last 2330 * time we had a remainder. 2331 */ 2332 bw_used += bw_added; 2333 if (bw_used > max_bandwidth) { 2334 xhci_warn(xhci, "Not enough bandwidth. " 2335 "Proposed: %u, Max: %u\n", 2336 bw_used, max_bandwidth); 2337 return -ENOMEM; 2338 } 2339 } 2340 /* 2341 * Ok, we know we have some packets left over after even-handedly 2342 * scheduling interval 15. We don't know which microframes they will 2343 * fit into, so we over-schedule and say they will be scheduled every 2344 * microframe. 2345 */ 2346 if (packets_remaining > 0) 2347 bw_used += overhead + packet_size; 2348 2349 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2350 unsigned int port_index = virt_dev->real_port - 1; 2351 2352 /* OK, we're manipulating a HS device attached to a 2353 * root port bandwidth domain. Include the number of active TTs 2354 * in the bandwidth used. 2355 */ 2356 bw_used += TT_HS_OVERHEAD * 2357 xhci->rh_bw[port_index].num_active_tts; 2358 } 2359 2360 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2361 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2362 "Available: %u " "percent", 2363 bw_used, max_bandwidth, bw_reserved, 2364 (max_bandwidth - bw_used - bw_reserved) * 100 / 2365 max_bandwidth); 2366 2367 bw_used += bw_reserved; 2368 if (bw_used > max_bandwidth) { 2369 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2370 bw_used, max_bandwidth); 2371 return -ENOMEM; 2372 } 2373 2374 bw_table->bw_used = bw_used; 2375 return 0; 2376 } 2377 2378 static bool xhci_is_async_ep(unsigned int ep_type) 2379 { 2380 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2381 ep_type != ISOC_IN_EP && 2382 ep_type != INT_IN_EP); 2383 } 2384 2385 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2386 { 2387 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2388 } 2389 2390 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2391 { 2392 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2393 2394 if (ep_bw->ep_interval == 0) 2395 return SS_OVERHEAD_BURST + 2396 (ep_bw->mult * ep_bw->num_packets * 2397 (SS_OVERHEAD + mps)); 2398 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2399 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2400 1 << ep_bw->ep_interval); 2401 2402 } 2403 2404 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2405 struct xhci_bw_info *ep_bw, 2406 struct xhci_interval_bw_table *bw_table, 2407 struct usb_device *udev, 2408 struct xhci_virt_ep *virt_ep, 2409 struct xhci_tt_bw_info *tt_info) 2410 { 2411 struct xhci_interval_bw *interval_bw; 2412 int normalized_interval; 2413 2414 if (xhci_is_async_ep(ep_bw->type)) 2415 return; 2416 2417 if (udev->speed >= USB_SPEED_SUPER) { 2418 if (xhci_is_sync_in_ep(ep_bw->type)) 2419 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2420 xhci_get_ss_bw_consumed(ep_bw); 2421 else 2422 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2423 xhci_get_ss_bw_consumed(ep_bw); 2424 return; 2425 } 2426 2427 /* SuperSpeed endpoints never get added to intervals in the table, so 2428 * this check is only valid for HS/FS/LS devices. 2429 */ 2430 if (list_empty(&virt_ep->bw_endpoint_list)) 2431 return; 2432 /* For LS/FS devices, we need to translate the interval expressed in 2433 * microframes to frames. 2434 */ 2435 if (udev->speed == USB_SPEED_HIGH) 2436 normalized_interval = ep_bw->ep_interval; 2437 else 2438 normalized_interval = ep_bw->ep_interval - 3; 2439 2440 if (normalized_interval == 0) 2441 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2442 interval_bw = &bw_table->interval_bw[normalized_interval]; 2443 interval_bw->num_packets -= ep_bw->num_packets; 2444 switch (udev->speed) { 2445 case USB_SPEED_LOW: 2446 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2447 break; 2448 case USB_SPEED_FULL: 2449 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2450 break; 2451 case USB_SPEED_HIGH: 2452 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2453 break; 2454 case USB_SPEED_SUPER: 2455 case USB_SPEED_SUPER_PLUS: 2456 case USB_SPEED_UNKNOWN: 2457 case USB_SPEED_WIRELESS: 2458 /* Should never happen because only LS/FS/HS endpoints will get 2459 * added to the endpoint list. 2460 */ 2461 return; 2462 } 2463 if (tt_info) 2464 tt_info->active_eps -= 1; 2465 list_del_init(&virt_ep->bw_endpoint_list); 2466 } 2467 2468 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2469 struct xhci_bw_info *ep_bw, 2470 struct xhci_interval_bw_table *bw_table, 2471 struct usb_device *udev, 2472 struct xhci_virt_ep *virt_ep, 2473 struct xhci_tt_bw_info *tt_info) 2474 { 2475 struct xhci_interval_bw *interval_bw; 2476 struct xhci_virt_ep *smaller_ep; 2477 int normalized_interval; 2478 2479 if (xhci_is_async_ep(ep_bw->type)) 2480 return; 2481 2482 if (udev->speed == USB_SPEED_SUPER) { 2483 if (xhci_is_sync_in_ep(ep_bw->type)) 2484 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2485 xhci_get_ss_bw_consumed(ep_bw); 2486 else 2487 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2488 xhci_get_ss_bw_consumed(ep_bw); 2489 return; 2490 } 2491 2492 /* For LS/FS devices, we need to translate the interval expressed in 2493 * microframes to frames. 2494 */ 2495 if (udev->speed == USB_SPEED_HIGH) 2496 normalized_interval = ep_bw->ep_interval; 2497 else 2498 normalized_interval = ep_bw->ep_interval - 3; 2499 2500 if (normalized_interval == 0) 2501 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2502 interval_bw = &bw_table->interval_bw[normalized_interval]; 2503 interval_bw->num_packets += ep_bw->num_packets; 2504 switch (udev->speed) { 2505 case USB_SPEED_LOW: 2506 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2507 break; 2508 case USB_SPEED_FULL: 2509 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2510 break; 2511 case USB_SPEED_HIGH: 2512 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2513 break; 2514 case USB_SPEED_SUPER: 2515 case USB_SPEED_SUPER_PLUS: 2516 case USB_SPEED_UNKNOWN: 2517 case USB_SPEED_WIRELESS: 2518 /* Should never happen because only LS/FS/HS endpoints will get 2519 * added to the endpoint list. 2520 */ 2521 return; 2522 } 2523 2524 if (tt_info) 2525 tt_info->active_eps += 1; 2526 /* Insert the endpoint into the list, largest max packet size first. */ 2527 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2528 bw_endpoint_list) { 2529 if (ep_bw->max_packet_size >= 2530 smaller_ep->bw_info.max_packet_size) { 2531 /* Add the new ep before the smaller endpoint */ 2532 list_add_tail(&virt_ep->bw_endpoint_list, 2533 &smaller_ep->bw_endpoint_list); 2534 return; 2535 } 2536 } 2537 /* Add the new endpoint at the end of the list. */ 2538 list_add_tail(&virt_ep->bw_endpoint_list, 2539 &interval_bw->endpoints); 2540 } 2541 2542 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2543 struct xhci_virt_device *virt_dev, 2544 int old_active_eps) 2545 { 2546 struct xhci_root_port_bw_info *rh_bw_info; 2547 if (!virt_dev->tt_info) 2548 return; 2549 2550 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2551 if (old_active_eps == 0 && 2552 virt_dev->tt_info->active_eps != 0) { 2553 rh_bw_info->num_active_tts += 1; 2554 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2555 } else if (old_active_eps != 0 && 2556 virt_dev->tt_info->active_eps == 0) { 2557 rh_bw_info->num_active_tts -= 1; 2558 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2559 } 2560 } 2561 2562 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2563 struct xhci_virt_device *virt_dev, 2564 struct xhci_container_ctx *in_ctx) 2565 { 2566 struct xhci_bw_info ep_bw_info[31]; 2567 int i; 2568 struct xhci_input_control_ctx *ctrl_ctx; 2569 int old_active_eps = 0; 2570 2571 if (virt_dev->tt_info) 2572 old_active_eps = virt_dev->tt_info->active_eps; 2573 2574 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2575 if (!ctrl_ctx) { 2576 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2577 __func__); 2578 return -ENOMEM; 2579 } 2580 2581 for (i = 0; i < 31; i++) { 2582 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2583 continue; 2584 2585 /* Make a copy of the BW info in case we need to revert this */ 2586 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2587 sizeof(ep_bw_info[i])); 2588 /* Drop the endpoint from the interval table if the endpoint is 2589 * being dropped or changed. 2590 */ 2591 if (EP_IS_DROPPED(ctrl_ctx, i)) 2592 xhci_drop_ep_from_interval_table(xhci, 2593 &virt_dev->eps[i].bw_info, 2594 virt_dev->bw_table, 2595 virt_dev->udev, 2596 &virt_dev->eps[i], 2597 virt_dev->tt_info); 2598 } 2599 /* Overwrite the information stored in the endpoints' bw_info */ 2600 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2601 for (i = 0; i < 31; i++) { 2602 /* Add any changed or added endpoints to the interval table */ 2603 if (EP_IS_ADDED(ctrl_ctx, i)) 2604 xhci_add_ep_to_interval_table(xhci, 2605 &virt_dev->eps[i].bw_info, 2606 virt_dev->bw_table, 2607 virt_dev->udev, 2608 &virt_dev->eps[i], 2609 virt_dev->tt_info); 2610 } 2611 2612 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2613 /* Ok, this fits in the bandwidth we have. 2614 * Update the number of active TTs. 2615 */ 2616 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2617 return 0; 2618 } 2619 2620 /* We don't have enough bandwidth for this, revert the stored info. */ 2621 for (i = 0; i < 31; i++) { 2622 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2623 continue; 2624 2625 /* Drop the new copies of any added or changed endpoints from 2626 * the interval table. 2627 */ 2628 if (EP_IS_ADDED(ctrl_ctx, i)) { 2629 xhci_drop_ep_from_interval_table(xhci, 2630 &virt_dev->eps[i].bw_info, 2631 virt_dev->bw_table, 2632 virt_dev->udev, 2633 &virt_dev->eps[i], 2634 virt_dev->tt_info); 2635 } 2636 /* Revert the endpoint back to its old information */ 2637 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2638 sizeof(ep_bw_info[i])); 2639 /* Add any changed or dropped endpoints back into the table */ 2640 if (EP_IS_DROPPED(ctrl_ctx, i)) 2641 xhci_add_ep_to_interval_table(xhci, 2642 &virt_dev->eps[i].bw_info, 2643 virt_dev->bw_table, 2644 virt_dev->udev, 2645 &virt_dev->eps[i], 2646 virt_dev->tt_info); 2647 } 2648 return -ENOMEM; 2649 } 2650 2651 2652 /* Issue a configure endpoint command or evaluate context command 2653 * and wait for it to finish. 2654 */ 2655 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2656 struct usb_device *udev, 2657 struct xhci_command *command, 2658 bool ctx_change, bool must_succeed) 2659 { 2660 int ret; 2661 unsigned long flags; 2662 struct xhci_input_control_ctx *ctrl_ctx; 2663 struct xhci_virt_device *virt_dev; 2664 struct xhci_slot_ctx *slot_ctx; 2665 2666 if (!command) 2667 return -EINVAL; 2668 2669 spin_lock_irqsave(&xhci->lock, flags); 2670 2671 if (xhci->xhc_state & XHCI_STATE_DYING) { 2672 spin_unlock_irqrestore(&xhci->lock, flags); 2673 return -ESHUTDOWN; 2674 } 2675 2676 virt_dev = xhci->devs[udev->slot_id]; 2677 2678 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2679 if (!ctrl_ctx) { 2680 spin_unlock_irqrestore(&xhci->lock, flags); 2681 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2682 __func__); 2683 return -ENOMEM; 2684 } 2685 2686 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2687 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2688 spin_unlock_irqrestore(&xhci->lock, flags); 2689 xhci_warn(xhci, "Not enough host resources, " 2690 "active endpoint contexts = %u\n", 2691 xhci->num_active_eps); 2692 return -ENOMEM; 2693 } 2694 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2695 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2696 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2697 xhci_free_host_resources(xhci, ctrl_ctx); 2698 spin_unlock_irqrestore(&xhci->lock, flags); 2699 xhci_warn(xhci, "Not enough bandwidth\n"); 2700 return -ENOMEM; 2701 } 2702 2703 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2704 trace_xhci_configure_endpoint(slot_ctx); 2705 2706 if (!ctx_change) 2707 ret = xhci_queue_configure_endpoint(xhci, command, 2708 command->in_ctx->dma, 2709 udev->slot_id, must_succeed); 2710 else 2711 ret = xhci_queue_evaluate_context(xhci, command, 2712 command->in_ctx->dma, 2713 udev->slot_id, must_succeed); 2714 if (ret < 0) { 2715 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2716 xhci_free_host_resources(xhci, ctrl_ctx); 2717 spin_unlock_irqrestore(&xhci->lock, flags); 2718 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2719 "FIXME allocate a new ring segment"); 2720 return -ENOMEM; 2721 } 2722 xhci_ring_cmd_db(xhci); 2723 spin_unlock_irqrestore(&xhci->lock, flags); 2724 2725 /* Wait for the configure endpoint command to complete */ 2726 wait_for_completion(command->completion); 2727 2728 if (!ctx_change) 2729 ret = xhci_configure_endpoint_result(xhci, udev, 2730 &command->status); 2731 else 2732 ret = xhci_evaluate_context_result(xhci, udev, 2733 &command->status); 2734 2735 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2736 spin_lock_irqsave(&xhci->lock, flags); 2737 /* If the command failed, remove the reserved resources. 2738 * Otherwise, clean up the estimate to include dropped eps. 2739 */ 2740 if (ret) 2741 xhci_free_host_resources(xhci, ctrl_ctx); 2742 else 2743 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2744 spin_unlock_irqrestore(&xhci->lock, flags); 2745 } 2746 return ret; 2747 } 2748 2749 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2750 struct xhci_virt_device *vdev, int i) 2751 { 2752 struct xhci_virt_ep *ep = &vdev->eps[i]; 2753 2754 if (ep->ep_state & EP_HAS_STREAMS) { 2755 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2756 xhci_get_endpoint_address(i)); 2757 xhci_free_stream_info(xhci, ep->stream_info); 2758 ep->stream_info = NULL; 2759 ep->ep_state &= ~EP_HAS_STREAMS; 2760 } 2761 } 2762 2763 /* Called after one or more calls to xhci_add_endpoint() or 2764 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2765 * to call xhci_reset_bandwidth(). 2766 * 2767 * Since we are in the middle of changing either configuration or 2768 * installing a new alt setting, the USB core won't allow URBs to be 2769 * enqueued for any endpoint on the old config or interface. Nothing 2770 * else should be touching the xhci->devs[slot_id] structure, so we 2771 * don't need to take the xhci->lock for manipulating that. 2772 */ 2773 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2774 { 2775 int i; 2776 int ret = 0; 2777 struct xhci_hcd *xhci; 2778 struct xhci_virt_device *virt_dev; 2779 struct xhci_input_control_ctx *ctrl_ctx; 2780 struct xhci_slot_ctx *slot_ctx; 2781 struct xhci_command *command; 2782 2783 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2784 if (ret <= 0) 2785 return ret; 2786 xhci = hcd_to_xhci(hcd); 2787 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2788 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2789 return -ENODEV; 2790 2791 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2792 virt_dev = xhci->devs[udev->slot_id]; 2793 2794 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2795 if (!command) 2796 return -ENOMEM; 2797 2798 command->in_ctx = virt_dev->in_ctx; 2799 2800 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2801 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2802 if (!ctrl_ctx) { 2803 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2804 __func__); 2805 ret = -ENOMEM; 2806 goto command_cleanup; 2807 } 2808 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2809 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2810 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2811 2812 /* Don't issue the command if there's no endpoints to update. */ 2813 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2814 ctrl_ctx->drop_flags == 0) { 2815 ret = 0; 2816 goto command_cleanup; 2817 } 2818 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2819 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2820 for (i = 31; i >= 1; i--) { 2821 __le32 le32 = cpu_to_le32(BIT(i)); 2822 2823 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2824 || (ctrl_ctx->add_flags & le32) || i == 1) { 2825 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2826 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2827 break; 2828 } 2829 } 2830 2831 ret = xhci_configure_endpoint(xhci, udev, command, 2832 false, false); 2833 if (ret) 2834 /* Callee should call reset_bandwidth() */ 2835 goto command_cleanup; 2836 2837 /* Free any rings that were dropped, but not changed. */ 2838 for (i = 1; i < 31; i++) { 2839 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2840 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2841 xhci_free_endpoint_ring(xhci, virt_dev, i); 2842 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2843 } 2844 } 2845 xhci_zero_in_ctx(xhci, virt_dev); 2846 /* 2847 * Install any rings for completely new endpoints or changed endpoints, 2848 * and free any old rings from changed endpoints. 2849 */ 2850 for (i = 1; i < 31; i++) { 2851 if (!virt_dev->eps[i].new_ring) 2852 continue; 2853 /* Only free the old ring if it exists. 2854 * It may not if this is the first add of an endpoint. 2855 */ 2856 if (virt_dev->eps[i].ring) { 2857 xhci_free_endpoint_ring(xhci, virt_dev, i); 2858 } 2859 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2860 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2861 virt_dev->eps[i].new_ring = NULL; 2862 } 2863 command_cleanup: 2864 kfree(command->completion); 2865 kfree(command); 2866 2867 return ret; 2868 } 2869 2870 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2871 { 2872 struct xhci_hcd *xhci; 2873 struct xhci_virt_device *virt_dev; 2874 int i, ret; 2875 2876 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2877 if (ret <= 0) 2878 return; 2879 xhci = hcd_to_xhci(hcd); 2880 2881 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2882 virt_dev = xhci->devs[udev->slot_id]; 2883 /* Free any rings allocated for added endpoints */ 2884 for (i = 0; i < 31; i++) { 2885 if (virt_dev->eps[i].new_ring) { 2886 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2887 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2888 virt_dev->eps[i].new_ring = NULL; 2889 } 2890 } 2891 xhci_zero_in_ctx(xhci, virt_dev); 2892 } 2893 2894 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2895 struct xhci_container_ctx *in_ctx, 2896 struct xhci_container_ctx *out_ctx, 2897 struct xhci_input_control_ctx *ctrl_ctx, 2898 u32 add_flags, u32 drop_flags) 2899 { 2900 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2901 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2902 xhci_slot_copy(xhci, in_ctx, out_ctx); 2903 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2904 } 2905 2906 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2907 unsigned int slot_id, unsigned int ep_index, 2908 struct xhci_dequeue_state *deq_state) 2909 { 2910 struct xhci_input_control_ctx *ctrl_ctx; 2911 struct xhci_container_ctx *in_ctx; 2912 struct xhci_ep_ctx *ep_ctx; 2913 u32 added_ctxs; 2914 dma_addr_t addr; 2915 2916 in_ctx = xhci->devs[slot_id]->in_ctx; 2917 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2918 if (!ctrl_ctx) { 2919 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2920 __func__); 2921 return; 2922 } 2923 2924 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2925 xhci->devs[slot_id]->out_ctx, ep_index); 2926 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2927 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2928 deq_state->new_deq_ptr); 2929 if (addr == 0) { 2930 xhci_warn(xhci, "WARN Cannot submit config ep after " 2931 "reset ep command\n"); 2932 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2933 deq_state->new_deq_seg, 2934 deq_state->new_deq_ptr); 2935 return; 2936 } 2937 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2938 2939 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2940 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2941 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2942 added_ctxs, added_ctxs); 2943 } 2944 2945 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index, 2946 unsigned int stream_id, struct xhci_td *td) 2947 { 2948 struct xhci_dequeue_state deq_state; 2949 struct usb_device *udev = td->urb->dev; 2950 2951 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2952 "Cleaning up stalled endpoint ring"); 2953 /* We need to move the HW's dequeue pointer past this TD, 2954 * or it will attempt to resend it on the next doorbell ring. 2955 */ 2956 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2957 ep_index, stream_id, td, &deq_state); 2958 2959 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2960 return; 2961 2962 /* HW with the reset endpoint quirk will use the saved dequeue state to 2963 * issue a configure endpoint command later. 2964 */ 2965 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2966 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2967 "Queueing new dequeue state"); 2968 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2969 ep_index, &deq_state); 2970 } else { 2971 /* Better hope no one uses the input context between now and the 2972 * reset endpoint completion! 2973 * XXX: No idea how this hardware will react when stream rings 2974 * are enabled. 2975 */ 2976 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2977 "Setting up input context for " 2978 "configure endpoint command"); 2979 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2980 ep_index, &deq_state); 2981 } 2982 } 2983 2984 /* 2985 * Called after usb core issues a clear halt control message. 2986 * The host side of the halt should already be cleared by a reset endpoint 2987 * command issued when the STALL event was received. 2988 * 2989 * The reset endpoint command may only be issued to endpoints in the halted 2990 * state. For software that wishes to reset the data toggle or sequence number 2991 * of an endpoint that isn't in the halted state this function will issue a 2992 * configure endpoint command with the Drop and Add bits set for the target 2993 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 2994 */ 2995 2996 static void xhci_endpoint_reset(struct usb_hcd *hcd, 2997 struct usb_host_endpoint *host_ep) 2998 { 2999 struct xhci_hcd *xhci; 3000 struct usb_device *udev; 3001 struct xhci_virt_device *vdev; 3002 struct xhci_virt_ep *ep; 3003 struct xhci_input_control_ctx *ctrl_ctx; 3004 struct xhci_command *stop_cmd, *cfg_cmd; 3005 unsigned int ep_index; 3006 unsigned long flags; 3007 u32 ep_flag; 3008 3009 xhci = hcd_to_xhci(hcd); 3010 if (!host_ep->hcpriv) 3011 return; 3012 udev = (struct usb_device *) host_ep->hcpriv; 3013 vdev = xhci->devs[udev->slot_id]; 3014 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3015 ep = &vdev->eps[ep_index]; 3016 3017 /* Bail out if toggle is already being cleared by a endpoint reset */ 3018 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3019 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3020 return; 3021 } 3022 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3023 if (usb_endpoint_xfer_control(&host_ep->desc) || 3024 usb_endpoint_xfer_isoc(&host_ep->desc)) 3025 return; 3026 3027 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3028 3029 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3030 return; 3031 3032 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3033 if (!stop_cmd) 3034 return; 3035 3036 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3037 if (!cfg_cmd) 3038 goto cleanup; 3039 3040 spin_lock_irqsave(&xhci->lock, flags); 3041 3042 /* block queuing new trbs and ringing ep doorbell */ 3043 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3044 3045 /* 3046 * Make sure endpoint ring is empty before resetting the toggle/seq. 3047 * Driver is required to synchronously cancel all transfer request. 3048 * Stop the endpoint to force xHC to update the output context 3049 */ 3050 3051 if (!list_empty(&ep->ring->td_list)) { 3052 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3053 spin_unlock_irqrestore(&xhci->lock, flags); 3054 goto cleanup; 3055 } 3056 xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0); 3057 xhci_ring_cmd_db(xhci); 3058 spin_unlock_irqrestore(&xhci->lock, flags); 3059 3060 wait_for_completion(stop_cmd->completion); 3061 3062 spin_lock_irqsave(&xhci->lock, flags); 3063 3064 /* config ep command clears toggle if add and drop ep flags are set */ 3065 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3066 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3067 ctrl_ctx, ep_flag, ep_flag); 3068 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3069 3070 xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3071 udev->slot_id, false); 3072 xhci_ring_cmd_db(xhci); 3073 spin_unlock_irqrestore(&xhci->lock, flags); 3074 3075 wait_for_completion(cfg_cmd->completion); 3076 3077 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3078 xhci_free_command(xhci, cfg_cmd); 3079 cleanup: 3080 xhci_free_command(xhci, stop_cmd); 3081 } 3082 3083 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3084 struct usb_device *udev, struct usb_host_endpoint *ep, 3085 unsigned int slot_id) 3086 { 3087 int ret; 3088 unsigned int ep_index; 3089 unsigned int ep_state; 3090 3091 if (!ep) 3092 return -EINVAL; 3093 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3094 if (ret <= 0) 3095 return -EINVAL; 3096 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3097 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3098 " descriptor for ep 0x%x does not support streams\n", 3099 ep->desc.bEndpointAddress); 3100 return -EINVAL; 3101 } 3102 3103 ep_index = xhci_get_endpoint_index(&ep->desc); 3104 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3105 if (ep_state & EP_HAS_STREAMS || 3106 ep_state & EP_GETTING_STREAMS) { 3107 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3108 "already has streams set up.\n", 3109 ep->desc.bEndpointAddress); 3110 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3111 "dynamic stream context array reallocation.\n"); 3112 return -EINVAL; 3113 } 3114 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3115 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3116 "endpoint 0x%x; URBs are pending.\n", 3117 ep->desc.bEndpointAddress); 3118 return -EINVAL; 3119 } 3120 return 0; 3121 } 3122 3123 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3124 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3125 { 3126 unsigned int max_streams; 3127 3128 /* The stream context array size must be a power of two */ 3129 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3130 /* 3131 * Find out how many primary stream array entries the host controller 3132 * supports. Later we may use secondary stream arrays (similar to 2nd 3133 * level page entries), but that's an optional feature for xHCI host 3134 * controllers. xHCs must support at least 4 stream IDs. 3135 */ 3136 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3137 if (*num_stream_ctxs > max_streams) { 3138 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3139 max_streams); 3140 *num_stream_ctxs = max_streams; 3141 *num_streams = max_streams; 3142 } 3143 } 3144 3145 /* Returns an error code if one of the endpoint already has streams. 3146 * This does not change any data structures, it only checks and gathers 3147 * information. 3148 */ 3149 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3150 struct usb_device *udev, 3151 struct usb_host_endpoint **eps, unsigned int num_eps, 3152 unsigned int *num_streams, u32 *changed_ep_bitmask) 3153 { 3154 unsigned int max_streams; 3155 unsigned int endpoint_flag; 3156 int i; 3157 int ret; 3158 3159 for (i = 0; i < num_eps; i++) { 3160 ret = xhci_check_streams_endpoint(xhci, udev, 3161 eps[i], udev->slot_id); 3162 if (ret < 0) 3163 return ret; 3164 3165 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3166 if (max_streams < (*num_streams - 1)) { 3167 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3168 eps[i]->desc.bEndpointAddress, 3169 max_streams); 3170 *num_streams = max_streams+1; 3171 } 3172 3173 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3174 if (*changed_ep_bitmask & endpoint_flag) 3175 return -EINVAL; 3176 *changed_ep_bitmask |= endpoint_flag; 3177 } 3178 return 0; 3179 } 3180 3181 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3182 struct usb_device *udev, 3183 struct usb_host_endpoint **eps, unsigned int num_eps) 3184 { 3185 u32 changed_ep_bitmask = 0; 3186 unsigned int slot_id; 3187 unsigned int ep_index; 3188 unsigned int ep_state; 3189 int i; 3190 3191 slot_id = udev->slot_id; 3192 if (!xhci->devs[slot_id]) 3193 return 0; 3194 3195 for (i = 0; i < num_eps; i++) { 3196 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3197 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3198 /* Are streams already being freed for the endpoint? */ 3199 if (ep_state & EP_GETTING_NO_STREAMS) { 3200 xhci_warn(xhci, "WARN Can't disable streams for " 3201 "endpoint 0x%x, " 3202 "streams are being disabled already\n", 3203 eps[i]->desc.bEndpointAddress); 3204 return 0; 3205 } 3206 /* Are there actually any streams to free? */ 3207 if (!(ep_state & EP_HAS_STREAMS) && 3208 !(ep_state & EP_GETTING_STREAMS)) { 3209 xhci_warn(xhci, "WARN Can't disable streams for " 3210 "endpoint 0x%x, " 3211 "streams are already disabled!\n", 3212 eps[i]->desc.bEndpointAddress); 3213 xhci_warn(xhci, "WARN xhci_free_streams() called " 3214 "with non-streams endpoint\n"); 3215 return 0; 3216 } 3217 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3218 } 3219 return changed_ep_bitmask; 3220 } 3221 3222 /* 3223 * The USB device drivers use this function (through the HCD interface in USB 3224 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3225 * coordinate mass storage command queueing across multiple endpoints (basically 3226 * a stream ID == a task ID). 3227 * 3228 * Setting up streams involves allocating the same size stream context array 3229 * for each endpoint and issuing a configure endpoint command for all endpoints. 3230 * 3231 * Don't allow the call to succeed if one endpoint only supports one stream 3232 * (which means it doesn't support streams at all). 3233 * 3234 * Drivers may get less stream IDs than they asked for, if the host controller 3235 * hardware or endpoints claim they can't support the number of requested 3236 * stream IDs. 3237 */ 3238 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3239 struct usb_host_endpoint **eps, unsigned int num_eps, 3240 unsigned int num_streams, gfp_t mem_flags) 3241 { 3242 int i, ret; 3243 struct xhci_hcd *xhci; 3244 struct xhci_virt_device *vdev; 3245 struct xhci_command *config_cmd; 3246 struct xhci_input_control_ctx *ctrl_ctx; 3247 unsigned int ep_index; 3248 unsigned int num_stream_ctxs; 3249 unsigned int max_packet; 3250 unsigned long flags; 3251 u32 changed_ep_bitmask = 0; 3252 3253 if (!eps) 3254 return -EINVAL; 3255 3256 /* Add one to the number of streams requested to account for 3257 * stream 0 that is reserved for xHCI usage. 3258 */ 3259 num_streams += 1; 3260 xhci = hcd_to_xhci(hcd); 3261 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3262 num_streams); 3263 3264 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3265 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3266 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3267 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3268 return -ENOSYS; 3269 } 3270 3271 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3272 if (!config_cmd) 3273 return -ENOMEM; 3274 3275 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3276 if (!ctrl_ctx) { 3277 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3278 __func__); 3279 xhci_free_command(xhci, config_cmd); 3280 return -ENOMEM; 3281 } 3282 3283 /* Check to make sure all endpoints are not already configured for 3284 * streams. While we're at it, find the maximum number of streams that 3285 * all the endpoints will support and check for duplicate endpoints. 3286 */ 3287 spin_lock_irqsave(&xhci->lock, flags); 3288 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3289 num_eps, &num_streams, &changed_ep_bitmask); 3290 if (ret < 0) { 3291 xhci_free_command(xhci, config_cmd); 3292 spin_unlock_irqrestore(&xhci->lock, flags); 3293 return ret; 3294 } 3295 if (num_streams <= 1) { 3296 xhci_warn(xhci, "WARN: endpoints can't handle " 3297 "more than one stream.\n"); 3298 xhci_free_command(xhci, config_cmd); 3299 spin_unlock_irqrestore(&xhci->lock, flags); 3300 return -EINVAL; 3301 } 3302 vdev = xhci->devs[udev->slot_id]; 3303 /* Mark each endpoint as being in transition, so 3304 * xhci_urb_enqueue() will reject all URBs. 3305 */ 3306 for (i = 0; i < num_eps; i++) { 3307 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3308 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3309 } 3310 spin_unlock_irqrestore(&xhci->lock, flags); 3311 3312 /* Setup internal data structures and allocate HW data structures for 3313 * streams (but don't install the HW structures in the input context 3314 * until we're sure all memory allocation succeeded). 3315 */ 3316 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3317 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3318 num_stream_ctxs, num_streams); 3319 3320 for (i = 0; i < num_eps; i++) { 3321 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3322 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3323 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3324 num_stream_ctxs, 3325 num_streams, 3326 max_packet, mem_flags); 3327 if (!vdev->eps[ep_index].stream_info) 3328 goto cleanup; 3329 /* Set maxPstreams in endpoint context and update deq ptr to 3330 * point to stream context array. FIXME 3331 */ 3332 } 3333 3334 /* Set up the input context for a configure endpoint command. */ 3335 for (i = 0; i < num_eps; i++) { 3336 struct xhci_ep_ctx *ep_ctx; 3337 3338 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3339 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3340 3341 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3342 vdev->out_ctx, ep_index); 3343 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3344 vdev->eps[ep_index].stream_info); 3345 } 3346 /* Tell the HW to drop its old copy of the endpoint context info 3347 * and add the updated copy from the input context. 3348 */ 3349 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3350 vdev->out_ctx, ctrl_ctx, 3351 changed_ep_bitmask, changed_ep_bitmask); 3352 3353 /* Issue and wait for the configure endpoint command */ 3354 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3355 false, false); 3356 3357 /* xHC rejected the configure endpoint command for some reason, so we 3358 * leave the old ring intact and free our internal streams data 3359 * structure. 3360 */ 3361 if (ret < 0) 3362 goto cleanup; 3363 3364 spin_lock_irqsave(&xhci->lock, flags); 3365 for (i = 0; i < num_eps; i++) { 3366 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3367 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3368 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3369 udev->slot_id, ep_index); 3370 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3371 } 3372 xhci_free_command(xhci, config_cmd); 3373 spin_unlock_irqrestore(&xhci->lock, flags); 3374 3375 /* Subtract 1 for stream 0, which drivers can't use */ 3376 return num_streams - 1; 3377 3378 cleanup: 3379 /* If it didn't work, free the streams! */ 3380 for (i = 0; i < num_eps; i++) { 3381 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3382 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3383 vdev->eps[ep_index].stream_info = NULL; 3384 /* FIXME Unset maxPstreams in endpoint context and 3385 * update deq ptr to point to normal string ring. 3386 */ 3387 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3388 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3389 xhci_endpoint_zero(xhci, vdev, eps[i]); 3390 } 3391 xhci_free_command(xhci, config_cmd); 3392 return -ENOMEM; 3393 } 3394 3395 /* Transition the endpoint from using streams to being a "normal" endpoint 3396 * without streams. 3397 * 3398 * Modify the endpoint context state, submit a configure endpoint command, 3399 * and free all endpoint rings for streams if that completes successfully. 3400 */ 3401 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3402 struct usb_host_endpoint **eps, unsigned int num_eps, 3403 gfp_t mem_flags) 3404 { 3405 int i, ret; 3406 struct xhci_hcd *xhci; 3407 struct xhci_virt_device *vdev; 3408 struct xhci_command *command; 3409 struct xhci_input_control_ctx *ctrl_ctx; 3410 unsigned int ep_index; 3411 unsigned long flags; 3412 u32 changed_ep_bitmask; 3413 3414 xhci = hcd_to_xhci(hcd); 3415 vdev = xhci->devs[udev->slot_id]; 3416 3417 /* Set up a configure endpoint command to remove the streams rings */ 3418 spin_lock_irqsave(&xhci->lock, flags); 3419 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3420 udev, eps, num_eps); 3421 if (changed_ep_bitmask == 0) { 3422 spin_unlock_irqrestore(&xhci->lock, flags); 3423 return -EINVAL; 3424 } 3425 3426 /* Use the xhci_command structure from the first endpoint. We may have 3427 * allocated too many, but the driver may call xhci_free_streams() for 3428 * each endpoint it grouped into one call to xhci_alloc_streams(). 3429 */ 3430 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3431 command = vdev->eps[ep_index].stream_info->free_streams_command; 3432 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3433 if (!ctrl_ctx) { 3434 spin_unlock_irqrestore(&xhci->lock, flags); 3435 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3436 __func__); 3437 return -EINVAL; 3438 } 3439 3440 for (i = 0; i < num_eps; i++) { 3441 struct xhci_ep_ctx *ep_ctx; 3442 3443 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3444 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3445 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3446 EP_GETTING_NO_STREAMS; 3447 3448 xhci_endpoint_copy(xhci, command->in_ctx, 3449 vdev->out_ctx, ep_index); 3450 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3451 &vdev->eps[ep_index]); 3452 } 3453 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3454 vdev->out_ctx, ctrl_ctx, 3455 changed_ep_bitmask, changed_ep_bitmask); 3456 spin_unlock_irqrestore(&xhci->lock, flags); 3457 3458 /* Issue and wait for the configure endpoint command, 3459 * which must succeed. 3460 */ 3461 ret = xhci_configure_endpoint(xhci, udev, command, 3462 false, true); 3463 3464 /* xHC rejected the configure endpoint command for some reason, so we 3465 * leave the streams rings intact. 3466 */ 3467 if (ret < 0) 3468 return ret; 3469 3470 spin_lock_irqsave(&xhci->lock, flags); 3471 for (i = 0; i < num_eps; i++) { 3472 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3473 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3474 vdev->eps[ep_index].stream_info = NULL; 3475 /* FIXME Unset maxPstreams in endpoint context and 3476 * update deq ptr to point to normal string ring. 3477 */ 3478 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3479 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3480 } 3481 spin_unlock_irqrestore(&xhci->lock, flags); 3482 3483 return 0; 3484 } 3485 3486 /* 3487 * Deletes endpoint resources for endpoints that were active before a Reset 3488 * Device command, or a Disable Slot command. The Reset Device command leaves 3489 * the control endpoint intact, whereas the Disable Slot command deletes it. 3490 * 3491 * Must be called with xhci->lock held. 3492 */ 3493 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3494 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3495 { 3496 int i; 3497 unsigned int num_dropped_eps = 0; 3498 unsigned int drop_flags = 0; 3499 3500 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3501 if (virt_dev->eps[i].ring) { 3502 drop_flags |= 1 << i; 3503 num_dropped_eps++; 3504 } 3505 } 3506 xhci->num_active_eps -= num_dropped_eps; 3507 if (num_dropped_eps) 3508 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3509 "Dropped %u ep ctxs, flags = 0x%x, " 3510 "%u now active.", 3511 num_dropped_eps, drop_flags, 3512 xhci->num_active_eps); 3513 } 3514 3515 /* 3516 * This submits a Reset Device Command, which will set the device state to 0, 3517 * set the device address to 0, and disable all the endpoints except the default 3518 * control endpoint. The USB core should come back and call 3519 * xhci_address_device(), and then re-set up the configuration. If this is 3520 * called because of a usb_reset_and_verify_device(), then the old alternate 3521 * settings will be re-installed through the normal bandwidth allocation 3522 * functions. 3523 * 3524 * Wait for the Reset Device command to finish. Remove all structures 3525 * associated with the endpoints that were disabled. Clear the input device 3526 * structure? Reset the control endpoint 0 max packet size? 3527 * 3528 * If the virt_dev to be reset does not exist or does not match the udev, 3529 * it means the device is lost, possibly due to the xHC restore error and 3530 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3531 * re-allocate the device. 3532 */ 3533 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3534 struct usb_device *udev) 3535 { 3536 int ret, i; 3537 unsigned long flags; 3538 struct xhci_hcd *xhci; 3539 unsigned int slot_id; 3540 struct xhci_virt_device *virt_dev; 3541 struct xhci_command *reset_device_cmd; 3542 struct xhci_slot_ctx *slot_ctx; 3543 int old_active_eps = 0; 3544 3545 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3546 if (ret <= 0) 3547 return ret; 3548 xhci = hcd_to_xhci(hcd); 3549 slot_id = udev->slot_id; 3550 virt_dev = xhci->devs[slot_id]; 3551 if (!virt_dev) { 3552 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3553 "not exist. Re-allocate the device\n", slot_id); 3554 ret = xhci_alloc_dev(hcd, udev); 3555 if (ret == 1) 3556 return 0; 3557 else 3558 return -EINVAL; 3559 } 3560 3561 if (virt_dev->tt_info) 3562 old_active_eps = virt_dev->tt_info->active_eps; 3563 3564 if (virt_dev->udev != udev) { 3565 /* If the virt_dev and the udev does not match, this virt_dev 3566 * may belong to another udev. 3567 * Re-allocate the device. 3568 */ 3569 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3570 "not match the udev. Re-allocate the device\n", 3571 slot_id); 3572 ret = xhci_alloc_dev(hcd, udev); 3573 if (ret == 1) 3574 return 0; 3575 else 3576 return -EINVAL; 3577 } 3578 3579 /* If device is not setup, there is no point in resetting it */ 3580 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3581 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3582 SLOT_STATE_DISABLED) 3583 return 0; 3584 3585 trace_xhci_discover_or_reset_device(slot_ctx); 3586 3587 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3588 /* Allocate the command structure that holds the struct completion. 3589 * Assume we're in process context, since the normal device reset 3590 * process has to wait for the device anyway. Storage devices are 3591 * reset as part of error handling, so use GFP_NOIO instead of 3592 * GFP_KERNEL. 3593 */ 3594 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3595 if (!reset_device_cmd) { 3596 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3597 return -ENOMEM; 3598 } 3599 3600 /* Attempt to submit the Reset Device command to the command ring */ 3601 spin_lock_irqsave(&xhci->lock, flags); 3602 3603 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3604 if (ret) { 3605 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3606 spin_unlock_irqrestore(&xhci->lock, flags); 3607 goto command_cleanup; 3608 } 3609 xhci_ring_cmd_db(xhci); 3610 spin_unlock_irqrestore(&xhci->lock, flags); 3611 3612 /* Wait for the Reset Device command to finish */ 3613 wait_for_completion(reset_device_cmd->completion); 3614 3615 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3616 * unless we tried to reset a slot ID that wasn't enabled, 3617 * or the device wasn't in the addressed or configured state. 3618 */ 3619 ret = reset_device_cmd->status; 3620 switch (ret) { 3621 case COMP_COMMAND_ABORTED: 3622 case COMP_COMMAND_RING_STOPPED: 3623 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3624 ret = -ETIME; 3625 goto command_cleanup; 3626 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3627 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3628 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3629 slot_id, 3630 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3631 xhci_dbg(xhci, "Not freeing device rings.\n"); 3632 /* Don't treat this as an error. May change my mind later. */ 3633 ret = 0; 3634 goto command_cleanup; 3635 case COMP_SUCCESS: 3636 xhci_dbg(xhci, "Successful reset device command.\n"); 3637 break; 3638 default: 3639 if (xhci_is_vendor_info_code(xhci, ret)) 3640 break; 3641 xhci_warn(xhci, "Unknown completion code %u for " 3642 "reset device command.\n", ret); 3643 ret = -EINVAL; 3644 goto command_cleanup; 3645 } 3646 3647 /* Free up host controller endpoint resources */ 3648 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3649 spin_lock_irqsave(&xhci->lock, flags); 3650 /* Don't delete the default control endpoint resources */ 3651 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3652 spin_unlock_irqrestore(&xhci->lock, flags); 3653 } 3654 3655 /* Everything but endpoint 0 is disabled, so free the rings. */ 3656 for (i = 1; i < 31; i++) { 3657 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3658 3659 if (ep->ep_state & EP_HAS_STREAMS) { 3660 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3661 xhci_get_endpoint_address(i)); 3662 xhci_free_stream_info(xhci, ep->stream_info); 3663 ep->stream_info = NULL; 3664 ep->ep_state &= ~EP_HAS_STREAMS; 3665 } 3666 3667 if (ep->ring) { 3668 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3669 xhci_free_endpoint_ring(xhci, virt_dev, i); 3670 } 3671 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3672 xhci_drop_ep_from_interval_table(xhci, 3673 &virt_dev->eps[i].bw_info, 3674 virt_dev->bw_table, 3675 udev, 3676 &virt_dev->eps[i], 3677 virt_dev->tt_info); 3678 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3679 } 3680 /* If necessary, update the number of active TTs on this root port */ 3681 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3682 ret = 0; 3683 3684 command_cleanup: 3685 xhci_free_command(xhci, reset_device_cmd); 3686 return ret; 3687 } 3688 3689 /* 3690 * At this point, the struct usb_device is about to go away, the device has 3691 * disconnected, and all traffic has been stopped and the endpoints have been 3692 * disabled. Free any HC data structures associated with that device. 3693 */ 3694 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3695 { 3696 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3697 struct xhci_virt_device *virt_dev; 3698 struct xhci_slot_ctx *slot_ctx; 3699 int i, ret; 3700 3701 #ifndef CONFIG_USB_DEFAULT_PERSIST 3702 /* 3703 * We called pm_runtime_get_noresume when the device was attached. 3704 * Decrement the counter here to allow controller to runtime suspend 3705 * if no devices remain. 3706 */ 3707 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3708 pm_runtime_put_noidle(hcd->self.controller); 3709 #endif 3710 3711 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3712 /* If the host is halted due to driver unload, we still need to free the 3713 * device. 3714 */ 3715 if (ret <= 0 && ret != -ENODEV) 3716 return; 3717 3718 virt_dev = xhci->devs[udev->slot_id]; 3719 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3720 trace_xhci_free_dev(slot_ctx); 3721 3722 /* Stop any wayward timer functions (which may grab the lock) */ 3723 for (i = 0; i < 31; i++) { 3724 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3725 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3726 } 3727 xhci_debugfs_remove_slot(xhci, udev->slot_id); 3728 virt_dev->udev = NULL; 3729 ret = xhci_disable_slot(xhci, udev->slot_id); 3730 if (ret) 3731 xhci_free_virt_device(xhci, udev->slot_id); 3732 } 3733 3734 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3735 { 3736 struct xhci_command *command; 3737 unsigned long flags; 3738 u32 state; 3739 int ret = 0; 3740 3741 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3742 if (!command) 3743 return -ENOMEM; 3744 3745 spin_lock_irqsave(&xhci->lock, flags); 3746 /* Don't disable the slot if the host controller is dead. */ 3747 state = readl(&xhci->op_regs->status); 3748 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3749 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3750 spin_unlock_irqrestore(&xhci->lock, flags); 3751 kfree(command); 3752 return -ENODEV; 3753 } 3754 3755 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3756 slot_id); 3757 if (ret) { 3758 spin_unlock_irqrestore(&xhci->lock, flags); 3759 kfree(command); 3760 return ret; 3761 } 3762 xhci_ring_cmd_db(xhci); 3763 spin_unlock_irqrestore(&xhci->lock, flags); 3764 return ret; 3765 } 3766 3767 /* 3768 * Checks if we have enough host controller resources for the default control 3769 * endpoint. 3770 * 3771 * Must be called with xhci->lock held. 3772 */ 3773 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3774 { 3775 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3776 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3777 "Not enough ep ctxs: " 3778 "%u active, need to add 1, limit is %u.", 3779 xhci->num_active_eps, xhci->limit_active_eps); 3780 return -ENOMEM; 3781 } 3782 xhci->num_active_eps += 1; 3783 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3784 "Adding 1 ep ctx, %u now active.", 3785 xhci->num_active_eps); 3786 return 0; 3787 } 3788 3789 3790 /* 3791 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3792 * timed out, or allocating memory failed. Returns 1 on success. 3793 */ 3794 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3795 { 3796 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3797 struct xhci_virt_device *vdev; 3798 struct xhci_slot_ctx *slot_ctx; 3799 unsigned long flags; 3800 int ret, slot_id; 3801 struct xhci_command *command; 3802 3803 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3804 if (!command) 3805 return 0; 3806 3807 spin_lock_irqsave(&xhci->lock, flags); 3808 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3809 if (ret) { 3810 spin_unlock_irqrestore(&xhci->lock, flags); 3811 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3812 xhci_free_command(xhci, command); 3813 return 0; 3814 } 3815 xhci_ring_cmd_db(xhci); 3816 spin_unlock_irqrestore(&xhci->lock, flags); 3817 3818 wait_for_completion(command->completion); 3819 slot_id = command->slot_id; 3820 3821 if (!slot_id || command->status != COMP_SUCCESS) { 3822 xhci_err(xhci, "Error while assigning device slot ID\n"); 3823 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3824 HCS_MAX_SLOTS( 3825 readl(&xhci->cap_regs->hcs_params1))); 3826 xhci_free_command(xhci, command); 3827 return 0; 3828 } 3829 3830 xhci_free_command(xhci, command); 3831 3832 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3833 spin_lock_irqsave(&xhci->lock, flags); 3834 ret = xhci_reserve_host_control_ep_resources(xhci); 3835 if (ret) { 3836 spin_unlock_irqrestore(&xhci->lock, flags); 3837 xhci_warn(xhci, "Not enough host resources, " 3838 "active endpoint contexts = %u\n", 3839 xhci->num_active_eps); 3840 goto disable_slot; 3841 } 3842 spin_unlock_irqrestore(&xhci->lock, flags); 3843 } 3844 /* Use GFP_NOIO, since this function can be called from 3845 * xhci_discover_or_reset_device(), which may be called as part of 3846 * mass storage driver error handling. 3847 */ 3848 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3849 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3850 goto disable_slot; 3851 } 3852 vdev = xhci->devs[slot_id]; 3853 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3854 trace_xhci_alloc_dev(slot_ctx); 3855 3856 udev->slot_id = slot_id; 3857 3858 xhci_debugfs_create_slot(xhci, slot_id); 3859 3860 #ifndef CONFIG_USB_DEFAULT_PERSIST 3861 /* 3862 * If resetting upon resume, we can't put the controller into runtime 3863 * suspend if there is a device attached. 3864 */ 3865 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3866 pm_runtime_get_noresume(hcd->self.controller); 3867 #endif 3868 3869 /* Is this a LS or FS device under a HS hub? */ 3870 /* Hub or peripherial? */ 3871 return 1; 3872 3873 disable_slot: 3874 ret = xhci_disable_slot(xhci, udev->slot_id); 3875 if (ret) 3876 xhci_free_virt_device(xhci, udev->slot_id); 3877 3878 return 0; 3879 } 3880 3881 /* 3882 * Issue an Address Device command and optionally send a corresponding 3883 * SetAddress request to the device. 3884 */ 3885 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3886 enum xhci_setup_dev setup) 3887 { 3888 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3889 unsigned long flags; 3890 struct xhci_virt_device *virt_dev; 3891 int ret = 0; 3892 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3893 struct xhci_slot_ctx *slot_ctx; 3894 struct xhci_input_control_ctx *ctrl_ctx; 3895 u64 temp_64; 3896 struct xhci_command *command = NULL; 3897 3898 mutex_lock(&xhci->mutex); 3899 3900 if (xhci->xhc_state) { /* dying, removing or halted */ 3901 ret = -ESHUTDOWN; 3902 goto out; 3903 } 3904 3905 if (!udev->slot_id) { 3906 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3907 "Bad Slot ID %d", udev->slot_id); 3908 ret = -EINVAL; 3909 goto out; 3910 } 3911 3912 virt_dev = xhci->devs[udev->slot_id]; 3913 3914 if (WARN_ON(!virt_dev)) { 3915 /* 3916 * In plug/unplug torture test with an NEC controller, 3917 * a zero-dereference was observed once due to virt_dev = 0. 3918 * Print useful debug rather than crash if it is observed again! 3919 */ 3920 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3921 udev->slot_id); 3922 ret = -EINVAL; 3923 goto out; 3924 } 3925 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3926 trace_xhci_setup_device_slot(slot_ctx); 3927 3928 if (setup == SETUP_CONTEXT_ONLY) { 3929 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3930 SLOT_STATE_DEFAULT) { 3931 xhci_dbg(xhci, "Slot already in default state\n"); 3932 goto out; 3933 } 3934 } 3935 3936 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3937 if (!command) { 3938 ret = -ENOMEM; 3939 goto out; 3940 } 3941 3942 command->in_ctx = virt_dev->in_ctx; 3943 3944 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3945 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3946 if (!ctrl_ctx) { 3947 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3948 __func__); 3949 ret = -EINVAL; 3950 goto out; 3951 } 3952 /* 3953 * If this is the first Set Address since device plug-in or 3954 * virt_device realloaction after a resume with an xHCI power loss, 3955 * then set up the slot context. 3956 */ 3957 if (!slot_ctx->dev_info) 3958 xhci_setup_addressable_virt_dev(xhci, udev); 3959 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3960 else 3961 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3962 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3963 ctrl_ctx->drop_flags = 0; 3964 3965 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3966 le32_to_cpu(slot_ctx->dev_info) >> 27); 3967 3968 spin_lock_irqsave(&xhci->lock, flags); 3969 trace_xhci_setup_device(virt_dev); 3970 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3971 udev->slot_id, setup); 3972 if (ret) { 3973 spin_unlock_irqrestore(&xhci->lock, flags); 3974 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3975 "FIXME: allocate a command ring segment"); 3976 goto out; 3977 } 3978 xhci_ring_cmd_db(xhci); 3979 spin_unlock_irqrestore(&xhci->lock, flags); 3980 3981 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3982 wait_for_completion(command->completion); 3983 3984 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3985 * the SetAddress() "recovery interval" required by USB and aborting the 3986 * command on a timeout. 3987 */ 3988 switch (command->status) { 3989 case COMP_COMMAND_ABORTED: 3990 case COMP_COMMAND_RING_STOPPED: 3991 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3992 ret = -ETIME; 3993 break; 3994 case COMP_CONTEXT_STATE_ERROR: 3995 case COMP_SLOT_NOT_ENABLED_ERROR: 3996 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3997 act, udev->slot_id); 3998 ret = -EINVAL; 3999 break; 4000 case COMP_USB_TRANSACTION_ERROR: 4001 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4002 4003 mutex_unlock(&xhci->mutex); 4004 ret = xhci_disable_slot(xhci, udev->slot_id); 4005 if (!ret) 4006 xhci_alloc_dev(hcd, udev); 4007 kfree(command->completion); 4008 kfree(command); 4009 return -EPROTO; 4010 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4011 dev_warn(&udev->dev, 4012 "ERROR: Incompatible device for setup %s command\n", act); 4013 ret = -ENODEV; 4014 break; 4015 case COMP_SUCCESS: 4016 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4017 "Successful setup %s command", act); 4018 break; 4019 default: 4020 xhci_err(xhci, 4021 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4022 act, command->status); 4023 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4024 ret = -EINVAL; 4025 break; 4026 } 4027 if (ret) 4028 goto out; 4029 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4030 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4031 "Op regs DCBAA ptr = %#016llx", temp_64); 4032 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4033 "Slot ID %d dcbaa entry @%p = %#016llx", 4034 udev->slot_id, 4035 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4036 (unsigned long long) 4037 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4038 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4039 "Output Context DMA address = %#08llx", 4040 (unsigned long long)virt_dev->out_ctx->dma); 4041 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4042 le32_to_cpu(slot_ctx->dev_info) >> 27); 4043 /* 4044 * USB core uses address 1 for the roothubs, so we add one to the 4045 * address given back to us by the HC. 4046 */ 4047 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4048 le32_to_cpu(slot_ctx->dev_info) >> 27); 4049 /* Zero the input context control for later use */ 4050 ctrl_ctx->add_flags = 0; 4051 ctrl_ctx->drop_flags = 0; 4052 4053 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4054 "Internal device address = %d", 4055 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4056 out: 4057 mutex_unlock(&xhci->mutex); 4058 if (command) { 4059 kfree(command->completion); 4060 kfree(command); 4061 } 4062 return ret; 4063 } 4064 4065 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4066 { 4067 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4068 } 4069 4070 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4071 { 4072 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4073 } 4074 4075 /* 4076 * Transfer the port index into real index in the HW port status 4077 * registers. Caculate offset between the port's PORTSC register 4078 * and port status base. Divide the number of per port register 4079 * to get the real index. The raw port number bases 1. 4080 */ 4081 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4082 { 4083 struct xhci_hub *rhub; 4084 4085 rhub = xhci_get_rhub(hcd); 4086 return rhub->ports[port1 - 1]->hw_portnum + 1; 4087 } 4088 4089 /* 4090 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4091 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4092 */ 4093 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4094 struct usb_device *udev, u16 max_exit_latency) 4095 { 4096 struct xhci_virt_device *virt_dev; 4097 struct xhci_command *command; 4098 struct xhci_input_control_ctx *ctrl_ctx; 4099 struct xhci_slot_ctx *slot_ctx; 4100 unsigned long flags; 4101 int ret; 4102 4103 spin_lock_irqsave(&xhci->lock, flags); 4104 4105 virt_dev = xhci->devs[udev->slot_id]; 4106 4107 /* 4108 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4109 * xHC was re-initialized. Exit latency will be set later after 4110 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4111 */ 4112 4113 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4114 spin_unlock_irqrestore(&xhci->lock, flags); 4115 return 0; 4116 } 4117 4118 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4119 command = xhci->lpm_command; 4120 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4121 if (!ctrl_ctx) { 4122 spin_unlock_irqrestore(&xhci->lock, flags); 4123 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4124 __func__); 4125 return -ENOMEM; 4126 } 4127 4128 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4129 spin_unlock_irqrestore(&xhci->lock, flags); 4130 4131 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4132 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4133 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4134 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4135 slot_ctx->dev_state = 0; 4136 4137 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4138 "Set up evaluate context for LPM MEL change."); 4139 4140 /* Issue and wait for the evaluate context command. */ 4141 ret = xhci_configure_endpoint(xhci, udev, command, 4142 true, true); 4143 4144 if (!ret) { 4145 spin_lock_irqsave(&xhci->lock, flags); 4146 virt_dev->current_mel = max_exit_latency; 4147 spin_unlock_irqrestore(&xhci->lock, flags); 4148 } 4149 return ret; 4150 } 4151 4152 #ifdef CONFIG_PM 4153 4154 /* BESL to HIRD Encoding array for USB2 LPM */ 4155 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4156 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4157 4158 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4159 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4160 struct usb_device *udev) 4161 { 4162 int u2del, besl, besl_host; 4163 int besl_device = 0; 4164 u32 field; 4165 4166 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4167 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4168 4169 if (field & USB_BESL_SUPPORT) { 4170 for (besl_host = 0; besl_host < 16; besl_host++) { 4171 if (xhci_besl_encoding[besl_host] >= u2del) 4172 break; 4173 } 4174 /* Use baseline BESL value as default */ 4175 if (field & USB_BESL_BASELINE_VALID) 4176 besl_device = USB_GET_BESL_BASELINE(field); 4177 else if (field & USB_BESL_DEEP_VALID) 4178 besl_device = USB_GET_BESL_DEEP(field); 4179 } else { 4180 if (u2del <= 50) 4181 besl_host = 0; 4182 else 4183 besl_host = (u2del - 51) / 75 + 1; 4184 } 4185 4186 besl = besl_host + besl_device; 4187 if (besl > 15) 4188 besl = 15; 4189 4190 return besl; 4191 } 4192 4193 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4194 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4195 { 4196 u32 field; 4197 int l1; 4198 int besld = 0; 4199 int hirdm = 0; 4200 4201 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4202 4203 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4204 l1 = udev->l1_params.timeout / 256; 4205 4206 /* device has preferred BESLD */ 4207 if (field & USB_BESL_DEEP_VALID) { 4208 besld = USB_GET_BESL_DEEP(field); 4209 hirdm = 1; 4210 } 4211 4212 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4213 } 4214 4215 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4216 struct usb_device *udev, int enable) 4217 { 4218 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4219 struct xhci_port **ports; 4220 __le32 __iomem *pm_addr, *hlpm_addr; 4221 u32 pm_val, hlpm_val, field; 4222 unsigned int port_num; 4223 unsigned long flags; 4224 int hird, exit_latency; 4225 int ret; 4226 4227 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4228 !udev->lpm_capable) 4229 return -EPERM; 4230 4231 if (!udev->parent || udev->parent->parent || 4232 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4233 return -EPERM; 4234 4235 if (udev->usb2_hw_lpm_capable != 1) 4236 return -EPERM; 4237 4238 spin_lock_irqsave(&xhci->lock, flags); 4239 4240 ports = xhci->usb2_rhub.ports; 4241 port_num = udev->portnum - 1; 4242 pm_addr = ports[port_num]->addr + PORTPMSC; 4243 pm_val = readl(pm_addr); 4244 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4245 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4246 4247 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4248 enable ? "enable" : "disable", port_num + 1); 4249 4250 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) { 4251 /* Host supports BESL timeout instead of HIRD */ 4252 if (udev->usb2_hw_lpm_besl_capable) { 4253 /* if device doesn't have a preferred BESL value use a 4254 * default one which works with mixed HIRD and BESL 4255 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4256 */ 4257 if ((field & USB_BESL_SUPPORT) && 4258 (field & USB_BESL_BASELINE_VALID)) 4259 hird = USB_GET_BESL_BASELINE(field); 4260 else 4261 hird = udev->l1_params.besl; 4262 4263 exit_latency = xhci_besl_encoding[hird]; 4264 spin_unlock_irqrestore(&xhci->lock, flags); 4265 4266 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4267 * input context for link powermanagement evaluate 4268 * context commands. It is protected by hcd->bandwidth 4269 * mutex and is shared by all devices. We need to set 4270 * the max ext latency in USB 2 BESL LPM as well, so 4271 * use the same mutex and xhci_change_max_exit_latency() 4272 */ 4273 mutex_lock(hcd->bandwidth_mutex); 4274 ret = xhci_change_max_exit_latency(xhci, udev, 4275 exit_latency); 4276 mutex_unlock(hcd->bandwidth_mutex); 4277 4278 if (ret < 0) 4279 return ret; 4280 spin_lock_irqsave(&xhci->lock, flags); 4281 4282 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4283 writel(hlpm_val, hlpm_addr); 4284 /* flush write */ 4285 readl(hlpm_addr); 4286 } else { 4287 hird = xhci_calculate_hird_besl(xhci, udev); 4288 } 4289 4290 pm_val &= ~PORT_HIRD_MASK; 4291 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4292 writel(pm_val, pm_addr); 4293 pm_val = readl(pm_addr); 4294 pm_val |= PORT_HLE; 4295 writel(pm_val, pm_addr); 4296 /* flush write */ 4297 readl(pm_addr); 4298 } else { 4299 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4300 writel(pm_val, pm_addr); 4301 /* flush write */ 4302 readl(pm_addr); 4303 if (udev->usb2_hw_lpm_besl_capable) { 4304 spin_unlock_irqrestore(&xhci->lock, flags); 4305 mutex_lock(hcd->bandwidth_mutex); 4306 xhci_change_max_exit_latency(xhci, udev, 0); 4307 mutex_unlock(hcd->bandwidth_mutex); 4308 return 0; 4309 } 4310 } 4311 4312 spin_unlock_irqrestore(&xhci->lock, flags); 4313 return 0; 4314 } 4315 4316 /* check if a usb2 port supports a given extened capability protocol 4317 * only USB2 ports extended protocol capability values are cached. 4318 * Return 1 if capability is supported 4319 */ 4320 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4321 unsigned capability) 4322 { 4323 u32 port_offset, port_count; 4324 int i; 4325 4326 for (i = 0; i < xhci->num_ext_caps; i++) { 4327 if (xhci->ext_caps[i] & capability) { 4328 /* port offsets starts at 1 */ 4329 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4330 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4331 if (port >= port_offset && 4332 port < port_offset + port_count) 4333 return 1; 4334 } 4335 } 4336 return 0; 4337 } 4338 4339 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4340 { 4341 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4342 int portnum = udev->portnum - 1; 4343 4344 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4345 !udev->lpm_capable) 4346 return 0; 4347 4348 /* we only support lpm for non-hub device connected to root hub yet */ 4349 if (!udev->parent || udev->parent->parent || 4350 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4351 return 0; 4352 4353 if (xhci->hw_lpm_support == 1 && 4354 xhci_check_usb2_port_capability( 4355 xhci, portnum, XHCI_HLC)) { 4356 udev->usb2_hw_lpm_capable = 1; 4357 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4358 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4359 if (xhci_check_usb2_port_capability(xhci, portnum, 4360 XHCI_BLC)) 4361 udev->usb2_hw_lpm_besl_capable = 1; 4362 } 4363 4364 return 0; 4365 } 4366 4367 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4368 4369 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4370 static unsigned long long xhci_service_interval_to_ns( 4371 struct usb_endpoint_descriptor *desc) 4372 { 4373 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4374 } 4375 4376 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4377 enum usb3_link_state state) 4378 { 4379 unsigned long long sel; 4380 unsigned long long pel; 4381 unsigned int max_sel_pel; 4382 char *state_name; 4383 4384 switch (state) { 4385 case USB3_LPM_U1: 4386 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4387 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4388 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4389 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4390 state_name = "U1"; 4391 break; 4392 case USB3_LPM_U2: 4393 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4394 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4395 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4396 state_name = "U2"; 4397 break; 4398 default: 4399 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4400 __func__); 4401 return USB3_LPM_DISABLED; 4402 } 4403 4404 if (sel <= max_sel_pel && pel <= max_sel_pel) 4405 return USB3_LPM_DEVICE_INITIATED; 4406 4407 if (sel > max_sel_pel) 4408 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4409 "due to long SEL %llu ms\n", 4410 state_name, sel); 4411 else 4412 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4413 "due to long PEL %llu ms\n", 4414 state_name, pel); 4415 return USB3_LPM_DISABLED; 4416 } 4417 4418 /* The U1 timeout should be the maximum of the following values: 4419 * - For control endpoints, U1 system exit latency (SEL) * 3 4420 * - For bulk endpoints, U1 SEL * 5 4421 * - For interrupt endpoints: 4422 * - Notification EPs, U1 SEL * 3 4423 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4424 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4425 */ 4426 static unsigned long long xhci_calculate_intel_u1_timeout( 4427 struct usb_device *udev, 4428 struct usb_endpoint_descriptor *desc) 4429 { 4430 unsigned long long timeout_ns; 4431 int ep_type; 4432 int intr_type; 4433 4434 ep_type = usb_endpoint_type(desc); 4435 switch (ep_type) { 4436 case USB_ENDPOINT_XFER_CONTROL: 4437 timeout_ns = udev->u1_params.sel * 3; 4438 break; 4439 case USB_ENDPOINT_XFER_BULK: 4440 timeout_ns = udev->u1_params.sel * 5; 4441 break; 4442 case USB_ENDPOINT_XFER_INT: 4443 intr_type = usb_endpoint_interrupt_type(desc); 4444 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4445 timeout_ns = udev->u1_params.sel * 3; 4446 break; 4447 } 4448 /* Otherwise the calculation is the same as isoc eps */ 4449 /* fall through */ 4450 case USB_ENDPOINT_XFER_ISOC: 4451 timeout_ns = xhci_service_interval_to_ns(desc); 4452 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4453 if (timeout_ns < udev->u1_params.sel * 2) 4454 timeout_ns = udev->u1_params.sel * 2; 4455 break; 4456 default: 4457 return 0; 4458 } 4459 4460 return timeout_ns; 4461 } 4462 4463 /* Returns the hub-encoded U1 timeout value. */ 4464 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4465 struct usb_device *udev, 4466 struct usb_endpoint_descriptor *desc) 4467 { 4468 unsigned long long timeout_ns; 4469 4470 if (xhci->quirks & XHCI_INTEL_HOST) 4471 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4472 else 4473 timeout_ns = udev->u1_params.sel; 4474 4475 /* The U1 timeout is encoded in 1us intervals. 4476 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4477 */ 4478 if (timeout_ns == USB3_LPM_DISABLED) 4479 timeout_ns = 1; 4480 else 4481 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4482 4483 /* If the necessary timeout value is bigger than what we can set in the 4484 * USB 3.0 hub, we have to disable hub-initiated U1. 4485 */ 4486 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4487 return timeout_ns; 4488 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4489 "due to long timeout %llu ms\n", timeout_ns); 4490 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4491 } 4492 4493 /* The U2 timeout should be the maximum of: 4494 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4495 * - largest bInterval of any active periodic endpoint (to avoid going 4496 * into lower power link states between intervals). 4497 * - the U2 Exit Latency of the device 4498 */ 4499 static unsigned long long xhci_calculate_intel_u2_timeout( 4500 struct usb_device *udev, 4501 struct usb_endpoint_descriptor *desc) 4502 { 4503 unsigned long long timeout_ns; 4504 unsigned long long u2_del_ns; 4505 4506 timeout_ns = 10 * 1000 * 1000; 4507 4508 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4509 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4510 timeout_ns = xhci_service_interval_to_ns(desc); 4511 4512 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4513 if (u2_del_ns > timeout_ns) 4514 timeout_ns = u2_del_ns; 4515 4516 return timeout_ns; 4517 } 4518 4519 /* Returns the hub-encoded U2 timeout value. */ 4520 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4521 struct usb_device *udev, 4522 struct usb_endpoint_descriptor *desc) 4523 { 4524 unsigned long long timeout_ns; 4525 4526 if (xhci->quirks & XHCI_INTEL_HOST) 4527 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4528 else 4529 timeout_ns = udev->u2_params.sel; 4530 4531 /* The U2 timeout is encoded in 256us intervals */ 4532 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4533 /* If the necessary timeout value is bigger than what we can set in the 4534 * USB 3.0 hub, we have to disable hub-initiated U2. 4535 */ 4536 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4537 return timeout_ns; 4538 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4539 "due to long timeout %llu ms\n", timeout_ns); 4540 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4541 } 4542 4543 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4544 struct usb_device *udev, 4545 struct usb_endpoint_descriptor *desc, 4546 enum usb3_link_state state, 4547 u16 *timeout) 4548 { 4549 if (state == USB3_LPM_U1) 4550 return xhci_calculate_u1_timeout(xhci, udev, desc); 4551 else if (state == USB3_LPM_U2) 4552 return xhci_calculate_u2_timeout(xhci, udev, desc); 4553 4554 return USB3_LPM_DISABLED; 4555 } 4556 4557 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4558 struct usb_device *udev, 4559 struct usb_endpoint_descriptor *desc, 4560 enum usb3_link_state state, 4561 u16 *timeout) 4562 { 4563 u16 alt_timeout; 4564 4565 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4566 desc, state, timeout); 4567 4568 /* If we found we can't enable hub-initiated LPM, or 4569 * the U1 or U2 exit latency was too high to allow 4570 * device-initiated LPM as well, just stop searching. 4571 */ 4572 if (alt_timeout == USB3_LPM_DISABLED || 4573 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4574 *timeout = alt_timeout; 4575 return -E2BIG; 4576 } 4577 if (alt_timeout > *timeout) 4578 *timeout = alt_timeout; 4579 return 0; 4580 } 4581 4582 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4583 struct usb_device *udev, 4584 struct usb_host_interface *alt, 4585 enum usb3_link_state state, 4586 u16 *timeout) 4587 { 4588 int j; 4589 4590 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4591 if (xhci_update_timeout_for_endpoint(xhci, udev, 4592 &alt->endpoint[j].desc, state, timeout)) 4593 return -E2BIG; 4594 continue; 4595 } 4596 return 0; 4597 } 4598 4599 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4600 enum usb3_link_state state) 4601 { 4602 struct usb_device *parent; 4603 unsigned int num_hubs; 4604 4605 if (state == USB3_LPM_U2) 4606 return 0; 4607 4608 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4609 for (parent = udev->parent, num_hubs = 0; parent->parent; 4610 parent = parent->parent) 4611 num_hubs++; 4612 4613 if (num_hubs < 2) 4614 return 0; 4615 4616 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4617 " below second-tier hub.\n"); 4618 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4619 "to decrease power consumption.\n"); 4620 return -E2BIG; 4621 } 4622 4623 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4624 struct usb_device *udev, 4625 enum usb3_link_state state) 4626 { 4627 if (xhci->quirks & XHCI_INTEL_HOST) 4628 return xhci_check_intel_tier_policy(udev, state); 4629 else 4630 return 0; 4631 } 4632 4633 /* Returns the U1 or U2 timeout that should be enabled. 4634 * If the tier check or timeout setting functions return with a non-zero exit 4635 * code, that means the timeout value has been finalized and we shouldn't look 4636 * at any more endpoints. 4637 */ 4638 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4639 struct usb_device *udev, enum usb3_link_state state) 4640 { 4641 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4642 struct usb_host_config *config; 4643 char *state_name; 4644 int i; 4645 u16 timeout = USB3_LPM_DISABLED; 4646 4647 if (state == USB3_LPM_U1) 4648 state_name = "U1"; 4649 else if (state == USB3_LPM_U2) 4650 state_name = "U2"; 4651 else { 4652 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4653 state); 4654 return timeout; 4655 } 4656 4657 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4658 return timeout; 4659 4660 /* Gather some information about the currently installed configuration 4661 * and alternate interface settings. 4662 */ 4663 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4664 state, &timeout)) 4665 return timeout; 4666 4667 config = udev->actconfig; 4668 if (!config) 4669 return timeout; 4670 4671 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4672 struct usb_driver *driver; 4673 struct usb_interface *intf = config->interface[i]; 4674 4675 if (!intf) 4676 continue; 4677 4678 /* Check if any currently bound drivers want hub-initiated LPM 4679 * disabled. 4680 */ 4681 if (intf->dev.driver) { 4682 driver = to_usb_driver(intf->dev.driver); 4683 if (driver && driver->disable_hub_initiated_lpm) { 4684 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4685 "at request of driver %s\n", 4686 state_name, driver->name); 4687 return xhci_get_timeout_no_hub_lpm(udev, state); 4688 } 4689 } 4690 4691 /* Not sure how this could happen... */ 4692 if (!intf->cur_altsetting) 4693 continue; 4694 4695 if (xhci_update_timeout_for_interface(xhci, udev, 4696 intf->cur_altsetting, 4697 state, &timeout)) 4698 return timeout; 4699 } 4700 return timeout; 4701 } 4702 4703 static int calculate_max_exit_latency(struct usb_device *udev, 4704 enum usb3_link_state state_changed, 4705 u16 hub_encoded_timeout) 4706 { 4707 unsigned long long u1_mel_us = 0; 4708 unsigned long long u2_mel_us = 0; 4709 unsigned long long mel_us = 0; 4710 bool disabling_u1; 4711 bool disabling_u2; 4712 bool enabling_u1; 4713 bool enabling_u2; 4714 4715 disabling_u1 = (state_changed == USB3_LPM_U1 && 4716 hub_encoded_timeout == USB3_LPM_DISABLED); 4717 disabling_u2 = (state_changed == USB3_LPM_U2 && 4718 hub_encoded_timeout == USB3_LPM_DISABLED); 4719 4720 enabling_u1 = (state_changed == USB3_LPM_U1 && 4721 hub_encoded_timeout != USB3_LPM_DISABLED); 4722 enabling_u2 = (state_changed == USB3_LPM_U2 && 4723 hub_encoded_timeout != USB3_LPM_DISABLED); 4724 4725 /* If U1 was already enabled and we're not disabling it, 4726 * or we're going to enable U1, account for the U1 max exit latency. 4727 */ 4728 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4729 enabling_u1) 4730 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4731 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4732 enabling_u2) 4733 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4734 4735 if (u1_mel_us > u2_mel_us) 4736 mel_us = u1_mel_us; 4737 else 4738 mel_us = u2_mel_us; 4739 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4740 if (mel_us > MAX_EXIT) { 4741 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4742 "is too big.\n", mel_us); 4743 return -E2BIG; 4744 } 4745 return mel_us; 4746 } 4747 4748 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4749 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4750 struct usb_device *udev, enum usb3_link_state state) 4751 { 4752 struct xhci_hcd *xhci; 4753 u16 hub_encoded_timeout; 4754 int mel; 4755 int ret; 4756 4757 xhci = hcd_to_xhci(hcd); 4758 /* The LPM timeout values are pretty host-controller specific, so don't 4759 * enable hub-initiated timeouts unless the vendor has provided 4760 * information about their timeout algorithm. 4761 */ 4762 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4763 !xhci->devs[udev->slot_id]) 4764 return USB3_LPM_DISABLED; 4765 4766 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4767 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4768 if (mel < 0) { 4769 /* Max Exit Latency is too big, disable LPM. */ 4770 hub_encoded_timeout = USB3_LPM_DISABLED; 4771 mel = 0; 4772 } 4773 4774 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4775 if (ret) 4776 return ret; 4777 return hub_encoded_timeout; 4778 } 4779 4780 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4781 struct usb_device *udev, enum usb3_link_state state) 4782 { 4783 struct xhci_hcd *xhci; 4784 u16 mel; 4785 4786 xhci = hcd_to_xhci(hcd); 4787 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4788 !xhci->devs[udev->slot_id]) 4789 return 0; 4790 4791 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4792 return xhci_change_max_exit_latency(xhci, udev, mel); 4793 } 4794 #else /* CONFIG_PM */ 4795 4796 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4797 struct usb_device *udev, int enable) 4798 { 4799 return 0; 4800 } 4801 4802 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4803 { 4804 return 0; 4805 } 4806 4807 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4808 struct usb_device *udev, enum usb3_link_state state) 4809 { 4810 return USB3_LPM_DISABLED; 4811 } 4812 4813 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4814 struct usb_device *udev, enum usb3_link_state state) 4815 { 4816 return 0; 4817 } 4818 #endif /* CONFIG_PM */ 4819 4820 /*-------------------------------------------------------------------------*/ 4821 4822 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4823 * internal data structures for the device. 4824 */ 4825 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4826 struct usb_tt *tt, gfp_t mem_flags) 4827 { 4828 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4829 struct xhci_virt_device *vdev; 4830 struct xhci_command *config_cmd; 4831 struct xhci_input_control_ctx *ctrl_ctx; 4832 struct xhci_slot_ctx *slot_ctx; 4833 unsigned long flags; 4834 unsigned think_time; 4835 int ret; 4836 4837 /* Ignore root hubs */ 4838 if (!hdev->parent) 4839 return 0; 4840 4841 vdev = xhci->devs[hdev->slot_id]; 4842 if (!vdev) { 4843 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4844 return -EINVAL; 4845 } 4846 4847 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 4848 if (!config_cmd) 4849 return -ENOMEM; 4850 4851 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4852 if (!ctrl_ctx) { 4853 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4854 __func__); 4855 xhci_free_command(xhci, config_cmd); 4856 return -ENOMEM; 4857 } 4858 4859 spin_lock_irqsave(&xhci->lock, flags); 4860 if (hdev->speed == USB_SPEED_HIGH && 4861 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4862 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4863 xhci_free_command(xhci, config_cmd); 4864 spin_unlock_irqrestore(&xhci->lock, flags); 4865 return -ENOMEM; 4866 } 4867 4868 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4869 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4870 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4871 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4872 /* 4873 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4874 * but it may be already set to 1 when setup an xHCI virtual 4875 * device, so clear it anyway. 4876 */ 4877 if (tt->multi) 4878 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4879 else if (hdev->speed == USB_SPEED_FULL) 4880 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4881 4882 if (xhci->hci_version > 0x95) { 4883 xhci_dbg(xhci, "xHCI version %x needs hub " 4884 "TT think time and number of ports\n", 4885 (unsigned int) xhci->hci_version); 4886 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4887 /* Set TT think time - convert from ns to FS bit times. 4888 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4889 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4890 * 4891 * xHCI 1.0: this field shall be 0 if the device is not a 4892 * High-spped hub. 4893 */ 4894 think_time = tt->think_time; 4895 if (think_time != 0) 4896 think_time = (think_time / 666) - 1; 4897 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4898 slot_ctx->tt_info |= 4899 cpu_to_le32(TT_THINK_TIME(think_time)); 4900 } else { 4901 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4902 "TT think time or number of ports\n", 4903 (unsigned int) xhci->hci_version); 4904 } 4905 slot_ctx->dev_state = 0; 4906 spin_unlock_irqrestore(&xhci->lock, flags); 4907 4908 xhci_dbg(xhci, "Set up %s for hub device.\n", 4909 (xhci->hci_version > 0x95) ? 4910 "configure endpoint" : "evaluate context"); 4911 4912 /* Issue and wait for the configure endpoint or 4913 * evaluate context command. 4914 */ 4915 if (xhci->hci_version > 0x95) 4916 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4917 false, false); 4918 else 4919 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4920 true, false); 4921 4922 xhci_free_command(xhci, config_cmd); 4923 return ret; 4924 } 4925 4926 static int xhci_get_frame(struct usb_hcd *hcd) 4927 { 4928 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4929 /* EHCI mods by the periodic size. Why? */ 4930 return readl(&xhci->run_regs->microframe_index) >> 3; 4931 } 4932 4933 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4934 { 4935 struct xhci_hcd *xhci; 4936 /* 4937 * TODO: Check with DWC3 clients for sysdev according to 4938 * quirks 4939 */ 4940 struct device *dev = hcd->self.sysdev; 4941 unsigned int minor_rev; 4942 int retval; 4943 4944 /* Accept arbitrarily long scatter-gather lists */ 4945 hcd->self.sg_tablesize = ~0; 4946 4947 /* support to build packet from discontinuous buffers */ 4948 hcd->self.no_sg_constraint = 1; 4949 4950 /* XHCI controllers don't stop the ep queue on short packets :| */ 4951 hcd->self.no_stop_on_short = 1; 4952 4953 xhci = hcd_to_xhci(hcd); 4954 4955 if (usb_hcd_is_primary_hcd(hcd)) { 4956 xhci->main_hcd = hcd; 4957 xhci->usb2_rhub.hcd = hcd; 4958 /* Mark the first roothub as being USB 2.0. 4959 * The xHCI driver will register the USB 3.0 roothub. 4960 */ 4961 hcd->speed = HCD_USB2; 4962 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4963 /* 4964 * USB 2.0 roothub under xHCI has an integrated TT, 4965 * (rate matching hub) as opposed to having an OHCI/UHCI 4966 * companion controller. 4967 */ 4968 hcd->has_tt = 1; 4969 } else { 4970 /* 4971 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol 4972 * minor revision instead of sbrn 4973 */ 4974 minor_rev = xhci->usb3_rhub.min_rev; 4975 if (minor_rev) { 4976 hcd->speed = HCD_USB31; 4977 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4978 } 4979 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n", 4980 minor_rev, 4981 minor_rev ? "Enhanced" : ""); 4982 4983 xhci->usb3_rhub.hcd = hcd; 4984 /* xHCI private pointer was set in xhci_pci_probe for the second 4985 * registered roothub. 4986 */ 4987 return 0; 4988 } 4989 4990 mutex_init(&xhci->mutex); 4991 xhci->cap_regs = hcd->regs; 4992 xhci->op_regs = hcd->regs + 4993 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4994 xhci->run_regs = hcd->regs + 4995 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4996 /* Cache read-only capability registers */ 4997 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4998 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4999 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5000 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 5001 xhci->hci_version = HC_VERSION(xhci->hcc_params); 5002 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5003 if (xhci->hci_version > 0x100) 5004 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5005 5006 xhci->quirks |= quirks; 5007 5008 get_quirks(dev, xhci); 5009 5010 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5011 * success event after a short transfer. This quirk will ignore such 5012 * spurious event. 5013 */ 5014 if (xhci->hci_version > 0x96) 5015 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5016 5017 /* Make sure the HC is halted. */ 5018 retval = xhci_halt(xhci); 5019 if (retval) 5020 return retval; 5021 5022 xhci_zero_64b_regs(xhci); 5023 5024 xhci_dbg(xhci, "Resetting HCD\n"); 5025 /* Reset the internal HC memory state and registers. */ 5026 retval = xhci_reset(xhci); 5027 if (retval) 5028 return retval; 5029 xhci_dbg(xhci, "Reset complete\n"); 5030 5031 /* 5032 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5033 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5034 * address memory pointers actually. So, this driver clears the AC64 5035 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5036 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5037 */ 5038 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5039 xhci->hcc_params &= ~BIT(0); 5040 5041 /* Set dma_mask and coherent_dma_mask to 64-bits, 5042 * if xHC supports 64-bit addressing */ 5043 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5044 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5045 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5046 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5047 } else { 5048 /* 5049 * This is to avoid error in cases where a 32-bit USB 5050 * controller is used on a 64-bit capable system. 5051 */ 5052 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5053 if (retval) 5054 return retval; 5055 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5056 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5057 } 5058 5059 xhci_dbg(xhci, "Calling HCD init\n"); 5060 /* Initialize HCD and host controller data structures. */ 5061 retval = xhci_init(hcd); 5062 if (retval) 5063 return retval; 5064 xhci_dbg(xhci, "Called HCD init\n"); 5065 5066 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5067 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5068 5069 return 0; 5070 } 5071 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5072 5073 static const struct hc_driver xhci_hc_driver = { 5074 .description = "xhci-hcd", 5075 .product_desc = "xHCI Host Controller", 5076 .hcd_priv_size = sizeof(struct xhci_hcd), 5077 5078 /* 5079 * generic hardware linkage 5080 */ 5081 .irq = xhci_irq, 5082 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 5083 5084 /* 5085 * basic lifecycle operations 5086 */ 5087 .reset = NULL, /* set in xhci_init_driver() */ 5088 .start = xhci_run, 5089 .stop = xhci_stop, 5090 .shutdown = xhci_shutdown, 5091 5092 /* 5093 * managing i/o requests and associated device resources 5094 */ 5095 .urb_enqueue = xhci_urb_enqueue, 5096 .urb_dequeue = xhci_urb_dequeue, 5097 .alloc_dev = xhci_alloc_dev, 5098 .free_dev = xhci_free_dev, 5099 .alloc_streams = xhci_alloc_streams, 5100 .free_streams = xhci_free_streams, 5101 .add_endpoint = xhci_add_endpoint, 5102 .drop_endpoint = xhci_drop_endpoint, 5103 .endpoint_reset = xhci_endpoint_reset, 5104 .check_bandwidth = xhci_check_bandwidth, 5105 .reset_bandwidth = xhci_reset_bandwidth, 5106 .address_device = xhci_address_device, 5107 .enable_device = xhci_enable_device, 5108 .update_hub_device = xhci_update_hub_device, 5109 .reset_device = xhci_discover_or_reset_device, 5110 5111 /* 5112 * scheduling support 5113 */ 5114 .get_frame_number = xhci_get_frame, 5115 5116 /* 5117 * root hub support 5118 */ 5119 .hub_control = xhci_hub_control, 5120 .hub_status_data = xhci_hub_status_data, 5121 .bus_suspend = xhci_bus_suspend, 5122 .bus_resume = xhci_bus_resume, 5123 5124 /* 5125 * call back when device connected and addressed 5126 */ 5127 .update_device = xhci_update_device, 5128 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5129 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5130 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5131 .find_raw_port_number = xhci_find_raw_port_number, 5132 }; 5133 5134 void xhci_init_driver(struct hc_driver *drv, 5135 const struct xhci_driver_overrides *over) 5136 { 5137 BUG_ON(!over); 5138 5139 /* Copy the generic table to drv then apply the overrides */ 5140 *drv = xhci_hc_driver; 5141 5142 if (over) { 5143 drv->hcd_priv_size += over->extra_priv_size; 5144 if (over->reset) 5145 drv->reset = over->reset; 5146 if (over->start) 5147 drv->start = over->start; 5148 } 5149 } 5150 EXPORT_SYMBOL_GPL(xhci_init_driver); 5151 5152 MODULE_DESCRIPTION(DRIVER_DESC); 5153 MODULE_AUTHOR(DRIVER_AUTHOR); 5154 MODULE_LICENSE("GPL"); 5155 5156 static int __init xhci_hcd_init(void) 5157 { 5158 /* 5159 * Check the compiler generated sizes of structures that must be laid 5160 * out in specific ways for hardware access. 5161 */ 5162 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5163 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5164 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5165 /* xhci_device_control has eight fields, and also 5166 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5167 */ 5168 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5169 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5170 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5171 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5172 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5173 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5174 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5175 5176 if (usb_disabled()) 5177 return -ENODEV; 5178 5179 xhci_debugfs_create_root(); 5180 5181 return 0; 5182 } 5183 5184 /* 5185 * If an init function is provided, an exit function must also be provided 5186 * to allow module unload. 5187 */ 5188 static void __exit xhci_hcd_fini(void) 5189 { 5190 xhci_debugfs_remove_root(); 5191 } 5192 5193 module_init(xhci_hcd_init); 5194 module_exit(xhci_hcd_fini); 5195