1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iommu.h> 13 #include <linux/iopoll.h> 14 #include <linux/irq.h> 15 #include <linux/log2.h> 16 #include <linux/module.h> 17 #include <linux/moduleparam.h> 18 #include <linux/slab.h> 19 #include <linux/dmi.h> 20 #include <linux/dma-mapping.h> 21 22 #include "xhci.h" 23 #include "xhci-trace.h" 24 #include "xhci-debugfs.h" 25 #include "xhci-dbgcap.h" 26 27 #define DRIVER_AUTHOR "Sarah Sharp" 28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 29 30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 31 32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 33 static int link_quirk; 34 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 36 37 static unsigned long long quirks; 38 module_param(quirks, ullong, S_IRUGO); 39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 40 41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 42 { 43 struct xhci_segment *seg = ring->first_seg; 44 45 if (!td || !td->start_seg) 46 return false; 47 do { 48 if (seg == td->start_seg) 49 return true; 50 seg = seg->next; 51 } while (seg && seg != ring->first_seg); 52 53 return false; 54 } 55 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 70 { 71 u32 result; 72 int ret; 73 74 ret = readl_poll_timeout_atomic(ptr, result, 75 (result & mask) == done || 76 result == U32_MAX, 77 1, timeout_us); 78 if (result == U32_MAX) /* card removed */ 79 return -ENODEV; 80 81 return ret; 82 } 83 84 /* 85 * Disable interrupts and begin the xHCI halting process. 86 */ 87 void xhci_quiesce(struct xhci_hcd *xhci) 88 { 89 u32 halted; 90 u32 cmd; 91 u32 mask; 92 93 mask = ~(XHCI_IRQS); 94 halted = readl(&xhci->op_regs->status) & STS_HALT; 95 if (!halted) 96 mask &= ~CMD_RUN; 97 98 cmd = readl(&xhci->op_regs->command); 99 cmd &= mask; 100 writel(cmd, &xhci->op_regs->command); 101 } 102 103 /* 104 * Force HC into halt state. 105 * 106 * Disable any IRQs and clear the run/stop bit. 107 * HC will complete any current and actively pipelined transactions, and 108 * should halt within 16 ms of the run/stop bit being cleared. 109 * Read HC Halted bit in the status register to see when the HC is finished. 110 */ 111 int xhci_halt(struct xhci_hcd *xhci) 112 { 113 int ret; 114 115 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 116 xhci_quiesce(xhci); 117 118 ret = xhci_handshake(&xhci->op_regs->status, 119 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 120 if (ret) { 121 xhci_warn(xhci, "Host halt failed, %d\n", ret); 122 return ret; 123 } 124 125 xhci->xhc_state |= XHCI_STATE_HALTED; 126 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 127 128 return ret; 129 } 130 131 /* 132 * Set the run bit and wait for the host to be running. 133 */ 134 int xhci_start(struct xhci_hcd *xhci) 135 { 136 u32 temp; 137 int ret; 138 139 temp = readl(&xhci->op_regs->command); 140 temp |= (CMD_RUN); 141 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 142 temp); 143 writel(temp, &xhci->op_regs->command); 144 145 /* 146 * Wait for the HCHalted Status bit to be 0 to indicate the host is 147 * running. 148 */ 149 ret = xhci_handshake(&xhci->op_regs->status, 150 STS_HALT, 0, XHCI_MAX_HALT_USEC); 151 if (ret == -ETIMEDOUT) 152 xhci_err(xhci, "Host took too long to start, " 153 "waited %u microseconds.\n", 154 XHCI_MAX_HALT_USEC); 155 if (!ret) { 156 /* clear state flags. Including dying, halted or removing */ 157 xhci->xhc_state = 0; 158 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 159 } 160 161 return ret; 162 } 163 164 /* 165 * Reset a halted HC. 166 * 167 * This resets pipelines, timers, counters, state machines, etc. 168 * Transactions will be terminated immediately, and operational registers 169 * will be set to their defaults. 170 */ 171 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 172 { 173 u32 command; 174 u32 state; 175 int ret; 176 177 state = readl(&xhci->op_regs->status); 178 179 if (state == ~(u32)0) { 180 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 181 return -ENODEV; 182 } 183 184 if ((state & STS_HALT) == 0) { 185 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 186 return 0; 187 } 188 189 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 190 command = readl(&xhci->op_regs->command); 191 command |= CMD_RESET; 192 writel(command, &xhci->op_regs->command); 193 194 /* Existing Intel xHCI controllers require a delay of 1 mS, 195 * after setting the CMD_RESET bit, and before accessing any 196 * HC registers. This allows the HC to complete the 197 * reset operation and be ready for HC register access. 198 * Without this delay, the subsequent HC register access, 199 * may result in a system hang very rarely. 200 */ 201 if (xhci->quirks & XHCI_INTEL_HOST) 202 udelay(1000); 203 204 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us); 205 if (ret) 206 return ret; 207 208 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 209 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 210 211 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 212 "Wait for controller to be ready for doorbell rings"); 213 /* 214 * xHCI cannot write to any doorbells or operational registers other 215 * than status until the "Controller Not Ready" flag is cleared. 216 */ 217 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 218 219 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 220 xhci->usb2_rhub.bus_state.suspended_ports = 0; 221 xhci->usb2_rhub.bus_state.resuming_ports = 0; 222 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 223 xhci->usb3_rhub.bus_state.suspended_ports = 0; 224 xhci->usb3_rhub.bus_state.resuming_ports = 0; 225 226 return ret; 227 } 228 229 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 230 { 231 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 232 struct iommu_domain *domain; 233 int err, i; 234 u64 val; 235 u32 intrs; 236 237 /* 238 * Some Renesas controllers get into a weird state if they are 239 * reset while programmed with 64bit addresses (they will preserve 240 * the top half of the address in internal, non visible 241 * registers). You end up with half the address coming from the 242 * kernel, and the other half coming from the firmware. Also, 243 * changing the programming leads to extra accesses even if the 244 * controller is supposed to be halted. The controller ends up with 245 * a fatal fault, and is then ripe for being properly reset. 246 * 247 * Special care is taken to only apply this if the device is behind 248 * an iommu. Doing anything when there is no iommu is definitely 249 * unsafe... 250 */ 251 domain = iommu_get_domain_for_dev(dev); 252 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || 253 domain->type == IOMMU_DOMAIN_IDENTITY) 254 return; 255 256 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 257 258 /* Clear HSEIE so that faults do not get signaled */ 259 val = readl(&xhci->op_regs->command); 260 val &= ~CMD_HSEIE; 261 writel(val, &xhci->op_regs->command); 262 263 /* Clear HSE (aka FATAL) */ 264 val = readl(&xhci->op_regs->status); 265 val |= STS_FATAL; 266 writel(val, &xhci->op_regs->status); 267 268 /* Now zero the registers, and brace for impact */ 269 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 270 if (upper_32_bits(val)) 271 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 272 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 273 if (upper_32_bits(val)) 274 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 275 276 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 277 ARRAY_SIZE(xhci->run_regs->ir_set)); 278 279 for (i = 0; i < intrs; i++) { 280 struct xhci_intr_reg __iomem *ir; 281 282 ir = &xhci->run_regs->ir_set[i]; 283 val = xhci_read_64(xhci, &ir->erst_base); 284 if (upper_32_bits(val)) 285 xhci_write_64(xhci, 0, &ir->erst_base); 286 val= xhci_read_64(xhci, &ir->erst_dequeue); 287 if (upper_32_bits(val)) 288 xhci_write_64(xhci, 0, &ir->erst_dequeue); 289 } 290 291 /* Wait for the fault to appear. It will be cleared on reset */ 292 err = xhci_handshake(&xhci->op_regs->status, 293 STS_FATAL, STS_FATAL, 294 XHCI_MAX_HALT_USEC); 295 if (!err) 296 xhci_info(xhci, "Fault detected\n"); 297 } 298 299 static int xhci_enable_interrupter(struct xhci_interrupter *ir) 300 { 301 u32 iman; 302 303 if (!ir || !ir->ir_set) 304 return -EINVAL; 305 306 iman = readl(&ir->ir_set->irq_pending); 307 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending); 308 309 return 0; 310 } 311 312 static int xhci_disable_interrupter(struct xhci_interrupter *ir) 313 { 314 u32 iman; 315 316 if (!ir || !ir->ir_set) 317 return -EINVAL; 318 319 iman = readl(&ir->ir_set->irq_pending); 320 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending); 321 322 return 0; 323 } 324 325 static void compliance_mode_recovery(struct timer_list *t) 326 { 327 struct xhci_hcd *xhci; 328 struct usb_hcd *hcd; 329 struct xhci_hub *rhub; 330 u32 temp; 331 int i; 332 333 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 334 rhub = &xhci->usb3_rhub; 335 hcd = rhub->hcd; 336 337 if (!hcd) 338 return; 339 340 for (i = 0; i < rhub->num_ports; i++) { 341 temp = readl(rhub->ports[i]->addr); 342 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 343 /* 344 * Compliance Mode Detected. Letting USB Core 345 * handle the Warm Reset 346 */ 347 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 348 "Compliance mode detected->port %d", 349 i + 1); 350 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 351 "Attempting compliance mode recovery"); 352 353 if (hcd->state == HC_STATE_SUSPENDED) 354 usb_hcd_resume_root_hub(hcd); 355 356 usb_hcd_poll_rh_status(hcd); 357 } 358 } 359 360 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 361 mod_timer(&xhci->comp_mode_recovery_timer, 362 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 363 } 364 365 /* 366 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 367 * that causes ports behind that hardware to enter compliance mode sometimes. 368 * The quirk creates a timer that polls every 2 seconds the link state of 369 * each host controller's port and recovers it by issuing a Warm reset 370 * if Compliance mode is detected, otherwise the port will become "dead" (no 371 * device connections or disconnections will be detected anymore). Becasue no 372 * status event is generated when entering compliance mode (per xhci spec), 373 * this quirk is needed on systems that have the failing hardware installed. 374 */ 375 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 376 { 377 xhci->port_status_u0 = 0; 378 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 379 0); 380 xhci->comp_mode_recovery_timer.expires = jiffies + 381 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 382 383 add_timer(&xhci->comp_mode_recovery_timer); 384 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 385 "Compliance mode recovery timer initialized"); 386 } 387 388 /* 389 * This function identifies the systems that have installed the SN65LVPE502CP 390 * USB3.0 re-driver and that need the Compliance Mode Quirk. 391 * Systems: 392 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 393 */ 394 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 395 { 396 const char *dmi_product_name, *dmi_sys_vendor; 397 398 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 399 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 400 if (!dmi_product_name || !dmi_sys_vendor) 401 return false; 402 403 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 404 return false; 405 406 if (strstr(dmi_product_name, "Z420") || 407 strstr(dmi_product_name, "Z620") || 408 strstr(dmi_product_name, "Z820") || 409 strstr(dmi_product_name, "Z1 Workstation")) 410 return true; 411 412 return false; 413 } 414 415 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 416 { 417 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 418 } 419 420 421 /* 422 * Initialize memory for HCD and xHC (one-time init). 423 * 424 * Program the PAGESIZE register, initialize the device context array, create 425 * device contexts (?), set up a command ring segment (or two?), create event 426 * ring (one for now). 427 */ 428 static int xhci_init(struct usb_hcd *hcd) 429 { 430 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 431 int retval; 432 433 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 434 spin_lock_init(&xhci->lock); 435 if (xhci->hci_version == 0x95 && link_quirk) { 436 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 437 "QUIRK: Not clearing Link TRB chain bits."); 438 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 439 } else { 440 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 441 "xHCI doesn't need link TRB QUIRK"); 442 } 443 retval = xhci_mem_init(xhci, GFP_KERNEL); 444 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 445 446 /* Initializing Compliance Mode Recovery Data If Needed */ 447 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 448 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 449 compliance_mode_recovery_timer_init(xhci); 450 } 451 452 return retval; 453 } 454 455 /*-------------------------------------------------------------------------*/ 456 457 static int xhci_run_finished(struct xhci_hcd *xhci) 458 { 459 struct xhci_interrupter *ir = xhci->interrupter; 460 unsigned long flags; 461 u32 temp; 462 463 /* 464 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 465 * Protect the short window before host is running with a lock 466 */ 467 spin_lock_irqsave(&xhci->lock, flags); 468 469 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 470 temp = readl(&xhci->op_regs->command); 471 temp |= (CMD_EIE); 472 writel(temp, &xhci->op_regs->command); 473 474 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 475 xhci_enable_interrupter(ir); 476 477 if (xhci_start(xhci)) { 478 xhci_halt(xhci); 479 spin_unlock_irqrestore(&xhci->lock, flags); 480 return -ENODEV; 481 } 482 483 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 484 485 if (xhci->quirks & XHCI_NEC_HOST) 486 xhci_ring_cmd_db(xhci); 487 488 spin_unlock_irqrestore(&xhci->lock, flags); 489 490 return 0; 491 } 492 493 /* 494 * Start the HC after it was halted. 495 * 496 * This function is called by the USB core when the HC driver is added. 497 * Its opposite is xhci_stop(). 498 * 499 * xhci_init() must be called once before this function can be called. 500 * Reset the HC, enable device slot contexts, program DCBAAP, and 501 * set command ring pointer and event ring pointer. 502 * 503 * Setup MSI-X vectors and enable interrupts. 504 */ 505 int xhci_run(struct usb_hcd *hcd) 506 { 507 u32 temp; 508 u64 temp_64; 509 int ret; 510 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 511 struct xhci_interrupter *ir = xhci->interrupter; 512 /* Start the xHCI host controller running only after the USB 2.0 roothub 513 * is setup. 514 */ 515 516 hcd->uses_new_polling = 1; 517 if (!usb_hcd_is_primary_hcd(hcd)) 518 return xhci_run_finished(xhci); 519 520 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 521 522 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 523 temp_64 &= ~ERST_PTR_MASK; 524 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 525 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 526 527 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 528 "// Set the interrupt modulation register"); 529 temp = readl(&ir->ir_set->irq_control); 530 temp &= ~ER_IRQ_INTERVAL_MASK; 531 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 532 writel(temp, &ir->ir_set->irq_control); 533 534 if (xhci->quirks & XHCI_NEC_HOST) { 535 struct xhci_command *command; 536 537 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 538 if (!command) 539 return -ENOMEM; 540 541 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 542 TRB_TYPE(TRB_NEC_GET_FW)); 543 if (ret) 544 xhci_free_command(xhci, command); 545 } 546 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 547 "Finished %s for main hcd", __func__); 548 549 xhci_create_dbc_dev(xhci); 550 551 xhci_debugfs_init(xhci); 552 553 if (xhci_has_one_roothub(xhci)) 554 return xhci_run_finished(xhci); 555 556 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 557 558 return 0; 559 } 560 EXPORT_SYMBOL_GPL(xhci_run); 561 562 /* 563 * Stop xHCI driver. 564 * 565 * This function is called by the USB core when the HC driver is removed. 566 * Its opposite is xhci_run(). 567 * 568 * Disable device contexts, disable IRQs, and quiesce the HC. 569 * Reset the HC, finish any completed transactions, and cleanup memory. 570 */ 571 void xhci_stop(struct usb_hcd *hcd) 572 { 573 u32 temp; 574 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 575 struct xhci_interrupter *ir = xhci->interrupter; 576 577 mutex_lock(&xhci->mutex); 578 579 /* Only halt host and free memory after both hcds are removed */ 580 if (!usb_hcd_is_primary_hcd(hcd)) { 581 mutex_unlock(&xhci->mutex); 582 return; 583 } 584 585 xhci_remove_dbc_dev(xhci); 586 587 spin_lock_irq(&xhci->lock); 588 xhci->xhc_state |= XHCI_STATE_HALTED; 589 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 590 xhci_halt(xhci); 591 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 592 spin_unlock_irq(&xhci->lock); 593 594 /* Deleting Compliance Mode Recovery Timer */ 595 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 596 (!(xhci_all_ports_seen_u0(xhci)))) { 597 del_timer_sync(&xhci->comp_mode_recovery_timer); 598 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 599 "%s: compliance mode recovery timer deleted", 600 __func__); 601 } 602 603 if (xhci->quirks & XHCI_AMD_PLL_FIX) 604 usb_amd_dev_put(); 605 606 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 607 "// Disabling event ring interrupts"); 608 temp = readl(&xhci->op_regs->status); 609 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 610 xhci_disable_interrupter(ir); 611 612 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 613 xhci_mem_cleanup(xhci); 614 xhci_debugfs_exit(xhci); 615 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 616 "xhci_stop completed - status = %x", 617 readl(&xhci->op_regs->status)); 618 mutex_unlock(&xhci->mutex); 619 } 620 EXPORT_SYMBOL_GPL(xhci_stop); 621 622 /* 623 * Shutdown HC (not bus-specific) 624 * 625 * This is called when the machine is rebooting or halting. We assume that the 626 * machine will be powered off, and the HC's internal state will be reset. 627 * Don't bother to free memory. 628 * 629 * This will only ever be called with the main usb_hcd (the USB3 roothub). 630 */ 631 void xhci_shutdown(struct usb_hcd *hcd) 632 { 633 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 634 635 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 636 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 637 638 /* Don't poll the roothubs after shutdown. */ 639 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 640 __func__, hcd->self.busnum); 641 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 642 del_timer_sync(&hcd->rh_timer); 643 644 if (xhci->shared_hcd) { 645 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 646 del_timer_sync(&xhci->shared_hcd->rh_timer); 647 } 648 649 spin_lock_irq(&xhci->lock); 650 xhci_halt(xhci); 651 652 /* 653 * Workaround for spurious wakeps at shutdown with HSW, and for boot 654 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 655 */ 656 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 657 xhci->quirks & XHCI_RESET_TO_DEFAULT) 658 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 659 660 spin_unlock_irq(&xhci->lock); 661 662 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 663 "xhci_shutdown completed - status = %x", 664 readl(&xhci->op_regs->status)); 665 } 666 EXPORT_SYMBOL_GPL(xhci_shutdown); 667 668 #ifdef CONFIG_PM 669 static void xhci_save_registers(struct xhci_hcd *xhci) 670 { 671 struct xhci_interrupter *ir = xhci->interrupter; 672 673 xhci->s3.command = readl(&xhci->op_regs->command); 674 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 675 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 676 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 677 678 if (!ir) 679 return; 680 681 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 682 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 683 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 684 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending); 685 ir->s3_irq_control = readl(&ir->ir_set->irq_control); 686 } 687 688 static void xhci_restore_registers(struct xhci_hcd *xhci) 689 { 690 struct xhci_interrupter *ir = xhci->interrupter; 691 692 writel(xhci->s3.command, &xhci->op_regs->command); 693 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 694 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 695 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 696 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 697 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 698 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 699 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending); 700 writel(ir->s3_irq_control, &ir->ir_set->irq_control); 701 } 702 703 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 704 { 705 u64 val_64; 706 707 /* step 2: initialize command ring buffer */ 708 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 709 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 710 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 711 xhci->cmd_ring->dequeue) & 712 (u64) ~CMD_RING_RSVD_BITS) | 713 xhci->cmd_ring->cycle_state; 714 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 715 "// Setting command ring address to 0x%llx", 716 (long unsigned long) val_64); 717 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 718 } 719 720 /* 721 * The whole command ring must be cleared to zero when we suspend the host. 722 * 723 * The host doesn't save the command ring pointer in the suspend well, so we 724 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 725 * aligned, because of the reserved bits in the command ring dequeue pointer 726 * register. Therefore, we can't just set the dequeue pointer back in the 727 * middle of the ring (TRBs are 16-byte aligned). 728 */ 729 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 730 { 731 struct xhci_ring *ring; 732 struct xhci_segment *seg; 733 734 ring = xhci->cmd_ring; 735 seg = ring->deq_seg; 736 do { 737 memset(seg->trbs, 0, 738 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 739 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 740 cpu_to_le32(~TRB_CYCLE); 741 seg = seg->next; 742 } while (seg != ring->deq_seg); 743 744 /* Reset the software enqueue and dequeue pointers */ 745 ring->deq_seg = ring->first_seg; 746 ring->dequeue = ring->first_seg->trbs; 747 ring->enq_seg = ring->deq_seg; 748 ring->enqueue = ring->dequeue; 749 750 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 751 /* 752 * Ring is now zeroed, so the HW should look for change of ownership 753 * when the cycle bit is set to 1. 754 */ 755 ring->cycle_state = 1; 756 757 /* 758 * Reset the hardware dequeue pointer. 759 * Yes, this will need to be re-written after resume, but we're paranoid 760 * and want to make sure the hardware doesn't access bogus memory 761 * because, say, the BIOS or an SMI started the host without changing 762 * the command ring pointers. 763 */ 764 xhci_set_cmd_ring_deq(xhci); 765 } 766 767 /* 768 * Disable port wake bits if do_wakeup is not set. 769 * 770 * Also clear a possible internal port wake state left hanging for ports that 771 * detected termination but never successfully enumerated (trained to 0U). 772 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 773 * at enumeration clears this wake, force one here as well for unconnected ports 774 */ 775 776 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 777 struct xhci_hub *rhub, 778 bool do_wakeup) 779 { 780 unsigned long flags; 781 u32 t1, t2, portsc; 782 int i; 783 784 spin_lock_irqsave(&xhci->lock, flags); 785 786 for (i = 0; i < rhub->num_ports; i++) { 787 portsc = readl(rhub->ports[i]->addr); 788 t1 = xhci_port_state_to_neutral(portsc); 789 t2 = t1; 790 791 /* clear wake bits if do_wake is not set */ 792 if (!do_wakeup) 793 t2 &= ~PORT_WAKE_BITS; 794 795 /* Don't touch csc bit if connected or connect change is set */ 796 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 797 t2 |= PORT_CSC; 798 799 if (t1 != t2) { 800 writel(t2, rhub->ports[i]->addr); 801 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 802 rhub->hcd->self.busnum, i + 1, portsc, t2); 803 } 804 } 805 spin_unlock_irqrestore(&xhci->lock, flags); 806 } 807 808 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 809 { 810 struct xhci_port **ports; 811 int port_index; 812 u32 status; 813 u32 portsc; 814 815 status = readl(&xhci->op_regs->status); 816 if (status & STS_EINT) 817 return true; 818 /* 819 * Checking STS_EINT is not enough as there is a lag between a change 820 * bit being set and the Port Status Change Event that it generated 821 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 822 */ 823 824 port_index = xhci->usb2_rhub.num_ports; 825 ports = xhci->usb2_rhub.ports; 826 while (port_index--) { 827 portsc = readl(ports[port_index]->addr); 828 if (portsc & PORT_CHANGE_MASK || 829 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 830 return true; 831 } 832 port_index = xhci->usb3_rhub.num_ports; 833 ports = xhci->usb3_rhub.ports; 834 while (port_index--) { 835 portsc = readl(ports[port_index]->addr); 836 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) || 837 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 838 return true; 839 } 840 return false; 841 } 842 843 /* 844 * Stop HC (not bus-specific) 845 * 846 * This is called when the machine transition into S3/S4 mode. 847 * 848 */ 849 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 850 { 851 int rc = 0; 852 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 853 struct usb_hcd *hcd = xhci_to_hcd(xhci); 854 u32 command; 855 u32 res; 856 857 if (!hcd->state) 858 return 0; 859 860 if (hcd->state != HC_STATE_SUSPENDED || 861 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 862 return -EINVAL; 863 864 /* Clear root port wake on bits if wakeup not allowed. */ 865 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 866 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 867 868 if (!HCD_HW_ACCESSIBLE(hcd)) 869 return 0; 870 871 xhci_dbc_suspend(xhci); 872 873 /* Don't poll the roothubs on bus suspend. */ 874 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 875 __func__, hcd->self.busnum); 876 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 877 del_timer_sync(&hcd->rh_timer); 878 if (xhci->shared_hcd) { 879 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 880 del_timer_sync(&xhci->shared_hcd->rh_timer); 881 } 882 883 if (xhci->quirks & XHCI_SUSPEND_DELAY) 884 usleep_range(1000, 1500); 885 886 spin_lock_irq(&xhci->lock); 887 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 888 if (xhci->shared_hcd) 889 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 890 /* step 1: stop endpoint */ 891 /* skipped assuming that port suspend has done */ 892 893 /* step 2: clear Run/Stop bit */ 894 command = readl(&xhci->op_regs->command); 895 command &= ~CMD_RUN; 896 writel(command, &xhci->op_regs->command); 897 898 /* Some chips from Fresco Logic need an extraordinary delay */ 899 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 900 901 if (xhci_handshake(&xhci->op_regs->status, 902 STS_HALT, STS_HALT, delay)) { 903 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 904 spin_unlock_irq(&xhci->lock); 905 return -ETIMEDOUT; 906 } 907 xhci_clear_command_ring(xhci); 908 909 /* step 3: save registers */ 910 xhci_save_registers(xhci); 911 912 /* step 4: set CSS flag */ 913 command = readl(&xhci->op_regs->command); 914 command |= CMD_CSS; 915 writel(command, &xhci->op_regs->command); 916 xhci->broken_suspend = 0; 917 if (xhci_handshake(&xhci->op_regs->status, 918 STS_SAVE, 0, 20 * 1000)) { 919 /* 920 * AMD SNPS xHC 3.0 occasionally does not clear the 921 * SSS bit of USBSTS and when driver tries to poll 922 * to see if the xHC clears BIT(8) which never happens 923 * and driver assumes that controller is not responding 924 * and times out. To workaround this, its good to check 925 * if SRE and HCE bits are not set (as per xhci 926 * Section 5.4.2) and bypass the timeout. 927 */ 928 res = readl(&xhci->op_regs->status); 929 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 930 (((res & STS_SRE) == 0) && 931 ((res & STS_HCE) == 0))) { 932 xhci->broken_suspend = 1; 933 } else { 934 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 935 spin_unlock_irq(&xhci->lock); 936 return -ETIMEDOUT; 937 } 938 } 939 spin_unlock_irq(&xhci->lock); 940 941 /* 942 * Deleting Compliance Mode Recovery Timer because the xHCI Host 943 * is about to be suspended. 944 */ 945 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 946 (!(xhci_all_ports_seen_u0(xhci)))) { 947 del_timer_sync(&xhci->comp_mode_recovery_timer); 948 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 949 "%s: compliance mode recovery timer deleted", 950 __func__); 951 } 952 953 return rc; 954 } 955 EXPORT_SYMBOL_GPL(xhci_suspend); 956 957 /* 958 * start xHC (not bus-specific) 959 * 960 * This is called when the machine transition from S3/S4 mode. 961 * 962 */ 963 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg) 964 { 965 bool hibernated = (msg.event == PM_EVENT_RESTORE); 966 u32 command, temp = 0; 967 struct usb_hcd *hcd = xhci_to_hcd(xhci); 968 int retval = 0; 969 bool comp_timer_running = false; 970 bool pending_portevent = false; 971 bool reinit_xhc = false; 972 973 if (!hcd->state) 974 return 0; 975 976 /* Wait a bit if either of the roothubs need to settle from the 977 * transition into bus suspend. 978 */ 979 980 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 981 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 982 msleep(100); 983 984 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 985 if (xhci->shared_hcd) 986 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 987 988 spin_lock_irq(&xhci->lock); 989 990 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 991 reinit_xhc = true; 992 993 if (!reinit_xhc) { 994 /* 995 * Some controllers might lose power during suspend, so wait 996 * for controller not ready bit to clear, just as in xHC init. 997 */ 998 retval = xhci_handshake(&xhci->op_regs->status, 999 STS_CNR, 0, 10 * 1000 * 1000); 1000 if (retval) { 1001 xhci_warn(xhci, "Controller not ready at resume %d\n", 1002 retval); 1003 spin_unlock_irq(&xhci->lock); 1004 return retval; 1005 } 1006 /* step 1: restore register */ 1007 xhci_restore_registers(xhci); 1008 /* step 2: initialize command ring buffer */ 1009 xhci_set_cmd_ring_deq(xhci); 1010 /* step 3: restore state and start state*/ 1011 /* step 3: set CRS flag */ 1012 command = readl(&xhci->op_regs->command); 1013 command |= CMD_CRS; 1014 writel(command, &xhci->op_regs->command); 1015 /* 1016 * Some controllers take up to 55+ ms to complete the controller 1017 * restore so setting the timeout to 100ms. Xhci specification 1018 * doesn't mention any timeout value. 1019 */ 1020 if (xhci_handshake(&xhci->op_regs->status, 1021 STS_RESTORE, 0, 100 * 1000)) { 1022 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1023 spin_unlock_irq(&xhci->lock); 1024 return -ETIMEDOUT; 1025 } 1026 } 1027 1028 temp = readl(&xhci->op_regs->status); 1029 1030 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1031 if ((temp & (STS_SRE | STS_HCE)) && 1032 !(xhci->xhc_state & XHCI_STATE_REMOVING)) { 1033 reinit_xhc = true; 1034 if (!xhci->broken_suspend) 1035 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1036 } 1037 1038 if (reinit_xhc) { 1039 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1040 !(xhci_all_ports_seen_u0(xhci))) { 1041 del_timer_sync(&xhci->comp_mode_recovery_timer); 1042 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1043 "Compliance Mode Recovery Timer deleted!"); 1044 } 1045 1046 /* Let the USB core know _both_ roothubs lost power. */ 1047 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1048 if (xhci->shared_hcd) 1049 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1050 1051 xhci_dbg(xhci, "Stop HCD\n"); 1052 xhci_halt(xhci); 1053 xhci_zero_64b_regs(xhci); 1054 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1055 spin_unlock_irq(&xhci->lock); 1056 if (retval) 1057 return retval; 1058 1059 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1060 temp = readl(&xhci->op_regs->status); 1061 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1062 xhci_disable_interrupter(xhci->interrupter); 1063 1064 xhci_dbg(xhci, "cleaning up memory\n"); 1065 xhci_mem_cleanup(xhci); 1066 xhci_debugfs_exit(xhci); 1067 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1068 readl(&xhci->op_regs->status)); 1069 1070 /* USB core calls the PCI reinit and start functions twice: 1071 * first with the primary HCD, and then with the secondary HCD. 1072 * If we don't do the same, the host will never be started. 1073 */ 1074 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1075 retval = xhci_init(hcd); 1076 if (retval) 1077 return retval; 1078 comp_timer_running = true; 1079 1080 xhci_dbg(xhci, "Start the primary HCD\n"); 1081 retval = xhci_run(hcd); 1082 if (!retval && xhci->shared_hcd) { 1083 xhci_dbg(xhci, "Start the secondary HCD\n"); 1084 retval = xhci_run(xhci->shared_hcd); 1085 } 1086 1087 hcd->state = HC_STATE_SUSPENDED; 1088 if (xhci->shared_hcd) 1089 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1090 goto done; 1091 } 1092 1093 /* step 4: set Run/Stop bit */ 1094 command = readl(&xhci->op_regs->command); 1095 command |= CMD_RUN; 1096 writel(command, &xhci->op_regs->command); 1097 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1098 0, 250 * 1000); 1099 1100 /* step 5: walk topology and initialize portsc, 1101 * portpmsc and portli 1102 */ 1103 /* this is done in bus_resume */ 1104 1105 /* step 6: restart each of the previously 1106 * Running endpoints by ringing their doorbells 1107 */ 1108 1109 spin_unlock_irq(&xhci->lock); 1110 1111 xhci_dbc_resume(xhci); 1112 1113 done: 1114 if (retval == 0) { 1115 /* 1116 * Resume roothubs only if there are pending events. 1117 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1118 * the first wake signalling failed, give it that chance. 1119 */ 1120 pending_portevent = xhci_pending_portevent(xhci); 1121 if (!pending_portevent && msg.event == PM_EVENT_AUTO_RESUME) { 1122 msleep(120); 1123 pending_portevent = xhci_pending_portevent(xhci); 1124 } 1125 1126 if (pending_portevent) { 1127 if (xhci->shared_hcd) 1128 usb_hcd_resume_root_hub(xhci->shared_hcd); 1129 usb_hcd_resume_root_hub(hcd); 1130 } 1131 } 1132 /* 1133 * If system is subject to the Quirk, Compliance Mode Timer needs to 1134 * be re-initialized Always after a system resume. Ports are subject 1135 * to suffer the Compliance Mode issue again. It doesn't matter if 1136 * ports have entered previously to U0 before system's suspension. 1137 */ 1138 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1139 compliance_mode_recovery_timer_init(xhci); 1140 1141 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1142 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1143 1144 /* Re-enable port polling. */ 1145 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1146 __func__, hcd->self.busnum); 1147 if (xhci->shared_hcd) { 1148 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1149 usb_hcd_poll_rh_status(xhci->shared_hcd); 1150 } 1151 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1152 usb_hcd_poll_rh_status(hcd); 1153 1154 return retval; 1155 } 1156 EXPORT_SYMBOL_GPL(xhci_resume); 1157 #endif /* CONFIG_PM */ 1158 1159 /*-------------------------------------------------------------------------*/ 1160 1161 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1162 { 1163 void *temp; 1164 int ret = 0; 1165 unsigned int buf_len; 1166 enum dma_data_direction dir; 1167 1168 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1169 buf_len = urb->transfer_buffer_length; 1170 1171 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1172 dev_to_node(hcd->self.sysdev)); 1173 1174 if (usb_urb_dir_out(urb)) 1175 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1176 temp, buf_len, 0); 1177 1178 urb->transfer_buffer = temp; 1179 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1180 urb->transfer_buffer, 1181 urb->transfer_buffer_length, 1182 dir); 1183 1184 if (dma_mapping_error(hcd->self.sysdev, 1185 urb->transfer_dma)) { 1186 ret = -EAGAIN; 1187 kfree(temp); 1188 } else { 1189 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1190 } 1191 1192 return ret; 1193 } 1194 1195 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1196 struct urb *urb) 1197 { 1198 bool ret = false; 1199 unsigned int i; 1200 unsigned int len = 0; 1201 unsigned int trb_size; 1202 unsigned int max_pkt; 1203 struct scatterlist *sg; 1204 struct scatterlist *tail_sg; 1205 1206 tail_sg = urb->sg; 1207 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1208 1209 if (!urb->num_sgs) 1210 return ret; 1211 1212 if (urb->dev->speed >= USB_SPEED_SUPER) 1213 trb_size = TRB_CACHE_SIZE_SS; 1214 else 1215 trb_size = TRB_CACHE_SIZE_HS; 1216 1217 if (urb->transfer_buffer_length != 0 && 1218 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1219 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1220 len = len + sg->length; 1221 if (i > trb_size - 2) { 1222 len = len - tail_sg->length; 1223 if (len < max_pkt) { 1224 ret = true; 1225 break; 1226 } 1227 1228 tail_sg = sg_next(tail_sg); 1229 } 1230 } 1231 } 1232 return ret; 1233 } 1234 1235 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1236 { 1237 unsigned int len; 1238 unsigned int buf_len; 1239 enum dma_data_direction dir; 1240 1241 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1242 1243 buf_len = urb->transfer_buffer_length; 1244 1245 if (IS_ENABLED(CONFIG_HAS_DMA) && 1246 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1247 dma_unmap_single(hcd->self.sysdev, 1248 urb->transfer_dma, 1249 urb->transfer_buffer_length, 1250 dir); 1251 1252 if (usb_urb_dir_in(urb)) { 1253 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1254 urb->transfer_buffer, 1255 buf_len, 1256 0); 1257 if (len != buf_len) { 1258 xhci_dbg(hcd_to_xhci(hcd), 1259 "Copy from tmp buf to urb sg list failed\n"); 1260 urb->actual_length = len; 1261 } 1262 } 1263 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1264 kfree(urb->transfer_buffer); 1265 urb->transfer_buffer = NULL; 1266 } 1267 1268 /* 1269 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1270 * we'll copy the actual data into the TRB address register. This is limited to 1271 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1272 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1273 */ 1274 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1275 gfp_t mem_flags) 1276 { 1277 struct xhci_hcd *xhci; 1278 1279 xhci = hcd_to_xhci(hcd); 1280 1281 if (xhci_urb_suitable_for_idt(urb)) 1282 return 0; 1283 1284 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1285 if (xhci_urb_temp_buffer_required(hcd, urb)) 1286 return xhci_map_temp_buffer(hcd, urb); 1287 } 1288 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1289 } 1290 1291 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1292 { 1293 struct xhci_hcd *xhci; 1294 bool unmap_temp_buf = false; 1295 1296 xhci = hcd_to_xhci(hcd); 1297 1298 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1299 unmap_temp_buf = true; 1300 1301 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1302 xhci_unmap_temp_buf(hcd, urb); 1303 else 1304 usb_hcd_unmap_urb_for_dma(hcd, urb); 1305 } 1306 1307 /** 1308 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1309 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1310 * value to right shift 1 for the bitmask. 1311 * 1312 * Index = (epnum * 2) + direction - 1, 1313 * where direction = 0 for OUT, 1 for IN. 1314 * For control endpoints, the IN index is used (OUT index is unused), so 1315 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1316 */ 1317 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1318 { 1319 unsigned int index; 1320 if (usb_endpoint_xfer_control(desc)) 1321 index = (unsigned int) (usb_endpoint_num(desc)*2); 1322 else 1323 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1324 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1325 return index; 1326 } 1327 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1328 1329 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1330 * address from the XHCI endpoint index. 1331 */ 1332 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1333 { 1334 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1335 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1336 return direction | number; 1337 } 1338 1339 /* Find the flag for this endpoint (for use in the control context). Use the 1340 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1341 * bit 1, etc. 1342 */ 1343 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1344 { 1345 return 1 << (xhci_get_endpoint_index(desc) + 1); 1346 } 1347 1348 /* Compute the last valid endpoint context index. Basically, this is the 1349 * endpoint index plus one. For slot contexts with more than valid endpoint, 1350 * we find the most significant bit set in the added contexts flags. 1351 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1352 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1353 */ 1354 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1355 { 1356 return fls(added_ctxs) - 1; 1357 } 1358 1359 /* Returns 1 if the arguments are OK; 1360 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1361 */ 1362 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1363 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1364 const char *func) { 1365 struct xhci_hcd *xhci; 1366 struct xhci_virt_device *virt_dev; 1367 1368 if (!hcd || (check_ep && !ep) || !udev) { 1369 pr_debug("xHCI %s called with invalid args\n", func); 1370 return -EINVAL; 1371 } 1372 if (!udev->parent) { 1373 pr_debug("xHCI %s called for root hub\n", func); 1374 return 0; 1375 } 1376 1377 xhci = hcd_to_xhci(hcd); 1378 if (check_virt_dev) { 1379 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1380 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1381 func); 1382 return -EINVAL; 1383 } 1384 1385 virt_dev = xhci->devs[udev->slot_id]; 1386 if (virt_dev->udev != udev) { 1387 xhci_dbg(xhci, "xHCI %s called with udev and " 1388 "virt_dev does not match\n", func); 1389 return -EINVAL; 1390 } 1391 } 1392 1393 if (xhci->xhc_state & XHCI_STATE_HALTED) 1394 return -ENODEV; 1395 1396 return 1; 1397 } 1398 1399 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1400 struct usb_device *udev, struct xhci_command *command, 1401 bool ctx_change, bool must_succeed); 1402 1403 /* 1404 * Full speed devices may have a max packet size greater than 8 bytes, but the 1405 * USB core doesn't know that until it reads the first 8 bytes of the 1406 * descriptor. If the usb_device's max packet size changes after that point, 1407 * we need to issue an evaluate context command and wait on it. 1408 */ 1409 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1410 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1411 { 1412 struct xhci_container_ctx *out_ctx; 1413 struct xhci_input_control_ctx *ctrl_ctx; 1414 struct xhci_ep_ctx *ep_ctx; 1415 struct xhci_command *command; 1416 int max_packet_size; 1417 int hw_max_packet_size; 1418 int ret = 0; 1419 1420 out_ctx = xhci->devs[slot_id]->out_ctx; 1421 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1422 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1423 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1424 if (hw_max_packet_size != max_packet_size) { 1425 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1426 "Max Packet Size for ep 0 changed."); 1427 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1428 "Max packet size in usb_device = %d", 1429 max_packet_size); 1430 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1431 "Max packet size in xHCI HW = %d", 1432 hw_max_packet_size); 1433 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1434 "Issuing evaluate context command."); 1435 1436 /* Set up the input context flags for the command */ 1437 /* FIXME: This won't work if a non-default control endpoint 1438 * changes max packet sizes. 1439 */ 1440 1441 command = xhci_alloc_command(xhci, true, mem_flags); 1442 if (!command) 1443 return -ENOMEM; 1444 1445 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1446 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1447 if (!ctrl_ctx) { 1448 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1449 __func__); 1450 ret = -ENOMEM; 1451 goto command_cleanup; 1452 } 1453 /* Set up the modified control endpoint 0 */ 1454 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1455 xhci->devs[slot_id]->out_ctx, ep_index); 1456 1457 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1458 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1459 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1460 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1461 1462 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1463 ctrl_ctx->drop_flags = 0; 1464 1465 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1466 true, false); 1467 1468 /* Clean up the input context for later use by bandwidth 1469 * functions. 1470 */ 1471 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1472 command_cleanup: 1473 kfree(command->completion); 1474 kfree(command); 1475 } 1476 return ret; 1477 } 1478 1479 /* 1480 * non-error returns are a promise to giveback() the urb later 1481 * we drop ownership so next owner (or urb unlink) can get it 1482 */ 1483 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1484 { 1485 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1486 unsigned long flags; 1487 int ret = 0; 1488 unsigned int slot_id, ep_index; 1489 unsigned int *ep_state; 1490 struct urb_priv *urb_priv; 1491 int num_tds; 1492 1493 if (!urb) 1494 return -EINVAL; 1495 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1496 true, true, __func__); 1497 if (ret <= 0) 1498 return ret ? ret : -EINVAL; 1499 1500 slot_id = urb->dev->slot_id; 1501 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1502 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1503 1504 if (!HCD_HW_ACCESSIBLE(hcd)) 1505 return -ESHUTDOWN; 1506 1507 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1508 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1509 return -ENODEV; 1510 } 1511 1512 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1513 num_tds = urb->number_of_packets; 1514 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1515 urb->transfer_buffer_length > 0 && 1516 urb->transfer_flags & URB_ZERO_PACKET && 1517 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1518 num_tds = 2; 1519 else 1520 num_tds = 1; 1521 1522 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1523 if (!urb_priv) 1524 return -ENOMEM; 1525 1526 urb_priv->num_tds = num_tds; 1527 urb_priv->num_tds_done = 0; 1528 urb->hcpriv = urb_priv; 1529 1530 trace_xhci_urb_enqueue(urb); 1531 1532 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1533 /* Check to see if the max packet size for the default control 1534 * endpoint changed during FS device enumeration 1535 */ 1536 if (urb->dev->speed == USB_SPEED_FULL) { 1537 ret = xhci_check_maxpacket(xhci, slot_id, 1538 ep_index, urb, mem_flags); 1539 if (ret < 0) { 1540 xhci_urb_free_priv(urb_priv); 1541 urb->hcpriv = NULL; 1542 return ret; 1543 } 1544 } 1545 } 1546 1547 spin_lock_irqsave(&xhci->lock, flags); 1548 1549 if (xhci->xhc_state & XHCI_STATE_DYING) { 1550 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1551 urb->ep->desc.bEndpointAddress, urb); 1552 ret = -ESHUTDOWN; 1553 goto free_priv; 1554 } 1555 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1556 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1557 *ep_state); 1558 ret = -EINVAL; 1559 goto free_priv; 1560 } 1561 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1562 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1563 ret = -EINVAL; 1564 goto free_priv; 1565 } 1566 1567 switch (usb_endpoint_type(&urb->ep->desc)) { 1568 1569 case USB_ENDPOINT_XFER_CONTROL: 1570 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1571 slot_id, ep_index); 1572 break; 1573 case USB_ENDPOINT_XFER_BULK: 1574 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1575 slot_id, ep_index); 1576 break; 1577 case USB_ENDPOINT_XFER_INT: 1578 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1579 slot_id, ep_index); 1580 break; 1581 case USB_ENDPOINT_XFER_ISOC: 1582 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1583 slot_id, ep_index); 1584 } 1585 1586 if (ret) { 1587 free_priv: 1588 xhci_urb_free_priv(urb_priv); 1589 urb->hcpriv = NULL; 1590 } 1591 spin_unlock_irqrestore(&xhci->lock, flags); 1592 return ret; 1593 } 1594 1595 /* 1596 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1597 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1598 * should pick up where it left off in the TD, unless a Set Transfer Ring 1599 * Dequeue Pointer is issued. 1600 * 1601 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1602 * the ring. Since the ring is a contiguous structure, they can't be physically 1603 * removed. Instead, there are two options: 1604 * 1605 * 1) If the HC is in the middle of processing the URB to be canceled, we 1606 * simply move the ring's dequeue pointer past those TRBs using the Set 1607 * Transfer Ring Dequeue Pointer command. This will be the common case, 1608 * when drivers timeout on the last submitted URB and attempt to cancel. 1609 * 1610 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1611 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1612 * HC will need to invalidate the any TRBs it has cached after the stop 1613 * endpoint command, as noted in the xHCI 0.95 errata. 1614 * 1615 * 3) The TD may have completed by the time the Stop Endpoint Command 1616 * completes, so software needs to handle that case too. 1617 * 1618 * This function should protect against the TD enqueueing code ringing the 1619 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1620 * It also needs to account for multiple cancellations on happening at the same 1621 * time for the same endpoint. 1622 * 1623 * Note that this function can be called in any context, or so says 1624 * usb_hcd_unlink_urb() 1625 */ 1626 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1627 { 1628 unsigned long flags; 1629 int ret, i; 1630 u32 temp; 1631 struct xhci_hcd *xhci; 1632 struct urb_priv *urb_priv; 1633 struct xhci_td *td; 1634 unsigned int ep_index; 1635 struct xhci_ring *ep_ring; 1636 struct xhci_virt_ep *ep; 1637 struct xhci_command *command; 1638 struct xhci_virt_device *vdev; 1639 1640 xhci = hcd_to_xhci(hcd); 1641 spin_lock_irqsave(&xhci->lock, flags); 1642 1643 trace_xhci_urb_dequeue(urb); 1644 1645 /* Make sure the URB hasn't completed or been unlinked already */ 1646 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1647 if (ret) 1648 goto done; 1649 1650 /* give back URB now if we can't queue it for cancel */ 1651 vdev = xhci->devs[urb->dev->slot_id]; 1652 urb_priv = urb->hcpriv; 1653 if (!vdev || !urb_priv) 1654 goto err_giveback; 1655 1656 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1657 ep = &vdev->eps[ep_index]; 1658 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1659 if (!ep || !ep_ring) 1660 goto err_giveback; 1661 1662 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1663 temp = readl(&xhci->op_regs->status); 1664 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1665 xhci_hc_died(xhci); 1666 goto done; 1667 } 1668 1669 /* 1670 * check ring is not re-allocated since URB was enqueued. If it is, then 1671 * make sure none of the ring related pointers in this URB private data 1672 * are touched, such as td_list, otherwise we overwrite freed data 1673 */ 1674 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1675 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1676 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1677 td = &urb_priv->td[i]; 1678 if (!list_empty(&td->cancelled_td_list)) 1679 list_del_init(&td->cancelled_td_list); 1680 } 1681 goto err_giveback; 1682 } 1683 1684 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1685 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1686 "HC halted, freeing TD manually."); 1687 for (i = urb_priv->num_tds_done; 1688 i < urb_priv->num_tds; 1689 i++) { 1690 td = &urb_priv->td[i]; 1691 if (!list_empty(&td->td_list)) 1692 list_del_init(&td->td_list); 1693 if (!list_empty(&td->cancelled_td_list)) 1694 list_del_init(&td->cancelled_td_list); 1695 } 1696 goto err_giveback; 1697 } 1698 1699 i = urb_priv->num_tds_done; 1700 if (i < urb_priv->num_tds) 1701 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1702 "Cancel URB %p, dev %s, ep 0x%x, " 1703 "starting at offset 0x%llx", 1704 urb, urb->dev->devpath, 1705 urb->ep->desc.bEndpointAddress, 1706 (unsigned long long) xhci_trb_virt_to_dma( 1707 urb_priv->td[i].start_seg, 1708 urb_priv->td[i].first_trb)); 1709 1710 for (; i < urb_priv->num_tds; i++) { 1711 td = &urb_priv->td[i]; 1712 /* TD can already be on cancelled list if ep halted on it */ 1713 if (list_empty(&td->cancelled_td_list)) { 1714 td->cancel_status = TD_DIRTY; 1715 list_add_tail(&td->cancelled_td_list, 1716 &ep->cancelled_td_list); 1717 } 1718 } 1719 1720 /* Queue a stop endpoint command, but only if this is 1721 * the first cancellation to be handled. 1722 */ 1723 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1724 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1725 if (!command) { 1726 ret = -ENOMEM; 1727 goto done; 1728 } 1729 ep->ep_state |= EP_STOP_CMD_PENDING; 1730 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1731 ep_index, 0); 1732 xhci_ring_cmd_db(xhci); 1733 } 1734 done: 1735 spin_unlock_irqrestore(&xhci->lock, flags); 1736 return ret; 1737 1738 err_giveback: 1739 if (urb_priv) 1740 xhci_urb_free_priv(urb_priv); 1741 usb_hcd_unlink_urb_from_ep(hcd, urb); 1742 spin_unlock_irqrestore(&xhci->lock, flags); 1743 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1744 return ret; 1745 } 1746 1747 /* Drop an endpoint from a new bandwidth configuration for this device. 1748 * Only one call to this function is allowed per endpoint before 1749 * check_bandwidth() or reset_bandwidth() must be called. 1750 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1751 * add the endpoint to the schedule with possibly new parameters denoted by a 1752 * different endpoint descriptor in usb_host_endpoint. 1753 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1754 * not allowed. 1755 * 1756 * The USB core will not allow URBs to be queued to an endpoint that is being 1757 * disabled, so there's no need for mutual exclusion to protect 1758 * the xhci->devs[slot_id] structure. 1759 */ 1760 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1761 struct usb_host_endpoint *ep) 1762 { 1763 struct xhci_hcd *xhci; 1764 struct xhci_container_ctx *in_ctx, *out_ctx; 1765 struct xhci_input_control_ctx *ctrl_ctx; 1766 unsigned int ep_index; 1767 struct xhci_ep_ctx *ep_ctx; 1768 u32 drop_flag; 1769 u32 new_add_flags, new_drop_flags; 1770 int ret; 1771 1772 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1773 if (ret <= 0) 1774 return ret; 1775 xhci = hcd_to_xhci(hcd); 1776 if (xhci->xhc_state & XHCI_STATE_DYING) 1777 return -ENODEV; 1778 1779 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1780 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1781 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1782 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1783 __func__, drop_flag); 1784 return 0; 1785 } 1786 1787 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1788 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1789 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1790 if (!ctrl_ctx) { 1791 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1792 __func__); 1793 return 0; 1794 } 1795 1796 ep_index = xhci_get_endpoint_index(&ep->desc); 1797 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1798 /* If the HC already knows the endpoint is disabled, 1799 * or the HCD has noted it is disabled, ignore this request 1800 */ 1801 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1802 le32_to_cpu(ctrl_ctx->drop_flags) & 1803 xhci_get_endpoint_flag(&ep->desc)) { 1804 /* Do not warn when called after a usb_device_reset */ 1805 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1806 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1807 __func__, ep); 1808 return 0; 1809 } 1810 1811 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1812 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1813 1814 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1815 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1816 1817 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1818 1819 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1820 1821 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1822 (unsigned int) ep->desc.bEndpointAddress, 1823 udev->slot_id, 1824 (unsigned int) new_drop_flags, 1825 (unsigned int) new_add_flags); 1826 return 0; 1827 } 1828 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1829 1830 /* Add an endpoint to a new possible bandwidth configuration for this device. 1831 * Only one call to this function is allowed per endpoint before 1832 * check_bandwidth() or reset_bandwidth() must be called. 1833 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1834 * add the endpoint to the schedule with possibly new parameters denoted by a 1835 * different endpoint descriptor in usb_host_endpoint. 1836 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1837 * not allowed. 1838 * 1839 * The USB core will not allow URBs to be queued to an endpoint until the 1840 * configuration or alt setting is installed in the device, so there's no need 1841 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1842 */ 1843 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1844 struct usb_host_endpoint *ep) 1845 { 1846 struct xhci_hcd *xhci; 1847 struct xhci_container_ctx *in_ctx; 1848 unsigned int ep_index; 1849 struct xhci_input_control_ctx *ctrl_ctx; 1850 struct xhci_ep_ctx *ep_ctx; 1851 u32 added_ctxs; 1852 u32 new_add_flags, new_drop_flags; 1853 struct xhci_virt_device *virt_dev; 1854 int ret = 0; 1855 1856 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1857 if (ret <= 0) { 1858 /* So we won't queue a reset ep command for a root hub */ 1859 ep->hcpriv = NULL; 1860 return ret; 1861 } 1862 xhci = hcd_to_xhci(hcd); 1863 if (xhci->xhc_state & XHCI_STATE_DYING) 1864 return -ENODEV; 1865 1866 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1867 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1868 /* FIXME when we have to issue an evaluate endpoint command to 1869 * deal with ep0 max packet size changing once we get the 1870 * descriptors 1871 */ 1872 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1873 __func__, added_ctxs); 1874 return 0; 1875 } 1876 1877 virt_dev = xhci->devs[udev->slot_id]; 1878 in_ctx = virt_dev->in_ctx; 1879 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1880 if (!ctrl_ctx) { 1881 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1882 __func__); 1883 return 0; 1884 } 1885 1886 ep_index = xhci_get_endpoint_index(&ep->desc); 1887 /* If this endpoint is already in use, and the upper layers are trying 1888 * to add it again without dropping it, reject the addition. 1889 */ 1890 if (virt_dev->eps[ep_index].ring && 1891 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1892 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1893 "without dropping it.\n", 1894 (unsigned int) ep->desc.bEndpointAddress); 1895 return -EINVAL; 1896 } 1897 1898 /* If the HCD has already noted the endpoint is enabled, 1899 * ignore this request. 1900 */ 1901 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1902 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1903 __func__, ep); 1904 return 0; 1905 } 1906 1907 /* 1908 * Configuration and alternate setting changes must be done in 1909 * process context, not interrupt context (or so documenation 1910 * for usb_set_interface() and usb_set_configuration() claim). 1911 */ 1912 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1913 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1914 __func__, ep->desc.bEndpointAddress); 1915 return -ENOMEM; 1916 } 1917 1918 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1919 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1920 1921 /* If xhci_endpoint_disable() was called for this endpoint, but the 1922 * xHC hasn't been notified yet through the check_bandwidth() call, 1923 * this re-adds a new state for the endpoint from the new endpoint 1924 * descriptors. We must drop and re-add this endpoint, so we leave the 1925 * drop flags alone. 1926 */ 1927 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1928 1929 /* Store the usb_device pointer for later use */ 1930 ep->hcpriv = udev; 1931 1932 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1933 trace_xhci_add_endpoint(ep_ctx); 1934 1935 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1936 (unsigned int) ep->desc.bEndpointAddress, 1937 udev->slot_id, 1938 (unsigned int) new_drop_flags, 1939 (unsigned int) new_add_flags); 1940 return 0; 1941 } 1942 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 1943 1944 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1945 { 1946 struct xhci_input_control_ctx *ctrl_ctx; 1947 struct xhci_ep_ctx *ep_ctx; 1948 struct xhci_slot_ctx *slot_ctx; 1949 int i; 1950 1951 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1952 if (!ctrl_ctx) { 1953 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1954 __func__); 1955 return; 1956 } 1957 1958 /* When a device's add flag and drop flag are zero, any subsequent 1959 * configure endpoint command will leave that endpoint's state 1960 * untouched. Make sure we don't leave any old state in the input 1961 * endpoint contexts. 1962 */ 1963 ctrl_ctx->drop_flags = 0; 1964 ctrl_ctx->add_flags = 0; 1965 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1966 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1967 /* Endpoint 0 is always valid */ 1968 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1969 for (i = 1; i < 31; i++) { 1970 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1971 ep_ctx->ep_info = 0; 1972 ep_ctx->ep_info2 = 0; 1973 ep_ctx->deq = 0; 1974 ep_ctx->tx_info = 0; 1975 } 1976 } 1977 1978 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1979 struct usb_device *udev, u32 *cmd_status) 1980 { 1981 int ret; 1982 1983 switch (*cmd_status) { 1984 case COMP_COMMAND_ABORTED: 1985 case COMP_COMMAND_RING_STOPPED: 1986 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1987 ret = -ETIME; 1988 break; 1989 case COMP_RESOURCE_ERROR: 1990 dev_warn(&udev->dev, 1991 "Not enough host controller resources for new device state.\n"); 1992 ret = -ENOMEM; 1993 /* FIXME: can we allocate more resources for the HC? */ 1994 break; 1995 case COMP_BANDWIDTH_ERROR: 1996 case COMP_SECONDARY_BANDWIDTH_ERROR: 1997 dev_warn(&udev->dev, 1998 "Not enough bandwidth for new device state.\n"); 1999 ret = -ENOSPC; 2000 /* FIXME: can we go back to the old state? */ 2001 break; 2002 case COMP_TRB_ERROR: 2003 /* the HCD set up something wrong */ 2004 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2005 "add flag = 1, " 2006 "and endpoint is not disabled.\n"); 2007 ret = -EINVAL; 2008 break; 2009 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2010 dev_warn(&udev->dev, 2011 "ERROR: Incompatible device for endpoint configure command.\n"); 2012 ret = -ENODEV; 2013 break; 2014 case COMP_SUCCESS: 2015 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2016 "Successful Endpoint Configure command"); 2017 ret = 0; 2018 break; 2019 default: 2020 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2021 *cmd_status); 2022 ret = -EINVAL; 2023 break; 2024 } 2025 return ret; 2026 } 2027 2028 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2029 struct usb_device *udev, u32 *cmd_status) 2030 { 2031 int ret; 2032 2033 switch (*cmd_status) { 2034 case COMP_COMMAND_ABORTED: 2035 case COMP_COMMAND_RING_STOPPED: 2036 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2037 ret = -ETIME; 2038 break; 2039 case COMP_PARAMETER_ERROR: 2040 dev_warn(&udev->dev, 2041 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2042 ret = -EINVAL; 2043 break; 2044 case COMP_SLOT_NOT_ENABLED_ERROR: 2045 dev_warn(&udev->dev, 2046 "WARN: slot not enabled for evaluate context command.\n"); 2047 ret = -EINVAL; 2048 break; 2049 case COMP_CONTEXT_STATE_ERROR: 2050 dev_warn(&udev->dev, 2051 "WARN: invalid context state for evaluate context command.\n"); 2052 ret = -EINVAL; 2053 break; 2054 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2055 dev_warn(&udev->dev, 2056 "ERROR: Incompatible device for evaluate context command.\n"); 2057 ret = -ENODEV; 2058 break; 2059 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2060 /* Max Exit Latency too large error */ 2061 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2062 ret = -EINVAL; 2063 break; 2064 case COMP_SUCCESS: 2065 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2066 "Successful evaluate context command"); 2067 ret = 0; 2068 break; 2069 default: 2070 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2071 *cmd_status); 2072 ret = -EINVAL; 2073 break; 2074 } 2075 return ret; 2076 } 2077 2078 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2079 struct xhci_input_control_ctx *ctrl_ctx) 2080 { 2081 u32 valid_add_flags; 2082 u32 valid_drop_flags; 2083 2084 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2085 * (bit 1). The default control endpoint is added during the Address 2086 * Device command and is never removed until the slot is disabled. 2087 */ 2088 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2089 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2090 2091 /* Use hweight32 to count the number of ones in the add flags, or 2092 * number of endpoints added. Don't count endpoints that are changed 2093 * (both added and dropped). 2094 */ 2095 return hweight32(valid_add_flags) - 2096 hweight32(valid_add_flags & valid_drop_flags); 2097 } 2098 2099 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2100 struct xhci_input_control_ctx *ctrl_ctx) 2101 { 2102 u32 valid_add_flags; 2103 u32 valid_drop_flags; 2104 2105 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2106 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2107 2108 return hweight32(valid_drop_flags) - 2109 hweight32(valid_add_flags & valid_drop_flags); 2110 } 2111 2112 /* 2113 * We need to reserve the new number of endpoints before the configure endpoint 2114 * command completes. We can't subtract the dropped endpoints from the number 2115 * of active endpoints until the command completes because we can oversubscribe 2116 * the host in this case: 2117 * 2118 * - the first configure endpoint command drops more endpoints than it adds 2119 * - a second configure endpoint command that adds more endpoints is queued 2120 * - the first configure endpoint command fails, so the config is unchanged 2121 * - the second command may succeed, even though there isn't enough resources 2122 * 2123 * Must be called with xhci->lock held. 2124 */ 2125 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2126 struct xhci_input_control_ctx *ctrl_ctx) 2127 { 2128 u32 added_eps; 2129 2130 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2131 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2132 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2133 "Not enough ep ctxs: " 2134 "%u active, need to add %u, limit is %u.", 2135 xhci->num_active_eps, added_eps, 2136 xhci->limit_active_eps); 2137 return -ENOMEM; 2138 } 2139 xhci->num_active_eps += added_eps; 2140 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2141 "Adding %u ep ctxs, %u now active.", added_eps, 2142 xhci->num_active_eps); 2143 return 0; 2144 } 2145 2146 /* 2147 * The configure endpoint was failed by the xHC for some other reason, so we 2148 * need to revert the resources that failed configuration would have used. 2149 * 2150 * Must be called with xhci->lock held. 2151 */ 2152 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2153 struct xhci_input_control_ctx *ctrl_ctx) 2154 { 2155 u32 num_failed_eps; 2156 2157 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2158 xhci->num_active_eps -= num_failed_eps; 2159 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2160 "Removing %u failed ep ctxs, %u now active.", 2161 num_failed_eps, 2162 xhci->num_active_eps); 2163 } 2164 2165 /* 2166 * Now that the command has completed, clean up the active endpoint count by 2167 * subtracting out the endpoints that were dropped (but not changed). 2168 * 2169 * Must be called with xhci->lock held. 2170 */ 2171 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2172 struct xhci_input_control_ctx *ctrl_ctx) 2173 { 2174 u32 num_dropped_eps; 2175 2176 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2177 xhci->num_active_eps -= num_dropped_eps; 2178 if (num_dropped_eps) 2179 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2180 "Removing %u dropped ep ctxs, %u now active.", 2181 num_dropped_eps, 2182 xhci->num_active_eps); 2183 } 2184 2185 static unsigned int xhci_get_block_size(struct usb_device *udev) 2186 { 2187 switch (udev->speed) { 2188 case USB_SPEED_LOW: 2189 case USB_SPEED_FULL: 2190 return FS_BLOCK; 2191 case USB_SPEED_HIGH: 2192 return HS_BLOCK; 2193 case USB_SPEED_SUPER: 2194 case USB_SPEED_SUPER_PLUS: 2195 return SS_BLOCK; 2196 case USB_SPEED_UNKNOWN: 2197 case USB_SPEED_WIRELESS: 2198 default: 2199 /* Should never happen */ 2200 return 1; 2201 } 2202 } 2203 2204 static unsigned int 2205 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2206 { 2207 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2208 return LS_OVERHEAD; 2209 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2210 return FS_OVERHEAD; 2211 return HS_OVERHEAD; 2212 } 2213 2214 /* If we are changing a LS/FS device under a HS hub, 2215 * make sure (if we are activating a new TT) that the HS bus has enough 2216 * bandwidth for this new TT. 2217 */ 2218 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2219 struct xhci_virt_device *virt_dev, 2220 int old_active_eps) 2221 { 2222 struct xhci_interval_bw_table *bw_table; 2223 struct xhci_tt_bw_info *tt_info; 2224 2225 /* Find the bandwidth table for the root port this TT is attached to. */ 2226 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2227 tt_info = virt_dev->tt_info; 2228 /* If this TT already had active endpoints, the bandwidth for this TT 2229 * has already been added. Removing all periodic endpoints (and thus 2230 * making the TT enactive) will only decrease the bandwidth used. 2231 */ 2232 if (old_active_eps) 2233 return 0; 2234 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2235 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2236 return -ENOMEM; 2237 return 0; 2238 } 2239 /* Not sure why we would have no new active endpoints... 2240 * 2241 * Maybe because of an Evaluate Context change for a hub update or a 2242 * control endpoint 0 max packet size change? 2243 * FIXME: skip the bandwidth calculation in that case. 2244 */ 2245 return 0; 2246 } 2247 2248 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2249 struct xhci_virt_device *virt_dev) 2250 { 2251 unsigned int bw_reserved; 2252 2253 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2254 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2255 return -ENOMEM; 2256 2257 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2258 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2259 return -ENOMEM; 2260 2261 return 0; 2262 } 2263 2264 /* 2265 * This algorithm is a very conservative estimate of the worst-case scheduling 2266 * scenario for any one interval. The hardware dynamically schedules the 2267 * packets, so we can't tell which microframe could be the limiting factor in 2268 * the bandwidth scheduling. This only takes into account periodic endpoints. 2269 * 2270 * Obviously, we can't solve an NP complete problem to find the minimum worst 2271 * case scenario. Instead, we come up with an estimate that is no less than 2272 * the worst case bandwidth used for any one microframe, but may be an 2273 * over-estimate. 2274 * 2275 * We walk the requirements for each endpoint by interval, starting with the 2276 * smallest interval, and place packets in the schedule where there is only one 2277 * possible way to schedule packets for that interval. In order to simplify 2278 * this algorithm, we record the largest max packet size for each interval, and 2279 * assume all packets will be that size. 2280 * 2281 * For interval 0, we obviously must schedule all packets for each interval. 2282 * The bandwidth for interval 0 is just the amount of data to be transmitted 2283 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2284 * the number of packets). 2285 * 2286 * For interval 1, we have two possible microframes to schedule those packets 2287 * in. For this algorithm, if we can schedule the same number of packets for 2288 * each possible scheduling opportunity (each microframe), we will do so. The 2289 * remaining number of packets will be saved to be transmitted in the gaps in 2290 * the next interval's scheduling sequence. 2291 * 2292 * As we move those remaining packets to be scheduled with interval 2 packets, 2293 * we have to double the number of remaining packets to transmit. This is 2294 * because the intervals are actually powers of 2, and we would be transmitting 2295 * the previous interval's packets twice in this interval. We also have to be 2296 * sure that when we look at the largest max packet size for this interval, we 2297 * also look at the largest max packet size for the remaining packets and take 2298 * the greater of the two. 2299 * 2300 * The algorithm continues to evenly distribute packets in each scheduling 2301 * opportunity, and push the remaining packets out, until we get to the last 2302 * interval. Then those packets and their associated overhead are just added 2303 * to the bandwidth used. 2304 */ 2305 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2306 struct xhci_virt_device *virt_dev, 2307 int old_active_eps) 2308 { 2309 unsigned int bw_reserved; 2310 unsigned int max_bandwidth; 2311 unsigned int bw_used; 2312 unsigned int block_size; 2313 struct xhci_interval_bw_table *bw_table; 2314 unsigned int packet_size = 0; 2315 unsigned int overhead = 0; 2316 unsigned int packets_transmitted = 0; 2317 unsigned int packets_remaining = 0; 2318 unsigned int i; 2319 2320 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2321 return xhci_check_ss_bw(xhci, virt_dev); 2322 2323 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2324 max_bandwidth = HS_BW_LIMIT; 2325 /* Convert percent of bus BW reserved to blocks reserved */ 2326 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2327 } else { 2328 max_bandwidth = FS_BW_LIMIT; 2329 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2330 } 2331 2332 bw_table = virt_dev->bw_table; 2333 /* We need to translate the max packet size and max ESIT payloads into 2334 * the units the hardware uses. 2335 */ 2336 block_size = xhci_get_block_size(virt_dev->udev); 2337 2338 /* If we are manipulating a LS/FS device under a HS hub, double check 2339 * that the HS bus has enough bandwidth if we are activing a new TT. 2340 */ 2341 if (virt_dev->tt_info) { 2342 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2343 "Recalculating BW for rootport %u", 2344 virt_dev->real_port); 2345 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2346 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2347 "newly activated TT.\n"); 2348 return -ENOMEM; 2349 } 2350 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2351 "Recalculating BW for TT slot %u port %u", 2352 virt_dev->tt_info->slot_id, 2353 virt_dev->tt_info->ttport); 2354 } else { 2355 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2356 "Recalculating BW for rootport %u", 2357 virt_dev->real_port); 2358 } 2359 2360 /* Add in how much bandwidth will be used for interval zero, or the 2361 * rounded max ESIT payload + number of packets * largest overhead. 2362 */ 2363 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2364 bw_table->interval_bw[0].num_packets * 2365 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2366 2367 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2368 unsigned int bw_added; 2369 unsigned int largest_mps; 2370 unsigned int interval_overhead; 2371 2372 /* 2373 * How many packets could we transmit in this interval? 2374 * If packets didn't fit in the previous interval, we will need 2375 * to transmit that many packets twice within this interval. 2376 */ 2377 packets_remaining = 2 * packets_remaining + 2378 bw_table->interval_bw[i].num_packets; 2379 2380 /* Find the largest max packet size of this or the previous 2381 * interval. 2382 */ 2383 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2384 largest_mps = 0; 2385 else { 2386 struct xhci_virt_ep *virt_ep; 2387 struct list_head *ep_entry; 2388 2389 ep_entry = bw_table->interval_bw[i].endpoints.next; 2390 virt_ep = list_entry(ep_entry, 2391 struct xhci_virt_ep, bw_endpoint_list); 2392 /* Convert to blocks, rounding up */ 2393 largest_mps = DIV_ROUND_UP( 2394 virt_ep->bw_info.max_packet_size, 2395 block_size); 2396 } 2397 if (largest_mps > packet_size) 2398 packet_size = largest_mps; 2399 2400 /* Use the larger overhead of this or the previous interval. */ 2401 interval_overhead = xhci_get_largest_overhead( 2402 &bw_table->interval_bw[i]); 2403 if (interval_overhead > overhead) 2404 overhead = interval_overhead; 2405 2406 /* How many packets can we evenly distribute across 2407 * (1 << (i + 1)) possible scheduling opportunities? 2408 */ 2409 packets_transmitted = packets_remaining >> (i + 1); 2410 2411 /* Add in the bandwidth used for those scheduled packets */ 2412 bw_added = packets_transmitted * (overhead + packet_size); 2413 2414 /* How many packets do we have remaining to transmit? */ 2415 packets_remaining = packets_remaining % (1 << (i + 1)); 2416 2417 /* What largest max packet size should those packets have? */ 2418 /* If we've transmitted all packets, don't carry over the 2419 * largest packet size. 2420 */ 2421 if (packets_remaining == 0) { 2422 packet_size = 0; 2423 overhead = 0; 2424 } else if (packets_transmitted > 0) { 2425 /* Otherwise if we do have remaining packets, and we've 2426 * scheduled some packets in this interval, take the 2427 * largest max packet size from endpoints with this 2428 * interval. 2429 */ 2430 packet_size = largest_mps; 2431 overhead = interval_overhead; 2432 } 2433 /* Otherwise carry over packet_size and overhead from the last 2434 * time we had a remainder. 2435 */ 2436 bw_used += bw_added; 2437 if (bw_used > max_bandwidth) { 2438 xhci_warn(xhci, "Not enough bandwidth. " 2439 "Proposed: %u, Max: %u\n", 2440 bw_used, max_bandwidth); 2441 return -ENOMEM; 2442 } 2443 } 2444 /* 2445 * Ok, we know we have some packets left over after even-handedly 2446 * scheduling interval 15. We don't know which microframes they will 2447 * fit into, so we over-schedule and say they will be scheduled every 2448 * microframe. 2449 */ 2450 if (packets_remaining > 0) 2451 bw_used += overhead + packet_size; 2452 2453 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2454 unsigned int port_index = virt_dev->real_port - 1; 2455 2456 /* OK, we're manipulating a HS device attached to a 2457 * root port bandwidth domain. Include the number of active TTs 2458 * in the bandwidth used. 2459 */ 2460 bw_used += TT_HS_OVERHEAD * 2461 xhci->rh_bw[port_index].num_active_tts; 2462 } 2463 2464 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2465 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2466 "Available: %u " "percent", 2467 bw_used, max_bandwidth, bw_reserved, 2468 (max_bandwidth - bw_used - bw_reserved) * 100 / 2469 max_bandwidth); 2470 2471 bw_used += bw_reserved; 2472 if (bw_used > max_bandwidth) { 2473 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2474 bw_used, max_bandwidth); 2475 return -ENOMEM; 2476 } 2477 2478 bw_table->bw_used = bw_used; 2479 return 0; 2480 } 2481 2482 static bool xhci_is_async_ep(unsigned int ep_type) 2483 { 2484 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2485 ep_type != ISOC_IN_EP && 2486 ep_type != INT_IN_EP); 2487 } 2488 2489 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2490 { 2491 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2492 } 2493 2494 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2495 { 2496 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2497 2498 if (ep_bw->ep_interval == 0) 2499 return SS_OVERHEAD_BURST + 2500 (ep_bw->mult * ep_bw->num_packets * 2501 (SS_OVERHEAD + mps)); 2502 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2503 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2504 1 << ep_bw->ep_interval); 2505 2506 } 2507 2508 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2509 struct xhci_bw_info *ep_bw, 2510 struct xhci_interval_bw_table *bw_table, 2511 struct usb_device *udev, 2512 struct xhci_virt_ep *virt_ep, 2513 struct xhci_tt_bw_info *tt_info) 2514 { 2515 struct xhci_interval_bw *interval_bw; 2516 int normalized_interval; 2517 2518 if (xhci_is_async_ep(ep_bw->type)) 2519 return; 2520 2521 if (udev->speed >= USB_SPEED_SUPER) { 2522 if (xhci_is_sync_in_ep(ep_bw->type)) 2523 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2524 xhci_get_ss_bw_consumed(ep_bw); 2525 else 2526 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2527 xhci_get_ss_bw_consumed(ep_bw); 2528 return; 2529 } 2530 2531 /* SuperSpeed endpoints never get added to intervals in the table, so 2532 * this check is only valid for HS/FS/LS devices. 2533 */ 2534 if (list_empty(&virt_ep->bw_endpoint_list)) 2535 return; 2536 /* For LS/FS devices, we need to translate the interval expressed in 2537 * microframes to frames. 2538 */ 2539 if (udev->speed == USB_SPEED_HIGH) 2540 normalized_interval = ep_bw->ep_interval; 2541 else 2542 normalized_interval = ep_bw->ep_interval - 3; 2543 2544 if (normalized_interval == 0) 2545 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2546 interval_bw = &bw_table->interval_bw[normalized_interval]; 2547 interval_bw->num_packets -= ep_bw->num_packets; 2548 switch (udev->speed) { 2549 case USB_SPEED_LOW: 2550 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2551 break; 2552 case USB_SPEED_FULL: 2553 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2554 break; 2555 case USB_SPEED_HIGH: 2556 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2557 break; 2558 case USB_SPEED_SUPER: 2559 case USB_SPEED_SUPER_PLUS: 2560 case USB_SPEED_UNKNOWN: 2561 case USB_SPEED_WIRELESS: 2562 /* Should never happen because only LS/FS/HS endpoints will get 2563 * added to the endpoint list. 2564 */ 2565 return; 2566 } 2567 if (tt_info) 2568 tt_info->active_eps -= 1; 2569 list_del_init(&virt_ep->bw_endpoint_list); 2570 } 2571 2572 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2573 struct xhci_bw_info *ep_bw, 2574 struct xhci_interval_bw_table *bw_table, 2575 struct usb_device *udev, 2576 struct xhci_virt_ep *virt_ep, 2577 struct xhci_tt_bw_info *tt_info) 2578 { 2579 struct xhci_interval_bw *interval_bw; 2580 struct xhci_virt_ep *smaller_ep; 2581 int normalized_interval; 2582 2583 if (xhci_is_async_ep(ep_bw->type)) 2584 return; 2585 2586 if (udev->speed == USB_SPEED_SUPER) { 2587 if (xhci_is_sync_in_ep(ep_bw->type)) 2588 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2589 xhci_get_ss_bw_consumed(ep_bw); 2590 else 2591 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2592 xhci_get_ss_bw_consumed(ep_bw); 2593 return; 2594 } 2595 2596 /* For LS/FS devices, we need to translate the interval expressed in 2597 * microframes to frames. 2598 */ 2599 if (udev->speed == USB_SPEED_HIGH) 2600 normalized_interval = ep_bw->ep_interval; 2601 else 2602 normalized_interval = ep_bw->ep_interval - 3; 2603 2604 if (normalized_interval == 0) 2605 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2606 interval_bw = &bw_table->interval_bw[normalized_interval]; 2607 interval_bw->num_packets += ep_bw->num_packets; 2608 switch (udev->speed) { 2609 case USB_SPEED_LOW: 2610 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2611 break; 2612 case USB_SPEED_FULL: 2613 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2614 break; 2615 case USB_SPEED_HIGH: 2616 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2617 break; 2618 case USB_SPEED_SUPER: 2619 case USB_SPEED_SUPER_PLUS: 2620 case USB_SPEED_UNKNOWN: 2621 case USB_SPEED_WIRELESS: 2622 /* Should never happen because only LS/FS/HS endpoints will get 2623 * added to the endpoint list. 2624 */ 2625 return; 2626 } 2627 2628 if (tt_info) 2629 tt_info->active_eps += 1; 2630 /* Insert the endpoint into the list, largest max packet size first. */ 2631 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2632 bw_endpoint_list) { 2633 if (ep_bw->max_packet_size >= 2634 smaller_ep->bw_info.max_packet_size) { 2635 /* Add the new ep before the smaller endpoint */ 2636 list_add_tail(&virt_ep->bw_endpoint_list, 2637 &smaller_ep->bw_endpoint_list); 2638 return; 2639 } 2640 } 2641 /* Add the new endpoint at the end of the list. */ 2642 list_add_tail(&virt_ep->bw_endpoint_list, 2643 &interval_bw->endpoints); 2644 } 2645 2646 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2647 struct xhci_virt_device *virt_dev, 2648 int old_active_eps) 2649 { 2650 struct xhci_root_port_bw_info *rh_bw_info; 2651 if (!virt_dev->tt_info) 2652 return; 2653 2654 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2655 if (old_active_eps == 0 && 2656 virt_dev->tt_info->active_eps != 0) { 2657 rh_bw_info->num_active_tts += 1; 2658 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2659 } else if (old_active_eps != 0 && 2660 virt_dev->tt_info->active_eps == 0) { 2661 rh_bw_info->num_active_tts -= 1; 2662 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2663 } 2664 } 2665 2666 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2667 struct xhci_virt_device *virt_dev, 2668 struct xhci_container_ctx *in_ctx) 2669 { 2670 struct xhci_bw_info ep_bw_info[31]; 2671 int i; 2672 struct xhci_input_control_ctx *ctrl_ctx; 2673 int old_active_eps = 0; 2674 2675 if (virt_dev->tt_info) 2676 old_active_eps = virt_dev->tt_info->active_eps; 2677 2678 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2679 if (!ctrl_ctx) { 2680 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2681 __func__); 2682 return -ENOMEM; 2683 } 2684 2685 for (i = 0; i < 31; i++) { 2686 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2687 continue; 2688 2689 /* Make a copy of the BW info in case we need to revert this */ 2690 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2691 sizeof(ep_bw_info[i])); 2692 /* Drop the endpoint from the interval table if the endpoint is 2693 * being dropped or changed. 2694 */ 2695 if (EP_IS_DROPPED(ctrl_ctx, i)) 2696 xhci_drop_ep_from_interval_table(xhci, 2697 &virt_dev->eps[i].bw_info, 2698 virt_dev->bw_table, 2699 virt_dev->udev, 2700 &virt_dev->eps[i], 2701 virt_dev->tt_info); 2702 } 2703 /* Overwrite the information stored in the endpoints' bw_info */ 2704 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2705 for (i = 0; i < 31; i++) { 2706 /* Add any changed or added endpoints to the interval table */ 2707 if (EP_IS_ADDED(ctrl_ctx, i)) 2708 xhci_add_ep_to_interval_table(xhci, 2709 &virt_dev->eps[i].bw_info, 2710 virt_dev->bw_table, 2711 virt_dev->udev, 2712 &virt_dev->eps[i], 2713 virt_dev->tt_info); 2714 } 2715 2716 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2717 /* Ok, this fits in the bandwidth we have. 2718 * Update the number of active TTs. 2719 */ 2720 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2721 return 0; 2722 } 2723 2724 /* We don't have enough bandwidth for this, revert the stored info. */ 2725 for (i = 0; i < 31; i++) { 2726 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2727 continue; 2728 2729 /* Drop the new copies of any added or changed endpoints from 2730 * the interval table. 2731 */ 2732 if (EP_IS_ADDED(ctrl_ctx, i)) { 2733 xhci_drop_ep_from_interval_table(xhci, 2734 &virt_dev->eps[i].bw_info, 2735 virt_dev->bw_table, 2736 virt_dev->udev, 2737 &virt_dev->eps[i], 2738 virt_dev->tt_info); 2739 } 2740 /* Revert the endpoint back to its old information */ 2741 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2742 sizeof(ep_bw_info[i])); 2743 /* Add any changed or dropped endpoints back into the table */ 2744 if (EP_IS_DROPPED(ctrl_ctx, i)) 2745 xhci_add_ep_to_interval_table(xhci, 2746 &virt_dev->eps[i].bw_info, 2747 virt_dev->bw_table, 2748 virt_dev->udev, 2749 &virt_dev->eps[i], 2750 virt_dev->tt_info); 2751 } 2752 return -ENOMEM; 2753 } 2754 2755 2756 /* Issue a configure endpoint command or evaluate context command 2757 * and wait for it to finish. 2758 */ 2759 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2760 struct usb_device *udev, 2761 struct xhci_command *command, 2762 bool ctx_change, bool must_succeed) 2763 { 2764 int ret; 2765 unsigned long flags; 2766 struct xhci_input_control_ctx *ctrl_ctx; 2767 struct xhci_virt_device *virt_dev; 2768 struct xhci_slot_ctx *slot_ctx; 2769 2770 if (!command) 2771 return -EINVAL; 2772 2773 spin_lock_irqsave(&xhci->lock, flags); 2774 2775 if (xhci->xhc_state & XHCI_STATE_DYING) { 2776 spin_unlock_irqrestore(&xhci->lock, flags); 2777 return -ESHUTDOWN; 2778 } 2779 2780 virt_dev = xhci->devs[udev->slot_id]; 2781 2782 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2783 if (!ctrl_ctx) { 2784 spin_unlock_irqrestore(&xhci->lock, flags); 2785 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2786 __func__); 2787 return -ENOMEM; 2788 } 2789 2790 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2791 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2792 spin_unlock_irqrestore(&xhci->lock, flags); 2793 xhci_warn(xhci, "Not enough host resources, " 2794 "active endpoint contexts = %u\n", 2795 xhci->num_active_eps); 2796 return -ENOMEM; 2797 } 2798 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2799 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2800 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2801 xhci_free_host_resources(xhci, ctrl_ctx); 2802 spin_unlock_irqrestore(&xhci->lock, flags); 2803 xhci_warn(xhci, "Not enough bandwidth\n"); 2804 return -ENOMEM; 2805 } 2806 2807 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2808 2809 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2810 trace_xhci_configure_endpoint(slot_ctx); 2811 2812 if (!ctx_change) 2813 ret = xhci_queue_configure_endpoint(xhci, command, 2814 command->in_ctx->dma, 2815 udev->slot_id, must_succeed); 2816 else 2817 ret = xhci_queue_evaluate_context(xhci, command, 2818 command->in_ctx->dma, 2819 udev->slot_id, must_succeed); 2820 if (ret < 0) { 2821 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2822 xhci_free_host_resources(xhci, ctrl_ctx); 2823 spin_unlock_irqrestore(&xhci->lock, flags); 2824 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2825 "FIXME allocate a new ring segment"); 2826 return -ENOMEM; 2827 } 2828 xhci_ring_cmd_db(xhci); 2829 spin_unlock_irqrestore(&xhci->lock, flags); 2830 2831 /* Wait for the configure endpoint command to complete */ 2832 wait_for_completion(command->completion); 2833 2834 if (!ctx_change) 2835 ret = xhci_configure_endpoint_result(xhci, udev, 2836 &command->status); 2837 else 2838 ret = xhci_evaluate_context_result(xhci, udev, 2839 &command->status); 2840 2841 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2842 spin_lock_irqsave(&xhci->lock, flags); 2843 /* If the command failed, remove the reserved resources. 2844 * Otherwise, clean up the estimate to include dropped eps. 2845 */ 2846 if (ret) 2847 xhci_free_host_resources(xhci, ctrl_ctx); 2848 else 2849 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2850 spin_unlock_irqrestore(&xhci->lock, flags); 2851 } 2852 return ret; 2853 } 2854 2855 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2856 struct xhci_virt_device *vdev, int i) 2857 { 2858 struct xhci_virt_ep *ep = &vdev->eps[i]; 2859 2860 if (ep->ep_state & EP_HAS_STREAMS) { 2861 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2862 xhci_get_endpoint_address(i)); 2863 xhci_free_stream_info(xhci, ep->stream_info); 2864 ep->stream_info = NULL; 2865 ep->ep_state &= ~EP_HAS_STREAMS; 2866 } 2867 } 2868 2869 /* Called after one or more calls to xhci_add_endpoint() or 2870 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2871 * to call xhci_reset_bandwidth(). 2872 * 2873 * Since we are in the middle of changing either configuration or 2874 * installing a new alt setting, the USB core won't allow URBs to be 2875 * enqueued for any endpoint on the old config or interface. Nothing 2876 * else should be touching the xhci->devs[slot_id] structure, so we 2877 * don't need to take the xhci->lock for manipulating that. 2878 */ 2879 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2880 { 2881 int i; 2882 int ret = 0; 2883 struct xhci_hcd *xhci; 2884 struct xhci_virt_device *virt_dev; 2885 struct xhci_input_control_ctx *ctrl_ctx; 2886 struct xhci_slot_ctx *slot_ctx; 2887 struct xhci_command *command; 2888 2889 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2890 if (ret <= 0) 2891 return ret; 2892 xhci = hcd_to_xhci(hcd); 2893 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2894 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2895 return -ENODEV; 2896 2897 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2898 virt_dev = xhci->devs[udev->slot_id]; 2899 2900 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2901 if (!command) 2902 return -ENOMEM; 2903 2904 command->in_ctx = virt_dev->in_ctx; 2905 2906 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2907 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2908 if (!ctrl_ctx) { 2909 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2910 __func__); 2911 ret = -ENOMEM; 2912 goto command_cleanup; 2913 } 2914 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2915 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2916 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2917 2918 /* Don't issue the command if there's no endpoints to update. */ 2919 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2920 ctrl_ctx->drop_flags == 0) { 2921 ret = 0; 2922 goto command_cleanup; 2923 } 2924 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2925 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2926 for (i = 31; i >= 1; i--) { 2927 __le32 le32 = cpu_to_le32(BIT(i)); 2928 2929 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2930 || (ctrl_ctx->add_flags & le32) || i == 1) { 2931 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2932 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2933 break; 2934 } 2935 } 2936 2937 ret = xhci_configure_endpoint(xhci, udev, command, 2938 false, false); 2939 if (ret) 2940 /* Callee should call reset_bandwidth() */ 2941 goto command_cleanup; 2942 2943 /* Free any rings that were dropped, but not changed. */ 2944 for (i = 1; i < 31; i++) { 2945 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2946 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2947 xhci_free_endpoint_ring(xhci, virt_dev, i); 2948 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2949 } 2950 } 2951 xhci_zero_in_ctx(xhci, virt_dev); 2952 /* 2953 * Install any rings for completely new endpoints or changed endpoints, 2954 * and free any old rings from changed endpoints. 2955 */ 2956 for (i = 1; i < 31; i++) { 2957 if (!virt_dev->eps[i].new_ring) 2958 continue; 2959 /* Only free the old ring if it exists. 2960 * It may not if this is the first add of an endpoint. 2961 */ 2962 if (virt_dev->eps[i].ring) { 2963 xhci_free_endpoint_ring(xhci, virt_dev, i); 2964 } 2965 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2966 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2967 virt_dev->eps[i].new_ring = NULL; 2968 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 2969 } 2970 command_cleanup: 2971 kfree(command->completion); 2972 kfree(command); 2973 2974 return ret; 2975 } 2976 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 2977 2978 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2979 { 2980 struct xhci_hcd *xhci; 2981 struct xhci_virt_device *virt_dev; 2982 int i, ret; 2983 2984 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2985 if (ret <= 0) 2986 return; 2987 xhci = hcd_to_xhci(hcd); 2988 2989 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2990 virt_dev = xhci->devs[udev->slot_id]; 2991 /* Free any rings allocated for added endpoints */ 2992 for (i = 0; i < 31; i++) { 2993 if (virt_dev->eps[i].new_ring) { 2994 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2995 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2996 virt_dev->eps[i].new_ring = NULL; 2997 } 2998 } 2999 xhci_zero_in_ctx(xhci, virt_dev); 3000 } 3001 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3002 3003 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3004 struct xhci_container_ctx *in_ctx, 3005 struct xhci_container_ctx *out_ctx, 3006 struct xhci_input_control_ctx *ctrl_ctx, 3007 u32 add_flags, u32 drop_flags) 3008 { 3009 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3010 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3011 xhci_slot_copy(xhci, in_ctx, out_ctx); 3012 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3013 } 3014 3015 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3016 struct usb_host_endpoint *host_ep) 3017 { 3018 struct xhci_hcd *xhci; 3019 struct xhci_virt_device *vdev; 3020 struct xhci_virt_ep *ep; 3021 struct usb_device *udev; 3022 unsigned long flags; 3023 unsigned int ep_index; 3024 3025 xhci = hcd_to_xhci(hcd); 3026 rescan: 3027 spin_lock_irqsave(&xhci->lock, flags); 3028 3029 udev = (struct usb_device *)host_ep->hcpriv; 3030 if (!udev || !udev->slot_id) 3031 goto done; 3032 3033 vdev = xhci->devs[udev->slot_id]; 3034 if (!vdev) 3035 goto done; 3036 3037 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3038 ep = &vdev->eps[ep_index]; 3039 3040 /* wait for hub_tt_work to finish clearing hub TT */ 3041 if (ep->ep_state & EP_CLEARING_TT) { 3042 spin_unlock_irqrestore(&xhci->lock, flags); 3043 schedule_timeout_uninterruptible(1); 3044 goto rescan; 3045 } 3046 3047 if (ep->ep_state) 3048 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3049 ep->ep_state); 3050 done: 3051 host_ep->hcpriv = NULL; 3052 spin_unlock_irqrestore(&xhci->lock, flags); 3053 } 3054 3055 /* 3056 * Called after usb core issues a clear halt control message. 3057 * The host side of the halt should already be cleared by a reset endpoint 3058 * command issued when the STALL event was received. 3059 * 3060 * The reset endpoint command may only be issued to endpoints in the halted 3061 * state. For software that wishes to reset the data toggle or sequence number 3062 * of an endpoint that isn't in the halted state this function will issue a 3063 * configure endpoint command with the Drop and Add bits set for the target 3064 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3065 */ 3066 3067 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3068 struct usb_host_endpoint *host_ep) 3069 { 3070 struct xhci_hcd *xhci; 3071 struct usb_device *udev; 3072 struct xhci_virt_device *vdev; 3073 struct xhci_virt_ep *ep; 3074 struct xhci_input_control_ctx *ctrl_ctx; 3075 struct xhci_command *stop_cmd, *cfg_cmd; 3076 unsigned int ep_index; 3077 unsigned long flags; 3078 u32 ep_flag; 3079 int err; 3080 3081 xhci = hcd_to_xhci(hcd); 3082 if (!host_ep->hcpriv) 3083 return; 3084 udev = (struct usb_device *) host_ep->hcpriv; 3085 vdev = xhci->devs[udev->slot_id]; 3086 3087 /* 3088 * vdev may be lost due to xHC restore error and re-initialization 3089 * during S3/S4 resume. A new vdev will be allocated later by 3090 * xhci_discover_or_reset_device() 3091 */ 3092 if (!udev->slot_id || !vdev) 3093 return; 3094 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3095 ep = &vdev->eps[ep_index]; 3096 3097 /* Bail out if toggle is already being cleared by a endpoint reset */ 3098 spin_lock_irqsave(&xhci->lock, flags); 3099 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3100 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3101 spin_unlock_irqrestore(&xhci->lock, flags); 3102 return; 3103 } 3104 spin_unlock_irqrestore(&xhci->lock, flags); 3105 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3106 if (usb_endpoint_xfer_control(&host_ep->desc) || 3107 usb_endpoint_xfer_isoc(&host_ep->desc)) 3108 return; 3109 3110 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3111 3112 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3113 return; 3114 3115 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3116 if (!stop_cmd) 3117 return; 3118 3119 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3120 if (!cfg_cmd) 3121 goto cleanup; 3122 3123 spin_lock_irqsave(&xhci->lock, flags); 3124 3125 /* block queuing new trbs and ringing ep doorbell */ 3126 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3127 3128 /* 3129 * Make sure endpoint ring is empty before resetting the toggle/seq. 3130 * Driver is required to synchronously cancel all transfer request. 3131 * Stop the endpoint to force xHC to update the output context 3132 */ 3133 3134 if (!list_empty(&ep->ring->td_list)) { 3135 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3136 spin_unlock_irqrestore(&xhci->lock, flags); 3137 xhci_free_command(xhci, cfg_cmd); 3138 goto cleanup; 3139 } 3140 3141 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3142 ep_index, 0); 3143 if (err < 0) { 3144 spin_unlock_irqrestore(&xhci->lock, flags); 3145 xhci_free_command(xhci, cfg_cmd); 3146 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3147 __func__, err); 3148 goto cleanup; 3149 } 3150 3151 xhci_ring_cmd_db(xhci); 3152 spin_unlock_irqrestore(&xhci->lock, flags); 3153 3154 wait_for_completion(stop_cmd->completion); 3155 3156 spin_lock_irqsave(&xhci->lock, flags); 3157 3158 /* config ep command clears toggle if add and drop ep flags are set */ 3159 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3160 if (!ctrl_ctx) { 3161 spin_unlock_irqrestore(&xhci->lock, flags); 3162 xhci_free_command(xhci, cfg_cmd); 3163 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3164 __func__); 3165 goto cleanup; 3166 } 3167 3168 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3169 ctrl_ctx, ep_flag, ep_flag); 3170 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3171 3172 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3173 udev->slot_id, false); 3174 if (err < 0) { 3175 spin_unlock_irqrestore(&xhci->lock, flags); 3176 xhci_free_command(xhci, cfg_cmd); 3177 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3178 __func__, err); 3179 goto cleanup; 3180 } 3181 3182 xhci_ring_cmd_db(xhci); 3183 spin_unlock_irqrestore(&xhci->lock, flags); 3184 3185 wait_for_completion(cfg_cmd->completion); 3186 3187 xhci_free_command(xhci, cfg_cmd); 3188 cleanup: 3189 xhci_free_command(xhci, stop_cmd); 3190 spin_lock_irqsave(&xhci->lock, flags); 3191 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3192 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3193 spin_unlock_irqrestore(&xhci->lock, flags); 3194 } 3195 3196 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3197 struct usb_device *udev, struct usb_host_endpoint *ep, 3198 unsigned int slot_id) 3199 { 3200 int ret; 3201 unsigned int ep_index; 3202 unsigned int ep_state; 3203 3204 if (!ep) 3205 return -EINVAL; 3206 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3207 if (ret <= 0) 3208 return ret ? ret : -EINVAL; 3209 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3210 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3211 " descriptor for ep 0x%x does not support streams\n", 3212 ep->desc.bEndpointAddress); 3213 return -EINVAL; 3214 } 3215 3216 ep_index = xhci_get_endpoint_index(&ep->desc); 3217 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3218 if (ep_state & EP_HAS_STREAMS || 3219 ep_state & EP_GETTING_STREAMS) { 3220 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3221 "already has streams set up.\n", 3222 ep->desc.bEndpointAddress); 3223 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3224 "dynamic stream context array reallocation.\n"); 3225 return -EINVAL; 3226 } 3227 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3228 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3229 "endpoint 0x%x; URBs are pending.\n", 3230 ep->desc.bEndpointAddress); 3231 return -EINVAL; 3232 } 3233 return 0; 3234 } 3235 3236 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3237 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3238 { 3239 unsigned int max_streams; 3240 3241 /* The stream context array size must be a power of two */ 3242 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3243 /* 3244 * Find out how many primary stream array entries the host controller 3245 * supports. Later we may use secondary stream arrays (similar to 2nd 3246 * level page entries), but that's an optional feature for xHCI host 3247 * controllers. xHCs must support at least 4 stream IDs. 3248 */ 3249 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3250 if (*num_stream_ctxs > max_streams) { 3251 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3252 max_streams); 3253 *num_stream_ctxs = max_streams; 3254 *num_streams = max_streams; 3255 } 3256 } 3257 3258 /* Returns an error code if one of the endpoint already has streams. 3259 * This does not change any data structures, it only checks and gathers 3260 * information. 3261 */ 3262 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3263 struct usb_device *udev, 3264 struct usb_host_endpoint **eps, unsigned int num_eps, 3265 unsigned int *num_streams, u32 *changed_ep_bitmask) 3266 { 3267 unsigned int max_streams; 3268 unsigned int endpoint_flag; 3269 int i; 3270 int ret; 3271 3272 for (i = 0; i < num_eps; i++) { 3273 ret = xhci_check_streams_endpoint(xhci, udev, 3274 eps[i], udev->slot_id); 3275 if (ret < 0) 3276 return ret; 3277 3278 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3279 if (max_streams < (*num_streams - 1)) { 3280 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3281 eps[i]->desc.bEndpointAddress, 3282 max_streams); 3283 *num_streams = max_streams+1; 3284 } 3285 3286 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3287 if (*changed_ep_bitmask & endpoint_flag) 3288 return -EINVAL; 3289 *changed_ep_bitmask |= endpoint_flag; 3290 } 3291 return 0; 3292 } 3293 3294 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3295 struct usb_device *udev, 3296 struct usb_host_endpoint **eps, unsigned int num_eps) 3297 { 3298 u32 changed_ep_bitmask = 0; 3299 unsigned int slot_id; 3300 unsigned int ep_index; 3301 unsigned int ep_state; 3302 int i; 3303 3304 slot_id = udev->slot_id; 3305 if (!xhci->devs[slot_id]) 3306 return 0; 3307 3308 for (i = 0; i < num_eps; i++) { 3309 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3310 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3311 /* Are streams already being freed for the endpoint? */ 3312 if (ep_state & EP_GETTING_NO_STREAMS) { 3313 xhci_warn(xhci, "WARN Can't disable streams for " 3314 "endpoint 0x%x, " 3315 "streams are being disabled already\n", 3316 eps[i]->desc.bEndpointAddress); 3317 return 0; 3318 } 3319 /* Are there actually any streams to free? */ 3320 if (!(ep_state & EP_HAS_STREAMS) && 3321 !(ep_state & EP_GETTING_STREAMS)) { 3322 xhci_warn(xhci, "WARN Can't disable streams for " 3323 "endpoint 0x%x, " 3324 "streams are already disabled!\n", 3325 eps[i]->desc.bEndpointAddress); 3326 xhci_warn(xhci, "WARN xhci_free_streams() called " 3327 "with non-streams endpoint\n"); 3328 return 0; 3329 } 3330 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3331 } 3332 return changed_ep_bitmask; 3333 } 3334 3335 /* 3336 * The USB device drivers use this function (through the HCD interface in USB 3337 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3338 * coordinate mass storage command queueing across multiple endpoints (basically 3339 * a stream ID == a task ID). 3340 * 3341 * Setting up streams involves allocating the same size stream context array 3342 * for each endpoint and issuing a configure endpoint command for all endpoints. 3343 * 3344 * Don't allow the call to succeed if one endpoint only supports one stream 3345 * (which means it doesn't support streams at all). 3346 * 3347 * Drivers may get less stream IDs than they asked for, if the host controller 3348 * hardware or endpoints claim they can't support the number of requested 3349 * stream IDs. 3350 */ 3351 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3352 struct usb_host_endpoint **eps, unsigned int num_eps, 3353 unsigned int num_streams, gfp_t mem_flags) 3354 { 3355 int i, ret; 3356 struct xhci_hcd *xhci; 3357 struct xhci_virt_device *vdev; 3358 struct xhci_command *config_cmd; 3359 struct xhci_input_control_ctx *ctrl_ctx; 3360 unsigned int ep_index; 3361 unsigned int num_stream_ctxs; 3362 unsigned int max_packet; 3363 unsigned long flags; 3364 u32 changed_ep_bitmask = 0; 3365 3366 if (!eps) 3367 return -EINVAL; 3368 3369 /* Add one to the number of streams requested to account for 3370 * stream 0 that is reserved for xHCI usage. 3371 */ 3372 num_streams += 1; 3373 xhci = hcd_to_xhci(hcd); 3374 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3375 num_streams); 3376 3377 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3378 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3379 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3380 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3381 return -ENOSYS; 3382 } 3383 3384 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3385 if (!config_cmd) 3386 return -ENOMEM; 3387 3388 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3389 if (!ctrl_ctx) { 3390 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3391 __func__); 3392 xhci_free_command(xhci, config_cmd); 3393 return -ENOMEM; 3394 } 3395 3396 /* Check to make sure all endpoints are not already configured for 3397 * streams. While we're at it, find the maximum number of streams that 3398 * all the endpoints will support and check for duplicate endpoints. 3399 */ 3400 spin_lock_irqsave(&xhci->lock, flags); 3401 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3402 num_eps, &num_streams, &changed_ep_bitmask); 3403 if (ret < 0) { 3404 xhci_free_command(xhci, config_cmd); 3405 spin_unlock_irqrestore(&xhci->lock, flags); 3406 return ret; 3407 } 3408 if (num_streams <= 1) { 3409 xhci_warn(xhci, "WARN: endpoints can't handle " 3410 "more than one stream.\n"); 3411 xhci_free_command(xhci, config_cmd); 3412 spin_unlock_irqrestore(&xhci->lock, flags); 3413 return -EINVAL; 3414 } 3415 vdev = xhci->devs[udev->slot_id]; 3416 /* Mark each endpoint as being in transition, so 3417 * xhci_urb_enqueue() will reject all URBs. 3418 */ 3419 for (i = 0; i < num_eps; i++) { 3420 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3421 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3422 } 3423 spin_unlock_irqrestore(&xhci->lock, flags); 3424 3425 /* Setup internal data structures and allocate HW data structures for 3426 * streams (but don't install the HW structures in the input context 3427 * until we're sure all memory allocation succeeded). 3428 */ 3429 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3430 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3431 num_stream_ctxs, num_streams); 3432 3433 for (i = 0; i < num_eps; i++) { 3434 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3435 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3436 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3437 num_stream_ctxs, 3438 num_streams, 3439 max_packet, mem_flags); 3440 if (!vdev->eps[ep_index].stream_info) 3441 goto cleanup; 3442 /* Set maxPstreams in endpoint context and update deq ptr to 3443 * point to stream context array. FIXME 3444 */ 3445 } 3446 3447 /* Set up the input context for a configure endpoint command. */ 3448 for (i = 0; i < num_eps; i++) { 3449 struct xhci_ep_ctx *ep_ctx; 3450 3451 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3452 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3453 3454 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3455 vdev->out_ctx, ep_index); 3456 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3457 vdev->eps[ep_index].stream_info); 3458 } 3459 /* Tell the HW to drop its old copy of the endpoint context info 3460 * and add the updated copy from the input context. 3461 */ 3462 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3463 vdev->out_ctx, ctrl_ctx, 3464 changed_ep_bitmask, changed_ep_bitmask); 3465 3466 /* Issue and wait for the configure endpoint command */ 3467 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3468 false, false); 3469 3470 /* xHC rejected the configure endpoint command for some reason, so we 3471 * leave the old ring intact and free our internal streams data 3472 * structure. 3473 */ 3474 if (ret < 0) 3475 goto cleanup; 3476 3477 spin_lock_irqsave(&xhci->lock, flags); 3478 for (i = 0; i < num_eps; i++) { 3479 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3480 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3481 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3482 udev->slot_id, ep_index); 3483 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3484 } 3485 xhci_free_command(xhci, config_cmd); 3486 spin_unlock_irqrestore(&xhci->lock, flags); 3487 3488 for (i = 0; i < num_eps; i++) { 3489 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3490 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3491 } 3492 /* Subtract 1 for stream 0, which drivers can't use */ 3493 return num_streams - 1; 3494 3495 cleanup: 3496 /* If it didn't work, free the streams! */ 3497 for (i = 0; i < num_eps; i++) { 3498 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3499 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3500 vdev->eps[ep_index].stream_info = NULL; 3501 /* FIXME Unset maxPstreams in endpoint context and 3502 * update deq ptr to point to normal string ring. 3503 */ 3504 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3505 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3506 xhci_endpoint_zero(xhci, vdev, eps[i]); 3507 } 3508 xhci_free_command(xhci, config_cmd); 3509 return -ENOMEM; 3510 } 3511 3512 /* Transition the endpoint from using streams to being a "normal" endpoint 3513 * without streams. 3514 * 3515 * Modify the endpoint context state, submit a configure endpoint command, 3516 * and free all endpoint rings for streams if that completes successfully. 3517 */ 3518 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3519 struct usb_host_endpoint **eps, unsigned int num_eps, 3520 gfp_t mem_flags) 3521 { 3522 int i, ret; 3523 struct xhci_hcd *xhci; 3524 struct xhci_virt_device *vdev; 3525 struct xhci_command *command; 3526 struct xhci_input_control_ctx *ctrl_ctx; 3527 unsigned int ep_index; 3528 unsigned long flags; 3529 u32 changed_ep_bitmask; 3530 3531 xhci = hcd_to_xhci(hcd); 3532 vdev = xhci->devs[udev->slot_id]; 3533 3534 /* Set up a configure endpoint command to remove the streams rings */ 3535 spin_lock_irqsave(&xhci->lock, flags); 3536 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3537 udev, eps, num_eps); 3538 if (changed_ep_bitmask == 0) { 3539 spin_unlock_irqrestore(&xhci->lock, flags); 3540 return -EINVAL; 3541 } 3542 3543 /* Use the xhci_command structure from the first endpoint. We may have 3544 * allocated too many, but the driver may call xhci_free_streams() for 3545 * each endpoint it grouped into one call to xhci_alloc_streams(). 3546 */ 3547 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3548 command = vdev->eps[ep_index].stream_info->free_streams_command; 3549 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3550 if (!ctrl_ctx) { 3551 spin_unlock_irqrestore(&xhci->lock, flags); 3552 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3553 __func__); 3554 return -EINVAL; 3555 } 3556 3557 for (i = 0; i < num_eps; i++) { 3558 struct xhci_ep_ctx *ep_ctx; 3559 3560 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3561 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3562 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3563 EP_GETTING_NO_STREAMS; 3564 3565 xhci_endpoint_copy(xhci, command->in_ctx, 3566 vdev->out_ctx, ep_index); 3567 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3568 &vdev->eps[ep_index]); 3569 } 3570 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3571 vdev->out_ctx, ctrl_ctx, 3572 changed_ep_bitmask, changed_ep_bitmask); 3573 spin_unlock_irqrestore(&xhci->lock, flags); 3574 3575 /* Issue and wait for the configure endpoint command, 3576 * which must succeed. 3577 */ 3578 ret = xhci_configure_endpoint(xhci, udev, command, 3579 false, true); 3580 3581 /* xHC rejected the configure endpoint command for some reason, so we 3582 * leave the streams rings intact. 3583 */ 3584 if (ret < 0) 3585 return ret; 3586 3587 spin_lock_irqsave(&xhci->lock, flags); 3588 for (i = 0; i < num_eps; i++) { 3589 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3590 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3591 vdev->eps[ep_index].stream_info = NULL; 3592 /* FIXME Unset maxPstreams in endpoint context and 3593 * update deq ptr to point to normal string ring. 3594 */ 3595 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3596 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3597 } 3598 spin_unlock_irqrestore(&xhci->lock, flags); 3599 3600 return 0; 3601 } 3602 3603 /* 3604 * Deletes endpoint resources for endpoints that were active before a Reset 3605 * Device command, or a Disable Slot command. The Reset Device command leaves 3606 * the control endpoint intact, whereas the Disable Slot command deletes it. 3607 * 3608 * Must be called with xhci->lock held. 3609 */ 3610 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3611 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3612 { 3613 int i; 3614 unsigned int num_dropped_eps = 0; 3615 unsigned int drop_flags = 0; 3616 3617 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3618 if (virt_dev->eps[i].ring) { 3619 drop_flags |= 1 << i; 3620 num_dropped_eps++; 3621 } 3622 } 3623 xhci->num_active_eps -= num_dropped_eps; 3624 if (num_dropped_eps) 3625 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3626 "Dropped %u ep ctxs, flags = 0x%x, " 3627 "%u now active.", 3628 num_dropped_eps, drop_flags, 3629 xhci->num_active_eps); 3630 } 3631 3632 /* 3633 * This submits a Reset Device Command, which will set the device state to 0, 3634 * set the device address to 0, and disable all the endpoints except the default 3635 * control endpoint. The USB core should come back and call 3636 * xhci_address_device(), and then re-set up the configuration. If this is 3637 * called because of a usb_reset_and_verify_device(), then the old alternate 3638 * settings will be re-installed through the normal bandwidth allocation 3639 * functions. 3640 * 3641 * Wait for the Reset Device command to finish. Remove all structures 3642 * associated with the endpoints that were disabled. Clear the input device 3643 * structure? Reset the control endpoint 0 max packet size? 3644 * 3645 * If the virt_dev to be reset does not exist or does not match the udev, 3646 * it means the device is lost, possibly due to the xHC restore error and 3647 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3648 * re-allocate the device. 3649 */ 3650 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3651 struct usb_device *udev) 3652 { 3653 int ret, i; 3654 unsigned long flags; 3655 struct xhci_hcd *xhci; 3656 unsigned int slot_id; 3657 struct xhci_virt_device *virt_dev; 3658 struct xhci_command *reset_device_cmd; 3659 struct xhci_slot_ctx *slot_ctx; 3660 int old_active_eps = 0; 3661 3662 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3663 if (ret <= 0) 3664 return ret; 3665 xhci = hcd_to_xhci(hcd); 3666 slot_id = udev->slot_id; 3667 virt_dev = xhci->devs[slot_id]; 3668 if (!virt_dev) { 3669 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3670 "not exist. Re-allocate the device\n", slot_id); 3671 ret = xhci_alloc_dev(hcd, udev); 3672 if (ret == 1) 3673 return 0; 3674 else 3675 return -EINVAL; 3676 } 3677 3678 if (virt_dev->tt_info) 3679 old_active_eps = virt_dev->tt_info->active_eps; 3680 3681 if (virt_dev->udev != udev) { 3682 /* If the virt_dev and the udev does not match, this virt_dev 3683 * may belong to another udev. 3684 * Re-allocate the device. 3685 */ 3686 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3687 "not match the udev. Re-allocate the device\n", 3688 slot_id); 3689 ret = xhci_alloc_dev(hcd, udev); 3690 if (ret == 1) 3691 return 0; 3692 else 3693 return -EINVAL; 3694 } 3695 3696 /* If device is not setup, there is no point in resetting it */ 3697 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3698 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3699 SLOT_STATE_DISABLED) 3700 return 0; 3701 3702 trace_xhci_discover_or_reset_device(slot_ctx); 3703 3704 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3705 /* Allocate the command structure that holds the struct completion. 3706 * Assume we're in process context, since the normal device reset 3707 * process has to wait for the device anyway. Storage devices are 3708 * reset as part of error handling, so use GFP_NOIO instead of 3709 * GFP_KERNEL. 3710 */ 3711 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3712 if (!reset_device_cmd) { 3713 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3714 return -ENOMEM; 3715 } 3716 3717 /* Attempt to submit the Reset Device command to the command ring */ 3718 spin_lock_irqsave(&xhci->lock, flags); 3719 3720 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3721 if (ret) { 3722 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3723 spin_unlock_irqrestore(&xhci->lock, flags); 3724 goto command_cleanup; 3725 } 3726 xhci_ring_cmd_db(xhci); 3727 spin_unlock_irqrestore(&xhci->lock, flags); 3728 3729 /* Wait for the Reset Device command to finish */ 3730 wait_for_completion(reset_device_cmd->completion); 3731 3732 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3733 * unless we tried to reset a slot ID that wasn't enabled, 3734 * or the device wasn't in the addressed or configured state. 3735 */ 3736 ret = reset_device_cmd->status; 3737 switch (ret) { 3738 case COMP_COMMAND_ABORTED: 3739 case COMP_COMMAND_RING_STOPPED: 3740 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3741 ret = -ETIME; 3742 goto command_cleanup; 3743 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3744 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3745 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3746 slot_id, 3747 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3748 xhci_dbg(xhci, "Not freeing device rings.\n"); 3749 /* Don't treat this as an error. May change my mind later. */ 3750 ret = 0; 3751 goto command_cleanup; 3752 case COMP_SUCCESS: 3753 xhci_dbg(xhci, "Successful reset device command.\n"); 3754 break; 3755 default: 3756 if (xhci_is_vendor_info_code(xhci, ret)) 3757 break; 3758 xhci_warn(xhci, "Unknown completion code %u for " 3759 "reset device command.\n", ret); 3760 ret = -EINVAL; 3761 goto command_cleanup; 3762 } 3763 3764 /* Free up host controller endpoint resources */ 3765 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3766 spin_lock_irqsave(&xhci->lock, flags); 3767 /* Don't delete the default control endpoint resources */ 3768 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3769 spin_unlock_irqrestore(&xhci->lock, flags); 3770 } 3771 3772 /* Everything but endpoint 0 is disabled, so free the rings. */ 3773 for (i = 1; i < 31; i++) { 3774 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3775 3776 if (ep->ep_state & EP_HAS_STREAMS) { 3777 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3778 xhci_get_endpoint_address(i)); 3779 xhci_free_stream_info(xhci, ep->stream_info); 3780 ep->stream_info = NULL; 3781 ep->ep_state &= ~EP_HAS_STREAMS; 3782 } 3783 3784 if (ep->ring) { 3785 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3786 xhci_free_endpoint_ring(xhci, virt_dev, i); 3787 } 3788 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3789 xhci_drop_ep_from_interval_table(xhci, 3790 &virt_dev->eps[i].bw_info, 3791 virt_dev->bw_table, 3792 udev, 3793 &virt_dev->eps[i], 3794 virt_dev->tt_info); 3795 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3796 } 3797 /* If necessary, update the number of active TTs on this root port */ 3798 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3799 virt_dev->flags = 0; 3800 ret = 0; 3801 3802 command_cleanup: 3803 xhci_free_command(xhci, reset_device_cmd); 3804 return ret; 3805 } 3806 3807 /* 3808 * At this point, the struct usb_device is about to go away, the device has 3809 * disconnected, and all traffic has been stopped and the endpoints have been 3810 * disabled. Free any HC data structures associated with that device. 3811 */ 3812 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3813 { 3814 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3815 struct xhci_virt_device *virt_dev; 3816 struct xhci_slot_ctx *slot_ctx; 3817 unsigned long flags; 3818 int i, ret; 3819 3820 /* 3821 * We called pm_runtime_get_noresume when the device was attached. 3822 * Decrement the counter here to allow controller to runtime suspend 3823 * if no devices remain. 3824 */ 3825 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3826 pm_runtime_put_noidle(hcd->self.controller); 3827 3828 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3829 /* If the host is halted due to driver unload, we still need to free the 3830 * device. 3831 */ 3832 if (ret <= 0 && ret != -ENODEV) 3833 return; 3834 3835 virt_dev = xhci->devs[udev->slot_id]; 3836 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3837 trace_xhci_free_dev(slot_ctx); 3838 3839 /* Stop any wayward timer functions (which may grab the lock) */ 3840 for (i = 0; i < 31; i++) 3841 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3842 virt_dev->udev = NULL; 3843 xhci_disable_slot(xhci, udev->slot_id); 3844 3845 spin_lock_irqsave(&xhci->lock, flags); 3846 xhci_free_virt_device(xhci, udev->slot_id); 3847 spin_unlock_irqrestore(&xhci->lock, flags); 3848 3849 } 3850 3851 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3852 { 3853 struct xhci_command *command; 3854 unsigned long flags; 3855 u32 state; 3856 int ret; 3857 3858 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3859 if (!command) 3860 return -ENOMEM; 3861 3862 xhci_debugfs_remove_slot(xhci, slot_id); 3863 3864 spin_lock_irqsave(&xhci->lock, flags); 3865 /* Don't disable the slot if the host controller is dead. */ 3866 state = readl(&xhci->op_regs->status); 3867 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3868 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3869 spin_unlock_irqrestore(&xhci->lock, flags); 3870 kfree(command); 3871 return -ENODEV; 3872 } 3873 3874 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3875 slot_id); 3876 if (ret) { 3877 spin_unlock_irqrestore(&xhci->lock, flags); 3878 kfree(command); 3879 return ret; 3880 } 3881 xhci_ring_cmd_db(xhci); 3882 spin_unlock_irqrestore(&xhci->lock, flags); 3883 3884 wait_for_completion(command->completion); 3885 3886 if (command->status != COMP_SUCCESS) 3887 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 3888 slot_id, command->status); 3889 3890 xhci_free_command(xhci, command); 3891 3892 return 0; 3893 } 3894 3895 /* 3896 * Checks if we have enough host controller resources for the default control 3897 * endpoint. 3898 * 3899 * Must be called with xhci->lock held. 3900 */ 3901 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3902 { 3903 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3904 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3905 "Not enough ep ctxs: " 3906 "%u active, need to add 1, limit is %u.", 3907 xhci->num_active_eps, xhci->limit_active_eps); 3908 return -ENOMEM; 3909 } 3910 xhci->num_active_eps += 1; 3911 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3912 "Adding 1 ep ctx, %u now active.", 3913 xhci->num_active_eps); 3914 return 0; 3915 } 3916 3917 3918 /* 3919 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3920 * timed out, or allocating memory failed. Returns 1 on success. 3921 */ 3922 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3923 { 3924 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3925 struct xhci_virt_device *vdev; 3926 struct xhci_slot_ctx *slot_ctx; 3927 unsigned long flags; 3928 int ret, slot_id; 3929 struct xhci_command *command; 3930 3931 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3932 if (!command) 3933 return 0; 3934 3935 spin_lock_irqsave(&xhci->lock, flags); 3936 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3937 if (ret) { 3938 spin_unlock_irqrestore(&xhci->lock, flags); 3939 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3940 xhci_free_command(xhci, command); 3941 return 0; 3942 } 3943 xhci_ring_cmd_db(xhci); 3944 spin_unlock_irqrestore(&xhci->lock, flags); 3945 3946 wait_for_completion(command->completion); 3947 slot_id = command->slot_id; 3948 3949 if (!slot_id || command->status != COMP_SUCCESS) { 3950 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 3951 xhci_trb_comp_code_string(command->status)); 3952 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3953 HCS_MAX_SLOTS( 3954 readl(&xhci->cap_regs->hcs_params1))); 3955 xhci_free_command(xhci, command); 3956 return 0; 3957 } 3958 3959 xhci_free_command(xhci, command); 3960 3961 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3962 spin_lock_irqsave(&xhci->lock, flags); 3963 ret = xhci_reserve_host_control_ep_resources(xhci); 3964 if (ret) { 3965 spin_unlock_irqrestore(&xhci->lock, flags); 3966 xhci_warn(xhci, "Not enough host resources, " 3967 "active endpoint contexts = %u\n", 3968 xhci->num_active_eps); 3969 goto disable_slot; 3970 } 3971 spin_unlock_irqrestore(&xhci->lock, flags); 3972 } 3973 /* Use GFP_NOIO, since this function can be called from 3974 * xhci_discover_or_reset_device(), which may be called as part of 3975 * mass storage driver error handling. 3976 */ 3977 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3978 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3979 goto disable_slot; 3980 } 3981 vdev = xhci->devs[slot_id]; 3982 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3983 trace_xhci_alloc_dev(slot_ctx); 3984 3985 udev->slot_id = slot_id; 3986 3987 xhci_debugfs_create_slot(xhci, slot_id); 3988 3989 /* 3990 * If resetting upon resume, we can't put the controller into runtime 3991 * suspend if there is a device attached. 3992 */ 3993 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3994 pm_runtime_get_noresume(hcd->self.controller); 3995 3996 /* Is this a LS or FS device under a HS hub? */ 3997 /* Hub or peripherial? */ 3998 return 1; 3999 4000 disable_slot: 4001 xhci_disable_slot(xhci, udev->slot_id); 4002 xhci_free_virt_device(xhci, udev->slot_id); 4003 4004 return 0; 4005 } 4006 4007 /* 4008 * Issue an Address Device command and optionally send a corresponding 4009 * SetAddress request to the device. 4010 */ 4011 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4012 enum xhci_setup_dev setup) 4013 { 4014 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4015 unsigned long flags; 4016 struct xhci_virt_device *virt_dev; 4017 int ret = 0; 4018 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4019 struct xhci_slot_ctx *slot_ctx; 4020 struct xhci_input_control_ctx *ctrl_ctx; 4021 u64 temp_64; 4022 struct xhci_command *command = NULL; 4023 4024 mutex_lock(&xhci->mutex); 4025 4026 if (xhci->xhc_state) { /* dying, removing or halted */ 4027 ret = -ESHUTDOWN; 4028 goto out; 4029 } 4030 4031 if (!udev->slot_id) { 4032 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4033 "Bad Slot ID %d", udev->slot_id); 4034 ret = -EINVAL; 4035 goto out; 4036 } 4037 4038 virt_dev = xhci->devs[udev->slot_id]; 4039 4040 if (WARN_ON(!virt_dev)) { 4041 /* 4042 * In plug/unplug torture test with an NEC controller, 4043 * a zero-dereference was observed once due to virt_dev = 0. 4044 * Print useful debug rather than crash if it is observed again! 4045 */ 4046 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4047 udev->slot_id); 4048 ret = -EINVAL; 4049 goto out; 4050 } 4051 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4052 trace_xhci_setup_device_slot(slot_ctx); 4053 4054 if (setup == SETUP_CONTEXT_ONLY) { 4055 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4056 SLOT_STATE_DEFAULT) { 4057 xhci_dbg(xhci, "Slot already in default state\n"); 4058 goto out; 4059 } 4060 } 4061 4062 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4063 if (!command) { 4064 ret = -ENOMEM; 4065 goto out; 4066 } 4067 4068 command->in_ctx = virt_dev->in_ctx; 4069 4070 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4071 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4072 if (!ctrl_ctx) { 4073 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4074 __func__); 4075 ret = -EINVAL; 4076 goto out; 4077 } 4078 /* 4079 * If this is the first Set Address since device plug-in or 4080 * virt_device realloaction after a resume with an xHCI power loss, 4081 * then set up the slot context. 4082 */ 4083 if (!slot_ctx->dev_info) 4084 xhci_setup_addressable_virt_dev(xhci, udev); 4085 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4086 else 4087 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4088 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4089 ctrl_ctx->drop_flags = 0; 4090 4091 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4092 le32_to_cpu(slot_ctx->dev_info) >> 27); 4093 4094 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4095 spin_lock_irqsave(&xhci->lock, flags); 4096 trace_xhci_setup_device(virt_dev); 4097 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4098 udev->slot_id, setup); 4099 if (ret) { 4100 spin_unlock_irqrestore(&xhci->lock, flags); 4101 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4102 "FIXME: allocate a command ring segment"); 4103 goto out; 4104 } 4105 xhci_ring_cmd_db(xhci); 4106 spin_unlock_irqrestore(&xhci->lock, flags); 4107 4108 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4109 wait_for_completion(command->completion); 4110 4111 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4112 * the SetAddress() "recovery interval" required by USB and aborting the 4113 * command on a timeout. 4114 */ 4115 switch (command->status) { 4116 case COMP_COMMAND_ABORTED: 4117 case COMP_COMMAND_RING_STOPPED: 4118 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4119 ret = -ETIME; 4120 break; 4121 case COMP_CONTEXT_STATE_ERROR: 4122 case COMP_SLOT_NOT_ENABLED_ERROR: 4123 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4124 act, udev->slot_id); 4125 ret = -EINVAL; 4126 break; 4127 case COMP_USB_TRANSACTION_ERROR: 4128 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4129 4130 mutex_unlock(&xhci->mutex); 4131 ret = xhci_disable_slot(xhci, udev->slot_id); 4132 xhci_free_virt_device(xhci, udev->slot_id); 4133 if (!ret) 4134 xhci_alloc_dev(hcd, udev); 4135 kfree(command->completion); 4136 kfree(command); 4137 return -EPROTO; 4138 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4139 dev_warn(&udev->dev, 4140 "ERROR: Incompatible device for setup %s command\n", act); 4141 ret = -ENODEV; 4142 break; 4143 case COMP_SUCCESS: 4144 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4145 "Successful setup %s command", act); 4146 break; 4147 default: 4148 xhci_err(xhci, 4149 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4150 act, command->status); 4151 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4152 ret = -EINVAL; 4153 break; 4154 } 4155 if (ret) 4156 goto out; 4157 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4158 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4159 "Op regs DCBAA ptr = %#016llx", temp_64); 4160 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4161 "Slot ID %d dcbaa entry @%p = %#016llx", 4162 udev->slot_id, 4163 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4164 (unsigned long long) 4165 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4166 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4167 "Output Context DMA address = %#08llx", 4168 (unsigned long long)virt_dev->out_ctx->dma); 4169 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4170 le32_to_cpu(slot_ctx->dev_info) >> 27); 4171 /* 4172 * USB core uses address 1 for the roothubs, so we add one to the 4173 * address given back to us by the HC. 4174 */ 4175 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4176 le32_to_cpu(slot_ctx->dev_info) >> 27); 4177 /* Zero the input context control for later use */ 4178 ctrl_ctx->add_flags = 0; 4179 ctrl_ctx->drop_flags = 0; 4180 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4181 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4182 4183 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4184 "Internal device address = %d", 4185 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4186 out: 4187 mutex_unlock(&xhci->mutex); 4188 if (command) { 4189 kfree(command->completion); 4190 kfree(command); 4191 } 4192 return ret; 4193 } 4194 4195 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4196 { 4197 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4198 } 4199 4200 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4201 { 4202 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4203 } 4204 4205 /* 4206 * Transfer the port index into real index in the HW port status 4207 * registers. Caculate offset between the port's PORTSC register 4208 * and port status base. Divide the number of per port register 4209 * to get the real index. The raw port number bases 1. 4210 */ 4211 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4212 { 4213 struct xhci_hub *rhub; 4214 4215 rhub = xhci_get_rhub(hcd); 4216 return rhub->ports[port1 - 1]->hw_portnum + 1; 4217 } 4218 4219 /* 4220 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4221 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4222 */ 4223 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4224 struct usb_device *udev, u16 max_exit_latency) 4225 { 4226 struct xhci_virt_device *virt_dev; 4227 struct xhci_command *command; 4228 struct xhci_input_control_ctx *ctrl_ctx; 4229 struct xhci_slot_ctx *slot_ctx; 4230 unsigned long flags; 4231 int ret; 4232 4233 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4234 if (!command) 4235 return -ENOMEM; 4236 4237 spin_lock_irqsave(&xhci->lock, flags); 4238 4239 virt_dev = xhci->devs[udev->slot_id]; 4240 4241 /* 4242 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4243 * xHC was re-initialized. Exit latency will be set later after 4244 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4245 */ 4246 4247 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4248 spin_unlock_irqrestore(&xhci->lock, flags); 4249 xhci_free_command(xhci, command); 4250 return 0; 4251 } 4252 4253 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4254 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4255 if (!ctrl_ctx) { 4256 spin_unlock_irqrestore(&xhci->lock, flags); 4257 xhci_free_command(xhci, command); 4258 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4259 __func__); 4260 return -ENOMEM; 4261 } 4262 4263 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4264 spin_unlock_irqrestore(&xhci->lock, flags); 4265 4266 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4267 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4268 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4269 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4270 slot_ctx->dev_state = 0; 4271 4272 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4273 "Set up evaluate context for LPM MEL change."); 4274 4275 /* Issue and wait for the evaluate context command. */ 4276 ret = xhci_configure_endpoint(xhci, udev, command, 4277 true, true); 4278 4279 if (!ret) { 4280 spin_lock_irqsave(&xhci->lock, flags); 4281 virt_dev->current_mel = max_exit_latency; 4282 spin_unlock_irqrestore(&xhci->lock, flags); 4283 } 4284 4285 xhci_free_command(xhci, command); 4286 4287 return ret; 4288 } 4289 4290 #ifdef CONFIG_PM 4291 4292 /* BESL to HIRD Encoding array for USB2 LPM */ 4293 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4294 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4295 4296 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4297 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4298 struct usb_device *udev) 4299 { 4300 int u2del, besl, besl_host; 4301 int besl_device = 0; 4302 u32 field; 4303 4304 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4305 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4306 4307 if (field & USB_BESL_SUPPORT) { 4308 for (besl_host = 0; besl_host < 16; besl_host++) { 4309 if (xhci_besl_encoding[besl_host] >= u2del) 4310 break; 4311 } 4312 /* Use baseline BESL value as default */ 4313 if (field & USB_BESL_BASELINE_VALID) 4314 besl_device = USB_GET_BESL_BASELINE(field); 4315 else if (field & USB_BESL_DEEP_VALID) 4316 besl_device = USB_GET_BESL_DEEP(field); 4317 } else { 4318 if (u2del <= 50) 4319 besl_host = 0; 4320 else 4321 besl_host = (u2del - 51) / 75 + 1; 4322 } 4323 4324 besl = besl_host + besl_device; 4325 if (besl > 15) 4326 besl = 15; 4327 4328 return besl; 4329 } 4330 4331 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4332 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4333 { 4334 u32 field; 4335 int l1; 4336 int besld = 0; 4337 int hirdm = 0; 4338 4339 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4340 4341 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4342 l1 = udev->l1_params.timeout / 256; 4343 4344 /* device has preferred BESLD */ 4345 if (field & USB_BESL_DEEP_VALID) { 4346 besld = USB_GET_BESL_DEEP(field); 4347 hirdm = 1; 4348 } 4349 4350 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4351 } 4352 4353 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4354 struct usb_device *udev, int enable) 4355 { 4356 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4357 struct xhci_port **ports; 4358 __le32 __iomem *pm_addr, *hlpm_addr; 4359 u32 pm_val, hlpm_val, field; 4360 unsigned int port_num; 4361 unsigned long flags; 4362 int hird, exit_latency; 4363 int ret; 4364 4365 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4366 return -EPERM; 4367 4368 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4369 !udev->lpm_capable) 4370 return -EPERM; 4371 4372 if (!udev->parent || udev->parent->parent || 4373 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4374 return -EPERM; 4375 4376 if (udev->usb2_hw_lpm_capable != 1) 4377 return -EPERM; 4378 4379 spin_lock_irqsave(&xhci->lock, flags); 4380 4381 ports = xhci->usb2_rhub.ports; 4382 port_num = udev->portnum - 1; 4383 pm_addr = ports[port_num]->addr + PORTPMSC; 4384 pm_val = readl(pm_addr); 4385 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4386 4387 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4388 enable ? "enable" : "disable", port_num + 1); 4389 4390 if (enable) { 4391 /* Host supports BESL timeout instead of HIRD */ 4392 if (udev->usb2_hw_lpm_besl_capable) { 4393 /* if device doesn't have a preferred BESL value use a 4394 * default one which works with mixed HIRD and BESL 4395 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4396 */ 4397 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4398 if ((field & USB_BESL_SUPPORT) && 4399 (field & USB_BESL_BASELINE_VALID)) 4400 hird = USB_GET_BESL_BASELINE(field); 4401 else 4402 hird = udev->l1_params.besl; 4403 4404 exit_latency = xhci_besl_encoding[hird]; 4405 spin_unlock_irqrestore(&xhci->lock, flags); 4406 4407 ret = xhci_change_max_exit_latency(xhci, udev, 4408 exit_latency); 4409 if (ret < 0) 4410 return ret; 4411 spin_lock_irqsave(&xhci->lock, flags); 4412 4413 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4414 writel(hlpm_val, hlpm_addr); 4415 /* flush write */ 4416 readl(hlpm_addr); 4417 } else { 4418 hird = xhci_calculate_hird_besl(xhci, udev); 4419 } 4420 4421 pm_val &= ~PORT_HIRD_MASK; 4422 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4423 writel(pm_val, pm_addr); 4424 pm_val = readl(pm_addr); 4425 pm_val |= PORT_HLE; 4426 writel(pm_val, pm_addr); 4427 /* flush write */ 4428 readl(pm_addr); 4429 } else { 4430 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4431 writel(pm_val, pm_addr); 4432 /* flush write */ 4433 readl(pm_addr); 4434 if (udev->usb2_hw_lpm_besl_capable) { 4435 spin_unlock_irqrestore(&xhci->lock, flags); 4436 xhci_change_max_exit_latency(xhci, udev, 0); 4437 readl_poll_timeout(ports[port_num]->addr, pm_val, 4438 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4439 100, 10000); 4440 return 0; 4441 } 4442 } 4443 4444 spin_unlock_irqrestore(&xhci->lock, flags); 4445 return 0; 4446 } 4447 4448 /* check if a usb2 port supports a given extened capability protocol 4449 * only USB2 ports extended protocol capability values are cached. 4450 * Return 1 if capability is supported 4451 */ 4452 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4453 unsigned capability) 4454 { 4455 u32 port_offset, port_count; 4456 int i; 4457 4458 for (i = 0; i < xhci->num_ext_caps; i++) { 4459 if (xhci->ext_caps[i] & capability) { 4460 /* port offsets starts at 1 */ 4461 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4462 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4463 if (port >= port_offset && 4464 port < port_offset + port_count) 4465 return 1; 4466 } 4467 } 4468 return 0; 4469 } 4470 4471 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4472 { 4473 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4474 int portnum = udev->portnum - 1; 4475 4476 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4477 return 0; 4478 4479 /* we only support lpm for non-hub device connected to root hub yet */ 4480 if (!udev->parent || udev->parent->parent || 4481 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4482 return 0; 4483 4484 if (xhci->hw_lpm_support == 1 && 4485 xhci_check_usb2_port_capability( 4486 xhci, portnum, XHCI_HLC)) { 4487 udev->usb2_hw_lpm_capable = 1; 4488 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4489 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4490 if (xhci_check_usb2_port_capability(xhci, portnum, 4491 XHCI_BLC)) 4492 udev->usb2_hw_lpm_besl_capable = 1; 4493 } 4494 4495 return 0; 4496 } 4497 4498 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4499 4500 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4501 static unsigned long long xhci_service_interval_to_ns( 4502 struct usb_endpoint_descriptor *desc) 4503 { 4504 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4505 } 4506 4507 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4508 enum usb3_link_state state) 4509 { 4510 unsigned long long sel; 4511 unsigned long long pel; 4512 unsigned int max_sel_pel; 4513 char *state_name; 4514 4515 switch (state) { 4516 case USB3_LPM_U1: 4517 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4518 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4519 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4520 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4521 state_name = "U1"; 4522 break; 4523 case USB3_LPM_U2: 4524 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4525 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4526 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4527 state_name = "U2"; 4528 break; 4529 default: 4530 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4531 __func__); 4532 return USB3_LPM_DISABLED; 4533 } 4534 4535 if (sel <= max_sel_pel && pel <= max_sel_pel) 4536 return USB3_LPM_DEVICE_INITIATED; 4537 4538 if (sel > max_sel_pel) 4539 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4540 "due to long SEL %llu ms\n", 4541 state_name, sel); 4542 else 4543 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4544 "due to long PEL %llu ms\n", 4545 state_name, pel); 4546 return USB3_LPM_DISABLED; 4547 } 4548 4549 /* The U1 timeout should be the maximum of the following values: 4550 * - For control endpoints, U1 system exit latency (SEL) * 3 4551 * - For bulk endpoints, U1 SEL * 5 4552 * - For interrupt endpoints: 4553 * - Notification EPs, U1 SEL * 3 4554 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4555 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4556 */ 4557 static unsigned long long xhci_calculate_intel_u1_timeout( 4558 struct usb_device *udev, 4559 struct usb_endpoint_descriptor *desc) 4560 { 4561 unsigned long long timeout_ns; 4562 int ep_type; 4563 int intr_type; 4564 4565 ep_type = usb_endpoint_type(desc); 4566 switch (ep_type) { 4567 case USB_ENDPOINT_XFER_CONTROL: 4568 timeout_ns = udev->u1_params.sel * 3; 4569 break; 4570 case USB_ENDPOINT_XFER_BULK: 4571 timeout_ns = udev->u1_params.sel * 5; 4572 break; 4573 case USB_ENDPOINT_XFER_INT: 4574 intr_type = usb_endpoint_interrupt_type(desc); 4575 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4576 timeout_ns = udev->u1_params.sel * 3; 4577 break; 4578 } 4579 /* Otherwise the calculation is the same as isoc eps */ 4580 fallthrough; 4581 case USB_ENDPOINT_XFER_ISOC: 4582 timeout_ns = xhci_service_interval_to_ns(desc); 4583 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4584 if (timeout_ns < udev->u1_params.sel * 2) 4585 timeout_ns = udev->u1_params.sel * 2; 4586 break; 4587 default: 4588 return 0; 4589 } 4590 4591 return timeout_ns; 4592 } 4593 4594 /* Returns the hub-encoded U1 timeout value. */ 4595 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4596 struct usb_device *udev, 4597 struct usb_endpoint_descriptor *desc) 4598 { 4599 unsigned long long timeout_ns; 4600 4601 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4602 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4603 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4604 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4605 return USB3_LPM_DISABLED; 4606 } 4607 } 4608 4609 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4610 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4611 else 4612 timeout_ns = udev->u1_params.sel; 4613 4614 /* The U1 timeout is encoded in 1us intervals. 4615 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4616 */ 4617 if (timeout_ns == USB3_LPM_DISABLED) 4618 timeout_ns = 1; 4619 else 4620 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4621 4622 /* If the necessary timeout value is bigger than what we can set in the 4623 * USB 3.0 hub, we have to disable hub-initiated U1. 4624 */ 4625 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4626 return timeout_ns; 4627 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4628 "due to long timeout %llu ms\n", timeout_ns); 4629 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4630 } 4631 4632 /* The U2 timeout should be the maximum of: 4633 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4634 * - largest bInterval of any active periodic endpoint (to avoid going 4635 * into lower power link states between intervals). 4636 * - the U2 Exit Latency of the device 4637 */ 4638 static unsigned long long xhci_calculate_intel_u2_timeout( 4639 struct usb_device *udev, 4640 struct usb_endpoint_descriptor *desc) 4641 { 4642 unsigned long long timeout_ns; 4643 unsigned long long u2_del_ns; 4644 4645 timeout_ns = 10 * 1000 * 1000; 4646 4647 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4648 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4649 timeout_ns = xhci_service_interval_to_ns(desc); 4650 4651 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4652 if (u2_del_ns > timeout_ns) 4653 timeout_ns = u2_del_ns; 4654 4655 return timeout_ns; 4656 } 4657 4658 /* Returns the hub-encoded U2 timeout value. */ 4659 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4660 struct usb_device *udev, 4661 struct usb_endpoint_descriptor *desc) 4662 { 4663 unsigned long long timeout_ns; 4664 4665 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4666 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4667 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4668 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4669 return USB3_LPM_DISABLED; 4670 } 4671 } 4672 4673 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4674 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4675 else 4676 timeout_ns = udev->u2_params.sel; 4677 4678 /* The U2 timeout is encoded in 256us intervals */ 4679 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4680 /* If the necessary timeout value is bigger than what we can set in the 4681 * USB 3.0 hub, we have to disable hub-initiated U2. 4682 */ 4683 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4684 return timeout_ns; 4685 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4686 "due to long timeout %llu ms\n", timeout_ns); 4687 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4688 } 4689 4690 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4691 struct usb_device *udev, 4692 struct usb_endpoint_descriptor *desc, 4693 enum usb3_link_state state, 4694 u16 *timeout) 4695 { 4696 if (state == USB3_LPM_U1) 4697 return xhci_calculate_u1_timeout(xhci, udev, desc); 4698 else if (state == USB3_LPM_U2) 4699 return xhci_calculate_u2_timeout(xhci, udev, desc); 4700 4701 return USB3_LPM_DISABLED; 4702 } 4703 4704 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4705 struct usb_device *udev, 4706 struct usb_endpoint_descriptor *desc, 4707 enum usb3_link_state state, 4708 u16 *timeout) 4709 { 4710 u16 alt_timeout; 4711 4712 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4713 desc, state, timeout); 4714 4715 /* If we found we can't enable hub-initiated LPM, and 4716 * the U1 or U2 exit latency was too high to allow 4717 * device-initiated LPM as well, then we will disable LPM 4718 * for this device, so stop searching any further. 4719 */ 4720 if (alt_timeout == USB3_LPM_DISABLED) { 4721 *timeout = alt_timeout; 4722 return -E2BIG; 4723 } 4724 if (alt_timeout > *timeout) 4725 *timeout = alt_timeout; 4726 return 0; 4727 } 4728 4729 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4730 struct usb_device *udev, 4731 struct usb_host_interface *alt, 4732 enum usb3_link_state state, 4733 u16 *timeout) 4734 { 4735 int j; 4736 4737 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4738 if (xhci_update_timeout_for_endpoint(xhci, udev, 4739 &alt->endpoint[j].desc, state, timeout)) 4740 return -E2BIG; 4741 } 4742 return 0; 4743 } 4744 4745 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4746 struct usb_device *udev, 4747 enum usb3_link_state state) 4748 { 4749 struct usb_device *parent = udev->parent; 4750 int tier = 1; /* roothub is tier1 */ 4751 4752 while (parent) { 4753 parent = parent->parent; 4754 tier++; 4755 } 4756 4757 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3) 4758 goto fail; 4759 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2) 4760 goto fail; 4761 4762 return 0; 4763 fail: 4764 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n", 4765 tier); 4766 return -E2BIG; 4767 } 4768 4769 /* Returns the U1 or U2 timeout that should be enabled. 4770 * If the tier check or timeout setting functions return with a non-zero exit 4771 * code, that means the timeout value has been finalized and we shouldn't look 4772 * at any more endpoints. 4773 */ 4774 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4775 struct usb_device *udev, enum usb3_link_state state) 4776 { 4777 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4778 struct usb_host_config *config; 4779 char *state_name; 4780 int i; 4781 u16 timeout = USB3_LPM_DISABLED; 4782 4783 if (state == USB3_LPM_U1) 4784 state_name = "U1"; 4785 else if (state == USB3_LPM_U2) 4786 state_name = "U2"; 4787 else { 4788 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4789 state); 4790 return timeout; 4791 } 4792 4793 /* Gather some information about the currently installed configuration 4794 * and alternate interface settings. 4795 */ 4796 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4797 state, &timeout)) 4798 return timeout; 4799 4800 config = udev->actconfig; 4801 if (!config) 4802 return timeout; 4803 4804 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4805 struct usb_driver *driver; 4806 struct usb_interface *intf = config->interface[i]; 4807 4808 if (!intf) 4809 continue; 4810 4811 /* Check if any currently bound drivers want hub-initiated LPM 4812 * disabled. 4813 */ 4814 if (intf->dev.driver) { 4815 driver = to_usb_driver(intf->dev.driver); 4816 if (driver && driver->disable_hub_initiated_lpm) { 4817 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4818 state_name, driver->name); 4819 timeout = xhci_get_timeout_no_hub_lpm(udev, 4820 state); 4821 if (timeout == USB3_LPM_DISABLED) 4822 return timeout; 4823 } 4824 } 4825 4826 /* Not sure how this could happen... */ 4827 if (!intf->cur_altsetting) 4828 continue; 4829 4830 if (xhci_update_timeout_for_interface(xhci, udev, 4831 intf->cur_altsetting, 4832 state, &timeout)) 4833 return timeout; 4834 } 4835 return timeout; 4836 } 4837 4838 static int calculate_max_exit_latency(struct usb_device *udev, 4839 enum usb3_link_state state_changed, 4840 u16 hub_encoded_timeout) 4841 { 4842 unsigned long long u1_mel_us = 0; 4843 unsigned long long u2_mel_us = 0; 4844 unsigned long long mel_us = 0; 4845 bool disabling_u1; 4846 bool disabling_u2; 4847 bool enabling_u1; 4848 bool enabling_u2; 4849 4850 disabling_u1 = (state_changed == USB3_LPM_U1 && 4851 hub_encoded_timeout == USB3_LPM_DISABLED); 4852 disabling_u2 = (state_changed == USB3_LPM_U2 && 4853 hub_encoded_timeout == USB3_LPM_DISABLED); 4854 4855 enabling_u1 = (state_changed == USB3_LPM_U1 && 4856 hub_encoded_timeout != USB3_LPM_DISABLED); 4857 enabling_u2 = (state_changed == USB3_LPM_U2 && 4858 hub_encoded_timeout != USB3_LPM_DISABLED); 4859 4860 /* If U1 was already enabled and we're not disabling it, 4861 * or we're going to enable U1, account for the U1 max exit latency. 4862 */ 4863 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4864 enabling_u1) 4865 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4866 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4867 enabling_u2) 4868 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4869 4870 mel_us = max(u1_mel_us, u2_mel_us); 4871 4872 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4873 if (mel_us > MAX_EXIT) { 4874 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4875 "is too big.\n", mel_us); 4876 return -E2BIG; 4877 } 4878 return mel_us; 4879 } 4880 4881 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4882 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4883 struct usb_device *udev, enum usb3_link_state state) 4884 { 4885 struct xhci_hcd *xhci; 4886 struct xhci_port *port; 4887 u16 hub_encoded_timeout; 4888 int mel; 4889 int ret; 4890 4891 xhci = hcd_to_xhci(hcd); 4892 /* The LPM timeout values are pretty host-controller specific, so don't 4893 * enable hub-initiated timeouts unless the vendor has provided 4894 * information about their timeout algorithm. 4895 */ 4896 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4897 !xhci->devs[udev->slot_id]) 4898 return USB3_LPM_DISABLED; 4899 4900 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4901 return USB3_LPM_DISABLED; 4902 4903 /* If connected to root port then check port can handle lpm */ 4904 if (udev->parent && !udev->parent->parent) { 4905 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 4906 if (port->lpm_incapable) 4907 return USB3_LPM_DISABLED; 4908 } 4909 4910 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4911 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4912 if (mel < 0) { 4913 /* Max Exit Latency is too big, disable LPM. */ 4914 hub_encoded_timeout = USB3_LPM_DISABLED; 4915 mel = 0; 4916 } 4917 4918 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4919 if (ret) 4920 return ret; 4921 return hub_encoded_timeout; 4922 } 4923 4924 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4925 struct usb_device *udev, enum usb3_link_state state) 4926 { 4927 struct xhci_hcd *xhci; 4928 u16 mel; 4929 4930 xhci = hcd_to_xhci(hcd); 4931 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4932 !xhci->devs[udev->slot_id]) 4933 return 0; 4934 4935 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4936 return xhci_change_max_exit_latency(xhci, udev, mel); 4937 } 4938 #else /* CONFIG_PM */ 4939 4940 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4941 struct usb_device *udev, int enable) 4942 { 4943 return 0; 4944 } 4945 4946 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4947 { 4948 return 0; 4949 } 4950 4951 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4952 struct usb_device *udev, enum usb3_link_state state) 4953 { 4954 return USB3_LPM_DISABLED; 4955 } 4956 4957 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4958 struct usb_device *udev, enum usb3_link_state state) 4959 { 4960 return 0; 4961 } 4962 #endif /* CONFIG_PM */ 4963 4964 /*-------------------------------------------------------------------------*/ 4965 4966 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4967 * internal data structures for the device. 4968 */ 4969 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4970 struct usb_tt *tt, gfp_t mem_flags) 4971 { 4972 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4973 struct xhci_virt_device *vdev; 4974 struct xhci_command *config_cmd; 4975 struct xhci_input_control_ctx *ctrl_ctx; 4976 struct xhci_slot_ctx *slot_ctx; 4977 unsigned long flags; 4978 unsigned think_time; 4979 int ret; 4980 4981 /* Ignore root hubs */ 4982 if (!hdev->parent) 4983 return 0; 4984 4985 vdev = xhci->devs[hdev->slot_id]; 4986 if (!vdev) { 4987 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4988 return -EINVAL; 4989 } 4990 4991 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 4992 if (!config_cmd) 4993 return -ENOMEM; 4994 4995 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4996 if (!ctrl_ctx) { 4997 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4998 __func__); 4999 xhci_free_command(xhci, config_cmd); 5000 return -ENOMEM; 5001 } 5002 5003 spin_lock_irqsave(&xhci->lock, flags); 5004 if (hdev->speed == USB_SPEED_HIGH && 5005 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5006 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5007 xhci_free_command(xhci, config_cmd); 5008 spin_unlock_irqrestore(&xhci->lock, flags); 5009 return -ENOMEM; 5010 } 5011 5012 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5013 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5014 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5015 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5016 /* 5017 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5018 * but it may be already set to 1 when setup an xHCI virtual 5019 * device, so clear it anyway. 5020 */ 5021 if (tt->multi) 5022 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5023 else if (hdev->speed == USB_SPEED_FULL) 5024 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5025 5026 if (xhci->hci_version > 0x95) { 5027 xhci_dbg(xhci, "xHCI version %x needs hub " 5028 "TT think time and number of ports\n", 5029 (unsigned int) xhci->hci_version); 5030 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5031 /* Set TT think time - convert from ns to FS bit times. 5032 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5033 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5034 * 5035 * xHCI 1.0: this field shall be 0 if the device is not a 5036 * High-spped hub. 5037 */ 5038 think_time = tt->think_time; 5039 if (think_time != 0) 5040 think_time = (think_time / 666) - 1; 5041 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5042 slot_ctx->tt_info |= 5043 cpu_to_le32(TT_THINK_TIME(think_time)); 5044 } else { 5045 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5046 "TT think time or number of ports\n", 5047 (unsigned int) xhci->hci_version); 5048 } 5049 slot_ctx->dev_state = 0; 5050 spin_unlock_irqrestore(&xhci->lock, flags); 5051 5052 xhci_dbg(xhci, "Set up %s for hub device.\n", 5053 (xhci->hci_version > 0x95) ? 5054 "configure endpoint" : "evaluate context"); 5055 5056 /* Issue and wait for the configure endpoint or 5057 * evaluate context command. 5058 */ 5059 if (xhci->hci_version > 0x95) 5060 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5061 false, false); 5062 else 5063 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5064 true, false); 5065 5066 xhci_free_command(xhci, config_cmd); 5067 return ret; 5068 } 5069 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5070 5071 static int xhci_get_frame(struct usb_hcd *hcd) 5072 { 5073 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5074 /* EHCI mods by the periodic size. Why? */ 5075 return readl(&xhci->run_regs->microframe_index) >> 3; 5076 } 5077 5078 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5079 { 5080 xhci->usb2_rhub.hcd = hcd; 5081 hcd->speed = HCD_USB2; 5082 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5083 /* 5084 * USB 2.0 roothub under xHCI has an integrated TT, 5085 * (rate matching hub) as opposed to having an OHCI/UHCI 5086 * companion controller. 5087 */ 5088 hcd->has_tt = 1; 5089 } 5090 5091 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5092 { 5093 unsigned int minor_rev; 5094 5095 /* 5096 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5097 * should return 0x31 for sbrn, or that the minor revision 5098 * is a two digit BCD containig minor and sub-minor numbers. 5099 * This was later clarified in xHCI 1.2. 5100 * 5101 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5102 * minor revision set to 0x1 instead of 0x10. 5103 */ 5104 if (xhci->usb3_rhub.min_rev == 0x1) 5105 minor_rev = 1; 5106 else 5107 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5108 5109 switch (minor_rev) { 5110 case 2: 5111 hcd->speed = HCD_USB32; 5112 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5113 hcd->self.root_hub->rx_lanes = 2; 5114 hcd->self.root_hub->tx_lanes = 2; 5115 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5116 break; 5117 case 1: 5118 hcd->speed = HCD_USB31; 5119 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5120 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5121 break; 5122 } 5123 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5124 minor_rev, minor_rev ? "Enhanced " : ""); 5125 5126 xhci->usb3_rhub.hcd = hcd; 5127 } 5128 5129 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5130 { 5131 struct xhci_hcd *xhci; 5132 /* 5133 * TODO: Check with DWC3 clients for sysdev according to 5134 * quirks 5135 */ 5136 struct device *dev = hcd->self.sysdev; 5137 int retval; 5138 5139 /* Accept arbitrarily long scatter-gather lists */ 5140 hcd->self.sg_tablesize = ~0; 5141 5142 /* support to build packet from discontinuous buffers */ 5143 hcd->self.no_sg_constraint = 1; 5144 5145 /* XHCI controllers don't stop the ep queue on short packets :| */ 5146 hcd->self.no_stop_on_short = 1; 5147 5148 xhci = hcd_to_xhci(hcd); 5149 5150 if (!usb_hcd_is_primary_hcd(hcd)) { 5151 xhci_hcd_init_usb3_data(xhci, hcd); 5152 return 0; 5153 } 5154 5155 mutex_init(&xhci->mutex); 5156 xhci->main_hcd = hcd; 5157 xhci->cap_regs = hcd->regs; 5158 xhci->op_regs = hcd->regs + 5159 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5160 xhci->run_regs = hcd->regs + 5161 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5162 /* Cache read-only capability registers */ 5163 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5164 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5165 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5166 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5167 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5168 if (xhci->hci_version > 0x100) 5169 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5170 5171 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5172 if ((!xhci->max_interrupters) || 5173 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1)) 5174 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1); 5175 5176 xhci->quirks |= quirks; 5177 5178 if (get_quirks) 5179 get_quirks(dev, xhci); 5180 5181 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5182 * success event after a short transfer. This quirk will ignore such 5183 * spurious event. 5184 */ 5185 if (xhci->hci_version > 0x96) 5186 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5187 5188 /* Make sure the HC is halted. */ 5189 retval = xhci_halt(xhci); 5190 if (retval) 5191 return retval; 5192 5193 xhci_zero_64b_regs(xhci); 5194 5195 xhci_dbg(xhci, "Resetting HCD\n"); 5196 /* Reset the internal HC memory state and registers. */ 5197 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5198 if (retval) 5199 return retval; 5200 xhci_dbg(xhci, "Reset complete\n"); 5201 5202 /* 5203 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5204 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5205 * address memory pointers actually. So, this driver clears the AC64 5206 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5207 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5208 */ 5209 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5210 xhci->hcc_params &= ~BIT(0); 5211 5212 /* Set dma_mask and coherent_dma_mask to 64-bits, 5213 * if xHC supports 64-bit addressing */ 5214 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5215 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5216 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5217 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5218 } else { 5219 /* 5220 * This is to avoid error in cases where a 32-bit USB 5221 * controller is used on a 64-bit capable system. 5222 */ 5223 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5224 if (retval) 5225 return retval; 5226 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5227 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5228 } 5229 5230 xhci_dbg(xhci, "Calling HCD init\n"); 5231 /* Initialize HCD and host controller data structures. */ 5232 retval = xhci_init(hcd); 5233 if (retval) 5234 return retval; 5235 xhci_dbg(xhci, "Called HCD init\n"); 5236 5237 if (xhci_hcd_is_usb3(hcd)) 5238 xhci_hcd_init_usb3_data(xhci, hcd); 5239 else 5240 xhci_hcd_init_usb2_data(xhci, hcd); 5241 5242 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5243 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5244 5245 return 0; 5246 } 5247 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5248 5249 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5250 struct usb_host_endpoint *ep) 5251 { 5252 struct xhci_hcd *xhci; 5253 struct usb_device *udev; 5254 unsigned int slot_id; 5255 unsigned int ep_index; 5256 unsigned long flags; 5257 5258 xhci = hcd_to_xhci(hcd); 5259 5260 spin_lock_irqsave(&xhci->lock, flags); 5261 udev = (struct usb_device *)ep->hcpriv; 5262 slot_id = udev->slot_id; 5263 ep_index = xhci_get_endpoint_index(&ep->desc); 5264 5265 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5266 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5267 spin_unlock_irqrestore(&xhci->lock, flags); 5268 } 5269 5270 static const struct hc_driver xhci_hc_driver = { 5271 .description = "xhci-hcd", 5272 .product_desc = "xHCI Host Controller", 5273 .hcd_priv_size = sizeof(struct xhci_hcd), 5274 5275 /* 5276 * generic hardware linkage 5277 */ 5278 .irq = xhci_irq, 5279 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5280 HCD_BH, 5281 5282 /* 5283 * basic lifecycle operations 5284 */ 5285 .reset = NULL, /* set in xhci_init_driver() */ 5286 .start = xhci_run, 5287 .stop = xhci_stop, 5288 .shutdown = xhci_shutdown, 5289 5290 /* 5291 * managing i/o requests and associated device resources 5292 */ 5293 .map_urb_for_dma = xhci_map_urb_for_dma, 5294 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5295 .urb_enqueue = xhci_urb_enqueue, 5296 .urb_dequeue = xhci_urb_dequeue, 5297 .alloc_dev = xhci_alloc_dev, 5298 .free_dev = xhci_free_dev, 5299 .alloc_streams = xhci_alloc_streams, 5300 .free_streams = xhci_free_streams, 5301 .add_endpoint = xhci_add_endpoint, 5302 .drop_endpoint = xhci_drop_endpoint, 5303 .endpoint_disable = xhci_endpoint_disable, 5304 .endpoint_reset = xhci_endpoint_reset, 5305 .check_bandwidth = xhci_check_bandwidth, 5306 .reset_bandwidth = xhci_reset_bandwidth, 5307 .address_device = xhci_address_device, 5308 .enable_device = xhci_enable_device, 5309 .update_hub_device = xhci_update_hub_device, 5310 .reset_device = xhci_discover_or_reset_device, 5311 5312 /* 5313 * scheduling support 5314 */ 5315 .get_frame_number = xhci_get_frame, 5316 5317 /* 5318 * root hub support 5319 */ 5320 .hub_control = xhci_hub_control, 5321 .hub_status_data = xhci_hub_status_data, 5322 .bus_suspend = xhci_bus_suspend, 5323 .bus_resume = xhci_bus_resume, 5324 .get_resuming_ports = xhci_get_resuming_ports, 5325 5326 /* 5327 * call back when device connected and addressed 5328 */ 5329 .update_device = xhci_update_device, 5330 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5331 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5332 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5333 .find_raw_port_number = xhci_find_raw_port_number, 5334 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5335 }; 5336 5337 void xhci_init_driver(struct hc_driver *drv, 5338 const struct xhci_driver_overrides *over) 5339 { 5340 BUG_ON(!over); 5341 5342 /* Copy the generic table to drv then apply the overrides */ 5343 *drv = xhci_hc_driver; 5344 5345 if (over) { 5346 drv->hcd_priv_size += over->extra_priv_size; 5347 if (over->reset) 5348 drv->reset = over->reset; 5349 if (over->start) 5350 drv->start = over->start; 5351 if (over->add_endpoint) 5352 drv->add_endpoint = over->add_endpoint; 5353 if (over->drop_endpoint) 5354 drv->drop_endpoint = over->drop_endpoint; 5355 if (over->check_bandwidth) 5356 drv->check_bandwidth = over->check_bandwidth; 5357 if (over->reset_bandwidth) 5358 drv->reset_bandwidth = over->reset_bandwidth; 5359 if (over->update_hub_device) 5360 drv->update_hub_device = over->update_hub_device; 5361 if (over->hub_control) 5362 drv->hub_control = over->hub_control; 5363 } 5364 } 5365 EXPORT_SYMBOL_GPL(xhci_init_driver); 5366 5367 MODULE_DESCRIPTION(DRIVER_DESC); 5368 MODULE_AUTHOR(DRIVER_AUTHOR); 5369 MODULE_LICENSE("GPL"); 5370 5371 static int __init xhci_hcd_init(void) 5372 { 5373 /* 5374 * Check the compiler generated sizes of structures that must be laid 5375 * out in specific ways for hardware access. 5376 */ 5377 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5378 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5379 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5380 /* xhci_device_control has eight fields, and also 5381 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5382 */ 5383 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5384 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5385 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5386 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5387 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5388 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5389 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5390 5391 if (usb_disabled()) 5392 return -ENODEV; 5393 5394 xhci_debugfs_create_root(); 5395 xhci_dbc_init(); 5396 5397 return 0; 5398 } 5399 5400 /* 5401 * If an init function is provided, an exit function must also be provided 5402 * to allow module unload. 5403 */ 5404 static void __exit xhci_hcd_fini(void) 5405 { 5406 xhci_debugfs_remove_root(); 5407 xhci_dbc_exit(); 5408 } 5409 5410 module_init(xhci_hcd_init); 5411 module_exit(xhci_hcd_fini); 5412