1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/jiffies.h> 12 #include <linux/pci.h> 13 #include <linux/iommu.h> 14 #include <linux/iopoll.h> 15 #include <linux/irq.h> 16 #include <linux/log2.h> 17 #include <linux/module.h> 18 #include <linux/moduleparam.h> 19 #include <linux/slab.h> 20 #include <linux/string_choices.h> 21 #include <linux/dmi.h> 22 #include <linux/dma-mapping.h> 23 24 #include "xhci.h" 25 #include "xhci-trace.h" 26 #include "xhci-debugfs.h" 27 #include "xhci-dbgcap.h" 28 29 #define DRIVER_AUTHOR "Sarah Sharp" 30 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 31 32 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 33 34 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 35 static int link_quirk; 36 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 37 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 38 39 static unsigned long long quirks; 40 module_param(quirks, ullong, S_IRUGO); 41 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 42 43 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 44 { 45 struct xhci_segment *seg; 46 47 if (!td || !td->start_seg) 48 return false; 49 50 xhci_for_each_ring_seg(ring->first_seg, seg) { 51 if (seg == td->start_seg) 52 return true; 53 } 54 55 return false; 56 } 57 58 /* 59 * xhci_handshake - spin reading hc until handshake completes or fails 60 * @ptr: address of hc register to be read 61 * @mask: bits to look at in result of read 62 * @done: value of those bits when handshake succeeds 63 * @usec: timeout in microseconds 64 * 65 * Returns negative errno, or zero on success 66 * 67 * Success happens when the "mask" bits have the specified value (hardware 68 * handshake done). There are two failure modes: "usec" have passed (major 69 * hardware flakeout), or the register reads as all-ones (hardware removed). 70 */ 71 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 72 { 73 u32 result; 74 int ret; 75 76 ret = readl_poll_timeout_atomic(ptr, result, 77 (result & mask) == done || 78 result == U32_MAX, 79 1, timeout_us); 80 if (result == U32_MAX) /* card removed */ 81 return -ENODEV; 82 83 return ret; 84 } 85 86 /* 87 * xhci_handshake_check_state - same as xhci_handshake but takes an additional 88 * exit_state parameter, and bails out with an error immediately when xhc_state 89 * has exit_state flag set. 90 */ 91 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr, 92 u32 mask, u32 done, int usec, unsigned int exit_state) 93 { 94 u32 result; 95 int ret; 96 97 ret = readl_poll_timeout_atomic(ptr, result, 98 (result & mask) == done || 99 result == U32_MAX || 100 xhci->xhc_state & exit_state, 101 1, usec); 102 103 if (result == U32_MAX || xhci->xhc_state & exit_state) 104 return -ENODEV; 105 106 return ret; 107 } 108 109 /* 110 * Disable interrupts and begin the xHCI halting process. 111 */ 112 void xhci_quiesce(struct xhci_hcd *xhci) 113 { 114 u32 halted; 115 u32 cmd; 116 u32 mask; 117 118 mask = ~(XHCI_IRQS); 119 halted = readl(&xhci->op_regs->status) & STS_HALT; 120 if (!halted) 121 mask &= ~CMD_RUN; 122 123 cmd = readl(&xhci->op_regs->command); 124 cmd &= mask; 125 writel(cmd, &xhci->op_regs->command); 126 } 127 128 /* 129 * Force HC into halt state. 130 * 131 * Disable any IRQs and clear the run/stop bit. 132 * HC will complete any current and actively pipelined transactions, and 133 * should halt within 16 ms of the run/stop bit being cleared. 134 * Read HC Halted bit in the status register to see when the HC is finished. 135 */ 136 int xhci_halt(struct xhci_hcd *xhci) 137 { 138 int ret; 139 140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 141 xhci_quiesce(xhci); 142 143 ret = xhci_handshake(&xhci->op_regs->status, 144 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 145 if (ret) { 146 xhci_warn(xhci, "Host halt failed, %d\n", ret); 147 return ret; 148 } 149 150 xhci->xhc_state |= XHCI_STATE_HALTED; 151 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 152 153 return ret; 154 } 155 156 /* 157 * Set the run bit and wait for the host to be running. 158 */ 159 int xhci_start(struct xhci_hcd *xhci) 160 { 161 u32 temp; 162 int ret; 163 164 temp = readl(&xhci->op_regs->command); 165 temp |= (CMD_RUN); 166 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 167 temp); 168 writel(temp, &xhci->op_regs->command); 169 170 /* 171 * Wait for the HCHalted Status bit to be 0 to indicate the host is 172 * running. 173 */ 174 ret = xhci_handshake(&xhci->op_regs->status, 175 STS_HALT, 0, XHCI_MAX_HALT_USEC); 176 if (ret == -ETIMEDOUT) 177 xhci_err(xhci, "Host took too long to start, " 178 "waited %u microseconds.\n", 179 XHCI_MAX_HALT_USEC); 180 if (!ret) { 181 /* clear state flags. Including dying, halted or removing */ 182 xhci->xhc_state = 0; 183 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 184 } 185 186 return ret; 187 } 188 189 /* 190 * Reset a halted HC. 191 * 192 * This resets pipelines, timers, counters, state machines, etc. 193 * Transactions will be terminated immediately, and operational registers 194 * will be set to their defaults. 195 */ 196 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 197 { 198 u32 command; 199 u32 state; 200 int ret; 201 202 state = readl(&xhci->op_regs->status); 203 204 if (state == ~(u32)0) { 205 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 206 return -ENODEV; 207 } 208 209 if ((state & STS_HALT) == 0) { 210 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 211 return 0; 212 } 213 214 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 215 command = readl(&xhci->op_regs->command); 216 command |= CMD_RESET; 217 writel(command, &xhci->op_regs->command); 218 219 /* Existing Intel xHCI controllers require a delay of 1 mS, 220 * after setting the CMD_RESET bit, and before accessing any 221 * HC registers. This allows the HC to complete the 222 * reset operation and be ready for HC register access. 223 * Without this delay, the subsequent HC register access, 224 * may result in a system hang very rarely. 225 */ 226 if (xhci->quirks & XHCI_INTEL_HOST) 227 udelay(1000); 228 229 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command, 230 CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING); 231 if (ret) 232 return ret; 233 234 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 235 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 236 237 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 238 "Wait for controller to be ready for doorbell rings"); 239 /* 240 * xHCI cannot write to any doorbells or operational registers other 241 * than status until the "Controller Not Ready" flag is cleared. 242 */ 243 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 244 245 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 246 xhci->usb2_rhub.bus_state.suspended_ports = 0; 247 xhci->usb2_rhub.bus_state.resuming_ports = 0; 248 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 249 xhci->usb3_rhub.bus_state.suspended_ports = 0; 250 xhci->usb3_rhub.bus_state.resuming_ports = 0; 251 252 return ret; 253 } 254 255 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 256 { 257 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 258 struct iommu_domain *domain; 259 int err, i; 260 u64 val; 261 u32 intrs; 262 263 /* 264 * Some Renesas controllers get into a weird state if they are 265 * reset while programmed with 64bit addresses (they will preserve 266 * the top half of the address in internal, non visible 267 * registers). You end up with half the address coming from the 268 * kernel, and the other half coming from the firmware. Also, 269 * changing the programming leads to extra accesses even if the 270 * controller is supposed to be halted. The controller ends up with 271 * a fatal fault, and is then ripe for being properly reset. 272 * 273 * Special care is taken to only apply this if the device is behind 274 * an iommu. Doing anything when there is no iommu is definitely 275 * unsafe... 276 */ 277 domain = iommu_get_domain_for_dev(dev); 278 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || 279 domain->type == IOMMU_DOMAIN_IDENTITY) 280 return; 281 282 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 283 284 /* Clear HSEIE so that faults do not get signaled */ 285 val = readl(&xhci->op_regs->command); 286 val &= ~CMD_HSEIE; 287 writel(val, &xhci->op_regs->command); 288 289 /* Clear HSE (aka FATAL) */ 290 val = readl(&xhci->op_regs->status); 291 val |= STS_FATAL; 292 writel(val, &xhci->op_regs->status); 293 294 /* Now zero the registers, and brace for impact */ 295 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 296 if (upper_32_bits(val)) 297 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 298 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 299 if (upper_32_bits(val)) 300 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 301 302 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 303 ARRAY_SIZE(xhci->run_regs->ir_set)); 304 305 for (i = 0; i < intrs; i++) { 306 struct xhci_intr_reg __iomem *ir; 307 308 ir = &xhci->run_regs->ir_set[i]; 309 val = xhci_read_64(xhci, &ir->erst_base); 310 if (upper_32_bits(val)) 311 xhci_write_64(xhci, 0, &ir->erst_base); 312 val= xhci_read_64(xhci, &ir->erst_dequeue); 313 if (upper_32_bits(val)) 314 xhci_write_64(xhci, 0, &ir->erst_dequeue); 315 } 316 317 /* Wait for the fault to appear. It will be cleared on reset */ 318 err = xhci_handshake(&xhci->op_regs->status, 319 STS_FATAL, STS_FATAL, 320 XHCI_MAX_HALT_USEC); 321 if (!err) 322 xhci_info(xhci, "Fault detected\n"); 323 } 324 325 int xhci_enable_interrupter(struct xhci_interrupter *ir) 326 { 327 u32 iman; 328 329 if (!ir || !ir->ir_set) 330 return -EINVAL; 331 332 iman = readl(&ir->ir_set->irq_pending); 333 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending); 334 335 return 0; 336 } 337 338 int xhci_disable_interrupter(struct xhci_interrupter *ir) 339 { 340 u32 iman; 341 342 if (!ir || !ir->ir_set) 343 return -EINVAL; 344 345 iman = readl(&ir->ir_set->irq_pending); 346 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending); 347 348 return 0; 349 } 350 351 /* interrupt moderation interval imod_interval in nanoseconds */ 352 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir, 353 u32 imod_interval) 354 { 355 u32 imod; 356 357 if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250) 358 return -EINVAL; 359 360 imod = readl(&ir->ir_set->irq_control); 361 imod &= ~ER_IRQ_INTERVAL_MASK; 362 imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 363 writel(imod, &ir->ir_set->irq_control); 364 365 return 0; 366 } 367 368 static void compliance_mode_recovery(struct timer_list *t) 369 { 370 struct xhci_hcd *xhci; 371 struct usb_hcd *hcd; 372 struct xhci_hub *rhub; 373 u32 temp; 374 int i; 375 376 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 377 rhub = &xhci->usb3_rhub; 378 hcd = rhub->hcd; 379 380 if (!hcd) 381 return; 382 383 for (i = 0; i < rhub->num_ports; i++) { 384 temp = readl(rhub->ports[i]->addr); 385 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 386 /* 387 * Compliance Mode Detected. Letting USB Core 388 * handle the Warm Reset 389 */ 390 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 391 "Compliance mode detected->port %d", 392 i + 1); 393 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 394 "Attempting compliance mode recovery"); 395 396 if (hcd->state == HC_STATE_SUSPENDED) 397 usb_hcd_resume_root_hub(hcd); 398 399 usb_hcd_poll_rh_status(hcd); 400 } 401 } 402 403 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 404 mod_timer(&xhci->comp_mode_recovery_timer, 405 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 406 } 407 408 /* 409 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 410 * that causes ports behind that hardware to enter compliance mode sometimes. 411 * The quirk creates a timer that polls every 2 seconds the link state of 412 * each host controller's port and recovers it by issuing a Warm reset 413 * if Compliance mode is detected, otherwise the port will become "dead" (no 414 * device connections or disconnections will be detected anymore). Becasue no 415 * status event is generated when entering compliance mode (per xhci spec), 416 * this quirk is needed on systems that have the failing hardware installed. 417 */ 418 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 419 { 420 xhci->port_status_u0 = 0; 421 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 422 0); 423 xhci->comp_mode_recovery_timer.expires = jiffies + 424 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 425 426 add_timer(&xhci->comp_mode_recovery_timer); 427 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 428 "Compliance mode recovery timer initialized"); 429 } 430 431 /* 432 * This function identifies the systems that have installed the SN65LVPE502CP 433 * USB3.0 re-driver and that need the Compliance Mode Quirk. 434 * Systems: 435 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 436 */ 437 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 438 { 439 const char *dmi_product_name, *dmi_sys_vendor; 440 441 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 442 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 443 if (!dmi_product_name || !dmi_sys_vendor) 444 return false; 445 446 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 447 return false; 448 449 if (strstr(dmi_product_name, "Z420") || 450 strstr(dmi_product_name, "Z620") || 451 strstr(dmi_product_name, "Z820") || 452 strstr(dmi_product_name, "Z1 Workstation")) 453 return true; 454 455 return false; 456 } 457 458 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 459 { 460 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 461 } 462 463 464 /* 465 * Initialize memory for HCD and xHC (one-time init). 466 * 467 * Program the PAGESIZE register, initialize the device context array, create 468 * device contexts (?), set up a command ring segment (or two?), create event 469 * ring (one for now). 470 */ 471 static int xhci_init(struct usb_hcd *hcd) 472 { 473 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 474 int retval; 475 476 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 477 spin_lock_init(&xhci->lock); 478 479 retval = xhci_mem_init(xhci, GFP_KERNEL); 480 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 481 482 /* Initializing Compliance Mode Recovery Data If Needed */ 483 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 484 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 485 compliance_mode_recovery_timer_init(xhci); 486 } 487 488 return retval; 489 } 490 491 /*-------------------------------------------------------------------------*/ 492 493 static int xhci_run_finished(struct xhci_hcd *xhci) 494 { 495 struct xhci_interrupter *ir = xhci->interrupters[0]; 496 unsigned long flags; 497 u32 temp; 498 499 /* 500 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 501 * Protect the short window before host is running with a lock 502 */ 503 spin_lock_irqsave(&xhci->lock, flags); 504 505 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 506 temp = readl(&xhci->op_regs->command); 507 temp |= (CMD_EIE); 508 writel(temp, &xhci->op_regs->command); 509 510 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 511 xhci_enable_interrupter(ir); 512 513 if (xhci_start(xhci)) { 514 xhci_halt(xhci); 515 spin_unlock_irqrestore(&xhci->lock, flags); 516 return -ENODEV; 517 } 518 519 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 520 521 if (xhci->quirks & XHCI_NEC_HOST) 522 xhci_ring_cmd_db(xhci); 523 524 spin_unlock_irqrestore(&xhci->lock, flags); 525 526 return 0; 527 } 528 529 /* 530 * Start the HC after it was halted. 531 * 532 * This function is called by the USB core when the HC driver is added. 533 * Its opposite is xhci_stop(). 534 * 535 * xhci_init() must be called once before this function can be called. 536 * Reset the HC, enable device slot contexts, program DCBAAP, and 537 * set command ring pointer and event ring pointer. 538 * 539 * Setup MSI-X vectors and enable interrupts. 540 */ 541 int xhci_run(struct usb_hcd *hcd) 542 { 543 u64 temp_64; 544 int ret; 545 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 546 struct xhci_interrupter *ir = xhci->interrupters[0]; 547 /* Start the xHCI host controller running only after the USB 2.0 roothub 548 * is setup. 549 */ 550 551 hcd->uses_new_polling = 1; 552 if (hcd->msi_enabled) 553 ir->ip_autoclear = true; 554 555 if (!usb_hcd_is_primary_hcd(hcd)) 556 return xhci_run_finished(xhci); 557 558 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 559 560 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 561 temp_64 &= ERST_PTR_MASK; 562 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 563 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 564 565 xhci_set_interrupter_moderation(ir, xhci->imod_interval); 566 567 if (xhci->quirks & XHCI_NEC_HOST) { 568 struct xhci_command *command; 569 570 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 571 if (!command) 572 return -ENOMEM; 573 574 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 575 TRB_TYPE(TRB_NEC_GET_FW)); 576 if (ret) 577 xhci_free_command(xhci, command); 578 } 579 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 580 "Finished %s for main hcd", __func__); 581 582 xhci_create_dbc_dev(xhci); 583 584 xhci_debugfs_init(xhci); 585 586 if (xhci_has_one_roothub(xhci)) 587 return xhci_run_finished(xhci); 588 589 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 590 591 return 0; 592 } 593 EXPORT_SYMBOL_GPL(xhci_run); 594 595 /* 596 * Stop xHCI driver. 597 * 598 * This function is called by the USB core when the HC driver is removed. 599 * Its opposite is xhci_run(). 600 * 601 * Disable device contexts, disable IRQs, and quiesce the HC. 602 * Reset the HC, finish any completed transactions, and cleanup memory. 603 */ 604 void xhci_stop(struct usb_hcd *hcd) 605 { 606 u32 temp; 607 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 608 struct xhci_interrupter *ir = xhci->interrupters[0]; 609 610 mutex_lock(&xhci->mutex); 611 612 /* Only halt host and free memory after both hcds are removed */ 613 if (!usb_hcd_is_primary_hcd(hcd)) { 614 mutex_unlock(&xhci->mutex); 615 return; 616 } 617 618 xhci_remove_dbc_dev(xhci); 619 620 spin_lock_irq(&xhci->lock); 621 xhci->xhc_state |= XHCI_STATE_HALTED; 622 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 623 xhci_halt(xhci); 624 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 625 spin_unlock_irq(&xhci->lock); 626 627 /* Deleting Compliance Mode Recovery Timer */ 628 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 629 (!(xhci_all_ports_seen_u0(xhci)))) { 630 timer_delete_sync(&xhci->comp_mode_recovery_timer); 631 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 632 "%s: compliance mode recovery timer deleted", 633 __func__); 634 } 635 636 if (xhci->quirks & XHCI_AMD_PLL_FIX) 637 usb_amd_dev_put(); 638 639 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 640 "// Disabling event ring interrupts"); 641 temp = readl(&xhci->op_regs->status); 642 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 643 xhci_disable_interrupter(ir); 644 645 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 646 xhci_mem_cleanup(xhci); 647 xhci_debugfs_exit(xhci); 648 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 649 "xhci_stop completed - status = %x", 650 readl(&xhci->op_regs->status)); 651 mutex_unlock(&xhci->mutex); 652 } 653 EXPORT_SYMBOL_GPL(xhci_stop); 654 655 /* 656 * Shutdown HC (not bus-specific) 657 * 658 * This is called when the machine is rebooting or halting. We assume that the 659 * machine will be powered off, and the HC's internal state will be reset. 660 * Don't bother to free memory. 661 * 662 * This will only ever be called with the main usb_hcd (the USB3 roothub). 663 */ 664 void xhci_shutdown(struct usb_hcd *hcd) 665 { 666 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 667 668 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 669 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 670 671 /* Don't poll the roothubs after shutdown. */ 672 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 673 __func__, hcd->self.busnum); 674 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 675 timer_delete_sync(&hcd->rh_timer); 676 677 if (xhci->shared_hcd) { 678 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 679 timer_delete_sync(&xhci->shared_hcd->rh_timer); 680 } 681 682 spin_lock_irq(&xhci->lock); 683 xhci_halt(xhci); 684 685 /* 686 * Workaround for spurious wakeps at shutdown with HSW, and for boot 687 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 688 */ 689 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 690 xhci->quirks & XHCI_RESET_TO_DEFAULT) 691 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 692 693 spin_unlock_irq(&xhci->lock); 694 695 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 696 "xhci_shutdown completed - status = %x", 697 readl(&xhci->op_regs->status)); 698 } 699 EXPORT_SYMBOL_GPL(xhci_shutdown); 700 701 #ifdef CONFIG_PM 702 static void xhci_save_registers(struct xhci_hcd *xhci) 703 { 704 struct xhci_interrupter *ir; 705 unsigned int i; 706 707 xhci->s3.command = readl(&xhci->op_regs->command); 708 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 709 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 710 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 711 712 /* save both primary and all secondary interrupters */ 713 /* fixme, shold we lock to prevent race with remove secondary interrupter? */ 714 for (i = 0; i < xhci->max_interrupters; i++) { 715 ir = xhci->interrupters[i]; 716 if (!ir) 717 continue; 718 719 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 720 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 721 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 722 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending); 723 ir->s3_irq_control = readl(&ir->ir_set->irq_control); 724 } 725 } 726 727 static void xhci_restore_registers(struct xhci_hcd *xhci) 728 { 729 struct xhci_interrupter *ir; 730 unsigned int i; 731 732 writel(xhci->s3.command, &xhci->op_regs->command); 733 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 734 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 735 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 736 737 /* FIXME should we lock to protect against freeing of interrupters */ 738 for (i = 0; i < xhci->max_interrupters; i++) { 739 ir = xhci->interrupters[i]; 740 if (!ir) 741 continue; 742 743 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 744 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 745 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 746 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending); 747 writel(ir->s3_irq_control, &ir->ir_set->irq_control); 748 } 749 } 750 751 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 752 { 753 u64 val_64; 754 755 /* step 2: initialize command ring buffer */ 756 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 757 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 758 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 759 xhci->cmd_ring->dequeue) & 760 (u64) ~CMD_RING_RSVD_BITS) | 761 xhci->cmd_ring->cycle_state; 762 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 763 "// Setting command ring address to 0x%llx", 764 (long unsigned long) val_64); 765 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 766 } 767 768 /* 769 * The whole command ring must be cleared to zero when we suspend the host. 770 * 771 * The host doesn't save the command ring pointer in the suspend well, so we 772 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 773 * aligned, because of the reserved bits in the command ring dequeue pointer 774 * register. Therefore, we can't just set the dequeue pointer back in the 775 * middle of the ring (TRBs are 16-byte aligned). 776 */ 777 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 778 { 779 struct xhci_ring *ring; 780 struct xhci_segment *seg; 781 782 ring = xhci->cmd_ring; 783 xhci_for_each_ring_seg(ring->first_seg, seg) { 784 /* erase all TRBs before the link */ 785 memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 786 /* clear link cycle bit */ 787 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE); 788 } 789 790 xhci_initialize_ring_info(ring); 791 /* 792 * Reset the hardware dequeue pointer. 793 * Yes, this will need to be re-written after resume, but we're paranoid 794 * and want to make sure the hardware doesn't access bogus memory 795 * because, say, the BIOS or an SMI started the host without changing 796 * the command ring pointers. 797 */ 798 xhci_set_cmd_ring_deq(xhci); 799 } 800 801 /* 802 * Disable port wake bits if do_wakeup is not set. 803 * 804 * Also clear a possible internal port wake state left hanging for ports that 805 * detected termination but never successfully enumerated (trained to 0U). 806 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 807 * at enumeration clears this wake, force one here as well for unconnected ports 808 */ 809 810 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 811 struct xhci_hub *rhub, 812 bool do_wakeup) 813 { 814 unsigned long flags; 815 u32 t1, t2, portsc; 816 int i; 817 818 spin_lock_irqsave(&xhci->lock, flags); 819 820 for (i = 0; i < rhub->num_ports; i++) { 821 portsc = readl(rhub->ports[i]->addr); 822 t1 = xhci_port_state_to_neutral(portsc); 823 t2 = t1; 824 825 /* clear wake bits if do_wake is not set */ 826 if (!do_wakeup) 827 t2 &= ~PORT_WAKE_BITS; 828 829 /* Don't touch csc bit if connected or connect change is set */ 830 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 831 t2 |= PORT_CSC; 832 833 if (t1 != t2) { 834 writel(t2, rhub->ports[i]->addr); 835 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 836 rhub->hcd->self.busnum, i + 1, portsc, t2); 837 } 838 } 839 spin_unlock_irqrestore(&xhci->lock, flags); 840 } 841 842 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 843 { 844 struct xhci_port **ports; 845 int port_index; 846 u32 status; 847 u32 portsc; 848 849 status = readl(&xhci->op_regs->status); 850 if (status & STS_EINT) 851 return true; 852 /* 853 * Checking STS_EINT is not enough as there is a lag between a change 854 * bit being set and the Port Status Change Event that it generated 855 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 856 */ 857 858 port_index = xhci->usb2_rhub.num_ports; 859 ports = xhci->usb2_rhub.ports; 860 while (port_index--) { 861 portsc = readl(ports[port_index]->addr); 862 if (portsc & PORT_CHANGE_MASK || 863 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 864 return true; 865 } 866 port_index = xhci->usb3_rhub.num_ports; 867 ports = xhci->usb3_rhub.ports; 868 while (port_index--) { 869 portsc = readl(ports[port_index]->addr); 870 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) || 871 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 872 return true; 873 } 874 return false; 875 } 876 877 /* 878 * Stop HC (not bus-specific) 879 * 880 * This is called when the machine transition into S3/S4 mode. 881 * 882 */ 883 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 884 { 885 int rc = 0; 886 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 887 struct usb_hcd *hcd = xhci_to_hcd(xhci); 888 u32 command; 889 u32 res; 890 891 if (!hcd->state) 892 return 0; 893 894 if (hcd->state != HC_STATE_SUSPENDED || 895 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 896 return -EINVAL; 897 898 /* Clear root port wake on bits if wakeup not allowed. */ 899 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 900 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 901 902 if (!HCD_HW_ACCESSIBLE(hcd)) 903 return 0; 904 905 xhci_dbc_suspend(xhci); 906 907 /* Don't poll the roothubs on bus suspend. */ 908 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 909 __func__, hcd->self.busnum); 910 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 911 timer_delete_sync(&hcd->rh_timer); 912 if (xhci->shared_hcd) { 913 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 914 timer_delete_sync(&xhci->shared_hcd->rh_timer); 915 } 916 917 if (xhci->quirks & XHCI_SUSPEND_DELAY) 918 usleep_range(1000, 1500); 919 920 spin_lock_irq(&xhci->lock); 921 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 922 if (xhci->shared_hcd) 923 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 924 /* step 1: stop endpoint */ 925 /* skipped assuming that port suspend has done */ 926 927 /* step 2: clear Run/Stop bit */ 928 command = readl(&xhci->op_regs->command); 929 command &= ~CMD_RUN; 930 writel(command, &xhci->op_regs->command); 931 932 /* Some chips from Fresco Logic need an extraordinary delay */ 933 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 934 935 if (xhci_handshake(&xhci->op_regs->status, 936 STS_HALT, STS_HALT, delay)) { 937 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 938 spin_unlock_irq(&xhci->lock); 939 return -ETIMEDOUT; 940 } 941 xhci_clear_command_ring(xhci); 942 943 /* step 3: save registers */ 944 xhci_save_registers(xhci); 945 946 /* step 4: set CSS flag */ 947 command = readl(&xhci->op_regs->command); 948 command |= CMD_CSS; 949 writel(command, &xhci->op_regs->command); 950 xhci->broken_suspend = 0; 951 if (xhci_handshake(&xhci->op_regs->status, 952 STS_SAVE, 0, 20 * 1000)) { 953 /* 954 * AMD SNPS xHC 3.0 occasionally does not clear the 955 * SSS bit of USBSTS and when driver tries to poll 956 * to see if the xHC clears BIT(8) which never happens 957 * and driver assumes that controller is not responding 958 * and times out. To workaround this, its good to check 959 * if SRE and HCE bits are not set (as per xhci 960 * Section 5.4.2) and bypass the timeout. 961 */ 962 res = readl(&xhci->op_regs->status); 963 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 964 (((res & STS_SRE) == 0) && 965 ((res & STS_HCE) == 0))) { 966 xhci->broken_suspend = 1; 967 } else { 968 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 969 spin_unlock_irq(&xhci->lock); 970 return -ETIMEDOUT; 971 } 972 } 973 spin_unlock_irq(&xhci->lock); 974 975 /* 976 * Deleting Compliance Mode Recovery Timer because the xHCI Host 977 * is about to be suspended. 978 */ 979 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 980 (!(xhci_all_ports_seen_u0(xhci)))) { 981 timer_delete_sync(&xhci->comp_mode_recovery_timer); 982 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 983 "%s: compliance mode recovery timer deleted", 984 __func__); 985 } 986 987 return rc; 988 } 989 EXPORT_SYMBOL_GPL(xhci_suspend); 990 991 /* 992 * start xHC (not bus-specific) 993 * 994 * This is called when the machine transition from S3/S4 mode. 995 * 996 */ 997 int xhci_resume(struct xhci_hcd *xhci, bool power_lost, bool is_auto_resume) 998 { 999 u32 command, temp = 0; 1000 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1001 int retval = 0; 1002 bool comp_timer_running = false; 1003 bool pending_portevent = false; 1004 bool suspended_usb3_devs = false; 1005 1006 if (!hcd->state) 1007 return 0; 1008 1009 /* Wait a bit if either of the roothubs need to settle from the 1010 * transition into bus suspend. 1011 */ 1012 1013 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1014 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1015 msleep(100); 1016 1017 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1018 if (xhci->shared_hcd) 1019 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1020 1021 spin_lock_irq(&xhci->lock); 1022 1023 if (xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1024 power_lost = true; 1025 1026 if (!power_lost) { 1027 /* 1028 * Some controllers might lose power during suspend, so wait 1029 * for controller not ready bit to clear, just as in xHC init. 1030 */ 1031 retval = xhci_handshake(&xhci->op_regs->status, 1032 STS_CNR, 0, 10 * 1000 * 1000); 1033 if (retval) { 1034 xhci_warn(xhci, "Controller not ready at resume %d\n", 1035 retval); 1036 spin_unlock_irq(&xhci->lock); 1037 return retval; 1038 } 1039 /* step 1: restore register */ 1040 xhci_restore_registers(xhci); 1041 /* step 2: initialize command ring buffer */ 1042 xhci_set_cmd_ring_deq(xhci); 1043 /* step 3: restore state and start state*/ 1044 /* step 3: set CRS flag */ 1045 command = readl(&xhci->op_regs->command); 1046 command |= CMD_CRS; 1047 writel(command, &xhci->op_regs->command); 1048 /* 1049 * Some controllers take up to 55+ ms to complete the controller 1050 * restore so setting the timeout to 100ms. Xhci specification 1051 * doesn't mention any timeout value. 1052 */ 1053 if (xhci_handshake(&xhci->op_regs->status, 1054 STS_RESTORE, 0, 100 * 1000)) { 1055 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1056 spin_unlock_irq(&xhci->lock); 1057 return -ETIMEDOUT; 1058 } 1059 } 1060 1061 temp = readl(&xhci->op_regs->status); 1062 1063 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1064 if ((temp & (STS_SRE | STS_HCE)) && 1065 !(xhci->xhc_state & XHCI_STATE_REMOVING)) { 1066 if (!power_lost) 1067 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1068 power_lost = true; 1069 } 1070 1071 if (power_lost) { 1072 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1073 !(xhci_all_ports_seen_u0(xhci))) { 1074 timer_delete_sync(&xhci->comp_mode_recovery_timer); 1075 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1076 "Compliance Mode Recovery Timer deleted!"); 1077 } 1078 1079 /* Let the USB core know _both_ roothubs lost power. */ 1080 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1081 if (xhci->shared_hcd) 1082 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1083 1084 xhci_dbg(xhci, "Stop HCD\n"); 1085 xhci_halt(xhci); 1086 xhci_zero_64b_regs(xhci); 1087 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1088 spin_unlock_irq(&xhci->lock); 1089 if (retval) 1090 return retval; 1091 1092 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1093 temp = readl(&xhci->op_regs->status); 1094 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1095 xhci_disable_interrupter(xhci->interrupters[0]); 1096 1097 xhci_dbg(xhci, "cleaning up memory\n"); 1098 xhci_mem_cleanup(xhci); 1099 xhci_debugfs_exit(xhci); 1100 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1101 readl(&xhci->op_regs->status)); 1102 1103 /* USB core calls the PCI reinit and start functions twice: 1104 * first with the primary HCD, and then with the secondary HCD. 1105 * If we don't do the same, the host will never be started. 1106 */ 1107 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1108 retval = xhci_init(hcd); 1109 if (retval) 1110 return retval; 1111 comp_timer_running = true; 1112 1113 xhci_dbg(xhci, "Start the primary HCD\n"); 1114 retval = xhci_run(hcd); 1115 if (!retval && xhci->shared_hcd) { 1116 xhci_dbg(xhci, "Start the secondary HCD\n"); 1117 retval = xhci_run(xhci->shared_hcd); 1118 } 1119 if (retval) 1120 return retval; 1121 /* 1122 * Resume roothubs unconditionally as PORTSC change bits are not 1123 * immediately visible after xHC reset 1124 */ 1125 hcd->state = HC_STATE_SUSPENDED; 1126 1127 if (xhci->shared_hcd) { 1128 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1129 usb_hcd_resume_root_hub(xhci->shared_hcd); 1130 } 1131 usb_hcd_resume_root_hub(hcd); 1132 1133 goto done; 1134 } 1135 1136 /* step 4: set Run/Stop bit */ 1137 command = readl(&xhci->op_regs->command); 1138 command |= CMD_RUN; 1139 writel(command, &xhci->op_regs->command); 1140 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1141 0, 250 * 1000); 1142 1143 /* step 5: walk topology and initialize portsc, 1144 * portpmsc and portli 1145 */ 1146 /* this is done in bus_resume */ 1147 1148 /* step 6: restart each of the previously 1149 * Running endpoints by ringing their doorbells 1150 */ 1151 1152 spin_unlock_irq(&xhci->lock); 1153 1154 xhci_dbc_resume(xhci); 1155 1156 if (retval == 0) { 1157 /* 1158 * Resume roothubs only if there are pending events. 1159 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1160 * the first wake signalling failed, give it that chance if 1161 * there are suspended USB 3 devices. 1162 */ 1163 if (xhci->usb3_rhub.bus_state.suspended_ports || 1164 xhci->usb3_rhub.bus_state.bus_suspended) 1165 suspended_usb3_devs = true; 1166 1167 pending_portevent = xhci_pending_portevent(xhci); 1168 1169 if (suspended_usb3_devs && !pending_portevent && is_auto_resume) { 1170 msleep(120); 1171 pending_portevent = xhci_pending_portevent(xhci); 1172 } 1173 1174 if (pending_portevent) { 1175 if (xhci->shared_hcd) 1176 usb_hcd_resume_root_hub(xhci->shared_hcd); 1177 usb_hcd_resume_root_hub(hcd); 1178 } 1179 } 1180 done: 1181 /* 1182 * If system is subject to the Quirk, Compliance Mode Timer needs to 1183 * be re-initialized Always after a system resume. Ports are subject 1184 * to suffer the Compliance Mode issue again. It doesn't matter if 1185 * ports have entered previously to U0 before system's suspension. 1186 */ 1187 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1188 compliance_mode_recovery_timer_init(xhci); 1189 1190 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1191 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1192 1193 /* Re-enable port polling. */ 1194 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1195 __func__, hcd->self.busnum); 1196 if (xhci->shared_hcd) { 1197 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1198 usb_hcd_poll_rh_status(xhci->shared_hcd); 1199 } 1200 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1201 usb_hcd_poll_rh_status(hcd); 1202 1203 return retval; 1204 } 1205 EXPORT_SYMBOL_GPL(xhci_resume); 1206 #endif /* CONFIG_PM */ 1207 1208 /*-------------------------------------------------------------------------*/ 1209 1210 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1211 { 1212 void *temp; 1213 int ret = 0; 1214 unsigned int buf_len; 1215 enum dma_data_direction dir; 1216 1217 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1218 buf_len = urb->transfer_buffer_length; 1219 1220 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1221 dev_to_node(hcd->self.sysdev)); 1222 if (!temp) 1223 return -ENOMEM; 1224 1225 if (usb_urb_dir_out(urb)) 1226 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1227 temp, buf_len, 0); 1228 1229 urb->transfer_buffer = temp; 1230 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1231 urb->transfer_buffer, 1232 urb->transfer_buffer_length, 1233 dir); 1234 1235 if (dma_mapping_error(hcd->self.sysdev, 1236 urb->transfer_dma)) { 1237 ret = -EAGAIN; 1238 kfree(temp); 1239 } else { 1240 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1241 } 1242 1243 return ret; 1244 } 1245 1246 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1247 struct urb *urb) 1248 { 1249 bool ret = false; 1250 unsigned int i; 1251 unsigned int len = 0; 1252 unsigned int trb_size; 1253 unsigned int max_pkt; 1254 struct scatterlist *sg; 1255 struct scatterlist *tail_sg; 1256 1257 tail_sg = urb->sg; 1258 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1259 1260 if (!urb->num_sgs) 1261 return ret; 1262 1263 if (urb->dev->speed >= USB_SPEED_SUPER) 1264 trb_size = TRB_CACHE_SIZE_SS; 1265 else 1266 trb_size = TRB_CACHE_SIZE_HS; 1267 1268 if (urb->transfer_buffer_length != 0 && 1269 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1270 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1271 len = len + sg->length; 1272 if (i > trb_size - 2) { 1273 len = len - tail_sg->length; 1274 if (len < max_pkt) { 1275 ret = true; 1276 break; 1277 } 1278 1279 tail_sg = sg_next(tail_sg); 1280 } 1281 } 1282 } 1283 return ret; 1284 } 1285 1286 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1287 { 1288 unsigned int len; 1289 unsigned int buf_len; 1290 enum dma_data_direction dir; 1291 1292 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1293 1294 buf_len = urb->transfer_buffer_length; 1295 1296 if (IS_ENABLED(CONFIG_HAS_DMA) && 1297 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1298 dma_unmap_single(hcd->self.sysdev, 1299 urb->transfer_dma, 1300 urb->transfer_buffer_length, 1301 dir); 1302 1303 if (usb_urb_dir_in(urb)) { 1304 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1305 urb->transfer_buffer, 1306 buf_len, 1307 0); 1308 if (len != buf_len) { 1309 xhci_dbg(hcd_to_xhci(hcd), 1310 "Copy from tmp buf to urb sg list failed\n"); 1311 urb->actual_length = len; 1312 } 1313 } 1314 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1315 kfree(urb->transfer_buffer); 1316 urb->transfer_buffer = NULL; 1317 } 1318 1319 /* 1320 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1321 * we'll copy the actual data into the TRB address register. This is limited to 1322 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1323 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1324 */ 1325 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1326 gfp_t mem_flags) 1327 { 1328 struct xhci_hcd *xhci; 1329 1330 xhci = hcd_to_xhci(hcd); 1331 1332 if (xhci_urb_suitable_for_idt(urb)) 1333 return 0; 1334 1335 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1336 if (xhci_urb_temp_buffer_required(hcd, urb)) 1337 return xhci_map_temp_buffer(hcd, urb); 1338 } 1339 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1340 } 1341 1342 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1343 { 1344 struct xhci_hcd *xhci; 1345 bool unmap_temp_buf = false; 1346 1347 xhci = hcd_to_xhci(hcd); 1348 1349 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1350 unmap_temp_buf = true; 1351 1352 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1353 xhci_unmap_temp_buf(hcd, urb); 1354 else 1355 usb_hcd_unmap_urb_for_dma(hcd, urb); 1356 } 1357 1358 /** 1359 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1360 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1361 * value to right shift 1 for the bitmask. 1362 * 1363 * Index = (epnum * 2) + direction - 1, 1364 * where direction = 0 for OUT, 1 for IN. 1365 * For control endpoints, the IN index is used (OUT index is unused), so 1366 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1367 */ 1368 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1369 { 1370 unsigned int index; 1371 if (usb_endpoint_xfer_control(desc)) 1372 index = (unsigned int) (usb_endpoint_num(desc)*2); 1373 else 1374 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1375 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1376 return index; 1377 } 1378 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1379 1380 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1381 * address from the XHCI endpoint index. 1382 */ 1383 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1384 { 1385 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1386 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1387 return direction | number; 1388 } 1389 1390 /* Find the flag for this endpoint (for use in the control context). Use the 1391 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1392 * bit 1, etc. 1393 */ 1394 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1395 { 1396 return 1 << (xhci_get_endpoint_index(desc) + 1); 1397 } 1398 1399 /* Compute the last valid endpoint context index. Basically, this is the 1400 * endpoint index plus one. For slot contexts with more than valid endpoint, 1401 * we find the most significant bit set in the added contexts flags. 1402 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1403 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1404 */ 1405 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1406 { 1407 return fls(added_ctxs) - 1; 1408 } 1409 1410 /* Returns 1 if the arguments are OK; 1411 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1412 */ 1413 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1414 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1415 const char *func) { 1416 struct xhci_hcd *xhci; 1417 struct xhci_virt_device *virt_dev; 1418 1419 if (!hcd || (check_ep && !ep) || !udev) { 1420 pr_debug("xHCI %s called with invalid args\n", func); 1421 return -EINVAL; 1422 } 1423 if (!udev->parent) { 1424 pr_debug("xHCI %s called for root hub\n", func); 1425 return 0; 1426 } 1427 1428 xhci = hcd_to_xhci(hcd); 1429 if (check_virt_dev) { 1430 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1431 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1432 func); 1433 return -EINVAL; 1434 } 1435 1436 virt_dev = xhci->devs[udev->slot_id]; 1437 if (virt_dev->udev != udev) { 1438 xhci_dbg(xhci, "xHCI %s called with udev and " 1439 "virt_dev does not match\n", func); 1440 return -EINVAL; 1441 } 1442 } 1443 1444 if (xhci->xhc_state & XHCI_STATE_HALTED) 1445 return -ENODEV; 1446 1447 return 1; 1448 } 1449 1450 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1451 struct usb_device *udev, struct xhci_command *command, 1452 bool ctx_change, bool must_succeed); 1453 1454 /* 1455 * Full speed devices may have a max packet size greater than 8 bytes, but the 1456 * USB core doesn't know that until it reads the first 8 bytes of the 1457 * descriptor. If the usb_device's max packet size changes after that point, 1458 * we need to issue an evaluate context command and wait on it. 1459 */ 1460 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev) 1461 { 1462 struct xhci_input_control_ctx *ctrl_ctx; 1463 struct xhci_ep_ctx *ep_ctx; 1464 struct xhci_command *command; 1465 int max_packet_size; 1466 int hw_max_packet_size; 1467 int ret = 0; 1468 1469 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0); 1470 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1471 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc); 1472 1473 if (hw_max_packet_size == max_packet_size) 1474 return 0; 1475 1476 switch (max_packet_size) { 1477 case 8: case 16: case 32: case 64: case 9: 1478 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1479 "Max Packet Size for ep 0 changed."); 1480 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1481 "Max packet size in usb_device = %d", 1482 max_packet_size); 1483 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1484 "Max packet size in xHCI HW = %d", 1485 hw_max_packet_size); 1486 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1487 "Issuing evaluate context command."); 1488 1489 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1490 if (!command) 1491 return -ENOMEM; 1492 1493 command->in_ctx = vdev->in_ctx; 1494 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1495 if (!ctrl_ctx) { 1496 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1497 __func__); 1498 ret = -ENOMEM; 1499 break; 1500 } 1501 /* Set up the modified control endpoint 0 */ 1502 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0); 1503 1504 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0); 1505 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1506 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1507 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1508 1509 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1510 ctrl_ctx->drop_flags = 0; 1511 1512 ret = xhci_configure_endpoint(xhci, vdev->udev, command, 1513 true, false); 1514 /* Clean up the input context for later use by bandwidth functions */ 1515 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1516 break; 1517 default: 1518 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n", 1519 max_packet_size); 1520 return -EINVAL; 1521 } 1522 1523 kfree(command->completion); 1524 kfree(command); 1525 1526 return ret; 1527 } 1528 1529 /* 1530 * non-error returns are a promise to giveback() the urb later 1531 * we drop ownership so next owner (or urb unlink) can get it 1532 */ 1533 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1534 { 1535 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1536 unsigned long flags; 1537 int ret = 0; 1538 unsigned int slot_id, ep_index; 1539 unsigned int *ep_state; 1540 struct urb_priv *urb_priv; 1541 int num_tds; 1542 1543 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1544 1545 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1546 num_tds = urb->number_of_packets; 1547 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1548 urb->transfer_buffer_length > 0 && 1549 urb->transfer_flags & URB_ZERO_PACKET && 1550 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1551 num_tds = 2; 1552 else 1553 num_tds = 1; 1554 1555 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1556 if (!urb_priv) 1557 return -ENOMEM; 1558 1559 urb_priv->num_tds = num_tds; 1560 urb_priv->num_tds_done = 0; 1561 urb->hcpriv = urb_priv; 1562 1563 trace_xhci_urb_enqueue(urb); 1564 1565 spin_lock_irqsave(&xhci->lock, flags); 1566 1567 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1568 true, true, __func__); 1569 if (ret <= 0) { 1570 ret = ret ? ret : -EINVAL; 1571 goto free_priv; 1572 } 1573 1574 slot_id = urb->dev->slot_id; 1575 1576 if (!HCD_HW_ACCESSIBLE(hcd)) { 1577 ret = -ESHUTDOWN; 1578 goto free_priv; 1579 } 1580 1581 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1582 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1583 ret = -ENODEV; 1584 goto free_priv; 1585 } 1586 1587 if (xhci->xhc_state & XHCI_STATE_DYING) { 1588 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1589 urb->ep->desc.bEndpointAddress, urb); 1590 ret = -ESHUTDOWN; 1591 goto free_priv; 1592 } 1593 1594 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1595 1596 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1597 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1598 *ep_state); 1599 ret = -EINVAL; 1600 goto free_priv; 1601 } 1602 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1603 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1604 ret = -EINVAL; 1605 goto free_priv; 1606 } 1607 1608 switch (usb_endpoint_type(&urb->ep->desc)) { 1609 1610 case USB_ENDPOINT_XFER_CONTROL: 1611 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1612 slot_id, ep_index); 1613 break; 1614 case USB_ENDPOINT_XFER_BULK: 1615 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1616 slot_id, ep_index); 1617 break; 1618 case USB_ENDPOINT_XFER_INT: 1619 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1620 slot_id, ep_index); 1621 break; 1622 case USB_ENDPOINT_XFER_ISOC: 1623 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1624 slot_id, ep_index); 1625 } 1626 1627 if (ret) { 1628 free_priv: 1629 xhci_urb_free_priv(urb_priv); 1630 urb->hcpriv = NULL; 1631 } 1632 spin_unlock_irqrestore(&xhci->lock, flags); 1633 return ret; 1634 } 1635 1636 /* 1637 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1638 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1639 * should pick up where it left off in the TD, unless a Set Transfer Ring 1640 * Dequeue Pointer is issued. 1641 * 1642 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1643 * the ring. Since the ring is a contiguous structure, they can't be physically 1644 * removed. Instead, there are two options: 1645 * 1646 * 1) If the HC is in the middle of processing the URB to be canceled, we 1647 * simply move the ring's dequeue pointer past those TRBs using the Set 1648 * Transfer Ring Dequeue Pointer command. This will be the common case, 1649 * when drivers timeout on the last submitted URB and attempt to cancel. 1650 * 1651 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1652 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1653 * HC will need to invalidate the any TRBs it has cached after the stop 1654 * endpoint command, as noted in the xHCI 0.95 errata. 1655 * 1656 * 3) The TD may have completed by the time the Stop Endpoint Command 1657 * completes, so software needs to handle that case too. 1658 * 1659 * This function should protect against the TD enqueueing code ringing the 1660 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1661 * It also needs to account for multiple cancellations on happening at the same 1662 * time for the same endpoint. 1663 * 1664 * Note that this function can be called in any context, or so says 1665 * usb_hcd_unlink_urb() 1666 */ 1667 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1668 { 1669 unsigned long flags; 1670 int ret, i; 1671 u32 temp; 1672 struct xhci_hcd *xhci; 1673 struct urb_priv *urb_priv; 1674 struct xhci_td *td; 1675 unsigned int ep_index; 1676 struct xhci_ring *ep_ring; 1677 struct xhci_virt_ep *ep; 1678 struct xhci_command *command; 1679 struct xhci_virt_device *vdev; 1680 1681 xhci = hcd_to_xhci(hcd); 1682 spin_lock_irqsave(&xhci->lock, flags); 1683 1684 trace_xhci_urb_dequeue(urb); 1685 1686 /* Make sure the URB hasn't completed or been unlinked already */ 1687 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1688 if (ret) 1689 goto done; 1690 1691 /* give back URB now if we can't queue it for cancel */ 1692 vdev = xhci->devs[urb->dev->slot_id]; 1693 urb_priv = urb->hcpriv; 1694 if (!vdev || !urb_priv) 1695 goto err_giveback; 1696 1697 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1698 ep = &vdev->eps[ep_index]; 1699 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1700 if (!ep || !ep_ring) 1701 goto err_giveback; 1702 1703 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1704 temp = readl(&xhci->op_regs->status); 1705 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1706 xhci_hc_died(xhci); 1707 goto done; 1708 } 1709 1710 /* 1711 * check ring is not re-allocated since URB was enqueued. If it is, then 1712 * make sure none of the ring related pointers in this URB private data 1713 * are touched, such as td_list, otherwise we overwrite freed data 1714 */ 1715 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1716 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1717 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1718 td = &urb_priv->td[i]; 1719 if (!list_empty(&td->cancelled_td_list)) 1720 list_del_init(&td->cancelled_td_list); 1721 } 1722 goto err_giveback; 1723 } 1724 1725 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1726 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1727 "HC halted, freeing TD manually."); 1728 for (i = urb_priv->num_tds_done; 1729 i < urb_priv->num_tds; 1730 i++) { 1731 td = &urb_priv->td[i]; 1732 if (!list_empty(&td->td_list)) 1733 list_del_init(&td->td_list); 1734 if (!list_empty(&td->cancelled_td_list)) 1735 list_del_init(&td->cancelled_td_list); 1736 } 1737 goto err_giveback; 1738 } 1739 1740 i = urb_priv->num_tds_done; 1741 if (i < urb_priv->num_tds) 1742 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1743 "Cancel URB %p, dev %s, ep 0x%x, " 1744 "starting at offset 0x%llx", 1745 urb, urb->dev->devpath, 1746 urb->ep->desc.bEndpointAddress, 1747 (unsigned long long) xhci_trb_virt_to_dma( 1748 urb_priv->td[i].start_seg, 1749 urb_priv->td[i].start_trb)); 1750 1751 for (; i < urb_priv->num_tds; i++) { 1752 td = &urb_priv->td[i]; 1753 /* TD can already be on cancelled list if ep halted on it */ 1754 if (list_empty(&td->cancelled_td_list)) { 1755 td->cancel_status = TD_DIRTY; 1756 list_add_tail(&td->cancelled_td_list, 1757 &ep->cancelled_td_list); 1758 } 1759 } 1760 1761 /* These completion handlers will sort out cancelled TDs for us */ 1762 if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) { 1763 xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n", 1764 urb->dev->slot_id, ep_index, ep->ep_state); 1765 goto done; 1766 } 1767 1768 /* In this case no commands are pending but the endpoint is stopped */ 1769 if (ep->ep_state & EP_CLEARING_TT) { 1770 /* and cancelled TDs can be given back right away */ 1771 xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n", 1772 urb->dev->slot_id, ep_index, ep->ep_state); 1773 xhci_process_cancelled_tds(ep); 1774 } else { 1775 /* Otherwise, queue a new Stop Endpoint command */ 1776 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1777 if (!command) { 1778 ret = -ENOMEM; 1779 goto done; 1780 } 1781 ep->stop_time = jiffies; 1782 ep->ep_state |= EP_STOP_CMD_PENDING; 1783 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1784 ep_index, 0); 1785 xhci_ring_cmd_db(xhci); 1786 } 1787 done: 1788 spin_unlock_irqrestore(&xhci->lock, flags); 1789 return ret; 1790 1791 err_giveback: 1792 if (urb_priv) 1793 xhci_urb_free_priv(urb_priv); 1794 usb_hcd_unlink_urb_from_ep(hcd, urb); 1795 spin_unlock_irqrestore(&xhci->lock, flags); 1796 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1797 return ret; 1798 } 1799 1800 /* Drop an endpoint from a new bandwidth configuration for this device. 1801 * Only one call to this function is allowed per endpoint before 1802 * check_bandwidth() or reset_bandwidth() must be called. 1803 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1804 * add the endpoint to the schedule with possibly new parameters denoted by a 1805 * different endpoint descriptor in usb_host_endpoint. 1806 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1807 * not allowed. 1808 * 1809 * The USB core will not allow URBs to be queued to an endpoint that is being 1810 * disabled, so there's no need for mutual exclusion to protect 1811 * the xhci->devs[slot_id] structure. 1812 */ 1813 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1814 struct usb_host_endpoint *ep) 1815 { 1816 struct xhci_hcd *xhci; 1817 struct xhci_container_ctx *in_ctx, *out_ctx; 1818 struct xhci_input_control_ctx *ctrl_ctx; 1819 unsigned int ep_index; 1820 struct xhci_ep_ctx *ep_ctx; 1821 u32 drop_flag; 1822 u32 new_add_flags, new_drop_flags; 1823 int ret; 1824 1825 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1826 if (ret <= 0) 1827 return ret; 1828 xhci = hcd_to_xhci(hcd); 1829 if (xhci->xhc_state & XHCI_STATE_DYING) 1830 return -ENODEV; 1831 1832 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1833 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1834 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1835 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1836 __func__, drop_flag); 1837 return 0; 1838 } 1839 1840 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1841 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1842 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1843 if (!ctrl_ctx) { 1844 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1845 __func__); 1846 return 0; 1847 } 1848 1849 ep_index = xhci_get_endpoint_index(&ep->desc); 1850 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1851 /* If the HC already knows the endpoint is disabled, 1852 * or the HCD has noted it is disabled, ignore this request 1853 */ 1854 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1855 le32_to_cpu(ctrl_ctx->drop_flags) & 1856 xhci_get_endpoint_flag(&ep->desc)) { 1857 /* Do not warn when called after a usb_device_reset */ 1858 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1859 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1860 __func__, ep); 1861 return 0; 1862 } 1863 1864 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1865 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1866 1867 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1868 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1869 1870 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1871 1872 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1873 1874 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1875 (unsigned int) ep->desc.bEndpointAddress, 1876 udev->slot_id, 1877 (unsigned int) new_drop_flags, 1878 (unsigned int) new_add_flags); 1879 return 0; 1880 } 1881 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1882 1883 /* Add an endpoint to a new possible bandwidth configuration for this device. 1884 * Only one call to this function is allowed per endpoint before 1885 * check_bandwidth() or reset_bandwidth() must be called. 1886 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1887 * add the endpoint to the schedule with possibly new parameters denoted by a 1888 * different endpoint descriptor in usb_host_endpoint. 1889 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1890 * not allowed. 1891 * 1892 * The USB core will not allow URBs to be queued to an endpoint until the 1893 * configuration or alt setting is installed in the device, so there's no need 1894 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1895 */ 1896 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1897 struct usb_host_endpoint *ep) 1898 { 1899 struct xhci_hcd *xhci; 1900 struct xhci_container_ctx *in_ctx; 1901 unsigned int ep_index; 1902 struct xhci_input_control_ctx *ctrl_ctx; 1903 struct xhci_ep_ctx *ep_ctx; 1904 u32 added_ctxs; 1905 u32 new_add_flags, new_drop_flags; 1906 struct xhci_virt_device *virt_dev; 1907 int ret = 0; 1908 1909 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1910 if (ret <= 0) { 1911 /* So we won't queue a reset ep command for a root hub */ 1912 ep->hcpriv = NULL; 1913 return ret; 1914 } 1915 xhci = hcd_to_xhci(hcd); 1916 if (xhci->xhc_state & XHCI_STATE_DYING) 1917 return -ENODEV; 1918 1919 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1920 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1921 /* FIXME when we have to issue an evaluate endpoint command to 1922 * deal with ep0 max packet size changing once we get the 1923 * descriptors 1924 */ 1925 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1926 __func__, added_ctxs); 1927 return 0; 1928 } 1929 1930 virt_dev = xhci->devs[udev->slot_id]; 1931 in_ctx = virt_dev->in_ctx; 1932 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1933 if (!ctrl_ctx) { 1934 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1935 __func__); 1936 return 0; 1937 } 1938 1939 ep_index = xhci_get_endpoint_index(&ep->desc); 1940 /* If this endpoint is already in use, and the upper layers are trying 1941 * to add it again without dropping it, reject the addition. 1942 */ 1943 if (virt_dev->eps[ep_index].ring && 1944 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1945 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1946 "without dropping it.\n", 1947 (unsigned int) ep->desc.bEndpointAddress); 1948 return -EINVAL; 1949 } 1950 1951 /* If the HCD has already noted the endpoint is enabled, 1952 * ignore this request. 1953 */ 1954 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1955 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1956 __func__, ep); 1957 return 0; 1958 } 1959 1960 /* 1961 * Configuration and alternate setting changes must be done in 1962 * process context, not interrupt context (or so documenation 1963 * for usb_set_interface() and usb_set_configuration() claim). 1964 */ 1965 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1966 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1967 __func__, ep->desc.bEndpointAddress); 1968 return -ENOMEM; 1969 } 1970 1971 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1972 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1973 1974 /* If xhci_endpoint_disable() was called for this endpoint, but the 1975 * xHC hasn't been notified yet through the check_bandwidth() call, 1976 * this re-adds a new state for the endpoint from the new endpoint 1977 * descriptors. We must drop and re-add this endpoint, so we leave the 1978 * drop flags alone. 1979 */ 1980 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1981 1982 /* Store the usb_device pointer for later use */ 1983 ep->hcpriv = udev; 1984 1985 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1986 trace_xhci_add_endpoint(ep_ctx); 1987 1988 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1989 (unsigned int) ep->desc.bEndpointAddress, 1990 udev->slot_id, 1991 (unsigned int) new_drop_flags, 1992 (unsigned int) new_add_flags); 1993 return 0; 1994 } 1995 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 1996 1997 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1998 { 1999 struct xhci_input_control_ctx *ctrl_ctx; 2000 struct xhci_ep_ctx *ep_ctx; 2001 struct xhci_slot_ctx *slot_ctx; 2002 int i; 2003 2004 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2005 if (!ctrl_ctx) { 2006 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2007 __func__); 2008 return; 2009 } 2010 2011 /* When a device's add flag and drop flag are zero, any subsequent 2012 * configure endpoint command will leave that endpoint's state 2013 * untouched. Make sure we don't leave any old state in the input 2014 * endpoint contexts. 2015 */ 2016 ctrl_ctx->drop_flags = 0; 2017 ctrl_ctx->add_flags = 0; 2018 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2019 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2020 /* Endpoint 0 is always valid */ 2021 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2022 for (i = 1; i < 31; i++) { 2023 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2024 ep_ctx->ep_info = 0; 2025 ep_ctx->ep_info2 = 0; 2026 ep_ctx->deq = 0; 2027 ep_ctx->tx_info = 0; 2028 } 2029 } 2030 2031 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2032 struct usb_device *udev, u32 *cmd_status) 2033 { 2034 int ret; 2035 2036 switch (*cmd_status) { 2037 case COMP_COMMAND_ABORTED: 2038 case COMP_COMMAND_RING_STOPPED: 2039 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2040 ret = -ETIME; 2041 break; 2042 case COMP_RESOURCE_ERROR: 2043 dev_warn(&udev->dev, 2044 "Not enough host controller resources for new device state.\n"); 2045 ret = -ENOMEM; 2046 /* FIXME: can we allocate more resources for the HC? */ 2047 break; 2048 case COMP_BANDWIDTH_ERROR: 2049 case COMP_SECONDARY_BANDWIDTH_ERROR: 2050 dev_warn(&udev->dev, 2051 "Not enough bandwidth for new device state.\n"); 2052 ret = -ENOSPC; 2053 /* FIXME: can we go back to the old state? */ 2054 break; 2055 case COMP_TRB_ERROR: 2056 /* the HCD set up something wrong */ 2057 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2058 "add flag = 1, " 2059 "and endpoint is not disabled.\n"); 2060 ret = -EINVAL; 2061 break; 2062 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2063 dev_warn(&udev->dev, 2064 "ERROR: Incompatible device for endpoint configure command.\n"); 2065 ret = -ENODEV; 2066 break; 2067 case COMP_SUCCESS: 2068 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2069 "Successful Endpoint Configure command"); 2070 ret = 0; 2071 break; 2072 default: 2073 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2074 *cmd_status); 2075 ret = -EINVAL; 2076 break; 2077 } 2078 return ret; 2079 } 2080 2081 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2082 struct usb_device *udev, u32 *cmd_status) 2083 { 2084 int ret; 2085 2086 switch (*cmd_status) { 2087 case COMP_COMMAND_ABORTED: 2088 case COMP_COMMAND_RING_STOPPED: 2089 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2090 ret = -ETIME; 2091 break; 2092 case COMP_PARAMETER_ERROR: 2093 dev_warn(&udev->dev, 2094 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2095 ret = -EINVAL; 2096 break; 2097 case COMP_SLOT_NOT_ENABLED_ERROR: 2098 dev_warn(&udev->dev, 2099 "WARN: slot not enabled for evaluate context command.\n"); 2100 ret = -EINVAL; 2101 break; 2102 case COMP_CONTEXT_STATE_ERROR: 2103 dev_warn(&udev->dev, 2104 "WARN: invalid context state for evaluate context command.\n"); 2105 ret = -EINVAL; 2106 break; 2107 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2108 dev_warn(&udev->dev, 2109 "ERROR: Incompatible device for evaluate context command.\n"); 2110 ret = -ENODEV; 2111 break; 2112 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2113 /* Max Exit Latency too large error */ 2114 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2115 ret = -EINVAL; 2116 break; 2117 case COMP_SUCCESS: 2118 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2119 "Successful evaluate context command"); 2120 ret = 0; 2121 break; 2122 default: 2123 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2124 *cmd_status); 2125 ret = -EINVAL; 2126 break; 2127 } 2128 return ret; 2129 } 2130 2131 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2132 struct xhci_input_control_ctx *ctrl_ctx) 2133 { 2134 u32 valid_add_flags; 2135 u32 valid_drop_flags; 2136 2137 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2138 * (bit 1). The default control endpoint is added during the Address 2139 * Device command and is never removed until the slot is disabled. 2140 */ 2141 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2142 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2143 2144 /* Use hweight32 to count the number of ones in the add flags, or 2145 * number of endpoints added. Don't count endpoints that are changed 2146 * (both added and dropped). 2147 */ 2148 return hweight32(valid_add_flags) - 2149 hweight32(valid_add_flags & valid_drop_flags); 2150 } 2151 2152 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2153 struct xhci_input_control_ctx *ctrl_ctx) 2154 { 2155 u32 valid_add_flags; 2156 u32 valid_drop_flags; 2157 2158 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2159 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2160 2161 return hweight32(valid_drop_flags) - 2162 hweight32(valid_add_flags & valid_drop_flags); 2163 } 2164 2165 /* 2166 * We need to reserve the new number of endpoints before the configure endpoint 2167 * command completes. We can't subtract the dropped endpoints from the number 2168 * of active endpoints until the command completes because we can oversubscribe 2169 * the host in this case: 2170 * 2171 * - the first configure endpoint command drops more endpoints than it adds 2172 * - a second configure endpoint command that adds more endpoints is queued 2173 * - the first configure endpoint command fails, so the config is unchanged 2174 * - the second command may succeed, even though there isn't enough resources 2175 * 2176 * Must be called with xhci->lock held. 2177 */ 2178 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2179 struct xhci_input_control_ctx *ctrl_ctx) 2180 { 2181 u32 added_eps; 2182 2183 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2184 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2185 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2186 "Not enough ep ctxs: " 2187 "%u active, need to add %u, limit is %u.", 2188 xhci->num_active_eps, added_eps, 2189 xhci->limit_active_eps); 2190 return -ENOMEM; 2191 } 2192 xhci->num_active_eps += added_eps; 2193 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2194 "Adding %u ep ctxs, %u now active.", added_eps, 2195 xhci->num_active_eps); 2196 return 0; 2197 } 2198 2199 /* 2200 * The configure endpoint was failed by the xHC for some other reason, so we 2201 * need to revert the resources that failed configuration would have used. 2202 * 2203 * Must be called with xhci->lock held. 2204 */ 2205 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2206 struct xhci_input_control_ctx *ctrl_ctx) 2207 { 2208 u32 num_failed_eps; 2209 2210 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2211 xhci->num_active_eps -= num_failed_eps; 2212 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2213 "Removing %u failed ep ctxs, %u now active.", 2214 num_failed_eps, 2215 xhci->num_active_eps); 2216 } 2217 2218 /* 2219 * Now that the command has completed, clean up the active endpoint count by 2220 * subtracting out the endpoints that were dropped (but not changed). 2221 * 2222 * Must be called with xhci->lock held. 2223 */ 2224 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2225 struct xhci_input_control_ctx *ctrl_ctx) 2226 { 2227 u32 num_dropped_eps; 2228 2229 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2230 xhci->num_active_eps -= num_dropped_eps; 2231 if (num_dropped_eps) 2232 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2233 "Removing %u dropped ep ctxs, %u now active.", 2234 num_dropped_eps, 2235 xhci->num_active_eps); 2236 } 2237 2238 static unsigned int xhci_get_block_size(struct usb_device *udev) 2239 { 2240 switch (udev->speed) { 2241 case USB_SPEED_LOW: 2242 case USB_SPEED_FULL: 2243 return FS_BLOCK; 2244 case USB_SPEED_HIGH: 2245 return HS_BLOCK; 2246 case USB_SPEED_SUPER: 2247 case USB_SPEED_SUPER_PLUS: 2248 return SS_BLOCK; 2249 case USB_SPEED_UNKNOWN: 2250 default: 2251 /* Should never happen */ 2252 return 1; 2253 } 2254 } 2255 2256 static unsigned int 2257 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2258 { 2259 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2260 return LS_OVERHEAD; 2261 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2262 return FS_OVERHEAD; 2263 return HS_OVERHEAD; 2264 } 2265 2266 /* If we are changing a LS/FS device under a HS hub, 2267 * make sure (if we are activating a new TT) that the HS bus has enough 2268 * bandwidth for this new TT. 2269 */ 2270 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2271 struct xhci_virt_device *virt_dev, 2272 int old_active_eps) 2273 { 2274 struct xhci_interval_bw_table *bw_table; 2275 struct xhci_tt_bw_info *tt_info; 2276 2277 /* Find the bandwidth table for the root port this TT is attached to. */ 2278 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table; 2279 tt_info = virt_dev->tt_info; 2280 /* If this TT already had active endpoints, the bandwidth for this TT 2281 * has already been added. Removing all periodic endpoints (and thus 2282 * making the TT enactive) will only decrease the bandwidth used. 2283 */ 2284 if (old_active_eps) 2285 return 0; 2286 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2287 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2288 return -ENOMEM; 2289 return 0; 2290 } 2291 /* Not sure why we would have no new active endpoints... 2292 * 2293 * Maybe because of an Evaluate Context change for a hub update or a 2294 * control endpoint 0 max packet size change? 2295 * FIXME: skip the bandwidth calculation in that case. 2296 */ 2297 return 0; 2298 } 2299 2300 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2301 struct xhci_virt_device *virt_dev) 2302 { 2303 unsigned int bw_reserved; 2304 2305 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2306 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2307 return -ENOMEM; 2308 2309 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2310 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2311 return -ENOMEM; 2312 2313 return 0; 2314 } 2315 2316 /* 2317 * This algorithm is a very conservative estimate of the worst-case scheduling 2318 * scenario for any one interval. The hardware dynamically schedules the 2319 * packets, so we can't tell which microframe could be the limiting factor in 2320 * the bandwidth scheduling. This only takes into account periodic endpoints. 2321 * 2322 * Obviously, we can't solve an NP complete problem to find the minimum worst 2323 * case scenario. Instead, we come up with an estimate that is no less than 2324 * the worst case bandwidth used for any one microframe, but may be an 2325 * over-estimate. 2326 * 2327 * We walk the requirements for each endpoint by interval, starting with the 2328 * smallest interval, and place packets in the schedule where there is only one 2329 * possible way to schedule packets for that interval. In order to simplify 2330 * this algorithm, we record the largest max packet size for each interval, and 2331 * assume all packets will be that size. 2332 * 2333 * For interval 0, we obviously must schedule all packets for each interval. 2334 * The bandwidth for interval 0 is just the amount of data to be transmitted 2335 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2336 * the number of packets). 2337 * 2338 * For interval 1, we have two possible microframes to schedule those packets 2339 * in. For this algorithm, if we can schedule the same number of packets for 2340 * each possible scheduling opportunity (each microframe), we will do so. The 2341 * remaining number of packets will be saved to be transmitted in the gaps in 2342 * the next interval's scheduling sequence. 2343 * 2344 * As we move those remaining packets to be scheduled with interval 2 packets, 2345 * we have to double the number of remaining packets to transmit. This is 2346 * because the intervals are actually powers of 2, and we would be transmitting 2347 * the previous interval's packets twice in this interval. We also have to be 2348 * sure that when we look at the largest max packet size for this interval, we 2349 * also look at the largest max packet size for the remaining packets and take 2350 * the greater of the two. 2351 * 2352 * The algorithm continues to evenly distribute packets in each scheduling 2353 * opportunity, and push the remaining packets out, until we get to the last 2354 * interval. Then those packets and their associated overhead are just added 2355 * to the bandwidth used. 2356 */ 2357 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2358 struct xhci_virt_device *virt_dev, 2359 int old_active_eps) 2360 { 2361 unsigned int bw_reserved; 2362 unsigned int max_bandwidth; 2363 unsigned int bw_used; 2364 unsigned int block_size; 2365 struct xhci_interval_bw_table *bw_table; 2366 unsigned int packet_size = 0; 2367 unsigned int overhead = 0; 2368 unsigned int packets_transmitted = 0; 2369 unsigned int packets_remaining = 0; 2370 unsigned int i; 2371 2372 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2373 return xhci_check_ss_bw(xhci, virt_dev); 2374 2375 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2376 max_bandwidth = HS_BW_LIMIT; 2377 /* Convert percent of bus BW reserved to blocks reserved */ 2378 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2379 } else { 2380 max_bandwidth = FS_BW_LIMIT; 2381 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2382 } 2383 2384 bw_table = virt_dev->bw_table; 2385 /* We need to translate the max packet size and max ESIT payloads into 2386 * the units the hardware uses. 2387 */ 2388 block_size = xhci_get_block_size(virt_dev->udev); 2389 2390 /* If we are manipulating a LS/FS device under a HS hub, double check 2391 * that the HS bus has enough bandwidth if we are activing a new TT. 2392 */ 2393 if (virt_dev->tt_info) { 2394 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2395 "Recalculating BW for rootport %u", 2396 virt_dev->rhub_port->hw_portnum + 1); 2397 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2398 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2399 "newly activated TT.\n"); 2400 return -ENOMEM; 2401 } 2402 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2403 "Recalculating BW for TT slot %u port %u", 2404 virt_dev->tt_info->slot_id, 2405 virt_dev->tt_info->ttport); 2406 } else { 2407 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2408 "Recalculating BW for rootport %u", 2409 virt_dev->rhub_port->hw_portnum + 1); 2410 } 2411 2412 /* Add in how much bandwidth will be used for interval zero, or the 2413 * rounded max ESIT payload + number of packets * largest overhead. 2414 */ 2415 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2416 bw_table->interval_bw[0].num_packets * 2417 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2418 2419 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2420 unsigned int bw_added; 2421 unsigned int largest_mps; 2422 unsigned int interval_overhead; 2423 2424 /* 2425 * How many packets could we transmit in this interval? 2426 * If packets didn't fit in the previous interval, we will need 2427 * to transmit that many packets twice within this interval. 2428 */ 2429 packets_remaining = 2 * packets_remaining + 2430 bw_table->interval_bw[i].num_packets; 2431 2432 /* Find the largest max packet size of this or the previous 2433 * interval. 2434 */ 2435 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2436 largest_mps = 0; 2437 else { 2438 struct xhci_virt_ep *virt_ep; 2439 struct list_head *ep_entry; 2440 2441 ep_entry = bw_table->interval_bw[i].endpoints.next; 2442 virt_ep = list_entry(ep_entry, 2443 struct xhci_virt_ep, bw_endpoint_list); 2444 /* Convert to blocks, rounding up */ 2445 largest_mps = DIV_ROUND_UP( 2446 virt_ep->bw_info.max_packet_size, 2447 block_size); 2448 } 2449 if (largest_mps > packet_size) 2450 packet_size = largest_mps; 2451 2452 /* Use the larger overhead of this or the previous interval. */ 2453 interval_overhead = xhci_get_largest_overhead( 2454 &bw_table->interval_bw[i]); 2455 if (interval_overhead > overhead) 2456 overhead = interval_overhead; 2457 2458 /* How many packets can we evenly distribute across 2459 * (1 << (i + 1)) possible scheduling opportunities? 2460 */ 2461 packets_transmitted = packets_remaining >> (i + 1); 2462 2463 /* Add in the bandwidth used for those scheduled packets */ 2464 bw_added = packets_transmitted * (overhead + packet_size); 2465 2466 /* How many packets do we have remaining to transmit? */ 2467 packets_remaining = packets_remaining % (1 << (i + 1)); 2468 2469 /* What largest max packet size should those packets have? */ 2470 /* If we've transmitted all packets, don't carry over the 2471 * largest packet size. 2472 */ 2473 if (packets_remaining == 0) { 2474 packet_size = 0; 2475 overhead = 0; 2476 } else if (packets_transmitted > 0) { 2477 /* Otherwise if we do have remaining packets, and we've 2478 * scheduled some packets in this interval, take the 2479 * largest max packet size from endpoints with this 2480 * interval. 2481 */ 2482 packet_size = largest_mps; 2483 overhead = interval_overhead; 2484 } 2485 /* Otherwise carry over packet_size and overhead from the last 2486 * time we had a remainder. 2487 */ 2488 bw_used += bw_added; 2489 if (bw_used > max_bandwidth) { 2490 xhci_warn(xhci, "Not enough bandwidth. " 2491 "Proposed: %u, Max: %u\n", 2492 bw_used, max_bandwidth); 2493 return -ENOMEM; 2494 } 2495 } 2496 /* 2497 * Ok, we know we have some packets left over after even-handedly 2498 * scheduling interval 15. We don't know which microframes they will 2499 * fit into, so we over-schedule and say they will be scheduled every 2500 * microframe. 2501 */ 2502 if (packets_remaining > 0) 2503 bw_used += overhead + packet_size; 2504 2505 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2506 /* OK, we're manipulating a HS device attached to a 2507 * root port bandwidth domain. Include the number of active TTs 2508 * in the bandwidth used. 2509 */ 2510 bw_used += TT_HS_OVERHEAD * 2511 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts; 2512 } 2513 2514 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2515 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2516 "Available: %u " "percent", 2517 bw_used, max_bandwidth, bw_reserved, 2518 (max_bandwidth - bw_used - bw_reserved) * 100 / 2519 max_bandwidth); 2520 2521 bw_used += bw_reserved; 2522 if (bw_used > max_bandwidth) { 2523 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2524 bw_used, max_bandwidth); 2525 return -ENOMEM; 2526 } 2527 2528 bw_table->bw_used = bw_used; 2529 return 0; 2530 } 2531 2532 static bool xhci_is_async_ep(unsigned int ep_type) 2533 { 2534 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2535 ep_type != ISOC_IN_EP && 2536 ep_type != INT_IN_EP); 2537 } 2538 2539 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2540 { 2541 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2542 } 2543 2544 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2545 { 2546 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2547 2548 if (ep_bw->ep_interval == 0) 2549 return SS_OVERHEAD_BURST + 2550 (ep_bw->mult * ep_bw->num_packets * 2551 (SS_OVERHEAD + mps)); 2552 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2553 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2554 1 << ep_bw->ep_interval); 2555 2556 } 2557 2558 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2559 struct xhci_bw_info *ep_bw, 2560 struct xhci_interval_bw_table *bw_table, 2561 struct usb_device *udev, 2562 struct xhci_virt_ep *virt_ep, 2563 struct xhci_tt_bw_info *tt_info) 2564 { 2565 struct xhci_interval_bw *interval_bw; 2566 int normalized_interval; 2567 2568 if (xhci_is_async_ep(ep_bw->type)) 2569 return; 2570 2571 if (udev->speed >= USB_SPEED_SUPER) { 2572 if (xhci_is_sync_in_ep(ep_bw->type)) 2573 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2574 xhci_get_ss_bw_consumed(ep_bw); 2575 else 2576 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2577 xhci_get_ss_bw_consumed(ep_bw); 2578 return; 2579 } 2580 2581 /* SuperSpeed endpoints never get added to intervals in the table, so 2582 * this check is only valid for HS/FS/LS devices. 2583 */ 2584 if (list_empty(&virt_ep->bw_endpoint_list)) 2585 return; 2586 /* For LS/FS devices, we need to translate the interval expressed in 2587 * microframes to frames. 2588 */ 2589 if (udev->speed == USB_SPEED_HIGH) 2590 normalized_interval = ep_bw->ep_interval; 2591 else 2592 normalized_interval = ep_bw->ep_interval - 3; 2593 2594 if (normalized_interval == 0) 2595 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2596 interval_bw = &bw_table->interval_bw[normalized_interval]; 2597 interval_bw->num_packets -= ep_bw->num_packets; 2598 switch (udev->speed) { 2599 case USB_SPEED_LOW: 2600 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2601 break; 2602 case USB_SPEED_FULL: 2603 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2604 break; 2605 case USB_SPEED_HIGH: 2606 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2607 break; 2608 default: 2609 /* Should never happen because only LS/FS/HS endpoints will get 2610 * added to the endpoint list. 2611 */ 2612 return; 2613 } 2614 if (tt_info) 2615 tt_info->active_eps -= 1; 2616 list_del_init(&virt_ep->bw_endpoint_list); 2617 } 2618 2619 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2620 struct xhci_bw_info *ep_bw, 2621 struct xhci_interval_bw_table *bw_table, 2622 struct usb_device *udev, 2623 struct xhci_virt_ep *virt_ep, 2624 struct xhci_tt_bw_info *tt_info) 2625 { 2626 struct xhci_interval_bw *interval_bw; 2627 struct xhci_virt_ep *smaller_ep; 2628 int normalized_interval; 2629 2630 if (xhci_is_async_ep(ep_bw->type)) 2631 return; 2632 2633 if (udev->speed == USB_SPEED_SUPER) { 2634 if (xhci_is_sync_in_ep(ep_bw->type)) 2635 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2636 xhci_get_ss_bw_consumed(ep_bw); 2637 else 2638 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2639 xhci_get_ss_bw_consumed(ep_bw); 2640 return; 2641 } 2642 2643 /* For LS/FS devices, we need to translate the interval expressed in 2644 * microframes to frames. 2645 */ 2646 if (udev->speed == USB_SPEED_HIGH) 2647 normalized_interval = ep_bw->ep_interval; 2648 else 2649 normalized_interval = ep_bw->ep_interval - 3; 2650 2651 if (normalized_interval == 0) 2652 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2653 interval_bw = &bw_table->interval_bw[normalized_interval]; 2654 interval_bw->num_packets += ep_bw->num_packets; 2655 switch (udev->speed) { 2656 case USB_SPEED_LOW: 2657 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2658 break; 2659 case USB_SPEED_FULL: 2660 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2661 break; 2662 case USB_SPEED_HIGH: 2663 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2664 break; 2665 default: 2666 /* Should never happen because only LS/FS/HS endpoints will get 2667 * added to the endpoint list. 2668 */ 2669 return; 2670 } 2671 2672 if (tt_info) 2673 tt_info->active_eps += 1; 2674 /* Insert the endpoint into the list, largest max packet size first. */ 2675 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2676 bw_endpoint_list) { 2677 if (ep_bw->max_packet_size >= 2678 smaller_ep->bw_info.max_packet_size) { 2679 /* Add the new ep before the smaller endpoint */ 2680 list_add_tail(&virt_ep->bw_endpoint_list, 2681 &smaller_ep->bw_endpoint_list); 2682 return; 2683 } 2684 } 2685 /* Add the new endpoint at the end of the list. */ 2686 list_add_tail(&virt_ep->bw_endpoint_list, 2687 &interval_bw->endpoints); 2688 } 2689 2690 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2691 struct xhci_virt_device *virt_dev, 2692 int old_active_eps) 2693 { 2694 struct xhci_root_port_bw_info *rh_bw_info; 2695 if (!virt_dev->tt_info) 2696 return; 2697 2698 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum]; 2699 if (old_active_eps == 0 && 2700 virt_dev->tt_info->active_eps != 0) { 2701 rh_bw_info->num_active_tts += 1; 2702 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2703 } else if (old_active_eps != 0 && 2704 virt_dev->tt_info->active_eps == 0) { 2705 rh_bw_info->num_active_tts -= 1; 2706 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2707 } 2708 } 2709 2710 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2711 struct xhci_virt_device *virt_dev, 2712 struct xhci_container_ctx *in_ctx) 2713 { 2714 struct xhci_bw_info ep_bw_info[31]; 2715 int i; 2716 struct xhci_input_control_ctx *ctrl_ctx; 2717 int old_active_eps = 0; 2718 2719 if (virt_dev->tt_info) 2720 old_active_eps = virt_dev->tt_info->active_eps; 2721 2722 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2723 if (!ctrl_ctx) { 2724 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2725 __func__); 2726 return -ENOMEM; 2727 } 2728 2729 for (i = 0; i < 31; i++) { 2730 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2731 continue; 2732 2733 /* Make a copy of the BW info in case we need to revert this */ 2734 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2735 sizeof(ep_bw_info[i])); 2736 /* Drop the endpoint from the interval table if the endpoint is 2737 * being dropped or changed. 2738 */ 2739 if (EP_IS_DROPPED(ctrl_ctx, i)) 2740 xhci_drop_ep_from_interval_table(xhci, 2741 &virt_dev->eps[i].bw_info, 2742 virt_dev->bw_table, 2743 virt_dev->udev, 2744 &virt_dev->eps[i], 2745 virt_dev->tt_info); 2746 } 2747 /* Overwrite the information stored in the endpoints' bw_info */ 2748 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2749 for (i = 0; i < 31; i++) { 2750 /* Add any changed or added endpoints to the interval table */ 2751 if (EP_IS_ADDED(ctrl_ctx, i)) 2752 xhci_add_ep_to_interval_table(xhci, 2753 &virt_dev->eps[i].bw_info, 2754 virt_dev->bw_table, 2755 virt_dev->udev, 2756 &virt_dev->eps[i], 2757 virt_dev->tt_info); 2758 } 2759 2760 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2761 /* Ok, this fits in the bandwidth we have. 2762 * Update the number of active TTs. 2763 */ 2764 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2765 return 0; 2766 } 2767 2768 /* We don't have enough bandwidth for this, revert the stored info. */ 2769 for (i = 0; i < 31; i++) { 2770 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2771 continue; 2772 2773 /* Drop the new copies of any added or changed endpoints from 2774 * the interval table. 2775 */ 2776 if (EP_IS_ADDED(ctrl_ctx, i)) { 2777 xhci_drop_ep_from_interval_table(xhci, 2778 &virt_dev->eps[i].bw_info, 2779 virt_dev->bw_table, 2780 virt_dev->udev, 2781 &virt_dev->eps[i], 2782 virt_dev->tt_info); 2783 } 2784 /* Revert the endpoint back to its old information */ 2785 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2786 sizeof(ep_bw_info[i])); 2787 /* Add any changed or dropped endpoints back into the table */ 2788 if (EP_IS_DROPPED(ctrl_ctx, i)) 2789 xhci_add_ep_to_interval_table(xhci, 2790 &virt_dev->eps[i].bw_info, 2791 virt_dev->bw_table, 2792 virt_dev->udev, 2793 &virt_dev->eps[i], 2794 virt_dev->tt_info); 2795 } 2796 return -ENOMEM; 2797 } 2798 2799 /* 2800 * Synchronous XHCI stop endpoint helper. Issues the stop endpoint command and 2801 * waits for the command completion before returning. This does not call 2802 * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error' 2803 * cases, along with transfer ring cleanup. 2804 * 2805 * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage 2806 * their own transfer ring, such as offload situations. 2807 */ 2808 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend, 2809 gfp_t gfp_flags) 2810 { 2811 struct xhci_command *command; 2812 unsigned long flags; 2813 int ret; 2814 2815 command = xhci_alloc_command(xhci, true, gfp_flags); 2816 if (!command) 2817 return -ENOMEM; 2818 2819 spin_lock_irqsave(&xhci->lock, flags); 2820 ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id, 2821 ep->ep_index, suspend); 2822 if (ret < 0) { 2823 spin_unlock_irqrestore(&xhci->lock, flags); 2824 goto out; 2825 } 2826 2827 xhci_ring_cmd_db(xhci); 2828 spin_unlock_irqrestore(&xhci->lock, flags); 2829 2830 wait_for_completion(command->completion); 2831 2832 /* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/ 2833 if (command->status == COMP_COMMAND_ABORTED || 2834 command->status == COMP_COMMAND_RING_STOPPED) { 2835 xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n"); 2836 ret = -ETIME; 2837 } 2838 out: 2839 xhci_free_command(xhci, command); 2840 2841 return ret; 2842 } 2843 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync); 2844 2845 /* Issue a configure endpoint command or evaluate context command 2846 * and wait for it to finish. 2847 */ 2848 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2849 struct usb_device *udev, 2850 struct xhci_command *command, 2851 bool ctx_change, bool must_succeed) 2852 { 2853 int ret; 2854 unsigned long flags; 2855 struct xhci_input_control_ctx *ctrl_ctx; 2856 struct xhci_virt_device *virt_dev; 2857 struct xhci_slot_ctx *slot_ctx; 2858 2859 if (!command) 2860 return -EINVAL; 2861 2862 spin_lock_irqsave(&xhci->lock, flags); 2863 2864 if (xhci->xhc_state & XHCI_STATE_DYING) { 2865 spin_unlock_irqrestore(&xhci->lock, flags); 2866 return -ESHUTDOWN; 2867 } 2868 2869 virt_dev = xhci->devs[udev->slot_id]; 2870 2871 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2872 if (!ctrl_ctx) { 2873 spin_unlock_irqrestore(&xhci->lock, flags); 2874 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2875 __func__); 2876 return -ENOMEM; 2877 } 2878 2879 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2880 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2881 spin_unlock_irqrestore(&xhci->lock, flags); 2882 xhci_warn(xhci, "Not enough host resources, " 2883 "active endpoint contexts = %u\n", 2884 xhci->num_active_eps); 2885 return -ENOMEM; 2886 } 2887 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change && 2888 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2889 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2890 xhci_free_host_resources(xhci, ctrl_ctx); 2891 spin_unlock_irqrestore(&xhci->lock, flags); 2892 xhci_warn(xhci, "Not enough bandwidth\n"); 2893 return -ENOMEM; 2894 } 2895 2896 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2897 2898 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2899 trace_xhci_configure_endpoint(slot_ctx); 2900 2901 if (!ctx_change) 2902 ret = xhci_queue_configure_endpoint(xhci, command, 2903 command->in_ctx->dma, 2904 udev->slot_id, must_succeed); 2905 else 2906 ret = xhci_queue_evaluate_context(xhci, command, 2907 command->in_ctx->dma, 2908 udev->slot_id, must_succeed); 2909 if (ret < 0) { 2910 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2911 xhci_free_host_resources(xhci, ctrl_ctx); 2912 spin_unlock_irqrestore(&xhci->lock, flags); 2913 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2914 "FIXME allocate a new ring segment"); 2915 return -ENOMEM; 2916 } 2917 xhci_ring_cmd_db(xhci); 2918 spin_unlock_irqrestore(&xhci->lock, flags); 2919 2920 /* Wait for the configure endpoint command to complete */ 2921 wait_for_completion(command->completion); 2922 2923 if (!ctx_change) 2924 ret = xhci_configure_endpoint_result(xhci, udev, 2925 &command->status); 2926 else 2927 ret = xhci_evaluate_context_result(xhci, udev, 2928 &command->status); 2929 2930 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2931 spin_lock_irqsave(&xhci->lock, flags); 2932 /* If the command failed, remove the reserved resources. 2933 * Otherwise, clean up the estimate to include dropped eps. 2934 */ 2935 if (ret) 2936 xhci_free_host_resources(xhci, ctrl_ctx); 2937 else 2938 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2939 spin_unlock_irqrestore(&xhci->lock, flags); 2940 } 2941 return ret; 2942 } 2943 2944 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2945 struct xhci_virt_device *vdev, int i) 2946 { 2947 struct xhci_virt_ep *ep = &vdev->eps[i]; 2948 2949 if (ep->ep_state & EP_HAS_STREAMS) { 2950 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2951 xhci_get_endpoint_address(i)); 2952 xhci_free_stream_info(xhci, ep->stream_info); 2953 ep->stream_info = NULL; 2954 ep->ep_state &= ~EP_HAS_STREAMS; 2955 } 2956 } 2957 2958 /* Called after one or more calls to xhci_add_endpoint() or 2959 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2960 * to call xhci_reset_bandwidth(). 2961 * 2962 * Since we are in the middle of changing either configuration or 2963 * installing a new alt setting, the USB core won't allow URBs to be 2964 * enqueued for any endpoint on the old config or interface. Nothing 2965 * else should be touching the xhci->devs[slot_id] structure, so we 2966 * don't need to take the xhci->lock for manipulating that. 2967 */ 2968 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2969 { 2970 int i; 2971 int ret = 0; 2972 struct xhci_hcd *xhci; 2973 struct xhci_virt_device *virt_dev; 2974 struct xhci_input_control_ctx *ctrl_ctx; 2975 struct xhci_slot_ctx *slot_ctx; 2976 struct xhci_command *command; 2977 2978 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2979 if (ret <= 0) 2980 return ret; 2981 xhci = hcd_to_xhci(hcd); 2982 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2983 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2984 return -ENODEV; 2985 2986 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2987 virt_dev = xhci->devs[udev->slot_id]; 2988 2989 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2990 if (!command) 2991 return -ENOMEM; 2992 2993 command->in_ctx = virt_dev->in_ctx; 2994 2995 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2996 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2997 if (!ctrl_ctx) { 2998 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2999 __func__); 3000 ret = -ENOMEM; 3001 goto command_cleanup; 3002 } 3003 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3004 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3005 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3006 3007 /* Don't issue the command if there's no endpoints to update. */ 3008 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3009 ctrl_ctx->drop_flags == 0) { 3010 ret = 0; 3011 goto command_cleanup; 3012 } 3013 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3014 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3015 for (i = 31; i >= 1; i--) { 3016 __le32 le32 = cpu_to_le32(BIT(i)); 3017 3018 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3019 || (ctrl_ctx->add_flags & le32) || i == 1) { 3020 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3021 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3022 break; 3023 } 3024 } 3025 3026 ret = xhci_configure_endpoint(xhci, udev, command, 3027 false, false); 3028 if (ret) 3029 /* Callee should call reset_bandwidth() */ 3030 goto command_cleanup; 3031 3032 /* Free any rings that were dropped, but not changed. */ 3033 for (i = 1; i < 31; i++) { 3034 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3035 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3036 xhci_free_endpoint_ring(xhci, virt_dev, i); 3037 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3038 } 3039 } 3040 xhci_zero_in_ctx(xhci, virt_dev); 3041 /* 3042 * Install any rings for completely new endpoints or changed endpoints, 3043 * and free any old rings from changed endpoints. 3044 */ 3045 for (i = 1; i < 31; i++) { 3046 if (!virt_dev->eps[i].new_ring) 3047 continue; 3048 /* Only free the old ring if it exists. 3049 * It may not if this is the first add of an endpoint. 3050 */ 3051 if (virt_dev->eps[i].ring) { 3052 xhci_free_endpoint_ring(xhci, virt_dev, i); 3053 } 3054 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3055 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3056 virt_dev->eps[i].new_ring = NULL; 3057 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3058 } 3059 command_cleanup: 3060 kfree(command->completion); 3061 kfree(command); 3062 3063 return ret; 3064 } 3065 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3066 3067 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3068 { 3069 struct xhci_hcd *xhci; 3070 struct xhci_virt_device *virt_dev; 3071 int i, ret; 3072 3073 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3074 if (ret <= 0) 3075 return; 3076 xhci = hcd_to_xhci(hcd); 3077 3078 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3079 virt_dev = xhci->devs[udev->slot_id]; 3080 /* Free any rings allocated for added endpoints */ 3081 for (i = 0; i < 31; i++) { 3082 if (virt_dev->eps[i].new_ring) { 3083 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3084 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3085 virt_dev->eps[i].new_ring = NULL; 3086 } 3087 } 3088 xhci_zero_in_ctx(xhci, virt_dev); 3089 } 3090 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3091 3092 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3093 struct xhci_container_ctx *in_ctx, 3094 struct xhci_container_ctx *out_ctx, 3095 struct xhci_input_control_ctx *ctrl_ctx, 3096 u32 add_flags, u32 drop_flags) 3097 { 3098 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3099 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3100 xhci_slot_copy(xhci, in_ctx, out_ctx); 3101 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3102 } 3103 3104 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3105 struct usb_host_endpoint *host_ep) 3106 { 3107 struct xhci_hcd *xhci; 3108 struct xhci_virt_device *vdev; 3109 struct xhci_virt_ep *ep; 3110 struct usb_device *udev; 3111 unsigned long flags; 3112 unsigned int ep_index; 3113 3114 xhci = hcd_to_xhci(hcd); 3115 rescan: 3116 spin_lock_irqsave(&xhci->lock, flags); 3117 3118 udev = (struct usb_device *)host_ep->hcpriv; 3119 if (!udev || !udev->slot_id) 3120 goto done; 3121 3122 vdev = xhci->devs[udev->slot_id]; 3123 if (!vdev) 3124 goto done; 3125 3126 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3127 ep = &vdev->eps[ep_index]; 3128 3129 /* wait for hub_tt_work to finish clearing hub TT */ 3130 if (ep->ep_state & EP_CLEARING_TT) { 3131 spin_unlock_irqrestore(&xhci->lock, flags); 3132 schedule_timeout_uninterruptible(1); 3133 goto rescan; 3134 } 3135 3136 if (ep->ep_state) 3137 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3138 ep->ep_state); 3139 done: 3140 host_ep->hcpriv = NULL; 3141 spin_unlock_irqrestore(&xhci->lock, flags); 3142 } 3143 3144 /* 3145 * Called after usb core issues a clear halt control message. 3146 * The host side of the halt should already be cleared by a reset endpoint 3147 * command issued when the STALL event was received. 3148 * 3149 * The reset endpoint command may only be issued to endpoints in the halted 3150 * state. For software that wishes to reset the data toggle or sequence number 3151 * of an endpoint that isn't in the halted state this function will issue a 3152 * configure endpoint command with the Drop and Add bits set for the target 3153 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3154 * 3155 * vdev may be lost due to xHC restore error and re-initialization during S3/S4 3156 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device() 3157 */ 3158 3159 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3160 struct usb_host_endpoint *host_ep) 3161 { 3162 struct xhci_hcd *xhci; 3163 struct usb_device *udev; 3164 struct xhci_virt_device *vdev; 3165 struct xhci_virt_ep *ep; 3166 struct xhci_input_control_ctx *ctrl_ctx; 3167 struct xhci_command *stop_cmd, *cfg_cmd; 3168 unsigned int ep_index; 3169 unsigned long flags; 3170 u32 ep_flag; 3171 int err; 3172 3173 xhci = hcd_to_xhci(hcd); 3174 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3175 3176 /* 3177 * Usb core assumes a max packet value for ep0 on FS devices until the 3178 * real value is read from the descriptor. Core resets Ep0 if values 3179 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case 3180 */ 3181 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) { 3182 3183 udev = container_of(host_ep, struct usb_device, ep0); 3184 if (udev->speed != USB_SPEED_FULL || !udev->slot_id) 3185 return; 3186 3187 vdev = xhci->devs[udev->slot_id]; 3188 if (!vdev || vdev->udev != udev) 3189 return; 3190 3191 xhci_check_ep0_maxpacket(xhci, vdev); 3192 3193 /* Nothing else should be done here for ep0 during ep reset */ 3194 return; 3195 } 3196 3197 if (!host_ep->hcpriv) 3198 return; 3199 udev = (struct usb_device *) host_ep->hcpriv; 3200 vdev = xhci->devs[udev->slot_id]; 3201 3202 if (!udev->slot_id || !vdev) 3203 return; 3204 3205 ep = &vdev->eps[ep_index]; 3206 3207 /* Bail out if toggle is already being cleared by a endpoint reset */ 3208 spin_lock_irqsave(&xhci->lock, flags); 3209 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3210 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3211 spin_unlock_irqrestore(&xhci->lock, flags); 3212 return; 3213 } 3214 spin_unlock_irqrestore(&xhci->lock, flags); 3215 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3216 if (usb_endpoint_xfer_control(&host_ep->desc) || 3217 usb_endpoint_xfer_isoc(&host_ep->desc)) 3218 return; 3219 3220 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3221 3222 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3223 return; 3224 3225 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3226 if (!stop_cmd) 3227 return; 3228 3229 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3230 if (!cfg_cmd) 3231 goto cleanup; 3232 3233 spin_lock_irqsave(&xhci->lock, flags); 3234 3235 /* block queuing new trbs and ringing ep doorbell */ 3236 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3237 3238 /* 3239 * Make sure endpoint ring is empty before resetting the toggle/seq. 3240 * Driver is required to synchronously cancel all transfer request. 3241 * Stop the endpoint to force xHC to update the output context 3242 */ 3243 3244 if (!list_empty(&ep->ring->td_list)) { 3245 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3246 spin_unlock_irqrestore(&xhci->lock, flags); 3247 xhci_free_command(xhci, cfg_cmd); 3248 goto cleanup; 3249 } 3250 3251 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3252 ep_index, 0); 3253 if (err < 0) { 3254 spin_unlock_irqrestore(&xhci->lock, flags); 3255 xhci_free_command(xhci, cfg_cmd); 3256 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3257 __func__, err); 3258 goto cleanup; 3259 } 3260 3261 xhci_ring_cmd_db(xhci); 3262 spin_unlock_irqrestore(&xhci->lock, flags); 3263 3264 wait_for_completion(stop_cmd->completion); 3265 3266 spin_lock_irqsave(&xhci->lock, flags); 3267 3268 /* config ep command clears toggle if add and drop ep flags are set */ 3269 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3270 if (!ctrl_ctx) { 3271 spin_unlock_irqrestore(&xhci->lock, flags); 3272 xhci_free_command(xhci, cfg_cmd); 3273 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3274 __func__); 3275 goto cleanup; 3276 } 3277 3278 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3279 ctrl_ctx, ep_flag, ep_flag); 3280 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3281 3282 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3283 udev->slot_id, false); 3284 if (err < 0) { 3285 spin_unlock_irqrestore(&xhci->lock, flags); 3286 xhci_free_command(xhci, cfg_cmd); 3287 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3288 __func__, err); 3289 goto cleanup; 3290 } 3291 3292 xhci_ring_cmd_db(xhci); 3293 spin_unlock_irqrestore(&xhci->lock, flags); 3294 3295 wait_for_completion(cfg_cmd->completion); 3296 3297 xhci_free_command(xhci, cfg_cmd); 3298 cleanup: 3299 xhci_free_command(xhci, stop_cmd); 3300 spin_lock_irqsave(&xhci->lock, flags); 3301 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3302 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3303 spin_unlock_irqrestore(&xhci->lock, flags); 3304 } 3305 3306 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3307 struct usb_device *udev, struct usb_host_endpoint *ep, 3308 unsigned int slot_id) 3309 { 3310 int ret; 3311 unsigned int ep_index; 3312 unsigned int ep_state; 3313 3314 if (!ep) 3315 return -EINVAL; 3316 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3317 if (ret <= 0) 3318 return ret ? ret : -EINVAL; 3319 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3320 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3321 " descriptor for ep 0x%x does not support streams\n", 3322 ep->desc.bEndpointAddress); 3323 return -EINVAL; 3324 } 3325 3326 ep_index = xhci_get_endpoint_index(&ep->desc); 3327 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3328 if (ep_state & EP_HAS_STREAMS || 3329 ep_state & EP_GETTING_STREAMS) { 3330 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3331 "already has streams set up.\n", 3332 ep->desc.bEndpointAddress); 3333 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3334 "dynamic stream context array reallocation.\n"); 3335 return -EINVAL; 3336 } 3337 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3338 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3339 "endpoint 0x%x; URBs are pending.\n", 3340 ep->desc.bEndpointAddress); 3341 return -EINVAL; 3342 } 3343 return 0; 3344 } 3345 3346 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3347 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3348 { 3349 unsigned int max_streams; 3350 3351 /* The stream context array size must be a power of two */ 3352 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3353 /* 3354 * Find out how many primary stream array entries the host controller 3355 * supports. Later we may use secondary stream arrays (similar to 2nd 3356 * level page entries), but that's an optional feature for xHCI host 3357 * controllers. xHCs must support at least 4 stream IDs. 3358 */ 3359 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3360 if (*num_stream_ctxs > max_streams) { 3361 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3362 max_streams); 3363 *num_stream_ctxs = max_streams; 3364 *num_streams = max_streams; 3365 } 3366 } 3367 3368 /* Returns an error code if one of the endpoint already has streams. 3369 * This does not change any data structures, it only checks and gathers 3370 * information. 3371 */ 3372 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3373 struct usb_device *udev, 3374 struct usb_host_endpoint **eps, unsigned int num_eps, 3375 unsigned int *num_streams, u32 *changed_ep_bitmask) 3376 { 3377 unsigned int max_streams; 3378 unsigned int endpoint_flag; 3379 int i; 3380 int ret; 3381 3382 for (i = 0; i < num_eps; i++) { 3383 ret = xhci_check_streams_endpoint(xhci, udev, 3384 eps[i], udev->slot_id); 3385 if (ret < 0) 3386 return ret; 3387 3388 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3389 if (max_streams < (*num_streams - 1)) { 3390 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3391 eps[i]->desc.bEndpointAddress, 3392 max_streams); 3393 *num_streams = max_streams+1; 3394 } 3395 3396 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3397 if (*changed_ep_bitmask & endpoint_flag) 3398 return -EINVAL; 3399 *changed_ep_bitmask |= endpoint_flag; 3400 } 3401 return 0; 3402 } 3403 3404 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3405 struct usb_device *udev, 3406 struct usb_host_endpoint **eps, unsigned int num_eps) 3407 { 3408 u32 changed_ep_bitmask = 0; 3409 unsigned int slot_id; 3410 unsigned int ep_index; 3411 unsigned int ep_state; 3412 int i; 3413 3414 slot_id = udev->slot_id; 3415 if (!xhci->devs[slot_id]) 3416 return 0; 3417 3418 for (i = 0; i < num_eps; i++) { 3419 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3420 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3421 /* Are streams already being freed for the endpoint? */ 3422 if (ep_state & EP_GETTING_NO_STREAMS) { 3423 xhci_warn(xhci, "WARN Can't disable streams for " 3424 "endpoint 0x%x, " 3425 "streams are being disabled already\n", 3426 eps[i]->desc.bEndpointAddress); 3427 return 0; 3428 } 3429 /* Are there actually any streams to free? */ 3430 if (!(ep_state & EP_HAS_STREAMS) && 3431 !(ep_state & EP_GETTING_STREAMS)) { 3432 xhci_warn(xhci, "WARN Can't disable streams for " 3433 "endpoint 0x%x, " 3434 "streams are already disabled!\n", 3435 eps[i]->desc.bEndpointAddress); 3436 xhci_warn(xhci, "WARN xhci_free_streams() called " 3437 "with non-streams endpoint\n"); 3438 return 0; 3439 } 3440 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3441 } 3442 return changed_ep_bitmask; 3443 } 3444 3445 /* 3446 * The USB device drivers use this function (through the HCD interface in USB 3447 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3448 * coordinate mass storage command queueing across multiple endpoints (basically 3449 * a stream ID == a task ID). 3450 * 3451 * Setting up streams involves allocating the same size stream context array 3452 * for each endpoint and issuing a configure endpoint command for all endpoints. 3453 * 3454 * Don't allow the call to succeed if one endpoint only supports one stream 3455 * (which means it doesn't support streams at all). 3456 * 3457 * Drivers may get less stream IDs than they asked for, if the host controller 3458 * hardware or endpoints claim they can't support the number of requested 3459 * stream IDs. 3460 */ 3461 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3462 struct usb_host_endpoint **eps, unsigned int num_eps, 3463 unsigned int num_streams, gfp_t mem_flags) 3464 { 3465 int i, ret; 3466 struct xhci_hcd *xhci; 3467 struct xhci_virt_device *vdev; 3468 struct xhci_command *config_cmd; 3469 struct xhci_input_control_ctx *ctrl_ctx; 3470 unsigned int ep_index; 3471 unsigned int num_stream_ctxs; 3472 unsigned int max_packet; 3473 unsigned long flags; 3474 u32 changed_ep_bitmask = 0; 3475 3476 if (!eps) 3477 return -EINVAL; 3478 3479 /* Add one to the number of streams requested to account for 3480 * stream 0 that is reserved for xHCI usage. 3481 */ 3482 num_streams += 1; 3483 xhci = hcd_to_xhci(hcd); 3484 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3485 num_streams); 3486 3487 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3488 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3489 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3490 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3491 return -ENOSYS; 3492 } 3493 3494 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3495 if (!config_cmd) 3496 return -ENOMEM; 3497 3498 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3499 if (!ctrl_ctx) { 3500 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3501 __func__); 3502 xhci_free_command(xhci, config_cmd); 3503 return -ENOMEM; 3504 } 3505 3506 /* Check to make sure all endpoints are not already configured for 3507 * streams. While we're at it, find the maximum number of streams that 3508 * all the endpoints will support and check for duplicate endpoints. 3509 */ 3510 spin_lock_irqsave(&xhci->lock, flags); 3511 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3512 num_eps, &num_streams, &changed_ep_bitmask); 3513 if (ret < 0) { 3514 xhci_free_command(xhci, config_cmd); 3515 spin_unlock_irqrestore(&xhci->lock, flags); 3516 return ret; 3517 } 3518 if (num_streams <= 1) { 3519 xhci_warn(xhci, "WARN: endpoints can't handle " 3520 "more than one stream.\n"); 3521 xhci_free_command(xhci, config_cmd); 3522 spin_unlock_irqrestore(&xhci->lock, flags); 3523 return -EINVAL; 3524 } 3525 vdev = xhci->devs[udev->slot_id]; 3526 /* Mark each endpoint as being in transition, so 3527 * xhci_urb_enqueue() will reject all URBs. 3528 */ 3529 for (i = 0; i < num_eps; i++) { 3530 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3531 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3532 } 3533 spin_unlock_irqrestore(&xhci->lock, flags); 3534 3535 /* Setup internal data structures and allocate HW data structures for 3536 * streams (but don't install the HW structures in the input context 3537 * until we're sure all memory allocation succeeded). 3538 */ 3539 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3540 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3541 num_stream_ctxs, num_streams); 3542 3543 for (i = 0; i < num_eps; i++) { 3544 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3545 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3546 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3547 num_stream_ctxs, 3548 num_streams, 3549 max_packet, mem_flags); 3550 if (!vdev->eps[ep_index].stream_info) 3551 goto cleanup; 3552 /* Set maxPstreams in endpoint context and update deq ptr to 3553 * point to stream context array. FIXME 3554 */ 3555 } 3556 3557 /* Set up the input context for a configure endpoint command. */ 3558 for (i = 0; i < num_eps; i++) { 3559 struct xhci_ep_ctx *ep_ctx; 3560 3561 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3562 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3563 3564 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3565 vdev->out_ctx, ep_index); 3566 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3567 vdev->eps[ep_index].stream_info); 3568 } 3569 /* Tell the HW to drop its old copy of the endpoint context info 3570 * and add the updated copy from the input context. 3571 */ 3572 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3573 vdev->out_ctx, ctrl_ctx, 3574 changed_ep_bitmask, changed_ep_bitmask); 3575 3576 /* Issue and wait for the configure endpoint command */ 3577 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3578 false, false); 3579 3580 /* xHC rejected the configure endpoint command for some reason, so we 3581 * leave the old ring intact and free our internal streams data 3582 * structure. 3583 */ 3584 if (ret < 0) 3585 goto cleanup; 3586 3587 spin_lock_irqsave(&xhci->lock, flags); 3588 for (i = 0; i < num_eps; i++) { 3589 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3590 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3591 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3592 udev->slot_id, ep_index); 3593 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3594 } 3595 xhci_free_command(xhci, config_cmd); 3596 spin_unlock_irqrestore(&xhci->lock, flags); 3597 3598 for (i = 0; i < num_eps; i++) { 3599 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3600 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3601 } 3602 /* Subtract 1 for stream 0, which drivers can't use */ 3603 return num_streams - 1; 3604 3605 cleanup: 3606 /* If it didn't work, free the streams! */ 3607 for (i = 0; i < num_eps; i++) { 3608 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3609 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3610 vdev->eps[ep_index].stream_info = NULL; 3611 /* FIXME Unset maxPstreams in endpoint context and 3612 * update deq ptr to point to normal string ring. 3613 */ 3614 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3615 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3616 xhci_endpoint_zero(xhci, vdev, eps[i]); 3617 } 3618 xhci_free_command(xhci, config_cmd); 3619 return -ENOMEM; 3620 } 3621 3622 /* Transition the endpoint from using streams to being a "normal" endpoint 3623 * without streams. 3624 * 3625 * Modify the endpoint context state, submit a configure endpoint command, 3626 * and free all endpoint rings for streams if that completes successfully. 3627 */ 3628 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3629 struct usb_host_endpoint **eps, unsigned int num_eps, 3630 gfp_t mem_flags) 3631 { 3632 int i, ret; 3633 struct xhci_hcd *xhci; 3634 struct xhci_virt_device *vdev; 3635 struct xhci_command *command; 3636 struct xhci_input_control_ctx *ctrl_ctx; 3637 unsigned int ep_index; 3638 unsigned long flags; 3639 u32 changed_ep_bitmask; 3640 3641 xhci = hcd_to_xhci(hcd); 3642 vdev = xhci->devs[udev->slot_id]; 3643 3644 /* Set up a configure endpoint command to remove the streams rings */ 3645 spin_lock_irqsave(&xhci->lock, flags); 3646 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3647 udev, eps, num_eps); 3648 if (changed_ep_bitmask == 0) { 3649 spin_unlock_irqrestore(&xhci->lock, flags); 3650 return -EINVAL; 3651 } 3652 3653 /* Use the xhci_command structure from the first endpoint. We may have 3654 * allocated too many, but the driver may call xhci_free_streams() for 3655 * each endpoint it grouped into one call to xhci_alloc_streams(). 3656 */ 3657 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3658 command = vdev->eps[ep_index].stream_info->free_streams_command; 3659 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3660 if (!ctrl_ctx) { 3661 spin_unlock_irqrestore(&xhci->lock, flags); 3662 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3663 __func__); 3664 return -EINVAL; 3665 } 3666 3667 for (i = 0; i < num_eps; i++) { 3668 struct xhci_ep_ctx *ep_ctx; 3669 3670 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3671 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3672 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3673 EP_GETTING_NO_STREAMS; 3674 3675 xhci_endpoint_copy(xhci, command->in_ctx, 3676 vdev->out_ctx, ep_index); 3677 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3678 &vdev->eps[ep_index]); 3679 } 3680 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3681 vdev->out_ctx, ctrl_ctx, 3682 changed_ep_bitmask, changed_ep_bitmask); 3683 spin_unlock_irqrestore(&xhci->lock, flags); 3684 3685 /* Issue and wait for the configure endpoint command, 3686 * which must succeed. 3687 */ 3688 ret = xhci_configure_endpoint(xhci, udev, command, 3689 false, true); 3690 3691 /* xHC rejected the configure endpoint command for some reason, so we 3692 * leave the streams rings intact. 3693 */ 3694 if (ret < 0) 3695 return ret; 3696 3697 spin_lock_irqsave(&xhci->lock, flags); 3698 for (i = 0; i < num_eps; i++) { 3699 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3700 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3701 vdev->eps[ep_index].stream_info = NULL; 3702 /* FIXME Unset maxPstreams in endpoint context and 3703 * update deq ptr to point to normal string ring. 3704 */ 3705 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3706 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3707 } 3708 spin_unlock_irqrestore(&xhci->lock, flags); 3709 3710 return 0; 3711 } 3712 3713 /* 3714 * Deletes endpoint resources for endpoints that were active before a Reset 3715 * Device command, or a Disable Slot command. The Reset Device command leaves 3716 * the control endpoint intact, whereas the Disable Slot command deletes it. 3717 * 3718 * Must be called with xhci->lock held. 3719 */ 3720 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3721 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3722 { 3723 int i; 3724 unsigned int num_dropped_eps = 0; 3725 unsigned int drop_flags = 0; 3726 3727 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3728 if (virt_dev->eps[i].ring) { 3729 drop_flags |= 1 << i; 3730 num_dropped_eps++; 3731 } 3732 } 3733 xhci->num_active_eps -= num_dropped_eps; 3734 if (num_dropped_eps) 3735 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3736 "Dropped %u ep ctxs, flags = 0x%x, " 3737 "%u now active.", 3738 num_dropped_eps, drop_flags, 3739 xhci->num_active_eps); 3740 } 3741 3742 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev); 3743 3744 /* 3745 * This submits a Reset Device Command, which will set the device state to 0, 3746 * set the device address to 0, and disable all the endpoints except the default 3747 * control endpoint. The USB core should come back and call 3748 * xhci_address_device(), and then re-set up the configuration. If this is 3749 * called because of a usb_reset_and_verify_device(), then the old alternate 3750 * settings will be re-installed through the normal bandwidth allocation 3751 * functions. 3752 * 3753 * Wait for the Reset Device command to finish. Remove all structures 3754 * associated with the endpoints that were disabled. Clear the input device 3755 * structure? Reset the control endpoint 0 max packet size? 3756 * 3757 * If the virt_dev to be reset does not exist or does not match the udev, 3758 * it means the device is lost, possibly due to the xHC restore error and 3759 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3760 * re-allocate the device. 3761 */ 3762 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3763 struct usb_device *udev) 3764 { 3765 int ret, i; 3766 unsigned long flags; 3767 struct xhci_hcd *xhci; 3768 unsigned int slot_id; 3769 struct xhci_virt_device *virt_dev; 3770 struct xhci_command *reset_device_cmd; 3771 struct xhci_slot_ctx *slot_ctx; 3772 int old_active_eps = 0; 3773 3774 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3775 if (ret <= 0) 3776 return ret; 3777 xhci = hcd_to_xhci(hcd); 3778 slot_id = udev->slot_id; 3779 virt_dev = xhci->devs[slot_id]; 3780 if (!virt_dev) { 3781 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3782 "not exist. Re-allocate the device\n", slot_id); 3783 ret = xhci_alloc_dev(hcd, udev); 3784 if (ret == 1) 3785 return 0; 3786 else 3787 return -EINVAL; 3788 } 3789 3790 if (virt_dev->tt_info) 3791 old_active_eps = virt_dev->tt_info->active_eps; 3792 3793 if (virt_dev->udev != udev) { 3794 /* If the virt_dev and the udev does not match, this virt_dev 3795 * may belong to another udev. 3796 * Re-allocate the device. 3797 */ 3798 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3799 "not match the udev. Re-allocate the device\n", 3800 slot_id); 3801 ret = xhci_alloc_dev(hcd, udev); 3802 if (ret == 1) 3803 return 0; 3804 else 3805 return -EINVAL; 3806 } 3807 3808 /* If device is not setup, there is no point in resetting it */ 3809 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3810 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3811 SLOT_STATE_DISABLED) 3812 return 0; 3813 3814 if (xhci->quirks & XHCI_ETRON_HOST) { 3815 /* 3816 * Obtaining a new device slot to inform the xHCI host that 3817 * the USB device has been reset. 3818 */ 3819 ret = xhci_disable_slot(xhci, udev->slot_id); 3820 xhci_free_virt_device(xhci, udev->slot_id); 3821 if (!ret) { 3822 ret = xhci_alloc_dev(hcd, udev); 3823 if (ret == 1) 3824 ret = 0; 3825 else 3826 ret = -EINVAL; 3827 } 3828 return ret; 3829 } 3830 3831 trace_xhci_discover_or_reset_device(slot_ctx); 3832 3833 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3834 /* Allocate the command structure that holds the struct completion. 3835 * Assume we're in process context, since the normal device reset 3836 * process has to wait for the device anyway. Storage devices are 3837 * reset as part of error handling, so use GFP_NOIO instead of 3838 * GFP_KERNEL. 3839 */ 3840 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3841 if (!reset_device_cmd) { 3842 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3843 return -ENOMEM; 3844 } 3845 3846 /* Attempt to submit the Reset Device command to the command ring */ 3847 spin_lock_irqsave(&xhci->lock, flags); 3848 3849 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3850 if (ret) { 3851 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3852 spin_unlock_irqrestore(&xhci->lock, flags); 3853 goto command_cleanup; 3854 } 3855 xhci_ring_cmd_db(xhci); 3856 spin_unlock_irqrestore(&xhci->lock, flags); 3857 3858 /* Wait for the Reset Device command to finish */ 3859 wait_for_completion(reset_device_cmd->completion); 3860 3861 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3862 * unless we tried to reset a slot ID that wasn't enabled, 3863 * or the device wasn't in the addressed or configured state. 3864 */ 3865 ret = reset_device_cmd->status; 3866 switch (ret) { 3867 case COMP_COMMAND_ABORTED: 3868 case COMP_COMMAND_RING_STOPPED: 3869 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3870 ret = -ETIME; 3871 goto command_cleanup; 3872 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3873 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3874 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3875 slot_id, 3876 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3877 xhci_dbg(xhci, "Not freeing device rings.\n"); 3878 /* Don't treat this as an error. May change my mind later. */ 3879 ret = 0; 3880 goto command_cleanup; 3881 case COMP_SUCCESS: 3882 xhci_dbg(xhci, "Successful reset device command.\n"); 3883 break; 3884 default: 3885 if (xhci_is_vendor_info_code(xhci, ret)) 3886 break; 3887 xhci_warn(xhci, "Unknown completion code %u for " 3888 "reset device command.\n", ret); 3889 ret = -EINVAL; 3890 goto command_cleanup; 3891 } 3892 3893 /* Free up host controller endpoint resources */ 3894 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3895 spin_lock_irqsave(&xhci->lock, flags); 3896 /* Don't delete the default control endpoint resources */ 3897 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3898 spin_unlock_irqrestore(&xhci->lock, flags); 3899 } 3900 3901 /* Everything but endpoint 0 is disabled, so free the rings. */ 3902 for (i = 1; i < 31; i++) { 3903 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3904 3905 if (ep->ep_state & EP_HAS_STREAMS) { 3906 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3907 xhci_get_endpoint_address(i)); 3908 xhci_free_stream_info(xhci, ep->stream_info); 3909 ep->stream_info = NULL; 3910 ep->ep_state &= ~EP_HAS_STREAMS; 3911 } 3912 3913 if (ep->ring) { 3914 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3915 xhci_free_endpoint_ring(xhci, virt_dev, i); 3916 } 3917 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3918 xhci_drop_ep_from_interval_table(xhci, 3919 &virt_dev->eps[i].bw_info, 3920 virt_dev->bw_table, 3921 udev, 3922 &virt_dev->eps[i], 3923 virt_dev->tt_info); 3924 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3925 } 3926 /* If necessary, update the number of active TTs on this root port */ 3927 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3928 virt_dev->flags = 0; 3929 ret = 0; 3930 3931 command_cleanup: 3932 xhci_free_command(xhci, reset_device_cmd); 3933 return ret; 3934 } 3935 3936 /* 3937 * At this point, the struct usb_device is about to go away, the device has 3938 * disconnected, and all traffic has been stopped and the endpoints have been 3939 * disabled. Free any HC data structures associated with that device. 3940 */ 3941 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3942 { 3943 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3944 struct xhci_virt_device *virt_dev; 3945 struct xhci_slot_ctx *slot_ctx; 3946 unsigned long flags; 3947 int i, ret; 3948 3949 /* 3950 * We called pm_runtime_get_noresume when the device was attached. 3951 * Decrement the counter here to allow controller to runtime suspend 3952 * if no devices remain. 3953 */ 3954 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3955 pm_runtime_put_noidle(hcd->self.controller); 3956 3957 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3958 /* If the host is halted due to driver unload, we still need to free the 3959 * device. 3960 */ 3961 if (ret <= 0 && ret != -ENODEV) 3962 return; 3963 3964 virt_dev = xhci->devs[udev->slot_id]; 3965 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3966 trace_xhci_free_dev(slot_ctx); 3967 3968 /* Stop any wayward timer functions (which may grab the lock) */ 3969 for (i = 0; i < 31; i++) 3970 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3971 virt_dev->udev = NULL; 3972 xhci_disable_slot(xhci, udev->slot_id); 3973 3974 spin_lock_irqsave(&xhci->lock, flags); 3975 xhci_free_virt_device(xhci, udev->slot_id); 3976 spin_unlock_irqrestore(&xhci->lock, flags); 3977 3978 } 3979 3980 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3981 { 3982 struct xhci_command *command; 3983 unsigned long flags; 3984 u32 state; 3985 int ret; 3986 3987 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3988 if (!command) 3989 return -ENOMEM; 3990 3991 xhci_debugfs_remove_slot(xhci, slot_id); 3992 3993 spin_lock_irqsave(&xhci->lock, flags); 3994 /* Don't disable the slot if the host controller is dead. */ 3995 state = readl(&xhci->op_regs->status); 3996 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3997 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3998 spin_unlock_irqrestore(&xhci->lock, flags); 3999 kfree(command); 4000 return -ENODEV; 4001 } 4002 4003 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 4004 slot_id); 4005 if (ret) { 4006 spin_unlock_irqrestore(&xhci->lock, flags); 4007 kfree(command); 4008 return ret; 4009 } 4010 xhci_ring_cmd_db(xhci); 4011 spin_unlock_irqrestore(&xhci->lock, flags); 4012 4013 wait_for_completion(command->completion); 4014 4015 if (command->status != COMP_SUCCESS) 4016 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4017 slot_id, command->status); 4018 4019 xhci_free_command(xhci, command); 4020 4021 return 0; 4022 } 4023 4024 /* 4025 * Checks if we have enough host controller resources for the default control 4026 * endpoint. 4027 * 4028 * Must be called with xhci->lock held. 4029 */ 4030 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4031 { 4032 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4033 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4034 "Not enough ep ctxs: " 4035 "%u active, need to add 1, limit is %u.", 4036 xhci->num_active_eps, xhci->limit_active_eps); 4037 return -ENOMEM; 4038 } 4039 xhci->num_active_eps += 1; 4040 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4041 "Adding 1 ep ctx, %u now active.", 4042 xhci->num_active_eps); 4043 return 0; 4044 } 4045 4046 4047 /* 4048 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4049 * timed out, or allocating memory failed. Returns 1 on success. 4050 */ 4051 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4052 { 4053 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4054 struct xhci_virt_device *vdev; 4055 struct xhci_slot_ctx *slot_ctx; 4056 unsigned long flags; 4057 int ret, slot_id; 4058 struct xhci_command *command; 4059 4060 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4061 if (!command) 4062 return 0; 4063 4064 spin_lock_irqsave(&xhci->lock, flags); 4065 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4066 if (ret) { 4067 spin_unlock_irqrestore(&xhci->lock, flags); 4068 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4069 xhci_free_command(xhci, command); 4070 return 0; 4071 } 4072 xhci_ring_cmd_db(xhci); 4073 spin_unlock_irqrestore(&xhci->lock, flags); 4074 4075 wait_for_completion(command->completion); 4076 slot_id = command->slot_id; 4077 4078 if (!slot_id || command->status != COMP_SUCCESS) { 4079 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 4080 xhci_trb_comp_code_string(command->status)); 4081 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4082 HCS_MAX_SLOTS( 4083 readl(&xhci->cap_regs->hcs_params1))); 4084 xhci_free_command(xhci, command); 4085 return 0; 4086 } 4087 4088 xhci_free_command(xhci, command); 4089 4090 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4091 spin_lock_irqsave(&xhci->lock, flags); 4092 ret = xhci_reserve_host_control_ep_resources(xhci); 4093 if (ret) { 4094 spin_unlock_irqrestore(&xhci->lock, flags); 4095 xhci_warn(xhci, "Not enough host resources, " 4096 "active endpoint contexts = %u\n", 4097 xhci->num_active_eps); 4098 goto disable_slot; 4099 } 4100 spin_unlock_irqrestore(&xhci->lock, flags); 4101 } 4102 /* Use GFP_NOIO, since this function can be called from 4103 * xhci_discover_or_reset_device(), which may be called as part of 4104 * mass storage driver error handling. 4105 */ 4106 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4107 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4108 goto disable_slot; 4109 } 4110 vdev = xhci->devs[slot_id]; 4111 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4112 trace_xhci_alloc_dev(slot_ctx); 4113 4114 udev->slot_id = slot_id; 4115 4116 xhci_debugfs_create_slot(xhci, slot_id); 4117 4118 /* 4119 * If resetting upon resume, we can't put the controller into runtime 4120 * suspend if there is a device attached. 4121 */ 4122 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4123 pm_runtime_get_noresume(hcd->self.controller); 4124 4125 /* Is this a LS or FS device under a HS hub? */ 4126 /* Hub or peripherial? */ 4127 return 1; 4128 4129 disable_slot: 4130 xhci_disable_slot(xhci, udev->slot_id); 4131 xhci_free_virt_device(xhci, udev->slot_id); 4132 4133 return 0; 4134 } 4135 4136 /** 4137 * xhci_setup_device - issues an Address Device command to assign a unique 4138 * USB bus address. 4139 * @hcd: USB host controller data structure. 4140 * @udev: USB dev structure representing the connected device. 4141 * @setup: Enum specifying setup mode: address only or with context. 4142 * @timeout_ms: Max wait time (ms) for the command operation to complete. 4143 * 4144 * Return: 0 if successful; otherwise, negative error code. 4145 */ 4146 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4147 enum xhci_setup_dev setup, unsigned int timeout_ms) 4148 { 4149 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4150 unsigned long flags; 4151 struct xhci_virt_device *virt_dev; 4152 int ret = 0; 4153 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4154 struct xhci_slot_ctx *slot_ctx; 4155 struct xhci_input_control_ctx *ctrl_ctx; 4156 u64 temp_64; 4157 struct xhci_command *command = NULL; 4158 4159 mutex_lock(&xhci->mutex); 4160 4161 if (xhci->xhc_state) { /* dying, removing or halted */ 4162 ret = -ESHUTDOWN; 4163 goto out; 4164 } 4165 4166 if (!udev->slot_id) { 4167 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4168 "Bad Slot ID %d", udev->slot_id); 4169 ret = -EINVAL; 4170 goto out; 4171 } 4172 4173 virt_dev = xhci->devs[udev->slot_id]; 4174 4175 if (WARN_ON(!virt_dev)) { 4176 /* 4177 * In plug/unplug torture test with an NEC controller, 4178 * a zero-dereference was observed once due to virt_dev = 0. 4179 * Print useful debug rather than crash if it is observed again! 4180 */ 4181 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4182 udev->slot_id); 4183 ret = -EINVAL; 4184 goto out; 4185 } 4186 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4187 trace_xhci_setup_device_slot(slot_ctx); 4188 4189 if (setup == SETUP_CONTEXT_ONLY) { 4190 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4191 SLOT_STATE_DEFAULT) { 4192 xhci_dbg(xhci, "Slot already in default state\n"); 4193 goto out; 4194 } 4195 } 4196 4197 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4198 if (!command) { 4199 ret = -ENOMEM; 4200 goto out; 4201 } 4202 4203 command->in_ctx = virt_dev->in_ctx; 4204 command->timeout_ms = timeout_ms; 4205 4206 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4207 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4208 if (!ctrl_ctx) { 4209 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4210 __func__); 4211 ret = -EINVAL; 4212 goto out; 4213 } 4214 /* 4215 * If this is the first Set Address since device plug-in or 4216 * virt_device realloaction after a resume with an xHCI power loss, 4217 * then set up the slot context. 4218 */ 4219 if (!slot_ctx->dev_info) 4220 xhci_setup_addressable_virt_dev(xhci, udev); 4221 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4222 else 4223 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4224 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4225 ctrl_ctx->drop_flags = 0; 4226 4227 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4228 le32_to_cpu(slot_ctx->dev_info) >> 27); 4229 4230 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4231 spin_lock_irqsave(&xhci->lock, flags); 4232 trace_xhci_setup_device(virt_dev); 4233 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4234 udev->slot_id, setup); 4235 if (ret) { 4236 spin_unlock_irqrestore(&xhci->lock, flags); 4237 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4238 "FIXME: allocate a command ring segment"); 4239 goto out; 4240 } 4241 xhci_ring_cmd_db(xhci); 4242 spin_unlock_irqrestore(&xhci->lock, flags); 4243 4244 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4245 wait_for_completion(command->completion); 4246 4247 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4248 * the SetAddress() "recovery interval" required by USB and aborting the 4249 * command on a timeout. 4250 */ 4251 switch (command->status) { 4252 case COMP_COMMAND_ABORTED: 4253 case COMP_COMMAND_RING_STOPPED: 4254 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4255 ret = -ETIME; 4256 break; 4257 case COMP_CONTEXT_STATE_ERROR: 4258 case COMP_SLOT_NOT_ENABLED_ERROR: 4259 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4260 act, udev->slot_id); 4261 ret = -EINVAL; 4262 break; 4263 case COMP_USB_TRANSACTION_ERROR: 4264 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4265 4266 mutex_unlock(&xhci->mutex); 4267 ret = xhci_disable_slot(xhci, udev->slot_id); 4268 xhci_free_virt_device(xhci, udev->slot_id); 4269 if (!ret) { 4270 if (xhci_alloc_dev(hcd, udev) == 1) 4271 xhci_setup_addressable_virt_dev(xhci, udev); 4272 } 4273 kfree(command->completion); 4274 kfree(command); 4275 return -EPROTO; 4276 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4277 dev_warn(&udev->dev, 4278 "ERROR: Incompatible device for setup %s command\n", act); 4279 ret = -ENODEV; 4280 break; 4281 case COMP_SUCCESS: 4282 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4283 "Successful setup %s command", act); 4284 break; 4285 default: 4286 xhci_err(xhci, 4287 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4288 act, command->status); 4289 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4290 ret = -EINVAL; 4291 break; 4292 } 4293 if (ret) 4294 goto out; 4295 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4296 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4297 "Op regs DCBAA ptr = %#016llx", temp_64); 4298 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4299 "Slot ID %d dcbaa entry @%p = %#016llx", 4300 udev->slot_id, 4301 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4302 (unsigned long long) 4303 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4304 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4305 "Output Context DMA address = %#08llx", 4306 (unsigned long long)virt_dev->out_ctx->dma); 4307 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4308 le32_to_cpu(slot_ctx->dev_info) >> 27); 4309 /* 4310 * USB core uses address 1 for the roothubs, so we add one to the 4311 * address given back to us by the HC. 4312 */ 4313 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4314 le32_to_cpu(slot_ctx->dev_info) >> 27); 4315 /* Zero the input context control for later use */ 4316 ctrl_ctx->add_flags = 0; 4317 ctrl_ctx->drop_flags = 0; 4318 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4319 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4320 4321 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4322 "Internal device address = %d", 4323 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4324 out: 4325 mutex_unlock(&xhci->mutex); 4326 if (command) { 4327 kfree(command->completion); 4328 kfree(command); 4329 } 4330 return ret; 4331 } 4332 4333 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev, 4334 unsigned int timeout_ms) 4335 { 4336 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms); 4337 } 4338 4339 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4340 { 4341 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY, 4342 XHCI_CMD_DEFAULT_TIMEOUT); 4343 } 4344 4345 /* 4346 * Transfer the port index into real index in the HW port status 4347 * registers. Caculate offset between the port's PORTSC register 4348 * and port status base. Divide the number of per port register 4349 * to get the real index. The raw port number bases 1. 4350 */ 4351 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4352 { 4353 struct xhci_hub *rhub; 4354 4355 rhub = xhci_get_rhub(hcd); 4356 return rhub->ports[port1 - 1]->hw_portnum + 1; 4357 } 4358 4359 /* 4360 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4361 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4362 */ 4363 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4364 struct usb_device *udev, u16 max_exit_latency) 4365 { 4366 struct xhci_virt_device *virt_dev; 4367 struct xhci_command *command; 4368 struct xhci_input_control_ctx *ctrl_ctx; 4369 struct xhci_slot_ctx *slot_ctx; 4370 unsigned long flags; 4371 int ret; 4372 4373 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4374 if (!command) 4375 return -ENOMEM; 4376 4377 spin_lock_irqsave(&xhci->lock, flags); 4378 4379 virt_dev = xhci->devs[udev->slot_id]; 4380 4381 /* 4382 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4383 * xHC was re-initialized. Exit latency will be set later after 4384 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4385 */ 4386 4387 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4388 spin_unlock_irqrestore(&xhci->lock, flags); 4389 xhci_free_command(xhci, command); 4390 return 0; 4391 } 4392 4393 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4394 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4395 if (!ctrl_ctx) { 4396 spin_unlock_irqrestore(&xhci->lock, flags); 4397 xhci_free_command(xhci, command); 4398 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4399 __func__); 4400 return -ENOMEM; 4401 } 4402 4403 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4404 spin_unlock_irqrestore(&xhci->lock, flags); 4405 4406 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4407 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4408 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4409 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4410 slot_ctx->dev_state = 0; 4411 4412 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4413 "Set up evaluate context for LPM MEL change."); 4414 4415 /* Issue and wait for the evaluate context command. */ 4416 ret = xhci_configure_endpoint(xhci, udev, command, 4417 true, true); 4418 4419 if (!ret) { 4420 spin_lock_irqsave(&xhci->lock, flags); 4421 virt_dev->current_mel = max_exit_latency; 4422 spin_unlock_irqrestore(&xhci->lock, flags); 4423 } 4424 4425 xhci_free_command(xhci, command); 4426 4427 return ret; 4428 } 4429 4430 #ifdef CONFIG_PM 4431 4432 /* BESL to HIRD Encoding array for USB2 LPM */ 4433 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4434 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4435 4436 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4437 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4438 struct usb_device *udev) 4439 { 4440 int u2del, besl, besl_host; 4441 int besl_device = 0; 4442 u32 field; 4443 4444 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4445 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4446 4447 if (field & USB_BESL_SUPPORT) { 4448 for (besl_host = 0; besl_host < 16; besl_host++) { 4449 if (xhci_besl_encoding[besl_host] >= u2del) 4450 break; 4451 } 4452 /* Use baseline BESL value as default */ 4453 if (field & USB_BESL_BASELINE_VALID) 4454 besl_device = USB_GET_BESL_BASELINE(field); 4455 else if (field & USB_BESL_DEEP_VALID) 4456 besl_device = USB_GET_BESL_DEEP(field); 4457 } else { 4458 if (u2del <= 50) 4459 besl_host = 0; 4460 else 4461 besl_host = (u2del - 51) / 75 + 1; 4462 } 4463 4464 besl = besl_host + besl_device; 4465 if (besl > 15) 4466 besl = 15; 4467 4468 return besl; 4469 } 4470 4471 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4472 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4473 { 4474 u32 field; 4475 int l1; 4476 int besld = 0; 4477 int hirdm = 0; 4478 4479 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4480 4481 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4482 l1 = udev->l1_params.timeout / 256; 4483 4484 /* device has preferred BESLD */ 4485 if (field & USB_BESL_DEEP_VALID) { 4486 besld = USB_GET_BESL_DEEP(field); 4487 hirdm = 1; 4488 } 4489 4490 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4491 } 4492 4493 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4494 struct usb_device *udev, int enable) 4495 { 4496 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4497 struct xhci_port **ports; 4498 __le32 __iomem *pm_addr, *hlpm_addr; 4499 u32 pm_val, hlpm_val, field; 4500 unsigned int port_num; 4501 unsigned long flags; 4502 int hird, exit_latency; 4503 int ret; 4504 4505 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4506 return -EPERM; 4507 4508 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4509 !udev->lpm_capable) 4510 return -EPERM; 4511 4512 if (!udev->parent || udev->parent->parent || 4513 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4514 return -EPERM; 4515 4516 if (udev->usb2_hw_lpm_capable != 1) 4517 return -EPERM; 4518 4519 spin_lock_irqsave(&xhci->lock, flags); 4520 4521 ports = xhci->usb2_rhub.ports; 4522 port_num = udev->portnum - 1; 4523 pm_addr = ports[port_num]->addr + PORTPMSC; 4524 pm_val = readl(pm_addr); 4525 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4526 4527 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4528 str_enable_disable(enable), port_num + 1); 4529 4530 if (enable) { 4531 /* Host supports BESL timeout instead of HIRD */ 4532 if (udev->usb2_hw_lpm_besl_capable) { 4533 /* if device doesn't have a preferred BESL value use a 4534 * default one which works with mixed HIRD and BESL 4535 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4536 */ 4537 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4538 if ((field & USB_BESL_SUPPORT) && 4539 (field & USB_BESL_BASELINE_VALID)) 4540 hird = USB_GET_BESL_BASELINE(field); 4541 else 4542 hird = udev->l1_params.besl; 4543 4544 exit_latency = xhci_besl_encoding[hird]; 4545 spin_unlock_irqrestore(&xhci->lock, flags); 4546 4547 ret = xhci_change_max_exit_latency(xhci, udev, 4548 exit_latency); 4549 if (ret < 0) 4550 return ret; 4551 spin_lock_irqsave(&xhci->lock, flags); 4552 4553 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4554 writel(hlpm_val, hlpm_addr); 4555 /* flush write */ 4556 readl(hlpm_addr); 4557 } else { 4558 hird = xhci_calculate_hird_besl(xhci, udev); 4559 } 4560 4561 pm_val &= ~PORT_HIRD_MASK; 4562 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4563 writel(pm_val, pm_addr); 4564 pm_val = readl(pm_addr); 4565 pm_val |= PORT_HLE; 4566 writel(pm_val, pm_addr); 4567 /* flush write */ 4568 readl(pm_addr); 4569 } else { 4570 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4571 writel(pm_val, pm_addr); 4572 /* flush write */ 4573 readl(pm_addr); 4574 if (udev->usb2_hw_lpm_besl_capable) { 4575 spin_unlock_irqrestore(&xhci->lock, flags); 4576 xhci_change_max_exit_latency(xhci, udev, 0); 4577 readl_poll_timeout(ports[port_num]->addr, pm_val, 4578 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4579 100, 10000); 4580 return 0; 4581 } 4582 } 4583 4584 spin_unlock_irqrestore(&xhci->lock, flags); 4585 return 0; 4586 } 4587 4588 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4589 { 4590 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4591 struct xhci_port *port; 4592 u32 capability; 4593 4594 /* Check if USB3 device at root port is tunneled over USB4 */ 4595 if (hcd->speed >= HCD_USB3 && !udev->parent->parent) { 4596 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 4597 4598 udev->tunnel_mode = xhci_port_is_tunneled(xhci, port); 4599 if (udev->tunnel_mode == USB_LINK_UNKNOWN) 4600 dev_dbg(&udev->dev, "link tunnel state unknown\n"); 4601 else if (udev->tunnel_mode == USB_LINK_TUNNELED) 4602 dev_dbg(&udev->dev, "tunneled over USB4 link\n"); 4603 else if (udev->tunnel_mode == USB_LINK_NATIVE) 4604 dev_dbg(&udev->dev, "native USB 3.x link\n"); 4605 return 0; 4606 } 4607 4608 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support) 4609 return 0; 4610 4611 /* we only support lpm for non-hub device connected to root hub yet */ 4612 if (!udev->parent || udev->parent->parent || 4613 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4614 return 0; 4615 4616 port = xhci->usb2_rhub.ports[udev->portnum - 1]; 4617 capability = port->port_cap->protocol_caps; 4618 4619 if (capability & XHCI_HLC) { 4620 udev->usb2_hw_lpm_capable = 1; 4621 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4622 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4623 if (capability & XHCI_BLC) 4624 udev->usb2_hw_lpm_besl_capable = 1; 4625 } 4626 4627 return 0; 4628 } 4629 4630 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4631 4632 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4633 static unsigned long long xhci_service_interval_to_ns( 4634 struct usb_endpoint_descriptor *desc) 4635 { 4636 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4637 } 4638 4639 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4640 enum usb3_link_state state) 4641 { 4642 unsigned long long sel; 4643 unsigned long long pel; 4644 unsigned int max_sel_pel; 4645 char *state_name; 4646 4647 switch (state) { 4648 case USB3_LPM_U1: 4649 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4650 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4651 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4652 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4653 state_name = "U1"; 4654 break; 4655 case USB3_LPM_U2: 4656 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4657 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4658 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4659 state_name = "U2"; 4660 break; 4661 default: 4662 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4663 __func__); 4664 return USB3_LPM_DISABLED; 4665 } 4666 4667 if (sel <= max_sel_pel && pel <= max_sel_pel) 4668 return USB3_LPM_DEVICE_INITIATED; 4669 4670 if (sel > max_sel_pel) 4671 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4672 "due to long SEL %llu ms\n", 4673 state_name, sel); 4674 else 4675 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4676 "due to long PEL %llu ms\n", 4677 state_name, pel); 4678 return USB3_LPM_DISABLED; 4679 } 4680 4681 /* The U1 timeout should be the maximum of the following values: 4682 * - For control endpoints, U1 system exit latency (SEL) * 3 4683 * - For bulk endpoints, U1 SEL * 5 4684 * - For interrupt endpoints: 4685 * - Notification EPs, U1 SEL * 3 4686 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4687 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4688 */ 4689 static unsigned long long xhci_calculate_intel_u1_timeout( 4690 struct usb_device *udev, 4691 struct usb_endpoint_descriptor *desc) 4692 { 4693 unsigned long long timeout_ns; 4694 int ep_type; 4695 int intr_type; 4696 4697 ep_type = usb_endpoint_type(desc); 4698 switch (ep_type) { 4699 case USB_ENDPOINT_XFER_CONTROL: 4700 timeout_ns = udev->u1_params.sel * 3; 4701 break; 4702 case USB_ENDPOINT_XFER_BULK: 4703 timeout_ns = udev->u1_params.sel * 5; 4704 break; 4705 case USB_ENDPOINT_XFER_INT: 4706 intr_type = usb_endpoint_interrupt_type(desc); 4707 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4708 timeout_ns = udev->u1_params.sel * 3; 4709 break; 4710 } 4711 /* Otherwise the calculation is the same as isoc eps */ 4712 fallthrough; 4713 case USB_ENDPOINT_XFER_ISOC: 4714 timeout_ns = xhci_service_interval_to_ns(desc); 4715 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4716 if (timeout_ns < udev->u1_params.sel * 2) 4717 timeout_ns = udev->u1_params.sel * 2; 4718 break; 4719 default: 4720 return 0; 4721 } 4722 4723 return timeout_ns; 4724 } 4725 4726 /* Returns the hub-encoded U1 timeout value. */ 4727 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4728 struct usb_device *udev, 4729 struct usb_endpoint_descriptor *desc) 4730 { 4731 unsigned long long timeout_ns; 4732 4733 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4734 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4735 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4736 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4737 return USB3_LPM_DISABLED; 4738 } 4739 } 4740 4741 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4742 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4743 else 4744 timeout_ns = udev->u1_params.sel; 4745 4746 /* The U1 timeout is encoded in 1us intervals. 4747 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4748 */ 4749 if (timeout_ns == USB3_LPM_DISABLED) 4750 timeout_ns = 1; 4751 else 4752 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4753 4754 /* If the necessary timeout value is bigger than what we can set in the 4755 * USB 3.0 hub, we have to disable hub-initiated U1. 4756 */ 4757 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4758 return timeout_ns; 4759 dev_dbg(&udev->dev, "Hub-initiated U1 disabled due to long timeout %lluus\n", 4760 timeout_ns); 4761 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4762 } 4763 4764 /* The U2 timeout should be the maximum of: 4765 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4766 * - largest bInterval of any active periodic endpoint (to avoid going 4767 * into lower power link states between intervals). 4768 * - the U2 Exit Latency of the device 4769 */ 4770 static unsigned long long xhci_calculate_intel_u2_timeout( 4771 struct usb_device *udev, 4772 struct usb_endpoint_descriptor *desc) 4773 { 4774 unsigned long long timeout_ns; 4775 unsigned long long u2_del_ns; 4776 4777 timeout_ns = 10 * 1000 * 1000; 4778 4779 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4780 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4781 timeout_ns = xhci_service_interval_to_ns(desc); 4782 4783 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4784 if (u2_del_ns > timeout_ns) 4785 timeout_ns = u2_del_ns; 4786 4787 return timeout_ns; 4788 } 4789 4790 /* Returns the hub-encoded U2 timeout value. */ 4791 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4792 struct usb_device *udev, 4793 struct usb_endpoint_descriptor *desc) 4794 { 4795 unsigned long long timeout_ns; 4796 4797 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4798 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4799 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4800 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4801 return USB3_LPM_DISABLED; 4802 } 4803 } 4804 4805 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4806 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4807 else 4808 timeout_ns = udev->u2_params.sel; 4809 4810 /* The U2 timeout is encoded in 256us intervals */ 4811 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4812 /* If the necessary timeout value is bigger than what we can set in the 4813 * USB 3.0 hub, we have to disable hub-initiated U2. 4814 */ 4815 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4816 return timeout_ns; 4817 dev_dbg(&udev->dev, "Hub-initiated U2 disabled due to long timeout %lluus\n", 4818 timeout_ns * 256); 4819 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4820 } 4821 4822 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4823 struct usb_device *udev, 4824 struct usb_endpoint_descriptor *desc, 4825 enum usb3_link_state state, 4826 u16 *timeout) 4827 { 4828 if (state == USB3_LPM_U1) 4829 return xhci_calculate_u1_timeout(xhci, udev, desc); 4830 else if (state == USB3_LPM_U2) 4831 return xhci_calculate_u2_timeout(xhci, udev, desc); 4832 4833 return USB3_LPM_DISABLED; 4834 } 4835 4836 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4837 struct usb_device *udev, 4838 struct usb_endpoint_descriptor *desc, 4839 enum usb3_link_state state, 4840 u16 *timeout) 4841 { 4842 u16 alt_timeout; 4843 4844 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4845 desc, state, timeout); 4846 4847 /* If we found we can't enable hub-initiated LPM, and 4848 * the U1 or U2 exit latency was too high to allow 4849 * device-initiated LPM as well, then we will disable LPM 4850 * for this device, so stop searching any further. 4851 */ 4852 if (alt_timeout == USB3_LPM_DISABLED) { 4853 *timeout = alt_timeout; 4854 return -E2BIG; 4855 } 4856 if (alt_timeout > *timeout) 4857 *timeout = alt_timeout; 4858 return 0; 4859 } 4860 4861 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4862 struct usb_device *udev, 4863 struct usb_host_interface *alt, 4864 enum usb3_link_state state, 4865 u16 *timeout) 4866 { 4867 int j; 4868 4869 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4870 if (xhci_update_timeout_for_endpoint(xhci, udev, 4871 &alt->endpoint[j].desc, state, timeout)) 4872 return -E2BIG; 4873 } 4874 return 0; 4875 } 4876 4877 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4878 struct usb_device *udev, 4879 enum usb3_link_state state) 4880 { 4881 struct usb_device *parent = udev->parent; 4882 int tier = 1; /* roothub is tier1 */ 4883 4884 while (parent) { 4885 parent = parent->parent; 4886 tier++; 4887 } 4888 4889 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3) 4890 goto fail; 4891 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2) 4892 goto fail; 4893 4894 return 0; 4895 fail: 4896 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n", 4897 tier); 4898 return -E2BIG; 4899 } 4900 4901 /* Returns the U1 or U2 timeout that should be enabled. 4902 * If the tier check or timeout setting functions return with a non-zero exit 4903 * code, that means the timeout value has been finalized and we shouldn't look 4904 * at any more endpoints. 4905 */ 4906 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4907 struct usb_device *udev, enum usb3_link_state state) 4908 { 4909 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4910 struct usb_host_config *config; 4911 char *state_name; 4912 int i; 4913 u16 timeout = USB3_LPM_DISABLED; 4914 4915 if (state == USB3_LPM_U1) 4916 state_name = "U1"; 4917 else if (state == USB3_LPM_U2) 4918 state_name = "U2"; 4919 else { 4920 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4921 state); 4922 return timeout; 4923 } 4924 4925 /* Gather some information about the currently installed configuration 4926 * and alternate interface settings. 4927 */ 4928 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4929 state, &timeout)) 4930 return timeout; 4931 4932 config = udev->actconfig; 4933 if (!config) 4934 return timeout; 4935 4936 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4937 struct usb_driver *driver; 4938 struct usb_interface *intf = config->interface[i]; 4939 4940 if (!intf) 4941 continue; 4942 4943 /* Check if any currently bound drivers want hub-initiated LPM 4944 * disabled. 4945 */ 4946 if (intf->dev.driver) { 4947 driver = to_usb_driver(intf->dev.driver); 4948 if (driver && driver->disable_hub_initiated_lpm) { 4949 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4950 state_name, driver->name); 4951 timeout = xhci_get_timeout_no_hub_lpm(udev, 4952 state); 4953 if (timeout == USB3_LPM_DISABLED) 4954 return timeout; 4955 } 4956 } 4957 4958 /* Not sure how this could happen... */ 4959 if (!intf->cur_altsetting) 4960 continue; 4961 4962 if (xhci_update_timeout_for_interface(xhci, udev, 4963 intf->cur_altsetting, 4964 state, &timeout)) 4965 return timeout; 4966 } 4967 return timeout; 4968 } 4969 4970 static int calculate_max_exit_latency(struct usb_device *udev, 4971 enum usb3_link_state state_changed, 4972 u16 hub_encoded_timeout) 4973 { 4974 unsigned long long u1_mel_us = 0; 4975 unsigned long long u2_mel_us = 0; 4976 unsigned long long mel_us = 0; 4977 bool disabling_u1; 4978 bool disabling_u2; 4979 bool enabling_u1; 4980 bool enabling_u2; 4981 4982 disabling_u1 = (state_changed == USB3_LPM_U1 && 4983 hub_encoded_timeout == USB3_LPM_DISABLED); 4984 disabling_u2 = (state_changed == USB3_LPM_U2 && 4985 hub_encoded_timeout == USB3_LPM_DISABLED); 4986 4987 enabling_u1 = (state_changed == USB3_LPM_U1 && 4988 hub_encoded_timeout != USB3_LPM_DISABLED); 4989 enabling_u2 = (state_changed == USB3_LPM_U2 && 4990 hub_encoded_timeout != USB3_LPM_DISABLED); 4991 4992 /* If U1 was already enabled and we're not disabling it, 4993 * or we're going to enable U1, account for the U1 max exit latency. 4994 */ 4995 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4996 enabling_u1) 4997 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4998 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4999 enabling_u2) 5000 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5001 5002 mel_us = max(u1_mel_us, u2_mel_us); 5003 5004 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5005 if (mel_us > MAX_EXIT) { 5006 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5007 "is too big.\n", mel_us); 5008 return -E2BIG; 5009 } 5010 return mel_us; 5011 } 5012 5013 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5014 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5015 struct usb_device *udev, enum usb3_link_state state) 5016 { 5017 struct xhci_hcd *xhci; 5018 struct xhci_port *port; 5019 u16 hub_encoded_timeout; 5020 int mel; 5021 int ret; 5022 5023 xhci = hcd_to_xhci(hcd); 5024 /* The LPM timeout values are pretty host-controller specific, so don't 5025 * enable hub-initiated timeouts unless the vendor has provided 5026 * information about their timeout algorithm. 5027 */ 5028 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5029 !xhci->devs[udev->slot_id]) 5030 return USB3_LPM_DISABLED; 5031 5032 if (xhci_check_tier_policy(xhci, udev, state) < 0) 5033 return USB3_LPM_DISABLED; 5034 5035 /* If connected to root port then check port can handle lpm */ 5036 if (udev->parent && !udev->parent->parent) { 5037 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 5038 if (port->lpm_incapable) 5039 return USB3_LPM_DISABLED; 5040 } 5041 5042 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5043 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5044 if (mel < 0) { 5045 /* Max Exit Latency is too big, disable LPM. */ 5046 hub_encoded_timeout = USB3_LPM_DISABLED; 5047 mel = 0; 5048 } 5049 5050 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5051 if (ret) 5052 return ret; 5053 return hub_encoded_timeout; 5054 } 5055 5056 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5057 struct usb_device *udev, enum usb3_link_state state) 5058 { 5059 struct xhci_hcd *xhci; 5060 u16 mel; 5061 5062 xhci = hcd_to_xhci(hcd); 5063 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5064 !xhci->devs[udev->slot_id]) 5065 return 0; 5066 5067 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5068 return xhci_change_max_exit_latency(xhci, udev, mel); 5069 } 5070 #else /* CONFIG_PM */ 5071 5072 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5073 struct usb_device *udev, int enable) 5074 { 5075 return 0; 5076 } 5077 5078 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5079 { 5080 return 0; 5081 } 5082 5083 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5084 struct usb_device *udev, enum usb3_link_state state) 5085 { 5086 return USB3_LPM_DISABLED; 5087 } 5088 5089 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5090 struct usb_device *udev, enum usb3_link_state state) 5091 { 5092 return 0; 5093 } 5094 #endif /* CONFIG_PM */ 5095 5096 /*-------------------------------------------------------------------------*/ 5097 5098 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5099 * internal data structures for the device. 5100 */ 5101 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5102 struct usb_tt *tt, gfp_t mem_flags) 5103 { 5104 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5105 struct xhci_virt_device *vdev; 5106 struct xhci_command *config_cmd; 5107 struct xhci_input_control_ctx *ctrl_ctx; 5108 struct xhci_slot_ctx *slot_ctx; 5109 unsigned long flags; 5110 unsigned think_time; 5111 int ret; 5112 5113 /* Ignore root hubs */ 5114 if (!hdev->parent) 5115 return 0; 5116 5117 vdev = xhci->devs[hdev->slot_id]; 5118 if (!vdev) { 5119 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5120 return -EINVAL; 5121 } 5122 5123 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5124 if (!config_cmd) 5125 return -ENOMEM; 5126 5127 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5128 if (!ctrl_ctx) { 5129 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5130 __func__); 5131 xhci_free_command(xhci, config_cmd); 5132 return -ENOMEM; 5133 } 5134 5135 spin_lock_irqsave(&xhci->lock, flags); 5136 if (hdev->speed == USB_SPEED_HIGH && 5137 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5138 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5139 xhci_free_command(xhci, config_cmd); 5140 spin_unlock_irqrestore(&xhci->lock, flags); 5141 return -ENOMEM; 5142 } 5143 5144 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5145 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5146 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5147 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5148 /* 5149 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5150 * but it may be already set to 1 when setup an xHCI virtual 5151 * device, so clear it anyway. 5152 */ 5153 if (tt->multi) 5154 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5155 else if (hdev->speed == USB_SPEED_FULL) 5156 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5157 5158 if (xhci->hci_version > 0x95) { 5159 xhci_dbg(xhci, "xHCI version %x needs hub " 5160 "TT think time and number of ports\n", 5161 (unsigned int) xhci->hci_version); 5162 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5163 /* Set TT think time - convert from ns to FS bit times. 5164 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5165 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5166 * 5167 * xHCI 1.0: this field shall be 0 if the device is not a 5168 * High-spped hub. 5169 */ 5170 think_time = tt->think_time; 5171 if (think_time != 0) 5172 think_time = (think_time / 666) - 1; 5173 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5174 slot_ctx->tt_info |= 5175 cpu_to_le32(TT_THINK_TIME(think_time)); 5176 } else { 5177 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5178 "TT think time or number of ports\n", 5179 (unsigned int) xhci->hci_version); 5180 } 5181 slot_ctx->dev_state = 0; 5182 spin_unlock_irqrestore(&xhci->lock, flags); 5183 5184 xhci_dbg(xhci, "Set up %s for hub device.\n", 5185 (xhci->hci_version > 0x95) ? 5186 "configure endpoint" : "evaluate context"); 5187 5188 /* Issue and wait for the configure endpoint or 5189 * evaluate context command. 5190 */ 5191 if (xhci->hci_version > 0x95) 5192 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5193 false, false); 5194 else 5195 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5196 true, false); 5197 5198 xhci_free_command(xhci, config_cmd); 5199 return ret; 5200 } 5201 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5202 5203 static int xhci_get_frame(struct usb_hcd *hcd) 5204 { 5205 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5206 /* EHCI mods by the periodic size. Why? */ 5207 return readl(&xhci->run_regs->microframe_index) >> 3; 5208 } 5209 5210 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5211 { 5212 xhci->usb2_rhub.hcd = hcd; 5213 hcd->speed = HCD_USB2; 5214 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5215 /* 5216 * USB 2.0 roothub under xHCI has an integrated TT, 5217 * (rate matching hub) as opposed to having an OHCI/UHCI 5218 * companion controller. 5219 */ 5220 hcd->has_tt = 1; 5221 } 5222 5223 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5224 { 5225 unsigned int minor_rev; 5226 5227 /* 5228 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5229 * should return 0x31 for sbrn, or that the minor revision 5230 * is a two digit BCD containig minor and sub-minor numbers. 5231 * This was later clarified in xHCI 1.2. 5232 * 5233 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5234 * minor revision set to 0x1 instead of 0x10. 5235 */ 5236 if (xhci->usb3_rhub.min_rev == 0x1) 5237 minor_rev = 1; 5238 else 5239 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5240 5241 switch (minor_rev) { 5242 case 2: 5243 hcd->speed = HCD_USB32; 5244 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5245 hcd->self.root_hub->rx_lanes = 2; 5246 hcd->self.root_hub->tx_lanes = 2; 5247 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5248 break; 5249 case 1: 5250 hcd->speed = HCD_USB31; 5251 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5252 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5253 break; 5254 } 5255 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5256 minor_rev, minor_rev ? "Enhanced " : ""); 5257 5258 xhci->usb3_rhub.hcd = hcd; 5259 } 5260 5261 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5262 { 5263 struct xhci_hcd *xhci; 5264 /* 5265 * TODO: Check with DWC3 clients for sysdev according to 5266 * quirks 5267 */ 5268 struct device *dev = hcd->self.sysdev; 5269 int retval; 5270 5271 /* Accept arbitrarily long scatter-gather lists */ 5272 hcd->self.sg_tablesize = ~0; 5273 5274 /* support to build packet from discontinuous buffers */ 5275 hcd->self.no_sg_constraint = 1; 5276 5277 /* XHCI controllers don't stop the ep queue on short packets :| */ 5278 hcd->self.no_stop_on_short = 1; 5279 5280 xhci = hcd_to_xhci(hcd); 5281 5282 if (!usb_hcd_is_primary_hcd(hcd)) { 5283 xhci_hcd_init_usb3_data(xhci, hcd); 5284 return 0; 5285 } 5286 5287 mutex_init(&xhci->mutex); 5288 xhci->main_hcd = hcd; 5289 xhci->cap_regs = hcd->regs; 5290 xhci->op_regs = hcd->regs + 5291 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5292 xhci->run_regs = hcd->regs + 5293 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5294 /* Cache read-only capability registers */ 5295 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5296 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5297 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5298 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5299 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5300 if (xhci->hci_version > 0x100) 5301 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5302 5303 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5304 if ((!xhci->max_interrupters) || 5305 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1)) 5306 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1); 5307 5308 xhci->quirks |= quirks; 5309 5310 if (get_quirks) 5311 get_quirks(dev, xhci); 5312 5313 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5314 * success event after a short transfer. This quirk will ignore such 5315 * spurious event. 5316 */ 5317 if (xhci->hci_version > 0x96) 5318 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5319 5320 if (xhci->hci_version == 0x95 && link_quirk) { 5321 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits"); 5322 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 5323 } 5324 5325 /* Make sure the HC is halted. */ 5326 retval = xhci_halt(xhci); 5327 if (retval) 5328 return retval; 5329 5330 xhci_zero_64b_regs(xhci); 5331 5332 xhci_dbg(xhci, "Resetting HCD\n"); 5333 /* Reset the internal HC memory state and registers. */ 5334 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5335 if (retval) 5336 return retval; 5337 xhci_dbg(xhci, "Reset complete\n"); 5338 5339 /* 5340 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5341 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5342 * address memory pointers actually. So, this driver clears the AC64 5343 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5344 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5345 */ 5346 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5347 xhci->hcc_params &= ~BIT(0); 5348 5349 /* Set dma_mask and coherent_dma_mask to 64-bits, 5350 * if xHC supports 64-bit addressing */ 5351 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5352 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5353 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5354 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5355 } else { 5356 /* 5357 * This is to avoid error in cases where a 32-bit USB 5358 * controller is used on a 64-bit capable system. 5359 */ 5360 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5361 if (retval) 5362 return retval; 5363 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5364 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5365 } 5366 5367 xhci_dbg(xhci, "Calling HCD init\n"); 5368 /* Initialize HCD and host controller data structures. */ 5369 retval = xhci_init(hcd); 5370 if (retval) 5371 return retval; 5372 xhci_dbg(xhci, "Called HCD init\n"); 5373 5374 if (xhci_hcd_is_usb3(hcd)) 5375 xhci_hcd_init_usb3_data(xhci, hcd); 5376 else 5377 xhci_hcd_init_usb2_data(xhci, hcd); 5378 5379 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5380 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5381 5382 return 0; 5383 } 5384 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5385 5386 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5387 struct usb_host_endpoint *ep) 5388 { 5389 struct xhci_hcd *xhci; 5390 struct usb_device *udev; 5391 unsigned int slot_id; 5392 unsigned int ep_index; 5393 unsigned long flags; 5394 5395 xhci = hcd_to_xhci(hcd); 5396 5397 spin_lock_irqsave(&xhci->lock, flags); 5398 udev = (struct usb_device *)ep->hcpriv; 5399 slot_id = udev->slot_id; 5400 ep_index = xhci_get_endpoint_index(&ep->desc); 5401 5402 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5403 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5404 spin_unlock_irqrestore(&xhci->lock, flags); 5405 } 5406 5407 static const struct hc_driver xhci_hc_driver = { 5408 .description = "xhci-hcd", 5409 .product_desc = "xHCI Host Controller", 5410 .hcd_priv_size = sizeof(struct xhci_hcd), 5411 5412 /* 5413 * generic hardware linkage 5414 */ 5415 .irq = xhci_irq, 5416 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5417 HCD_BH, 5418 5419 /* 5420 * basic lifecycle operations 5421 */ 5422 .reset = NULL, /* set in xhci_init_driver() */ 5423 .start = xhci_run, 5424 .stop = xhci_stop, 5425 .shutdown = xhci_shutdown, 5426 5427 /* 5428 * managing i/o requests and associated device resources 5429 */ 5430 .map_urb_for_dma = xhci_map_urb_for_dma, 5431 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5432 .urb_enqueue = xhci_urb_enqueue, 5433 .urb_dequeue = xhci_urb_dequeue, 5434 .alloc_dev = xhci_alloc_dev, 5435 .free_dev = xhci_free_dev, 5436 .alloc_streams = xhci_alloc_streams, 5437 .free_streams = xhci_free_streams, 5438 .add_endpoint = xhci_add_endpoint, 5439 .drop_endpoint = xhci_drop_endpoint, 5440 .endpoint_disable = xhci_endpoint_disable, 5441 .endpoint_reset = xhci_endpoint_reset, 5442 .check_bandwidth = xhci_check_bandwidth, 5443 .reset_bandwidth = xhci_reset_bandwidth, 5444 .address_device = xhci_address_device, 5445 .enable_device = xhci_enable_device, 5446 .update_hub_device = xhci_update_hub_device, 5447 .reset_device = xhci_discover_or_reset_device, 5448 5449 /* 5450 * scheduling support 5451 */ 5452 .get_frame_number = xhci_get_frame, 5453 5454 /* 5455 * root hub support 5456 */ 5457 .hub_control = xhci_hub_control, 5458 .hub_status_data = xhci_hub_status_data, 5459 .bus_suspend = xhci_bus_suspend, 5460 .bus_resume = xhci_bus_resume, 5461 .get_resuming_ports = xhci_get_resuming_ports, 5462 5463 /* 5464 * call back when device connected and addressed 5465 */ 5466 .update_device = xhci_update_device, 5467 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5468 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5469 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5470 .find_raw_port_number = xhci_find_raw_port_number, 5471 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5472 }; 5473 5474 void xhci_init_driver(struct hc_driver *drv, 5475 const struct xhci_driver_overrides *over) 5476 { 5477 BUG_ON(!over); 5478 5479 /* Copy the generic table to drv then apply the overrides */ 5480 *drv = xhci_hc_driver; 5481 5482 if (over) { 5483 drv->hcd_priv_size += over->extra_priv_size; 5484 if (over->reset) 5485 drv->reset = over->reset; 5486 if (over->start) 5487 drv->start = over->start; 5488 if (over->add_endpoint) 5489 drv->add_endpoint = over->add_endpoint; 5490 if (over->drop_endpoint) 5491 drv->drop_endpoint = over->drop_endpoint; 5492 if (over->check_bandwidth) 5493 drv->check_bandwidth = over->check_bandwidth; 5494 if (over->reset_bandwidth) 5495 drv->reset_bandwidth = over->reset_bandwidth; 5496 if (over->update_hub_device) 5497 drv->update_hub_device = over->update_hub_device; 5498 if (over->hub_control) 5499 drv->hub_control = over->hub_control; 5500 } 5501 } 5502 EXPORT_SYMBOL_GPL(xhci_init_driver); 5503 5504 MODULE_DESCRIPTION(DRIVER_DESC); 5505 MODULE_AUTHOR(DRIVER_AUTHOR); 5506 MODULE_LICENSE("GPL"); 5507 5508 static int __init xhci_hcd_init(void) 5509 { 5510 /* 5511 * Check the compiler generated sizes of structures that must be laid 5512 * out in specific ways for hardware access. 5513 */ 5514 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5515 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5516 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5517 /* xhci_device_control has eight fields, and also 5518 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5519 */ 5520 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5521 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5522 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5523 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5524 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5525 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5526 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5527 5528 if (usb_disabled()) 5529 return -ENODEV; 5530 5531 xhci_debugfs_create_root(); 5532 xhci_dbc_init(); 5533 5534 return 0; 5535 } 5536 5537 /* 5538 * If an init function is provided, an exit function must also be provided 5539 * to allow module unload. 5540 */ 5541 static void __exit xhci_hcd_fini(void) 5542 { 5543 xhci_debugfs_remove_root(); 5544 xhci_dbc_exit(); 5545 } 5546 5547 module_init(xhci_hcd_init); 5548 module_exit(xhci_hcd_fini); 5549