xref: /linux/drivers/usb/host/xhci.c (revision 673f816b9e1e92d1f70e1bf5f21b531e0ff9ad6c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21 
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, timeout_us);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * xhci_handshake_check_state - same as xhci_handshake but takes an additional
86  * exit_state parameter, and bails out with an error immediately when xhc_state
87  * has exit_state flag set.
88  */
89 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
90 		u32 mask, u32 done, int usec, unsigned int exit_state)
91 {
92 	u32	result;
93 	int	ret;
94 
95 	ret = readl_poll_timeout_atomic(ptr, result,
96 				(result & mask) == done ||
97 				result == U32_MAX ||
98 				xhci->xhc_state & exit_state,
99 				1, usec);
100 
101 	if (result == U32_MAX || xhci->xhc_state & exit_state)
102 		return -ENODEV;
103 
104 	return ret;
105 }
106 
107 /*
108  * Disable interrupts and begin the xHCI halting process.
109  */
110 void xhci_quiesce(struct xhci_hcd *xhci)
111 {
112 	u32 halted;
113 	u32 cmd;
114 	u32 mask;
115 
116 	mask = ~(XHCI_IRQS);
117 	halted = readl(&xhci->op_regs->status) & STS_HALT;
118 	if (!halted)
119 		mask &= ~CMD_RUN;
120 
121 	cmd = readl(&xhci->op_regs->command);
122 	cmd &= mask;
123 	writel(cmd, &xhci->op_regs->command);
124 }
125 
126 /*
127  * Force HC into halt state.
128  *
129  * Disable any IRQs and clear the run/stop bit.
130  * HC will complete any current and actively pipelined transactions, and
131  * should halt within 16 ms of the run/stop bit being cleared.
132  * Read HC Halted bit in the status register to see when the HC is finished.
133  */
134 int xhci_halt(struct xhci_hcd *xhci)
135 {
136 	int ret;
137 
138 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
139 	xhci_quiesce(xhci);
140 
141 	ret = xhci_handshake(&xhci->op_regs->status,
142 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
143 	if (ret) {
144 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
145 		return ret;
146 	}
147 
148 	xhci->xhc_state |= XHCI_STATE_HALTED;
149 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
150 
151 	return ret;
152 }
153 
154 /*
155  * Set the run bit and wait for the host to be running.
156  */
157 int xhci_start(struct xhci_hcd *xhci)
158 {
159 	u32 temp;
160 	int ret;
161 
162 	temp = readl(&xhci->op_regs->command);
163 	temp |= (CMD_RUN);
164 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
165 			temp);
166 	writel(temp, &xhci->op_regs->command);
167 
168 	/*
169 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
170 	 * running.
171 	 */
172 	ret = xhci_handshake(&xhci->op_regs->status,
173 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
174 	if (ret == -ETIMEDOUT)
175 		xhci_err(xhci, "Host took too long to start, "
176 				"waited %u microseconds.\n",
177 				XHCI_MAX_HALT_USEC);
178 	if (!ret) {
179 		/* clear state flags. Including dying, halted or removing */
180 		xhci->xhc_state = 0;
181 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
182 	}
183 
184 	return ret;
185 }
186 
187 /*
188  * Reset a halted HC.
189  *
190  * This resets pipelines, timers, counters, state machines, etc.
191  * Transactions will be terminated immediately, and operational registers
192  * will be set to their defaults.
193  */
194 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
195 {
196 	u32 command;
197 	u32 state;
198 	int ret;
199 
200 	state = readl(&xhci->op_regs->status);
201 
202 	if (state == ~(u32)0) {
203 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
204 		return -ENODEV;
205 	}
206 
207 	if ((state & STS_HALT) == 0) {
208 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
209 		return 0;
210 	}
211 
212 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
213 	command = readl(&xhci->op_regs->command);
214 	command |= CMD_RESET;
215 	writel(command, &xhci->op_regs->command);
216 
217 	/* Existing Intel xHCI controllers require a delay of 1 mS,
218 	 * after setting the CMD_RESET bit, and before accessing any
219 	 * HC registers. This allows the HC to complete the
220 	 * reset operation and be ready for HC register access.
221 	 * Without this delay, the subsequent HC register access,
222 	 * may result in a system hang very rarely.
223 	 */
224 	if (xhci->quirks & XHCI_INTEL_HOST)
225 		udelay(1000);
226 
227 	ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
228 				CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
229 	if (ret)
230 		return ret;
231 
232 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
233 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
234 
235 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236 			 "Wait for controller to be ready for doorbell rings");
237 	/*
238 	 * xHCI cannot write to any doorbells or operational registers other
239 	 * than status until the "Controller Not Ready" flag is cleared.
240 	 */
241 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
242 
243 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
244 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
245 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
246 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
247 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
248 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
249 
250 	return ret;
251 }
252 
253 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
254 {
255 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
256 	struct iommu_domain *domain;
257 	int err, i;
258 	u64 val;
259 	u32 intrs;
260 
261 	/*
262 	 * Some Renesas controllers get into a weird state if they are
263 	 * reset while programmed with 64bit addresses (they will preserve
264 	 * the top half of the address in internal, non visible
265 	 * registers). You end up with half the address coming from the
266 	 * kernel, and the other half coming from the firmware. Also,
267 	 * changing the programming leads to extra accesses even if the
268 	 * controller is supposed to be halted. The controller ends up with
269 	 * a fatal fault, and is then ripe for being properly reset.
270 	 *
271 	 * Special care is taken to only apply this if the device is behind
272 	 * an iommu. Doing anything when there is no iommu is definitely
273 	 * unsafe...
274 	 */
275 	domain = iommu_get_domain_for_dev(dev);
276 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
277 	    domain->type == IOMMU_DOMAIN_IDENTITY)
278 		return;
279 
280 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
281 
282 	/* Clear HSEIE so that faults do not get signaled */
283 	val = readl(&xhci->op_regs->command);
284 	val &= ~CMD_HSEIE;
285 	writel(val, &xhci->op_regs->command);
286 
287 	/* Clear HSE (aka FATAL) */
288 	val = readl(&xhci->op_regs->status);
289 	val |= STS_FATAL;
290 	writel(val, &xhci->op_regs->status);
291 
292 	/* Now zero the registers, and brace for impact */
293 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
294 	if (upper_32_bits(val))
295 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
296 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
297 	if (upper_32_bits(val))
298 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
299 
300 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
301 		      ARRAY_SIZE(xhci->run_regs->ir_set));
302 
303 	for (i = 0; i < intrs; i++) {
304 		struct xhci_intr_reg __iomem *ir;
305 
306 		ir = &xhci->run_regs->ir_set[i];
307 		val = xhci_read_64(xhci, &ir->erst_base);
308 		if (upper_32_bits(val))
309 			xhci_write_64(xhci, 0, &ir->erst_base);
310 		val= xhci_read_64(xhci, &ir->erst_dequeue);
311 		if (upper_32_bits(val))
312 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
313 	}
314 
315 	/* Wait for the fault to appear. It will be cleared on reset */
316 	err = xhci_handshake(&xhci->op_regs->status,
317 			     STS_FATAL, STS_FATAL,
318 			     XHCI_MAX_HALT_USEC);
319 	if (!err)
320 		xhci_info(xhci, "Fault detected\n");
321 }
322 
323 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
324 {
325 	u32 iman;
326 
327 	if (!ir || !ir->ir_set)
328 		return -EINVAL;
329 
330 	iman = readl(&ir->ir_set->irq_pending);
331 	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
332 
333 	return 0;
334 }
335 
336 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
337 {
338 	u32 iman;
339 
340 	if (!ir || !ir->ir_set)
341 		return -EINVAL;
342 
343 	iman = readl(&ir->ir_set->irq_pending);
344 	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
345 
346 	return 0;
347 }
348 
349 /* interrupt moderation interval imod_interval in nanoseconds */
350 static int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
351 					   u32 imod_interval)
352 {
353 	u32 imod;
354 
355 	if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250)
356 		return -EINVAL;
357 
358 	imod = readl(&ir->ir_set->irq_control);
359 	imod &= ~ER_IRQ_INTERVAL_MASK;
360 	imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
361 	writel(imod, &ir->ir_set->irq_control);
362 
363 	return 0;
364 }
365 
366 static void compliance_mode_recovery(struct timer_list *t)
367 {
368 	struct xhci_hcd *xhci;
369 	struct usb_hcd *hcd;
370 	struct xhci_hub *rhub;
371 	u32 temp;
372 	int i;
373 
374 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
375 	rhub = &xhci->usb3_rhub;
376 	hcd = rhub->hcd;
377 
378 	if (!hcd)
379 		return;
380 
381 	for (i = 0; i < rhub->num_ports; i++) {
382 		temp = readl(rhub->ports[i]->addr);
383 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
384 			/*
385 			 * Compliance Mode Detected. Letting USB Core
386 			 * handle the Warm Reset
387 			 */
388 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
389 					"Compliance mode detected->port %d",
390 					i + 1);
391 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
392 					"Attempting compliance mode recovery");
393 
394 			if (hcd->state == HC_STATE_SUSPENDED)
395 				usb_hcd_resume_root_hub(hcd);
396 
397 			usb_hcd_poll_rh_status(hcd);
398 		}
399 	}
400 
401 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
402 		mod_timer(&xhci->comp_mode_recovery_timer,
403 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
404 }
405 
406 /*
407  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
408  * that causes ports behind that hardware to enter compliance mode sometimes.
409  * The quirk creates a timer that polls every 2 seconds the link state of
410  * each host controller's port and recovers it by issuing a Warm reset
411  * if Compliance mode is detected, otherwise the port will become "dead" (no
412  * device connections or disconnections will be detected anymore). Becasue no
413  * status event is generated when entering compliance mode (per xhci spec),
414  * this quirk is needed on systems that have the failing hardware installed.
415  */
416 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
417 {
418 	xhci->port_status_u0 = 0;
419 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
420 		    0);
421 	xhci->comp_mode_recovery_timer.expires = jiffies +
422 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
423 
424 	add_timer(&xhci->comp_mode_recovery_timer);
425 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
426 			"Compliance mode recovery timer initialized");
427 }
428 
429 /*
430  * This function identifies the systems that have installed the SN65LVPE502CP
431  * USB3.0 re-driver and that need the Compliance Mode Quirk.
432  * Systems:
433  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
434  */
435 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
436 {
437 	const char *dmi_product_name, *dmi_sys_vendor;
438 
439 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
440 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
441 	if (!dmi_product_name || !dmi_sys_vendor)
442 		return false;
443 
444 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
445 		return false;
446 
447 	if (strstr(dmi_product_name, "Z420") ||
448 			strstr(dmi_product_name, "Z620") ||
449 			strstr(dmi_product_name, "Z820") ||
450 			strstr(dmi_product_name, "Z1 Workstation"))
451 		return true;
452 
453 	return false;
454 }
455 
456 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
457 {
458 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
459 }
460 
461 
462 /*
463  * Initialize memory for HCD and xHC (one-time init).
464  *
465  * Program the PAGESIZE register, initialize the device context array, create
466  * device contexts (?), set up a command ring segment (or two?), create event
467  * ring (one for now).
468  */
469 static int xhci_init(struct usb_hcd *hcd)
470 {
471 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
472 	int retval;
473 
474 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
475 	spin_lock_init(&xhci->lock);
476 	if (xhci->hci_version == 0x95 && link_quirk) {
477 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
478 				"QUIRK: Not clearing Link TRB chain bits.");
479 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
480 	} else {
481 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
482 				"xHCI doesn't need link TRB QUIRK");
483 	}
484 	retval = xhci_mem_init(xhci, GFP_KERNEL);
485 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
486 
487 	/* Initializing Compliance Mode Recovery Data If Needed */
488 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
489 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
490 		compliance_mode_recovery_timer_init(xhci);
491 	}
492 
493 	return retval;
494 }
495 
496 /*-------------------------------------------------------------------------*/
497 
498 static int xhci_run_finished(struct xhci_hcd *xhci)
499 {
500 	struct xhci_interrupter *ir = xhci->interrupters[0];
501 	unsigned long	flags;
502 	u32		temp;
503 
504 	/*
505 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
506 	 * Protect the short window before host is running with a lock
507 	 */
508 	spin_lock_irqsave(&xhci->lock, flags);
509 
510 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
511 	temp = readl(&xhci->op_regs->command);
512 	temp |= (CMD_EIE);
513 	writel(temp, &xhci->op_regs->command);
514 
515 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
516 	xhci_enable_interrupter(ir);
517 
518 	if (xhci_start(xhci)) {
519 		xhci_halt(xhci);
520 		spin_unlock_irqrestore(&xhci->lock, flags);
521 		return -ENODEV;
522 	}
523 
524 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
525 
526 	if (xhci->quirks & XHCI_NEC_HOST)
527 		xhci_ring_cmd_db(xhci);
528 
529 	spin_unlock_irqrestore(&xhci->lock, flags);
530 
531 	return 0;
532 }
533 
534 /*
535  * Start the HC after it was halted.
536  *
537  * This function is called by the USB core when the HC driver is added.
538  * Its opposite is xhci_stop().
539  *
540  * xhci_init() must be called once before this function can be called.
541  * Reset the HC, enable device slot contexts, program DCBAAP, and
542  * set command ring pointer and event ring pointer.
543  *
544  * Setup MSI-X vectors and enable interrupts.
545  */
546 int xhci_run(struct usb_hcd *hcd)
547 {
548 	u64 temp_64;
549 	int ret;
550 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
551 	struct xhci_interrupter *ir = xhci->interrupters[0];
552 	/* Start the xHCI host controller running only after the USB 2.0 roothub
553 	 * is setup.
554 	 */
555 
556 	hcd->uses_new_polling = 1;
557 	if (hcd->msi_enabled)
558 		ir->ip_autoclear = true;
559 
560 	if (!usb_hcd_is_primary_hcd(hcd))
561 		return xhci_run_finished(xhci);
562 
563 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
564 
565 	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
566 	temp_64 &= ERST_PTR_MASK;
567 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
568 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
569 
570 	xhci_set_interrupter_moderation(ir, xhci->imod_interval);
571 
572 	if (xhci->quirks & XHCI_NEC_HOST) {
573 		struct xhci_command *command;
574 
575 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
576 		if (!command)
577 			return -ENOMEM;
578 
579 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
580 				TRB_TYPE(TRB_NEC_GET_FW));
581 		if (ret)
582 			xhci_free_command(xhci, command);
583 	}
584 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
585 			"Finished %s for main hcd", __func__);
586 
587 	xhci_create_dbc_dev(xhci);
588 
589 	xhci_debugfs_init(xhci);
590 
591 	if (xhci_has_one_roothub(xhci))
592 		return xhci_run_finished(xhci);
593 
594 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
595 
596 	return 0;
597 }
598 EXPORT_SYMBOL_GPL(xhci_run);
599 
600 /*
601  * Stop xHCI driver.
602  *
603  * This function is called by the USB core when the HC driver is removed.
604  * Its opposite is xhci_run().
605  *
606  * Disable device contexts, disable IRQs, and quiesce the HC.
607  * Reset the HC, finish any completed transactions, and cleanup memory.
608  */
609 void xhci_stop(struct usb_hcd *hcd)
610 {
611 	u32 temp;
612 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
613 	struct xhci_interrupter *ir = xhci->interrupters[0];
614 
615 	mutex_lock(&xhci->mutex);
616 
617 	/* Only halt host and free memory after both hcds are removed */
618 	if (!usb_hcd_is_primary_hcd(hcd)) {
619 		mutex_unlock(&xhci->mutex);
620 		return;
621 	}
622 
623 	xhci_remove_dbc_dev(xhci);
624 
625 	spin_lock_irq(&xhci->lock);
626 	xhci->xhc_state |= XHCI_STATE_HALTED;
627 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
628 	xhci_halt(xhci);
629 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
630 	spin_unlock_irq(&xhci->lock);
631 
632 	/* Deleting Compliance Mode Recovery Timer */
633 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
634 			(!(xhci_all_ports_seen_u0(xhci)))) {
635 		del_timer_sync(&xhci->comp_mode_recovery_timer);
636 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
637 				"%s: compliance mode recovery timer deleted",
638 				__func__);
639 	}
640 
641 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
642 		usb_amd_dev_put();
643 
644 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
645 			"// Disabling event ring interrupts");
646 	temp = readl(&xhci->op_regs->status);
647 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
648 	xhci_disable_interrupter(ir);
649 
650 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
651 	xhci_mem_cleanup(xhci);
652 	xhci_debugfs_exit(xhci);
653 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
654 			"xhci_stop completed - status = %x",
655 			readl(&xhci->op_regs->status));
656 	mutex_unlock(&xhci->mutex);
657 }
658 EXPORT_SYMBOL_GPL(xhci_stop);
659 
660 /*
661  * Shutdown HC (not bus-specific)
662  *
663  * This is called when the machine is rebooting or halting.  We assume that the
664  * machine will be powered off, and the HC's internal state will be reset.
665  * Don't bother to free memory.
666  *
667  * This will only ever be called with the main usb_hcd (the USB3 roothub).
668  */
669 void xhci_shutdown(struct usb_hcd *hcd)
670 {
671 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
672 
673 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
674 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
675 
676 	/* Don't poll the roothubs after shutdown. */
677 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
678 			__func__, hcd->self.busnum);
679 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
680 	del_timer_sync(&hcd->rh_timer);
681 
682 	if (xhci->shared_hcd) {
683 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
684 		del_timer_sync(&xhci->shared_hcd->rh_timer);
685 	}
686 
687 	spin_lock_irq(&xhci->lock);
688 	xhci_halt(xhci);
689 
690 	/*
691 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
692 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
693 	 */
694 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
695 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
696 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
697 
698 	spin_unlock_irq(&xhci->lock);
699 
700 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
701 			"xhci_shutdown completed - status = %x",
702 			readl(&xhci->op_regs->status));
703 }
704 EXPORT_SYMBOL_GPL(xhci_shutdown);
705 
706 #ifdef CONFIG_PM
707 static void xhci_save_registers(struct xhci_hcd *xhci)
708 {
709 	struct xhci_interrupter *ir;
710 	unsigned int i;
711 
712 	xhci->s3.command = readl(&xhci->op_regs->command);
713 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
714 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
715 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
716 
717 	/* save both primary and all secondary interrupters */
718 	/* fixme, shold we lock  to prevent race with remove secondary interrupter? */
719 	for (i = 0; i < xhci->max_interrupters; i++) {
720 		ir = xhci->interrupters[i];
721 		if (!ir)
722 			continue;
723 
724 		ir->s3_erst_size = readl(&ir->ir_set->erst_size);
725 		ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
726 		ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
727 		ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
728 		ir->s3_irq_control = readl(&ir->ir_set->irq_control);
729 	}
730 }
731 
732 static void xhci_restore_registers(struct xhci_hcd *xhci)
733 {
734 	struct xhci_interrupter *ir;
735 	unsigned int i;
736 
737 	writel(xhci->s3.command, &xhci->op_regs->command);
738 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
739 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
740 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
741 
742 	/* FIXME should we lock to protect against freeing of interrupters */
743 	for (i = 0; i < xhci->max_interrupters; i++) {
744 		ir = xhci->interrupters[i];
745 		if (!ir)
746 			continue;
747 
748 		writel(ir->s3_erst_size, &ir->ir_set->erst_size);
749 		xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
750 		xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
751 		writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
752 		writel(ir->s3_irq_control, &ir->ir_set->irq_control);
753 	}
754 }
755 
756 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
757 {
758 	u64	val_64;
759 
760 	/* step 2: initialize command ring buffer */
761 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
762 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
763 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
764 				      xhci->cmd_ring->dequeue) &
765 		 (u64) ~CMD_RING_RSVD_BITS) |
766 		xhci->cmd_ring->cycle_state;
767 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
768 			"// Setting command ring address to 0x%llx",
769 			(long unsigned long) val_64);
770 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
771 }
772 
773 /*
774  * The whole command ring must be cleared to zero when we suspend the host.
775  *
776  * The host doesn't save the command ring pointer in the suspend well, so we
777  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
778  * aligned, because of the reserved bits in the command ring dequeue pointer
779  * register.  Therefore, we can't just set the dequeue pointer back in the
780  * middle of the ring (TRBs are 16-byte aligned).
781  */
782 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
783 {
784 	struct xhci_ring *ring;
785 	struct xhci_segment *seg;
786 
787 	ring = xhci->cmd_ring;
788 	seg = ring->deq_seg;
789 	do {
790 		memset(seg->trbs, 0,
791 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
792 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
793 			cpu_to_le32(~TRB_CYCLE);
794 		seg = seg->next;
795 	} while (seg != ring->deq_seg);
796 
797 	xhci_initialize_ring_info(ring, 1);
798 	/*
799 	 * Reset the hardware dequeue pointer.
800 	 * Yes, this will need to be re-written after resume, but we're paranoid
801 	 * and want to make sure the hardware doesn't access bogus memory
802 	 * because, say, the BIOS or an SMI started the host without changing
803 	 * the command ring pointers.
804 	 */
805 	xhci_set_cmd_ring_deq(xhci);
806 }
807 
808 /*
809  * Disable port wake bits if do_wakeup is not set.
810  *
811  * Also clear a possible internal port wake state left hanging for ports that
812  * detected termination but never successfully enumerated (trained to 0U).
813  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
814  * at enumeration clears this wake, force one here as well for unconnected ports
815  */
816 
817 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
818 				       struct xhci_hub *rhub,
819 				       bool do_wakeup)
820 {
821 	unsigned long flags;
822 	u32 t1, t2, portsc;
823 	int i;
824 
825 	spin_lock_irqsave(&xhci->lock, flags);
826 
827 	for (i = 0; i < rhub->num_ports; i++) {
828 		portsc = readl(rhub->ports[i]->addr);
829 		t1 = xhci_port_state_to_neutral(portsc);
830 		t2 = t1;
831 
832 		/* clear wake bits if do_wake is not set */
833 		if (!do_wakeup)
834 			t2 &= ~PORT_WAKE_BITS;
835 
836 		/* Don't touch csc bit if connected or connect change is set */
837 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
838 			t2 |= PORT_CSC;
839 
840 		if (t1 != t2) {
841 			writel(t2, rhub->ports[i]->addr);
842 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
843 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
844 		}
845 	}
846 	spin_unlock_irqrestore(&xhci->lock, flags);
847 }
848 
849 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
850 {
851 	struct xhci_port	**ports;
852 	int			port_index;
853 	u32			status;
854 	u32			portsc;
855 
856 	status = readl(&xhci->op_regs->status);
857 	if (status & STS_EINT)
858 		return true;
859 	/*
860 	 * Checking STS_EINT is not enough as there is a lag between a change
861 	 * bit being set and the Port Status Change Event that it generated
862 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
863 	 */
864 
865 	port_index = xhci->usb2_rhub.num_ports;
866 	ports = xhci->usb2_rhub.ports;
867 	while (port_index--) {
868 		portsc = readl(ports[port_index]->addr);
869 		if (portsc & PORT_CHANGE_MASK ||
870 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
871 			return true;
872 	}
873 	port_index = xhci->usb3_rhub.num_ports;
874 	ports = xhci->usb3_rhub.ports;
875 	while (port_index--) {
876 		portsc = readl(ports[port_index]->addr);
877 		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
878 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
879 			return true;
880 	}
881 	return false;
882 }
883 
884 /*
885  * Stop HC (not bus-specific)
886  *
887  * This is called when the machine transition into S3/S4 mode.
888  *
889  */
890 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
891 {
892 	int			rc = 0;
893 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
894 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
895 	u32			command;
896 	u32			res;
897 
898 	if (!hcd->state)
899 		return 0;
900 
901 	if (hcd->state != HC_STATE_SUSPENDED ||
902 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
903 		return -EINVAL;
904 
905 	/* Clear root port wake on bits if wakeup not allowed. */
906 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
907 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
908 
909 	if (!HCD_HW_ACCESSIBLE(hcd))
910 		return 0;
911 
912 	xhci_dbc_suspend(xhci);
913 
914 	/* Don't poll the roothubs on bus suspend. */
915 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
916 		 __func__, hcd->self.busnum);
917 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
918 	del_timer_sync(&hcd->rh_timer);
919 	if (xhci->shared_hcd) {
920 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
921 		del_timer_sync(&xhci->shared_hcd->rh_timer);
922 	}
923 
924 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
925 		usleep_range(1000, 1500);
926 
927 	spin_lock_irq(&xhci->lock);
928 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
929 	if (xhci->shared_hcd)
930 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
931 	/* step 1: stop endpoint */
932 	/* skipped assuming that port suspend has done */
933 
934 	/* step 2: clear Run/Stop bit */
935 	command = readl(&xhci->op_regs->command);
936 	command &= ~CMD_RUN;
937 	writel(command, &xhci->op_regs->command);
938 
939 	/* Some chips from Fresco Logic need an extraordinary delay */
940 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
941 
942 	if (xhci_handshake(&xhci->op_regs->status,
943 		      STS_HALT, STS_HALT, delay)) {
944 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
945 		spin_unlock_irq(&xhci->lock);
946 		return -ETIMEDOUT;
947 	}
948 	xhci_clear_command_ring(xhci);
949 
950 	/* step 3: save registers */
951 	xhci_save_registers(xhci);
952 
953 	/* step 4: set CSS flag */
954 	command = readl(&xhci->op_regs->command);
955 	command |= CMD_CSS;
956 	writel(command, &xhci->op_regs->command);
957 	xhci->broken_suspend = 0;
958 	if (xhci_handshake(&xhci->op_regs->status,
959 				STS_SAVE, 0, 20 * 1000)) {
960 	/*
961 	 * AMD SNPS xHC 3.0 occasionally does not clear the
962 	 * SSS bit of USBSTS and when driver tries to poll
963 	 * to see if the xHC clears BIT(8) which never happens
964 	 * and driver assumes that controller is not responding
965 	 * and times out. To workaround this, its good to check
966 	 * if SRE and HCE bits are not set (as per xhci
967 	 * Section 5.4.2) and bypass the timeout.
968 	 */
969 		res = readl(&xhci->op_regs->status);
970 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
971 		    (((res & STS_SRE) == 0) &&
972 				((res & STS_HCE) == 0))) {
973 			xhci->broken_suspend = 1;
974 		} else {
975 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
976 			spin_unlock_irq(&xhci->lock);
977 			return -ETIMEDOUT;
978 		}
979 	}
980 	spin_unlock_irq(&xhci->lock);
981 
982 	/*
983 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
984 	 * is about to be suspended.
985 	 */
986 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
987 			(!(xhci_all_ports_seen_u0(xhci)))) {
988 		del_timer_sync(&xhci->comp_mode_recovery_timer);
989 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
990 				"%s: compliance mode recovery timer deleted",
991 				__func__);
992 	}
993 
994 	return rc;
995 }
996 EXPORT_SYMBOL_GPL(xhci_suspend);
997 
998 /*
999  * start xHC (not bus-specific)
1000  *
1001  * This is called when the machine transition from S3/S4 mode.
1002  *
1003  */
1004 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
1005 {
1006 	bool			hibernated = (msg.event == PM_EVENT_RESTORE);
1007 	u32			command, temp = 0;
1008 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1009 	int			retval = 0;
1010 	bool			comp_timer_running = false;
1011 	bool			pending_portevent = false;
1012 	bool			suspended_usb3_devs = false;
1013 	bool			reinit_xhc = false;
1014 
1015 	if (!hcd->state)
1016 		return 0;
1017 
1018 	/* Wait a bit if either of the roothubs need to settle from the
1019 	 * transition into bus suspend.
1020 	 */
1021 
1022 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1023 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1024 		msleep(100);
1025 
1026 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1027 	if (xhci->shared_hcd)
1028 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1029 
1030 	spin_lock_irq(&xhci->lock);
1031 
1032 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1033 		reinit_xhc = true;
1034 
1035 	if (!reinit_xhc) {
1036 		/*
1037 		 * Some controllers might lose power during suspend, so wait
1038 		 * for controller not ready bit to clear, just as in xHC init.
1039 		 */
1040 		retval = xhci_handshake(&xhci->op_regs->status,
1041 					STS_CNR, 0, 10 * 1000 * 1000);
1042 		if (retval) {
1043 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1044 				  retval);
1045 			spin_unlock_irq(&xhci->lock);
1046 			return retval;
1047 		}
1048 		/* step 1: restore register */
1049 		xhci_restore_registers(xhci);
1050 		/* step 2: initialize command ring buffer */
1051 		xhci_set_cmd_ring_deq(xhci);
1052 		/* step 3: restore state and start state*/
1053 		/* step 3: set CRS flag */
1054 		command = readl(&xhci->op_regs->command);
1055 		command |= CMD_CRS;
1056 		writel(command, &xhci->op_regs->command);
1057 		/*
1058 		 * Some controllers take up to 55+ ms to complete the controller
1059 		 * restore so setting the timeout to 100ms. Xhci specification
1060 		 * doesn't mention any timeout value.
1061 		 */
1062 		if (xhci_handshake(&xhci->op_regs->status,
1063 			      STS_RESTORE, 0, 100 * 1000)) {
1064 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1065 			spin_unlock_irq(&xhci->lock);
1066 			return -ETIMEDOUT;
1067 		}
1068 	}
1069 
1070 	temp = readl(&xhci->op_regs->status);
1071 
1072 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1073 	if ((temp & (STS_SRE | STS_HCE)) &&
1074 	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1075 		reinit_xhc = true;
1076 		if (!xhci->broken_suspend)
1077 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1078 	}
1079 
1080 	if (reinit_xhc) {
1081 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1082 				!(xhci_all_ports_seen_u0(xhci))) {
1083 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1084 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1085 				"Compliance Mode Recovery Timer deleted!");
1086 		}
1087 
1088 		/* Let the USB core know _both_ roothubs lost power. */
1089 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1090 		if (xhci->shared_hcd)
1091 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1092 
1093 		xhci_dbg(xhci, "Stop HCD\n");
1094 		xhci_halt(xhci);
1095 		xhci_zero_64b_regs(xhci);
1096 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1097 		spin_unlock_irq(&xhci->lock);
1098 		if (retval)
1099 			return retval;
1100 
1101 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1102 		temp = readl(&xhci->op_regs->status);
1103 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1104 		xhci_disable_interrupter(xhci->interrupters[0]);
1105 
1106 		xhci_dbg(xhci, "cleaning up memory\n");
1107 		xhci_mem_cleanup(xhci);
1108 		xhci_debugfs_exit(xhci);
1109 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1110 			    readl(&xhci->op_regs->status));
1111 
1112 		/* USB core calls the PCI reinit and start functions twice:
1113 		 * first with the primary HCD, and then with the secondary HCD.
1114 		 * If we don't do the same, the host will never be started.
1115 		 */
1116 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1117 		retval = xhci_init(hcd);
1118 		if (retval)
1119 			return retval;
1120 		comp_timer_running = true;
1121 
1122 		xhci_dbg(xhci, "Start the primary HCD\n");
1123 		retval = xhci_run(hcd);
1124 		if (!retval && xhci->shared_hcd) {
1125 			xhci_dbg(xhci, "Start the secondary HCD\n");
1126 			retval = xhci_run(xhci->shared_hcd);
1127 		}
1128 
1129 		hcd->state = HC_STATE_SUSPENDED;
1130 		if (xhci->shared_hcd)
1131 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1132 		goto done;
1133 	}
1134 
1135 	/* step 4: set Run/Stop bit */
1136 	command = readl(&xhci->op_regs->command);
1137 	command |= CMD_RUN;
1138 	writel(command, &xhci->op_regs->command);
1139 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1140 		  0, 250 * 1000);
1141 
1142 	/* step 5: walk topology and initialize portsc,
1143 	 * portpmsc and portli
1144 	 */
1145 	/* this is done in bus_resume */
1146 
1147 	/* step 6: restart each of the previously
1148 	 * Running endpoints by ringing their doorbells
1149 	 */
1150 
1151 	spin_unlock_irq(&xhci->lock);
1152 
1153 	xhci_dbc_resume(xhci);
1154 
1155  done:
1156 	if (retval == 0) {
1157 		/*
1158 		 * Resume roothubs only if there are pending events.
1159 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1160 		 * the first wake signalling failed, give it that chance if
1161 		 * there are suspended USB 3 devices.
1162 		 */
1163 		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1164 		    xhci->usb3_rhub.bus_state.bus_suspended)
1165 			suspended_usb3_devs = true;
1166 
1167 		pending_portevent = xhci_pending_portevent(xhci);
1168 
1169 		if (suspended_usb3_devs && !pending_portevent &&
1170 		    msg.event == PM_EVENT_AUTO_RESUME) {
1171 			msleep(120);
1172 			pending_portevent = xhci_pending_portevent(xhci);
1173 		}
1174 
1175 		if (pending_portevent) {
1176 			if (xhci->shared_hcd)
1177 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1178 			usb_hcd_resume_root_hub(hcd);
1179 		}
1180 	}
1181 	/*
1182 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1183 	 * be re-initialized Always after a system resume. Ports are subject
1184 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1185 	 * ports have entered previously to U0 before system's suspension.
1186 	 */
1187 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1188 		compliance_mode_recovery_timer_init(xhci);
1189 
1190 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1191 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1192 
1193 	/* Re-enable port polling. */
1194 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1195 		 __func__, hcd->self.busnum);
1196 	if (xhci->shared_hcd) {
1197 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1198 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1199 	}
1200 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1201 	usb_hcd_poll_rh_status(hcd);
1202 
1203 	return retval;
1204 }
1205 EXPORT_SYMBOL_GPL(xhci_resume);
1206 #endif	/* CONFIG_PM */
1207 
1208 /*-------------------------------------------------------------------------*/
1209 
1210 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1211 {
1212 	void *temp;
1213 	int ret = 0;
1214 	unsigned int buf_len;
1215 	enum dma_data_direction dir;
1216 
1217 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1218 	buf_len = urb->transfer_buffer_length;
1219 
1220 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1221 			    dev_to_node(hcd->self.sysdev));
1222 	if (!temp)
1223 		return -ENOMEM;
1224 
1225 	if (usb_urb_dir_out(urb))
1226 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1227 				   temp, buf_len, 0);
1228 
1229 	urb->transfer_buffer = temp;
1230 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1231 					   urb->transfer_buffer,
1232 					   urb->transfer_buffer_length,
1233 					   dir);
1234 
1235 	if (dma_mapping_error(hcd->self.sysdev,
1236 			      urb->transfer_dma)) {
1237 		ret = -EAGAIN;
1238 		kfree(temp);
1239 	} else {
1240 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1241 	}
1242 
1243 	return ret;
1244 }
1245 
1246 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1247 					  struct urb *urb)
1248 {
1249 	bool ret = false;
1250 	unsigned int i;
1251 	unsigned int len = 0;
1252 	unsigned int trb_size;
1253 	unsigned int max_pkt;
1254 	struct scatterlist *sg;
1255 	struct scatterlist *tail_sg;
1256 
1257 	tail_sg = urb->sg;
1258 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1259 
1260 	if (!urb->num_sgs)
1261 		return ret;
1262 
1263 	if (urb->dev->speed >= USB_SPEED_SUPER)
1264 		trb_size = TRB_CACHE_SIZE_SS;
1265 	else
1266 		trb_size = TRB_CACHE_SIZE_HS;
1267 
1268 	if (urb->transfer_buffer_length != 0 &&
1269 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1270 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1271 			len = len + sg->length;
1272 			if (i > trb_size - 2) {
1273 				len = len - tail_sg->length;
1274 				if (len < max_pkt) {
1275 					ret = true;
1276 					break;
1277 				}
1278 
1279 				tail_sg = sg_next(tail_sg);
1280 			}
1281 		}
1282 	}
1283 	return ret;
1284 }
1285 
1286 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1287 {
1288 	unsigned int len;
1289 	unsigned int buf_len;
1290 	enum dma_data_direction dir;
1291 
1292 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1293 
1294 	buf_len = urb->transfer_buffer_length;
1295 
1296 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1297 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1298 		dma_unmap_single(hcd->self.sysdev,
1299 				 urb->transfer_dma,
1300 				 urb->transfer_buffer_length,
1301 				 dir);
1302 
1303 	if (usb_urb_dir_in(urb)) {
1304 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1305 					   urb->transfer_buffer,
1306 					   buf_len,
1307 					   0);
1308 		if (len != buf_len) {
1309 			xhci_dbg(hcd_to_xhci(hcd),
1310 				 "Copy from tmp buf to urb sg list failed\n");
1311 			urb->actual_length = len;
1312 		}
1313 	}
1314 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1315 	kfree(urb->transfer_buffer);
1316 	urb->transfer_buffer = NULL;
1317 }
1318 
1319 /*
1320  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1321  * we'll copy the actual data into the TRB address register. This is limited to
1322  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1323  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1324  */
1325 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1326 				gfp_t mem_flags)
1327 {
1328 	struct xhci_hcd *xhci;
1329 
1330 	xhci = hcd_to_xhci(hcd);
1331 
1332 	if (xhci_urb_suitable_for_idt(urb))
1333 		return 0;
1334 
1335 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1336 		if (xhci_urb_temp_buffer_required(hcd, urb))
1337 			return xhci_map_temp_buffer(hcd, urb);
1338 	}
1339 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1340 }
1341 
1342 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1343 {
1344 	struct xhci_hcd *xhci;
1345 	bool unmap_temp_buf = false;
1346 
1347 	xhci = hcd_to_xhci(hcd);
1348 
1349 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1350 		unmap_temp_buf = true;
1351 
1352 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1353 		xhci_unmap_temp_buf(hcd, urb);
1354 	else
1355 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1356 }
1357 
1358 /**
1359  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1360  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1361  * value to right shift 1 for the bitmask.
1362  *
1363  * Index  = (epnum * 2) + direction - 1,
1364  * where direction = 0 for OUT, 1 for IN.
1365  * For control endpoints, the IN index is used (OUT index is unused), so
1366  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1367  */
1368 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1369 {
1370 	unsigned int index;
1371 	if (usb_endpoint_xfer_control(desc))
1372 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1373 	else
1374 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1375 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1376 	return index;
1377 }
1378 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1379 
1380 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1381  * address from the XHCI endpoint index.
1382  */
1383 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1384 {
1385 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1386 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1387 	return direction | number;
1388 }
1389 
1390 /* Find the flag for this endpoint (for use in the control context).  Use the
1391  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1392  * bit 1, etc.
1393  */
1394 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1395 {
1396 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1397 }
1398 
1399 /* Compute the last valid endpoint context index.  Basically, this is the
1400  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1401  * we find the most significant bit set in the added contexts flags.
1402  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1403  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1404  */
1405 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1406 {
1407 	return fls(added_ctxs) - 1;
1408 }
1409 
1410 /* Returns 1 if the arguments are OK;
1411  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1412  */
1413 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1414 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1415 		const char *func) {
1416 	struct xhci_hcd	*xhci;
1417 	struct xhci_virt_device	*virt_dev;
1418 
1419 	if (!hcd || (check_ep && !ep) || !udev) {
1420 		pr_debug("xHCI %s called with invalid args\n", func);
1421 		return -EINVAL;
1422 	}
1423 	if (!udev->parent) {
1424 		pr_debug("xHCI %s called for root hub\n", func);
1425 		return 0;
1426 	}
1427 
1428 	xhci = hcd_to_xhci(hcd);
1429 	if (check_virt_dev) {
1430 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1431 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1432 					func);
1433 			return -EINVAL;
1434 		}
1435 
1436 		virt_dev = xhci->devs[udev->slot_id];
1437 		if (virt_dev->udev != udev) {
1438 			xhci_dbg(xhci, "xHCI %s called with udev and "
1439 					  "virt_dev does not match\n", func);
1440 			return -EINVAL;
1441 		}
1442 	}
1443 
1444 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1445 		return -ENODEV;
1446 
1447 	return 1;
1448 }
1449 
1450 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1451 		struct usb_device *udev, struct xhci_command *command,
1452 		bool ctx_change, bool must_succeed);
1453 
1454 /*
1455  * Full speed devices may have a max packet size greater than 8 bytes, but the
1456  * USB core doesn't know that until it reads the first 8 bytes of the
1457  * descriptor.  If the usb_device's max packet size changes after that point,
1458  * we need to issue an evaluate context command and wait on it.
1459  */
1460 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1461 {
1462 	struct xhci_input_control_ctx *ctrl_ctx;
1463 	struct xhci_ep_ctx *ep_ctx;
1464 	struct xhci_command *command;
1465 	int max_packet_size;
1466 	int hw_max_packet_size;
1467 	int ret = 0;
1468 
1469 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1470 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1471 	max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1472 
1473 	if (hw_max_packet_size == max_packet_size)
1474 		return 0;
1475 
1476 	switch (max_packet_size) {
1477 	case 8: case 16: case 32: case 64: case 9:
1478 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1479 				"Max Packet Size for ep 0 changed.");
1480 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1481 				"Max packet size in usb_device = %d",
1482 				max_packet_size);
1483 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1484 				"Max packet size in xHCI HW = %d",
1485 				hw_max_packet_size);
1486 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1487 				"Issuing evaluate context command.");
1488 
1489 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1490 		if (!command)
1491 			return -ENOMEM;
1492 
1493 		command->in_ctx = vdev->in_ctx;
1494 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1495 		if (!ctrl_ctx) {
1496 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1497 					__func__);
1498 			ret = -ENOMEM;
1499 			break;
1500 		}
1501 		/* Set up the modified control endpoint 0 */
1502 		xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1503 
1504 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1505 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1506 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1507 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1508 
1509 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1510 		ctrl_ctx->drop_flags = 0;
1511 
1512 		ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1513 					      true, false);
1514 		/* Clean up the input context for later use by bandwidth functions */
1515 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1516 		break;
1517 	default:
1518 		dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1519 			max_packet_size);
1520 		return -EINVAL;
1521 	}
1522 
1523 	kfree(command->completion);
1524 	kfree(command);
1525 
1526 	return ret;
1527 }
1528 
1529 /*
1530  * non-error returns are a promise to giveback() the urb later
1531  * we drop ownership so next owner (or urb unlink) can get it
1532  */
1533 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1534 {
1535 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1536 	unsigned long flags;
1537 	int ret = 0;
1538 	unsigned int slot_id, ep_index;
1539 	unsigned int *ep_state;
1540 	struct urb_priv	*urb_priv;
1541 	int num_tds;
1542 
1543 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1544 
1545 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1546 		num_tds = urb->number_of_packets;
1547 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1548 	    urb->transfer_buffer_length > 0 &&
1549 	    urb->transfer_flags & URB_ZERO_PACKET &&
1550 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1551 		num_tds = 2;
1552 	else
1553 		num_tds = 1;
1554 
1555 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1556 	if (!urb_priv)
1557 		return -ENOMEM;
1558 
1559 	urb_priv->num_tds = num_tds;
1560 	urb_priv->num_tds_done = 0;
1561 	urb->hcpriv = urb_priv;
1562 
1563 	trace_xhci_urb_enqueue(urb);
1564 
1565 	spin_lock_irqsave(&xhci->lock, flags);
1566 
1567 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1568 			      true, true, __func__);
1569 	if (ret <= 0) {
1570 		ret = ret ? ret : -EINVAL;
1571 		goto free_priv;
1572 	}
1573 
1574 	slot_id = urb->dev->slot_id;
1575 
1576 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1577 		ret = -ESHUTDOWN;
1578 		goto free_priv;
1579 	}
1580 
1581 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1582 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1583 		ret = -ENODEV;
1584 		goto free_priv;
1585 	}
1586 
1587 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1588 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1589 			 urb->ep->desc.bEndpointAddress, urb);
1590 		ret = -ESHUTDOWN;
1591 		goto free_priv;
1592 	}
1593 
1594 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1595 
1596 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1597 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1598 			  *ep_state);
1599 		ret = -EINVAL;
1600 		goto free_priv;
1601 	}
1602 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1603 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1604 		ret = -EINVAL;
1605 		goto free_priv;
1606 	}
1607 
1608 	switch (usb_endpoint_type(&urb->ep->desc)) {
1609 
1610 	case USB_ENDPOINT_XFER_CONTROL:
1611 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1612 					 slot_id, ep_index);
1613 		break;
1614 	case USB_ENDPOINT_XFER_BULK:
1615 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1616 					 slot_id, ep_index);
1617 		break;
1618 	case USB_ENDPOINT_XFER_INT:
1619 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1620 				slot_id, ep_index);
1621 		break;
1622 	case USB_ENDPOINT_XFER_ISOC:
1623 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1624 				slot_id, ep_index);
1625 	}
1626 
1627 	if (ret) {
1628 free_priv:
1629 		xhci_urb_free_priv(urb_priv);
1630 		urb->hcpriv = NULL;
1631 	}
1632 	spin_unlock_irqrestore(&xhci->lock, flags);
1633 	return ret;
1634 }
1635 
1636 /*
1637  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1638  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1639  * should pick up where it left off in the TD, unless a Set Transfer Ring
1640  * Dequeue Pointer is issued.
1641  *
1642  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1643  * the ring.  Since the ring is a contiguous structure, they can't be physically
1644  * removed.  Instead, there are two options:
1645  *
1646  *  1) If the HC is in the middle of processing the URB to be canceled, we
1647  *     simply move the ring's dequeue pointer past those TRBs using the Set
1648  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1649  *     when drivers timeout on the last submitted URB and attempt to cancel.
1650  *
1651  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1652  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1653  *     HC will need to invalidate the any TRBs it has cached after the stop
1654  *     endpoint command, as noted in the xHCI 0.95 errata.
1655  *
1656  *  3) The TD may have completed by the time the Stop Endpoint Command
1657  *     completes, so software needs to handle that case too.
1658  *
1659  * This function should protect against the TD enqueueing code ringing the
1660  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1661  * It also needs to account for multiple cancellations on happening at the same
1662  * time for the same endpoint.
1663  *
1664  * Note that this function can be called in any context, or so says
1665  * usb_hcd_unlink_urb()
1666  */
1667 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1668 {
1669 	unsigned long flags;
1670 	int ret, i;
1671 	u32 temp;
1672 	struct xhci_hcd *xhci;
1673 	struct urb_priv	*urb_priv;
1674 	struct xhci_td *td;
1675 	unsigned int ep_index;
1676 	struct xhci_ring *ep_ring;
1677 	struct xhci_virt_ep *ep;
1678 	struct xhci_command *command;
1679 	struct xhci_virt_device *vdev;
1680 
1681 	xhci = hcd_to_xhci(hcd);
1682 	spin_lock_irqsave(&xhci->lock, flags);
1683 
1684 	trace_xhci_urb_dequeue(urb);
1685 
1686 	/* Make sure the URB hasn't completed or been unlinked already */
1687 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1688 	if (ret)
1689 		goto done;
1690 
1691 	/* give back URB now if we can't queue it for cancel */
1692 	vdev = xhci->devs[urb->dev->slot_id];
1693 	urb_priv = urb->hcpriv;
1694 	if (!vdev || !urb_priv)
1695 		goto err_giveback;
1696 
1697 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1698 	ep = &vdev->eps[ep_index];
1699 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1700 	if (!ep || !ep_ring)
1701 		goto err_giveback;
1702 
1703 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1704 	temp = readl(&xhci->op_regs->status);
1705 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1706 		xhci_hc_died(xhci);
1707 		goto done;
1708 	}
1709 
1710 	/*
1711 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1712 	 * make sure none of the ring related pointers in this URB private data
1713 	 * are touched, such as td_list, otherwise we overwrite freed data
1714 	 */
1715 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1716 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1717 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1718 			td = &urb_priv->td[i];
1719 			if (!list_empty(&td->cancelled_td_list))
1720 				list_del_init(&td->cancelled_td_list);
1721 		}
1722 		goto err_giveback;
1723 	}
1724 
1725 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1726 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1727 				"HC halted, freeing TD manually.");
1728 		for (i = urb_priv->num_tds_done;
1729 		     i < urb_priv->num_tds;
1730 		     i++) {
1731 			td = &urb_priv->td[i];
1732 			if (!list_empty(&td->td_list))
1733 				list_del_init(&td->td_list);
1734 			if (!list_empty(&td->cancelled_td_list))
1735 				list_del_init(&td->cancelled_td_list);
1736 		}
1737 		goto err_giveback;
1738 	}
1739 
1740 	i = urb_priv->num_tds_done;
1741 	if (i < urb_priv->num_tds)
1742 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1743 				"Cancel URB %p, dev %s, ep 0x%x, "
1744 				"starting at offset 0x%llx",
1745 				urb, urb->dev->devpath,
1746 				urb->ep->desc.bEndpointAddress,
1747 				(unsigned long long) xhci_trb_virt_to_dma(
1748 					urb_priv->td[i].start_seg,
1749 					urb_priv->td[i].first_trb));
1750 
1751 	for (; i < urb_priv->num_tds; i++) {
1752 		td = &urb_priv->td[i];
1753 		/* TD can already be on cancelled list if ep halted on it */
1754 		if (list_empty(&td->cancelled_td_list)) {
1755 			td->cancel_status = TD_DIRTY;
1756 			list_add_tail(&td->cancelled_td_list,
1757 				      &ep->cancelled_td_list);
1758 		}
1759 	}
1760 
1761 	/* Queue a stop endpoint command, but only if this is
1762 	 * the first cancellation to be handled.
1763 	 */
1764 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1765 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1766 		if (!command) {
1767 			ret = -ENOMEM;
1768 			goto done;
1769 		}
1770 		ep->ep_state |= EP_STOP_CMD_PENDING;
1771 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1772 					 ep_index, 0);
1773 		xhci_ring_cmd_db(xhci);
1774 	}
1775 done:
1776 	spin_unlock_irqrestore(&xhci->lock, flags);
1777 	return ret;
1778 
1779 err_giveback:
1780 	if (urb_priv)
1781 		xhci_urb_free_priv(urb_priv);
1782 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1783 	spin_unlock_irqrestore(&xhci->lock, flags);
1784 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1785 	return ret;
1786 }
1787 
1788 /* Drop an endpoint from a new bandwidth configuration for this device.
1789  * Only one call to this function is allowed per endpoint before
1790  * check_bandwidth() or reset_bandwidth() must be called.
1791  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1792  * add the endpoint to the schedule with possibly new parameters denoted by a
1793  * different endpoint descriptor in usb_host_endpoint.
1794  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1795  * not allowed.
1796  *
1797  * The USB core will not allow URBs to be queued to an endpoint that is being
1798  * disabled, so there's no need for mutual exclusion to protect
1799  * the xhci->devs[slot_id] structure.
1800  */
1801 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1802 		       struct usb_host_endpoint *ep)
1803 {
1804 	struct xhci_hcd *xhci;
1805 	struct xhci_container_ctx *in_ctx, *out_ctx;
1806 	struct xhci_input_control_ctx *ctrl_ctx;
1807 	unsigned int ep_index;
1808 	struct xhci_ep_ctx *ep_ctx;
1809 	u32 drop_flag;
1810 	u32 new_add_flags, new_drop_flags;
1811 	int ret;
1812 
1813 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1814 	if (ret <= 0)
1815 		return ret;
1816 	xhci = hcd_to_xhci(hcd);
1817 	if (xhci->xhc_state & XHCI_STATE_DYING)
1818 		return -ENODEV;
1819 
1820 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1821 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1822 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1823 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1824 				__func__, drop_flag);
1825 		return 0;
1826 	}
1827 
1828 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1829 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1830 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1831 	if (!ctrl_ctx) {
1832 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1833 				__func__);
1834 		return 0;
1835 	}
1836 
1837 	ep_index = xhci_get_endpoint_index(&ep->desc);
1838 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1839 	/* If the HC already knows the endpoint is disabled,
1840 	 * or the HCD has noted it is disabled, ignore this request
1841 	 */
1842 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1843 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1844 	    xhci_get_endpoint_flag(&ep->desc)) {
1845 		/* Do not warn when called after a usb_device_reset */
1846 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1847 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1848 				  __func__, ep);
1849 		return 0;
1850 	}
1851 
1852 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1853 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1854 
1855 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1856 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1857 
1858 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1859 
1860 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1861 
1862 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1863 			(unsigned int) ep->desc.bEndpointAddress,
1864 			udev->slot_id,
1865 			(unsigned int) new_drop_flags,
1866 			(unsigned int) new_add_flags);
1867 	return 0;
1868 }
1869 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1870 
1871 /* Add an endpoint to a new possible bandwidth configuration for this device.
1872  * Only one call to this function is allowed per endpoint before
1873  * check_bandwidth() or reset_bandwidth() must be called.
1874  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1875  * add the endpoint to the schedule with possibly new parameters denoted by a
1876  * different endpoint descriptor in usb_host_endpoint.
1877  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1878  * not allowed.
1879  *
1880  * The USB core will not allow URBs to be queued to an endpoint until the
1881  * configuration or alt setting is installed in the device, so there's no need
1882  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1883  */
1884 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1885 		      struct usb_host_endpoint *ep)
1886 {
1887 	struct xhci_hcd *xhci;
1888 	struct xhci_container_ctx *in_ctx;
1889 	unsigned int ep_index;
1890 	struct xhci_input_control_ctx *ctrl_ctx;
1891 	struct xhci_ep_ctx *ep_ctx;
1892 	u32 added_ctxs;
1893 	u32 new_add_flags, new_drop_flags;
1894 	struct xhci_virt_device *virt_dev;
1895 	int ret = 0;
1896 
1897 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1898 	if (ret <= 0) {
1899 		/* So we won't queue a reset ep command for a root hub */
1900 		ep->hcpriv = NULL;
1901 		return ret;
1902 	}
1903 	xhci = hcd_to_xhci(hcd);
1904 	if (xhci->xhc_state & XHCI_STATE_DYING)
1905 		return -ENODEV;
1906 
1907 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1908 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1909 		/* FIXME when we have to issue an evaluate endpoint command to
1910 		 * deal with ep0 max packet size changing once we get the
1911 		 * descriptors
1912 		 */
1913 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1914 				__func__, added_ctxs);
1915 		return 0;
1916 	}
1917 
1918 	virt_dev = xhci->devs[udev->slot_id];
1919 	in_ctx = virt_dev->in_ctx;
1920 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1921 	if (!ctrl_ctx) {
1922 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1923 				__func__);
1924 		return 0;
1925 	}
1926 
1927 	ep_index = xhci_get_endpoint_index(&ep->desc);
1928 	/* If this endpoint is already in use, and the upper layers are trying
1929 	 * to add it again without dropping it, reject the addition.
1930 	 */
1931 	if (virt_dev->eps[ep_index].ring &&
1932 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1933 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1934 				"without dropping it.\n",
1935 				(unsigned int) ep->desc.bEndpointAddress);
1936 		return -EINVAL;
1937 	}
1938 
1939 	/* If the HCD has already noted the endpoint is enabled,
1940 	 * ignore this request.
1941 	 */
1942 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1943 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1944 				__func__, ep);
1945 		return 0;
1946 	}
1947 
1948 	/*
1949 	 * Configuration and alternate setting changes must be done in
1950 	 * process context, not interrupt context (or so documenation
1951 	 * for usb_set_interface() and usb_set_configuration() claim).
1952 	 */
1953 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1954 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1955 				__func__, ep->desc.bEndpointAddress);
1956 		return -ENOMEM;
1957 	}
1958 
1959 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1960 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1961 
1962 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1963 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1964 	 * this re-adds a new state for the endpoint from the new endpoint
1965 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1966 	 * drop flags alone.
1967 	 */
1968 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1969 
1970 	/* Store the usb_device pointer for later use */
1971 	ep->hcpriv = udev;
1972 
1973 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1974 	trace_xhci_add_endpoint(ep_ctx);
1975 
1976 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1977 			(unsigned int) ep->desc.bEndpointAddress,
1978 			udev->slot_id,
1979 			(unsigned int) new_drop_flags,
1980 			(unsigned int) new_add_flags);
1981 	return 0;
1982 }
1983 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1984 
1985 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1986 {
1987 	struct xhci_input_control_ctx *ctrl_ctx;
1988 	struct xhci_ep_ctx *ep_ctx;
1989 	struct xhci_slot_ctx *slot_ctx;
1990 	int i;
1991 
1992 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1993 	if (!ctrl_ctx) {
1994 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1995 				__func__);
1996 		return;
1997 	}
1998 
1999 	/* When a device's add flag and drop flag are zero, any subsequent
2000 	 * configure endpoint command will leave that endpoint's state
2001 	 * untouched.  Make sure we don't leave any old state in the input
2002 	 * endpoint contexts.
2003 	 */
2004 	ctrl_ctx->drop_flags = 0;
2005 	ctrl_ctx->add_flags = 0;
2006 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2007 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2008 	/* Endpoint 0 is always valid */
2009 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2010 	for (i = 1; i < 31; i++) {
2011 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2012 		ep_ctx->ep_info = 0;
2013 		ep_ctx->ep_info2 = 0;
2014 		ep_ctx->deq = 0;
2015 		ep_ctx->tx_info = 0;
2016 	}
2017 }
2018 
2019 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2020 		struct usb_device *udev, u32 *cmd_status)
2021 {
2022 	int ret;
2023 
2024 	switch (*cmd_status) {
2025 	case COMP_COMMAND_ABORTED:
2026 	case COMP_COMMAND_RING_STOPPED:
2027 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2028 		ret = -ETIME;
2029 		break;
2030 	case COMP_RESOURCE_ERROR:
2031 		dev_warn(&udev->dev,
2032 			 "Not enough host controller resources for new device state.\n");
2033 		ret = -ENOMEM;
2034 		/* FIXME: can we allocate more resources for the HC? */
2035 		break;
2036 	case COMP_BANDWIDTH_ERROR:
2037 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2038 		dev_warn(&udev->dev,
2039 			 "Not enough bandwidth for new device state.\n");
2040 		ret = -ENOSPC;
2041 		/* FIXME: can we go back to the old state? */
2042 		break;
2043 	case COMP_TRB_ERROR:
2044 		/* the HCD set up something wrong */
2045 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2046 				"add flag = 1, "
2047 				"and endpoint is not disabled.\n");
2048 		ret = -EINVAL;
2049 		break;
2050 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2051 		dev_warn(&udev->dev,
2052 			 "ERROR: Incompatible device for endpoint configure command.\n");
2053 		ret = -ENODEV;
2054 		break;
2055 	case COMP_SUCCESS:
2056 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2057 				"Successful Endpoint Configure command");
2058 		ret = 0;
2059 		break;
2060 	default:
2061 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2062 				*cmd_status);
2063 		ret = -EINVAL;
2064 		break;
2065 	}
2066 	return ret;
2067 }
2068 
2069 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2070 		struct usb_device *udev, u32 *cmd_status)
2071 {
2072 	int ret;
2073 
2074 	switch (*cmd_status) {
2075 	case COMP_COMMAND_ABORTED:
2076 	case COMP_COMMAND_RING_STOPPED:
2077 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2078 		ret = -ETIME;
2079 		break;
2080 	case COMP_PARAMETER_ERROR:
2081 		dev_warn(&udev->dev,
2082 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2083 		ret = -EINVAL;
2084 		break;
2085 	case COMP_SLOT_NOT_ENABLED_ERROR:
2086 		dev_warn(&udev->dev,
2087 			"WARN: slot not enabled for evaluate context command.\n");
2088 		ret = -EINVAL;
2089 		break;
2090 	case COMP_CONTEXT_STATE_ERROR:
2091 		dev_warn(&udev->dev,
2092 			"WARN: invalid context state for evaluate context command.\n");
2093 		ret = -EINVAL;
2094 		break;
2095 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2096 		dev_warn(&udev->dev,
2097 			"ERROR: Incompatible device for evaluate context command.\n");
2098 		ret = -ENODEV;
2099 		break;
2100 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2101 		/* Max Exit Latency too large error */
2102 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2103 		ret = -EINVAL;
2104 		break;
2105 	case COMP_SUCCESS:
2106 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2107 				"Successful evaluate context command");
2108 		ret = 0;
2109 		break;
2110 	default:
2111 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2112 			*cmd_status);
2113 		ret = -EINVAL;
2114 		break;
2115 	}
2116 	return ret;
2117 }
2118 
2119 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2120 		struct xhci_input_control_ctx *ctrl_ctx)
2121 {
2122 	u32 valid_add_flags;
2123 	u32 valid_drop_flags;
2124 
2125 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2126 	 * (bit 1).  The default control endpoint is added during the Address
2127 	 * Device command and is never removed until the slot is disabled.
2128 	 */
2129 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2130 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2131 
2132 	/* Use hweight32 to count the number of ones in the add flags, or
2133 	 * number of endpoints added.  Don't count endpoints that are changed
2134 	 * (both added and dropped).
2135 	 */
2136 	return hweight32(valid_add_flags) -
2137 		hweight32(valid_add_flags & valid_drop_flags);
2138 }
2139 
2140 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2141 		struct xhci_input_control_ctx *ctrl_ctx)
2142 {
2143 	u32 valid_add_flags;
2144 	u32 valid_drop_flags;
2145 
2146 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2147 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2148 
2149 	return hweight32(valid_drop_flags) -
2150 		hweight32(valid_add_flags & valid_drop_flags);
2151 }
2152 
2153 /*
2154  * We need to reserve the new number of endpoints before the configure endpoint
2155  * command completes.  We can't subtract the dropped endpoints from the number
2156  * of active endpoints until the command completes because we can oversubscribe
2157  * the host in this case:
2158  *
2159  *  - the first configure endpoint command drops more endpoints than it adds
2160  *  - a second configure endpoint command that adds more endpoints is queued
2161  *  - the first configure endpoint command fails, so the config is unchanged
2162  *  - the second command may succeed, even though there isn't enough resources
2163  *
2164  * Must be called with xhci->lock held.
2165  */
2166 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2167 		struct xhci_input_control_ctx *ctrl_ctx)
2168 {
2169 	u32 added_eps;
2170 
2171 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2172 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2173 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2174 				"Not enough ep ctxs: "
2175 				"%u active, need to add %u, limit is %u.",
2176 				xhci->num_active_eps, added_eps,
2177 				xhci->limit_active_eps);
2178 		return -ENOMEM;
2179 	}
2180 	xhci->num_active_eps += added_eps;
2181 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2182 			"Adding %u ep ctxs, %u now active.", added_eps,
2183 			xhci->num_active_eps);
2184 	return 0;
2185 }
2186 
2187 /*
2188  * The configure endpoint was failed by the xHC for some other reason, so we
2189  * need to revert the resources that failed configuration would have used.
2190  *
2191  * Must be called with xhci->lock held.
2192  */
2193 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2194 		struct xhci_input_control_ctx *ctrl_ctx)
2195 {
2196 	u32 num_failed_eps;
2197 
2198 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2199 	xhci->num_active_eps -= num_failed_eps;
2200 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2201 			"Removing %u failed ep ctxs, %u now active.",
2202 			num_failed_eps,
2203 			xhci->num_active_eps);
2204 }
2205 
2206 /*
2207  * Now that the command has completed, clean up the active endpoint count by
2208  * subtracting out the endpoints that were dropped (but not changed).
2209  *
2210  * Must be called with xhci->lock held.
2211  */
2212 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2213 		struct xhci_input_control_ctx *ctrl_ctx)
2214 {
2215 	u32 num_dropped_eps;
2216 
2217 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2218 	xhci->num_active_eps -= num_dropped_eps;
2219 	if (num_dropped_eps)
2220 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2221 				"Removing %u dropped ep ctxs, %u now active.",
2222 				num_dropped_eps,
2223 				xhci->num_active_eps);
2224 }
2225 
2226 static unsigned int xhci_get_block_size(struct usb_device *udev)
2227 {
2228 	switch (udev->speed) {
2229 	case USB_SPEED_LOW:
2230 	case USB_SPEED_FULL:
2231 		return FS_BLOCK;
2232 	case USB_SPEED_HIGH:
2233 		return HS_BLOCK;
2234 	case USB_SPEED_SUPER:
2235 	case USB_SPEED_SUPER_PLUS:
2236 		return SS_BLOCK;
2237 	case USB_SPEED_UNKNOWN:
2238 	default:
2239 		/* Should never happen */
2240 		return 1;
2241 	}
2242 }
2243 
2244 static unsigned int
2245 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2246 {
2247 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2248 		return LS_OVERHEAD;
2249 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2250 		return FS_OVERHEAD;
2251 	return HS_OVERHEAD;
2252 }
2253 
2254 /* If we are changing a LS/FS device under a HS hub,
2255  * make sure (if we are activating a new TT) that the HS bus has enough
2256  * bandwidth for this new TT.
2257  */
2258 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2259 		struct xhci_virt_device *virt_dev,
2260 		int old_active_eps)
2261 {
2262 	struct xhci_interval_bw_table *bw_table;
2263 	struct xhci_tt_bw_info *tt_info;
2264 
2265 	/* Find the bandwidth table for the root port this TT is attached to. */
2266 	bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2267 	tt_info = virt_dev->tt_info;
2268 	/* If this TT already had active endpoints, the bandwidth for this TT
2269 	 * has already been added.  Removing all periodic endpoints (and thus
2270 	 * making the TT enactive) will only decrease the bandwidth used.
2271 	 */
2272 	if (old_active_eps)
2273 		return 0;
2274 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2275 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2276 			return -ENOMEM;
2277 		return 0;
2278 	}
2279 	/* Not sure why we would have no new active endpoints...
2280 	 *
2281 	 * Maybe because of an Evaluate Context change for a hub update or a
2282 	 * control endpoint 0 max packet size change?
2283 	 * FIXME: skip the bandwidth calculation in that case.
2284 	 */
2285 	return 0;
2286 }
2287 
2288 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2289 		struct xhci_virt_device *virt_dev)
2290 {
2291 	unsigned int bw_reserved;
2292 
2293 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2294 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2295 		return -ENOMEM;
2296 
2297 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2298 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2299 		return -ENOMEM;
2300 
2301 	return 0;
2302 }
2303 
2304 /*
2305  * This algorithm is a very conservative estimate of the worst-case scheduling
2306  * scenario for any one interval.  The hardware dynamically schedules the
2307  * packets, so we can't tell which microframe could be the limiting factor in
2308  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2309  *
2310  * Obviously, we can't solve an NP complete problem to find the minimum worst
2311  * case scenario.  Instead, we come up with an estimate that is no less than
2312  * the worst case bandwidth used for any one microframe, but may be an
2313  * over-estimate.
2314  *
2315  * We walk the requirements for each endpoint by interval, starting with the
2316  * smallest interval, and place packets in the schedule where there is only one
2317  * possible way to schedule packets for that interval.  In order to simplify
2318  * this algorithm, we record the largest max packet size for each interval, and
2319  * assume all packets will be that size.
2320  *
2321  * For interval 0, we obviously must schedule all packets for each interval.
2322  * The bandwidth for interval 0 is just the amount of data to be transmitted
2323  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2324  * the number of packets).
2325  *
2326  * For interval 1, we have two possible microframes to schedule those packets
2327  * in.  For this algorithm, if we can schedule the same number of packets for
2328  * each possible scheduling opportunity (each microframe), we will do so.  The
2329  * remaining number of packets will be saved to be transmitted in the gaps in
2330  * the next interval's scheduling sequence.
2331  *
2332  * As we move those remaining packets to be scheduled with interval 2 packets,
2333  * we have to double the number of remaining packets to transmit.  This is
2334  * because the intervals are actually powers of 2, and we would be transmitting
2335  * the previous interval's packets twice in this interval.  We also have to be
2336  * sure that when we look at the largest max packet size for this interval, we
2337  * also look at the largest max packet size for the remaining packets and take
2338  * the greater of the two.
2339  *
2340  * The algorithm continues to evenly distribute packets in each scheduling
2341  * opportunity, and push the remaining packets out, until we get to the last
2342  * interval.  Then those packets and their associated overhead are just added
2343  * to the bandwidth used.
2344  */
2345 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2346 		struct xhci_virt_device *virt_dev,
2347 		int old_active_eps)
2348 {
2349 	unsigned int bw_reserved;
2350 	unsigned int max_bandwidth;
2351 	unsigned int bw_used;
2352 	unsigned int block_size;
2353 	struct xhci_interval_bw_table *bw_table;
2354 	unsigned int packet_size = 0;
2355 	unsigned int overhead = 0;
2356 	unsigned int packets_transmitted = 0;
2357 	unsigned int packets_remaining = 0;
2358 	unsigned int i;
2359 
2360 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2361 		return xhci_check_ss_bw(xhci, virt_dev);
2362 
2363 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2364 		max_bandwidth = HS_BW_LIMIT;
2365 		/* Convert percent of bus BW reserved to blocks reserved */
2366 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2367 	} else {
2368 		max_bandwidth = FS_BW_LIMIT;
2369 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2370 	}
2371 
2372 	bw_table = virt_dev->bw_table;
2373 	/* We need to translate the max packet size and max ESIT payloads into
2374 	 * the units the hardware uses.
2375 	 */
2376 	block_size = xhci_get_block_size(virt_dev->udev);
2377 
2378 	/* If we are manipulating a LS/FS device under a HS hub, double check
2379 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2380 	 */
2381 	if (virt_dev->tt_info) {
2382 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2383 				"Recalculating BW for rootport %u",
2384 				virt_dev->rhub_port->hw_portnum + 1);
2385 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2386 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2387 					"newly activated TT.\n");
2388 			return -ENOMEM;
2389 		}
2390 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2391 				"Recalculating BW for TT slot %u port %u",
2392 				virt_dev->tt_info->slot_id,
2393 				virt_dev->tt_info->ttport);
2394 	} else {
2395 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2396 				"Recalculating BW for rootport %u",
2397 				virt_dev->rhub_port->hw_portnum + 1);
2398 	}
2399 
2400 	/* Add in how much bandwidth will be used for interval zero, or the
2401 	 * rounded max ESIT payload + number of packets * largest overhead.
2402 	 */
2403 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2404 		bw_table->interval_bw[0].num_packets *
2405 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2406 
2407 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2408 		unsigned int bw_added;
2409 		unsigned int largest_mps;
2410 		unsigned int interval_overhead;
2411 
2412 		/*
2413 		 * How many packets could we transmit in this interval?
2414 		 * If packets didn't fit in the previous interval, we will need
2415 		 * to transmit that many packets twice within this interval.
2416 		 */
2417 		packets_remaining = 2 * packets_remaining +
2418 			bw_table->interval_bw[i].num_packets;
2419 
2420 		/* Find the largest max packet size of this or the previous
2421 		 * interval.
2422 		 */
2423 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2424 			largest_mps = 0;
2425 		else {
2426 			struct xhci_virt_ep *virt_ep;
2427 			struct list_head *ep_entry;
2428 
2429 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2430 			virt_ep = list_entry(ep_entry,
2431 					struct xhci_virt_ep, bw_endpoint_list);
2432 			/* Convert to blocks, rounding up */
2433 			largest_mps = DIV_ROUND_UP(
2434 					virt_ep->bw_info.max_packet_size,
2435 					block_size);
2436 		}
2437 		if (largest_mps > packet_size)
2438 			packet_size = largest_mps;
2439 
2440 		/* Use the larger overhead of this or the previous interval. */
2441 		interval_overhead = xhci_get_largest_overhead(
2442 				&bw_table->interval_bw[i]);
2443 		if (interval_overhead > overhead)
2444 			overhead = interval_overhead;
2445 
2446 		/* How many packets can we evenly distribute across
2447 		 * (1 << (i + 1)) possible scheduling opportunities?
2448 		 */
2449 		packets_transmitted = packets_remaining >> (i + 1);
2450 
2451 		/* Add in the bandwidth used for those scheduled packets */
2452 		bw_added = packets_transmitted * (overhead + packet_size);
2453 
2454 		/* How many packets do we have remaining to transmit? */
2455 		packets_remaining = packets_remaining % (1 << (i + 1));
2456 
2457 		/* What largest max packet size should those packets have? */
2458 		/* If we've transmitted all packets, don't carry over the
2459 		 * largest packet size.
2460 		 */
2461 		if (packets_remaining == 0) {
2462 			packet_size = 0;
2463 			overhead = 0;
2464 		} else if (packets_transmitted > 0) {
2465 			/* Otherwise if we do have remaining packets, and we've
2466 			 * scheduled some packets in this interval, take the
2467 			 * largest max packet size from endpoints with this
2468 			 * interval.
2469 			 */
2470 			packet_size = largest_mps;
2471 			overhead = interval_overhead;
2472 		}
2473 		/* Otherwise carry over packet_size and overhead from the last
2474 		 * time we had a remainder.
2475 		 */
2476 		bw_used += bw_added;
2477 		if (bw_used > max_bandwidth) {
2478 			xhci_warn(xhci, "Not enough bandwidth. "
2479 					"Proposed: %u, Max: %u\n",
2480 				bw_used, max_bandwidth);
2481 			return -ENOMEM;
2482 		}
2483 	}
2484 	/*
2485 	 * Ok, we know we have some packets left over after even-handedly
2486 	 * scheduling interval 15.  We don't know which microframes they will
2487 	 * fit into, so we over-schedule and say they will be scheduled every
2488 	 * microframe.
2489 	 */
2490 	if (packets_remaining > 0)
2491 		bw_used += overhead + packet_size;
2492 
2493 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2494 		/* OK, we're manipulating a HS device attached to a
2495 		 * root port bandwidth domain.  Include the number of active TTs
2496 		 * in the bandwidth used.
2497 		 */
2498 		bw_used += TT_HS_OVERHEAD *
2499 			xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2500 	}
2501 
2502 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2503 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2504 		"Available: %u " "percent",
2505 		bw_used, max_bandwidth, bw_reserved,
2506 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2507 		max_bandwidth);
2508 
2509 	bw_used += bw_reserved;
2510 	if (bw_used > max_bandwidth) {
2511 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2512 				bw_used, max_bandwidth);
2513 		return -ENOMEM;
2514 	}
2515 
2516 	bw_table->bw_used = bw_used;
2517 	return 0;
2518 }
2519 
2520 static bool xhci_is_async_ep(unsigned int ep_type)
2521 {
2522 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2523 					ep_type != ISOC_IN_EP &&
2524 					ep_type != INT_IN_EP);
2525 }
2526 
2527 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2528 {
2529 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2530 }
2531 
2532 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2533 {
2534 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2535 
2536 	if (ep_bw->ep_interval == 0)
2537 		return SS_OVERHEAD_BURST +
2538 			(ep_bw->mult * ep_bw->num_packets *
2539 					(SS_OVERHEAD + mps));
2540 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2541 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2542 				1 << ep_bw->ep_interval);
2543 
2544 }
2545 
2546 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2547 		struct xhci_bw_info *ep_bw,
2548 		struct xhci_interval_bw_table *bw_table,
2549 		struct usb_device *udev,
2550 		struct xhci_virt_ep *virt_ep,
2551 		struct xhci_tt_bw_info *tt_info)
2552 {
2553 	struct xhci_interval_bw	*interval_bw;
2554 	int normalized_interval;
2555 
2556 	if (xhci_is_async_ep(ep_bw->type))
2557 		return;
2558 
2559 	if (udev->speed >= USB_SPEED_SUPER) {
2560 		if (xhci_is_sync_in_ep(ep_bw->type))
2561 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2562 				xhci_get_ss_bw_consumed(ep_bw);
2563 		else
2564 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2565 				xhci_get_ss_bw_consumed(ep_bw);
2566 		return;
2567 	}
2568 
2569 	/* SuperSpeed endpoints never get added to intervals in the table, so
2570 	 * this check is only valid for HS/FS/LS devices.
2571 	 */
2572 	if (list_empty(&virt_ep->bw_endpoint_list))
2573 		return;
2574 	/* For LS/FS devices, we need to translate the interval expressed in
2575 	 * microframes to frames.
2576 	 */
2577 	if (udev->speed == USB_SPEED_HIGH)
2578 		normalized_interval = ep_bw->ep_interval;
2579 	else
2580 		normalized_interval = ep_bw->ep_interval - 3;
2581 
2582 	if (normalized_interval == 0)
2583 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2584 	interval_bw = &bw_table->interval_bw[normalized_interval];
2585 	interval_bw->num_packets -= ep_bw->num_packets;
2586 	switch (udev->speed) {
2587 	case USB_SPEED_LOW:
2588 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2589 		break;
2590 	case USB_SPEED_FULL:
2591 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2592 		break;
2593 	case USB_SPEED_HIGH:
2594 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2595 		break;
2596 	default:
2597 		/* Should never happen because only LS/FS/HS endpoints will get
2598 		 * added to the endpoint list.
2599 		 */
2600 		return;
2601 	}
2602 	if (tt_info)
2603 		tt_info->active_eps -= 1;
2604 	list_del_init(&virt_ep->bw_endpoint_list);
2605 }
2606 
2607 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2608 		struct xhci_bw_info *ep_bw,
2609 		struct xhci_interval_bw_table *bw_table,
2610 		struct usb_device *udev,
2611 		struct xhci_virt_ep *virt_ep,
2612 		struct xhci_tt_bw_info *tt_info)
2613 {
2614 	struct xhci_interval_bw	*interval_bw;
2615 	struct xhci_virt_ep *smaller_ep;
2616 	int normalized_interval;
2617 
2618 	if (xhci_is_async_ep(ep_bw->type))
2619 		return;
2620 
2621 	if (udev->speed == USB_SPEED_SUPER) {
2622 		if (xhci_is_sync_in_ep(ep_bw->type))
2623 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2624 				xhci_get_ss_bw_consumed(ep_bw);
2625 		else
2626 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2627 				xhci_get_ss_bw_consumed(ep_bw);
2628 		return;
2629 	}
2630 
2631 	/* For LS/FS devices, we need to translate the interval expressed in
2632 	 * microframes to frames.
2633 	 */
2634 	if (udev->speed == USB_SPEED_HIGH)
2635 		normalized_interval = ep_bw->ep_interval;
2636 	else
2637 		normalized_interval = ep_bw->ep_interval - 3;
2638 
2639 	if (normalized_interval == 0)
2640 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2641 	interval_bw = &bw_table->interval_bw[normalized_interval];
2642 	interval_bw->num_packets += ep_bw->num_packets;
2643 	switch (udev->speed) {
2644 	case USB_SPEED_LOW:
2645 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2646 		break;
2647 	case USB_SPEED_FULL:
2648 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2649 		break;
2650 	case USB_SPEED_HIGH:
2651 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2652 		break;
2653 	default:
2654 		/* Should never happen because only LS/FS/HS endpoints will get
2655 		 * added to the endpoint list.
2656 		 */
2657 		return;
2658 	}
2659 
2660 	if (tt_info)
2661 		tt_info->active_eps += 1;
2662 	/* Insert the endpoint into the list, largest max packet size first. */
2663 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2664 			bw_endpoint_list) {
2665 		if (ep_bw->max_packet_size >=
2666 				smaller_ep->bw_info.max_packet_size) {
2667 			/* Add the new ep before the smaller endpoint */
2668 			list_add_tail(&virt_ep->bw_endpoint_list,
2669 					&smaller_ep->bw_endpoint_list);
2670 			return;
2671 		}
2672 	}
2673 	/* Add the new endpoint at the end of the list. */
2674 	list_add_tail(&virt_ep->bw_endpoint_list,
2675 			&interval_bw->endpoints);
2676 }
2677 
2678 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2679 		struct xhci_virt_device *virt_dev,
2680 		int old_active_eps)
2681 {
2682 	struct xhci_root_port_bw_info *rh_bw_info;
2683 	if (!virt_dev->tt_info)
2684 		return;
2685 
2686 	rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2687 	if (old_active_eps == 0 &&
2688 				virt_dev->tt_info->active_eps != 0) {
2689 		rh_bw_info->num_active_tts += 1;
2690 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2691 	} else if (old_active_eps != 0 &&
2692 				virt_dev->tt_info->active_eps == 0) {
2693 		rh_bw_info->num_active_tts -= 1;
2694 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2695 	}
2696 }
2697 
2698 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2699 		struct xhci_virt_device *virt_dev,
2700 		struct xhci_container_ctx *in_ctx)
2701 {
2702 	struct xhci_bw_info ep_bw_info[31];
2703 	int i;
2704 	struct xhci_input_control_ctx *ctrl_ctx;
2705 	int old_active_eps = 0;
2706 
2707 	if (virt_dev->tt_info)
2708 		old_active_eps = virt_dev->tt_info->active_eps;
2709 
2710 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2711 	if (!ctrl_ctx) {
2712 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2713 				__func__);
2714 		return -ENOMEM;
2715 	}
2716 
2717 	for (i = 0; i < 31; i++) {
2718 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2719 			continue;
2720 
2721 		/* Make a copy of the BW info in case we need to revert this */
2722 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2723 				sizeof(ep_bw_info[i]));
2724 		/* Drop the endpoint from the interval table if the endpoint is
2725 		 * being dropped or changed.
2726 		 */
2727 		if (EP_IS_DROPPED(ctrl_ctx, i))
2728 			xhci_drop_ep_from_interval_table(xhci,
2729 					&virt_dev->eps[i].bw_info,
2730 					virt_dev->bw_table,
2731 					virt_dev->udev,
2732 					&virt_dev->eps[i],
2733 					virt_dev->tt_info);
2734 	}
2735 	/* Overwrite the information stored in the endpoints' bw_info */
2736 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2737 	for (i = 0; i < 31; i++) {
2738 		/* Add any changed or added endpoints to the interval table */
2739 		if (EP_IS_ADDED(ctrl_ctx, i))
2740 			xhci_add_ep_to_interval_table(xhci,
2741 					&virt_dev->eps[i].bw_info,
2742 					virt_dev->bw_table,
2743 					virt_dev->udev,
2744 					&virt_dev->eps[i],
2745 					virt_dev->tt_info);
2746 	}
2747 
2748 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2749 		/* Ok, this fits in the bandwidth we have.
2750 		 * Update the number of active TTs.
2751 		 */
2752 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2753 		return 0;
2754 	}
2755 
2756 	/* We don't have enough bandwidth for this, revert the stored info. */
2757 	for (i = 0; i < 31; i++) {
2758 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2759 			continue;
2760 
2761 		/* Drop the new copies of any added or changed endpoints from
2762 		 * the interval table.
2763 		 */
2764 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2765 			xhci_drop_ep_from_interval_table(xhci,
2766 					&virt_dev->eps[i].bw_info,
2767 					virt_dev->bw_table,
2768 					virt_dev->udev,
2769 					&virt_dev->eps[i],
2770 					virt_dev->tt_info);
2771 		}
2772 		/* Revert the endpoint back to its old information */
2773 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2774 				sizeof(ep_bw_info[i]));
2775 		/* Add any changed or dropped endpoints back into the table */
2776 		if (EP_IS_DROPPED(ctrl_ctx, i))
2777 			xhci_add_ep_to_interval_table(xhci,
2778 					&virt_dev->eps[i].bw_info,
2779 					virt_dev->bw_table,
2780 					virt_dev->udev,
2781 					&virt_dev->eps[i],
2782 					virt_dev->tt_info);
2783 	}
2784 	return -ENOMEM;
2785 }
2786 
2787 
2788 /* Issue a configure endpoint command or evaluate context command
2789  * and wait for it to finish.
2790  */
2791 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2792 		struct usb_device *udev,
2793 		struct xhci_command *command,
2794 		bool ctx_change, bool must_succeed)
2795 {
2796 	int ret;
2797 	unsigned long flags;
2798 	struct xhci_input_control_ctx *ctrl_ctx;
2799 	struct xhci_virt_device *virt_dev;
2800 	struct xhci_slot_ctx *slot_ctx;
2801 
2802 	if (!command)
2803 		return -EINVAL;
2804 
2805 	spin_lock_irqsave(&xhci->lock, flags);
2806 
2807 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2808 		spin_unlock_irqrestore(&xhci->lock, flags);
2809 		return -ESHUTDOWN;
2810 	}
2811 
2812 	virt_dev = xhci->devs[udev->slot_id];
2813 
2814 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2815 	if (!ctrl_ctx) {
2816 		spin_unlock_irqrestore(&xhci->lock, flags);
2817 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2818 				__func__);
2819 		return -ENOMEM;
2820 	}
2821 
2822 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2823 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2824 		spin_unlock_irqrestore(&xhci->lock, flags);
2825 		xhci_warn(xhci, "Not enough host resources, "
2826 				"active endpoint contexts = %u\n",
2827 				xhci->num_active_eps);
2828 		return -ENOMEM;
2829 	}
2830 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2831 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2832 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2833 			xhci_free_host_resources(xhci, ctrl_ctx);
2834 		spin_unlock_irqrestore(&xhci->lock, flags);
2835 		xhci_warn(xhci, "Not enough bandwidth\n");
2836 		return -ENOMEM;
2837 	}
2838 
2839 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2840 
2841 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2842 	trace_xhci_configure_endpoint(slot_ctx);
2843 
2844 	if (!ctx_change)
2845 		ret = xhci_queue_configure_endpoint(xhci, command,
2846 				command->in_ctx->dma,
2847 				udev->slot_id, must_succeed);
2848 	else
2849 		ret = xhci_queue_evaluate_context(xhci, command,
2850 				command->in_ctx->dma,
2851 				udev->slot_id, must_succeed);
2852 	if (ret < 0) {
2853 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2854 			xhci_free_host_resources(xhci, ctrl_ctx);
2855 		spin_unlock_irqrestore(&xhci->lock, flags);
2856 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2857 				"FIXME allocate a new ring segment");
2858 		return -ENOMEM;
2859 	}
2860 	xhci_ring_cmd_db(xhci);
2861 	spin_unlock_irqrestore(&xhci->lock, flags);
2862 
2863 	/* Wait for the configure endpoint command to complete */
2864 	wait_for_completion(command->completion);
2865 
2866 	if (!ctx_change)
2867 		ret = xhci_configure_endpoint_result(xhci, udev,
2868 						     &command->status);
2869 	else
2870 		ret = xhci_evaluate_context_result(xhci, udev,
2871 						   &command->status);
2872 
2873 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2874 		spin_lock_irqsave(&xhci->lock, flags);
2875 		/* If the command failed, remove the reserved resources.
2876 		 * Otherwise, clean up the estimate to include dropped eps.
2877 		 */
2878 		if (ret)
2879 			xhci_free_host_resources(xhci, ctrl_ctx);
2880 		else
2881 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2882 		spin_unlock_irqrestore(&xhci->lock, flags);
2883 	}
2884 	return ret;
2885 }
2886 
2887 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2888 	struct xhci_virt_device *vdev, int i)
2889 {
2890 	struct xhci_virt_ep *ep = &vdev->eps[i];
2891 
2892 	if (ep->ep_state & EP_HAS_STREAMS) {
2893 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2894 				xhci_get_endpoint_address(i));
2895 		xhci_free_stream_info(xhci, ep->stream_info);
2896 		ep->stream_info = NULL;
2897 		ep->ep_state &= ~EP_HAS_STREAMS;
2898 	}
2899 }
2900 
2901 /* Called after one or more calls to xhci_add_endpoint() or
2902  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2903  * to call xhci_reset_bandwidth().
2904  *
2905  * Since we are in the middle of changing either configuration or
2906  * installing a new alt setting, the USB core won't allow URBs to be
2907  * enqueued for any endpoint on the old config or interface.  Nothing
2908  * else should be touching the xhci->devs[slot_id] structure, so we
2909  * don't need to take the xhci->lock for manipulating that.
2910  */
2911 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2912 {
2913 	int i;
2914 	int ret = 0;
2915 	struct xhci_hcd *xhci;
2916 	struct xhci_virt_device	*virt_dev;
2917 	struct xhci_input_control_ctx *ctrl_ctx;
2918 	struct xhci_slot_ctx *slot_ctx;
2919 	struct xhci_command *command;
2920 
2921 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2922 	if (ret <= 0)
2923 		return ret;
2924 	xhci = hcd_to_xhci(hcd);
2925 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2926 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2927 		return -ENODEV;
2928 
2929 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2930 	virt_dev = xhci->devs[udev->slot_id];
2931 
2932 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2933 	if (!command)
2934 		return -ENOMEM;
2935 
2936 	command->in_ctx = virt_dev->in_ctx;
2937 
2938 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2939 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2940 	if (!ctrl_ctx) {
2941 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2942 				__func__);
2943 		ret = -ENOMEM;
2944 		goto command_cleanup;
2945 	}
2946 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2947 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2948 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2949 
2950 	/* Don't issue the command if there's no endpoints to update. */
2951 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2952 	    ctrl_ctx->drop_flags == 0) {
2953 		ret = 0;
2954 		goto command_cleanup;
2955 	}
2956 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2957 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2958 	for (i = 31; i >= 1; i--) {
2959 		__le32 le32 = cpu_to_le32(BIT(i));
2960 
2961 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2962 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2963 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2964 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2965 			break;
2966 		}
2967 	}
2968 
2969 	ret = xhci_configure_endpoint(xhci, udev, command,
2970 			false, false);
2971 	if (ret)
2972 		/* Callee should call reset_bandwidth() */
2973 		goto command_cleanup;
2974 
2975 	/* Free any rings that were dropped, but not changed. */
2976 	for (i = 1; i < 31; i++) {
2977 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2978 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2979 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2980 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2981 		}
2982 	}
2983 	xhci_zero_in_ctx(xhci, virt_dev);
2984 	/*
2985 	 * Install any rings for completely new endpoints or changed endpoints,
2986 	 * and free any old rings from changed endpoints.
2987 	 */
2988 	for (i = 1; i < 31; i++) {
2989 		if (!virt_dev->eps[i].new_ring)
2990 			continue;
2991 		/* Only free the old ring if it exists.
2992 		 * It may not if this is the first add of an endpoint.
2993 		 */
2994 		if (virt_dev->eps[i].ring) {
2995 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2996 		}
2997 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2998 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2999 		virt_dev->eps[i].new_ring = NULL;
3000 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3001 	}
3002 command_cleanup:
3003 	kfree(command->completion);
3004 	kfree(command);
3005 
3006 	return ret;
3007 }
3008 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3009 
3010 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3011 {
3012 	struct xhci_hcd *xhci;
3013 	struct xhci_virt_device	*virt_dev;
3014 	int i, ret;
3015 
3016 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3017 	if (ret <= 0)
3018 		return;
3019 	xhci = hcd_to_xhci(hcd);
3020 
3021 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3022 	virt_dev = xhci->devs[udev->slot_id];
3023 	/* Free any rings allocated for added endpoints */
3024 	for (i = 0; i < 31; i++) {
3025 		if (virt_dev->eps[i].new_ring) {
3026 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3027 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3028 			virt_dev->eps[i].new_ring = NULL;
3029 		}
3030 	}
3031 	xhci_zero_in_ctx(xhci, virt_dev);
3032 }
3033 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3034 
3035 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3036 		struct xhci_container_ctx *in_ctx,
3037 		struct xhci_container_ctx *out_ctx,
3038 		struct xhci_input_control_ctx *ctrl_ctx,
3039 		u32 add_flags, u32 drop_flags)
3040 {
3041 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3042 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3043 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3044 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3045 }
3046 
3047 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3048 				  struct usb_host_endpoint *host_ep)
3049 {
3050 	struct xhci_hcd		*xhci;
3051 	struct xhci_virt_device	*vdev;
3052 	struct xhci_virt_ep	*ep;
3053 	struct usb_device	*udev;
3054 	unsigned long		flags;
3055 	unsigned int		ep_index;
3056 
3057 	xhci = hcd_to_xhci(hcd);
3058 rescan:
3059 	spin_lock_irqsave(&xhci->lock, flags);
3060 
3061 	udev = (struct usb_device *)host_ep->hcpriv;
3062 	if (!udev || !udev->slot_id)
3063 		goto done;
3064 
3065 	vdev = xhci->devs[udev->slot_id];
3066 	if (!vdev)
3067 		goto done;
3068 
3069 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3070 	ep = &vdev->eps[ep_index];
3071 
3072 	/* wait for hub_tt_work to finish clearing hub TT */
3073 	if (ep->ep_state & EP_CLEARING_TT) {
3074 		spin_unlock_irqrestore(&xhci->lock, flags);
3075 		schedule_timeout_uninterruptible(1);
3076 		goto rescan;
3077 	}
3078 
3079 	if (ep->ep_state)
3080 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3081 			 ep->ep_state);
3082 done:
3083 	host_ep->hcpriv = NULL;
3084 	spin_unlock_irqrestore(&xhci->lock, flags);
3085 }
3086 
3087 /*
3088  * Called after usb core issues a clear halt control message.
3089  * The host side of the halt should already be cleared by a reset endpoint
3090  * command issued when the STALL event was received.
3091  *
3092  * The reset endpoint command may only be issued to endpoints in the halted
3093  * state. For software that wishes to reset the data toggle or sequence number
3094  * of an endpoint that isn't in the halted state this function will issue a
3095  * configure endpoint command with the Drop and Add bits set for the target
3096  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3097  *
3098  * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3099  * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3100  */
3101 
3102 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3103 		struct usb_host_endpoint *host_ep)
3104 {
3105 	struct xhci_hcd *xhci;
3106 	struct usb_device *udev;
3107 	struct xhci_virt_device *vdev;
3108 	struct xhci_virt_ep *ep;
3109 	struct xhci_input_control_ctx *ctrl_ctx;
3110 	struct xhci_command *stop_cmd, *cfg_cmd;
3111 	unsigned int ep_index;
3112 	unsigned long flags;
3113 	u32 ep_flag;
3114 	int err;
3115 
3116 	xhci = hcd_to_xhci(hcd);
3117 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3118 
3119 	/*
3120 	 * Usb core assumes a max packet value for ep0 on FS devices until the
3121 	 * real value is read from the descriptor. Core resets Ep0 if values
3122 	 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3123 	 */
3124 	if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3125 
3126 		udev = container_of(host_ep, struct usb_device, ep0);
3127 		if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3128 			return;
3129 
3130 		vdev = xhci->devs[udev->slot_id];
3131 		if (!vdev || vdev->udev != udev)
3132 			return;
3133 
3134 		xhci_check_ep0_maxpacket(xhci, vdev);
3135 
3136 		/* Nothing else should be done here for ep0 during ep reset */
3137 		return;
3138 	}
3139 
3140 	if (!host_ep->hcpriv)
3141 		return;
3142 	udev = (struct usb_device *) host_ep->hcpriv;
3143 	vdev = xhci->devs[udev->slot_id];
3144 
3145 	if (!udev->slot_id || !vdev)
3146 		return;
3147 
3148 	ep = &vdev->eps[ep_index];
3149 
3150 	/* Bail out if toggle is already being cleared by a endpoint reset */
3151 	spin_lock_irqsave(&xhci->lock, flags);
3152 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3153 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3154 		spin_unlock_irqrestore(&xhci->lock, flags);
3155 		return;
3156 	}
3157 	spin_unlock_irqrestore(&xhci->lock, flags);
3158 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3159 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3160 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3161 		return;
3162 
3163 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3164 
3165 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3166 		return;
3167 
3168 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3169 	if (!stop_cmd)
3170 		return;
3171 
3172 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3173 	if (!cfg_cmd)
3174 		goto cleanup;
3175 
3176 	spin_lock_irqsave(&xhci->lock, flags);
3177 
3178 	/* block queuing new trbs and ringing ep doorbell */
3179 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3180 
3181 	/*
3182 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3183 	 * Driver is required to synchronously cancel all transfer request.
3184 	 * Stop the endpoint to force xHC to update the output context
3185 	 */
3186 
3187 	if (!list_empty(&ep->ring->td_list)) {
3188 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3189 		spin_unlock_irqrestore(&xhci->lock, flags);
3190 		xhci_free_command(xhci, cfg_cmd);
3191 		goto cleanup;
3192 	}
3193 
3194 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3195 					ep_index, 0);
3196 	if (err < 0) {
3197 		spin_unlock_irqrestore(&xhci->lock, flags);
3198 		xhci_free_command(xhci, cfg_cmd);
3199 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3200 				__func__, err);
3201 		goto cleanup;
3202 	}
3203 
3204 	xhci_ring_cmd_db(xhci);
3205 	spin_unlock_irqrestore(&xhci->lock, flags);
3206 
3207 	wait_for_completion(stop_cmd->completion);
3208 
3209 	spin_lock_irqsave(&xhci->lock, flags);
3210 
3211 	/* config ep command clears toggle if add and drop ep flags are set */
3212 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3213 	if (!ctrl_ctx) {
3214 		spin_unlock_irqrestore(&xhci->lock, flags);
3215 		xhci_free_command(xhci, cfg_cmd);
3216 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3217 				__func__);
3218 		goto cleanup;
3219 	}
3220 
3221 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3222 					   ctrl_ctx, ep_flag, ep_flag);
3223 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3224 
3225 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3226 				      udev->slot_id, false);
3227 	if (err < 0) {
3228 		spin_unlock_irqrestore(&xhci->lock, flags);
3229 		xhci_free_command(xhci, cfg_cmd);
3230 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3231 				__func__, err);
3232 		goto cleanup;
3233 	}
3234 
3235 	xhci_ring_cmd_db(xhci);
3236 	spin_unlock_irqrestore(&xhci->lock, flags);
3237 
3238 	wait_for_completion(cfg_cmd->completion);
3239 
3240 	xhci_free_command(xhci, cfg_cmd);
3241 cleanup:
3242 	xhci_free_command(xhci, stop_cmd);
3243 	spin_lock_irqsave(&xhci->lock, flags);
3244 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3245 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3246 	spin_unlock_irqrestore(&xhci->lock, flags);
3247 }
3248 
3249 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3250 		struct usb_device *udev, struct usb_host_endpoint *ep,
3251 		unsigned int slot_id)
3252 {
3253 	int ret;
3254 	unsigned int ep_index;
3255 	unsigned int ep_state;
3256 
3257 	if (!ep)
3258 		return -EINVAL;
3259 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3260 	if (ret <= 0)
3261 		return ret ? ret : -EINVAL;
3262 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3263 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3264 				" descriptor for ep 0x%x does not support streams\n",
3265 				ep->desc.bEndpointAddress);
3266 		return -EINVAL;
3267 	}
3268 
3269 	ep_index = xhci_get_endpoint_index(&ep->desc);
3270 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3271 	if (ep_state & EP_HAS_STREAMS ||
3272 			ep_state & EP_GETTING_STREAMS) {
3273 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3274 				"already has streams set up.\n",
3275 				ep->desc.bEndpointAddress);
3276 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3277 				"dynamic stream context array reallocation.\n");
3278 		return -EINVAL;
3279 	}
3280 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3281 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3282 				"endpoint 0x%x; URBs are pending.\n",
3283 				ep->desc.bEndpointAddress);
3284 		return -EINVAL;
3285 	}
3286 	return 0;
3287 }
3288 
3289 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3290 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3291 {
3292 	unsigned int max_streams;
3293 
3294 	/* The stream context array size must be a power of two */
3295 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3296 	/*
3297 	 * Find out how many primary stream array entries the host controller
3298 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3299 	 * level page entries), but that's an optional feature for xHCI host
3300 	 * controllers. xHCs must support at least 4 stream IDs.
3301 	 */
3302 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3303 	if (*num_stream_ctxs > max_streams) {
3304 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3305 				max_streams);
3306 		*num_stream_ctxs = max_streams;
3307 		*num_streams = max_streams;
3308 	}
3309 }
3310 
3311 /* Returns an error code if one of the endpoint already has streams.
3312  * This does not change any data structures, it only checks and gathers
3313  * information.
3314  */
3315 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3316 		struct usb_device *udev,
3317 		struct usb_host_endpoint **eps, unsigned int num_eps,
3318 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3319 {
3320 	unsigned int max_streams;
3321 	unsigned int endpoint_flag;
3322 	int i;
3323 	int ret;
3324 
3325 	for (i = 0; i < num_eps; i++) {
3326 		ret = xhci_check_streams_endpoint(xhci, udev,
3327 				eps[i], udev->slot_id);
3328 		if (ret < 0)
3329 			return ret;
3330 
3331 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3332 		if (max_streams < (*num_streams - 1)) {
3333 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3334 					eps[i]->desc.bEndpointAddress,
3335 					max_streams);
3336 			*num_streams = max_streams+1;
3337 		}
3338 
3339 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3340 		if (*changed_ep_bitmask & endpoint_flag)
3341 			return -EINVAL;
3342 		*changed_ep_bitmask |= endpoint_flag;
3343 	}
3344 	return 0;
3345 }
3346 
3347 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3348 		struct usb_device *udev,
3349 		struct usb_host_endpoint **eps, unsigned int num_eps)
3350 {
3351 	u32 changed_ep_bitmask = 0;
3352 	unsigned int slot_id;
3353 	unsigned int ep_index;
3354 	unsigned int ep_state;
3355 	int i;
3356 
3357 	slot_id = udev->slot_id;
3358 	if (!xhci->devs[slot_id])
3359 		return 0;
3360 
3361 	for (i = 0; i < num_eps; i++) {
3362 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3363 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3364 		/* Are streams already being freed for the endpoint? */
3365 		if (ep_state & EP_GETTING_NO_STREAMS) {
3366 			xhci_warn(xhci, "WARN Can't disable streams for "
3367 					"endpoint 0x%x, "
3368 					"streams are being disabled already\n",
3369 					eps[i]->desc.bEndpointAddress);
3370 			return 0;
3371 		}
3372 		/* Are there actually any streams to free? */
3373 		if (!(ep_state & EP_HAS_STREAMS) &&
3374 				!(ep_state & EP_GETTING_STREAMS)) {
3375 			xhci_warn(xhci, "WARN Can't disable streams for "
3376 					"endpoint 0x%x, "
3377 					"streams are already disabled!\n",
3378 					eps[i]->desc.bEndpointAddress);
3379 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3380 					"with non-streams endpoint\n");
3381 			return 0;
3382 		}
3383 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3384 	}
3385 	return changed_ep_bitmask;
3386 }
3387 
3388 /*
3389  * The USB device drivers use this function (through the HCD interface in USB
3390  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3391  * coordinate mass storage command queueing across multiple endpoints (basically
3392  * a stream ID == a task ID).
3393  *
3394  * Setting up streams involves allocating the same size stream context array
3395  * for each endpoint and issuing a configure endpoint command for all endpoints.
3396  *
3397  * Don't allow the call to succeed if one endpoint only supports one stream
3398  * (which means it doesn't support streams at all).
3399  *
3400  * Drivers may get less stream IDs than they asked for, if the host controller
3401  * hardware or endpoints claim they can't support the number of requested
3402  * stream IDs.
3403  */
3404 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3405 		struct usb_host_endpoint **eps, unsigned int num_eps,
3406 		unsigned int num_streams, gfp_t mem_flags)
3407 {
3408 	int i, ret;
3409 	struct xhci_hcd *xhci;
3410 	struct xhci_virt_device *vdev;
3411 	struct xhci_command *config_cmd;
3412 	struct xhci_input_control_ctx *ctrl_ctx;
3413 	unsigned int ep_index;
3414 	unsigned int num_stream_ctxs;
3415 	unsigned int max_packet;
3416 	unsigned long flags;
3417 	u32 changed_ep_bitmask = 0;
3418 
3419 	if (!eps)
3420 		return -EINVAL;
3421 
3422 	/* Add one to the number of streams requested to account for
3423 	 * stream 0 that is reserved for xHCI usage.
3424 	 */
3425 	num_streams += 1;
3426 	xhci = hcd_to_xhci(hcd);
3427 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3428 			num_streams);
3429 
3430 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3431 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3432 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3433 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3434 		return -ENOSYS;
3435 	}
3436 
3437 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3438 	if (!config_cmd)
3439 		return -ENOMEM;
3440 
3441 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3442 	if (!ctrl_ctx) {
3443 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3444 				__func__);
3445 		xhci_free_command(xhci, config_cmd);
3446 		return -ENOMEM;
3447 	}
3448 
3449 	/* Check to make sure all endpoints are not already configured for
3450 	 * streams.  While we're at it, find the maximum number of streams that
3451 	 * all the endpoints will support and check for duplicate endpoints.
3452 	 */
3453 	spin_lock_irqsave(&xhci->lock, flags);
3454 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3455 			num_eps, &num_streams, &changed_ep_bitmask);
3456 	if (ret < 0) {
3457 		xhci_free_command(xhci, config_cmd);
3458 		spin_unlock_irqrestore(&xhci->lock, flags);
3459 		return ret;
3460 	}
3461 	if (num_streams <= 1) {
3462 		xhci_warn(xhci, "WARN: endpoints can't handle "
3463 				"more than one stream.\n");
3464 		xhci_free_command(xhci, config_cmd);
3465 		spin_unlock_irqrestore(&xhci->lock, flags);
3466 		return -EINVAL;
3467 	}
3468 	vdev = xhci->devs[udev->slot_id];
3469 	/* Mark each endpoint as being in transition, so
3470 	 * xhci_urb_enqueue() will reject all URBs.
3471 	 */
3472 	for (i = 0; i < num_eps; i++) {
3473 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3474 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3475 	}
3476 	spin_unlock_irqrestore(&xhci->lock, flags);
3477 
3478 	/* Setup internal data structures and allocate HW data structures for
3479 	 * streams (but don't install the HW structures in the input context
3480 	 * until we're sure all memory allocation succeeded).
3481 	 */
3482 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3483 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3484 			num_stream_ctxs, num_streams);
3485 
3486 	for (i = 0; i < num_eps; i++) {
3487 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3488 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3489 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3490 				num_stream_ctxs,
3491 				num_streams,
3492 				max_packet, mem_flags);
3493 		if (!vdev->eps[ep_index].stream_info)
3494 			goto cleanup;
3495 		/* Set maxPstreams in endpoint context and update deq ptr to
3496 		 * point to stream context array. FIXME
3497 		 */
3498 	}
3499 
3500 	/* Set up the input context for a configure endpoint command. */
3501 	for (i = 0; i < num_eps; i++) {
3502 		struct xhci_ep_ctx *ep_ctx;
3503 
3504 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3505 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3506 
3507 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3508 				vdev->out_ctx, ep_index);
3509 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3510 				vdev->eps[ep_index].stream_info);
3511 	}
3512 	/* Tell the HW to drop its old copy of the endpoint context info
3513 	 * and add the updated copy from the input context.
3514 	 */
3515 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3516 			vdev->out_ctx, ctrl_ctx,
3517 			changed_ep_bitmask, changed_ep_bitmask);
3518 
3519 	/* Issue and wait for the configure endpoint command */
3520 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3521 			false, false);
3522 
3523 	/* xHC rejected the configure endpoint command for some reason, so we
3524 	 * leave the old ring intact and free our internal streams data
3525 	 * structure.
3526 	 */
3527 	if (ret < 0)
3528 		goto cleanup;
3529 
3530 	spin_lock_irqsave(&xhci->lock, flags);
3531 	for (i = 0; i < num_eps; i++) {
3532 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3533 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3534 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3535 			 udev->slot_id, ep_index);
3536 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3537 	}
3538 	xhci_free_command(xhci, config_cmd);
3539 	spin_unlock_irqrestore(&xhci->lock, flags);
3540 
3541 	for (i = 0; i < num_eps; i++) {
3542 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3543 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3544 	}
3545 	/* Subtract 1 for stream 0, which drivers can't use */
3546 	return num_streams - 1;
3547 
3548 cleanup:
3549 	/* If it didn't work, free the streams! */
3550 	for (i = 0; i < num_eps; i++) {
3551 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3552 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3553 		vdev->eps[ep_index].stream_info = NULL;
3554 		/* FIXME Unset maxPstreams in endpoint context and
3555 		 * update deq ptr to point to normal string ring.
3556 		 */
3557 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3558 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3559 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3560 	}
3561 	xhci_free_command(xhci, config_cmd);
3562 	return -ENOMEM;
3563 }
3564 
3565 /* Transition the endpoint from using streams to being a "normal" endpoint
3566  * without streams.
3567  *
3568  * Modify the endpoint context state, submit a configure endpoint command,
3569  * and free all endpoint rings for streams if that completes successfully.
3570  */
3571 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3572 		struct usb_host_endpoint **eps, unsigned int num_eps,
3573 		gfp_t mem_flags)
3574 {
3575 	int i, ret;
3576 	struct xhci_hcd *xhci;
3577 	struct xhci_virt_device *vdev;
3578 	struct xhci_command *command;
3579 	struct xhci_input_control_ctx *ctrl_ctx;
3580 	unsigned int ep_index;
3581 	unsigned long flags;
3582 	u32 changed_ep_bitmask;
3583 
3584 	xhci = hcd_to_xhci(hcd);
3585 	vdev = xhci->devs[udev->slot_id];
3586 
3587 	/* Set up a configure endpoint command to remove the streams rings */
3588 	spin_lock_irqsave(&xhci->lock, flags);
3589 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3590 			udev, eps, num_eps);
3591 	if (changed_ep_bitmask == 0) {
3592 		spin_unlock_irqrestore(&xhci->lock, flags);
3593 		return -EINVAL;
3594 	}
3595 
3596 	/* Use the xhci_command structure from the first endpoint.  We may have
3597 	 * allocated too many, but the driver may call xhci_free_streams() for
3598 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3599 	 */
3600 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3601 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3602 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3603 	if (!ctrl_ctx) {
3604 		spin_unlock_irqrestore(&xhci->lock, flags);
3605 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3606 				__func__);
3607 		return -EINVAL;
3608 	}
3609 
3610 	for (i = 0; i < num_eps; i++) {
3611 		struct xhci_ep_ctx *ep_ctx;
3612 
3613 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3614 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3615 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3616 			EP_GETTING_NO_STREAMS;
3617 
3618 		xhci_endpoint_copy(xhci, command->in_ctx,
3619 				vdev->out_ctx, ep_index);
3620 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3621 				&vdev->eps[ep_index]);
3622 	}
3623 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3624 			vdev->out_ctx, ctrl_ctx,
3625 			changed_ep_bitmask, changed_ep_bitmask);
3626 	spin_unlock_irqrestore(&xhci->lock, flags);
3627 
3628 	/* Issue and wait for the configure endpoint command,
3629 	 * which must succeed.
3630 	 */
3631 	ret = xhci_configure_endpoint(xhci, udev, command,
3632 			false, true);
3633 
3634 	/* xHC rejected the configure endpoint command for some reason, so we
3635 	 * leave the streams rings intact.
3636 	 */
3637 	if (ret < 0)
3638 		return ret;
3639 
3640 	spin_lock_irqsave(&xhci->lock, flags);
3641 	for (i = 0; i < num_eps; i++) {
3642 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3643 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3644 		vdev->eps[ep_index].stream_info = NULL;
3645 		/* FIXME Unset maxPstreams in endpoint context and
3646 		 * update deq ptr to point to normal string ring.
3647 		 */
3648 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3649 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3650 	}
3651 	spin_unlock_irqrestore(&xhci->lock, flags);
3652 
3653 	return 0;
3654 }
3655 
3656 /*
3657  * Deletes endpoint resources for endpoints that were active before a Reset
3658  * Device command, or a Disable Slot command.  The Reset Device command leaves
3659  * the control endpoint intact, whereas the Disable Slot command deletes it.
3660  *
3661  * Must be called with xhci->lock held.
3662  */
3663 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3664 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3665 {
3666 	int i;
3667 	unsigned int num_dropped_eps = 0;
3668 	unsigned int drop_flags = 0;
3669 
3670 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3671 		if (virt_dev->eps[i].ring) {
3672 			drop_flags |= 1 << i;
3673 			num_dropped_eps++;
3674 		}
3675 	}
3676 	xhci->num_active_eps -= num_dropped_eps;
3677 	if (num_dropped_eps)
3678 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3679 				"Dropped %u ep ctxs, flags = 0x%x, "
3680 				"%u now active.",
3681 				num_dropped_eps, drop_flags,
3682 				xhci->num_active_eps);
3683 }
3684 
3685 /*
3686  * This submits a Reset Device Command, which will set the device state to 0,
3687  * set the device address to 0, and disable all the endpoints except the default
3688  * control endpoint.  The USB core should come back and call
3689  * xhci_address_device(), and then re-set up the configuration.  If this is
3690  * called because of a usb_reset_and_verify_device(), then the old alternate
3691  * settings will be re-installed through the normal bandwidth allocation
3692  * functions.
3693  *
3694  * Wait for the Reset Device command to finish.  Remove all structures
3695  * associated with the endpoints that were disabled.  Clear the input device
3696  * structure? Reset the control endpoint 0 max packet size?
3697  *
3698  * If the virt_dev to be reset does not exist or does not match the udev,
3699  * it means the device is lost, possibly due to the xHC restore error and
3700  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3701  * re-allocate the device.
3702  */
3703 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3704 		struct usb_device *udev)
3705 {
3706 	int ret, i;
3707 	unsigned long flags;
3708 	struct xhci_hcd *xhci;
3709 	unsigned int slot_id;
3710 	struct xhci_virt_device *virt_dev;
3711 	struct xhci_command *reset_device_cmd;
3712 	struct xhci_slot_ctx *slot_ctx;
3713 	int old_active_eps = 0;
3714 
3715 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3716 	if (ret <= 0)
3717 		return ret;
3718 	xhci = hcd_to_xhci(hcd);
3719 	slot_id = udev->slot_id;
3720 	virt_dev = xhci->devs[slot_id];
3721 	if (!virt_dev) {
3722 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3723 				"not exist. Re-allocate the device\n", slot_id);
3724 		ret = xhci_alloc_dev(hcd, udev);
3725 		if (ret == 1)
3726 			return 0;
3727 		else
3728 			return -EINVAL;
3729 	}
3730 
3731 	if (virt_dev->tt_info)
3732 		old_active_eps = virt_dev->tt_info->active_eps;
3733 
3734 	if (virt_dev->udev != udev) {
3735 		/* If the virt_dev and the udev does not match, this virt_dev
3736 		 * may belong to another udev.
3737 		 * Re-allocate the device.
3738 		 */
3739 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3740 				"not match the udev. Re-allocate the device\n",
3741 				slot_id);
3742 		ret = xhci_alloc_dev(hcd, udev);
3743 		if (ret == 1)
3744 			return 0;
3745 		else
3746 			return -EINVAL;
3747 	}
3748 
3749 	/* If device is not setup, there is no point in resetting it */
3750 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3751 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3752 						SLOT_STATE_DISABLED)
3753 		return 0;
3754 
3755 	trace_xhci_discover_or_reset_device(slot_ctx);
3756 
3757 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3758 	/* Allocate the command structure that holds the struct completion.
3759 	 * Assume we're in process context, since the normal device reset
3760 	 * process has to wait for the device anyway.  Storage devices are
3761 	 * reset as part of error handling, so use GFP_NOIO instead of
3762 	 * GFP_KERNEL.
3763 	 */
3764 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3765 	if (!reset_device_cmd) {
3766 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3767 		return -ENOMEM;
3768 	}
3769 
3770 	/* Attempt to submit the Reset Device command to the command ring */
3771 	spin_lock_irqsave(&xhci->lock, flags);
3772 
3773 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3774 	if (ret) {
3775 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3776 		spin_unlock_irqrestore(&xhci->lock, flags);
3777 		goto command_cleanup;
3778 	}
3779 	xhci_ring_cmd_db(xhci);
3780 	spin_unlock_irqrestore(&xhci->lock, flags);
3781 
3782 	/* Wait for the Reset Device command to finish */
3783 	wait_for_completion(reset_device_cmd->completion);
3784 
3785 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3786 	 * unless we tried to reset a slot ID that wasn't enabled,
3787 	 * or the device wasn't in the addressed or configured state.
3788 	 */
3789 	ret = reset_device_cmd->status;
3790 	switch (ret) {
3791 	case COMP_COMMAND_ABORTED:
3792 	case COMP_COMMAND_RING_STOPPED:
3793 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3794 		ret = -ETIME;
3795 		goto command_cleanup;
3796 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3797 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3798 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3799 				slot_id,
3800 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3801 		xhci_dbg(xhci, "Not freeing device rings.\n");
3802 		/* Don't treat this as an error.  May change my mind later. */
3803 		ret = 0;
3804 		goto command_cleanup;
3805 	case COMP_SUCCESS:
3806 		xhci_dbg(xhci, "Successful reset device command.\n");
3807 		break;
3808 	default:
3809 		if (xhci_is_vendor_info_code(xhci, ret))
3810 			break;
3811 		xhci_warn(xhci, "Unknown completion code %u for "
3812 				"reset device command.\n", ret);
3813 		ret = -EINVAL;
3814 		goto command_cleanup;
3815 	}
3816 
3817 	/* Free up host controller endpoint resources */
3818 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3819 		spin_lock_irqsave(&xhci->lock, flags);
3820 		/* Don't delete the default control endpoint resources */
3821 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3822 		spin_unlock_irqrestore(&xhci->lock, flags);
3823 	}
3824 
3825 	/* Everything but endpoint 0 is disabled, so free the rings. */
3826 	for (i = 1; i < 31; i++) {
3827 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3828 
3829 		if (ep->ep_state & EP_HAS_STREAMS) {
3830 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3831 					xhci_get_endpoint_address(i));
3832 			xhci_free_stream_info(xhci, ep->stream_info);
3833 			ep->stream_info = NULL;
3834 			ep->ep_state &= ~EP_HAS_STREAMS;
3835 		}
3836 
3837 		if (ep->ring) {
3838 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3839 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3840 		}
3841 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3842 			xhci_drop_ep_from_interval_table(xhci,
3843 					&virt_dev->eps[i].bw_info,
3844 					virt_dev->bw_table,
3845 					udev,
3846 					&virt_dev->eps[i],
3847 					virt_dev->tt_info);
3848 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3849 	}
3850 	/* If necessary, update the number of active TTs on this root port */
3851 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3852 	virt_dev->flags = 0;
3853 	ret = 0;
3854 
3855 command_cleanup:
3856 	xhci_free_command(xhci, reset_device_cmd);
3857 	return ret;
3858 }
3859 
3860 /*
3861  * At this point, the struct usb_device is about to go away, the device has
3862  * disconnected, and all traffic has been stopped and the endpoints have been
3863  * disabled.  Free any HC data structures associated with that device.
3864  */
3865 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3866 {
3867 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3868 	struct xhci_virt_device *virt_dev;
3869 	struct xhci_slot_ctx *slot_ctx;
3870 	unsigned long flags;
3871 	int i, ret;
3872 
3873 	/*
3874 	 * We called pm_runtime_get_noresume when the device was attached.
3875 	 * Decrement the counter here to allow controller to runtime suspend
3876 	 * if no devices remain.
3877 	 */
3878 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3879 		pm_runtime_put_noidle(hcd->self.controller);
3880 
3881 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3882 	/* If the host is halted due to driver unload, we still need to free the
3883 	 * device.
3884 	 */
3885 	if (ret <= 0 && ret != -ENODEV)
3886 		return;
3887 
3888 	virt_dev = xhci->devs[udev->slot_id];
3889 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3890 	trace_xhci_free_dev(slot_ctx);
3891 
3892 	/* Stop any wayward timer functions (which may grab the lock) */
3893 	for (i = 0; i < 31; i++)
3894 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3895 	virt_dev->udev = NULL;
3896 	xhci_disable_slot(xhci, udev->slot_id);
3897 
3898 	spin_lock_irqsave(&xhci->lock, flags);
3899 	xhci_free_virt_device(xhci, udev->slot_id);
3900 	spin_unlock_irqrestore(&xhci->lock, flags);
3901 
3902 }
3903 
3904 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3905 {
3906 	struct xhci_command *command;
3907 	unsigned long flags;
3908 	u32 state;
3909 	int ret;
3910 
3911 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3912 	if (!command)
3913 		return -ENOMEM;
3914 
3915 	xhci_debugfs_remove_slot(xhci, slot_id);
3916 
3917 	spin_lock_irqsave(&xhci->lock, flags);
3918 	/* Don't disable the slot if the host controller is dead. */
3919 	state = readl(&xhci->op_regs->status);
3920 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3921 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3922 		spin_unlock_irqrestore(&xhci->lock, flags);
3923 		kfree(command);
3924 		return -ENODEV;
3925 	}
3926 
3927 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3928 				slot_id);
3929 	if (ret) {
3930 		spin_unlock_irqrestore(&xhci->lock, flags);
3931 		kfree(command);
3932 		return ret;
3933 	}
3934 	xhci_ring_cmd_db(xhci);
3935 	spin_unlock_irqrestore(&xhci->lock, flags);
3936 
3937 	wait_for_completion(command->completion);
3938 
3939 	if (command->status != COMP_SUCCESS)
3940 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3941 			  slot_id, command->status);
3942 
3943 	xhci_free_command(xhci, command);
3944 
3945 	return 0;
3946 }
3947 
3948 /*
3949  * Checks if we have enough host controller resources for the default control
3950  * endpoint.
3951  *
3952  * Must be called with xhci->lock held.
3953  */
3954 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3955 {
3956 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3957 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3958 				"Not enough ep ctxs: "
3959 				"%u active, need to add 1, limit is %u.",
3960 				xhci->num_active_eps, xhci->limit_active_eps);
3961 		return -ENOMEM;
3962 	}
3963 	xhci->num_active_eps += 1;
3964 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3965 			"Adding 1 ep ctx, %u now active.",
3966 			xhci->num_active_eps);
3967 	return 0;
3968 }
3969 
3970 
3971 /*
3972  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3973  * timed out, or allocating memory failed.  Returns 1 on success.
3974  */
3975 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3976 {
3977 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3978 	struct xhci_virt_device *vdev;
3979 	struct xhci_slot_ctx *slot_ctx;
3980 	unsigned long flags;
3981 	int ret, slot_id;
3982 	struct xhci_command *command;
3983 
3984 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3985 	if (!command)
3986 		return 0;
3987 
3988 	spin_lock_irqsave(&xhci->lock, flags);
3989 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3990 	if (ret) {
3991 		spin_unlock_irqrestore(&xhci->lock, flags);
3992 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3993 		xhci_free_command(xhci, command);
3994 		return 0;
3995 	}
3996 	xhci_ring_cmd_db(xhci);
3997 	spin_unlock_irqrestore(&xhci->lock, flags);
3998 
3999 	wait_for_completion(command->completion);
4000 	slot_id = command->slot_id;
4001 
4002 	if (!slot_id || command->status != COMP_SUCCESS) {
4003 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4004 			 xhci_trb_comp_code_string(command->status));
4005 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4006 				HCS_MAX_SLOTS(
4007 					readl(&xhci->cap_regs->hcs_params1)));
4008 		xhci_free_command(xhci, command);
4009 		return 0;
4010 	}
4011 
4012 	xhci_free_command(xhci, command);
4013 
4014 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4015 		spin_lock_irqsave(&xhci->lock, flags);
4016 		ret = xhci_reserve_host_control_ep_resources(xhci);
4017 		if (ret) {
4018 			spin_unlock_irqrestore(&xhci->lock, flags);
4019 			xhci_warn(xhci, "Not enough host resources, "
4020 					"active endpoint contexts = %u\n",
4021 					xhci->num_active_eps);
4022 			goto disable_slot;
4023 		}
4024 		spin_unlock_irqrestore(&xhci->lock, flags);
4025 	}
4026 	/* Use GFP_NOIO, since this function can be called from
4027 	 * xhci_discover_or_reset_device(), which may be called as part of
4028 	 * mass storage driver error handling.
4029 	 */
4030 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4031 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4032 		goto disable_slot;
4033 	}
4034 	vdev = xhci->devs[slot_id];
4035 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4036 	trace_xhci_alloc_dev(slot_ctx);
4037 
4038 	udev->slot_id = slot_id;
4039 
4040 	xhci_debugfs_create_slot(xhci, slot_id);
4041 
4042 	/*
4043 	 * If resetting upon resume, we can't put the controller into runtime
4044 	 * suspend if there is a device attached.
4045 	 */
4046 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4047 		pm_runtime_get_noresume(hcd->self.controller);
4048 
4049 	/* Is this a LS or FS device under a HS hub? */
4050 	/* Hub or peripherial? */
4051 	return 1;
4052 
4053 disable_slot:
4054 	xhci_disable_slot(xhci, udev->slot_id);
4055 	xhci_free_virt_device(xhci, udev->slot_id);
4056 
4057 	return 0;
4058 }
4059 
4060 /**
4061  * xhci_setup_device - issues an Address Device command to assign a unique
4062  *			USB bus address.
4063  * @hcd: USB host controller data structure.
4064  * @udev: USB dev structure representing the connected device.
4065  * @setup: Enum specifying setup mode: address only or with context.
4066  * @timeout_ms: Max wait time (ms) for the command operation to complete.
4067  *
4068  * Return: 0 if successful; otherwise, negative error code.
4069  */
4070 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4071 			     enum xhci_setup_dev setup, unsigned int timeout_ms)
4072 {
4073 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4074 	unsigned long flags;
4075 	struct xhci_virt_device *virt_dev;
4076 	int ret = 0;
4077 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4078 	struct xhci_slot_ctx *slot_ctx;
4079 	struct xhci_input_control_ctx *ctrl_ctx;
4080 	u64 temp_64;
4081 	struct xhci_command *command = NULL;
4082 
4083 	mutex_lock(&xhci->mutex);
4084 
4085 	if (xhci->xhc_state) {	/* dying, removing or halted */
4086 		ret = -ESHUTDOWN;
4087 		goto out;
4088 	}
4089 
4090 	if (!udev->slot_id) {
4091 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4092 				"Bad Slot ID %d", udev->slot_id);
4093 		ret = -EINVAL;
4094 		goto out;
4095 	}
4096 
4097 	virt_dev = xhci->devs[udev->slot_id];
4098 
4099 	if (WARN_ON(!virt_dev)) {
4100 		/*
4101 		 * In plug/unplug torture test with an NEC controller,
4102 		 * a zero-dereference was observed once due to virt_dev = 0.
4103 		 * Print useful debug rather than crash if it is observed again!
4104 		 */
4105 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4106 			udev->slot_id);
4107 		ret = -EINVAL;
4108 		goto out;
4109 	}
4110 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4111 	trace_xhci_setup_device_slot(slot_ctx);
4112 
4113 	if (setup == SETUP_CONTEXT_ONLY) {
4114 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4115 		    SLOT_STATE_DEFAULT) {
4116 			xhci_dbg(xhci, "Slot already in default state\n");
4117 			goto out;
4118 		}
4119 	}
4120 
4121 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4122 	if (!command) {
4123 		ret = -ENOMEM;
4124 		goto out;
4125 	}
4126 
4127 	command->in_ctx = virt_dev->in_ctx;
4128 	command->timeout_ms = timeout_ms;
4129 
4130 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4131 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4132 	if (!ctrl_ctx) {
4133 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4134 				__func__);
4135 		ret = -EINVAL;
4136 		goto out;
4137 	}
4138 	/*
4139 	 * If this is the first Set Address since device plug-in or
4140 	 * virt_device realloaction after a resume with an xHCI power loss,
4141 	 * then set up the slot context.
4142 	 */
4143 	if (!slot_ctx->dev_info)
4144 		xhci_setup_addressable_virt_dev(xhci, udev);
4145 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4146 	else
4147 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4148 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4149 	ctrl_ctx->drop_flags = 0;
4150 
4151 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4152 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4153 
4154 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4155 	spin_lock_irqsave(&xhci->lock, flags);
4156 	trace_xhci_setup_device(virt_dev);
4157 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4158 					udev->slot_id, setup);
4159 	if (ret) {
4160 		spin_unlock_irqrestore(&xhci->lock, flags);
4161 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4162 				"FIXME: allocate a command ring segment");
4163 		goto out;
4164 	}
4165 	xhci_ring_cmd_db(xhci);
4166 	spin_unlock_irqrestore(&xhci->lock, flags);
4167 
4168 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4169 	wait_for_completion(command->completion);
4170 
4171 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4172 	 * the SetAddress() "recovery interval" required by USB and aborting the
4173 	 * command on a timeout.
4174 	 */
4175 	switch (command->status) {
4176 	case COMP_COMMAND_ABORTED:
4177 	case COMP_COMMAND_RING_STOPPED:
4178 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4179 		ret = -ETIME;
4180 		break;
4181 	case COMP_CONTEXT_STATE_ERROR:
4182 	case COMP_SLOT_NOT_ENABLED_ERROR:
4183 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4184 			 act, udev->slot_id);
4185 		ret = -EINVAL;
4186 		break;
4187 	case COMP_USB_TRANSACTION_ERROR:
4188 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4189 
4190 		mutex_unlock(&xhci->mutex);
4191 		ret = xhci_disable_slot(xhci, udev->slot_id);
4192 		xhci_free_virt_device(xhci, udev->slot_id);
4193 		if (!ret)
4194 			xhci_alloc_dev(hcd, udev);
4195 		kfree(command->completion);
4196 		kfree(command);
4197 		return -EPROTO;
4198 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4199 		dev_warn(&udev->dev,
4200 			 "ERROR: Incompatible device for setup %s command\n", act);
4201 		ret = -ENODEV;
4202 		break;
4203 	case COMP_SUCCESS:
4204 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4205 			       "Successful setup %s command", act);
4206 		break;
4207 	default:
4208 		xhci_err(xhci,
4209 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4210 			 act, command->status);
4211 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4212 		ret = -EINVAL;
4213 		break;
4214 	}
4215 	if (ret)
4216 		goto out;
4217 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4218 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4219 			"Op regs DCBAA ptr = %#016llx", temp_64);
4220 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4221 		"Slot ID %d dcbaa entry @%p = %#016llx",
4222 		udev->slot_id,
4223 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4224 		(unsigned long long)
4225 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4226 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4227 			"Output Context DMA address = %#08llx",
4228 			(unsigned long long)virt_dev->out_ctx->dma);
4229 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4230 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4231 	/*
4232 	 * USB core uses address 1 for the roothubs, so we add one to the
4233 	 * address given back to us by the HC.
4234 	 */
4235 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4236 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4237 	/* Zero the input context control for later use */
4238 	ctrl_ctx->add_flags = 0;
4239 	ctrl_ctx->drop_flags = 0;
4240 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4241 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4242 
4243 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4244 		       "Internal device address = %d",
4245 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4246 out:
4247 	mutex_unlock(&xhci->mutex);
4248 	if (command) {
4249 		kfree(command->completion);
4250 		kfree(command);
4251 	}
4252 	return ret;
4253 }
4254 
4255 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4256 			       unsigned int timeout_ms)
4257 {
4258 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4259 }
4260 
4261 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4262 {
4263 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4264 				 XHCI_CMD_DEFAULT_TIMEOUT);
4265 }
4266 
4267 /*
4268  * Transfer the port index into real index in the HW port status
4269  * registers. Caculate offset between the port's PORTSC register
4270  * and port status base. Divide the number of per port register
4271  * to get the real index. The raw port number bases 1.
4272  */
4273 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4274 {
4275 	struct xhci_hub *rhub;
4276 
4277 	rhub = xhci_get_rhub(hcd);
4278 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4279 }
4280 
4281 /*
4282  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4283  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4284  */
4285 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4286 			struct usb_device *udev, u16 max_exit_latency)
4287 {
4288 	struct xhci_virt_device *virt_dev;
4289 	struct xhci_command *command;
4290 	struct xhci_input_control_ctx *ctrl_ctx;
4291 	struct xhci_slot_ctx *slot_ctx;
4292 	unsigned long flags;
4293 	int ret;
4294 
4295 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4296 	if (!command)
4297 		return -ENOMEM;
4298 
4299 	spin_lock_irqsave(&xhci->lock, flags);
4300 
4301 	virt_dev = xhci->devs[udev->slot_id];
4302 
4303 	/*
4304 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4305 	 * xHC was re-initialized. Exit latency will be set later after
4306 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4307 	 */
4308 
4309 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4310 		spin_unlock_irqrestore(&xhci->lock, flags);
4311 		xhci_free_command(xhci, command);
4312 		return 0;
4313 	}
4314 
4315 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4316 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4317 	if (!ctrl_ctx) {
4318 		spin_unlock_irqrestore(&xhci->lock, flags);
4319 		xhci_free_command(xhci, command);
4320 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4321 				__func__);
4322 		return -ENOMEM;
4323 	}
4324 
4325 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4326 	spin_unlock_irqrestore(&xhci->lock, flags);
4327 
4328 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4329 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4330 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4331 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4332 	slot_ctx->dev_state = 0;
4333 
4334 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4335 			"Set up evaluate context for LPM MEL change.");
4336 
4337 	/* Issue and wait for the evaluate context command. */
4338 	ret = xhci_configure_endpoint(xhci, udev, command,
4339 			true, true);
4340 
4341 	if (!ret) {
4342 		spin_lock_irqsave(&xhci->lock, flags);
4343 		virt_dev->current_mel = max_exit_latency;
4344 		spin_unlock_irqrestore(&xhci->lock, flags);
4345 	}
4346 
4347 	xhci_free_command(xhci, command);
4348 
4349 	return ret;
4350 }
4351 
4352 #ifdef CONFIG_PM
4353 
4354 /* BESL to HIRD Encoding array for USB2 LPM */
4355 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4356 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4357 
4358 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4359 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4360 					struct usb_device *udev)
4361 {
4362 	int u2del, besl, besl_host;
4363 	int besl_device = 0;
4364 	u32 field;
4365 
4366 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4367 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4368 
4369 	if (field & USB_BESL_SUPPORT) {
4370 		for (besl_host = 0; besl_host < 16; besl_host++) {
4371 			if (xhci_besl_encoding[besl_host] >= u2del)
4372 				break;
4373 		}
4374 		/* Use baseline BESL value as default */
4375 		if (field & USB_BESL_BASELINE_VALID)
4376 			besl_device = USB_GET_BESL_BASELINE(field);
4377 		else if (field & USB_BESL_DEEP_VALID)
4378 			besl_device = USB_GET_BESL_DEEP(field);
4379 	} else {
4380 		if (u2del <= 50)
4381 			besl_host = 0;
4382 		else
4383 			besl_host = (u2del - 51) / 75 + 1;
4384 	}
4385 
4386 	besl = besl_host + besl_device;
4387 	if (besl > 15)
4388 		besl = 15;
4389 
4390 	return besl;
4391 }
4392 
4393 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4394 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4395 {
4396 	u32 field;
4397 	int l1;
4398 	int besld = 0;
4399 	int hirdm = 0;
4400 
4401 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4402 
4403 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4404 	l1 = udev->l1_params.timeout / 256;
4405 
4406 	/* device has preferred BESLD */
4407 	if (field & USB_BESL_DEEP_VALID) {
4408 		besld = USB_GET_BESL_DEEP(field);
4409 		hirdm = 1;
4410 	}
4411 
4412 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4413 }
4414 
4415 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4416 			struct usb_device *udev, int enable)
4417 {
4418 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4419 	struct xhci_port **ports;
4420 	__le32 __iomem	*pm_addr, *hlpm_addr;
4421 	u32		pm_val, hlpm_val, field;
4422 	unsigned int	port_num;
4423 	unsigned long	flags;
4424 	int		hird, exit_latency;
4425 	int		ret;
4426 
4427 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4428 		return -EPERM;
4429 
4430 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4431 			!udev->lpm_capable)
4432 		return -EPERM;
4433 
4434 	if (!udev->parent || udev->parent->parent ||
4435 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4436 		return -EPERM;
4437 
4438 	if (udev->usb2_hw_lpm_capable != 1)
4439 		return -EPERM;
4440 
4441 	spin_lock_irqsave(&xhci->lock, flags);
4442 
4443 	ports = xhci->usb2_rhub.ports;
4444 	port_num = udev->portnum - 1;
4445 	pm_addr = ports[port_num]->addr + PORTPMSC;
4446 	pm_val = readl(pm_addr);
4447 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4448 
4449 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4450 			enable ? "enable" : "disable", port_num + 1);
4451 
4452 	if (enable) {
4453 		/* Host supports BESL timeout instead of HIRD */
4454 		if (udev->usb2_hw_lpm_besl_capable) {
4455 			/* if device doesn't have a preferred BESL value use a
4456 			 * default one which works with mixed HIRD and BESL
4457 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4458 			 */
4459 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4460 			if ((field & USB_BESL_SUPPORT) &&
4461 			    (field & USB_BESL_BASELINE_VALID))
4462 				hird = USB_GET_BESL_BASELINE(field);
4463 			else
4464 				hird = udev->l1_params.besl;
4465 
4466 			exit_latency = xhci_besl_encoding[hird];
4467 			spin_unlock_irqrestore(&xhci->lock, flags);
4468 
4469 			ret = xhci_change_max_exit_latency(xhci, udev,
4470 							   exit_latency);
4471 			if (ret < 0)
4472 				return ret;
4473 			spin_lock_irqsave(&xhci->lock, flags);
4474 
4475 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4476 			writel(hlpm_val, hlpm_addr);
4477 			/* flush write */
4478 			readl(hlpm_addr);
4479 		} else {
4480 			hird = xhci_calculate_hird_besl(xhci, udev);
4481 		}
4482 
4483 		pm_val &= ~PORT_HIRD_MASK;
4484 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4485 		writel(pm_val, pm_addr);
4486 		pm_val = readl(pm_addr);
4487 		pm_val |= PORT_HLE;
4488 		writel(pm_val, pm_addr);
4489 		/* flush write */
4490 		readl(pm_addr);
4491 	} else {
4492 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4493 		writel(pm_val, pm_addr);
4494 		/* flush write */
4495 		readl(pm_addr);
4496 		if (udev->usb2_hw_lpm_besl_capable) {
4497 			spin_unlock_irqrestore(&xhci->lock, flags);
4498 			xhci_change_max_exit_latency(xhci, udev, 0);
4499 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4500 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4501 					   100, 10000);
4502 			return 0;
4503 		}
4504 	}
4505 
4506 	spin_unlock_irqrestore(&xhci->lock, flags);
4507 	return 0;
4508 }
4509 
4510 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4511 {
4512 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4513 	struct xhci_port *port;
4514 	u32 capability;
4515 
4516 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support)
4517 		return 0;
4518 
4519 	/* we only support lpm for non-hub device connected to root hub yet */
4520 	if (!udev->parent || udev->parent->parent ||
4521 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4522 		return 0;
4523 
4524 	port = xhci->usb2_rhub.ports[udev->portnum - 1];
4525 	capability = port->port_cap->protocol_caps;
4526 
4527 	if (capability & XHCI_HLC) {
4528 		udev->usb2_hw_lpm_capable = 1;
4529 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4530 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4531 		if (capability & XHCI_BLC)
4532 			udev->usb2_hw_lpm_besl_capable = 1;
4533 	}
4534 
4535 	return 0;
4536 }
4537 
4538 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4539 
4540 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4541 static unsigned long long xhci_service_interval_to_ns(
4542 		struct usb_endpoint_descriptor *desc)
4543 {
4544 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4545 }
4546 
4547 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4548 		enum usb3_link_state state)
4549 {
4550 	unsigned long long sel;
4551 	unsigned long long pel;
4552 	unsigned int max_sel_pel;
4553 	char *state_name;
4554 
4555 	switch (state) {
4556 	case USB3_LPM_U1:
4557 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4558 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4559 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4560 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4561 		state_name = "U1";
4562 		break;
4563 	case USB3_LPM_U2:
4564 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4565 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4566 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4567 		state_name = "U2";
4568 		break;
4569 	default:
4570 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4571 				__func__);
4572 		return USB3_LPM_DISABLED;
4573 	}
4574 
4575 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4576 		return USB3_LPM_DEVICE_INITIATED;
4577 
4578 	if (sel > max_sel_pel)
4579 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4580 				"due to long SEL %llu ms\n",
4581 				state_name, sel);
4582 	else
4583 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4584 				"due to long PEL %llu ms\n",
4585 				state_name, pel);
4586 	return USB3_LPM_DISABLED;
4587 }
4588 
4589 /* The U1 timeout should be the maximum of the following values:
4590  *  - For control endpoints, U1 system exit latency (SEL) * 3
4591  *  - For bulk endpoints, U1 SEL * 5
4592  *  - For interrupt endpoints:
4593  *    - Notification EPs, U1 SEL * 3
4594  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4595  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4596  */
4597 static unsigned long long xhci_calculate_intel_u1_timeout(
4598 		struct usb_device *udev,
4599 		struct usb_endpoint_descriptor *desc)
4600 {
4601 	unsigned long long timeout_ns;
4602 	int ep_type;
4603 	int intr_type;
4604 
4605 	ep_type = usb_endpoint_type(desc);
4606 	switch (ep_type) {
4607 	case USB_ENDPOINT_XFER_CONTROL:
4608 		timeout_ns = udev->u1_params.sel * 3;
4609 		break;
4610 	case USB_ENDPOINT_XFER_BULK:
4611 		timeout_ns = udev->u1_params.sel * 5;
4612 		break;
4613 	case USB_ENDPOINT_XFER_INT:
4614 		intr_type = usb_endpoint_interrupt_type(desc);
4615 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4616 			timeout_ns = udev->u1_params.sel * 3;
4617 			break;
4618 		}
4619 		/* Otherwise the calculation is the same as isoc eps */
4620 		fallthrough;
4621 	case USB_ENDPOINT_XFER_ISOC:
4622 		timeout_ns = xhci_service_interval_to_ns(desc);
4623 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4624 		if (timeout_ns < udev->u1_params.sel * 2)
4625 			timeout_ns = udev->u1_params.sel * 2;
4626 		break;
4627 	default:
4628 		return 0;
4629 	}
4630 
4631 	return timeout_ns;
4632 }
4633 
4634 /* Returns the hub-encoded U1 timeout value. */
4635 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4636 		struct usb_device *udev,
4637 		struct usb_endpoint_descriptor *desc)
4638 {
4639 	unsigned long long timeout_ns;
4640 
4641 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4642 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4643 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4644 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4645 			return USB3_LPM_DISABLED;
4646 		}
4647 	}
4648 
4649 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4650 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4651 	else
4652 		timeout_ns = udev->u1_params.sel;
4653 
4654 	/* The U1 timeout is encoded in 1us intervals.
4655 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4656 	 */
4657 	if (timeout_ns == USB3_LPM_DISABLED)
4658 		timeout_ns = 1;
4659 	else
4660 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4661 
4662 	/* If the necessary timeout value is bigger than what we can set in the
4663 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4664 	 */
4665 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4666 		return timeout_ns;
4667 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4668 			"due to long timeout %llu ms\n", timeout_ns);
4669 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4670 }
4671 
4672 /* The U2 timeout should be the maximum of:
4673  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4674  *  - largest bInterval of any active periodic endpoint (to avoid going
4675  *    into lower power link states between intervals).
4676  *  - the U2 Exit Latency of the device
4677  */
4678 static unsigned long long xhci_calculate_intel_u2_timeout(
4679 		struct usb_device *udev,
4680 		struct usb_endpoint_descriptor *desc)
4681 {
4682 	unsigned long long timeout_ns;
4683 	unsigned long long u2_del_ns;
4684 
4685 	timeout_ns = 10 * 1000 * 1000;
4686 
4687 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4688 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4689 		timeout_ns = xhci_service_interval_to_ns(desc);
4690 
4691 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4692 	if (u2_del_ns > timeout_ns)
4693 		timeout_ns = u2_del_ns;
4694 
4695 	return timeout_ns;
4696 }
4697 
4698 /* Returns the hub-encoded U2 timeout value. */
4699 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4700 		struct usb_device *udev,
4701 		struct usb_endpoint_descriptor *desc)
4702 {
4703 	unsigned long long timeout_ns;
4704 
4705 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4706 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4707 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4708 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4709 			return USB3_LPM_DISABLED;
4710 		}
4711 	}
4712 
4713 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4714 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4715 	else
4716 		timeout_ns = udev->u2_params.sel;
4717 
4718 	/* The U2 timeout is encoded in 256us intervals */
4719 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4720 	/* If the necessary timeout value is bigger than what we can set in the
4721 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4722 	 */
4723 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4724 		return timeout_ns;
4725 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4726 			"due to long timeout %llu ms\n", timeout_ns);
4727 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4728 }
4729 
4730 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4731 		struct usb_device *udev,
4732 		struct usb_endpoint_descriptor *desc,
4733 		enum usb3_link_state state,
4734 		u16 *timeout)
4735 {
4736 	if (state == USB3_LPM_U1)
4737 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4738 	else if (state == USB3_LPM_U2)
4739 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4740 
4741 	return USB3_LPM_DISABLED;
4742 }
4743 
4744 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4745 		struct usb_device *udev,
4746 		struct usb_endpoint_descriptor *desc,
4747 		enum usb3_link_state state,
4748 		u16 *timeout)
4749 {
4750 	u16 alt_timeout;
4751 
4752 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4753 		desc, state, timeout);
4754 
4755 	/* If we found we can't enable hub-initiated LPM, and
4756 	 * the U1 or U2 exit latency was too high to allow
4757 	 * device-initiated LPM as well, then we will disable LPM
4758 	 * for this device, so stop searching any further.
4759 	 */
4760 	if (alt_timeout == USB3_LPM_DISABLED) {
4761 		*timeout = alt_timeout;
4762 		return -E2BIG;
4763 	}
4764 	if (alt_timeout > *timeout)
4765 		*timeout = alt_timeout;
4766 	return 0;
4767 }
4768 
4769 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4770 		struct usb_device *udev,
4771 		struct usb_host_interface *alt,
4772 		enum usb3_link_state state,
4773 		u16 *timeout)
4774 {
4775 	int j;
4776 
4777 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4778 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4779 					&alt->endpoint[j].desc, state, timeout))
4780 			return -E2BIG;
4781 	}
4782 	return 0;
4783 }
4784 
4785 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4786 		struct usb_device *udev,
4787 		enum usb3_link_state state)
4788 {
4789 	struct usb_device *parent = udev->parent;
4790 	int tier = 1; /* roothub is tier1 */
4791 
4792 	while (parent) {
4793 		parent = parent->parent;
4794 		tier++;
4795 	}
4796 
4797 	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4798 		goto fail;
4799 	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4800 		goto fail;
4801 
4802 	return 0;
4803 fail:
4804 	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4805 			tier);
4806 	return -E2BIG;
4807 }
4808 
4809 /* Returns the U1 or U2 timeout that should be enabled.
4810  * If the tier check or timeout setting functions return with a non-zero exit
4811  * code, that means the timeout value has been finalized and we shouldn't look
4812  * at any more endpoints.
4813  */
4814 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4815 			struct usb_device *udev, enum usb3_link_state state)
4816 {
4817 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4818 	struct usb_host_config *config;
4819 	char *state_name;
4820 	int i;
4821 	u16 timeout = USB3_LPM_DISABLED;
4822 
4823 	if (state == USB3_LPM_U1)
4824 		state_name = "U1";
4825 	else if (state == USB3_LPM_U2)
4826 		state_name = "U2";
4827 	else {
4828 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4829 				state);
4830 		return timeout;
4831 	}
4832 
4833 	/* Gather some information about the currently installed configuration
4834 	 * and alternate interface settings.
4835 	 */
4836 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4837 			state, &timeout))
4838 		return timeout;
4839 
4840 	config = udev->actconfig;
4841 	if (!config)
4842 		return timeout;
4843 
4844 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4845 		struct usb_driver *driver;
4846 		struct usb_interface *intf = config->interface[i];
4847 
4848 		if (!intf)
4849 			continue;
4850 
4851 		/* Check if any currently bound drivers want hub-initiated LPM
4852 		 * disabled.
4853 		 */
4854 		if (intf->dev.driver) {
4855 			driver = to_usb_driver(intf->dev.driver);
4856 			if (driver && driver->disable_hub_initiated_lpm) {
4857 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4858 					state_name, driver->name);
4859 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4860 								      state);
4861 				if (timeout == USB3_LPM_DISABLED)
4862 					return timeout;
4863 			}
4864 		}
4865 
4866 		/* Not sure how this could happen... */
4867 		if (!intf->cur_altsetting)
4868 			continue;
4869 
4870 		if (xhci_update_timeout_for_interface(xhci, udev,
4871 					intf->cur_altsetting,
4872 					state, &timeout))
4873 			return timeout;
4874 	}
4875 	return timeout;
4876 }
4877 
4878 static int calculate_max_exit_latency(struct usb_device *udev,
4879 		enum usb3_link_state state_changed,
4880 		u16 hub_encoded_timeout)
4881 {
4882 	unsigned long long u1_mel_us = 0;
4883 	unsigned long long u2_mel_us = 0;
4884 	unsigned long long mel_us = 0;
4885 	bool disabling_u1;
4886 	bool disabling_u2;
4887 	bool enabling_u1;
4888 	bool enabling_u2;
4889 
4890 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4891 			hub_encoded_timeout == USB3_LPM_DISABLED);
4892 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4893 			hub_encoded_timeout == USB3_LPM_DISABLED);
4894 
4895 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4896 			hub_encoded_timeout != USB3_LPM_DISABLED);
4897 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4898 			hub_encoded_timeout != USB3_LPM_DISABLED);
4899 
4900 	/* If U1 was already enabled and we're not disabling it,
4901 	 * or we're going to enable U1, account for the U1 max exit latency.
4902 	 */
4903 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4904 			enabling_u1)
4905 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4906 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4907 			enabling_u2)
4908 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4909 
4910 	mel_us = max(u1_mel_us, u2_mel_us);
4911 
4912 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4913 	if (mel_us > MAX_EXIT) {
4914 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4915 				"is too big.\n", mel_us);
4916 		return -E2BIG;
4917 	}
4918 	return mel_us;
4919 }
4920 
4921 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4922 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4923 			struct usb_device *udev, enum usb3_link_state state)
4924 {
4925 	struct xhci_hcd	*xhci;
4926 	struct xhci_port *port;
4927 	u16 hub_encoded_timeout;
4928 	int mel;
4929 	int ret;
4930 
4931 	xhci = hcd_to_xhci(hcd);
4932 	/* The LPM timeout values are pretty host-controller specific, so don't
4933 	 * enable hub-initiated timeouts unless the vendor has provided
4934 	 * information about their timeout algorithm.
4935 	 */
4936 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4937 			!xhci->devs[udev->slot_id])
4938 		return USB3_LPM_DISABLED;
4939 
4940 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4941 		return USB3_LPM_DISABLED;
4942 
4943 	/* If connected to root port then check port can handle lpm */
4944 	if (udev->parent && !udev->parent->parent) {
4945 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4946 		if (port->lpm_incapable)
4947 			return USB3_LPM_DISABLED;
4948 	}
4949 
4950 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4951 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4952 	if (mel < 0) {
4953 		/* Max Exit Latency is too big, disable LPM. */
4954 		hub_encoded_timeout = USB3_LPM_DISABLED;
4955 		mel = 0;
4956 	}
4957 
4958 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4959 	if (ret)
4960 		return ret;
4961 	return hub_encoded_timeout;
4962 }
4963 
4964 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4965 			struct usb_device *udev, enum usb3_link_state state)
4966 {
4967 	struct xhci_hcd	*xhci;
4968 	u16 mel;
4969 
4970 	xhci = hcd_to_xhci(hcd);
4971 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4972 			!xhci->devs[udev->slot_id])
4973 		return 0;
4974 
4975 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4976 	return xhci_change_max_exit_latency(xhci, udev, mel);
4977 }
4978 #else /* CONFIG_PM */
4979 
4980 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4981 				struct usb_device *udev, int enable)
4982 {
4983 	return 0;
4984 }
4985 
4986 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4987 {
4988 	return 0;
4989 }
4990 
4991 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4992 			struct usb_device *udev, enum usb3_link_state state)
4993 {
4994 	return USB3_LPM_DISABLED;
4995 }
4996 
4997 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4998 			struct usb_device *udev, enum usb3_link_state state)
4999 {
5000 	return 0;
5001 }
5002 #endif	/* CONFIG_PM */
5003 
5004 /*-------------------------------------------------------------------------*/
5005 
5006 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5007  * internal data structures for the device.
5008  */
5009 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5010 			struct usb_tt *tt, gfp_t mem_flags)
5011 {
5012 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5013 	struct xhci_virt_device *vdev;
5014 	struct xhci_command *config_cmd;
5015 	struct xhci_input_control_ctx *ctrl_ctx;
5016 	struct xhci_slot_ctx *slot_ctx;
5017 	unsigned long flags;
5018 	unsigned think_time;
5019 	int ret;
5020 
5021 	/* Ignore root hubs */
5022 	if (!hdev->parent)
5023 		return 0;
5024 
5025 	vdev = xhci->devs[hdev->slot_id];
5026 	if (!vdev) {
5027 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5028 		return -EINVAL;
5029 	}
5030 
5031 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5032 	if (!config_cmd)
5033 		return -ENOMEM;
5034 
5035 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5036 	if (!ctrl_ctx) {
5037 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5038 				__func__);
5039 		xhci_free_command(xhci, config_cmd);
5040 		return -ENOMEM;
5041 	}
5042 
5043 	spin_lock_irqsave(&xhci->lock, flags);
5044 	if (hdev->speed == USB_SPEED_HIGH &&
5045 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5046 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5047 		xhci_free_command(xhci, config_cmd);
5048 		spin_unlock_irqrestore(&xhci->lock, flags);
5049 		return -ENOMEM;
5050 	}
5051 
5052 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5053 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5054 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5055 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5056 	/*
5057 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5058 	 * but it may be already set to 1 when setup an xHCI virtual
5059 	 * device, so clear it anyway.
5060 	 */
5061 	if (tt->multi)
5062 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5063 	else if (hdev->speed == USB_SPEED_FULL)
5064 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5065 
5066 	if (xhci->hci_version > 0x95) {
5067 		xhci_dbg(xhci, "xHCI version %x needs hub "
5068 				"TT think time and number of ports\n",
5069 				(unsigned int) xhci->hci_version);
5070 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5071 		/* Set TT think time - convert from ns to FS bit times.
5072 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5073 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5074 		 *
5075 		 * xHCI 1.0: this field shall be 0 if the device is not a
5076 		 * High-spped hub.
5077 		 */
5078 		think_time = tt->think_time;
5079 		if (think_time != 0)
5080 			think_time = (think_time / 666) - 1;
5081 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5082 			slot_ctx->tt_info |=
5083 				cpu_to_le32(TT_THINK_TIME(think_time));
5084 	} else {
5085 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5086 				"TT think time or number of ports\n",
5087 				(unsigned int) xhci->hci_version);
5088 	}
5089 	slot_ctx->dev_state = 0;
5090 	spin_unlock_irqrestore(&xhci->lock, flags);
5091 
5092 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5093 			(xhci->hci_version > 0x95) ?
5094 			"configure endpoint" : "evaluate context");
5095 
5096 	/* Issue and wait for the configure endpoint or
5097 	 * evaluate context command.
5098 	 */
5099 	if (xhci->hci_version > 0x95)
5100 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5101 				false, false);
5102 	else
5103 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5104 				true, false);
5105 
5106 	xhci_free_command(xhci, config_cmd);
5107 	return ret;
5108 }
5109 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5110 
5111 static int xhci_get_frame(struct usb_hcd *hcd)
5112 {
5113 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5114 	/* EHCI mods by the periodic size.  Why? */
5115 	return readl(&xhci->run_regs->microframe_index) >> 3;
5116 }
5117 
5118 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5119 {
5120 	xhci->usb2_rhub.hcd = hcd;
5121 	hcd->speed = HCD_USB2;
5122 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5123 	/*
5124 	 * USB 2.0 roothub under xHCI has an integrated TT,
5125 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5126 	 * companion controller.
5127 	 */
5128 	hcd->has_tt = 1;
5129 }
5130 
5131 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5132 {
5133 	unsigned int minor_rev;
5134 
5135 	/*
5136 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5137 	 * should return 0x31 for sbrn, or that the minor revision
5138 	 * is a two digit BCD containig minor and sub-minor numbers.
5139 	 * This was later clarified in xHCI 1.2.
5140 	 *
5141 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5142 	 * minor revision set to 0x1 instead of 0x10.
5143 	 */
5144 	if (xhci->usb3_rhub.min_rev == 0x1)
5145 		minor_rev = 1;
5146 	else
5147 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5148 
5149 	switch (minor_rev) {
5150 	case 2:
5151 		hcd->speed = HCD_USB32;
5152 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5153 		hcd->self.root_hub->rx_lanes = 2;
5154 		hcd->self.root_hub->tx_lanes = 2;
5155 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5156 		break;
5157 	case 1:
5158 		hcd->speed = HCD_USB31;
5159 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5160 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5161 		break;
5162 	}
5163 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5164 		  minor_rev, minor_rev ? "Enhanced " : "");
5165 
5166 	xhci->usb3_rhub.hcd = hcd;
5167 }
5168 
5169 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5170 {
5171 	struct xhci_hcd		*xhci;
5172 	/*
5173 	 * TODO: Check with DWC3 clients for sysdev according to
5174 	 * quirks
5175 	 */
5176 	struct device		*dev = hcd->self.sysdev;
5177 	int			retval;
5178 
5179 	/* Accept arbitrarily long scatter-gather lists */
5180 	hcd->self.sg_tablesize = ~0;
5181 
5182 	/* support to build packet from discontinuous buffers */
5183 	hcd->self.no_sg_constraint = 1;
5184 
5185 	/* XHCI controllers don't stop the ep queue on short packets :| */
5186 	hcd->self.no_stop_on_short = 1;
5187 
5188 	xhci = hcd_to_xhci(hcd);
5189 
5190 	if (!usb_hcd_is_primary_hcd(hcd)) {
5191 		xhci_hcd_init_usb3_data(xhci, hcd);
5192 		return 0;
5193 	}
5194 
5195 	mutex_init(&xhci->mutex);
5196 	xhci->main_hcd = hcd;
5197 	xhci->cap_regs = hcd->regs;
5198 	xhci->op_regs = hcd->regs +
5199 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5200 	xhci->run_regs = hcd->regs +
5201 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5202 	/* Cache read-only capability registers */
5203 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5204 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5205 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5206 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5207 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5208 	if (xhci->hci_version > 0x100)
5209 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5210 
5211 	/* xhci-plat or xhci-pci might have set max_interrupters already */
5212 	if ((!xhci->max_interrupters) ||
5213 	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5214 		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5215 
5216 	xhci->quirks |= quirks;
5217 
5218 	if (get_quirks)
5219 		get_quirks(dev, xhci);
5220 
5221 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5222 	 * success event after a short transfer. This quirk will ignore such
5223 	 * spurious event.
5224 	 */
5225 	if (xhci->hci_version > 0x96)
5226 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5227 
5228 	/* Make sure the HC is halted. */
5229 	retval = xhci_halt(xhci);
5230 	if (retval)
5231 		return retval;
5232 
5233 	xhci_zero_64b_regs(xhci);
5234 
5235 	xhci_dbg(xhci, "Resetting HCD\n");
5236 	/* Reset the internal HC memory state and registers. */
5237 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5238 	if (retval)
5239 		return retval;
5240 	xhci_dbg(xhci, "Reset complete\n");
5241 
5242 	/*
5243 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5244 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5245 	 * address memory pointers actually. So, this driver clears the AC64
5246 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5247 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5248 	 */
5249 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5250 		xhci->hcc_params &= ~BIT(0);
5251 
5252 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5253 	 * if xHC supports 64-bit addressing */
5254 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5255 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5256 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5257 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5258 	} else {
5259 		/*
5260 		 * This is to avoid error in cases where a 32-bit USB
5261 		 * controller is used on a 64-bit capable system.
5262 		 */
5263 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5264 		if (retval)
5265 			return retval;
5266 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5267 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5268 	}
5269 
5270 	xhci_dbg(xhci, "Calling HCD init\n");
5271 	/* Initialize HCD and host controller data structures. */
5272 	retval = xhci_init(hcd);
5273 	if (retval)
5274 		return retval;
5275 	xhci_dbg(xhci, "Called HCD init\n");
5276 
5277 	if (xhci_hcd_is_usb3(hcd))
5278 		xhci_hcd_init_usb3_data(xhci, hcd);
5279 	else
5280 		xhci_hcd_init_usb2_data(xhci, hcd);
5281 
5282 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5283 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5284 
5285 	return 0;
5286 }
5287 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5288 
5289 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5290 		struct usb_host_endpoint *ep)
5291 {
5292 	struct xhci_hcd *xhci;
5293 	struct usb_device *udev;
5294 	unsigned int slot_id;
5295 	unsigned int ep_index;
5296 	unsigned long flags;
5297 
5298 	xhci = hcd_to_xhci(hcd);
5299 
5300 	spin_lock_irqsave(&xhci->lock, flags);
5301 	udev = (struct usb_device *)ep->hcpriv;
5302 	slot_id = udev->slot_id;
5303 	ep_index = xhci_get_endpoint_index(&ep->desc);
5304 
5305 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5306 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5307 	spin_unlock_irqrestore(&xhci->lock, flags);
5308 }
5309 
5310 static const struct hc_driver xhci_hc_driver = {
5311 	.description =		"xhci-hcd",
5312 	.product_desc =		"xHCI Host Controller",
5313 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5314 
5315 	/*
5316 	 * generic hardware linkage
5317 	 */
5318 	.irq =			xhci_irq,
5319 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5320 				HCD_BH,
5321 
5322 	/*
5323 	 * basic lifecycle operations
5324 	 */
5325 	.reset =		NULL, /* set in xhci_init_driver() */
5326 	.start =		xhci_run,
5327 	.stop =			xhci_stop,
5328 	.shutdown =		xhci_shutdown,
5329 
5330 	/*
5331 	 * managing i/o requests and associated device resources
5332 	 */
5333 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5334 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5335 	.urb_enqueue =		xhci_urb_enqueue,
5336 	.urb_dequeue =		xhci_urb_dequeue,
5337 	.alloc_dev =		xhci_alloc_dev,
5338 	.free_dev =		xhci_free_dev,
5339 	.alloc_streams =	xhci_alloc_streams,
5340 	.free_streams =		xhci_free_streams,
5341 	.add_endpoint =		xhci_add_endpoint,
5342 	.drop_endpoint =	xhci_drop_endpoint,
5343 	.endpoint_disable =	xhci_endpoint_disable,
5344 	.endpoint_reset =	xhci_endpoint_reset,
5345 	.check_bandwidth =	xhci_check_bandwidth,
5346 	.reset_bandwidth =	xhci_reset_bandwidth,
5347 	.address_device =	xhci_address_device,
5348 	.enable_device =	xhci_enable_device,
5349 	.update_hub_device =	xhci_update_hub_device,
5350 	.reset_device =		xhci_discover_or_reset_device,
5351 
5352 	/*
5353 	 * scheduling support
5354 	 */
5355 	.get_frame_number =	xhci_get_frame,
5356 
5357 	/*
5358 	 * root hub support
5359 	 */
5360 	.hub_control =		xhci_hub_control,
5361 	.hub_status_data =	xhci_hub_status_data,
5362 	.bus_suspend =		xhci_bus_suspend,
5363 	.bus_resume =		xhci_bus_resume,
5364 	.get_resuming_ports =	xhci_get_resuming_ports,
5365 
5366 	/*
5367 	 * call back when device connected and addressed
5368 	 */
5369 	.update_device =        xhci_update_device,
5370 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5371 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5372 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5373 	.find_raw_port_number =	xhci_find_raw_port_number,
5374 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5375 };
5376 
5377 void xhci_init_driver(struct hc_driver *drv,
5378 		      const struct xhci_driver_overrides *over)
5379 {
5380 	BUG_ON(!over);
5381 
5382 	/* Copy the generic table to drv then apply the overrides */
5383 	*drv = xhci_hc_driver;
5384 
5385 	if (over) {
5386 		drv->hcd_priv_size += over->extra_priv_size;
5387 		if (over->reset)
5388 			drv->reset = over->reset;
5389 		if (over->start)
5390 			drv->start = over->start;
5391 		if (over->add_endpoint)
5392 			drv->add_endpoint = over->add_endpoint;
5393 		if (over->drop_endpoint)
5394 			drv->drop_endpoint = over->drop_endpoint;
5395 		if (over->check_bandwidth)
5396 			drv->check_bandwidth = over->check_bandwidth;
5397 		if (over->reset_bandwidth)
5398 			drv->reset_bandwidth = over->reset_bandwidth;
5399 		if (over->update_hub_device)
5400 			drv->update_hub_device = over->update_hub_device;
5401 		if (over->hub_control)
5402 			drv->hub_control = over->hub_control;
5403 	}
5404 }
5405 EXPORT_SYMBOL_GPL(xhci_init_driver);
5406 
5407 MODULE_DESCRIPTION(DRIVER_DESC);
5408 MODULE_AUTHOR(DRIVER_AUTHOR);
5409 MODULE_LICENSE("GPL");
5410 
5411 static int __init xhci_hcd_init(void)
5412 {
5413 	/*
5414 	 * Check the compiler generated sizes of structures that must be laid
5415 	 * out in specific ways for hardware access.
5416 	 */
5417 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5418 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5419 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5420 	/* xhci_device_control has eight fields, and also
5421 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5422 	 */
5423 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5424 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5425 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5426 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5427 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5428 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5429 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5430 
5431 	if (usb_disabled())
5432 		return -ENODEV;
5433 
5434 	xhci_debugfs_create_root();
5435 	xhci_dbc_init();
5436 
5437 	return 0;
5438 }
5439 
5440 /*
5441  * If an init function is provided, an exit function must also be provided
5442  * to allow module unload.
5443  */
5444 static void __exit xhci_hcd_fini(void)
5445 {
5446 	xhci_debugfs_remove_root();
5447 	xhci_dbc_exit();
5448 }
5449 
5450 module_init(xhci_hcd_init);
5451 module_exit(xhci_hcd_fini);
5452