1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iommu.h> 13 #include <linux/iopoll.h> 14 #include <linux/irq.h> 15 #include <linux/log2.h> 16 #include <linux/module.h> 17 #include <linux/moduleparam.h> 18 #include <linux/slab.h> 19 #include <linux/dmi.h> 20 #include <linux/dma-mapping.h> 21 22 #include "xhci.h" 23 #include "xhci-trace.h" 24 #include "xhci-debugfs.h" 25 #include "xhci-dbgcap.h" 26 27 #define DRIVER_AUTHOR "Sarah Sharp" 28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 29 30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 31 32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 33 static int link_quirk; 34 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 36 37 static unsigned long long quirks; 38 module_param(quirks, ullong, S_IRUGO); 39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 40 41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 42 { 43 struct xhci_segment *seg = ring->first_seg; 44 45 if (!td || !td->start_seg) 46 return false; 47 do { 48 if (seg == td->start_seg) 49 return true; 50 seg = seg->next; 51 } while (seg && seg != ring->first_seg); 52 53 return false; 54 } 55 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 70 { 71 u32 result; 72 int ret; 73 74 ret = readl_poll_timeout_atomic(ptr, result, 75 (result & mask) == done || 76 result == U32_MAX, 77 1, timeout_us); 78 if (result == U32_MAX) /* card removed */ 79 return -ENODEV; 80 81 return ret; 82 } 83 84 /* 85 * Disable interrupts and begin the xHCI halting process. 86 */ 87 void xhci_quiesce(struct xhci_hcd *xhci) 88 { 89 u32 halted; 90 u32 cmd; 91 u32 mask; 92 93 mask = ~(XHCI_IRQS); 94 halted = readl(&xhci->op_regs->status) & STS_HALT; 95 if (!halted) 96 mask &= ~CMD_RUN; 97 98 cmd = readl(&xhci->op_regs->command); 99 cmd &= mask; 100 writel(cmd, &xhci->op_regs->command); 101 } 102 103 /* 104 * Force HC into halt state. 105 * 106 * Disable any IRQs and clear the run/stop bit. 107 * HC will complete any current and actively pipelined transactions, and 108 * should halt within 16 ms of the run/stop bit being cleared. 109 * Read HC Halted bit in the status register to see when the HC is finished. 110 */ 111 int xhci_halt(struct xhci_hcd *xhci) 112 { 113 int ret; 114 115 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 116 xhci_quiesce(xhci); 117 118 ret = xhci_handshake(&xhci->op_regs->status, 119 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 120 if (ret) { 121 xhci_warn(xhci, "Host halt failed, %d\n", ret); 122 return ret; 123 } 124 125 xhci->xhc_state |= XHCI_STATE_HALTED; 126 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 127 128 return ret; 129 } 130 131 /* 132 * Set the run bit and wait for the host to be running. 133 */ 134 int xhci_start(struct xhci_hcd *xhci) 135 { 136 u32 temp; 137 int ret; 138 139 temp = readl(&xhci->op_regs->command); 140 temp |= (CMD_RUN); 141 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 142 temp); 143 writel(temp, &xhci->op_regs->command); 144 145 /* 146 * Wait for the HCHalted Status bit to be 0 to indicate the host is 147 * running. 148 */ 149 ret = xhci_handshake(&xhci->op_regs->status, 150 STS_HALT, 0, XHCI_MAX_HALT_USEC); 151 if (ret == -ETIMEDOUT) 152 xhci_err(xhci, "Host took too long to start, " 153 "waited %u microseconds.\n", 154 XHCI_MAX_HALT_USEC); 155 if (!ret) { 156 /* clear state flags. Including dying, halted or removing */ 157 xhci->xhc_state = 0; 158 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 159 } 160 161 return ret; 162 } 163 164 /* 165 * Reset a halted HC. 166 * 167 * This resets pipelines, timers, counters, state machines, etc. 168 * Transactions will be terminated immediately, and operational registers 169 * will be set to their defaults. 170 */ 171 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 172 { 173 u32 command; 174 u32 state; 175 int ret; 176 177 state = readl(&xhci->op_regs->status); 178 179 if (state == ~(u32)0) { 180 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 181 return -ENODEV; 182 } 183 184 if ((state & STS_HALT) == 0) { 185 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 186 return 0; 187 } 188 189 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 190 command = readl(&xhci->op_regs->command); 191 command |= CMD_RESET; 192 writel(command, &xhci->op_regs->command); 193 194 /* Existing Intel xHCI controllers require a delay of 1 mS, 195 * after setting the CMD_RESET bit, and before accessing any 196 * HC registers. This allows the HC to complete the 197 * reset operation and be ready for HC register access. 198 * Without this delay, the subsequent HC register access, 199 * may result in a system hang very rarely. 200 */ 201 if (xhci->quirks & XHCI_INTEL_HOST) 202 udelay(1000); 203 204 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us); 205 if (ret) 206 return ret; 207 208 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 209 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 210 211 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 212 "Wait for controller to be ready for doorbell rings"); 213 /* 214 * xHCI cannot write to any doorbells or operational registers other 215 * than status until the "Controller Not Ready" flag is cleared. 216 */ 217 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 218 219 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 220 xhci->usb2_rhub.bus_state.suspended_ports = 0; 221 xhci->usb2_rhub.bus_state.resuming_ports = 0; 222 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 223 xhci->usb3_rhub.bus_state.suspended_ports = 0; 224 xhci->usb3_rhub.bus_state.resuming_ports = 0; 225 226 return ret; 227 } 228 229 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 230 { 231 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 232 struct iommu_domain *domain; 233 int err, i; 234 u64 val; 235 u32 intrs; 236 237 /* 238 * Some Renesas controllers get into a weird state if they are 239 * reset while programmed with 64bit addresses (they will preserve 240 * the top half of the address in internal, non visible 241 * registers). You end up with half the address coming from the 242 * kernel, and the other half coming from the firmware. Also, 243 * changing the programming leads to extra accesses even if the 244 * controller is supposed to be halted. The controller ends up with 245 * a fatal fault, and is then ripe for being properly reset. 246 * 247 * Special care is taken to only apply this if the device is behind 248 * an iommu. Doing anything when there is no iommu is definitely 249 * unsafe... 250 */ 251 domain = iommu_get_domain_for_dev(dev); 252 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || 253 domain->type == IOMMU_DOMAIN_IDENTITY) 254 return; 255 256 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 257 258 /* Clear HSEIE so that faults do not get signaled */ 259 val = readl(&xhci->op_regs->command); 260 val &= ~CMD_HSEIE; 261 writel(val, &xhci->op_regs->command); 262 263 /* Clear HSE (aka FATAL) */ 264 val = readl(&xhci->op_regs->status); 265 val |= STS_FATAL; 266 writel(val, &xhci->op_regs->status); 267 268 /* Now zero the registers, and brace for impact */ 269 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 270 if (upper_32_bits(val)) 271 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 272 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 273 if (upper_32_bits(val)) 274 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 275 276 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 277 ARRAY_SIZE(xhci->run_regs->ir_set)); 278 279 for (i = 0; i < intrs; i++) { 280 struct xhci_intr_reg __iomem *ir; 281 282 ir = &xhci->run_regs->ir_set[i]; 283 val = xhci_read_64(xhci, &ir->erst_base); 284 if (upper_32_bits(val)) 285 xhci_write_64(xhci, 0, &ir->erst_base); 286 val= xhci_read_64(xhci, &ir->erst_dequeue); 287 if (upper_32_bits(val)) 288 xhci_write_64(xhci, 0, &ir->erst_dequeue); 289 } 290 291 /* Wait for the fault to appear. It will be cleared on reset */ 292 err = xhci_handshake(&xhci->op_regs->status, 293 STS_FATAL, STS_FATAL, 294 XHCI_MAX_HALT_USEC); 295 if (!err) 296 xhci_info(xhci, "Fault detected\n"); 297 } 298 299 static int xhci_enable_interrupter(struct xhci_interrupter *ir) 300 { 301 u32 iman; 302 303 if (!ir || !ir->ir_set) 304 return -EINVAL; 305 306 iman = readl(&ir->ir_set->irq_pending); 307 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending); 308 309 return 0; 310 } 311 312 static int xhci_disable_interrupter(struct xhci_interrupter *ir) 313 { 314 u32 iman; 315 316 if (!ir || !ir->ir_set) 317 return -EINVAL; 318 319 iman = readl(&ir->ir_set->irq_pending); 320 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending); 321 322 return 0; 323 } 324 325 #ifdef CONFIG_USB_PCI 326 /* 327 * Set up MSI 328 */ 329 static int xhci_setup_msi(struct xhci_hcd *xhci) 330 { 331 int ret; 332 /* 333 * TODO:Check with MSI Soc for sysdev 334 */ 335 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 336 337 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 338 if (ret < 0) { 339 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 340 "failed to allocate MSI entry"); 341 return ret; 342 } 343 344 ret = request_irq(pdev->irq, xhci_msi_irq, 345 0, "xhci_hcd", xhci_to_hcd(xhci)); 346 if (ret) { 347 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 348 "disable MSI interrupt"); 349 pci_free_irq_vectors(pdev); 350 } 351 352 return ret; 353 } 354 355 /* 356 * Set up MSI-X 357 */ 358 static int xhci_setup_msix(struct xhci_hcd *xhci) 359 { 360 int i, ret; 361 struct usb_hcd *hcd = xhci_to_hcd(xhci); 362 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 363 364 /* 365 * calculate number of msi-x vectors supported. 366 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 367 * with max number of interrupters based on the xhci HCSPARAMS1. 368 * - num_online_cpus: maximum msi-x vectors per CPUs core. 369 * Add additional 1 vector to ensure always available interrupt. 370 */ 371 xhci->msix_count = min(num_online_cpus() + 1, 372 HCS_MAX_INTRS(xhci->hcs_params1)); 373 374 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 375 PCI_IRQ_MSIX); 376 if (ret < 0) { 377 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 378 "Failed to enable MSI-X"); 379 return ret; 380 } 381 382 for (i = 0; i < xhci->msix_count; i++) { 383 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 384 "xhci_hcd", xhci_to_hcd(xhci)); 385 if (ret) 386 goto disable_msix; 387 } 388 389 hcd->msix_enabled = 1; 390 return ret; 391 392 disable_msix: 393 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 394 while (--i >= 0) 395 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 396 pci_free_irq_vectors(pdev); 397 return ret; 398 } 399 400 /* Free any IRQs and disable MSI-X */ 401 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 402 { 403 struct usb_hcd *hcd = xhci_to_hcd(xhci); 404 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 405 406 if (xhci->quirks & XHCI_PLAT) 407 return; 408 409 /* return if using legacy interrupt */ 410 if (hcd->irq > 0) 411 return; 412 413 if (hcd->msix_enabled) { 414 int i; 415 416 for (i = 0; i < xhci->msix_count; i++) 417 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 418 } else { 419 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 420 } 421 422 pci_free_irq_vectors(pdev); 423 hcd->msix_enabled = 0; 424 } 425 426 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 427 { 428 struct usb_hcd *hcd = xhci_to_hcd(xhci); 429 430 if (hcd->msix_enabled) { 431 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 432 int i; 433 434 for (i = 0; i < xhci->msix_count; i++) 435 synchronize_irq(pci_irq_vector(pdev, i)); 436 } 437 } 438 439 static int xhci_try_enable_msi(struct usb_hcd *hcd) 440 { 441 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 442 struct pci_dev *pdev; 443 int ret; 444 445 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 446 if (xhci->quirks & XHCI_PLAT) 447 return 0; 448 449 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 450 /* 451 * Some Fresco Logic host controllers advertise MSI, but fail to 452 * generate interrupts. Don't even try to enable MSI. 453 */ 454 if (xhci->quirks & XHCI_BROKEN_MSI) 455 goto legacy_irq; 456 457 /* unregister the legacy interrupt */ 458 if (hcd->irq) 459 free_irq(hcd->irq, hcd); 460 hcd->irq = 0; 461 462 ret = xhci_setup_msix(xhci); 463 if (ret) 464 /* fall back to msi*/ 465 ret = xhci_setup_msi(xhci); 466 467 if (!ret) { 468 hcd->msi_enabled = 1; 469 return 0; 470 } 471 472 if (!pdev->irq) { 473 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 474 return -EINVAL; 475 } 476 477 legacy_irq: 478 if (!strlen(hcd->irq_descr)) 479 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 480 hcd->driver->description, hcd->self.busnum); 481 482 /* fall back to legacy interrupt*/ 483 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 484 hcd->irq_descr, hcd); 485 if (ret) { 486 xhci_err(xhci, "request interrupt %d failed\n", 487 pdev->irq); 488 return ret; 489 } 490 hcd->irq = pdev->irq; 491 return 0; 492 } 493 494 #else 495 496 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 497 { 498 return 0; 499 } 500 501 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 502 { 503 } 504 505 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 506 { 507 } 508 509 #endif 510 511 static void compliance_mode_recovery(struct timer_list *t) 512 { 513 struct xhci_hcd *xhci; 514 struct usb_hcd *hcd; 515 struct xhci_hub *rhub; 516 u32 temp; 517 int i; 518 519 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 520 rhub = &xhci->usb3_rhub; 521 hcd = rhub->hcd; 522 523 if (!hcd) 524 return; 525 526 for (i = 0; i < rhub->num_ports; i++) { 527 temp = readl(rhub->ports[i]->addr); 528 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 529 /* 530 * Compliance Mode Detected. Letting USB Core 531 * handle the Warm Reset 532 */ 533 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 534 "Compliance mode detected->port %d", 535 i + 1); 536 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 537 "Attempting compliance mode recovery"); 538 539 if (hcd->state == HC_STATE_SUSPENDED) 540 usb_hcd_resume_root_hub(hcd); 541 542 usb_hcd_poll_rh_status(hcd); 543 } 544 } 545 546 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 547 mod_timer(&xhci->comp_mode_recovery_timer, 548 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 549 } 550 551 /* 552 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 553 * that causes ports behind that hardware to enter compliance mode sometimes. 554 * The quirk creates a timer that polls every 2 seconds the link state of 555 * each host controller's port and recovers it by issuing a Warm reset 556 * if Compliance mode is detected, otherwise the port will become "dead" (no 557 * device connections or disconnections will be detected anymore). Becasue no 558 * status event is generated when entering compliance mode (per xhci spec), 559 * this quirk is needed on systems that have the failing hardware installed. 560 */ 561 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 562 { 563 xhci->port_status_u0 = 0; 564 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 565 0); 566 xhci->comp_mode_recovery_timer.expires = jiffies + 567 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 568 569 add_timer(&xhci->comp_mode_recovery_timer); 570 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 571 "Compliance mode recovery timer initialized"); 572 } 573 574 /* 575 * This function identifies the systems that have installed the SN65LVPE502CP 576 * USB3.0 re-driver and that need the Compliance Mode Quirk. 577 * Systems: 578 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 579 */ 580 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 581 { 582 const char *dmi_product_name, *dmi_sys_vendor; 583 584 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 585 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 586 if (!dmi_product_name || !dmi_sys_vendor) 587 return false; 588 589 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 590 return false; 591 592 if (strstr(dmi_product_name, "Z420") || 593 strstr(dmi_product_name, "Z620") || 594 strstr(dmi_product_name, "Z820") || 595 strstr(dmi_product_name, "Z1 Workstation")) 596 return true; 597 598 return false; 599 } 600 601 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 602 { 603 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 604 } 605 606 607 /* 608 * Initialize memory for HCD and xHC (one-time init). 609 * 610 * Program the PAGESIZE register, initialize the device context array, create 611 * device contexts (?), set up a command ring segment (or two?), create event 612 * ring (one for now). 613 */ 614 static int xhci_init(struct usb_hcd *hcd) 615 { 616 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 617 int retval; 618 619 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 620 spin_lock_init(&xhci->lock); 621 if (xhci->hci_version == 0x95 && link_quirk) { 622 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 623 "QUIRK: Not clearing Link TRB chain bits."); 624 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 625 } else { 626 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 627 "xHCI doesn't need link TRB QUIRK"); 628 } 629 retval = xhci_mem_init(xhci, GFP_KERNEL); 630 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 631 632 /* Initializing Compliance Mode Recovery Data If Needed */ 633 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 634 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 635 compliance_mode_recovery_timer_init(xhci); 636 } 637 638 return retval; 639 } 640 641 /*-------------------------------------------------------------------------*/ 642 643 static int xhci_run_finished(struct xhci_hcd *xhci) 644 { 645 struct xhci_interrupter *ir = xhci->interrupter; 646 unsigned long flags; 647 u32 temp; 648 649 /* 650 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 651 * Protect the short window before host is running with a lock 652 */ 653 spin_lock_irqsave(&xhci->lock, flags); 654 655 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 656 temp = readl(&xhci->op_regs->command); 657 temp |= (CMD_EIE); 658 writel(temp, &xhci->op_regs->command); 659 660 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 661 xhci_enable_interrupter(ir); 662 663 if (xhci_start(xhci)) { 664 xhci_halt(xhci); 665 spin_unlock_irqrestore(&xhci->lock, flags); 666 return -ENODEV; 667 } 668 669 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 670 671 if (xhci->quirks & XHCI_NEC_HOST) 672 xhci_ring_cmd_db(xhci); 673 674 spin_unlock_irqrestore(&xhci->lock, flags); 675 676 return 0; 677 } 678 679 /* 680 * Start the HC after it was halted. 681 * 682 * This function is called by the USB core when the HC driver is added. 683 * Its opposite is xhci_stop(). 684 * 685 * xhci_init() must be called once before this function can be called. 686 * Reset the HC, enable device slot contexts, program DCBAAP, and 687 * set command ring pointer and event ring pointer. 688 * 689 * Setup MSI-X vectors and enable interrupts. 690 */ 691 int xhci_run(struct usb_hcd *hcd) 692 { 693 u32 temp; 694 u64 temp_64; 695 int ret; 696 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 697 struct xhci_interrupter *ir = xhci->interrupter; 698 /* Start the xHCI host controller running only after the USB 2.0 roothub 699 * is setup. 700 */ 701 702 hcd->uses_new_polling = 1; 703 if (!usb_hcd_is_primary_hcd(hcd)) 704 return xhci_run_finished(xhci); 705 706 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 707 708 ret = xhci_try_enable_msi(hcd); 709 if (ret) 710 return ret; 711 712 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 713 temp_64 &= ~ERST_PTR_MASK; 714 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 715 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 716 717 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 718 "// Set the interrupt modulation register"); 719 temp = readl(&ir->ir_set->irq_control); 720 temp &= ~ER_IRQ_INTERVAL_MASK; 721 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 722 writel(temp, &ir->ir_set->irq_control); 723 724 if (xhci->quirks & XHCI_NEC_HOST) { 725 struct xhci_command *command; 726 727 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 728 if (!command) 729 return -ENOMEM; 730 731 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 732 TRB_TYPE(TRB_NEC_GET_FW)); 733 if (ret) 734 xhci_free_command(xhci, command); 735 } 736 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 737 "Finished %s for main hcd", __func__); 738 739 xhci_create_dbc_dev(xhci); 740 741 xhci_debugfs_init(xhci); 742 743 if (xhci_has_one_roothub(xhci)) 744 return xhci_run_finished(xhci); 745 746 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 747 748 return 0; 749 } 750 EXPORT_SYMBOL_GPL(xhci_run); 751 752 /* 753 * Stop xHCI driver. 754 * 755 * This function is called by the USB core when the HC driver is removed. 756 * Its opposite is xhci_run(). 757 * 758 * Disable device contexts, disable IRQs, and quiesce the HC. 759 * Reset the HC, finish any completed transactions, and cleanup memory. 760 */ 761 static void xhci_stop(struct usb_hcd *hcd) 762 { 763 u32 temp; 764 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 765 struct xhci_interrupter *ir = xhci->interrupter; 766 767 mutex_lock(&xhci->mutex); 768 769 /* Only halt host and free memory after both hcds are removed */ 770 if (!usb_hcd_is_primary_hcd(hcd)) { 771 mutex_unlock(&xhci->mutex); 772 return; 773 } 774 775 xhci_remove_dbc_dev(xhci); 776 777 spin_lock_irq(&xhci->lock); 778 xhci->xhc_state |= XHCI_STATE_HALTED; 779 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 780 xhci_halt(xhci); 781 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 782 spin_unlock_irq(&xhci->lock); 783 784 xhci_cleanup_msix(xhci); 785 786 /* Deleting Compliance Mode Recovery Timer */ 787 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 788 (!(xhci_all_ports_seen_u0(xhci)))) { 789 del_timer_sync(&xhci->comp_mode_recovery_timer); 790 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 791 "%s: compliance mode recovery timer deleted", 792 __func__); 793 } 794 795 if (xhci->quirks & XHCI_AMD_PLL_FIX) 796 usb_amd_dev_put(); 797 798 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 799 "// Disabling event ring interrupts"); 800 temp = readl(&xhci->op_regs->status); 801 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 802 xhci_disable_interrupter(ir); 803 804 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 805 xhci_mem_cleanup(xhci); 806 xhci_debugfs_exit(xhci); 807 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 808 "xhci_stop completed - status = %x", 809 readl(&xhci->op_regs->status)); 810 mutex_unlock(&xhci->mutex); 811 } 812 813 /* 814 * Shutdown HC (not bus-specific) 815 * 816 * This is called when the machine is rebooting or halting. We assume that the 817 * machine will be powered off, and the HC's internal state will be reset. 818 * Don't bother to free memory. 819 * 820 * This will only ever be called with the main usb_hcd (the USB3 roothub). 821 */ 822 void xhci_shutdown(struct usb_hcd *hcd) 823 { 824 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 825 826 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 827 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 828 829 /* Don't poll the roothubs after shutdown. */ 830 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 831 __func__, hcd->self.busnum); 832 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 833 del_timer_sync(&hcd->rh_timer); 834 835 if (xhci->shared_hcd) { 836 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 837 del_timer_sync(&xhci->shared_hcd->rh_timer); 838 } 839 840 spin_lock_irq(&xhci->lock); 841 xhci_halt(xhci); 842 843 /* 844 * Workaround for spurious wakeps at shutdown with HSW, and for boot 845 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 846 */ 847 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 848 xhci->quirks & XHCI_RESET_TO_DEFAULT) 849 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 850 851 spin_unlock_irq(&xhci->lock); 852 853 xhci_cleanup_msix(xhci); 854 855 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 856 "xhci_shutdown completed - status = %x", 857 readl(&xhci->op_regs->status)); 858 } 859 EXPORT_SYMBOL_GPL(xhci_shutdown); 860 861 #ifdef CONFIG_PM 862 static void xhci_save_registers(struct xhci_hcd *xhci) 863 { 864 struct xhci_interrupter *ir = xhci->interrupter; 865 866 xhci->s3.command = readl(&xhci->op_regs->command); 867 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 868 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 869 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 870 871 if (!ir) 872 return; 873 874 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 875 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 876 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 877 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending); 878 ir->s3_irq_control = readl(&ir->ir_set->irq_control); 879 } 880 881 static void xhci_restore_registers(struct xhci_hcd *xhci) 882 { 883 struct xhci_interrupter *ir = xhci->interrupter; 884 885 writel(xhci->s3.command, &xhci->op_regs->command); 886 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 887 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 888 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 889 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 890 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 891 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 892 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending); 893 writel(ir->s3_irq_control, &ir->ir_set->irq_control); 894 } 895 896 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 897 { 898 u64 val_64; 899 900 /* step 2: initialize command ring buffer */ 901 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 902 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 903 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 904 xhci->cmd_ring->dequeue) & 905 (u64) ~CMD_RING_RSVD_BITS) | 906 xhci->cmd_ring->cycle_state; 907 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 908 "// Setting command ring address to 0x%llx", 909 (long unsigned long) val_64); 910 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 911 } 912 913 /* 914 * The whole command ring must be cleared to zero when we suspend the host. 915 * 916 * The host doesn't save the command ring pointer in the suspend well, so we 917 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 918 * aligned, because of the reserved bits in the command ring dequeue pointer 919 * register. Therefore, we can't just set the dequeue pointer back in the 920 * middle of the ring (TRBs are 16-byte aligned). 921 */ 922 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 923 { 924 struct xhci_ring *ring; 925 struct xhci_segment *seg; 926 927 ring = xhci->cmd_ring; 928 seg = ring->deq_seg; 929 do { 930 memset(seg->trbs, 0, 931 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 932 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 933 cpu_to_le32(~TRB_CYCLE); 934 seg = seg->next; 935 } while (seg != ring->deq_seg); 936 937 /* Reset the software enqueue and dequeue pointers */ 938 ring->deq_seg = ring->first_seg; 939 ring->dequeue = ring->first_seg->trbs; 940 ring->enq_seg = ring->deq_seg; 941 ring->enqueue = ring->dequeue; 942 943 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 944 /* 945 * Ring is now zeroed, so the HW should look for change of ownership 946 * when the cycle bit is set to 1. 947 */ 948 ring->cycle_state = 1; 949 950 /* 951 * Reset the hardware dequeue pointer. 952 * Yes, this will need to be re-written after resume, but we're paranoid 953 * and want to make sure the hardware doesn't access bogus memory 954 * because, say, the BIOS or an SMI started the host without changing 955 * the command ring pointers. 956 */ 957 xhci_set_cmd_ring_deq(xhci); 958 } 959 960 /* 961 * Disable port wake bits if do_wakeup is not set. 962 * 963 * Also clear a possible internal port wake state left hanging for ports that 964 * detected termination but never successfully enumerated (trained to 0U). 965 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 966 * at enumeration clears this wake, force one here as well for unconnected ports 967 */ 968 969 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 970 struct xhci_hub *rhub, 971 bool do_wakeup) 972 { 973 unsigned long flags; 974 u32 t1, t2, portsc; 975 int i; 976 977 spin_lock_irqsave(&xhci->lock, flags); 978 979 for (i = 0; i < rhub->num_ports; i++) { 980 portsc = readl(rhub->ports[i]->addr); 981 t1 = xhci_port_state_to_neutral(portsc); 982 t2 = t1; 983 984 /* clear wake bits if do_wake is not set */ 985 if (!do_wakeup) 986 t2 &= ~PORT_WAKE_BITS; 987 988 /* Don't touch csc bit if connected or connect change is set */ 989 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 990 t2 |= PORT_CSC; 991 992 if (t1 != t2) { 993 writel(t2, rhub->ports[i]->addr); 994 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 995 rhub->hcd->self.busnum, i + 1, portsc, t2); 996 } 997 } 998 spin_unlock_irqrestore(&xhci->lock, flags); 999 } 1000 1001 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 1002 { 1003 struct xhci_port **ports; 1004 int port_index; 1005 u32 status; 1006 u32 portsc; 1007 1008 status = readl(&xhci->op_regs->status); 1009 if (status & STS_EINT) 1010 return true; 1011 /* 1012 * Checking STS_EINT is not enough as there is a lag between a change 1013 * bit being set and the Port Status Change Event that it generated 1014 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 1015 */ 1016 1017 port_index = xhci->usb2_rhub.num_ports; 1018 ports = xhci->usb2_rhub.ports; 1019 while (port_index--) { 1020 portsc = readl(ports[port_index]->addr); 1021 if (portsc & PORT_CHANGE_MASK || 1022 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 1023 return true; 1024 } 1025 port_index = xhci->usb3_rhub.num_ports; 1026 ports = xhci->usb3_rhub.ports; 1027 while (port_index--) { 1028 portsc = readl(ports[port_index]->addr); 1029 if (portsc & PORT_CHANGE_MASK || 1030 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 1031 return true; 1032 } 1033 return false; 1034 } 1035 1036 /* 1037 * Stop HC (not bus-specific) 1038 * 1039 * This is called when the machine transition into S3/S4 mode. 1040 * 1041 */ 1042 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 1043 { 1044 int rc = 0; 1045 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 1046 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1047 u32 command; 1048 u32 res; 1049 1050 if (!hcd->state) 1051 return 0; 1052 1053 if (hcd->state != HC_STATE_SUSPENDED || 1054 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 1055 return -EINVAL; 1056 1057 /* Clear root port wake on bits if wakeup not allowed. */ 1058 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 1059 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 1060 1061 if (!HCD_HW_ACCESSIBLE(hcd)) 1062 return 0; 1063 1064 xhci_dbc_suspend(xhci); 1065 1066 /* Don't poll the roothubs on bus suspend. */ 1067 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 1068 __func__, hcd->self.busnum); 1069 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1070 del_timer_sync(&hcd->rh_timer); 1071 if (xhci->shared_hcd) { 1072 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1073 del_timer_sync(&xhci->shared_hcd->rh_timer); 1074 } 1075 1076 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1077 usleep_range(1000, 1500); 1078 1079 spin_lock_irq(&xhci->lock); 1080 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1081 if (xhci->shared_hcd) 1082 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1083 /* step 1: stop endpoint */ 1084 /* skipped assuming that port suspend has done */ 1085 1086 /* step 2: clear Run/Stop bit */ 1087 command = readl(&xhci->op_regs->command); 1088 command &= ~CMD_RUN; 1089 writel(command, &xhci->op_regs->command); 1090 1091 /* Some chips from Fresco Logic need an extraordinary delay */ 1092 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1093 1094 if (xhci_handshake(&xhci->op_regs->status, 1095 STS_HALT, STS_HALT, delay)) { 1096 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1097 spin_unlock_irq(&xhci->lock); 1098 return -ETIMEDOUT; 1099 } 1100 xhci_clear_command_ring(xhci); 1101 1102 /* step 3: save registers */ 1103 xhci_save_registers(xhci); 1104 1105 /* step 4: set CSS flag */ 1106 command = readl(&xhci->op_regs->command); 1107 command |= CMD_CSS; 1108 writel(command, &xhci->op_regs->command); 1109 xhci->broken_suspend = 0; 1110 if (xhci_handshake(&xhci->op_regs->status, 1111 STS_SAVE, 0, 20 * 1000)) { 1112 /* 1113 * AMD SNPS xHC 3.0 occasionally does not clear the 1114 * SSS bit of USBSTS and when driver tries to poll 1115 * to see if the xHC clears BIT(8) which never happens 1116 * and driver assumes that controller is not responding 1117 * and times out. To workaround this, its good to check 1118 * if SRE and HCE bits are not set (as per xhci 1119 * Section 5.4.2) and bypass the timeout. 1120 */ 1121 res = readl(&xhci->op_regs->status); 1122 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1123 (((res & STS_SRE) == 0) && 1124 ((res & STS_HCE) == 0))) { 1125 xhci->broken_suspend = 1; 1126 } else { 1127 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1128 spin_unlock_irq(&xhci->lock); 1129 return -ETIMEDOUT; 1130 } 1131 } 1132 spin_unlock_irq(&xhci->lock); 1133 1134 /* 1135 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1136 * is about to be suspended. 1137 */ 1138 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1139 (!(xhci_all_ports_seen_u0(xhci)))) { 1140 del_timer_sync(&xhci->comp_mode_recovery_timer); 1141 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1142 "%s: compliance mode recovery timer deleted", 1143 __func__); 1144 } 1145 1146 /* step 5: remove core well power */ 1147 /* synchronize irq when using MSI-X */ 1148 xhci_msix_sync_irqs(xhci); 1149 1150 return rc; 1151 } 1152 EXPORT_SYMBOL_GPL(xhci_suspend); 1153 1154 /* 1155 * start xHC (not bus-specific) 1156 * 1157 * This is called when the machine transition from S3/S4 mode. 1158 * 1159 */ 1160 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1161 { 1162 u32 command, temp = 0; 1163 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1164 int retval = 0; 1165 bool comp_timer_running = false; 1166 bool pending_portevent = false; 1167 bool reinit_xhc = false; 1168 1169 if (!hcd->state) 1170 return 0; 1171 1172 /* Wait a bit if either of the roothubs need to settle from the 1173 * transition into bus suspend. 1174 */ 1175 1176 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1177 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1178 msleep(100); 1179 1180 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1181 if (xhci->shared_hcd) 1182 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1183 1184 spin_lock_irq(&xhci->lock); 1185 1186 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1187 reinit_xhc = true; 1188 1189 if (!reinit_xhc) { 1190 /* 1191 * Some controllers might lose power during suspend, so wait 1192 * for controller not ready bit to clear, just as in xHC init. 1193 */ 1194 retval = xhci_handshake(&xhci->op_regs->status, 1195 STS_CNR, 0, 10 * 1000 * 1000); 1196 if (retval) { 1197 xhci_warn(xhci, "Controller not ready at resume %d\n", 1198 retval); 1199 spin_unlock_irq(&xhci->lock); 1200 return retval; 1201 } 1202 /* step 1: restore register */ 1203 xhci_restore_registers(xhci); 1204 /* step 2: initialize command ring buffer */ 1205 xhci_set_cmd_ring_deq(xhci); 1206 /* step 3: restore state and start state*/ 1207 /* step 3: set CRS flag */ 1208 command = readl(&xhci->op_regs->command); 1209 command |= CMD_CRS; 1210 writel(command, &xhci->op_regs->command); 1211 /* 1212 * Some controllers take up to 55+ ms to complete the controller 1213 * restore so setting the timeout to 100ms. Xhci specification 1214 * doesn't mention any timeout value. 1215 */ 1216 if (xhci_handshake(&xhci->op_regs->status, 1217 STS_RESTORE, 0, 100 * 1000)) { 1218 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1219 spin_unlock_irq(&xhci->lock); 1220 return -ETIMEDOUT; 1221 } 1222 } 1223 1224 temp = readl(&xhci->op_regs->status); 1225 1226 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1227 if (temp & (STS_SRE | STS_HCE)) { 1228 reinit_xhc = true; 1229 if (!xhci->broken_suspend) 1230 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1231 } 1232 1233 if (reinit_xhc) { 1234 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1235 !(xhci_all_ports_seen_u0(xhci))) { 1236 del_timer_sync(&xhci->comp_mode_recovery_timer); 1237 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1238 "Compliance Mode Recovery Timer deleted!"); 1239 } 1240 1241 /* Let the USB core know _both_ roothubs lost power. */ 1242 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1243 if (xhci->shared_hcd) 1244 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1245 1246 xhci_dbg(xhci, "Stop HCD\n"); 1247 xhci_halt(xhci); 1248 xhci_zero_64b_regs(xhci); 1249 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1250 spin_unlock_irq(&xhci->lock); 1251 if (retval) 1252 return retval; 1253 xhci_cleanup_msix(xhci); 1254 1255 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1256 temp = readl(&xhci->op_regs->status); 1257 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1258 xhci_disable_interrupter(xhci->interrupter); 1259 1260 xhci_dbg(xhci, "cleaning up memory\n"); 1261 xhci_mem_cleanup(xhci); 1262 xhci_debugfs_exit(xhci); 1263 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1264 readl(&xhci->op_regs->status)); 1265 1266 /* USB core calls the PCI reinit and start functions twice: 1267 * first with the primary HCD, and then with the secondary HCD. 1268 * If we don't do the same, the host will never be started. 1269 */ 1270 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1271 retval = xhci_init(hcd); 1272 if (retval) 1273 return retval; 1274 comp_timer_running = true; 1275 1276 xhci_dbg(xhci, "Start the primary HCD\n"); 1277 retval = xhci_run(hcd); 1278 if (!retval && xhci->shared_hcd) { 1279 xhci_dbg(xhci, "Start the secondary HCD\n"); 1280 retval = xhci_run(xhci->shared_hcd); 1281 } 1282 1283 hcd->state = HC_STATE_SUSPENDED; 1284 if (xhci->shared_hcd) 1285 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1286 goto done; 1287 } 1288 1289 /* step 4: set Run/Stop bit */ 1290 command = readl(&xhci->op_regs->command); 1291 command |= CMD_RUN; 1292 writel(command, &xhci->op_regs->command); 1293 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1294 0, 250 * 1000); 1295 1296 /* step 5: walk topology and initialize portsc, 1297 * portpmsc and portli 1298 */ 1299 /* this is done in bus_resume */ 1300 1301 /* step 6: restart each of the previously 1302 * Running endpoints by ringing their doorbells 1303 */ 1304 1305 spin_unlock_irq(&xhci->lock); 1306 1307 xhci_dbc_resume(xhci); 1308 1309 done: 1310 if (retval == 0) { 1311 /* 1312 * Resume roothubs only if there are pending events. 1313 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1314 * the first wake signalling failed, give it that chance. 1315 */ 1316 pending_portevent = xhci_pending_portevent(xhci); 1317 if (!pending_portevent) { 1318 msleep(120); 1319 pending_portevent = xhci_pending_portevent(xhci); 1320 } 1321 1322 if (pending_portevent) { 1323 if (xhci->shared_hcd) 1324 usb_hcd_resume_root_hub(xhci->shared_hcd); 1325 usb_hcd_resume_root_hub(hcd); 1326 } 1327 } 1328 /* 1329 * If system is subject to the Quirk, Compliance Mode Timer needs to 1330 * be re-initialized Always after a system resume. Ports are subject 1331 * to suffer the Compliance Mode issue again. It doesn't matter if 1332 * ports have entered previously to U0 before system's suspension. 1333 */ 1334 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1335 compliance_mode_recovery_timer_init(xhci); 1336 1337 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1338 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1339 1340 /* Re-enable port polling. */ 1341 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1342 __func__, hcd->self.busnum); 1343 if (xhci->shared_hcd) { 1344 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1345 usb_hcd_poll_rh_status(xhci->shared_hcd); 1346 } 1347 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1348 usb_hcd_poll_rh_status(hcd); 1349 1350 return retval; 1351 } 1352 EXPORT_SYMBOL_GPL(xhci_resume); 1353 #endif /* CONFIG_PM */ 1354 1355 /*-------------------------------------------------------------------------*/ 1356 1357 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1358 { 1359 void *temp; 1360 int ret = 0; 1361 unsigned int buf_len; 1362 enum dma_data_direction dir; 1363 1364 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1365 buf_len = urb->transfer_buffer_length; 1366 1367 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1368 dev_to_node(hcd->self.sysdev)); 1369 1370 if (usb_urb_dir_out(urb)) 1371 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1372 temp, buf_len, 0); 1373 1374 urb->transfer_buffer = temp; 1375 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1376 urb->transfer_buffer, 1377 urb->transfer_buffer_length, 1378 dir); 1379 1380 if (dma_mapping_error(hcd->self.sysdev, 1381 urb->transfer_dma)) { 1382 ret = -EAGAIN; 1383 kfree(temp); 1384 } else { 1385 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1386 } 1387 1388 return ret; 1389 } 1390 1391 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1392 struct urb *urb) 1393 { 1394 bool ret = false; 1395 unsigned int i; 1396 unsigned int len = 0; 1397 unsigned int trb_size; 1398 unsigned int max_pkt; 1399 struct scatterlist *sg; 1400 struct scatterlist *tail_sg; 1401 1402 tail_sg = urb->sg; 1403 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1404 1405 if (!urb->num_sgs) 1406 return ret; 1407 1408 if (urb->dev->speed >= USB_SPEED_SUPER) 1409 trb_size = TRB_CACHE_SIZE_SS; 1410 else 1411 trb_size = TRB_CACHE_SIZE_HS; 1412 1413 if (urb->transfer_buffer_length != 0 && 1414 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1415 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1416 len = len + sg->length; 1417 if (i > trb_size - 2) { 1418 len = len - tail_sg->length; 1419 if (len < max_pkt) { 1420 ret = true; 1421 break; 1422 } 1423 1424 tail_sg = sg_next(tail_sg); 1425 } 1426 } 1427 } 1428 return ret; 1429 } 1430 1431 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1432 { 1433 unsigned int len; 1434 unsigned int buf_len; 1435 enum dma_data_direction dir; 1436 1437 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1438 1439 buf_len = urb->transfer_buffer_length; 1440 1441 if (IS_ENABLED(CONFIG_HAS_DMA) && 1442 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1443 dma_unmap_single(hcd->self.sysdev, 1444 urb->transfer_dma, 1445 urb->transfer_buffer_length, 1446 dir); 1447 1448 if (usb_urb_dir_in(urb)) { 1449 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1450 urb->transfer_buffer, 1451 buf_len, 1452 0); 1453 if (len != buf_len) { 1454 xhci_dbg(hcd_to_xhci(hcd), 1455 "Copy from tmp buf to urb sg list failed\n"); 1456 urb->actual_length = len; 1457 } 1458 } 1459 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1460 kfree(urb->transfer_buffer); 1461 urb->transfer_buffer = NULL; 1462 } 1463 1464 /* 1465 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1466 * we'll copy the actual data into the TRB address register. This is limited to 1467 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1468 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1469 */ 1470 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1471 gfp_t mem_flags) 1472 { 1473 struct xhci_hcd *xhci; 1474 1475 xhci = hcd_to_xhci(hcd); 1476 1477 if (xhci_urb_suitable_for_idt(urb)) 1478 return 0; 1479 1480 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1481 if (xhci_urb_temp_buffer_required(hcd, urb)) 1482 return xhci_map_temp_buffer(hcd, urb); 1483 } 1484 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1485 } 1486 1487 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1488 { 1489 struct xhci_hcd *xhci; 1490 bool unmap_temp_buf = false; 1491 1492 xhci = hcd_to_xhci(hcd); 1493 1494 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1495 unmap_temp_buf = true; 1496 1497 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1498 xhci_unmap_temp_buf(hcd, urb); 1499 else 1500 usb_hcd_unmap_urb_for_dma(hcd, urb); 1501 } 1502 1503 /** 1504 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1505 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1506 * value to right shift 1 for the bitmask. 1507 * 1508 * Index = (epnum * 2) + direction - 1, 1509 * where direction = 0 for OUT, 1 for IN. 1510 * For control endpoints, the IN index is used (OUT index is unused), so 1511 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1512 */ 1513 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1514 { 1515 unsigned int index; 1516 if (usb_endpoint_xfer_control(desc)) 1517 index = (unsigned int) (usb_endpoint_num(desc)*2); 1518 else 1519 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1520 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1521 return index; 1522 } 1523 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1524 1525 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1526 * address from the XHCI endpoint index. 1527 */ 1528 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1529 { 1530 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1531 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1532 return direction | number; 1533 } 1534 1535 /* Find the flag for this endpoint (for use in the control context). Use the 1536 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1537 * bit 1, etc. 1538 */ 1539 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1540 { 1541 return 1 << (xhci_get_endpoint_index(desc) + 1); 1542 } 1543 1544 /* Compute the last valid endpoint context index. Basically, this is the 1545 * endpoint index plus one. For slot contexts with more than valid endpoint, 1546 * we find the most significant bit set in the added contexts flags. 1547 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1548 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1549 */ 1550 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1551 { 1552 return fls(added_ctxs) - 1; 1553 } 1554 1555 /* Returns 1 if the arguments are OK; 1556 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1557 */ 1558 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1559 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1560 const char *func) { 1561 struct xhci_hcd *xhci; 1562 struct xhci_virt_device *virt_dev; 1563 1564 if (!hcd || (check_ep && !ep) || !udev) { 1565 pr_debug("xHCI %s called with invalid args\n", func); 1566 return -EINVAL; 1567 } 1568 if (!udev->parent) { 1569 pr_debug("xHCI %s called for root hub\n", func); 1570 return 0; 1571 } 1572 1573 xhci = hcd_to_xhci(hcd); 1574 if (check_virt_dev) { 1575 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1576 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1577 func); 1578 return -EINVAL; 1579 } 1580 1581 virt_dev = xhci->devs[udev->slot_id]; 1582 if (virt_dev->udev != udev) { 1583 xhci_dbg(xhci, "xHCI %s called with udev and " 1584 "virt_dev does not match\n", func); 1585 return -EINVAL; 1586 } 1587 } 1588 1589 if (xhci->xhc_state & XHCI_STATE_HALTED) 1590 return -ENODEV; 1591 1592 return 1; 1593 } 1594 1595 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1596 struct usb_device *udev, struct xhci_command *command, 1597 bool ctx_change, bool must_succeed); 1598 1599 /* 1600 * Full speed devices may have a max packet size greater than 8 bytes, but the 1601 * USB core doesn't know that until it reads the first 8 bytes of the 1602 * descriptor. If the usb_device's max packet size changes after that point, 1603 * we need to issue an evaluate context command and wait on it. 1604 */ 1605 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1606 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1607 { 1608 struct xhci_container_ctx *out_ctx; 1609 struct xhci_input_control_ctx *ctrl_ctx; 1610 struct xhci_ep_ctx *ep_ctx; 1611 struct xhci_command *command; 1612 int max_packet_size; 1613 int hw_max_packet_size; 1614 int ret = 0; 1615 1616 out_ctx = xhci->devs[slot_id]->out_ctx; 1617 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1618 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1619 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1620 if (hw_max_packet_size != max_packet_size) { 1621 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1622 "Max Packet Size for ep 0 changed."); 1623 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1624 "Max packet size in usb_device = %d", 1625 max_packet_size); 1626 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1627 "Max packet size in xHCI HW = %d", 1628 hw_max_packet_size); 1629 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1630 "Issuing evaluate context command."); 1631 1632 /* Set up the input context flags for the command */ 1633 /* FIXME: This won't work if a non-default control endpoint 1634 * changes max packet sizes. 1635 */ 1636 1637 command = xhci_alloc_command(xhci, true, mem_flags); 1638 if (!command) 1639 return -ENOMEM; 1640 1641 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1642 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1643 if (!ctrl_ctx) { 1644 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1645 __func__); 1646 ret = -ENOMEM; 1647 goto command_cleanup; 1648 } 1649 /* Set up the modified control endpoint 0 */ 1650 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1651 xhci->devs[slot_id]->out_ctx, ep_index); 1652 1653 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1654 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1655 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1656 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1657 1658 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1659 ctrl_ctx->drop_flags = 0; 1660 1661 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1662 true, false); 1663 1664 /* Clean up the input context for later use by bandwidth 1665 * functions. 1666 */ 1667 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1668 command_cleanup: 1669 kfree(command->completion); 1670 kfree(command); 1671 } 1672 return ret; 1673 } 1674 1675 /* 1676 * non-error returns are a promise to giveback() the urb later 1677 * we drop ownership so next owner (or urb unlink) can get it 1678 */ 1679 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1680 { 1681 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1682 unsigned long flags; 1683 int ret = 0; 1684 unsigned int slot_id, ep_index; 1685 unsigned int *ep_state; 1686 struct urb_priv *urb_priv; 1687 int num_tds; 1688 1689 if (!urb) 1690 return -EINVAL; 1691 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1692 true, true, __func__); 1693 if (ret <= 0) 1694 return ret ? ret : -EINVAL; 1695 1696 slot_id = urb->dev->slot_id; 1697 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1698 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1699 1700 if (!HCD_HW_ACCESSIBLE(hcd)) 1701 return -ESHUTDOWN; 1702 1703 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1704 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1705 return -ENODEV; 1706 } 1707 1708 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1709 num_tds = urb->number_of_packets; 1710 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1711 urb->transfer_buffer_length > 0 && 1712 urb->transfer_flags & URB_ZERO_PACKET && 1713 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1714 num_tds = 2; 1715 else 1716 num_tds = 1; 1717 1718 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1719 if (!urb_priv) 1720 return -ENOMEM; 1721 1722 urb_priv->num_tds = num_tds; 1723 urb_priv->num_tds_done = 0; 1724 urb->hcpriv = urb_priv; 1725 1726 trace_xhci_urb_enqueue(urb); 1727 1728 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1729 /* Check to see if the max packet size for the default control 1730 * endpoint changed during FS device enumeration 1731 */ 1732 if (urb->dev->speed == USB_SPEED_FULL) { 1733 ret = xhci_check_maxpacket(xhci, slot_id, 1734 ep_index, urb, mem_flags); 1735 if (ret < 0) { 1736 xhci_urb_free_priv(urb_priv); 1737 urb->hcpriv = NULL; 1738 return ret; 1739 } 1740 } 1741 } 1742 1743 spin_lock_irqsave(&xhci->lock, flags); 1744 1745 if (xhci->xhc_state & XHCI_STATE_DYING) { 1746 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1747 urb->ep->desc.bEndpointAddress, urb); 1748 ret = -ESHUTDOWN; 1749 goto free_priv; 1750 } 1751 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1752 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1753 *ep_state); 1754 ret = -EINVAL; 1755 goto free_priv; 1756 } 1757 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1758 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1759 ret = -EINVAL; 1760 goto free_priv; 1761 } 1762 1763 switch (usb_endpoint_type(&urb->ep->desc)) { 1764 1765 case USB_ENDPOINT_XFER_CONTROL: 1766 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1767 slot_id, ep_index); 1768 break; 1769 case USB_ENDPOINT_XFER_BULK: 1770 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1771 slot_id, ep_index); 1772 break; 1773 case USB_ENDPOINT_XFER_INT: 1774 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1775 slot_id, ep_index); 1776 break; 1777 case USB_ENDPOINT_XFER_ISOC: 1778 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1779 slot_id, ep_index); 1780 } 1781 1782 if (ret) { 1783 free_priv: 1784 xhci_urb_free_priv(urb_priv); 1785 urb->hcpriv = NULL; 1786 } 1787 spin_unlock_irqrestore(&xhci->lock, flags); 1788 return ret; 1789 } 1790 1791 /* 1792 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1793 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1794 * should pick up where it left off in the TD, unless a Set Transfer Ring 1795 * Dequeue Pointer is issued. 1796 * 1797 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1798 * the ring. Since the ring is a contiguous structure, they can't be physically 1799 * removed. Instead, there are two options: 1800 * 1801 * 1) If the HC is in the middle of processing the URB to be canceled, we 1802 * simply move the ring's dequeue pointer past those TRBs using the Set 1803 * Transfer Ring Dequeue Pointer command. This will be the common case, 1804 * when drivers timeout on the last submitted URB and attempt to cancel. 1805 * 1806 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1807 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1808 * HC will need to invalidate the any TRBs it has cached after the stop 1809 * endpoint command, as noted in the xHCI 0.95 errata. 1810 * 1811 * 3) The TD may have completed by the time the Stop Endpoint Command 1812 * completes, so software needs to handle that case too. 1813 * 1814 * This function should protect against the TD enqueueing code ringing the 1815 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1816 * It also needs to account for multiple cancellations on happening at the same 1817 * time for the same endpoint. 1818 * 1819 * Note that this function can be called in any context, or so says 1820 * usb_hcd_unlink_urb() 1821 */ 1822 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1823 { 1824 unsigned long flags; 1825 int ret, i; 1826 u32 temp; 1827 struct xhci_hcd *xhci; 1828 struct urb_priv *urb_priv; 1829 struct xhci_td *td; 1830 unsigned int ep_index; 1831 struct xhci_ring *ep_ring; 1832 struct xhci_virt_ep *ep; 1833 struct xhci_command *command; 1834 struct xhci_virt_device *vdev; 1835 1836 xhci = hcd_to_xhci(hcd); 1837 spin_lock_irqsave(&xhci->lock, flags); 1838 1839 trace_xhci_urb_dequeue(urb); 1840 1841 /* Make sure the URB hasn't completed or been unlinked already */ 1842 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1843 if (ret) 1844 goto done; 1845 1846 /* give back URB now if we can't queue it for cancel */ 1847 vdev = xhci->devs[urb->dev->slot_id]; 1848 urb_priv = urb->hcpriv; 1849 if (!vdev || !urb_priv) 1850 goto err_giveback; 1851 1852 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1853 ep = &vdev->eps[ep_index]; 1854 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1855 if (!ep || !ep_ring) 1856 goto err_giveback; 1857 1858 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1859 temp = readl(&xhci->op_regs->status); 1860 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1861 xhci_hc_died(xhci); 1862 goto done; 1863 } 1864 1865 /* 1866 * check ring is not re-allocated since URB was enqueued. If it is, then 1867 * make sure none of the ring related pointers in this URB private data 1868 * are touched, such as td_list, otherwise we overwrite freed data 1869 */ 1870 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1871 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1872 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1873 td = &urb_priv->td[i]; 1874 if (!list_empty(&td->cancelled_td_list)) 1875 list_del_init(&td->cancelled_td_list); 1876 } 1877 goto err_giveback; 1878 } 1879 1880 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1881 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1882 "HC halted, freeing TD manually."); 1883 for (i = urb_priv->num_tds_done; 1884 i < urb_priv->num_tds; 1885 i++) { 1886 td = &urb_priv->td[i]; 1887 if (!list_empty(&td->td_list)) 1888 list_del_init(&td->td_list); 1889 if (!list_empty(&td->cancelled_td_list)) 1890 list_del_init(&td->cancelled_td_list); 1891 } 1892 goto err_giveback; 1893 } 1894 1895 i = urb_priv->num_tds_done; 1896 if (i < urb_priv->num_tds) 1897 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1898 "Cancel URB %p, dev %s, ep 0x%x, " 1899 "starting at offset 0x%llx", 1900 urb, urb->dev->devpath, 1901 urb->ep->desc.bEndpointAddress, 1902 (unsigned long long) xhci_trb_virt_to_dma( 1903 urb_priv->td[i].start_seg, 1904 urb_priv->td[i].first_trb)); 1905 1906 for (; i < urb_priv->num_tds; i++) { 1907 td = &urb_priv->td[i]; 1908 /* TD can already be on cancelled list if ep halted on it */ 1909 if (list_empty(&td->cancelled_td_list)) { 1910 td->cancel_status = TD_DIRTY; 1911 list_add_tail(&td->cancelled_td_list, 1912 &ep->cancelled_td_list); 1913 } 1914 } 1915 1916 /* Queue a stop endpoint command, but only if this is 1917 * the first cancellation to be handled. 1918 */ 1919 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1920 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1921 if (!command) { 1922 ret = -ENOMEM; 1923 goto done; 1924 } 1925 ep->ep_state |= EP_STOP_CMD_PENDING; 1926 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1927 ep_index, 0); 1928 xhci_ring_cmd_db(xhci); 1929 } 1930 done: 1931 spin_unlock_irqrestore(&xhci->lock, flags); 1932 return ret; 1933 1934 err_giveback: 1935 if (urb_priv) 1936 xhci_urb_free_priv(urb_priv); 1937 usb_hcd_unlink_urb_from_ep(hcd, urb); 1938 spin_unlock_irqrestore(&xhci->lock, flags); 1939 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1940 return ret; 1941 } 1942 1943 /* Drop an endpoint from a new bandwidth configuration for this device. 1944 * Only one call to this function is allowed per endpoint before 1945 * check_bandwidth() or reset_bandwidth() must be called. 1946 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1947 * add the endpoint to the schedule with possibly new parameters denoted by a 1948 * different endpoint descriptor in usb_host_endpoint. 1949 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1950 * not allowed. 1951 * 1952 * The USB core will not allow URBs to be queued to an endpoint that is being 1953 * disabled, so there's no need for mutual exclusion to protect 1954 * the xhci->devs[slot_id] structure. 1955 */ 1956 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1957 struct usb_host_endpoint *ep) 1958 { 1959 struct xhci_hcd *xhci; 1960 struct xhci_container_ctx *in_ctx, *out_ctx; 1961 struct xhci_input_control_ctx *ctrl_ctx; 1962 unsigned int ep_index; 1963 struct xhci_ep_ctx *ep_ctx; 1964 u32 drop_flag; 1965 u32 new_add_flags, new_drop_flags; 1966 int ret; 1967 1968 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1969 if (ret <= 0) 1970 return ret; 1971 xhci = hcd_to_xhci(hcd); 1972 if (xhci->xhc_state & XHCI_STATE_DYING) 1973 return -ENODEV; 1974 1975 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1976 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1977 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1978 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1979 __func__, drop_flag); 1980 return 0; 1981 } 1982 1983 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1984 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1985 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1986 if (!ctrl_ctx) { 1987 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1988 __func__); 1989 return 0; 1990 } 1991 1992 ep_index = xhci_get_endpoint_index(&ep->desc); 1993 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1994 /* If the HC already knows the endpoint is disabled, 1995 * or the HCD has noted it is disabled, ignore this request 1996 */ 1997 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1998 le32_to_cpu(ctrl_ctx->drop_flags) & 1999 xhci_get_endpoint_flag(&ep->desc)) { 2000 /* Do not warn when called after a usb_device_reset */ 2001 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 2002 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 2003 __func__, ep); 2004 return 0; 2005 } 2006 2007 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 2008 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2009 2010 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 2011 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2012 2013 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 2014 2015 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 2016 2017 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2018 (unsigned int) ep->desc.bEndpointAddress, 2019 udev->slot_id, 2020 (unsigned int) new_drop_flags, 2021 (unsigned int) new_add_flags); 2022 return 0; 2023 } 2024 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 2025 2026 /* Add an endpoint to a new possible bandwidth configuration for this device. 2027 * Only one call to this function is allowed per endpoint before 2028 * check_bandwidth() or reset_bandwidth() must be called. 2029 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 2030 * add the endpoint to the schedule with possibly new parameters denoted by a 2031 * different endpoint descriptor in usb_host_endpoint. 2032 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 2033 * not allowed. 2034 * 2035 * The USB core will not allow URBs to be queued to an endpoint until the 2036 * configuration or alt setting is installed in the device, so there's no need 2037 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 2038 */ 2039 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 2040 struct usb_host_endpoint *ep) 2041 { 2042 struct xhci_hcd *xhci; 2043 struct xhci_container_ctx *in_ctx; 2044 unsigned int ep_index; 2045 struct xhci_input_control_ctx *ctrl_ctx; 2046 struct xhci_ep_ctx *ep_ctx; 2047 u32 added_ctxs; 2048 u32 new_add_flags, new_drop_flags; 2049 struct xhci_virt_device *virt_dev; 2050 int ret = 0; 2051 2052 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 2053 if (ret <= 0) { 2054 /* So we won't queue a reset ep command for a root hub */ 2055 ep->hcpriv = NULL; 2056 return ret; 2057 } 2058 xhci = hcd_to_xhci(hcd); 2059 if (xhci->xhc_state & XHCI_STATE_DYING) 2060 return -ENODEV; 2061 2062 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 2063 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 2064 /* FIXME when we have to issue an evaluate endpoint command to 2065 * deal with ep0 max packet size changing once we get the 2066 * descriptors 2067 */ 2068 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 2069 __func__, added_ctxs); 2070 return 0; 2071 } 2072 2073 virt_dev = xhci->devs[udev->slot_id]; 2074 in_ctx = virt_dev->in_ctx; 2075 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2076 if (!ctrl_ctx) { 2077 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2078 __func__); 2079 return 0; 2080 } 2081 2082 ep_index = xhci_get_endpoint_index(&ep->desc); 2083 /* If this endpoint is already in use, and the upper layers are trying 2084 * to add it again without dropping it, reject the addition. 2085 */ 2086 if (virt_dev->eps[ep_index].ring && 2087 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 2088 xhci_warn(xhci, "Trying to add endpoint 0x%x " 2089 "without dropping it.\n", 2090 (unsigned int) ep->desc.bEndpointAddress); 2091 return -EINVAL; 2092 } 2093 2094 /* If the HCD has already noted the endpoint is enabled, 2095 * ignore this request. 2096 */ 2097 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2098 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2099 __func__, ep); 2100 return 0; 2101 } 2102 2103 /* 2104 * Configuration and alternate setting changes must be done in 2105 * process context, not interrupt context (or so documenation 2106 * for usb_set_interface() and usb_set_configuration() claim). 2107 */ 2108 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2109 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2110 __func__, ep->desc.bEndpointAddress); 2111 return -ENOMEM; 2112 } 2113 2114 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2115 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2116 2117 /* If xhci_endpoint_disable() was called for this endpoint, but the 2118 * xHC hasn't been notified yet through the check_bandwidth() call, 2119 * this re-adds a new state for the endpoint from the new endpoint 2120 * descriptors. We must drop and re-add this endpoint, so we leave the 2121 * drop flags alone. 2122 */ 2123 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2124 2125 /* Store the usb_device pointer for later use */ 2126 ep->hcpriv = udev; 2127 2128 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2129 trace_xhci_add_endpoint(ep_ctx); 2130 2131 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2132 (unsigned int) ep->desc.bEndpointAddress, 2133 udev->slot_id, 2134 (unsigned int) new_drop_flags, 2135 (unsigned int) new_add_flags); 2136 return 0; 2137 } 2138 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2139 2140 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2141 { 2142 struct xhci_input_control_ctx *ctrl_ctx; 2143 struct xhci_ep_ctx *ep_ctx; 2144 struct xhci_slot_ctx *slot_ctx; 2145 int i; 2146 2147 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2148 if (!ctrl_ctx) { 2149 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2150 __func__); 2151 return; 2152 } 2153 2154 /* When a device's add flag and drop flag are zero, any subsequent 2155 * configure endpoint command will leave that endpoint's state 2156 * untouched. Make sure we don't leave any old state in the input 2157 * endpoint contexts. 2158 */ 2159 ctrl_ctx->drop_flags = 0; 2160 ctrl_ctx->add_flags = 0; 2161 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2162 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2163 /* Endpoint 0 is always valid */ 2164 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2165 for (i = 1; i < 31; i++) { 2166 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2167 ep_ctx->ep_info = 0; 2168 ep_ctx->ep_info2 = 0; 2169 ep_ctx->deq = 0; 2170 ep_ctx->tx_info = 0; 2171 } 2172 } 2173 2174 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2175 struct usb_device *udev, u32 *cmd_status) 2176 { 2177 int ret; 2178 2179 switch (*cmd_status) { 2180 case COMP_COMMAND_ABORTED: 2181 case COMP_COMMAND_RING_STOPPED: 2182 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2183 ret = -ETIME; 2184 break; 2185 case COMP_RESOURCE_ERROR: 2186 dev_warn(&udev->dev, 2187 "Not enough host controller resources for new device state.\n"); 2188 ret = -ENOMEM; 2189 /* FIXME: can we allocate more resources for the HC? */ 2190 break; 2191 case COMP_BANDWIDTH_ERROR: 2192 case COMP_SECONDARY_BANDWIDTH_ERROR: 2193 dev_warn(&udev->dev, 2194 "Not enough bandwidth for new device state.\n"); 2195 ret = -ENOSPC; 2196 /* FIXME: can we go back to the old state? */ 2197 break; 2198 case COMP_TRB_ERROR: 2199 /* the HCD set up something wrong */ 2200 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2201 "add flag = 1, " 2202 "and endpoint is not disabled.\n"); 2203 ret = -EINVAL; 2204 break; 2205 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2206 dev_warn(&udev->dev, 2207 "ERROR: Incompatible device for endpoint configure command.\n"); 2208 ret = -ENODEV; 2209 break; 2210 case COMP_SUCCESS: 2211 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2212 "Successful Endpoint Configure command"); 2213 ret = 0; 2214 break; 2215 default: 2216 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2217 *cmd_status); 2218 ret = -EINVAL; 2219 break; 2220 } 2221 return ret; 2222 } 2223 2224 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2225 struct usb_device *udev, u32 *cmd_status) 2226 { 2227 int ret; 2228 2229 switch (*cmd_status) { 2230 case COMP_COMMAND_ABORTED: 2231 case COMP_COMMAND_RING_STOPPED: 2232 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2233 ret = -ETIME; 2234 break; 2235 case COMP_PARAMETER_ERROR: 2236 dev_warn(&udev->dev, 2237 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2238 ret = -EINVAL; 2239 break; 2240 case COMP_SLOT_NOT_ENABLED_ERROR: 2241 dev_warn(&udev->dev, 2242 "WARN: slot not enabled for evaluate context command.\n"); 2243 ret = -EINVAL; 2244 break; 2245 case COMP_CONTEXT_STATE_ERROR: 2246 dev_warn(&udev->dev, 2247 "WARN: invalid context state for evaluate context command.\n"); 2248 ret = -EINVAL; 2249 break; 2250 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2251 dev_warn(&udev->dev, 2252 "ERROR: Incompatible device for evaluate context command.\n"); 2253 ret = -ENODEV; 2254 break; 2255 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2256 /* Max Exit Latency too large error */ 2257 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2258 ret = -EINVAL; 2259 break; 2260 case COMP_SUCCESS: 2261 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2262 "Successful evaluate context command"); 2263 ret = 0; 2264 break; 2265 default: 2266 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2267 *cmd_status); 2268 ret = -EINVAL; 2269 break; 2270 } 2271 return ret; 2272 } 2273 2274 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2275 struct xhci_input_control_ctx *ctrl_ctx) 2276 { 2277 u32 valid_add_flags; 2278 u32 valid_drop_flags; 2279 2280 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2281 * (bit 1). The default control endpoint is added during the Address 2282 * Device command and is never removed until the slot is disabled. 2283 */ 2284 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2285 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2286 2287 /* Use hweight32 to count the number of ones in the add flags, or 2288 * number of endpoints added. Don't count endpoints that are changed 2289 * (both added and dropped). 2290 */ 2291 return hweight32(valid_add_flags) - 2292 hweight32(valid_add_flags & valid_drop_flags); 2293 } 2294 2295 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2296 struct xhci_input_control_ctx *ctrl_ctx) 2297 { 2298 u32 valid_add_flags; 2299 u32 valid_drop_flags; 2300 2301 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2302 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2303 2304 return hweight32(valid_drop_flags) - 2305 hweight32(valid_add_flags & valid_drop_flags); 2306 } 2307 2308 /* 2309 * We need to reserve the new number of endpoints before the configure endpoint 2310 * command completes. We can't subtract the dropped endpoints from the number 2311 * of active endpoints until the command completes because we can oversubscribe 2312 * the host in this case: 2313 * 2314 * - the first configure endpoint command drops more endpoints than it adds 2315 * - a second configure endpoint command that adds more endpoints is queued 2316 * - the first configure endpoint command fails, so the config is unchanged 2317 * - the second command may succeed, even though there isn't enough resources 2318 * 2319 * Must be called with xhci->lock held. 2320 */ 2321 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2322 struct xhci_input_control_ctx *ctrl_ctx) 2323 { 2324 u32 added_eps; 2325 2326 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2327 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2328 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2329 "Not enough ep ctxs: " 2330 "%u active, need to add %u, limit is %u.", 2331 xhci->num_active_eps, added_eps, 2332 xhci->limit_active_eps); 2333 return -ENOMEM; 2334 } 2335 xhci->num_active_eps += added_eps; 2336 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2337 "Adding %u ep ctxs, %u now active.", added_eps, 2338 xhci->num_active_eps); 2339 return 0; 2340 } 2341 2342 /* 2343 * The configure endpoint was failed by the xHC for some other reason, so we 2344 * need to revert the resources that failed configuration would have used. 2345 * 2346 * Must be called with xhci->lock held. 2347 */ 2348 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2349 struct xhci_input_control_ctx *ctrl_ctx) 2350 { 2351 u32 num_failed_eps; 2352 2353 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2354 xhci->num_active_eps -= num_failed_eps; 2355 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2356 "Removing %u failed ep ctxs, %u now active.", 2357 num_failed_eps, 2358 xhci->num_active_eps); 2359 } 2360 2361 /* 2362 * Now that the command has completed, clean up the active endpoint count by 2363 * subtracting out the endpoints that were dropped (but not changed). 2364 * 2365 * Must be called with xhci->lock held. 2366 */ 2367 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2368 struct xhci_input_control_ctx *ctrl_ctx) 2369 { 2370 u32 num_dropped_eps; 2371 2372 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2373 xhci->num_active_eps -= num_dropped_eps; 2374 if (num_dropped_eps) 2375 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2376 "Removing %u dropped ep ctxs, %u now active.", 2377 num_dropped_eps, 2378 xhci->num_active_eps); 2379 } 2380 2381 static unsigned int xhci_get_block_size(struct usb_device *udev) 2382 { 2383 switch (udev->speed) { 2384 case USB_SPEED_LOW: 2385 case USB_SPEED_FULL: 2386 return FS_BLOCK; 2387 case USB_SPEED_HIGH: 2388 return HS_BLOCK; 2389 case USB_SPEED_SUPER: 2390 case USB_SPEED_SUPER_PLUS: 2391 return SS_BLOCK; 2392 case USB_SPEED_UNKNOWN: 2393 case USB_SPEED_WIRELESS: 2394 default: 2395 /* Should never happen */ 2396 return 1; 2397 } 2398 } 2399 2400 static unsigned int 2401 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2402 { 2403 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2404 return LS_OVERHEAD; 2405 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2406 return FS_OVERHEAD; 2407 return HS_OVERHEAD; 2408 } 2409 2410 /* If we are changing a LS/FS device under a HS hub, 2411 * make sure (if we are activating a new TT) that the HS bus has enough 2412 * bandwidth for this new TT. 2413 */ 2414 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2415 struct xhci_virt_device *virt_dev, 2416 int old_active_eps) 2417 { 2418 struct xhci_interval_bw_table *bw_table; 2419 struct xhci_tt_bw_info *tt_info; 2420 2421 /* Find the bandwidth table for the root port this TT is attached to. */ 2422 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2423 tt_info = virt_dev->tt_info; 2424 /* If this TT already had active endpoints, the bandwidth for this TT 2425 * has already been added. Removing all periodic endpoints (and thus 2426 * making the TT enactive) will only decrease the bandwidth used. 2427 */ 2428 if (old_active_eps) 2429 return 0; 2430 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2431 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2432 return -ENOMEM; 2433 return 0; 2434 } 2435 /* Not sure why we would have no new active endpoints... 2436 * 2437 * Maybe because of an Evaluate Context change for a hub update or a 2438 * control endpoint 0 max packet size change? 2439 * FIXME: skip the bandwidth calculation in that case. 2440 */ 2441 return 0; 2442 } 2443 2444 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2445 struct xhci_virt_device *virt_dev) 2446 { 2447 unsigned int bw_reserved; 2448 2449 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2450 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2451 return -ENOMEM; 2452 2453 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2454 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2455 return -ENOMEM; 2456 2457 return 0; 2458 } 2459 2460 /* 2461 * This algorithm is a very conservative estimate of the worst-case scheduling 2462 * scenario for any one interval. The hardware dynamically schedules the 2463 * packets, so we can't tell which microframe could be the limiting factor in 2464 * the bandwidth scheduling. This only takes into account periodic endpoints. 2465 * 2466 * Obviously, we can't solve an NP complete problem to find the minimum worst 2467 * case scenario. Instead, we come up with an estimate that is no less than 2468 * the worst case bandwidth used for any one microframe, but may be an 2469 * over-estimate. 2470 * 2471 * We walk the requirements for each endpoint by interval, starting with the 2472 * smallest interval, and place packets in the schedule where there is only one 2473 * possible way to schedule packets for that interval. In order to simplify 2474 * this algorithm, we record the largest max packet size for each interval, and 2475 * assume all packets will be that size. 2476 * 2477 * For interval 0, we obviously must schedule all packets for each interval. 2478 * The bandwidth for interval 0 is just the amount of data to be transmitted 2479 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2480 * the number of packets). 2481 * 2482 * For interval 1, we have two possible microframes to schedule those packets 2483 * in. For this algorithm, if we can schedule the same number of packets for 2484 * each possible scheduling opportunity (each microframe), we will do so. The 2485 * remaining number of packets will be saved to be transmitted in the gaps in 2486 * the next interval's scheduling sequence. 2487 * 2488 * As we move those remaining packets to be scheduled with interval 2 packets, 2489 * we have to double the number of remaining packets to transmit. This is 2490 * because the intervals are actually powers of 2, and we would be transmitting 2491 * the previous interval's packets twice in this interval. We also have to be 2492 * sure that when we look at the largest max packet size for this interval, we 2493 * also look at the largest max packet size for the remaining packets and take 2494 * the greater of the two. 2495 * 2496 * The algorithm continues to evenly distribute packets in each scheduling 2497 * opportunity, and push the remaining packets out, until we get to the last 2498 * interval. Then those packets and their associated overhead are just added 2499 * to the bandwidth used. 2500 */ 2501 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2502 struct xhci_virt_device *virt_dev, 2503 int old_active_eps) 2504 { 2505 unsigned int bw_reserved; 2506 unsigned int max_bandwidth; 2507 unsigned int bw_used; 2508 unsigned int block_size; 2509 struct xhci_interval_bw_table *bw_table; 2510 unsigned int packet_size = 0; 2511 unsigned int overhead = 0; 2512 unsigned int packets_transmitted = 0; 2513 unsigned int packets_remaining = 0; 2514 unsigned int i; 2515 2516 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2517 return xhci_check_ss_bw(xhci, virt_dev); 2518 2519 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2520 max_bandwidth = HS_BW_LIMIT; 2521 /* Convert percent of bus BW reserved to blocks reserved */ 2522 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2523 } else { 2524 max_bandwidth = FS_BW_LIMIT; 2525 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2526 } 2527 2528 bw_table = virt_dev->bw_table; 2529 /* We need to translate the max packet size and max ESIT payloads into 2530 * the units the hardware uses. 2531 */ 2532 block_size = xhci_get_block_size(virt_dev->udev); 2533 2534 /* If we are manipulating a LS/FS device under a HS hub, double check 2535 * that the HS bus has enough bandwidth if we are activing a new TT. 2536 */ 2537 if (virt_dev->tt_info) { 2538 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2539 "Recalculating BW for rootport %u", 2540 virt_dev->real_port); 2541 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2542 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2543 "newly activated TT.\n"); 2544 return -ENOMEM; 2545 } 2546 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2547 "Recalculating BW for TT slot %u port %u", 2548 virt_dev->tt_info->slot_id, 2549 virt_dev->tt_info->ttport); 2550 } else { 2551 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2552 "Recalculating BW for rootport %u", 2553 virt_dev->real_port); 2554 } 2555 2556 /* Add in how much bandwidth will be used for interval zero, or the 2557 * rounded max ESIT payload + number of packets * largest overhead. 2558 */ 2559 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2560 bw_table->interval_bw[0].num_packets * 2561 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2562 2563 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2564 unsigned int bw_added; 2565 unsigned int largest_mps; 2566 unsigned int interval_overhead; 2567 2568 /* 2569 * How many packets could we transmit in this interval? 2570 * If packets didn't fit in the previous interval, we will need 2571 * to transmit that many packets twice within this interval. 2572 */ 2573 packets_remaining = 2 * packets_remaining + 2574 bw_table->interval_bw[i].num_packets; 2575 2576 /* Find the largest max packet size of this or the previous 2577 * interval. 2578 */ 2579 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2580 largest_mps = 0; 2581 else { 2582 struct xhci_virt_ep *virt_ep; 2583 struct list_head *ep_entry; 2584 2585 ep_entry = bw_table->interval_bw[i].endpoints.next; 2586 virt_ep = list_entry(ep_entry, 2587 struct xhci_virt_ep, bw_endpoint_list); 2588 /* Convert to blocks, rounding up */ 2589 largest_mps = DIV_ROUND_UP( 2590 virt_ep->bw_info.max_packet_size, 2591 block_size); 2592 } 2593 if (largest_mps > packet_size) 2594 packet_size = largest_mps; 2595 2596 /* Use the larger overhead of this or the previous interval. */ 2597 interval_overhead = xhci_get_largest_overhead( 2598 &bw_table->interval_bw[i]); 2599 if (interval_overhead > overhead) 2600 overhead = interval_overhead; 2601 2602 /* How many packets can we evenly distribute across 2603 * (1 << (i + 1)) possible scheduling opportunities? 2604 */ 2605 packets_transmitted = packets_remaining >> (i + 1); 2606 2607 /* Add in the bandwidth used for those scheduled packets */ 2608 bw_added = packets_transmitted * (overhead + packet_size); 2609 2610 /* How many packets do we have remaining to transmit? */ 2611 packets_remaining = packets_remaining % (1 << (i + 1)); 2612 2613 /* What largest max packet size should those packets have? */ 2614 /* If we've transmitted all packets, don't carry over the 2615 * largest packet size. 2616 */ 2617 if (packets_remaining == 0) { 2618 packet_size = 0; 2619 overhead = 0; 2620 } else if (packets_transmitted > 0) { 2621 /* Otherwise if we do have remaining packets, and we've 2622 * scheduled some packets in this interval, take the 2623 * largest max packet size from endpoints with this 2624 * interval. 2625 */ 2626 packet_size = largest_mps; 2627 overhead = interval_overhead; 2628 } 2629 /* Otherwise carry over packet_size and overhead from the last 2630 * time we had a remainder. 2631 */ 2632 bw_used += bw_added; 2633 if (bw_used > max_bandwidth) { 2634 xhci_warn(xhci, "Not enough bandwidth. " 2635 "Proposed: %u, Max: %u\n", 2636 bw_used, max_bandwidth); 2637 return -ENOMEM; 2638 } 2639 } 2640 /* 2641 * Ok, we know we have some packets left over after even-handedly 2642 * scheduling interval 15. We don't know which microframes they will 2643 * fit into, so we over-schedule and say they will be scheduled every 2644 * microframe. 2645 */ 2646 if (packets_remaining > 0) 2647 bw_used += overhead + packet_size; 2648 2649 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2650 unsigned int port_index = virt_dev->real_port - 1; 2651 2652 /* OK, we're manipulating a HS device attached to a 2653 * root port bandwidth domain. Include the number of active TTs 2654 * in the bandwidth used. 2655 */ 2656 bw_used += TT_HS_OVERHEAD * 2657 xhci->rh_bw[port_index].num_active_tts; 2658 } 2659 2660 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2661 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2662 "Available: %u " "percent", 2663 bw_used, max_bandwidth, bw_reserved, 2664 (max_bandwidth - bw_used - bw_reserved) * 100 / 2665 max_bandwidth); 2666 2667 bw_used += bw_reserved; 2668 if (bw_used > max_bandwidth) { 2669 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2670 bw_used, max_bandwidth); 2671 return -ENOMEM; 2672 } 2673 2674 bw_table->bw_used = bw_used; 2675 return 0; 2676 } 2677 2678 static bool xhci_is_async_ep(unsigned int ep_type) 2679 { 2680 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2681 ep_type != ISOC_IN_EP && 2682 ep_type != INT_IN_EP); 2683 } 2684 2685 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2686 { 2687 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2688 } 2689 2690 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2691 { 2692 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2693 2694 if (ep_bw->ep_interval == 0) 2695 return SS_OVERHEAD_BURST + 2696 (ep_bw->mult * ep_bw->num_packets * 2697 (SS_OVERHEAD + mps)); 2698 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2699 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2700 1 << ep_bw->ep_interval); 2701 2702 } 2703 2704 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2705 struct xhci_bw_info *ep_bw, 2706 struct xhci_interval_bw_table *bw_table, 2707 struct usb_device *udev, 2708 struct xhci_virt_ep *virt_ep, 2709 struct xhci_tt_bw_info *tt_info) 2710 { 2711 struct xhci_interval_bw *interval_bw; 2712 int normalized_interval; 2713 2714 if (xhci_is_async_ep(ep_bw->type)) 2715 return; 2716 2717 if (udev->speed >= USB_SPEED_SUPER) { 2718 if (xhci_is_sync_in_ep(ep_bw->type)) 2719 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2720 xhci_get_ss_bw_consumed(ep_bw); 2721 else 2722 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2723 xhci_get_ss_bw_consumed(ep_bw); 2724 return; 2725 } 2726 2727 /* SuperSpeed endpoints never get added to intervals in the table, so 2728 * this check is only valid for HS/FS/LS devices. 2729 */ 2730 if (list_empty(&virt_ep->bw_endpoint_list)) 2731 return; 2732 /* For LS/FS devices, we need to translate the interval expressed in 2733 * microframes to frames. 2734 */ 2735 if (udev->speed == USB_SPEED_HIGH) 2736 normalized_interval = ep_bw->ep_interval; 2737 else 2738 normalized_interval = ep_bw->ep_interval - 3; 2739 2740 if (normalized_interval == 0) 2741 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2742 interval_bw = &bw_table->interval_bw[normalized_interval]; 2743 interval_bw->num_packets -= ep_bw->num_packets; 2744 switch (udev->speed) { 2745 case USB_SPEED_LOW: 2746 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2747 break; 2748 case USB_SPEED_FULL: 2749 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2750 break; 2751 case USB_SPEED_HIGH: 2752 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2753 break; 2754 case USB_SPEED_SUPER: 2755 case USB_SPEED_SUPER_PLUS: 2756 case USB_SPEED_UNKNOWN: 2757 case USB_SPEED_WIRELESS: 2758 /* Should never happen because only LS/FS/HS endpoints will get 2759 * added to the endpoint list. 2760 */ 2761 return; 2762 } 2763 if (tt_info) 2764 tt_info->active_eps -= 1; 2765 list_del_init(&virt_ep->bw_endpoint_list); 2766 } 2767 2768 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2769 struct xhci_bw_info *ep_bw, 2770 struct xhci_interval_bw_table *bw_table, 2771 struct usb_device *udev, 2772 struct xhci_virt_ep *virt_ep, 2773 struct xhci_tt_bw_info *tt_info) 2774 { 2775 struct xhci_interval_bw *interval_bw; 2776 struct xhci_virt_ep *smaller_ep; 2777 int normalized_interval; 2778 2779 if (xhci_is_async_ep(ep_bw->type)) 2780 return; 2781 2782 if (udev->speed == USB_SPEED_SUPER) { 2783 if (xhci_is_sync_in_ep(ep_bw->type)) 2784 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2785 xhci_get_ss_bw_consumed(ep_bw); 2786 else 2787 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2788 xhci_get_ss_bw_consumed(ep_bw); 2789 return; 2790 } 2791 2792 /* For LS/FS devices, we need to translate the interval expressed in 2793 * microframes to frames. 2794 */ 2795 if (udev->speed == USB_SPEED_HIGH) 2796 normalized_interval = ep_bw->ep_interval; 2797 else 2798 normalized_interval = ep_bw->ep_interval - 3; 2799 2800 if (normalized_interval == 0) 2801 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2802 interval_bw = &bw_table->interval_bw[normalized_interval]; 2803 interval_bw->num_packets += ep_bw->num_packets; 2804 switch (udev->speed) { 2805 case USB_SPEED_LOW: 2806 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2807 break; 2808 case USB_SPEED_FULL: 2809 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2810 break; 2811 case USB_SPEED_HIGH: 2812 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2813 break; 2814 case USB_SPEED_SUPER: 2815 case USB_SPEED_SUPER_PLUS: 2816 case USB_SPEED_UNKNOWN: 2817 case USB_SPEED_WIRELESS: 2818 /* Should never happen because only LS/FS/HS endpoints will get 2819 * added to the endpoint list. 2820 */ 2821 return; 2822 } 2823 2824 if (tt_info) 2825 tt_info->active_eps += 1; 2826 /* Insert the endpoint into the list, largest max packet size first. */ 2827 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2828 bw_endpoint_list) { 2829 if (ep_bw->max_packet_size >= 2830 smaller_ep->bw_info.max_packet_size) { 2831 /* Add the new ep before the smaller endpoint */ 2832 list_add_tail(&virt_ep->bw_endpoint_list, 2833 &smaller_ep->bw_endpoint_list); 2834 return; 2835 } 2836 } 2837 /* Add the new endpoint at the end of the list. */ 2838 list_add_tail(&virt_ep->bw_endpoint_list, 2839 &interval_bw->endpoints); 2840 } 2841 2842 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2843 struct xhci_virt_device *virt_dev, 2844 int old_active_eps) 2845 { 2846 struct xhci_root_port_bw_info *rh_bw_info; 2847 if (!virt_dev->tt_info) 2848 return; 2849 2850 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2851 if (old_active_eps == 0 && 2852 virt_dev->tt_info->active_eps != 0) { 2853 rh_bw_info->num_active_tts += 1; 2854 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2855 } else if (old_active_eps != 0 && 2856 virt_dev->tt_info->active_eps == 0) { 2857 rh_bw_info->num_active_tts -= 1; 2858 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2859 } 2860 } 2861 2862 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2863 struct xhci_virt_device *virt_dev, 2864 struct xhci_container_ctx *in_ctx) 2865 { 2866 struct xhci_bw_info ep_bw_info[31]; 2867 int i; 2868 struct xhci_input_control_ctx *ctrl_ctx; 2869 int old_active_eps = 0; 2870 2871 if (virt_dev->tt_info) 2872 old_active_eps = virt_dev->tt_info->active_eps; 2873 2874 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2875 if (!ctrl_ctx) { 2876 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2877 __func__); 2878 return -ENOMEM; 2879 } 2880 2881 for (i = 0; i < 31; i++) { 2882 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2883 continue; 2884 2885 /* Make a copy of the BW info in case we need to revert this */ 2886 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2887 sizeof(ep_bw_info[i])); 2888 /* Drop the endpoint from the interval table if the endpoint is 2889 * being dropped or changed. 2890 */ 2891 if (EP_IS_DROPPED(ctrl_ctx, i)) 2892 xhci_drop_ep_from_interval_table(xhci, 2893 &virt_dev->eps[i].bw_info, 2894 virt_dev->bw_table, 2895 virt_dev->udev, 2896 &virt_dev->eps[i], 2897 virt_dev->tt_info); 2898 } 2899 /* Overwrite the information stored in the endpoints' bw_info */ 2900 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2901 for (i = 0; i < 31; i++) { 2902 /* Add any changed or added endpoints to the interval table */ 2903 if (EP_IS_ADDED(ctrl_ctx, i)) 2904 xhci_add_ep_to_interval_table(xhci, 2905 &virt_dev->eps[i].bw_info, 2906 virt_dev->bw_table, 2907 virt_dev->udev, 2908 &virt_dev->eps[i], 2909 virt_dev->tt_info); 2910 } 2911 2912 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2913 /* Ok, this fits in the bandwidth we have. 2914 * Update the number of active TTs. 2915 */ 2916 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2917 return 0; 2918 } 2919 2920 /* We don't have enough bandwidth for this, revert the stored info. */ 2921 for (i = 0; i < 31; i++) { 2922 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2923 continue; 2924 2925 /* Drop the new copies of any added or changed endpoints from 2926 * the interval table. 2927 */ 2928 if (EP_IS_ADDED(ctrl_ctx, i)) { 2929 xhci_drop_ep_from_interval_table(xhci, 2930 &virt_dev->eps[i].bw_info, 2931 virt_dev->bw_table, 2932 virt_dev->udev, 2933 &virt_dev->eps[i], 2934 virt_dev->tt_info); 2935 } 2936 /* Revert the endpoint back to its old information */ 2937 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2938 sizeof(ep_bw_info[i])); 2939 /* Add any changed or dropped endpoints back into the table */ 2940 if (EP_IS_DROPPED(ctrl_ctx, i)) 2941 xhci_add_ep_to_interval_table(xhci, 2942 &virt_dev->eps[i].bw_info, 2943 virt_dev->bw_table, 2944 virt_dev->udev, 2945 &virt_dev->eps[i], 2946 virt_dev->tt_info); 2947 } 2948 return -ENOMEM; 2949 } 2950 2951 2952 /* Issue a configure endpoint command or evaluate context command 2953 * and wait for it to finish. 2954 */ 2955 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2956 struct usb_device *udev, 2957 struct xhci_command *command, 2958 bool ctx_change, bool must_succeed) 2959 { 2960 int ret; 2961 unsigned long flags; 2962 struct xhci_input_control_ctx *ctrl_ctx; 2963 struct xhci_virt_device *virt_dev; 2964 struct xhci_slot_ctx *slot_ctx; 2965 2966 if (!command) 2967 return -EINVAL; 2968 2969 spin_lock_irqsave(&xhci->lock, flags); 2970 2971 if (xhci->xhc_state & XHCI_STATE_DYING) { 2972 spin_unlock_irqrestore(&xhci->lock, flags); 2973 return -ESHUTDOWN; 2974 } 2975 2976 virt_dev = xhci->devs[udev->slot_id]; 2977 2978 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2979 if (!ctrl_ctx) { 2980 spin_unlock_irqrestore(&xhci->lock, flags); 2981 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2982 __func__); 2983 return -ENOMEM; 2984 } 2985 2986 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2987 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2988 spin_unlock_irqrestore(&xhci->lock, flags); 2989 xhci_warn(xhci, "Not enough host resources, " 2990 "active endpoint contexts = %u\n", 2991 xhci->num_active_eps); 2992 return -ENOMEM; 2993 } 2994 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2995 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2996 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2997 xhci_free_host_resources(xhci, ctrl_ctx); 2998 spin_unlock_irqrestore(&xhci->lock, flags); 2999 xhci_warn(xhci, "Not enough bandwidth\n"); 3000 return -ENOMEM; 3001 } 3002 3003 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 3004 3005 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 3006 trace_xhci_configure_endpoint(slot_ctx); 3007 3008 if (!ctx_change) 3009 ret = xhci_queue_configure_endpoint(xhci, command, 3010 command->in_ctx->dma, 3011 udev->slot_id, must_succeed); 3012 else 3013 ret = xhci_queue_evaluate_context(xhci, command, 3014 command->in_ctx->dma, 3015 udev->slot_id, must_succeed); 3016 if (ret < 0) { 3017 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 3018 xhci_free_host_resources(xhci, ctrl_ctx); 3019 spin_unlock_irqrestore(&xhci->lock, flags); 3020 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 3021 "FIXME allocate a new ring segment"); 3022 return -ENOMEM; 3023 } 3024 xhci_ring_cmd_db(xhci); 3025 spin_unlock_irqrestore(&xhci->lock, flags); 3026 3027 /* Wait for the configure endpoint command to complete */ 3028 wait_for_completion(command->completion); 3029 3030 if (!ctx_change) 3031 ret = xhci_configure_endpoint_result(xhci, udev, 3032 &command->status); 3033 else 3034 ret = xhci_evaluate_context_result(xhci, udev, 3035 &command->status); 3036 3037 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3038 spin_lock_irqsave(&xhci->lock, flags); 3039 /* If the command failed, remove the reserved resources. 3040 * Otherwise, clean up the estimate to include dropped eps. 3041 */ 3042 if (ret) 3043 xhci_free_host_resources(xhci, ctrl_ctx); 3044 else 3045 xhci_finish_resource_reservation(xhci, ctrl_ctx); 3046 spin_unlock_irqrestore(&xhci->lock, flags); 3047 } 3048 return ret; 3049 } 3050 3051 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 3052 struct xhci_virt_device *vdev, int i) 3053 { 3054 struct xhci_virt_ep *ep = &vdev->eps[i]; 3055 3056 if (ep->ep_state & EP_HAS_STREAMS) { 3057 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 3058 xhci_get_endpoint_address(i)); 3059 xhci_free_stream_info(xhci, ep->stream_info); 3060 ep->stream_info = NULL; 3061 ep->ep_state &= ~EP_HAS_STREAMS; 3062 } 3063 } 3064 3065 /* Called after one or more calls to xhci_add_endpoint() or 3066 * xhci_drop_endpoint(). If this call fails, the USB core is expected 3067 * to call xhci_reset_bandwidth(). 3068 * 3069 * Since we are in the middle of changing either configuration or 3070 * installing a new alt setting, the USB core won't allow URBs to be 3071 * enqueued for any endpoint on the old config or interface. Nothing 3072 * else should be touching the xhci->devs[slot_id] structure, so we 3073 * don't need to take the xhci->lock for manipulating that. 3074 */ 3075 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3076 { 3077 int i; 3078 int ret = 0; 3079 struct xhci_hcd *xhci; 3080 struct xhci_virt_device *virt_dev; 3081 struct xhci_input_control_ctx *ctrl_ctx; 3082 struct xhci_slot_ctx *slot_ctx; 3083 struct xhci_command *command; 3084 3085 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3086 if (ret <= 0) 3087 return ret; 3088 xhci = hcd_to_xhci(hcd); 3089 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3090 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3091 return -ENODEV; 3092 3093 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3094 virt_dev = xhci->devs[udev->slot_id]; 3095 3096 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3097 if (!command) 3098 return -ENOMEM; 3099 3100 command->in_ctx = virt_dev->in_ctx; 3101 3102 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3103 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3104 if (!ctrl_ctx) { 3105 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3106 __func__); 3107 ret = -ENOMEM; 3108 goto command_cleanup; 3109 } 3110 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3111 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3112 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3113 3114 /* Don't issue the command if there's no endpoints to update. */ 3115 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3116 ctrl_ctx->drop_flags == 0) { 3117 ret = 0; 3118 goto command_cleanup; 3119 } 3120 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3121 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3122 for (i = 31; i >= 1; i--) { 3123 __le32 le32 = cpu_to_le32(BIT(i)); 3124 3125 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3126 || (ctrl_ctx->add_flags & le32) || i == 1) { 3127 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3128 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3129 break; 3130 } 3131 } 3132 3133 ret = xhci_configure_endpoint(xhci, udev, command, 3134 false, false); 3135 if (ret) 3136 /* Callee should call reset_bandwidth() */ 3137 goto command_cleanup; 3138 3139 /* Free any rings that were dropped, but not changed. */ 3140 for (i = 1; i < 31; i++) { 3141 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3142 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3143 xhci_free_endpoint_ring(xhci, virt_dev, i); 3144 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3145 } 3146 } 3147 xhci_zero_in_ctx(xhci, virt_dev); 3148 /* 3149 * Install any rings for completely new endpoints or changed endpoints, 3150 * and free any old rings from changed endpoints. 3151 */ 3152 for (i = 1; i < 31; i++) { 3153 if (!virt_dev->eps[i].new_ring) 3154 continue; 3155 /* Only free the old ring if it exists. 3156 * It may not if this is the first add of an endpoint. 3157 */ 3158 if (virt_dev->eps[i].ring) { 3159 xhci_free_endpoint_ring(xhci, virt_dev, i); 3160 } 3161 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3162 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3163 virt_dev->eps[i].new_ring = NULL; 3164 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3165 } 3166 command_cleanup: 3167 kfree(command->completion); 3168 kfree(command); 3169 3170 return ret; 3171 } 3172 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3173 3174 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3175 { 3176 struct xhci_hcd *xhci; 3177 struct xhci_virt_device *virt_dev; 3178 int i, ret; 3179 3180 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3181 if (ret <= 0) 3182 return; 3183 xhci = hcd_to_xhci(hcd); 3184 3185 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3186 virt_dev = xhci->devs[udev->slot_id]; 3187 /* Free any rings allocated for added endpoints */ 3188 for (i = 0; i < 31; i++) { 3189 if (virt_dev->eps[i].new_ring) { 3190 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3191 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3192 virt_dev->eps[i].new_ring = NULL; 3193 } 3194 } 3195 xhci_zero_in_ctx(xhci, virt_dev); 3196 } 3197 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3198 3199 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3200 struct xhci_container_ctx *in_ctx, 3201 struct xhci_container_ctx *out_ctx, 3202 struct xhci_input_control_ctx *ctrl_ctx, 3203 u32 add_flags, u32 drop_flags) 3204 { 3205 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3206 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3207 xhci_slot_copy(xhci, in_ctx, out_ctx); 3208 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3209 } 3210 3211 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3212 struct usb_host_endpoint *host_ep) 3213 { 3214 struct xhci_hcd *xhci; 3215 struct xhci_virt_device *vdev; 3216 struct xhci_virt_ep *ep; 3217 struct usb_device *udev; 3218 unsigned long flags; 3219 unsigned int ep_index; 3220 3221 xhci = hcd_to_xhci(hcd); 3222 rescan: 3223 spin_lock_irqsave(&xhci->lock, flags); 3224 3225 udev = (struct usb_device *)host_ep->hcpriv; 3226 if (!udev || !udev->slot_id) 3227 goto done; 3228 3229 vdev = xhci->devs[udev->slot_id]; 3230 if (!vdev) 3231 goto done; 3232 3233 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3234 ep = &vdev->eps[ep_index]; 3235 3236 /* wait for hub_tt_work to finish clearing hub TT */ 3237 if (ep->ep_state & EP_CLEARING_TT) { 3238 spin_unlock_irqrestore(&xhci->lock, flags); 3239 schedule_timeout_uninterruptible(1); 3240 goto rescan; 3241 } 3242 3243 if (ep->ep_state) 3244 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3245 ep->ep_state); 3246 done: 3247 host_ep->hcpriv = NULL; 3248 spin_unlock_irqrestore(&xhci->lock, flags); 3249 } 3250 3251 /* 3252 * Called after usb core issues a clear halt control message. 3253 * The host side of the halt should already be cleared by a reset endpoint 3254 * command issued when the STALL event was received. 3255 * 3256 * The reset endpoint command may only be issued to endpoints in the halted 3257 * state. For software that wishes to reset the data toggle or sequence number 3258 * of an endpoint that isn't in the halted state this function will issue a 3259 * configure endpoint command with the Drop and Add bits set for the target 3260 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3261 */ 3262 3263 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3264 struct usb_host_endpoint *host_ep) 3265 { 3266 struct xhci_hcd *xhci; 3267 struct usb_device *udev; 3268 struct xhci_virt_device *vdev; 3269 struct xhci_virt_ep *ep; 3270 struct xhci_input_control_ctx *ctrl_ctx; 3271 struct xhci_command *stop_cmd, *cfg_cmd; 3272 unsigned int ep_index; 3273 unsigned long flags; 3274 u32 ep_flag; 3275 int err; 3276 3277 xhci = hcd_to_xhci(hcd); 3278 if (!host_ep->hcpriv) 3279 return; 3280 udev = (struct usb_device *) host_ep->hcpriv; 3281 vdev = xhci->devs[udev->slot_id]; 3282 3283 /* 3284 * vdev may be lost due to xHC restore error and re-initialization 3285 * during S3/S4 resume. A new vdev will be allocated later by 3286 * xhci_discover_or_reset_device() 3287 */ 3288 if (!udev->slot_id || !vdev) 3289 return; 3290 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3291 ep = &vdev->eps[ep_index]; 3292 3293 /* Bail out if toggle is already being cleared by a endpoint reset */ 3294 spin_lock_irqsave(&xhci->lock, flags); 3295 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3296 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3297 spin_unlock_irqrestore(&xhci->lock, flags); 3298 return; 3299 } 3300 spin_unlock_irqrestore(&xhci->lock, flags); 3301 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3302 if (usb_endpoint_xfer_control(&host_ep->desc) || 3303 usb_endpoint_xfer_isoc(&host_ep->desc)) 3304 return; 3305 3306 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3307 3308 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3309 return; 3310 3311 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3312 if (!stop_cmd) 3313 return; 3314 3315 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3316 if (!cfg_cmd) 3317 goto cleanup; 3318 3319 spin_lock_irqsave(&xhci->lock, flags); 3320 3321 /* block queuing new trbs and ringing ep doorbell */ 3322 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3323 3324 /* 3325 * Make sure endpoint ring is empty before resetting the toggle/seq. 3326 * Driver is required to synchronously cancel all transfer request. 3327 * Stop the endpoint to force xHC to update the output context 3328 */ 3329 3330 if (!list_empty(&ep->ring->td_list)) { 3331 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3332 spin_unlock_irqrestore(&xhci->lock, flags); 3333 xhci_free_command(xhci, cfg_cmd); 3334 goto cleanup; 3335 } 3336 3337 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3338 ep_index, 0); 3339 if (err < 0) { 3340 spin_unlock_irqrestore(&xhci->lock, flags); 3341 xhci_free_command(xhci, cfg_cmd); 3342 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3343 __func__, err); 3344 goto cleanup; 3345 } 3346 3347 xhci_ring_cmd_db(xhci); 3348 spin_unlock_irqrestore(&xhci->lock, flags); 3349 3350 wait_for_completion(stop_cmd->completion); 3351 3352 spin_lock_irqsave(&xhci->lock, flags); 3353 3354 /* config ep command clears toggle if add and drop ep flags are set */ 3355 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3356 if (!ctrl_ctx) { 3357 spin_unlock_irqrestore(&xhci->lock, flags); 3358 xhci_free_command(xhci, cfg_cmd); 3359 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3360 __func__); 3361 goto cleanup; 3362 } 3363 3364 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3365 ctrl_ctx, ep_flag, ep_flag); 3366 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3367 3368 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3369 udev->slot_id, false); 3370 if (err < 0) { 3371 spin_unlock_irqrestore(&xhci->lock, flags); 3372 xhci_free_command(xhci, cfg_cmd); 3373 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3374 __func__, err); 3375 goto cleanup; 3376 } 3377 3378 xhci_ring_cmd_db(xhci); 3379 spin_unlock_irqrestore(&xhci->lock, flags); 3380 3381 wait_for_completion(cfg_cmd->completion); 3382 3383 xhci_free_command(xhci, cfg_cmd); 3384 cleanup: 3385 xhci_free_command(xhci, stop_cmd); 3386 spin_lock_irqsave(&xhci->lock, flags); 3387 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3388 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3389 spin_unlock_irqrestore(&xhci->lock, flags); 3390 } 3391 3392 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3393 struct usb_device *udev, struct usb_host_endpoint *ep, 3394 unsigned int slot_id) 3395 { 3396 int ret; 3397 unsigned int ep_index; 3398 unsigned int ep_state; 3399 3400 if (!ep) 3401 return -EINVAL; 3402 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3403 if (ret <= 0) 3404 return ret ? ret : -EINVAL; 3405 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3406 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3407 " descriptor for ep 0x%x does not support streams\n", 3408 ep->desc.bEndpointAddress); 3409 return -EINVAL; 3410 } 3411 3412 ep_index = xhci_get_endpoint_index(&ep->desc); 3413 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3414 if (ep_state & EP_HAS_STREAMS || 3415 ep_state & EP_GETTING_STREAMS) { 3416 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3417 "already has streams set up.\n", 3418 ep->desc.bEndpointAddress); 3419 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3420 "dynamic stream context array reallocation.\n"); 3421 return -EINVAL; 3422 } 3423 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3424 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3425 "endpoint 0x%x; URBs are pending.\n", 3426 ep->desc.bEndpointAddress); 3427 return -EINVAL; 3428 } 3429 return 0; 3430 } 3431 3432 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3433 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3434 { 3435 unsigned int max_streams; 3436 3437 /* The stream context array size must be a power of two */ 3438 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3439 /* 3440 * Find out how many primary stream array entries the host controller 3441 * supports. Later we may use secondary stream arrays (similar to 2nd 3442 * level page entries), but that's an optional feature for xHCI host 3443 * controllers. xHCs must support at least 4 stream IDs. 3444 */ 3445 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3446 if (*num_stream_ctxs > max_streams) { 3447 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3448 max_streams); 3449 *num_stream_ctxs = max_streams; 3450 *num_streams = max_streams; 3451 } 3452 } 3453 3454 /* Returns an error code if one of the endpoint already has streams. 3455 * This does not change any data structures, it only checks and gathers 3456 * information. 3457 */ 3458 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3459 struct usb_device *udev, 3460 struct usb_host_endpoint **eps, unsigned int num_eps, 3461 unsigned int *num_streams, u32 *changed_ep_bitmask) 3462 { 3463 unsigned int max_streams; 3464 unsigned int endpoint_flag; 3465 int i; 3466 int ret; 3467 3468 for (i = 0; i < num_eps; i++) { 3469 ret = xhci_check_streams_endpoint(xhci, udev, 3470 eps[i], udev->slot_id); 3471 if (ret < 0) 3472 return ret; 3473 3474 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3475 if (max_streams < (*num_streams - 1)) { 3476 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3477 eps[i]->desc.bEndpointAddress, 3478 max_streams); 3479 *num_streams = max_streams+1; 3480 } 3481 3482 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3483 if (*changed_ep_bitmask & endpoint_flag) 3484 return -EINVAL; 3485 *changed_ep_bitmask |= endpoint_flag; 3486 } 3487 return 0; 3488 } 3489 3490 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3491 struct usb_device *udev, 3492 struct usb_host_endpoint **eps, unsigned int num_eps) 3493 { 3494 u32 changed_ep_bitmask = 0; 3495 unsigned int slot_id; 3496 unsigned int ep_index; 3497 unsigned int ep_state; 3498 int i; 3499 3500 slot_id = udev->slot_id; 3501 if (!xhci->devs[slot_id]) 3502 return 0; 3503 3504 for (i = 0; i < num_eps; i++) { 3505 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3506 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3507 /* Are streams already being freed for the endpoint? */ 3508 if (ep_state & EP_GETTING_NO_STREAMS) { 3509 xhci_warn(xhci, "WARN Can't disable streams for " 3510 "endpoint 0x%x, " 3511 "streams are being disabled already\n", 3512 eps[i]->desc.bEndpointAddress); 3513 return 0; 3514 } 3515 /* Are there actually any streams to free? */ 3516 if (!(ep_state & EP_HAS_STREAMS) && 3517 !(ep_state & EP_GETTING_STREAMS)) { 3518 xhci_warn(xhci, "WARN Can't disable streams for " 3519 "endpoint 0x%x, " 3520 "streams are already disabled!\n", 3521 eps[i]->desc.bEndpointAddress); 3522 xhci_warn(xhci, "WARN xhci_free_streams() called " 3523 "with non-streams endpoint\n"); 3524 return 0; 3525 } 3526 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3527 } 3528 return changed_ep_bitmask; 3529 } 3530 3531 /* 3532 * The USB device drivers use this function (through the HCD interface in USB 3533 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3534 * coordinate mass storage command queueing across multiple endpoints (basically 3535 * a stream ID == a task ID). 3536 * 3537 * Setting up streams involves allocating the same size stream context array 3538 * for each endpoint and issuing a configure endpoint command for all endpoints. 3539 * 3540 * Don't allow the call to succeed if one endpoint only supports one stream 3541 * (which means it doesn't support streams at all). 3542 * 3543 * Drivers may get less stream IDs than they asked for, if the host controller 3544 * hardware or endpoints claim they can't support the number of requested 3545 * stream IDs. 3546 */ 3547 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3548 struct usb_host_endpoint **eps, unsigned int num_eps, 3549 unsigned int num_streams, gfp_t mem_flags) 3550 { 3551 int i, ret; 3552 struct xhci_hcd *xhci; 3553 struct xhci_virt_device *vdev; 3554 struct xhci_command *config_cmd; 3555 struct xhci_input_control_ctx *ctrl_ctx; 3556 unsigned int ep_index; 3557 unsigned int num_stream_ctxs; 3558 unsigned int max_packet; 3559 unsigned long flags; 3560 u32 changed_ep_bitmask = 0; 3561 3562 if (!eps) 3563 return -EINVAL; 3564 3565 /* Add one to the number of streams requested to account for 3566 * stream 0 that is reserved for xHCI usage. 3567 */ 3568 num_streams += 1; 3569 xhci = hcd_to_xhci(hcd); 3570 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3571 num_streams); 3572 3573 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3574 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3575 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3576 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3577 return -ENOSYS; 3578 } 3579 3580 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3581 if (!config_cmd) 3582 return -ENOMEM; 3583 3584 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3585 if (!ctrl_ctx) { 3586 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3587 __func__); 3588 xhci_free_command(xhci, config_cmd); 3589 return -ENOMEM; 3590 } 3591 3592 /* Check to make sure all endpoints are not already configured for 3593 * streams. While we're at it, find the maximum number of streams that 3594 * all the endpoints will support and check for duplicate endpoints. 3595 */ 3596 spin_lock_irqsave(&xhci->lock, flags); 3597 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3598 num_eps, &num_streams, &changed_ep_bitmask); 3599 if (ret < 0) { 3600 xhci_free_command(xhci, config_cmd); 3601 spin_unlock_irqrestore(&xhci->lock, flags); 3602 return ret; 3603 } 3604 if (num_streams <= 1) { 3605 xhci_warn(xhci, "WARN: endpoints can't handle " 3606 "more than one stream.\n"); 3607 xhci_free_command(xhci, config_cmd); 3608 spin_unlock_irqrestore(&xhci->lock, flags); 3609 return -EINVAL; 3610 } 3611 vdev = xhci->devs[udev->slot_id]; 3612 /* Mark each endpoint as being in transition, so 3613 * xhci_urb_enqueue() will reject all URBs. 3614 */ 3615 for (i = 0; i < num_eps; i++) { 3616 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3617 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3618 } 3619 spin_unlock_irqrestore(&xhci->lock, flags); 3620 3621 /* Setup internal data structures and allocate HW data structures for 3622 * streams (but don't install the HW structures in the input context 3623 * until we're sure all memory allocation succeeded). 3624 */ 3625 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3626 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3627 num_stream_ctxs, num_streams); 3628 3629 for (i = 0; i < num_eps; i++) { 3630 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3631 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3632 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3633 num_stream_ctxs, 3634 num_streams, 3635 max_packet, mem_flags); 3636 if (!vdev->eps[ep_index].stream_info) 3637 goto cleanup; 3638 /* Set maxPstreams in endpoint context and update deq ptr to 3639 * point to stream context array. FIXME 3640 */ 3641 } 3642 3643 /* Set up the input context for a configure endpoint command. */ 3644 for (i = 0; i < num_eps; i++) { 3645 struct xhci_ep_ctx *ep_ctx; 3646 3647 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3648 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3649 3650 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3651 vdev->out_ctx, ep_index); 3652 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3653 vdev->eps[ep_index].stream_info); 3654 } 3655 /* Tell the HW to drop its old copy of the endpoint context info 3656 * and add the updated copy from the input context. 3657 */ 3658 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3659 vdev->out_ctx, ctrl_ctx, 3660 changed_ep_bitmask, changed_ep_bitmask); 3661 3662 /* Issue and wait for the configure endpoint command */ 3663 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3664 false, false); 3665 3666 /* xHC rejected the configure endpoint command for some reason, so we 3667 * leave the old ring intact and free our internal streams data 3668 * structure. 3669 */ 3670 if (ret < 0) 3671 goto cleanup; 3672 3673 spin_lock_irqsave(&xhci->lock, flags); 3674 for (i = 0; i < num_eps; i++) { 3675 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3676 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3677 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3678 udev->slot_id, ep_index); 3679 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3680 } 3681 xhci_free_command(xhci, config_cmd); 3682 spin_unlock_irqrestore(&xhci->lock, flags); 3683 3684 for (i = 0; i < num_eps; i++) { 3685 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3686 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3687 } 3688 /* Subtract 1 for stream 0, which drivers can't use */ 3689 return num_streams - 1; 3690 3691 cleanup: 3692 /* If it didn't work, free the streams! */ 3693 for (i = 0; i < num_eps; i++) { 3694 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3695 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3696 vdev->eps[ep_index].stream_info = NULL; 3697 /* FIXME Unset maxPstreams in endpoint context and 3698 * update deq ptr to point to normal string ring. 3699 */ 3700 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3701 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3702 xhci_endpoint_zero(xhci, vdev, eps[i]); 3703 } 3704 xhci_free_command(xhci, config_cmd); 3705 return -ENOMEM; 3706 } 3707 3708 /* Transition the endpoint from using streams to being a "normal" endpoint 3709 * without streams. 3710 * 3711 * Modify the endpoint context state, submit a configure endpoint command, 3712 * and free all endpoint rings for streams if that completes successfully. 3713 */ 3714 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3715 struct usb_host_endpoint **eps, unsigned int num_eps, 3716 gfp_t mem_flags) 3717 { 3718 int i, ret; 3719 struct xhci_hcd *xhci; 3720 struct xhci_virt_device *vdev; 3721 struct xhci_command *command; 3722 struct xhci_input_control_ctx *ctrl_ctx; 3723 unsigned int ep_index; 3724 unsigned long flags; 3725 u32 changed_ep_bitmask; 3726 3727 xhci = hcd_to_xhci(hcd); 3728 vdev = xhci->devs[udev->slot_id]; 3729 3730 /* Set up a configure endpoint command to remove the streams rings */ 3731 spin_lock_irqsave(&xhci->lock, flags); 3732 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3733 udev, eps, num_eps); 3734 if (changed_ep_bitmask == 0) { 3735 spin_unlock_irqrestore(&xhci->lock, flags); 3736 return -EINVAL; 3737 } 3738 3739 /* Use the xhci_command structure from the first endpoint. We may have 3740 * allocated too many, but the driver may call xhci_free_streams() for 3741 * each endpoint it grouped into one call to xhci_alloc_streams(). 3742 */ 3743 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3744 command = vdev->eps[ep_index].stream_info->free_streams_command; 3745 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3746 if (!ctrl_ctx) { 3747 spin_unlock_irqrestore(&xhci->lock, flags); 3748 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3749 __func__); 3750 return -EINVAL; 3751 } 3752 3753 for (i = 0; i < num_eps; i++) { 3754 struct xhci_ep_ctx *ep_ctx; 3755 3756 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3757 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3758 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3759 EP_GETTING_NO_STREAMS; 3760 3761 xhci_endpoint_copy(xhci, command->in_ctx, 3762 vdev->out_ctx, ep_index); 3763 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3764 &vdev->eps[ep_index]); 3765 } 3766 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3767 vdev->out_ctx, ctrl_ctx, 3768 changed_ep_bitmask, changed_ep_bitmask); 3769 spin_unlock_irqrestore(&xhci->lock, flags); 3770 3771 /* Issue and wait for the configure endpoint command, 3772 * which must succeed. 3773 */ 3774 ret = xhci_configure_endpoint(xhci, udev, command, 3775 false, true); 3776 3777 /* xHC rejected the configure endpoint command for some reason, so we 3778 * leave the streams rings intact. 3779 */ 3780 if (ret < 0) 3781 return ret; 3782 3783 spin_lock_irqsave(&xhci->lock, flags); 3784 for (i = 0; i < num_eps; i++) { 3785 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3786 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3787 vdev->eps[ep_index].stream_info = NULL; 3788 /* FIXME Unset maxPstreams in endpoint context and 3789 * update deq ptr to point to normal string ring. 3790 */ 3791 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3792 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3793 } 3794 spin_unlock_irqrestore(&xhci->lock, flags); 3795 3796 return 0; 3797 } 3798 3799 /* 3800 * Deletes endpoint resources for endpoints that were active before a Reset 3801 * Device command, or a Disable Slot command. The Reset Device command leaves 3802 * the control endpoint intact, whereas the Disable Slot command deletes it. 3803 * 3804 * Must be called with xhci->lock held. 3805 */ 3806 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3807 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3808 { 3809 int i; 3810 unsigned int num_dropped_eps = 0; 3811 unsigned int drop_flags = 0; 3812 3813 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3814 if (virt_dev->eps[i].ring) { 3815 drop_flags |= 1 << i; 3816 num_dropped_eps++; 3817 } 3818 } 3819 xhci->num_active_eps -= num_dropped_eps; 3820 if (num_dropped_eps) 3821 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3822 "Dropped %u ep ctxs, flags = 0x%x, " 3823 "%u now active.", 3824 num_dropped_eps, drop_flags, 3825 xhci->num_active_eps); 3826 } 3827 3828 /* 3829 * This submits a Reset Device Command, which will set the device state to 0, 3830 * set the device address to 0, and disable all the endpoints except the default 3831 * control endpoint. The USB core should come back and call 3832 * xhci_address_device(), and then re-set up the configuration. If this is 3833 * called because of a usb_reset_and_verify_device(), then the old alternate 3834 * settings will be re-installed through the normal bandwidth allocation 3835 * functions. 3836 * 3837 * Wait for the Reset Device command to finish. Remove all structures 3838 * associated with the endpoints that were disabled. Clear the input device 3839 * structure? Reset the control endpoint 0 max packet size? 3840 * 3841 * If the virt_dev to be reset does not exist or does not match the udev, 3842 * it means the device is lost, possibly due to the xHC restore error and 3843 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3844 * re-allocate the device. 3845 */ 3846 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3847 struct usb_device *udev) 3848 { 3849 int ret, i; 3850 unsigned long flags; 3851 struct xhci_hcd *xhci; 3852 unsigned int slot_id; 3853 struct xhci_virt_device *virt_dev; 3854 struct xhci_command *reset_device_cmd; 3855 struct xhci_slot_ctx *slot_ctx; 3856 int old_active_eps = 0; 3857 3858 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3859 if (ret <= 0) 3860 return ret; 3861 xhci = hcd_to_xhci(hcd); 3862 slot_id = udev->slot_id; 3863 virt_dev = xhci->devs[slot_id]; 3864 if (!virt_dev) { 3865 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3866 "not exist. Re-allocate the device\n", slot_id); 3867 ret = xhci_alloc_dev(hcd, udev); 3868 if (ret == 1) 3869 return 0; 3870 else 3871 return -EINVAL; 3872 } 3873 3874 if (virt_dev->tt_info) 3875 old_active_eps = virt_dev->tt_info->active_eps; 3876 3877 if (virt_dev->udev != udev) { 3878 /* If the virt_dev and the udev does not match, this virt_dev 3879 * may belong to another udev. 3880 * Re-allocate the device. 3881 */ 3882 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3883 "not match the udev. Re-allocate the device\n", 3884 slot_id); 3885 ret = xhci_alloc_dev(hcd, udev); 3886 if (ret == 1) 3887 return 0; 3888 else 3889 return -EINVAL; 3890 } 3891 3892 /* If device is not setup, there is no point in resetting it */ 3893 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3894 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3895 SLOT_STATE_DISABLED) 3896 return 0; 3897 3898 trace_xhci_discover_or_reset_device(slot_ctx); 3899 3900 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3901 /* Allocate the command structure that holds the struct completion. 3902 * Assume we're in process context, since the normal device reset 3903 * process has to wait for the device anyway. Storage devices are 3904 * reset as part of error handling, so use GFP_NOIO instead of 3905 * GFP_KERNEL. 3906 */ 3907 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3908 if (!reset_device_cmd) { 3909 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3910 return -ENOMEM; 3911 } 3912 3913 /* Attempt to submit the Reset Device command to the command ring */ 3914 spin_lock_irqsave(&xhci->lock, flags); 3915 3916 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3917 if (ret) { 3918 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3919 spin_unlock_irqrestore(&xhci->lock, flags); 3920 goto command_cleanup; 3921 } 3922 xhci_ring_cmd_db(xhci); 3923 spin_unlock_irqrestore(&xhci->lock, flags); 3924 3925 /* Wait for the Reset Device command to finish */ 3926 wait_for_completion(reset_device_cmd->completion); 3927 3928 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3929 * unless we tried to reset a slot ID that wasn't enabled, 3930 * or the device wasn't in the addressed or configured state. 3931 */ 3932 ret = reset_device_cmd->status; 3933 switch (ret) { 3934 case COMP_COMMAND_ABORTED: 3935 case COMP_COMMAND_RING_STOPPED: 3936 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3937 ret = -ETIME; 3938 goto command_cleanup; 3939 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3940 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3941 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3942 slot_id, 3943 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3944 xhci_dbg(xhci, "Not freeing device rings.\n"); 3945 /* Don't treat this as an error. May change my mind later. */ 3946 ret = 0; 3947 goto command_cleanup; 3948 case COMP_SUCCESS: 3949 xhci_dbg(xhci, "Successful reset device command.\n"); 3950 break; 3951 default: 3952 if (xhci_is_vendor_info_code(xhci, ret)) 3953 break; 3954 xhci_warn(xhci, "Unknown completion code %u for " 3955 "reset device command.\n", ret); 3956 ret = -EINVAL; 3957 goto command_cleanup; 3958 } 3959 3960 /* Free up host controller endpoint resources */ 3961 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3962 spin_lock_irqsave(&xhci->lock, flags); 3963 /* Don't delete the default control endpoint resources */ 3964 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3965 spin_unlock_irqrestore(&xhci->lock, flags); 3966 } 3967 3968 /* Everything but endpoint 0 is disabled, so free the rings. */ 3969 for (i = 1; i < 31; i++) { 3970 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3971 3972 if (ep->ep_state & EP_HAS_STREAMS) { 3973 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3974 xhci_get_endpoint_address(i)); 3975 xhci_free_stream_info(xhci, ep->stream_info); 3976 ep->stream_info = NULL; 3977 ep->ep_state &= ~EP_HAS_STREAMS; 3978 } 3979 3980 if (ep->ring) { 3981 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3982 xhci_free_endpoint_ring(xhci, virt_dev, i); 3983 } 3984 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3985 xhci_drop_ep_from_interval_table(xhci, 3986 &virt_dev->eps[i].bw_info, 3987 virt_dev->bw_table, 3988 udev, 3989 &virt_dev->eps[i], 3990 virt_dev->tt_info); 3991 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3992 } 3993 /* If necessary, update the number of active TTs on this root port */ 3994 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3995 virt_dev->flags = 0; 3996 ret = 0; 3997 3998 command_cleanup: 3999 xhci_free_command(xhci, reset_device_cmd); 4000 return ret; 4001 } 4002 4003 /* 4004 * At this point, the struct usb_device is about to go away, the device has 4005 * disconnected, and all traffic has been stopped and the endpoints have been 4006 * disabled. Free any HC data structures associated with that device. 4007 */ 4008 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 4009 { 4010 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4011 struct xhci_virt_device *virt_dev; 4012 struct xhci_slot_ctx *slot_ctx; 4013 unsigned long flags; 4014 int i, ret; 4015 4016 /* 4017 * We called pm_runtime_get_noresume when the device was attached. 4018 * Decrement the counter here to allow controller to runtime suspend 4019 * if no devices remain. 4020 */ 4021 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4022 pm_runtime_put_noidle(hcd->self.controller); 4023 4024 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 4025 /* If the host is halted due to driver unload, we still need to free the 4026 * device. 4027 */ 4028 if (ret <= 0 && ret != -ENODEV) 4029 return; 4030 4031 virt_dev = xhci->devs[udev->slot_id]; 4032 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4033 trace_xhci_free_dev(slot_ctx); 4034 4035 /* Stop any wayward timer functions (which may grab the lock) */ 4036 for (i = 0; i < 31; i++) 4037 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 4038 virt_dev->udev = NULL; 4039 xhci_disable_slot(xhci, udev->slot_id); 4040 4041 spin_lock_irqsave(&xhci->lock, flags); 4042 xhci_free_virt_device(xhci, udev->slot_id); 4043 spin_unlock_irqrestore(&xhci->lock, flags); 4044 4045 } 4046 4047 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 4048 { 4049 struct xhci_command *command; 4050 unsigned long flags; 4051 u32 state; 4052 int ret; 4053 4054 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4055 if (!command) 4056 return -ENOMEM; 4057 4058 xhci_debugfs_remove_slot(xhci, slot_id); 4059 4060 spin_lock_irqsave(&xhci->lock, flags); 4061 /* Don't disable the slot if the host controller is dead. */ 4062 state = readl(&xhci->op_regs->status); 4063 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 4064 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4065 spin_unlock_irqrestore(&xhci->lock, flags); 4066 kfree(command); 4067 return -ENODEV; 4068 } 4069 4070 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 4071 slot_id); 4072 if (ret) { 4073 spin_unlock_irqrestore(&xhci->lock, flags); 4074 kfree(command); 4075 return ret; 4076 } 4077 xhci_ring_cmd_db(xhci); 4078 spin_unlock_irqrestore(&xhci->lock, flags); 4079 4080 wait_for_completion(command->completion); 4081 4082 if (command->status != COMP_SUCCESS) 4083 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4084 slot_id, command->status); 4085 4086 xhci_free_command(xhci, command); 4087 4088 return 0; 4089 } 4090 4091 /* 4092 * Checks if we have enough host controller resources for the default control 4093 * endpoint. 4094 * 4095 * Must be called with xhci->lock held. 4096 */ 4097 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4098 { 4099 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4100 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4101 "Not enough ep ctxs: " 4102 "%u active, need to add 1, limit is %u.", 4103 xhci->num_active_eps, xhci->limit_active_eps); 4104 return -ENOMEM; 4105 } 4106 xhci->num_active_eps += 1; 4107 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4108 "Adding 1 ep ctx, %u now active.", 4109 xhci->num_active_eps); 4110 return 0; 4111 } 4112 4113 4114 /* 4115 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4116 * timed out, or allocating memory failed. Returns 1 on success. 4117 */ 4118 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4119 { 4120 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4121 struct xhci_virt_device *vdev; 4122 struct xhci_slot_ctx *slot_ctx; 4123 unsigned long flags; 4124 int ret, slot_id; 4125 struct xhci_command *command; 4126 4127 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4128 if (!command) 4129 return 0; 4130 4131 spin_lock_irqsave(&xhci->lock, flags); 4132 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4133 if (ret) { 4134 spin_unlock_irqrestore(&xhci->lock, flags); 4135 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4136 xhci_free_command(xhci, command); 4137 return 0; 4138 } 4139 xhci_ring_cmd_db(xhci); 4140 spin_unlock_irqrestore(&xhci->lock, flags); 4141 4142 wait_for_completion(command->completion); 4143 slot_id = command->slot_id; 4144 4145 if (!slot_id || command->status != COMP_SUCCESS) { 4146 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 4147 xhci_trb_comp_code_string(command->status)); 4148 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4149 HCS_MAX_SLOTS( 4150 readl(&xhci->cap_regs->hcs_params1))); 4151 xhci_free_command(xhci, command); 4152 return 0; 4153 } 4154 4155 xhci_free_command(xhci, command); 4156 4157 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4158 spin_lock_irqsave(&xhci->lock, flags); 4159 ret = xhci_reserve_host_control_ep_resources(xhci); 4160 if (ret) { 4161 spin_unlock_irqrestore(&xhci->lock, flags); 4162 xhci_warn(xhci, "Not enough host resources, " 4163 "active endpoint contexts = %u\n", 4164 xhci->num_active_eps); 4165 goto disable_slot; 4166 } 4167 spin_unlock_irqrestore(&xhci->lock, flags); 4168 } 4169 /* Use GFP_NOIO, since this function can be called from 4170 * xhci_discover_or_reset_device(), which may be called as part of 4171 * mass storage driver error handling. 4172 */ 4173 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4174 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4175 goto disable_slot; 4176 } 4177 vdev = xhci->devs[slot_id]; 4178 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4179 trace_xhci_alloc_dev(slot_ctx); 4180 4181 udev->slot_id = slot_id; 4182 4183 xhci_debugfs_create_slot(xhci, slot_id); 4184 4185 /* 4186 * If resetting upon resume, we can't put the controller into runtime 4187 * suspend if there is a device attached. 4188 */ 4189 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4190 pm_runtime_get_noresume(hcd->self.controller); 4191 4192 /* Is this a LS or FS device under a HS hub? */ 4193 /* Hub or peripherial? */ 4194 return 1; 4195 4196 disable_slot: 4197 xhci_disable_slot(xhci, udev->slot_id); 4198 xhci_free_virt_device(xhci, udev->slot_id); 4199 4200 return 0; 4201 } 4202 4203 /* 4204 * Issue an Address Device command and optionally send a corresponding 4205 * SetAddress request to the device. 4206 */ 4207 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4208 enum xhci_setup_dev setup) 4209 { 4210 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4211 unsigned long flags; 4212 struct xhci_virt_device *virt_dev; 4213 int ret = 0; 4214 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4215 struct xhci_slot_ctx *slot_ctx; 4216 struct xhci_input_control_ctx *ctrl_ctx; 4217 u64 temp_64; 4218 struct xhci_command *command = NULL; 4219 4220 mutex_lock(&xhci->mutex); 4221 4222 if (xhci->xhc_state) { /* dying, removing or halted */ 4223 ret = -ESHUTDOWN; 4224 goto out; 4225 } 4226 4227 if (!udev->slot_id) { 4228 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4229 "Bad Slot ID %d", udev->slot_id); 4230 ret = -EINVAL; 4231 goto out; 4232 } 4233 4234 virt_dev = xhci->devs[udev->slot_id]; 4235 4236 if (WARN_ON(!virt_dev)) { 4237 /* 4238 * In plug/unplug torture test with an NEC controller, 4239 * a zero-dereference was observed once due to virt_dev = 0. 4240 * Print useful debug rather than crash if it is observed again! 4241 */ 4242 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4243 udev->slot_id); 4244 ret = -EINVAL; 4245 goto out; 4246 } 4247 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4248 trace_xhci_setup_device_slot(slot_ctx); 4249 4250 if (setup == SETUP_CONTEXT_ONLY) { 4251 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4252 SLOT_STATE_DEFAULT) { 4253 xhci_dbg(xhci, "Slot already in default state\n"); 4254 goto out; 4255 } 4256 } 4257 4258 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4259 if (!command) { 4260 ret = -ENOMEM; 4261 goto out; 4262 } 4263 4264 command->in_ctx = virt_dev->in_ctx; 4265 4266 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4267 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4268 if (!ctrl_ctx) { 4269 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4270 __func__); 4271 ret = -EINVAL; 4272 goto out; 4273 } 4274 /* 4275 * If this is the first Set Address since device plug-in or 4276 * virt_device realloaction after a resume with an xHCI power loss, 4277 * then set up the slot context. 4278 */ 4279 if (!slot_ctx->dev_info) 4280 xhci_setup_addressable_virt_dev(xhci, udev); 4281 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4282 else 4283 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4284 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4285 ctrl_ctx->drop_flags = 0; 4286 4287 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4288 le32_to_cpu(slot_ctx->dev_info) >> 27); 4289 4290 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4291 spin_lock_irqsave(&xhci->lock, flags); 4292 trace_xhci_setup_device(virt_dev); 4293 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4294 udev->slot_id, setup); 4295 if (ret) { 4296 spin_unlock_irqrestore(&xhci->lock, flags); 4297 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4298 "FIXME: allocate a command ring segment"); 4299 goto out; 4300 } 4301 xhci_ring_cmd_db(xhci); 4302 spin_unlock_irqrestore(&xhci->lock, flags); 4303 4304 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4305 wait_for_completion(command->completion); 4306 4307 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4308 * the SetAddress() "recovery interval" required by USB and aborting the 4309 * command on a timeout. 4310 */ 4311 switch (command->status) { 4312 case COMP_COMMAND_ABORTED: 4313 case COMP_COMMAND_RING_STOPPED: 4314 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4315 ret = -ETIME; 4316 break; 4317 case COMP_CONTEXT_STATE_ERROR: 4318 case COMP_SLOT_NOT_ENABLED_ERROR: 4319 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4320 act, udev->slot_id); 4321 ret = -EINVAL; 4322 break; 4323 case COMP_USB_TRANSACTION_ERROR: 4324 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4325 4326 mutex_unlock(&xhci->mutex); 4327 ret = xhci_disable_slot(xhci, udev->slot_id); 4328 xhci_free_virt_device(xhci, udev->slot_id); 4329 if (!ret) 4330 xhci_alloc_dev(hcd, udev); 4331 kfree(command->completion); 4332 kfree(command); 4333 return -EPROTO; 4334 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4335 dev_warn(&udev->dev, 4336 "ERROR: Incompatible device for setup %s command\n", act); 4337 ret = -ENODEV; 4338 break; 4339 case COMP_SUCCESS: 4340 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4341 "Successful setup %s command", act); 4342 break; 4343 default: 4344 xhci_err(xhci, 4345 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4346 act, command->status); 4347 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4348 ret = -EINVAL; 4349 break; 4350 } 4351 if (ret) 4352 goto out; 4353 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4354 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4355 "Op regs DCBAA ptr = %#016llx", temp_64); 4356 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4357 "Slot ID %d dcbaa entry @%p = %#016llx", 4358 udev->slot_id, 4359 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4360 (unsigned long long) 4361 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4362 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4363 "Output Context DMA address = %#08llx", 4364 (unsigned long long)virt_dev->out_ctx->dma); 4365 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4366 le32_to_cpu(slot_ctx->dev_info) >> 27); 4367 /* 4368 * USB core uses address 1 for the roothubs, so we add one to the 4369 * address given back to us by the HC. 4370 */ 4371 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4372 le32_to_cpu(slot_ctx->dev_info) >> 27); 4373 /* Zero the input context control for later use */ 4374 ctrl_ctx->add_flags = 0; 4375 ctrl_ctx->drop_flags = 0; 4376 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4377 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4378 4379 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4380 "Internal device address = %d", 4381 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4382 out: 4383 mutex_unlock(&xhci->mutex); 4384 if (command) { 4385 kfree(command->completion); 4386 kfree(command); 4387 } 4388 return ret; 4389 } 4390 4391 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4392 { 4393 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4394 } 4395 4396 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4397 { 4398 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4399 } 4400 4401 /* 4402 * Transfer the port index into real index in the HW port status 4403 * registers. Caculate offset between the port's PORTSC register 4404 * and port status base. Divide the number of per port register 4405 * to get the real index. The raw port number bases 1. 4406 */ 4407 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4408 { 4409 struct xhci_hub *rhub; 4410 4411 rhub = xhci_get_rhub(hcd); 4412 return rhub->ports[port1 - 1]->hw_portnum + 1; 4413 } 4414 4415 /* 4416 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4417 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4418 */ 4419 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4420 struct usb_device *udev, u16 max_exit_latency) 4421 { 4422 struct xhci_virt_device *virt_dev; 4423 struct xhci_command *command; 4424 struct xhci_input_control_ctx *ctrl_ctx; 4425 struct xhci_slot_ctx *slot_ctx; 4426 unsigned long flags; 4427 int ret; 4428 4429 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4430 if (!command) 4431 return -ENOMEM; 4432 4433 spin_lock_irqsave(&xhci->lock, flags); 4434 4435 virt_dev = xhci->devs[udev->slot_id]; 4436 4437 /* 4438 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4439 * xHC was re-initialized. Exit latency will be set later after 4440 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4441 */ 4442 4443 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4444 spin_unlock_irqrestore(&xhci->lock, flags); 4445 xhci_free_command(xhci, command); 4446 return 0; 4447 } 4448 4449 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4450 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4451 if (!ctrl_ctx) { 4452 spin_unlock_irqrestore(&xhci->lock, flags); 4453 xhci_free_command(xhci, command); 4454 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4455 __func__); 4456 return -ENOMEM; 4457 } 4458 4459 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4460 spin_unlock_irqrestore(&xhci->lock, flags); 4461 4462 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4463 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4464 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4465 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4466 slot_ctx->dev_state = 0; 4467 4468 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4469 "Set up evaluate context for LPM MEL change."); 4470 4471 /* Issue and wait for the evaluate context command. */ 4472 ret = xhci_configure_endpoint(xhci, udev, command, 4473 true, true); 4474 4475 if (!ret) { 4476 spin_lock_irqsave(&xhci->lock, flags); 4477 virt_dev->current_mel = max_exit_latency; 4478 spin_unlock_irqrestore(&xhci->lock, flags); 4479 } 4480 4481 xhci_free_command(xhci, command); 4482 4483 return ret; 4484 } 4485 4486 #ifdef CONFIG_PM 4487 4488 /* BESL to HIRD Encoding array for USB2 LPM */ 4489 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4490 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4491 4492 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4493 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4494 struct usb_device *udev) 4495 { 4496 int u2del, besl, besl_host; 4497 int besl_device = 0; 4498 u32 field; 4499 4500 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4501 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4502 4503 if (field & USB_BESL_SUPPORT) { 4504 for (besl_host = 0; besl_host < 16; besl_host++) { 4505 if (xhci_besl_encoding[besl_host] >= u2del) 4506 break; 4507 } 4508 /* Use baseline BESL value as default */ 4509 if (field & USB_BESL_BASELINE_VALID) 4510 besl_device = USB_GET_BESL_BASELINE(field); 4511 else if (field & USB_BESL_DEEP_VALID) 4512 besl_device = USB_GET_BESL_DEEP(field); 4513 } else { 4514 if (u2del <= 50) 4515 besl_host = 0; 4516 else 4517 besl_host = (u2del - 51) / 75 + 1; 4518 } 4519 4520 besl = besl_host + besl_device; 4521 if (besl > 15) 4522 besl = 15; 4523 4524 return besl; 4525 } 4526 4527 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4528 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4529 { 4530 u32 field; 4531 int l1; 4532 int besld = 0; 4533 int hirdm = 0; 4534 4535 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4536 4537 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4538 l1 = udev->l1_params.timeout / 256; 4539 4540 /* device has preferred BESLD */ 4541 if (field & USB_BESL_DEEP_VALID) { 4542 besld = USB_GET_BESL_DEEP(field); 4543 hirdm = 1; 4544 } 4545 4546 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4547 } 4548 4549 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4550 struct usb_device *udev, int enable) 4551 { 4552 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4553 struct xhci_port **ports; 4554 __le32 __iomem *pm_addr, *hlpm_addr; 4555 u32 pm_val, hlpm_val, field; 4556 unsigned int port_num; 4557 unsigned long flags; 4558 int hird, exit_latency; 4559 int ret; 4560 4561 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4562 return -EPERM; 4563 4564 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4565 !udev->lpm_capable) 4566 return -EPERM; 4567 4568 if (!udev->parent || udev->parent->parent || 4569 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4570 return -EPERM; 4571 4572 if (udev->usb2_hw_lpm_capable != 1) 4573 return -EPERM; 4574 4575 spin_lock_irqsave(&xhci->lock, flags); 4576 4577 ports = xhci->usb2_rhub.ports; 4578 port_num = udev->portnum - 1; 4579 pm_addr = ports[port_num]->addr + PORTPMSC; 4580 pm_val = readl(pm_addr); 4581 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4582 4583 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4584 enable ? "enable" : "disable", port_num + 1); 4585 4586 if (enable) { 4587 /* Host supports BESL timeout instead of HIRD */ 4588 if (udev->usb2_hw_lpm_besl_capable) { 4589 /* if device doesn't have a preferred BESL value use a 4590 * default one which works with mixed HIRD and BESL 4591 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4592 */ 4593 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4594 if ((field & USB_BESL_SUPPORT) && 4595 (field & USB_BESL_BASELINE_VALID)) 4596 hird = USB_GET_BESL_BASELINE(field); 4597 else 4598 hird = udev->l1_params.besl; 4599 4600 exit_latency = xhci_besl_encoding[hird]; 4601 spin_unlock_irqrestore(&xhci->lock, flags); 4602 4603 ret = xhci_change_max_exit_latency(xhci, udev, 4604 exit_latency); 4605 if (ret < 0) 4606 return ret; 4607 spin_lock_irqsave(&xhci->lock, flags); 4608 4609 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4610 writel(hlpm_val, hlpm_addr); 4611 /* flush write */ 4612 readl(hlpm_addr); 4613 } else { 4614 hird = xhci_calculate_hird_besl(xhci, udev); 4615 } 4616 4617 pm_val &= ~PORT_HIRD_MASK; 4618 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4619 writel(pm_val, pm_addr); 4620 pm_val = readl(pm_addr); 4621 pm_val |= PORT_HLE; 4622 writel(pm_val, pm_addr); 4623 /* flush write */ 4624 readl(pm_addr); 4625 } else { 4626 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4627 writel(pm_val, pm_addr); 4628 /* flush write */ 4629 readl(pm_addr); 4630 if (udev->usb2_hw_lpm_besl_capable) { 4631 spin_unlock_irqrestore(&xhci->lock, flags); 4632 xhci_change_max_exit_latency(xhci, udev, 0); 4633 readl_poll_timeout(ports[port_num]->addr, pm_val, 4634 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4635 100, 10000); 4636 return 0; 4637 } 4638 } 4639 4640 spin_unlock_irqrestore(&xhci->lock, flags); 4641 return 0; 4642 } 4643 4644 /* check if a usb2 port supports a given extened capability protocol 4645 * only USB2 ports extended protocol capability values are cached. 4646 * Return 1 if capability is supported 4647 */ 4648 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4649 unsigned capability) 4650 { 4651 u32 port_offset, port_count; 4652 int i; 4653 4654 for (i = 0; i < xhci->num_ext_caps; i++) { 4655 if (xhci->ext_caps[i] & capability) { 4656 /* port offsets starts at 1 */ 4657 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4658 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4659 if (port >= port_offset && 4660 port < port_offset + port_count) 4661 return 1; 4662 } 4663 } 4664 return 0; 4665 } 4666 4667 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4668 { 4669 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4670 int portnum = udev->portnum - 1; 4671 4672 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4673 return 0; 4674 4675 /* we only support lpm for non-hub device connected to root hub yet */ 4676 if (!udev->parent || udev->parent->parent || 4677 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4678 return 0; 4679 4680 if (xhci->hw_lpm_support == 1 && 4681 xhci_check_usb2_port_capability( 4682 xhci, portnum, XHCI_HLC)) { 4683 udev->usb2_hw_lpm_capable = 1; 4684 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4685 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4686 if (xhci_check_usb2_port_capability(xhci, portnum, 4687 XHCI_BLC)) 4688 udev->usb2_hw_lpm_besl_capable = 1; 4689 } 4690 4691 return 0; 4692 } 4693 4694 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4695 4696 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4697 static unsigned long long xhci_service_interval_to_ns( 4698 struct usb_endpoint_descriptor *desc) 4699 { 4700 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4701 } 4702 4703 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4704 enum usb3_link_state state) 4705 { 4706 unsigned long long sel; 4707 unsigned long long pel; 4708 unsigned int max_sel_pel; 4709 char *state_name; 4710 4711 switch (state) { 4712 case USB3_LPM_U1: 4713 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4714 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4715 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4716 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4717 state_name = "U1"; 4718 break; 4719 case USB3_LPM_U2: 4720 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4721 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4722 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4723 state_name = "U2"; 4724 break; 4725 default: 4726 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4727 __func__); 4728 return USB3_LPM_DISABLED; 4729 } 4730 4731 if (sel <= max_sel_pel && pel <= max_sel_pel) 4732 return USB3_LPM_DEVICE_INITIATED; 4733 4734 if (sel > max_sel_pel) 4735 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4736 "due to long SEL %llu ms\n", 4737 state_name, sel); 4738 else 4739 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4740 "due to long PEL %llu ms\n", 4741 state_name, pel); 4742 return USB3_LPM_DISABLED; 4743 } 4744 4745 /* The U1 timeout should be the maximum of the following values: 4746 * - For control endpoints, U1 system exit latency (SEL) * 3 4747 * - For bulk endpoints, U1 SEL * 5 4748 * - For interrupt endpoints: 4749 * - Notification EPs, U1 SEL * 3 4750 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4751 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4752 */ 4753 static unsigned long long xhci_calculate_intel_u1_timeout( 4754 struct usb_device *udev, 4755 struct usb_endpoint_descriptor *desc) 4756 { 4757 unsigned long long timeout_ns; 4758 int ep_type; 4759 int intr_type; 4760 4761 ep_type = usb_endpoint_type(desc); 4762 switch (ep_type) { 4763 case USB_ENDPOINT_XFER_CONTROL: 4764 timeout_ns = udev->u1_params.sel * 3; 4765 break; 4766 case USB_ENDPOINT_XFER_BULK: 4767 timeout_ns = udev->u1_params.sel * 5; 4768 break; 4769 case USB_ENDPOINT_XFER_INT: 4770 intr_type = usb_endpoint_interrupt_type(desc); 4771 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4772 timeout_ns = udev->u1_params.sel * 3; 4773 break; 4774 } 4775 /* Otherwise the calculation is the same as isoc eps */ 4776 fallthrough; 4777 case USB_ENDPOINT_XFER_ISOC: 4778 timeout_ns = xhci_service_interval_to_ns(desc); 4779 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4780 if (timeout_ns < udev->u1_params.sel * 2) 4781 timeout_ns = udev->u1_params.sel * 2; 4782 break; 4783 default: 4784 return 0; 4785 } 4786 4787 return timeout_ns; 4788 } 4789 4790 /* Returns the hub-encoded U1 timeout value. */ 4791 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4792 struct usb_device *udev, 4793 struct usb_endpoint_descriptor *desc) 4794 { 4795 unsigned long long timeout_ns; 4796 4797 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4798 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4799 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4800 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4801 return USB3_LPM_DISABLED; 4802 } 4803 } 4804 4805 if (xhci->quirks & XHCI_INTEL_HOST) 4806 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4807 else 4808 timeout_ns = udev->u1_params.sel; 4809 4810 /* The U1 timeout is encoded in 1us intervals. 4811 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4812 */ 4813 if (timeout_ns == USB3_LPM_DISABLED) 4814 timeout_ns = 1; 4815 else 4816 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4817 4818 /* If the necessary timeout value is bigger than what we can set in the 4819 * USB 3.0 hub, we have to disable hub-initiated U1. 4820 */ 4821 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4822 return timeout_ns; 4823 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4824 "due to long timeout %llu ms\n", timeout_ns); 4825 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4826 } 4827 4828 /* The U2 timeout should be the maximum of: 4829 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4830 * - largest bInterval of any active periodic endpoint (to avoid going 4831 * into lower power link states between intervals). 4832 * - the U2 Exit Latency of the device 4833 */ 4834 static unsigned long long xhci_calculate_intel_u2_timeout( 4835 struct usb_device *udev, 4836 struct usb_endpoint_descriptor *desc) 4837 { 4838 unsigned long long timeout_ns; 4839 unsigned long long u2_del_ns; 4840 4841 timeout_ns = 10 * 1000 * 1000; 4842 4843 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4844 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4845 timeout_ns = xhci_service_interval_to_ns(desc); 4846 4847 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4848 if (u2_del_ns > timeout_ns) 4849 timeout_ns = u2_del_ns; 4850 4851 return timeout_ns; 4852 } 4853 4854 /* Returns the hub-encoded U2 timeout value. */ 4855 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4856 struct usb_device *udev, 4857 struct usb_endpoint_descriptor *desc) 4858 { 4859 unsigned long long timeout_ns; 4860 4861 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4862 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4863 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4864 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4865 return USB3_LPM_DISABLED; 4866 } 4867 } 4868 4869 if (xhci->quirks & XHCI_INTEL_HOST) 4870 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4871 else 4872 timeout_ns = udev->u2_params.sel; 4873 4874 /* The U2 timeout is encoded in 256us intervals */ 4875 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4876 /* If the necessary timeout value is bigger than what we can set in the 4877 * USB 3.0 hub, we have to disable hub-initiated U2. 4878 */ 4879 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4880 return timeout_ns; 4881 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4882 "due to long timeout %llu ms\n", timeout_ns); 4883 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4884 } 4885 4886 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4887 struct usb_device *udev, 4888 struct usb_endpoint_descriptor *desc, 4889 enum usb3_link_state state, 4890 u16 *timeout) 4891 { 4892 if (state == USB3_LPM_U1) 4893 return xhci_calculate_u1_timeout(xhci, udev, desc); 4894 else if (state == USB3_LPM_U2) 4895 return xhci_calculate_u2_timeout(xhci, udev, desc); 4896 4897 return USB3_LPM_DISABLED; 4898 } 4899 4900 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4901 struct usb_device *udev, 4902 struct usb_endpoint_descriptor *desc, 4903 enum usb3_link_state state, 4904 u16 *timeout) 4905 { 4906 u16 alt_timeout; 4907 4908 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4909 desc, state, timeout); 4910 4911 /* If we found we can't enable hub-initiated LPM, and 4912 * the U1 or U2 exit latency was too high to allow 4913 * device-initiated LPM as well, then we will disable LPM 4914 * for this device, so stop searching any further. 4915 */ 4916 if (alt_timeout == USB3_LPM_DISABLED) { 4917 *timeout = alt_timeout; 4918 return -E2BIG; 4919 } 4920 if (alt_timeout > *timeout) 4921 *timeout = alt_timeout; 4922 return 0; 4923 } 4924 4925 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4926 struct usb_device *udev, 4927 struct usb_host_interface *alt, 4928 enum usb3_link_state state, 4929 u16 *timeout) 4930 { 4931 int j; 4932 4933 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4934 if (xhci_update_timeout_for_endpoint(xhci, udev, 4935 &alt->endpoint[j].desc, state, timeout)) 4936 return -E2BIG; 4937 } 4938 return 0; 4939 } 4940 4941 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4942 enum usb3_link_state state) 4943 { 4944 struct usb_device *parent; 4945 unsigned int num_hubs; 4946 4947 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4948 for (parent = udev->parent, num_hubs = 0; parent->parent; 4949 parent = parent->parent) 4950 num_hubs++; 4951 4952 if (num_hubs < 2) 4953 return 0; 4954 4955 dev_dbg(&udev->dev, "Disabling U1/U2 link state for device" 4956 " below second-tier hub.\n"); 4957 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4958 "to decrease power consumption.\n"); 4959 return -E2BIG; 4960 } 4961 4962 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4963 struct usb_device *udev, 4964 enum usb3_link_state state) 4965 { 4966 if (xhci->quirks & XHCI_INTEL_HOST) 4967 return xhci_check_intel_tier_policy(udev, state); 4968 else 4969 return 0; 4970 } 4971 4972 /* Returns the U1 or U2 timeout that should be enabled. 4973 * If the tier check or timeout setting functions return with a non-zero exit 4974 * code, that means the timeout value has been finalized and we shouldn't look 4975 * at any more endpoints. 4976 */ 4977 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4978 struct usb_device *udev, enum usb3_link_state state) 4979 { 4980 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4981 struct usb_host_config *config; 4982 char *state_name; 4983 int i; 4984 u16 timeout = USB3_LPM_DISABLED; 4985 4986 if (state == USB3_LPM_U1) 4987 state_name = "U1"; 4988 else if (state == USB3_LPM_U2) 4989 state_name = "U2"; 4990 else { 4991 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4992 state); 4993 return timeout; 4994 } 4995 4996 /* Gather some information about the currently installed configuration 4997 * and alternate interface settings. 4998 */ 4999 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 5000 state, &timeout)) 5001 return timeout; 5002 5003 config = udev->actconfig; 5004 if (!config) 5005 return timeout; 5006 5007 for (i = 0; i < config->desc.bNumInterfaces; i++) { 5008 struct usb_driver *driver; 5009 struct usb_interface *intf = config->interface[i]; 5010 5011 if (!intf) 5012 continue; 5013 5014 /* Check if any currently bound drivers want hub-initiated LPM 5015 * disabled. 5016 */ 5017 if (intf->dev.driver) { 5018 driver = to_usb_driver(intf->dev.driver); 5019 if (driver && driver->disable_hub_initiated_lpm) { 5020 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 5021 state_name, driver->name); 5022 timeout = xhci_get_timeout_no_hub_lpm(udev, 5023 state); 5024 if (timeout == USB3_LPM_DISABLED) 5025 return timeout; 5026 } 5027 } 5028 5029 /* Not sure how this could happen... */ 5030 if (!intf->cur_altsetting) 5031 continue; 5032 5033 if (xhci_update_timeout_for_interface(xhci, udev, 5034 intf->cur_altsetting, 5035 state, &timeout)) 5036 return timeout; 5037 } 5038 return timeout; 5039 } 5040 5041 static int calculate_max_exit_latency(struct usb_device *udev, 5042 enum usb3_link_state state_changed, 5043 u16 hub_encoded_timeout) 5044 { 5045 unsigned long long u1_mel_us = 0; 5046 unsigned long long u2_mel_us = 0; 5047 unsigned long long mel_us = 0; 5048 bool disabling_u1; 5049 bool disabling_u2; 5050 bool enabling_u1; 5051 bool enabling_u2; 5052 5053 disabling_u1 = (state_changed == USB3_LPM_U1 && 5054 hub_encoded_timeout == USB3_LPM_DISABLED); 5055 disabling_u2 = (state_changed == USB3_LPM_U2 && 5056 hub_encoded_timeout == USB3_LPM_DISABLED); 5057 5058 enabling_u1 = (state_changed == USB3_LPM_U1 && 5059 hub_encoded_timeout != USB3_LPM_DISABLED); 5060 enabling_u2 = (state_changed == USB3_LPM_U2 && 5061 hub_encoded_timeout != USB3_LPM_DISABLED); 5062 5063 /* If U1 was already enabled and we're not disabling it, 5064 * or we're going to enable U1, account for the U1 max exit latency. 5065 */ 5066 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 5067 enabling_u1) 5068 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 5069 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 5070 enabling_u2) 5071 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5072 5073 mel_us = max(u1_mel_us, u2_mel_us); 5074 5075 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5076 if (mel_us > MAX_EXIT) { 5077 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5078 "is too big.\n", mel_us); 5079 return -E2BIG; 5080 } 5081 return mel_us; 5082 } 5083 5084 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5085 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5086 struct usb_device *udev, enum usb3_link_state state) 5087 { 5088 struct xhci_hcd *xhci; 5089 struct xhci_port *port; 5090 u16 hub_encoded_timeout; 5091 int mel; 5092 int ret; 5093 5094 xhci = hcd_to_xhci(hcd); 5095 /* The LPM timeout values are pretty host-controller specific, so don't 5096 * enable hub-initiated timeouts unless the vendor has provided 5097 * information about their timeout algorithm. 5098 */ 5099 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5100 !xhci->devs[udev->slot_id]) 5101 return USB3_LPM_DISABLED; 5102 5103 if (xhci_check_tier_policy(xhci, udev, state) < 0) 5104 return USB3_LPM_DISABLED; 5105 5106 /* If connected to root port then check port can handle lpm */ 5107 if (udev->parent && !udev->parent->parent) { 5108 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 5109 if (port->lpm_incapable) 5110 return USB3_LPM_DISABLED; 5111 } 5112 5113 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5114 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5115 if (mel < 0) { 5116 /* Max Exit Latency is too big, disable LPM. */ 5117 hub_encoded_timeout = USB3_LPM_DISABLED; 5118 mel = 0; 5119 } 5120 5121 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5122 if (ret) 5123 return ret; 5124 return hub_encoded_timeout; 5125 } 5126 5127 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5128 struct usb_device *udev, enum usb3_link_state state) 5129 { 5130 struct xhci_hcd *xhci; 5131 u16 mel; 5132 5133 xhci = hcd_to_xhci(hcd); 5134 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5135 !xhci->devs[udev->slot_id]) 5136 return 0; 5137 5138 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5139 return xhci_change_max_exit_latency(xhci, udev, mel); 5140 } 5141 #else /* CONFIG_PM */ 5142 5143 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5144 struct usb_device *udev, int enable) 5145 { 5146 return 0; 5147 } 5148 5149 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5150 { 5151 return 0; 5152 } 5153 5154 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5155 struct usb_device *udev, enum usb3_link_state state) 5156 { 5157 return USB3_LPM_DISABLED; 5158 } 5159 5160 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5161 struct usb_device *udev, enum usb3_link_state state) 5162 { 5163 return 0; 5164 } 5165 #endif /* CONFIG_PM */ 5166 5167 /*-------------------------------------------------------------------------*/ 5168 5169 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5170 * internal data structures for the device. 5171 */ 5172 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5173 struct usb_tt *tt, gfp_t mem_flags) 5174 { 5175 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5176 struct xhci_virt_device *vdev; 5177 struct xhci_command *config_cmd; 5178 struct xhci_input_control_ctx *ctrl_ctx; 5179 struct xhci_slot_ctx *slot_ctx; 5180 unsigned long flags; 5181 unsigned think_time; 5182 int ret; 5183 5184 /* Ignore root hubs */ 5185 if (!hdev->parent) 5186 return 0; 5187 5188 vdev = xhci->devs[hdev->slot_id]; 5189 if (!vdev) { 5190 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5191 return -EINVAL; 5192 } 5193 5194 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5195 if (!config_cmd) 5196 return -ENOMEM; 5197 5198 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5199 if (!ctrl_ctx) { 5200 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5201 __func__); 5202 xhci_free_command(xhci, config_cmd); 5203 return -ENOMEM; 5204 } 5205 5206 spin_lock_irqsave(&xhci->lock, flags); 5207 if (hdev->speed == USB_SPEED_HIGH && 5208 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5209 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5210 xhci_free_command(xhci, config_cmd); 5211 spin_unlock_irqrestore(&xhci->lock, flags); 5212 return -ENOMEM; 5213 } 5214 5215 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5216 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5217 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5218 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5219 /* 5220 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5221 * but it may be already set to 1 when setup an xHCI virtual 5222 * device, so clear it anyway. 5223 */ 5224 if (tt->multi) 5225 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5226 else if (hdev->speed == USB_SPEED_FULL) 5227 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5228 5229 if (xhci->hci_version > 0x95) { 5230 xhci_dbg(xhci, "xHCI version %x needs hub " 5231 "TT think time and number of ports\n", 5232 (unsigned int) xhci->hci_version); 5233 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5234 /* Set TT think time - convert from ns to FS bit times. 5235 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5236 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5237 * 5238 * xHCI 1.0: this field shall be 0 if the device is not a 5239 * High-spped hub. 5240 */ 5241 think_time = tt->think_time; 5242 if (think_time != 0) 5243 think_time = (think_time / 666) - 1; 5244 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5245 slot_ctx->tt_info |= 5246 cpu_to_le32(TT_THINK_TIME(think_time)); 5247 } else { 5248 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5249 "TT think time or number of ports\n", 5250 (unsigned int) xhci->hci_version); 5251 } 5252 slot_ctx->dev_state = 0; 5253 spin_unlock_irqrestore(&xhci->lock, flags); 5254 5255 xhci_dbg(xhci, "Set up %s for hub device.\n", 5256 (xhci->hci_version > 0x95) ? 5257 "configure endpoint" : "evaluate context"); 5258 5259 /* Issue and wait for the configure endpoint or 5260 * evaluate context command. 5261 */ 5262 if (xhci->hci_version > 0x95) 5263 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5264 false, false); 5265 else 5266 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5267 true, false); 5268 5269 xhci_free_command(xhci, config_cmd); 5270 return ret; 5271 } 5272 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5273 5274 static int xhci_get_frame(struct usb_hcd *hcd) 5275 { 5276 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5277 /* EHCI mods by the periodic size. Why? */ 5278 return readl(&xhci->run_regs->microframe_index) >> 3; 5279 } 5280 5281 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5282 { 5283 xhci->usb2_rhub.hcd = hcd; 5284 hcd->speed = HCD_USB2; 5285 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5286 /* 5287 * USB 2.0 roothub under xHCI has an integrated TT, 5288 * (rate matching hub) as opposed to having an OHCI/UHCI 5289 * companion controller. 5290 */ 5291 hcd->has_tt = 1; 5292 } 5293 5294 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5295 { 5296 unsigned int minor_rev; 5297 5298 /* 5299 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5300 * should return 0x31 for sbrn, or that the minor revision 5301 * is a two digit BCD containig minor and sub-minor numbers. 5302 * This was later clarified in xHCI 1.2. 5303 * 5304 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5305 * minor revision set to 0x1 instead of 0x10. 5306 */ 5307 if (xhci->usb3_rhub.min_rev == 0x1) 5308 minor_rev = 1; 5309 else 5310 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5311 5312 switch (minor_rev) { 5313 case 2: 5314 hcd->speed = HCD_USB32; 5315 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5316 hcd->self.root_hub->rx_lanes = 2; 5317 hcd->self.root_hub->tx_lanes = 2; 5318 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5319 break; 5320 case 1: 5321 hcd->speed = HCD_USB31; 5322 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5323 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5324 break; 5325 } 5326 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5327 minor_rev, minor_rev ? "Enhanced " : ""); 5328 5329 xhci->usb3_rhub.hcd = hcd; 5330 } 5331 5332 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5333 { 5334 struct xhci_hcd *xhci; 5335 /* 5336 * TODO: Check with DWC3 clients for sysdev according to 5337 * quirks 5338 */ 5339 struct device *dev = hcd->self.sysdev; 5340 int retval; 5341 5342 /* Accept arbitrarily long scatter-gather lists */ 5343 hcd->self.sg_tablesize = ~0; 5344 5345 /* support to build packet from discontinuous buffers */ 5346 hcd->self.no_sg_constraint = 1; 5347 5348 /* XHCI controllers don't stop the ep queue on short packets :| */ 5349 hcd->self.no_stop_on_short = 1; 5350 5351 xhci = hcd_to_xhci(hcd); 5352 5353 if (!usb_hcd_is_primary_hcd(hcd)) { 5354 xhci_hcd_init_usb3_data(xhci, hcd); 5355 return 0; 5356 } 5357 5358 mutex_init(&xhci->mutex); 5359 xhci->main_hcd = hcd; 5360 xhci->cap_regs = hcd->regs; 5361 xhci->op_regs = hcd->regs + 5362 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5363 xhci->run_regs = hcd->regs + 5364 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5365 /* Cache read-only capability registers */ 5366 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5367 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5368 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5369 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5370 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5371 if (xhci->hci_version > 0x100) 5372 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5373 5374 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5375 if ((!xhci->max_interrupters) || 5376 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1)) 5377 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1); 5378 5379 xhci->quirks |= quirks; 5380 5381 get_quirks(dev, xhci); 5382 5383 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5384 * success event after a short transfer. This quirk will ignore such 5385 * spurious event. 5386 */ 5387 if (xhci->hci_version > 0x96) 5388 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5389 5390 /* Make sure the HC is halted. */ 5391 retval = xhci_halt(xhci); 5392 if (retval) 5393 return retval; 5394 5395 xhci_zero_64b_regs(xhci); 5396 5397 xhci_dbg(xhci, "Resetting HCD\n"); 5398 /* Reset the internal HC memory state and registers. */ 5399 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5400 if (retval) 5401 return retval; 5402 xhci_dbg(xhci, "Reset complete\n"); 5403 5404 /* 5405 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5406 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5407 * address memory pointers actually. So, this driver clears the AC64 5408 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5409 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5410 */ 5411 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5412 xhci->hcc_params &= ~BIT(0); 5413 5414 /* Set dma_mask and coherent_dma_mask to 64-bits, 5415 * if xHC supports 64-bit addressing */ 5416 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5417 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5418 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5419 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5420 } else { 5421 /* 5422 * This is to avoid error in cases where a 32-bit USB 5423 * controller is used on a 64-bit capable system. 5424 */ 5425 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5426 if (retval) 5427 return retval; 5428 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5429 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5430 } 5431 5432 xhci_dbg(xhci, "Calling HCD init\n"); 5433 /* Initialize HCD and host controller data structures. */ 5434 retval = xhci_init(hcd); 5435 if (retval) 5436 return retval; 5437 xhci_dbg(xhci, "Called HCD init\n"); 5438 5439 if (xhci_hcd_is_usb3(hcd)) 5440 xhci_hcd_init_usb3_data(xhci, hcd); 5441 else 5442 xhci_hcd_init_usb2_data(xhci, hcd); 5443 5444 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5445 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5446 5447 return 0; 5448 } 5449 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5450 5451 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5452 struct usb_host_endpoint *ep) 5453 { 5454 struct xhci_hcd *xhci; 5455 struct usb_device *udev; 5456 unsigned int slot_id; 5457 unsigned int ep_index; 5458 unsigned long flags; 5459 5460 xhci = hcd_to_xhci(hcd); 5461 5462 spin_lock_irqsave(&xhci->lock, flags); 5463 udev = (struct usb_device *)ep->hcpriv; 5464 slot_id = udev->slot_id; 5465 ep_index = xhci_get_endpoint_index(&ep->desc); 5466 5467 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5468 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5469 spin_unlock_irqrestore(&xhci->lock, flags); 5470 } 5471 5472 static const struct hc_driver xhci_hc_driver = { 5473 .description = "xhci-hcd", 5474 .product_desc = "xHCI Host Controller", 5475 .hcd_priv_size = sizeof(struct xhci_hcd), 5476 5477 /* 5478 * generic hardware linkage 5479 */ 5480 .irq = xhci_irq, 5481 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5482 HCD_BH, 5483 5484 /* 5485 * basic lifecycle operations 5486 */ 5487 .reset = NULL, /* set in xhci_init_driver() */ 5488 .start = xhci_run, 5489 .stop = xhci_stop, 5490 .shutdown = xhci_shutdown, 5491 5492 /* 5493 * managing i/o requests and associated device resources 5494 */ 5495 .map_urb_for_dma = xhci_map_urb_for_dma, 5496 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5497 .urb_enqueue = xhci_urb_enqueue, 5498 .urb_dequeue = xhci_urb_dequeue, 5499 .alloc_dev = xhci_alloc_dev, 5500 .free_dev = xhci_free_dev, 5501 .alloc_streams = xhci_alloc_streams, 5502 .free_streams = xhci_free_streams, 5503 .add_endpoint = xhci_add_endpoint, 5504 .drop_endpoint = xhci_drop_endpoint, 5505 .endpoint_disable = xhci_endpoint_disable, 5506 .endpoint_reset = xhci_endpoint_reset, 5507 .check_bandwidth = xhci_check_bandwidth, 5508 .reset_bandwidth = xhci_reset_bandwidth, 5509 .address_device = xhci_address_device, 5510 .enable_device = xhci_enable_device, 5511 .update_hub_device = xhci_update_hub_device, 5512 .reset_device = xhci_discover_or_reset_device, 5513 5514 /* 5515 * scheduling support 5516 */ 5517 .get_frame_number = xhci_get_frame, 5518 5519 /* 5520 * root hub support 5521 */ 5522 .hub_control = xhci_hub_control, 5523 .hub_status_data = xhci_hub_status_data, 5524 .bus_suspend = xhci_bus_suspend, 5525 .bus_resume = xhci_bus_resume, 5526 .get_resuming_ports = xhci_get_resuming_ports, 5527 5528 /* 5529 * call back when device connected and addressed 5530 */ 5531 .update_device = xhci_update_device, 5532 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5533 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5534 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5535 .find_raw_port_number = xhci_find_raw_port_number, 5536 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5537 }; 5538 5539 void xhci_init_driver(struct hc_driver *drv, 5540 const struct xhci_driver_overrides *over) 5541 { 5542 BUG_ON(!over); 5543 5544 /* Copy the generic table to drv then apply the overrides */ 5545 *drv = xhci_hc_driver; 5546 5547 if (over) { 5548 drv->hcd_priv_size += over->extra_priv_size; 5549 if (over->reset) 5550 drv->reset = over->reset; 5551 if (over->start) 5552 drv->start = over->start; 5553 if (over->add_endpoint) 5554 drv->add_endpoint = over->add_endpoint; 5555 if (over->drop_endpoint) 5556 drv->drop_endpoint = over->drop_endpoint; 5557 if (over->check_bandwidth) 5558 drv->check_bandwidth = over->check_bandwidth; 5559 if (over->reset_bandwidth) 5560 drv->reset_bandwidth = over->reset_bandwidth; 5561 if (over->update_hub_device) 5562 drv->update_hub_device = over->update_hub_device; 5563 if (over->hub_control) 5564 drv->hub_control = over->hub_control; 5565 } 5566 } 5567 EXPORT_SYMBOL_GPL(xhci_init_driver); 5568 5569 MODULE_DESCRIPTION(DRIVER_DESC); 5570 MODULE_AUTHOR(DRIVER_AUTHOR); 5571 MODULE_LICENSE("GPL"); 5572 5573 static int __init xhci_hcd_init(void) 5574 { 5575 /* 5576 * Check the compiler generated sizes of structures that must be laid 5577 * out in specific ways for hardware access. 5578 */ 5579 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5580 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5581 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5582 /* xhci_device_control has eight fields, and also 5583 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5584 */ 5585 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5586 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5587 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5588 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5589 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5590 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5591 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5592 5593 if (usb_disabled()) 5594 return -ENODEV; 5595 5596 xhci_debugfs_create_root(); 5597 xhci_dbc_init(); 5598 5599 return 0; 5600 } 5601 5602 /* 5603 * If an init function is provided, an exit function must also be provided 5604 * to allow module unload. 5605 */ 5606 static void __exit xhci_hcd_fini(void) 5607 { 5608 xhci_debugfs_remove_root(); 5609 xhci_dbc_exit(); 5610 } 5611 5612 module_init(xhci_hcd_init); 5613 module_exit(xhci_hcd_fini); 5614