xref: /linux/drivers/usb/host/xhci.c (revision 63cfd210034c772fad047afa13dd5a4664b0a72e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21 
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, timeout_us);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 	u32 halted;
90 	u32 cmd;
91 	u32 mask;
92 
93 	mask = ~(XHCI_IRQS);
94 	halted = readl(&xhci->op_regs->status) & STS_HALT;
95 	if (!halted)
96 		mask &= ~CMD_RUN;
97 
98 	cmd = readl(&xhci->op_regs->command);
99 	cmd &= mask;
100 	writel(cmd, &xhci->op_regs->command);
101 }
102 
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 	int ret;
114 
115 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
116 	xhci_quiesce(xhci);
117 
118 	ret = xhci_handshake(&xhci->op_regs->status,
119 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
120 	if (ret) {
121 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
122 		return ret;
123 	}
124 
125 	xhci->xhc_state |= XHCI_STATE_HALTED;
126 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127 
128 	return ret;
129 }
130 
131 /*
132  * Set the run bit and wait for the host to be running.
133  */
134 int xhci_start(struct xhci_hcd *xhci)
135 {
136 	u32 temp;
137 	int ret;
138 
139 	temp = readl(&xhci->op_regs->command);
140 	temp |= (CMD_RUN);
141 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
142 			temp);
143 	writel(temp, &xhci->op_regs->command);
144 
145 	/*
146 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
147 	 * running.
148 	 */
149 	ret = xhci_handshake(&xhci->op_regs->status,
150 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
151 	if (ret == -ETIMEDOUT)
152 		xhci_err(xhci, "Host took too long to start, "
153 				"waited %u microseconds.\n",
154 				XHCI_MAX_HALT_USEC);
155 	if (!ret) {
156 		/* clear state flags. Including dying, halted or removing */
157 		xhci->xhc_state = 0;
158 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
159 	}
160 
161 	return ret;
162 }
163 
164 /*
165  * Reset a halted HC.
166  *
167  * This resets pipelines, timers, counters, state machines, etc.
168  * Transactions will be terminated immediately, and operational registers
169  * will be set to their defaults.
170  */
171 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
172 {
173 	u32 command;
174 	u32 state;
175 	int ret;
176 
177 	state = readl(&xhci->op_regs->status);
178 
179 	if (state == ~(u32)0) {
180 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
181 		return -ENODEV;
182 	}
183 
184 	if ((state & STS_HALT) == 0) {
185 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
186 		return 0;
187 	}
188 
189 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
190 	command = readl(&xhci->op_regs->command);
191 	command |= CMD_RESET;
192 	writel(command, &xhci->op_regs->command);
193 
194 	/* Existing Intel xHCI controllers require a delay of 1 mS,
195 	 * after setting the CMD_RESET bit, and before accessing any
196 	 * HC registers. This allows the HC to complete the
197 	 * reset operation and be ready for HC register access.
198 	 * Without this delay, the subsequent HC register access,
199 	 * may result in a system hang very rarely.
200 	 */
201 	if (xhci->quirks & XHCI_INTEL_HOST)
202 		udelay(1000);
203 
204 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
205 	if (ret)
206 		return ret;
207 
208 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
209 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
210 
211 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
212 			 "Wait for controller to be ready for doorbell rings");
213 	/*
214 	 * xHCI cannot write to any doorbells or operational registers other
215 	 * than status until the "Controller Not Ready" flag is cleared.
216 	 */
217 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
218 
219 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
222 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
223 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
224 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
225 
226 	return ret;
227 }
228 
229 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
230 {
231 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
232 	struct iommu_domain *domain;
233 	int err, i;
234 	u64 val;
235 	u32 intrs;
236 
237 	/*
238 	 * Some Renesas controllers get into a weird state if they are
239 	 * reset while programmed with 64bit addresses (they will preserve
240 	 * the top half of the address in internal, non visible
241 	 * registers). You end up with half the address coming from the
242 	 * kernel, and the other half coming from the firmware. Also,
243 	 * changing the programming leads to extra accesses even if the
244 	 * controller is supposed to be halted. The controller ends up with
245 	 * a fatal fault, and is then ripe for being properly reset.
246 	 *
247 	 * Special care is taken to only apply this if the device is behind
248 	 * an iommu. Doing anything when there is no iommu is definitely
249 	 * unsafe...
250 	 */
251 	domain = iommu_get_domain_for_dev(dev);
252 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
253 	    domain->type == IOMMU_DOMAIN_IDENTITY)
254 		return;
255 
256 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
257 
258 	/* Clear HSEIE so that faults do not get signaled */
259 	val = readl(&xhci->op_regs->command);
260 	val &= ~CMD_HSEIE;
261 	writel(val, &xhci->op_regs->command);
262 
263 	/* Clear HSE (aka FATAL) */
264 	val = readl(&xhci->op_regs->status);
265 	val |= STS_FATAL;
266 	writel(val, &xhci->op_regs->status);
267 
268 	/* Now zero the registers, and brace for impact */
269 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
270 	if (upper_32_bits(val))
271 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
272 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
273 	if (upper_32_bits(val))
274 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
275 
276 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
277 		      ARRAY_SIZE(xhci->run_regs->ir_set));
278 
279 	for (i = 0; i < intrs; i++) {
280 		struct xhci_intr_reg __iomem *ir;
281 
282 		ir = &xhci->run_regs->ir_set[i];
283 		val = xhci_read_64(xhci, &ir->erst_base);
284 		if (upper_32_bits(val))
285 			xhci_write_64(xhci, 0, &ir->erst_base);
286 		val= xhci_read_64(xhci, &ir->erst_dequeue);
287 		if (upper_32_bits(val))
288 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
289 	}
290 
291 	/* Wait for the fault to appear. It will be cleared on reset */
292 	err = xhci_handshake(&xhci->op_regs->status,
293 			     STS_FATAL, STS_FATAL,
294 			     XHCI_MAX_HALT_USEC);
295 	if (!err)
296 		xhci_info(xhci, "Fault detected\n");
297 }
298 
299 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
300 {
301 	u32 iman;
302 
303 	if (!ir || !ir->ir_set)
304 		return -EINVAL;
305 
306 	iman = readl(&ir->ir_set->irq_pending);
307 	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
308 
309 	return 0;
310 }
311 
312 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
313 {
314 	u32 iman;
315 
316 	if (!ir || !ir->ir_set)
317 		return -EINVAL;
318 
319 	iman = readl(&ir->ir_set->irq_pending);
320 	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
321 
322 	return 0;
323 }
324 
325 #ifdef CONFIG_USB_PCI
326 /*
327  * Set up MSI
328  */
329 static int xhci_setup_msi(struct xhci_hcd *xhci)
330 {
331 	int ret;
332 	/*
333 	 * TODO:Check with MSI Soc for sysdev
334 	 */
335 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
336 
337 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
338 	if (ret < 0) {
339 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
340 				"failed to allocate MSI entry");
341 		return ret;
342 	}
343 
344 	ret = request_irq(pdev->irq, xhci_msi_irq,
345 				0, "xhci_hcd", xhci_to_hcd(xhci));
346 	if (ret) {
347 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
348 				"disable MSI interrupt");
349 		pci_free_irq_vectors(pdev);
350 	}
351 
352 	return ret;
353 }
354 
355 /*
356  * Set up MSI-X
357  */
358 static int xhci_setup_msix(struct xhci_hcd *xhci)
359 {
360 	int i, ret;
361 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
362 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
363 
364 	/*
365 	 * calculate number of msi-x vectors supported.
366 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
367 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
368 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
369 	 *   Add additional 1 vector to ensure always available interrupt.
370 	 */
371 	xhci->msix_count = min(num_online_cpus() + 1,
372 				HCS_MAX_INTRS(xhci->hcs_params1));
373 
374 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
375 			PCI_IRQ_MSIX);
376 	if (ret < 0) {
377 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
378 				"Failed to enable MSI-X");
379 		return ret;
380 	}
381 
382 	for (i = 0; i < xhci->msix_count; i++) {
383 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
384 				"xhci_hcd", xhci_to_hcd(xhci));
385 		if (ret)
386 			goto disable_msix;
387 	}
388 
389 	hcd->msix_enabled = 1;
390 	return ret;
391 
392 disable_msix:
393 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
394 	while (--i >= 0)
395 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
396 	pci_free_irq_vectors(pdev);
397 	return ret;
398 }
399 
400 /* Free any IRQs and disable MSI-X */
401 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
402 {
403 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
404 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
405 
406 	if (xhci->quirks & XHCI_PLAT)
407 		return;
408 
409 	/* return if using legacy interrupt */
410 	if (hcd->irq > 0)
411 		return;
412 
413 	if (hcd->msix_enabled) {
414 		int i;
415 
416 		for (i = 0; i < xhci->msix_count; i++)
417 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
418 	} else {
419 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
420 	}
421 
422 	pci_free_irq_vectors(pdev);
423 	hcd->msix_enabled = 0;
424 }
425 
426 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
427 {
428 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
429 
430 	if (hcd->msix_enabled) {
431 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
432 		int i;
433 
434 		for (i = 0; i < xhci->msix_count; i++)
435 			synchronize_irq(pci_irq_vector(pdev, i));
436 	}
437 }
438 
439 static int xhci_try_enable_msi(struct usb_hcd *hcd)
440 {
441 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
442 	struct pci_dev  *pdev;
443 	int ret;
444 
445 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
446 	if (xhci->quirks & XHCI_PLAT)
447 		return 0;
448 
449 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
450 	/*
451 	 * Some Fresco Logic host controllers advertise MSI, but fail to
452 	 * generate interrupts.  Don't even try to enable MSI.
453 	 */
454 	if (xhci->quirks & XHCI_BROKEN_MSI)
455 		goto legacy_irq;
456 
457 	/* unregister the legacy interrupt */
458 	if (hcd->irq)
459 		free_irq(hcd->irq, hcd);
460 	hcd->irq = 0;
461 
462 	ret = xhci_setup_msix(xhci);
463 	if (ret)
464 		/* fall back to msi*/
465 		ret = xhci_setup_msi(xhci);
466 
467 	if (!ret) {
468 		hcd->msi_enabled = 1;
469 		return 0;
470 	}
471 
472 	if (!pdev->irq) {
473 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
474 		return -EINVAL;
475 	}
476 
477  legacy_irq:
478 	if (!strlen(hcd->irq_descr))
479 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
480 			 hcd->driver->description, hcd->self.busnum);
481 
482 	/* fall back to legacy interrupt*/
483 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
484 			hcd->irq_descr, hcd);
485 	if (ret) {
486 		xhci_err(xhci, "request interrupt %d failed\n",
487 				pdev->irq);
488 		return ret;
489 	}
490 	hcd->irq = pdev->irq;
491 	return 0;
492 }
493 
494 #else
495 
496 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
497 {
498 	return 0;
499 }
500 
501 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
502 {
503 }
504 
505 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
506 {
507 }
508 
509 #endif
510 
511 static void compliance_mode_recovery(struct timer_list *t)
512 {
513 	struct xhci_hcd *xhci;
514 	struct usb_hcd *hcd;
515 	struct xhci_hub *rhub;
516 	u32 temp;
517 	int i;
518 
519 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
520 	rhub = &xhci->usb3_rhub;
521 	hcd = rhub->hcd;
522 
523 	if (!hcd)
524 		return;
525 
526 	for (i = 0; i < rhub->num_ports; i++) {
527 		temp = readl(rhub->ports[i]->addr);
528 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
529 			/*
530 			 * Compliance Mode Detected. Letting USB Core
531 			 * handle the Warm Reset
532 			 */
533 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
534 					"Compliance mode detected->port %d",
535 					i + 1);
536 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
537 					"Attempting compliance mode recovery");
538 
539 			if (hcd->state == HC_STATE_SUSPENDED)
540 				usb_hcd_resume_root_hub(hcd);
541 
542 			usb_hcd_poll_rh_status(hcd);
543 		}
544 	}
545 
546 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
547 		mod_timer(&xhci->comp_mode_recovery_timer,
548 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
549 }
550 
551 /*
552  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
553  * that causes ports behind that hardware to enter compliance mode sometimes.
554  * The quirk creates a timer that polls every 2 seconds the link state of
555  * each host controller's port and recovers it by issuing a Warm reset
556  * if Compliance mode is detected, otherwise the port will become "dead" (no
557  * device connections or disconnections will be detected anymore). Becasue no
558  * status event is generated when entering compliance mode (per xhci spec),
559  * this quirk is needed on systems that have the failing hardware installed.
560  */
561 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
562 {
563 	xhci->port_status_u0 = 0;
564 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
565 		    0);
566 	xhci->comp_mode_recovery_timer.expires = jiffies +
567 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
568 
569 	add_timer(&xhci->comp_mode_recovery_timer);
570 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
571 			"Compliance mode recovery timer initialized");
572 }
573 
574 /*
575  * This function identifies the systems that have installed the SN65LVPE502CP
576  * USB3.0 re-driver and that need the Compliance Mode Quirk.
577  * Systems:
578  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
579  */
580 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
581 {
582 	const char *dmi_product_name, *dmi_sys_vendor;
583 
584 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
585 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
586 	if (!dmi_product_name || !dmi_sys_vendor)
587 		return false;
588 
589 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
590 		return false;
591 
592 	if (strstr(dmi_product_name, "Z420") ||
593 			strstr(dmi_product_name, "Z620") ||
594 			strstr(dmi_product_name, "Z820") ||
595 			strstr(dmi_product_name, "Z1 Workstation"))
596 		return true;
597 
598 	return false;
599 }
600 
601 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
602 {
603 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
604 }
605 
606 
607 /*
608  * Initialize memory for HCD and xHC (one-time init).
609  *
610  * Program the PAGESIZE register, initialize the device context array, create
611  * device contexts (?), set up a command ring segment (or two?), create event
612  * ring (one for now).
613  */
614 static int xhci_init(struct usb_hcd *hcd)
615 {
616 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
617 	int retval;
618 
619 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
620 	spin_lock_init(&xhci->lock);
621 	if (xhci->hci_version == 0x95 && link_quirk) {
622 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
623 				"QUIRK: Not clearing Link TRB chain bits.");
624 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
625 	} else {
626 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
627 				"xHCI doesn't need link TRB QUIRK");
628 	}
629 	retval = xhci_mem_init(xhci, GFP_KERNEL);
630 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
631 
632 	/* Initializing Compliance Mode Recovery Data If Needed */
633 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
634 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
635 		compliance_mode_recovery_timer_init(xhci);
636 	}
637 
638 	return retval;
639 }
640 
641 /*-------------------------------------------------------------------------*/
642 
643 static int xhci_run_finished(struct xhci_hcd *xhci)
644 {
645 	struct xhci_interrupter *ir = xhci->interrupter;
646 	unsigned long	flags;
647 	u32		temp;
648 
649 	/*
650 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
651 	 * Protect the short window before host is running with a lock
652 	 */
653 	spin_lock_irqsave(&xhci->lock, flags);
654 
655 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
656 	temp = readl(&xhci->op_regs->command);
657 	temp |= (CMD_EIE);
658 	writel(temp, &xhci->op_regs->command);
659 
660 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
661 	xhci_enable_interrupter(ir);
662 
663 	if (xhci_start(xhci)) {
664 		xhci_halt(xhci);
665 		spin_unlock_irqrestore(&xhci->lock, flags);
666 		return -ENODEV;
667 	}
668 
669 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
670 
671 	if (xhci->quirks & XHCI_NEC_HOST)
672 		xhci_ring_cmd_db(xhci);
673 
674 	spin_unlock_irqrestore(&xhci->lock, flags);
675 
676 	return 0;
677 }
678 
679 /*
680  * Start the HC after it was halted.
681  *
682  * This function is called by the USB core when the HC driver is added.
683  * Its opposite is xhci_stop().
684  *
685  * xhci_init() must be called once before this function can be called.
686  * Reset the HC, enable device slot contexts, program DCBAAP, and
687  * set command ring pointer and event ring pointer.
688  *
689  * Setup MSI-X vectors and enable interrupts.
690  */
691 int xhci_run(struct usb_hcd *hcd)
692 {
693 	u32 temp;
694 	u64 temp_64;
695 	int ret;
696 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
697 	struct xhci_interrupter *ir = xhci->interrupter;
698 	/* Start the xHCI host controller running only after the USB 2.0 roothub
699 	 * is setup.
700 	 */
701 
702 	hcd->uses_new_polling = 1;
703 	if (!usb_hcd_is_primary_hcd(hcd))
704 		return xhci_run_finished(xhci);
705 
706 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
707 
708 	ret = xhci_try_enable_msi(hcd);
709 	if (ret)
710 		return ret;
711 
712 	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
713 	temp_64 &= ~ERST_PTR_MASK;
714 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
715 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
716 
717 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
718 			"// Set the interrupt modulation register");
719 	temp = readl(&ir->ir_set->irq_control);
720 	temp &= ~ER_IRQ_INTERVAL_MASK;
721 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
722 	writel(temp, &ir->ir_set->irq_control);
723 
724 	if (xhci->quirks & XHCI_NEC_HOST) {
725 		struct xhci_command *command;
726 
727 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
728 		if (!command)
729 			return -ENOMEM;
730 
731 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
732 				TRB_TYPE(TRB_NEC_GET_FW));
733 		if (ret)
734 			xhci_free_command(xhci, command);
735 	}
736 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
737 			"Finished %s for main hcd", __func__);
738 
739 	xhci_create_dbc_dev(xhci);
740 
741 	xhci_debugfs_init(xhci);
742 
743 	if (xhci_has_one_roothub(xhci))
744 		return xhci_run_finished(xhci);
745 
746 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
747 
748 	return 0;
749 }
750 EXPORT_SYMBOL_GPL(xhci_run);
751 
752 /*
753  * Stop xHCI driver.
754  *
755  * This function is called by the USB core when the HC driver is removed.
756  * Its opposite is xhci_run().
757  *
758  * Disable device contexts, disable IRQs, and quiesce the HC.
759  * Reset the HC, finish any completed transactions, and cleanup memory.
760  */
761 static void xhci_stop(struct usb_hcd *hcd)
762 {
763 	u32 temp;
764 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
765 	struct xhci_interrupter *ir = xhci->interrupter;
766 
767 	mutex_lock(&xhci->mutex);
768 
769 	/* Only halt host and free memory after both hcds are removed */
770 	if (!usb_hcd_is_primary_hcd(hcd)) {
771 		mutex_unlock(&xhci->mutex);
772 		return;
773 	}
774 
775 	xhci_remove_dbc_dev(xhci);
776 
777 	spin_lock_irq(&xhci->lock);
778 	xhci->xhc_state |= XHCI_STATE_HALTED;
779 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
780 	xhci_halt(xhci);
781 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
782 	spin_unlock_irq(&xhci->lock);
783 
784 	xhci_cleanup_msix(xhci);
785 
786 	/* Deleting Compliance Mode Recovery Timer */
787 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
788 			(!(xhci_all_ports_seen_u0(xhci)))) {
789 		del_timer_sync(&xhci->comp_mode_recovery_timer);
790 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
791 				"%s: compliance mode recovery timer deleted",
792 				__func__);
793 	}
794 
795 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
796 		usb_amd_dev_put();
797 
798 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
799 			"// Disabling event ring interrupts");
800 	temp = readl(&xhci->op_regs->status);
801 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
802 	xhci_disable_interrupter(ir);
803 
804 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
805 	xhci_mem_cleanup(xhci);
806 	xhci_debugfs_exit(xhci);
807 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
808 			"xhci_stop completed - status = %x",
809 			readl(&xhci->op_regs->status));
810 	mutex_unlock(&xhci->mutex);
811 }
812 
813 /*
814  * Shutdown HC (not bus-specific)
815  *
816  * This is called when the machine is rebooting or halting.  We assume that the
817  * machine will be powered off, and the HC's internal state will be reset.
818  * Don't bother to free memory.
819  *
820  * This will only ever be called with the main usb_hcd (the USB3 roothub).
821  */
822 void xhci_shutdown(struct usb_hcd *hcd)
823 {
824 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
825 
826 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
827 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
828 
829 	/* Don't poll the roothubs after shutdown. */
830 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
831 			__func__, hcd->self.busnum);
832 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
833 	del_timer_sync(&hcd->rh_timer);
834 
835 	if (xhci->shared_hcd) {
836 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
837 		del_timer_sync(&xhci->shared_hcd->rh_timer);
838 	}
839 
840 	spin_lock_irq(&xhci->lock);
841 	xhci_halt(xhci);
842 
843 	/*
844 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
845 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
846 	 */
847 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
848 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
849 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
850 
851 	spin_unlock_irq(&xhci->lock);
852 
853 	xhci_cleanup_msix(xhci);
854 
855 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
856 			"xhci_shutdown completed - status = %x",
857 			readl(&xhci->op_regs->status));
858 }
859 EXPORT_SYMBOL_GPL(xhci_shutdown);
860 
861 #ifdef CONFIG_PM
862 static void xhci_save_registers(struct xhci_hcd *xhci)
863 {
864 	struct xhci_interrupter *ir = xhci->interrupter;
865 
866 	xhci->s3.command = readl(&xhci->op_regs->command);
867 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
868 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
869 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
870 
871 	if (!ir)
872 		return;
873 
874 	ir->s3_erst_size = readl(&ir->ir_set->erst_size);
875 	ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
876 	ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
877 	ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
878 	ir->s3_irq_control = readl(&ir->ir_set->irq_control);
879 }
880 
881 static void xhci_restore_registers(struct xhci_hcd *xhci)
882 {
883 	struct xhci_interrupter *ir = xhci->interrupter;
884 
885 	writel(xhci->s3.command, &xhci->op_regs->command);
886 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
887 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
888 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
889 	writel(ir->s3_erst_size, &ir->ir_set->erst_size);
890 	xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
891 	xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
892 	writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
893 	writel(ir->s3_irq_control, &ir->ir_set->irq_control);
894 }
895 
896 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
897 {
898 	u64	val_64;
899 
900 	/* step 2: initialize command ring buffer */
901 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
902 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
903 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
904 				      xhci->cmd_ring->dequeue) &
905 		 (u64) ~CMD_RING_RSVD_BITS) |
906 		xhci->cmd_ring->cycle_state;
907 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
908 			"// Setting command ring address to 0x%llx",
909 			(long unsigned long) val_64);
910 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
911 }
912 
913 /*
914  * The whole command ring must be cleared to zero when we suspend the host.
915  *
916  * The host doesn't save the command ring pointer in the suspend well, so we
917  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
918  * aligned, because of the reserved bits in the command ring dequeue pointer
919  * register.  Therefore, we can't just set the dequeue pointer back in the
920  * middle of the ring (TRBs are 16-byte aligned).
921  */
922 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
923 {
924 	struct xhci_ring *ring;
925 	struct xhci_segment *seg;
926 
927 	ring = xhci->cmd_ring;
928 	seg = ring->deq_seg;
929 	do {
930 		memset(seg->trbs, 0,
931 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
932 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
933 			cpu_to_le32(~TRB_CYCLE);
934 		seg = seg->next;
935 	} while (seg != ring->deq_seg);
936 
937 	/* Reset the software enqueue and dequeue pointers */
938 	ring->deq_seg = ring->first_seg;
939 	ring->dequeue = ring->first_seg->trbs;
940 	ring->enq_seg = ring->deq_seg;
941 	ring->enqueue = ring->dequeue;
942 
943 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
944 	/*
945 	 * Ring is now zeroed, so the HW should look for change of ownership
946 	 * when the cycle bit is set to 1.
947 	 */
948 	ring->cycle_state = 1;
949 
950 	/*
951 	 * Reset the hardware dequeue pointer.
952 	 * Yes, this will need to be re-written after resume, but we're paranoid
953 	 * and want to make sure the hardware doesn't access bogus memory
954 	 * because, say, the BIOS or an SMI started the host without changing
955 	 * the command ring pointers.
956 	 */
957 	xhci_set_cmd_ring_deq(xhci);
958 }
959 
960 /*
961  * Disable port wake bits if do_wakeup is not set.
962  *
963  * Also clear a possible internal port wake state left hanging for ports that
964  * detected termination but never successfully enumerated (trained to 0U).
965  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
966  * at enumeration clears this wake, force one here as well for unconnected ports
967  */
968 
969 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
970 				       struct xhci_hub *rhub,
971 				       bool do_wakeup)
972 {
973 	unsigned long flags;
974 	u32 t1, t2, portsc;
975 	int i;
976 
977 	spin_lock_irqsave(&xhci->lock, flags);
978 
979 	for (i = 0; i < rhub->num_ports; i++) {
980 		portsc = readl(rhub->ports[i]->addr);
981 		t1 = xhci_port_state_to_neutral(portsc);
982 		t2 = t1;
983 
984 		/* clear wake bits if do_wake is not set */
985 		if (!do_wakeup)
986 			t2 &= ~PORT_WAKE_BITS;
987 
988 		/* Don't touch csc bit if connected or connect change is set */
989 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
990 			t2 |= PORT_CSC;
991 
992 		if (t1 != t2) {
993 			writel(t2, rhub->ports[i]->addr);
994 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
995 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
996 		}
997 	}
998 	spin_unlock_irqrestore(&xhci->lock, flags);
999 }
1000 
1001 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
1002 {
1003 	struct xhci_port	**ports;
1004 	int			port_index;
1005 	u32			status;
1006 	u32			portsc;
1007 
1008 	status = readl(&xhci->op_regs->status);
1009 	if (status & STS_EINT)
1010 		return true;
1011 	/*
1012 	 * Checking STS_EINT is not enough as there is a lag between a change
1013 	 * bit being set and the Port Status Change Event that it generated
1014 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
1015 	 */
1016 
1017 	port_index = xhci->usb2_rhub.num_ports;
1018 	ports = xhci->usb2_rhub.ports;
1019 	while (port_index--) {
1020 		portsc = readl(ports[port_index]->addr);
1021 		if (portsc & PORT_CHANGE_MASK ||
1022 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
1023 			return true;
1024 	}
1025 	port_index = xhci->usb3_rhub.num_ports;
1026 	ports = xhci->usb3_rhub.ports;
1027 	while (port_index--) {
1028 		portsc = readl(ports[port_index]->addr);
1029 		if (portsc & PORT_CHANGE_MASK ||
1030 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
1031 			return true;
1032 	}
1033 	return false;
1034 }
1035 
1036 /*
1037  * Stop HC (not bus-specific)
1038  *
1039  * This is called when the machine transition into S3/S4 mode.
1040  *
1041  */
1042 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
1043 {
1044 	int			rc = 0;
1045 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
1046 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1047 	u32			command;
1048 	u32			res;
1049 
1050 	if (!hcd->state)
1051 		return 0;
1052 
1053 	if (hcd->state != HC_STATE_SUSPENDED ||
1054 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1055 		return -EINVAL;
1056 
1057 	/* Clear root port wake on bits if wakeup not allowed. */
1058 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1059 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1060 
1061 	if (!HCD_HW_ACCESSIBLE(hcd))
1062 		return 0;
1063 
1064 	xhci_dbc_suspend(xhci);
1065 
1066 	/* Don't poll the roothubs on bus suspend. */
1067 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1068 		 __func__, hcd->self.busnum);
1069 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1070 	del_timer_sync(&hcd->rh_timer);
1071 	if (xhci->shared_hcd) {
1072 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1073 		del_timer_sync(&xhci->shared_hcd->rh_timer);
1074 	}
1075 
1076 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1077 		usleep_range(1000, 1500);
1078 
1079 	spin_lock_irq(&xhci->lock);
1080 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1081 	if (xhci->shared_hcd)
1082 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1083 	/* step 1: stop endpoint */
1084 	/* skipped assuming that port suspend has done */
1085 
1086 	/* step 2: clear Run/Stop bit */
1087 	command = readl(&xhci->op_regs->command);
1088 	command &= ~CMD_RUN;
1089 	writel(command, &xhci->op_regs->command);
1090 
1091 	/* Some chips from Fresco Logic need an extraordinary delay */
1092 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1093 
1094 	if (xhci_handshake(&xhci->op_regs->status,
1095 		      STS_HALT, STS_HALT, delay)) {
1096 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1097 		spin_unlock_irq(&xhci->lock);
1098 		return -ETIMEDOUT;
1099 	}
1100 	xhci_clear_command_ring(xhci);
1101 
1102 	/* step 3: save registers */
1103 	xhci_save_registers(xhci);
1104 
1105 	/* step 4: set CSS flag */
1106 	command = readl(&xhci->op_regs->command);
1107 	command |= CMD_CSS;
1108 	writel(command, &xhci->op_regs->command);
1109 	xhci->broken_suspend = 0;
1110 	if (xhci_handshake(&xhci->op_regs->status,
1111 				STS_SAVE, 0, 20 * 1000)) {
1112 	/*
1113 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1114 	 * SSS bit of USBSTS and when driver tries to poll
1115 	 * to see if the xHC clears BIT(8) which never happens
1116 	 * and driver assumes that controller is not responding
1117 	 * and times out. To workaround this, its good to check
1118 	 * if SRE and HCE bits are not set (as per xhci
1119 	 * Section 5.4.2) and bypass the timeout.
1120 	 */
1121 		res = readl(&xhci->op_regs->status);
1122 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1123 		    (((res & STS_SRE) == 0) &&
1124 				((res & STS_HCE) == 0))) {
1125 			xhci->broken_suspend = 1;
1126 		} else {
1127 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1128 			spin_unlock_irq(&xhci->lock);
1129 			return -ETIMEDOUT;
1130 		}
1131 	}
1132 	spin_unlock_irq(&xhci->lock);
1133 
1134 	/*
1135 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1136 	 * is about to be suspended.
1137 	 */
1138 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1139 			(!(xhci_all_ports_seen_u0(xhci)))) {
1140 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1141 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1142 				"%s: compliance mode recovery timer deleted",
1143 				__func__);
1144 	}
1145 
1146 	/* step 5: remove core well power */
1147 	/* synchronize irq when using MSI-X */
1148 	xhci_msix_sync_irqs(xhci);
1149 
1150 	return rc;
1151 }
1152 EXPORT_SYMBOL_GPL(xhci_suspend);
1153 
1154 /*
1155  * start xHC (not bus-specific)
1156  *
1157  * This is called when the machine transition from S3/S4 mode.
1158  *
1159  */
1160 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1161 {
1162 	u32			command, temp = 0;
1163 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1164 	int			retval = 0;
1165 	bool			comp_timer_running = false;
1166 	bool			pending_portevent = false;
1167 	bool			reinit_xhc = false;
1168 
1169 	if (!hcd->state)
1170 		return 0;
1171 
1172 	/* Wait a bit if either of the roothubs need to settle from the
1173 	 * transition into bus suspend.
1174 	 */
1175 
1176 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1177 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1178 		msleep(100);
1179 
1180 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1181 	if (xhci->shared_hcd)
1182 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1183 
1184 	spin_lock_irq(&xhci->lock);
1185 
1186 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1187 		reinit_xhc = true;
1188 
1189 	if (!reinit_xhc) {
1190 		/*
1191 		 * Some controllers might lose power during suspend, so wait
1192 		 * for controller not ready bit to clear, just as in xHC init.
1193 		 */
1194 		retval = xhci_handshake(&xhci->op_regs->status,
1195 					STS_CNR, 0, 10 * 1000 * 1000);
1196 		if (retval) {
1197 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1198 				  retval);
1199 			spin_unlock_irq(&xhci->lock);
1200 			return retval;
1201 		}
1202 		/* step 1: restore register */
1203 		xhci_restore_registers(xhci);
1204 		/* step 2: initialize command ring buffer */
1205 		xhci_set_cmd_ring_deq(xhci);
1206 		/* step 3: restore state and start state*/
1207 		/* step 3: set CRS flag */
1208 		command = readl(&xhci->op_regs->command);
1209 		command |= CMD_CRS;
1210 		writel(command, &xhci->op_regs->command);
1211 		/*
1212 		 * Some controllers take up to 55+ ms to complete the controller
1213 		 * restore so setting the timeout to 100ms. Xhci specification
1214 		 * doesn't mention any timeout value.
1215 		 */
1216 		if (xhci_handshake(&xhci->op_regs->status,
1217 			      STS_RESTORE, 0, 100 * 1000)) {
1218 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1219 			spin_unlock_irq(&xhci->lock);
1220 			return -ETIMEDOUT;
1221 		}
1222 	}
1223 
1224 	temp = readl(&xhci->op_regs->status);
1225 
1226 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1227 	if (temp & (STS_SRE | STS_HCE)) {
1228 		reinit_xhc = true;
1229 		if (!xhci->broken_suspend)
1230 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1231 	}
1232 
1233 	if (reinit_xhc) {
1234 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1235 				!(xhci_all_ports_seen_u0(xhci))) {
1236 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1237 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1238 				"Compliance Mode Recovery Timer deleted!");
1239 		}
1240 
1241 		/* Let the USB core know _both_ roothubs lost power. */
1242 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1243 		if (xhci->shared_hcd)
1244 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1245 
1246 		xhci_dbg(xhci, "Stop HCD\n");
1247 		xhci_halt(xhci);
1248 		xhci_zero_64b_regs(xhci);
1249 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1250 		spin_unlock_irq(&xhci->lock);
1251 		if (retval)
1252 			return retval;
1253 		xhci_cleanup_msix(xhci);
1254 
1255 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1256 		temp = readl(&xhci->op_regs->status);
1257 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1258 		xhci_disable_interrupter(xhci->interrupter);
1259 
1260 		xhci_dbg(xhci, "cleaning up memory\n");
1261 		xhci_mem_cleanup(xhci);
1262 		xhci_debugfs_exit(xhci);
1263 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1264 			    readl(&xhci->op_regs->status));
1265 
1266 		/* USB core calls the PCI reinit and start functions twice:
1267 		 * first with the primary HCD, and then with the secondary HCD.
1268 		 * If we don't do the same, the host will never be started.
1269 		 */
1270 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1271 		retval = xhci_init(hcd);
1272 		if (retval)
1273 			return retval;
1274 		comp_timer_running = true;
1275 
1276 		xhci_dbg(xhci, "Start the primary HCD\n");
1277 		retval = xhci_run(hcd);
1278 		if (!retval && xhci->shared_hcd) {
1279 			xhci_dbg(xhci, "Start the secondary HCD\n");
1280 			retval = xhci_run(xhci->shared_hcd);
1281 		}
1282 
1283 		hcd->state = HC_STATE_SUSPENDED;
1284 		if (xhci->shared_hcd)
1285 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1286 		goto done;
1287 	}
1288 
1289 	/* step 4: set Run/Stop bit */
1290 	command = readl(&xhci->op_regs->command);
1291 	command |= CMD_RUN;
1292 	writel(command, &xhci->op_regs->command);
1293 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1294 		  0, 250 * 1000);
1295 
1296 	/* step 5: walk topology and initialize portsc,
1297 	 * portpmsc and portli
1298 	 */
1299 	/* this is done in bus_resume */
1300 
1301 	/* step 6: restart each of the previously
1302 	 * Running endpoints by ringing their doorbells
1303 	 */
1304 
1305 	spin_unlock_irq(&xhci->lock);
1306 
1307 	xhci_dbc_resume(xhci);
1308 
1309  done:
1310 	if (retval == 0) {
1311 		/*
1312 		 * Resume roothubs only if there are pending events.
1313 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1314 		 * the first wake signalling failed, give it that chance.
1315 		 */
1316 		pending_portevent = xhci_pending_portevent(xhci);
1317 		if (!pending_portevent) {
1318 			msleep(120);
1319 			pending_portevent = xhci_pending_portevent(xhci);
1320 		}
1321 
1322 		if (pending_portevent) {
1323 			if (xhci->shared_hcd)
1324 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1325 			usb_hcd_resume_root_hub(hcd);
1326 		}
1327 	}
1328 	/*
1329 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1330 	 * be re-initialized Always after a system resume. Ports are subject
1331 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1332 	 * ports have entered previously to U0 before system's suspension.
1333 	 */
1334 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1335 		compliance_mode_recovery_timer_init(xhci);
1336 
1337 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1338 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1339 
1340 	/* Re-enable port polling. */
1341 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1342 		 __func__, hcd->self.busnum);
1343 	if (xhci->shared_hcd) {
1344 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1345 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1346 	}
1347 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1348 	usb_hcd_poll_rh_status(hcd);
1349 
1350 	return retval;
1351 }
1352 EXPORT_SYMBOL_GPL(xhci_resume);
1353 #endif	/* CONFIG_PM */
1354 
1355 /*-------------------------------------------------------------------------*/
1356 
1357 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1358 {
1359 	void *temp;
1360 	int ret = 0;
1361 	unsigned int buf_len;
1362 	enum dma_data_direction dir;
1363 
1364 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1365 	buf_len = urb->transfer_buffer_length;
1366 
1367 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1368 			    dev_to_node(hcd->self.sysdev));
1369 
1370 	if (usb_urb_dir_out(urb))
1371 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1372 				   temp, buf_len, 0);
1373 
1374 	urb->transfer_buffer = temp;
1375 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1376 					   urb->transfer_buffer,
1377 					   urb->transfer_buffer_length,
1378 					   dir);
1379 
1380 	if (dma_mapping_error(hcd->self.sysdev,
1381 			      urb->transfer_dma)) {
1382 		ret = -EAGAIN;
1383 		kfree(temp);
1384 	} else {
1385 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1386 	}
1387 
1388 	return ret;
1389 }
1390 
1391 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1392 					  struct urb *urb)
1393 {
1394 	bool ret = false;
1395 	unsigned int i;
1396 	unsigned int len = 0;
1397 	unsigned int trb_size;
1398 	unsigned int max_pkt;
1399 	struct scatterlist *sg;
1400 	struct scatterlist *tail_sg;
1401 
1402 	tail_sg = urb->sg;
1403 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1404 
1405 	if (!urb->num_sgs)
1406 		return ret;
1407 
1408 	if (urb->dev->speed >= USB_SPEED_SUPER)
1409 		trb_size = TRB_CACHE_SIZE_SS;
1410 	else
1411 		trb_size = TRB_CACHE_SIZE_HS;
1412 
1413 	if (urb->transfer_buffer_length != 0 &&
1414 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1415 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1416 			len = len + sg->length;
1417 			if (i > trb_size - 2) {
1418 				len = len - tail_sg->length;
1419 				if (len < max_pkt) {
1420 					ret = true;
1421 					break;
1422 				}
1423 
1424 				tail_sg = sg_next(tail_sg);
1425 			}
1426 		}
1427 	}
1428 	return ret;
1429 }
1430 
1431 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1432 {
1433 	unsigned int len;
1434 	unsigned int buf_len;
1435 	enum dma_data_direction dir;
1436 
1437 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1438 
1439 	buf_len = urb->transfer_buffer_length;
1440 
1441 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1442 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1443 		dma_unmap_single(hcd->self.sysdev,
1444 				 urb->transfer_dma,
1445 				 urb->transfer_buffer_length,
1446 				 dir);
1447 
1448 	if (usb_urb_dir_in(urb)) {
1449 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1450 					   urb->transfer_buffer,
1451 					   buf_len,
1452 					   0);
1453 		if (len != buf_len) {
1454 			xhci_dbg(hcd_to_xhci(hcd),
1455 				 "Copy from tmp buf to urb sg list failed\n");
1456 			urb->actual_length = len;
1457 		}
1458 	}
1459 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1460 	kfree(urb->transfer_buffer);
1461 	urb->transfer_buffer = NULL;
1462 }
1463 
1464 /*
1465  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1466  * we'll copy the actual data into the TRB address register. This is limited to
1467  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1468  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1469  */
1470 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1471 				gfp_t mem_flags)
1472 {
1473 	struct xhci_hcd *xhci;
1474 
1475 	xhci = hcd_to_xhci(hcd);
1476 
1477 	if (xhci_urb_suitable_for_idt(urb))
1478 		return 0;
1479 
1480 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1481 		if (xhci_urb_temp_buffer_required(hcd, urb))
1482 			return xhci_map_temp_buffer(hcd, urb);
1483 	}
1484 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1485 }
1486 
1487 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1488 {
1489 	struct xhci_hcd *xhci;
1490 	bool unmap_temp_buf = false;
1491 
1492 	xhci = hcd_to_xhci(hcd);
1493 
1494 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1495 		unmap_temp_buf = true;
1496 
1497 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1498 		xhci_unmap_temp_buf(hcd, urb);
1499 	else
1500 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1501 }
1502 
1503 /**
1504  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1505  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1506  * value to right shift 1 for the bitmask.
1507  *
1508  * Index  = (epnum * 2) + direction - 1,
1509  * where direction = 0 for OUT, 1 for IN.
1510  * For control endpoints, the IN index is used (OUT index is unused), so
1511  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1512  */
1513 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1514 {
1515 	unsigned int index;
1516 	if (usb_endpoint_xfer_control(desc))
1517 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1518 	else
1519 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1520 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1521 	return index;
1522 }
1523 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1524 
1525 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1526  * address from the XHCI endpoint index.
1527  */
1528 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1529 {
1530 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1531 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1532 	return direction | number;
1533 }
1534 
1535 /* Find the flag for this endpoint (for use in the control context).  Use the
1536  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1537  * bit 1, etc.
1538  */
1539 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1540 {
1541 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1542 }
1543 
1544 /* Compute the last valid endpoint context index.  Basically, this is the
1545  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1546  * we find the most significant bit set in the added contexts flags.
1547  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1548  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1549  */
1550 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1551 {
1552 	return fls(added_ctxs) - 1;
1553 }
1554 
1555 /* Returns 1 if the arguments are OK;
1556  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1557  */
1558 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1559 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1560 		const char *func) {
1561 	struct xhci_hcd	*xhci;
1562 	struct xhci_virt_device	*virt_dev;
1563 
1564 	if (!hcd || (check_ep && !ep) || !udev) {
1565 		pr_debug("xHCI %s called with invalid args\n", func);
1566 		return -EINVAL;
1567 	}
1568 	if (!udev->parent) {
1569 		pr_debug("xHCI %s called for root hub\n", func);
1570 		return 0;
1571 	}
1572 
1573 	xhci = hcd_to_xhci(hcd);
1574 	if (check_virt_dev) {
1575 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1576 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1577 					func);
1578 			return -EINVAL;
1579 		}
1580 
1581 		virt_dev = xhci->devs[udev->slot_id];
1582 		if (virt_dev->udev != udev) {
1583 			xhci_dbg(xhci, "xHCI %s called with udev and "
1584 					  "virt_dev does not match\n", func);
1585 			return -EINVAL;
1586 		}
1587 	}
1588 
1589 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1590 		return -ENODEV;
1591 
1592 	return 1;
1593 }
1594 
1595 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1596 		struct usb_device *udev, struct xhci_command *command,
1597 		bool ctx_change, bool must_succeed);
1598 
1599 /*
1600  * Full speed devices may have a max packet size greater than 8 bytes, but the
1601  * USB core doesn't know that until it reads the first 8 bytes of the
1602  * descriptor.  If the usb_device's max packet size changes after that point,
1603  * we need to issue an evaluate context command and wait on it.
1604  */
1605 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1606 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1607 {
1608 	struct xhci_container_ctx *out_ctx;
1609 	struct xhci_input_control_ctx *ctrl_ctx;
1610 	struct xhci_ep_ctx *ep_ctx;
1611 	struct xhci_command *command;
1612 	int max_packet_size;
1613 	int hw_max_packet_size;
1614 	int ret = 0;
1615 
1616 	out_ctx = xhci->devs[slot_id]->out_ctx;
1617 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1618 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1619 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1620 	if (hw_max_packet_size != max_packet_size) {
1621 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1622 				"Max Packet Size for ep 0 changed.");
1623 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1624 				"Max packet size in usb_device = %d",
1625 				max_packet_size);
1626 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1627 				"Max packet size in xHCI HW = %d",
1628 				hw_max_packet_size);
1629 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1630 				"Issuing evaluate context command.");
1631 
1632 		/* Set up the input context flags for the command */
1633 		/* FIXME: This won't work if a non-default control endpoint
1634 		 * changes max packet sizes.
1635 		 */
1636 
1637 		command = xhci_alloc_command(xhci, true, mem_flags);
1638 		if (!command)
1639 			return -ENOMEM;
1640 
1641 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1642 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1643 		if (!ctrl_ctx) {
1644 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1645 					__func__);
1646 			ret = -ENOMEM;
1647 			goto command_cleanup;
1648 		}
1649 		/* Set up the modified control endpoint 0 */
1650 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1651 				xhci->devs[slot_id]->out_ctx, ep_index);
1652 
1653 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1654 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1655 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1656 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1657 
1658 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1659 		ctrl_ctx->drop_flags = 0;
1660 
1661 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1662 				true, false);
1663 
1664 		/* Clean up the input context for later use by bandwidth
1665 		 * functions.
1666 		 */
1667 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1668 command_cleanup:
1669 		kfree(command->completion);
1670 		kfree(command);
1671 	}
1672 	return ret;
1673 }
1674 
1675 /*
1676  * non-error returns are a promise to giveback() the urb later
1677  * we drop ownership so next owner (or urb unlink) can get it
1678  */
1679 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1680 {
1681 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1682 	unsigned long flags;
1683 	int ret = 0;
1684 	unsigned int slot_id, ep_index;
1685 	unsigned int *ep_state;
1686 	struct urb_priv	*urb_priv;
1687 	int num_tds;
1688 
1689 	if (!urb)
1690 		return -EINVAL;
1691 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1692 					true, true, __func__);
1693 	if (ret <= 0)
1694 		return ret ? ret : -EINVAL;
1695 
1696 	slot_id = urb->dev->slot_id;
1697 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1698 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1699 
1700 	if (!HCD_HW_ACCESSIBLE(hcd))
1701 		return -ESHUTDOWN;
1702 
1703 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1704 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1705 		return -ENODEV;
1706 	}
1707 
1708 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1709 		num_tds = urb->number_of_packets;
1710 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1711 	    urb->transfer_buffer_length > 0 &&
1712 	    urb->transfer_flags & URB_ZERO_PACKET &&
1713 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1714 		num_tds = 2;
1715 	else
1716 		num_tds = 1;
1717 
1718 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1719 	if (!urb_priv)
1720 		return -ENOMEM;
1721 
1722 	urb_priv->num_tds = num_tds;
1723 	urb_priv->num_tds_done = 0;
1724 	urb->hcpriv = urb_priv;
1725 
1726 	trace_xhci_urb_enqueue(urb);
1727 
1728 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1729 		/* Check to see if the max packet size for the default control
1730 		 * endpoint changed during FS device enumeration
1731 		 */
1732 		if (urb->dev->speed == USB_SPEED_FULL) {
1733 			ret = xhci_check_maxpacket(xhci, slot_id,
1734 					ep_index, urb, mem_flags);
1735 			if (ret < 0) {
1736 				xhci_urb_free_priv(urb_priv);
1737 				urb->hcpriv = NULL;
1738 				return ret;
1739 			}
1740 		}
1741 	}
1742 
1743 	spin_lock_irqsave(&xhci->lock, flags);
1744 
1745 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1746 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1747 			 urb->ep->desc.bEndpointAddress, urb);
1748 		ret = -ESHUTDOWN;
1749 		goto free_priv;
1750 	}
1751 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1752 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1753 			  *ep_state);
1754 		ret = -EINVAL;
1755 		goto free_priv;
1756 	}
1757 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1758 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1759 		ret = -EINVAL;
1760 		goto free_priv;
1761 	}
1762 
1763 	switch (usb_endpoint_type(&urb->ep->desc)) {
1764 
1765 	case USB_ENDPOINT_XFER_CONTROL:
1766 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1767 					 slot_id, ep_index);
1768 		break;
1769 	case USB_ENDPOINT_XFER_BULK:
1770 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1771 					 slot_id, ep_index);
1772 		break;
1773 	case USB_ENDPOINT_XFER_INT:
1774 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1775 				slot_id, ep_index);
1776 		break;
1777 	case USB_ENDPOINT_XFER_ISOC:
1778 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1779 				slot_id, ep_index);
1780 	}
1781 
1782 	if (ret) {
1783 free_priv:
1784 		xhci_urb_free_priv(urb_priv);
1785 		urb->hcpriv = NULL;
1786 	}
1787 	spin_unlock_irqrestore(&xhci->lock, flags);
1788 	return ret;
1789 }
1790 
1791 /*
1792  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1793  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1794  * should pick up where it left off in the TD, unless a Set Transfer Ring
1795  * Dequeue Pointer is issued.
1796  *
1797  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1798  * the ring.  Since the ring is a contiguous structure, they can't be physically
1799  * removed.  Instead, there are two options:
1800  *
1801  *  1) If the HC is in the middle of processing the URB to be canceled, we
1802  *     simply move the ring's dequeue pointer past those TRBs using the Set
1803  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1804  *     when drivers timeout on the last submitted URB and attempt to cancel.
1805  *
1806  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1807  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1808  *     HC will need to invalidate the any TRBs it has cached after the stop
1809  *     endpoint command, as noted in the xHCI 0.95 errata.
1810  *
1811  *  3) The TD may have completed by the time the Stop Endpoint Command
1812  *     completes, so software needs to handle that case too.
1813  *
1814  * This function should protect against the TD enqueueing code ringing the
1815  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1816  * It also needs to account for multiple cancellations on happening at the same
1817  * time for the same endpoint.
1818  *
1819  * Note that this function can be called in any context, or so says
1820  * usb_hcd_unlink_urb()
1821  */
1822 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1823 {
1824 	unsigned long flags;
1825 	int ret, i;
1826 	u32 temp;
1827 	struct xhci_hcd *xhci;
1828 	struct urb_priv	*urb_priv;
1829 	struct xhci_td *td;
1830 	unsigned int ep_index;
1831 	struct xhci_ring *ep_ring;
1832 	struct xhci_virt_ep *ep;
1833 	struct xhci_command *command;
1834 	struct xhci_virt_device *vdev;
1835 
1836 	xhci = hcd_to_xhci(hcd);
1837 	spin_lock_irqsave(&xhci->lock, flags);
1838 
1839 	trace_xhci_urb_dequeue(urb);
1840 
1841 	/* Make sure the URB hasn't completed or been unlinked already */
1842 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1843 	if (ret)
1844 		goto done;
1845 
1846 	/* give back URB now if we can't queue it for cancel */
1847 	vdev = xhci->devs[urb->dev->slot_id];
1848 	urb_priv = urb->hcpriv;
1849 	if (!vdev || !urb_priv)
1850 		goto err_giveback;
1851 
1852 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1853 	ep = &vdev->eps[ep_index];
1854 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1855 	if (!ep || !ep_ring)
1856 		goto err_giveback;
1857 
1858 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1859 	temp = readl(&xhci->op_regs->status);
1860 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1861 		xhci_hc_died(xhci);
1862 		goto done;
1863 	}
1864 
1865 	/*
1866 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1867 	 * make sure none of the ring related pointers in this URB private data
1868 	 * are touched, such as td_list, otherwise we overwrite freed data
1869 	 */
1870 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1871 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1872 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1873 			td = &urb_priv->td[i];
1874 			if (!list_empty(&td->cancelled_td_list))
1875 				list_del_init(&td->cancelled_td_list);
1876 		}
1877 		goto err_giveback;
1878 	}
1879 
1880 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1881 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1882 				"HC halted, freeing TD manually.");
1883 		for (i = urb_priv->num_tds_done;
1884 		     i < urb_priv->num_tds;
1885 		     i++) {
1886 			td = &urb_priv->td[i];
1887 			if (!list_empty(&td->td_list))
1888 				list_del_init(&td->td_list);
1889 			if (!list_empty(&td->cancelled_td_list))
1890 				list_del_init(&td->cancelled_td_list);
1891 		}
1892 		goto err_giveback;
1893 	}
1894 
1895 	i = urb_priv->num_tds_done;
1896 	if (i < urb_priv->num_tds)
1897 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1898 				"Cancel URB %p, dev %s, ep 0x%x, "
1899 				"starting at offset 0x%llx",
1900 				urb, urb->dev->devpath,
1901 				urb->ep->desc.bEndpointAddress,
1902 				(unsigned long long) xhci_trb_virt_to_dma(
1903 					urb_priv->td[i].start_seg,
1904 					urb_priv->td[i].first_trb));
1905 
1906 	for (; i < urb_priv->num_tds; i++) {
1907 		td = &urb_priv->td[i];
1908 		/* TD can already be on cancelled list if ep halted on it */
1909 		if (list_empty(&td->cancelled_td_list)) {
1910 			td->cancel_status = TD_DIRTY;
1911 			list_add_tail(&td->cancelled_td_list,
1912 				      &ep->cancelled_td_list);
1913 		}
1914 	}
1915 
1916 	/* Queue a stop endpoint command, but only if this is
1917 	 * the first cancellation to be handled.
1918 	 */
1919 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1920 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1921 		if (!command) {
1922 			ret = -ENOMEM;
1923 			goto done;
1924 		}
1925 		ep->ep_state |= EP_STOP_CMD_PENDING;
1926 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1927 					 ep_index, 0);
1928 		xhci_ring_cmd_db(xhci);
1929 	}
1930 done:
1931 	spin_unlock_irqrestore(&xhci->lock, flags);
1932 	return ret;
1933 
1934 err_giveback:
1935 	if (urb_priv)
1936 		xhci_urb_free_priv(urb_priv);
1937 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1938 	spin_unlock_irqrestore(&xhci->lock, flags);
1939 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1940 	return ret;
1941 }
1942 
1943 /* Drop an endpoint from a new bandwidth configuration for this device.
1944  * Only one call to this function is allowed per endpoint before
1945  * check_bandwidth() or reset_bandwidth() must be called.
1946  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1947  * add the endpoint to the schedule with possibly new parameters denoted by a
1948  * different endpoint descriptor in usb_host_endpoint.
1949  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1950  * not allowed.
1951  *
1952  * The USB core will not allow URBs to be queued to an endpoint that is being
1953  * disabled, so there's no need for mutual exclusion to protect
1954  * the xhci->devs[slot_id] structure.
1955  */
1956 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1957 		       struct usb_host_endpoint *ep)
1958 {
1959 	struct xhci_hcd *xhci;
1960 	struct xhci_container_ctx *in_ctx, *out_ctx;
1961 	struct xhci_input_control_ctx *ctrl_ctx;
1962 	unsigned int ep_index;
1963 	struct xhci_ep_ctx *ep_ctx;
1964 	u32 drop_flag;
1965 	u32 new_add_flags, new_drop_flags;
1966 	int ret;
1967 
1968 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1969 	if (ret <= 0)
1970 		return ret;
1971 	xhci = hcd_to_xhci(hcd);
1972 	if (xhci->xhc_state & XHCI_STATE_DYING)
1973 		return -ENODEV;
1974 
1975 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1976 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1977 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1978 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1979 				__func__, drop_flag);
1980 		return 0;
1981 	}
1982 
1983 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1984 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1985 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1986 	if (!ctrl_ctx) {
1987 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1988 				__func__);
1989 		return 0;
1990 	}
1991 
1992 	ep_index = xhci_get_endpoint_index(&ep->desc);
1993 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1994 	/* If the HC already knows the endpoint is disabled,
1995 	 * or the HCD has noted it is disabled, ignore this request
1996 	 */
1997 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1998 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1999 	    xhci_get_endpoint_flag(&ep->desc)) {
2000 		/* Do not warn when called after a usb_device_reset */
2001 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
2002 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
2003 				  __func__, ep);
2004 		return 0;
2005 	}
2006 
2007 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
2008 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2009 
2010 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
2011 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2012 
2013 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
2014 
2015 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
2016 
2017 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2018 			(unsigned int) ep->desc.bEndpointAddress,
2019 			udev->slot_id,
2020 			(unsigned int) new_drop_flags,
2021 			(unsigned int) new_add_flags);
2022 	return 0;
2023 }
2024 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
2025 
2026 /* Add an endpoint to a new possible bandwidth configuration for this device.
2027  * Only one call to this function is allowed per endpoint before
2028  * check_bandwidth() or reset_bandwidth() must be called.
2029  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
2030  * add the endpoint to the schedule with possibly new parameters denoted by a
2031  * different endpoint descriptor in usb_host_endpoint.
2032  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
2033  * not allowed.
2034  *
2035  * The USB core will not allow URBs to be queued to an endpoint until the
2036  * configuration or alt setting is installed in the device, so there's no need
2037  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
2038  */
2039 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
2040 		      struct usb_host_endpoint *ep)
2041 {
2042 	struct xhci_hcd *xhci;
2043 	struct xhci_container_ctx *in_ctx;
2044 	unsigned int ep_index;
2045 	struct xhci_input_control_ctx *ctrl_ctx;
2046 	struct xhci_ep_ctx *ep_ctx;
2047 	u32 added_ctxs;
2048 	u32 new_add_flags, new_drop_flags;
2049 	struct xhci_virt_device *virt_dev;
2050 	int ret = 0;
2051 
2052 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2053 	if (ret <= 0) {
2054 		/* So we won't queue a reset ep command for a root hub */
2055 		ep->hcpriv = NULL;
2056 		return ret;
2057 	}
2058 	xhci = hcd_to_xhci(hcd);
2059 	if (xhci->xhc_state & XHCI_STATE_DYING)
2060 		return -ENODEV;
2061 
2062 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2063 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2064 		/* FIXME when we have to issue an evaluate endpoint command to
2065 		 * deal with ep0 max packet size changing once we get the
2066 		 * descriptors
2067 		 */
2068 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2069 				__func__, added_ctxs);
2070 		return 0;
2071 	}
2072 
2073 	virt_dev = xhci->devs[udev->slot_id];
2074 	in_ctx = virt_dev->in_ctx;
2075 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2076 	if (!ctrl_ctx) {
2077 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2078 				__func__);
2079 		return 0;
2080 	}
2081 
2082 	ep_index = xhci_get_endpoint_index(&ep->desc);
2083 	/* If this endpoint is already in use, and the upper layers are trying
2084 	 * to add it again without dropping it, reject the addition.
2085 	 */
2086 	if (virt_dev->eps[ep_index].ring &&
2087 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2088 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2089 				"without dropping it.\n",
2090 				(unsigned int) ep->desc.bEndpointAddress);
2091 		return -EINVAL;
2092 	}
2093 
2094 	/* If the HCD has already noted the endpoint is enabled,
2095 	 * ignore this request.
2096 	 */
2097 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2098 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2099 				__func__, ep);
2100 		return 0;
2101 	}
2102 
2103 	/*
2104 	 * Configuration and alternate setting changes must be done in
2105 	 * process context, not interrupt context (or so documenation
2106 	 * for usb_set_interface() and usb_set_configuration() claim).
2107 	 */
2108 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2109 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2110 				__func__, ep->desc.bEndpointAddress);
2111 		return -ENOMEM;
2112 	}
2113 
2114 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2115 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2116 
2117 	/* If xhci_endpoint_disable() was called for this endpoint, but the
2118 	 * xHC hasn't been notified yet through the check_bandwidth() call,
2119 	 * this re-adds a new state for the endpoint from the new endpoint
2120 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2121 	 * drop flags alone.
2122 	 */
2123 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2124 
2125 	/* Store the usb_device pointer for later use */
2126 	ep->hcpriv = udev;
2127 
2128 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2129 	trace_xhci_add_endpoint(ep_ctx);
2130 
2131 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2132 			(unsigned int) ep->desc.bEndpointAddress,
2133 			udev->slot_id,
2134 			(unsigned int) new_drop_flags,
2135 			(unsigned int) new_add_flags);
2136 	return 0;
2137 }
2138 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2139 
2140 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2141 {
2142 	struct xhci_input_control_ctx *ctrl_ctx;
2143 	struct xhci_ep_ctx *ep_ctx;
2144 	struct xhci_slot_ctx *slot_ctx;
2145 	int i;
2146 
2147 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2148 	if (!ctrl_ctx) {
2149 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2150 				__func__);
2151 		return;
2152 	}
2153 
2154 	/* When a device's add flag and drop flag are zero, any subsequent
2155 	 * configure endpoint command will leave that endpoint's state
2156 	 * untouched.  Make sure we don't leave any old state in the input
2157 	 * endpoint contexts.
2158 	 */
2159 	ctrl_ctx->drop_flags = 0;
2160 	ctrl_ctx->add_flags = 0;
2161 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2162 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2163 	/* Endpoint 0 is always valid */
2164 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2165 	for (i = 1; i < 31; i++) {
2166 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2167 		ep_ctx->ep_info = 0;
2168 		ep_ctx->ep_info2 = 0;
2169 		ep_ctx->deq = 0;
2170 		ep_ctx->tx_info = 0;
2171 	}
2172 }
2173 
2174 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2175 		struct usb_device *udev, u32 *cmd_status)
2176 {
2177 	int ret;
2178 
2179 	switch (*cmd_status) {
2180 	case COMP_COMMAND_ABORTED:
2181 	case COMP_COMMAND_RING_STOPPED:
2182 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2183 		ret = -ETIME;
2184 		break;
2185 	case COMP_RESOURCE_ERROR:
2186 		dev_warn(&udev->dev,
2187 			 "Not enough host controller resources for new device state.\n");
2188 		ret = -ENOMEM;
2189 		/* FIXME: can we allocate more resources for the HC? */
2190 		break;
2191 	case COMP_BANDWIDTH_ERROR:
2192 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2193 		dev_warn(&udev->dev,
2194 			 "Not enough bandwidth for new device state.\n");
2195 		ret = -ENOSPC;
2196 		/* FIXME: can we go back to the old state? */
2197 		break;
2198 	case COMP_TRB_ERROR:
2199 		/* the HCD set up something wrong */
2200 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2201 				"add flag = 1, "
2202 				"and endpoint is not disabled.\n");
2203 		ret = -EINVAL;
2204 		break;
2205 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2206 		dev_warn(&udev->dev,
2207 			 "ERROR: Incompatible device for endpoint configure command.\n");
2208 		ret = -ENODEV;
2209 		break;
2210 	case COMP_SUCCESS:
2211 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2212 				"Successful Endpoint Configure command");
2213 		ret = 0;
2214 		break;
2215 	default:
2216 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2217 				*cmd_status);
2218 		ret = -EINVAL;
2219 		break;
2220 	}
2221 	return ret;
2222 }
2223 
2224 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2225 		struct usb_device *udev, u32 *cmd_status)
2226 {
2227 	int ret;
2228 
2229 	switch (*cmd_status) {
2230 	case COMP_COMMAND_ABORTED:
2231 	case COMP_COMMAND_RING_STOPPED:
2232 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2233 		ret = -ETIME;
2234 		break;
2235 	case COMP_PARAMETER_ERROR:
2236 		dev_warn(&udev->dev,
2237 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2238 		ret = -EINVAL;
2239 		break;
2240 	case COMP_SLOT_NOT_ENABLED_ERROR:
2241 		dev_warn(&udev->dev,
2242 			"WARN: slot not enabled for evaluate context command.\n");
2243 		ret = -EINVAL;
2244 		break;
2245 	case COMP_CONTEXT_STATE_ERROR:
2246 		dev_warn(&udev->dev,
2247 			"WARN: invalid context state for evaluate context command.\n");
2248 		ret = -EINVAL;
2249 		break;
2250 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2251 		dev_warn(&udev->dev,
2252 			"ERROR: Incompatible device for evaluate context command.\n");
2253 		ret = -ENODEV;
2254 		break;
2255 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2256 		/* Max Exit Latency too large error */
2257 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2258 		ret = -EINVAL;
2259 		break;
2260 	case COMP_SUCCESS:
2261 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2262 				"Successful evaluate context command");
2263 		ret = 0;
2264 		break;
2265 	default:
2266 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2267 			*cmd_status);
2268 		ret = -EINVAL;
2269 		break;
2270 	}
2271 	return ret;
2272 }
2273 
2274 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2275 		struct xhci_input_control_ctx *ctrl_ctx)
2276 {
2277 	u32 valid_add_flags;
2278 	u32 valid_drop_flags;
2279 
2280 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2281 	 * (bit 1).  The default control endpoint is added during the Address
2282 	 * Device command and is never removed until the slot is disabled.
2283 	 */
2284 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2285 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2286 
2287 	/* Use hweight32 to count the number of ones in the add flags, or
2288 	 * number of endpoints added.  Don't count endpoints that are changed
2289 	 * (both added and dropped).
2290 	 */
2291 	return hweight32(valid_add_flags) -
2292 		hweight32(valid_add_flags & valid_drop_flags);
2293 }
2294 
2295 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2296 		struct xhci_input_control_ctx *ctrl_ctx)
2297 {
2298 	u32 valid_add_flags;
2299 	u32 valid_drop_flags;
2300 
2301 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2302 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2303 
2304 	return hweight32(valid_drop_flags) -
2305 		hweight32(valid_add_flags & valid_drop_flags);
2306 }
2307 
2308 /*
2309  * We need to reserve the new number of endpoints before the configure endpoint
2310  * command completes.  We can't subtract the dropped endpoints from the number
2311  * of active endpoints until the command completes because we can oversubscribe
2312  * the host in this case:
2313  *
2314  *  - the first configure endpoint command drops more endpoints than it adds
2315  *  - a second configure endpoint command that adds more endpoints is queued
2316  *  - the first configure endpoint command fails, so the config is unchanged
2317  *  - the second command may succeed, even though there isn't enough resources
2318  *
2319  * Must be called with xhci->lock held.
2320  */
2321 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2322 		struct xhci_input_control_ctx *ctrl_ctx)
2323 {
2324 	u32 added_eps;
2325 
2326 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2327 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2328 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2329 				"Not enough ep ctxs: "
2330 				"%u active, need to add %u, limit is %u.",
2331 				xhci->num_active_eps, added_eps,
2332 				xhci->limit_active_eps);
2333 		return -ENOMEM;
2334 	}
2335 	xhci->num_active_eps += added_eps;
2336 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2337 			"Adding %u ep ctxs, %u now active.", added_eps,
2338 			xhci->num_active_eps);
2339 	return 0;
2340 }
2341 
2342 /*
2343  * The configure endpoint was failed by the xHC for some other reason, so we
2344  * need to revert the resources that failed configuration would have used.
2345  *
2346  * Must be called with xhci->lock held.
2347  */
2348 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2349 		struct xhci_input_control_ctx *ctrl_ctx)
2350 {
2351 	u32 num_failed_eps;
2352 
2353 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2354 	xhci->num_active_eps -= num_failed_eps;
2355 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2356 			"Removing %u failed ep ctxs, %u now active.",
2357 			num_failed_eps,
2358 			xhci->num_active_eps);
2359 }
2360 
2361 /*
2362  * Now that the command has completed, clean up the active endpoint count by
2363  * subtracting out the endpoints that were dropped (but not changed).
2364  *
2365  * Must be called with xhci->lock held.
2366  */
2367 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2368 		struct xhci_input_control_ctx *ctrl_ctx)
2369 {
2370 	u32 num_dropped_eps;
2371 
2372 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2373 	xhci->num_active_eps -= num_dropped_eps;
2374 	if (num_dropped_eps)
2375 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2376 				"Removing %u dropped ep ctxs, %u now active.",
2377 				num_dropped_eps,
2378 				xhci->num_active_eps);
2379 }
2380 
2381 static unsigned int xhci_get_block_size(struct usb_device *udev)
2382 {
2383 	switch (udev->speed) {
2384 	case USB_SPEED_LOW:
2385 	case USB_SPEED_FULL:
2386 		return FS_BLOCK;
2387 	case USB_SPEED_HIGH:
2388 		return HS_BLOCK;
2389 	case USB_SPEED_SUPER:
2390 	case USB_SPEED_SUPER_PLUS:
2391 		return SS_BLOCK;
2392 	case USB_SPEED_UNKNOWN:
2393 	case USB_SPEED_WIRELESS:
2394 	default:
2395 		/* Should never happen */
2396 		return 1;
2397 	}
2398 }
2399 
2400 static unsigned int
2401 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2402 {
2403 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2404 		return LS_OVERHEAD;
2405 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2406 		return FS_OVERHEAD;
2407 	return HS_OVERHEAD;
2408 }
2409 
2410 /* If we are changing a LS/FS device under a HS hub,
2411  * make sure (if we are activating a new TT) that the HS bus has enough
2412  * bandwidth for this new TT.
2413  */
2414 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2415 		struct xhci_virt_device *virt_dev,
2416 		int old_active_eps)
2417 {
2418 	struct xhci_interval_bw_table *bw_table;
2419 	struct xhci_tt_bw_info *tt_info;
2420 
2421 	/* Find the bandwidth table for the root port this TT is attached to. */
2422 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2423 	tt_info = virt_dev->tt_info;
2424 	/* If this TT already had active endpoints, the bandwidth for this TT
2425 	 * has already been added.  Removing all periodic endpoints (and thus
2426 	 * making the TT enactive) will only decrease the bandwidth used.
2427 	 */
2428 	if (old_active_eps)
2429 		return 0;
2430 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2431 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2432 			return -ENOMEM;
2433 		return 0;
2434 	}
2435 	/* Not sure why we would have no new active endpoints...
2436 	 *
2437 	 * Maybe because of an Evaluate Context change for a hub update or a
2438 	 * control endpoint 0 max packet size change?
2439 	 * FIXME: skip the bandwidth calculation in that case.
2440 	 */
2441 	return 0;
2442 }
2443 
2444 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2445 		struct xhci_virt_device *virt_dev)
2446 {
2447 	unsigned int bw_reserved;
2448 
2449 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2450 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2451 		return -ENOMEM;
2452 
2453 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2454 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2455 		return -ENOMEM;
2456 
2457 	return 0;
2458 }
2459 
2460 /*
2461  * This algorithm is a very conservative estimate of the worst-case scheduling
2462  * scenario for any one interval.  The hardware dynamically schedules the
2463  * packets, so we can't tell which microframe could be the limiting factor in
2464  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2465  *
2466  * Obviously, we can't solve an NP complete problem to find the minimum worst
2467  * case scenario.  Instead, we come up with an estimate that is no less than
2468  * the worst case bandwidth used for any one microframe, but may be an
2469  * over-estimate.
2470  *
2471  * We walk the requirements for each endpoint by interval, starting with the
2472  * smallest interval, and place packets in the schedule where there is only one
2473  * possible way to schedule packets for that interval.  In order to simplify
2474  * this algorithm, we record the largest max packet size for each interval, and
2475  * assume all packets will be that size.
2476  *
2477  * For interval 0, we obviously must schedule all packets for each interval.
2478  * The bandwidth for interval 0 is just the amount of data to be transmitted
2479  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2480  * the number of packets).
2481  *
2482  * For interval 1, we have two possible microframes to schedule those packets
2483  * in.  For this algorithm, if we can schedule the same number of packets for
2484  * each possible scheduling opportunity (each microframe), we will do so.  The
2485  * remaining number of packets will be saved to be transmitted in the gaps in
2486  * the next interval's scheduling sequence.
2487  *
2488  * As we move those remaining packets to be scheduled with interval 2 packets,
2489  * we have to double the number of remaining packets to transmit.  This is
2490  * because the intervals are actually powers of 2, and we would be transmitting
2491  * the previous interval's packets twice in this interval.  We also have to be
2492  * sure that when we look at the largest max packet size for this interval, we
2493  * also look at the largest max packet size for the remaining packets and take
2494  * the greater of the two.
2495  *
2496  * The algorithm continues to evenly distribute packets in each scheduling
2497  * opportunity, and push the remaining packets out, until we get to the last
2498  * interval.  Then those packets and their associated overhead are just added
2499  * to the bandwidth used.
2500  */
2501 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2502 		struct xhci_virt_device *virt_dev,
2503 		int old_active_eps)
2504 {
2505 	unsigned int bw_reserved;
2506 	unsigned int max_bandwidth;
2507 	unsigned int bw_used;
2508 	unsigned int block_size;
2509 	struct xhci_interval_bw_table *bw_table;
2510 	unsigned int packet_size = 0;
2511 	unsigned int overhead = 0;
2512 	unsigned int packets_transmitted = 0;
2513 	unsigned int packets_remaining = 0;
2514 	unsigned int i;
2515 
2516 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2517 		return xhci_check_ss_bw(xhci, virt_dev);
2518 
2519 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2520 		max_bandwidth = HS_BW_LIMIT;
2521 		/* Convert percent of bus BW reserved to blocks reserved */
2522 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2523 	} else {
2524 		max_bandwidth = FS_BW_LIMIT;
2525 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2526 	}
2527 
2528 	bw_table = virt_dev->bw_table;
2529 	/* We need to translate the max packet size and max ESIT payloads into
2530 	 * the units the hardware uses.
2531 	 */
2532 	block_size = xhci_get_block_size(virt_dev->udev);
2533 
2534 	/* If we are manipulating a LS/FS device under a HS hub, double check
2535 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2536 	 */
2537 	if (virt_dev->tt_info) {
2538 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2539 				"Recalculating BW for rootport %u",
2540 				virt_dev->real_port);
2541 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2542 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2543 					"newly activated TT.\n");
2544 			return -ENOMEM;
2545 		}
2546 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2547 				"Recalculating BW for TT slot %u port %u",
2548 				virt_dev->tt_info->slot_id,
2549 				virt_dev->tt_info->ttport);
2550 	} else {
2551 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2552 				"Recalculating BW for rootport %u",
2553 				virt_dev->real_port);
2554 	}
2555 
2556 	/* Add in how much bandwidth will be used for interval zero, or the
2557 	 * rounded max ESIT payload + number of packets * largest overhead.
2558 	 */
2559 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2560 		bw_table->interval_bw[0].num_packets *
2561 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2562 
2563 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2564 		unsigned int bw_added;
2565 		unsigned int largest_mps;
2566 		unsigned int interval_overhead;
2567 
2568 		/*
2569 		 * How many packets could we transmit in this interval?
2570 		 * If packets didn't fit in the previous interval, we will need
2571 		 * to transmit that many packets twice within this interval.
2572 		 */
2573 		packets_remaining = 2 * packets_remaining +
2574 			bw_table->interval_bw[i].num_packets;
2575 
2576 		/* Find the largest max packet size of this or the previous
2577 		 * interval.
2578 		 */
2579 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2580 			largest_mps = 0;
2581 		else {
2582 			struct xhci_virt_ep *virt_ep;
2583 			struct list_head *ep_entry;
2584 
2585 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2586 			virt_ep = list_entry(ep_entry,
2587 					struct xhci_virt_ep, bw_endpoint_list);
2588 			/* Convert to blocks, rounding up */
2589 			largest_mps = DIV_ROUND_UP(
2590 					virt_ep->bw_info.max_packet_size,
2591 					block_size);
2592 		}
2593 		if (largest_mps > packet_size)
2594 			packet_size = largest_mps;
2595 
2596 		/* Use the larger overhead of this or the previous interval. */
2597 		interval_overhead = xhci_get_largest_overhead(
2598 				&bw_table->interval_bw[i]);
2599 		if (interval_overhead > overhead)
2600 			overhead = interval_overhead;
2601 
2602 		/* How many packets can we evenly distribute across
2603 		 * (1 << (i + 1)) possible scheduling opportunities?
2604 		 */
2605 		packets_transmitted = packets_remaining >> (i + 1);
2606 
2607 		/* Add in the bandwidth used for those scheduled packets */
2608 		bw_added = packets_transmitted * (overhead + packet_size);
2609 
2610 		/* How many packets do we have remaining to transmit? */
2611 		packets_remaining = packets_remaining % (1 << (i + 1));
2612 
2613 		/* What largest max packet size should those packets have? */
2614 		/* If we've transmitted all packets, don't carry over the
2615 		 * largest packet size.
2616 		 */
2617 		if (packets_remaining == 0) {
2618 			packet_size = 0;
2619 			overhead = 0;
2620 		} else if (packets_transmitted > 0) {
2621 			/* Otherwise if we do have remaining packets, and we've
2622 			 * scheduled some packets in this interval, take the
2623 			 * largest max packet size from endpoints with this
2624 			 * interval.
2625 			 */
2626 			packet_size = largest_mps;
2627 			overhead = interval_overhead;
2628 		}
2629 		/* Otherwise carry over packet_size and overhead from the last
2630 		 * time we had a remainder.
2631 		 */
2632 		bw_used += bw_added;
2633 		if (bw_used > max_bandwidth) {
2634 			xhci_warn(xhci, "Not enough bandwidth. "
2635 					"Proposed: %u, Max: %u\n",
2636 				bw_used, max_bandwidth);
2637 			return -ENOMEM;
2638 		}
2639 	}
2640 	/*
2641 	 * Ok, we know we have some packets left over after even-handedly
2642 	 * scheduling interval 15.  We don't know which microframes they will
2643 	 * fit into, so we over-schedule and say they will be scheduled every
2644 	 * microframe.
2645 	 */
2646 	if (packets_remaining > 0)
2647 		bw_used += overhead + packet_size;
2648 
2649 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2650 		unsigned int port_index = virt_dev->real_port - 1;
2651 
2652 		/* OK, we're manipulating a HS device attached to a
2653 		 * root port bandwidth domain.  Include the number of active TTs
2654 		 * in the bandwidth used.
2655 		 */
2656 		bw_used += TT_HS_OVERHEAD *
2657 			xhci->rh_bw[port_index].num_active_tts;
2658 	}
2659 
2660 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2661 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2662 		"Available: %u " "percent",
2663 		bw_used, max_bandwidth, bw_reserved,
2664 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2665 		max_bandwidth);
2666 
2667 	bw_used += bw_reserved;
2668 	if (bw_used > max_bandwidth) {
2669 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2670 				bw_used, max_bandwidth);
2671 		return -ENOMEM;
2672 	}
2673 
2674 	bw_table->bw_used = bw_used;
2675 	return 0;
2676 }
2677 
2678 static bool xhci_is_async_ep(unsigned int ep_type)
2679 {
2680 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2681 					ep_type != ISOC_IN_EP &&
2682 					ep_type != INT_IN_EP);
2683 }
2684 
2685 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2686 {
2687 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2688 }
2689 
2690 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2691 {
2692 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2693 
2694 	if (ep_bw->ep_interval == 0)
2695 		return SS_OVERHEAD_BURST +
2696 			(ep_bw->mult * ep_bw->num_packets *
2697 					(SS_OVERHEAD + mps));
2698 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2699 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2700 				1 << ep_bw->ep_interval);
2701 
2702 }
2703 
2704 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2705 		struct xhci_bw_info *ep_bw,
2706 		struct xhci_interval_bw_table *bw_table,
2707 		struct usb_device *udev,
2708 		struct xhci_virt_ep *virt_ep,
2709 		struct xhci_tt_bw_info *tt_info)
2710 {
2711 	struct xhci_interval_bw	*interval_bw;
2712 	int normalized_interval;
2713 
2714 	if (xhci_is_async_ep(ep_bw->type))
2715 		return;
2716 
2717 	if (udev->speed >= USB_SPEED_SUPER) {
2718 		if (xhci_is_sync_in_ep(ep_bw->type))
2719 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2720 				xhci_get_ss_bw_consumed(ep_bw);
2721 		else
2722 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2723 				xhci_get_ss_bw_consumed(ep_bw);
2724 		return;
2725 	}
2726 
2727 	/* SuperSpeed endpoints never get added to intervals in the table, so
2728 	 * this check is only valid for HS/FS/LS devices.
2729 	 */
2730 	if (list_empty(&virt_ep->bw_endpoint_list))
2731 		return;
2732 	/* For LS/FS devices, we need to translate the interval expressed in
2733 	 * microframes to frames.
2734 	 */
2735 	if (udev->speed == USB_SPEED_HIGH)
2736 		normalized_interval = ep_bw->ep_interval;
2737 	else
2738 		normalized_interval = ep_bw->ep_interval - 3;
2739 
2740 	if (normalized_interval == 0)
2741 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2742 	interval_bw = &bw_table->interval_bw[normalized_interval];
2743 	interval_bw->num_packets -= ep_bw->num_packets;
2744 	switch (udev->speed) {
2745 	case USB_SPEED_LOW:
2746 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2747 		break;
2748 	case USB_SPEED_FULL:
2749 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2750 		break;
2751 	case USB_SPEED_HIGH:
2752 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2753 		break;
2754 	case USB_SPEED_SUPER:
2755 	case USB_SPEED_SUPER_PLUS:
2756 	case USB_SPEED_UNKNOWN:
2757 	case USB_SPEED_WIRELESS:
2758 		/* Should never happen because only LS/FS/HS endpoints will get
2759 		 * added to the endpoint list.
2760 		 */
2761 		return;
2762 	}
2763 	if (tt_info)
2764 		tt_info->active_eps -= 1;
2765 	list_del_init(&virt_ep->bw_endpoint_list);
2766 }
2767 
2768 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2769 		struct xhci_bw_info *ep_bw,
2770 		struct xhci_interval_bw_table *bw_table,
2771 		struct usb_device *udev,
2772 		struct xhci_virt_ep *virt_ep,
2773 		struct xhci_tt_bw_info *tt_info)
2774 {
2775 	struct xhci_interval_bw	*interval_bw;
2776 	struct xhci_virt_ep *smaller_ep;
2777 	int normalized_interval;
2778 
2779 	if (xhci_is_async_ep(ep_bw->type))
2780 		return;
2781 
2782 	if (udev->speed == USB_SPEED_SUPER) {
2783 		if (xhci_is_sync_in_ep(ep_bw->type))
2784 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2785 				xhci_get_ss_bw_consumed(ep_bw);
2786 		else
2787 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2788 				xhci_get_ss_bw_consumed(ep_bw);
2789 		return;
2790 	}
2791 
2792 	/* For LS/FS devices, we need to translate the interval expressed in
2793 	 * microframes to frames.
2794 	 */
2795 	if (udev->speed == USB_SPEED_HIGH)
2796 		normalized_interval = ep_bw->ep_interval;
2797 	else
2798 		normalized_interval = ep_bw->ep_interval - 3;
2799 
2800 	if (normalized_interval == 0)
2801 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2802 	interval_bw = &bw_table->interval_bw[normalized_interval];
2803 	interval_bw->num_packets += ep_bw->num_packets;
2804 	switch (udev->speed) {
2805 	case USB_SPEED_LOW:
2806 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2807 		break;
2808 	case USB_SPEED_FULL:
2809 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2810 		break;
2811 	case USB_SPEED_HIGH:
2812 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2813 		break;
2814 	case USB_SPEED_SUPER:
2815 	case USB_SPEED_SUPER_PLUS:
2816 	case USB_SPEED_UNKNOWN:
2817 	case USB_SPEED_WIRELESS:
2818 		/* Should never happen because only LS/FS/HS endpoints will get
2819 		 * added to the endpoint list.
2820 		 */
2821 		return;
2822 	}
2823 
2824 	if (tt_info)
2825 		tt_info->active_eps += 1;
2826 	/* Insert the endpoint into the list, largest max packet size first. */
2827 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2828 			bw_endpoint_list) {
2829 		if (ep_bw->max_packet_size >=
2830 				smaller_ep->bw_info.max_packet_size) {
2831 			/* Add the new ep before the smaller endpoint */
2832 			list_add_tail(&virt_ep->bw_endpoint_list,
2833 					&smaller_ep->bw_endpoint_list);
2834 			return;
2835 		}
2836 	}
2837 	/* Add the new endpoint at the end of the list. */
2838 	list_add_tail(&virt_ep->bw_endpoint_list,
2839 			&interval_bw->endpoints);
2840 }
2841 
2842 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2843 		struct xhci_virt_device *virt_dev,
2844 		int old_active_eps)
2845 {
2846 	struct xhci_root_port_bw_info *rh_bw_info;
2847 	if (!virt_dev->tt_info)
2848 		return;
2849 
2850 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2851 	if (old_active_eps == 0 &&
2852 				virt_dev->tt_info->active_eps != 0) {
2853 		rh_bw_info->num_active_tts += 1;
2854 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2855 	} else if (old_active_eps != 0 &&
2856 				virt_dev->tt_info->active_eps == 0) {
2857 		rh_bw_info->num_active_tts -= 1;
2858 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2859 	}
2860 }
2861 
2862 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2863 		struct xhci_virt_device *virt_dev,
2864 		struct xhci_container_ctx *in_ctx)
2865 {
2866 	struct xhci_bw_info ep_bw_info[31];
2867 	int i;
2868 	struct xhci_input_control_ctx *ctrl_ctx;
2869 	int old_active_eps = 0;
2870 
2871 	if (virt_dev->tt_info)
2872 		old_active_eps = virt_dev->tt_info->active_eps;
2873 
2874 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2875 	if (!ctrl_ctx) {
2876 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2877 				__func__);
2878 		return -ENOMEM;
2879 	}
2880 
2881 	for (i = 0; i < 31; i++) {
2882 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2883 			continue;
2884 
2885 		/* Make a copy of the BW info in case we need to revert this */
2886 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2887 				sizeof(ep_bw_info[i]));
2888 		/* Drop the endpoint from the interval table if the endpoint is
2889 		 * being dropped or changed.
2890 		 */
2891 		if (EP_IS_DROPPED(ctrl_ctx, i))
2892 			xhci_drop_ep_from_interval_table(xhci,
2893 					&virt_dev->eps[i].bw_info,
2894 					virt_dev->bw_table,
2895 					virt_dev->udev,
2896 					&virt_dev->eps[i],
2897 					virt_dev->tt_info);
2898 	}
2899 	/* Overwrite the information stored in the endpoints' bw_info */
2900 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2901 	for (i = 0; i < 31; i++) {
2902 		/* Add any changed or added endpoints to the interval table */
2903 		if (EP_IS_ADDED(ctrl_ctx, i))
2904 			xhci_add_ep_to_interval_table(xhci,
2905 					&virt_dev->eps[i].bw_info,
2906 					virt_dev->bw_table,
2907 					virt_dev->udev,
2908 					&virt_dev->eps[i],
2909 					virt_dev->tt_info);
2910 	}
2911 
2912 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2913 		/* Ok, this fits in the bandwidth we have.
2914 		 * Update the number of active TTs.
2915 		 */
2916 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2917 		return 0;
2918 	}
2919 
2920 	/* We don't have enough bandwidth for this, revert the stored info. */
2921 	for (i = 0; i < 31; i++) {
2922 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2923 			continue;
2924 
2925 		/* Drop the new copies of any added or changed endpoints from
2926 		 * the interval table.
2927 		 */
2928 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2929 			xhci_drop_ep_from_interval_table(xhci,
2930 					&virt_dev->eps[i].bw_info,
2931 					virt_dev->bw_table,
2932 					virt_dev->udev,
2933 					&virt_dev->eps[i],
2934 					virt_dev->tt_info);
2935 		}
2936 		/* Revert the endpoint back to its old information */
2937 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2938 				sizeof(ep_bw_info[i]));
2939 		/* Add any changed or dropped endpoints back into the table */
2940 		if (EP_IS_DROPPED(ctrl_ctx, i))
2941 			xhci_add_ep_to_interval_table(xhci,
2942 					&virt_dev->eps[i].bw_info,
2943 					virt_dev->bw_table,
2944 					virt_dev->udev,
2945 					&virt_dev->eps[i],
2946 					virt_dev->tt_info);
2947 	}
2948 	return -ENOMEM;
2949 }
2950 
2951 
2952 /* Issue a configure endpoint command or evaluate context command
2953  * and wait for it to finish.
2954  */
2955 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2956 		struct usb_device *udev,
2957 		struct xhci_command *command,
2958 		bool ctx_change, bool must_succeed)
2959 {
2960 	int ret;
2961 	unsigned long flags;
2962 	struct xhci_input_control_ctx *ctrl_ctx;
2963 	struct xhci_virt_device *virt_dev;
2964 	struct xhci_slot_ctx *slot_ctx;
2965 
2966 	if (!command)
2967 		return -EINVAL;
2968 
2969 	spin_lock_irqsave(&xhci->lock, flags);
2970 
2971 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2972 		spin_unlock_irqrestore(&xhci->lock, flags);
2973 		return -ESHUTDOWN;
2974 	}
2975 
2976 	virt_dev = xhci->devs[udev->slot_id];
2977 
2978 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2979 	if (!ctrl_ctx) {
2980 		spin_unlock_irqrestore(&xhci->lock, flags);
2981 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2982 				__func__);
2983 		return -ENOMEM;
2984 	}
2985 
2986 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2987 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2988 		spin_unlock_irqrestore(&xhci->lock, flags);
2989 		xhci_warn(xhci, "Not enough host resources, "
2990 				"active endpoint contexts = %u\n",
2991 				xhci->num_active_eps);
2992 		return -ENOMEM;
2993 	}
2994 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2995 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2996 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2997 			xhci_free_host_resources(xhci, ctrl_ctx);
2998 		spin_unlock_irqrestore(&xhci->lock, flags);
2999 		xhci_warn(xhci, "Not enough bandwidth\n");
3000 		return -ENOMEM;
3001 	}
3002 
3003 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3004 
3005 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
3006 	trace_xhci_configure_endpoint(slot_ctx);
3007 
3008 	if (!ctx_change)
3009 		ret = xhci_queue_configure_endpoint(xhci, command,
3010 				command->in_ctx->dma,
3011 				udev->slot_id, must_succeed);
3012 	else
3013 		ret = xhci_queue_evaluate_context(xhci, command,
3014 				command->in_ctx->dma,
3015 				udev->slot_id, must_succeed);
3016 	if (ret < 0) {
3017 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
3018 			xhci_free_host_resources(xhci, ctrl_ctx);
3019 		spin_unlock_irqrestore(&xhci->lock, flags);
3020 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
3021 				"FIXME allocate a new ring segment");
3022 		return -ENOMEM;
3023 	}
3024 	xhci_ring_cmd_db(xhci);
3025 	spin_unlock_irqrestore(&xhci->lock, flags);
3026 
3027 	/* Wait for the configure endpoint command to complete */
3028 	wait_for_completion(command->completion);
3029 
3030 	if (!ctx_change)
3031 		ret = xhci_configure_endpoint_result(xhci, udev,
3032 						     &command->status);
3033 	else
3034 		ret = xhci_evaluate_context_result(xhci, udev,
3035 						   &command->status);
3036 
3037 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3038 		spin_lock_irqsave(&xhci->lock, flags);
3039 		/* If the command failed, remove the reserved resources.
3040 		 * Otherwise, clean up the estimate to include dropped eps.
3041 		 */
3042 		if (ret)
3043 			xhci_free_host_resources(xhci, ctrl_ctx);
3044 		else
3045 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
3046 		spin_unlock_irqrestore(&xhci->lock, flags);
3047 	}
3048 	return ret;
3049 }
3050 
3051 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3052 	struct xhci_virt_device *vdev, int i)
3053 {
3054 	struct xhci_virt_ep *ep = &vdev->eps[i];
3055 
3056 	if (ep->ep_state & EP_HAS_STREAMS) {
3057 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3058 				xhci_get_endpoint_address(i));
3059 		xhci_free_stream_info(xhci, ep->stream_info);
3060 		ep->stream_info = NULL;
3061 		ep->ep_state &= ~EP_HAS_STREAMS;
3062 	}
3063 }
3064 
3065 /* Called after one or more calls to xhci_add_endpoint() or
3066  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3067  * to call xhci_reset_bandwidth().
3068  *
3069  * Since we are in the middle of changing either configuration or
3070  * installing a new alt setting, the USB core won't allow URBs to be
3071  * enqueued for any endpoint on the old config or interface.  Nothing
3072  * else should be touching the xhci->devs[slot_id] structure, so we
3073  * don't need to take the xhci->lock for manipulating that.
3074  */
3075 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3076 {
3077 	int i;
3078 	int ret = 0;
3079 	struct xhci_hcd *xhci;
3080 	struct xhci_virt_device	*virt_dev;
3081 	struct xhci_input_control_ctx *ctrl_ctx;
3082 	struct xhci_slot_ctx *slot_ctx;
3083 	struct xhci_command *command;
3084 
3085 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3086 	if (ret <= 0)
3087 		return ret;
3088 	xhci = hcd_to_xhci(hcd);
3089 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3090 		(xhci->xhc_state & XHCI_STATE_REMOVING))
3091 		return -ENODEV;
3092 
3093 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3094 	virt_dev = xhci->devs[udev->slot_id];
3095 
3096 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3097 	if (!command)
3098 		return -ENOMEM;
3099 
3100 	command->in_ctx = virt_dev->in_ctx;
3101 
3102 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3103 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3104 	if (!ctrl_ctx) {
3105 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3106 				__func__);
3107 		ret = -ENOMEM;
3108 		goto command_cleanup;
3109 	}
3110 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3111 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3112 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3113 
3114 	/* Don't issue the command if there's no endpoints to update. */
3115 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3116 	    ctrl_ctx->drop_flags == 0) {
3117 		ret = 0;
3118 		goto command_cleanup;
3119 	}
3120 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3121 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3122 	for (i = 31; i >= 1; i--) {
3123 		__le32 le32 = cpu_to_le32(BIT(i));
3124 
3125 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3126 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3127 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3128 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3129 			break;
3130 		}
3131 	}
3132 
3133 	ret = xhci_configure_endpoint(xhci, udev, command,
3134 			false, false);
3135 	if (ret)
3136 		/* Callee should call reset_bandwidth() */
3137 		goto command_cleanup;
3138 
3139 	/* Free any rings that were dropped, but not changed. */
3140 	for (i = 1; i < 31; i++) {
3141 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3142 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3143 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3144 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3145 		}
3146 	}
3147 	xhci_zero_in_ctx(xhci, virt_dev);
3148 	/*
3149 	 * Install any rings for completely new endpoints or changed endpoints,
3150 	 * and free any old rings from changed endpoints.
3151 	 */
3152 	for (i = 1; i < 31; i++) {
3153 		if (!virt_dev->eps[i].new_ring)
3154 			continue;
3155 		/* Only free the old ring if it exists.
3156 		 * It may not if this is the first add of an endpoint.
3157 		 */
3158 		if (virt_dev->eps[i].ring) {
3159 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3160 		}
3161 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3162 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3163 		virt_dev->eps[i].new_ring = NULL;
3164 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3165 	}
3166 command_cleanup:
3167 	kfree(command->completion);
3168 	kfree(command);
3169 
3170 	return ret;
3171 }
3172 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3173 
3174 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3175 {
3176 	struct xhci_hcd *xhci;
3177 	struct xhci_virt_device	*virt_dev;
3178 	int i, ret;
3179 
3180 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3181 	if (ret <= 0)
3182 		return;
3183 	xhci = hcd_to_xhci(hcd);
3184 
3185 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3186 	virt_dev = xhci->devs[udev->slot_id];
3187 	/* Free any rings allocated for added endpoints */
3188 	for (i = 0; i < 31; i++) {
3189 		if (virt_dev->eps[i].new_ring) {
3190 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3191 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3192 			virt_dev->eps[i].new_ring = NULL;
3193 		}
3194 	}
3195 	xhci_zero_in_ctx(xhci, virt_dev);
3196 }
3197 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3198 
3199 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3200 		struct xhci_container_ctx *in_ctx,
3201 		struct xhci_container_ctx *out_ctx,
3202 		struct xhci_input_control_ctx *ctrl_ctx,
3203 		u32 add_flags, u32 drop_flags)
3204 {
3205 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3206 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3207 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3208 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3209 }
3210 
3211 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3212 				  struct usb_host_endpoint *host_ep)
3213 {
3214 	struct xhci_hcd		*xhci;
3215 	struct xhci_virt_device	*vdev;
3216 	struct xhci_virt_ep	*ep;
3217 	struct usb_device	*udev;
3218 	unsigned long		flags;
3219 	unsigned int		ep_index;
3220 
3221 	xhci = hcd_to_xhci(hcd);
3222 rescan:
3223 	spin_lock_irqsave(&xhci->lock, flags);
3224 
3225 	udev = (struct usb_device *)host_ep->hcpriv;
3226 	if (!udev || !udev->slot_id)
3227 		goto done;
3228 
3229 	vdev = xhci->devs[udev->slot_id];
3230 	if (!vdev)
3231 		goto done;
3232 
3233 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3234 	ep = &vdev->eps[ep_index];
3235 
3236 	/* wait for hub_tt_work to finish clearing hub TT */
3237 	if (ep->ep_state & EP_CLEARING_TT) {
3238 		spin_unlock_irqrestore(&xhci->lock, flags);
3239 		schedule_timeout_uninterruptible(1);
3240 		goto rescan;
3241 	}
3242 
3243 	if (ep->ep_state)
3244 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3245 			 ep->ep_state);
3246 done:
3247 	host_ep->hcpriv = NULL;
3248 	spin_unlock_irqrestore(&xhci->lock, flags);
3249 }
3250 
3251 /*
3252  * Called after usb core issues a clear halt control message.
3253  * The host side of the halt should already be cleared by a reset endpoint
3254  * command issued when the STALL event was received.
3255  *
3256  * The reset endpoint command may only be issued to endpoints in the halted
3257  * state. For software that wishes to reset the data toggle or sequence number
3258  * of an endpoint that isn't in the halted state this function will issue a
3259  * configure endpoint command with the Drop and Add bits set for the target
3260  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3261  */
3262 
3263 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3264 		struct usb_host_endpoint *host_ep)
3265 {
3266 	struct xhci_hcd *xhci;
3267 	struct usb_device *udev;
3268 	struct xhci_virt_device *vdev;
3269 	struct xhci_virt_ep *ep;
3270 	struct xhci_input_control_ctx *ctrl_ctx;
3271 	struct xhci_command *stop_cmd, *cfg_cmd;
3272 	unsigned int ep_index;
3273 	unsigned long flags;
3274 	u32 ep_flag;
3275 	int err;
3276 
3277 	xhci = hcd_to_xhci(hcd);
3278 	if (!host_ep->hcpriv)
3279 		return;
3280 	udev = (struct usb_device *) host_ep->hcpriv;
3281 	vdev = xhci->devs[udev->slot_id];
3282 
3283 	/*
3284 	 * vdev may be lost due to xHC restore error and re-initialization
3285 	 * during S3/S4 resume. A new vdev will be allocated later by
3286 	 * xhci_discover_or_reset_device()
3287 	 */
3288 	if (!udev->slot_id || !vdev)
3289 		return;
3290 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3291 	ep = &vdev->eps[ep_index];
3292 
3293 	/* Bail out if toggle is already being cleared by a endpoint reset */
3294 	spin_lock_irqsave(&xhci->lock, flags);
3295 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3296 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3297 		spin_unlock_irqrestore(&xhci->lock, flags);
3298 		return;
3299 	}
3300 	spin_unlock_irqrestore(&xhci->lock, flags);
3301 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3302 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3303 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3304 		return;
3305 
3306 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3307 
3308 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3309 		return;
3310 
3311 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3312 	if (!stop_cmd)
3313 		return;
3314 
3315 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3316 	if (!cfg_cmd)
3317 		goto cleanup;
3318 
3319 	spin_lock_irqsave(&xhci->lock, flags);
3320 
3321 	/* block queuing new trbs and ringing ep doorbell */
3322 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3323 
3324 	/*
3325 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3326 	 * Driver is required to synchronously cancel all transfer request.
3327 	 * Stop the endpoint to force xHC to update the output context
3328 	 */
3329 
3330 	if (!list_empty(&ep->ring->td_list)) {
3331 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3332 		spin_unlock_irqrestore(&xhci->lock, flags);
3333 		xhci_free_command(xhci, cfg_cmd);
3334 		goto cleanup;
3335 	}
3336 
3337 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3338 					ep_index, 0);
3339 	if (err < 0) {
3340 		spin_unlock_irqrestore(&xhci->lock, flags);
3341 		xhci_free_command(xhci, cfg_cmd);
3342 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3343 				__func__, err);
3344 		goto cleanup;
3345 	}
3346 
3347 	xhci_ring_cmd_db(xhci);
3348 	spin_unlock_irqrestore(&xhci->lock, flags);
3349 
3350 	wait_for_completion(stop_cmd->completion);
3351 
3352 	spin_lock_irqsave(&xhci->lock, flags);
3353 
3354 	/* config ep command clears toggle if add and drop ep flags are set */
3355 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3356 	if (!ctrl_ctx) {
3357 		spin_unlock_irqrestore(&xhci->lock, flags);
3358 		xhci_free_command(xhci, cfg_cmd);
3359 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3360 				__func__);
3361 		goto cleanup;
3362 	}
3363 
3364 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3365 					   ctrl_ctx, ep_flag, ep_flag);
3366 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3367 
3368 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3369 				      udev->slot_id, false);
3370 	if (err < 0) {
3371 		spin_unlock_irqrestore(&xhci->lock, flags);
3372 		xhci_free_command(xhci, cfg_cmd);
3373 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3374 				__func__, err);
3375 		goto cleanup;
3376 	}
3377 
3378 	xhci_ring_cmd_db(xhci);
3379 	spin_unlock_irqrestore(&xhci->lock, flags);
3380 
3381 	wait_for_completion(cfg_cmd->completion);
3382 
3383 	xhci_free_command(xhci, cfg_cmd);
3384 cleanup:
3385 	xhci_free_command(xhci, stop_cmd);
3386 	spin_lock_irqsave(&xhci->lock, flags);
3387 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3388 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3389 	spin_unlock_irqrestore(&xhci->lock, flags);
3390 }
3391 
3392 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3393 		struct usb_device *udev, struct usb_host_endpoint *ep,
3394 		unsigned int slot_id)
3395 {
3396 	int ret;
3397 	unsigned int ep_index;
3398 	unsigned int ep_state;
3399 
3400 	if (!ep)
3401 		return -EINVAL;
3402 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3403 	if (ret <= 0)
3404 		return ret ? ret : -EINVAL;
3405 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3406 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3407 				" descriptor for ep 0x%x does not support streams\n",
3408 				ep->desc.bEndpointAddress);
3409 		return -EINVAL;
3410 	}
3411 
3412 	ep_index = xhci_get_endpoint_index(&ep->desc);
3413 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3414 	if (ep_state & EP_HAS_STREAMS ||
3415 			ep_state & EP_GETTING_STREAMS) {
3416 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3417 				"already has streams set up.\n",
3418 				ep->desc.bEndpointAddress);
3419 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3420 				"dynamic stream context array reallocation.\n");
3421 		return -EINVAL;
3422 	}
3423 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3424 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3425 				"endpoint 0x%x; URBs are pending.\n",
3426 				ep->desc.bEndpointAddress);
3427 		return -EINVAL;
3428 	}
3429 	return 0;
3430 }
3431 
3432 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3433 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3434 {
3435 	unsigned int max_streams;
3436 
3437 	/* The stream context array size must be a power of two */
3438 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3439 	/*
3440 	 * Find out how many primary stream array entries the host controller
3441 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3442 	 * level page entries), but that's an optional feature for xHCI host
3443 	 * controllers. xHCs must support at least 4 stream IDs.
3444 	 */
3445 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3446 	if (*num_stream_ctxs > max_streams) {
3447 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3448 				max_streams);
3449 		*num_stream_ctxs = max_streams;
3450 		*num_streams = max_streams;
3451 	}
3452 }
3453 
3454 /* Returns an error code if one of the endpoint already has streams.
3455  * This does not change any data structures, it only checks and gathers
3456  * information.
3457  */
3458 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3459 		struct usb_device *udev,
3460 		struct usb_host_endpoint **eps, unsigned int num_eps,
3461 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3462 {
3463 	unsigned int max_streams;
3464 	unsigned int endpoint_flag;
3465 	int i;
3466 	int ret;
3467 
3468 	for (i = 0; i < num_eps; i++) {
3469 		ret = xhci_check_streams_endpoint(xhci, udev,
3470 				eps[i], udev->slot_id);
3471 		if (ret < 0)
3472 			return ret;
3473 
3474 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3475 		if (max_streams < (*num_streams - 1)) {
3476 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3477 					eps[i]->desc.bEndpointAddress,
3478 					max_streams);
3479 			*num_streams = max_streams+1;
3480 		}
3481 
3482 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3483 		if (*changed_ep_bitmask & endpoint_flag)
3484 			return -EINVAL;
3485 		*changed_ep_bitmask |= endpoint_flag;
3486 	}
3487 	return 0;
3488 }
3489 
3490 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3491 		struct usb_device *udev,
3492 		struct usb_host_endpoint **eps, unsigned int num_eps)
3493 {
3494 	u32 changed_ep_bitmask = 0;
3495 	unsigned int slot_id;
3496 	unsigned int ep_index;
3497 	unsigned int ep_state;
3498 	int i;
3499 
3500 	slot_id = udev->slot_id;
3501 	if (!xhci->devs[slot_id])
3502 		return 0;
3503 
3504 	for (i = 0; i < num_eps; i++) {
3505 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3506 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3507 		/* Are streams already being freed for the endpoint? */
3508 		if (ep_state & EP_GETTING_NO_STREAMS) {
3509 			xhci_warn(xhci, "WARN Can't disable streams for "
3510 					"endpoint 0x%x, "
3511 					"streams are being disabled already\n",
3512 					eps[i]->desc.bEndpointAddress);
3513 			return 0;
3514 		}
3515 		/* Are there actually any streams to free? */
3516 		if (!(ep_state & EP_HAS_STREAMS) &&
3517 				!(ep_state & EP_GETTING_STREAMS)) {
3518 			xhci_warn(xhci, "WARN Can't disable streams for "
3519 					"endpoint 0x%x, "
3520 					"streams are already disabled!\n",
3521 					eps[i]->desc.bEndpointAddress);
3522 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3523 					"with non-streams endpoint\n");
3524 			return 0;
3525 		}
3526 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3527 	}
3528 	return changed_ep_bitmask;
3529 }
3530 
3531 /*
3532  * The USB device drivers use this function (through the HCD interface in USB
3533  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3534  * coordinate mass storage command queueing across multiple endpoints (basically
3535  * a stream ID == a task ID).
3536  *
3537  * Setting up streams involves allocating the same size stream context array
3538  * for each endpoint and issuing a configure endpoint command for all endpoints.
3539  *
3540  * Don't allow the call to succeed if one endpoint only supports one stream
3541  * (which means it doesn't support streams at all).
3542  *
3543  * Drivers may get less stream IDs than they asked for, if the host controller
3544  * hardware or endpoints claim they can't support the number of requested
3545  * stream IDs.
3546  */
3547 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3548 		struct usb_host_endpoint **eps, unsigned int num_eps,
3549 		unsigned int num_streams, gfp_t mem_flags)
3550 {
3551 	int i, ret;
3552 	struct xhci_hcd *xhci;
3553 	struct xhci_virt_device *vdev;
3554 	struct xhci_command *config_cmd;
3555 	struct xhci_input_control_ctx *ctrl_ctx;
3556 	unsigned int ep_index;
3557 	unsigned int num_stream_ctxs;
3558 	unsigned int max_packet;
3559 	unsigned long flags;
3560 	u32 changed_ep_bitmask = 0;
3561 
3562 	if (!eps)
3563 		return -EINVAL;
3564 
3565 	/* Add one to the number of streams requested to account for
3566 	 * stream 0 that is reserved for xHCI usage.
3567 	 */
3568 	num_streams += 1;
3569 	xhci = hcd_to_xhci(hcd);
3570 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3571 			num_streams);
3572 
3573 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3574 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3575 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3576 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3577 		return -ENOSYS;
3578 	}
3579 
3580 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3581 	if (!config_cmd)
3582 		return -ENOMEM;
3583 
3584 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3585 	if (!ctrl_ctx) {
3586 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3587 				__func__);
3588 		xhci_free_command(xhci, config_cmd);
3589 		return -ENOMEM;
3590 	}
3591 
3592 	/* Check to make sure all endpoints are not already configured for
3593 	 * streams.  While we're at it, find the maximum number of streams that
3594 	 * all the endpoints will support and check for duplicate endpoints.
3595 	 */
3596 	spin_lock_irqsave(&xhci->lock, flags);
3597 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3598 			num_eps, &num_streams, &changed_ep_bitmask);
3599 	if (ret < 0) {
3600 		xhci_free_command(xhci, config_cmd);
3601 		spin_unlock_irqrestore(&xhci->lock, flags);
3602 		return ret;
3603 	}
3604 	if (num_streams <= 1) {
3605 		xhci_warn(xhci, "WARN: endpoints can't handle "
3606 				"more than one stream.\n");
3607 		xhci_free_command(xhci, config_cmd);
3608 		spin_unlock_irqrestore(&xhci->lock, flags);
3609 		return -EINVAL;
3610 	}
3611 	vdev = xhci->devs[udev->slot_id];
3612 	/* Mark each endpoint as being in transition, so
3613 	 * xhci_urb_enqueue() will reject all URBs.
3614 	 */
3615 	for (i = 0; i < num_eps; i++) {
3616 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3617 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3618 	}
3619 	spin_unlock_irqrestore(&xhci->lock, flags);
3620 
3621 	/* Setup internal data structures and allocate HW data structures for
3622 	 * streams (but don't install the HW structures in the input context
3623 	 * until we're sure all memory allocation succeeded).
3624 	 */
3625 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3626 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3627 			num_stream_ctxs, num_streams);
3628 
3629 	for (i = 0; i < num_eps; i++) {
3630 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3631 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3632 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3633 				num_stream_ctxs,
3634 				num_streams,
3635 				max_packet, mem_flags);
3636 		if (!vdev->eps[ep_index].stream_info)
3637 			goto cleanup;
3638 		/* Set maxPstreams in endpoint context and update deq ptr to
3639 		 * point to stream context array. FIXME
3640 		 */
3641 	}
3642 
3643 	/* Set up the input context for a configure endpoint command. */
3644 	for (i = 0; i < num_eps; i++) {
3645 		struct xhci_ep_ctx *ep_ctx;
3646 
3647 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3648 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3649 
3650 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3651 				vdev->out_ctx, ep_index);
3652 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3653 				vdev->eps[ep_index].stream_info);
3654 	}
3655 	/* Tell the HW to drop its old copy of the endpoint context info
3656 	 * and add the updated copy from the input context.
3657 	 */
3658 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3659 			vdev->out_ctx, ctrl_ctx,
3660 			changed_ep_bitmask, changed_ep_bitmask);
3661 
3662 	/* Issue and wait for the configure endpoint command */
3663 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3664 			false, false);
3665 
3666 	/* xHC rejected the configure endpoint command for some reason, so we
3667 	 * leave the old ring intact and free our internal streams data
3668 	 * structure.
3669 	 */
3670 	if (ret < 0)
3671 		goto cleanup;
3672 
3673 	spin_lock_irqsave(&xhci->lock, flags);
3674 	for (i = 0; i < num_eps; i++) {
3675 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3676 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3677 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3678 			 udev->slot_id, ep_index);
3679 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3680 	}
3681 	xhci_free_command(xhci, config_cmd);
3682 	spin_unlock_irqrestore(&xhci->lock, flags);
3683 
3684 	for (i = 0; i < num_eps; i++) {
3685 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3686 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3687 	}
3688 	/* Subtract 1 for stream 0, which drivers can't use */
3689 	return num_streams - 1;
3690 
3691 cleanup:
3692 	/* If it didn't work, free the streams! */
3693 	for (i = 0; i < num_eps; i++) {
3694 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3695 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3696 		vdev->eps[ep_index].stream_info = NULL;
3697 		/* FIXME Unset maxPstreams in endpoint context and
3698 		 * update deq ptr to point to normal string ring.
3699 		 */
3700 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3701 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3702 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3703 	}
3704 	xhci_free_command(xhci, config_cmd);
3705 	return -ENOMEM;
3706 }
3707 
3708 /* Transition the endpoint from using streams to being a "normal" endpoint
3709  * without streams.
3710  *
3711  * Modify the endpoint context state, submit a configure endpoint command,
3712  * and free all endpoint rings for streams if that completes successfully.
3713  */
3714 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3715 		struct usb_host_endpoint **eps, unsigned int num_eps,
3716 		gfp_t mem_flags)
3717 {
3718 	int i, ret;
3719 	struct xhci_hcd *xhci;
3720 	struct xhci_virt_device *vdev;
3721 	struct xhci_command *command;
3722 	struct xhci_input_control_ctx *ctrl_ctx;
3723 	unsigned int ep_index;
3724 	unsigned long flags;
3725 	u32 changed_ep_bitmask;
3726 
3727 	xhci = hcd_to_xhci(hcd);
3728 	vdev = xhci->devs[udev->slot_id];
3729 
3730 	/* Set up a configure endpoint command to remove the streams rings */
3731 	spin_lock_irqsave(&xhci->lock, flags);
3732 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3733 			udev, eps, num_eps);
3734 	if (changed_ep_bitmask == 0) {
3735 		spin_unlock_irqrestore(&xhci->lock, flags);
3736 		return -EINVAL;
3737 	}
3738 
3739 	/* Use the xhci_command structure from the first endpoint.  We may have
3740 	 * allocated too many, but the driver may call xhci_free_streams() for
3741 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3742 	 */
3743 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3744 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3745 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3746 	if (!ctrl_ctx) {
3747 		spin_unlock_irqrestore(&xhci->lock, flags);
3748 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3749 				__func__);
3750 		return -EINVAL;
3751 	}
3752 
3753 	for (i = 0; i < num_eps; i++) {
3754 		struct xhci_ep_ctx *ep_ctx;
3755 
3756 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3757 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3758 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3759 			EP_GETTING_NO_STREAMS;
3760 
3761 		xhci_endpoint_copy(xhci, command->in_ctx,
3762 				vdev->out_ctx, ep_index);
3763 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3764 				&vdev->eps[ep_index]);
3765 	}
3766 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3767 			vdev->out_ctx, ctrl_ctx,
3768 			changed_ep_bitmask, changed_ep_bitmask);
3769 	spin_unlock_irqrestore(&xhci->lock, flags);
3770 
3771 	/* Issue and wait for the configure endpoint command,
3772 	 * which must succeed.
3773 	 */
3774 	ret = xhci_configure_endpoint(xhci, udev, command,
3775 			false, true);
3776 
3777 	/* xHC rejected the configure endpoint command for some reason, so we
3778 	 * leave the streams rings intact.
3779 	 */
3780 	if (ret < 0)
3781 		return ret;
3782 
3783 	spin_lock_irqsave(&xhci->lock, flags);
3784 	for (i = 0; i < num_eps; i++) {
3785 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3786 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3787 		vdev->eps[ep_index].stream_info = NULL;
3788 		/* FIXME Unset maxPstreams in endpoint context and
3789 		 * update deq ptr to point to normal string ring.
3790 		 */
3791 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3792 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3793 	}
3794 	spin_unlock_irqrestore(&xhci->lock, flags);
3795 
3796 	return 0;
3797 }
3798 
3799 /*
3800  * Deletes endpoint resources for endpoints that were active before a Reset
3801  * Device command, or a Disable Slot command.  The Reset Device command leaves
3802  * the control endpoint intact, whereas the Disable Slot command deletes it.
3803  *
3804  * Must be called with xhci->lock held.
3805  */
3806 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3807 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3808 {
3809 	int i;
3810 	unsigned int num_dropped_eps = 0;
3811 	unsigned int drop_flags = 0;
3812 
3813 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3814 		if (virt_dev->eps[i].ring) {
3815 			drop_flags |= 1 << i;
3816 			num_dropped_eps++;
3817 		}
3818 	}
3819 	xhci->num_active_eps -= num_dropped_eps;
3820 	if (num_dropped_eps)
3821 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3822 				"Dropped %u ep ctxs, flags = 0x%x, "
3823 				"%u now active.",
3824 				num_dropped_eps, drop_flags,
3825 				xhci->num_active_eps);
3826 }
3827 
3828 /*
3829  * This submits a Reset Device Command, which will set the device state to 0,
3830  * set the device address to 0, and disable all the endpoints except the default
3831  * control endpoint.  The USB core should come back and call
3832  * xhci_address_device(), and then re-set up the configuration.  If this is
3833  * called because of a usb_reset_and_verify_device(), then the old alternate
3834  * settings will be re-installed through the normal bandwidth allocation
3835  * functions.
3836  *
3837  * Wait for the Reset Device command to finish.  Remove all structures
3838  * associated with the endpoints that were disabled.  Clear the input device
3839  * structure? Reset the control endpoint 0 max packet size?
3840  *
3841  * If the virt_dev to be reset does not exist or does not match the udev,
3842  * it means the device is lost, possibly due to the xHC restore error and
3843  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3844  * re-allocate the device.
3845  */
3846 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3847 		struct usb_device *udev)
3848 {
3849 	int ret, i;
3850 	unsigned long flags;
3851 	struct xhci_hcd *xhci;
3852 	unsigned int slot_id;
3853 	struct xhci_virt_device *virt_dev;
3854 	struct xhci_command *reset_device_cmd;
3855 	struct xhci_slot_ctx *slot_ctx;
3856 	int old_active_eps = 0;
3857 
3858 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3859 	if (ret <= 0)
3860 		return ret;
3861 	xhci = hcd_to_xhci(hcd);
3862 	slot_id = udev->slot_id;
3863 	virt_dev = xhci->devs[slot_id];
3864 	if (!virt_dev) {
3865 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3866 				"not exist. Re-allocate the device\n", slot_id);
3867 		ret = xhci_alloc_dev(hcd, udev);
3868 		if (ret == 1)
3869 			return 0;
3870 		else
3871 			return -EINVAL;
3872 	}
3873 
3874 	if (virt_dev->tt_info)
3875 		old_active_eps = virt_dev->tt_info->active_eps;
3876 
3877 	if (virt_dev->udev != udev) {
3878 		/* If the virt_dev and the udev does not match, this virt_dev
3879 		 * may belong to another udev.
3880 		 * Re-allocate the device.
3881 		 */
3882 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3883 				"not match the udev. Re-allocate the device\n",
3884 				slot_id);
3885 		ret = xhci_alloc_dev(hcd, udev);
3886 		if (ret == 1)
3887 			return 0;
3888 		else
3889 			return -EINVAL;
3890 	}
3891 
3892 	/* If device is not setup, there is no point in resetting it */
3893 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3894 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3895 						SLOT_STATE_DISABLED)
3896 		return 0;
3897 
3898 	trace_xhci_discover_or_reset_device(slot_ctx);
3899 
3900 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3901 	/* Allocate the command structure that holds the struct completion.
3902 	 * Assume we're in process context, since the normal device reset
3903 	 * process has to wait for the device anyway.  Storage devices are
3904 	 * reset as part of error handling, so use GFP_NOIO instead of
3905 	 * GFP_KERNEL.
3906 	 */
3907 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3908 	if (!reset_device_cmd) {
3909 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3910 		return -ENOMEM;
3911 	}
3912 
3913 	/* Attempt to submit the Reset Device command to the command ring */
3914 	spin_lock_irqsave(&xhci->lock, flags);
3915 
3916 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3917 	if (ret) {
3918 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3919 		spin_unlock_irqrestore(&xhci->lock, flags);
3920 		goto command_cleanup;
3921 	}
3922 	xhci_ring_cmd_db(xhci);
3923 	spin_unlock_irqrestore(&xhci->lock, flags);
3924 
3925 	/* Wait for the Reset Device command to finish */
3926 	wait_for_completion(reset_device_cmd->completion);
3927 
3928 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3929 	 * unless we tried to reset a slot ID that wasn't enabled,
3930 	 * or the device wasn't in the addressed or configured state.
3931 	 */
3932 	ret = reset_device_cmd->status;
3933 	switch (ret) {
3934 	case COMP_COMMAND_ABORTED:
3935 	case COMP_COMMAND_RING_STOPPED:
3936 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3937 		ret = -ETIME;
3938 		goto command_cleanup;
3939 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3940 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3941 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3942 				slot_id,
3943 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3944 		xhci_dbg(xhci, "Not freeing device rings.\n");
3945 		/* Don't treat this as an error.  May change my mind later. */
3946 		ret = 0;
3947 		goto command_cleanup;
3948 	case COMP_SUCCESS:
3949 		xhci_dbg(xhci, "Successful reset device command.\n");
3950 		break;
3951 	default:
3952 		if (xhci_is_vendor_info_code(xhci, ret))
3953 			break;
3954 		xhci_warn(xhci, "Unknown completion code %u for "
3955 				"reset device command.\n", ret);
3956 		ret = -EINVAL;
3957 		goto command_cleanup;
3958 	}
3959 
3960 	/* Free up host controller endpoint resources */
3961 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3962 		spin_lock_irqsave(&xhci->lock, flags);
3963 		/* Don't delete the default control endpoint resources */
3964 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3965 		spin_unlock_irqrestore(&xhci->lock, flags);
3966 	}
3967 
3968 	/* Everything but endpoint 0 is disabled, so free the rings. */
3969 	for (i = 1; i < 31; i++) {
3970 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3971 
3972 		if (ep->ep_state & EP_HAS_STREAMS) {
3973 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3974 					xhci_get_endpoint_address(i));
3975 			xhci_free_stream_info(xhci, ep->stream_info);
3976 			ep->stream_info = NULL;
3977 			ep->ep_state &= ~EP_HAS_STREAMS;
3978 		}
3979 
3980 		if (ep->ring) {
3981 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3982 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3983 		}
3984 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3985 			xhci_drop_ep_from_interval_table(xhci,
3986 					&virt_dev->eps[i].bw_info,
3987 					virt_dev->bw_table,
3988 					udev,
3989 					&virt_dev->eps[i],
3990 					virt_dev->tt_info);
3991 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3992 	}
3993 	/* If necessary, update the number of active TTs on this root port */
3994 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3995 	virt_dev->flags = 0;
3996 	ret = 0;
3997 
3998 command_cleanup:
3999 	xhci_free_command(xhci, reset_device_cmd);
4000 	return ret;
4001 }
4002 
4003 /*
4004  * At this point, the struct usb_device is about to go away, the device has
4005  * disconnected, and all traffic has been stopped and the endpoints have been
4006  * disabled.  Free any HC data structures associated with that device.
4007  */
4008 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4009 {
4010 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4011 	struct xhci_virt_device *virt_dev;
4012 	struct xhci_slot_ctx *slot_ctx;
4013 	unsigned long flags;
4014 	int i, ret;
4015 
4016 	/*
4017 	 * We called pm_runtime_get_noresume when the device was attached.
4018 	 * Decrement the counter here to allow controller to runtime suspend
4019 	 * if no devices remain.
4020 	 */
4021 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4022 		pm_runtime_put_noidle(hcd->self.controller);
4023 
4024 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
4025 	/* If the host is halted due to driver unload, we still need to free the
4026 	 * device.
4027 	 */
4028 	if (ret <= 0 && ret != -ENODEV)
4029 		return;
4030 
4031 	virt_dev = xhci->devs[udev->slot_id];
4032 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4033 	trace_xhci_free_dev(slot_ctx);
4034 
4035 	/* Stop any wayward timer functions (which may grab the lock) */
4036 	for (i = 0; i < 31; i++)
4037 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
4038 	virt_dev->udev = NULL;
4039 	xhci_disable_slot(xhci, udev->slot_id);
4040 
4041 	spin_lock_irqsave(&xhci->lock, flags);
4042 	xhci_free_virt_device(xhci, udev->slot_id);
4043 	spin_unlock_irqrestore(&xhci->lock, flags);
4044 
4045 }
4046 
4047 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4048 {
4049 	struct xhci_command *command;
4050 	unsigned long flags;
4051 	u32 state;
4052 	int ret;
4053 
4054 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4055 	if (!command)
4056 		return -ENOMEM;
4057 
4058 	xhci_debugfs_remove_slot(xhci, slot_id);
4059 
4060 	spin_lock_irqsave(&xhci->lock, flags);
4061 	/* Don't disable the slot if the host controller is dead. */
4062 	state = readl(&xhci->op_regs->status);
4063 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4064 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
4065 		spin_unlock_irqrestore(&xhci->lock, flags);
4066 		kfree(command);
4067 		return -ENODEV;
4068 	}
4069 
4070 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4071 				slot_id);
4072 	if (ret) {
4073 		spin_unlock_irqrestore(&xhci->lock, flags);
4074 		kfree(command);
4075 		return ret;
4076 	}
4077 	xhci_ring_cmd_db(xhci);
4078 	spin_unlock_irqrestore(&xhci->lock, flags);
4079 
4080 	wait_for_completion(command->completion);
4081 
4082 	if (command->status != COMP_SUCCESS)
4083 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4084 			  slot_id, command->status);
4085 
4086 	xhci_free_command(xhci, command);
4087 
4088 	return 0;
4089 }
4090 
4091 /*
4092  * Checks if we have enough host controller resources for the default control
4093  * endpoint.
4094  *
4095  * Must be called with xhci->lock held.
4096  */
4097 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4098 {
4099 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4100 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4101 				"Not enough ep ctxs: "
4102 				"%u active, need to add 1, limit is %u.",
4103 				xhci->num_active_eps, xhci->limit_active_eps);
4104 		return -ENOMEM;
4105 	}
4106 	xhci->num_active_eps += 1;
4107 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4108 			"Adding 1 ep ctx, %u now active.",
4109 			xhci->num_active_eps);
4110 	return 0;
4111 }
4112 
4113 
4114 /*
4115  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4116  * timed out, or allocating memory failed.  Returns 1 on success.
4117  */
4118 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4119 {
4120 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4121 	struct xhci_virt_device *vdev;
4122 	struct xhci_slot_ctx *slot_ctx;
4123 	unsigned long flags;
4124 	int ret, slot_id;
4125 	struct xhci_command *command;
4126 
4127 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4128 	if (!command)
4129 		return 0;
4130 
4131 	spin_lock_irqsave(&xhci->lock, flags);
4132 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4133 	if (ret) {
4134 		spin_unlock_irqrestore(&xhci->lock, flags);
4135 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4136 		xhci_free_command(xhci, command);
4137 		return 0;
4138 	}
4139 	xhci_ring_cmd_db(xhci);
4140 	spin_unlock_irqrestore(&xhci->lock, flags);
4141 
4142 	wait_for_completion(command->completion);
4143 	slot_id = command->slot_id;
4144 
4145 	if (!slot_id || command->status != COMP_SUCCESS) {
4146 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4147 			 xhci_trb_comp_code_string(command->status));
4148 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4149 				HCS_MAX_SLOTS(
4150 					readl(&xhci->cap_regs->hcs_params1)));
4151 		xhci_free_command(xhci, command);
4152 		return 0;
4153 	}
4154 
4155 	xhci_free_command(xhci, command);
4156 
4157 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4158 		spin_lock_irqsave(&xhci->lock, flags);
4159 		ret = xhci_reserve_host_control_ep_resources(xhci);
4160 		if (ret) {
4161 			spin_unlock_irqrestore(&xhci->lock, flags);
4162 			xhci_warn(xhci, "Not enough host resources, "
4163 					"active endpoint contexts = %u\n",
4164 					xhci->num_active_eps);
4165 			goto disable_slot;
4166 		}
4167 		spin_unlock_irqrestore(&xhci->lock, flags);
4168 	}
4169 	/* Use GFP_NOIO, since this function can be called from
4170 	 * xhci_discover_or_reset_device(), which may be called as part of
4171 	 * mass storage driver error handling.
4172 	 */
4173 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4174 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4175 		goto disable_slot;
4176 	}
4177 	vdev = xhci->devs[slot_id];
4178 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4179 	trace_xhci_alloc_dev(slot_ctx);
4180 
4181 	udev->slot_id = slot_id;
4182 
4183 	xhci_debugfs_create_slot(xhci, slot_id);
4184 
4185 	/*
4186 	 * If resetting upon resume, we can't put the controller into runtime
4187 	 * suspend if there is a device attached.
4188 	 */
4189 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4190 		pm_runtime_get_noresume(hcd->self.controller);
4191 
4192 	/* Is this a LS or FS device under a HS hub? */
4193 	/* Hub or peripherial? */
4194 	return 1;
4195 
4196 disable_slot:
4197 	xhci_disable_slot(xhci, udev->slot_id);
4198 	xhci_free_virt_device(xhci, udev->slot_id);
4199 
4200 	return 0;
4201 }
4202 
4203 /*
4204  * Issue an Address Device command and optionally send a corresponding
4205  * SetAddress request to the device.
4206  */
4207 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4208 			     enum xhci_setup_dev setup)
4209 {
4210 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4211 	unsigned long flags;
4212 	struct xhci_virt_device *virt_dev;
4213 	int ret = 0;
4214 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4215 	struct xhci_slot_ctx *slot_ctx;
4216 	struct xhci_input_control_ctx *ctrl_ctx;
4217 	u64 temp_64;
4218 	struct xhci_command *command = NULL;
4219 
4220 	mutex_lock(&xhci->mutex);
4221 
4222 	if (xhci->xhc_state) {	/* dying, removing or halted */
4223 		ret = -ESHUTDOWN;
4224 		goto out;
4225 	}
4226 
4227 	if (!udev->slot_id) {
4228 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4229 				"Bad Slot ID %d", udev->slot_id);
4230 		ret = -EINVAL;
4231 		goto out;
4232 	}
4233 
4234 	virt_dev = xhci->devs[udev->slot_id];
4235 
4236 	if (WARN_ON(!virt_dev)) {
4237 		/*
4238 		 * In plug/unplug torture test with an NEC controller,
4239 		 * a zero-dereference was observed once due to virt_dev = 0.
4240 		 * Print useful debug rather than crash if it is observed again!
4241 		 */
4242 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4243 			udev->slot_id);
4244 		ret = -EINVAL;
4245 		goto out;
4246 	}
4247 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4248 	trace_xhci_setup_device_slot(slot_ctx);
4249 
4250 	if (setup == SETUP_CONTEXT_ONLY) {
4251 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4252 		    SLOT_STATE_DEFAULT) {
4253 			xhci_dbg(xhci, "Slot already in default state\n");
4254 			goto out;
4255 		}
4256 	}
4257 
4258 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4259 	if (!command) {
4260 		ret = -ENOMEM;
4261 		goto out;
4262 	}
4263 
4264 	command->in_ctx = virt_dev->in_ctx;
4265 
4266 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4267 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4268 	if (!ctrl_ctx) {
4269 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4270 				__func__);
4271 		ret = -EINVAL;
4272 		goto out;
4273 	}
4274 	/*
4275 	 * If this is the first Set Address since device plug-in or
4276 	 * virt_device realloaction after a resume with an xHCI power loss,
4277 	 * then set up the slot context.
4278 	 */
4279 	if (!slot_ctx->dev_info)
4280 		xhci_setup_addressable_virt_dev(xhci, udev);
4281 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4282 	else
4283 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4284 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4285 	ctrl_ctx->drop_flags = 0;
4286 
4287 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4288 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4289 
4290 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4291 	spin_lock_irqsave(&xhci->lock, flags);
4292 	trace_xhci_setup_device(virt_dev);
4293 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4294 					udev->slot_id, setup);
4295 	if (ret) {
4296 		spin_unlock_irqrestore(&xhci->lock, flags);
4297 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4298 				"FIXME: allocate a command ring segment");
4299 		goto out;
4300 	}
4301 	xhci_ring_cmd_db(xhci);
4302 	spin_unlock_irqrestore(&xhci->lock, flags);
4303 
4304 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4305 	wait_for_completion(command->completion);
4306 
4307 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4308 	 * the SetAddress() "recovery interval" required by USB and aborting the
4309 	 * command on a timeout.
4310 	 */
4311 	switch (command->status) {
4312 	case COMP_COMMAND_ABORTED:
4313 	case COMP_COMMAND_RING_STOPPED:
4314 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4315 		ret = -ETIME;
4316 		break;
4317 	case COMP_CONTEXT_STATE_ERROR:
4318 	case COMP_SLOT_NOT_ENABLED_ERROR:
4319 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4320 			 act, udev->slot_id);
4321 		ret = -EINVAL;
4322 		break;
4323 	case COMP_USB_TRANSACTION_ERROR:
4324 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4325 
4326 		mutex_unlock(&xhci->mutex);
4327 		ret = xhci_disable_slot(xhci, udev->slot_id);
4328 		xhci_free_virt_device(xhci, udev->slot_id);
4329 		if (!ret)
4330 			xhci_alloc_dev(hcd, udev);
4331 		kfree(command->completion);
4332 		kfree(command);
4333 		return -EPROTO;
4334 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4335 		dev_warn(&udev->dev,
4336 			 "ERROR: Incompatible device for setup %s command\n", act);
4337 		ret = -ENODEV;
4338 		break;
4339 	case COMP_SUCCESS:
4340 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4341 			       "Successful setup %s command", act);
4342 		break;
4343 	default:
4344 		xhci_err(xhci,
4345 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4346 			 act, command->status);
4347 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4348 		ret = -EINVAL;
4349 		break;
4350 	}
4351 	if (ret)
4352 		goto out;
4353 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4354 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4355 			"Op regs DCBAA ptr = %#016llx", temp_64);
4356 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4357 		"Slot ID %d dcbaa entry @%p = %#016llx",
4358 		udev->slot_id,
4359 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4360 		(unsigned long long)
4361 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4362 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4363 			"Output Context DMA address = %#08llx",
4364 			(unsigned long long)virt_dev->out_ctx->dma);
4365 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4366 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4367 	/*
4368 	 * USB core uses address 1 for the roothubs, so we add one to the
4369 	 * address given back to us by the HC.
4370 	 */
4371 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4372 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4373 	/* Zero the input context control for later use */
4374 	ctrl_ctx->add_flags = 0;
4375 	ctrl_ctx->drop_flags = 0;
4376 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4377 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4378 
4379 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4380 		       "Internal device address = %d",
4381 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4382 out:
4383 	mutex_unlock(&xhci->mutex);
4384 	if (command) {
4385 		kfree(command->completion);
4386 		kfree(command);
4387 	}
4388 	return ret;
4389 }
4390 
4391 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4392 {
4393 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4394 }
4395 
4396 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4397 {
4398 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4399 }
4400 
4401 /*
4402  * Transfer the port index into real index in the HW port status
4403  * registers. Caculate offset between the port's PORTSC register
4404  * and port status base. Divide the number of per port register
4405  * to get the real index. The raw port number bases 1.
4406  */
4407 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4408 {
4409 	struct xhci_hub *rhub;
4410 
4411 	rhub = xhci_get_rhub(hcd);
4412 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4413 }
4414 
4415 /*
4416  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4417  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4418  */
4419 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4420 			struct usb_device *udev, u16 max_exit_latency)
4421 {
4422 	struct xhci_virt_device *virt_dev;
4423 	struct xhci_command *command;
4424 	struct xhci_input_control_ctx *ctrl_ctx;
4425 	struct xhci_slot_ctx *slot_ctx;
4426 	unsigned long flags;
4427 	int ret;
4428 
4429 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4430 	if (!command)
4431 		return -ENOMEM;
4432 
4433 	spin_lock_irqsave(&xhci->lock, flags);
4434 
4435 	virt_dev = xhci->devs[udev->slot_id];
4436 
4437 	/*
4438 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4439 	 * xHC was re-initialized. Exit latency will be set later after
4440 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4441 	 */
4442 
4443 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4444 		spin_unlock_irqrestore(&xhci->lock, flags);
4445 		xhci_free_command(xhci, command);
4446 		return 0;
4447 	}
4448 
4449 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4450 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4451 	if (!ctrl_ctx) {
4452 		spin_unlock_irqrestore(&xhci->lock, flags);
4453 		xhci_free_command(xhci, command);
4454 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4455 				__func__);
4456 		return -ENOMEM;
4457 	}
4458 
4459 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4460 	spin_unlock_irqrestore(&xhci->lock, flags);
4461 
4462 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4463 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4464 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4465 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4466 	slot_ctx->dev_state = 0;
4467 
4468 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4469 			"Set up evaluate context for LPM MEL change.");
4470 
4471 	/* Issue and wait for the evaluate context command. */
4472 	ret = xhci_configure_endpoint(xhci, udev, command,
4473 			true, true);
4474 
4475 	if (!ret) {
4476 		spin_lock_irqsave(&xhci->lock, flags);
4477 		virt_dev->current_mel = max_exit_latency;
4478 		spin_unlock_irqrestore(&xhci->lock, flags);
4479 	}
4480 
4481 	xhci_free_command(xhci, command);
4482 
4483 	return ret;
4484 }
4485 
4486 #ifdef CONFIG_PM
4487 
4488 /* BESL to HIRD Encoding array for USB2 LPM */
4489 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4490 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4491 
4492 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4493 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4494 					struct usb_device *udev)
4495 {
4496 	int u2del, besl, besl_host;
4497 	int besl_device = 0;
4498 	u32 field;
4499 
4500 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4501 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4502 
4503 	if (field & USB_BESL_SUPPORT) {
4504 		for (besl_host = 0; besl_host < 16; besl_host++) {
4505 			if (xhci_besl_encoding[besl_host] >= u2del)
4506 				break;
4507 		}
4508 		/* Use baseline BESL value as default */
4509 		if (field & USB_BESL_BASELINE_VALID)
4510 			besl_device = USB_GET_BESL_BASELINE(field);
4511 		else if (field & USB_BESL_DEEP_VALID)
4512 			besl_device = USB_GET_BESL_DEEP(field);
4513 	} else {
4514 		if (u2del <= 50)
4515 			besl_host = 0;
4516 		else
4517 			besl_host = (u2del - 51) / 75 + 1;
4518 	}
4519 
4520 	besl = besl_host + besl_device;
4521 	if (besl > 15)
4522 		besl = 15;
4523 
4524 	return besl;
4525 }
4526 
4527 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4528 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4529 {
4530 	u32 field;
4531 	int l1;
4532 	int besld = 0;
4533 	int hirdm = 0;
4534 
4535 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4536 
4537 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4538 	l1 = udev->l1_params.timeout / 256;
4539 
4540 	/* device has preferred BESLD */
4541 	if (field & USB_BESL_DEEP_VALID) {
4542 		besld = USB_GET_BESL_DEEP(field);
4543 		hirdm = 1;
4544 	}
4545 
4546 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4547 }
4548 
4549 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4550 			struct usb_device *udev, int enable)
4551 {
4552 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4553 	struct xhci_port **ports;
4554 	__le32 __iomem	*pm_addr, *hlpm_addr;
4555 	u32		pm_val, hlpm_val, field;
4556 	unsigned int	port_num;
4557 	unsigned long	flags;
4558 	int		hird, exit_latency;
4559 	int		ret;
4560 
4561 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4562 		return -EPERM;
4563 
4564 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4565 			!udev->lpm_capable)
4566 		return -EPERM;
4567 
4568 	if (!udev->parent || udev->parent->parent ||
4569 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4570 		return -EPERM;
4571 
4572 	if (udev->usb2_hw_lpm_capable != 1)
4573 		return -EPERM;
4574 
4575 	spin_lock_irqsave(&xhci->lock, flags);
4576 
4577 	ports = xhci->usb2_rhub.ports;
4578 	port_num = udev->portnum - 1;
4579 	pm_addr = ports[port_num]->addr + PORTPMSC;
4580 	pm_val = readl(pm_addr);
4581 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4582 
4583 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4584 			enable ? "enable" : "disable", port_num + 1);
4585 
4586 	if (enable) {
4587 		/* Host supports BESL timeout instead of HIRD */
4588 		if (udev->usb2_hw_lpm_besl_capable) {
4589 			/* if device doesn't have a preferred BESL value use a
4590 			 * default one which works with mixed HIRD and BESL
4591 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4592 			 */
4593 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4594 			if ((field & USB_BESL_SUPPORT) &&
4595 			    (field & USB_BESL_BASELINE_VALID))
4596 				hird = USB_GET_BESL_BASELINE(field);
4597 			else
4598 				hird = udev->l1_params.besl;
4599 
4600 			exit_latency = xhci_besl_encoding[hird];
4601 			spin_unlock_irqrestore(&xhci->lock, flags);
4602 
4603 			ret = xhci_change_max_exit_latency(xhci, udev,
4604 							   exit_latency);
4605 			if (ret < 0)
4606 				return ret;
4607 			spin_lock_irqsave(&xhci->lock, flags);
4608 
4609 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4610 			writel(hlpm_val, hlpm_addr);
4611 			/* flush write */
4612 			readl(hlpm_addr);
4613 		} else {
4614 			hird = xhci_calculate_hird_besl(xhci, udev);
4615 		}
4616 
4617 		pm_val &= ~PORT_HIRD_MASK;
4618 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4619 		writel(pm_val, pm_addr);
4620 		pm_val = readl(pm_addr);
4621 		pm_val |= PORT_HLE;
4622 		writel(pm_val, pm_addr);
4623 		/* flush write */
4624 		readl(pm_addr);
4625 	} else {
4626 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4627 		writel(pm_val, pm_addr);
4628 		/* flush write */
4629 		readl(pm_addr);
4630 		if (udev->usb2_hw_lpm_besl_capable) {
4631 			spin_unlock_irqrestore(&xhci->lock, flags);
4632 			xhci_change_max_exit_latency(xhci, udev, 0);
4633 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4634 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4635 					   100, 10000);
4636 			return 0;
4637 		}
4638 	}
4639 
4640 	spin_unlock_irqrestore(&xhci->lock, flags);
4641 	return 0;
4642 }
4643 
4644 /* check if a usb2 port supports a given extened capability protocol
4645  * only USB2 ports extended protocol capability values are cached.
4646  * Return 1 if capability is supported
4647  */
4648 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4649 					   unsigned capability)
4650 {
4651 	u32 port_offset, port_count;
4652 	int i;
4653 
4654 	for (i = 0; i < xhci->num_ext_caps; i++) {
4655 		if (xhci->ext_caps[i] & capability) {
4656 			/* port offsets starts at 1 */
4657 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4658 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4659 			if (port >= port_offset &&
4660 			    port < port_offset + port_count)
4661 				return 1;
4662 		}
4663 	}
4664 	return 0;
4665 }
4666 
4667 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4668 {
4669 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4670 	int		portnum = udev->portnum - 1;
4671 
4672 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4673 		return 0;
4674 
4675 	/* we only support lpm for non-hub device connected to root hub yet */
4676 	if (!udev->parent || udev->parent->parent ||
4677 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4678 		return 0;
4679 
4680 	if (xhci->hw_lpm_support == 1 &&
4681 			xhci_check_usb2_port_capability(
4682 				xhci, portnum, XHCI_HLC)) {
4683 		udev->usb2_hw_lpm_capable = 1;
4684 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4685 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4686 		if (xhci_check_usb2_port_capability(xhci, portnum,
4687 					XHCI_BLC))
4688 			udev->usb2_hw_lpm_besl_capable = 1;
4689 	}
4690 
4691 	return 0;
4692 }
4693 
4694 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4695 
4696 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4697 static unsigned long long xhci_service_interval_to_ns(
4698 		struct usb_endpoint_descriptor *desc)
4699 {
4700 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4701 }
4702 
4703 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4704 		enum usb3_link_state state)
4705 {
4706 	unsigned long long sel;
4707 	unsigned long long pel;
4708 	unsigned int max_sel_pel;
4709 	char *state_name;
4710 
4711 	switch (state) {
4712 	case USB3_LPM_U1:
4713 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4714 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4715 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4716 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4717 		state_name = "U1";
4718 		break;
4719 	case USB3_LPM_U2:
4720 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4721 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4722 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4723 		state_name = "U2";
4724 		break;
4725 	default:
4726 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4727 				__func__);
4728 		return USB3_LPM_DISABLED;
4729 	}
4730 
4731 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4732 		return USB3_LPM_DEVICE_INITIATED;
4733 
4734 	if (sel > max_sel_pel)
4735 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4736 				"due to long SEL %llu ms\n",
4737 				state_name, sel);
4738 	else
4739 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4740 				"due to long PEL %llu ms\n",
4741 				state_name, pel);
4742 	return USB3_LPM_DISABLED;
4743 }
4744 
4745 /* The U1 timeout should be the maximum of the following values:
4746  *  - For control endpoints, U1 system exit latency (SEL) * 3
4747  *  - For bulk endpoints, U1 SEL * 5
4748  *  - For interrupt endpoints:
4749  *    - Notification EPs, U1 SEL * 3
4750  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4751  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4752  */
4753 static unsigned long long xhci_calculate_intel_u1_timeout(
4754 		struct usb_device *udev,
4755 		struct usb_endpoint_descriptor *desc)
4756 {
4757 	unsigned long long timeout_ns;
4758 	int ep_type;
4759 	int intr_type;
4760 
4761 	ep_type = usb_endpoint_type(desc);
4762 	switch (ep_type) {
4763 	case USB_ENDPOINT_XFER_CONTROL:
4764 		timeout_ns = udev->u1_params.sel * 3;
4765 		break;
4766 	case USB_ENDPOINT_XFER_BULK:
4767 		timeout_ns = udev->u1_params.sel * 5;
4768 		break;
4769 	case USB_ENDPOINT_XFER_INT:
4770 		intr_type = usb_endpoint_interrupt_type(desc);
4771 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4772 			timeout_ns = udev->u1_params.sel * 3;
4773 			break;
4774 		}
4775 		/* Otherwise the calculation is the same as isoc eps */
4776 		fallthrough;
4777 	case USB_ENDPOINT_XFER_ISOC:
4778 		timeout_ns = xhci_service_interval_to_ns(desc);
4779 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4780 		if (timeout_ns < udev->u1_params.sel * 2)
4781 			timeout_ns = udev->u1_params.sel * 2;
4782 		break;
4783 	default:
4784 		return 0;
4785 	}
4786 
4787 	return timeout_ns;
4788 }
4789 
4790 /* Returns the hub-encoded U1 timeout value. */
4791 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4792 		struct usb_device *udev,
4793 		struct usb_endpoint_descriptor *desc)
4794 {
4795 	unsigned long long timeout_ns;
4796 
4797 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4798 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4799 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4800 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4801 			return USB3_LPM_DISABLED;
4802 		}
4803 	}
4804 
4805 	if (xhci->quirks & XHCI_INTEL_HOST)
4806 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4807 	else
4808 		timeout_ns = udev->u1_params.sel;
4809 
4810 	/* The U1 timeout is encoded in 1us intervals.
4811 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4812 	 */
4813 	if (timeout_ns == USB3_LPM_DISABLED)
4814 		timeout_ns = 1;
4815 	else
4816 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4817 
4818 	/* If the necessary timeout value is bigger than what we can set in the
4819 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4820 	 */
4821 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4822 		return timeout_ns;
4823 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4824 			"due to long timeout %llu ms\n", timeout_ns);
4825 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4826 }
4827 
4828 /* The U2 timeout should be the maximum of:
4829  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4830  *  - largest bInterval of any active periodic endpoint (to avoid going
4831  *    into lower power link states between intervals).
4832  *  - the U2 Exit Latency of the device
4833  */
4834 static unsigned long long xhci_calculate_intel_u2_timeout(
4835 		struct usb_device *udev,
4836 		struct usb_endpoint_descriptor *desc)
4837 {
4838 	unsigned long long timeout_ns;
4839 	unsigned long long u2_del_ns;
4840 
4841 	timeout_ns = 10 * 1000 * 1000;
4842 
4843 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4844 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4845 		timeout_ns = xhci_service_interval_to_ns(desc);
4846 
4847 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4848 	if (u2_del_ns > timeout_ns)
4849 		timeout_ns = u2_del_ns;
4850 
4851 	return timeout_ns;
4852 }
4853 
4854 /* Returns the hub-encoded U2 timeout value. */
4855 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4856 		struct usb_device *udev,
4857 		struct usb_endpoint_descriptor *desc)
4858 {
4859 	unsigned long long timeout_ns;
4860 
4861 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4862 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4863 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4864 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4865 			return USB3_LPM_DISABLED;
4866 		}
4867 	}
4868 
4869 	if (xhci->quirks & XHCI_INTEL_HOST)
4870 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4871 	else
4872 		timeout_ns = udev->u2_params.sel;
4873 
4874 	/* The U2 timeout is encoded in 256us intervals */
4875 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4876 	/* If the necessary timeout value is bigger than what we can set in the
4877 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4878 	 */
4879 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4880 		return timeout_ns;
4881 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4882 			"due to long timeout %llu ms\n", timeout_ns);
4883 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4884 }
4885 
4886 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4887 		struct usb_device *udev,
4888 		struct usb_endpoint_descriptor *desc,
4889 		enum usb3_link_state state,
4890 		u16 *timeout)
4891 {
4892 	if (state == USB3_LPM_U1)
4893 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4894 	else if (state == USB3_LPM_U2)
4895 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4896 
4897 	return USB3_LPM_DISABLED;
4898 }
4899 
4900 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4901 		struct usb_device *udev,
4902 		struct usb_endpoint_descriptor *desc,
4903 		enum usb3_link_state state,
4904 		u16 *timeout)
4905 {
4906 	u16 alt_timeout;
4907 
4908 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4909 		desc, state, timeout);
4910 
4911 	/* If we found we can't enable hub-initiated LPM, and
4912 	 * the U1 or U2 exit latency was too high to allow
4913 	 * device-initiated LPM as well, then we will disable LPM
4914 	 * for this device, so stop searching any further.
4915 	 */
4916 	if (alt_timeout == USB3_LPM_DISABLED) {
4917 		*timeout = alt_timeout;
4918 		return -E2BIG;
4919 	}
4920 	if (alt_timeout > *timeout)
4921 		*timeout = alt_timeout;
4922 	return 0;
4923 }
4924 
4925 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4926 		struct usb_device *udev,
4927 		struct usb_host_interface *alt,
4928 		enum usb3_link_state state,
4929 		u16 *timeout)
4930 {
4931 	int j;
4932 
4933 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4934 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4935 					&alt->endpoint[j].desc, state, timeout))
4936 			return -E2BIG;
4937 	}
4938 	return 0;
4939 }
4940 
4941 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4942 		enum usb3_link_state state)
4943 {
4944 	struct usb_device *parent;
4945 	unsigned int num_hubs;
4946 
4947 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4948 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4949 			parent = parent->parent)
4950 		num_hubs++;
4951 
4952 	if (num_hubs < 2)
4953 		return 0;
4954 
4955 	dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4956 			" below second-tier hub.\n");
4957 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4958 			"to decrease power consumption.\n");
4959 	return -E2BIG;
4960 }
4961 
4962 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4963 		struct usb_device *udev,
4964 		enum usb3_link_state state)
4965 {
4966 	if (xhci->quirks & XHCI_INTEL_HOST)
4967 		return xhci_check_intel_tier_policy(udev, state);
4968 	else
4969 		return 0;
4970 }
4971 
4972 /* Returns the U1 or U2 timeout that should be enabled.
4973  * If the tier check or timeout setting functions return with a non-zero exit
4974  * code, that means the timeout value has been finalized and we shouldn't look
4975  * at any more endpoints.
4976  */
4977 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4978 			struct usb_device *udev, enum usb3_link_state state)
4979 {
4980 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4981 	struct usb_host_config *config;
4982 	char *state_name;
4983 	int i;
4984 	u16 timeout = USB3_LPM_DISABLED;
4985 
4986 	if (state == USB3_LPM_U1)
4987 		state_name = "U1";
4988 	else if (state == USB3_LPM_U2)
4989 		state_name = "U2";
4990 	else {
4991 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4992 				state);
4993 		return timeout;
4994 	}
4995 
4996 	/* Gather some information about the currently installed configuration
4997 	 * and alternate interface settings.
4998 	 */
4999 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
5000 			state, &timeout))
5001 		return timeout;
5002 
5003 	config = udev->actconfig;
5004 	if (!config)
5005 		return timeout;
5006 
5007 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
5008 		struct usb_driver *driver;
5009 		struct usb_interface *intf = config->interface[i];
5010 
5011 		if (!intf)
5012 			continue;
5013 
5014 		/* Check if any currently bound drivers want hub-initiated LPM
5015 		 * disabled.
5016 		 */
5017 		if (intf->dev.driver) {
5018 			driver = to_usb_driver(intf->dev.driver);
5019 			if (driver && driver->disable_hub_initiated_lpm) {
5020 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
5021 					state_name, driver->name);
5022 				timeout = xhci_get_timeout_no_hub_lpm(udev,
5023 								      state);
5024 				if (timeout == USB3_LPM_DISABLED)
5025 					return timeout;
5026 			}
5027 		}
5028 
5029 		/* Not sure how this could happen... */
5030 		if (!intf->cur_altsetting)
5031 			continue;
5032 
5033 		if (xhci_update_timeout_for_interface(xhci, udev,
5034 					intf->cur_altsetting,
5035 					state, &timeout))
5036 			return timeout;
5037 	}
5038 	return timeout;
5039 }
5040 
5041 static int calculate_max_exit_latency(struct usb_device *udev,
5042 		enum usb3_link_state state_changed,
5043 		u16 hub_encoded_timeout)
5044 {
5045 	unsigned long long u1_mel_us = 0;
5046 	unsigned long long u2_mel_us = 0;
5047 	unsigned long long mel_us = 0;
5048 	bool disabling_u1;
5049 	bool disabling_u2;
5050 	bool enabling_u1;
5051 	bool enabling_u2;
5052 
5053 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
5054 			hub_encoded_timeout == USB3_LPM_DISABLED);
5055 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
5056 			hub_encoded_timeout == USB3_LPM_DISABLED);
5057 
5058 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
5059 			hub_encoded_timeout != USB3_LPM_DISABLED);
5060 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
5061 			hub_encoded_timeout != USB3_LPM_DISABLED);
5062 
5063 	/* If U1 was already enabled and we're not disabling it,
5064 	 * or we're going to enable U1, account for the U1 max exit latency.
5065 	 */
5066 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5067 			enabling_u1)
5068 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5069 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5070 			enabling_u2)
5071 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5072 
5073 	mel_us = max(u1_mel_us, u2_mel_us);
5074 
5075 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5076 	if (mel_us > MAX_EXIT) {
5077 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5078 				"is too big.\n", mel_us);
5079 		return -E2BIG;
5080 	}
5081 	return mel_us;
5082 }
5083 
5084 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5085 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5086 			struct usb_device *udev, enum usb3_link_state state)
5087 {
5088 	struct xhci_hcd	*xhci;
5089 	struct xhci_port *port;
5090 	u16 hub_encoded_timeout;
5091 	int mel;
5092 	int ret;
5093 
5094 	xhci = hcd_to_xhci(hcd);
5095 	/* The LPM timeout values are pretty host-controller specific, so don't
5096 	 * enable hub-initiated timeouts unless the vendor has provided
5097 	 * information about their timeout algorithm.
5098 	 */
5099 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5100 			!xhci->devs[udev->slot_id])
5101 		return USB3_LPM_DISABLED;
5102 
5103 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
5104 		return USB3_LPM_DISABLED;
5105 
5106 	/* If connected to root port then check port can handle lpm */
5107 	if (udev->parent && !udev->parent->parent) {
5108 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
5109 		if (port->lpm_incapable)
5110 			return USB3_LPM_DISABLED;
5111 	}
5112 
5113 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5114 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5115 	if (mel < 0) {
5116 		/* Max Exit Latency is too big, disable LPM. */
5117 		hub_encoded_timeout = USB3_LPM_DISABLED;
5118 		mel = 0;
5119 	}
5120 
5121 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5122 	if (ret)
5123 		return ret;
5124 	return hub_encoded_timeout;
5125 }
5126 
5127 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5128 			struct usb_device *udev, enum usb3_link_state state)
5129 {
5130 	struct xhci_hcd	*xhci;
5131 	u16 mel;
5132 
5133 	xhci = hcd_to_xhci(hcd);
5134 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5135 			!xhci->devs[udev->slot_id])
5136 		return 0;
5137 
5138 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5139 	return xhci_change_max_exit_latency(xhci, udev, mel);
5140 }
5141 #else /* CONFIG_PM */
5142 
5143 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5144 				struct usb_device *udev, int enable)
5145 {
5146 	return 0;
5147 }
5148 
5149 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5150 {
5151 	return 0;
5152 }
5153 
5154 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5155 			struct usb_device *udev, enum usb3_link_state state)
5156 {
5157 	return USB3_LPM_DISABLED;
5158 }
5159 
5160 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5161 			struct usb_device *udev, enum usb3_link_state state)
5162 {
5163 	return 0;
5164 }
5165 #endif	/* CONFIG_PM */
5166 
5167 /*-------------------------------------------------------------------------*/
5168 
5169 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5170  * internal data structures for the device.
5171  */
5172 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5173 			struct usb_tt *tt, gfp_t mem_flags)
5174 {
5175 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5176 	struct xhci_virt_device *vdev;
5177 	struct xhci_command *config_cmd;
5178 	struct xhci_input_control_ctx *ctrl_ctx;
5179 	struct xhci_slot_ctx *slot_ctx;
5180 	unsigned long flags;
5181 	unsigned think_time;
5182 	int ret;
5183 
5184 	/* Ignore root hubs */
5185 	if (!hdev->parent)
5186 		return 0;
5187 
5188 	vdev = xhci->devs[hdev->slot_id];
5189 	if (!vdev) {
5190 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5191 		return -EINVAL;
5192 	}
5193 
5194 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5195 	if (!config_cmd)
5196 		return -ENOMEM;
5197 
5198 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5199 	if (!ctrl_ctx) {
5200 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5201 				__func__);
5202 		xhci_free_command(xhci, config_cmd);
5203 		return -ENOMEM;
5204 	}
5205 
5206 	spin_lock_irqsave(&xhci->lock, flags);
5207 	if (hdev->speed == USB_SPEED_HIGH &&
5208 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5209 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5210 		xhci_free_command(xhci, config_cmd);
5211 		spin_unlock_irqrestore(&xhci->lock, flags);
5212 		return -ENOMEM;
5213 	}
5214 
5215 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5216 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5217 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5218 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5219 	/*
5220 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5221 	 * but it may be already set to 1 when setup an xHCI virtual
5222 	 * device, so clear it anyway.
5223 	 */
5224 	if (tt->multi)
5225 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5226 	else if (hdev->speed == USB_SPEED_FULL)
5227 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5228 
5229 	if (xhci->hci_version > 0x95) {
5230 		xhci_dbg(xhci, "xHCI version %x needs hub "
5231 				"TT think time and number of ports\n",
5232 				(unsigned int) xhci->hci_version);
5233 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5234 		/* Set TT think time - convert from ns to FS bit times.
5235 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5236 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5237 		 *
5238 		 * xHCI 1.0: this field shall be 0 if the device is not a
5239 		 * High-spped hub.
5240 		 */
5241 		think_time = tt->think_time;
5242 		if (think_time != 0)
5243 			think_time = (think_time / 666) - 1;
5244 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5245 			slot_ctx->tt_info |=
5246 				cpu_to_le32(TT_THINK_TIME(think_time));
5247 	} else {
5248 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5249 				"TT think time or number of ports\n",
5250 				(unsigned int) xhci->hci_version);
5251 	}
5252 	slot_ctx->dev_state = 0;
5253 	spin_unlock_irqrestore(&xhci->lock, flags);
5254 
5255 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5256 			(xhci->hci_version > 0x95) ?
5257 			"configure endpoint" : "evaluate context");
5258 
5259 	/* Issue and wait for the configure endpoint or
5260 	 * evaluate context command.
5261 	 */
5262 	if (xhci->hci_version > 0x95)
5263 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5264 				false, false);
5265 	else
5266 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5267 				true, false);
5268 
5269 	xhci_free_command(xhci, config_cmd);
5270 	return ret;
5271 }
5272 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5273 
5274 static int xhci_get_frame(struct usb_hcd *hcd)
5275 {
5276 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5277 	/* EHCI mods by the periodic size.  Why? */
5278 	return readl(&xhci->run_regs->microframe_index) >> 3;
5279 }
5280 
5281 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5282 {
5283 	xhci->usb2_rhub.hcd = hcd;
5284 	hcd->speed = HCD_USB2;
5285 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5286 	/*
5287 	 * USB 2.0 roothub under xHCI has an integrated TT,
5288 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5289 	 * companion controller.
5290 	 */
5291 	hcd->has_tt = 1;
5292 }
5293 
5294 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5295 {
5296 	unsigned int minor_rev;
5297 
5298 	/*
5299 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5300 	 * should return 0x31 for sbrn, or that the minor revision
5301 	 * is a two digit BCD containig minor and sub-minor numbers.
5302 	 * This was later clarified in xHCI 1.2.
5303 	 *
5304 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5305 	 * minor revision set to 0x1 instead of 0x10.
5306 	 */
5307 	if (xhci->usb3_rhub.min_rev == 0x1)
5308 		minor_rev = 1;
5309 	else
5310 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5311 
5312 	switch (minor_rev) {
5313 	case 2:
5314 		hcd->speed = HCD_USB32;
5315 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5316 		hcd->self.root_hub->rx_lanes = 2;
5317 		hcd->self.root_hub->tx_lanes = 2;
5318 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5319 		break;
5320 	case 1:
5321 		hcd->speed = HCD_USB31;
5322 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5323 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5324 		break;
5325 	}
5326 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5327 		  minor_rev, minor_rev ? "Enhanced " : "");
5328 
5329 	xhci->usb3_rhub.hcd = hcd;
5330 }
5331 
5332 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5333 {
5334 	struct xhci_hcd		*xhci;
5335 	/*
5336 	 * TODO: Check with DWC3 clients for sysdev according to
5337 	 * quirks
5338 	 */
5339 	struct device		*dev = hcd->self.sysdev;
5340 	int			retval;
5341 
5342 	/* Accept arbitrarily long scatter-gather lists */
5343 	hcd->self.sg_tablesize = ~0;
5344 
5345 	/* support to build packet from discontinuous buffers */
5346 	hcd->self.no_sg_constraint = 1;
5347 
5348 	/* XHCI controllers don't stop the ep queue on short packets :| */
5349 	hcd->self.no_stop_on_short = 1;
5350 
5351 	xhci = hcd_to_xhci(hcd);
5352 
5353 	if (!usb_hcd_is_primary_hcd(hcd)) {
5354 		xhci_hcd_init_usb3_data(xhci, hcd);
5355 		return 0;
5356 	}
5357 
5358 	mutex_init(&xhci->mutex);
5359 	xhci->main_hcd = hcd;
5360 	xhci->cap_regs = hcd->regs;
5361 	xhci->op_regs = hcd->regs +
5362 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5363 	xhci->run_regs = hcd->regs +
5364 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5365 	/* Cache read-only capability registers */
5366 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5367 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5368 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5369 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5370 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5371 	if (xhci->hci_version > 0x100)
5372 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5373 
5374 	/* xhci-plat or xhci-pci might have set max_interrupters already */
5375 	if ((!xhci->max_interrupters) ||
5376 	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5377 		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5378 
5379 	xhci->quirks |= quirks;
5380 
5381 	get_quirks(dev, xhci);
5382 
5383 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5384 	 * success event after a short transfer. This quirk will ignore such
5385 	 * spurious event.
5386 	 */
5387 	if (xhci->hci_version > 0x96)
5388 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5389 
5390 	/* Make sure the HC is halted. */
5391 	retval = xhci_halt(xhci);
5392 	if (retval)
5393 		return retval;
5394 
5395 	xhci_zero_64b_regs(xhci);
5396 
5397 	xhci_dbg(xhci, "Resetting HCD\n");
5398 	/* Reset the internal HC memory state and registers. */
5399 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5400 	if (retval)
5401 		return retval;
5402 	xhci_dbg(xhci, "Reset complete\n");
5403 
5404 	/*
5405 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5406 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5407 	 * address memory pointers actually. So, this driver clears the AC64
5408 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5409 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5410 	 */
5411 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5412 		xhci->hcc_params &= ~BIT(0);
5413 
5414 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5415 	 * if xHC supports 64-bit addressing */
5416 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5417 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5418 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5419 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5420 	} else {
5421 		/*
5422 		 * This is to avoid error in cases where a 32-bit USB
5423 		 * controller is used on a 64-bit capable system.
5424 		 */
5425 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5426 		if (retval)
5427 			return retval;
5428 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5429 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5430 	}
5431 
5432 	xhci_dbg(xhci, "Calling HCD init\n");
5433 	/* Initialize HCD and host controller data structures. */
5434 	retval = xhci_init(hcd);
5435 	if (retval)
5436 		return retval;
5437 	xhci_dbg(xhci, "Called HCD init\n");
5438 
5439 	if (xhci_hcd_is_usb3(hcd))
5440 		xhci_hcd_init_usb3_data(xhci, hcd);
5441 	else
5442 		xhci_hcd_init_usb2_data(xhci, hcd);
5443 
5444 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5445 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5446 
5447 	return 0;
5448 }
5449 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5450 
5451 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5452 		struct usb_host_endpoint *ep)
5453 {
5454 	struct xhci_hcd *xhci;
5455 	struct usb_device *udev;
5456 	unsigned int slot_id;
5457 	unsigned int ep_index;
5458 	unsigned long flags;
5459 
5460 	xhci = hcd_to_xhci(hcd);
5461 
5462 	spin_lock_irqsave(&xhci->lock, flags);
5463 	udev = (struct usb_device *)ep->hcpriv;
5464 	slot_id = udev->slot_id;
5465 	ep_index = xhci_get_endpoint_index(&ep->desc);
5466 
5467 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5468 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5469 	spin_unlock_irqrestore(&xhci->lock, flags);
5470 }
5471 
5472 static const struct hc_driver xhci_hc_driver = {
5473 	.description =		"xhci-hcd",
5474 	.product_desc =		"xHCI Host Controller",
5475 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5476 
5477 	/*
5478 	 * generic hardware linkage
5479 	 */
5480 	.irq =			xhci_irq,
5481 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5482 				HCD_BH,
5483 
5484 	/*
5485 	 * basic lifecycle operations
5486 	 */
5487 	.reset =		NULL, /* set in xhci_init_driver() */
5488 	.start =		xhci_run,
5489 	.stop =			xhci_stop,
5490 	.shutdown =		xhci_shutdown,
5491 
5492 	/*
5493 	 * managing i/o requests and associated device resources
5494 	 */
5495 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5496 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5497 	.urb_enqueue =		xhci_urb_enqueue,
5498 	.urb_dequeue =		xhci_urb_dequeue,
5499 	.alloc_dev =		xhci_alloc_dev,
5500 	.free_dev =		xhci_free_dev,
5501 	.alloc_streams =	xhci_alloc_streams,
5502 	.free_streams =		xhci_free_streams,
5503 	.add_endpoint =		xhci_add_endpoint,
5504 	.drop_endpoint =	xhci_drop_endpoint,
5505 	.endpoint_disable =	xhci_endpoint_disable,
5506 	.endpoint_reset =	xhci_endpoint_reset,
5507 	.check_bandwidth =	xhci_check_bandwidth,
5508 	.reset_bandwidth =	xhci_reset_bandwidth,
5509 	.address_device =	xhci_address_device,
5510 	.enable_device =	xhci_enable_device,
5511 	.update_hub_device =	xhci_update_hub_device,
5512 	.reset_device =		xhci_discover_or_reset_device,
5513 
5514 	/*
5515 	 * scheduling support
5516 	 */
5517 	.get_frame_number =	xhci_get_frame,
5518 
5519 	/*
5520 	 * root hub support
5521 	 */
5522 	.hub_control =		xhci_hub_control,
5523 	.hub_status_data =	xhci_hub_status_data,
5524 	.bus_suspend =		xhci_bus_suspend,
5525 	.bus_resume =		xhci_bus_resume,
5526 	.get_resuming_ports =	xhci_get_resuming_ports,
5527 
5528 	/*
5529 	 * call back when device connected and addressed
5530 	 */
5531 	.update_device =        xhci_update_device,
5532 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5533 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5534 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5535 	.find_raw_port_number =	xhci_find_raw_port_number,
5536 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5537 };
5538 
5539 void xhci_init_driver(struct hc_driver *drv,
5540 		      const struct xhci_driver_overrides *over)
5541 {
5542 	BUG_ON(!over);
5543 
5544 	/* Copy the generic table to drv then apply the overrides */
5545 	*drv = xhci_hc_driver;
5546 
5547 	if (over) {
5548 		drv->hcd_priv_size += over->extra_priv_size;
5549 		if (over->reset)
5550 			drv->reset = over->reset;
5551 		if (over->start)
5552 			drv->start = over->start;
5553 		if (over->add_endpoint)
5554 			drv->add_endpoint = over->add_endpoint;
5555 		if (over->drop_endpoint)
5556 			drv->drop_endpoint = over->drop_endpoint;
5557 		if (over->check_bandwidth)
5558 			drv->check_bandwidth = over->check_bandwidth;
5559 		if (over->reset_bandwidth)
5560 			drv->reset_bandwidth = over->reset_bandwidth;
5561 		if (over->update_hub_device)
5562 			drv->update_hub_device = over->update_hub_device;
5563 		if (over->hub_control)
5564 			drv->hub_control = over->hub_control;
5565 	}
5566 }
5567 EXPORT_SYMBOL_GPL(xhci_init_driver);
5568 
5569 MODULE_DESCRIPTION(DRIVER_DESC);
5570 MODULE_AUTHOR(DRIVER_AUTHOR);
5571 MODULE_LICENSE("GPL");
5572 
5573 static int __init xhci_hcd_init(void)
5574 {
5575 	/*
5576 	 * Check the compiler generated sizes of structures that must be laid
5577 	 * out in specific ways for hardware access.
5578 	 */
5579 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5580 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5581 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5582 	/* xhci_device_control has eight fields, and also
5583 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5584 	 */
5585 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5586 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5587 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5588 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5589 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5590 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5591 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5592 
5593 	if (usb_disabled())
5594 		return -ENODEV;
5595 
5596 	xhci_debugfs_create_root();
5597 	xhci_dbc_init();
5598 
5599 	return 0;
5600 }
5601 
5602 /*
5603  * If an init function is provided, an exit function must also be provided
5604  * to allow module unload.
5605  */
5606 static void __exit xhci_hcd_fini(void)
5607 {
5608 	xhci_debugfs_remove_root();
5609 	xhci_dbc_exit();
5610 }
5611 
5612 module_init(xhci_hcd_init);
5613 module_exit(xhci_hcd_fini);
5614