1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/jiffies.h> 12 #include <linux/pci.h> 13 #include <linux/iommu.h> 14 #include <linux/iopoll.h> 15 #include <linux/irq.h> 16 #include <linux/log2.h> 17 #include <linux/module.h> 18 #include <linux/moduleparam.h> 19 #include <linux/slab.h> 20 #include <linux/string_choices.h> 21 #include <linux/dmi.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/usb/xhci-sideband.h> 24 25 #include "xhci.h" 26 #include "xhci-trace.h" 27 #include "xhci-debugfs.h" 28 #include "xhci-dbgcap.h" 29 30 #define DRIVER_AUTHOR "Sarah Sharp" 31 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 32 33 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 34 35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 36 static int link_quirk; 37 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 39 40 static unsigned long long quirks; 41 module_param(quirks, ullong, S_IRUGO); 42 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 43 44 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 45 { 46 struct xhci_segment *seg; 47 48 if (!td || !td->start_seg) 49 return false; 50 51 xhci_for_each_ring_seg(ring->first_seg, seg) { 52 if (seg == td->start_seg) 53 return true; 54 } 55 56 return false; 57 } 58 59 /* 60 * xhci_handshake - spin reading hc until handshake completes or fails 61 * @ptr: address of hc register to be read 62 * @mask: bits to look at in result of read 63 * @done: value of those bits when handshake succeeds 64 * @usec: timeout in microseconds 65 * 66 * Returns negative errno, or zero on success 67 * 68 * Success happens when the "mask" bits have the specified value (hardware 69 * handshake done). There are two failure modes: "usec" have passed (major 70 * hardware flakeout), or the register reads as all-ones (hardware removed). 71 */ 72 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 73 { 74 u32 result; 75 int ret; 76 77 ret = readl_poll_timeout_atomic(ptr, result, 78 (result & mask) == done || 79 result == U32_MAX, 80 1, timeout_us); 81 if (result == U32_MAX) /* card removed */ 82 return -ENODEV; 83 84 return ret; 85 } 86 87 /* 88 * Disable interrupts and begin the xHCI halting process. 89 */ 90 void xhci_quiesce(struct xhci_hcd *xhci) 91 { 92 u32 halted; 93 u32 cmd; 94 u32 mask; 95 96 mask = ~(XHCI_IRQS); 97 halted = readl(&xhci->op_regs->status) & STS_HALT; 98 if (!halted) 99 mask &= ~CMD_RUN; 100 101 cmd = readl(&xhci->op_regs->command); 102 cmd &= mask; 103 writel(cmd, &xhci->op_regs->command); 104 } 105 106 /* 107 * Force HC into halt state. 108 * 109 * Disable any IRQs and clear the run/stop bit. 110 * HC will complete any current and actively pipelined transactions, and 111 * should halt within 16 ms of the run/stop bit being cleared. 112 * Read HC Halted bit in the status register to see when the HC is finished. 113 */ 114 int xhci_halt(struct xhci_hcd *xhci) 115 { 116 int ret; 117 118 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 119 xhci_quiesce(xhci); 120 121 ret = xhci_handshake(&xhci->op_regs->status, 122 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 123 if (ret) { 124 xhci_warn(xhci, "Host halt failed, %d\n", ret); 125 return ret; 126 } 127 128 xhci->xhc_state |= XHCI_STATE_HALTED; 129 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 130 131 return ret; 132 } 133 134 /* 135 * Set the run bit and wait for the host to be running. 136 */ 137 int xhci_start(struct xhci_hcd *xhci) 138 { 139 u32 temp; 140 int ret; 141 142 temp = readl(&xhci->op_regs->command); 143 temp |= (CMD_RUN); 144 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 145 temp); 146 writel(temp, &xhci->op_regs->command); 147 148 /* 149 * Wait for the HCHalted Status bit to be 0 to indicate the host is 150 * running. 151 */ 152 ret = xhci_handshake(&xhci->op_regs->status, 153 STS_HALT, 0, XHCI_MAX_HALT_USEC); 154 if (ret == -ETIMEDOUT) 155 xhci_err(xhci, "Host took too long to start, " 156 "waited %u microseconds.\n", 157 XHCI_MAX_HALT_USEC); 158 if (!ret) { 159 /* clear state flags. Including dying, halted or removing */ 160 xhci->xhc_state = 0; 161 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 162 } 163 164 return ret; 165 } 166 167 /* 168 * Reset a halted HC. 169 * 170 * This resets pipelines, timers, counters, state machines, etc. 171 * Transactions will be terminated immediately, and operational registers 172 * will be set to their defaults. 173 */ 174 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 175 { 176 u32 command; 177 u32 state; 178 int ret; 179 180 state = readl(&xhci->op_regs->status); 181 182 if (state == ~(u32)0) { 183 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 184 return -ENODEV; 185 } 186 187 if ((state & STS_HALT) == 0) { 188 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 189 return 0; 190 } 191 192 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 193 command = readl(&xhci->op_regs->command); 194 command |= CMD_RESET; 195 writel(command, &xhci->op_regs->command); 196 197 /* Existing Intel xHCI controllers require a delay of 1 mS, 198 * after setting the CMD_RESET bit, and before accessing any 199 * HC registers. This allows the HC to complete the 200 * reset operation and be ready for HC register access. 201 * Without this delay, the subsequent HC register access, 202 * may result in a system hang very rarely. 203 */ 204 if (xhci->quirks & XHCI_INTEL_HOST) 205 udelay(1000); 206 207 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us); 208 if (ret) 209 return ret; 210 211 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 212 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 213 214 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 215 "Wait for controller to be ready for doorbell rings"); 216 /* 217 * xHCI cannot write to any doorbells or operational registers other 218 * than status until the "Controller Not Ready" flag is cleared. 219 */ 220 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 221 222 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 223 xhci->usb2_rhub.bus_state.suspended_ports = 0; 224 xhci->usb2_rhub.bus_state.resuming_ports = 0; 225 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 226 xhci->usb3_rhub.bus_state.suspended_ports = 0; 227 xhci->usb3_rhub.bus_state.resuming_ports = 0; 228 229 return ret; 230 } 231 232 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 233 { 234 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 235 struct iommu_domain *domain; 236 int err, i; 237 u64 val; 238 u32 intrs; 239 240 /* 241 * Some Renesas controllers get into a weird state if they are 242 * reset while programmed with 64bit addresses (they will preserve 243 * the top half of the address in internal, non visible 244 * registers). You end up with half the address coming from the 245 * kernel, and the other half coming from the firmware. Also, 246 * changing the programming leads to extra accesses even if the 247 * controller is supposed to be halted. The controller ends up with 248 * a fatal fault, and is then ripe for being properly reset. 249 * 250 * Special care is taken to only apply this if the device is behind 251 * an iommu. Doing anything when there is no iommu is definitely 252 * unsafe... 253 */ 254 domain = iommu_get_domain_for_dev(dev); 255 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || 256 domain->type == IOMMU_DOMAIN_IDENTITY) 257 return; 258 259 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 260 261 /* Clear HSEIE so that faults do not get signaled */ 262 val = readl(&xhci->op_regs->command); 263 val &= ~CMD_HSEIE; 264 writel(val, &xhci->op_regs->command); 265 266 /* Clear HSE (aka FATAL) */ 267 val = readl(&xhci->op_regs->status); 268 val |= STS_FATAL; 269 writel(val, &xhci->op_regs->status); 270 271 /* Now zero the registers, and brace for impact */ 272 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 273 if (upper_32_bits(val)) 274 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 275 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 276 if (upper_32_bits(val)) 277 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 278 279 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 280 ARRAY_SIZE(xhci->run_regs->ir_set)); 281 282 for (i = 0; i < intrs; i++) { 283 struct xhci_intr_reg __iomem *ir; 284 285 ir = &xhci->run_regs->ir_set[i]; 286 val = xhci_read_64(xhci, &ir->erst_base); 287 if (upper_32_bits(val)) 288 xhci_write_64(xhci, 0, &ir->erst_base); 289 val= xhci_read_64(xhci, &ir->erst_dequeue); 290 if (upper_32_bits(val)) 291 xhci_write_64(xhci, 0, &ir->erst_dequeue); 292 } 293 294 /* Wait for the fault to appear. It will be cleared on reset */ 295 err = xhci_handshake(&xhci->op_regs->status, 296 STS_FATAL, STS_FATAL, 297 XHCI_MAX_HALT_USEC); 298 if (!err) 299 xhci_info(xhci, "Fault detected\n"); 300 } 301 302 int xhci_enable_interrupter(struct xhci_interrupter *ir) 303 { 304 u32 iman; 305 306 if (!ir || !ir->ir_set) 307 return -EINVAL; 308 309 iman = readl(&ir->ir_set->iman); 310 iman |= IMAN_IE; 311 writel(iman, &ir->ir_set->iman); 312 313 /* Read operation to guarantee the write has been flushed from posted buffers */ 314 readl(&ir->ir_set->iman); 315 return 0; 316 } 317 318 int xhci_disable_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 319 { 320 u32 iman; 321 322 if (!ir || !ir->ir_set) 323 return -EINVAL; 324 325 iman = readl(&ir->ir_set->iman); 326 iman &= ~IMAN_IE; 327 writel(iman, &ir->ir_set->iman); 328 329 iman = readl(&ir->ir_set->iman); 330 if (iman & IMAN_IP) 331 xhci_dbg(xhci, "%s: Interrupt pending\n", __func__); 332 333 return 0; 334 } 335 336 /* interrupt moderation interval imod_interval in nanoseconds */ 337 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir, 338 u32 imod_interval) 339 { 340 u32 imod; 341 342 if (!ir || !ir->ir_set) 343 return -EINVAL; 344 345 /* IMODI value in IMOD register is in 250ns increments */ 346 imod_interval = umin(imod_interval / 250, IMODI_MASK); 347 348 imod = readl(&ir->ir_set->imod); 349 imod &= ~IMODI_MASK; 350 imod |= imod_interval; 351 writel(imod, &ir->ir_set->imod); 352 353 return 0; 354 } 355 356 static void compliance_mode_recovery(struct timer_list *t) 357 { 358 struct xhci_hcd *xhci; 359 struct usb_hcd *hcd; 360 struct xhci_hub *rhub; 361 u32 temp; 362 int i; 363 364 xhci = timer_container_of(xhci, t, comp_mode_recovery_timer); 365 rhub = &xhci->usb3_rhub; 366 hcd = rhub->hcd; 367 368 if (!hcd) 369 return; 370 371 for (i = 0; i < rhub->num_ports; i++) { 372 temp = readl(rhub->ports[i]->addr); 373 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 374 /* 375 * Compliance Mode Detected. Letting USB Core 376 * handle the Warm Reset 377 */ 378 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 379 "Compliance mode detected->port %d", 380 i + 1); 381 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 382 "Attempting compliance mode recovery"); 383 384 if (hcd->state == HC_STATE_SUSPENDED) 385 usb_hcd_resume_root_hub(hcd); 386 387 usb_hcd_poll_rh_status(hcd); 388 } 389 } 390 391 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 392 mod_timer(&xhci->comp_mode_recovery_timer, 393 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 394 } 395 396 /* 397 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 398 * that causes ports behind that hardware to enter compliance mode sometimes. 399 * The quirk creates a timer that polls every 2 seconds the link state of 400 * each host controller's port and recovers it by issuing a Warm reset 401 * if Compliance mode is detected, otherwise the port will become "dead" (no 402 * device connections or disconnections will be detected anymore). Becasue no 403 * status event is generated when entering compliance mode (per xhci spec), 404 * this quirk is needed on systems that have the failing hardware installed. 405 */ 406 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 407 { 408 xhci->port_status_u0 = 0; 409 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 410 0); 411 xhci->comp_mode_recovery_timer.expires = jiffies + 412 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 413 414 add_timer(&xhci->comp_mode_recovery_timer); 415 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 416 "Compliance mode recovery timer initialized"); 417 } 418 419 /* 420 * This function identifies the systems that have installed the SN65LVPE502CP 421 * USB3.0 re-driver and that need the Compliance Mode Quirk. 422 * Systems: 423 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 424 */ 425 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 426 { 427 const char *dmi_product_name, *dmi_sys_vendor; 428 429 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 430 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 431 if (!dmi_product_name || !dmi_sys_vendor) 432 return false; 433 434 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 435 return false; 436 437 if (strstr(dmi_product_name, "Z420") || 438 strstr(dmi_product_name, "Z620") || 439 strstr(dmi_product_name, "Z820") || 440 strstr(dmi_product_name, "Z1 Workstation")) 441 return true; 442 443 return false; 444 } 445 446 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 447 { 448 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 449 } 450 451 static void xhci_hcd_page_size(struct xhci_hcd *xhci) 452 { 453 u32 page_size; 454 455 page_size = readl(&xhci->op_regs->page_size) & XHCI_PAGE_SIZE_MASK; 456 if (!is_power_of_2(page_size)) { 457 xhci_warn(xhci, "Invalid page size register = 0x%x\n", page_size); 458 /* Fallback to 4K page size, since that's common */ 459 page_size = 1; 460 } 461 462 xhci->page_size = page_size << 12; 463 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "HCD page size set to %iK", 464 xhci->page_size >> 10); 465 } 466 467 static void xhci_enable_max_dev_slots(struct xhci_hcd *xhci) 468 { 469 u32 config_reg; 470 u32 max_slots; 471 472 max_slots = HCS_MAX_SLOTS(xhci->hcs_params1); 473 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xHC can handle at most %d device slots", 474 max_slots); 475 476 config_reg = readl(&xhci->op_regs->config_reg); 477 config_reg &= ~HCS_SLOTS_MASK; 478 config_reg |= max_slots; 479 480 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting Max device slots reg = 0x%x", 481 config_reg); 482 writel(config_reg, &xhci->op_regs->config_reg); 483 } 484 485 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 486 { 487 dma_addr_t deq_dma; 488 u64 crcr; 489 490 deq_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, xhci->cmd_ring->dequeue); 491 deq_dma &= CMD_RING_PTR_MASK; 492 493 crcr = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 494 crcr &= ~CMD_RING_PTR_MASK; 495 crcr |= deq_dma; 496 497 crcr &= ~CMD_RING_CYCLE; 498 crcr |= xhci->cmd_ring->cycle_state; 499 500 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting command ring address to 0x%llx", crcr); 501 xhci_write_64(xhci, crcr, &xhci->op_regs->cmd_ring); 502 } 503 504 static void xhci_set_doorbell_ptr(struct xhci_hcd *xhci) 505 { 506 u32 offset; 507 508 offset = readl(&xhci->cap_regs->db_off) & DBOFF_MASK; 509 xhci->dba = (void __iomem *)xhci->cap_regs + offset; 510 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 511 "Doorbell array is located at offset 0x%x from cap regs base addr", offset); 512 } 513 514 /* 515 * Enable USB 3.0 device notifications for function remote wake, which is necessary 516 * for allowing USB 3.0 devices to do remote wakeup from U3 (device suspend). 517 */ 518 static void xhci_set_dev_notifications(struct xhci_hcd *xhci) 519 { 520 u32 dev_notf; 521 522 dev_notf = readl(&xhci->op_regs->dev_notification); 523 dev_notf &= ~DEV_NOTE_MASK; 524 dev_notf |= DEV_NOTE_FWAKE; 525 writel(dev_notf, &xhci->op_regs->dev_notification); 526 } 527 528 /* 529 * Initialize memory for HCD and xHC (one-time init). 530 * 531 * Program the PAGESIZE register, initialize the device context array, create 532 * device contexts (?), set up a command ring segment (or two?), create event 533 * ring (one for now). 534 */ 535 static int xhci_init(struct usb_hcd *hcd) 536 { 537 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 538 int retval; 539 540 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Starting %s", __func__); 541 spin_lock_init(&xhci->lock); 542 543 INIT_LIST_HEAD(&xhci->cmd_list); 544 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); 545 init_completion(&xhci->cmd_ring_stop_completion); 546 xhci_hcd_page_size(xhci); 547 memset(xhci->devs, 0, MAX_HC_SLOTS * sizeof(*xhci->devs)); 548 549 retval = xhci_mem_init(xhci, GFP_KERNEL); 550 if (retval) 551 return retval; 552 553 /* Set the Number of Device Slots Enabled to the maximum supported value */ 554 xhci_enable_max_dev_slots(xhci); 555 556 /* Set the address in the Command Ring Control register */ 557 xhci_set_cmd_ring_deq(xhci); 558 559 /* Set Device Context Base Address Array pointer */ 560 xhci_write_64(xhci, xhci->dcbaa->dma, &xhci->op_regs->dcbaa_ptr); 561 562 /* Set Doorbell array pointer */ 563 xhci_set_doorbell_ptr(xhci); 564 565 /* Set USB 3.0 device notifications for function remote wake */ 566 xhci_set_dev_notifications(xhci); 567 568 /* Initialize the Primary interrupter */ 569 xhci_add_interrupter(xhci, 0); 570 xhci->interrupters[0]->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX; 571 572 /* Initializing Compliance Mode Recovery Data If Needed */ 573 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 574 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 575 compliance_mode_recovery_timer_init(xhci); 576 } 577 578 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished %s", __func__); 579 return 0; 580 } 581 582 /*-------------------------------------------------------------------------*/ 583 584 static int xhci_run_finished(struct xhci_hcd *xhci) 585 { 586 struct xhci_interrupter *ir = xhci->interrupters[0]; 587 unsigned long flags; 588 u32 temp; 589 590 /* 591 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 592 * Protect the short window before host is running with a lock 593 */ 594 spin_lock_irqsave(&xhci->lock, flags); 595 596 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 597 temp = readl(&xhci->op_regs->command); 598 temp |= (CMD_EIE); 599 writel(temp, &xhci->op_regs->command); 600 601 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 602 xhci_enable_interrupter(ir); 603 604 if (xhci_start(xhci)) { 605 xhci_halt(xhci); 606 spin_unlock_irqrestore(&xhci->lock, flags); 607 return -ENODEV; 608 } 609 610 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 611 612 if (xhci->quirks & XHCI_NEC_HOST) 613 xhci_ring_cmd_db(xhci); 614 615 spin_unlock_irqrestore(&xhci->lock, flags); 616 617 return 0; 618 } 619 620 /* 621 * Start the HC after it was halted. 622 * 623 * This function is called by the USB core when the HC driver is added. 624 * Its opposite is xhci_stop(). 625 * 626 * xhci_init() must be called once before this function can be called. 627 * Reset the HC, enable device slot contexts, program DCBAAP, and 628 * set command ring pointer and event ring pointer. 629 * 630 * Setup MSI-X vectors and enable interrupts. 631 */ 632 int xhci_run(struct usb_hcd *hcd) 633 { 634 u64 temp_64; 635 int ret; 636 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 637 struct xhci_interrupter *ir = xhci->interrupters[0]; 638 /* Start the xHCI host controller running only after the USB 2.0 roothub 639 * is setup. 640 */ 641 642 hcd->uses_new_polling = 1; 643 if (hcd->msi_enabled) 644 ir->ip_autoclear = true; 645 646 if (!usb_hcd_is_primary_hcd(hcd)) 647 return xhci_run_finished(xhci); 648 649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 650 651 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 652 temp_64 &= ERST_PTR_MASK; 653 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 654 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 655 656 xhci_set_interrupter_moderation(ir, xhci->imod_interval); 657 658 if (xhci->quirks & XHCI_NEC_HOST) { 659 struct xhci_command *command; 660 661 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 662 if (!command) 663 return -ENOMEM; 664 665 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 666 TRB_TYPE(TRB_NEC_GET_FW)); 667 if (ret) 668 xhci_free_command(xhci, command); 669 } 670 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 671 "Finished %s for main hcd", __func__); 672 673 xhci_create_dbc_dev(xhci); 674 675 xhci_debugfs_init(xhci); 676 677 if (xhci_has_one_roothub(xhci)) 678 return xhci_run_finished(xhci); 679 680 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 681 682 return 0; 683 } 684 EXPORT_SYMBOL_GPL(xhci_run); 685 686 /* 687 * Stop xHCI driver. 688 * 689 * This function is called by the USB core when the HC driver is removed. 690 * Its opposite is xhci_run(). 691 * 692 * Disable device contexts, disable IRQs, and quiesce the HC. 693 * Reset the HC, finish any completed transactions, and cleanup memory. 694 */ 695 void xhci_stop(struct usb_hcd *hcd) 696 { 697 u32 temp; 698 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 699 struct xhci_interrupter *ir = xhci->interrupters[0]; 700 701 mutex_lock(&xhci->mutex); 702 703 /* Only halt host and free memory after both hcds are removed */ 704 if (!usb_hcd_is_primary_hcd(hcd)) { 705 mutex_unlock(&xhci->mutex); 706 return; 707 } 708 709 xhci_remove_dbc_dev(xhci); 710 711 spin_lock_irq(&xhci->lock); 712 xhci->xhc_state |= XHCI_STATE_HALTED; 713 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 714 xhci_halt(xhci); 715 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 716 spin_unlock_irq(&xhci->lock); 717 718 /* Deleting Compliance Mode Recovery Timer */ 719 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 720 (!(xhci_all_ports_seen_u0(xhci)))) { 721 timer_delete_sync(&xhci->comp_mode_recovery_timer); 722 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 723 "%s: compliance mode recovery timer deleted", 724 __func__); 725 } 726 727 if (xhci->quirks & XHCI_AMD_PLL_FIX) 728 usb_amd_dev_put(); 729 730 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 731 "// Disabling event ring interrupts"); 732 temp = readl(&xhci->op_regs->status); 733 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 734 xhci_disable_interrupter(xhci, ir); 735 736 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 737 xhci_mem_cleanup(xhci); 738 xhci_debugfs_exit(xhci); 739 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 740 "xhci_stop completed - status = %x", 741 readl(&xhci->op_regs->status)); 742 mutex_unlock(&xhci->mutex); 743 } 744 EXPORT_SYMBOL_GPL(xhci_stop); 745 746 /* 747 * Shutdown HC (not bus-specific) 748 * 749 * This is called when the machine is rebooting or halting. We assume that the 750 * machine will be powered off, and the HC's internal state will be reset. 751 * Don't bother to free memory. 752 * 753 * This will only ever be called with the main usb_hcd (the USB3 roothub). 754 */ 755 void xhci_shutdown(struct usb_hcd *hcd) 756 { 757 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 758 759 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 760 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 761 762 /* Don't poll the roothubs after shutdown. */ 763 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 764 __func__, hcd->self.busnum); 765 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 766 timer_delete_sync(&hcd->rh_timer); 767 768 if (xhci->shared_hcd) { 769 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 770 timer_delete_sync(&xhci->shared_hcd->rh_timer); 771 } 772 773 spin_lock_irq(&xhci->lock); 774 xhci_halt(xhci); 775 776 /* 777 * Workaround for spurious wakeps at shutdown with HSW, and for boot 778 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 779 */ 780 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 781 xhci->quirks & XHCI_RESET_TO_DEFAULT) 782 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 783 784 spin_unlock_irq(&xhci->lock); 785 786 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 787 "xhci_shutdown completed - status = %x", 788 readl(&xhci->op_regs->status)); 789 } 790 EXPORT_SYMBOL_GPL(xhci_shutdown); 791 792 #ifdef CONFIG_PM 793 static void xhci_save_registers(struct xhci_hcd *xhci) 794 { 795 struct xhci_interrupter *ir; 796 unsigned int i; 797 798 xhci->s3.command = readl(&xhci->op_regs->command); 799 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 800 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 801 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 802 803 /* save both primary and all secondary interrupters */ 804 /* fixme, shold we lock to prevent race with remove secondary interrupter? */ 805 for (i = 0; i < xhci->max_interrupters; i++) { 806 ir = xhci->interrupters[i]; 807 if (!ir) 808 continue; 809 810 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 811 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 812 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 813 ir->s3_iman = readl(&ir->ir_set->iman); 814 ir->s3_imod = readl(&ir->ir_set->imod); 815 } 816 } 817 818 static void xhci_restore_registers(struct xhci_hcd *xhci) 819 { 820 struct xhci_interrupter *ir; 821 unsigned int i; 822 823 writel(xhci->s3.command, &xhci->op_regs->command); 824 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 825 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 826 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 827 828 /* FIXME should we lock to protect against freeing of interrupters */ 829 for (i = 0; i < xhci->max_interrupters; i++) { 830 ir = xhci->interrupters[i]; 831 if (!ir) 832 continue; 833 834 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 835 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 836 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 837 writel(ir->s3_iman, &ir->ir_set->iman); 838 writel(ir->s3_imod, &ir->ir_set->imod); 839 } 840 } 841 842 /* 843 * The whole command ring must be cleared to zero when we suspend the host. 844 * 845 * The host doesn't save the command ring pointer in the suspend well, so we 846 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 847 * aligned, because of the reserved bits in the command ring dequeue pointer 848 * register. Therefore, we can't just set the dequeue pointer back in the 849 * middle of the ring (TRBs are 16-byte aligned). 850 */ 851 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 852 { 853 struct xhci_ring *ring; 854 struct xhci_segment *seg; 855 856 ring = xhci->cmd_ring; 857 xhci_for_each_ring_seg(ring->first_seg, seg) { 858 /* erase all TRBs before the link */ 859 memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 860 /* clear link cycle bit */ 861 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE); 862 } 863 864 xhci_initialize_ring_info(ring); 865 /* 866 * Reset the hardware dequeue pointer. 867 * Yes, this will need to be re-written after resume, but we're paranoid 868 * and want to make sure the hardware doesn't access bogus memory 869 * because, say, the BIOS or an SMI started the host without changing 870 * the command ring pointers. 871 */ 872 xhci_set_cmd_ring_deq(xhci); 873 } 874 875 /* 876 * Disable port wake bits if do_wakeup is not set. 877 * 878 * Also clear a possible internal port wake state left hanging for ports that 879 * detected termination but never successfully enumerated (trained to 0U). 880 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 881 * at enumeration clears this wake, force one here as well for unconnected ports 882 */ 883 884 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 885 struct xhci_hub *rhub, 886 bool do_wakeup) 887 { 888 unsigned long flags; 889 u32 t1, t2, portsc; 890 int i; 891 892 spin_lock_irqsave(&xhci->lock, flags); 893 894 for (i = 0; i < rhub->num_ports; i++) { 895 portsc = readl(rhub->ports[i]->addr); 896 t1 = xhci_port_state_to_neutral(portsc); 897 t2 = t1; 898 899 /* clear wake bits if do_wake is not set */ 900 if (!do_wakeup) 901 t2 &= ~PORT_WAKE_BITS; 902 903 /* Don't touch csc bit if connected or connect change is set */ 904 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 905 t2 |= PORT_CSC; 906 907 if (t1 != t2) { 908 writel(t2, rhub->ports[i]->addr); 909 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 910 rhub->hcd->self.busnum, i + 1, portsc, t2); 911 } 912 } 913 spin_unlock_irqrestore(&xhci->lock, flags); 914 } 915 916 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 917 { 918 struct xhci_port **ports; 919 int port_index; 920 u32 status; 921 u32 portsc; 922 923 status = readl(&xhci->op_regs->status); 924 if (status & STS_EINT) 925 return true; 926 /* 927 * Checking STS_EINT is not enough as there is a lag between a change 928 * bit being set and the Port Status Change Event that it generated 929 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 930 */ 931 932 port_index = xhci->usb2_rhub.num_ports; 933 ports = xhci->usb2_rhub.ports; 934 while (port_index--) { 935 portsc = readl(ports[port_index]->addr); 936 if (portsc & PORT_CHANGE_MASK || 937 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 938 return true; 939 } 940 port_index = xhci->usb3_rhub.num_ports; 941 ports = xhci->usb3_rhub.ports; 942 while (port_index--) { 943 portsc = readl(ports[port_index]->addr); 944 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) || 945 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 946 return true; 947 } 948 return false; 949 } 950 951 /* 952 * Stop HC (not bus-specific) 953 * 954 * This is called when the machine transition into S3/S4 mode. 955 * 956 */ 957 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 958 { 959 int rc = 0; 960 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 961 struct usb_hcd *hcd = xhci_to_hcd(xhci); 962 u32 command; 963 u32 res; 964 965 if (!hcd->state) 966 return 0; 967 968 if (hcd->state != HC_STATE_SUSPENDED || 969 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 970 return -EINVAL; 971 972 /* Clear root port wake on bits if wakeup not allowed. */ 973 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 974 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 975 976 if (!HCD_HW_ACCESSIBLE(hcd)) 977 return 0; 978 979 xhci_dbc_suspend(xhci); 980 981 /* Don't poll the roothubs on bus suspend. */ 982 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 983 __func__, hcd->self.busnum); 984 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 985 timer_delete_sync(&hcd->rh_timer); 986 if (xhci->shared_hcd) { 987 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 988 timer_delete_sync(&xhci->shared_hcd->rh_timer); 989 } 990 991 if (xhci->quirks & XHCI_SUSPEND_DELAY) 992 usleep_range(1000, 1500); 993 994 spin_lock_irq(&xhci->lock); 995 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 996 if (xhci->shared_hcd) 997 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 998 /* step 1: stop endpoint */ 999 /* skipped assuming that port suspend has done */ 1000 1001 /* step 2: clear Run/Stop bit */ 1002 command = readl(&xhci->op_regs->command); 1003 command &= ~CMD_RUN; 1004 writel(command, &xhci->op_regs->command); 1005 1006 /* Some chips from Fresco Logic need an extraordinary delay */ 1007 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1008 1009 if (xhci_handshake(&xhci->op_regs->status, 1010 STS_HALT, STS_HALT, delay)) { 1011 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1012 spin_unlock_irq(&xhci->lock); 1013 return -ETIMEDOUT; 1014 } 1015 xhci_clear_command_ring(xhci); 1016 1017 /* step 3: save registers */ 1018 xhci_save_registers(xhci); 1019 1020 /* step 4: set CSS flag */ 1021 command = readl(&xhci->op_regs->command); 1022 command |= CMD_CSS; 1023 writel(command, &xhci->op_regs->command); 1024 xhci->broken_suspend = 0; 1025 if (xhci_handshake(&xhci->op_regs->status, 1026 STS_SAVE, 0, 20 * 1000)) { 1027 /* 1028 * AMD SNPS xHC 3.0 occasionally does not clear the 1029 * SSS bit of USBSTS and when driver tries to poll 1030 * to see if the xHC clears BIT(8) which never happens 1031 * and driver assumes that controller is not responding 1032 * and times out. To workaround this, its good to check 1033 * if SRE and HCE bits are not set (as per xhci 1034 * Section 5.4.2) and bypass the timeout. 1035 */ 1036 res = readl(&xhci->op_regs->status); 1037 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1038 (((res & STS_SRE) == 0) && 1039 ((res & STS_HCE) == 0))) { 1040 xhci->broken_suspend = 1; 1041 } else { 1042 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1043 spin_unlock_irq(&xhci->lock); 1044 return -ETIMEDOUT; 1045 } 1046 } 1047 spin_unlock_irq(&xhci->lock); 1048 1049 /* 1050 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1051 * is about to be suspended. 1052 */ 1053 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1054 (!(xhci_all_ports_seen_u0(xhci)))) { 1055 timer_delete_sync(&xhci->comp_mode_recovery_timer); 1056 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1057 "%s: compliance mode recovery timer deleted", 1058 __func__); 1059 } 1060 1061 return rc; 1062 } 1063 EXPORT_SYMBOL_GPL(xhci_suspend); 1064 1065 /* 1066 * start xHC (not bus-specific) 1067 * 1068 * This is called when the machine transition from S3/S4 mode. 1069 * 1070 */ 1071 int xhci_resume(struct xhci_hcd *xhci, bool power_lost, bool is_auto_resume) 1072 { 1073 u32 command, temp = 0; 1074 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1075 int retval = 0; 1076 bool comp_timer_running = false; 1077 bool pending_portevent = false; 1078 bool suspended_usb3_devs = false; 1079 1080 if (!hcd->state) 1081 return 0; 1082 1083 /* Wait a bit if either of the roothubs need to settle from the 1084 * transition into bus suspend. 1085 */ 1086 1087 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1088 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1089 msleep(100); 1090 1091 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1092 if (xhci->shared_hcd) 1093 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1094 1095 spin_lock_irq(&xhci->lock); 1096 1097 if (xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1098 power_lost = true; 1099 1100 if (!power_lost) { 1101 /* 1102 * Some controllers might lose power during suspend, so wait 1103 * for controller not ready bit to clear, just as in xHC init. 1104 */ 1105 retval = xhci_handshake(&xhci->op_regs->status, 1106 STS_CNR, 0, 10 * 1000 * 1000); 1107 if (retval) { 1108 xhci_warn(xhci, "Controller not ready at resume %d\n", 1109 retval); 1110 spin_unlock_irq(&xhci->lock); 1111 return retval; 1112 } 1113 /* step 1: restore register */ 1114 xhci_restore_registers(xhci); 1115 /* step 2: initialize command ring buffer */ 1116 xhci_set_cmd_ring_deq(xhci); 1117 /* step 3: restore state and start state*/ 1118 /* step 3: set CRS flag */ 1119 command = readl(&xhci->op_regs->command); 1120 command |= CMD_CRS; 1121 writel(command, &xhci->op_regs->command); 1122 /* 1123 * Some controllers take up to 55+ ms to complete the controller 1124 * restore so setting the timeout to 100ms. Xhci specification 1125 * doesn't mention any timeout value. 1126 */ 1127 if (xhci_handshake(&xhci->op_regs->status, 1128 STS_RESTORE, 0, 100 * 1000)) { 1129 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1130 spin_unlock_irq(&xhci->lock); 1131 return -ETIMEDOUT; 1132 } 1133 } 1134 1135 temp = readl(&xhci->op_regs->status); 1136 1137 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1138 if ((temp & (STS_SRE | STS_HCE)) && 1139 !(xhci->xhc_state & XHCI_STATE_REMOVING)) { 1140 if (!power_lost) 1141 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1142 power_lost = true; 1143 } 1144 1145 if (power_lost) { 1146 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1147 !(xhci_all_ports_seen_u0(xhci))) { 1148 timer_delete_sync(&xhci->comp_mode_recovery_timer); 1149 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1150 "Compliance Mode Recovery Timer deleted!"); 1151 } 1152 1153 /* Let the USB core know _both_ roothubs lost power. */ 1154 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1155 if (xhci->shared_hcd) 1156 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1157 1158 xhci_dbg(xhci, "Stop HCD\n"); 1159 xhci_halt(xhci); 1160 xhci_zero_64b_regs(xhci); 1161 if (xhci->xhc_state & XHCI_STATE_REMOVING) 1162 retval = -ENODEV; 1163 else 1164 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1165 spin_unlock_irq(&xhci->lock); 1166 if (retval) 1167 return retval; 1168 1169 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1170 temp = readl(&xhci->op_regs->status); 1171 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1172 xhci_disable_interrupter(xhci, xhci->interrupters[0]); 1173 1174 xhci_dbg(xhci, "cleaning up memory\n"); 1175 xhci_mem_cleanup(xhci); 1176 xhci_debugfs_exit(xhci); 1177 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1178 readl(&xhci->op_regs->status)); 1179 1180 /* USB core calls the PCI reinit and start functions twice: 1181 * first with the primary HCD, and then with the secondary HCD. 1182 * If we don't do the same, the host will never be started. 1183 */ 1184 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1185 retval = xhci_init(hcd); 1186 if (retval) 1187 return retval; 1188 comp_timer_running = true; 1189 1190 xhci_dbg(xhci, "Start the primary HCD\n"); 1191 retval = xhci_run(hcd); 1192 if (!retval && xhci->shared_hcd) { 1193 xhci_dbg(xhci, "Start the secondary HCD\n"); 1194 retval = xhci_run(xhci->shared_hcd); 1195 } 1196 if (retval) 1197 return retval; 1198 /* 1199 * Resume roothubs unconditionally as PORTSC change bits are not 1200 * immediately visible after xHC reset 1201 */ 1202 hcd->state = HC_STATE_SUSPENDED; 1203 1204 if (xhci->shared_hcd) { 1205 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1206 usb_hcd_resume_root_hub(xhci->shared_hcd); 1207 } 1208 usb_hcd_resume_root_hub(hcd); 1209 1210 goto done; 1211 } 1212 1213 /* step 4: set Run/Stop bit */ 1214 command = readl(&xhci->op_regs->command); 1215 command |= CMD_RUN; 1216 writel(command, &xhci->op_regs->command); 1217 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1218 0, 250 * 1000); 1219 1220 /* step 5: walk topology and initialize portsc, 1221 * portpmsc and portli 1222 */ 1223 /* this is done in bus_resume */ 1224 1225 /* step 6: restart each of the previously 1226 * Running endpoints by ringing their doorbells 1227 */ 1228 1229 spin_unlock_irq(&xhci->lock); 1230 1231 xhci_dbc_resume(xhci); 1232 1233 if (retval == 0) { 1234 /* 1235 * Resume roothubs only if there are pending events. 1236 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1237 * the first wake signalling failed, give it that chance if 1238 * there are suspended USB 3 devices. 1239 */ 1240 if (xhci->usb3_rhub.bus_state.suspended_ports || 1241 xhci->usb3_rhub.bus_state.bus_suspended) 1242 suspended_usb3_devs = true; 1243 1244 pending_portevent = xhci_pending_portevent(xhci); 1245 1246 if (suspended_usb3_devs && !pending_portevent && is_auto_resume) { 1247 msleep(120); 1248 pending_portevent = xhci_pending_portevent(xhci); 1249 } 1250 1251 if (pending_portevent) { 1252 if (xhci->shared_hcd) 1253 usb_hcd_resume_root_hub(xhci->shared_hcd); 1254 usb_hcd_resume_root_hub(hcd); 1255 } 1256 } 1257 done: 1258 /* 1259 * If system is subject to the Quirk, Compliance Mode Timer needs to 1260 * be re-initialized Always after a system resume. Ports are subject 1261 * to suffer the Compliance Mode issue again. It doesn't matter if 1262 * ports have entered previously to U0 before system's suspension. 1263 */ 1264 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1265 compliance_mode_recovery_timer_init(xhci); 1266 1267 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1268 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1269 1270 /* Re-enable port polling. */ 1271 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1272 __func__, hcd->self.busnum); 1273 if (xhci->shared_hcd) { 1274 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1275 usb_hcd_poll_rh_status(xhci->shared_hcd); 1276 } 1277 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1278 usb_hcd_poll_rh_status(hcd); 1279 1280 return retval; 1281 } 1282 EXPORT_SYMBOL_GPL(xhci_resume); 1283 #endif /* CONFIG_PM */ 1284 1285 /*-------------------------------------------------------------------------*/ 1286 1287 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1288 { 1289 void *temp; 1290 int ret = 0; 1291 unsigned int buf_len; 1292 enum dma_data_direction dir; 1293 1294 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1295 buf_len = urb->transfer_buffer_length; 1296 1297 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1298 dev_to_node(hcd->self.sysdev)); 1299 if (!temp) 1300 return -ENOMEM; 1301 1302 if (usb_urb_dir_out(urb)) 1303 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1304 temp, buf_len, 0); 1305 1306 urb->transfer_buffer = temp; 1307 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1308 urb->transfer_buffer, 1309 urb->transfer_buffer_length, 1310 dir); 1311 1312 if (dma_mapping_error(hcd->self.sysdev, 1313 urb->transfer_dma)) { 1314 ret = -EAGAIN; 1315 kfree(temp); 1316 } else { 1317 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1318 } 1319 1320 return ret; 1321 } 1322 1323 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1324 struct urb *urb) 1325 { 1326 bool ret = false; 1327 unsigned int i; 1328 unsigned int len = 0; 1329 unsigned int trb_size; 1330 unsigned int max_pkt; 1331 struct scatterlist *sg; 1332 struct scatterlist *tail_sg; 1333 1334 tail_sg = urb->sg; 1335 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1336 1337 if (!urb->num_sgs) 1338 return ret; 1339 1340 if (urb->dev->speed >= USB_SPEED_SUPER) 1341 trb_size = TRB_CACHE_SIZE_SS; 1342 else 1343 trb_size = TRB_CACHE_SIZE_HS; 1344 1345 if (urb->transfer_buffer_length != 0 && 1346 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1347 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1348 len = len + sg->length; 1349 if (i > trb_size - 2) { 1350 len = len - tail_sg->length; 1351 if (len < max_pkt) { 1352 ret = true; 1353 break; 1354 } 1355 1356 tail_sg = sg_next(tail_sg); 1357 } 1358 } 1359 } 1360 return ret; 1361 } 1362 1363 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1364 { 1365 unsigned int len; 1366 unsigned int buf_len; 1367 enum dma_data_direction dir; 1368 1369 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1370 1371 buf_len = urb->transfer_buffer_length; 1372 1373 if (IS_ENABLED(CONFIG_HAS_DMA) && 1374 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1375 dma_unmap_single(hcd->self.sysdev, 1376 urb->transfer_dma, 1377 urb->transfer_buffer_length, 1378 dir); 1379 1380 if (usb_urb_dir_in(urb)) { 1381 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1382 urb->transfer_buffer, 1383 buf_len, 1384 0); 1385 if (len != buf_len) { 1386 xhci_dbg(hcd_to_xhci(hcd), 1387 "Copy from tmp buf to urb sg list failed\n"); 1388 urb->actual_length = len; 1389 } 1390 } 1391 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1392 kfree(urb->transfer_buffer); 1393 urb->transfer_buffer = NULL; 1394 } 1395 1396 /* 1397 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1398 * we'll copy the actual data into the TRB address register. This is limited to 1399 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1400 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1401 */ 1402 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1403 gfp_t mem_flags) 1404 { 1405 struct xhci_hcd *xhci; 1406 1407 xhci = hcd_to_xhci(hcd); 1408 1409 if (xhci_urb_suitable_for_idt(urb)) 1410 return 0; 1411 1412 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1413 if (xhci_urb_temp_buffer_required(hcd, urb)) 1414 return xhci_map_temp_buffer(hcd, urb); 1415 } 1416 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1417 } 1418 1419 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1420 { 1421 struct xhci_hcd *xhci; 1422 bool unmap_temp_buf = false; 1423 1424 xhci = hcd_to_xhci(hcd); 1425 1426 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1427 unmap_temp_buf = true; 1428 1429 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1430 xhci_unmap_temp_buf(hcd, urb); 1431 else 1432 usb_hcd_unmap_urb_for_dma(hcd, urb); 1433 } 1434 1435 /** 1436 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1437 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1438 * value to right shift 1 for the bitmask. 1439 * @desc: USB endpoint descriptor to determine index for 1440 * 1441 * Index = (epnum * 2) + direction - 1, 1442 * where direction = 0 for OUT, 1 for IN. 1443 * For control endpoints, the IN index is used (OUT index is unused), so 1444 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1445 */ 1446 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1447 { 1448 unsigned int index; 1449 if (usb_endpoint_xfer_control(desc)) 1450 index = (unsigned int) (usb_endpoint_num(desc)*2); 1451 else 1452 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1453 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1454 return index; 1455 } 1456 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1457 1458 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1459 * address from the XHCI endpoint index. 1460 */ 1461 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1462 { 1463 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1464 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1465 return direction | number; 1466 } 1467 1468 /* Find the flag for this endpoint (for use in the control context). Use the 1469 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1470 * bit 1, etc. 1471 */ 1472 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1473 { 1474 return 1 << (xhci_get_endpoint_index(desc) + 1); 1475 } 1476 1477 /* Compute the last valid endpoint context index. Basically, this is the 1478 * endpoint index plus one. For slot contexts with more than valid endpoint, 1479 * we find the most significant bit set in the added contexts flags. 1480 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1481 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1482 */ 1483 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1484 { 1485 return fls(added_ctxs) - 1; 1486 } 1487 1488 /* Returns 1 if the arguments are OK; 1489 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1490 */ 1491 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1492 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1493 const char *func) { 1494 struct xhci_hcd *xhci; 1495 struct xhci_virt_device *virt_dev; 1496 1497 if (!hcd || (check_ep && !ep) || !udev) { 1498 pr_debug("xHCI %s called with invalid args\n", func); 1499 return -EINVAL; 1500 } 1501 if (!udev->parent) { 1502 pr_debug("xHCI %s called for root hub\n", func); 1503 return 0; 1504 } 1505 1506 xhci = hcd_to_xhci(hcd); 1507 if (check_virt_dev) { 1508 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1509 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1510 func); 1511 return -EINVAL; 1512 } 1513 1514 virt_dev = xhci->devs[udev->slot_id]; 1515 if (virt_dev->udev != udev) { 1516 xhci_dbg(xhci, "xHCI %s called with udev and " 1517 "virt_dev does not match\n", func); 1518 return -EINVAL; 1519 } 1520 } 1521 1522 if (xhci->xhc_state & XHCI_STATE_HALTED) 1523 return -ENODEV; 1524 1525 return 1; 1526 } 1527 1528 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1529 struct usb_device *udev, struct xhci_command *command, 1530 bool ctx_change, bool must_succeed); 1531 1532 /* 1533 * Full speed devices may have a max packet size greater than 8 bytes, but the 1534 * USB core doesn't know that until it reads the first 8 bytes of the 1535 * descriptor. If the usb_device's max packet size changes after that point, 1536 * we need to issue an evaluate context command and wait on it. 1537 */ 1538 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev) 1539 { 1540 struct xhci_input_control_ctx *ctrl_ctx; 1541 struct xhci_ep_ctx *ep_ctx; 1542 struct xhci_command *command; 1543 int max_packet_size; 1544 int hw_max_packet_size; 1545 int ret = 0; 1546 1547 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0); 1548 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1549 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc); 1550 1551 if (hw_max_packet_size == max_packet_size) 1552 return 0; 1553 1554 switch (max_packet_size) { 1555 case 8: case 16: case 32: case 64: case 9: 1556 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1557 "Max Packet Size for ep 0 changed."); 1558 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1559 "Max packet size in usb_device = %d", 1560 max_packet_size); 1561 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1562 "Max packet size in xHCI HW = %d", 1563 hw_max_packet_size); 1564 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1565 "Issuing evaluate context command."); 1566 1567 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1568 if (!command) 1569 return -ENOMEM; 1570 1571 command->in_ctx = vdev->in_ctx; 1572 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1573 if (!ctrl_ctx) { 1574 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1575 __func__); 1576 ret = -ENOMEM; 1577 break; 1578 } 1579 /* Set up the modified control endpoint 0 */ 1580 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0); 1581 1582 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0); 1583 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1584 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1585 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1586 1587 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1588 ctrl_ctx->drop_flags = 0; 1589 1590 ret = xhci_configure_endpoint(xhci, vdev->udev, command, 1591 true, false); 1592 /* Clean up the input context for later use by bandwidth functions */ 1593 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1594 break; 1595 default: 1596 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n", 1597 max_packet_size); 1598 return -EINVAL; 1599 } 1600 1601 kfree(command->completion); 1602 kfree(command); 1603 1604 return ret; 1605 } 1606 1607 /* 1608 * non-error returns are a promise to giveback() the urb later 1609 * we drop ownership so next owner (or urb unlink) can get it 1610 */ 1611 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1612 { 1613 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1614 unsigned long flags; 1615 int ret = 0; 1616 unsigned int slot_id, ep_index; 1617 unsigned int *ep_state; 1618 struct urb_priv *urb_priv; 1619 int num_tds; 1620 1621 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1622 1623 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1624 num_tds = urb->number_of_packets; 1625 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1626 urb->transfer_buffer_length > 0 && 1627 urb->transfer_flags & URB_ZERO_PACKET && 1628 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1629 num_tds = 2; 1630 else 1631 num_tds = 1; 1632 1633 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1634 if (!urb_priv) 1635 return -ENOMEM; 1636 1637 urb_priv->num_tds = num_tds; 1638 urb_priv->num_tds_done = 0; 1639 urb->hcpriv = urb_priv; 1640 1641 trace_xhci_urb_enqueue(urb); 1642 1643 spin_lock_irqsave(&xhci->lock, flags); 1644 1645 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1646 true, true, __func__); 1647 if (ret <= 0) { 1648 ret = ret ? ret : -EINVAL; 1649 goto free_priv; 1650 } 1651 1652 slot_id = urb->dev->slot_id; 1653 1654 if (!HCD_HW_ACCESSIBLE(hcd)) { 1655 ret = -ESHUTDOWN; 1656 goto free_priv; 1657 } 1658 1659 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1660 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1661 ret = -ENODEV; 1662 goto free_priv; 1663 } 1664 1665 if (xhci->xhc_state & XHCI_STATE_DYING) { 1666 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1667 urb->ep->desc.bEndpointAddress, urb); 1668 ret = -ESHUTDOWN; 1669 goto free_priv; 1670 } 1671 1672 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1673 1674 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1675 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1676 *ep_state); 1677 ret = -EINVAL; 1678 goto free_priv; 1679 } 1680 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1681 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1682 ret = -EINVAL; 1683 goto free_priv; 1684 } 1685 1686 switch (usb_endpoint_type(&urb->ep->desc)) { 1687 1688 case USB_ENDPOINT_XFER_CONTROL: 1689 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1690 slot_id, ep_index); 1691 break; 1692 case USB_ENDPOINT_XFER_BULK: 1693 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1694 slot_id, ep_index); 1695 break; 1696 case USB_ENDPOINT_XFER_INT: 1697 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1698 slot_id, ep_index); 1699 break; 1700 case USB_ENDPOINT_XFER_ISOC: 1701 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1702 slot_id, ep_index); 1703 } 1704 1705 if (ret) { 1706 free_priv: 1707 xhci_urb_free_priv(urb_priv); 1708 urb->hcpriv = NULL; 1709 } 1710 spin_unlock_irqrestore(&xhci->lock, flags); 1711 return ret; 1712 } 1713 1714 /* 1715 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1716 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1717 * should pick up where it left off in the TD, unless a Set Transfer Ring 1718 * Dequeue Pointer is issued. 1719 * 1720 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1721 * the ring. Since the ring is a contiguous structure, they can't be physically 1722 * removed. Instead, there are two options: 1723 * 1724 * 1) If the HC is in the middle of processing the URB to be canceled, we 1725 * simply move the ring's dequeue pointer past those TRBs using the Set 1726 * Transfer Ring Dequeue Pointer command. This will be the common case, 1727 * when drivers timeout on the last submitted URB and attempt to cancel. 1728 * 1729 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1730 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1731 * HC will need to invalidate the any TRBs it has cached after the stop 1732 * endpoint command, as noted in the xHCI 0.95 errata. 1733 * 1734 * 3) The TD may have completed by the time the Stop Endpoint Command 1735 * completes, so software needs to handle that case too. 1736 * 1737 * This function should protect against the TD enqueueing code ringing the 1738 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1739 * It also needs to account for multiple cancellations on happening at the same 1740 * time for the same endpoint. 1741 * 1742 * Note that this function can be called in any context, or so says 1743 * usb_hcd_unlink_urb() 1744 */ 1745 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1746 { 1747 unsigned long flags; 1748 int ret, i; 1749 u32 temp; 1750 struct xhci_hcd *xhci; 1751 struct urb_priv *urb_priv; 1752 struct xhci_td *td; 1753 unsigned int ep_index; 1754 struct xhci_ring *ep_ring; 1755 struct xhci_virt_ep *ep; 1756 struct xhci_command *command; 1757 struct xhci_virt_device *vdev; 1758 1759 xhci = hcd_to_xhci(hcd); 1760 spin_lock_irqsave(&xhci->lock, flags); 1761 1762 trace_xhci_urb_dequeue(urb); 1763 1764 /* Make sure the URB hasn't completed or been unlinked already */ 1765 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1766 if (ret) 1767 goto done; 1768 1769 /* give back URB now if we can't queue it for cancel */ 1770 vdev = xhci->devs[urb->dev->slot_id]; 1771 urb_priv = urb->hcpriv; 1772 if (!vdev || !urb_priv) 1773 goto err_giveback; 1774 1775 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1776 ep = &vdev->eps[ep_index]; 1777 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1778 if (!ep || !ep_ring) 1779 goto err_giveback; 1780 1781 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1782 temp = readl(&xhci->op_regs->status); 1783 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1784 xhci_hc_died(xhci); 1785 goto done; 1786 } 1787 1788 /* 1789 * check ring is not re-allocated since URB was enqueued. If it is, then 1790 * make sure none of the ring related pointers in this URB private data 1791 * are touched, such as td_list, otherwise we overwrite freed data 1792 */ 1793 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1794 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1795 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1796 td = &urb_priv->td[i]; 1797 if (!list_empty(&td->cancelled_td_list)) 1798 list_del_init(&td->cancelled_td_list); 1799 } 1800 goto err_giveback; 1801 } 1802 1803 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1804 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1805 "HC halted, freeing TD manually."); 1806 for (i = urb_priv->num_tds_done; 1807 i < urb_priv->num_tds; 1808 i++) { 1809 td = &urb_priv->td[i]; 1810 if (!list_empty(&td->td_list)) 1811 list_del_init(&td->td_list); 1812 if (!list_empty(&td->cancelled_td_list)) 1813 list_del_init(&td->cancelled_td_list); 1814 } 1815 goto err_giveback; 1816 } 1817 1818 i = urb_priv->num_tds_done; 1819 if (i < urb_priv->num_tds) 1820 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1821 "Cancel URB %p, dev %s, ep 0x%x, " 1822 "starting at offset 0x%llx", 1823 urb, urb->dev->devpath, 1824 urb->ep->desc.bEndpointAddress, 1825 (unsigned long long) xhci_trb_virt_to_dma( 1826 urb_priv->td[i].start_seg, 1827 urb_priv->td[i].start_trb)); 1828 1829 for (; i < urb_priv->num_tds; i++) { 1830 td = &urb_priv->td[i]; 1831 /* TD can already be on cancelled list if ep halted on it */ 1832 if (list_empty(&td->cancelled_td_list)) { 1833 td->cancel_status = TD_DIRTY; 1834 list_add_tail(&td->cancelled_td_list, 1835 &ep->cancelled_td_list); 1836 } 1837 } 1838 1839 /* These completion handlers will sort out cancelled TDs for us */ 1840 if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) { 1841 xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n", 1842 urb->dev->slot_id, ep_index, ep->ep_state); 1843 goto done; 1844 } 1845 1846 /* In this case no commands are pending but the endpoint is stopped */ 1847 if (ep->ep_state & EP_CLEARING_TT) { 1848 /* and cancelled TDs can be given back right away */ 1849 xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n", 1850 urb->dev->slot_id, ep_index, ep->ep_state); 1851 xhci_process_cancelled_tds(ep); 1852 } else { 1853 /* Otherwise, queue a new Stop Endpoint command */ 1854 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1855 if (!command) { 1856 ret = -ENOMEM; 1857 goto done; 1858 } 1859 ep->stop_time = jiffies; 1860 ep->ep_state |= EP_STOP_CMD_PENDING; 1861 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1862 ep_index, 0); 1863 xhci_ring_cmd_db(xhci); 1864 } 1865 done: 1866 spin_unlock_irqrestore(&xhci->lock, flags); 1867 return ret; 1868 1869 err_giveback: 1870 if (urb_priv) 1871 xhci_urb_free_priv(urb_priv); 1872 usb_hcd_unlink_urb_from_ep(hcd, urb); 1873 spin_unlock_irqrestore(&xhci->lock, flags); 1874 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1875 return ret; 1876 } 1877 1878 /* Drop an endpoint from a new bandwidth configuration for this device. 1879 * Only one call to this function is allowed per endpoint before 1880 * check_bandwidth() or reset_bandwidth() must be called. 1881 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1882 * add the endpoint to the schedule with possibly new parameters denoted by a 1883 * different endpoint descriptor in usb_host_endpoint. 1884 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1885 * not allowed. 1886 * 1887 * The USB core will not allow URBs to be queued to an endpoint that is being 1888 * disabled, so there's no need for mutual exclusion to protect 1889 * the xhci->devs[slot_id] structure. 1890 */ 1891 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1892 struct usb_host_endpoint *ep) 1893 { 1894 struct xhci_hcd *xhci; 1895 struct xhci_container_ctx *in_ctx, *out_ctx; 1896 struct xhci_input_control_ctx *ctrl_ctx; 1897 unsigned int ep_index; 1898 struct xhci_ep_ctx *ep_ctx; 1899 u32 drop_flag; 1900 u32 new_add_flags, new_drop_flags; 1901 int ret; 1902 1903 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1904 if (ret <= 0) 1905 return ret; 1906 xhci = hcd_to_xhci(hcd); 1907 if (xhci->xhc_state & XHCI_STATE_DYING) 1908 return -ENODEV; 1909 1910 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1911 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1912 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1913 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1914 __func__, drop_flag); 1915 return 0; 1916 } 1917 1918 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1919 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1920 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1921 if (!ctrl_ctx) { 1922 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1923 __func__); 1924 return 0; 1925 } 1926 1927 ep_index = xhci_get_endpoint_index(&ep->desc); 1928 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1929 /* If the HC already knows the endpoint is disabled, 1930 * or the HCD has noted it is disabled, ignore this request 1931 */ 1932 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1933 le32_to_cpu(ctrl_ctx->drop_flags) & 1934 xhci_get_endpoint_flag(&ep->desc)) { 1935 /* Do not warn when called after a usb_device_reset */ 1936 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1937 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1938 __func__, ep); 1939 return 0; 1940 } 1941 1942 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1943 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1944 1945 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1946 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1947 1948 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1949 1950 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1951 1952 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1953 (unsigned int) ep->desc.bEndpointAddress, 1954 udev->slot_id, 1955 (unsigned int) new_drop_flags, 1956 (unsigned int) new_add_flags); 1957 return 0; 1958 } 1959 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1960 1961 /* Add an endpoint to a new possible bandwidth configuration for this device. 1962 * Only one call to this function is allowed per endpoint before 1963 * check_bandwidth() or reset_bandwidth() must be called. 1964 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1965 * add the endpoint to the schedule with possibly new parameters denoted by a 1966 * different endpoint descriptor in usb_host_endpoint. 1967 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1968 * not allowed. 1969 * 1970 * The USB core will not allow URBs to be queued to an endpoint until the 1971 * configuration or alt setting is installed in the device, so there's no need 1972 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1973 */ 1974 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1975 struct usb_host_endpoint *ep) 1976 { 1977 struct xhci_hcd *xhci; 1978 struct xhci_container_ctx *in_ctx; 1979 unsigned int ep_index; 1980 struct xhci_input_control_ctx *ctrl_ctx; 1981 struct xhci_ep_ctx *ep_ctx; 1982 u32 added_ctxs; 1983 u32 new_add_flags, new_drop_flags; 1984 struct xhci_virt_device *virt_dev; 1985 int ret = 0; 1986 1987 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1988 if (ret <= 0) { 1989 /* So we won't queue a reset ep command for a root hub */ 1990 ep->hcpriv = NULL; 1991 return ret; 1992 } 1993 xhci = hcd_to_xhci(hcd); 1994 if (xhci->xhc_state & XHCI_STATE_DYING) 1995 return -ENODEV; 1996 1997 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1998 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1999 /* FIXME when we have to issue an evaluate endpoint command to 2000 * deal with ep0 max packet size changing once we get the 2001 * descriptors 2002 */ 2003 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 2004 __func__, added_ctxs); 2005 return 0; 2006 } 2007 2008 virt_dev = xhci->devs[udev->slot_id]; 2009 in_ctx = virt_dev->in_ctx; 2010 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2011 if (!ctrl_ctx) { 2012 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2013 __func__); 2014 return 0; 2015 } 2016 2017 ep_index = xhci_get_endpoint_index(&ep->desc); 2018 /* If this endpoint is already in use, and the upper layers are trying 2019 * to add it again without dropping it, reject the addition. 2020 */ 2021 if (virt_dev->eps[ep_index].ring && 2022 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 2023 xhci_warn(xhci, "Trying to add endpoint 0x%x " 2024 "without dropping it.\n", 2025 (unsigned int) ep->desc.bEndpointAddress); 2026 return -EINVAL; 2027 } 2028 2029 /* If the HCD has already noted the endpoint is enabled, 2030 * ignore this request. 2031 */ 2032 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2033 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2034 __func__, ep); 2035 return 0; 2036 } 2037 2038 /* 2039 * Configuration and alternate setting changes must be done in 2040 * process context, not interrupt context (or so documenation 2041 * for usb_set_interface() and usb_set_configuration() claim). 2042 */ 2043 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2044 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2045 __func__, ep->desc.bEndpointAddress); 2046 return -ENOMEM; 2047 } 2048 2049 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2050 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2051 2052 /* If xhci_endpoint_disable() was called for this endpoint, but the 2053 * xHC hasn't been notified yet through the check_bandwidth() call, 2054 * this re-adds a new state for the endpoint from the new endpoint 2055 * descriptors. We must drop and re-add this endpoint, so we leave the 2056 * drop flags alone. 2057 */ 2058 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2059 2060 /* Store the usb_device pointer for later use */ 2061 ep->hcpriv = udev; 2062 2063 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2064 trace_xhci_add_endpoint(ep_ctx); 2065 2066 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2067 (unsigned int) ep->desc.bEndpointAddress, 2068 udev->slot_id, 2069 (unsigned int) new_drop_flags, 2070 (unsigned int) new_add_flags); 2071 return 0; 2072 } 2073 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2074 2075 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2076 { 2077 struct xhci_input_control_ctx *ctrl_ctx; 2078 struct xhci_ep_ctx *ep_ctx; 2079 struct xhci_slot_ctx *slot_ctx; 2080 int i; 2081 2082 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2083 if (!ctrl_ctx) { 2084 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2085 __func__); 2086 return; 2087 } 2088 2089 /* When a device's add flag and drop flag are zero, any subsequent 2090 * configure endpoint command will leave that endpoint's state 2091 * untouched. Make sure we don't leave any old state in the input 2092 * endpoint contexts. 2093 */ 2094 ctrl_ctx->drop_flags = 0; 2095 ctrl_ctx->add_flags = 0; 2096 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2097 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2098 /* Endpoint 0 is always valid */ 2099 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2100 for (i = 1; i < 31; i++) { 2101 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2102 ep_ctx->ep_info = 0; 2103 ep_ctx->ep_info2 = 0; 2104 ep_ctx->deq = 0; 2105 ep_ctx->tx_info = 0; 2106 } 2107 } 2108 2109 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2110 struct usb_device *udev, u32 *cmd_status) 2111 { 2112 int ret; 2113 2114 switch (*cmd_status) { 2115 case COMP_COMMAND_ABORTED: 2116 case COMP_COMMAND_RING_STOPPED: 2117 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2118 ret = -ETIME; 2119 break; 2120 case COMP_RESOURCE_ERROR: 2121 dev_warn(&udev->dev, 2122 "Not enough host controller resources for new device state.\n"); 2123 ret = -ENOMEM; 2124 /* FIXME: can we allocate more resources for the HC? */ 2125 break; 2126 case COMP_BANDWIDTH_ERROR: 2127 case COMP_SECONDARY_BANDWIDTH_ERROR: 2128 dev_warn(&udev->dev, 2129 "Not enough bandwidth for new device state.\n"); 2130 ret = -ENOSPC; 2131 /* FIXME: can we go back to the old state? */ 2132 break; 2133 case COMP_TRB_ERROR: 2134 /* the HCD set up something wrong */ 2135 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2136 "add flag = 1, " 2137 "and endpoint is not disabled.\n"); 2138 ret = -EINVAL; 2139 break; 2140 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2141 dev_warn(&udev->dev, 2142 "ERROR: Incompatible device for endpoint configure command.\n"); 2143 ret = -ENODEV; 2144 break; 2145 case COMP_SUCCESS: 2146 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2147 "Successful Endpoint Configure command"); 2148 ret = 0; 2149 break; 2150 default: 2151 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2152 *cmd_status); 2153 ret = -EINVAL; 2154 break; 2155 } 2156 return ret; 2157 } 2158 2159 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2160 struct usb_device *udev, u32 *cmd_status) 2161 { 2162 int ret; 2163 2164 switch (*cmd_status) { 2165 case COMP_COMMAND_ABORTED: 2166 case COMP_COMMAND_RING_STOPPED: 2167 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2168 ret = -ETIME; 2169 break; 2170 case COMP_PARAMETER_ERROR: 2171 dev_warn(&udev->dev, 2172 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2173 ret = -EINVAL; 2174 break; 2175 case COMP_SLOT_NOT_ENABLED_ERROR: 2176 dev_warn(&udev->dev, 2177 "WARN: slot not enabled for evaluate context command.\n"); 2178 ret = -EINVAL; 2179 break; 2180 case COMP_CONTEXT_STATE_ERROR: 2181 dev_warn(&udev->dev, 2182 "WARN: invalid context state for evaluate context command.\n"); 2183 ret = -EINVAL; 2184 break; 2185 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2186 dev_warn(&udev->dev, 2187 "ERROR: Incompatible device for evaluate context command.\n"); 2188 ret = -ENODEV; 2189 break; 2190 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2191 /* Max Exit Latency too large error */ 2192 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2193 ret = -EINVAL; 2194 break; 2195 case COMP_SUCCESS: 2196 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2197 "Successful evaluate context command"); 2198 ret = 0; 2199 break; 2200 default: 2201 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2202 *cmd_status); 2203 ret = -EINVAL; 2204 break; 2205 } 2206 return ret; 2207 } 2208 2209 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2210 struct xhci_input_control_ctx *ctrl_ctx) 2211 { 2212 u32 valid_add_flags; 2213 u32 valid_drop_flags; 2214 2215 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2216 * (bit 1). The default control endpoint is added during the Address 2217 * Device command and is never removed until the slot is disabled. 2218 */ 2219 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2220 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2221 2222 /* Use hweight32 to count the number of ones in the add flags, or 2223 * number of endpoints added. Don't count endpoints that are changed 2224 * (both added and dropped). 2225 */ 2226 return hweight32(valid_add_flags) - 2227 hweight32(valid_add_flags & valid_drop_flags); 2228 } 2229 2230 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2231 struct xhci_input_control_ctx *ctrl_ctx) 2232 { 2233 u32 valid_add_flags; 2234 u32 valid_drop_flags; 2235 2236 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2237 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2238 2239 return hweight32(valid_drop_flags) - 2240 hweight32(valid_add_flags & valid_drop_flags); 2241 } 2242 2243 /* 2244 * We need to reserve the new number of endpoints before the configure endpoint 2245 * command completes. We can't subtract the dropped endpoints from the number 2246 * of active endpoints until the command completes because we can oversubscribe 2247 * the host in this case: 2248 * 2249 * - the first configure endpoint command drops more endpoints than it adds 2250 * - a second configure endpoint command that adds more endpoints is queued 2251 * - the first configure endpoint command fails, so the config is unchanged 2252 * - the second command may succeed, even though there isn't enough resources 2253 * 2254 * Must be called with xhci->lock held. 2255 */ 2256 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2257 struct xhci_input_control_ctx *ctrl_ctx) 2258 { 2259 u32 added_eps; 2260 2261 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2262 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2263 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2264 "Not enough ep ctxs: " 2265 "%u active, need to add %u, limit is %u.", 2266 xhci->num_active_eps, added_eps, 2267 xhci->limit_active_eps); 2268 return -ENOMEM; 2269 } 2270 xhci->num_active_eps += added_eps; 2271 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2272 "Adding %u ep ctxs, %u now active.", added_eps, 2273 xhci->num_active_eps); 2274 return 0; 2275 } 2276 2277 /* 2278 * The configure endpoint was failed by the xHC for some other reason, so we 2279 * need to revert the resources that failed configuration would have used. 2280 * 2281 * Must be called with xhci->lock held. 2282 */ 2283 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2284 struct xhci_input_control_ctx *ctrl_ctx) 2285 { 2286 u32 num_failed_eps; 2287 2288 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2289 xhci->num_active_eps -= num_failed_eps; 2290 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2291 "Removing %u failed ep ctxs, %u now active.", 2292 num_failed_eps, 2293 xhci->num_active_eps); 2294 } 2295 2296 /* 2297 * Now that the command has completed, clean up the active endpoint count by 2298 * subtracting out the endpoints that were dropped (but not changed). 2299 * 2300 * Must be called with xhci->lock held. 2301 */ 2302 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2303 struct xhci_input_control_ctx *ctrl_ctx) 2304 { 2305 u32 num_dropped_eps; 2306 2307 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2308 xhci->num_active_eps -= num_dropped_eps; 2309 if (num_dropped_eps) 2310 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2311 "Removing %u dropped ep ctxs, %u now active.", 2312 num_dropped_eps, 2313 xhci->num_active_eps); 2314 } 2315 2316 static unsigned int xhci_get_block_size(struct usb_device *udev) 2317 { 2318 switch (udev->speed) { 2319 case USB_SPEED_LOW: 2320 case USB_SPEED_FULL: 2321 return FS_BLOCK; 2322 case USB_SPEED_HIGH: 2323 return HS_BLOCK; 2324 case USB_SPEED_SUPER: 2325 case USB_SPEED_SUPER_PLUS: 2326 return SS_BLOCK; 2327 case USB_SPEED_UNKNOWN: 2328 default: 2329 /* Should never happen */ 2330 return 1; 2331 } 2332 } 2333 2334 static unsigned int 2335 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2336 { 2337 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2338 return LS_OVERHEAD; 2339 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2340 return FS_OVERHEAD; 2341 return HS_OVERHEAD; 2342 } 2343 2344 /* If we are changing a LS/FS device under a HS hub, 2345 * make sure (if we are activating a new TT) that the HS bus has enough 2346 * bandwidth for this new TT. 2347 */ 2348 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2349 struct xhci_virt_device *virt_dev, 2350 int old_active_eps) 2351 { 2352 struct xhci_interval_bw_table *bw_table; 2353 struct xhci_tt_bw_info *tt_info; 2354 2355 /* Find the bandwidth table for the root port this TT is attached to. */ 2356 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table; 2357 tt_info = virt_dev->tt_info; 2358 /* If this TT already had active endpoints, the bandwidth for this TT 2359 * has already been added. Removing all periodic endpoints (and thus 2360 * making the TT enactive) will only decrease the bandwidth used. 2361 */ 2362 if (old_active_eps) 2363 return 0; 2364 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2365 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2366 return -ENOMEM; 2367 return 0; 2368 } 2369 /* Not sure why we would have no new active endpoints... 2370 * 2371 * Maybe because of an Evaluate Context change for a hub update or a 2372 * control endpoint 0 max packet size change? 2373 * FIXME: skip the bandwidth calculation in that case. 2374 */ 2375 return 0; 2376 } 2377 2378 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2379 struct xhci_virt_device *virt_dev) 2380 { 2381 unsigned int bw_reserved; 2382 2383 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2384 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2385 return -ENOMEM; 2386 2387 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2388 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2389 return -ENOMEM; 2390 2391 return 0; 2392 } 2393 2394 /* 2395 * This algorithm is a very conservative estimate of the worst-case scheduling 2396 * scenario for any one interval. The hardware dynamically schedules the 2397 * packets, so we can't tell which microframe could be the limiting factor in 2398 * the bandwidth scheduling. This only takes into account periodic endpoints. 2399 * 2400 * Obviously, we can't solve an NP complete problem to find the minimum worst 2401 * case scenario. Instead, we come up with an estimate that is no less than 2402 * the worst case bandwidth used for any one microframe, but may be an 2403 * over-estimate. 2404 * 2405 * We walk the requirements for each endpoint by interval, starting with the 2406 * smallest interval, and place packets in the schedule where there is only one 2407 * possible way to schedule packets for that interval. In order to simplify 2408 * this algorithm, we record the largest max packet size for each interval, and 2409 * assume all packets will be that size. 2410 * 2411 * For interval 0, we obviously must schedule all packets for each interval. 2412 * The bandwidth for interval 0 is just the amount of data to be transmitted 2413 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2414 * the number of packets). 2415 * 2416 * For interval 1, we have two possible microframes to schedule those packets 2417 * in. For this algorithm, if we can schedule the same number of packets for 2418 * each possible scheduling opportunity (each microframe), we will do so. The 2419 * remaining number of packets will be saved to be transmitted in the gaps in 2420 * the next interval's scheduling sequence. 2421 * 2422 * As we move those remaining packets to be scheduled with interval 2 packets, 2423 * we have to double the number of remaining packets to transmit. This is 2424 * because the intervals are actually powers of 2, and we would be transmitting 2425 * the previous interval's packets twice in this interval. We also have to be 2426 * sure that when we look at the largest max packet size for this interval, we 2427 * also look at the largest max packet size for the remaining packets and take 2428 * the greater of the two. 2429 * 2430 * The algorithm continues to evenly distribute packets in each scheduling 2431 * opportunity, and push the remaining packets out, until we get to the last 2432 * interval. Then those packets and their associated overhead are just added 2433 * to the bandwidth used. 2434 */ 2435 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2436 struct xhci_virt_device *virt_dev, 2437 int old_active_eps) 2438 { 2439 unsigned int bw_reserved; 2440 unsigned int max_bandwidth; 2441 unsigned int bw_used; 2442 unsigned int block_size; 2443 struct xhci_interval_bw_table *bw_table; 2444 unsigned int packet_size = 0; 2445 unsigned int overhead = 0; 2446 unsigned int packets_transmitted = 0; 2447 unsigned int packets_remaining = 0; 2448 unsigned int i; 2449 2450 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2451 return xhci_check_ss_bw(xhci, virt_dev); 2452 2453 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2454 max_bandwidth = HS_BW_LIMIT; 2455 /* Convert percent of bus BW reserved to blocks reserved */ 2456 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2457 } else { 2458 max_bandwidth = FS_BW_LIMIT; 2459 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2460 } 2461 2462 bw_table = virt_dev->bw_table; 2463 /* We need to translate the max packet size and max ESIT payloads into 2464 * the units the hardware uses. 2465 */ 2466 block_size = xhci_get_block_size(virt_dev->udev); 2467 2468 /* If we are manipulating a LS/FS device under a HS hub, double check 2469 * that the HS bus has enough bandwidth if we are activing a new TT. 2470 */ 2471 if (virt_dev->tt_info) { 2472 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2473 "Recalculating BW for rootport %u", 2474 virt_dev->rhub_port->hw_portnum + 1); 2475 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2476 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2477 "newly activated TT.\n"); 2478 return -ENOMEM; 2479 } 2480 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2481 "Recalculating BW for TT slot %u port %u", 2482 virt_dev->tt_info->slot_id, 2483 virt_dev->tt_info->ttport); 2484 } else { 2485 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2486 "Recalculating BW for rootport %u", 2487 virt_dev->rhub_port->hw_portnum + 1); 2488 } 2489 2490 /* Add in how much bandwidth will be used for interval zero, or the 2491 * rounded max ESIT payload + number of packets * largest overhead. 2492 */ 2493 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2494 bw_table->interval_bw[0].num_packets * 2495 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2496 2497 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2498 unsigned int bw_added; 2499 unsigned int largest_mps; 2500 unsigned int interval_overhead; 2501 2502 /* 2503 * How many packets could we transmit in this interval? 2504 * If packets didn't fit in the previous interval, we will need 2505 * to transmit that many packets twice within this interval. 2506 */ 2507 packets_remaining = 2 * packets_remaining + 2508 bw_table->interval_bw[i].num_packets; 2509 2510 /* Find the largest max packet size of this or the previous 2511 * interval. 2512 */ 2513 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2514 largest_mps = 0; 2515 else { 2516 struct xhci_virt_ep *virt_ep; 2517 struct list_head *ep_entry; 2518 2519 ep_entry = bw_table->interval_bw[i].endpoints.next; 2520 virt_ep = list_entry(ep_entry, 2521 struct xhci_virt_ep, bw_endpoint_list); 2522 /* Convert to blocks, rounding up */ 2523 largest_mps = DIV_ROUND_UP( 2524 virt_ep->bw_info.max_packet_size, 2525 block_size); 2526 } 2527 if (largest_mps > packet_size) 2528 packet_size = largest_mps; 2529 2530 /* Use the larger overhead of this or the previous interval. */ 2531 interval_overhead = xhci_get_largest_overhead( 2532 &bw_table->interval_bw[i]); 2533 if (interval_overhead > overhead) 2534 overhead = interval_overhead; 2535 2536 /* How many packets can we evenly distribute across 2537 * (1 << (i + 1)) possible scheduling opportunities? 2538 */ 2539 packets_transmitted = packets_remaining >> (i + 1); 2540 2541 /* Add in the bandwidth used for those scheduled packets */ 2542 bw_added = packets_transmitted * (overhead + packet_size); 2543 2544 /* How many packets do we have remaining to transmit? */ 2545 packets_remaining = packets_remaining % (1 << (i + 1)); 2546 2547 /* What largest max packet size should those packets have? */ 2548 /* If we've transmitted all packets, don't carry over the 2549 * largest packet size. 2550 */ 2551 if (packets_remaining == 0) { 2552 packet_size = 0; 2553 overhead = 0; 2554 } else if (packets_transmitted > 0) { 2555 /* Otherwise if we do have remaining packets, and we've 2556 * scheduled some packets in this interval, take the 2557 * largest max packet size from endpoints with this 2558 * interval. 2559 */ 2560 packet_size = largest_mps; 2561 overhead = interval_overhead; 2562 } 2563 /* Otherwise carry over packet_size and overhead from the last 2564 * time we had a remainder. 2565 */ 2566 bw_used += bw_added; 2567 if (bw_used > max_bandwidth) { 2568 xhci_warn(xhci, "Not enough bandwidth. " 2569 "Proposed: %u, Max: %u\n", 2570 bw_used, max_bandwidth); 2571 return -ENOMEM; 2572 } 2573 } 2574 /* 2575 * Ok, we know we have some packets left over after even-handedly 2576 * scheduling interval 15. We don't know which microframes they will 2577 * fit into, so we over-schedule and say they will be scheduled every 2578 * microframe. 2579 */ 2580 if (packets_remaining > 0) 2581 bw_used += overhead + packet_size; 2582 2583 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2584 /* OK, we're manipulating a HS device attached to a 2585 * root port bandwidth domain. Include the number of active TTs 2586 * in the bandwidth used. 2587 */ 2588 bw_used += TT_HS_OVERHEAD * 2589 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts; 2590 } 2591 2592 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2593 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2594 "Available: %u " "percent", 2595 bw_used, max_bandwidth, bw_reserved, 2596 (max_bandwidth - bw_used - bw_reserved) * 100 / 2597 max_bandwidth); 2598 2599 bw_used += bw_reserved; 2600 if (bw_used > max_bandwidth) { 2601 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2602 bw_used, max_bandwidth); 2603 return -ENOMEM; 2604 } 2605 2606 bw_table->bw_used = bw_used; 2607 return 0; 2608 } 2609 2610 static bool xhci_is_async_ep(unsigned int ep_type) 2611 { 2612 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2613 ep_type != ISOC_IN_EP && 2614 ep_type != INT_IN_EP); 2615 } 2616 2617 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2618 { 2619 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2620 } 2621 2622 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2623 { 2624 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2625 2626 if (ep_bw->ep_interval == 0) 2627 return SS_OVERHEAD_BURST + 2628 (ep_bw->mult * ep_bw->num_packets * 2629 (SS_OVERHEAD + mps)); 2630 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2631 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2632 1 << ep_bw->ep_interval); 2633 2634 } 2635 2636 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2637 struct xhci_bw_info *ep_bw, 2638 struct xhci_interval_bw_table *bw_table, 2639 struct usb_device *udev, 2640 struct xhci_virt_ep *virt_ep, 2641 struct xhci_tt_bw_info *tt_info) 2642 { 2643 struct xhci_interval_bw *interval_bw; 2644 int normalized_interval; 2645 2646 if (xhci_is_async_ep(ep_bw->type)) 2647 return; 2648 2649 if (udev->speed >= USB_SPEED_SUPER) { 2650 if (xhci_is_sync_in_ep(ep_bw->type)) 2651 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2652 xhci_get_ss_bw_consumed(ep_bw); 2653 else 2654 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2655 xhci_get_ss_bw_consumed(ep_bw); 2656 return; 2657 } 2658 2659 /* SuperSpeed endpoints never get added to intervals in the table, so 2660 * this check is only valid for HS/FS/LS devices. 2661 */ 2662 if (list_empty(&virt_ep->bw_endpoint_list)) 2663 return; 2664 /* For LS/FS devices, we need to translate the interval expressed in 2665 * microframes to frames. 2666 */ 2667 if (udev->speed == USB_SPEED_HIGH) 2668 normalized_interval = ep_bw->ep_interval; 2669 else 2670 normalized_interval = ep_bw->ep_interval - 3; 2671 2672 if (normalized_interval == 0) 2673 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2674 interval_bw = &bw_table->interval_bw[normalized_interval]; 2675 interval_bw->num_packets -= ep_bw->num_packets; 2676 switch (udev->speed) { 2677 case USB_SPEED_LOW: 2678 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2679 break; 2680 case USB_SPEED_FULL: 2681 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2682 break; 2683 case USB_SPEED_HIGH: 2684 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2685 break; 2686 default: 2687 /* Should never happen because only LS/FS/HS endpoints will get 2688 * added to the endpoint list. 2689 */ 2690 return; 2691 } 2692 if (tt_info) 2693 tt_info->active_eps -= 1; 2694 list_del_init(&virt_ep->bw_endpoint_list); 2695 } 2696 2697 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2698 struct xhci_bw_info *ep_bw, 2699 struct xhci_interval_bw_table *bw_table, 2700 struct usb_device *udev, 2701 struct xhci_virt_ep *virt_ep, 2702 struct xhci_tt_bw_info *tt_info) 2703 { 2704 struct xhci_interval_bw *interval_bw; 2705 struct xhci_virt_ep *smaller_ep; 2706 int normalized_interval; 2707 2708 if (xhci_is_async_ep(ep_bw->type)) 2709 return; 2710 2711 if (udev->speed == USB_SPEED_SUPER) { 2712 if (xhci_is_sync_in_ep(ep_bw->type)) 2713 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2714 xhci_get_ss_bw_consumed(ep_bw); 2715 else 2716 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2717 xhci_get_ss_bw_consumed(ep_bw); 2718 return; 2719 } 2720 2721 /* For LS/FS devices, we need to translate the interval expressed in 2722 * microframes to frames. 2723 */ 2724 if (udev->speed == USB_SPEED_HIGH) 2725 normalized_interval = ep_bw->ep_interval; 2726 else 2727 normalized_interval = ep_bw->ep_interval - 3; 2728 2729 if (normalized_interval == 0) 2730 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2731 interval_bw = &bw_table->interval_bw[normalized_interval]; 2732 interval_bw->num_packets += ep_bw->num_packets; 2733 switch (udev->speed) { 2734 case USB_SPEED_LOW: 2735 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2736 break; 2737 case USB_SPEED_FULL: 2738 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2739 break; 2740 case USB_SPEED_HIGH: 2741 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2742 break; 2743 default: 2744 /* Should never happen because only LS/FS/HS endpoints will get 2745 * added to the endpoint list. 2746 */ 2747 return; 2748 } 2749 2750 if (tt_info) 2751 tt_info->active_eps += 1; 2752 /* Insert the endpoint into the list, largest max packet size first. */ 2753 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2754 bw_endpoint_list) { 2755 if (ep_bw->max_packet_size >= 2756 smaller_ep->bw_info.max_packet_size) { 2757 /* Add the new ep before the smaller endpoint */ 2758 list_add_tail(&virt_ep->bw_endpoint_list, 2759 &smaller_ep->bw_endpoint_list); 2760 return; 2761 } 2762 } 2763 /* Add the new endpoint at the end of the list. */ 2764 list_add_tail(&virt_ep->bw_endpoint_list, 2765 &interval_bw->endpoints); 2766 } 2767 2768 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2769 struct xhci_virt_device *virt_dev, 2770 int old_active_eps) 2771 { 2772 struct xhci_root_port_bw_info *rh_bw_info; 2773 if (!virt_dev->tt_info) 2774 return; 2775 2776 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum]; 2777 if (old_active_eps == 0 && 2778 virt_dev->tt_info->active_eps != 0) { 2779 rh_bw_info->num_active_tts += 1; 2780 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2781 } else if (old_active_eps != 0 && 2782 virt_dev->tt_info->active_eps == 0) { 2783 rh_bw_info->num_active_tts -= 1; 2784 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2785 } 2786 } 2787 2788 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2789 struct xhci_virt_device *virt_dev, 2790 struct xhci_container_ctx *in_ctx) 2791 { 2792 struct xhci_bw_info ep_bw_info[31]; 2793 int i; 2794 struct xhci_input_control_ctx *ctrl_ctx; 2795 int old_active_eps = 0; 2796 2797 if (virt_dev->tt_info) 2798 old_active_eps = virt_dev->tt_info->active_eps; 2799 2800 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2801 if (!ctrl_ctx) { 2802 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2803 __func__); 2804 return -ENOMEM; 2805 } 2806 2807 for (i = 0; i < 31; i++) { 2808 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2809 continue; 2810 2811 /* Make a copy of the BW info in case we need to revert this */ 2812 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2813 sizeof(ep_bw_info[i])); 2814 /* Drop the endpoint from the interval table if the endpoint is 2815 * being dropped or changed. 2816 */ 2817 if (EP_IS_DROPPED(ctrl_ctx, i)) 2818 xhci_drop_ep_from_interval_table(xhci, 2819 &virt_dev->eps[i].bw_info, 2820 virt_dev->bw_table, 2821 virt_dev->udev, 2822 &virt_dev->eps[i], 2823 virt_dev->tt_info); 2824 } 2825 /* Overwrite the information stored in the endpoints' bw_info */ 2826 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2827 for (i = 0; i < 31; i++) { 2828 /* Add any changed or added endpoints to the interval table */ 2829 if (EP_IS_ADDED(ctrl_ctx, i)) 2830 xhci_add_ep_to_interval_table(xhci, 2831 &virt_dev->eps[i].bw_info, 2832 virt_dev->bw_table, 2833 virt_dev->udev, 2834 &virt_dev->eps[i], 2835 virt_dev->tt_info); 2836 } 2837 2838 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2839 /* Ok, this fits in the bandwidth we have. 2840 * Update the number of active TTs. 2841 */ 2842 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2843 return 0; 2844 } 2845 2846 /* We don't have enough bandwidth for this, revert the stored info. */ 2847 for (i = 0; i < 31; i++) { 2848 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2849 continue; 2850 2851 /* Drop the new copies of any added or changed endpoints from 2852 * the interval table. 2853 */ 2854 if (EP_IS_ADDED(ctrl_ctx, i)) { 2855 xhci_drop_ep_from_interval_table(xhci, 2856 &virt_dev->eps[i].bw_info, 2857 virt_dev->bw_table, 2858 virt_dev->udev, 2859 &virt_dev->eps[i], 2860 virt_dev->tt_info); 2861 } 2862 /* Revert the endpoint back to its old information */ 2863 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2864 sizeof(ep_bw_info[i])); 2865 /* Add any changed or dropped endpoints back into the table */ 2866 if (EP_IS_DROPPED(ctrl_ctx, i)) 2867 xhci_add_ep_to_interval_table(xhci, 2868 &virt_dev->eps[i].bw_info, 2869 virt_dev->bw_table, 2870 virt_dev->udev, 2871 &virt_dev->eps[i], 2872 virt_dev->tt_info); 2873 } 2874 return -ENOMEM; 2875 } 2876 2877 /* 2878 * Synchronous XHCI stop endpoint helper. Issues the stop endpoint command and 2879 * waits for the command completion before returning. This does not call 2880 * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error' 2881 * cases, along with transfer ring cleanup. 2882 * 2883 * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage 2884 * their own transfer ring, such as offload situations. 2885 */ 2886 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend, 2887 gfp_t gfp_flags) 2888 { 2889 struct xhci_command *command; 2890 unsigned long flags; 2891 int ret; 2892 2893 command = xhci_alloc_command(xhci, true, gfp_flags); 2894 if (!command) 2895 return -ENOMEM; 2896 2897 spin_lock_irqsave(&xhci->lock, flags); 2898 ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id, 2899 ep->ep_index, suspend); 2900 if (ret < 0) { 2901 spin_unlock_irqrestore(&xhci->lock, flags); 2902 goto out; 2903 } 2904 2905 xhci_ring_cmd_db(xhci); 2906 spin_unlock_irqrestore(&xhci->lock, flags); 2907 2908 wait_for_completion(command->completion); 2909 2910 /* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/ 2911 if (command->status == COMP_COMMAND_ABORTED || 2912 command->status == COMP_COMMAND_RING_STOPPED) { 2913 xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n"); 2914 ret = -ETIME; 2915 } 2916 out: 2917 xhci_free_command(xhci, command); 2918 2919 return ret; 2920 } 2921 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync); 2922 2923 /* Issue a configure endpoint command or evaluate context command 2924 * and wait for it to finish. 2925 */ 2926 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2927 struct usb_device *udev, 2928 struct xhci_command *command, 2929 bool ctx_change, bool must_succeed) 2930 { 2931 int ret; 2932 unsigned long flags; 2933 struct xhci_input_control_ctx *ctrl_ctx; 2934 struct xhci_virt_device *virt_dev; 2935 struct xhci_slot_ctx *slot_ctx; 2936 2937 if (!command) 2938 return -EINVAL; 2939 2940 spin_lock_irqsave(&xhci->lock, flags); 2941 2942 if (xhci->xhc_state & XHCI_STATE_DYING) { 2943 spin_unlock_irqrestore(&xhci->lock, flags); 2944 return -ESHUTDOWN; 2945 } 2946 2947 virt_dev = xhci->devs[udev->slot_id]; 2948 2949 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2950 if (!ctrl_ctx) { 2951 spin_unlock_irqrestore(&xhci->lock, flags); 2952 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2953 __func__); 2954 return -ENOMEM; 2955 } 2956 2957 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2958 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2959 spin_unlock_irqrestore(&xhci->lock, flags); 2960 xhci_warn(xhci, "Not enough host resources, " 2961 "active endpoint contexts = %u\n", 2962 xhci->num_active_eps); 2963 return -ENOMEM; 2964 } 2965 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change && 2966 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2967 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2968 xhci_free_host_resources(xhci, ctrl_ctx); 2969 spin_unlock_irqrestore(&xhci->lock, flags); 2970 xhci_warn(xhci, "Not enough bandwidth\n"); 2971 return -ENOMEM; 2972 } 2973 2974 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2975 2976 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2977 trace_xhci_configure_endpoint(slot_ctx); 2978 2979 if (!ctx_change) 2980 ret = xhci_queue_configure_endpoint(xhci, command, 2981 command->in_ctx->dma, 2982 udev->slot_id, must_succeed); 2983 else 2984 ret = xhci_queue_evaluate_context(xhci, command, 2985 command->in_ctx->dma, 2986 udev->slot_id, must_succeed); 2987 if (ret < 0) { 2988 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2989 xhci_free_host_resources(xhci, ctrl_ctx); 2990 spin_unlock_irqrestore(&xhci->lock, flags); 2991 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2992 "FIXME allocate a new ring segment"); 2993 return -ENOMEM; 2994 } 2995 xhci_ring_cmd_db(xhci); 2996 spin_unlock_irqrestore(&xhci->lock, flags); 2997 2998 /* Wait for the configure endpoint command to complete */ 2999 wait_for_completion(command->completion); 3000 3001 if (!ctx_change) 3002 ret = xhci_configure_endpoint_result(xhci, udev, 3003 &command->status); 3004 else 3005 ret = xhci_evaluate_context_result(xhci, udev, 3006 &command->status); 3007 3008 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3009 spin_lock_irqsave(&xhci->lock, flags); 3010 /* If the command failed, remove the reserved resources. 3011 * Otherwise, clean up the estimate to include dropped eps. 3012 */ 3013 if (ret) 3014 xhci_free_host_resources(xhci, ctrl_ctx); 3015 else 3016 xhci_finish_resource_reservation(xhci, ctrl_ctx); 3017 spin_unlock_irqrestore(&xhci->lock, flags); 3018 } 3019 return ret; 3020 } 3021 3022 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 3023 struct xhci_virt_device *vdev, int i) 3024 { 3025 struct xhci_virt_ep *ep = &vdev->eps[i]; 3026 3027 if (ep->ep_state & EP_HAS_STREAMS) { 3028 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 3029 xhci_get_endpoint_address(i)); 3030 xhci_free_stream_info(xhci, ep->stream_info); 3031 ep->stream_info = NULL; 3032 ep->ep_state &= ~EP_HAS_STREAMS; 3033 } 3034 } 3035 3036 /* Called after one or more calls to xhci_add_endpoint() or 3037 * xhci_drop_endpoint(). If this call fails, the USB core is expected 3038 * to call xhci_reset_bandwidth(). 3039 * 3040 * Since we are in the middle of changing either configuration or 3041 * installing a new alt setting, the USB core won't allow URBs to be 3042 * enqueued for any endpoint on the old config or interface. Nothing 3043 * else should be touching the xhci->devs[slot_id] structure, so we 3044 * don't need to take the xhci->lock for manipulating that. 3045 */ 3046 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3047 { 3048 int i; 3049 int ret = 0; 3050 struct xhci_hcd *xhci; 3051 struct xhci_virt_device *virt_dev; 3052 struct xhci_input_control_ctx *ctrl_ctx; 3053 struct xhci_slot_ctx *slot_ctx; 3054 struct xhci_command *command; 3055 3056 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3057 if (ret <= 0) 3058 return ret; 3059 xhci = hcd_to_xhci(hcd); 3060 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3061 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3062 return -ENODEV; 3063 3064 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3065 virt_dev = xhci->devs[udev->slot_id]; 3066 3067 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3068 if (!command) 3069 return -ENOMEM; 3070 3071 command->in_ctx = virt_dev->in_ctx; 3072 3073 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3074 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3075 if (!ctrl_ctx) { 3076 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3077 __func__); 3078 ret = -ENOMEM; 3079 goto command_cleanup; 3080 } 3081 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3082 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3083 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3084 3085 /* Don't issue the command if there's no endpoints to update. */ 3086 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3087 ctrl_ctx->drop_flags == 0) { 3088 ret = 0; 3089 goto command_cleanup; 3090 } 3091 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3092 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3093 for (i = 31; i >= 1; i--) { 3094 __le32 le32 = cpu_to_le32(BIT(i)); 3095 3096 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3097 || (ctrl_ctx->add_flags & le32) || i == 1) { 3098 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3099 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3100 break; 3101 } 3102 } 3103 3104 ret = xhci_configure_endpoint(xhci, udev, command, 3105 false, false); 3106 if (ret) 3107 /* Callee should call reset_bandwidth() */ 3108 goto command_cleanup; 3109 3110 /* Free any rings that were dropped, but not changed. */ 3111 for (i = 1; i < 31; i++) { 3112 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3113 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3114 xhci_free_endpoint_ring(xhci, virt_dev, i); 3115 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3116 } 3117 } 3118 xhci_zero_in_ctx(xhci, virt_dev); 3119 /* 3120 * Install any rings for completely new endpoints or changed endpoints, 3121 * and free any old rings from changed endpoints. 3122 */ 3123 for (i = 1; i < 31; i++) { 3124 if (!virt_dev->eps[i].new_ring) 3125 continue; 3126 /* Only free the old ring if it exists. 3127 * It may not if this is the first add of an endpoint. 3128 */ 3129 if (virt_dev->eps[i].ring) { 3130 xhci_free_endpoint_ring(xhci, virt_dev, i); 3131 } 3132 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3133 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3134 virt_dev->eps[i].new_ring = NULL; 3135 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3136 } 3137 command_cleanup: 3138 kfree(command->completion); 3139 kfree(command); 3140 3141 return ret; 3142 } 3143 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3144 3145 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3146 { 3147 struct xhci_hcd *xhci; 3148 struct xhci_virt_device *virt_dev; 3149 int i, ret; 3150 3151 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3152 if (ret <= 0) 3153 return; 3154 xhci = hcd_to_xhci(hcd); 3155 3156 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3157 virt_dev = xhci->devs[udev->slot_id]; 3158 /* Free any rings allocated for added endpoints */ 3159 for (i = 0; i < 31; i++) { 3160 if (virt_dev->eps[i].new_ring) { 3161 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3162 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3163 virt_dev->eps[i].new_ring = NULL; 3164 } 3165 } 3166 xhci_zero_in_ctx(xhci, virt_dev); 3167 } 3168 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3169 3170 /* Get the available bandwidth of the ports under the xhci roothub */ 3171 int xhci_get_port_bandwidth(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx, 3172 u8 dev_speed) 3173 { 3174 struct xhci_command *cmd; 3175 unsigned long flags; 3176 int ret; 3177 3178 if (!ctx || !xhci) 3179 return -EINVAL; 3180 3181 cmd = xhci_alloc_command(xhci, true, GFP_KERNEL); 3182 if (!cmd) 3183 return -ENOMEM; 3184 3185 cmd->in_ctx = ctx; 3186 3187 /* get xhci port bandwidth, refer to xhci rev1_2 protocol 4.6.15 */ 3188 spin_lock_irqsave(&xhci->lock, flags); 3189 3190 ret = xhci_queue_get_port_bw(xhci, cmd, ctx->dma, dev_speed, 0); 3191 if (ret) { 3192 spin_unlock_irqrestore(&xhci->lock, flags); 3193 goto err_out; 3194 } 3195 xhci_ring_cmd_db(xhci); 3196 spin_unlock_irqrestore(&xhci->lock, flags); 3197 3198 wait_for_completion(cmd->completion); 3199 err_out: 3200 kfree(cmd->completion); 3201 kfree(cmd); 3202 3203 return ret; 3204 } 3205 3206 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3207 struct xhci_container_ctx *in_ctx, 3208 struct xhci_container_ctx *out_ctx, 3209 struct xhci_input_control_ctx *ctrl_ctx, 3210 u32 add_flags, u32 drop_flags) 3211 { 3212 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3213 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3214 xhci_slot_copy(xhci, in_ctx, out_ctx); 3215 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3216 } 3217 3218 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3219 struct usb_host_endpoint *host_ep) 3220 { 3221 struct xhci_hcd *xhci; 3222 struct xhci_virt_device *vdev; 3223 struct xhci_virt_ep *ep; 3224 struct usb_device *udev; 3225 unsigned long flags; 3226 unsigned int ep_index; 3227 3228 xhci = hcd_to_xhci(hcd); 3229 rescan: 3230 spin_lock_irqsave(&xhci->lock, flags); 3231 3232 udev = (struct usb_device *)host_ep->hcpriv; 3233 if (!udev || !udev->slot_id) 3234 goto done; 3235 3236 vdev = xhci->devs[udev->slot_id]; 3237 if (!vdev) 3238 goto done; 3239 3240 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3241 ep = &vdev->eps[ep_index]; 3242 3243 /* wait for hub_tt_work to finish clearing hub TT */ 3244 if (ep->ep_state & EP_CLEARING_TT) { 3245 spin_unlock_irqrestore(&xhci->lock, flags); 3246 schedule_timeout_uninterruptible(1); 3247 goto rescan; 3248 } 3249 3250 if (ep->ep_state) 3251 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3252 ep->ep_state); 3253 done: 3254 host_ep->hcpriv = NULL; 3255 spin_unlock_irqrestore(&xhci->lock, flags); 3256 } 3257 3258 /* 3259 * Called after usb core issues a clear halt control message. 3260 * The host side of the halt should already be cleared by a reset endpoint 3261 * command issued when the STALL event was received. 3262 * 3263 * The reset endpoint command may only be issued to endpoints in the halted 3264 * state. For software that wishes to reset the data toggle or sequence number 3265 * of an endpoint that isn't in the halted state this function will issue a 3266 * configure endpoint command with the Drop and Add bits set for the target 3267 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3268 * 3269 * vdev may be lost due to xHC restore error and re-initialization during S3/S4 3270 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device() 3271 */ 3272 3273 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3274 struct usb_host_endpoint *host_ep) 3275 { 3276 struct xhci_hcd *xhci; 3277 struct usb_device *udev; 3278 struct xhci_virt_device *vdev; 3279 struct xhci_virt_ep *ep; 3280 struct xhci_input_control_ctx *ctrl_ctx; 3281 struct xhci_command *stop_cmd, *cfg_cmd; 3282 unsigned int ep_index; 3283 unsigned long flags; 3284 u32 ep_flag; 3285 int err; 3286 3287 xhci = hcd_to_xhci(hcd); 3288 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3289 3290 /* 3291 * Usb core assumes a max packet value for ep0 on FS devices until the 3292 * real value is read from the descriptor. Core resets Ep0 if values 3293 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case 3294 */ 3295 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) { 3296 3297 udev = container_of(host_ep, struct usb_device, ep0); 3298 if (udev->speed != USB_SPEED_FULL || !udev->slot_id) 3299 return; 3300 3301 vdev = xhci->devs[udev->slot_id]; 3302 if (!vdev || vdev->udev != udev) 3303 return; 3304 3305 xhci_check_ep0_maxpacket(xhci, vdev); 3306 3307 /* Nothing else should be done here for ep0 during ep reset */ 3308 return; 3309 } 3310 3311 if (!host_ep->hcpriv) 3312 return; 3313 udev = (struct usb_device *) host_ep->hcpriv; 3314 vdev = xhci->devs[udev->slot_id]; 3315 3316 if (!udev->slot_id || !vdev) 3317 return; 3318 3319 ep = &vdev->eps[ep_index]; 3320 3321 /* Bail out if toggle is already being cleared by a endpoint reset */ 3322 spin_lock_irqsave(&xhci->lock, flags); 3323 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3324 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3325 spin_unlock_irqrestore(&xhci->lock, flags); 3326 return; 3327 } 3328 spin_unlock_irqrestore(&xhci->lock, flags); 3329 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3330 if (usb_endpoint_xfer_control(&host_ep->desc) || 3331 usb_endpoint_xfer_isoc(&host_ep->desc)) 3332 return; 3333 3334 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3335 3336 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3337 return; 3338 3339 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3340 if (!stop_cmd) 3341 return; 3342 3343 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3344 if (!cfg_cmd) 3345 goto cleanup; 3346 3347 spin_lock_irqsave(&xhci->lock, flags); 3348 3349 /* block queuing new trbs and ringing ep doorbell */ 3350 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3351 3352 /* 3353 * Make sure endpoint ring is empty before resetting the toggle/seq. 3354 * Driver is required to synchronously cancel all transfer request. 3355 * Stop the endpoint to force xHC to update the output context 3356 */ 3357 3358 if (!list_empty(&ep->ring->td_list)) { 3359 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3360 spin_unlock_irqrestore(&xhci->lock, flags); 3361 xhci_free_command(xhci, cfg_cmd); 3362 goto cleanup; 3363 } 3364 3365 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3366 ep_index, 0); 3367 if (err < 0) { 3368 spin_unlock_irqrestore(&xhci->lock, flags); 3369 xhci_free_command(xhci, cfg_cmd); 3370 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3371 __func__, err); 3372 goto cleanup; 3373 } 3374 3375 xhci_ring_cmd_db(xhci); 3376 spin_unlock_irqrestore(&xhci->lock, flags); 3377 3378 wait_for_completion(stop_cmd->completion); 3379 3380 spin_lock_irqsave(&xhci->lock, flags); 3381 3382 /* config ep command clears toggle if add and drop ep flags are set */ 3383 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3384 if (!ctrl_ctx) { 3385 spin_unlock_irqrestore(&xhci->lock, flags); 3386 xhci_free_command(xhci, cfg_cmd); 3387 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3388 __func__); 3389 goto cleanup; 3390 } 3391 3392 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3393 ctrl_ctx, ep_flag, ep_flag); 3394 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3395 3396 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3397 udev->slot_id, false); 3398 if (err < 0) { 3399 spin_unlock_irqrestore(&xhci->lock, flags); 3400 xhci_free_command(xhci, cfg_cmd); 3401 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3402 __func__, err); 3403 goto cleanup; 3404 } 3405 3406 xhci_ring_cmd_db(xhci); 3407 spin_unlock_irqrestore(&xhci->lock, flags); 3408 3409 wait_for_completion(cfg_cmd->completion); 3410 3411 xhci_free_command(xhci, cfg_cmd); 3412 cleanup: 3413 xhci_free_command(xhci, stop_cmd); 3414 spin_lock_irqsave(&xhci->lock, flags); 3415 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3416 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3417 spin_unlock_irqrestore(&xhci->lock, flags); 3418 } 3419 3420 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3421 struct usb_device *udev, struct usb_host_endpoint *ep, 3422 unsigned int slot_id) 3423 { 3424 int ret; 3425 unsigned int ep_index; 3426 unsigned int ep_state; 3427 3428 if (!ep) 3429 return -EINVAL; 3430 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3431 if (ret <= 0) 3432 return ret ? ret : -EINVAL; 3433 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3434 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3435 " descriptor for ep 0x%x does not support streams\n", 3436 ep->desc.bEndpointAddress); 3437 return -EINVAL; 3438 } 3439 3440 ep_index = xhci_get_endpoint_index(&ep->desc); 3441 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3442 if (ep_state & EP_HAS_STREAMS || 3443 ep_state & EP_GETTING_STREAMS) { 3444 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3445 "already has streams set up.\n", 3446 ep->desc.bEndpointAddress); 3447 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3448 "dynamic stream context array reallocation.\n"); 3449 return -EINVAL; 3450 } 3451 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3452 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3453 "endpoint 0x%x; URBs are pending.\n", 3454 ep->desc.bEndpointAddress); 3455 return -EINVAL; 3456 } 3457 return 0; 3458 } 3459 3460 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3461 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3462 { 3463 unsigned int max_streams; 3464 3465 /* The stream context array size must be a power of two */ 3466 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3467 /* 3468 * Find out how many primary stream array entries the host controller 3469 * supports. Later we may use secondary stream arrays (similar to 2nd 3470 * level page entries), but that's an optional feature for xHCI host 3471 * controllers. xHCs must support at least 4 stream IDs. 3472 */ 3473 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3474 if (*num_stream_ctxs > max_streams) { 3475 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3476 max_streams); 3477 *num_stream_ctxs = max_streams; 3478 *num_streams = max_streams; 3479 } 3480 } 3481 3482 /* Returns an error code if one of the endpoint already has streams. 3483 * This does not change any data structures, it only checks and gathers 3484 * information. 3485 */ 3486 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3487 struct usb_device *udev, 3488 struct usb_host_endpoint **eps, unsigned int num_eps, 3489 unsigned int *num_streams, u32 *changed_ep_bitmask) 3490 { 3491 unsigned int max_streams; 3492 unsigned int endpoint_flag; 3493 int i; 3494 int ret; 3495 3496 for (i = 0; i < num_eps; i++) { 3497 ret = xhci_check_streams_endpoint(xhci, udev, 3498 eps[i], udev->slot_id); 3499 if (ret < 0) 3500 return ret; 3501 3502 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3503 if (max_streams < (*num_streams - 1)) { 3504 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3505 eps[i]->desc.bEndpointAddress, 3506 max_streams); 3507 *num_streams = max_streams+1; 3508 } 3509 3510 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3511 if (*changed_ep_bitmask & endpoint_flag) 3512 return -EINVAL; 3513 *changed_ep_bitmask |= endpoint_flag; 3514 } 3515 return 0; 3516 } 3517 3518 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3519 struct usb_device *udev, 3520 struct usb_host_endpoint **eps, unsigned int num_eps) 3521 { 3522 u32 changed_ep_bitmask = 0; 3523 unsigned int slot_id; 3524 unsigned int ep_index; 3525 unsigned int ep_state; 3526 int i; 3527 3528 slot_id = udev->slot_id; 3529 if (!xhci->devs[slot_id]) 3530 return 0; 3531 3532 for (i = 0; i < num_eps; i++) { 3533 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3534 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3535 /* Are streams already being freed for the endpoint? */ 3536 if (ep_state & EP_GETTING_NO_STREAMS) { 3537 xhci_warn(xhci, "WARN Can't disable streams for " 3538 "endpoint 0x%x, " 3539 "streams are being disabled already\n", 3540 eps[i]->desc.bEndpointAddress); 3541 return 0; 3542 } 3543 /* Are there actually any streams to free? */ 3544 if (!(ep_state & EP_HAS_STREAMS) && 3545 !(ep_state & EP_GETTING_STREAMS)) { 3546 xhci_warn(xhci, "WARN Can't disable streams for " 3547 "endpoint 0x%x, " 3548 "streams are already disabled!\n", 3549 eps[i]->desc.bEndpointAddress); 3550 xhci_warn(xhci, "WARN xhci_free_streams() called " 3551 "with non-streams endpoint\n"); 3552 return 0; 3553 } 3554 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3555 } 3556 return changed_ep_bitmask; 3557 } 3558 3559 /* 3560 * The USB device drivers use this function (through the HCD interface in USB 3561 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3562 * coordinate mass storage command queueing across multiple endpoints (basically 3563 * a stream ID == a task ID). 3564 * 3565 * Setting up streams involves allocating the same size stream context array 3566 * for each endpoint and issuing a configure endpoint command for all endpoints. 3567 * 3568 * Don't allow the call to succeed if one endpoint only supports one stream 3569 * (which means it doesn't support streams at all). 3570 * 3571 * Drivers may get less stream IDs than they asked for, if the host controller 3572 * hardware or endpoints claim they can't support the number of requested 3573 * stream IDs. 3574 */ 3575 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3576 struct usb_host_endpoint **eps, unsigned int num_eps, 3577 unsigned int num_streams, gfp_t mem_flags) 3578 { 3579 int i, ret; 3580 struct xhci_hcd *xhci; 3581 struct xhci_virt_device *vdev; 3582 struct xhci_command *config_cmd; 3583 struct xhci_input_control_ctx *ctrl_ctx; 3584 unsigned int ep_index; 3585 unsigned int num_stream_ctxs; 3586 unsigned int max_packet; 3587 unsigned long flags; 3588 u32 changed_ep_bitmask = 0; 3589 3590 if (!eps) 3591 return -EINVAL; 3592 3593 /* Add one to the number of streams requested to account for 3594 * stream 0 that is reserved for xHCI usage. 3595 */ 3596 num_streams += 1; 3597 xhci = hcd_to_xhci(hcd); 3598 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3599 num_streams); 3600 3601 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3602 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3603 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3604 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3605 return -ENOSYS; 3606 } 3607 3608 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3609 if (!config_cmd) 3610 return -ENOMEM; 3611 3612 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3613 if (!ctrl_ctx) { 3614 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3615 __func__); 3616 xhci_free_command(xhci, config_cmd); 3617 return -ENOMEM; 3618 } 3619 3620 /* Check to make sure all endpoints are not already configured for 3621 * streams. While we're at it, find the maximum number of streams that 3622 * all the endpoints will support and check for duplicate endpoints. 3623 */ 3624 spin_lock_irqsave(&xhci->lock, flags); 3625 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3626 num_eps, &num_streams, &changed_ep_bitmask); 3627 if (ret < 0) { 3628 xhci_free_command(xhci, config_cmd); 3629 spin_unlock_irqrestore(&xhci->lock, flags); 3630 return ret; 3631 } 3632 if (num_streams <= 1) { 3633 xhci_warn(xhci, "WARN: endpoints can't handle " 3634 "more than one stream.\n"); 3635 xhci_free_command(xhci, config_cmd); 3636 spin_unlock_irqrestore(&xhci->lock, flags); 3637 return -EINVAL; 3638 } 3639 vdev = xhci->devs[udev->slot_id]; 3640 /* Mark each endpoint as being in transition, so 3641 * xhci_urb_enqueue() will reject all URBs. 3642 */ 3643 for (i = 0; i < num_eps; i++) { 3644 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3645 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3646 } 3647 spin_unlock_irqrestore(&xhci->lock, flags); 3648 3649 /* Setup internal data structures and allocate HW data structures for 3650 * streams (but don't install the HW structures in the input context 3651 * until we're sure all memory allocation succeeded). 3652 */ 3653 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3654 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3655 num_stream_ctxs, num_streams); 3656 3657 for (i = 0; i < num_eps; i++) { 3658 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3659 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3660 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3661 num_stream_ctxs, 3662 num_streams, 3663 max_packet, mem_flags); 3664 if (!vdev->eps[ep_index].stream_info) 3665 goto cleanup; 3666 /* Set maxPstreams in endpoint context and update deq ptr to 3667 * point to stream context array. FIXME 3668 */ 3669 } 3670 3671 /* Set up the input context for a configure endpoint command. */ 3672 for (i = 0; i < num_eps; i++) { 3673 struct xhci_ep_ctx *ep_ctx; 3674 3675 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3676 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3677 3678 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3679 vdev->out_ctx, ep_index); 3680 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3681 vdev->eps[ep_index].stream_info); 3682 } 3683 /* Tell the HW to drop its old copy of the endpoint context info 3684 * and add the updated copy from the input context. 3685 */ 3686 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3687 vdev->out_ctx, ctrl_ctx, 3688 changed_ep_bitmask, changed_ep_bitmask); 3689 3690 /* Issue and wait for the configure endpoint command */ 3691 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3692 false, false); 3693 3694 /* xHC rejected the configure endpoint command for some reason, so we 3695 * leave the old ring intact and free our internal streams data 3696 * structure. 3697 */ 3698 if (ret < 0) 3699 goto cleanup; 3700 3701 spin_lock_irqsave(&xhci->lock, flags); 3702 for (i = 0; i < num_eps; i++) { 3703 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3704 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3705 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3706 udev->slot_id, ep_index); 3707 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3708 } 3709 xhci_free_command(xhci, config_cmd); 3710 spin_unlock_irqrestore(&xhci->lock, flags); 3711 3712 for (i = 0; i < num_eps; i++) { 3713 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3714 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3715 } 3716 /* Subtract 1 for stream 0, which drivers can't use */ 3717 return num_streams - 1; 3718 3719 cleanup: 3720 /* If it didn't work, free the streams! */ 3721 for (i = 0; i < num_eps; i++) { 3722 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3723 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3724 vdev->eps[ep_index].stream_info = NULL; 3725 /* FIXME Unset maxPstreams in endpoint context and 3726 * update deq ptr to point to normal string ring. 3727 */ 3728 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3729 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3730 xhci_endpoint_zero(xhci, vdev, eps[i]); 3731 } 3732 xhci_free_command(xhci, config_cmd); 3733 return -ENOMEM; 3734 } 3735 3736 /* Transition the endpoint from using streams to being a "normal" endpoint 3737 * without streams. 3738 * 3739 * Modify the endpoint context state, submit a configure endpoint command, 3740 * and free all endpoint rings for streams if that completes successfully. 3741 */ 3742 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3743 struct usb_host_endpoint **eps, unsigned int num_eps, 3744 gfp_t mem_flags) 3745 { 3746 int i, ret; 3747 struct xhci_hcd *xhci; 3748 struct xhci_virt_device *vdev; 3749 struct xhci_command *command; 3750 struct xhci_input_control_ctx *ctrl_ctx; 3751 unsigned int ep_index; 3752 unsigned long flags; 3753 u32 changed_ep_bitmask; 3754 3755 xhci = hcd_to_xhci(hcd); 3756 vdev = xhci->devs[udev->slot_id]; 3757 3758 /* Set up a configure endpoint command to remove the streams rings */ 3759 spin_lock_irqsave(&xhci->lock, flags); 3760 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3761 udev, eps, num_eps); 3762 if (changed_ep_bitmask == 0) { 3763 spin_unlock_irqrestore(&xhci->lock, flags); 3764 return -EINVAL; 3765 } 3766 3767 /* Use the xhci_command structure from the first endpoint. We may have 3768 * allocated too many, but the driver may call xhci_free_streams() for 3769 * each endpoint it grouped into one call to xhci_alloc_streams(). 3770 */ 3771 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3772 command = vdev->eps[ep_index].stream_info->free_streams_command; 3773 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3774 if (!ctrl_ctx) { 3775 spin_unlock_irqrestore(&xhci->lock, flags); 3776 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3777 __func__); 3778 return -EINVAL; 3779 } 3780 3781 for (i = 0; i < num_eps; i++) { 3782 struct xhci_ep_ctx *ep_ctx; 3783 3784 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3785 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3786 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3787 EP_GETTING_NO_STREAMS; 3788 3789 xhci_endpoint_copy(xhci, command->in_ctx, 3790 vdev->out_ctx, ep_index); 3791 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3792 &vdev->eps[ep_index]); 3793 } 3794 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3795 vdev->out_ctx, ctrl_ctx, 3796 changed_ep_bitmask, changed_ep_bitmask); 3797 spin_unlock_irqrestore(&xhci->lock, flags); 3798 3799 /* Issue and wait for the configure endpoint command, 3800 * which must succeed. 3801 */ 3802 ret = xhci_configure_endpoint(xhci, udev, command, 3803 false, true); 3804 3805 /* xHC rejected the configure endpoint command for some reason, so we 3806 * leave the streams rings intact. 3807 */ 3808 if (ret < 0) 3809 return ret; 3810 3811 spin_lock_irqsave(&xhci->lock, flags); 3812 for (i = 0; i < num_eps; i++) { 3813 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3814 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3815 vdev->eps[ep_index].stream_info = NULL; 3816 /* FIXME Unset maxPstreams in endpoint context and 3817 * update deq ptr to point to normal string ring. 3818 */ 3819 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3820 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3821 } 3822 spin_unlock_irqrestore(&xhci->lock, flags); 3823 3824 return 0; 3825 } 3826 3827 /* 3828 * Deletes endpoint resources for endpoints that were active before a Reset 3829 * Device command, or a Disable Slot command. The Reset Device command leaves 3830 * the control endpoint intact, whereas the Disable Slot command deletes it. 3831 * 3832 * Must be called with xhci->lock held. 3833 */ 3834 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3835 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3836 { 3837 int i; 3838 unsigned int num_dropped_eps = 0; 3839 unsigned int drop_flags = 0; 3840 3841 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3842 if (virt_dev->eps[i].ring) { 3843 drop_flags |= 1 << i; 3844 num_dropped_eps++; 3845 } 3846 } 3847 xhci->num_active_eps -= num_dropped_eps; 3848 if (num_dropped_eps) 3849 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3850 "Dropped %u ep ctxs, flags = 0x%x, " 3851 "%u now active.", 3852 num_dropped_eps, drop_flags, 3853 xhci->num_active_eps); 3854 } 3855 3856 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev); 3857 3858 /* 3859 * This submits a Reset Device Command, which will set the device state to 0, 3860 * set the device address to 0, and disable all the endpoints except the default 3861 * control endpoint. The USB core should come back and call 3862 * xhci_address_device(), and then re-set up the configuration. If this is 3863 * called because of a usb_reset_and_verify_device(), then the old alternate 3864 * settings will be re-installed through the normal bandwidth allocation 3865 * functions. 3866 * 3867 * Wait for the Reset Device command to finish. Remove all structures 3868 * associated with the endpoints that were disabled. Clear the input device 3869 * structure? Reset the control endpoint 0 max packet size? 3870 * 3871 * If the virt_dev to be reset does not exist or does not match the udev, 3872 * it means the device is lost, possibly due to the xHC restore error and 3873 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3874 * re-allocate the device. 3875 */ 3876 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3877 struct usb_device *udev) 3878 { 3879 int ret, i; 3880 unsigned long flags; 3881 struct xhci_hcd *xhci; 3882 unsigned int slot_id; 3883 struct xhci_virt_device *virt_dev; 3884 struct xhci_command *reset_device_cmd; 3885 struct xhci_slot_ctx *slot_ctx; 3886 int old_active_eps = 0; 3887 3888 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3889 if (ret <= 0) 3890 return ret; 3891 xhci = hcd_to_xhci(hcd); 3892 slot_id = udev->slot_id; 3893 virt_dev = xhci->devs[slot_id]; 3894 if (!virt_dev) { 3895 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3896 "not exist. Re-allocate the device\n", slot_id); 3897 ret = xhci_alloc_dev(hcd, udev); 3898 if (ret == 1) 3899 return 0; 3900 else 3901 return -EINVAL; 3902 } 3903 3904 if (virt_dev->tt_info) 3905 old_active_eps = virt_dev->tt_info->active_eps; 3906 3907 if (virt_dev->udev != udev) { 3908 /* If the virt_dev and the udev does not match, this virt_dev 3909 * may belong to another udev. 3910 * Re-allocate the device. 3911 */ 3912 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3913 "not match the udev. Re-allocate the device\n", 3914 slot_id); 3915 ret = xhci_alloc_dev(hcd, udev); 3916 if (ret == 1) 3917 return 0; 3918 else 3919 return -EINVAL; 3920 } 3921 3922 /* If device is not setup, there is no point in resetting it */ 3923 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3924 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3925 SLOT_STATE_DISABLED) 3926 return 0; 3927 3928 if (xhci->quirks & XHCI_ETRON_HOST) { 3929 /* 3930 * Obtaining a new device slot to inform the xHCI host that 3931 * the USB device has been reset. 3932 */ 3933 ret = xhci_disable_slot(xhci, udev->slot_id); 3934 xhci_free_virt_device(xhci, udev->slot_id); 3935 if (!ret) { 3936 ret = xhci_alloc_dev(hcd, udev); 3937 if (ret == 1) 3938 ret = 0; 3939 else 3940 ret = -EINVAL; 3941 } 3942 return ret; 3943 } 3944 3945 trace_xhci_discover_or_reset_device(slot_ctx); 3946 3947 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3948 /* Allocate the command structure that holds the struct completion. 3949 * Assume we're in process context, since the normal device reset 3950 * process has to wait for the device anyway. Storage devices are 3951 * reset as part of error handling, so use GFP_NOIO instead of 3952 * GFP_KERNEL. 3953 */ 3954 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3955 if (!reset_device_cmd) { 3956 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3957 return -ENOMEM; 3958 } 3959 3960 /* Attempt to submit the Reset Device command to the command ring */ 3961 spin_lock_irqsave(&xhci->lock, flags); 3962 3963 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3964 if (ret) { 3965 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3966 spin_unlock_irqrestore(&xhci->lock, flags); 3967 goto command_cleanup; 3968 } 3969 xhci_ring_cmd_db(xhci); 3970 spin_unlock_irqrestore(&xhci->lock, flags); 3971 3972 /* Wait for the Reset Device command to finish */ 3973 wait_for_completion(reset_device_cmd->completion); 3974 3975 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3976 * unless we tried to reset a slot ID that wasn't enabled, 3977 * or the device wasn't in the addressed or configured state. 3978 */ 3979 ret = reset_device_cmd->status; 3980 switch (ret) { 3981 case COMP_COMMAND_ABORTED: 3982 case COMP_COMMAND_RING_STOPPED: 3983 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3984 ret = -ETIME; 3985 goto command_cleanup; 3986 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3987 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3988 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3989 slot_id, 3990 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3991 xhci_dbg(xhci, "Not freeing device rings.\n"); 3992 /* Don't treat this as an error. May change my mind later. */ 3993 ret = 0; 3994 goto command_cleanup; 3995 case COMP_SUCCESS: 3996 xhci_dbg(xhci, "Successful reset device command.\n"); 3997 break; 3998 default: 3999 if (xhci_is_vendor_info_code(xhci, ret)) 4000 break; 4001 xhci_warn(xhci, "Unknown completion code %u for " 4002 "reset device command.\n", ret); 4003 ret = -EINVAL; 4004 goto command_cleanup; 4005 } 4006 4007 /* Free up host controller endpoint resources */ 4008 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4009 spin_lock_irqsave(&xhci->lock, flags); 4010 /* Don't delete the default control endpoint resources */ 4011 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 4012 spin_unlock_irqrestore(&xhci->lock, flags); 4013 } 4014 4015 /* Everything but endpoint 0 is disabled, so free the rings. */ 4016 for (i = 1; i < 31; i++) { 4017 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 4018 4019 if (ep->ep_state & EP_HAS_STREAMS) { 4020 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 4021 xhci_get_endpoint_address(i)); 4022 xhci_free_stream_info(xhci, ep->stream_info); 4023 ep->stream_info = NULL; 4024 ep->ep_state &= ~EP_HAS_STREAMS; 4025 } 4026 4027 if (ep->ring) { 4028 if (ep->sideband) 4029 xhci_sideband_notify_ep_ring_free(ep->sideband, i); 4030 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 4031 xhci_free_endpoint_ring(xhci, virt_dev, i); 4032 } 4033 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 4034 xhci_drop_ep_from_interval_table(xhci, 4035 &virt_dev->eps[i].bw_info, 4036 virt_dev->bw_table, 4037 udev, 4038 &virt_dev->eps[i], 4039 virt_dev->tt_info); 4040 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 4041 } 4042 /* If necessary, update the number of active TTs on this root port */ 4043 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 4044 virt_dev->flags = 0; 4045 ret = 0; 4046 4047 command_cleanup: 4048 xhci_free_command(xhci, reset_device_cmd); 4049 return ret; 4050 } 4051 4052 /* 4053 * At this point, the struct usb_device is about to go away, the device has 4054 * disconnected, and all traffic has been stopped and the endpoints have been 4055 * disabled. Free any HC data structures associated with that device. 4056 */ 4057 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 4058 { 4059 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4060 struct xhci_virt_device *virt_dev; 4061 struct xhci_slot_ctx *slot_ctx; 4062 unsigned long flags; 4063 int i, ret; 4064 4065 /* 4066 * We called pm_runtime_get_noresume when the device was attached. 4067 * Decrement the counter here to allow controller to runtime suspend 4068 * if no devices remain. 4069 */ 4070 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4071 pm_runtime_put_noidle(hcd->self.controller); 4072 4073 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 4074 /* If the host is halted due to driver unload, we still need to free the 4075 * device. 4076 */ 4077 if (ret <= 0 && ret != -ENODEV) 4078 return; 4079 4080 virt_dev = xhci->devs[udev->slot_id]; 4081 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4082 trace_xhci_free_dev(slot_ctx); 4083 4084 /* Stop any wayward timer functions (which may grab the lock) */ 4085 for (i = 0; i < 31; i++) 4086 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 4087 virt_dev->udev = NULL; 4088 xhci_disable_slot(xhci, udev->slot_id); 4089 4090 spin_lock_irqsave(&xhci->lock, flags); 4091 xhci_free_virt_device(xhci, udev->slot_id); 4092 spin_unlock_irqrestore(&xhci->lock, flags); 4093 4094 } 4095 4096 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 4097 { 4098 struct xhci_command *command; 4099 unsigned long flags; 4100 u32 state; 4101 int ret; 4102 4103 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4104 if (!command) 4105 return -ENOMEM; 4106 4107 xhci_debugfs_remove_slot(xhci, slot_id); 4108 4109 spin_lock_irqsave(&xhci->lock, flags); 4110 /* Don't disable the slot if the host controller is dead. */ 4111 state = readl(&xhci->op_regs->status); 4112 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 4113 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4114 spin_unlock_irqrestore(&xhci->lock, flags); 4115 kfree(command); 4116 return -ENODEV; 4117 } 4118 4119 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 4120 slot_id); 4121 if (ret) { 4122 spin_unlock_irqrestore(&xhci->lock, flags); 4123 kfree(command); 4124 return ret; 4125 } 4126 xhci_ring_cmd_db(xhci); 4127 spin_unlock_irqrestore(&xhci->lock, flags); 4128 4129 wait_for_completion(command->completion); 4130 4131 if (command->status != COMP_SUCCESS) 4132 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4133 slot_id, command->status); 4134 4135 xhci_free_command(xhci, command); 4136 4137 return 0; 4138 } 4139 4140 /* 4141 * Checks if we have enough host controller resources for the default control 4142 * endpoint. 4143 * 4144 * Must be called with xhci->lock held. 4145 */ 4146 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4147 { 4148 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4149 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4150 "Not enough ep ctxs: " 4151 "%u active, need to add 1, limit is %u.", 4152 xhci->num_active_eps, xhci->limit_active_eps); 4153 return -ENOMEM; 4154 } 4155 xhci->num_active_eps += 1; 4156 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4157 "Adding 1 ep ctx, %u now active.", 4158 xhci->num_active_eps); 4159 return 0; 4160 } 4161 4162 4163 /* 4164 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4165 * timed out, or allocating memory failed. Returns 1 on success. 4166 */ 4167 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4168 { 4169 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4170 struct xhci_virt_device *vdev; 4171 struct xhci_slot_ctx *slot_ctx; 4172 unsigned long flags; 4173 int ret, slot_id; 4174 struct xhci_command *command; 4175 4176 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4177 if (!command) 4178 return 0; 4179 4180 spin_lock_irqsave(&xhci->lock, flags); 4181 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4182 if (ret) { 4183 spin_unlock_irqrestore(&xhci->lock, flags); 4184 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4185 xhci_free_command(xhci, command); 4186 return 0; 4187 } 4188 xhci_ring_cmd_db(xhci); 4189 spin_unlock_irqrestore(&xhci->lock, flags); 4190 4191 wait_for_completion(command->completion); 4192 slot_id = command->slot_id; 4193 4194 if (!slot_id || command->status != COMP_SUCCESS) { 4195 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 4196 xhci_trb_comp_code_string(command->status)); 4197 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4198 HCS_MAX_SLOTS( 4199 readl(&xhci->cap_regs->hcs_params1))); 4200 xhci_free_command(xhci, command); 4201 return 0; 4202 } 4203 4204 xhci_free_command(xhci, command); 4205 4206 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4207 spin_lock_irqsave(&xhci->lock, flags); 4208 ret = xhci_reserve_host_control_ep_resources(xhci); 4209 if (ret) { 4210 spin_unlock_irqrestore(&xhci->lock, flags); 4211 xhci_warn(xhci, "Not enough host resources, " 4212 "active endpoint contexts = %u\n", 4213 xhci->num_active_eps); 4214 goto disable_slot; 4215 } 4216 spin_unlock_irqrestore(&xhci->lock, flags); 4217 } 4218 /* Use GFP_NOIO, since this function can be called from 4219 * xhci_discover_or_reset_device(), which may be called as part of 4220 * mass storage driver error handling. 4221 */ 4222 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4223 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4224 goto disable_slot; 4225 } 4226 vdev = xhci->devs[slot_id]; 4227 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4228 trace_xhci_alloc_dev(slot_ctx); 4229 4230 udev->slot_id = slot_id; 4231 4232 xhci_debugfs_create_slot(xhci, slot_id); 4233 4234 /* 4235 * If resetting upon resume, we can't put the controller into runtime 4236 * suspend if there is a device attached. 4237 */ 4238 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4239 pm_runtime_get_noresume(hcd->self.controller); 4240 4241 /* Is this a LS or FS device under a HS hub? */ 4242 /* Hub or peripherial? */ 4243 return 1; 4244 4245 disable_slot: 4246 xhci_disable_slot(xhci, udev->slot_id); 4247 xhci_free_virt_device(xhci, udev->slot_id); 4248 4249 return 0; 4250 } 4251 4252 /** 4253 * xhci_setup_device - issues an Address Device command to assign a unique 4254 * USB bus address. 4255 * @hcd: USB host controller data structure. 4256 * @udev: USB dev structure representing the connected device. 4257 * @setup: Enum specifying setup mode: address only or with context. 4258 * @timeout_ms: Max wait time (ms) for the command operation to complete. 4259 * 4260 * Return: 0 if successful; otherwise, negative error code. 4261 */ 4262 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4263 enum xhci_setup_dev setup, unsigned int timeout_ms) 4264 { 4265 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4266 unsigned long flags; 4267 struct xhci_virt_device *virt_dev; 4268 int ret = 0; 4269 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4270 struct xhci_slot_ctx *slot_ctx; 4271 struct xhci_input_control_ctx *ctrl_ctx; 4272 u64 temp_64; 4273 struct xhci_command *command = NULL; 4274 4275 mutex_lock(&xhci->mutex); 4276 4277 if (xhci->xhc_state) { /* dying, removing or halted */ 4278 ret = -ESHUTDOWN; 4279 goto out; 4280 } 4281 4282 if (!udev->slot_id) { 4283 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4284 "Bad Slot ID %d", udev->slot_id); 4285 ret = -EINVAL; 4286 goto out; 4287 } 4288 4289 virt_dev = xhci->devs[udev->slot_id]; 4290 4291 if (WARN_ON(!virt_dev)) { 4292 /* 4293 * In plug/unplug torture test with an NEC controller, 4294 * a zero-dereference was observed once due to virt_dev = 0. 4295 * Print useful debug rather than crash if it is observed again! 4296 */ 4297 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4298 udev->slot_id); 4299 ret = -EINVAL; 4300 goto out; 4301 } 4302 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4303 trace_xhci_setup_device_slot(slot_ctx); 4304 4305 if (setup == SETUP_CONTEXT_ONLY) { 4306 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4307 SLOT_STATE_DEFAULT) { 4308 xhci_dbg(xhci, "Slot already in default state\n"); 4309 goto out; 4310 } 4311 } 4312 4313 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4314 if (!command) { 4315 ret = -ENOMEM; 4316 goto out; 4317 } 4318 4319 command->in_ctx = virt_dev->in_ctx; 4320 command->timeout_ms = timeout_ms; 4321 4322 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4323 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4324 if (!ctrl_ctx) { 4325 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4326 __func__); 4327 ret = -EINVAL; 4328 goto out; 4329 } 4330 /* 4331 * If this is the first Set Address since device plug-in or 4332 * virt_device realloaction after a resume with an xHCI power loss, 4333 * then set up the slot context. 4334 */ 4335 if (!slot_ctx->dev_info) 4336 xhci_setup_addressable_virt_dev(xhci, udev); 4337 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4338 else 4339 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4340 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4341 ctrl_ctx->drop_flags = 0; 4342 4343 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4344 le32_to_cpu(slot_ctx->dev_info) >> 27); 4345 4346 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4347 spin_lock_irqsave(&xhci->lock, flags); 4348 trace_xhci_setup_device(virt_dev); 4349 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4350 udev->slot_id, setup); 4351 if (ret) { 4352 spin_unlock_irqrestore(&xhci->lock, flags); 4353 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4354 "FIXME: allocate a command ring segment"); 4355 goto out; 4356 } 4357 xhci_ring_cmd_db(xhci); 4358 spin_unlock_irqrestore(&xhci->lock, flags); 4359 4360 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4361 wait_for_completion(command->completion); 4362 4363 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4364 * the SetAddress() "recovery interval" required by USB and aborting the 4365 * command on a timeout. 4366 */ 4367 switch (command->status) { 4368 case COMP_COMMAND_ABORTED: 4369 case COMP_COMMAND_RING_STOPPED: 4370 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4371 ret = -ETIME; 4372 break; 4373 case COMP_CONTEXT_STATE_ERROR: 4374 case COMP_SLOT_NOT_ENABLED_ERROR: 4375 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4376 act, udev->slot_id); 4377 ret = -EINVAL; 4378 break; 4379 case COMP_USB_TRANSACTION_ERROR: 4380 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4381 4382 mutex_unlock(&xhci->mutex); 4383 ret = xhci_disable_slot(xhci, udev->slot_id); 4384 xhci_free_virt_device(xhci, udev->slot_id); 4385 if (!ret) { 4386 if (xhci_alloc_dev(hcd, udev) == 1) 4387 xhci_setup_addressable_virt_dev(xhci, udev); 4388 } 4389 kfree(command->completion); 4390 kfree(command); 4391 return -EPROTO; 4392 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4393 dev_warn(&udev->dev, 4394 "ERROR: Incompatible device for setup %s command\n", act); 4395 ret = -ENODEV; 4396 break; 4397 case COMP_SUCCESS: 4398 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4399 "Successful setup %s command", act); 4400 break; 4401 default: 4402 xhci_err(xhci, 4403 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4404 act, command->status); 4405 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4406 ret = -EINVAL; 4407 break; 4408 } 4409 if (ret) 4410 goto out; 4411 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4412 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4413 "Op regs DCBAA ptr = %#016llx", temp_64); 4414 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4415 "Slot ID %d dcbaa entry @%p = %#016llx", 4416 udev->slot_id, 4417 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4418 (unsigned long long) 4419 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4420 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4421 "Output Context DMA address = %#08llx", 4422 (unsigned long long)virt_dev->out_ctx->dma); 4423 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4424 le32_to_cpu(slot_ctx->dev_info) >> 27); 4425 /* 4426 * USB core uses address 1 for the roothubs, so we add one to the 4427 * address given back to us by the HC. 4428 */ 4429 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4430 le32_to_cpu(slot_ctx->dev_info) >> 27); 4431 /* Zero the input context control for later use */ 4432 ctrl_ctx->add_flags = 0; 4433 ctrl_ctx->drop_flags = 0; 4434 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4435 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4436 4437 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4438 "Internal device address = %d", 4439 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4440 out: 4441 mutex_unlock(&xhci->mutex); 4442 if (command) { 4443 kfree(command->completion); 4444 kfree(command); 4445 } 4446 return ret; 4447 } 4448 4449 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev, 4450 unsigned int timeout_ms) 4451 { 4452 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms); 4453 } 4454 4455 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4456 { 4457 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY, 4458 XHCI_CMD_DEFAULT_TIMEOUT); 4459 } 4460 4461 /* 4462 * Transfer the port index into real index in the HW port status 4463 * registers. Caculate offset between the port's PORTSC register 4464 * and port status base. Divide the number of per port register 4465 * to get the real index. The raw port number bases 1. 4466 */ 4467 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4468 { 4469 struct xhci_hub *rhub; 4470 4471 rhub = xhci_get_rhub(hcd); 4472 return rhub->ports[port1 - 1]->hw_portnum + 1; 4473 } 4474 4475 /* 4476 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4477 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4478 */ 4479 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4480 struct usb_device *udev, u16 max_exit_latency) 4481 { 4482 struct xhci_virt_device *virt_dev; 4483 struct xhci_command *command; 4484 struct xhci_input_control_ctx *ctrl_ctx; 4485 struct xhci_slot_ctx *slot_ctx; 4486 unsigned long flags; 4487 int ret; 4488 4489 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4490 if (!command) 4491 return -ENOMEM; 4492 4493 spin_lock_irqsave(&xhci->lock, flags); 4494 4495 virt_dev = xhci->devs[udev->slot_id]; 4496 4497 /* 4498 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4499 * xHC was re-initialized. Exit latency will be set later after 4500 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4501 */ 4502 4503 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4504 spin_unlock_irqrestore(&xhci->lock, flags); 4505 xhci_free_command(xhci, command); 4506 return 0; 4507 } 4508 4509 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4510 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4511 if (!ctrl_ctx) { 4512 spin_unlock_irqrestore(&xhci->lock, flags); 4513 xhci_free_command(xhci, command); 4514 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4515 __func__); 4516 return -ENOMEM; 4517 } 4518 4519 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4520 spin_unlock_irqrestore(&xhci->lock, flags); 4521 4522 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4523 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4524 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4525 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4526 slot_ctx->dev_state = 0; 4527 4528 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4529 "Set up evaluate context for LPM MEL change."); 4530 4531 /* Issue and wait for the evaluate context command. */ 4532 ret = xhci_configure_endpoint(xhci, udev, command, 4533 true, true); 4534 4535 if (!ret) { 4536 spin_lock_irqsave(&xhci->lock, flags); 4537 virt_dev->current_mel = max_exit_latency; 4538 spin_unlock_irqrestore(&xhci->lock, flags); 4539 } 4540 4541 xhci_free_command(xhci, command); 4542 4543 return ret; 4544 } 4545 4546 #ifdef CONFIG_PM 4547 4548 /* BESL to HIRD Encoding array for USB2 LPM */ 4549 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4550 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4551 4552 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4553 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4554 struct usb_device *udev) 4555 { 4556 int u2del, besl, besl_host; 4557 int besl_device = 0; 4558 u32 field; 4559 4560 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4561 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4562 4563 if (field & USB_BESL_SUPPORT) { 4564 for (besl_host = 0; besl_host < 16; besl_host++) { 4565 if (xhci_besl_encoding[besl_host] >= u2del) 4566 break; 4567 } 4568 /* Use baseline BESL value as default */ 4569 if (field & USB_BESL_BASELINE_VALID) 4570 besl_device = USB_GET_BESL_BASELINE(field); 4571 else if (field & USB_BESL_DEEP_VALID) 4572 besl_device = USB_GET_BESL_DEEP(field); 4573 } else { 4574 if (u2del <= 50) 4575 besl_host = 0; 4576 else 4577 besl_host = (u2del - 51) / 75 + 1; 4578 } 4579 4580 besl = besl_host + besl_device; 4581 if (besl > 15) 4582 besl = 15; 4583 4584 return besl; 4585 } 4586 4587 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4588 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4589 { 4590 u32 field; 4591 int l1; 4592 int besld = 0; 4593 int hirdm = 0; 4594 4595 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4596 4597 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4598 l1 = udev->l1_params.timeout / 256; 4599 4600 /* device has preferred BESLD */ 4601 if (field & USB_BESL_DEEP_VALID) { 4602 besld = USB_GET_BESL_DEEP(field); 4603 hirdm = 1; 4604 } 4605 4606 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4607 } 4608 4609 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4610 struct usb_device *udev, int enable) 4611 { 4612 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4613 struct xhci_port **ports; 4614 __le32 __iomem *pm_addr, *hlpm_addr; 4615 u32 pm_val, hlpm_val, field; 4616 unsigned int port_num; 4617 unsigned long flags; 4618 int hird, exit_latency; 4619 int ret; 4620 4621 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4622 return -EPERM; 4623 4624 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4625 !udev->lpm_capable) 4626 return -EPERM; 4627 4628 if (!udev->parent || udev->parent->parent || 4629 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4630 return -EPERM; 4631 4632 if (udev->usb2_hw_lpm_capable != 1) 4633 return -EPERM; 4634 4635 spin_lock_irqsave(&xhci->lock, flags); 4636 4637 ports = xhci->usb2_rhub.ports; 4638 port_num = udev->portnum - 1; 4639 pm_addr = ports[port_num]->addr + PORTPMSC; 4640 pm_val = readl(pm_addr); 4641 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4642 4643 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4644 str_enable_disable(enable), port_num + 1); 4645 4646 if (enable) { 4647 /* Host supports BESL timeout instead of HIRD */ 4648 if (udev->usb2_hw_lpm_besl_capable) { 4649 /* if device doesn't have a preferred BESL value use a 4650 * default one which works with mixed HIRD and BESL 4651 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4652 */ 4653 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4654 if ((field & USB_BESL_SUPPORT) && 4655 (field & USB_BESL_BASELINE_VALID)) 4656 hird = USB_GET_BESL_BASELINE(field); 4657 else 4658 hird = udev->l1_params.besl; 4659 4660 exit_latency = xhci_besl_encoding[hird]; 4661 spin_unlock_irqrestore(&xhci->lock, flags); 4662 4663 ret = xhci_change_max_exit_latency(xhci, udev, 4664 exit_latency); 4665 if (ret < 0) 4666 return ret; 4667 spin_lock_irqsave(&xhci->lock, flags); 4668 4669 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4670 writel(hlpm_val, hlpm_addr); 4671 /* flush write */ 4672 readl(hlpm_addr); 4673 } else { 4674 hird = xhci_calculate_hird_besl(xhci, udev); 4675 } 4676 4677 pm_val &= ~PORT_HIRD_MASK; 4678 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4679 writel(pm_val, pm_addr); 4680 pm_val = readl(pm_addr); 4681 pm_val |= PORT_HLE; 4682 writel(pm_val, pm_addr); 4683 /* flush write */ 4684 readl(pm_addr); 4685 } else { 4686 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4687 writel(pm_val, pm_addr); 4688 /* flush write */ 4689 readl(pm_addr); 4690 if (udev->usb2_hw_lpm_besl_capable) { 4691 spin_unlock_irqrestore(&xhci->lock, flags); 4692 xhci_change_max_exit_latency(xhci, udev, 0); 4693 readl_poll_timeout(ports[port_num]->addr, pm_val, 4694 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4695 100, 10000); 4696 return 0; 4697 } 4698 } 4699 4700 spin_unlock_irqrestore(&xhci->lock, flags); 4701 return 0; 4702 } 4703 4704 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4705 { 4706 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4707 struct xhci_port *port; 4708 u32 capability; 4709 4710 /* Check if USB3 device at root port is tunneled over USB4 */ 4711 if (hcd->speed >= HCD_USB3 && !udev->parent->parent) { 4712 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 4713 4714 udev->tunnel_mode = xhci_port_is_tunneled(xhci, port); 4715 if (udev->tunnel_mode == USB_LINK_UNKNOWN) 4716 dev_dbg(&udev->dev, "link tunnel state unknown\n"); 4717 else if (udev->tunnel_mode == USB_LINK_TUNNELED) 4718 dev_dbg(&udev->dev, "tunneled over USB4 link\n"); 4719 else if (udev->tunnel_mode == USB_LINK_NATIVE) 4720 dev_dbg(&udev->dev, "native USB 3.x link\n"); 4721 return 0; 4722 } 4723 4724 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support) 4725 return 0; 4726 4727 /* we only support lpm for non-hub device connected to root hub yet */ 4728 if (!udev->parent || udev->parent->parent || 4729 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4730 return 0; 4731 4732 port = xhci->usb2_rhub.ports[udev->portnum - 1]; 4733 capability = port->port_cap->protocol_caps; 4734 4735 if (capability & XHCI_HLC) { 4736 udev->usb2_hw_lpm_capable = 1; 4737 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4738 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4739 if (capability & XHCI_BLC) 4740 udev->usb2_hw_lpm_besl_capable = 1; 4741 } 4742 4743 return 0; 4744 } 4745 4746 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4747 4748 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4749 static unsigned long long xhci_service_interval_to_ns( 4750 struct usb_endpoint_descriptor *desc) 4751 { 4752 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4753 } 4754 4755 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4756 enum usb3_link_state state) 4757 { 4758 unsigned long long sel; 4759 unsigned long long pel; 4760 unsigned int max_sel_pel; 4761 char *state_name; 4762 4763 switch (state) { 4764 case USB3_LPM_U1: 4765 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4766 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4767 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4768 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4769 state_name = "U1"; 4770 break; 4771 case USB3_LPM_U2: 4772 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4773 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4774 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4775 state_name = "U2"; 4776 break; 4777 default: 4778 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4779 __func__); 4780 return USB3_LPM_DISABLED; 4781 } 4782 4783 if (sel <= max_sel_pel && pel <= max_sel_pel) 4784 return USB3_LPM_DEVICE_INITIATED; 4785 4786 if (sel > max_sel_pel) 4787 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4788 "due to long SEL %llu ms\n", 4789 state_name, sel); 4790 else 4791 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4792 "due to long PEL %llu ms\n", 4793 state_name, pel); 4794 return USB3_LPM_DISABLED; 4795 } 4796 4797 /* The U1 timeout should be the maximum of the following values: 4798 * - For control endpoints, U1 system exit latency (SEL) * 3 4799 * - For bulk endpoints, U1 SEL * 5 4800 * - For interrupt endpoints: 4801 * - Notification EPs, U1 SEL * 3 4802 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4803 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4804 */ 4805 static unsigned long long xhci_calculate_intel_u1_timeout( 4806 struct usb_device *udev, 4807 struct usb_endpoint_descriptor *desc) 4808 { 4809 unsigned long long timeout_ns; 4810 int ep_type; 4811 int intr_type; 4812 4813 ep_type = usb_endpoint_type(desc); 4814 switch (ep_type) { 4815 case USB_ENDPOINT_XFER_CONTROL: 4816 timeout_ns = udev->u1_params.sel * 3; 4817 break; 4818 case USB_ENDPOINT_XFER_BULK: 4819 timeout_ns = udev->u1_params.sel * 5; 4820 break; 4821 case USB_ENDPOINT_XFER_INT: 4822 intr_type = usb_endpoint_interrupt_type(desc); 4823 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4824 timeout_ns = udev->u1_params.sel * 3; 4825 break; 4826 } 4827 /* Otherwise the calculation is the same as isoc eps */ 4828 fallthrough; 4829 case USB_ENDPOINT_XFER_ISOC: 4830 timeout_ns = xhci_service_interval_to_ns(desc); 4831 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4832 if (timeout_ns < udev->u1_params.sel * 2) 4833 timeout_ns = udev->u1_params.sel * 2; 4834 break; 4835 default: 4836 return 0; 4837 } 4838 4839 return timeout_ns; 4840 } 4841 4842 /* Returns the hub-encoded U1 timeout value. */ 4843 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4844 struct usb_device *udev, 4845 struct usb_endpoint_descriptor *desc) 4846 { 4847 unsigned long long timeout_ns; 4848 4849 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4850 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4851 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4852 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4853 return USB3_LPM_DISABLED; 4854 } 4855 } 4856 4857 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4858 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4859 else 4860 timeout_ns = udev->u1_params.sel; 4861 4862 /* The U1 timeout is encoded in 1us intervals. 4863 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4864 */ 4865 if (timeout_ns == USB3_LPM_DISABLED) 4866 timeout_ns = 1; 4867 else 4868 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4869 4870 /* If the necessary timeout value is bigger than what we can set in the 4871 * USB 3.0 hub, we have to disable hub-initiated U1. 4872 */ 4873 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4874 return timeout_ns; 4875 dev_dbg(&udev->dev, "Hub-initiated U1 disabled due to long timeout %lluus\n", 4876 timeout_ns); 4877 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4878 } 4879 4880 /* The U2 timeout should be the maximum of: 4881 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4882 * - largest bInterval of any active periodic endpoint (to avoid going 4883 * into lower power link states between intervals). 4884 * - the U2 Exit Latency of the device 4885 */ 4886 static unsigned long long xhci_calculate_intel_u2_timeout( 4887 struct usb_device *udev, 4888 struct usb_endpoint_descriptor *desc) 4889 { 4890 unsigned long long timeout_ns; 4891 unsigned long long u2_del_ns; 4892 4893 timeout_ns = 10 * 1000 * 1000; 4894 4895 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4896 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4897 timeout_ns = xhci_service_interval_to_ns(desc); 4898 4899 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4900 if (u2_del_ns > timeout_ns) 4901 timeout_ns = u2_del_ns; 4902 4903 return timeout_ns; 4904 } 4905 4906 /* Returns the hub-encoded U2 timeout value. */ 4907 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4908 struct usb_device *udev, 4909 struct usb_endpoint_descriptor *desc) 4910 { 4911 unsigned long long timeout_ns; 4912 4913 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4914 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4915 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4916 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4917 return USB3_LPM_DISABLED; 4918 } 4919 } 4920 4921 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4922 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4923 else 4924 timeout_ns = udev->u2_params.sel; 4925 4926 /* The U2 timeout is encoded in 256us intervals */ 4927 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4928 /* If the necessary timeout value is bigger than what we can set in the 4929 * USB 3.0 hub, we have to disable hub-initiated U2. 4930 */ 4931 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4932 return timeout_ns; 4933 dev_dbg(&udev->dev, "Hub-initiated U2 disabled due to long timeout %lluus\n", 4934 timeout_ns * 256); 4935 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4936 } 4937 4938 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4939 struct usb_device *udev, 4940 struct usb_endpoint_descriptor *desc, 4941 enum usb3_link_state state, 4942 u16 *timeout) 4943 { 4944 if (state == USB3_LPM_U1) 4945 return xhci_calculate_u1_timeout(xhci, udev, desc); 4946 else if (state == USB3_LPM_U2) 4947 return xhci_calculate_u2_timeout(xhci, udev, desc); 4948 4949 return USB3_LPM_DISABLED; 4950 } 4951 4952 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4953 struct usb_device *udev, 4954 struct usb_endpoint_descriptor *desc, 4955 enum usb3_link_state state, 4956 u16 *timeout) 4957 { 4958 u16 alt_timeout; 4959 4960 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4961 desc, state, timeout); 4962 4963 /* If we found we can't enable hub-initiated LPM, and 4964 * the U1 or U2 exit latency was too high to allow 4965 * device-initiated LPM as well, then we will disable LPM 4966 * for this device, so stop searching any further. 4967 */ 4968 if (alt_timeout == USB3_LPM_DISABLED) { 4969 *timeout = alt_timeout; 4970 return -E2BIG; 4971 } 4972 if (alt_timeout > *timeout) 4973 *timeout = alt_timeout; 4974 return 0; 4975 } 4976 4977 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4978 struct usb_device *udev, 4979 struct usb_host_interface *alt, 4980 enum usb3_link_state state, 4981 u16 *timeout) 4982 { 4983 int j; 4984 4985 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4986 if (xhci_update_timeout_for_endpoint(xhci, udev, 4987 &alt->endpoint[j].desc, state, timeout)) 4988 return -E2BIG; 4989 } 4990 return 0; 4991 } 4992 4993 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4994 struct usb_device *udev, 4995 enum usb3_link_state state) 4996 { 4997 struct usb_device *parent = udev->parent; 4998 int tier = 1; /* roothub is tier1 */ 4999 5000 while (parent) { 5001 parent = parent->parent; 5002 tier++; 5003 } 5004 5005 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3) 5006 goto fail; 5007 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2) 5008 goto fail; 5009 5010 return 0; 5011 fail: 5012 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n", 5013 tier); 5014 return -E2BIG; 5015 } 5016 5017 /* Returns the U1 or U2 timeout that should be enabled. 5018 * If the tier check or timeout setting functions return with a non-zero exit 5019 * code, that means the timeout value has been finalized and we shouldn't look 5020 * at any more endpoints. 5021 */ 5022 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 5023 struct usb_device *udev, enum usb3_link_state state) 5024 { 5025 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5026 struct usb_host_config *config; 5027 char *state_name; 5028 int i; 5029 u16 timeout = USB3_LPM_DISABLED; 5030 5031 if (state == USB3_LPM_U1) 5032 state_name = "U1"; 5033 else if (state == USB3_LPM_U2) 5034 state_name = "U2"; 5035 else { 5036 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 5037 state); 5038 return timeout; 5039 } 5040 5041 /* Gather some information about the currently installed configuration 5042 * and alternate interface settings. 5043 */ 5044 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 5045 state, &timeout)) 5046 return timeout; 5047 5048 config = udev->actconfig; 5049 if (!config) 5050 return timeout; 5051 5052 for (i = 0; i < config->desc.bNumInterfaces; i++) { 5053 struct usb_driver *driver; 5054 struct usb_interface *intf = config->interface[i]; 5055 5056 if (!intf) 5057 continue; 5058 5059 /* Check if any currently bound drivers want hub-initiated LPM 5060 * disabled. 5061 */ 5062 if (intf->dev.driver) { 5063 driver = to_usb_driver(intf->dev.driver); 5064 if (driver && driver->disable_hub_initiated_lpm) { 5065 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 5066 state_name, driver->name); 5067 timeout = xhci_get_timeout_no_hub_lpm(udev, 5068 state); 5069 if (timeout == USB3_LPM_DISABLED) 5070 return timeout; 5071 } 5072 } 5073 5074 /* Not sure how this could happen... */ 5075 if (!intf->cur_altsetting) 5076 continue; 5077 5078 if (xhci_update_timeout_for_interface(xhci, udev, 5079 intf->cur_altsetting, 5080 state, &timeout)) 5081 return timeout; 5082 } 5083 return timeout; 5084 } 5085 5086 static int calculate_max_exit_latency(struct usb_device *udev, 5087 enum usb3_link_state state_changed, 5088 u16 hub_encoded_timeout) 5089 { 5090 unsigned long long u1_mel_us = 0; 5091 unsigned long long u2_mel_us = 0; 5092 unsigned long long mel_us = 0; 5093 bool disabling_u1; 5094 bool disabling_u2; 5095 bool enabling_u1; 5096 bool enabling_u2; 5097 5098 disabling_u1 = (state_changed == USB3_LPM_U1 && 5099 hub_encoded_timeout == USB3_LPM_DISABLED); 5100 disabling_u2 = (state_changed == USB3_LPM_U2 && 5101 hub_encoded_timeout == USB3_LPM_DISABLED); 5102 5103 enabling_u1 = (state_changed == USB3_LPM_U1 && 5104 hub_encoded_timeout != USB3_LPM_DISABLED); 5105 enabling_u2 = (state_changed == USB3_LPM_U2 && 5106 hub_encoded_timeout != USB3_LPM_DISABLED); 5107 5108 /* If U1 was already enabled and we're not disabling it, 5109 * or we're going to enable U1, account for the U1 max exit latency. 5110 */ 5111 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 5112 enabling_u1) 5113 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 5114 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 5115 enabling_u2) 5116 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5117 5118 mel_us = max(u1_mel_us, u2_mel_us); 5119 5120 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5121 if (mel_us > MAX_EXIT) { 5122 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5123 "is too big.\n", mel_us); 5124 return -E2BIG; 5125 } 5126 return mel_us; 5127 } 5128 5129 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5130 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5131 struct usb_device *udev, enum usb3_link_state state) 5132 { 5133 struct xhci_hcd *xhci; 5134 struct xhci_port *port; 5135 u16 hub_encoded_timeout; 5136 int mel; 5137 int ret; 5138 5139 xhci = hcd_to_xhci(hcd); 5140 /* The LPM timeout values are pretty host-controller specific, so don't 5141 * enable hub-initiated timeouts unless the vendor has provided 5142 * information about their timeout algorithm. 5143 */ 5144 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5145 !xhci->devs[udev->slot_id]) 5146 return USB3_LPM_DISABLED; 5147 5148 if (xhci_check_tier_policy(xhci, udev, state) < 0) 5149 return USB3_LPM_DISABLED; 5150 5151 /* If connected to root port then check port can handle lpm */ 5152 if (udev->parent && !udev->parent->parent) { 5153 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 5154 if (port->lpm_incapable) 5155 return USB3_LPM_DISABLED; 5156 } 5157 5158 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5159 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5160 if (mel < 0) { 5161 /* Max Exit Latency is too big, disable LPM. */ 5162 hub_encoded_timeout = USB3_LPM_DISABLED; 5163 mel = 0; 5164 } 5165 5166 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5167 if (ret) 5168 return ret; 5169 return hub_encoded_timeout; 5170 } 5171 5172 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5173 struct usb_device *udev, enum usb3_link_state state) 5174 { 5175 struct xhci_hcd *xhci; 5176 u16 mel; 5177 5178 xhci = hcd_to_xhci(hcd); 5179 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5180 !xhci->devs[udev->slot_id]) 5181 return 0; 5182 5183 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5184 return xhci_change_max_exit_latency(xhci, udev, mel); 5185 } 5186 #else /* CONFIG_PM */ 5187 5188 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5189 struct usb_device *udev, int enable) 5190 { 5191 return 0; 5192 } 5193 5194 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5195 { 5196 return 0; 5197 } 5198 5199 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5200 struct usb_device *udev, enum usb3_link_state state) 5201 { 5202 return USB3_LPM_DISABLED; 5203 } 5204 5205 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5206 struct usb_device *udev, enum usb3_link_state state) 5207 { 5208 return 0; 5209 } 5210 #endif /* CONFIG_PM */ 5211 5212 /*-------------------------------------------------------------------------*/ 5213 5214 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5215 * internal data structures for the device. 5216 */ 5217 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5218 struct usb_tt *tt, gfp_t mem_flags) 5219 { 5220 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5221 struct xhci_virt_device *vdev; 5222 struct xhci_command *config_cmd; 5223 struct xhci_input_control_ctx *ctrl_ctx; 5224 struct xhci_slot_ctx *slot_ctx; 5225 unsigned long flags; 5226 unsigned think_time; 5227 int ret; 5228 5229 /* Ignore root hubs */ 5230 if (!hdev->parent) 5231 return 0; 5232 5233 vdev = xhci->devs[hdev->slot_id]; 5234 if (!vdev) { 5235 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5236 return -EINVAL; 5237 } 5238 5239 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5240 if (!config_cmd) 5241 return -ENOMEM; 5242 5243 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5244 if (!ctrl_ctx) { 5245 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5246 __func__); 5247 xhci_free_command(xhci, config_cmd); 5248 return -ENOMEM; 5249 } 5250 5251 spin_lock_irqsave(&xhci->lock, flags); 5252 if (hdev->speed == USB_SPEED_HIGH && 5253 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5254 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5255 xhci_free_command(xhci, config_cmd); 5256 spin_unlock_irqrestore(&xhci->lock, flags); 5257 return -ENOMEM; 5258 } 5259 5260 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5261 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5262 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5263 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5264 /* 5265 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5266 * but it may be already set to 1 when setup an xHCI virtual 5267 * device, so clear it anyway. 5268 */ 5269 if (tt->multi) 5270 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5271 else if (hdev->speed == USB_SPEED_FULL) 5272 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5273 5274 if (xhci->hci_version > 0x95) { 5275 xhci_dbg(xhci, "xHCI version %x needs hub " 5276 "TT think time and number of ports\n", 5277 (unsigned int) xhci->hci_version); 5278 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5279 /* Set TT think time - convert from ns to FS bit times. 5280 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5281 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5282 * 5283 * xHCI 1.0: this field shall be 0 if the device is not a 5284 * High-spped hub. 5285 */ 5286 think_time = tt->think_time; 5287 if (think_time != 0) 5288 think_time = (think_time / 666) - 1; 5289 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5290 slot_ctx->tt_info |= 5291 cpu_to_le32(TT_THINK_TIME(think_time)); 5292 } else { 5293 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5294 "TT think time or number of ports\n", 5295 (unsigned int) xhci->hci_version); 5296 } 5297 slot_ctx->dev_state = 0; 5298 spin_unlock_irqrestore(&xhci->lock, flags); 5299 5300 xhci_dbg(xhci, "Set up %s for hub device.\n", 5301 (xhci->hci_version > 0x95) ? 5302 "configure endpoint" : "evaluate context"); 5303 5304 /* Issue and wait for the configure endpoint or 5305 * evaluate context command. 5306 */ 5307 if (xhci->hci_version > 0x95) 5308 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5309 false, false); 5310 else 5311 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5312 true, false); 5313 5314 xhci_free_command(xhci, config_cmd); 5315 return ret; 5316 } 5317 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5318 5319 static int xhci_get_frame(struct usb_hcd *hcd) 5320 { 5321 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5322 /* EHCI mods by the periodic size. Why? */ 5323 return readl(&xhci->run_regs->microframe_index) >> 3; 5324 } 5325 5326 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5327 { 5328 xhci->usb2_rhub.hcd = hcd; 5329 hcd->speed = HCD_USB2; 5330 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5331 /* 5332 * USB 2.0 roothub under xHCI has an integrated TT, 5333 * (rate matching hub) as opposed to having an OHCI/UHCI 5334 * companion controller. 5335 */ 5336 hcd->has_tt = 1; 5337 } 5338 5339 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5340 { 5341 unsigned int minor_rev; 5342 5343 /* 5344 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5345 * should return 0x31 for sbrn, or that the minor revision 5346 * is a two digit BCD containig minor and sub-minor numbers. 5347 * This was later clarified in xHCI 1.2. 5348 * 5349 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5350 * minor revision set to 0x1 instead of 0x10. 5351 */ 5352 if (xhci->usb3_rhub.min_rev == 0x1) 5353 minor_rev = 1; 5354 else 5355 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5356 5357 switch (minor_rev) { 5358 case 2: 5359 hcd->speed = HCD_USB32; 5360 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5361 hcd->self.root_hub->rx_lanes = 2; 5362 hcd->self.root_hub->tx_lanes = 2; 5363 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5364 break; 5365 case 1: 5366 hcd->speed = HCD_USB31; 5367 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5368 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5369 break; 5370 } 5371 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5372 minor_rev, minor_rev ? "Enhanced " : ""); 5373 5374 xhci->usb3_rhub.hcd = hcd; 5375 } 5376 5377 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5378 { 5379 struct xhci_hcd *xhci; 5380 /* 5381 * TODO: Check with DWC3 clients for sysdev according to 5382 * quirks 5383 */ 5384 struct device *dev = hcd->self.sysdev; 5385 int retval; 5386 5387 /* Accept arbitrarily long scatter-gather lists */ 5388 hcd->self.sg_tablesize = ~0; 5389 5390 /* support to build packet from discontinuous buffers */ 5391 hcd->self.no_sg_constraint = 1; 5392 5393 /* XHCI controllers don't stop the ep queue on short packets :| */ 5394 hcd->self.no_stop_on_short = 1; 5395 5396 xhci = hcd_to_xhci(hcd); 5397 5398 if (!usb_hcd_is_primary_hcd(hcd)) { 5399 xhci_hcd_init_usb3_data(xhci, hcd); 5400 return 0; 5401 } 5402 5403 mutex_init(&xhci->mutex); 5404 xhci->main_hcd = hcd; 5405 xhci->cap_regs = hcd->regs; 5406 xhci->op_regs = hcd->regs + 5407 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5408 xhci->run_regs = hcd->regs + 5409 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5410 /* Cache read-only capability registers */ 5411 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5412 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5413 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5414 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5415 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5416 if (xhci->hci_version > 0x100) 5417 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5418 5419 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5420 if ((!xhci->max_interrupters) || 5421 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1)) 5422 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1); 5423 5424 xhci->quirks |= quirks; 5425 5426 if (get_quirks) 5427 get_quirks(dev, xhci); 5428 5429 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5430 * success event after a short transfer. This quirk will ignore such 5431 * spurious event. 5432 */ 5433 if (xhci->hci_version > 0x96) 5434 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5435 5436 if (xhci->hci_version == 0x95 && link_quirk) { 5437 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits"); 5438 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 5439 } 5440 5441 /* Make sure the HC is halted. */ 5442 retval = xhci_halt(xhci); 5443 if (retval) 5444 return retval; 5445 5446 xhci_zero_64b_regs(xhci); 5447 5448 xhci_dbg(xhci, "Resetting HCD\n"); 5449 /* Reset the internal HC memory state and registers. */ 5450 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5451 if (retval) 5452 return retval; 5453 xhci_dbg(xhci, "Reset complete\n"); 5454 5455 /* 5456 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5457 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5458 * address memory pointers actually. So, this driver clears the AC64 5459 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5460 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5461 */ 5462 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5463 xhci->hcc_params &= ~BIT(0); 5464 5465 /* Set dma_mask and coherent_dma_mask to 64-bits, 5466 * if xHC supports 64-bit addressing */ 5467 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5468 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5469 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5470 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5471 } else { 5472 /* 5473 * This is to avoid error in cases where a 32-bit USB 5474 * controller is used on a 64-bit capable system. 5475 */ 5476 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5477 if (retval) 5478 return retval; 5479 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5480 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5481 } 5482 5483 xhci_dbg(xhci, "Calling HCD init\n"); 5484 /* Initialize HCD and host controller data structures. */ 5485 retval = xhci_init(hcd); 5486 if (retval) 5487 return retval; 5488 xhci_dbg(xhci, "Called HCD init\n"); 5489 5490 if (xhci_hcd_is_usb3(hcd)) 5491 xhci_hcd_init_usb3_data(xhci, hcd); 5492 else 5493 xhci_hcd_init_usb2_data(xhci, hcd); 5494 5495 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5496 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5497 5498 return 0; 5499 } 5500 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5501 5502 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5503 struct usb_host_endpoint *ep) 5504 { 5505 struct xhci_hcd *xhci; 5506 struct usb_device *udev; 5507 unsigned int slot_id; 5508 unsigned int ep_index; 5509 unsigned long flags; 5510 5511 xhci = hcd_to_xhci(hcd); 5512 5513 spin_lock_irqsave(&xhci->lock, flags); 5514 udev = (struct usb_device *)ep->hcpriv; 5515 slot_id = udev->slot_id; 5516 ep_index = xhci_get_endpoint_index(&ep->desc); 5517 5518 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5519 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5520 spin_unlock_irqrestore(&xhci->lock, flags); 5521 } 5522 5523 static const struct hc_driver xhci_hc_driver = { 5524 .description = "xhci-hcd", 5525 .product_desc = "xHCI Host Controller", 5526 .hcd_priv_size = sizeof(struct xhci_hcd), 5527 5528 /* 5529 * generic hardware linkage 5530 */ 5531 .irq = xhci_irq, 5532 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5533 HCD_BH, 5534 5535 /* 5536 * basic lifecycle operations 5537 */ 5538 .reset = NULL, /* set in xhci_init_driver() */ 5539 .start = xhci_run, 5540 .stop = xhci_stop, 5541 .shutdown = xhci_shutdown, 5542 5543 /* 5544 * managing i/o requests and associated device resources 5545 */ 5546 .map_urb_for_dma = xhci_map_urb_for_dma, 5547 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5548 .urb_enqueue = xhci_urb_enqueue, 5549 .urb_dequeue = xhci_urb_dequeue, 5550 .alloc_dev = xhci_alloc_dev, 5551 .free_dev = xhci_free_dev, 5552 .alloc_streams = xhci_alloc_streams, 5553 .free_streams = xhci_free_streams, 5554 .add_endpoint = xhci_add_endpoint, 5555 .drop_endpoint = xhci_drop_endpoint, 5556 .endpoint_disable = xhci_endpoint_disable, 5557 .endpoint_reset = xhci_endpoint_reset, 5558 .check_bandwidth = xhci_check_bandwidth, 5559 .reset_bandwidth = xhci_reset_bandwidth, 5560 .address_device = xhci_address_device, 5561 .enable_device = xhci_enable_device, 5562 .update_hub_device = xhci_update_hub_device, 5563 .reset_device = xhci_discover_or_reset_device, 5564 5565 /* 5566 * scheduling support 5567 */ 5568 .get_frame_number = xhci_get_frame, 5569 5570 /* 5571 * root hub support 5572 */ 5573 .hub_control = xhci_hub_control, 5574 .hub_status_data = xhci_hub_status_data, 5575 .bus_suspend = xhci_bus_suspend, 5576 .bus_resume = xhci_bus_resume, 5577 .get_resuming_ports = xhci_get_resuming_ports, 5578 5579 /* 5580 * call back when device connected and addressed 5581 */ 5582 .update_device = xhci_update_device, 5583 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5584 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5585 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5586 .find_raw_port_number = xhci_find_raw_port_number, 5587 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5588 }; 5589 5590 void xhci_init_driver(struct hc_driver *drv, 5591 const struct xhci_driver_overrides *over) 5592 { 5593 BUG_ON(!over); 5594 5595 /* Copy the generic table to drv then apply the overrides */ 5596 *drv = xhci_hc_driver; 5597 5598 if (over) { 5599 drv->hcd_priv_size += over->extra_priv_size; 5600 if (over->reset) 5601 drv->reset = over->reset; 5602 if (over->start) 5603 drv->start = over->start; 5604 if (over->add_endpoint) 5605 drv->add_endpoint = over->add_endpoint; 5606 if (over->drop_endpoint) 5607 drv->drop_endpoint = over->drop_endpoint; 5608 if (over->check_bandwidth) 5609 drv->check_bandwidth = over->check_bandwidth; 5610 if (over->reset_bandwidth) 5611 drv->reset_bandwidth = over->reset_bandwidth; 5612 if (over->update_hub_device) 5613 drv->update_hub_device = over->update_hub_device; 5614 if (over->hub_control) 5615 drv->hub_control = over->hub_control; 5616 } 5617 } 5618 EXPORT_SYMBOL_GPL(xhci_init_driver); 5619 5620 MODULE_DESCRIPTION(DRIVER_DESC); 5621 MODULE_AUTHOR(DRIVER_AUTHOR); 5622 MODULE_LICENSE("GPL"); 5623 5624 static int __init xhci_hcd_init(void) 5625 { 5626 /* 5627 * Check the compiler generated sizes of structures that must be laid 5628 * out in specific ways for hardware access. 5629 */ 5630 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5631 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5632 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5633 /* xhci_device_control has eight fields, and also 5634 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5635 */ 5636 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5637 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5638 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5639 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5640 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5641 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5642 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5643 5644 if (usb_disabled()) 5645 return -ENODEV; 5646 5647 xhci_debugfs_create_root(); 5648 xhci_dbc_init(); 5649 5650 return 0; 5651 } 5652 5653 /* 5654 * If an init function is provided, an exit function must also be provided 5655 * to allow module unload. 5656 */ 5657 static void __exit xhci_hcd_fini(void) 5658 { 5659 xhci_debugfs_remove_root(); 5660 xhci_dbc_exit(); 5661 } 5662 5663 module_init(xhci_hcd_init); 5664 module_exit(xhci_hcd_fini); 5665