1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iommu.h> 13 #include <linux/iopoll.h> 14 #include <linux/irq.h> 15 #include <linux/log2.h> 16 #include <linux/module.h> 17 #include <linux/moduleparam.h> 18 #include <linux/slab.h> 19 #include <linux/dmi.h> 20 #include <linux/dma-mapping.h> 21 22 #include "xhci.h" 23 #include "xhci-trace.h" 24 #include "xhci-debugfs.h" 25 #include "xhci-dbgcap.h" 26 27 #define DRIVER_AUTHOR "Sarah Sharp" 28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 29 30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 31 32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 33 static int link_quirk; 34 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 36 37 static unsigned long long quirks; 38 module_param(quirks, ullong, S_IRUGO); 39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 40 41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 42 { 43 struct xhci_segment *seg = ring->first_seg; 44 45 if (!td || !td->start_seg) 46 return false; 47 do { 48 if (seg == td->start_seg) 49 return true; 50 seg = seg->next; 51 } while (seg && seg != ring->first_seg); 52 53 return false; 54 } 55 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 70 { 71 u32 result; 72 int ret; 73 74 ret = readl_poll_timeout_atomic(ptr, result, 75 (result & mask) == done || 76 result == U32_MAX, 77 1, timeout_us); 78 if (result == U32_MAX) /* card removed */ 79 return -ENODEV; 80 81 return ret; 82 } 83 84 /* 85 * xhci_handshake_check_state - same as xhci_handshake but takes an additional 86 * exit_state parameter, and bails out with an error immediately when xhc_state 87 * has exit_state flag set. 88 */ 89 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr, 90 u32 mask, u32 done, int usec, unsigned int exit_state) 91 { 92 u32 result; 93 int ret; 94 95 ret = readl_poll_timeout_atomic(ptr, result, 96 (result & mask) == done || 97 result == U32_MAX || 98 xhci->xhc_state & exit_state, 99 1, usec); 100 101 if (result == U32_MAX || xhci->xhc_state & exit_state) 102 return -ENODEV; 103 104 return ret; 105 } 106 107 /* 108 * Disable interrupts and begin the xHCI halting process. 109 */ 110 void xhci_quiesce(struct xhci_hcd *xhci) 111 { 112 u32 halted; 113 u32 cmd; 114 u32 mask; 115 116 mask = ~(XHCI_IRQS); 117 halted = readl(&xhci->op_regs->status) & STS_HALT; 118 if (!halted) 119 mask &= ~CMD_RUN; 120 121 cmd = readl(&xhci->op_regs->command); 122 cmd &= mask; 123 writel(cmd, &xhci->op_regs->command); 124 } 125 126 /* 127 * Force HC into halt state. 128 * 129 * Disable any IRQs and clear the run/stop bit. 130 * HC will complete any current and actively pipelined transactions, and 131 * should halt within 16 ms of the run/stop bit being cleared. 132 * Read HC Halted bit in the status register to see when the HC is finished. 133 */ 134 int xhci_halt(struct xhci_hcd *xhci) 135 { 136 int ret; 137 138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 139 xhci_quiesce(xhci); 140 141 ret = xhci_handshake(&xhci->op_regs->status, 142 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 143 if (ret) { 144 xhci_warn(xhci, "Host halt failed, %d\n", ret); 145 return ret; 146 } 147 148 xhci->xhc_state |= XHCI_STATE_HALTED; 149 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 150 151 return ret; 152 } 153 154 /* 155 * Set the run bit and wait for the host to be running. 156 */ 157 int xhci_start(struct xhci_hcd *xhci) 158 { 159 u32 temp; 160 int ret; 161 162 temp = readl(&xhci->op_regs->command); 163 temp |= (CMD_RUN); 164 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 165 temp); 166 writel(temp, &xhci->op_regs->command); 167 168 /* 169 * Wait for the HCHalted Status bit to be 0 to indicate the host is 170 * running. 171 */ 172 ret = xhci_handshake(&xhci->op_regs->status, 173 STS_HALT, 0, XHCI_MAX_HALT_USEC); 174 if (ret == -ETIMEDOUT) 175 xhci_err(xhci, "Host took too long to start, " 176 "waited %u microseconds.\n", 177 XHCI_MAX_HALT_USEC); 178 if (!ret) { 179 /* clear state flags. Including dying, halted or removing */ 180 xhci->xhc_state = 0; 181 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 182 } 183 184 return ret; 185 } 186 187 /* 188 * Reset a halted HC. 189 * 190 * This resets pipelines, timers, counters, state machines, etc. 191 * Transactions will be terminated immediately, and operational registers 192 * will be set to their defaults. 193 */ 194 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 195 { 196 u32 command; 197 u32 state; 198 int ret; 199 200 state = readl(&xhci->op_regs->status); 201 202 if (state == ~(u32)0) { 203 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 204 return -ENODEV; 205 } 206 207 if ((state & STS_HALT) == 0) { 208 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 209 return 0; 210 } 211 212 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 213 command = readl(&xhci->op_regs->command); 214 command |= CMD_RESET; 215 writel(command, &xhci->op_regs->command); 216 217 /* Existing Intel xHCI controllers require a delay of 1 mS, 218 * after setting the CMD_RESET bit, and before accessing any 219 * HC registers. This allows the HC to complete the 220 * reset operation and be ready for HC register access. 221 * Without this delay, the subsequent HC register access, 222 * may result in a system hang very rarely. 223 */ 224 if (xhci->quirks & XHCI_INTEL_HOST) 225 udelay(1000); 226 227 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command, 228 CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING); 229 if (ret) 230 return ret; 231 232 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 233 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 234 235 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 236 "Wait for controller to be ready for doorbell rings"); 237 /* 238 * xHCI cannot write to any doorbells or operational registers other 239 * than status until the "Controller Not Ready" flag is cleared. 240 */ 241 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 242 243 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 244 xhci->usb2_rhub.bus_state.suspended_ports = 0; 245 xhci->usb2_rhub.bus_state.resuming_ports = 0; 246 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 247 xhci->usb3_rhub.bus_state.suspended_ports = 0; 248 xhci->usb3_rhub.bus_state.resuming_ports = 0; 249 250 return ret; 251 } 252 253 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 254 { 255 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 256 struct iommu_domain *domain; 257 int err, i; 258 u64 val; 259 u32 intrs; 260 261 /* 262 * Some Renesas controllers get into a weird state if they are 263 * reset while programmed with 64bit addresses (they will preserve 264 * the top half of the address in internal, non visible 265 * registers). You end up with half the address coming from the 266 * kernel, and the other half coming from the firmware. Also, 267 * changing the programming leads to extra accesses even if the 268 * controller is supposed to be halted. The controller ends up with 269 * a fatal fault, and is then ripe for being properly reset. 270 * 271 * Special care is taken to only apply this if the device is behind 272 * an iommu. Doing anything when there is no iommu is definitely 273 * unsafe... 274 */ 275 domain = iommu_get_domain_for_dev(dev); 276 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || 277 domain->type == IOMMU_DOMAIN_IDENTITY) 278 return; 279 280 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 281 282 /* Clear HSEIE so that faults do not get signaled */ 283 val = readl(&xhci->op_regs->command); 284 val &= ~CMD_HSEIE; 285 writel(val, &xhci->op_regs->command); 286 287 /* Clear HSE (aka FATAL) */ 288 val = readl(&xhci->op_regs->status); 289 val |= STS_FATAL; 290 writel(val, &xhci->op_regs->status); 291 292 /* Now zero the registers, and brace for impact */ 293 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 294 if (upper_32_bits(val)) 295 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 296 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 297 if (upper_32_bits(val)) 298 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 299 300 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 301 ARRAY_SIZE(xhci->run_regs->ir_set)); 302 303 for (i = 0; i < intrs; i++) { 304 struct xhci_intr_reg __iomem *ir; 305 306 ir = &xhci->run_regs->ir_set[i]; 307 val = xhci_read_64(xhci, &ir->erst_base); 308 if (upper_32_bits(val)) 309 xhci_write_64(xhci, 0, &ir->erst_base); 310 val= xhci_read_64(xhci, &ir->erst_dequeue); 311 if (upper_32_bits(val)) 312 xhci_write_64(xhci, 0, &ir->erst_dequeue); 313 } 314 315 /* Wait for the fault to appear. It will be cleared on reset */ 316 err = xhci_handshake(&xhci->op_regs->status, 317 STS_FATAL, STS_FATAL, 318 XHCI_MAX_HALT_USEC); 319 if (!err) 320 xhci_info(xhci, "Fault detected\n"); 321 } 322 323 static int xhci_enable_interrupter(struct xhci_interrupter *ir) 324 { 325 u32 iman; 326 327 if (!ir || !ir->ir_set) 328 return -EINVAL; 329 330 iman = readl(&ir->ir_set->irq_pending); 331 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending); 332 333 return 0; 334 } 335 336 static int xhci_disable_interrupter(struct xhci_interrupter *ir) 337 { 338 u32 iman; 339 340 if (!ir || !ir->ir_set) 341 return -EINVAL; 342 343 iman = readl(&ir->ir_set->irq_pending); 344 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending); 345 346 return 0; 347 } 348 349 static void compliance_mode_recovery(struct timer_list *t) 350 { 351 struct xhci_hcd *xhci; 352 struct usb_hcd *hcd; 353 struct xhci_hub *rhub; 354 u32 temp; 355 int i; 356 357 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 358 rhub = &xhci->usb3_rhub; 359 hcd = rhub->hcd; 360 361 if (!hcd) 362 return; 363 364 for (i = 0; i < rhub->num_ports; i++) { 365 temp = readl(rhub->ports[i]->addr); 366 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 367 /* 368 * Compliance Mode Detected. Letting USB Core 369 * handle the Warm Reset 370 */ 371 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 372 "Compliance mode detected->port %d", 373 i + 1); 374 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 375 "Attempting compliance mode recovery"); 376 377 if (hcd->state == HC_STATE_SUSPENDED) 378 usb_hcd_resume_root_hub(hcd); 379 380 usb_hcd_poll_rh_status(hcd); 381 } 382 } 383 384 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 385 mod_timer(&xhci->comp_mode_recovery_timer, 386 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 387 } 388 389 /* 390 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 391 * that causes ports behind that hardware to enter compliance mode sometimes. 392 * The quirk creates a timer that polls every 2 seconds the link state of 393 * each host controller's port and recovers it by issuing a Warm reset 394 * if Compliance mode is detected, otherwise the port will become "dead" (no 395 * device connections or disconnections will be detected anymore). Becasue no 396 * status event is generated when entering compliance mode (per xhci spec), 397 * this quirk is needed on systems that have the failing hardware installed. 398 */ 399 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 400 { 401 xhci->port_status_u0 = 0; 402 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 403 0); 404 xhci->comp_mode_recovery_timer.expires = jiffies + 405 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 406 407 add_timer(&xhci->comp_mode_recovery_timer); 408 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 409 "Compliance mode recovery timer initialized"); 410 } 411 412 /* 413 * This function identifies the systems that have installed the SN65LVPE502CP 414 * USB3.0 re-driver and that need the Compliance Mode Quirk. 415 * Systems: 416 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 417 */ 418 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 419 { 420 const char *dmi_product_name, *dmi_sys_vendor; 421 422 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 423 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 424 if (!dmi_product_name || !dmi_sys_vendor) 425 return false; 426 427 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 428 return false; 429 430 if (strstr(dmi_product_name, "Z420") || 431 strstr(dmi_product_name, "Z620") || 432 strstr(dmi_product_name, "Z820") || 433 strstr(dmi_product_name, "Z1 Workstation")) 434 return true; 435 436 return false; 437 } 438 439 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 440 { 441 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 442 } 443 444 445 /* 446 * Initialize memory for HCD and xHC (one-time init). 447 * 448 * Program the PAGESIZE register, initialize the device context array, create 449 * device contexts (?), set up a command ring segment (or two?), create event 450 * ring (one for now). 451 */ 452 static int xhci_init(struct usb_hcd *hcd) 453 { 454 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 455 int retval; 456 457 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 458 spin_lock_init(&xhci->lock); 459 if (xhci->hci_version == 0x95 && link_quirk) { 460 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 461 "QUIRK: Not clearing Link TRB chain bits."); 462 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 463 } else { 464 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 465 "xHCI doesn't need link TRB QUIRK"); 466 } 467 retval = xhci_mem_init(xhci, GFP_KERNEL); 468 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 469 470 /* Initializing Compliance Mode Recovery Data If Needed */ 471 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 472 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 473 compliance_mode_recovery_timer_init(xhci); 474 } 475 476 return retval; 477 } 478 479 /*-------------------------------------------------------------------------*/ 480 481 static int xhci_run_finished(struct xhci_hcd *xhci) 482 { 483 struct xhci_interrupter *ir = xhci->interrupter; 484 unsigned long flags; 485 u32 temp; 486 487 /* 488 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 489 * Protect the short window before host is running with a lock 490 */ 491 spin_lock_irqsave(&xhci->lock, flags); 492 493 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 494 temp = readl(&xhci->op_regs->command); 495 temp |= (CMD_EIE); 496 writel(temp, &xhci->op_regs->command); 497 498 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 499 xhci_enable_interrupter(ir); 500 501 if (xhci_start(xhci)) { 502 xhci_halt(xhci); 503 spin_unlock_irqrestore(&xhci->lock, flags); 504 return -ENODEV; 505 } 506 507 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 508 509 if (xhci->quirks & XHCI_NEC_HOST) 510 xhci_ring_cmd_db(xhci); 511 512 spin_unlock_irqrestore(&xhci->lock, flags); 513 514 return 0; 515 } 516 517 /* 518 * Start the HC after it was halted. 519 * 520 * This function is called by the USB core when the HC driver is added. 521 * Its opposite is xhci_stop(). 522 * 523 * xhci_init() must be called once before this function can be called. 524 * Reset the HC, enable device slot contexts, program DCBAAP, and 525 * set command ring pointer and event ring pointer. 526 * 527 * Setup MSI-X vectors and enable interrupts. 528 */ 529 int xhci_run(struct usb_hcd *hcd) 530 { 531 u32 temp; 532 u64 temp_64; 533 int ret; 534 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 535 struct xhci_interrupter *ir = xhci->interrupter; 536 /* Start the xHCI host controller running only after the USB 2.0 roothub 537 * is setup. 538 */ 539 540 hcd->uses_new_polling = 1; 541 if (!usb_hcd_is_primary_hcd(hcd)) 542 return xhci_run_finished(xhci); 543 544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 545 546 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 547 temp_64 &= ERST_PTR_MASK; 548 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 549 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 550 551 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 552 "// Set the interrupt modulation register"); 553 temp = readl(&ir->ir_set->irq_control); 554 temp &= ~ER_IRQ_INTERVAL_MASK; 555 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 556 writel(temp, &ir->ir_set->irq_control); 557 558 if (xhci->quirks & XHCI_NEC_HOST) { 559 struct xhci_command *command; 560 561 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 562 if (!command) 563 return -ENOMEM; 564 565 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 566 TRB_TYPE(TRB_NEC_GET_FW)); 567 if (ret) 568 xhci_free_command(xhci, command); 569 } 570 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 571 "Finished %s for main hcd", __func__); 572 573 xhci_create_dbc_dev(xhci); 574 575 xhci_debugfs_init(xhci); 576 577 if (xhci_has_one_roothub(xhci)) 578 return xhci_run_finished(xhci); 579 580 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 581 582 return 0; 583 } 584 EXPORT_SYMBOL_GPL(xhci_run); 585 586 /* 587 * Stop xHCI driver. 588 * 589 * This function is called by the USB core when the HC driver is removed. 590 * Its opposite is xhci_run(). 591 * 592 * Disable device contexts, disable IRQs, and quiesce the HC. 593 * Reset the HC, finish any completed transactions, and cleanup memory. 594 */ 595 void xhci_stop(struct usb_hcd *hcd) 596 { 597 u32 temp; 598 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 599 struct xhci_interrupter *ir = xhci->interrupter; 600 601 mutex_lock(&xhci->mutex); 602 603 /* Only halt host and free memory after both hcds are removed */ 604 if (!usb_hcd_is_primary_hcd(hcd)) { 605 mutex_unlock(&xhci->mutex); 606 return; 607 } 608 609 xhci_remove_dbc_dev(xhci); 610 611 spin_lock_irq(&xhci->lock); 612 xhci->xhc_state |= XHCI_STATE_HALTED; 613 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 614 xhci_halt(xhci); 615 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 616 spin_unlock_irq(&xhci->lock); 617 618 /* Deleting Compliance Mode Recovery Timer */ 619 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 620 (!(xhci_all_ports_seen_u0(xhci)))) { 621 del_timer_sync(&xhci->comp_mode_recovery_timer); 622 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 623 "%s: compliance mode recovery timer deleted", 624 __func__); 625 } 626 627 if (xhci->quirks & XHCI_AMD_PLL_FIX) 628 usb_amd_dev_put(); 629 630 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 631 "// Disabling event ring interrupts"); 632 temp = readl(&xhci->op_regs->status); 633 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 634 xhci_disable_interrupter(ir); 635 636 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 637 xhci_mem_cleanup(xhci); 638 xhci_debugfs_exit(xhci); 639 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 640 "xhci_stop completed - status = %x", 641 readl(&xhci->op_regs->status)); 642 mutex_unlock(&xhci->mutex); 643 } 644 EXPORT_SYMBOL_GPL(xhci_stop); 645 646 /* 647 * Shutdown HC (not bus-specific) 648 * 649 * This is called when the machine is rebooting or halting. We assume that the 650 * machine will be powered off, and the HC's internal state will be reset. 651 * Don't bother to free memory. 652 * 653 * This will only ever be called with the main usb_hcd (the USB3 roothub). 654 */ 655 void xhci_shutdown(struct usb_hcd *hcd) 656 { 657 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 658 659 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 660 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 661 662 /* Don't poll the roothubs after shutdown. */ 663 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 664 __func__, hcd->self.busnum); 665 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 666 del_timer_sync(&hcd->rh_timer); 667 668 if (xhci->shared_hcd) { 669 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 670 del_timer_sync(&xhci->shared_hcd->rh_timer); 671 } 672 673 spin_lock_irq(&xhci->lock); 674 xhci_halt(xhci); 675 676 /* 677 * Workaround for spurious wakeps at shutdown with HSW, and for boot 678 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 679 */ 680 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 681 xhci->quirks & XHCI_RESET_TO_DEFAULT) 682 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 683 684 spin_unlock_irq(&xhci->lock); 685 686 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 687 "xhci_shutdown completed - status = %x", 688 readl(&xhci->op_regs->status)); 689 } 690 EXPORT_SYMBOL_GPL(xhci_shutdown); 691 692 #ifdef CONFIG_PM 693 static void xhci_save_registers(struct xhci_hcd *xhci) 694 { 695 struct xhci_interrupter *ir = xhci->interrupter; 696 697 xhci->s3.command = readl(&xhci->op_regs->command); 698 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 699 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 700 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 701 702 if (!ir) 703 return; 704 705 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 706 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 707 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 708 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending); 709 ir->s3_irq_control = readl(&ir->ir_set->irq_control); 710 } 711 712 static void xhci_restore_registers(struct xhci_hcd *xhci) 713 { 714 struct xhci_interrupter *ir = xhci->interrupter; 715 716 writel(xhci->s3.command, &xhci->op_regs->command); 717 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 718 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 719 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 720 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 721 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 722 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 723 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending); 724 writel(ir->s3_irq_control, &ir->ir_set->irq_control); 725 } 726 727 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 728 { 729 u64 val_64; 730 731 /* step 2: initialize command ring buffer */ 732 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 733 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 734 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 735 xhci->cmd_ring->dequeue) & 736 (u64) ~CMD_RING_RSVD_BITS) | 737 xhci->cmd_ring->cycle_state; 738 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 739 "// Setting command ring address to 0x%llx", 740 (long unsigned long) val_64); 741 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 742 } 743 744 /* 745 * The whole command ring must be cleared to zero when we suspend the host. 746 * 747 * The host doesn't save the command ring pointer in the suspend well, so we 748 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 749 * aligned, because of the reserved bits in the command ring dequeue pointer 750 * register. Therefore, we can't just set the dequeue pointer back in the 751 * middle of the ring (TRBs are 16-byte aligned). 752 */ 753 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 754 { 755 struct xhci_ring *ring; 756 struct xhci_segment *seg; 757 758 ring = xhci->cmd_ring; 759 seg = ring->deq_seg; 760 do { 761 memset(seg->trbs, 0, 762 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 763 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 764 cpu_to_le32(~TRB_CYCLE); 765 seg = seg->next; 766 } while (seg != ring->deq_seg); 767 768 /* Reset the software enqueue and dequeue pointers */ 769 ring->deq_seg = ring->first_seg; 770 ring->dequeue = ring->first_seg->trbs; 771 ring->enq_seg = ring->deq_seg; 772 ring->enqueue = ring->dequeue; 773 774 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 775 /* 776 * Ring is now zeroed, so the HW should look for change of ownership 777 * when the cycle bit is set to 1. 778 */ 779 ring->cycle_state = 1; 780 781 /* 782 * Reset the hardware dequeue pointer. 783 * Yes, this will need to be re-written after resume, but we're paranoid 784 * and want to make sure the hardware doesn't access bogus memory 785 * because, say, the BIOS or an SMI started the host without changing 786 * the command ring pointers. 787 */ 788 xhci_set_cmd_ring_deq(xhci); 789 } 790 791 /* 792 * Disable port wake bits if do_wakeup is not set. 793 * 794 * Also clear a possible internal port wake state left hanging for ports that 795 * detected termination but never successfully enumerated (trained to 0U). 796 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 797 * at enumeration clears this wake, force one here as well for unconnected ports 798 */ 799 800 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 801 struct xhci_hub *rhub, 802 bool do_wakeup) 803 { 804 unsigned long flags; 805 u32 t1, t2, portsc; 806 int i; 807 808 spin_lock_irqsave(&xhci->lock, flags); 809 810 for (i = 0; i < rhub->num_ports; i++) { 811 portsc = readl(rhub->ports[i]->addr); 812 t1 = xhci_port_state_to_neutral(portsc); 813 t2 = t1; 814 815 /* clear wake bits if do_wake is not set */ 816 if (!do_wakeup) 817 t2 &= ~PORT_WAKE_BITS; 818 819 /* Don't touch csc bit if connected or connect change is set */ 820 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 821 t2 |= PORT_CSC; 822 823 if (t1 != t2) { 824 writel(t2, rhub->ports[i]->addr); 825 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 826 rhub->hcd->self.busnum, i + 1, portsc, t2); 827 } 828 } 829 spin_unlock_irqrestore(&xhci->lock, flags); 830 } 831 832 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 833 { 834 struct xhci_port **ports; 835 int port_index; 836 u32 status; 837 u32 portsc; 838 839 status = readl(&xhci->op_regs->status); 840 if (status & STS_EINT) 841 return true; 842 /* 843 * Checking STS_EINT is not enough as there is a lag between a change 844 * bit being set and the Port Status Change Event that it generated 845 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 846 */ 847 848 port_index = xhci->usb2_rhub.num_ports; 849 ports = xhci->usb2_rhub.ports; 850 while (port_index--) { 851 portsc = readl(ports[port_index]->addr); 852 if (portsc & PORT_CHANGE_MASK || 853 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 854 return true; 855 } 856 port_index = xhci->usb3_rhub.num_ports; 857 ports = xhci->usb3_rhub.ports; 858 while (port_index--) { 859 portsc = readl(ports[port_index]->addr); 860 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) || 861 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 862 return true; 863 } 864 return false; 865 } 866 867 /* 868 * Stop HC (not bus-specific) 869 * 870 * This is called when the machine transition into S3/S4 mode. 871 * 872 */ 873 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 874 { 875 int rc = 0; 876 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 877 struct usb_hcd *hcd = xhci_to_hcd(xhci); 878 u32 command; 879 u32 res; 880 881 if (!hcd->state) 882 return 0; 883 884 if (hcd->state != HC_STATE_SUSPENDED || 885 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 886 return -EINVAL; 887 888 /* Clear root port wake on bits if wakeup not allowed. */ 889 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 890 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 891 892 if (!HCD_HW_ACCESSIBLE(hcd)) 893 return 0; 894 895 xhci_dbc_suspend(xhci); 896 897 /* Don't poll the roothubs on bus suspend. */ 898 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 899 __func__, hcd->self.busnum); 900 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 901 del_timer_sync(&hcd->rh_timer); 902 if (xhci->shared_hcd) { 903 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 904 del_timer_sync(&xhci->shared_hcd->rh_timer); 905 } 906 907 if (xhci->quirks & XHCI_SUSPEND_DELAY) 908 usleep_range(1000, 1500); 909 910 spin_lock_irq(&xhci->lock); 911 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 912 if (xhci->shared_hcd) 913 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 914 /* step 1: stop endpoint */ 915 /* skipped assuming that port suspend has done */ 916 917 /* step 2: clear Run/Stop bit */ 918 command = readl(&xhci->op_regs->command); 919 command &= ~CMD_RUN; 920 writel(command, &xhci->op_regs->command); 921 922 /* Some chips from Fresco Logic need an extraordinary delay */ 923 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 924 925 if (xhci_handshake(&xhci->op_regs->status, 926 STS_HALT, STS_HALT, delay)) { 927 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 928 spin_unlock_irq(&xhci->lock); 929 return -ETIMEDOUT; 930 } 931 xhci_clear_command_ring(xhci); 932 933 /* step 3: save registers */ 934 xhci_save_registers(xhci); 935 936 /* step 4: set CSS flag */ 937 command = readl(&xhci->op_regs->command); 938 command |= CMD_CSS; 939 writel(command, &xhci->op_regs->command); 940 xhci->broken_suspend = 0; 941 if (xhci_handshake(&xhci->op_regs->status, 942 STS_SAVE, 0, 20 * 1000)) { 943 /* 944 * AMD SNPS xHC 3.0 occasionally does not clear the 945 * SSS bit of USBSTS and when driver tries to poll 946 * to see if the xHC clears BIT(8) which never happens 947 * and driver assumes that controller is not responding 948 * and times out. To workaround this, its good to check 949 * if SRE and HCE bits are not set (as per xhci 950 * Section 5.4.2) and bypass the timeout. 951 */ 952 res = readl(&xhci->op_regs->status); 953 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 954 (((res & STS_SRE) == 0) && 955 ((res & STS_HCE) == 0))) { 956 xhci->broken_suspend = 1; 957 } else { 958 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 959 spin_unlock_irq(&xhci->lock); 960 return -ETIMEDOUT; 961 } 962 } 963 spin_unlock_irq(&xhci->lock); 964 965 /* 966 * Deleting Compliance Mode Recovery Timer because the xHCI Host 967 * is about to be suspended. 968 */ 969 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 970 (!(xhci_all_ports_seen_u0(xhci)))) { 971 del_timer_sync(&xhci->comp_mode_recovery_timer); 972 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 973 "%s: compliance mode recovery timer deleted", 974 __func__); 975 } 976 977 return rc; 978 } 979 EXPORT_SYMBOL_GPL(xhci_suspend); 980 981 /* 982 * start xHC (not bus-specific) 983 * 984 * This is called when the machine transition from S3/S4 mode. 985 * 986 */ 987 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg) 988 { 989 bool hibernated = (msg.event == PM_EVENT_RESTORE); 990 u32 command, temp = 0; 991 struct usb_hcd *hcd = xhci_to_hcd(xhci); 992 int retval = 0; 993 bool comp_timer_running = false; 994 bool pending_portevent = false; 995 bool suspended_usb3_devs = false; 996 bool reinit_xhc = false; 997 998 if (!hcd->state) 999 return 0; 1000 1001 /* Wait a bit if either of the roothubs need to settle from the 1002 * transition into bus suspend. 1003 */ 1004 1005 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1006 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1007 msleep(100); 1008 1009 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1010 if (xhci->shared_hcd) 1011 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1012 1013 spin_lock_irq(&xhci->lock); 1014 1015 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1016 reinit_xhc = true; 1017 1018 if (!reinit_xhc) { 1019 /* 1020 * Some controllers might lose power during suspend, so wait 1021 * for controller not ready bit to clear, just as in xHC init. 1022 */ 1023 retval = xhci_handshake(&xhci->op_regs->status, 1024 STS_CNR, 0, 10 * 1000 * 1000); 1025 if (retval) { 1026 xhci_warn(xhci, "Controller not ready at resume %d\n", 1027 retval); 1028 spin_unlock_irq(&xhci->lock); 1029 return retval; 1030 } 1031 /* step 1: restore register */ 1032 xhci_restore_registers(xhci); 1033 /* step 2: initialize command ring buffer */ 1034 xhci_set_cmd_ring_deq(xhci); 1035 /* step 3: restore state and start state*/ 1036 /* step 3: set CRS flag */ 1037 command = readl(&xhci->op_regs->command); 1038 command |= CMD_CRS; 1039 writel(command, &xhci->op_regs->command); 1040 /* 1041 * Some controllers take up to 55+ ms to complete the controller 1042 * restore so setting the timeout to 100ms. Xhci specification 1043 * doesn't mention any timeout value. 1044 */ 1045 if (xhci_handshake(&xhci->op_regs->status, 1046 STS_RESTORE, 0, 100 * 1000)) { 1047 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1048 spin_unlock_irq(&xhci->lock); 1049 return -ETIMEDOUT; 1050 } 1051 } 1052 1053 temp = readl(&xhci->op_regs->status); 1054 1055 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1056 if ((temp & (STS_SRE | STS_HCE)) && 1057 !(xhci->xhc_state & XHCI_STATE_REMOVING)) { 1058 reinit_xhc = true; 1059 if (!xhci->broken_suspend) 1060 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1061 } 1062 1063 if (reinit_xhc) { 1064 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1065 !(xhci_all_ports_seen_u0(xhci))) { 1066 del_timer_sync(&xhci->comp_mode_recovery_timer); 1067 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1068 "Compliance Mode Recovery Timer deleted!"); 1069 } 1070 1071 /* Let the USB core know _both_ roothubs lost power. */ 1072 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1073 if (xhci->shared_hcd) 1074 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1075 1076 xhci_dbg(xhci, "Stop HCD\n"); 1077 xhci_halt(xhci); 1078 xhci_zero_64b_regs(xhci); 1079 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1080 spin_unlock_irq(&xhci->lock); 1081 if (retval) 1082 return retval; 1083 1084 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1085 temp = readl(&xhci->op_regs->status); 1086 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1087 xhci_disable_interrupter(xhci->interrupter); 1088 1089 xhci_dbg(xhci, "cleaning up memory\n"); 1090 xhci_mem_cleanup(xhci); 1091 xhci_debugfs_exit(xhci); 1092 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1093 readl(&xhci->op_regs->status)); 1094 1095 /* USB core calls the PCI reinit and start functions twice: 1096 * first with the primary HCD, and then with the secondary HCD. 1097 * If we don't do the same, the host will never be started. 1098 */ 1099 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1100 retval = xhci_init(hcd); 1101 if (retval) 1102 return retval; 1103 comp_timer_running = true; 1104 1105 xhci_dbg(xhci, "Start the primary HCD\n"); 1106 retval = xhci_run(hcd); 1107 if (!retval && xhci->shared_hcd) { 1108 xhci_dbg(xhci, "Start the secondary HCD\n"); 1109 retval = xhci_run(xhci->shared_hcd); 1110 } 1111 1112 hcd->state = HC_STATE_SUSPENDED; 1113 if (xhci->shared_hcd) 1114 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1115 goto done; 1116 } 1117 1118 /* step 4: set Run/Stop bit */ 1119 command = readl(&xhci->op_regs->command); 1120 command |= CMD_RUN; 1121 writel(command, &xhci->op_regs->command); 1122 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1123 0, 250 * 1000); 1124 1125 /* step 5: walk topology and initialize portsc, 1126 * portpmsc and portli 1127 */ 1128 /* this is done in bus_resume */ 1129 1130 /* step 6: restart each of the previously 1131 * Running endpoints by ringing their doorbells 1132 */ 1133 1134 spin_unlock_irq(&xhci->lock); 1135 1136 xhci_dbc_resume(xhci); 1137 1138 done: 1139 if (retval == 0) { 1140 /* 1141 * Resume roothubs only if there are pending events. 1142 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1143 * the first wake signalling failed, give it that chance if 1144 * there are suspended USB 3 devices. 1145 */ 1146 if (xhci->usb3_rhub.bus_state.suspended_ports || 1147 xhci->usb3_rhub.bus_state.bus_suspended) 1148 suspended_usb3_devs = true; 1149 1150 pending_portevent = xhci_pending_portevent(xhci); 1151 1152 if (suspended_usb3_devs && !pending_portevent && 1153 msg.event == PM_EVENT_AUTO_RESUME) { 1154 msleep(120); 1155 pending_portevent = xhci_pending_portevent(xhci); 1156 } 1157 1158 if (pending_portevent) { 1159 if (xhci->shared_hcd) 1160 usb_hcd_resume_root_hub(xhci->shared_hcd); 1161 usb_hcd_resume_root_hub(hcd); 1162 } 1163 } 1164 /* 1165 * If system is subject to the Quirk, Compliance Mode Timer needs to 1166 * be re-initialized Always after a system resume. Ports are subject 1167 * to suffer the Compliance Mode issue again. It doesn't matter if 1168 * ports have entered previously to U0 before system's suspension. 1169 */ 1170 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1171 compliance_mode_recovery_timer_init(xhci); 1172 1173 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1174 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1175 1176 /* Re-enable port polling. */ 1177 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1178 __func__, hcd->self.busnum); 1179 if (xhci->shared_hcd) { 1180 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1181 usb_hcd_poll_rh_status(xhci->shared_hcd); 1182 } 1183 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1184 usb_hcd_poll_rh_status(hcd); 1185 1186 return retval; 1187 } 1188 EXPORT_SYMBOL_GPL(xhci_resume); 1189 #endif /* CONFIG_PM */ 1190 1191 /*-------------------------------------------------------------------------*/ 1192 1193 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1194 { 1195 void *temp; 1196 int ret = 0; 1197 unsigned int buf_len; 1198 enum dma_data_direction dir; 1199 1200 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1201 buf_len = urb->transfer_buffer_length; 1202 1203 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1204 dev_to_node(hcd->self.sysdev)); 1205 1206 if (usb_urb_dir_out(urb)) 1207 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1208 temp, buf_len, 0); 1209 1210 urb->transfer_buffer = temp; 1211 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1212 urb->transfer_buffer, 1213 urb->transfer_buffer_length, 1214 dir); 1215 1216 if (dma_mapping_error(hcd->self.sysdev, 1217 urb->transfer_dma)) { 1218 ret = -EAGAIN; 1219 kfree(temp); 1220 } else { 1221 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1222 } 1223 1224 return ret; 1225 } 1226 1227 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1228 struct urb *urb) 1229 { 1230 bool ret = false; 1231 unsigned int i; 1232 unsigned int len = 0; 1233 unsigned int trb_size; 1234 unsigned int max_pkt; 1235 struct scatterlist *sg; 1236 struct scatterlist *tail_sg; 1237 1238 tail_sg = urb->sg; 1239 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1240 1241 if (!urb->num_sgs) 1242 return ret; 1243 1244 if (urb->dev->speed >= USB_SPEED_SUPER) 1245 trb_size = TRB_CACHE_SIZE_SS; 1246 else 1247 trb_size = TRB_CACHE_SIZE_HS; 1248 1249 if (urb->transfer_buffer_length != 0 && 1250 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1251 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1252 len = len + sg->length; 1253 if (i > trb_size - 2) { 1254 len = len - tail_sg->length; 1255 if (len < max_pkt) { 1256 ret = true; 1257 break; 1258 } 1259 1260 tail_sg = sg_next(tail_sg); 1261 } 1262 } 1263 } 1264 return ret; 1265 } 1266 1267 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1268 { 1269 unsigned int len; 1270 unsigned int buf_len; 1271 enum dma_data_direction dir; 1272 1273 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1274 1275 buf_len = urb->transfer_buffer_length; 1276 1277 if (IS_ENABLED(CONFIG_HAS_DMA) && 1278 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1279 dma_unmap_single(hcd->self.sysdev, 1280 urb->transfer_dma, 1281 urb->transfer_buffer_length, 1282 dir); 1283 1284 if (usb_urb_dir_in(urb)) { 1285 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1286 urb->transfer_buffer, 1287 buf_len, 1288 0); 1289 if (len != buf_len) { 1290 xhci_dbg(hcd_to_xhci(hcd), 1291 "Copy from tmp buf to urb sg list failed\n"); 1292 urb->actual_length = len; 1293 } 1294 } 1295 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1296 kfree(urb->transfer_buffer); 1297 urb->transfer_buffer = NULL; 1298 } 1299 1300 /* 1301 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1302 * we'll copy the actual data into the TRB address register. This is limited to 1303 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1304 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1305 */ 1306 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1307 gfp_t mem_flags) 1308 { 1309 struct xhci_hcd *xhci; 1310 1311 xhci = hcd_to_xhci(hcd); 1312 1313 if (xhci_urb_suitable_for_idt(urb)) 1314 return 0; 1315 1316 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1317 if (xhci_urb_temp_buffer_required(hcd, urb)) 1318 return xhci_map_temp_buffer(hcd, urb); 1319 } 1320 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1321 } 1322 1323 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1324 { 1325 struct xhci_hcd *xhci; 1326 bool unmap_temp_buf = false; 1327 1328 xhci = hcd_to_xhci(hcd); 1329 1330 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1331 unmap_temp_buf = true; 1332 1333 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1334 xhci_unmap_temp_buf(hcd, urb); 1335 else 1336 usb_hcd_unmap_urb_for_dma(hcd, urb); 1337 } 1338 1339 /** 1340 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1341 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1342 * value to right shift 1 for the bitmask. 1343 * 1344 * Index = (epnum * 2) + direction - 1, 1345 * where direction = 0 for OUT, 1 for IN. 1346 * For control endpoints, the IN index is used (OUT index is unused), so 1347 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1348 */ 1349 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1350 { 1351 unsigned int index; 1352 if (usb_endpoint_xfer_control(desc)) 1353 index = (unsigned int) (usb_endpoint_num(desc)*2); 1354 else 1355 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1356 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1357 return index; 1358 } 1359 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1360 1361 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1362 * address from the XHCI endpoint index. 1363 */ 1364 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1365 { 1366 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1367 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1368 return direction | number; 1369 } 1370 1371 /* Find the flag for this endpoint (for use in the control context). Use the 1372 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1373 * bit 1, etc. 1374 */ 1375 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1376 { 1377 return 1 << (xhci_get_endpoint_index(desc) + 1); 1378 } 1379 1380 /* Compute the last valid endpoint context index. Basically, this is the 1381 * endpoint index plus one. For slot contexts with more than valid endpoint, 1382 * we find the most significant bit set in the added contexts flags. 1383 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1384 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1385 */ 1386 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1387 { 1388 return fls(added_ctxs) - 1; 1389 } 1390 1391 /* Returns 1 if the arguments are OK; 1392 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1393 */ 1394 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1395 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1396 const char *func) { 1397 struct xhci_hcd *xhci; 1398 struct xhci_virt_device *virt_dev; 1399 1400 if (!hcd || (check_ep && !ep) || !udev) { 1401 pr_debug("xHCI %s called with invalid args\n", func); 1402 return -EINVAL; 1403 } 1404 if (!udev->parent) { 1405 pr_debug("xHCI %s called for root hub\n", func); 1406 return 0; 1407 } 1408 1409 xhci = hcd_to_xhci(hcd); 1410 if (check_virt_dev) { 1411 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1412 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1413 func); 1414 return -EINVAL; 1415 } 1416 1417 virt_dev = xhci->devs[udev->slot_id]; 1418 if (virt_dev->udev != udev) { 1419 xhci_dbg(xhci, "xHCI %s called with udev and " 1420 "virt_dev does not match\n", func); 1421 return -EINVAL; 1422 } 1423 } 1424 1425 if (xhci->xhc_state & XHCI_STATE_HALTED) 1426 return -ENODEV; 1427 1428 return 1; 1429 } 1430 1431 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1432 struct usb_device *udev, struct xhci_command *command, 1433 bool ctx_change, bool must_succeed); 1434 1435 /* 1436 * Full speed devices may have a max packet size greater than 8 bytes, but the 1437 * USB core doesn't know that until it reads the first 8 bytes of the 1438 * descriptor. If the usb_device's max packet size changes after that point, 1439 * we need to issue an evaluate context command and wait on it. 1440 */ 1441 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1442 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1443 { 1444 struct xhci_container_ctx *out_ctx; 1445 struct xhci_input_control_ctx *ctrl_ctx; 1446 struct xhci_ep_ctx *ep_ctx; 1447 struct xhci_command *command; 1448 int max_packet_size; 1449 int hw_max_packet_size; 1450 int ret = 0; 1451 1452 out_ctx = xhci->devs[slot_id]->out_ctx; 1453 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1454 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1455 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1456 if (hw_max_packet_size != max_packet_size) { 1457 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1458 "Max Packet Size for ep 0 changed."); 1459 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1460 "Max packet size in usb_device = %d", 1461 max_packet_size); 1462 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1463 "Max packet size in xHCI HW = %d", 1464 hw_max_packet_size); 1465 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1466 "Issuing evaluate context command."); 1467 1468 /* Set up the input context flags for the command */ 1469 /* FIXME: This won't work if a non-default control endpoint 1470 * changes max packet sizes. 1471 */ 1472 1473 command = xhci_alloc_command(xhci, true, mem_flags); 1474 if (!command) 1475 return -ENOMEM; 1476 1477 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1478 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1479 if (!ctrl_ctx) { 1480 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1481 __func__); 1482 ret = -ENOMEM; 1483 goto command_cleanup; 1484 } 1485 /* Set up the modified control endpoint 0 */ 1486 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1487 xhci->devs[slot_id]->out_ctx, ep_index); 1488 1489 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1490 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1491 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1492 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1493 1494 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1495 ctrl_ctx->drop_flags = 0; 1496 1497 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1498 true, false); 1499 1500 /* Clean up the input context for later use by bandwidth 1501 * functions. 1502 */ 1503 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1504 command_cleanup: 1505 kfree(command->completion); 1506 kfree(command); 1507 } 1508 return ret; 1509 } 1510 1511 /* 1512 * non-error returns are a promise to giveback() the urb later 1513 * we drop ownership so next owner (or urb unlink) can get it 1514 */ 1515 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1516 { 1517 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1518 unsigned long flags; 1519 int ret = 0; 1520 unsigned int slot_id, ep_index; 1521 unsigned int *ep_state; 1522 struct urb_priv *urb_priv; 1523 int num_tds; 1524 1525 if (!urb) 1526 return -EINVAL; 1527 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1528 true, true, __func__); 1529 if (ret <= 0) 1530 return ret ? ret : -EINVAL; 1531 1532 slot_id = urb->dev->slot_id; 1533 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1534 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1535 1536 if (!HCD_HW_ACCESSIBLE(hcd)) 1537 return -ESHUTDOWN; 1538 1539 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1540 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1541 return -ENODEV; 1542 } 1543 1544 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1545 num_tds = urb->number_of_packets; 1546 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1547 urb->transfer_buffer_length > 0 && 1548 urb->transfer_flags & URB_ZERO_PACKET && 1549 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1550 num_tds = 2; 1551 else 1552 num_tds = 1; 1553 1554 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1555 if (!urb_priv) 1556 return -ENOMEM; 1557 1558 urb_priv->num_tds = num_tds; 1559 urb_priv->num_tds_done = 0; 1560 urb->hcpriv = urb_priv; 1561 1562 trace_xhci_urb_enqueue(urb); 1563 1564 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1565 /* Check to see if the max packet size for the default control 1566 * endpoint changed during FS device enumeration 1567 */ 1568 if (urb->dev->speed == USB_SPEED_FULL) { 1569 ret = xhci_check_maxpacket(xhci, slot_id, 1570 ep_index, urb, mem_flags); 1571 if (ret < 0) { 1572 xhci_urb_free_priv(urb_priv); 1573 urb->hcpriv = NULL; 1574 return ret; 1575 } 1576 } 1577 } 1578 1579 spin_lock_irqsave(&xhci->lock, flags); 1580 1581 if (xhci->xhc_state & XHCI_STATE_DYING) { 1582 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1583 urb->ep->desc.bEndpointAddress, urb); 1584 ret = -ESHUTDOWN; 1585 goto free_priv; 1586 } 1587 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1588 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1589 *ep_state); 1590 ret = -EINVAL; 1591 goto free_priv; 1592 } 1593 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1594 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1595 ret = -EINVAL; 1596 goto free_priv; 1597 } 1598 1599 switch (usb_endpoint_type(&urb->ep->desc)) { 1600 1601 case USB_ENDPOINT_XFER_CONTROL: 1602 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1603 slot_id, ep_index); 1604 break; 1605 case USB_ENDPOINT_XFER_BULK: 1606 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1607 slot_id, ep_index); 1608 break; 1609 case USB_ENDPOINT_XFER_INT: 1610 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1611 slot_id, ep_index); 1612 break; 1613 case USB_ENDPOINT_XFER_ISOC: 1614 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1615 slot_id, ep_index); 1616 } 1617 1618 if (ret) { 1619 free_priv: 1620 xhci_urb_free_priv(urb_priv); 1621 urb->hcpriv = NULL; 1622 } 1623 spin_unlock_irqrestore(&xhci->lock, flags); 1624 return ret; 1625 } 1626 1627 /* 1628 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1629 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1630 * should pick up where it left off in the TD, unless a Set Transfer Ring 1631 * Dequeue Pointer is issued. 1632 * 1633 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1634 * the ring. Since the ring is a contiguous structure, they can't be physically 1635 * removed. Instead, there are two options: 1636 * 1637 * 1) If the HC is in the middle of processing the URB to be canceled, we 1638 * simply move the ring's dequeue pointer past those TRBs using the Set 1639 * Transfer Ring Dequeue Pointer command. This will be the common case, 1640 * when drivers timeout on the last submitted URB and attempt to cancel. 1641 * 1642 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1643 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1644 * HC will need to invalidate the any TRBs it has cached after the stop 1645 * endpoint command, as noted in the xHCI 0.95 errata. 1646 * 1647 * 3) The TD may have completed by the time the Stop Endpoint Command 1648 * completes, so software needs to handle that case too. 1649 * 1650 * This function should protect against the TD enqueueing code ringing the 1651 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1652 * It also needs to account for multiple cancellations on happening at the same 1653 * time for the same endpoint. 1654 * 1655 * Note that this function can be called in any context, or so says 1656 * usb_hcd_unlink_urb() 1657 */ 1658 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1659 { 1660 unsigned long flags; 1661 int ret, i; 1662 u32 temp; 1663 struct xhci_hcd *xhci; 1664 struct urb_priv *urb_priv; 1665 struct xhci_td *td; 1666 unsigned int ep_index; 1667 struct xhci_ring *ep_ring; 1668 struct xhci_virt_ep *ep; 1669 struct xhci_command *command; 1670 struct xhci_virt_device *vdev; 1671 1672 xhci = hcd_to_xhci(hcd); 1673 spin_lock_irqsave(&xhci->lock, flags); 1674 1675 trace_xhci_urb_dequeue(urb); 1676 1677 /* Make sure the URB hasn't completed or been unlinked already */ 1678 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1679 if (ret) 1680 goto done; 1681 1682 /* give back URB now if we can't queue it for cancel */ 1683 vdev = xhci->devs[urb->dev->slot_id]; 1684 urb_priv = urb->hcpriv; 1685 if (!vdev || !urb_priv) 1686 goto err_giveback; 1687 1688 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1689 ep = &vdev->eps[ep_index]; 1690 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1691 if (!ep || !ep_ring) 1692 goto err_giveback; 1693 1694 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1695 temp = readl(&xhci->op_regs->status); 1696 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1697 xhci_hc_died(xhci); 1698 goto done; 1699 } 1700 1701 /* 1702 * check ring is not re-allocated since URB was enqueued. If it is, then 1703 * make sure none of the ring related pointers in this URB private data 1704 * are touched, such as td_list, otherwise we overwrite freed data 1705 */ 1706 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1707 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1708 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1709 td = &urb_priv->td[i]; 1710 if (!list_empty(&td->cancelled_td_list)) 1711 list_del_init(&td->cancelled_td_list); 1712 } 1713 goto err_giveback; 1714 } 1715 1716 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1717 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1718 "HC halted, freeing TD manually."); 1719 for (i = urb_priv->num_tds_done; 1720 i < urb_priv->num_tds; 1721 i++) { 1722 td = &urb_priv->td[i]; 1723 if (!list_empty(&td->td_list)) 1724 list_del_init(&td->td_list); 1725 if (!list_empty(&td->cancelled_td_list)) 1726 list_del_init(&td->cancelled_td_list); 1727 } 1728 goto err_giveback; 1729 } 1730 1731 i = urb_priv->num_tds_done; 1732 if (i < urb_priv->num_tds) 1733 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1734 "Cancel URB %p, dev %s, ep 0x%x, " 1735 "starting at offset 0x%llx", 1736 urb, urb->dev->devpath, 1737 urb->ep->desc.bEndpointAddress, 1738 (unsigned long long) xhci_trb_virt_to_dma( 1739 urb_priv->td[i].start_seg, 1740 urb_priv->td[i].first_trb)); 1741 1742 for (; i < urb_priv->num_tds; i++) { 1743 td = &urb_priv->td[i]; 1744 /* TD can already be on cancelled list if ep halted on it */ 1745 if (list_empty(&td->cancelled_td_list)) { 1746 td->cancel_status = TD_DIRTY; 1747 list_add_tail(&td->cancelled_td_list, 1748 &ep->cancelled_td_list); 1749 } 1750 } 1751 1752 /* Queue a stop endpoint command, but only if this is 1753 * the first cancellation to be handled. 1754 */ 1755 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1756 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1757 if (!command) { 1758 ret = -ENOMEM; 1759 goto done; 1760 } 1761 ep->ep_state |= EP_STOP_CMD_PENDING; 1762 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1763 ep_index, 0); 1764 xhci_ring_cmd_db(xhci); 1765 } 1766 done: 1767 spin_unlock_irqrestore(&xhci->lock, flags); 1768 return ret; 1769 1770 err_giveback: 1771 if (urb_priv) 1772 xhci_urb_free_priv(urb_priv); 1773 usb_hcd_unlink_urb_from_ep(hcd, urb); 1774 spin_unlock_irqrestore(&xhci->lock, flags); 1775 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1776 return ret; 1777 } 1778 1779 /* Drop an endpoint from a new bandwidth configuration for this device. 1780 * Only one call to this function is allowed per endpoint before 1781 * check_bandwidth() or reset_bandwidth() must be called. 1782 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1783 * add the endpoint to the schedule with possibly new parameters denoted by a 1784 * different endpoint descriptor in usb_host_endpoint. 1785 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1786 * not allowed. 1787 * 1788 * The USB core will not allow URBs to be queued to an endpoint that is being 1789 * disabled, so there's no need for mutual exclusion to protect 1790 * the xhci->devs[slot_id] structure. 1791 */ 1792 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1793 struct usb_host_endpoint *ep) 1794 { 1795 struct xhci_hcd *xhci; 1796 struct xhci_container_ctx *in_ctx, *out_ctx; 1797 struct xhci_input_control_ctx *ctrl_ctx; 1798 unsigned int ep_index; 1799 struct xhci_ep_ctx *ep_ctx; 1800 u32 drop_flag; 1801 u32 new_add_flags, new_drop_flags; 1802 int ret; 1803 1804 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1805 if (ret <= 0) 1806 return ret; 1807 xhci = hcd_to_xhci(hcd); 1808 if (xhci->xhc_state & XHCI_STATE_DYING) 1809 return -ENODEV; 1810 1811 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1812 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1813 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1814 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1815 __func__, drop_flag); 1816 return 0; 1817 } 1818 1819 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1820 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1821 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1822 if (!ctrl_ctx) { 1823 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1824 __func__); 1825 return 0; 1826 } 1827 1828 ep_index = xhci_get_endpoint_index(&ep->desc); 1829 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1830 /* If the HC already knows the endpoint is disabled, 1831 * or the HCD has noted it is disabled, ignore this request 1832 */ 1833 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1834 le32_to_cpu(ctrl_ctx->drop_flags) & 1835 xhci_get_endpoint_flag(&ep->desc)) { 1836 /* Do not warn when called after a usb_device_reset */ 1837 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1838 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1839 __func__, ep); 1840 return 0; 1841 } 1842 1843 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1844 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1845 1846 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1847 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1848 1849 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1850 1851 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1852 1853 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1854 (unsigned int) ep->desc.bEndpointAddress, 1855 udev->slot_id, 1856 (unsigned int) new_drop_flags, 1857 (unsigned int) new_add_flags); 1858 return 0; 1859 } 1860 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1861 1862 /* Add an endpoint to a new possible bandwidth configuration for this device. 1863 * Only one call to this function is allowed per endpoint before 1864 * check_bandwidth() or reset_bandwidth() must be called. 1865 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1866 * add the endpoint to the schedule with possibly new parameters denoted by a 1867 * different endpoint descriptor in usb_host_endpoint. 1868 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1869 * not allowed. 1870 * 1871 * The USB core will not allow URBs to be queued to an endpoint until the 1872 * configuration or alt setting is installed in the device, so there's no need 1873 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1874 */ 1875 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1876 struct usb_host_endpoint *ep) 1877 { 1878 struct xhci_hcd *xhci; 1879 struct xhci_container_ctx *in_ctx; 1880 unsigned int ep_index; 1881 struct xhci_input_control_ctx *ctrl_ctx; 1882 struct xhci_ep_ctx *ep_ctx; 1883 u32 added_ctxs; 1884 u32 new_add_flags, new_drop_flags; 1885 struct xhci_virt_device *virt_dev; 1886 int ret = 0; 1887 1888 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1889 if (ret <= 0) { 1890 /* So we won't queue a reset ep command for a root hub */ 1891 ep->hcpriv = NULL; 1892 return ret; 1893 } 1894 xhci = hcd_to_xhci(hcd); 1895 if (xhci->xhc_state & XHCI_STATE_DYING) 1896 return -ENODEV; 1897 1898 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1899 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1900 /* FIXME when we have to issue an evaluate endpoint command to 1901 * deal with ep0 max packet size changing once we get the 1902 * descriptors 1903 */ 1904 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1905 __func__, added_ctxs); 1906 return 0; 1907 } 1908 1909 virt_dev = xhci->devs[udev->slot_id]; 1910 in_ctx = virt_dev->in_ctx; 1911 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1912 if (!ctrl_ctx) { 1913 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1914 __func__); 1915 return 0; 1916 } 1917 1918 ep_index = xhci_get_endpoint_index(&ep->desc); 1919 /* If this endpoint is already in use, and the upper layers are trying 1920 * to add it again without dropping it, reject the addition. 1921 */ 1922 if (virt_dev->eps[ep_index].ring && 1923 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1924 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1925 "without dropping it.\n", 1926 (unsigned int) ep->desc.bEndpointAddress); 1927 return -EINVAL; 1928 } 1929 1930 /* If the HCD has already noted the endpoint is enabled, 1931 * ignore this request. 1932 */ 1933 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1934 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1935 __func__, ep); 1936 return 0; 1937 } 1938 1939 /* 1940 * Configuration and alternate setting changes must be done in 1941 * process context, not interrupt context (or so documenation 1942 * for usb_set_interface() and usb_set_configuration() claim). 1943 */ 1944 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1945 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1946 __func__, ep->desc.bEndpointAddress); 1947 return -ENOMEM; 1948 } 1949 1950 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1951 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1952 1953 /* If xhci_endpoint_disable() was called for this endpoint, but the 1954 * xHC hasn't been notified yet through the check_bandwidth() call, 1955 * this re-adds a new state for the endpoint from the new endpoint 1956 * descriptors. We must drop and re-add this endpoint, so we leave the 1957 * drop flags alone. 1958 */ 1959 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1960 1961 /* Store the usb_device pointer for later use */ 1962 ep->hcpriv = udev; 1963 1964 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1965 trace_xhci_add_endpoint(ep_ctx); 1966 1967 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1968 (unsigned int) ep->desc.bEndpointAddress, 1969 udev->slot_id, 1970 (unsigned int) new_drop_flags, 1971 (unsigned int) new_add_flags); 1972 return 0; 1973 } 1974 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 1975 1976 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1977 { 1978 struct xhci_input_control_ctx *ctrl_ctx; 1979 struct xhci_ep_ctx *ep_ctx; 1980 struct xhci_slot_ctx *slot_ctx; 1981 int i; 1982 1983 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1984 if (!ctrl_ctx) { 1985 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1986 __func__); 1987 return; 1988 } 1989 1990 /* When a device's add flag and drop flag are zero, any subsequent 1991 * configure endpoint command will leave that endpoint's state 1992 * untouched. Make sure we don't leave any old state in the input 1993 * endpoint contexts. 1994 */ 1995 ctrl_ctx->drop_flags = 0; 1996 ctrl_ctx->add_flags = 0; 1997 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1998 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1999 /* Endpoint 0 is always valid */ 2000 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2001 for (i = 1; i < 31; i++) { 2002 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2003 ep_ctx->ep_info = 0; 2004 ep_ctx->ep_info2 = 0; 2005 ep_ctx->deq = 0; 2006 ep_ctx->tx_info = 0; 2007 } 2008 } 2009 2010 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2011 struct usb_device *udev, u32 *cmd_status) 2012 { 2013 int ret; 2014 2015 switch (*cmd_status) { 2016 case COMP_COMMAND_ABORTED: 2017 case COMP_COMMAND_RING_STOPPED: 2018 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2019 ret = -ETIME; 2020 break; 2021 case COMP_RESOURCE_ERROR: 2022 dev_warn(&udev->dev, 2023 "Not enough host controller resources for new device state.\n"); 2024 ret = -ENOMEM; 2025 /* FIXME: can we allocate more resources for the HC? */ 2026 break; 2027 case COMP_BANDWIDTH_ERROR: 2028 case COMP_SECONDARY_BANDWIDTH_ERROR: 2029 dev_warn(&udev->dev, 2030 "Not enough bandwidth for new device state.\n"); 2031 ret = -ENOSPC; 2032 /* FIXME: can we go back to the old state? */ 2033 break; 2034 case COMP_TRB_ERROR: 2035 /* the HCD set up something wrong */ 2036 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2037 "add flag = 1, " 2038 "and endpoint is not disabled.\n"); 2039 ret = -EINVAL; 2040 break; 2041 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2042 dev_warn(&udev->dev, 2043 "ERROR: Incompatible device for endpoint configure command.\n"); 2044 ret = -ENODEV; 2045 break; 2046 case COMP_SUCCESS: 2047 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2048 "Successful Endpoint Configure command"); 2049 ret = 0; 2050 break; 2051 default: 2052 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2053 *cmd_status); 2054 ret = -EINVAL; 2055 break; 2056 } 2057 return ret; 2058 } 2059 2060 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2061 struct usb_device *udev, u32 *cmd_status) 2062 { 2063 int ret; 2064 2065 switch (*cmd_status) { 2066 case COMP_COMMAND_ABORTED: 2067 case COMP_COMMAND_RING_STOPPED: 2068 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2069 ret = -ETIME; 2070 break; 2071 case COMP_PARAMETER_ERROR: 2072 dev_warn(&udev->dev, 2073 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2074 ret = -EINVAL; 2075 break; 2076 case COMP_SLOT_NOT_ENABLED_ERROR: 2077 dev_warn(&udev->dev, 2078 "WARN: slot not enabled for evaluate context command.\n"); 2079 ret = -EINVAL; 2080 break; 2081 case COMP_CONTEXT_STATE_ERROR: 2082 dev_warn(&udev->dev, 2083 "WARN: invalid context state for evaluate context command.\n"); 2084 ret = -EINVAL; 2085 break; 2086 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2087 dev_warn(&udev->dev, 2088 "ERROR: Incompatible device for evaluate context command.\n"); 2089 ret = -ENODEV; 2090 break; 2091 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2092 /* Max Exit Latency too large error */ 2093 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2094 ret = -EINVAL; 2095 break; 2096 case COMP_SUCCESS: 2097 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2098 "Successful evaluate context command"); 2099 ret = 0; 2100 break; 2101 default: 2102 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2103 *cmd_status); 2104 ret = -EINVAL; 2105 break; 2106 } 2107 return ret; 2108 } 2109 2110 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2111 struct xhci_input_control_ctx *ctrl_ctx) 2112 { 2113 u32 valid_add_flags; 2114 u32 valid_drop_flags; 2115 2116 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2117 * (bit 1). The default control endpoint is added during the Address 2118 * Device command and is never removed until the slot is disabled. 2119 */ 2120 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2121 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2122 2123 /* Use hweight32 to count the number of ones in the add flags, or 2124 * number of endpoints added. Don't count endpoints that are changed 2125 * (both added and dropped). 2126 */ 2127 return hweight32(valid_add_flags) - 2128 hweight32(valid_add_flags & valid_drop_flags); 2129 } 2130 2131 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2132 struct xhci_input_control_ctx *ctrl_ctx) 2133 { 2134 u32 valid_add_flags; 2135 u32 valid_drop_flags; 2136 2137 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2138 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2139 2140 return hweight32(valid_drop_flags) - 2141 hweight32(valid_add_flags & valid_drop_flags); 2142 } 2143 2144 /* 2145 * We need to reserve the new number of endpoints before the configure endpoint 2146 * command completes. We can't subtract the dropped endpoints from the number 2147 * of active endpoints until the command completes because we can oversubscribe 2148 * the host in this case: 2149 * 2150 * - the first configure endpoint command drops more endpoints than it adds 2151 * - a second configure endpoint command that adds more endpoints is queued 2152 * - the first configure endpoint command fails, so the config is unchanged 2153 * - the second command may succeed, even though there isn't enough resources 2154 * 2155 * Must be called with xhci->lock held. 2156 */ 2157 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2158 struct xhci_input_control_ctx *ctrl_ctx) 2159 { 2160 u32 added_eps; 2161 2162 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2163 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2164 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2165 "Not enough ep ctxs: " 2166 "%u active, need to add %u, limit is %u.", 2167 xhci->num_active_eps, added_eps, 2168 xhci->limit_active_eps); 2169 return -ENOMEM; 2170 } 2171 xhci->num_active_eps += added_eps; 2172 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2173 "Adding %u ep ctxs, %u now active.", added_eps, 2174 xhci->num_active_eps); 2175 return 0; 2176 } 2177 2178 /* 2179 * The configure endpoint was failed by the xHC for some other reason, so we 2180 * need to revert the resources that failed configuration would have used. 2181 * 2182 * Must be called with xhci->lock held. 2183 */ 2184 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2185 struct xhci_input_control_ctx *ctrl_ctx) 2186 { 2187 u32 num_failed_eps; 2188 2189 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2190 xhci->num_active_eps -= num_failed_eps; 2191 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2192 "Removing %u failed ep ctxs, %u now active.", 2193 num_failed_eps, 2194 xhci->num_active_eps); 2195 } 2196 2197 /* 2198 * Now that the command has completed, clean up the active endpoint count by 2199 * subtracting out the endpoints that were dropped (but not changed). 2200 * 2201 * Must be called with xhci->lock held. 2202 */ 2203 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2204 struct xhci_input_control_ctx *ctrl_ctx) 2205 { 2206 u32 num_dropped_eps; 2207 2208 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2209 xhci->num_active_eps -= num_dropped_eps; 2210 if (num_dropped_eps) 2211 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2212 "Removing %u dropped ep ctxs, %u now active.", 2213 num_dropped_eps, 2214 xhci->num_active_eps); 2215 } 2216 2217 static unsigned int xhci_get_block_size(struct usb_device *udev) 2218 { 2219 switch (udev->speed) { 2220 case USB_SPEED_LOW: 2221 case USB_SPEED_FULL: 2222 return FS_BLOCK; 2223 case USB_SPEED_HIGH: 2224 return HS_BLOCK; 2225 case USB_SPEED_SUPER: 2226 case USB_SPEED_SUPER_PLUS: 2227 return SS_BLOCK; 2228 case USB_SPEED_UNKNOWN: 2229 default: 2230 /* Should never happen */ 2231 return 1; 2232 } 2233 } 2234 2235 static unsigned int 2236 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2237 { 2238 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2239 return LS_OVERHEAD; 2240 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2241 return FS_OVERHEAD; 2242 return HS_OVERHEAD; 2243 } 2244 2245 /* If we are changing a LS/FS device under a HS hub, 2246 * make sure (if we are activating a new TT) that the HS bus has enough 2247 * bandwidth for this new TT. 2248 */ 2249 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2250 struct xhci_virt_device *virt_dev, 2251 int old_active_eps) 2252 { 2253 struct xhci_interval_bw_table *bw_table; 2254 struct xhci_tt_bw_info *tt_info; 2255 2256 /* Find the bandwidth table for the root port this TT is attached to. */ 2257 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2258 tt_info = virt_dev->tt_info; 2259 /* If this TT already had active endpoints, the bandwidth for this TT 2260 * has already been added. Removing all periodic endpoints (and thus 2261 * making the TT enactive) will only decrease the bandwidth used. 2262 */ 2263 if (old_active_eps) 2264 return 0; 2265 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2266 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2267 return -ENOMEM; 2268 return 0; 2269 } 2270 /* Not sure why we would have no new active endpoints... 2271 * 2272 * Maybe because of an Evaluate Context change for a hub update or a 2273 * control endpoint 0 max packet size change? 2274 * FIXME: skip the bandwidth calculation in that case. 2275 */ 2276 return 0; 2277 } 2278 2279 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2280 struct xhci_virt_device *virt_dev) 2281 { 2282 unsigned int bw_reserved; 2283 2284 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2285 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2286 return -ENOMEM; 2287 2288 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2289 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2290 return -ENOMEM; 2291 2292 return 0; 2293 } 2294 2295 /* 2296 * This algorithm is a very conservative estimate of the worst-case scheduling 2297 * scenario for any one interval. The hardware dynamically schedules the 2298 * packets, so we can't tell which microframe could be the limiting factor in 2299 * the bandwidth scheduling. This only takes into account periodic endpoints. 2300 * 2301 * Obviously, we can't solve an NP complete problem to find the minimum worst 2302 * case scenario. Instead, we come up with an estimate that is no less than 2303 * the worst case bandwidth used for any one microframe, but may be an 2304 * over-estimate. 2305 * 2306 * We walk the requirements for each endpoint by interval, starting with the 2307 * smallest interval, and place packets in the schedule where there is only one 2308 * possible way to schedule packets for that interval. In order to simplify 2309 * this algorithm, we record the largest max packet size for each interval, and 2310 * assume all packets will be that size. 2311 * 2312 * For interval 0, we obviously must schedule all packets for each interval. 2313 * The bandwidth for interval 0 is just the amount of data to be transmitted 2314 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2315 * the number of packets). 2316 * 2317 * For interval 1, we have two possible microframes to schedule those packets 2318 * in. For this algorithm, if we can schedule the same number of packets for 2319 * each possible scheduling opportunity (each microframe), we will do so. The 2320 * remaining number of packets will be saved to be transmitted in the gaps in 2321 * the next interval's scheduling sequence. 2322 * 2323 * As we move those remaining packets to be scheduled with interval 2 packets, 2324 * we have to double the number of remaining packets to transmit. This is 2325 * because the intervals are actually powers of 2, and we would be transmitting 2326 * the previous interval's packets twice in this interval. We also have to be 2327 * sure that when we look at the largest max packet size for this interval, we 2328 * also look at the largest max packet size for the remaining packets and take 2329 * the greater of the two. 2330 * 2331 * The algorithm continues to evenly distribute packets in each scheduling 2332 * opportunity, and push the remaining packets out, until we get to the last 2333 * interval. Then those packets and their associated overhead are just added 2334 * to the bandwidth used. 2335 */ 2336 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2337 struct xhci_virt_device *virt_dev, 2338 int old_active_eps) 2339 { 2340 unsigned int bw_reserved; 2341 unsigned int max_bandwidth; 2342 unsigned int bw_used; 2343 unsigned int block_size; 2344 struct xhci_interval_bw_table *bw_table; 2345 unsigned int packet_size = 0; 2346 unsigned int overhead = 0; 2347 unsigned int packets_transmitted = 0; 2348 unsigned int packets_remaining = 0; 2349 unsigned int i; 2350 2351 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2352 return xhci_check_ss_bw(xhci, virt_dev); 2353 2354 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2355 max_bandwidth = HS_BW_LIMIT; 2356 /* Convert percent of bus BW reserved to blocks reserved */ 2357 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2358 } else { 2359 max_bandwidth = FS_BW_LIMIT; 2360 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2361 } 2362 2363 bw_table = virt_dev->bw_table; 2364 /* We need to translate the max packet size and max ESIT payloads into 2365 * the units the hardware uses. 2366 */ 2367 block_size = xhci_get_block_size(virt_dev->udev); 2368 2369 /* If we are manipulating a LS/FS device under a HS hub, double check 2370 * that the HS bus has enough bandwidth if we are activing a new TT. 2371 */ 2372 if (virt_dev->tt_info) { 2373 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2374 "Recalculating BW for rootport %u", 2375 virt_dev->real_port); 2376 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2377 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2378 "newly activated TT.\n"); 2379 return -ENOMEM; 2380 } 2381 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2382 "Recalculating BW for TT slot %u port %u", 2383 virt_dev->tt_info->slot_id, 2384 virt_dev->tt_info->ttport); 2385 } else { 2386 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2387 "Recalculating BW for rootport %u", 2388 virt_dev->real_port); 2389 } 2390 2391 /* Add in how much bandwidth will be used for interval zero, or the 2392 * rounded max ESIT payload + number of packets * largest overhead. 2393 */ 2394 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2395 bw_table->interval_bw[0].num_packets * 2396 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2397 2398 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2399 unsigned int bw_added; 2400 unsigned int largest_mps; 2401 unsigned int interval_overhead; 2402 2403 /* 2404 * How many packets could we transmit in this interval? 2405 * If packets didn't fit in the previous interval, we will need 2406 * to transmit that many packets twice within this interval. 2407 */ 2408 packets_remaining = 2 * packets_remaining + 2409 bw_table->interval_bw[i].num_packets; 2410 2411 /* Find the largest max packet size of this or the previous 2412 * interval. 2413 */ 2414 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2415 largest_mps = 0; 2416 else { 2417 struct xhci_virt_ep *virt_ep; 2418 struct list_head *ep_entry; 2419 2420 ep_entry = bw_table->interval_bw[i].endpoints.next; 2421 virt_ep = list_entry(ep_entry, 2422 struct xhci_virt_ep, bw_endpoint_list); 2423 /* Convert to blocks, rounding up */ 2424 largest_mps = DIV_ROUND_UP( 2425 virt_ep->bw_info.max_packet_size, 2426 block_size); 2427 } 2428 if (largest_mps > packet_size) 2429 packet_size = largest_mps; 2430 2431 /* Use the larger overhead of this or the previous interval. */ 2432 interval_overhead = xhci_get_largest_overhead( 2433 &bw_table->interval_bw[i]); 2434 if (interval_overhead > overhead) 2435 overhead = interval_overhead; 2436 2437 /* How many packets can we evenly distribute across 2438 * (1 << (i + 1)) possible scheduling opportunities? 2439 */ 2440 packets_transmitted = packets_remaining >> (i + 1); 2441 2442 /* Add in the bandwidth used for those scheduled packets */ 2443 bw_added = packets_transmitted * (overhead + packet_size); 2444 2445 /* How many packets do we have remaining to transmit? */ 2446 packets_remaining = packets_remaining % (1 << (i + 1)); 2447 2448 /* What largest max packet size should those packets have? */ 2449 /* If we've transmitted all packets, don't carry over the 2450 * largest packet size. 2451 */ 2452 if (packets_remaining == 0) { 2453 packet_size = 0; 2454 overhead = 0; 2455 } else if (packets_transmitted > 0) { 2456 /* Otherwise if we do have remaining packets, and we've 2457 * scheduled some packets in this interval, take the 2458 * largest max packet size from endpoints with this 2459 * interval. 2460 */ 2461 packet_size = largest_mps; 2462 overhead = interval_overhead; 2463 } 2464 /* Otherwise carry over packet_size and overhead from the last 2465 * time we had a remainder. 2466 */ 2467 bw_used += bw_added; 2468 if (bw_used > max_bandwidth) { 2469 xhci_warn(xhci, "Not enough bandwidth. " 2470 "Proposed: %u, Max: %u\n", 2471 bw_used, max_bandwidth); 2472 return -ENOMEM; 2473 } 2474 } 2475 /* 2476 * Ok, we know we have some packets left over after even-handedly 2477 * scheduling interval 15. We don't know which microframes they will 2478 * fit into, so we over-schedule and say they will be scheduled every 2479 * microframe. 2480 */ 2481 if (packets_remaining > 0) 2482 bw_used += overhead + packet_size; 2483 2484 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2485 unsigned int port_index = virt_dev->real_port - 1; 2486 2487 /* OK, we're manipulating a HS device attached to a 2488 * root port bandwidth domain. Include the number of active TTs 2489 * in the bandwidth used. 2490 */ 2491 bw_used += TT_HS_OVERHEAD * 2492 xhci->rh_bw[port_index].num_active_tts; 2493 } 2494 2495 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2496 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2497 "Available: %u " "percent", 2498 bw_used, max_bandwidth, bw_reserved, 2499 (max_bandwidth - bw_used - bw_reserved) * 100 / 2500 max_bandwidth); 2501 2502 bw_used += bw_reserved; 2503 if (bw_used > max_bandwidth) { 2504 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2505 bw_used, max_bandwidth); 2506 return -ENOMEM; 2507 } 2508 2509 bw_table->bw_used = bw_used; 2510 return 0; 2511 } 2512 2513 static bool xhci_is_async_ep(unsigned int ep_type) 2514 { 2515 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2516 ep_type != ISOC_IN_EP && 2517 ep_type != INT_IN_EP); 2518 } 2519 2520 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2521 { 2522 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2523 } 2524 2525 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2526 { 2527 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2528 2529 if (ep_bw->ep_interval == 0) 2530 return SS_OVERHEAD_BURST + 2531 (ep_bw->mult * ep_bw->num_packets * 2532 (SS_OVERHEAD + mps)); 2533 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2534 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2535 1 << ep_bw->ep_interval); 2536 2537 } 2538 2539 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2540 struct xhci_bw_info *ep_bw, 2541 struct xhci_interval_bw_table *bw_table, 2542 struct usb_device *udev, 2543 struct xhci_virt_ep *virt_ep, 2544 struct xhci_tt_bw_info *tt_info) 2545 { 2546 struct xhci_interval_bw *interval_bw; 2547 int normalized_interval; 2548 2549 if (xhci_is_async_ep(ep_bw->type)) 2550 return; 2551 2552 if (udev->speed >= USB_SPEED_SUPER) { 2553 if (xhci_is_sync_in_ep(ep_bw->type)) 2554 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2555 xhci_get_ss_bw_consumed(ep_bw); 2556 else 2557 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2558 xhci_get_ss_bw_consumed(ep_bw); 2559 return; 2560 } 2561 2562 /* SuperSpeed endpoints never get added to intervals in the table, so 2563 * this check is only valid for HS/FS/LS devices. 2564 */ 2565 if (list_empty(&virt_ep->bw_endpoint_list)) 2566 return; 2567 /* For LS/FS devices, we need to translate the interval expressed in 2568 * microframes to frames. 2569 */ 2570 if (udev->speed == USB_SPEED_HIGH) 2571 normalized_interval = ep_bw->ep_interval; 2572 else 2573 normalized_interval = ep_bw->ep_interval - 3; 2574 2575 if (normalized_interval == 0) 2576 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2577 interval_bw = &bw_table->interval_bw[normalized_interval]; 2578 interval_bw->num_packets -= ep_bw->num_packets; 2579 switch (udev->speed) { 2580 case USB_SPEED_LOW: 2581 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2582 break; 2583 case USB_SPEED_FULL: 2584 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2585 break; 2586 case USB_SPEED_HIGH: 2587 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2588 break; 2589 default: 2590 /* Should never happen because only LS/FS/HS endpoints will get 2591 * added to the endpoint list. 2592 */ 2593 return; 2594 } 2595 if (tt_info) 2596 tt_info->active_eps -= 1; 2597 list_del_init(&virt_ep->bw_endpoint_list); 2598 } 2599 2600 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2601 struct xhci_bw_info *ep_bw, 2602 struct xhci_interval_bw_table *bw_table, 2603 struct usb_device *udev, 2604 struct xhci_virt_ep *virt_ep, 2605 struct xhci_tt_bw_info *tt_info) 2606 { 2607 struct xhci_interval_bw *interval_bw; 2608 struct xhci_virt_ep *smaller_ep; 2609 int normalized_interval; 2610 2611 if (xhci_is_async_ep(ep_bw->type)) 2612 return; 2613 2614 if (udev->speed == USB_SPEED_SUPER) { 2615 if (xhci_is_sync_in_ep(ep_bw->type)) 2616 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2617 xhci_get_ss_bw_consumed(ep_bw); 2618 else 2619 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2620 xhci_get_ss_bw_consumed(ep_bw); 2621 return; 2622 } 2623 2624 /* For LS/FS devices, we need to translate the interval expressed in 2625 * microframes to frames. 2626 */ 2627 if (udev->speed == USB_SPEED_HIGH) 2628 normalized_interval = ep_bw->ep_interval; 2629 else 2630 normalized_interval = ep_bw->ep_interval - 3; 2631 2632 if (normalized_interval == 0) 2633 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2634 interval_bw = &bw_table->interval_bw[normalized_interval]; 2635 interval_bw->num_packets += ep_bw->num_packets; 2636 switch (udev->speed) { 2637 case USB_SPEED_LOW: 2638 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2639 break; 2640 case USB_SPEED_FULL: 2641 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2642 break; 2643 case USB_SPEED_HIGH: 2644 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2645 break; 2646 default: 2647 /* Should never happen because only LS/FS/HS endpoints will get 2648 * added to the endpoint list. 2649 */ 2650 return; 2651 } 2652 2653 if (tt_info) 2654 tt_info->active_eps += 1; 2655 /* Insert the endpoint into the list, largest max packet size first. */ 2656 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2657 bw_endpoint_list) { 2658 if (ep_bw->max_packet_size >= 2659 smaller_ep->bw_info.max_packet_size) { 2660 /* Add the new ep before the smaller endpoint */ 2661 list_add_tail(&virt_ep->bw_endpoint_list, 2662 &smaller_ep->bw_endpoint_list); 2663 return; 2664 } 2665 } 2666 /* Add the new endpoint at the end of the list. */ 2667 list_add_tail(&virt_ep->bw_endpoint_list, 2668 &interval_bw->endpoints); 2669 } 2670 2671 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2672 struct xhci_virt_device *virt_dev, 2673 int old_active_eps) 2674 { 2675 struct xhci_root_port_bw_info *rh_bw_info; 2676 if (!virt_dev->tt_info) 2677 return; 2678 2679 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2680 if (old_active_eps == 0 && 2681 virt_dev->tt_info->active_eps != 0) { 2682 rh_bw_info->num_active_tts += 1; 2683 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2684 } else if (old_active_eps != 0 && 2685 virt_dev->tt_info->active_eps == 0) { 2686 rh_bw_info->num_active_tts -= 1; 2687 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2688 } 2689 } 2690 2691 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2692 struct xhci_virt_device *virt_dev, 2693 struct xhci_container_ctx *in_ctx) 2694 { 2695 struct xhci_bw_info ep_bw_info[31]; 2696 int i; 2697 struct xhci_input_control_ctx *ctrl_ctx; 2698 int old_active_eps = 0; 2699 2700 if (virt_dev->tt_info) 2701 old_active_eps = virt_dev->tt_info->active_eps; 2702 2703 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2704 if (!ctrl_ctx) { 2705 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2706 __func__); 2707 return -ENOMEM; 2708 } 2709 2710 for (i = 0; i < 31; i++) { 2711 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2712 continue; 2713 2714 /* Make a copy of the BW info in case we need to revert this */ 2715 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2716 sizeof(ep_bw_info[i])); 2717 /* Drop the endpoint from the interval table if the endpoint is 2718 * being dropped or changed. 2719 */ 2720 if (EP_IS_DROPPED(ctrl_ctx, i)) 2721 xhci_drop_ep_from_interval_table(xhci, 2722 &virt_dev->eps[i].bw_info, 2723 virt_dev->bw_table, 2724 virt_dev->udev, 2725 &virt_dev->eps[i], 2726 virt_dev->tt_info); 2727 } 2728 /* Overwrite the information stored in the endpoints' bw_info */ 2729 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2730 for (i = 0; i < 31; i++) { 2731 /* Add any changed or added endpoints to the interval table */ 2732 if (EP_IS_ADDED(ctrl_ctx, i)) 2733 xhci_add_ep_to_interval_table(xhci, 2734 &virt_dev->eps[i].bw_info, 2735 virt_dev->bw_table, 2736 virt_dev->udev, 2737 &virt_dev->eps[i], 2738 virt_dev->tt_info); 2739 } 2740 2741 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2742 /* Ok, this fits in the bandwidth we have. 2743 * Update the number of active TTs. 2744 */ 2745 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2746 return 0; 2747 } 2748 2749 /* We don't have enough bandwidth for this, revert the stored info. */ 2750 for (i = 0; i < 31; i++) { 2751 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2752 continue; 2753 2754 /* Drop the new copies of any added or changed endpoints from 2755 * the interval table. 2756 */ 2757 if (EP_IS_ADDED(ctrl_ctx, i)) { 2758 xhci_drop_ep_from_interval_table(xhci, 2759 &virt_dev->eps[i].bw_info, 2760 virt_dev->bw_table, 2761 virt_dev->udev, 2762 &virt_dev->eps[i], 2763 virt_dev->tt_info); 2764 } 2765 /* Revert the endpoint back to its old information */ 2766 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2767 sizeof(ep_bw_info[i])); 2768 /* Add any changed or dropped endpoints back into the table */ 2769 if (EP_IS_DROPPED(ctrl_ctx, i)) 2770 xhci_add_ep_to_interval_table(xhci, 2771 &virt_dev->eps[i].bw_info, 2772 virt_dev->bw_table, 2773 virt_dev->udev, 2774 &virt_dev->eps[i], 2775 virt_dev->tt_info); 2776 } 2777 return -ENOMEM; 2778 } 2779 2780 2781 /* Issue a configure endpoint command or evaluate context command 2782 * and wait for it to finish. 2783 */ 2784 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2785 struct usb_device *udev, 2786 struct xhci_command *command, 2787 bool ctx_change, bool must_succeed) 2788 { 2789 int ret; 2790 unsigned long flags; 2791 struct xhci_input_control_ctx *ctrl_ctx; 2792 struct xhci_virt_device *virt_dev; 2793 struct xhci_slot_ctx *slot_ctx; 2794 2795 if (!command) 2796 return -EINVAL; 2797 2798 spin_lock_irqsave(&xhci->lock, flags); 2799 2800 if (xhci->xhc_state & XHCI_STATE_DYING) { 2801 spin_unlock_irqrestore(&xhci->lock, flags); 2802 return -ESHUTDOWN; 2803 } 2804 2805 virt_dev = xhci->devs[udev->slot_id]; 2806 2807 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2808 if (!ctrl_ctx) { 2809 spin_unlock_irqrestore(&xhci->lock, flags); 2810 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2811 __func__); 2812 return -ENOMEM; 2813 } 2814 2815 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2816 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2817 spin_unlock_irqrestore(&xhci->lock, flags); 2818 xhci_warn(xhci, "Not enough host resources, " 2819 "active endpoint contexts = %u\n", 2820 xhci->num_active_eps); 2821 return -ENOMEM; 2822 } 2823 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2824 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2825 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2826 xhci_free_host_resources(xhci, ctrl_ctx); 2827 spin_unlock_irqrestore(&xhci->lock, flags); 2828 xhci_warn(xhci, "Not enough bandwidth\n"); 2829 return -ENOMEM; 2830 } 2831 2832 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2833 2834 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2835 trace_xhci_configure_endpoint(slot_ctx); 2836 2837 if (!ctx_change) 2838 ret = xhci_queue_configure_endpoint(xhci, command, 2839 command->in_ctx->dma, 2840 udev->slot_id, must_succeed); 2841 else 2842 ret = xhci_queue_evaluate_context(xhci, command, 2843 command->in_ctx->dma, 2844 udev->slot_id, must_succeed); 2845 if (ret < 0) { 2846 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2847 xhci_free_host_resources(xhci, ctrl_ctx); 2848 spin_unlock_irqrestore(&xhci->lock, flags); 2849 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2850 "FIXME allocate a new ring segment"); 2851 return -ENOMEM; 2852 } 2853 xhci_ring_cmd_db(xhci); 2854 spin_unlock_irqrestore(&xhci->lock, flags); 2855 2856 /* Wait for the configure endpoint command to complete */ 2857 wait_for_completion(command->completion); 2858 2859 if (!ctx_change) 2860 ret = xhci_configure_endpoint_result(xhci, udev, 2861 &command->status); 2862 else 2863 ret = xhci_evaluate_context_result(xhci, udev, 2864 &command->status); 2865 2866 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2867 spin_lock_irqsave(&xhci->lock, flags); 2868 /* If the command failed, remove the reserved resources. 2869 * Otherwise, clean up the estimate to include dropped eps. 2870 */ 2871 if (ret) 2872 xhci_free_host_resources(xhci, ctrl_ctx); 2873 else 2874 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2875 spin_unlock_irqrestore(&xhci->lock, flags); 2876 } 2877 return ret; 2878 } 2879 2880 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2881 struct xhci_virt_device *vdev, int i) 2882 { 2883 struct xhci_virt_ep *ep = &vdev->eps[i]; 2884 2885 if (ep->ep_state & EP_HAS_STREAMS) { 2886 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2887 xhci_get_endpoint_address(i)); 2888 xhci_free_stream_info(xhci, ep->stream_info); 2889 ep->stream_info = NULL; 2890 ep->ep_state &= ~EP_HAS_STREAMS; 2891 } 2892 } 2893 2894 /* Called after one or more calls to xhci_add_endpoint() or 2895 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2896 * to call xhci_reset_bandwidth(). 2897 * 2898 * Since we are in the middle of changing either configuration or 2899 * installing a new alt setting, the USB core won't allow URBs to be 2900 * enqueued for any endpoint on the old config or interface. Nothing 2901 * else should be touching the xhci->devs[slot_id] structure, so we 2902 * don't need to take the xhci->lock for manipulating that. 2903 */ 2904 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2905 { 2906 int i; 2907 int ret = 0; 2908 struct xhci_hcd *xhci; 2909 struct xhci_virt_device *virt_dev; 2910 struct xhci_input_control_ctx *ctrl_ctx; 2911 struct xhci_slot_ctx *slot_ctx; 2912 struct xhci_command *command; 2913 2914 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2915 if (ret <= 0) 2916 return ret; 2917 xhci = hcd_to_xhci(hcd); 2918 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2919 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2920 return -ENODEV; 2921 2922 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2923 virt_dev = xhci->devs[udev->slot_id]; 2924 2925 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2926 if (!command) 2927 return -ENOMEM; 2928 2929 command->in_ctx = virt_dev->in_ctx; 2930 2931 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2932 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2933 if (!ctrl_ctx) { 2934 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2935 __func__); 2936 ret = -ENOMEM; 2937 goto command_cleanup; 2938 } 2939 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2940 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2941 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2942 2943 /* Don't issue the command if there's no endpoints to update. */ 2944 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2945 ctrl_ctx->drop_flags == 0) { 2946 ret = 0; 2947 goto command_cleanup; 2948 } 2949 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2950 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2951 for (i = 31; i >= 1; i--) { 2952 __le32 le32 = cpu_to_le32(BIT(i)); 2953 2954 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2955 || (ctrl_ctx->add_flags & le32) || i == 1) { 2956 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2957 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2958 break; 2959 } 2960 } 2961 2962 ret = xhci_configure_endpoint(xhci, udev, command, 2963 false, false); 2964 if (ret) 2965 /* Callee should call reset_bandwidth() */ 2966 goto command_cleanup; 2967 2968 /* Free any rings that were dropped, but not changed. */ 2969 for (i = 1; i < 31; i++) { 2970 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2971 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2972 xhci_free_endpoint_ring(xhci, virt_dev, i); 2973 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2974 } 2975 } 2976 xhci_zero_in_ctx(xhci, virt_dev); 2977 /* 2978 * Install any rings for completely new endpoints or changed endpoints, 2979 * and free any old rings from changed endpoints. 2980 */ 2981 for (i = 1; i < 31; i++) { 2982 if (!virt_dev->eps[i].new_ring) 2983 continue; 2984 /* Only free the old ring if it exists. 2985 * It may not if this is the first add of an endpoint. 2986 */ 2987 if (virt_dev->eps[i].ring) { 2988 xhci_free_endpoint_ring(xhci, virt_dev, i); 2989 } 2990 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2991 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2992 virt_dev->eps[i].new_ring = NULL; 2993 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 2994 } 2995 command_cleanup: 2996 kfree(command->completion); 2997 kfree(command); 2998 2999 return ret; 3000 } 3001 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3002 3003 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3004 { 3005 struct xhci_hcd *xhci; 3006 struct xhci_virt_device *virt_dev; 3007 int i, ret; 3008 3009 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3010 if (ret <= 0) 3011 return; 3012 xhci = hcd_to_xhci(hcd); 3013 3014 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3015 virt_dev = xhci->devs[udev->slot_id]; 3016 /* Free any rings allocated for added endpoints */ 3017 for (i = 0; i < 31; i++) { 3018 if (virt_dev->eps[i].new_ring) { 3019 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3020 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3021 virt_dev->eps[i].new_ring = NULL; 3022 } 3023 } 3024 xhci_zero_in_ctx(xhci, virt_dev); 3025 } 3026 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3027 3028 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3029 struct xhci_container_ctx *in_ctx, 3030 struct xhci_container_ctx *out_ctx, 3031 struct xhci_input_control_ctx *ctrl_ctx, 3032 u32 add_flags, u32 drop_flags) 3033 { 3034 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3035 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3036 xhci_slot_copy(xhci, in_ctx, out_ctx); 3037 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3038 } 3039 3040 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3041 struct usb_host_endpoint *host_ep) 3042 { 3043 struct xhci_hcd *xhci; 3044 struct xhci_virt_device *vdev; 3045 struct xhci_virt_ep *ep; 3046 struct usb_device *udev; 3047 unsigned long flags; 3048 unsigned int ep_index; 3049 3050 xhci = hcd_to_xhci(hcd); 3051 rescan: 3052 spin_lock_irqsave(&xhci->lock, flags); 3053 3054 udev = (struct usb_device *)host_ep->hcpriv; 3055 if (!udev || !udev->slot_id) 3056 goto done; 3057 3058 vdev = xhci->devs[udev->slot_id]; 3059 if (!vdev) 3060 goto done; 3061 3062 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3063 ep = &vdev->eps[ep_index]; 3064 3065 /* wait for hub_tt_work to finish clearing hub TT */ 3066 if (ep->ep_state & EP_CLEARING_TT) { 3067 spin_unlock_irqrestore(&xhci->lock, flags); 3068 schedule_timeout_uninterruptible(1); 3069 goto rescan; 3070 } 3071 3072 if (ep->ep_state) 3073 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3074 ep->ep_state); 3075 done: 3076 host_ep->hcpriv = NULL; 3077 spin_unlock_irqrestore(&xhci->lock, flags); 3078 } 3079 3080 /* 3081 * Called after usb core issues a clear halt control message. 3082 * The host side of the halt should already be cleared by a reset endpoint 3083 * command issued when the STALL event was received. 3084 * 3085 * The reset endpoint command may only be issued to endpoints in the halted 3086 * state. For software that wishes to reset the data toggle or sequence number 3087 * of an endpoint that isn't in the halted state this function will issue a 3088 * configure endpoint command with the Drop and Add bits set for the target 3089 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3090 */ 3091 3092 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3093 struct usb_host_endpoint *host_ep) 3094 { 3095 struct xhci_hcd *xhci; 3096 struct usb_device *udev; 3097 struct xhci_virt_device *vdev; 3098 struct xhci_virt_ep *ep; 3099 struct xhci_input_control_ctx *ctrl_ctx; 3100 struct xhci_command *stop_cmd, *cfg_cmd; 3101 unsigned int ep_index; 3102 unsigned long flags; 3103 u32 ep_flag; 3104 int err; 3105 3106 xhci = hcd_to_xhci(hcd); 3107 if (!host_ep->hcpriv) 3108 return; 3109 udev = (struct usb_device *) host_ep->hcpriv; 3110 vdev = xhci->devs[udev->slot_id]; 3111 3112 /* 3113 * vdev may be lost due to xHC restore error and re-initialization 3114 * during S3/S4 resume. A new vdev will be allocated later by 3115 * xhci_discover_or_reset_device() 3116 */ 3117 if (!udev->slot_id || !vdev) 3118 return; 3119 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3120 ep = &vdev->eps[ep_index]; 3121 3122 /* Bail out if toggle is already being cleared by a endpoint reset */ 3123 spin_lock_irqsave(&xhci->lock, flags); 3124 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3125 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3126 spin_unlock_irqrestore(&xhci->lock, flags); 3127 return; 3128 } 3129 spin_unlock_irqrestore(&xhci->lock, flags); 3130 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3131 if (usb_endpoint_xfer_control(&host_ep->desc) || 3132 usb_endpoint_xfer_isoc(&host_ep->desc)) 3133 return; 3134 3135 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3136 3137 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3138 return; 3139 3140 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3141 if (!stop_cmd) 3142 return; 3143 3144 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3145 if (!cfg_cmd) 3146 goto cleanup; 3147 3148 spin_lock_irqsave(&xhci->lock, flags); 3149 3150 /* block queuing new trbs and ringing ep doorbell */ 3151 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3152 3153 /* 3154 * Make sure endpoint ring is empty before resetting the toggle/seq. 3155 * Driver is required to synchronously cancel all transfer request. 3156 * Stop the endpoint to force xHC to update the output context 3157 */ 3158 3159 if (!list_empty(&ep->ring->td_list)) { 3160 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3161 spin_unlock_irqrestore(&xhci->lock, flags); 3162 xhci_free_command(xhci, cfg_cmd); 3163 goto cleanup; 3164 } 3165 3166 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3167 ep_index, 0); 3168 if (err < 0) { 3169 spin_unlock_irqrestore(&xhci->lock, flags); 3170 xhci_free_command(xhci, cfg_cmd); 3171 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3172 __func__, err); 3173 goto cleanup; 3174 } 3175 3176 xhci_ring_cmd_db(xhci); 3177 spin_unlock_irqrestore(&xhci->lock, flags); 3178 3179 wait_for_completion(stop_cmd->completion); 3180 3181 spin_lock_irqsave(&xhci->lock, flags); 3182 3183 /* config ep command clears toggle if add and drop ep flags are set */ 3184 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3185 if (!ctrl_ctx) { 3186 spin_unlock_irqrestore(&xhci->lock, flags); 3187 xhci_free_command(xhci, cfg_cmd); 3188 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3189 __func__); 3190 goto cleanup; 3191 } 3192 3193 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3194 ctrl_ctx, ep_flag, ep_flag); 3195 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3196 3197 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3198 udev->slot_id, false); 3199 if (err < 0) { 3200 spin_unlock_irqrestore(&xhci->lock, flags); 3201 xhci_free_command(xhci, cfg_cmd); 3202 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3203 __func__, err); 3204 goto cleanup; 3205 } 3206 3207 xhci_ring_cmd_db(xhci); 3208 spin_unlock_irqrestore(&xhci->lock, flags); 3209 3210 wait_for_completion(cfg_cmd->completion); 3211 3212 xhci_free_command(xhci, cfg_cmd); 3213 cleanup: 3214 xhci_free_command(xhci, stop_cmd); 3215 spin_lock_irqsave(&xhci->lock, flags); 3216 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3217 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3218 spin_unlock_irqrestore(&xhci->lock, flags); 3219 } 3220 3221 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3222 struct usb_device *udev, struct usb_host_endpoint *ep, 3223 unsigned int slot_id) 3224 { 3225 int ret; 3226 unsigned int ep_index; 3227 unsigned int ep_state; 3228 3229 if (!ep) 3230 return -EINVAL; 3231 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3232 if (ret <= 0) 3233 return ret ? ret : -EINVAL; 3234 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3235 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3236 " descriptor for ep 0x%x does not support streams\n", 3237 ep->desc.bEndpointAddress); 3238 return -EINVAL; 3239 } 3240 3241 ep_index = xhci_get_endpoint_index(&ep->desc); 3242 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3243 if (ep_state & EP_HAS_STREAMS || 3244 ep_state & EP_GETTING_STREAMS) { 3245 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3246 "already has streams set up.\n", 3247 ep->desc.bEndpointAddress); 3248 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3249 "dynamic stream context array reallocation.\n"); 3250 return -EINVAL; 3251 } 3252 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3253 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3254 "endpoint 0x%x; URBs are pending.\n", 3255 ep->desc.bEndpointAddress); 3256 return -EINVAL; 3257 } 3258 return 0; 3259 } 3260 3261 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3262 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3263 { 3264 unsigned int max_streams; 3265 3266 /* The stream context array size must be a power of two */ 3267 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3268 /* 3269 * Find out how many primary stream array entries the host controller 3270 * supports. Later we may use secondary stream arrays (similar to 2nd 3271 * level page entries), but that's an optional feature for xHCI host 3272 * controllers. xHCs must support at least 4 stream IDs. 3273 */ 3274 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3275 if (*num_stream_ctxs > max_streams) { 3276 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3277 max_streams); 3278 *num_stream_ctxs = max_streams; 3279 *num_streams = max_streams; 3280 } 3281 } 3282 3283 /* Returns an error code if one of the endpoint already has streams. 3284 * This does not change any data structures, it only checks and gathers 3285 * information. 3286 */ 3287 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3288 struct usb_device *udev, 3289 struct usb_host_endpoint **eps, unsigned int num_eps, 3290 unsigned int *num_streams, u32 *changed_ep_bitmask) 3291 { 3292 unsigned int max_streams; 3293 unsigned int endpoint_flag; 3294 int i; 3295 int ret; 3296 3297 for (i = 0; i < num_eps; i++) { 3298 ret = xhci_check_streams_endpoint(xhci, udev, 3299 eps[i], udev->slot_id); 3300 if (ret < 0) 3301 return ret; 3302 3303 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3304 if (max_streams < (*num_streams - 1)) { 3305 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3306 eps[i]->desc.bEndpointAddress, 3307 max_streams); 3308 *num_streams = max_streams+1; 3309 } 3310 3311 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3312 if (*changed_ep_bitmask & endpoint_flag) 3313 return -EINVAL; 3314 *changed_ep_bitmask |= endpoint_flag; 3315 } 3316 return 0; 3317 } 3318 3319 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3320 struct usb_device *udev, 3321 struct usb_host_endpoint **eps, unsigned int num_eps) 3322 { 3323 u32 changed_ep_bitmask = 0; 3324 unsigned int slot_id; 3325 unsigned int ep_index; 3326 unsigned int ep_state; 3327 int i; 3328 3329 slot_id = udev->slot_id; 3330 if (!xhci->devs[slot_id]) 3331 return 0; 3332 3333 for (i = 0; i < num_eps; i++) { 3334 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3335 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3336 /* Are streams already being freed for the endpoint? */ 3337 if (ep_state & EP_GETTING_NO_STREAMS) { 3338 xhci_warn(xhci, "WARN Can't disable streams for " 3339 "endpoint 0x%x, " 3340 "streams are being disabled already\n", 3341 eps[i]->desc.bEndpointAddress); 3342 return 0; 3343 } 3344 /* Are there actually any streams to free? */ 3345 if (!(ep_state & EP_HAS_STREAMS) && 3346 !(ep_state & EP_GETTING_STREAMS)) { 3347 xhci_warn(xhci, "WARN Can't disable streams for " 3348 "endpoint 0x%x, " 3349 "streams are already disabled!\n", 3350 eps[i]->desc.bEndpointAddress); 3351 xhci_warn(xhci, "WARN xhci_free_streams() called " 3352 "with non-streams endpoint\n"); 3353 return 0; 3354 } 3355 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3356 } 3357 return changed_ep_bitmask; 3358 } 3359 3360 /* 3361 * The USB device drivers use this function (through the HCD interface in USB 3362 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3363 * coordinate mass storage command queueing across multiple endpoints (basically 3364 * a stream ID == a task ID). 3365 * 3366 * Setting up streams involves allocating the same size stream context array 3367 * for each endpoint and issuing a configure endpoint command for all endpoints. 3368 * 3369 * Don't allow the call to succeed if one endpoint only supports one stream 3370 * (which means it doesn't support streams at all). 3371 * 3372 * Drivers may get less stream IDs than they asked for, if the host controller 3373 * hardware or endpoints claim they can't support the number of requested 3374 * stream IDs. 3375 */ 3376 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3377 struct usb_host_endpoint **eps, unsigned int num_eps, 3378 unsigned int num_streams, gfp_t mem_flags) 3379 { 3380 int i, ret; 3381 struct xhci_hcd *xhci; 3382 struct xhci_virt_device *vdev; 3383 struct xhci_command *config_cmd; 3384 struct xhci_input_control_ctx *ctrl_ctx; 3385 unsigned int ep_index; 3386 unsigned int num_stream_ctxs; 3387 unsigned int max_packet; 3388 unsigned long flags; 3389 u32 changed_ep_bitmask = 0; 3390 3391 if (!eps) 3392 return -EINVAL; 3393 3394 /* Add one to the number of streams requested to account for 3395 * stream 0 that is reserved for xHCI usage. 3396 */ 3397 num_streams += 1; 3398 xhci = hcd_to_xhci(hcd); 3399 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3400 num_streams); 3401 3402 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3403 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3404 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3405 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3406 return -ENOSYS; 3407 } 3408 3409 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3410 if (!config_cmd) 3411 return -ENOMEM; 3412 3413 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3414 if (!ctrl_ctx) { 3415 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3416 __func__); 3417 xhci_free_command(xhci, config_cmd); 3418 return -ENOMEM; 3419 } 3420 3421 /* Check to make sure all endpoints are not already configured for 3422 * streams. While we're at it, find the maximum number of streams that 3423 * all the endpoints will support and check for duplicate endpoints. 3424 */ 3425 spin_lock_irqsave(&xhci->lock, flags); 3426 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3427 num_eps, &num_streams, &changed_ep_bitmask); 3428 if (ret < 0) { 3429 xhci_free_command(xhci, config_cmd); 3430 spin_unlock_irqrestore(&xhci->lock, flags); 3431 return ret; 3432 } 3433 if (num_streams <= 1) { 3434 xhci_warn(xhci, "WARN: endpoints can't handle " 3435 "more than one stream.\n"); 3436 xhci_free_command(xhci, config_cmd); 3437 spin_unlock_irqrestore(&xhci->lock, flags); 3438 return -EINVAL; 3439 } 3440 vdev = xhci->devs[udev->slot_id]; 3441 /* Mark each endpoint as being in transition, so 3442 * xhci_urb_enqueue() will reject all URBs. 3443 */ 3444 for (i = 0; i < num_eps; i++) { 3445 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3446 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3447 } 3448 spin_unlock_irqrestore(&xhci->lock, flags); 3449 3450 /* Setup internal data structures and allocate HW data structures for 3451 * streams (but don't install the HW structures in the input context 3452 * until we're sure all memory allocation succeeded). 3453 */ 3454 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3455 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3456 num_stream_ctxs, num_streams); 3457 3458 for (i = 0; i < num_eps; i++) { 3459 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3460 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3461 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3462 num_stream_ctxs, 3463 num_streams, 3464 max_packet, mem_flags); 3465 if (!vdev->eps[ep_index].stream_info) 3466 goto cleanup; 3467 /* Set maxPstreams in endpoint context and update deq ptr to 3468 * point to stream context array. FIXME 3469 */ 3470 } 3471 3472 /* Set up the input context for a configure endpoint command. */ 3473 for (i = 0; i < num_eps; i++) { 3474 struct xhci_ep_ctx *ep_ctx; 3475 3476 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3477 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3478 3479 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3480 vdev->out_ctx, ep_index); 3481 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3482 vdev->eps[ep_index].stream_info); 3483 } 3484 /* Tell the HW to drop its old copy of the endpoint context info 3485 * and add the updated copy from the input context. 3486 */ 3487 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3488 vdev->out_ctx, ctrl_ctx, 3489 changed_ep_bitmask, changed_ep_bitmask); 3490 3491 /* Issue and wait for the configure endpoint command */ 3492 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3493 false, false); 3494 3495 /* xHC rejected the configure endpoint command for some reason, so we 3496 * leave the old ring intact and free our internal streams data 3497 * structure. 3498 */ 3499 if (ret < 0) 3500 goto cleanup; 3501 3502 spin_lock_irqsave(&xhci->lock, flags); 3503 for (i = 0; i < num_eps; i++) { 3504 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3505 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3506 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3507 udev->slot_id, ep_index); 3508 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3509 } 3510 xhci_free_command(xhci, config_cmd); 3511 spin_unlock_irqrestore(&xhci->lock, flags); 3512 3513 for (i = 0; i < num_eps; i++) { 3514 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3515 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3516 } 3517 /* Subtract 1 for stream 0, which drivers can't use */ 3518 return num_streams - 1; 3519 3520 cleanup: 3521 /* If it didn't work, free the streams! */ 3522 for (i = 0; i < num_eps; i++) { 3523 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3524 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3525 vdev->eps[ep_index].stream_info = NULL; 3526 /* FIXME Unset maxPstreams in endpoint context and 3527 * update deq ptr to point to normal string ring. 3528 */ 3529 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3530 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3531 xhci_endpoint_zero(xhci, vdev, eps[i]); 3532 } 3533 xhci_free_command(xhci, config_cmd); 3534 return -ENOMEM; 3535 } 3536 3537 /* Transition the endpoint from using streams to being a "normal" endpoint 3538 * without streams. 3539 * 3540 * Modify the endpoint context state, submit a configure endpoint command, 3541 * and free all endpoint rings for streams if that completes successfully. 3542 */ 3543 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3544 struct usb_host_endpoint **eps, unsigned int num_eps, 3545 gfp_t mem_flags) 3546 { 3547 int i, ret; 3548 struct xhci_hcd *xhci; 3549 struct xhci_virt_device *vdev; 3550 struct xhci_command *command; 3551 struct xhci_input_control_ctx *ctrl_ctx; 3552 unsigned int ep_index; 3553 unsigned long flags; 3554 u32 changed_ep_bitmask; 3555 3556 xhci = hcd_to_xhci(hcd); 3557 vdev = xhci->devs[udev->slot_id]; 3558 3559 /* Set up a configure endpoint command to remove the streams rings */ 3560 spin_lock_irqsave(&xhci->lock, flags); 3561 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3562 udev, eps, num_eps); 3563 if (changed_ep_bitmask == 0) { 3564 spin_unlock_irqrestore(&xhci->lock, flags); 3565 return -EINVAL; 3566 } 3567 3568 /* Use the xhci_command structure from the first endpoint. We may have 3569 * allocated too many, but the driver may call xhci_free_streams() for 3570 * each endpoint it grouped into one call to xhci_alloc_streams(). 3571 */ 3572 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3573 command = vdev->eps[ep_index].stream_info->free_streams_command; 3574 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3575 if (!ctrl_ctx) { 3576 spin_unlock_irqrestore(&xhci->lock, flags); 3577 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3578 __func__); 3579 return -EINVAL; 3580 } 3581 3582 for (i = 0; i < num_eps; i++) { 3583 struct xhci_ep_ctx *ep_ctx; 3584 3585 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3586 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3587 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3588 EP_GETTING_NO_STREAMS; 3589 3590 xhci_endpoint_copy(xhci, command->in_ctx, 3591 vdev->out_ctx, ep_index); 3592 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3593 &vdev->eps[ep_index]); 3594 } 3595 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3596 vdev->out_ctx, ctrl_ctx, 3597 changed_ep_bitmask, changed_ep_bitmask); 3598 spin_unlock_irqrestore(&xhci->lock, flags); 3599 3600 /* Issue and wait for the configure endpoint command, 3601 * which must succeed. 3602 */ 3603 ret = xhci_configure_endpoint(xhci, udev, command, 3604 false, true); 3605 3606 /* xHC rejected the configure endpoint command for some reason, so we 3607 * leave the streams rings intact. 3608 */ 3609 if (ret < 0) 3610 return ret; 3611 3612 spin_lock_irqsave(&xhci->lock, flags); 3613 for (i = 0; i < num_eps; i++) { 3614 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3615 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3616 vdev->eps[ep_index].stream_info = NULL; 3617 /* FIXME Unset maxPstreams in endpoint context and 3618 * update deq ptr to point to normal string ring. 3619 */ 3620 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3621 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3622 } 3623 spin_unlock_irqrestore(&xhci->lock, flags); 3624 3625 return 0; 3626 } 3627 3628 /* 3629 * Deletes endpoint resources for endpoints that were active before a Reset 3630 * Device command, or a Disable Slot command. The Reset Device command leaves 3631 * the control endpoint intact, whereas the Disable Slot command deletes it. 3632 * 3633 * Must be called with xhci->lock held. 3634 */ 3635 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3636 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3637 { 3638 int i; 3639 unsigned int num_dropped_eps = 0; 3640 unsigned int drop_flags = 0; 3641 3642 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3643 if (virt_dev->eps[i].ring) { 3644 drop_flags |= 1 << i; 3645 num_dropped_eps++; 3646 } 3647 } 3648 xhci->num_active_eps -= num_dropped_eps; 3649 if (num_dropped_eps) 3650 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3651 "Dropped %u ep ctxs, flags = 0x%x, " 3652 "%u now active.", 3653 num_dropped_eps, drop_flags, 3654 xhci->num_active_eps); 3655 } 3656 3657 /* 3658 * This submits a Reset Device Command, which will set the device state to 0, 3659 * set the device address to 0, and disable all the endpoints except the default 3660 * control endpoint. The USB core should come back and call 3661 * xhci_address_device(), and then re-set up the configuration. If this is 3662 * called because of a usb_reset_and_verify_device(), then the old alternate 3663 * settings will be re-installed through the normal bandwidth allocation 3664 * functions. 3665 * 3666 * Wait for the Reset Device command to finish. Remove all structures 3667 * associated with the endpoints that were disabled. Clear the input device 3668 * structure? Reset the control endpoint 0 max packet size? 3669 * 3670 * If the virt_dev to be reset does not exist or does not match the udev, 3671 * it means the device is lost, possibly due to the xHC restore error and 3672 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3673 * re-allocate the device. 3674 */ 3675 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3676 struct usb_device *udev) 3677 { 3678 int ret, i; 3679 unsigned long flags; 3680 struct xhci_hcd *xhci; 3681 unsigned int slot_id; 3682 struct xhci_virt_device *virt_dev; 3683 struct xhci_command *reset_device_cmd; 3684 struct xhci_slot_ctx *slot_ctx; 3685 int old_active_eps = 0; 3686 3687 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3688 if (ret <= 0) 3689 return ret; 3690 xhci = hcd_to_xhci(hcd); 3691 slot_id = udev->slot_id; 3692 virt_dev = xhci->devs[slot_id]; 3693 if (!virt_dev) { 3694 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3695 "not exist. Re-allocate the device\n", slot_id); 3696 ret = xhci_alloc_dev(hcd, udev); 3697 if (ret == 1) 3698 return 0; 3699 else 3700 return -EINVAL; 3701 } 3702 3703 if (virt_dev->tt_info) 3704 old_active_eps = virt_dev->tt_info->active_eps; 3705 3706 if (virt_dev->udev != udev) { 3707 /* If the virt_dev and the udev does not match, this virt_dev 3708 * may belong to another udev. 3709 * Re-allocate the device. 3710 */ 3711 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3712 "not match the udev. Re-allocate the device\n", 3713 slot_id); 3714 ret = xhci_alloc_dev(hcd, udev); 3715 if (ret == 1) 3716 return 0; 3717 else 3718 return -EINVAL; 3719 } 3720 3721 /* If device is not setup, there is no point in resetting it */ 3722 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3723 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3724 SLOT_STATE_DISABLED) 3725 return 0; 3726 3727 trace_xhci_discover_or_reset_device(slot_ctx); 3728 3729 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3730 /* Allocate the command structure that holds the struct completion. 3731 * Assume we're in process context, since the normal device reset 3732 * process has to wait for the device anyway. Storage devices are 3733 * reset as part of error handling, so use GFP_NOIO instead of 3734 * GFP_KERNEL. 3735 */ 3736 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3737 if (!reset_device_cmd) { 3738 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3739 return -ENOMEM; 3740 } 3741 3742 /* Attempt to submit the Reset Device command to the command ring */ 3743 spin_lock_irqsave(&xhci->lock, flags); 3744 3745 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3746 if (ret) { 3747 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3748 spin_unlock_irqrestore(&xhci->lock, flags); 3749 goto command_cleanup; 3750 } 3751 xhci_ring_cmd_db(xhci); 3752 spin_unlock_irqrestore(&xhci->lock, flags); 3753 3754 /* Wait for the Reset Device command to finish */ 3755 wait_for_completion(reset_device_cmd->completion); 3756 3757 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3758 * unless we tried to reset a slot ID that wasn't enabled, 3759 * or the device wasn't in the addressed or configured state. 3760 */ 3761 ret = reset_device_cmd->status; 3762 switch (ret) { 3763 case COMP_COMMAND_ABORTED: 3764 case COMP_COMMAND_RING_STOPPED: 3765 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3766 ret = -ETIME; 3767 goto command_cleanup; 3768 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3769 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3770 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3771 slot_id, 3772 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3773 xhci_dbg(xhci, "Not freeing device rings.\n"); 3774 /* Don't treat this as an error. May change my mind later. */ 3775 ret = 0; 3776 goto command_cleanup; 3777 case COMP_SUCCESS: 3778 xhci_dbg(xhci, "Successful reset device command.\n"); 3779 break; 3780 default: 3781 if (xhci_is_vendor_info_code(xhci, ret)) 3782 break; 3783 xhci_warn(xhci, "Unknown completion code %u for " 3784 "reset device command.\n", ret); 3785 ret = -EINVAL; 3786 goto command_cleanup; 3787 } 3788 3789 /* Free up host controller endpoint resources */ 3790 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3791 spin_lock_irqsave(&xhci->lock, flags); 3792 /* Don't delete the default control endpoint resources */ 3793 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3794 spin_unlock_irqrestore(&xhci->lock, flags); 3795 } 3796 3797 /* Everything but endpoint 0 is disabled, so free the rings. */ 3798 for (i = 1; i < 31; i++) { 3799 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3800 3801 if (ep->ep_state & EP_HAS_STREAMS) { 3802 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3803 xhci_get_endpoint_address(i)); 3804 xhci_free_stream_info(xhci, ep->stream_info); 3805 ep->stream_info = NULL; 3806 ep->ep_state &= ~EP_HAS_STREAMS; 3807 } 3808 3809 if (ep->ring) { 3810 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3811 xhci_free_endpoint_ring(xhci, virt_dev, i); 3812 } 3813 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3814 xhci_drop_ep_from_interval_table(xhci, 3815 &virt_dev->eps[i].bw_info, 3816 virt_dev->bw_table, 3817 udev, 3818 &virt_dev->eps[i], 3819 virt_dev->tt_info); 3820 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3821 } 3822 /* If necessary, update the number of active TTs on this root port */ 3823 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3824 virt_dev->flags = 0; 3825 ret = 0; 3826 3827 command_cleanup: 3828 xhci_free_command(xhci, reset_device_cmd); 3829 return ret; 3830 } 3831 3832 /* 3833 * At this point, the struct usb_device is about to go away, the device has 3834 * disconnected, and all traffic has been stopped and the endpoints have been 3835 * disabled. Free any HC data structures associated with that device. 3836 */ 3837 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3838 { 3839 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3840 struct xhci_virt_device *virt_dev; 3841 struct xhci_slot_ctx *slot_ctx; 3842 unsigned long flags; 3843 int i, ret; 3844 3845 /* 3846 * We called pm_runtime_get_noresume when the device was attached. 3847 * Decrement the counter here to allow controller to runtime suspend 3848 * if no devices remain. 3849 */ 3850 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3851 pm_runtime_put_noidle(hcd->self.controller); 3852 3853 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3854 /* If the host is halted due to driver unload, we still need to free the 3855 * device. 3856 */ 3857 if (ret <= 0 && ret != -ENODEV) 3858 return; 3859 3860 virt_dev = xhci->devs[udev->slot_id]; 3861 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3862 trace_xhci_free_dev(slot_ctx); 3863 3864 /* Stop any wayward timer functions (which may grab the lock) */ 3865 for (i = 0; i < 31; i++) 3866 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3867 virt_dev->udev = NULL; 3868 xhci_disable_slot(xhci, udev->slot_id); 3869 3870 spin_lock_irqsave(&xhci->lock, flags); 3871 xhci_free_virt_device(xhci, udev->slot_id); 3872 spin_unlock_irqrestore(&xhci->lock, flags); 3873 3874 } 3875 3876 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3877 { 3878 struct xhci_command *command; 3879 unsigned long flags; 3880 u32 state; 3881 int ret; 3882 3883 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3884 if (!command) 3885 return -ENOMEM; 3886 3887 xhci_debugfs_remove_slot(xhci, slot_id); 3888 3889 spin_lock_irqsave(&xhci->lock, flags); 3890 /* Don't disable the slot if the host controller is dead. */ 3891 state = readl(&xhci->op_regs->status); 3892 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3893 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3894 spin_unlock_irqrestore(&xhci->lock, flags); 3895 kfree(command); 3896 return -ENODEV; 3897 } 3898 3899 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3900 slot_id); 3901 if (ret) { 3902 spin_unlock_irqrestore(&xhci->lock, flags); 3903 kfree(command); 3904 return ret; 3905 } 3906 xhci_ring_cmd_db(xhci); 3907 spin_unlock_irqrestore(&xhci->lock, flags); 3908 3909 wait_for_completion(command->completion); 3910 3911 if (command->status != COMP_SUCCESS) 3912 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 3913 slot_id, command->status); 3914 3915 xhci_free_command(xhci, command); 3916 3917 return 0; 3918 } 3919 3920 /* 3921 * Checks if we have enough host controller resources for the default control 3922 * endpoint. 3923 * 3924 * Must be called with xhci->lock held. 3925 */ 3926 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3927 { 3928 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3929 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3930 "Not enough ep ctxs: " 3931 "%u active, need to add 1, limit is %u.", 3932 xhci->num_active_eps, xhci->limit_active_eps); 3933 return -ENOMEM; 3934 } 3935 xhci->num_active_eps += 1; 3936 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3937 "Adding 1 ep ctx, %u now active.", 3938 xhci->num_active_eps); 3939 return 0; 3940 } 3941 3942 3943 /* 3944 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3945 * timed out, or allocating memory failed. Returns 1 on success. 3946 */ 3947 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3948 { 3949 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3950 struct xhci_virt_device *vdev; 3951 struct xhci_slot_ctx *slot_ctx; 3952 unsigned long flags; 3953 int ret, slot_id; 3954 struct xhci_command *command; 3955 3956 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3957 if (!command) 3958 return 0; 3959 3960 spin_lock_irqsave(&xhci->lock, flags); 3961 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3962 if (ret) { 3963 spin_unlock_irqrestore(&xhci->lock, flags); 3964 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3965 xhci_free_command(xhci, command); 3966 return 0; 3967 } 3968 xhci_ring_cmd_db(xhci); 3969 spin_unlock_irqrestore(&xhci->lock, flags); 3970 3971 wait_for_completion(command->completion); 3972 slot_id = command->slot_id; 3973 3974 if (!slot_id || command->status != COMP_SUCCESS) { 3975 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 3976 xhci_trb_comp_code_string(command->status)); 3977 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3978 HCS_MAX_SLOTS( 3979 readl(&xhci->cap_regs->hcs_params1))); 3980 xhci_free_command(xhci, command); 3981 return 0; 3982 } 3983 3984 xhci_free_command(xhci, command); 3985 3986 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3987 spin_lock_irqsave(&xhci->lock, flags); 3988 ret = xhci_reserve_host_control_ep_resources(xhci); 3989 if (ret) { 3990 spin_unlock_irqrestore(&xhci->lock, flags); 3991 xhci_warn(xhci, "Not enough host resources, " 3992 "active endpoint contexts = %u\n", 3993 xhci->num_active_eps); 3994 goto disable_slot; 3995 } 3996 spin_unlock_irqrestore(&xhci->lock, flags); 3997 } 3998 /* Use GFP_NOIO, since this function can be called from 3999 * xhci_discover_or_reset_device(), which may be called as part of 4000 * mass storage driver error handling. 4001 */ 4002 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4003 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4004 goto disable_slot; 4005 } 4006 vdev = xhci->devs[slot_id]; 4007 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4008 trace_xhci_alloc_dev(slot_ctx); 4009 4010 udev->slot_id = slot_id; 4011 4012 xhci_debugfs_create_slot(xhci, slot_id); 4013 4014 /* 4015 * If resetting upon resume, we can't put the controller into runtime 4016 * suspend if there is a device attached. 4017 */ 4018 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4019 pm_runtime_get_noresume(hcd->self.controller); 4020 4021 /* Is this a LS or FS device under a HS hub? */ 4022 /* Hub or peripherial? */ 4023 return 1; 4024 4025 disable_slot: 4026 xhci_disable_slot(xhci, udev->slot_id); 4027 xhci_free_virt_device(xhci, udev->slot_id); 4028 4029 return 0; 4030 } 4031 4032 /* 4033 * Issue an Address Device command and optionally send a corresponding 4034 * SetAddress request to the device. 4035 */ 4036 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4037 enum xhci_setup_dev setup) 4038 { 4039 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4040 unsigned long flags; 4041 struct xhci_virt_device *virt_dev; 4042 int ret = 0; 4043 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4044 struct xhci_slot_ctx *slot_ctx; 4045 struct xhci_input_control_ctx *ctrl_ctx; 4046 u64 temp_64; 4047 struct xhci_command *command = NULL; 4048 4049 mutex_lock(&xhci->mutex); 4050 4051 if (xhci->xhc_state) { /* dying, removing or halted */ 4052 ret = -ESHUTDOWN; 4053 goto out; 4054 } 4055 4056 if (!udev->slot_id) { 4057 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4058 "Bad Slot ID %d", udev->slot_id); 4059 ret = -EINVAL; 4060 goto out; 4061 } 4062 4063 virt_dev = xhci->devs[udev->slot_id]; 4064 4065 if (WARN_ON(!virt_dev)) { 4066 /* 4067 * In plug/unplug torture test with an NEC controller, 4068 * a zero-dereference was observed once due to virt_dev = 0. 4069 * Print useful debug rather than crash if it is observed again! 4070 */ 4071 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4072 udev->slot_id); 4073 ret = -EINVAL; 4074 goto out; 4075 } 4076 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4077 trace_xhci_setup_device_slot(slot_ctx); 4078 4079 if (setup == SETUP_CONTEXT_ONLY) { 4080 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4081 SLOT_STATE_DEFAULT) { 4082 xhci_dbg(xhci, "Slot already in default state\n"); 4083 goto out; 4084 } 4085 } 4086 4087 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4088 if (!command) { 4089 ret = -ENOMEM; 4090 goto out; 4091 } 4092 4093 command->in_ctx = virt_dev->in_ctx; 4094 4095 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4096 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4097 if (!ctrl_ctx) { 4098 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4099 __func__); 4100 ret = -EINVAL; 4101 goto out; 4102 } 4103 /* 4104 * If this is the first Set Address since device plug-in or 4105 * virt_device realloaction after a resume with an xHCI power loss, 4106 * then set up the slot context. 4107 */ 4108 if (!slot_ctx->dev_info) 4109 xhci_setup_addressable_virt_dev(xhci, udev); 4110 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4111 else 4112 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4113 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4114 ctrl_ctx->drop_flags = 0; 4115 4116 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4117 le32_to_cpu(slot_ctx->dev_info) >> 27); 4118 4119 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4120 spin_lock_irqsave(&xhci->lock, flags); 4121 trace_xhci_setup_device(virt_dev); 4122 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4123 udev->slot_id, setup); 4124 if (ret) { 4125 spin_unlock_irqrestore(&xhci->lock, flags); 4126 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4127 "FIXME: allocate a command ring segment"); 4128 goto out; 4129 } 4130 xhci_ring_cmd_db(xhci); 4131 spin_unlock_irqrestore(&xhci->lock, flags); 4132 4133 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4134 wait_for_completion(command->completion); 4135 4136 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4137 * the SetAddress() "recovery interval" required by USB and aborting the 4138 * command on a timeout. 4139 */ 4140 switch (command->status) { 4141 case COMP_COMMAND_ABORTED: 4142 case COMP_COMMAND_RING_STOPPED: 4143 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4144 ret = -ETIME; 4145 break; 4146 case COMP_CONTEXT_STATE_ERROR: 4147 case COMP_SLOT_NOT_ENABLED_ERROR: 4148 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4149 act, udev->slot_id); 4150 ret = -EINVAL; 4151 break; 4152 case COMP_USB_TRANSACTION_ERROR: 4153 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4154 4155 mutex_unlock(&xhci->mutex); 4156 ret = xhci_disable_slot(xhci, udev->slot_id); 4157 xhci_free_virt_device(xhci, udev->slot_id); 4158 if (!ret) 4159 xhci_alloc_dev(hcd, udev); 4160 kfree(command->completion); 4161 kfree(command); 4162 return -EPROTO; 4163 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4164 dev_warn(&udev->dev, 4165 "ERROR: Incompatible device for setup %s command\n", act); 4166 ret = -ENODEV; 4167 break; 4168 case COMP_SUCCESS: 4169 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4170 "Successful setup %s command", act); 4171 break; 4172 default: 4173 xhci_err(xhci, 4174 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4175 act, command->status); 4176 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4177 ret = -EINVAL; 4178 break; 4179 } 4180 if (ret) 4181 goto out; 4182 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4183 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4184 "Op regs DCBAA ptr = %#016llx", temp_64); 4185 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4186 "Slot ID %d dcbaa entry @%p = %#016llx", 4187 udev->slot_id, 4188 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4189 (unsigned long long) 4190 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4191 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4192 "Output Context DMA address = %#08llx", 4193 (unsigned long long)virt_dev->out_ctx->dma); 4194 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4195 le32_to_cpu(slot_ctx->dev_info) >> 27); 4196 /* 4197 * USB core uses address 1 for the roothubs, so we add one to the 4198 * address given back to us by the HC. 4199 */ 4200 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4201 le32_to_cpu(slot_ctx->dev_info) >> 27); 4202 /* Zero the input context control for later use */ 4203 ctrl_ctx->add_flags = 0; 4204 ctrl_ctx->drop_flags = 0; 4205 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4206 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4207 4208 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4209 "Internal device address = %d", 4210 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4211 out: 4212 mutex_unlock(&xhci->mutex); 4213 if (command) { 4214 kfree(command->completion); 4215 kfree(command); 4216 } 4217 return ret; 4218 } 4219 4220 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4221 { 4222 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4223 } 4224 4225 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4226 { 4227 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4228 } 4229 4230 /* 4231 * Transfer the port index into real index in the HW port status 4232 * registers. Caculate offset between the port's PORTSC register 4233 * and port status base. Divide the number of per port register 4234 * to get the real index. The raw port number bases 1. 4235 */ 4236 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4237 { 4238 struct xhci_hub *rhub; 4239 4240 rhub = xhci_get_rhub(hcd); 4241 return rhub->ports[port1 - 1]->hw_portnum + 1; 4242 } 4243 4244 /* 4245 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4246 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4247 */ 4248 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4249 struct usb_device *udev, u16 max_exit_latency) 4250 { 4251 struct xhci_virt_device *virt_dev; 4252 struct xhci_command *command; 4253 struct xhci_input_control_ctx *ctrl_ctx; 4254 struct xhci_slot_ctx *slot_ctx; 4255 unsigned long flags; 4256 int ret; 4257 4258 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4259 if (!command) 4260 return -ENOMEM; 4261 4262 spin_lock_irqsave(&xhci->lock, flags); 4263 4264 virt_dev = xhci->devs[udev->slot_id]; 4265 4266 /* 4267 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4268 * xHC was re-initialized. Exit latency will be set later after 4269 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4270 */ 4271 4272 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4273 spin_unlock_irqrestore(&xhci->lock, flags); 4274 xhci_free_command(xhci, command); 4275 return 0; 4276 } 4277 4278 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4279 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4280 if (!ctrl_ctx) { 4281 spin_unlock_irqrestore(&xhci->lock, flags); 4282 xhci_free_command(xhci, command); 4283 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4284 __func__); 4285 return -ENOMEM; 4286 } 4287 4288 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4289 spin_unlock_irqrestore(&xhci->lock, flags); 4290 4291 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4292 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4293 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4294 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4295 slot_ctx->dev_state = 0; 4296 4297 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4298 "Set up evaluate context for LPM MEL change."); 4299 4300 /* Issue and wait for the evaluate context command. */ 4301 ret = xhci_configure_endpoint(xhci, udev, command, 4302 true, true); 4303 4304 if (!ret) { 4305 spin_lock_irqsave(&xhci->lock, flags); 4306 virt_dev->current_mel = max_exit_latency; 4307 spin_unlock_irqrestore(&xhci->lock, flags); 4308 } 4309 4310 xhci_free_command(xhci, command); 4311 4312 return ret; 4313 } 4314 4315 #ifdef CONFIG_PM 4316 4317 /* BESL to HIRD Encoding array for USB2 LPM */ 4318 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4319 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4320 4321 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4322 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4323 struct usb_device *udev) 4324 { 4325 int u2del, besl, besl_host; 4326 int besl_device = 0; 4327 u32 field; 4328 4329 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4330 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4331 4332 if (field & USB_BESL_SUPPORT) { 4333 for (besl_host = 0; besl_host < 16; besl_host++) { 4334 if (xhci_besl_encoding[besl_host] >= u2del) 4335 break; 4336 } 4337 /* Use baseline BESL value as default */ 4338 if (field & USB_BESL_BASELINE_VALID) 4339 besl_device = USB_GET_BESL_BASELINE(field); 4340 else if (field & USB_BESL_DEEP_VALID) 4341 besl_device = USB_GET_BESL_DEEP(field); 4342 } else { 4343 if (u2del <= 50) 4344 besl_host = 0; 4345 else 4346 besl_host = (u2del - 51) / 75 + 1; 4347 } 4348 4349 besl = besl_host + besl_device; 4350 if (besl > 15) 4351 besl = 15; 4352 4353 return besl; 4354 } 4355 4356 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4357 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4358 { 4359 u32 field; 4360 int l1; 4361 int besld = 0; 4362 int hirdm = 0; 4363 4364 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4365 4366 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4367 l1 = udev->l1_params.timeout / 256; 4368 4369 /* device has preferred BESLD */ 4370 if (field & USB_BESL_DEEP_VALID) { 4371 besld = USB_GET_BESL_DEEP(field); 4372 hirdm = 1; 4373 } 4374 4375 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4376 } 4377 4378 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4379 struct usb_device *udev, int enable) 4380 { 4381 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4382 struct xhci_port **ports; 4383 __le32 __iomem *pm_addr, *hlpm_addr; 4384 u32 pm_val, hlpm_val, field; 4385 unsigned int port_num; 4386 unsigned long flags; 4387 int hird, exit_latency; 4388 int ret; 4389 4390 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4391 return -EPERM; 4392 4393 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4394 !udev->lpm_capable) 4395 return -EPERM; 4396 4397 if (!udev->parent || udev->parent->parent || 4398 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4399 return -EPERM; 4400 4401 if (udev->usb2_hw_lpm_capable != 1) 4402 return -EPERM; 4403 4404 spin_lock_irqsave(&xhci->lock, flags); 4405 4406 ports = xhci->usb2_rhub.ports; 4407 port_num = udev->portnum - 1; 4408 pm_addr = ports[port_num]->addr + PORTPMSC; 4409 pm_val = readl(pm_addr); 4410 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4411 4412 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4413 enable ? "enable" : "disable", port_num + 1); 4414 4415 if (enable) { 4416 /* Host supports BESL timeout instead of HIRD */ 4417 if (udev->usb2_hw_lpm_besl_capable) { 4418 /* if device doesn't have a preferred BESL value use a 4419 * default one which works with mixed HIRD and BESL 4420 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4421 */ 4422 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4423 if ((field & USB_BESL_SUPPORT) && 4424 (field & USB_BESL_BASELINE_VALID)) 4425 hird = USB_GET_BESL_BASELINE(field); 4426 else 4427 hird = udev->l1_params.besl; 4428 4429 exit_latency = xhci_besl_encoding[hird]; 4430 spin_unlock_irqrestore(&xhci->lock, flags); 4431 4432 ret = xhci_change_max_exit_latency(xhci, udev, 4433 exit_latency); 4434 if (ret < 0) 4435 return ret; 4436 spin_lock_irqsave(&xhci->lock, flags); 4437 4438 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4439 writel(hlpm_val, hlpm_addr); 4440 /* flush write */ 4441 readl(hlpm_addr); 4442 } else { 4443 hird = xhci_calculate_hird_besl(xhci, udev); 4444 } 4445 4446 pm_val &= ~PORT_HIRD_MASK; 4447 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4448 writel(pm_val, pm_addr); 4449 pm_val = readl(pm_addr); 4450 pm_val |= PORT_HLE; 4451 writel(pm_val, pm_addr); 4452 /* flush write */ 4453 readl(pm_addr); 4454 } else { 4455 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4456 writel(pm_val, pm_addr); 4457 /* flush write */ 4458 readl(pm_addr); 4459 if (udev->usb2_hw_lpm_besl_capable) { 4460 spin_unlock_irqrestore(&xhci->lock, flags); 4461 xhci_change_max_exit_latency(xhci, udev, 0); 4462 readl_poll_timeout(ports[port_num]->addr, pm_val, 4463 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4464 100, 10000); 4465 return 0; 4466 } 4467 } 4468 4469 spin_unlock_irqrestore(&xhci->lock, flags); 4470 return 0; 4471 } 4472 4473 /* check if a usb2 port supports a given extened capability protocol 4474 * only USB2 ports extended protocol capability values are cached. 4475 * Return 1 if capability is supported 4476 */ 4477 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4478 unsigned capability) 4479 { 4480 u32 port_offset, port_count; 4481 int i; 4482 4483 for (i = 0; i < xhci->num_ext_caps; i++) { 4484 if (xhci->ext_caps[i] & capability) { 4485 /* port offsets starts at 1 */ 4486 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4487 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4488 if (port >= port_offset && 4489 port < port_offset + port_count) 4490 return 1; 4491 } 4492 } 4493 return 0; 4494 } 4495 4496 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4497 { 4498 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4499 int portnum = udev->portnum - 1; 4500 4501 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4502 return 0; 4503 4504 /* we only support lpm for non-hub device connected to root hub yet */ 4505 if (!udev->parent || udev->parent->parent || 4506 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4507 return 0; 4508 4509 if (xhci->hw_lpm_support == 1 && 4510 xhci_check_usb2_port_capability( 4511 xhci, portnum, XHCI_HLC)) { 4512 udev->usb2_hw_lpm_capable = 1; 4513 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4514 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4515 if (xhci_check_usb2_port_capability(xhci, portnum, 4516 XHCI_BLC)) 4517 udev->usb2_hw_lpm_besl_capable = 1; 4518 } 4519 4520 return 0; 4521 } 4522 4523 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4524 4525 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4526 static unsigned long long xhci_service_interval_to_ns( 4527 struct usb_endpoint_descriptor *desc) 4528 { 4529 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4530 } 4531 4532 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4533 enum usb3_link_state state) 4534 { 4535 unsigned long long sel; 4536 unsigned long long pel; 4537 unsigned int max_sel_pel; 4538 char *state_name; 4539 4540 switch (state) { 4541 case USB3_LPM_U1: 4542 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4543 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4544 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4545 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4546 state_name = "U1"; 4547 break; 4548 case USB3_LPM_U2: 4549 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4550 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4551 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4552 state_name = "U2"; 4553 break; 4554 default: 4555 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4556 __func__); 4557 return USB3_LPM_DISABLED; 4558 } 4559 4560 if (sel <= max_sel_pel && pel <= max_sel_pel) 4561 return USB3_LPM_DEVICE_INITIATED; 4562 4563 if (sel > max_sel_pel) 4564 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4565 "due to long SEL %llu ms\n", 4566 state_name, sel); 4567 else 4568 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4569 "due to long PEL %llu ms\n", 4570 state_name, pel); 4571 return USB3_LPM_DISABLED; 4572 } 4573 4574 /* The U1 timeout should be the maximum of the following values: 4575 * - For control endpoints, U1 system exit latency (SEL) * 3 4576 * - For bulk endpoints, U1 SEL * 5 4577 * - For interrupt endpoints: 4578 * - Notification EPs, U1 SEL * 3 4579 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4580 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4581 */ 4582 static unsigned long long xhci_calculate_intel_u1_timeout( 4583 struct usb_device *udev, 4584 struct usb_endpoint_descriptor *desc) 4585 { 4586 unsigned long long timeout_ns; 4587 int ep_type; 4588 int intr_type; 4589 4590 ep_type = usb_endpoint_type(desc); 4591 switch (ep_type) { 4592 case USB_ENDPOINT_XFER_CONTROL: 4593 timeout_ns = udev->u1_params.sel * 3; 4594 break; 4595 case USB_ENDPOINT_XFER_BULK: 4596 timeout_ns = udev->u1_params.sel * 5; 4597 break; 4598 case USB_ENDPOINT_XFER_INT: 4599 intr_type = usb_endpoint_interrupt_type(desc); 4600 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4601 timeout_ns = udev->u1_params.sel * 3; 4602 break; 4603 } 4604 /* Otherwise the calculation is the same as isoc eps */ 4605 fallthrough; 4606 case USB_ENDPOINT_XFER_ISOC: 4607 timeout_ns = xhci_service_interval_to_ns(desc); 4608 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4609 if (timeout_ns < udev->u1_params.sel * 2) 4610 timeout_ns = udev->u1_params.sel * 2; 4611 break; 4612 default: 4613 return 0; 4614 } 4615 4616 return timeout_ns; 4617 } 4618 4619 /* Returns the hub-encoded U1 timeout value. */ 4620 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4621 struct usb_device *udev, 4622 struct usb_endpoint_descriptor *desc) 4623 { 4624 unsigned long long timeout_ns; 4625 4626 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4627 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4628 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4629 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4630 return USB3_LPM_DISABLED; 4631 } 4632 } 4633 4634 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4635 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4636 else 4637 timeout_ns = udev->u1_params.sel; 4638 4639 /* The U1 timeout is encoded in 1us intervals. 4640 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4641 */ 4642 if (timeout_ns == USB3_LPM_DISABLED) 4643 timeout_ns = 1; 4644 else 4645 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4646 4647 /* If the necessary timeout value is bigger than what we can set in the 4648 * USB 3.0 hub, we have to disable hub-initiated U1. 4649 */ 4650 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4651 return timeout_ns; 4652 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4653 "due to long timeout %llu ms\n", timeout_ns); 4654 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4655 } 4656 4657 /* The U2 timeout should be the maximum of: 4658 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4659 * - largest bInterval of any active periodic endpoint (to avoid going 4660 * into lower power link states between intervals). 4661 * - the U2 Exit Latency of the device 4662 */ 4663 static unsigned long long xhci_calculate_intel_u2_timeout( 4664 struct usb_device *udev, 4665 struct usb_endpoint_descriptor *desc) 4666 { 4667 unsigned long long timeout_ns; 4668 unsigned long long u2_del_ns; 4669 4670 timeout_ns = 10 * 1000 * 1000; 4671 4672 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4673 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4674 timeout_ns = xhci_service_interval_to_ns(desc); 4675 4676 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4677 if (u2_del_ns > timeout_ns) 4678 timeout_ns = u2_del_ns; 4679 4680 return timeout_ns; 4681 } 4682 4683 /* Returns the hub-encoded U2 timeout value. */ 4684 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4685 struct usb_device *udev, 4686 struct usb_endpoint_descriptor *desc) 4687 { 4688 unsigned long long timeout_ns; 4689 4690 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4691 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4692 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4693 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4694 return USB3_LPM_DISABLED; 4695 } 4696 } 4697 4698 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4699 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4700 else 4701 timeout_ns = udev->u2_params.sel; 4702 4703 /* The U2 timeout is encoded in 256us intervals */ 4704 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4705 /* If the necessary timeout value is bigger than what we can set in the 4706 * USB 3.0 hub, we have to disable hub-initiated U2. 4707 */ 4708 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4709 return timeout_ns; 4710 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4711 "due to long timeout %llu ms\n", timeout_ns); 4712 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4713 } 4714 4715 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4716 struct usb_device *udev, 4717 struct usb_endpoint_descriptor *desc, 4718 enum usb3_link_state state, 4719 u16 *timeout) 4720 { 4721 if (state == USB3_LPM_U1) 4722 return xhci_calculate_u1_timeout(xhci, udev, desc); 4723 else if (state == USB3_LPM_U2) 4724 return xhci_calculate_u2_timeout(xhci, udev, desc); 4725 4726 return USB3_LPM_DISABLED; 4727 } 4728 4729 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4730 struct usb_device *udev, 4731 struct usb_endpoint_descriptor *desc, 4732 enum usb3_link_state state, 4733 u16 *timeout) 4734 { 4735 u16 alt_timeout; 4736 4737 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4738 desc, state, timeout); 4739 4740 /* If we found we can't enable hub-initiated LPM, and 4741 * the U1 or U2 exit latency was too high to allow 4742 * device-initiated LPM as well, then we will disable LPM 4743 * for this device, so stop searching any further. 4744 */ 4745 if (alt_timeout == USB3_LPM_DISABLED) { 4746 *timeout = alt_timeout; 4747 return -E2BIG; 4748 } 4749 if (alt_timeout > *timeout) 4750 *timeout = alt_timeout; 4751 return 0; 4752 } 4753 4754 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4755 struct usb_device *udev, 4756 struct usb_host_interface *alt, 4757 enum usb3_link_state state, 4758 u16 *timeout) 4759 { 4760 int j; 4761 4762 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4763 if (xhci_update_timeout_for_endpoint(xhci, udev, 4764 &alt->endpoint[j].desc, state, timeout)) 4765 return -E2BIG; 4766 } 4767 return 0; 4768 } 4769 4770 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4771 struct usb_device *udev, 4772 enum usb3_link_state state) 4773 { 4774 struct usb_device *parent = udev->parent; 4775 int tier = 1; /* roothub is tier1 */ 4776 4777 while (parent) { 4778 parent = parent->parent; 4779 tier++; 4780 } 4781 4782 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3) 4783 goto fail; 4784 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2) 4785 goto fail; 4786 4787 return 0; 4788 fail: 4789 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n", 4790 tier); 4791 return -E2BIG; 4792 } 4793 4794 /* Returns the U1 or U2 timeout that should be enabled. 4795 * If the tier check or timeout setting functions return with a non-zero exit 4796 * code, that means the timeout value has been finalized and we shouldn't look 4797 * at any more endpoints. 4798 */ 4799 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4800 struct usb_device *udev, enum usb3_link_state state) 4801 { 4802 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4803 struct usb_host_config *config; 4804 char *state_name; 4805 int i; 4806 u16 timeout = USB3_LPM_DISABLED; 4807 4808 if (state == USB3_LPM_U1) 4809 state_name = "U1"; 4810 else if (state == USB3_LPM_U2) 4811 state_name = "U2"; 4812 else { 4813 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4814 state); 4815 return timeout; 4816 } 4817 4818 /* Gather some information about the currently installed configuration 4819 * and alternate interface settings. 4820 */ 4821 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4822 state, &timeout)) 4823 return timeout; 4824 4825 config = udev->actconfig; 4826 if (!config) 4827 return timeout; 4828 4829 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4830 struct usb_driver *driver; 4831 struct usb_interface *intf = config->interface[i]; 4832 4833 if (!intf) 4834 continue; 4835 4836 /* Check if any currently bound drivers want hub-initiated LPM 4837 * disabled. 4838 */ 4839 if (intf->dev.driver) { 4840 driver = to_usb_driver(intf->dev.driver); 4841 if (driver && driver->disable_hub_initiated_lpm) { 4842 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4843 state_name, driver->name); 4844 timeout = xhci_get_timeout_no_hub_lpm(udev, 4845 state); 4846 if (timeout == USB3_LPM_DISABLED) 4847 return timeout; 4848 } 4849 } 4850 4851 /* Not sure how this could happen... */ 4852 if (!intf->cur_altsetting) 4853 continue; 4854 4855 if (xhci_update_timeout_for_interface(xhci, udev, 4856 intf->cur_altsetting, 4857 state, &timeout)) 4858 return timeout; 4859 } 4860 return timeout; 4861 } 4862 4863 static int calculate_max_exit_latency(struct usb_device *udev, 4864 enum usb3_link_state state_changed, 4865 u16 hub_encoded_timeout) 4866 { 4867 unsigned long long u1_mel_us = 0; 4868 unsigned long long u2_mel_us = 0; 4869 unsigned long long mel_us = 0; 4870 bool disabling_u1; 4871 bool disabling_u2; 4872 bool enabling_u1; 4873 bool enabling_u2; 4874 4875 disabling_u1 = (state_changed == USB3_LPM_U1 && 4876 hub_encoded_timeout == USB3_LPM_DISABLED); 4877 disabling_u2 = (state_changed == USB3_LPM_U2 && 4878 hub_encoded_timeout == USB3_LPM_DISABLED); 4879 4880 enabling_u1 = (state_changed == USB3_LPM_U1 && 4881 hub_encoded_timeout != USB3_LPM_DISABLED); 4882 enabling_u2 = (state_changed == USB3_LPM_U2 && 4883 hub_encoded_timeout != USB3_LPM_DISABLED); 4884 4885 /* If U1 was already enabled and we're not disabling it, 4886 * or we're going to enable U1, account for the U1 max exit latency. 4887 */ 4888 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4889 enabling_u1) 4890 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4891 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4892 enabling_u2) 4893 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4894 4895 mel_us = max(u1_mel_us, u2_mel_us); 4896 4897 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4898 if (mel_us > MAX_EXIT) { 4899 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4900 "is too big.\n", mel_us); 4901 return -E2BIG; 4902 } 4903 return mel_us; 4904 } 4905 4906 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4907 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4908 struct usb_device *udev, enum usb3_link_state state) 4909 { 4910 struct xhci_hcd *xhci; 4911 struct xhci_port *port; 4912 u16 hub_encoded_timeout; 4913 int mel; 4914 int ret; 4915 4916 xhci = hcd_to_xhci(hcd); 4917 /* The LPM timeout values are pretty host-controller specific, so don't 4918 * enable hub-initiated timeouts unless the vendor has provided 4919 * information about their timeout algorithm. 4920 */ 4921 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4922 !xhci->devs[udev->slot_id]) 4923 return USB3_LPM_DISABLED; 4924 4925 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4926 return USB3_LPM_DISABLED; 4927 4928 /* If connected to root port then check port can handle lpm */ 4929 if (udev->parent && !udev->parent->parent) { 4930 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 4931 if (port->lpm_incapable) 4932 return USB3_LPM_DISABLED; 4933 } 4934 4935 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4936 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4937 if (mel < 0) { 4938 /* Max Exit Latency is too big, disable LPM. */ 4939 hub_encoded_timeout = USB3_LPM_DISABLED; 4940 mel = 0; 4941 } 4942 4943 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4944 if (ret) 4945 return ret; 4946 return hub_encoded_timeout; 4947 } 4948 4949 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4950 struct usb_device *udev, enum usb3_link_state state) 4951 { 4952 struct xhci_hcd *xhci; 4953 u16 mel; 4954 4955 xhci = hcd_to_xhci(hcd); 4956 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4957 !xhci->devs[udev->slot_id]) 4958 return 0; 4959 4960 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4961 return xhci_change_max_exit_latency(xhci, udev, mel); 4962 } 4963 #else /* CONFIG_PM */ 4964 4965 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4966 struct usb_device *udev, int enable) 4967 { 4968 return 0; 4969 } 4970 4971 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4972 { 4973 return 0; 4974 } 4975 4976 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4977 struct usb_device *udev, enum usb3_link_state state) 4978 { 4979 return USB3_LPM_DISABLED; 4980 } 4981 4982 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4983 struct usb_device *udev, enum usb3_link_state state) 4984 { 4985 return 0; 4986 } 4987 #endif /* CONFIG_PM */ 4988 4989 /*-------------------------------------------------------------------------*/ 4990 4991 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4992 * internal data structures for the device. 4993 */ 4994 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4995 struct usb_tt *tt, gfp_t mem_flags) 4996 { 4997 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4998 struct xhci_virt_device *vdev; 4999 struct xhci_command *config_cmd; 5000 struct xhci_input_control_ctx *ctrl_ctx; 5001 struct xhci_slot_ctx *slot_ctx; 5002 unsigned long flags; 5003 unsigned think_time; 5004 int ret; 5005 5006 /* Ignore root hubs */ 5007 if (!hdev->parent) 5008 return 0; 5009 5010 vdev = xhci->devs[hdev->slot_id]; 5011 if (!vdev) { 5012 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5013 return -EINVAL; 5014 } 5015 5016 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5017 if (!config_cmd) 5018 return -ENOMEM; 5019 5020 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5021 if (!ctrl_ctx) { 5022 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5023 __func__); 5024 xhci_free_command(xhci, config_cmd); 5025 return -ENOMEM; 5026 } 5027 5028 spin_lock_irqsave(&xhci->lock, flags); 5029 if (hdev->speed == USB_SPEED_HIGH && 5030 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5031 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5032 xhci_free_command(xhci, config_cmd); 5033 spin_unlock_irqrestore(&xhci->lock, flags); 5034 return -ENOMEM; 5035 } 5036 5037 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5038 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5039 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5040 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5041 /* 5042 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5043 * but it may be already set to 1 when setup an xHCI virtual 5044 * device, so clear it anyway. 5045 */ 5046 if (tt->multi) 5047 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5048 else if (hdev->speed == USB_SPEED_FULL) 5049 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5050 5051 if (xhci->hci_version > 0x95) { 5052 xhci_dbg(xhci, "xHCI version %x needs hub " 5053 "TT think time and number of ports\n", 5054 (unsigned int) xhci->hci_version); 5055 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5056 /* Set TT think time - convert from ns to FS bit times. 5057 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5058 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5059 * 5060 * xHCI 1.0: this field shall be 0 if the device is not a 5061 * High-spped hub. 5062 */ 5063 think_time = tt->think_time; 5064 if (think_time != 0) 5065 think_time = (think_time / 666) - 1; 5066 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5067 slot_ctx->tt_info |= 5068 cpu_to_le32(TT_THINK_TIME(think_time)); 5069 } else { 5070 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5071 "TT think time or number of ports\n", 5072 (unsigned int) xhci->hci_version); 5073 } 5074 slot_ctx->dev_state = 0; 5075 spin_unlock_irqrestore(&xhci->lock, flags); 5076 5077 xhci_dbg(xhci, "Set up %s for hub device.\n", 5078 (xhci->hci_version > 0x95) ? 5079 "configure endpoint" : "evaluate context"); 5080 5081 /* Issue and wait for the configure endpoint or 5082 * evaluate context command. 5083 */ 5084 if (xhci->hci_version > 0x95) 5085 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5086 false, false); 5087 else 5088 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5089 true, false); 5090 5091 xhci_free_command(xhci, config_cmd); 5092 return ret; 5093 } 5094 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5095 5096 static int xhci_get_frame(struct usb_hcd *hcd) 5097 { 5098 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5099 /* EHCI mods by the periodic size. Why? */ 5100 return readl(&xhci->run_regs->microframe_index) >> 3; 5101 } 5102 5103 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5104 { 5105 xhci->usb2_rhub.hcd = hcd; 5106 hcd->speed = HCD_USB2; 5107 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5108 /* 5109 * USB 2.0 roothub under xHCI has an integrated TT, 5110 * (rate matching hub) as opposed to having an OHCI/UHCI 5111 * companion controller. 5112 */ 5113 hcd->has_tt = 1; 5114 } 5115 5116 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5117 { 5118 unsigned int minor_rev; 5119 5120 /* 5121 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5122 * should return 0x31 for sbrn, or that the minor revision 5123 * is a two digit BCD containig minor and sub-minor numbers. 5124 * This was later clarified in xHCI 1.2. 5125 * 5126 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5127 * minor revision set to 0x1 instead of 0x10. 5128 */ 5129 if (xhci->usb3_rhub.min_rev == 0x1) 5130 minor_rev = 1; 5131 else 5132 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5133 5134 switch (minor_rev) { 5135 case 2: 5136 hcd->speed = HCD_USB32; 5137 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5138 hcd->self.root_hub->rx_lanes = 2; 5139 hcd->self.root_hub->tx_lanes = 2; 5140 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5141 break; 5142 case 1: 5143 hcd->speed = HCD_USB31; 5144 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5145 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5146 break; 5147 } 5148 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5149 minor_rev, minor_rev ? "Enhanced " : ""); 5150 5151 xhci->usb3_rhub.hcd = hcd; 5152 } 5153 5154 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5155 { 5156 struct xhci_hcd *xhci; 5157 /* 5158 * TODO: Check with DWC3 clients for sysdev according to 5159 * quirks 5160 */ 5161 struct device *dev = hcd->self.sysdev; 5162 int retval; 5163 5164 /* Accept arbitrarily long scatter-gather lists */ 5165 hcd->self.sg_tablesize = ~0; 5166 5167 /* support to build packet from discontinuous buffers */ 5168 hcd->self.no_sg_constraint = 1; 5169 5170 /* XHCI controllers don't stop the ep queue on short packets :| */ 5171 hcd->self.no_stop_on_short = 1; 5172 5173 xhci = hcd_to_xhci(hcd); 5174 5175 if (!usb_hcd_is_primary_hcd(hcd)) { 5176 xhci_hcd_init_usb3_data(xhci, hcd); 5177 return 0; 5178 } 5179 5180 mutex_init(&xhci->mutex); 5181 xhci->main_hcd = hcd; 5182 xhci->cap_regs = hcd->regs; 5183 xhci->op_regs = hcd->regs + 5184 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5185 xhci->run_regs = hcd->regs + 5186 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5187 /* Cache read-only capability registers */ 5188 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5189 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5190 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5191 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5192 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5193 if (xhci->hci_version > 0x100) 5194 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5195 5196 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5197 if ((!xhci->max_interrupters) || 5198 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1)) 5199 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1); 5200 5201 xhci->quirks |= quirks; 5202 5203 if (get_quirks) 5204 get_quirks(dev, xhci); 5205 5206 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5207 * success event after a short transfer. This quirk will ignore such 5208 * spurious event. 5209 */ 5210 if (xhci->hci_version > 0x96) 5211 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5212 5213 /* Make sure the HC is halted. */ 5214 retval = xhci_halt(xhci); 5215 if (retval) 5216 return retval; 5217 5218 xhci_zero_64b_regs(xhci); 5219 5220 xhci_dbg(xhci, "Resetting HCD\n"); 5221 /* Reset the internal HC memory state and registers. */ 5222 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5223 if (retval) 5224 return retval; 5225 xhci_dbg(xhci, "Reset complete\n"); 5226 5227 /* 5228 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5229 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5230 * address memory pointers actually. So, this driver clears the AC64 5231 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5232 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5233 */ 5234 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5235 xhci->hcc_params &= ~BIT(0); 5236 5237 /* Set dma_mask and coherent_dma_mask to 64-bits, 5238 * if xHC supports 64-bit addressing */ 5239 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5240 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5241 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5242 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5243 } else { 5244 /* 5245 * This is to avoid error in cases where a 32-bit USB 5246 * controller is used on a 64-bit capable system. 5247 */ 5248 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5249 if (retval) 5250 return retval; 5251 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5252 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5253 } 5254 5255 xhci_dbg(xhci, "Calling HCD init\n"); 5256 /* Initialize HCD and host controller data structures. */ 5257 retval = xhci_init(hcd); 5258 if (retval) 5259 return retval; 5260 xhci_dbg(xhci, "Called HCD init\n"); 5261 5262 if (xhci_hcd_is_usb3(hcd)) 5263 xhci_hcd_init_usb3_data(xhci, hcd); 5264 else 5265 xhci_hcd_init_usb2_data(xhci, hcd); 5266 5267 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5268 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5269 5270 return 0; 5271 } 5272 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5273 5274 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5275 struct usb_host_endpoint *ep) 5276 { 5277 struct xhci_hcd *xhci; 5278 struct usb_device *udev; 5279 unsigned int slot_id; 5280 unsigned int ep_index; 5281 unsigned long flags; 5282 5283 xhci = hcd_to_xhci(hcd); 5284 5285 spin_lock_irqsave(&xhci->lock, flags); 5286 udev = (struct usb_device *)ep->hcpriv; 5287 slot_id = udev->slot_id; 5288 ep_index = xhci_get_endpoint_index(&ep->desc); 5289 5290 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5291 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5292 spin_unlock_irqrestore(&xhci->lock, flags); 5293 } 5294 5295 static const struct hc_driver xhci_hc_driver = { 5296 .description = "xhci-hcd", 5297 .product_desc = "xHCI Host Controller", 5298 .hcd_priv_size = sizeof(struct xhci_hcd), 5299 5300 /* 5301 * generic hardware linkage 5302 */ 5303 .irq = xhci_irq, 5304 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5305 HCD_BH, 5306 5307 /* 5308 * basic lifecycle operations 5309 */ 5310 .reset = NULL, /* set in xhci_init_driver() */ 5311 .start = xhci_run, 5312 .stop = xhci_stop, 5313 .shutdown = xhci_shutdown, 5314 5315 /* 5316 * managing i/o requests and associated device resources 5317 */ 5318 .map_urb_for_dma = xhci_map_urb_for_dma, 5319 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5320 .urb_enqueue = xhci_urb_enqueue, 5321 .urb_dequeue = xhci_urb_dequeue, 5322 .alloc_dev = xhci_alloc_dev, 5323 .free_dev = xhci_free_dev, 5324 .alloc_streams = xhci_alloc_streams, 5325 .free_streams = xhci_free_streams, 5326 .add_endpoint = xhci_add_endpoint, 5327 .drop_endpoint = xhci_drop_endpoint, 5328 .endpoint_disable = xhci_endpoint_disable, 5329 .endpoint_reset = xhci_endpoint_reset, 5330 .check_bandwidth = xhci_check_bandwidth, 5331 .reset_bandwidth = xhci_reset_bandwidth, 5332 .address_device = xhci_address_device, 5333 .enable_device = xhci_enable_device, 5334 .update_hub_device = xhci_update_hub_device, 5335 .reset_device = xhci_discover_or_reset_device, 5336 5337 /* 5338 * scheduling support 5339 */ 5340 .get_frame_number = xhci_get_frame, 5341 5342 /* 5343 * root hub support 5344 */ 5345 .hub_control = xhci_hub_control, 5346 .hub_status_data = xhci_hub_status_data, 5347 .bus_suspend = xhci_bus_suspend, 5348 .bus_resume = xhci_bus_resume, 5349 .get_resuming_ports = xhci_get_resuming_ports, 5350 5351 /* 5352 * call back when device connected and addressed 5353 */ 5354 .update_device = xhci_update_device, 5355 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5356 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5357 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5358 .find_raw_port_number = xhci_find_raw_port_number, 5359 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5360 }; 5361 5362 void xhci_init_driver(struct hc_driver *drv, 5363 const struct xhci_driver_overrides *over) 5364 { 5365 BUG_ON(!over); 5366 5367 /* Copy the generic table to drv then apply the overrides */ 5368 *drv = xhci_hc_driver; 5369 5370 if (over) { 5371 drv->hcd_priv_size += over->extra_priv_size; 5372 if (over->reset) 5373 drv->reset = over->reset; 5374 if (over->start) 5375 drv->start = over->start; 5376 if (over->add_endpoint) 5377 drv->add_endpoint = over->add_endpoint; 5378 if (over->drop_endpoint) 5379 drv->drop_endpoint = over->drop_endpoint; 5380 if (over->check_bandwidth) 5381 drv->check_bandwidth = over->check_bandwidth; 5382 if (over->reset_bandwidth) 5383 drv->reset_bandwidth = over->reset_bandwidth; 5384 if (over->update_hub_device) 5385 drv->update_hub_device = over->update_hub_device; 5386 if (over->hub_control) 5387 drv->hub_control = over->hub_control; 5388 } 5389 } 5390 EXPORT_SYMBOL_GPL(xhci_init_driver); 5391 5392 MODULE_DESCRIPTION(DRIVER_DESC); 5393 MODULE_AUTHOR(DRIVER_AUTHOR); 5394 MODULE_LICENSE("GPL"); 5395 5396 static int __init xhci_hcd_init(void) 5397 { 5398 /* 5399 * Check the compiler generated sizes of structures that must be laid 5400 * out in specific ways for hardware access. 5401 */ 5402 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5403 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5404 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5405 /* xhci_device_control has eight fields, and also 5406 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5407 */ 5408 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5409 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5410 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5411 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5412 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5413 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5414 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5415 5416 if (usb_disabled()) 5417 return -ENODEV; 5418 5419 xhci_debugfs_create_root(); 5420 xhci_dbc_init(); 5421 5422 return 0; 5423 } 5424 5425 /* 5426 * If an init function is provided, an exit function must also be provided 5427 * to allow module unload. 5428 */ 5429 static void __exit xhci_hcd_fini(void) 5430 { 5431 xhci_debugfs_remove_root(); 5432 xhci_dbc_exit(); 5433 } 5434 5435 module_init(xhci_hcd_init); 5436 module_exit(xhci_hcd_fini); 5437