xref: /linux/drivers/usb/host/xhci.c (revision 52ffe0ff02fc053a025c381d5808e9ecd3206dfe)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35 
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 
39 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40 
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45 
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49 
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 	u32	result;
67 
68 	do {
69 		result = readl(ptr);
70 		if (result == ~(u32)0)		/* card removed */
71 			return -ENODEV;
72 		result &= mask;
73 		if (result == done)
74 			return 0;
75 		udelay(1);
76 		usec--;
77 	} while (usec > 0);
78 	return -ETIMEDOUT;
79 }
80 
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 	u32 halted;
87 	u32 cmd;
88 	u32 mask;
89 
90 	mask = ~(XHCI_IRQS);
91 	halted = readl(&xhci->op_regs->status) & STS_HALT;
92 	if (!halted)
93 		mask &= ~CMD_RUN;
94 
95 	cmd = readl(&xhci->op_regs->command);
96 	cmd &= mask;
97 	writel(cmd, &xhci->op_regs->command);
98 }
99 
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 	int ret;
111 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 	xhci_quiesce(xhci);
113 
114 	ret = xhci_handshake(&xhci->op_regs->status,
115 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 	if (!ret) {
117 		xhci->xhc_state |= XHCI_STATE_HALTED;
118 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119 	} else
120 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121 				XHCI_MAX_HALT_USEC);
122 	return ret;
123 }
124 
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130 	u32 temp;
131 	int ret;
132 
133 	temp = readl(&xhci->op_regs->command);
134 	temp |= (CMD_RUN);
135 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 			temp);
137 	writel(temp, &xhci->op_regs->command);
138 
139 	/*
140 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 	 * running.
142 	 */
143 	ret = xhci_handshake(&xhci->op_regs->status,
144 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 	if (ret == -ETIMEDOUT)
146 		xhci_err(xhci, "Host took too long to start, "
147 				"waited %u microseconds.\n",
148 				XHCI_MAX_HALT_USEC);
149 	if (!ret)
150 		/* clear state flags. Including dying, halted or removing */
151 		xhci->xhc_state = 0;
152 
153 	return ret;
154 }
155 
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165 	u32 command;
166 	u32 state;
167 	int ret, i;
168 
169 	state = readl(&xhci->op_regs->status);
170 	if ((state & STS_HALT) == 0) {
171 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
172 		return 0;
173 	}
174 
175 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
176 	command = readl(&xhci->op_regs->command);
177 	command |= CMD_RESET;
178 	writel(command, &xhci->op_regs->command);
179 
180 	/* Existing Intel xHCI controllers require a delay of 1 mS,
181 	 * after setting the CMD_RESET bit, and before accessing any
182 	 * HC registers. This allows the HC to complete the
183 	 * reset operation and be ready for HC register access.
184 	 * Without this delay, the subsequent HC register access,
185 	 * may result in a system hang very rarely.
186 	 */
187 	if (xhci->quirks & XHCI_INTEL_HOST)
188 		udelay(1000);
189 
190 	ret = xhci_handshake(&xhci->op_regs->command,
191 			CMD_RESET, 0, 10 * 1000 * 1000);
192 	if (ret)
193 		return ret;
194 
195 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
196 			 "Wait for controller to be ready for doorbell rings");
197 	/*
198 	 * xHCI cannot write to any doorbells or operational registers other
199 	 * than status until the "Controller Not Ready" flag is cleared.
200 	 */
201 	ret = xhci_handshake(&xhci->op_regs->status,
202 			STS_CNR, 0, 10 * 1000 * 1000);
203 
204 	for (i = 0; i < 2; ++i) {
205 		xhci->bus_state[i].port_c_suspend = 0;
206 		xhci->bus_state[i].suspended_ports = 0;
207 		xhci->bus_state[i].resuming_ports = 0;
208 	}
209 
210 	return ret;
211 }
212 
213 #ifdef CONFIG_PCI
214 static int xhci_free_msi(struct xhci_hcd *xhci)
215 {
216 	int i;
217 
218 	if (!xhci->msix_entries)
219 		return -EINVAL;
220 
221 	for (i = 0; i < xhci->msix_count; i++)
222 		if (xhci->msix_entries[i].vector)
223 			free_irq(xhci->msix_entries[i].vector,
224 					xhci_to_hcd(xhci));
225 	return 0;
226 }
227 
228 /*
229  * Set up MSI
230  */
231 static int xhci_setup_msi(struct xhci_hcd *xhci)
232 {
233 	int ret;
234 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
235 
236 	ret = pci_enable_msi(pdev);
237 	if (ret) {
238 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
239 				"failed to allocate MSI entry");
240 		return ret;
241 	}
242 
243 	ret = request_irq(pdev->irq, xhci_msi_irq,
244 				0, "xhci_hcd", xhci_to_hcd(xhci));
245 	if (ret) {
246 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
247 				"disable MSI interrupt");
248 		pci_disable_msi(pdev);
249 	}
250 
251 	return ret;
252 }
253 
254 /*
255  * Free IRQs
256  * free all IRQs request
257  */
258 static void xhci_free_irq(struct xhci_hcd *xhci)
259 {
260 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
261 	int ret;
262 
263 	/* return if using legacy interrupt */
264 	if (xhci_to_hcd(xhci)->irq > 0)
265 		return;
266 
267 	ret = xhci_free_msi(xhci);
268 	if (!ret)
269 		return;
270 	if (pdev->irq > 0)
271 		free_irq(pdev->irq, xhci_to_hcd(xhci));
272 
273 	return;
274 }
275 
276 /*
277  * Set up MSI-X
278  */
279 static int xhci_setup_msix(struct xhci_hcd *xhci)
280 {
281 	int i, ret = 0;
282 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
283 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
284 
285 	/*
286 	 * calculate number of msi-x vectors supported.
287 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
288 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
289 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
290 	 *   Add additional 1 vector to ensure always available interrupt.
291 	 */
292 	xhci->msix_count = min(num_online_cpus() + 1,
293 				HCS_MAX_INTRS(xhci->hcs_params1));
294 
295 	xhci->msix_entries =
296 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
297 				GFP_KERNEL);
298 	if (!xhci->msix_entries) {
299 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
300 		return -ENOMEM;
301 	}
302 
303 	for (i = 0; i < xhci->msix_count; i++) {
304 		xhci->msix_entries[i].entry = i;
305 		xhci->msix_entries[i].vector = 0;
306 	}
307 
308 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
309 	if (ret) {
310 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
311 				"Failed to enable MSI-X");
312 		goto free_entries;
313 	}
314 
315 	for (i = 0; i < xhci->msix_count; i++) {
316 		ret = request_irq(xhci->msix_entries[i].vector,
317 				xhci_msi_irq,
318 				0, "xhci_hcd", xhci_to_hcd(xhci));
319 		if (ret)
320 			goto disable_msix;
321 	}
322 
323 	hcd->msix_enabled = 1;
324 	return ret;
325 
326 disable_msix:
327 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
328 	xhci_free_irq(xhci);
329 	pci_disable_msix(pdev);
330 free_entries:
331 	kfree(xhci->msix_entries);
332 	xhci->msix_entries = NULL;
333 	return ret;
334 }
335 
336 /* Free any IRQs and disable MSI-X */
337 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
338 {
339 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
340 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
341 
342 	if (xhci->quirks & XHCI_PLAT)
343 		return;
344 
345 	xhci_free_irq(xhci);
346 
347 	if (xhci->msix_entries) {
348 		pci_disable_msix(pdev);
349 		kfree(xhci->msix_entries);
350 		xhci->msix_entries = NULL;
351 	} else {
352 		pci_disable_msi(pdev);
353 	}
354 
355 	hcd->msix_enabled = 0;
356 	return;
357 }
358 
359 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
360 {
361 	int i;
362 
363 	if (xhci->msix_entries) {
364 		for (i = 0; i < xhci->msix_count; i++)
365 			synchronize_irq(xhci->msix_entries[i].vector);
366 	}
367 }
368 
369 static int xhci_try_enable_msi(struct usb_hcd *hcd)
370 {
371 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
372 	struct pci_dev  *pdev;
373 	int ret;
374 
375 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
376 	if (xhci->quirks & XHCI_PLAT)
377 		return 0;
378 
379 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
380 	/*
381 	 * Some Fresco Logic host controllers advertise MSI, but fail to
382 	 * generate interrupts.  Don't even try to enable MSI.
383 	 */
384 	if (xhci->quirks & XHCI_BROKEN_MSI)
385 		goto legacy_irq;
386 
387 	/* unregister the legacy interrupt */
388 	if (hcd->irq)
389 		free_irq(hcd->irq, hcd);
390 	hcd->irq = 0;
391 
392 	ret = xhci_setup_msix(xhci);
393 	if (ret)
394 		/* fall back to msi*/
395 		ret = xhci_setup_msi(xhci);
396 
397 	if (!ret)
398 		/* hcd->irq is 0, we have MSI */
399 		return 0;
400 
401 	if (!pdev->irq) {
402 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
403 		return -EINVAL;
404 	}
405 
406  legacy_irq:
407 	if (!strlen(hcd->irq_descr))
408 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
409 			 hcd->driver->description, hcd->self.busnum);
410 
411 	/* fall back to legacy interrupt*/
412 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
413 			hcd->irq_descr, hcd);
414 	if (ret) {
415 		xhci_err(xhci, "request interrupt %d failed\n",
416 				pdev->irq);
417 		return ret;
418 	}
419 	hcd->irq = pdev->irq;
420 	return 0;
421 }
422 
423 #else
424 
425 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
426 {
427 	return 0;
428 }
429 
430 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
431 {
432 }
433 
434 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
435 {
436 }
437 
438 #endif
439 
440 static void compliance_mode_recovery(unsigned long arg)
441 {
442 	struct xhci_hcd *xhci;
443 	struct usb_hcd *hcd;
444 	u32 temp;
445 	int i;
446 
447 	xhci = (struct xhci_hcd *)arg;
448 
449 	for (i = 0; i < xhci->num_usb3_ports; i++) {
450 		temp = readl(xhci->usb3_ports[i]);
451 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
452 			/*
453 			 * Compliance Mode Detected. Letting USB Core
454 			 * handle the Warm Reset
455 			 */
456 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
457 					"Compliance mode detected->port %d",
458 					i + 1);
459 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
460 					"Attempting compliance mode recovery");
461 			hcd = xhci->shared_hcd;
462 
463 			if (hcd->state == HC_STATE_SUSPENDED)
464 				usb_hcd_resume_root_hub(hcd);
465 
466 			usb_hcd_poll_rh_status(hcd);
467 		}
468 	}
469 
470 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
471 		mod_timer(&xhci->comp_mode_recovery_timer,
472 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
473 }
474 
475 /*
476  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
477  * that causes ports behind that hardware to enter compliance mode sometimes.
478  * The quirk creates a timer that polls every 2 seconds the link state of
479  * each host controller's port and recovers it by issuing a Warm reset
480  * if Compliance mode is detected, otherwise the port will become "dead" (no
481  * device connections or disconnections will be detected anymore). Becasue no
482  * status event is generated when entering compliance mode (per xhci spec),
483  * this quirk is needed on systems that have the failing hardware installed.
484  */
485 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
486 {
487 	xhci->port_status_u0 = 0;
488 	setup_timer(&xhci->comp_mode_recovery_timer,
489 		    compliance_mode_recovery, (unsigned long)xhci);
490 	xhci->comp_mode_recovery_timer.expires = jiffies +
491 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
492 
493 	set_timer_slack(&xhci->comp_mode_recovery_timer,
494 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
495 	add_timer(&xhci->comp_mode_recovery_timer);
496 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 			"Compliance mode recovery timer initialized");
498 }
499 
500 /*
501  * This function identifies the systems that have installed the SN65LVPE502CP
502  * USB3.0 re-driver and that need the Compliance Mode Quirk.
503  * Systems:
504  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
505  */
506 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
507 {
508 	const char *dmi_product_name, *dmi_sys_vendor;
509 
510 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
511 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
512 	if (!dmi_product_name || !dmi_sys_vendor)
513 		return false;
514 
515 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
516 		return false;
517 
518 	if (strstr(dmi_product_name, "Z420") ||
519 			strstr(dmi_product_name, "Z620") ||
520 			strstr(dmi_product_name, "Z820") ||
521 			strstr(dmi_product_name, "Z1 Workstation"))
522 		return true;
523 
524 	return false;
525 }
526 
527 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
528 {
529 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
530 }
531 
532 
533 /*
534  * Initialize memory for HCD and xHC (one-time init).
535  *
536  * Program the PAGESIZE register, initialize the device context array, create
537  * device contexts (?), set up a command ring segment (or two?), create event
538  * ring (one for now).
539  */
540 int xhci_init(struct usb_hcd *hcd)
541 {
542 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
543 	int retval = 0;
544 
545 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
546 	spin_lock_init(&xhci->lock);
547 	if (xhci->hci_version == 0x95 && link_quirk) {
548 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
549 				"QUIRK: Not clearing Link TRB chain bits.");
550 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
551 	} else {
552 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
553 				"xHCI doesn't need link TRB QUIRK");
554 	}
555 	retval = xhci_mem_init(xhci, GFP_KERNEL);
556 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
557 
558 	/* Initializing Compliance Mode Recovery Data If Needed */
559 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
560 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
561 		compliance_mode_recovery_timer_init(xhci);
562 	}
563 
564 	return retval;
565 }
566 
567 /*-------------------------------------------------------------------------*/
568 
569 
570 static int xhci_run_finished(struct xhci_hcd *xhci)
571 {
572 	if (xhci_start(xhci)) {
573 		xhci_halt(xhci);
574 		return -ENODEV;
575 	}
576 	xhci->shared_hcd->state = HC_STATE_RUNNING;
577 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
578 
579 	if (xhci->quirks & XHCI_NEC_HOST)
580 		xhci_ring_cmd_db(xhci);
581 
582 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
583 			"Finished xhci_run for USB3 roothub");
584 	return 0;
585 }
586 
587 /*
588  * Start the HC after it was halted.
589  *
590  * This function is called by the USB core when the HC driver is added.
591  * Its opposite is xhci_stop().
592  *
593  * xhci_init() must be called once before this function can be called.
594  * Reset the HC, enable device slot contexts, program DCBAAP, and
595  * set command ring pointer and event ring pointer.
596  *
597  * Setup MSI-X vectors and enable interrupts.
598  */
599 int xhci_run(struct usb_hcd *hcd)
600 {
601 	u32 temp;
602 	u64 temp_64;
603 	int ret;
604 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
605 
606 	/* Start the xHCI host controller running only after the USB 2.0 roothub
607 	 * is setup.
608 	 */
609 
610 	hcd->uses_new_polling = 1;
611 	if (!usb_hcd_is_primary_hcd(hcd))
612 		return xhci_run_finished(xhci);
613 
614 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
615 
616 	ret = xhci_try_enable_msi(hcd);
617 	if (ret)
618 		return ret;
619 
620 	xhci_dbg(xhci, "Command ring memory map follows:\n");
621 	xhci_debug_ring(xhci, xhci->cmd_ring);
622 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
623 	xhci_dbg_cmd_ptrs(xhci);
624 
625 	xhci_dbg(xhci, "ERST memory map follows:\n");
626 	xhci_dbg_erst(xhci, &xhci->erst);
627 	xhci_dbg(xhci, "Event ring:\n");
628 	xhci_debug_ring(xhci, xhci->event_ring);
629 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
630 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
631 	temp_64 &= ~ERST_PTR_MASK;
632 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
633 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
634 
635 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
636 			"// Set the interrupt modulation register");
637 	temp = readl(&xhci->ir_set->irq_control);
638 	temp &= ~ER_IRQ_INTERVAL_MASK;
639 	/*
640 	 * the increment interval is 8 times as much as that defined
641 	 * in xHCI spec on MTK's controller
642 	 */
643 	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
644 	writel(temp, &xhci->ir_set->irq_control);
645 
646 	/* Set the HCD state before we enable the irqs */
647 	temp = readl(&xhci->op_regs->command);
648 	temp |= (CMD_EIE);
649 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
650 			"// Enable interrupts, cmd = 0x%x.", temp);
651 	writel(temp, &xhci->op_regs->command);
652 
653 	temp = readl(&xhci->ir_set->irq_pending);
654 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
655 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
656 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
657 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
658 	xhci_print_ir_set(xhci, 0);
659 
660 	if (xhci->quirks & XHCI_NEC_HOST) {
661 		struct xhci_command *command;
662 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
663 		if (!command)
664 			return -ENOMEM;
665 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
666 				TRB_TYPE(TRB_NEC_GET_FW));
667 	}
668 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
669 			"Finished xhci_run for USB2 roothub");
670 	return 0;
671 }
672 EXPORT_SYMBOL_GPL(xhci_run);
673 
674 /*
675  * Stop xHCI driver.
676  *
677  * This function is called by the USB core when the HC driver is removed.
678  * Its opposite is xhci_run().
679  *
680  * Disable device contexts, disable IRQs, and quiesce the HC.
681  * Reset the HC, finish any completed transactions, and cleanup memory.
682  */
683 void xhci_stop(struct usb_hcd *hcd)
684 {
685 	u32 temp;
686 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
687 
688 	if (xhci->xhc_state & XHCI_STATE_HALTED)
689 		return;
690 
691 	mutex_lock(&xhci->mutex);
692 	spin_lock_irq(&xhci->lock);
693 	xhci->xhc_state |= XHCI_STATE_HALTED;
694 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
695 
696 	/* Make sure the xHC is halted for a USB3 roothub
697 	 * (xhci_stop() could be called as part of failed init).
698 	 */
699 	xhci_halt(xhci);
700 	xhci_reset(xhci);
701 	spin_unlock_irq(&xhci->lock);
702 
703 	xhci_cleanup_msix(xhci);
704 
705 	/* Deleting Compliance Mode Recovery Timer */
706 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
707 			(!(xhci_all_ports_seen_u0(xhci)))) {
708 		del_timer_sync(&xhci->comp_mode_recovery_timer);
709 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
710 				"%s: compliance mode recovery timer deleted",
711 				__func__);
712 	}
713 
714 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
715 		usb_amd_dev_put();
716 
717 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
718 			"// Disabling event ring interrupts");
719 	temp = readl(&xhci->op_regs->status);
720 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
721 	temp = readl(&xhci->ir_set->irq_pending);
722 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
723 	xhci_print_ir_set(xhci, 0);
724 
725 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
726 	xhci_mem_cleanup(xhci);
727 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
728 			"xhci_stop completed - status = %x",
729 			readl(&xhci->op_regs->status));
730 	mutex_unlock(&xhci->mutex);
731 }
732 
733 /*
734  * Shutdown HC (not bus-specific)
735  *
736  * This is called when the machine is rebooting or halting.  We assume that the
737  * machine will be powered off, and the HC's internal state will be reset.
738  * Don't bother to free memory.
739  *
740  * This will only ever be called with the main usb_hcd (the USB3 roothub).
741  */
742 void xhci_shutdown(struct usb_hcd *hcd)
743 {
744 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
745 
746 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
747 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
748 
749 	spin_lock_irq(&xhci->lock);
750 	xhci_halt(xhci);
751 	/* Workaround for spurious wakeups at shutdown with HSW */
752 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
753 		xhci_reset(xhci);
754 	spin_unlock_irq(&xhci->lock);
755 
756 	xhci_cleanup_msix(xhci);
757 
758 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759 			"xhci_shutdown completed - status = %x",
760 			readl(&xhci->op_regs->status));
761 
762 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
763 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
764 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
765 }
766 
767 #ifdef CONFIG_PM
768 static void xhci_save_registers(struct xhci_hcd *xhci)
769 {
770 	xhci->s3.command = readl(&xhci->op_regs->command);
771 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
772 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
773 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
774 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
775 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
776 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
777 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
778 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
779 }
780 
781 static void xhci_restore_registers(struct xhci_hcd *xhci)
782 {
783 	writel(xhci->s3.command, &xhci->op_regs->command);
784 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
785 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
786 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
787 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
788 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
789 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
790 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
791 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
792 }
793 
794 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
795 {
796 	u64	val_64;
797 
798 	/* step 2: initialize command ring buffer */
799 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
800 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
801 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
802 				      xhci->cmd_ring->dequeue) &
803 		 (u64) ~CMD_RING_RSVD_BITS) |
804 		xhci->cmd_ring->cycle_state;
805 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
806 			"// Setting command ring address to 0x%llx",
807 			(long unsigned long) val_64);
808 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
809 }
810 
811 /*
812  * The whole command ring must be cleared to zero when we suspend the host.
813  *
814  * The host doesn't save the command ring pointer in the suspend well, so we
815  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
816  * aligned, because of the reserved bits in the command ring dequeue pointer
817  * register.  Therefore, we can't just set the dequeue pointer back in the
818  * middle of the ring (TRBs are 16-byte aligned).
819  */
820 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
821 {
822 	struct xhci_ring *ring;
823 	struct xhci_segment *seg;
824 
825 	ring = xhci->cmd_ring;
826 	seg = ring->deq_seg;
827 	do {
828 		memset(seg->trbs, 0,
829 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
830 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
831 			cpu_to_le32(~TRB_CYCLE);
832 		seg = seg->next;
833 	} while (seg != ring->deq_seg);
834 
835 	/* Reset the software enqueue and dequeue pointers */
836 	ring->deq_seg = ring->first_seg;
837 	ring->dequeue = ring->first_seg->trbs;
838 	ring->enq_seg = ring->deq_seg;
839 	ring->enqueue = ring->dequeue;
840 
841 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
842 	/*
843 	 * Ring is now zeroed, so the HW should look for change of ownership
844 	 * when the cycle bit is set to 1.
845 	 */
846 	ring->cycle_state = 1;
847 
848 	/*
849 	 * Reset the hardware dequeue pointer.
850 	 * Yes, this will need to be re-written after resume, but we're paranoid
851 	 * and want to make sure the hardware doesn't access bogus memory
852 	 * because, say, the BIOS or an SMI started the host without changing
853 	 * the command ring pointers.
854 	 */
855 	xhci_set_cmd_ring_deq(xhci);
856 }
857 
858 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
859 {
860 	int port_index;
861 	__le32 __iomem **port_array;
862 	unsigned long flags;
863 	u32 t1, t2;
864 
865 	spin_lock_irqsave(&xhci->lock, flags);
866 
867 	/* disble usb3 ports Wake bits*/
868 	port_index = xhci->num_usb3_ports;
869 	port_array = xhci->usb3_ports;
870 	while (port_index--) {
871 		t1 = readl(port_array[port_index]);
872 		t1 = xhci_port_state_to_neutral(t1);
873 		t2 = t1 & ~PORT_WAKE_BITS;
874 		if (t1 != t2)
875 			writel(t2, port_array[port_index]);
876 	}
877 
878 	/* disble usb2 ports Wake bits*/
879 	port_index = xhci->num_usb2_ports;
880 	port_array = xhci->usb2_ports;
881 	while (port_index--) {
882 		t1 = readl(port_array[port_index]);
883 		t1 = xhci_port_state_to_neutral(t1);
884 		t2 = t1 & ~PORT_WAKE_BITS;
885 		if (t1 != t2)
886 			writel(t2, port_array[port_index]);
887 	}
888 
889 	spin_unlock_irqrestore(&xhci->lock, flags);
890 }
891 
892 /*
893  * Stop HC (not bus-specific)
894  *
895  * This is called when the machine transition into S3/S4 mode.
896  *
897  */
898 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
899 {
900 	int			rc = 0;
901 	unsigned int		delay = XHCI_MAX_HALT_USEC;
902 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
903 	u32			command;
904 
905 	if (!hcd->state)
906 		return 0;
907 
908 	if (hcd->state != HC_STATE_SUSPENDED ||
909 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
910 		return -EINVAL;
911 
912 	/* Clear root port wake on bits if wakeup not allowed. */
913 	if (!do_wakeup)
914 		xhci_disable_port_wake_on_bits(xhci);
915 
916 	/* Don't poll the roothubs on bus suspend. */
917 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
918 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
919 	del_timer_sync(&hcd->rh_timer);
920 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
921 	del_timer_sync(&xhci->shared_hcd->rh_timer);
922 
923 	spin_lock_irq(&xhci->lock);
924 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
925 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
926 	/* step 1: stop endpoint */
927 	/* skipped assuming that port suspend has done */
928 
929 	/* step 2: clear Run/Stop bit */
930 	command = readl(&xhci->op_regs->command);
931 	command &= ~CMD_RUN;
932 	writel(command, &xhci->op_regs->command);
933 
934 	/* Some chips from Fresco Logic need an extraordinary delay */
935 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
936 
937 	if (xhci_handshake(&xhci->op_regs->status,
938 		      STS_HALT, STS_HALT, delay)) {
939 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
940 		spin_unlock_irq(&xhci->lock);
941 		return -ETIMEDOUT;
942 	}
943 	xhci_clear_command_ring(xhci);
944 
945 	/* step 3: save registers */
946 	xhci_save_registers(xhci);
947 
948 	/* step 4: set CSS flag */
949 	command = readl(&xhci->op_regs->command);
950 	command |= CMD_CSS;
951 	writel(command, &xhci->op_regs->command);
952 	if (xhci_handshake(&xhci->op_regs->status,
953 				STS_SAVE, 0, 10 * 1000)) {
954 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
955 		spin_unlock_irq(&xhci->lock);
956 		return -ETIMEDOUT;
957 	}
958 	spin_unlock_irq(&xhci->lock);
959 
960 	/*
961 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
962 	 * is about to be suspended.
963 	 */
964 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
965 			(!(xhci_all_ports_seen_u0(xhci)))) {
966 		del_timer_sync(&xhci->comp_mode_recovery_timer);
967 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
968 				"%s: compliance mode recovery timer deleted",
969 				__func__);
970 	}
971 
972 	/* step 5: remove core well power */
973 	/* synchronize irq when using MSI-X */
974 	xhci_msix_sync_irqs(xhci);
975 
976 	return rc;
977 }
978 EXPORT_SYMBOL_GPL(xhci_suspend);
979 
980 /*
981  * start xHC (not bus-specific)
982  *
983  * This is called when the machine transition from S3/S4 mode.
984  *
985  */
986 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
987 {
988 	u32			command, temp = 0, status;
989 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
990 	struct usb_hcd		*secondary_hcd;
991 	int			retval = 0;
992 	bool			comp_timer_running = false;
993 
994 	if (!hcd->state)
995 		return 0;
996 
997 	/* Wait a bit if either of the roothubs need to settle from the
998 	 * transition into bus suspend.
999 	 */
1000 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1001 			time_before(jiffies,
1002 				xhci->bus_state[1].next_statechange))
1003 		msleep(100);
1004 
1005 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007 
1008 	spin_lock_irq(&xhci->lock);
1009 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1010 		hibernated = true;
1011 
1012 	if (!hibernated) {
1013 		/* step 1: restore register */
1014 		xhci_restore_registers(xhci);
1015 		/* step 2: initialize command ring buffer */
1016 		xhci_set_cmd_ring_deq(xhci);
1017 		/* step 3: restore state and start state*/
1018 		/* step 3: set CRS flag */
1019 		command = readl(&xhci->op_regs->command);
1020 		command |= CMD_CRS;
1021 		writel(command, &xhci->op_regs->command);
1022 		if (xhci_handshake(&xhci->op_regs->status,
1023 			      STS_RESTORE, 0, 10 * 1000)) {
1024 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1025 			spin_unlock_irq(&xhci->lock);
1026 			return -ETIMEDOUT;
1027 		}
1028 		temp = readl(&xhci->op_regs->status);
1029 	}
1030 
1031 	/* If restore operation fails, re-initialize the HC during resume */
1032 	if ((temp & STS_SRE) || hibernated) {
1033 
1034 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1035 				!(xhci_all_ports_seen_u0(xhci))) {
1036 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1037 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1038 				"Compliance Mode Recovery Timer deleted!");
1039 		}
1040 
1041 		/* Let the USB core know _both_ roothubs lost power. */
1042 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1043 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1044 
1045 		xhci_dbg(xhci, "Stop HCD\n");
1046 		xhci_halt(xhci);
1047 		xhci_reset(xhci);
1048 		spin_unlock_irq(&xhci->lock);
1049 		xhci_cleanup_msix(xhci);
1050 
1051 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1052 		temp = readl(&xhci->op_regs->status);
1053 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1054 		temp = readl(&xhci->ir_set->irq_pending);
1055 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1056 		xhci_print_ir_set(xhci, 0);
1057 
1058 		xhci_dbg(xhci, "cleaning up memory\n");
1059 		xhci_mem_cleanup(xhci);
1060 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1061 			    readl(&xhci->op_regs->status));
1062 
1063 		/* USB core calls the PCI reinit and start functions twice:
1064 		 * first with the primary HCD, and then with the secondary HCD.
1065 		 * If we don't do the same, the host will never be started.
1066 		 */
1067 		if (!usb_hcd_is_primary_hcd(hcd))
1068 			secondary_hcd = hcd;
1069 		else
1070 			secondary_hcd = xhci->shared_hcd;
1071 
1072 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1073 		retval = xhci_init(hcd->primary_hcd);
1074 		if (retval)
1075 			return retval;
1076 		comp_timer_running = true;
1077 
1078 		xhci_dbg(xhci, "Start the primary HCD\n");
1079 		retval = xhci_run(hcd->primary_hcd);
1080 		if (!retval) {
1081 			xhci_dbg(xhci, "Start the secondary HCD\n");
1082 			retval = xhci_run(secondary_hcd);
1083 		}
1084 		hcd->state = HC_STATE_SUSPENDED;
1085 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1086 		goto done;
1087 	}
1088 
1089 	/* step 4: set Run/Stop bit */
1090 	command = readl(&xhci->op_regs->command);
1091 	command |= CMD_RUN;
1092 	writel(command, &xhci->op_regs->command);
1093 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1094 		  0, 250 * 1000);
1095 
1096 	/* step 5: walk topology and initialize portsc,
1097 	 * portpmsc and portli
1098 	 */
1099 	/* this is done in bus_resume */
1100 
1101 	/* step 6: restart each of the previously
1102 	 * Running endpoints by ringing their doorbells
1103 	 */
1104 
1105 	spin_unlock_irq(&xhci->lock);
1106 
1107  done:
1108 	if (retval == 0) {
1109 		/* Resume root hubs only when have pending events. */
1110 		status = readl(&xhci->op_regs->status);
1111 		if (status & STS_EINT) {
1112 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1113 			usb_hcd_resume_root_hub(hcd);
1114 		}
1115 	}
1116 
1117 	/*
1118 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1119 	 * be re-initialized Always after a system resume. Ports are subject
1120 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1121 	 * ports have entered previously to U0 before system's suspension.
1122 	 */
1123 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1124 		compliance_mode_recovery_timer_init(xhci);
1125 
1126 	/* Re-enable port polling. */
1127 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1128 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1129 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1130 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1131 	usb_hcd_poll_rh_status(hcd);
1132 
1133 	return retval;
1134 }
1135 EXPORT_SYMBOL_GPL(xhci_resume);
1136 #endif	/* CONFIG_PM */
1137 
1138 /*-------------------------------------------------------------------------*/
1139 
1140 /**
1141  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1142  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1143  * value to right shift 1 for the bitmask.
1144  *
1145  * Index  = (epnum * 2) + direction - 1,
1146  * where direction = 0 for OUT, 1 for IN.
1147  * For control endpoints, the IN index is used (OUT index is unused), so
1148  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1149  */
1150 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1151 {
1152 	unsigned int index;
1153 	if (usb_endpoint_xfer_control(desc))
1154 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1155 	else
1156 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1157 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1158 	return index;
1159 }
1160 
1161 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1162  * address from the XHCI endpoint index.
1163  */
1164 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1165 {
1166 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1167 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1168 	return direction | number;
1169 }
1170 
1171 /* Find the flag for this endpoint (for use in the control context).  Use the
1172  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1173  * bit 1, etc.
1174  */
1175 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1176 {
1177 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1178 }
1179 
1180 /* Find the flag for this endpoint (for use in the control context).  Use the
1181  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1182  * bit 1, etc.
1183  */
1184 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1185 {
1186 	return 1 << (ep_index + 1);
1187 }
1188 
1189 /* Compute the last valid endpoint context index.  Basically, this is the
1190  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1191  * we find the most significant bit set in the added contexts flags.
1192  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1193  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1194  */
1195 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1196 {
1197 	return fls(added_ctxs) - 1;
1198 }
1199 
1200 /* Returns 1 if the arguments are OK;
1201  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1202  */
1203 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1204 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1205 		const char *func) {
1206 	struct xhci_hcd	*xhci;
1207 	struct xhci_virt_device	*virt_dev;
1208 
1209 	if (!hcd || (check_ep && !ep) || !udev) {
1210 		pr_debug("xHCI %s called with invalid args\n", func);
1211 		return -EINVAL;
1212 	}
1213 	if (!udev->parent) {
1214 		pr_debug("xHCI %s called for root hub\n", func);
1215 		return 0;
1216 	}
1217 
1218 	xhci = hcd_to_xhci(hcd);
1219 	if (check_virt_dev) {
1220 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1221 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1222 					func);
1223 			return -EINVAL;
1224 		}
1225 
1226 		virt_dev = xhci->devs[udev->slot_id];
1227 		if (virt_dev->udev != udev) {
1228 			xhci_dbg(xhci, "xHCI %s called with udev and "
1229 					  "virt_dev does not match\n", func);
1230 			return -EINVAL;
1231 		}
1232 	}
1233 
1234 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1235 		return -ENODEV;
1236 
1237 	return 1;
1238 }
1239 
1240 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1241 		struct usb_device *udev, struct xhci_command *command,
1242 		bool ctx_change, bool must_succeed);
1243 
1244 /*
1245  * Full speed devices may have a max packet size greater than 8 bytes, but the
1246  * USB core doesn't know that until it reads the first 8 bytes of the
1247  * descriptor.  If the usb_device's max packet size changes after that point,
1248  * we need to issue an evaluate context command and wait on it.
1249  */
1250 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1251 		unsigned int ep_index, struct urb *urb)
1252 {
1253 	struct xhci_container_ctx *out_ctx;
1254 	struct xhci_input_control_ctx *ctrl_ctx;
1255 	struct xhci_ep_ctx *ep_ctx;
1256 	struct xhci_command *command;
1257 	int max_packet_size;
1258 	int hw_max_packet_size;
1259 	int ret = 0;
1260 
1261 	out_ctx = xhci->devs[slot_id]->out_ctx;
1262 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1263 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1264 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1265 	if (hw_max_packet_size != max_packet_size) {
1266 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1267 				"Max Packet Size for ep 0 changed.");
1268 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1269 				"Max packet size in usb_device = %d",
1270 				max_packet_size);
1271 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1272 				"Max packet size in xHCI HW = %d",
1273 				hw_max_packet_size);
1274 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1275 				"Issuing evaluate context command.");
1276 
1277 		/* Set up the input context flags for the command */
1278 		/* FIXME: This won't work if a non-default control endpoint
1279 		 * changes max packet sizes.
1280 		 */
1281 
1282 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1283 		if (!command)
1284 			return -ENOMEM;
1285 
1286 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1287 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1288 		if (!ctrl_ctx) {
1289 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1290 					__func__);
1291 			ret = -ENOMEM;
1292 			goto command_cleanup;
1293 		}
1294 		/* Set up the modified control endpoint 0 */
1295 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1296 				xhci->devs[slot_id]->out_ctx, ep_index);
1297 
1298 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1299 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1300 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1301 
1302 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1303 		ctrl_ctx->drop_flags = 0;
1304 
1305 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1306 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1307 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1308 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1309 
1310 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1311 				true, false);
1312 
1313 		/* Clean up the input context for later use by bandwidth
1314 		 * functions.
1315 		 */
1316 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1317 command_cleanup:
1318 		kfree(command->completion);
1319 		kfree(command);
1320 	}
1321 	return ret;
1322 }
1323 
1324 /*
1325  * non-error returns are a promise to giveback() the urb later
1326  * we drop ownership so next owner (or urb unlink) can get it
1327  */
1328 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1329 {
1330 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1331 	struct xhci_td *buffer;
1332 	unsigned long flags;
1333 	int ret = 0;
1334 	unsigned int slot_id, ep_index;
1335 	struct urb_priv	*urb_priv;
1336 	int size, i;
1337 
1338 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1339 					true, true, __func__) <= 0)
1340 		return -EINVAL;
1341 
1342 	slot_id = urb->dev->slot_id;
1343 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1344 
1345 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1346 		if (!in_interrupt())
1347 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1348 		ret = -ESHUTDOWN;
1349 		goto exit;
1350 	}
1351 
1352 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1353 		size = urb->number_of_packets;
1354 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1355 	    urb->transfer_buffer_length > 0 &&
1356 	    urb->transfer_flags & URB_ZERO_PACKET &&
1357 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1358 		size = 2;
1359 	else
1360 		size = 1;
1361 
1362 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1363 				  size * sizeof(struct xhci_td *), mem_flags);
1364 	if (!urb_priv)
1365 		return -ENOMEM;
1366 
1367 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1368 	if (!buffer) {
1369 		kfree(urb_priv);
1370 		return -ENOMEM;
1371 	}
1372 
1373 	for (i = 0; i < size; i++) {
1374 		urb_priv->td[i] = buffer;
1375 		buffer++;
1376 	}
1377 
1378 	urb_priv->length = size;
1379 	urb_priv->td_cnt = 0;
1380 	urb->hcpriv = urb_priv;
1381 
1382 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1383 		/* Check to see if the max packet size for the default control
1384 		 * endpoint changed during FS device enumeration
1385 		 */
1386 		if (urb->dev->speed == USB_SPEED_FULL) {
1387 			ret = xhci_check_maxpacket(xhci, slot_id,
1388 					ep_index, urb);
1389 			if (ret < 0) {
1390 				xhci_urb_free_priv(urb_priv);
1391 				urb->hcpriv = NULL;
1392 				return ret;
1393 			}
1394 		}
1395 
1396 		/* We have a spinlock and interrupts disabled, so we must pass
1397 		 * atomic context to this function, which may allocate memory.
1398 		 */
1399 		spin_lock_irqsave(&xhci->lock, flags);
1400 		if (xhci->xhc_state & XHCI_STATE_DYING)
1401 			goto dying;
1402 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1403 				slot_id, ep_index);
1404 		if (ret)
1405 			goto free_priv;
1406 		spin_unlock_irqrestore(&xhci->lock, flags);
1407 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1408 		spin_lock_irqsave(&xhci->lock, flags);
1409 		if (xhci->xhc_state & XHCI_STATE_DYING)
1410 			goto dying;
1411 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1412 				EP_GETTING_STREAMS) {
1413 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1414 					"is transitioning to using streams.\n");
1415 			ret = -EINVAL;
1416 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1417 				EP_GETTING_NO_STREAMS) {
1418 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1419 					"is transitioning to "
1420 					"not having streams.\n");
1421 			ret = -EINVAL;
1422 		} else {
1423 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1424 					slot_id, ep_index);
1425 		}
1426 		if (ret)
1427 			goto free_priv;
1428 		spin_unlock_irqrestore(&xhci->lock, flags);
1429 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1430 		spin_lock_irqsave(&xhci->lock, flags);
1431 		if (xhci->xhc_state & XHCI_STATE_DYING)
1432 			goto dying;
1433 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1434 				slot_id, ep_index);
1435 		if (ret)
1436 			goto free_priv;
1437 		spin_unlock_irqrestore(&xhci->lock, flags);
1438 	} else {
1439 		spin_lock_irqsave(&xhci->lock, flags);
1440 		if (xhci->xhc_state & XHCI_STATE_DYING)
1441 			goto dying;
1442 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1443 				slot_id, ep_index);
1444 		if (ret)
1445 			goto free_priv;
1446 		spin_unlock_irqrestore(&xhci->lock, flags);
1447 	}
1448 exit:
1449 	return ret;
1450 dying:
1451 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1452 			"non-responsive xHCI host.\n",
1453 			urb->ep->desc.bEndpointAddress, urb);
1454 	ret = -ESHUTDOWN;
1455 free_priv:
1456 	xhci_urb_free_priv(urb_priv);
1457 	urb->hcpriv = NULL;
1458 	spin_unlock_irqrestore(&xhci->lock, flags);
1459 	return ret;
1460 }
1461 
1462 /* Get the right ring for the given URB.
1463  * If the endpoint supports streams, boundary check the URB's stream ID.
1464  * If the endpoint doesn't support streams, return the singular endpoint ring.
1465  */
1466 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1467 		struct urb *urb)
1468 {
1469 	unsigned int slot_id;
1470 	unsigned int ep_index;
1471 	unsigned int stream_id;
1472 	struct xhci_virt_ep *ep;
1473 
1474 	slot_id = urb->dev->slot_id;
1475 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1476 	stream_id = urb->stream_id;
1477 	ep = &xhci->devs[slot_id]->eps[ep_index];
1478 	/* Common case: no streams */
1479 	if (!(ep->ep_state & EP_HAS_STREAMS))
1480 		return ep->ring;
1481 
1482 	if (stream_id == 0) {
1483 		xhci_warn(xhci,
1484 				"WARN: Slot ID %u, ep index %u has streams, "
1485 				"but URB has no stream ID.\n",
1486 				slot_id, ep_index);
1487 		return NULL;
1488 	}
1489 
1490 	if (stream_id < ep->stream_info->num_streams)
1491 		return ep->stream_info->stream_rings[stream_id];
1492 
1493 	xhci_warn(xhci,
1494 			"WARN: Slot ID %u, ep index %u has "
1495 			"stream IDs 1 to %u allocated, "
1496 			"but stream ID %u is requested.\n",
1497 			slot_id, ep_index,
1498 			ep->stream_info->num_streams - 1,
1499 			stream_id);
1500 	return NULL;
1501 }
1502 
1503 /*
1504  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1505  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1506  * should pick up where it left off in the TD, unless a Set Transfer Ring
1507  * Dequeue Pointer is issued.
1508  *
1509  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1510  * the ring.  Since the ring is a contiguous structure, they can't be physically
1511  * removed.  Instead, there are two options:
1512  *
1513  *  1) If the HC is in the middle of processing the URB to be canceled, we
1514  *     simply move the ring's dequeue pointer past those TRBs using the Set
1515  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1516  *     when drivers timeout on the last submitted URB and attempt to cancel.
1517  *
1518  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1519  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1520  *     HC will need to invalidate the any TRBs it has cached after the stop
1521  *     endpoint command, as noted in the xHCI 0.95 errata.
1522  *
1523  *  3) The TD may have completed by the time the Stop Endpoint Command
1524  *     completes, so software needs to handle that case too.
1525  *
1526  * This function should protect against the TD enqueueing code ringing the
1527  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1528  * It also needs to account for multiple cancellations on happening at the same
1529  * time for the same endpoint.
1530  *
1531  * Note that this function can be called in any context, or so says
1532  * usb_hcd_unlink_urb()
1533  */
1534 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1535 {
1536 	unsigned long flags;
1537 	int ret, i;
1538 	u32 temp;
1539 	struct xhci_hcd *xhci;
1540 	struct urb_priv	*urb_priv;
1541 	struct xhci_td *td;
1542 	unsigned int ep_index;
1543 	struct xhci_ring *ep_ring;
1544 	struct xhci_virt_ep *ep;
1545 	struct xhci_command *command;
1546 
1547 	xhci = hcd_to_xhci(hcd);
1548 	spin_lock_irqsave(&xhci->lock, flags);
1549 	/* Make sure the URB hasn't completed or been unlinked already */
1550 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1551 	if (ret || !urb->hcpriv)
1552 		goto done;
1553 	temp = readl(&xhci->op_regs->status);
1554 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1555 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1556 				"HW died, freeing TD.");
1557 		urb_priv = urb->hcpriv;
1558 		for (i = urb_priv->td_cnt;
1559 		     i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1560 		     i++) {
1561 			td = urb_priv->td[i];
1562 			if (!list_empty(&td->td_list))
1563 				list_del_init(&td->td_list);
1564 			if (!list_empty(&td->cancelled_td_list))
1565 				list_del_init(&td->cancelled_td_list);
1566 		}
1567 
1568 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1569 		spin_unlock_irqrestore(&xhci->lock, flags);
1570 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1571 		xhci_urb_free_priv(urb_priv);
1572 		return ret;
1573 	}
1574 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1575 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1576 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1577 				"Ep 0x%x: URB %p to be canceled on "
1578 				"non-responsive xHCI host.",
1579 				urb->ep->desc.bEndpointAddress, urb);
1580 		/* Let the stop endpoint command watchdog timer (which set this
1581 		 * state) finish cleaning up the endpoint TD lists.  We must
1582 		 * have caught it in the middle of dropping a lock and giving
1583 		 * back an URB.
1584 		 */
1585 		goto done;
1586 	}
1587 
1588 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1589 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1590 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1591 	if (!ep_ring) {
1592 		ret = -EINVAL;
1593 		goto done;
1594 	}
1595 
1596 	urb_priv = urb->hcpriv;
1597 	i = urb_priv->td_cnt;
1598 	if (i < urb_priv->length)
1599 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1600 				"Cancel URB %p, dev %s, ep 0x%x, "
1601 				"starting at offset 0x%llx",
1602 				urb, urb->dev->devpath,
1603 				urb->ep->desc.bEndpointAddress,
1604 				(unsigned long long) xhci_trb_virt_to_dma(
1605 					urb_priv->td[i]->start_seg,
1606 					urb_priv->td[i]->first_trb));
1607 
1608 	for (; i < urb_priv->length; i++) {
1609 		td = urb_priv->td[i];
1610 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1611 	}
1612 
1613 	/* Queue a stop endpoint command, but only if this is
1614 	 * the first cancellation to be handled.
1615 	 */
1616 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1617 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1618 		if (!command) {
1619 			ret = -ENOMEM;
1620 			goto done;
1621 		}
1622 		ep->ep_state |= EP_HALT_PENDING;
1623 		ep->stop_cmds_pending++;
1624 		ep->stop_cmd_timer.expires = jiffies +
1625 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1626 		add_timer(&ep->stop_cmd_timer);
1627 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1628 					 ep_index, 0);
1629 		xhci_ring_cmd_db(xhci);
1630 	}
1631 done:
1632 	spin_unlock_irqrestore(&xhci->lock, flags);
1633 	return ret;
1634 }
1635 
1636 /* Drop an endpoint from a new bandwidth configuration for this device.
1637  * Only one call to this function is allowed per endpoint before
1638  * check_bandwidth() or reset_bandwidth() must be called.
1639  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1640  * add the endpoint to the schedule with possibly new parameters denoted by a
1641  * different endpoint descriptor in usb_host_endpoint.
1642  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1643  * not allowed.
1644  *
1645  * The USB core will not allow URBs to be queued to an endpoint that is being
1646  * disabled, so there's no need for mutual exclusion to protect
1647  * the xhci->devs[slot_id] structure.
1648  */
1649 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1650 		struct usb_host_endpoint *ep)
1651 {
1652 	struct xhci_hcd *xhci;
1653 	struct xhci_container_ctx *in_ctx, *out_ctx;
1654 	struct xhci_input_control_ctx *ctrl_ctx;
1655 	unsigned int ep_index;
1656 	struct xhci_ep_ctx *ep_ctx;
1657 	u32 drop_flag;
1658 	u32 new_add_flags, new_drop_flags;
1659 	int ret;
1660 
1661 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1662 	if (ret <= 0)
1663 		return ret;
1664 	xhci = hcd_to_xhci(hcd);
1665 	if (xhci->xhc_state & XHCI_STATE_DYING)
1666 		return -ENODEV;
1667 
1668 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1669 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1670 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1671 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1672 				__func__, drop_flag);
1673 		return 0;
1674 	}
1675 
1676 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1677 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1678 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1679 	if (!ctrl_ctx) {
1680 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1681 				__func__);
1682 		return 0;
1683 	}
1684 
1685 	ep_index = xhci_get_endpoint_index(&ep->desc);
1686 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1687 	/* If the HC already knows the endpoint is disabled,
1688 	 * or the HCD has noted it is disabled, ignore this request
1689 	 */
1690 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1691 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1692 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1693 	    xhci_get_endpoint_flag(&ep->desc)) {
1694 		/* Do not warn when called after a usb_device_reset */
1695 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1696 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1697 				  __func__, ep);
1698 		return 0;
1699 	}
1700 
1701 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1702 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1703 
1704 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1705 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1706 
1707 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1708 
1709 	if (xhci->quirks & XHCI_MTK_HOST)
1710 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1711 
1712 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1713 			(unsigned int) ep->desc.bEndpointAddress,
1714 			udev->slot_id,
1715 			(unsigned int) new_drop_flags,
1716 			(unsigned int) new_add_flags);
1717 	return 0;
1718 }
1719 
1720 /* Add an endpoint to a new possible bandwidth configuration for this device.
1721  * Only one call to this function is allowed per endpoint before
1722  * check_bandwidth() or reset_bandwidth() must be called.
1723  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1724  * add the endpoint to the schedule with possibly new parameters denoted by a
1725  * different endpoint descriptor in usb_host_endpoint.
1726  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1727  * not allowed.
1728  *
1729  * The USB core will not allow URBs to be queued to an endpoint until the
1730  * configuration or alt setting is installed in the device, so there's no need
1731  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1732  */
1733 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1734 		struct usb_host_endpoint *ep)
1735 {
1736 	struct xhci_hcd *xhci;
1737 	struct xhci_container_ctx *in_ctx;
1738 	unsigned int ep_index;
1739 	struct xhci_input_control_ctx *ctrl_ctx;
1740 	u32 added_ctxs;
1741 	u32 new_add_flags, new_drop_flags;
1742 	struct xhci_virt_device *virt_dev;
1743 	int ret = 0;
1744 
1745 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1746 	if (ret <= 0) {
1747 		/* So we won't queue a reset ep command for a root hub */
1748 		ep->hcpriv = NULL;
1749 		return ret;
1750 	}
1751 	xhci = hcd_to_xhci(hcd);
1752 	if (xhci->xhc_state & XHCI_STATE_DYING)
1753 		return -ENODEV;
1754 
1755 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1756 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1757 		/* FIXME when we have to issue an evaluate endpoint command to
1758 		 * deal with ep0 max packet size changing once we get the
1759 		 * descriptors
1760 		 */
1761 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1762 				__func__, added_ctxs);
1763 		return 0;
1764 	}
1765 
1766 	virt_dev = xhci->devs[udev->slot_id];
1767 	in_ctx = virt_dev->in_ctx;
1768 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1769 	if (!ctrl_ctx) {
1770 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1771 				__func__);
1772 		return 0;
1773 	}
1774 
1775 	ep_index = xhci_get_endpoint_index(&ep->desc);
1776 	/* If this endpoint is already in use, and the upper layers are trying
1777 	 * to add it again without dropping it, reject the addition.
1778 	 */
1779 	if (virt_dev->eps[ep_index].ring &&
1780 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1781 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1782 				"without dropping it.\n",
1783 				(unsigned int) ep->desc.bEndpointAddress);
1784 		return -EINVAL;
1785 	}
1786 
1787 	/* If the HCD has already noted the endpoint is enabled,
1788 	 * ignore this request.
1789 	 */
1790 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1791 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1792 				__func__, ep);
1793 		return 0;
1794 	}
1795 
1796 	/*
1797 	 * Configuration and alternate setting changes must be done in
1798 	 * process context, not interrupt context (or so documenation
1799 	 * for usb_set_interface() and usb_set_configuration() claim).
1800 	 */
1801 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1802 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1803 				__func__, ep->desc.bEndpointAddress);
1804 		return -ENOMEM;
1805 	}
1806 
1807 	if (xhci->quirks & XHCI_MTK_HOST) {
1808 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1809 		if (ret < 0) {
1810 			xhci_free_or_cache_endpoint_ring(xhci,
1811 				virt_dev, ep_index);
1812 			return ret;
1813 		}
1814 	}
1815 
1816 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1817 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1818 
1819 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1820 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1821 	 * this re-adds a new state for the endpoint from the new endpoint
1822 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1823 	 * drop flags alone.
1824 	 */
1825 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1826 
1827 	/* Store the usb_device pointer for later use */
1828 	ep->hcpriv = udev;
1829 
1830 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1831 			(unsigned int) ep->desc.bEndpointAddress,
1832 			udev->slot_id,
1833 			(unsigned int) new_drop_flags,
1834 			(unsigned int) new_add_flags);
1835 	return 0;
1836 }
1837 
1838 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1839 {
1840 	struct xhci_input_control_ctx *ctrl_ctx;
1841 	struct xhci_ep_ctx *ep_ctx;
1842 	struct xhci_slot_ctx *slot_ctx;
1843 	int i;
1844 
1845 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1846 	if (!ctrl_ctx) {
1847 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1848 				__func__);
1849 		return;
1850 	}
1851 
1852 	/* When a device's add flag and drop flag are zero, any subsequent
1853 	 * configure endpoint command will leave that endpoint's state
1854 	 * untouched.  Make sure we don't leave any old state in the input
1855 	 * endpoint contexts.
1856 	 */
1857 	ctrl_ctx->drop_flags = 0;
1858 	ctrl_ctx->add_flags = 0;
1859 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1860 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1861 	/* Endpoint 0 is always valid */
1862 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1863 	for (i = 1; i < 31; ++i) {
1864 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1865 		ep_ctx->ep_info = 0;
1866 		ep_ctx->ep_info2 = 0;
1867 		ep_ctx->deq = 0;
1868 		ep_ctx->tx_info = 0;
1869 	}
1870 }
1871 
1872 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1873 		struct usb_device *udev, u32 *cmd_status)
1874 {
1875 	int ret;
1876 
1877 	switch (*cmd_status) {
1878 	case COMP_CMD_ABORT:
1879 	case COMP_CMD_STOP:
1880 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1881 		ret = -ETIME;
1882 		break;
1883 	case COMP_ENOMEM:
1884 		dev_warn(&udev->dev,
1885 			 "Not enough host controller resources for new device state.\n");
1886 		ret = -ENOMEM;
1887 		/* FIXME: can we allocate more resources for the HC? */
1888 		break;
1889 	case COMP_BW_ERR:
1890 	case COMP_2ND_BW_ERR:
1891 		dev_warn(&udev->dev,
1892 			 "Not enough bandwidth for new device state.\n");
1893 		ret = -ENOSPC;
1894 		/* FIXME: can we go back to the old state? */
1895 		break;
1896 	case COMP_TRB_ERR:
1897 		/* the HCD set up something wrong */
1898 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1899 				"add flag = 1, "
1900 				"and endpoint is not disabled.\n");
1901 		ret = -EINVAL;
1902 		break;
1903 	case COMP_DEV_ERR:
1904 		dev_warn(&udev->dev,
1905 			 "ERROR: Incompatible device for endpoint configure command.\n");
1906 		ret = -ENODEV;
1907 		break;
1908 	case COMP_SUCCESS:
1909 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1910 				"Successful Endpoint Configure command");
1911 		ret = 0;
1912 		break;
1913 	default:
1914 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1915 				*cmd_status);
1916 		ret = -EINVAL;
1917 		break;
1918 	}
1919 	return ret;
1920 }
1921 
1922 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1923 		struct usb_device *udev, u32 *cmd_status)
1924 {
1925 	int ret;
1926 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1927 
1928 	switch (*cmd_status) {
1929 	case COMP_CMD_ABORT:
1930 	case COMP_CMD_STOP:
1931 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1932 		ret = -ETIME;
1933 		break;
1934 	case COMP_EINVAL:
1935 		dev_warn(&udev->dev,
1936 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1937 		ret = -EINVAL;
1938 		break;
1939 	case COMP_EBADSLT:
1940 		dev_warn(&udev->dev,
1941 			"WARN: slot not enabled for evaluate context command.\n");
1942 		ret = -EINVAL;
1943 		break;
1944 	case COMP_CTX_STATE:
1945 		dev_warn(&udev->dev,
1946 			"WARN: invalid context state for evaluate context command.\n");
1947 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1948 		ret = -EINVAL;
1949 		break;
1950 	case COMP_DEV_ERR:
1951 		dev_warn(&udev->dev,
1952 			"ERROR: Incompatible device for evaluate context command.\n");
1953 		ret = -ENODEV;
1954 		break;
1955 	case COMP_MEL_ERR:
1956 		/* Max Exit Latency too large error */
1957 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1958 		ret = -EINVAL;
1959 		break;
1960 	case COMP_SUCCESS:
1961 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1962 				"Successful evaluate context command");
1963 		ret = 0;
1964 		break;
1965 	default:
1966 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1967 			*cmd_status);
1968 		ret = -EINVAL;
1969 		break;
1970 	}
1971 	return ret;
1972 }
1973 
1974 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1975 		struct xhci_input_control_ctx *ctrl_ctx)
1976 {
1977 	u32 valid_add_flags;
1978 	u32 valid_drop_flags;
1979 
1980 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1981 	 * (bit 1).  The default control endpoint is added during the Address
1982 	 * Device command and is never removed until the slot is disabled.
1983 	 */
1984 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1985 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1986 
1987 	/* Use hweight32 to count the number of ones in the add flags, or
1988 	 * number of endpoints added.  Don't count endpoints that are changed
1989 	 * (both added and dropped).
1990 	 */
1991 	return hweight32(valid_add_flags) -
1992 		hweight32(valid_add_flags & valid_drop_flags);
1993 }
1994 
1995 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1996 		struct xhci_input_control_ctx *ctrl_ctx)
1997 {
1998 	u32 valid_add_flags;
1999 	u32 valid_drop_flags;
2000 
2001 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2002 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2003 
2004 	return hweight32(valid_drop_flags) -
2005 		hweight32(valid_add_flags & valid_drop_flags);
2006 }
2007 
2008 /*
2009  * We need to reserve the new number of endpoints before the configure endpoint
2010  * command completes.  We can't subtract the dropped endpoints from the number
2011  * of active endpoints until the command completes because we can oversubscribe
2012  * the host in this case:
2013  *
2014  *  - the first configure endpoint command drops more endpoints than it adds
2015  *  - a second configure endpoint command that adds more endpoints is queued
2016  *  - the first configure endpoint command fails, so the config is unchanged
2017  *  - the second command may succeed, even though there isn't enough resources
2018  *
2019  * Must be called with xhci->lock held.
2020  */
2021 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2022 		struct xhci_input_control_ctx *ctrl_ctx)
2023 {
2024 	u32 added_eps;
2025 
2026 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2027 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2028 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2029 				"Not enough ep ctxs: "
2030 				"%u active, need to add %u, limit is %u.",
2031 				xhci->num_active_eps, added_eps,
2032 				xhci->limit_active_eps);
2033 		return -ENOMEM;
2034 	}
2035 	xhci->num_active_eps += added_eps;
2036 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2037 			"Adding %u ep ctxs, %u now active.", added_eps,
2038 			xhci->num_active_eps);
2039 	return 0;
2040 }
2041 
2042 /*
2043  * The configure endpoint was failed by the xHC for some other reason, so we
2044  * need to revert the resources that failed configuration would have used.
2045  *
2046  * Must be called with xhci->lock held.
2047  */
2048 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2049 		struct xhci_input_control_ctx *ctrl_ctx)
2050 {
2051 	u32 num_failed_eps;
2052 
2053 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2054 	xhci->num_active_eps -= num_failed_eps;
2055 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2056 			"Removing %u failed ep ctxs, %u now active.",
2057 			num_failed_eps,
2058 			xhci->num_active_eps);
2059 }
2060 
2061 /*
2062  * Now that the command has completed, clean up the active endpoint count by
2063  * subtracting out the endpoints that were dropped (but not changed).
2064  *
2065  * Must be called with xhci->lock held.
2066  */
2067 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2068 		struct xhci_input_control_ctx *ctrl_ctx)
2069 {
2070 	u32 num_dropped_eps;
2071 
2072 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2073 	xhci->num_active_eps -= num_dropped_eps;
2074 	if (num_dropped_eps)
2075 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2076 				"Removing %u dropped ep ctxs, %u now active.",
2077 				num_dropped_eps,
2078 				xhci->num_active_eps);
2079 }
2080 
2081 static unsigned int xhci_get_block_size(struct usb_device *udev)
2082 {
2083 	switch (udev->speed) {
2084 	case USB_SPEED_LOW:
2085 	case USB_SPEED_FULL:
2086 		return FS_BLOCK;
2087 	case USB_SPEED_HIGH:
2088 		return HS_BLOCK;
2089 	case USB_SPEED_SUPER:
2090 	case USB_SPEED_SUPER_PLUS:
2091 		return SS_BLOCK;
2092 	case USB_SPEED_UNKNOWN:
2093 	case USB_SPEED_WIRELESS:
2094 	default:
2095 		/* Should never happen */
2096 		return 1;
2097 	}
2098 }
2099 
2100 static unsigned int
2101 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2102 {
2103 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2104 		return LS_OVERHEAD;
2105 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2106 		return FS_OVERHEAD;
2107 	return HS_OVERHEAD;
2108 }
2109 
2110 /* If we are changing a LS/FS device under a HS hub,
2111  * make sure (if we are activating a new TT) that the HS bus has enough
2112  * bandwidth for this new TT.
2113  */
2114 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2115 		struct xhci_virt_device *virt_dev,
2116 		int old_active_eps)
2117 {
2118 	struct xhci_interval_bw_table *bw_table;
2119 	struct xhci_tt_bw_info *tt_info;
2120 
2121 	/* Find the bandwidth table for the root port this TT is attached to. */
2122 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2123 	tt_info = virt_dev->tt_info;
2124 	/* If this TT already had active endpoints, the bandwidth for this TT
2125 	 * has already been added.  Removing all periodic endpoints (and thus
2126 	 * making the TT enactive) will only decrease the bandwidth used.
2127 	 */
2128 	if (old_active_eps)
2129 		return 0;
2130 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2131 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2132 			return -ENOMEM;
2133 		return 0;
2134 	}
2135 	/* Not sure why we would have no new active endpoints...
2136 	 *
2137 	 * Maybe because of an Evaluate Context change for a hub update or a
2138 	 * control endpoint 0 max packet size change?
2139 	 * FIXME: skip the bandwidth calculation in that case.
2140 	 */
2141 	return 0;
2142 }
2143 
2144 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2145 		struct xhci_virt_device *virt_dev)
2146 {
2147 	unsigned int bw_reserved;
2148 
2149 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2150 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2151 		return -ENOMEM;
2152 
2153 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2154 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2155 		return -ENOMEM;
2156 
2157 	return 0;
2158 }
2159 
2160 /*
2161  * This algorithm is a very conservative estimate of the worst-case scheduling
2162  * scenario for any one interval.  The hardware dynamically schedules the
2163  * packets, so we can't tell which microframe could be the limiting factor in
2164  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2165  *
2166  * Obviously, we can't solve an NP complete problem to find the minimum worst
2167  * case scenario.  Instead, we come up with an estimate that is no less than
2168  * the worst case bandwidth used for any one microframe, but may be an
2169  * over-estimate.
2170  *
2171  * We walk the requirements for each endpoint by interval, starting with the
2172  * smallest interval, and place packets in the schedule where there is only one
2173  * possible way to schedule packets for that interval.  In order to simplify
2174  * this algorithm, we record the largest max packet size for each interval, and
2175  * assume all packets will be that size.
2176  *
2177  * For interval 0, we obviously must schedule all packets for each interval.
2178  * The bandwidth for interval 0 is just the amount of data to be transmitted
2179  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2180  * the number of packets).
2181  *
2182  * For interval 1, we have two possible microframes to schedule those packets
2183  * in.  For this algorithm, if we can schedule the same number of packets for
2184  * each possible scheduling opportunity (each microframe), we will do so.  The
2185  * remaining number of packets will be saved to be transmitted in the gaps in
2186  * the next interval's scheduling sequence.
2187  *
2188  * As we move those remaining packets to be scheduled with interval 2 packets,
2189  * we have to double the number of remaining packets to transmit.  This is
2190  * because the intervals are actually powers of 2, and we would be transmitting
2191  * the previous interval's packets twice in this interval.  We also have to be
2192  * sure that when we look at the largest max packet size for this interval, we
2193  * also look at the largest max packet size for the remaining packets and take
2194  * the greater of the two.
2195  *
2196  * The algorithm continues to evenly distribute packets in each scheduling
2197  * opportunity, and push the remaining packets out, until we get to the last
2198  * interval.  Then those packets and their associated overhead are just added
2199  * to the bandwidth used.
2200  */
2201 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2202 		struct xhci_virt_device *virt_dev,
2203 		int old_active_eps)
2204 {
2205 	unsigned int bw_reserved;
2206 	unsigned int max_bandwidth;
2207 	unsigned int bw_used;
2208 	unsigned int block_size;
2209 	struct xhci_interval_bw_table *bw_table;
2210 	unsigned int packet_size = 0;
2211 	unsigned int overhead = 0;
2212 	unsigned int packets_transmitted = 0;
2213 	unsigned int packets_remaining = 0;
2214 	unsigned int i;
2215 
2216 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2217 		return xhci_check_ss_bw(xhci, virt_dev);
2218 
2219 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2220 		max_bandwidth = HS_BW_LIMIT;
2221 		/* Convert percent of bus BW reserved to blocks reserved */
2222 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2223 	} else {
2224 		max_bandwidth = FS_BW_LIMIT;
2225 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2226 	}
2227 
2228 	bw_table = virt_dev->bw_table;
2229 	/* We need to translate the max packet size and max ESIT payloads into
2230 	 * the units the hardware uses.
2231 	 */
2232 	block_size = xhci_get_block_size(virt_dev->udev);
2233 
2234 	/* If we are manipulating a LS/FS device under a HS hub, double check
2235 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2236 	 */
2237 	if (virt_dev->tt_info) {
2238 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2239 				"Recalculating BW for rootport %u",
2240 				virt_dev->real_port);
2241 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2242 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2243 					"newly activated TT.\n");
2244 			return -ENOMEM;
2245 		}
2246 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2247 				"Recalculating BW for TT slot %u port %u",
2248 				virt_dev->tt_info->slot_id,
2249 				virt_dev->tt_info->ttport);
2250 	} else {
2251 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2252 				"Recalculating BW for rootport %u",
2253 				virt_dev->real_port);
2254 	}
2255 
2256 	/* Add in how much bandwidth will be used for interval zero, or the
2257 	 * rounded max ESIT payload + number of packets * largest overhead.
2258 	 */
2259 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2260 		bw_table->interval_bw[0].num_packets *
2261 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2262 
2263 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2264 		unsigned int bw_added;
2265 		unsigned int largest_mps;
2266 		unsigned int interval_overhead;
2267 
2268 		/*
2269 		 * How many packets could we transmit in this interval?
2270 		 * If packets didn't fit in the previous interval, we will need
2271 		 * to transmit that many packets twice within this interval.
2272 		 */
2273 		packets_remaining = 2 * packets_remaining +
2274 			bw_table->interval_bw[i].num_packets;
2275 
2276 		/* Find the largest max packet size of this or the previous
2277 		 * interval.
2278 		 */
2279 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2280 			largest_mps = 0;
2281 		else {
2282 			struct xhci_virt_ep *virt_ep;
2283 			struct list_head *ep_entry;
2284 
2285 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2286 			virt_ep = list_entry(ep_entry,
2287 					struct xhci_virt_ep, bw_endpoint_list);
2288 			/* Convert to blocks, rounding up */
2289 			largest_mps = DIV_ROUND_UP(
2290 					virt_ep->bw_info.max_packet_size,
2291 					block_size);
2292 		}
2293 		if (largest_mps > packet_size)
2294 			packet_size = largest_mps;
2295 
2296 		/* Use the larger overhead of this or the previous interval. */
2297 		interval_overhead = xhci_get_largest_overhead(
2298 				&bw_table->interval_bw[i]);
2299 		if (interval_overhead > overhead)
2300 			overhead = interval_overhead;
2301 
2302 		/* How many packets can we evenly distribute across
2303 		 * (1 << (i + 1)) possible scheduling opportunities?
2304 		 */
2305 		packets_transmitted = packets_remaining >> (i + 1);
2306 
2307 		/* Add in the bandwidth used for those scheduled packets */
2308 		bw_added = packets_transmitted * (overhead + packet_size);
2309 
2310 		/* How many packets do we have remaining to transmit? */
2311 		packets_remaining = packets_remaining % (1 << (i + 1));
2312 
2313 		/* What largest max packet size should those packets have? */
2314 		/* If we've transmitted all packets, don't carry over the
2315 		 * largest packet size.
2316 		 */
2317 		if (packets_remaining == 0) {
2318 			packet_size = 0;
2319 			overhead = 0;
2320 		} else if (packets_transmitted > 0) {
2321 			/* Otherwise if we do have remaining packets, and we've
2322 			 * scheduled some packets in this interval, take the
2323 			 * largest max packet size from endpoints with this
2324 			 * interval.
2325 			 */
2326 			packet_size = largest_mps;
2327 			overhead = interval_overhead;
2328 		}
2329 		/* Otherwise carry over packet_size and overhead from the last
2330 		 * time we had a remainder.
2331 		 */
2332 		bw_used += bw_added;
2333 		if (bw_used > max_bandwidth) {
2334 			xhci_warn(xhci, "Not enough bandwidth. "
2335 					"Proposed: %u, Max: %u\n",
2336 				bw_used, max_bandwidth);
2337 			return -ENOMEM;
2338 		}
2339 	}
2340 	/*
2341 	 * Ok, we know we have some packets left over after even-handedly
2342 	 * scheduling interval 15.  We don't know which microframes they will
2343 	 * fit into, so we over-schedule and say they will be scheduled every
2344 	 * microframe.
2345 	 */
2346 	if (packets_remaining > 0)
2347 		bw_used += overhead + packet_size;
2348 
2349 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2350 		unsigned int port_index = virt_dev->real_port - 1;
2351 
2352 		/* OK, we're manipulating a HS device attached to a
2353 		 * root port bandwidth domain.  Include the number of active TTs
2354 		 * in the bandwidth used.
2355 		 */
2356 		bw_used += TT_HS_OVERHEAD *
2357 			xhci->rh_bw[port_index].num_active_tts;
2358 	}
2359 
2360 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2361 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2362 		"Available: %u " "percent",
2363 		bw_used, max_bandwidth, bw_reserved,
2364 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2365 		max_bandwidth);
2366 
2367 	bw_used += bw_reserved;
2368 	if (bw_used > max_bandwidth) {
2369 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2370 				bw_used, max_bandwidth);
2371 		return -ENOMEM;
2372 	}
2373 
2374 	bw_table->bw_used = bw_used;
2375 	return 0;
2376 }
2377 
2378 static bool xhci_is_async_ep(unsigned int ep_type)
2379 {
2380 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2381 					ep_type != ISOC_IN_EP &&
2382 					ep_type != INT_IN_EP);
2383 }
2384 
2385 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2386 {
2387 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2388 }
2389 
2390 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2391 {
2392 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2393 
2394 	if (ep_bw->ep_interval == 0)
2395 		return SS_OVERHEAD_BURST +
2396 			(ep_bw->mult * ep_bw->num_packets *
2397 					(SS_OVERHEAD + mps));
2398 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2399 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2400 				1 << ep_bw->ep_interval);
2401 
2402 }
2403 
2404 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2405 		struct xhci_bw_info *ep_bw,
2406 		struct xhci_interval_bw_table *bw_table,
2407 		struct usb_device *udev,
2408 		struct xhci_virt_ep *virt_ep,
2409 		struct xhci_tt_bw_info *tt_info)
2410 {
2411 	struct xhci_interval_bw	*interval_bw;
2412 	int normalized_interval;
2413 
2414 	if (xhci_is_async_ep(ep_bw->type))
2415 		return;
2416 
2417 	if (udev->speed >= USB_SPEED_SUPER) {
2418 		if (xhci_is_sync_in_ep(ep_bw->type))
2419 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2420 				xhci_get_ss_bw_consumed(ep_bw);
2421 		else
2422 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2423 				xhci_get_ss_bw_consumed(ep_bw);
2424 		return;
2425 	}
2426 
2427 	/* SuperSpeed endpoints never get added to intervals in the table, so
2428 	 * this check is only valid for HS/FS/LS devices.
2429 	 */
2430 	if (list_empty(&virt_ep->bw_endpoint_list))
2431 		return;
2432 	/* For LS/FS devices, we need to translate the interval expressed in
2433 	 * microframes to frames.
2434 	 */
2435 	if (udev->speed == USB_SPEED_HIGH)
2436 		normalized_interval = ep_bw->ep_interval;
2437 	else
2438 		normalized_interval = ep_bw->ep_interval - 3;
2439 
2440 	if (normalized_interval == 0)
2441 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2442 	interval_bw = &bw_table->interval_bw[normalized_interval];
2443 	interval_bw->num_packets -= ep_bw->num_packets;
2444 	switch (udev->speed) {
2445 	case USB_SPEED_LOW:
2446 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2447 		break;
2448 	case USB_SPEED_FULL:
2449 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2450 		break;
2451 	case USB_SPEED_HIGH:
2452 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2453 		break;
2454 	case USB_SPEED_SUPER:
2455 	case USB_SPEED_SUPER_PLUS:
2456 	case USB_SPEED_UNKNOWN:
2457 	case USB_SPEED_WIRELESS:
2458 		/* Should never happen because only LS/FS/HS endpoints will get
2459 		 * added to the endpoint list.
2460 		 */
2461 		return;
2462 	}
2463 	if (tt_info)
2464 		tt_info->active_eps -= 1;
2465 	list_del_init(&virt_ep->bw_endpoint_list);
2466 }
2467 
2468 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2469 		struct xhci_bw_info *ep_bw,
2470 		struct xhci_interval_bw_table *bw_table,
2471 		struct usb_device *udev,
2472 		struct xhci_virt_ep *virt_ep,
2473 		struct xhci_tt_bw_info *tt_info)
2474 {
2475 	struct xhci_interval_bw	*interval_bw;
2476 	struct xhci_virt_ep *smaller_ep;
2477 	int normalized_interval;
2478 
2479 	if (xhci_is_async_ep(ep_bw->type))
2480 		return;
2481 
2482 	if (udev->speed == USB_SPEED_SUPER) {
2483 		if (xhci_is_sync_in_ep(ep_bw->type))
2484 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2485 				xhci_get_ss_bw_consumed(ep_bw);
2486 		else
2487 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2488 				xhci_get_ss_bw_consumed(ep_bw);
2489 		return;
2490 	}
2491 
2492 	/* For LS/FS devices, we need to translate the interval expressed in
2493 	 * microframes to frames.
2494 	 */
2495 	if (udev->speed == USB_SPEED_HIGH)
2496 		normalized_interval = ep_bw->ep_interval;
2497 	else
2498 		normalized_interval = ep_bw->ep_interval - 3;
2499 
2500 	if (normalized_interval == 0)
2501 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2502 	interval_bw = &bw_table->interval_bw[normalized_interval];
2503 	interval_bw->num_packets += ep_bw->num_packets;
2504 	switch (udev->speed) {
2505 	case USB_SPEED_LOW:
2506 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2507 		break;
2508 	case USB_SPEED_FULL:
2509 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2510 		break;
2511 	case USB_SPEED_HIGH:
2512 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2513 		break;
2514 	case USB_SPEED_SUPER:
2515 	case USB_SPEED_SUPER_PLUS:
2516 	case USB_SPEED_UNKNOWN:
2517 	case USB_SPEED_WIRELESS:
2518 		/* Should never happen because only LS/FS/HS endpoints will get
2519 		 * added to the endpoint list.
2520 		 */
2521 		return;
2522 	}
2523 
2524 	if (tt_info)
2525 		tt_info->active_eps += 1;
2526 	/* Insert the endpoint into the list, largest max packet size first. */
2527 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2528 			bw_endpoint_list) {
2529 		if (ep_bw->max_packet_size >=
2530 				smaller_ep->bw_info.max_packet_size) {
2531 			/* Add the new ep before the smaller endpoint */
2532 			list_add_tail(&virt_ep->bw_endpoint_list,
2533 					&smaller_ep->bw_endpoint_list);
2534 			return;
2535 		}
2536 	}
2537 	/* Add the new endpoint at the end of the list. */
2538 	list_add_tail(&virt_ep->bw_endpoint_list,
2539 			&interval_bw->endpoints);
2540 }
2541 
2542 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2543 		struct xhci_virt_device *virt_dev,
2544 		int old_active_eps)
2545 {
2546 	struct xhci_root_port_bw_info *rh_bw_info;
2547 	if (!virt_dev->tt_info)
2548 		return;
2549 
2550 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2551 	if (old_active_eps == 0 &&
2552 				virt_dev->tt_info->active_eps != 0) {
2553 		rh_bw_info->num_active_tts += 1;
2554 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2555 	} else if (old_active_eps != 0 &&
2556 				virt_dev->tt_info->active_eps == 0) {
2557 		rh_bw_info->num_active_tts -= 1;
2558 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2559 	}
2560 }
2561 
2562 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2563 		struct xhci_virt_device *virt_dev,
2564 		struct xhci_container_ctx *in_ctx)
2565 {
2566 	struct xhci_bw_info ep_bw_info[31];
2567 	int i;
2568 	struct xhci_input_control_ctx *ctrl_ctx;
2569 	int old_active_eps = 0;
2570 
2571 	if (virt_dev->tt_info)
2572 		old_active_eps = virt_dev->tt_info->active_eps;
2573 
2574 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2575 	if (!ctrl_ctx) {
2576 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2577 				__func__);
2578 		return -ENOMEM;
2579 	}
2580 
2581 	for (i = 0; i < 31; i++) {
2582 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2583 			continue;
2584 
2585 		/* Make a copy of the BW info in case we need to revert this */
2586 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2587 				sizeof(ep_bw_info[i]));
2588 		/* Drop the endpoint from the interval table if the endpoint is
2589 		 * being dropped or changed.
2590 		 */
2591 		if (EP_IS_DROPPED(ctrl_ctx, i))
2592 			xhci_drop_ep_from_interval_table(xhci,
2593 					&virt_dev->eps[i].bw_info,
2594 					virt_dev->bw_table,
2595 					virt_dev->udev,
2596 					&virt_dev->eps[i],
2597 					virt_dev->tt_info);
2598 	}
2599 	/* Overwrite the information stored in the endpoints' bw_info */
2600 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2601 	for (i = 0; i < 31; i++) {
2602 		/* Add any changed or added endpoints to the interval table */
2603 		if (EP_IS_ADDED(ctrl_ctx, i))
2604 			xhci_add_ep_to_interval_table(xhci,
2605 					&virt_dev->eps[i].bw_info,
2606 					virt_dev->bw_table,
2607 					virt_dev->udev,
2608 					&virt_dev->eps[i],
2609 					virt_dev->tt_info);
2610 	}
2611 
2612 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2613 		/* Ok, this fits in the bandwidth we have.
2614 		 * Update the number of active TTs.
2615 		 */
2616 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2617 		return 0;
2618 	}
2619 
2620 	/* We don't have enough bandwidth for this, revert the stored info. */
2621 	for (i = 0; i < 31; i++) {
2622 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2623 			continue;
2624 
2625 		/* Drop the new copies of any added or changed endpoints from
2626 		 * the interval table.
2627 		 */
2628 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2629 			xhci_drop_ep_from_interval_table(xhci,
2630 					&virt_dev->eps[i].bw_info,
2631 					virt_dev->bw_table,
2632 					virt_dev->udev,
2633 					&virt_dev->eps[i],
2634 					virt_dev->tt_info);
2635 		}
2636 		/* Revert the endpoint back to its old information */
2637 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2638 				sizeof(ep_bw_info[i]));
2639 		/* Add any changed or dropped endpoints back into the table */
2640 		if (EP_IS_DROPPED(ctrl_ctx, i))
2641 			xhci_add_ep_to_interval_table(xhci,
2642 					&virt_dev->eps[i].bw_info,
2643 					virt_dev->bw_table,
2644 					virt_dev->udev,
2645 					&virt_dev->eps[i],
2646 					virt_dev->tt_info);
2647 	}
2648 	return -ENOMEM;
2649 }
2650 
2651 
2652 /* Issue a configure endpoint command or evaluate context command
2653  * and wait for it to finish.
2654  */
2655 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2656 		struct usb_device *udev,
2657 		struct xhci_command *command,
2658 		bool ctx_change, bool must_succeed)
2659 {
2660 	int ret;
2661 	unsigned long flags;
2662 	struct xhci_input_control_ctx *ctrl_ctx;
2663 	struct xhci_virt_device *virt_dev;
2664 
2665 	if (!command)
2666 		return -EINVAL;
2667 
2668 	spin_lock_irqsave(&xhci->lock, flags);
2669 	virt_dev = xhci->devs[udev->slot_id];
2670 
2671 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2672 	if (!ctrl_ctx) {
2673 		spin_unlock_irqrestore(&xhci->lock, flags);
2674 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2675 				__func__);
2676 		return -ENOMEM;
2677 	}
2678 
2679 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2680 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2681 		spin_unlock_irqrestore(&xhci->lock, flags);
2682 		xhci_warn(xhci, "Not enough host resources, "
2683 				"active endpoint contexts = %u\n",
2684 				xhci->num_active_eps);
2685 		return -ENOMEM;
2686 	}
2687 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2688 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2689 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2690 			xhci_free_host_resources(xhci, ctrl_ctx);
2691 		spin_unlock_irqrestore(&xhci->lock, flags);
2692 		xhci_warn(xhci, "Not enough bandwidth\n");
2693 		return -ENOMEM;
2694 	}
2695 
2696 	if (!ctx_change)
2697 		ret = xhci_queue_configure_endpoint(xhci, command,
2698 				command->in_ctx->dma,
2699 				udev->slot_id, must_succeed);
2700 	else
2701 		ret = xhci_queue_evaluate_context(xhci, command,
2702 				command->in_ctx->dma,
2703 				udev->slot_id, must_succeed);
2704 	if (ret < 0) {
2705 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2706 			xhci_free_host_resources(xhci, ctrl_ctx);
2707 		spin_unlock_irqrestore(&xhci->lock, flags);
2708 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2709 				"FIXME allocate a new ring segment");
2710 		return -ENOMEM;
2711 	}
2712 	xhci_ring_cmd_db(xhci);
2713 	spin_unlock_irqrestore(&xhci->lock, flags);
2714 
2715 	/* Wait for the configure endpoint command to complete */
2716 	wait_for_completion(command->completion);
2717 
2718 	if (!ctx_change)
2719 		ret = xhci_configure_endpoint_result(xhci, udev,
2720 						     &command->status);
2721 	else
2722 		ret = xhci_evaluate_context_result(xhci, udev,
2723 						   &command->status);
2724 
2725 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2726 		spin_lock_irqsave(&xhci->lock, flags);
2727 		/* If the command failed, remove the reserved resources.
2728 		 * Otherwise, clean up the estimate to include dropped eps.
2729 		 */
2730 		if (ret)
2731 			xhci_free_host_resources(xhci, ctrl_ctx);
2732 		else
2733 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2734 		spin_unlock_irqrestore(&xhci->lock, flags);
2735 	}
2736 	return ret;
2737 }
2738 
2739 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2740 	struct xhci_virt_device *vdev, int i)
2741 {
2742 	struct xhci_virt_ep *ep = &vdev->eps[i];
2743 
2744 	if (ep->ep_state & EP_HAS_STREAMS) {
2745 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2746 				xhci_get_endpoint_address(i));
2747 		xhci_free_stream_info(xhci, ep->stream_info);
2748 		ep->stream_info = NULL;
2749 		ep->ep_state &= ~EP_HAS_STREAMS;
2750 	}
2751 }
2752 
2753 /* Called after one or more calls to xhci_add_endpoint() or
2754  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2755  * to call xhci_reset_bandwidth().
2756  *
2757  * Since we are in the middle of changing either configuration or
2758  * installing a new alt setting, the USB core won't allow URBs to be
2759  * enqueued for any endpoint on the old config or interface.  Nothing
2760  * else should be touching the xhci->devs[slot_id] structure, so we
2761  * don't need to take the xhci->lock for manipulating that.
2762  */
2763 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2764 {
2765 	int i;
2766 	int ret = 0;
2767 	struct xhci_hcd *xhci;
2768 	struct xhci_virt_device	*virt_dev;
2769 	struct xhci_input_control_ctx *ctrl_ctx;
2770 	struct xhci_slot_ctx *slot_ctx;
2771 	struct xhci_command *command;
2772 
2773 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2774 	if (ret <= 0)
2775 		return ret;
2776 	xhci = hcd_to_xhci(hcd);
2777 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2778 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2779 		return -ENODEV;
2780 
2781 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2782 	virt_dev = xhci->devs[udev->slot_id];
2783 
2784 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2785 	if (!command)
2786 		return -ENOMEM;
2787 
2788 	command->in_ctx = virt_dev->in_ctx;
2789 
2790 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2791 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2792 	if (!ctrl_ctx) {
2793 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2794 				__func__);
2795 		ret = -ENOMEM;
2796 		goto command_cleanup;
2797 	}
2798 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2799 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2800 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2801 
2802 	/* Don't issue the command if there's no endpoints to update. */
2803 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2804 	    ctrl_ctx->drop_flags == 0) {
2805 		ret = 0;
2806 		goto command_cleanup;
2807 	}
2808 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2809 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2810 	for (i = 31; i >= 1; i--) {
2811 		__le32 le32 = cpu_to_le32(BIT(i));
2812 
2813 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2814 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2815 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2816 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2817 			break;
2818 		}
2819 	}
2820 	xhci_dbg(xhci, "New Input Control Context:\n");
2821 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2822 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2823 
2824 	ret = xhci_configure_endpoint(xhci, udev, command,
2825 			false, false);
2826 	if (ret)
2827 		/* Callee should call reset_bandwidth() */
2828 		goto command_cleanup;
2829 
2830 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2831 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2832 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2833 
2834 	/* Free any rings that were dropped, but not changed. */
2835 	for (i = 1; i < 31; ++i) {
2836 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2837 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2838 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2839 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2840 		}
2841 	}
2842 	xhci_zero_in_ctx(xhci, virt_dev);
2843 	/*
2844 	 * Install any rings for completely new endpoints or changed endpoints,
2845 	 * and free or cache any old rings from changed endpoints.
2846 	 */
2847 	for (i = 1; i < 31; ++i) {
2848 		if (!virt_dev->eps[i].new_ring)
2849 			continue;
2850 		/* Only cache or free the old ring if it exists.
2851 		 * It may not if this is the first add of an endpoint.
2852 		 */
2853 		if (virt_dev->eps[i].ring) {
2854 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2855 		}
2856 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2857 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2858 		virt_dev->eps[i].new_ring = NULL;
2859 	}
2860 command_cleanup:
2861 	kfree(command->completion);
2862 	kfree(command);
2863 
2864 	return ret;
2865 }
2866 
2867 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2868 {
2869 	struct xhci_hcd *xhci;
2870 	struct xhci_virt_device	*virt_dev;
2871 	int i, ret;
2872 
2873 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2874 	if (ret <= 0)
2875 		return;
2876 	xhci = hcd_to_xhci(hcd);
2877 
2878 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2879 	virt_dev = xhci->devs[udev->slot_id];
2880 	/* Free any rings allocated for added endpoints */
2881 	for (i = 0; i < 31; ++i) {
2882 		if (virt_dev->eps[i].new_ring) {
2883 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2884 			virt_dev->eps[i].new_ring = NULL;
2885 		}
2886 	}
2887 	xhci_zero_in_ctx(xhci, virt_dev);
2888 }
2889 
2890 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2891 		struct xhci_container_ctx *in_ctx,
2892 		struct xhci_container_ctx *out_ctx,
2893 		struct xhci_input_control_ctx *ctrl_ctx,
2894 		u32 add_flags, u32 drop_flags)
2895 {
2896 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2897 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2898 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2899 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2900 
2901 	xhci_dbg(xhci, "Input Context:\n");
2902 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2903 }
2904 
2905 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2906 		unsigned int slot_id, unsigned int ep_index,
2907 		struct xhci_dequeue_state *deq_state)
2908 {
2909 	struct xhci_input_control_ctx *ctrl_ctx;
2910 	struct xhci_container_ctx *in_ctx;
2911 	struct xhci_ep_ctx *ep_ctx;
2912 	u32 added_ctxs;
2913 	dma_addr_t addr;
2914 
2915 	in_ctx = xhci->devs[slot_id]->in_ctx;
2916 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2917 	if (!ctrl_ctx) {
2918 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2919 				__func__);
2920 		return;
2921 	}
2922 
2923 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2924 			xhci->devs[slot_id]->out_ctx, ep_index);
2925 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2926 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2927 			deq_state->new_deq_ptr);
2928 	if (addr == 0) {
2929 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2930 				"reset ep command\n");
2931 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2932 				deq_state->new_deq_seg,
2933 				deq_state->new_deq_ptr);
2934 		return;
2935 	}
2936 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2937 
2938 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2939 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2940 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2941 			added_ctxs, added_ctxs);
2942 }
2943 
2944 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2945 			unsigned int ep_index, struct xhci_td *td)
2946 {
2947 	struct xhci_dequeue_state deq_state;
2948 	struct xhci_virt_ep *ep;
2949 	struct usb_device *udev = td->urb->dev;
2950 
2951 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2952 			"Cleaning up stalled endpoint ring");
2953 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2954 	/* We need to move the HW's dequeue pointer past this TD,
2955 	 * or it will attempt to resend it on the next doorbell ring.
2956 	 */
2957 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2958 			ep_index, ep->stopped_stream, td, &deq_state);
2959 
2960 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2961 		return;
2962 
2963 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2964 	 * issue a configure endpoint command later.
2965 	 */
2966 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2967 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2968 				"Queueing new dequeue state");
2969 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2970 				ep_index, ep->stopped_stream, &deq_state);
2971 	} else {
2972 		/* Better hope no one uses the input context between now and the
2973 		 * reset endpoint completion!
2974 		 * XXX: No idea how this hardware will react when stream rings
2975 		 * are enabled.
2976 		 */
2977 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2978 				"Setting up input context for "
2979 				"configure endpoint command");
2980 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2981 				ep_index, &deq_state);
2982 	}
2983 }
2984 
2985 /* Called when clearing halted device. The core should have sent the control
2986  * message to clear the device halt condition. The host side of the halt should
2987  * already be cleared with a reset endpoint command issued when the STALL tx
2988  * event was received.
2989  *
2990  * Context: in_interrupt
2991  */
2992 
2993 void xhci_endpoint_reset(struct usb_hcd *hcd,
2994 		struct usb_host_endpoint *ep)
2995 {
2996 	struct xhci_hcd *xhci;
2997 
2998 	xhci = hcd_to_xhci(hcd);
2999 
3000 	/*
3001 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
3002 	 * The Reset Endpoint Command may only be issued to endpoints in the
3003 	 * Halted state. If software wishes reset the Data Toggle or Sequence
3004 	 * Number of an endpoint that isn't in the Halted state, then software
3005 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
3006 	 * for the target endpoint. that is in the Stopped state.
3007 	 */
3008 
3009 	/* For now just print debug to follow the situation */
3010 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3011 		 ep->desc.bEndpointAddress);
3012 }
3013 
3014 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3015 		struct usb_device *udev, struct usb_host_endpoint *ep,
3016 		unsigned int slot_id)
3017 {
3018 	int ret;
3019 	unsigned int ep_index;
3020 	unsigned int ep_state;
3021 
3022 	if (!ep)
3023 		return -EINVAL;
3024 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3025 	if (ret <= 0)
3026 		return -EINVAL;
3027 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3028 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3029 				" descriptor for ep 0x%x does not support streams\n",
3030 				ep->desc.bEndpointAddress);
3031 		return -EINVAL;
3032 	}
3033 
3034 	ep_index = xhci_get_endpoint_index(&ep->desc);
3035 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3036 	if (ep_state & EP_HAS_STREAMS ||
3037 			ep_state & EP_GETTING_STREAMS) {
3038 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3039 				"already has streams set up.\n",
3040 				ep->desc.bEndpointAddress);
3041 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3042 				"dynamic stream context array reallocation.\n");
3043 		return -EINVAL;
3044 	}
3045 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3046 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3047 				"endpoint 0x%x; URBs are pending.\n",
3048 				ep->desc.bEndpointAddress);
3049 		return -EINVAL;
3050 	}
3051 	return 0;
3052 }
3053 
3054 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3055 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3056 {
3057 	unsigned int max_streams;
3058 
3059 	/* The stream context array size must be a power of two */
3060 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3061 	/*
3062 	 * Find out how many primary stream array entries the host controller
3063 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3064 	 * level page entries), but that's an optional feature for xHCI host
3065 	 * controllers. xHCs must support at least 4 stream IDs.
3066 	 */
3067 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3068 	if (*num_stream_ctxs > max_streams) {
3069 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3070 				max_streams);
3071 		*num_stream_ctxs = max_streams;
3072 		*num_streams = max_streams;
3073 	}
3074 }
3075 
3076 /* Returns an error code if one of the endpoint already has streams.
3077  * This does not change any data structures, it only checks and gathers
3078  * information.
3079  */
3080 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3081 		struct usb_device *udev,
3082 		struct usb_host_endpoint **eps, unsigned int num_eps,
3083 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3084 {
3085 	unsigned int max_streams;
3086 	unsigned int endpoint_flag;
3087 	int i;
3088 	int ret;
3089 
3090 	for (i = 0; i < num_eps; i++) {
3091 		ret = xhci_check_streams_endpoint(xhci, udev,
3092 				eps[i], udev->slot_id);
3093 		if (ret < 0)
3094 			return ret;
3095 
3096 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3097 		if (max_streams < (*num_streams - 1)) {
3098 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3099 					eps[i]->desc.bEndpointAddress,
3100 					max_streams);
3101 			*num_streams = max_streams+1;
3102 		}
3103 
3104 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3105 		if (*changed_ep_bitmask & endpoint_flag)
3106 			return -EINVAL;
3107 		*changed_ep_bitmask |= endpoint_flag;
3108 	}
3109 	return 0;
3110 }
3111 
3112 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3113 		struct usb_device *udev,
3114 		struct usb_host_endpoint **eps, unsigned int num_eps)
3115 {
3116 	u32 changed_ep_bitmask = 0;
3117 	unsigned int slot_id;
3118 	unsigned int ep_index;
3119 	unsigned int ep_state;
3120 	int i;
3121 
3122 	slot_id = udev->slot_id;
3123 	if (!xhci->devs[slot_id])
3124 		return 0;
3125 
3126 	for (i = 0; i < num_eps; i++) {
3127 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3128 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3129 		/* Are streams already being freed for the endpoint? */
3130 		if (ep_state & EP_GETTING_NO_STREAMS) {
3131 			xhci_warn(xhci, "WARN Can't disable streams for "
3132 					"endpoint 0x%x, "
3133 					"streams are being disabled already\n",
3134 					eps[i]->desc.bEndpointAddress);
3135 			return 0;
3136 		}
3137 		/* Are there actually any streams to free? */
3138 		if (!(ep_state & EP_HAS_STREAMS) &&
3139 				!(ep_state & EP_GETTING_STREAMS)) {
3140 			xhci_warn(xhci, "WARN Can't disable streams for "
3141 					"endpoint 0x%x, "
3142 					"streams are already disabled!\n",
3143 					eps[i]->desc.bEndpointAddress);
3144 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3145 					"with non-streams endpoint\n");
3146 			return 0;
3147 		}
3148 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3149 	}
3150 	return changed_ep_bitmask;
3151 }
3152 
3153 /*
3154  * The USB device drivers use this function (through the HCD interface in USB
3155  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3156  * coordinate mass storage command queueing across multiple endpoints (basically
3157  * a stream ID == a task ID).
3158  *
3159  * Setting up streams involves allocating the same size stream context array
3160  * for each endpoint and issuing a configure endpoint command for all endpoints.
3161  *
3162  * Don't allow the call to succeed if one endpoint only supports one stream
3163  * (which means it doesn't support streams at all).
3164  *
3165  * Drivers may get less stream IDs than they asked for, if the host controller
3166  * hardware or endpoints claim they can't support the number of requested
3167  * stream IDs.
3168  */
3169 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3170 		struct usb_host_endpoint **eps, unsigned int num_eps,
3171 		unsigned int num_streams, gfp_t mem_flags)
3172 {
3173 	int i, ret;
3174 	struct xhci_hcd *xhci;
3175 	struct xhci_virt_device *vdev;
3176 	struct xhci_command *config_cmd;
3177 	struct xhci_input_control_ctx *ctrl_ctx;
3178 	unsigned int ep_index;
3179 	unsigned int num_stream_ctxs;
3180 	unsigned long flags;
3181 	u32 changed_ep_bitmask = 0;
3182 
3183 	if (!eps)
3184 		return -EINVAL;
3185 
3186 	/* Add one to the number of streams requested to account for
3187 	 * stream 0 that is reserved for xHCI usage.
3188 	 */
3189 	num_streams += 1;
3190 	xhci = hcd_to_xhci(hcd);
3191 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3192 			num_streams);
3193 
3194 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3195 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3196 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3197 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3198 		return -ENOSYS;
3199 	}
3200 
3201 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3202 	if (!config_cmd) {
3203 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3204 		return -ENOMEM;
3205 	}
3206 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3207 	if (!ctrl_ctx) {
3208 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3209 				__func__);
3210 		xhci_free_command(xhci, config_cmd);
3211 		return -ENOMEM;
3212 	}
3213 
3214 	/* Check to make sure all endpoints are not already configured for
3215 	 * streams.  While we're at it, find the maximum number of streams that
3216 	 * all the endpoints will support and check for duplicate endpoints.
3217 	 */
3218 	spin_lock_irqsave(&xhci->lock, flags);
3219 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3220 			num_eps, &num_streams, &changed_ep_bitmask);
3221 	if (ret < 0) {
3222 		xhci_free_command(xhci, config_cmd);
3223 		spin_unlock_irqrestore(&xhci->lock, flags);
3224 		return ret;
3225 	}
3226 	if (num_streams <= 1) {
3227 		xhci_warn(xhci, "WARN: endpoints can't handle "
3228 				"more than one stream.\n");
3229 		xhci_free_command(xhci, config_cmd);
3230 		spin_unlock_irqrestore(&xhci->lock, flags);
3231 		return -EINVAL;
3232 	}
3233 	vdev = xhci->devs[udev->slot_id];
3234 	/* Mark each endpoint as being in transition, so
3235 	 * xhci_urb_enqueue() will reject all URBs.
3236 	 */
3237 	for (i = 0; i < num_eps; i++) {
3238 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3239 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3240 	}
3241 	spin_unlock_irqrestore(&xhci->lock, flags);
3242 
3243 	/* Setup internal data structures and allocate HW data structures for
3244 	 * streams (but don't install the HW structures in the input context
3245 	 * until we're sure all memory allocation succeeded).
3246 	 */
3247 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3248 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3249 			num_stream_ctxs, num_streams);
3250 
3251 	for (i = 0; i < num_eps; i++) {
3252 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3253 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3254 				num_stream_ctxs,
3255 				num_streams, mem_flags);
3256 		if (!vdev->eps[ep_index].stream_info)
3257 			goto cleanup;
3258 		/* Set maxPstreams in endpoint context and update deq ptr to
3259 		 * point to stream context array. FIXME
3260 		 */
3261 	}
3262 
3263 	/* Set up the input context for a configure endpoint command. */
3264 	for (i = 0; i < num_eps; i++) {
3265 		struct xhci_ep_ctx *ep_ctx;
3266 
3267 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3268 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3269 
3270 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3271 				vdev->out_ctx, ep_index);
3272 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3273 				vdev->eps[ep_index].stream_info);
3274 	}
3275 	/* Tell the HW to drop its old copy of the endpoint context info
3276 	 * and add the updated copy from the input context.
3277 	 */
3278 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3279 			vdev->out_ctx, ctrl_ctx,
3280 			changed_ep_bitmask, changed_ep_bitmask);
3281 
3282 	/* Issue and wait for the configure endpoint command */
3283 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3284 			false, false);
3285 
3286 	/* xHC rejected the configure endpoint command for some reason, so we
3287 	 * leave the old ring intact and free our internal streams data
3288 	 * structure.
3289 	 */
3290 	if (ret < 0)
3291 		goto cleanup;
3292 
3293 	spin_lock_irqsave(&xhci->lock, flags);
3294 	for (i = 0; i < num_eps; i++) {
3295 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3296 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3297 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3298 			 udev->slot_id, ep_index);
3299 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3300 	}
3301 	xhci_free_command(xhci, config_cmd);
3302 	spin_unlock_irqrestore(&xhci->lock, flags);
3303 
3304 	/* Subtract 1 for stream 0, which drivers can't use */
3305 	return num_streams - 1;
3306 
3307 cleanup:
3308 	/* If it didn't work, free the streams! */
3309 	for (i = 0; i < num_eps; i++) {
3310 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3311 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3312 		vdev->eps[ep_index].stream_info = NULL;
3313 		/* FIXME Unset maxPstreams in endpoint context and
3314 		 * update deq ptr to point to normal string ring.
3315 		 */
3316 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3317 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3318 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3319 	}
3320 	xhci_free_command(xhci, config_cmd);
3321 	return -ENOMEM;
3322 }
3323 
3324 /* Transition the endpoint from using streams to being a "normal" endpoint
3325  * without streams.
3326  *
3327  * Modify the endpoint context state, submit a configure endpoint command,
3328  * and free all endpoint rings for streams if that completes successfully.
3329  */
3330 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3331 		struct usb_host_endpoint **eps, unsigned int num_eps,
3332 		gfp_t mem_flags)
3333 {
3334 	int i, ret;
3335 	struct xhci_hcd *xhci;
3336 	struct xhci_virt_device *vdev;
3337 	struct xhci_command *command;
3338 	struct xhci_input_control_ctx *ctrl_ctx;
3339 	unsigned int ep_index;
3340 	unsigned long flags;
3341 	u32 changed_ep_bitmask;
3342 
3343 	xhci = hcd_to_xhci(hcd);
3344 	vdev = xhci->devs[udev->slot_id];
3345 
3346 	/* Set up a configure endpoint command to remove the streams rings */
3347 	spin_lock_irqsave(&xhci->lock, flags);
3348 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3349 			udev, eps, num_eps);
3350 	if (changed_ep_bitmask == 0) {
3351 		spin_unlock_irqrestore(&xhci->lock, flags);
3352 		return -EINVAL;
3353 	}
3354 
3355 	/* Use the xhci_command structure from the first endpoint.  We may have
3356 	 * allocated too many, but the driver may call xhci_free_streams() for
3357 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3358 	 */
3359 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3360 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3361 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3362 	if (!ctrl_ctx) {
3363 		spin_unlock_irqrestore(&xhci->lock, flags);
3364 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3365 				__func__);
3366 		return -EINVAL;
3367 	}
3368 
3369 	for (i = 0; i < num_eps; i++) {
3370 		struct xhci_ep_ctx *ep_ctx;
3371 
3372 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3373 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3374 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3375 			EP_GETTING_NO_STREAMS;
3376 
3377 		xhci_endpoint_copy(xhci, command->in_ctx,
3378 				vdev->out_ctx, ep_index);
3379 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3380 				&vdev->eps[ep_index]);
3381 	}
3382 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3383 			vdev->out_ctx, ctrl_ctx,
3384 			changed_ep_bitmask, changed_ep_bitmask);
3385 	spin_unlock_irqrestore(&xhci->lock, flags);
3386 
3387 	/* Issue and wait for the configure endpoint command,
3388 	 * which must succeed.
3389 	 */
3390 	ret = xhci_configure_endpoint(xhci, udev, command,
3391 			false, true);
3392 
3393 	/* xHC rejected the configure endpoint command for some reason, so we
3394 	 * leave the streams rings intact.
3395 	 */
3396 	if (ret < 0)
3397 		return ret;
3398 
3399 	spin_lock_irqsave(&xhci->lock, flags);
3400 	for (i = 0; i < num_eps; i++) {
3401 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3402 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3403 		vdev->eps[ep_index].stream_info = NULL;
3404 		/* FIXME Unset maxPstreams in endpoint context and
3405 		 * update deq ptr to point to normal string ring.
3406 		 */
3407 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3408 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3409 	}
3410 	spin_unlock_irqrestore(&xhci->lock, flags);
3411 
3412 	return 0;
3413 }
3414 
3415 /*
3416  * Deletes endpoint resources for endpoints that were active before a Reset
3417  * Device command, or a Disable Slot command.  The Reset Device command leaves
3418  * the control endpoint intact, whereas the Disable Slot command deletes it.
3419  *
3420  * Must be called with xhci->lock held.
3421  */
3422 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3423 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3424 {
3425 	int i;
3426 	unsigned int num_dropped_eps = 0;
3427 	unsigned int drop_flags = 0;
3428 
3429 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3430 		if (virt_dev->eps[i].ring) {
3431 			drop_flags |= 1 << i;
3432 			num_dropped_eps++;
3433 		}
3434 	}
3435 	xhci->num_active_eps -= num_dropped_eps;
3436 	if (num_dropped_eps)
3437 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3438 				"Dropped %u ep ctxs, flags = 0x%x, "
3439 				"%u now active.",
3440 				num_dropped_eps, drop_flags,
3441 				xhci->num_active_eps);
3442 }
3443 
3444 /*
3445  * This submits a Reset Device Command, which will set the device state to 0,
3446  * set the device address to 0, and disable all the endpoints except the default
3447  * control endpoint.  The USB core should come back and call
3448  * xhci_address_device(), and then re-set up the configuration.  If this is
3449  * called because of a usb_reset_and_verify_device(), then the old alternate
3450  * settings will be re-installed through the normal bandwidth allocation
3451  * functions.
3452  *
3453  * Wait for the Reset Device command to finish.  Remove all structures
3454  * associated with the endpoints that were disabled.  Clear the input device
3455  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3456  *
3457  * If the virt_dev to be reset does not exist or does not match the udev,
3458  * it means the device is lost, possibly due to the xHC restore error and
3459  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3460  * re-allocate the device.
3461  */
3462 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3463 {
3464 	int ret, i;
3465 	unsigned long flags;
3466 	struct xhci_hcd *xhci;
3467 	unsigned int slot_id;
3468 	struct xhci_virt_device *virt_dev;
3469 	struct xhci_command *reset_device_cmd;
3470 	int last_freed_endpoint;
3471 	struct xhci_slot_ctx *slot_ctx;
3472 	int old_active_eps = 0;
3473 
3474 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3475 	if (ret <= 0)
3476 		return ret;
3477 	xhci = hcd_to_xhci(hcd);
3478 	slot_id = udev->slot_id;
3479 	virt_dev = xhci->devs[slot_id];
3480 	if (!virt_dev) {
3481 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3482 				"not exist. Re-allocate the device\n", slot_id);
3483 		ret = xhci_alloc_dev(hcd, udev);
3484 		if (ret == 1)
3485 			return 0;
3486 		else
3487 			return -EINVAL;
3488 	}
3489 
3490 	if (virt_dev->tt_info)
3491 		old_active_eps = virt_dev->tt_info->active_eps;
3492 
3493 	if (virt_dev->udev != udev) {
3494 		/* If the virt_dev and the udev does not match, this virt_dev
3495 		 * may belong to another udev.
3496 		 * Re-allocate the device.
3497 		 */
3498 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3499 				"not match the udev. Re-allocate the device\n",
3500 				slot_id);
3501 		ret = xhci_alloc_dev(hcd, udev);
3502 		if (ret == 1)
3503 			return 0;
3504 		else
3505 			return -EINVAL;
3506 	}
3507 
3508 	/* If device is not setup, there is no point in resetting it */
3509 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3510 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3511 						SLOT_STATE_DISABLED)
3512 		return 0;
3513 
3514 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3515 	/* Allocate the command structure that holds the struct completion.
3516 	 * Assume we're in process context, since the normal device reset
3517 	 * process has to wait for the device anyway.  Storage devices are
3518 	 * reset as part of error handling, so use GFP_NOIO instead of
3519 	 * GFP_KERNEL.
3520 	 */
3521 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3522 	if (!reset_device_cmd) {
3523 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3524 		return -ENOMEM;
3525 	}
3526 
3527 	/* Attempt to submit the Reset Device command to the command ring */
3528 	spin_lock_irqsave(&xhci->lock, flags);
3529 
3530 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3531 	if (ret) {
3532 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3533 		spin_unlock_irqrestore(&xhci->lock, flags);
3534 		goto command_cleanup;
3535 	}
3536 	xhci_ring_cmd_db(xhci);
3537 	spin_unlock_irqrestore(&xhci->lock, flags);
3538 
3539 	/* Wait for the Reset Device command to finish */
3540 	wait_for_completion(reset_device_cmd->completion);
3541 
3542 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3543 	 * unless we tried to reset a slot ID that wasn't enabled,
3544 	 * or the device wasn't in the addressed or configured state.
3545 	 */
3546 	ret = reset_device_cmd->status;
3547 	switch (ret) {
3548 	case COMP_CMD_ABORT:
3549 	case COMP_CMD_STOP:
3550 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3551 		ret = -ETIME;
3552 		goto command_cleanup;
3553 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3554 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3555 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3556 				slot_id,
3557 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3558 		xhci_dbg(xhci, "Not freeing device rings.\n");
3559 		/* Don't treat this as an error.  May change my mind later. */
3560 		ret = 0;
3561 		goto command_cleanup;
3562 	case COMP_SUCCESS:
3563 		xhci_dbg(xhci, "Successful reset device command.\n");
3564 		break;
3565 	default:
3566 		if (xhci_is_vendor_info_code(xhci, ret))
3567 			break;
3568 		xhci_warn(xhci, "Unknown completion code %u for "
3569 				"reset device command.\n", ret);
3570 		ret = -EINVAL;
3571 		goto command_cleanup;
3572 	}
3573 
3574 	/* Free up host controller endpoint resources */
3575 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3576 		spin_lock_irqsave(&xhci->lock, flags);
3577 		/* Don't delete the default control endpoint resources */
3578 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3579 		spin_unlock_irqrestore(&xhci->lock, flags);
3580 	}
3581 
3582 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3583 	last_freed_endpoint = 1;
3584 	for (i = 1; i < 31; ++i) {
3585 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3586 
3587 		if (ep->ep_state & EP_HAS_STREAMS) {
3588 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3589 					xhci_get_endpoint_address(i));
3590 			xhci_free_stream_info(xhci, ep->stream_info);
3591 			ep->stream_info = NULL;
3592 			ep->ep_state &= ~EP_HAS_STREAMS;
3593 		}
3594 
3595 		if (ep->ring) {
3596 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3597 			last_freed_endpoint = i;
3598 		}
3599 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3600 			xhci_drop_ep_from_interval_table(xhci,
3601 					&virt_dev->eps[i].bw_info,
3602 					virt_dev->bw_table,
3603 					udev,
3604 					&virt_dev->eps[i],
3605 					virt_dev->tt_info);
3606 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3607 	}
3608 	/* If necessary, update the number of active TTs on this root port */
3609 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3610 
3611 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3612 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3613 	ret = 0;
3614 
3615 command_cleanup:
3616 	xhci_free_command(xhci, reset_device_cmd);
3617 	return ret;
3618 }
3619 
3620 /*
3621  * At this point, the struct usb_device is about to go away, the device has
3622  * disconnected, and all traffic has been stopped and the endpoints have been
3623  * disabled.  Free any HC data structures associated with that device.
3624  */
3625 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3626 {
3627 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3628 	struct xhci_virt_device *virt_dev;
3629 	unsigned long flags;
3630 	u32 state;
3631 	int i, ret;
3632 	struct xhci_command *command;
3633 
3634 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3635 	if (!command)
3636 		return;
3637 
3638 #ifndef CONFIG_USB_DEFAULT_PERSIST
3639 	/*
3640 	 * We called pm_runtime_get_noresume when the device was attached.
3641 	 * Decrement the counter here to allow controller to runtime suspend
3642 	 * if no devices remain.
3643 	 */
3644 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3645 		pm_runtime_put_noidle(hcd->self.controller);
3646 #endif
3647 
3648 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3649 	/* If the host is halted due to driver unload, we still need to free the
3650 	 * device.
3651 	 */
3652 	if (ret <= 0 && ret != -ENODEV) {
3653 		kfree(command);
3654 		return;
3655 	}
3656 
3657 	virt_dev = xhci->devs[udev->slot_id];
3658 
3659 	/* Stop any wayward timer functions (which may grab the lock) */
3660 	for (i = 0; i < 31; ++i) {
3661 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3662 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3663 	}
3664 
3665 	spin_lock_irqsave(&xhci->lock, flags);
3666 	/* Don't disable the slot if the host controller is dead. */
3667 	state = readl(&xhci->op_regs->status);
3668 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3669 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3670 		xhci_free_virt_device(xhci, udev->slot_id);
3671 		spin_unlock_irqrestore(&xhci->lock, flags);
3672 		kfree(command);
3673 		return;
3674 	}
3675 
3676 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3677 				    udev->slot_id)) {
3678 		spin_unlock_irqrestore(&xhci->lock, flags);
3679 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3680 		return;
3681 	}
3682 	xhci_ring_cmd_db(xhci);
3683 	spin_unlock_irqrestore(&xhci->lock, flags);
3684 
3685 	/*
3686 	 * Event command completion handler will free any data structures
3687 	 * associated with the slot.  XXX Can free sleep?
3688 	 */
3689 }
3690 
3691 /*
3692  * Checks if we have enough host controller resources for the default control
3693  * endpoint.
3694  *
3695  * Must be called with xhci->lock held.
3696  */
3697 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3698 {
3699 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3700 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3701 				"Not enough ep ctxs: "
3702 				"%u active, need to add 1, limit is %u.",
3703 				xhci->num_active_eps, xhci->limit_active_eps);
3704 		return -ENOMEM;
3705 	}
3706 	xhci->num_active_eps += 1;
3707 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3708 			"Adding 1 ep ctx, %u now active.",
3709 			xhci->num_active_eps);
3710 	return 0;
3711 }
3712 
3713 
3714 /*
3715  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3716  * timed out, or allocating memory failed.  Returns 1 on success.
3717  */
3718 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3719 {
3720 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3721 	unsigned long flags;
3722 	int ret, slot_id;
3723 	struct xhci_command *command;
3724 
3725 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3726 	if (!command)
3727 		return 0;
3728 
3729 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3730 	mutex_lock(&xhci->mutex);
3731 	spin_lock_irqsave(&xhci->lock, flags);
3732 	command->completion = &xhci->addr_dev;
3733 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3734 	if (ret) {
3735 		spin_unlock_irqrestore(&xhci->lock, flags);
3736 		mutex_unlock(&xhci->mutex);
3737 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3738 		kfree(command);
3739 		return 0;
3740 	}
3741 	xhci_ring_cmd_db(xhci);
3742 	spin_unlock_irqrestore(&xhci->lock, flags);
3743 
3744 	wait_for_completion(command->completion);
3745 	slot_id = xhci->slot_id;
3746 	mutex_unlock(&xhci->mutex);
3747 
3748 	if (!slot_id || command->status != COMP_SUCCESS) {
3749 		xhci_err(xhci, "Error while assigning device slot ID\n");
3750 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3751 				HCS_MAX_SLOTS(
3752 					readl(&xhci->cap_regs->hcs_params1)));
3753 		kfree(command);
3754 		return 0;
3755 	}
3756 
3757 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3758 		spin_lock_irqsave(&xhci->lock, flags);
3759 		ret = xhci_reserve_host_control_ep_resources(xhci);
3760 		if (ret) {
3761 			spin_unlock_irqrestore(&xhci->lock, flags);
3762 			xhci_warn(xhci, "Not enough host resources, "
3763 					"active endpoint contexts = %u\n",
3764 					xhci->num_active_eps);
3765 			goto disable_slot;
3766 		}
3767 		spin_unlock_irqrestore(&xhci->lock, flags);
3768 	}
3769 	/* Use GFP_NOIO, since this function can be called from
3770 	 * xhci_discover_or_reset_device(), which may be called as part of
3771 	 * mass storage driver error handling.
3772 	 */
3773 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3774 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3775 		goto disable_slot;
3776 	}
3777 	udev->slot_id = slot_id;
3778 
3779 #ifndef CONFIG_USB_DEFAULT_PERSIST
3780 	/*
3781 	 * If resetting upon resume, we can't put the controller into runtime
3782 	 * suspend if there is a device attached.
3783 	 */
3784 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3785 		pm_runtime_get_noresume(hcd->self.controller);
3786 #endif
3787 
3788 
3789 	kfree(command);
3790 	/* Is this a LS or FS device under a HS hub? */
3791 	/* Hub or peripherial? */
3792 	return 1;
3793 
3794 disable_slot:
3795 	/* Disable slot, if we can do it without mem alloc */
3796 	spin_lock_irqsave(&xhci->lock, flags);
3797 	command->completion = NULL;
3798 	command->status = 0;
3799 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3800 				     udev->slot_id))
3801 		xhci_ring_cmd_db(xhci);
3802 	spin_unlock_irqrestore(&xhci->lock, flags);
3803 	return 0;
3804 }
3805 
3806 /*
3807  * Issue an Address Device command and optionally send a corresponding
3808  * SetAddress request to the device.
3809  */
3810 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3811 			     enum xhci_setup_dev setup)
3812 {
3813 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3814 	unsigned long flags;
3815 	struct xhci_virt_device *virt_dev;
3816 	int ret = 0;
3817 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3818 	struct xhci_slot_ctx *slot_ctx;
3819 	struct xhci_input_control_ctx *ctrl_ctx;
3820 	u64 temp_64;
3821 	struct xhci_command *command = NULL;
3822 
3823 	mutex_lock(&xhci->mutex);
3824 
3825 	if (xhci->xhc_state)	/* dying, removing or halted */
3826 		goto out;
3827 
3828 	if (!udev->slot_id) {
3829 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3830 				"Bad Slot ID %d", udev->slot_id);
3831 		ret = -EINVAL;
3832 		goto out;
3833 	}
3834 
3835 	virt_dev = xhci->devs[udev->slot_id];
3836 
3837 	if (WARN_ON(!virt_dev)) {
3838 		/*
3839 		 * In plug/unplug torture test with an NEC controller,
3840 		 * a zero-dereference was observed once due to virt_dev = 0.
3841 		 * Print useful debug rather than crash if it is observed again!
3842 		 */
3843 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3844 			udev->slot_id);
3845 		ret = -EINVAL;
3846 		goto out;
3847 	}
3848 
3849 	if (setup == SETUP_CONTEXT_ONLY) {
3850 		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3851 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3852 		    SLOT_STATE_DEFAULT) {
3853 			xhci_dbg(xhci, "Slot already in default state\n");
3854 			goto out;
3855 		}
3856 	}
3857 
3858 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3859 	if (!command) {
3860 		ret = -ENOMEM;
3861 		goto out;
3862 	}
3863 
3864 	command->in_ctx = virt_dev->in_ctx;
3865 	command->completion = &xhci->addr_dev;
3866 
3867 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3868 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3869 	if (!ctrl_ctx) {
3870 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3871 				__func__);
3872 		ret = -EINVAL;
3873 		goto out;
3874 	}
3875 	/*
3876 	 * If this is the first Set Address since device plug-in or
3877 	 * virt_device realloaction after a resume with an xHCI power loss,
3878 	 * then set up the slot context.
3879 	 */
3880 	if (!slot_ctx->dev_info)
3881 		xhci_setup_addressable_virt_dev(xhci, udev);
3882 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3883 	else
3884 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3885 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3886 	ctrl_ctx->drop_flags = 0;
3887 
3888 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3889 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3890 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3891 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3892 
3893 	spin_lock_irqsave(&xhci->lock, flags);
3894 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3895 					udev->slot_id, setup);
3896 	if (ret) {
3897 		spin_unlock_irqrestore(&xhci->lock, flags);
3898 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3899 				"FIXME: allocate a command ring segment");
3900 		goto out;
3901 	}
3902 	xhci_ring_cmd_db(xhci);
3903 	spin_unlock_irqrestore(&xhci->lock, flags);
3904 
3905 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3906 	wait_for_completion(command->completion);
3907 
3908 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3909 	 * the SetAddress() "recovery interval" required by USB and aborting the
3910 	 * command on a timeout.
3911 	 */
3912 	switch (command->status) {
3913 	case COMP_CMD_ABORT:
3914 	case COMP_CMD_STOP:
3915 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3916 		ret = -ETIME;
3917 		break;
3918 	case COMP_CTX_STATE:
3919 	case COMP_EBADSLT:
3920 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3921 			 act, udev->slot_id);
3922 		ret = -EINVAL;
3923 		break;
3924 	case COMP_TX_ERR:
3925 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3926 		ret = -EPROTO;
3927 		break;
3928 	case COMP_DEV_ERR:
3929 		dev_warn(&udev->dev,
3930 			 "ERROR: Incompatible device for setup %s command\n", act);
3931 		ret = -ENODEV;
3932 		break;
3933 	case COMP_SUCCESS:
3934 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3935 			       "Successful setup %s command", act);
3936 		break;
3937 	default:
3938 		xhci_err(xhci,
3939 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3940 			 act, command->status);
3941 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3942 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3943 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3944 		ret = -EINVAL;
3945 		break;
3946 	}
3947 	if (ret)
3948 		goto out;
3949 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3950 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3951 			"Op regs DCBAA ptr = %#016llx", temp_64);
3952 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3953 		"Slot ID %d dcbaa entry @%p = %#016llx",
3954 		udev->slot_id,
3955 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3956 		(unsigned long long)
3957 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3958 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3959 			"Output Context DMA address = %#08llx",
3960 			(unsigned long long)virt_dev->out_ctx->dma);
3961 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3962 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3963 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3964 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3965 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3966 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3967 	/*
3968 	 * USB core uses address 1 for the roothubs, so we add one to the
3969 	 * address given back to us by the HC.
3970 	 */
3971 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3972 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3973 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3974 	/* Zero the input context control for later use */
3975 	ctrl_ctx->add_flags = 0;
3976 	ctrl_ctx->drop_flags = 0;
3977 
3978 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3979 		       "Internal device address = %d",
3980 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3981 out:
3982 	mutex_unlock(&xhci->mutex);
3983 	kfree(command);
3984 	return ret;
3985 }
3986 
3987 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3988 {
3989 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3990 }
3991 
3992 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3993 {
3994 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3995 }
3996 
3997 /*
3998  * Transfer the port index into real index in the HW port status
3999  * registers. Caculate offset between the port's PORTSC register
4000  * and port status base. Divide the number of per port register
4001  * to get the real index. The raw port number bases 1.
4002  */
4003 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4004 {
4005 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4006 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4007 	__le32 __iomem *addr;
4008 	int raw_port;
4009 
4010 	if (hcd->speed < HCD_USB3)
4011 		addr = xhci->usb2_ports[port1 - 1];
4012 	else
4013 		addr = xhci->usb3_ports[port1 - 1];
4014 
4015 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4016 	return raw_port;
4017 }
4018 
4019 /*
4020  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4021  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4022  */
4023 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4024 			struct usb_device *udev, u16 max_exit_latency)
4025 {
4026 	struct xhci_virt_device *virt_dev;
4027 	struct xhci_command *command;
4028 	struct xhci_input_control_ctx *ctrl_ctx;
4029 	struct xhci_slot_ctx *slot_ctx;
4030 	unsigned long flags;
4031 	int ret;
4032 
4033 	spin_lock_irqsave(&xhci->lock, flags);
4034 
4035 	virt_dev = xhci->devs[udev->slot_id];
4036 
4037 	/*
4038 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4039 	 * xHC was re-initialized. Exit latency will be set later after
4040 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4041 	 */
4042 
4043 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4044 		spin_unlock_irqrestore(&xhci->lock, flags);
4045 		return 0;
4046 	}
4047 
4048 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4049 	command = xhci->lpm_command;
4050 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4051 	if (!ctrl_ctx) {
4052 		spin_unlock_irqrestore(&xhci->lock, flags);
4053 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4054 				__func__);
4055 		return -ENOMEM;
4056 	}
4057 
4058 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4059 	spin_unlock_irqrestore(&xhci->lock, flags);
4060 
4061 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4062 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4063 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4064 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4065 	slot_ctx->dev_state = 0;
4066 
4067 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4068 			"Set up evaluate context for LPM MEL change.");
4069 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4070 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4071 
4072 	/* Issue and wait for the evaluate context command. */
4073 	ret = xhci_configure_endpoint(xhci, udev, command,
4074 			true, true);
4075 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4076 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4077 
4078 	if (!ret) {
4079 		spin_lock_irqsave(&xhci->lock, flags);
4080 		virt_dev->current_mel = max_exit_latency;
4081 		spin_unlock_irqrestore(&xhci->lock, flags);
4082 	}
4083 	return ret;
4084 }
4085 
4086 #ifdef CONFIG_PM
4087 
4088 /* BESL to HIRD Encoding array for USB2 LPM */
4089 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4090 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4091 
4092 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4093 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4094 					struct usb_device *udev)
4095 {
4096 	int u2del, besl, besl_host;
4097 	int besl_device = 0;
4098 	u32 field;
4099 
4100 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4101 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4102 
4103 	if (field & USB_BESL_SUPPORT) {
4104 		for (besl_host = 0; besl_host < 16; besl_host++) {
4105 			if (xhci_besl_encoding[besl_host] >= u2del)
4106 				break;
4107 		}
4108 		/* Use baseline BESL value as default */
4109 		if (field & USB_BESL_BASELINE_VALID)
4110 			besl_device = USB_GET_BESL_BASELINE(field);
4111 		else if (field & USB_BESL_DEEP_VALID)
4112 			besl_device = USB_GET_BESL_DEEP(field);
4113 	} else {
4114 		if (u2del <= 50)
4115 			besl_host = 0;
4116 		else
4117 			besl_host = (u2del - 51) / 75 + 1;
4118 	}
4119 
4120 	besl = besl_host + besl_device;
4121 	if (besl > 15)
4122 		besl = 15;
4123 
4124 	return besl;
4125 }
4126 
4127 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4128 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4129 {
4130 	u32 field;
4131 	int l1;
4132 	int besld = 0;
4133 	int hirdm = 0;
4134 
4135 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4136 
4137 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4138 	l1 = udev->l1_params.timeout / 256;
4139 
4140 	/* device has preferred BESLD */
4141 	if (field & USB_BESL_DEEP_VALID) {
4142 		besld = USB_GET_BESL_DEEP(field);
4143 		hirdm = 1;
4144 	}
4145 
4146 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4147 }
4148 
4149 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4150 			struct usb_device *udev, int enable)
4151 {
4152 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4153 	__le32 __iomem	**port_array;
4154 	__le32 __iomem	*pm_addr, *hlpm_addr;
4155 	u32		pm_val, hlpm_val, field;
4156 	unsigned int	port_num;
4157 	unsigned long	flags;
4158 	int		hird, exit_latency;
4159 	int		ret;
4160 
4161 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4162 			!udev->lpm_capable)
4163 		return -EPERM;
4164 
4165 	if (!udev->parent || udev->parent->parent ||
4166 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4167 		return -EPERM;
4168 
4169 	if (udev->usb2_hw_lpm_capable != 1)
4170 		return -EPERM;
4171 
4172 	spin_lock_irqsave(&xhci->lock, flags);
4173 
4174 	port_array = xhci->usb2_ports;
4175 	port_num = udev->portnum - 1;
4176 	pm_addr = port_array[port_num] + PORTPMSC;
4177 	pm_val = readl(pm_addr);
4178 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4179 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4180 
4181 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4182 			enable ? "enable" : "disable", port_num + 1);
4183 
4184 	if (enable) {
4185 		/* Host supports BESL timeout instead of HIRD */
4186 		if (udev->usb2_hw_lpm_besl_capable) {
4187 			/* if device doesn't have a preferred BESL value use a
4188 			 * default one which works with mixed HIRD and BESL
4189 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4190 			 */
4191 			if ((field & USB_BESL_SUPPORT) &&
4192 			    (field & USB_BESL_BASELINE_VALID))
4193 				hird = USB_GET_BESL_BASELINE(field);
4194 			else
4195 				hird = udev->l1_params.besl;
4196 
4197 			exit_latency = xhci_besl_encoding[hird];
4198 			spin_unlock_irqrestore(&xhci->lock, flags);
4199 
4200 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4201 			 * input context for link powermanagement evaluate
4202 			 * context commands. It is protected by hcd->bandwidth
4203 			 * mutex and is shared by all devices. We need to set
4204 			 * the max ext latency in USB 2 BESL LPM as well, so
4205 			 * use the same mutex and xhci_change_max_exit_latency()
4206 			 */
4207 			mutex_lock(hcd->bandwidth_mutex);
4208 			ret = xhci_change_max_exit_latency(xhci, udev,
4209 							   exit_latency);
4210 			mutex_unlock(hcd->bandwidth_mutex);
4211 
4212 			if (ret < 0)
4213 				return ret;
4214 			spin_lock_irqsave(&xhci->lock, flags);
4215 
4216 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4217 			writel(hlpm_val, hlpm_addr);
4218 			/* flush write */
4219 			readl(hlpm_addr);
4220 		} else {
4221 			hird = xhci_calculate_hird_besl(xhci, udev);
4222 		}
4223 
4224 		pm_val &= ~PORT_HIRD_MASK;
4225 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4226 		writel(pm_val, pm_addr);
4227 		pm_val = readl(pm_addr);
4228 		pm_val |= PORT_HLE;
4229 		writel(pm_val, pm_addr);
4230 		/* flush write */
4231 		readl(pm_addr);
4232 	} else {
4233 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4234 		writel(pm_val, pm_addr);
4235 		/* flush write */
4236 		readl(pm_addr);
4237 		if (udev->usb2_hw_lpm_besl_capable) {
4238 			spin_unlock_irqrestore(&xhci->lock, flags);
4239 			mutex_lock(hcd->bandwidth_mutex);
4240 			xhci_change_max_exit_latency(xhci, udev, 0);
4241 			mutex_unlock(hcd->bandwidth_mutex);
4242 			return 0;
4243 		}
4244 	}
4245 
4246 	spin_unlock_irqrestore(&xhci->lock, flags);
4247 	return 0;
4248 }
4249 
4250 /* check if a usb2 port supports a given extened capability protocol
4251  * only USB2 ports extended protocol capability values are cached.
4252  * Return 1 if capability is supported
4253  */
4254 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4255 					   unsigned capability)
4256 {
4257 	u32 port_offset, port_count;
4258 	int i;
4259 
4260 	for (i = 0; i < xhci->num_ext_caps; i++) {
4261 		if (xhci->ext_caps[i] & capability) {
4262 			/* port offsets starts at 1 */
4263 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4264 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4265 			if (port >= port_offset &&
4266 			    port < port_offset + port_count)
4267 				return 1;
4268 		}
4269 	}
4270 	return 0;
4271 }
4272 
4273 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4274 {
4275 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4276 	int		portnum = udev->portnum - 1;
4277 
4278 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4279 			!udev->lpm_capable)
4280 		return 0;
4281 
4282 	/* we only support lpm for non-hub device connected to root hub yet */
4283 	if (!udev->parent || udev->parent->parent ||
4284 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4285 		return 0;
4286 
4287 	if (xhci->hw_lpm_support == 1 &&
4288 			xhci_check_usb2_port_capability(
4289 				xhci, portnum, XHCI_HLC)) {
4290 		udev->usb2_hw_lpm_capable = 1;
4291 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4292 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4293 		if (xhci_check_usb2_port_capability(xhci, portnum,
4294 					XHCI_BLC))
4295 			udev->usb2_hw_lpm_besl_capable = 1;
4296 	}
4297 
4298 	return 0;
4299 }
4300 
4301 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4302 
4303 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4304 static unsigned long long xhci_service_interval_to_ns(
4305 		struct usb_endpoint_descriptor *desc)
4306 {
4307 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4308 }
4309 
4310 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4311 		enum usb3_link_state state)
4312 {
4313 	unsigned long long sel;
4314 	unsigned long long pel;
4315 	unsigned int max_sel_pel;
4316 	char *state_name;
4317 
4318 	switch (state) {
4319 	case USB3_LPM_U1:
4320 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4321 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4322 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4323 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4324 		state_name = "U1";
4325 		break;
4326 	case USB3_LPM_U2:
4327 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4328 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4329 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4330 		state_name = "U2";
4331 		break;
4332 	default:
4333 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4334 				__func__);
4335 		return USB3_LPM_DISABLED;
4336 	}
4337 
4338 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4339 		return USB3_LPM_DEVICE_INITIATED;
4340 
4341 	if (sel > max_sel_pel)
4342 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4343 				"due to long SEL %llu ms\n",
4344 				state_name, sel);
4345 	else
4346 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4347 				"due to long PEL %llu ms\n",
4348 				state_name, pel);
4349 	return USB3_LPM_DISABLED;
4350 }
4351 
4352 /* The U1 timeout should be the maximum of the following values:
4353  *  - For control endpoints, U1 system exit latency (SEL) * 3
4354  *  - For bulk endpoints, U1 SEL * 5
4355  *  - For interrupt endpoints:
4356  *    - Notification EPs, U1 SEL * 3
4357  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4358  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4359  */
4360 static unsigned long long xhci_calculate_intel_u1_timeout(
4361 		struct usb_device *udev,
4362 		struct usb_endpoint_descriptor *desc)
4363 {
4364 	unsigned long long timeout_ns;
4365 	int ep_type;
4366 	int intr_type;
4367 
4368 	ep_type = usb_endpoint_type(desc);
4369 	switch (ep_type) {
4370 	case USB_ENDPOINT_XFER_CONTROL:
4371 		timeout_ns = udev->u1_params.sel * 3;
4372 		break;
4373 	case USB_ENDPOINT_XFER_BULK:
4374 		timeout_ns = udev->u1_params.sel * 5;
4375 		break;
4376 	case USB_ENDPOINT_XFER_INT:
4377 		intr_type = usb_endpoint_interrupt_type(desc);
4378 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4379 			timeout_ns = udev->u1_params.sel * 3;
4380 			break;
4381 		}
4382 		/* Otherwise the calculation is the same as isoc eps */
4383 	case USB_ENDPOINT_XFER_ISOC:
4384 		timeout_ns = xhci_service_interval_to_ns(desc);
4385 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4386 		if (timeout_ns < udev->u1_params.sel * 2)
4387 			timeout_ns = udev->u1_params.sel * 2;
4388 		break;
4389 	default:
4390 		return 0;
4391 	}
4392 
4393 	return timeout_ns;
4394 }
4395 
4396 /* Returns the hub-encoded U1 timeout value. */
4397 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4398 		struct usb_device *udev,
4399 		struct usb_endpoint_descriptor *desc)
4400 {
4401 	unsigned long long timeout_ns;
4402 
4403 	if (xhci->quirks & XHCI_INTEL_HOST)
4404 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4405 	else
4406 		timeout_ns = udev->u1_params.sel;
4407 
4408 	/* The U1 timeout is encoded in 1us intervals.
4409 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4410 	 */
4411 	if (timeout_ns == USB3_LPM_DISABLED)
4412 		timeout_ns = 1;
4413 	else
4414 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4415 
4416 	/* If the necessary timeout value is bigger than what we can set in the
4417 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4418 	 */
4419 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4420 		return timeout_ns;
4421 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4422 			"due to long timeout %llu ms\n", timeout_ns);
4423 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4424 }
4425 
4426 /* The U2 timeout should be the maximum of:
4427  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4428  *  - largest bInterval of any active periodic endpoint (to avoid going
4429  *    into lower power link states between intervals).
4430  *  - the U2 Exit Latency of the device
4431  */
4432 static unsigned long long xhci_calculate_intel_u2_timeout(
4433 		struct usb_device *udev,
4434 		struct usb_endpoint_descriptor *desc)
4435 {
4436 	unsigned long long timeout_ns;
4437 	unsigned long long u2_del_ns;
4438 
4439 	timeout_ns = 10 * 1000 * 1000;
4440 
4441 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4442 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4443 		timeout_ns = xhci_service_interval_to_ns(desc);
4444 
4445 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4446 	if (u2_del_ns > timeout_ns)
4447 		timeout_ns = u2_del_ns;
4448 
4449 	return timeout_ns;
4450 }
4451 
4452 /* Returns the hub-encoded U2 timeout value. */
4453 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4454 		struct usb_device *udev,
4455 		struct usb_endpoint_descriptor *desc)
4456 {
4457 	unsigned long long timeout_ns;
4458 
4459 	if (xhci->quirks & XHCI_INTEL_HOST)
4460 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4461 	else
4462 		timeout_ns = udev->u2_params.sel;
4463 
4464 	/* The U2 timeout is encoded in 256us intervals */
4465 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4466 	/* If the necessary timeout value is bigger than what we can set in the
4467 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4468 	 */
4469 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4470 		return timeout_ns;
4471 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4472 			"due to long timeout %llu ms\n", timeout_ns);
4473 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4474 }
4475 
4476 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4477 		struct usb_device *udev,
4478 		struct usb_endpoint_descriptor *desc,
4479 		enum usb3_link_state state,
4480 		u16 *timeout)
4481 {
4482 	if (state == USB3_LPM_U1)
4483 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4484 	else if (state == USB3_LPM_U2)
4485 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4486 
4487 	return USB3_LPM_DISABLED;
4488 }
4489 
4490 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4491 		struct usb_device *udev,
4492 		struct usb_endpoint_descriptor *desc,
4493 		enum usb3_link_state state,
4494 		u16 *timeout)
4495 {
4496 	u16 alt_timeout;
4497 
4498 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4499 		desc, state, timeout);
4500 
4501 	/* If we found we can't enable hub-initiated LPM, or
4502 	 * the U1 or U2 exit latency was too high to allow
4503 	 * device-initiated LPM as well, just stop searching.
4504 	 */
4505 	if (alt_timeout == USB3_LPM_DISABLED ||
4506 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4507 		*timeout = alt_timeout;
4508 		return -E2BIG;
4509 	}
4510 	if (alt_timeout > *timeout)
4511 		*timeout = alt_timeout;
4512 	return 0;
4513 }
4514 
4515 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4516 		struct usb_device *udev,
4517 		struct usb_host_interface *alt,
4518 		enum usb3_link_state state,
4519 		u16 *timeout)
4520 {
4521 	int j;
4522 
4523 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4524 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4525 					&alt->endpoint[j].desc, state, timeout))
4526 			return -E2BIG;
4527 		continue;
4528 	}
4529 	return 0;
4530 }
4531 
4532 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4533 		enum usb3_link_state state)
4534 {
4535 	struct usb_device *parent;
4536 	unsigned int num_hubs;
4537 
4538 	if (state == USB3_LPM_U2)
4539 		return 0;
4540 
4541 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4542 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4543 			parent = parent->parent)
4544 		num_hubs++;
4545 
4546 	if (num_hubs < 2)
4547 		return 0;
4548 
4549 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4550 			" below second-tier hub.\n");
4551 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4552 			"to decrease power consumption.\n");
4553 	return -E2BIG;
4554 }
4555 
4556 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4557 		struct usb_device *udev,
4558 		enum usb3_link_state state)
4559 {
4560 	if (xhci->quirks & XHCI_INTEL_HOST)
4561 		return xhci_check_intel_tier_policy(udev, state);
4562 	else
4563 		return 0;
4564 }
4565 
4566 /* Returns the U1 or U2 timeout that should be enabled.
4567  * If the tier check or timeout setting functions return with a non-zero exit
4568  * code, that means the timeout value has been finalized and we shouldn't look
4569  * at any more endpoints.
4570  */
4571 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4572 			struct usb_device *udev, enum usb3_link_state state)
4573 {
4574 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4575 	struct usb_host_config *config;
4576 	char *state_name;
4577 	int i;
4578 	u16 timeout = USB3_LPM_DISABLED;
4579 
4580 	if (state == USB3_LPM_U1)
4581 		state_name = "U1";
4582 	else if (state == USB3_LPM_U2)
4583 		state_name = "U2";
4584 	else {
4585 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4586 				state);
4587 		return timeout;
4588 	}
4589 
4590 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4591 		return timeout;
4592 
4593 	/* Gather some information about the currently installed configuration
4594 	 * and alternate interface settings.
4595 	 */
4596 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4597 			state, &timeout))
4598 		return timeout;
4599 
4600 	config = udev->actconfig;
4601 	if (!config)
4602 		return timeout;
4603 
4604 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4605 		struct usb_driver *driver;
4606 		struct usb_interface *intf = config->interface[i];
4607 
4608 		if (!intf)
4609 			continue;
4610 
4611 		/* Check if any currently bound drivers want hub-initiated LPM
4612 		 * disabled.
4613 		 */
4614 		if (intf->dev.driver) {
4615 			driver = to_usb_driver(intf->dev.driver);
4616 			if (driver && driver->disable_hub_initiated_lpm) {
4617 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4618 						"at request of driver %s\n",
4619 						state_name, driver->name);
4620 				return xhci_get_timeout_no_hub_lpm(udev, state);
4621 			}
4622 		}
4623 
4624 		/* Not sure how this could happen... */
4625 		if (!intf->cur_altsetting)
4626 			continue;
4627 
4628 		if (xhci_update_timeout_for_interface(xhci, udev,
4629 					intf->cur_altsetting,
4630 					state, &timeout))
4631 			return timeout;
4632 	}
4633 	return timeout;
4634 }
4635 
4636 static int calculate_max_exit_latency(struct usb_device *udev,
4637 		enum usb3_link_state state_changed,
4638 		u16 hub_encoded_timeout)
4639 {
4640 	unsigned long long u1_mel_us = 0;
4641 	unsigned long long u2_mel_us = 0;
4642 	unsigned long long mel_us = 0;
4643 	bool disabling_u1;
4644 	bool disabling_u2;
4645 	bool enabling_u1;
4646 	bool enabling_u2;
4647 
4648 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4649 			hub_encoded_timeout == USB3_LPM_DISABLED);
4650 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4651 			hub_encoded_timeout == USB3_LPM_DISABLED);
4652 
4653 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4654 			hub_encoded_timeout != USB3_LPM_DISABLED);
4655 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4656 			hub_encoded_timeout != USB3_LPM_DISABLED);
4657 
4658 	/* If U1 was already enabled and we're not disabling it,
4659 	 * or we're going to enable U1, account for the U1 max exit latency.
4660 	 */
4661 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4662 			enabling_u1)
4663 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4664 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4665 			enabling_u2)
4666 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4667 
4668 	if (u1_mel_us > u2_mel_us)
4669 		mel_us = u1_mel_us;
4670 	else
4671 		mel_us = u2_mel_us;
4672 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4673 	if (mel_us > MAX_EXIT) {
4674 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4675 				"is too big.\n", mel_us);
4676 		return -E2BIG;
4677 	}
4678 	return mel_us;
4679 }
4680 
4681 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4682 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4683 			struct usb_device *udev, enum usb3_link_state state)
4684 {
4685 	struct xhci_hcd	*xhci;
4686 	u16 hub_encoded_timeout;
4687 	int mel;
4688 	int ret;
4689 
4690 	xhci = hcd_to_xhci(hcd);
4691 	/* The LPM timeout values are pretty host-controller specific, so don't
4692 	 * enable hub-initiated timeouts unless the vendor has provided
4693 	 * information about their timeout algorithm.
4694 	 */
4695 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4696 			!xhci->devs[udev->slot_id])
4697 		return USB3_LPM_DISABLED;
4698 
4699 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4700 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4701 	if (mel < 0) {
4702 		/* Max Exit Latency is too big, disable LPM. */
4703 		hub_encoded_timeout = USB3_LPM_DISABLED;
4704 		mel = 0;
4705 	}
4706 
4707 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4708 	if (ret)
4709 		return ret;
4710 	return hub_encoded_timeout;
4711 }
4712 
4713 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4714 			struct usb_device *udev, enum usb3_link_state state)
4715 {
4716 	struct xhci_hcd	*xhci;
4717 	u16 mel;
4718 
4719 	xhci = hcd_to_xhci(hcd);
4720 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4721 			!xhci->devs[udev->slot_id])
4722 		return 0;
4723 
4724 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4725 	return xhci_change_max_exit_latency(xhci, udev, mel);
4726 }
4727 #else /* CONFIG_PM */
4728 
4729 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4730 				struct usb_device *udev, int enable)
4731 {
4732 	return 0;
4733 }
4734 
4735 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4736 {
4737 	return 0;
4738 }
4739 
4740 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4741 			struct usb_device *udev, enum usb3_link_state state)
4742 {
4743 	return USB3_LPM_DISABLED;
4744 }
4745 
4746 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4747 			struct usb_device *udev, enum usb3_link_state state)
4748 {
4749 	return 0;
4750 }
4751 #endif	/* CONFIG_PM */
4752 
4753 /*-------------------------------------------------------------------------*/
4754 
4755 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4756  * internal data structures for the device.
4757  */
4758 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4759 			struct usb_tt *tt, gfp_t mem_flags)
4760 {
4761 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4762 	struct xhci_virt_device *vdev;
4763 	struct xhci_command *config_cmd;
4764 	struct xhci_input_control_ctx *ctrl_ctx;
4765 	struct xhci_slot_ctx *slot_ctx;
4766 	unsigned long flags;
4767 	unsigned think_time;
4768 	int ret;
4769 
4770 	/* Ignore root hubs */
4771 	if (!hdev->parent)
4772 		return 0;
4773 
4774 	vdev = xhci->devs[hdev->slot_id];
4775 	if (!vdev) {
4776 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4777 		return -EINVAL;
4778 	}
4779 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4780 	if (!config_cmd) {
4781 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4782 		return -ENOMEM;
4783 	}
4784 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4785 	if (!ctrl_ctx) {
4786 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4787 				__func__);
4788 		xhci_free_command(xhci, config_cmd);
4789 		return -ENOMEM;
4790 	}
4791 
4792 	spin_lock_irqsave(&xhci->lock, flags);
4793 	if (hdev->speed == USB_SPEED_HIGH &&
4794 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4795 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4796 		xhci_free_command(xhci, config_cmd);
4797 		spin_unlock_irqrestore(&xhci->lock, flags);
4798 		return -ENOMEM;
4799 	}
4800 
4801 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4802 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4803 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4804 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4805 	/*
4806 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4807 	 * but it may be already set to 1 when setup an xHCI virtual
4808 	 * device, so clear it anyway.
4809 	 */
4810 	if (tt->multi)
4811 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4812 	else if (hdev->speed == USB_SPEED_FULL)
4813 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4814 
4815 	if (xhci->hci_version > 0x95) {
4816 		xhci_dbg(xhci, "xHCI version %x needs hub "
4817 				"TT think time and number of ports\n",
4818 				(unsigned int) xhci->hci_version);
4819 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4820 		/* Set TT think time - convert from ns to FS bit times.
4821 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4822 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4823 		 *
4824 		 * xHCI 1.0: this field shall be 0 if the device is not a
4825 		 * High-spped hub.
4826 		 */
4827 		think_time = tt->think_time;
4828 		if (think_time != 0)
4829 			think_time = (think_time / 666) - 1;
4830 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4831 			slot_ctx->tt_info |=
4832 				cpu_to_le32(TT_THINK_TIME(think_time));
4833 	} else {
4834 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4835 				"TT think time or number of ports\n",
4836 				(unsigned int) xhci->hci_version);
4837 	}
4838 	slot_ctx->dev_state = 0;
4839 	spin_unlock_irqrestore(&xhci->lock, flags);
4840 
4841 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4842 			(xhci->hci_version > 0x95) ?
4843 			"configure endpoint" : "evaluate context");
4844 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4845 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4846 
4847 	/* Issue and wait for the configure endpoint or
4848 	 * evaluate context command.
4849 	 */
4850 	if (xhci->hci_version > 0x95)
4851 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4852 				false, false);
4853 	else
4854 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4855 				true, false);
4856 
4857 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4858 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4859 
4860 	xhci_free_command(xhci, config_cmd);
4861 	return ret;
4862 }
4863 
4864 int xhci_get_frame(struct usb_hcd *hcd)
4865 {
4866 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4867 	/* EHCI mods by the periodic size.  Why? */
4868 	return readl(&xhci->run_regs->microframe_index) >> 3;
4869 }
4870 
4871 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4872 {
4873 	struct xhci_hcd		*xhci;
4874 	struct device		*dev = hcd->self.controller;
4875 	int			retval;
4876 
4877 	/* Accept arbitrarily long scatter-gather lists */
4878 	hcd->self.sg_tablesize = ~0;
4879 
4880 	/* support to build packet from discontinuous buffers */
4881 	hcd->self.no_sg_constraint = 1;
4882 
4883 	/* XHCI controllers don't stop the ep queue on short packets :| */
4884 	hcd->self.no_stop_on_short = 1;
4885 
4886 	xhci = hcd_to_xhci(hcd);
4887 
4888 	if (usb_hcd_is_primary_hcd(hcd)) {
4889 		xhci->main_hcd = hcd;
4890 		/* Mark the first roothub as being USB 2.0.
4891 		 * The xHCI driver will register the USB 3.0 roothub.
4892 		 */
4893 		hcd->speed = HCD_USB2;
4894 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4895 		/*
4896 		 * USB 2.0 roothub under xHCI has an integrated TT,
4897 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4898 		 * companion controller.
4899 		 */
4900 		hcd->has_tt = 1;
4901 	} else {
4902 		if (xhci->sbrn == 0x31) {
4903 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4904 			hcd->speed = HCD_USB31;
4905 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4906 		}
4907 		/* xHCI private pointer was set in xhci_pci_probe for the second
4908 		 * registered roothub.
4909 		 */
4910 		return 0;
4911 	}
4912 
4913 	mutex_init(&xhci->mutex);
4914 	xhci->cap_regs = hcd->regs;
4915 	xhci->op_regs = hcd->regs +
4916 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4917 	xhci->run_regs = hcd->regs +
4918 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4919 	/* Cache read-only capability registers */
4920 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4921 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4922 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4923 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4924 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4925 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4926 	if (xhci->hci_version > 0x100)
4927 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4928 	xhci_print_registers(xhci);
4929 
4930 	xhci->quirks = quirks;
4931 
4932 	get_quirks(dev, xhci);
4933 
4934 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4935 	 * success event after a short transfer. This quirk will ignore such
4936 	 * spurious event.
4937 	 */
4938 	if (xhci->hci_version > 0x96)
4939 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4940 
4941 	/* Make sure the HC is halted. */
4942 	retval = xhci_halt(xhci);
4943 	if (retval)
4944 		return retval;
4945 
4946 	xhci_dbg(xhci, "Resetting HCD\n");
4947 	/* Reset the internal HC memory state and registers. */
4948 	retval = xhci_reset(xhci);
4949 	if (retval)
4950 		return retval;
4951 	xhci_dbg(xhci, "Reset complete\n");
4952 
4953 	/*
4954 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4955 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4956 	 * address memory pointers actually. So, this driver clears the AC64
4957 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4958 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4959 	 */
4960 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4961 		xhci->hcc_params &= ~BIT(0);
4962 
4963 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4964 	 * if xHC supports 64-bit addressing */
4965 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4966 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4967 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4968 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4969 	} else {
4970 		/*
4971 		 * This is to avoid error in cases where a 32-bit USB
4972 		 * controller is used on a 64-bit capable system.
4973 		 */
4974 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4975 		if (retval)
4976 			return retval;
4977 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4978 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4979 	}
4980 
4981 	xhci_dbg(xhci, "Calling HCD init\n");
4982 	/* Initialize HCD and host controller data structures. */
4983 	retval = xhci_init(hcd);
4984 	if (retval)
4985 		return retval;
4986 	xhci_dbg(xhci, "Called HCD init\n");
4987 
4988 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4989 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4990 
4991 	return 0;
4992 }
4993 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4994 
4995 static const struct hc_driver xhci_hc_driver = {
4996 	.description =		"xhci-hcd",
4997 	.product_desc =		"xHCI Host Controller",
4998 	.hcd_priv_size =	sizeof(struct xhci_hcd),
4999 
5000 	/*
5001 	 * generic hardware linkage
5002 	 */
5003 	.irq =			xhci_irq,
5004 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5005 
5006 	/*
5007 	 * basic lifecycle operations
5008 	 */
5009 	.reset =		NULL, /* set in xhci_init_driver() */
5010 	.start =		xhci_run,
5011 	.stop =			xhci_stop,
5012 	.shutdown =		xhci_shutdown,
5013 
5014 	/*
5015 	 * managing i/o requests and associated device resources
5016 	 */
5017 	.urb_enqueue =		xhci_urb_enqueue,
5018 	.urb_dequeue =		xhci_urb_dequeue,
5019 	.alloc_dev =		xhci_alloc_dev,
5020 	.free_dev =		xhci_free_dev,
5021 	.alloc_streams =	xhci_alloc_streams,
5022 	.free_streams =		xhci_free_streams,
5023 	.add_endpoint =		xhci_add_endpoint,
5024 	.drop_endpoint =	xhci_drop_endpoint,
5025 	.endpoint_reset =	xhci_endpoint_reset,
5026 	.check_bandwidth =	xhci_check_bandwidth,
5027 	.reset_bandwidth =	xhci_reset_bandwidth,
5028 	.address_device =	xhci_address_device,
5029 	.enable_device =	xhci_enable_device,
5030 	.update_hub_device =	xhci_update_hub_device,
5031 	.reset_device =		xhci_discover_or_reset_device,
5032 
5033 	/*
5034 	 * scheduling support
5035 	 */
5036 	.get_frame_number =	xhci_get_frame,
5037 
5038 	/*
5039 	 * root hub support
5040 	 */
5041 	.hub_control =		xhci_hub_control,
5042 	.hub_status_data =	xhci_hub_status_data,
5043 	.bus_suspend =		xhci_bus_suspend,
5044 	.bus_resume =		xhci_bus_resume,
5045 
5046 	/*
5047 	 * call back when device connected and addressed
5048 	 */
5049 	.update_device =        xhci_update_device,
5050 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5051 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5052 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5053 	.find_raw_port_number =	xhci_find_raw_port_number,
5054 };
5055 
5056 void xhci_init_driver(struct hc_driver *drv,
5057 		      const struct xhci_driver_overrides *over)
5058 {
5059 	BUG_ON(!over);
5060 
5061 	/* Copy the generic table to drv then apply the overrides */
5062 	*drv = xhci_hc_driver;
5063 
5064 	if (over) {
5065 		drv->hcd_priv_size += over->extra_priv_size;
5066 		if (over->reset)
5067 			drv->reset = over->reset;
5068 		if (over->start)
5069 			drv->start = over->start;
5070 	}
5071 }
5072 EXPORT_SYMBOL_GPL(xhci_init_driver);
5073 
5074 MODULE_DESCRIPTION(DRIVER_DESC);
5075 MODULE_AUTHOR(DRIVER_AUTHOR);
5076 MODULE_LICENSE("GPL");
5077 
5078 static int __init xhci_hcd_init(void)
5079 {
5080 	/*
5081 	 * Check the compiler generated sizes of structures that must be laid
5082 	 * out in specific ways for hardware access.
5083 	 */
5084 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5085 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5086 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5087 	/* xhci_device_control has eight fields, and also
5088 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5089 	 */
5090 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5091 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5092 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5093 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5094 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5095 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5096 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5097 
5098 	if (usb_disabled())
5099 		return -ENODEV;
5100 
5101 	return 0;
5102 }
5103 
5104 /*
5105  * If an init function is provided, an exit function must also be provided
5106  * to allow module unload.
5107  */
5108 static void __exit xhci_hcd_fini(void) { }
5109 
5110 module_init(xhci_hcd_init);
5111 module_exit(xhci_hcd_fini);
5112