1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 #include "xhci-mtk.h" 35 36 #define DRIVER_AUTHOR "Sarah Sharp" 37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 38 39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 40 41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 42 static int link_quirk; 43 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 45 46 static unsigned int quirks; 47 module_param(quirks, uint, S_IRUGO); 48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 49 50 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 51 /* 52 * xhci_handshake - spin reading hc until handshake completes or fails 53 * @ptr: address of hc register to be read 54 * @mask: bits to look at in result of read 55 * @done: value of those bits when handshake succeeds 56 * @usec: timeout in microseconds 57 * 58 * Returns negative errno, or zero on success 59 * 60 * Success happens when the "mask" bits have the specified value (hardware 61 * handshake done). There are two failure modes: "usec" have passed (major 62 * hardware flakeout), or the register reads as all-ones (hardware removed). 63 */ 64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 65 { 66 u32 result; 67 68 do { 69 result = readl(ptr); 70 if (result == ~(u32)0) /* card removed */ 71 return -ENODEV; 72 result &= mask; 73 if (result == done) 74 return 0; 75 udelay(1); 76 usec--; 77 } while (usec > 0); 78 return -ETIMEDOUT; 79 } 80 81 /* 82 * Disable interrupts and begin the xHCI halting process. 83 */ 84 void xhci_quiesce(struct xhci_hcd *xhci) 85 { 86 u32 halted; 87 u32 cmd; 88 u32 mask; 89 90 mask = ~(XHCI_IRQS); 91 halted = readl(&xhci->op_regs->status) & STS_HALT; 92 if (!halted) 93 mask &= ~CMD_RUN; 94 95 cmd = readl(&xhci->op_regs->command); 96 cmd &= mask; 97 writel(cmd, &xhci->op_regs->command); 98 } 99 100 /* 101 * Force HC into halt state. 102 * 103 * Disable any IRQs and clear the run/stop bit. 104 * HC will complete any current and actively pipelined transactions, and 105 * should halt within 16 ms of the run/stop bit being cleared. 106 * Read HC Halted bit in the status register to see when the HC is finished. 107 */ 108 int xhci_halt(struct xhci_hcd *xhci) 109 { 110 int ret; 111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 112 xhci_quiesce(xhci); 113 114 ret = xhci_handshake(&xhci->op_regs->status, 115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 116 if (!ret) { 117 xhci->xhc_state |= XHCI_STATE_HALTED; 118 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 119 } else 120 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 121 XHCI_MAX_HALT_USEC); 122 return ret; 123 } 124 125 /* 126 * Set the run bit and wait for the host to be running. 127 */ 128 static int xhci_start(struct xhci_hcd *xhci) 129 { 130 u32 temp; 131 int ret; 132 133 temp = readl(&xhci->op_regs->command); 134 temp |= (CMD_RUN); 135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 136 temp); 137 writel(temp, &xhci->op_regs->command); 138 139 /* 140 * Wait for the HCHalted Status bit to be 0 to indicate the host is 141 * running. 142 */ 143 ret = xhci_handshake(&xhci->op_regs->status, 144 STS_HALT, 0, XHCI_MAX_HALT_USEC); 145 if (ret == -ETIMEDOUT) 146 xhci_err(xhci, "Host took too long to start, " 147 "waited %u microseconds.\n", 148 XHCI_MAX_HALT_USEC); 149 if (!ret) 150 /* clear state flags. Including dying, halted or removing */ 151 xhci->xhc_state = 0; 152 153 return ret; 154 } 155 156 /* 157 * Reset a halted HC. 158 * 159 * This resets pipelines, timers, counters, state machines, etc. 160 * Transactions will be terminated immediately, and operational registers 161 * will be set to their defaults. 162 */ 163 int xhci_reset(struct xhci_hcd *xhci) 164 { 165 u32 command; 166 u32 state; 167 int ret, i; 168 169 state = readl(&xhci->op_regs->status); 170 if ((state & STS_HALT) == 0) { 171 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 172 return 0; 173 } 174 175 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 176 command = readl(&xhci->op_regs->command); 177 command |= CMD_RESET; 178 writel(command, &xhci->op_regs->command); 179 180 /* Existing Intel xHCI controllers require a delay of 1 mS, 181 * after setting the CMD_RESET bit, and before accessing any 182 * HC registers. This allows the HC to complete the 183 * reset operation and be ready for HC register access. 184 * Without this delay, the subsequent HC register access, 185 * may result in a system hang very rarely. 186 */ 187 if (xhci->quirks & XHCI_INTEL_HOST) 188 udelay(1000); 189 190 ret = xhci_handshake(&xhci->op_regs->command, 191 CMD_RESET, 0, 10 * 1000 * 1000); 192 if (ret) 193 return ret; 194 195 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 196 "Wait for controller to be ready for doorbell rings"); 197 /* 198 * xHCI cannot write to any doorbells or operational registers other 199 * than status until the "Controller Not Ready" flag is cleared. 200 */ 201 ret = xhci_handshake(&xhci->op_regs->status, 202 STS_CNR, 0, 10 * 1000 * 1000); 203 204 for (i = 0; i < 2; ++i) { 205 xhci->bus_state[i].port_c_suspend = 0; 206 xhci->bus_state[i].suspended_ports = 0; 207 xhci->bus_state[i].resuming_ports = 0; 208 } 209 210 return ret; 211 } 212 213 #ifdef CONFIG_PCI 214 static int xhci_free_msi(struct xhci_hcd *xhci) 215 { 216 int i; 217 218 if (!xhci->msix_entries) 219 return -EINVAL; 220 221 for (i = 0; i < xhci->msix_count; i++) 222 if (xhci->msix_entries[i].vector) 223 free_irq(xhci->msix_entries[i].vector, 224 xhci_to_hcd(xhci)); 225 return 0; 226 } 227 228 /* 229 * Set up MSI 230 */ 231 static int xhci_setup_msi(struct xhci_hcd *xhci) 232 { 233 int ret; 234 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 235 236 ret = pci_enable_msi(pdev); 237 if (ret) { 238 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 239 "failed to allocate MSI entry"); 240 return ret; 241 } 242 243 ret = request_irq(pdev->irq, xhci_msi_irq, 244 0, "xhci_hcd", xhci_to_hcd(xhci)); 245 if (ret) { 246 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 247 "disable MSI interrupt"); 248 pci_disable_msi(pdev); 249 } 250 251 return ret; 252 } 253 254 /* 255 * Free IRQs 256 * free all IRQs request 257 */ 258 static void xhci_free_irq(struct xhci_hcd *xhci) 259 { 260 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 261 int ret; 262 263 /* return if using legacy interrupt */ 264 if (xhci_to_hcd(xhci)->irq > 0) 265 return; 266 267 ret = xhci_free_msi(xhci); 268 if (!ret) 269 return; 270 if (pdev->irq > 0) 271 free_irq(pdev->irq, xhci_to_hcd(xhci)); 272 273 return; 274 } 275 276 /* 277 * Set up MSI-X 278 */ 279 static int xhci_setup_msix(struct xhci_hcd *xhci) 280 { 281 int i, ret = 0; 282 struct usb_hcd *hcd = xhci_to_hcd(xhci); 283 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 284 285 /* 286 * calculate number of msi-x vectors supported. 287 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 288 * with max number of interrupters based on the xhci HCSPARAMS1. 289 * - num_online_cpus: maximum msi-x vectors per CPUs core. 290 * Add additional 1 vector to ensure always available interrupt. 291 */ 292 xhci->msix_count = min(num_online_cpus() + 1, 293 HCS_MAX_INTRS(xhci->hcs_params1)); 294 295 xhci->msix_entries = 296 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 297 GFP_KERNEL); 298 if (!xhci->msix_entries) { 299 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 300 return -ENOMEM; 301 } 302 303 for (i = 0; i < xhci->msix_count; i++) { 304 xhci->msix_entries[i].entry = i; 305 xhci->msix_entries[i].vector = 0; 306 } 307 308 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count); 309 if (ret) { 310 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 311 "Failed to enable MSI-X"); 312 goto free_entries; 313 } 314 315 for (i = 0; i < xhci->msix_count; i++) { 316 ret = request_irq(xhci->msix_entries[i].vector, 317 xhci_msi_irq, 318 0, "xhci_hcd", xhci_to_hcd(xhci)); 319 if (ret) 320 goto disable_msix; 321 } 322 323 hcd->msix_enabled = 1; 324 return ret; 325 326 disable_msix: 327 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 328 xhci_free_irq(xhci); 329 pci_disable_msix(pdev); 330 free_entries: 331 kfree(xhci->msix_entries); 332 xhci->msix_entries = NULL; 333 return ret; 334 } 335 336 /* Free any IRQs and disable MSI-X */ 337 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 338 { 339 struct usb_hcd *hcd = xhci_to_hcd(xhci); 340 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 341 342 if (xhci->quirks & XHCI_PLAT) 343 return; 344 345 xhci_free_irq(xhci); 346 347 if (xhci->msix_entries) { 348 pci_disable_msix(pdev); 349 kfree(xhci->msix_entries); 350 xhci->msix_entries = NULL; 351 } else { 352 pci_disable_msi(pdev); 353 } 354 355 hcd->msix_enabled = 0; 356 return; 357 } 358 359 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 360 { 361 int i; 362 363 if (xhci->msix_entries) { 364 for (i = 0; i < xhci->msix_count; i++) 365 synchronize_irq(xhci->msix_entries[i].vector); 366 } 367 } 368 369 static int xhci_try_enable_msi(struct usb_hcd *hcd) 370 { 371 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 372 struct pci_dev *pdev; 373 int ret; 374 375 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 376 if (xhci->quirks & XHCI_PLAT) 377 return 0; 378 379 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 380 /* 381 * Some Fresco Logic host controllers advertise MSI, but fail to 382 * generate interrupts. Don't even try to enable MSI. 383 */ 384 if (xhci->quirks & XHCI_BROKEN_MSI) 385 goto legacy_irq; 386 387 /* unregister the legacy interrupt */ 388 if (hcd->irq) 389 free_irq(hcd->irq, hcd); 390 hcd->irq = 0; 391 392 ret = xhci_setup_msix(xhci); 393 if (ret) 394 /* fall back to msi*/ 395 ret = xhci_setup_msi(xhci); 396 397 if (!ret) 398 /* hcd->irq is 0, we have MSI */ 399 return 0; 400 401 if (!pdev->irq) { 402 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 403 return -EINVAL; 404 } 405 406 legacy_irq: 407 if (!strlen(hcd->irq_descr)) 408 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 409 hcd->driver->description, hcd->self.busnum); 410 411 /* fall back to legacy interrupt*/ 412 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 413 hcd->irq_descr, hcd); 414 if (ret) { 415 xhci_err(xhci, "request interrupt %d failed\n", 416 pdev->irq); 417 return ret; 418 } 419 hcd->irq = pdev->irq; 420 return 0; 421 } 422 423 #else 424 425 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 426 { 427 return 0; 428 } 429 430 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 431 { 432 } 433 434 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 435 { 436 } 437 438 #endif 439 440 static void compliance_mode_recovery(unsigned long arg) 441 { 442 struct xhci_hcd *xhci; 443 struct usb_hcd *hcd; 444 u32 temp; 445 int i; 446 447 xhci = (struct xhci_hcd *)arg; 448 449 for (i = 0; i < xhci->num_usb3_ports; i++) { 450 temp = readl(xhci->usb3_ports[i]); 451 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 452 /* 453 * Compliance Mode Detected. Letting USB Core 454 * handle the Warm Reset 455 */ 456 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 457 "Compliance mode detected->port %d", 458 i + 1); 459 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 460 "Attempting compliance mode recovery"); 461 hcd = xhci->shared_hcd; 462 463 if (hcd->state == HC_STATE_SUSPENDED) 464 usb_hcd_resume_root_hub(hcd); 465 466 usb_hcd_poll_rh_status(hcd); 467 } 468 } 469 470 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 471 mod_timer(&xhci->comp_mode_recovery_timer, 472 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 473 } 474 475 /* 476 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 477 * that causes ports behind that hardware to enter compliance mode sometimes. 478 * The quirk creates a timer that polls every 2 seconds the link state of 479 * each host controller's port and recovers it by issuing a Warm reset 480 * if Compliance mode is detected, otherwise the port will become "dead" (no 481 * device connections or disconnections will be detected anymore). Becasue no 482 * status event is generated when entering compliance mode (per xhci spec), 483 * this quirk is needed on systems that have the failing hardware installed. 484 */ 485 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 486 { 487 xhci->port_status_u0 = 0; 488 setup_timer(&xhci->comp_mode_recovery_timer, 489 compliance_mode_recovery, (unsigned long)xhci); 490 xhci->comp_mode_recovery_timer.expires = jiffies + 491 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 492 493 set_timer_slack(&xhci->comp_mode_recovery_timer, 494 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 495 add_timer(&xhci->comp_mode_recovery_timer); 496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 497 "Compliance mode recovery timer initialized"); 498 } 499 500 /* 501 * This function identifies the systems that have installed the SN65LVPE502CP 502 * USB3.0 re-driver and that need the Compliance Mode Quirk. 503 * Systems: 504 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 505 */ 506 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 507 { 508 const char *dmi_product_name, *dmi_sys_vendor; 509 510 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 511 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 512 if (!dmi_product_name || !dmi_sys_vendor) 513 return false; 514 515 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 516 return false; 517 518 if (strstr(dmi_product_name, "Z420") || 519 strstr(dmi_product_name, "Z620") || 520 strstr(dmi_product_name, "Z820") || 521 strstr(dmi_product_name, "Z1 Workstation")) 522 return true; 523 524 return false; 525 } 526 527 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 528 { 529 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 530 } 531 532 533 /* 534 * Initialize memory for HCD and xHC (one-time init). 535 * 536 * Program the PAGESIZE register, initialize the device context array, create 537 * device contexts (?), set up a command ring segment (or two?), create event 538 * ring (one for now). 539 */ 540 int xhci_init(struct usb_hcd *hcd) 541 { 542 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 543 int retval = 0; 544 545 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 546 spin_lock_init(&xhci->lock); 547 if (xhci->hci_version == 0x95 && link_quirk) { 548 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 549 "QUIRK: Not clearing Link TRB chain bits."); 550 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 551 } else { 552 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 553 "xHCI doesn't need link TRB QUIRK"); 554 } 555 retval = xhci_mem_init(xhci, GFP_KERNEL); 556 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 557 558 /* Initializing Compliance Mode Recovery Data If Needed */ 559 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 560 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 561 compliance_mode_recovery_timer_init(xhci); 562 } 563 564 return retval; 565 } 566 567 /*-------------------------------------------------------------------------*/ 568 569 570 static int xhci_run_finished(struct xhci_hcd *xhci) 571 { 572 if (xhci_start(xhci)) { 573 xhci_halt(xhci); 574 return -ENODEV; 575 } 576 xhci->shared_hcd->state = HC_STATE_RUNNING; 577 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 578 579 if (xhci->quirks & XHCI_NEC_HOST) 580 xhci_ring_cmd_db(xhci); 581 582 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 583 "Finished xhci_run for USB3 roothub"); 584 return 0; 585 } 586 587 /* 588 * Start the HC after it was halted. 589 * 590 * This function is called by the USB core when the HC driver is added. 591 * Its opposite is xhci_stop(). 592 * 593 * xhci_init() must be called once before this function can be called. 594 * Reset the HC, enable device slot contexts, program DCBAAP, and 595 * set command ring pointer and event ring pointer. 596 * 597 * Setup MSI-X vectors and enable interrupts. 598 */ 599 int xhci_run(struct usb_hcd *hcd) 600 { 601 u32 temp; 602 u64 temp_64; 603 int ret; 604 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 605 606 /* Start the xHCI host controller running only after the USB 2.0 roothub 607 * is setup. 608 */ 609 610 hcd->uses_new_polling = 1; 611 if (!usb_hcd_is_primary_hcd(hcd)) 612 return xhci_run_finished(xhci); 613 614 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 615 616 ret = xhci_try_enable_msi(hcd); 617 if (ret) 618 return ret; 619 620 xhci_dbg(xhci, "Command ring memory map follows:\n"); 621 xhci_debug_ring(xhci, xhci->cmd_ring); 622 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 623 xhci_dbg_cmd_ptrs(xhci); 624 625 xhci_dbg(xhci, "ERST memory map follows:\n"); 626 xhci_dbg_erst(xhci, &xhci->erst); 627 xhci_dbg(xhci, "Event ring:\n"); 628 xhci_debug_ring(xhci, xhci->event_ring); 629 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 630 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 631 temp_64 &= ~ERST_PTR_MASK; 632 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 633 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 634 635 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 636 "// Set the interrupt modulation register"); 637 temp = readl(&xhci->ir_set->irq_control); 638 temp &= ~ER_IRQ_INTERVAL_MASK; 639 /* 640 * the increment interval is 8 times as much as that defined 641 * in xHCI spec on MTK's controller 642 */ 643 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160); 644 writel(temp, &xhci->ir_set->irq_control); 645 646 /* Set the HCD state before we enable the irqs */ 647 temp = readl(&xhci->op_regs->command); 648 temp |= (CMD_EIE); 649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 650 "// Enable interrupts, cmd = 0x%x.", temp); 651 writel(temp, &xhci->op_regs->command); 652 653 temp = readl(&xhci->ir_set->irq_pending); 654 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 655 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 656 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 657 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 658 xhci_print_ir_set(xhci, 0); 659 660 if (xhci->quirks & XHCI_NEC_HOST) { 661 struct xhci_command *command; 662 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 663 if (!command) 664 return -ENOMEM; 665 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 666 TRB_TYPE(TRB_NEC_GET_FW)); 667 } 668 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 669 "Finished xhci_run for USB2 roothub"); 670 return 0; 671 } 672 EXPORT_SYMBOL_GPL(xhci_run); 673 674 /* 675 * Stop xHCI driver. 676 * 677 * This function is called by the USB core when the HC driver is removed. 678 * Its opposite is xhci_run(). 679 * 680 * Disable device contexts, disable IRQs, and quiesce the HC. 681 * Reset the HC, finish any completed transactions, and cleanup memory. 682 */ 683 void xhci_stop(struct usb_hcd *hcd) 684 { 685 u32 temp; 686 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 687 688 if (xhci->xhc_state & XHCI_STATE_HALTED) 689 return; 690 691 mutex_lock(&xhci->mutex); 692 spin_lock_irq(&xhci->lock); 693 xhci->xhc_state |= XHCI_STATE_HALTED; 694 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 695 696 /* Make sure the xHC is halted for a USB3 roothub 697 * (xhci_stop() could be called as part of failed init). 698 */ 699 xhci_halt(xhci); 700 xhci_reset(xhci); 701 spin_unlock_irq(&xhci->lock); 702 703 xhci_cleanup_msix(xhci); 704 705 /* Deleting Compliance Mode Recovery Timer */ 706 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 707 (!(xhci_all_ports_seen_u0(xhci)))) { 708 del_timer_sync(&xhci->comp_mode_recovery_timer); 709 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 710 "%s: compliance mode recovery timer deleted", 711 __func__); 712 } 713 714 if (xhci->quirks & XHCI_AMD_PLL_FIX) 715 usb_amd_dev_put(); 716 717 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 718 "// Disabling event ring interrupts"); 719 temp = readl(&xhci->op_regs->status); 720 writel(temp & ~STS_EINT, &xhci->op_regs->status); 721 temp = readl(&xhci->ir_set->irq_pending); 722 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 723 xhci_print_ir_set(xhci, 0); 724 725 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 726 xhci_mem_cleanup(xhci); 727 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 728 "xhci_stop completed - status = %x", 729 readl(&xhci->op_regs->status)); 730 mutex_unlock(&xhci->mutex); 731 } 732 733 /* 734 * Shutdown HC (not bus-specific) 735 * 736 * This is called when the machine is rebooting or halting. We assume that the 737 * machine will be powered off, and the HC's internal state will be reset. 738 * Don't bother to free memory. 739 * 740 * This will only ever be called with the main usb_hcd (the USB3 roothub). 741 */ 742 void xhci_shutdown(struct usb_hcd *hcd) 743 { 744 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 745 746 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 747 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 748 749 spin_lock_irq(&xhci->lock); 750 xhci_halt(xhci); 751 /* Workaround for spurious wakeups at shutdown with HSW */ 752 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 753 xhci_reset(xhci); 754 spin_unlock_irq(&xhci->lock); 755 756 xhci_cleanup_msix(xhci); 757 758 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 759 "xhci_shutdown completed - status = %x", 760 readl(&xhci->op_regs->status)); 761 762 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 763 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 764 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 765 } 766 767 #ifdef CONFIG_PM 768 static void xhci_save_registers(struct xhci_hcd *xhci) 769 { 770 xhci->s3.command = readl(&xhci->op_regs->command); 771 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 772 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 773 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 774 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 775 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 776 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 777 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 778 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 779 } 780 781 static void xhci_restore_registers(struct xhci_hcd *xhci) 782 { 783 writel(xhci->s3.command, &xhci->op_regs->command); 784 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 785 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 786 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 787 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 788 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 789 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 790 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 791 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 792 } 793 794 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 795 { 796 u64 val_64; 797 798 /* step 2: initialize command ring buffer */ 799 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 800 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 801 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 802 xhci->cmd_ring->dequeue) & 803 (u64) ~CMD_RING_RSVD_BITS) | 804 xhci->cmd_ring->cycle_state; 805 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 806 "// Setting command ring address to 0x%llx", 807 (long unsigned long) val_64); 808 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 809 } 810 811 /* 812 * The whole command ring must be cleared to zero when we suspend the host. 813 * 814 * The host doesn't save the command ring pointer in the suspend well, so we 815 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 816 * aligned, because of the reserved bits in the command ring dequeue pointer 817 * register. Therefore, we can't just set the dequeue pointer back in the 818 * middle of the ring (TRBs are 16-byte aligned). 819 */ 820 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 821 { 822 struct xhci_ring *ring; 823 struct xhci_segment *seg; 824 825 ring = xhci->cmd_ring; 826 seg = ring->deq_seg; 827 do { 828 memset(seg->trbs, 0, 829 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 830 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 831 cpu_to_le32(~TRB_CYCLE); 832 seg = seg->next; 833 } while (seg != ring->deq_seg); 834 835 /* Reset the software enqueue and dequeue pointers */ 836 ring->deq_seg = ring->first_seg; 837 ring->dequeue = ring->first_seg->trbs; 838 ring->enq_seg = ring->deq_seg; 839 ring->enqueue = ring->dequeue; 840 841 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 842 /* 843 * Ring is now zeroed, so the HW should look for change of ownership 844 * when the cycle bit is set to 1. 845 */ 846 ring->cycle_state = 1; 847 848 /* 849 * Reset the hardware dequeue pointer. 850 * Yes, this will need to be re-written after resume, but we're paranoid 851 * and want to make sure the hardware doesn't access bogus memory 852 * because, say, the BIOS or an SMI started the host without changing 853 * the command ring pointers. 854 */ 855 xhci_set_cmd_ring_deq(xhci); 856 } 857 858 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 859 { 860 int port_index; 861 __le32 __iomem **port_array; 862 unsigned long flags; 863 u32 t1, t2; 864 865 spin_lock_irqsave(&xhci->lock, flags); 866 867 /* disble usb3 ports Wake bits*/ 868 port_index = xhci->num_usb3_ports; 869 port_array = xhci->usb3_ports; 870 while (port_index--) { 871 t1 = readl(port_array[port_index]); 872 t1 = xhci_port_state_to_neutral(t1); 873 t2 = t1 & ~PORT_WAKE_BITS; 874 if (t1 != t2) 875 writel(t2, port_array[port_index]); 876 } 877 878 /* disble usb2 ports Wake bits*/ 879 port_index = xhci->num_usb2_ports; 880 port_array = xhci->usb2_ports; 881 while (port_index--) { 882 t1 = readl(port_array[port_index]); 883 t1 = xhci_port_state_to_neutral(t1); 884 t2 = t1 & ~PORT_WAKE_BITS; 885 if (t1 != t2) 886 writel(t2, port_array[port_index]); 887 } 888 889 spin_unlock_irqrestore(&xhci->lock, flags); 890 } 891 892 /* 893 * Stop HC (not bus-specific) 894 * 895 * This is called when the machine transition into S3/S4 mode. 896 * 897 */ 898 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 899 { 900 int rc = 0; 901 unsigned int delay = XHCI_MAX_HALT_USEC; 902 struct usb_hcd *hcd = xhci_to_hcd(xhci); 903 u32 command; 904 905 if (!hcd->state) 906 return 0; 907 908 if (hcd->state != HC_STATE_SUSPENDED || 909 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 910 return -EINVAL; 911 912 /* Clear root port wake on bits if wakeup not allowed. */ 913 if (!do_wakeup) 914 xhci_disable_port_wake_on_bits(xhci); 915 916 /* Don't poll the roothubs on bus suspend. */ 917 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 918 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 919 del_timer_sync(&hcd->rh_timer); 920 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 921 del_timer_sync(&xhci->shared_hcd->rh_timer); 922 923 spin_lock_irq(&xhci->lock); 924 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 925 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 926 /* step 1: stop endpoint */ 927 /* skipped assuming that port suspend has done */ 928 929 /* step 2: clear Run/Stop bit */ 930 command = readl(&xhci->op_regs->command); 931 command &= ~CMD_RUN; 932 writel(command, &xhci->op_regs->command); 933 934 /* Some chips from Fresco Logic need an extraordinary delay */ 935 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 936 937 if (xhci_handshake(&xhci->op_regs->status, 938 STS_HALT, STS_HALT, delay)) { 939 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 940 spin_unlock_irq(&xhci->lock); 941 return -ETIMEDOUT; 942 } 943 xhci_clear_command_ring(xhci); 944 945 /* step 3: save registers */ 946 xhci_save_registers(xhci); 947 948 /* step 4: set CSS flag */ 949 command = readl(&xhci->op_regs->command); 950 command |= CMD_CSS; 951 writel(command, &xhci->op_regs->command); 952 if (xhci_handshake(&xhci->op_regs->status, 953 STS_SAVE, 0, 10 * 1000)) { 954 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 955 spin_unlock_irq(&xhci->lock); 956 return -ETIMEDOUT; 957 } 958 spin_unlock_irq(&xhci->lock); 959 960 /* 961 * Deleting Compliance Mode Recovery Timer because the xHCI Host 962 * is about to be suspended. 963 */ 964 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 965 (!(xhci_all_ports_seen_u0(xhci)))) { 966 del_timer_sync(&xhci->comp_mode_recovery_timer); 967 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 968 "%s: compliance mode recovery timer deleted", 969 __func__); 970 } 971 972 /* step 5: remove core well power */ 973 /* synchronize irq when using MSI-X */ 974 xhci_msix_sync_irqs(xhci); 975 976 return rc; 977 } 978 EXPORT_SYMBOL_GPL(xhci_suspend); 979 980 /* 981 * start xHC (not bus-specific) 982 * 983 * This is called when the machine transition from S3/S4 mode. 984 * 985 */ 986 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 987 { 988 u32 command, temp = 0, status; 989 struct usb_hcd *hcd = xhci_to_hcd(xhci); 990 struct usb_hcd *secondary_hcd; 991 int retval = 0; 992 bool comp_timer_running = false; 993 994 if (!hcd->state) 995 return 0; 996 997 /* Wait a bit if either of the roothubs need to settle from the 998 * transition into bus suspend. 999 */ 1000 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 1001 time_before(jiffies, 1002 xhci->bus_state[1].next_statechange)) 1003 msleep(100); 1004 1005 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1006 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1007 1008 spin_lock_irq(&xhci->lock); 1009 if (xhci->quirks & XHCI_RESET_ON_RESUME) 1010 hibernated = true; 1011 1012 if (!hibernated) { 1013 /* step 1: restore register */ 1014 xhci_restore_registers(xhci); 1015 /* step 2: initialize command ring buffer */ 1016 xhci_set_cmd_ring_deq(xhci); 1017 /* step 3: restore state and start state*/ 1018 /* step 3: set CRS flag */ 1019 command = readl(&xhci->op_regs->command); 1020 command |= CMD_CRS; 1021 writel(command, &xhci->op_regs->command); 1022 if (xhci_handshake(&xhci->op_regs->status, 1023 STS_RESTORE, 0, 10 * 1000)) { 1024 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1025 spin_unlock_irq(&xhci->lock); 1026 return -ETIMEDOUT; 1027 } 1028 temp = readl(&xhci->op_regs->status); 1029 } 1030 1031 /* If restore operation fails, re-initialize the HC during resume */ 1032 if ((temp & STS_SRE) || hibernated) { 1033 1034 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1035 !(xhci_all_ports_seen_u0(xhci))) { 1036 del_timer_sync(&xhci->comp_mode_recovery_timer); 1037 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1038 "Compliance Mode Recovery Timer deleted!"); 1039 } 1040 1041 /* Let the USB core know _both_ roothubs lost power. */ 1042 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1043 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1044 1045 xhci_dbg(xhci, "Stop HCD\n"); 1046 xhci_halt(xhci); 1047 xhci_reset(xhci); 1048 spin_unlock_irq(&xhci->lock); 1049 xhci_cleanup_msix(xhci); 1050 1051 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1052 temp = readl(&xhci->op_regs->status); 1053 writel(temp & ~STS_EINT, &xhci->op_regs->status); 1054 temp = readl(&xhci->ir_set->irq_pending); 1055 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1056 xhci_print_ir_set(xhci, 0); 1057 1058 xhci_dbg(xhci, "cleaning up memory\n"); 1059 xhci_mem_cleanup(xhci); 1060 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1061 readl(&xhci->op_regs->status)); 1062 1063 /* USB core calls the PCI reinit and start functions twice: 1064 * first with the primary HCD, and then with the secondary HCD. 1065 * If we don't do the same, the host will never be started. 1066 */ 1067 if (!usb_hcd_is_primary_hcd(hcd)) 1068 secondary_hcd = hcd; 1069 else 1070 secondary_hcd = xhci->shared_hcd; 1071 1072 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1073 retval = xhci_init(hcd->primary_hcd); 1074 if (retval) 1075 return retval; 1076 comp_timer_running = true; 1077 1078 xhci_dbg(xhci, "Start the primary HCD\n"); 1079 retval = xhci_run(hcd->primary_hcd); 1080 if (!retval) { 1081 xhci_dbg(xhci, "Start the secondary HCD\n"); 1082 retval = xhci_run(secondary_hcd); 1083 } 1084 hcd->state = HC_STATE_SUSPENDED; 1085 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1086 goto done; 1087 } 1088 1089 /* step 4: set Run/Stop bit */ 1090 command = readl(&xhci->op_regs->command); 1091 command |= CMD_RUN; 1092 writel(command, &xhci->op_regs->command); 1093 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1094 0, 250 * 1000); 1095 1096 /* step 5: walk topology and initialize portsc, 1097 * portpmsc and portli 1098 */ 1099 /* this is done in bus_resume */ 1100 1101 /* step 6: restart each of the previously 1102 * Running endpoints by ringing their doorbells 1103 */ 1104 1105 spin_unlock_irq(&xhci->lock); 1106 1107 done: 1108 if (retval == 0) { 1109 /* Resume root hubs only when have pending events. */ 1110 status = readl(&xhci->op_regs->status); 1111 if (status & STS_EINT) { 1112 usb_hcd_resume_root_hub(xhci->shared_hcd); 1113 usb_hcd_resume_root_hub(hcd); 1114 } 1115 } 1116 1117 /* 1118 * If system is subject to the Quirk, Compliance Mode Timer needs to 1119 * be re-initialized Always after a system resume. Ports are subject 1120 * to suffer the Compliance Mode issue again. It doesn't matter if 1121 * ports have entered previously to U0 before system's suspension. 1122 */ 1123 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1124 compliance_mode_recovery_timer_init(xhci); 1125 1126 /* Re-enable port polling. */ 1127 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1128 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1129 usb_hcd_poll_rh_status(xhci->shared_hcd); 1130 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1131 usb_hcd_poll_rh_status(hcd); 1132 1133 return retval; 1134 } 1135 EXPORT_SYMBOL_GPL(xhci_resume); 1136 #endif /* CONFIG_PM */ 1137 1138 /*-------------------------------------------------------------------------*/ 1139 1140 /** 1141 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1142 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1143 * value to right shift 1 for the bitmask. 1144 * 1145 * Index = (epnum * 2) + direction - 1, 1146 * where direction = 0 for OUT, 1 for IN. 1147 * For control endpoints, the IN index is used (OUT index is unused), so 1148 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1149 */ 1150 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1151 { 1152 unsigned int index; 1153 if (usb_endpoint_xfer_control(desc)) 1154 index = (unsigned int) (usb_endpoint_num(desc)*2); 1155 else 1156 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1157 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1158 return index; 1159 } 1160 1161 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1162 * address from the XHCI endpoint index. 1163 */ 1164 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1165 { 1166 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1167 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1168 return direction | number; 1169 } 1170 1171 /* Find the flag for this endpoint (for use in the control context). Use the 1172 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1173 * bit 1, etc. 1174 */ 1175 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1176 { 1177 return 1 << (xhci_get_endpoint_index(desc) + 1); 1178 } 1179 1180 /* Find the flag for this endpoint (for use in the control context). Use the 1181 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1182 * bit 1, etc. 1183 */ 1184 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1185 { 1186 return 1 << (ep_index + 1); 1187 } 1188 1189 /* Compute the last valid endpoint context index. Basically, this is the 1190 * endpoint index plus one. For slot contexts with more than valid endpoint, 1191 * we find the most significant bit set in the added contexts flags. 1192 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1193 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1194 */ 1195 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1196 { 1197 return fls(added_ctxs) - 1; 1198 } 1199 1200 /* Returns 1 if the arguments are OK; 1201 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1202 */ 1203 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1204 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1205 const char *func) { 1206 struct xhci_hcd *xhci; 1207 struct xhci_virt_device *virt_dev; 1208 1209 if (!hcd || (check_ep && !ep) || !udev) { 1210 pr_debug("xHCI %s called with invalid args\n", func); 1211 return -EINVAL; 1212 } 1213 if (!udev->parent) { 1214 pr_debug("xHCI %s called for root hub\n", func); 1215 return 0; 1216 } 1217 1218 xhci = hcd_to_xhci(hcd); 1219 if (check_virt_dev) { 1220 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1221 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1222 func); 1223 return -EINVAL; 1224 } 1225 1226 virt_dev = xhci->devs[udev->slot_id]; 1227 if (virt_dev->udev != udev) { 1228 xhci_dbg(xhci, "xHCI %s called with udev and " 1229 "virt_dev does not match\n", func); 1230 return -EINVAL; 1231 } 1232 } 1233 1234 if (xhci->xhc_state & XHCI_STATE_HALTED) 1235 return -ENODEV; 1236 1237 return 1; 1238 } 1239 1240 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1241 struct usb_device *udev, struct xhci_command *command, 1242 bool ctx_change, bool must_succeed); 1243 1244 /* 1245 * Full speed devices may have a max packet size greater than 8 bytes, but the 1246 * USB core doesn't know that until it reads the first 8 bytes of the 1247 * descriptor. If the usb_device's max packet size changes after that point, 1248 * we need to issue an evaluate context command and wait on it. 1249 */ 1250 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1251 unsigned int ep_index, struct urb *urb) 1252 { 1253 struct xhci_container_ctx *out_ctx; 1254 struct xhci_input_control_ctx *ctrl_ctx; 1255 struct xhci_ep_ctx *ep_ctx; 1256 struct xhci_command *command; 1257 int max_packet_size; 1258 int hw_max_packet_size; 1259 int ret = 0; 1260 1261 out_ctx = xhci->devs[slot_id]->out_ctx; 1262 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1263 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1264 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1265 if (hw_max_packet_size != max_packet_size) { 1266 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1267 "Max Packet Size for ep 0 changed."); 1268 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1269 "Max packet size in usb_device = %d", 1270 max_packet_size); 1271 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1272 "Max packet size in xHCI HW = %d", 1273 hw_max_packet_size); 1274 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1275 "Issuing evaluate context command."); 1276 1277 /* Set up the input context flags for the command */ 1278 /* FIXME: This won't work if a non-default control endpoint 1279 * changes max packet sizes. 1280 */ 1281 1282 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1283 if (!command) 1284 return -ENOMEM; 1285 1286 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1287 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1288 if (!ctrl_ctx) { 1289 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1290 __func__); 1291 ret = -ENOMEM; 1292 goto command_cleanup; 1293 } 1294 /* Set up the modified control endpoint 0 */ 1295 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1296 xhci->devs[slot_id]->out_ctx, ep_index); 1297 1298 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1299 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1300 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1301 1302 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1303 ctrl_ctx->drop_flags = 0; 1304 1305 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1306 xhci_dbg_ctx(xhci, command->in_ctx, ep_index); 1307 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1308 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1309 1310 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1311 true, false); 1312 1313 /* Clean up the input context for later use by bandwidth 1314 * functions. 1315 */ 1316 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1317 command_cleanup: 1318 kfree(command->completion); 1319 kfree(command); 1320 } 1321 return ret; 1322 } 1323 1324 /* 1325 * non-error returns are a promise to giveback() the urb later 1326 * we drop ownership so next owner (or urb unlink) can get it 1327 */ 1328 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1329 { 1330 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1331 struct xhci_td *buffer; 1332 unsigned long flags; 1333 int ret = 0; 1334 unsigned int slot_id, ep_index; 1335 struct urb_priv *urb_priv; 1336 int size, i; 1337 1338 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1339 true, true, __func__) <= 0) 1340 return -EINVAL; 1341 1342 slot_id = urb->dev->slot_id; 1343 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1344 1345 if (!HCD_HW_ACCESSIBLE(hcd)) { 1346 if (!in_interrupt()) 1347 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1348 ret = -ESHUTDOWN; 1349 goto exit; 1350 } 1351 1352 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1353 size = urb->number_of_packets; 1354 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1355 urb->transfer_buffer_length > 0 && 1356 urb->transfer_flags & URB_ZERO_PACKET && 1357 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1358 size = 2; 1359 else 1360 size = 1; 1361 1362 urb_priv = kzalloc(sizeof(struct urb_priv) + 1363 size * sizeof(struct xhci_td *), mem_flags); 1364 if (!urb_priv) 1365 return -ENOMEM; 1366 1367 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1368 if (!buffer) { 1369 kfree(urb_priv); 1370 return -ENOMEM; 1371 } 1372 1373 for (i = 0; i < size; i++) { 1374 urb_priv->td[i] = buffer; 1375 buffer++; 1376 } 1377 1378 urb_priv->length = size; 1379 urb_priv->td_cnt = 0; 1380 urb->hcpriv = urb_priv; 1381 1382 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1383 /* Check to see if the max packet size for the default control 1384 * endpoint changed during FS device enumeration 1385 */ 1386 if (urb->dev->speed == USB_SPEED_FULL) { 1387 ret = xhci_check_maxpacket(xhci, slot_id, 1388 ep_index, urb); 1389 if (ret < 0) { 1390 xhci_urb_free_priv(urb_priv); 1391 urb->hcpriv = NULL; 1392 return ret; 1393 } 1394 } 1395 1396 /* We have a spinlock and interrupts disabled, so we must pass 1397 * atomic context to this function, which may allocate memory. 1398 */ 1399 spin_lock_irqsave(&xhci->lock, flags); 1400 if (xhci->xhc_state & XHCI_STATE_DYING) 1401 goto dying; 1402 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1403 slot_id, ep_index); 1404 if (ret) 1405 goto free_priv; 1406 spin_unlock_irqrestore(&xhci->lock, flags); 1407 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1408 spin_lock_irqsave(&xhci->lock, flags); 1409 if (xhci->xhc_state & XHCI_STATE_DYING) 1410 goto dying; 1411 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1412 EP_GETTING_STREAMS) { 1413 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1414 "is transitioning to using streams.\n"); 1415 ret = -EINVAL; 1416 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1417 EP_GETTING_NO_STREAMS) { 1418 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1419 "is transitioning to " 1420 "not having streams.\n"); 1421 ret = -EINVAL; 1422 } else { 1423 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1424 slot_id, ep_index); 1425 } 1426 if (ret) 1427 goto free_priv; 1428 spin_unlock_irqrestore(&xhci->lock, flags); 1429 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1430 spin_lock_irqsave(&xhci->lock, flags); 1431 if (xhci->xhc_state & XHCI_STATE_DYING) 1432 goto dying; 1433 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1434 slot_id, ep_index); 1435 if (ret) 1436 goto free_priv; 1437 spin_unlock_irqrestore(&xhci->lock, flags); 1438 } else { 1439 spin_lock_irqsave(&xhci->lock, flags); 1440 if (xhci->xhc_state & XHCI_STATE_DYING) 1441 goto dying; 1442 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1443 slot_id, ep_index); 1444 if (ret) 1445 goto free_priv; 1446 spin_unlock_irqrestore(&xhci->lock, flags); 1447 } 1448 exit: 1449 return ret; 1450 dying: 1451 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1452 "non-responsive xHCI host.\n", 1453 urb->ep->desc.bEndpointAddress, urb); 1454 ret = -ESHUTDOWN; 1455 free_priv: 1456 xhci_urb_free_priv(urb_priv); 1457 urb->hcpriv = NULL; 1458 spin_unlock_irqrestore(&xhci->lock, flags); 1459 return ret; 1460 } 1461 1462 /* Get the right ring for the given URB. 1463 * If the endpoint supports streams, boundary check the URB's stream ID. 1464 * If the endpoint doesn't support streams, return the singular endpoint ring. 1465 */ 1466 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1467 struct urb *urb) 1468 { 1469 unsigned int slot_id; 1470 unsigned int ep_index; 1471 unsigned int stream_id; 1472 struct xhci_virt_ep *ep; 1473 1474 slot_id = urb->dev->slot_id; 1475 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1476 stream_id = urb->stream_id; 1477 ep = &xhci->devs[slot_id]->eps[ep_index]; 1478 /* Common case: no streams */ 1479 if (!(ep->ep_state & EP_HAS_STREAMS)) 1480 return ep->ring; 1481 1482 if (stream_id == 0) { 1483 xhci_warn(xhci, 1484 "WARN: Slot ID %u, ep index %u has streams, " 1485 "but URB has no stream ID.\n", 1486 slot_id, ep_index); 1487 return NULL; 1488 } 1489 1490 if (stream_id < ep->stream_info->num_streams) 1491 return ep->stream_info->stream_rings[stream_id]; 1492 1493 xhci_warn(xhci, 1494 "WARN: Slot ID %u, ep index %u has " 1495 "stream IDs 1 to %u allocated, " 1496 "but stream ID %u is requested.\n", 1497 slot_id, ep_index, 1498 ep->stream_info->num_streams - 1, 1499 stream_id); 1500 return NULL; 1501 } 1502 1503 /* 1504 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1505 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1506 * should pick up where it left off in the TD, unless a Set Transfer Ring 1507 * Dequeue Pointer is issued. 1508 * 1509 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1510 * the ring. Since the ring is a contiguous structure, they can't be physically 1511 * removed. Instead, there are two options: 1512 * 1513 * 1) If the HC is in the middle of processing the URB to be canceled, we 1514 * simply move the ring's dequeue pointer past those TRBs using the Set 1515 * Transfer Ring Dequeue Pointer command. This will be the common case, 1516 * when drivers timeout on the last submitted URB and attempt to cancel. 1517 * 1518 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1519 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1520 * HC will need to invalidate the any TRBs it has cached after the stop 1521 * endpoint command, as noted in the xHCI 0.95 errata. 1522 * 1523 * 3) The TD may have completed by the time the Stop Endpoint Command 1524 * completes, so software needs to handle that case too. 1525 * 1526 * This function should protect against the TD enqueueing code ringing the 1527 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1528 * It also needs to account for multiple cancellations on happening at the same 1529 * time for the same endpoint. 1530 * 1531 * Note that this function can be called in any context, or so says 1532 * usb_hcd_unlink_urb() 1533 */ 1534 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1535 { 1536 unsigned long flags; 1537 int ret, i; 1538 u32 temp; 1539 struct xhci_hcd *xhci; 1540 struct urb_priv *urb_priv; 1541 struct xhci_td *td; 1542 unsigned int ep_index; 1543 struct xhci_ring *ep_ring; 1544 struct xhci_virt_ep *ep; 1545 struct xhci_command *command; 1546 1547 xhci = hcd_to_xhci(hcd); 1548 spin_lock_irqsave(&xhci->lock, flags); 1549 /* Make sure the URB hasn't completed or been unlinked already */ 1550 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1551 if (ret || !urb->hcpriv) 1552 goto done; 1553 temp = readl(&xhci->op_regs->status); 1554 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1555 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1556 "HW died, freeing TD."); 1557 urb_priv = urb->hcpriv; 1558 for (i = urb_priv->td_cnt; 1559 i < urb_priv->length && xhci->devs[urb->dev->slot_id]; 1560 i++) { 1561 td = urb_priv->td[i]; 1562 if (!list_empty(&td->td_list)) 1563 list_del_init(&td->td_list); 1564 if (!list_empty(&td->cancelled_td_list)) 1565 list_del_init(&td->cancelled_td_list); 1566 } 1567 1568 usb_hcd_unlink_urb_from_ep(hcd, urb); 1569 spin_unlock_irqrestore(&xhci->lock, flags); 1570 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1571 xhci_urb_free_priv(urb_priv); 1572 return ret; 1573 } 1574 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1575 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1576 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1577 "Ep 0x%x: URB %p to be canceled on " 1578 "non-responsive xHCI host.", 1579 urb->ep->desc.bEndpointAddress, urb); 1580 /* Let the stop endpoint command watchdog timer (which set this 1581 * state) finish cleaning up the endpoint TD lists. We must 1582 * have caught it in the middle of dropping a lock and giving 1583 * back an URB. 1584 */ 1585 goto done; 1586 } 1587 1588 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1589 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1590 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1591 if (!ep_ring) { 1592 ret = -EINVAL; 1593 goto done; 1594 } 1595 1596 urb_priv = urb->hcpriv; 1597 i = urb_priv->td_cnt; 1598 if (i < urb_priv->length) 1599 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1600 "Cancel URB %p, dev %s, ep 0x%x, " 1601 "starting at offset 0x%llx", 1602 urb, urb->dev->devpath, 1603 urb->ep->desc.bEndpointAddress, 1604 (unsigned long long) xhci_trb_virt_to_dma( 1605 urb_priv->td[i]->start_seg, 1606 urb_priv->td[i]->first_trb)); 1607 1608 for (; i < urb_priv->length; i++) { 1609 td = urb_priv->td[i]; 1610 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1611 } 1612 1613 /* Queue a stop endpoint command, but only if this is 1614 * the first cancellation to be handled. 1615 */ 1616 if (!(ep->ep_state & EP_HALT_PENDING)) { 1617 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1618 if (!command) { 1619 ret = -ENOMEM; 1620 goto done; 1621 } 1622 ep->ep_state |= EP_HALT_PENDING; 1623 ep->stop_cmds_pending++; 1624 ep->stop_cmd_timer.expires = jiffies + 1625 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1626 add_timer(&ep->stop_cmd_timer); 1627 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1628 ep_index, 0); 1629 xhci_ring_cmd_db(xhci); 1630 } 1631 done: 1632 spin_unlock_irqrestore(&xhci->lock, flags); 1633 return ret; 1634 } 1635 1636 /* Drop an endpoint from a new bandwidth configuration for this device. 1637 * Only one call to this function is allowed per endpoint before 1638 * check_bandwidth() or reset_bandwidth() must be called. 1639 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1640 * add the endpoint to the schedule with possibly new parameters denoted by a 1641 * different endpoint descriptor in usb_host_endpoint. 1642 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1643 * not allowed. 1644 * 1645 * The USB core will not allow URBs to be queued to an endpoint that is being 1646 * disabled, so there's no need for mutual exclusion to protect 1647 * the xhci->devs[slot_id] structure. 1648 */ 1649 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1650 struct usb_host_endpoint *ep) 1651 { 1652 struct xhci_hcd *xhci; 1653 struct xhci_container_ctx *in_ctx, *out_ctx; 1654 struct xhci_input_control_ctx *ctrl_ctx; 1655 unsigned int ep_index; 1656 struct xhci_ep_ctx *ep_ctx; 1657 u32 drop_flag; 1658 u32 new_add_flags, new_drop_flags; 1659 int ret; 1660 1661 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1662 if (ret <= 0) 1663 return ret; 1664 xhci = hcd_to_xhci(hcd); 1665 if (xhci->xhc_state & XHCI_STATE_DYING) 1666 return -ENODEV; 1667 1668 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1669 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1670 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1671 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1672 __func__, drop_flag); 1673 return 0; 1674 } 1675 1676 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1677 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1678 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1679 if (!ctrl_ctx) { 1680 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1681 __func__); 1682 return 0; 1683 } 1684 1685 ep_index = xhci_get_endpoint_index(&ep->desc); 1686 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1687 /* If the HC already knows the endpoint is disabled, 1688 * or the HCD has noted it is disabled, ignore this request 1689 */ 1690 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1691 cpu_to_le32(EP_STATE_DISABLED)) || 1692 le32_to_cpu(ctrl_ctx->drop_flags) & 1693 xhci_get_endpoint_flag(&ep->desc)) { 1694 /* Do not warn when called after a usb_device_reset */ 1695 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1696 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1697 __func__, ep); 1698 return 0; 1699 } 1700 1701 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1702 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1703 1704 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1705 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1706 1707 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1708 1709 if (xhci->quirks & XHCI_MTK_HOST) 1710 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1711 1712 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1713 (unsigned int) ep->desc.bEndpointAddress, 1714 udev->slot_id, 1715 (unsigned int) new_drop_flags, 1716 (unsigned int) new_add_flags); 1717 return 0; 1718 } 1719 1720 /* Add an endpoint to a new possible bandwidth configuration for this device. 1721 * Only one call to this function is allowed per endpoint before 1722 * check_bandwidth() or reset_bandwidth() must be called. 1723 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1724 * add the endpoint to the schedule with possibly new parameters denoted by a 1725 * different endpoint descriptor in usb_host_endpoint. 1726 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1727 * not allowed. 1728 * 1729 * The USB core will not allow URBs to be queued to an endpoint until the 1730 * configuration or alt setting is installed in the device, so there's no need 1731 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1732 */ 1733 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1734 struct usb_host_endpoint *ep) 1735 { 1736 struct xhci_hcd *xhci; 1737 struct xhci_container_ctx *in_ctx; 1738 unsigned int ep_index; 1739 struct xhci_input_control_ctx *ctrl_ctx; 1740 u32 added_ctxs; 1741 u32 new_add_flags, new_drop_flags; 1742 struct xhci_virt_device *virt_dev; 1743 int ret = 0; 1744 1745 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1746 if (ret <= 0) { 1747 /* So we won't queue a reset ep command for a root hub */ 1748 ep->hcpriv = NULL; 1749 return ret; 1750 } 1751 xhci = hcd_to_xhci(hcd); 1752 if (xhci->xhc_state & XHCI_STATE_DYING) 1753 return -ENODEV; 1754 1755 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1756 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1757 /* FIXME when we have to issue an evaluate endpoint command to 1758 * deal with ep0 max packet size changing once we get the 1759 * descriptors 1760 */ 1761 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1762 __func__, added_ctxs); 1763 return 0; 1764 } 1765 1766 virt_dev = xhci->devs[udev->slot_id]; 1767 in_ctx = virt_dev->in_ctx; 1768 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1769 if (!ctrl_ctx) { 1770 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1771 __func__); 1772 return 0; 1773 } 1774 1775 ep_index = xhci_get_endpoint_index(&ep->desc); 1776 /* If this endpoint is already in use, and the upper layers are trying 1777 * to add it again without dropping it, reject the addition. 1778 */ 1779 if (virt_dev->eps[ep_index].ring && 1780 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1781 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1782 "without dropping it.\n", 1783 (unsigned int) ep->desc.bEndpointAddress); 1784 return -EINVAL; 1785 } 1786 1787 /* If the HCD has already noted the endpoint is enabled, 1788 * ignore this request. 1789 */ 1790 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1791 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1792 __func__, ep); 1793 return 0; 1794 } 1795 1796 /* 1797 * Configuration and alternate setting changes must be done in 1798 * process context, not interrupt context (or so documenation 1799 * for usb_set_interface() and usb_set_configuration() claim). 1800 */ 1801 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1802 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1803 __func__, ep->desc.bEndpointAddress); 1804 return -ENOMEM; 1805 } 1806 1807 if (xhci->quirks & XHCI_MTK_HOST) { 1808 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1809 if (ret < 0) { 1810 xhci_free_or_cache_endpoint_ring(xhci, 1811 virt_dev, ep_index); 1812 return ret; 1813 } 1814 } 1815 1816 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1817 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1818 1819 /* If xhci_endpoint_disable() was called for this endpoint, but the 1820 * xHC hasn't been notified yet through the check_bandwidth() call, 1821 * this re-adds a new state for the endpoint from the new endpoint 1822 * descriptors. We must drop and re-add this endpoint, so we leave the 1823 * drop flags alone. 1824 */ 1825 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1826 1827 /* Store the usb_device pointer for later use */ 1828 ep->hcpriv = udev; 1829 1830 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1831 (unsigned int) ep->desc.bEndpointAddress, 1832 udev->slot_id, 1833 (unsigned int) new_drop_flags, 1834 (unsigned int) new_add_flags); 1835 return 0; 1836 } 1837 1838 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1839 { 1840 struct xhci_input_control_ctx *ctrl_ctx; 1841 struct xhci_ep_ctx *ep_ctx; 1842 struct xhci_slot_ctx *slot_ctx; 1843 int i; 1844 1845 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1846 if (!ctrl_ctx) { 1847 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1848 __func__); 1849 return; 1850 } 1851 1852 /* When a device's add flag and drop flag are zero, any subsequent 1853 * configure endpoint command will leave that endpoint's state 1854 * untouched. Make sure we don't leave any old state in the input 1855 * endpoint contexts. 1856 */ 1857 ctrl_ctx->drop_flags = 0; 1858 ctrl_ctx->add_flags = 0; 1859 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1860 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1861 /* Endpoint 0 is always valid */ 1862 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1863 for (i = 1; i < 31; ++i) { 1864 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1865 ep_ctx->ep_info = 0; 1866 ep_ctx->ep_info2 = 0; 1867 ep_ctx->deq = 0; 1868 ep_ctx->tx_info = 0; 1869 } 1870 } 1871 1872 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1873 struct usb_device *udev, u32 *cmd_status) 1874 { 1875 int ret; 1876 1877 switch (*cmd_status) { 1878 case COMP_CMD_ABORT: 1879 case COMP_CMD_STOP: 1880 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1881 ret = -ETIME; 1882 break; 1883 case COMP_ENOMEM: 1884 dev_warn(&udev->dev, 1885 "Not enough host controller resources for new device state.\n"); 1886 ret = -ENOMEM; 1887 /* FIXME: can we allocate more resources for the HC? */ 1888 break; 1889 case COMP_BW_ERR: 1890 case COMP_2ND_BW_ERR: 1891 dev_warn(&udev->dev, 1892 "Not enough bandwidth for new device state.\n"); 1893 ret = -ENOSPC; 1894 /* FIXME: can we go back to the old state? */ 1895 break; 1896 case COMP_TRB_ERR: 1897 /* the HCD set up something wrong */ 1898 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1899 "add flag = 1, " 1900 "and endpoint is not disabled.\n"); 1901 ret = -EINVAL; 1902 break; 1903 case COMP_DEV_ERR: 1904 dev_warn(&udev->dev, 1905 "ERROR: Incompatible device for endpoint configure command.\n"); 1906 ret = -ENODEV; 1907 break; 1908 case COMP_SUCCESS: 1909 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1910 "Successful Endpoint Configure command"); 1911 ret = 0; 1912 break; 1913 default: 1914 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1915 *cmd_status); 1916 ret = -EINVAL; 1917 break; 1918 } 1919 return ret; 1920 } 1921 1922 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1923 struct usb_device *udev, u32 *cmd_status) 1924 { 1925 int ret; 1926 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1927 1928 switch (*cmd_status) { 1929 case COMP_CMD_ABORT: 1930 case COMP_CMD_STOP: 1931 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1932 ret = -ETIME; 1933 break; 1934 case COMP_EINVAL: 1935 dev_warn(&udev->dev, 1936 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1937 ret = -EINVAL; 1938 break; 1939 case COMP_EBADSLT: 1940 dev_warn(&udev->dev, 1941 "WARN: slot not enabled for evaluate context command.\n"); 1942 ret = -EINVAL; 1943 break; 1944 case COMP_CTX_STATE: 1945 dev_warn(&udev->dev, 1946 "WARN: invalid context state for evaluate context command.\n"); 1947 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1948 ret = -EINVAL; 1949 break; 1950 case COMP_DEV_ERR: 1951 dev_warn(&udev->dev, 1952 "ERROR: Incompatible device for evaluate context command.\n"); 1953 ret = -ENODEV; 1954 break; 1955 case COMP_MEL_ERR: 1956 /* Max Exit Latency too large error */ 1957 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1958 ret = -EINVAL; 1959 break; 1960 case COMP_SUCCESS: 1961 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1962 "Successful evaluate context command"); 1963 ret = 0; 1964 break; 1965 default: 1966 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1967 *cmd_status); 1968 ret = -EINVAL; 1969 break; 1970 } 1971 return ret; 1972 } 1973 1974 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1975 struct xhci_input_control_ctx *ctrl_ctx) 1976 { 1977 u32 valid_add_flags; 1978 u32 valid_drop_flags; 1979 1980 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1981 * (bit 1). The default control endpoint is added during the Address 1982 * Device command and is never removed until the slot is disabled. 1983 */ 1984 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1985 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1986 1987 /* Use hweight32 to count the number of ones in the add flags, or 1988 * number of endpoints added. Don't count endpoints that are changed 1989 * (both added and dropped). 1990 */ 1991 return hweight32(valid_add_flags) - 1992 hweight32(valid_add_flags & valid_drop_flags); 1993 } 1994 1995 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1996 struct xhci_input_control_ctx *ctrl_ctx) 1997 { 1998 u32 valid_add_flags; 1999 u32 valid_drop_flags; 2000 2001 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2002 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2003 2004 return hweight32(valid_drop_flags) - 2005 hweight32(valid_add_flags & valid_drop_flags); 2006 } 2007 2008 /* 2009 * We need to reserve the new number of endpoints before the configure endpoint 2010 * command completes. We can't subtract the dropped endpoints from the number 2011 * of active endpoints until the command completes because we can oversubscribe 2012 * the host in this case: 2013 * 2014 * - the first configure endpoint command drops more endpoints than it adds 2015 * - a second configure endpoint command that adds more endpoints is queued 2016 * - the first configure endpoint command fails, so the config is unchanged 2017 * - the second command may succeed, even though there isn't enough resources 2018 * 2019 * Must be called with xhci->lock held. 2020 */ 2021 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2022 struct xhci_input_control_ctx *ctrl_ctx) 2023 { 2024 u32 added_eps; 2025 2026 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2027 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2028 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2029 "Not enough ep ctxs: " 2030 "%u active, need to add %u, limit is %u.", 2031 xhci->num_active_eps, added_eps, 2032 xhci->limit_active_eps); 2033 return -ENOMEM; 2034 } 2035 xhci->num_active_eps += added_eps; 2036 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2037 "Adding %u ep ctxs, %u now active.", added_eps, 2038 xhci->num_active_eps); 2039 return 0; 2040 } 2041 2042 /* 2043 * The configure endpoint was failed by the xHC for some other reason, so we 2044 * need to revert the resources that failed configuration would have used. 2045 * 2046 * Must be called with xhci->lock held. 2047 */ 2048 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2049 struct xhci_input_control_ctx *ctrl_ctx) 2050 { 2051 u32 num_failed_eps; 2052 2053 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2054 xhci->num_active_eps -= num_failed_eps; 2055 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2056 "Removing %u failed ep ctxs, %u now active.", 2057 num_failed_eps, 2058 xhci->num_active_eps); 2059 } 2060 2061 /* 2062 * Now that the command has completed, clean up the active endpoint count by 2063 * subtracting out the endpoints that were dropped (but not changed). 2064 * 2065 * Must be called with xhci->lock held. 2066 */ 2067 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2068 struct xhci_input_control_ctx *ctrl_ctx) 2069 { 2070 u32 num_dropped_eps; 2071 2072 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2073 xhci->num_active_eps -= num_dropped_eps; 2074 if (num_dropped_eps) 2075 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2076 "Removing %u dropped ep ctxs, %u now active.", 2077 num_dropped_eps, 2078 xhci->num_active_eps); 2079 } 2080 2081 static unsigned int xhci_get_block_size(struct usb_device *udev) 2082 { 2083 switch (udev->speed) { 2084 case USB_SPEED_LOW: 2085 case USB_SPEED_FULL: 2086 return FS_BLOCK; 2087 case USB_SPEED_HIGH: 2088 return HS_BLOCK; 2089 case USB_SPEED_SUPER: 2090 case USB_SPEED_SUPER_PLUS: 2091 return SS_BLOCK; 2092 case USB_SPEED_UNKNOWN: 2093 case USB_SPEED_WIRELESS: 2094 default: 2095 /* Should never happen */ 2096 return 1; 2097 } 2098 } 2099 2100 static unsigned int 2101 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2102 { 2103 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2104 return LS_OVERHEAD; 2105 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2106 return FS_OVERHEAD; 2107 return HS_OVERHEAD; 2108 } 2109 2110 /* If we are changing a LS/FS device under a HS hub, 2111 * make sure (if we are activating a new TT) that the HS bus has enough 2112 * bandwidth for this new TT. 2113 */ 2114 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2115 struct xhci_virt_device *virt_dev, 2116 int old_active_eps) 2117 { 2118 struct xhci_interval_bw_table *bw_table; 2119 struct xhci_tt_bw_info *tt_info; 2120 2121 /* Find the bandwidth table for the root port this TT is attached to. */ 2122 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2123 tt_info = virt_dev->tt_info; 2124 /* If this TT already had active endpoints, the bandwidth for this TT 2125 * has already been added. Removing all periodic endpoints (and thus 2126 * making the TT enactive) will only decrease the bandwidth used. 2127 */ 2128 if (old_active_eps) 2129 return 0; 2130 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2131 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2132 return -ENOMEM; 2133 return 0; 2134 } 2135 /* Not sure why we would have no new active endpoints... 2136 * 2137 * Maybe because of an Evaluate Context change for a hub update or a 2138 * control endpoint 0 max packet size change? 2139 * FIXME: skip the bandwidth calculation in that case. 2140 */ 2141 return 0; 2142 } 2143 2144 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2145 struct xhci_virt_device *virt_dev) 2146 { 2147 unsigned int bw_reserved; 2148 2149 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2150 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2151 return -ENOMEM; 2152 2153 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2154 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2155 return -ENOMEM; 2156 2157 return 0; 2158 } 2159 2160 /* 2161 * This algorithm is a very conservative estimate of the worst-case scheduling 2162 * scenario for any one interval. The hardware dynamically schedules the 2163 * packets, so we can't tell which microframe could be the limiting factor in 2164 * the bandwidth scheduling. This only takes into account periodic endpoints. 2165 * 2166 * Obviously, we can't solve an NP complete problem to find the minimum worst 2167 * case scenario. Instead, we come up with an estimate that is no less than 2168 * the worst case bandwidth used for any one microframe, but may be an 2169 * over-estimate. 2170 * 2171 * We walk the requirements for each endpoint by interval, starting with the 2172 * smallest interval, and place packets in the schedule where there is only one 2173 * possible way to schedule packets for that interval. In order to simplify 2174 * this algorithm, we record the largest max packet size for each interval, and 2175 * assume all packets will be that size. 2176 * 2177 * For interval 0, we obviously must schedule all packets for each interval. 2178 * The bandwidth for interval 0 is just the amount of data to be transmitted 2179 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2180 * the number of packets). 2181 * 2182 * For interval 1, we have two possible microframes to schedule those packets 2183 * in. For this algorithm, if we can schedule the same number of packets for 2184 * each possible scheduling opportunity (each microframe), we will do so. The 2185 * remaining number of packets will be saved to be transmitted in the gaps in 2186 * the next interval's scheduling sequence. 2187 * 2188 * As we move those remaining packets to be scheduled with interval 2 packets, 2189 * we have to double the number of remaining packets to transmit. This is 2190 * because the intervals are actually powers of 2, and we would be transmitting 2191 * the previous interval's packets twice in this interval. We also have to be 2192 * sure that when we look at the largest max packet size for this interval, we 2193 * also look at the largest max packet size for the remaining packets and take 2194 * the greater of the two. 2195 * 2196 * The algorithm continues to evenly distribute packets in each scheduling 2197 * opportunity, and push the remaining packets out, until we get to the last 2198 * interval. Then those packets and their associated overhead are just added 2199 * to the bandwidth used. 2200 */ 2201 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2202 struct xhci_virt_device *virt_dev, 2203 int old_active_eps) 2204 { 2205 unsigned int bw_reserved; 2206 unsigned int max_bandwidth; 2207 unsigned int bw_used; 2208 unsigned int block_size; 2209 struct xhci_interval_bw_table *bw_table; 2210 unsigned int packet_size = 0; 2211 unsigned int overhead = 0; 2212 unsigned int packets_transmitted = 0; 2213 unsigned int packets_remaining = 0; 2214 unsigned int i; 2215 2216 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2217 return xhci_check_ss_bw(xhci, virt_dev); 2218 2219 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2220 max_bandwidth = HS_BW_LIMIT; 2221 /* Convert percent of bus BW reserved to blocks reserved */ 2222 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2223 } else { 2224 max_bandwidth = FS_BW_LIMIT; 2225 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2226 } 2227 2228 bw_table = virt_dev->bw_table; 2229 /* We need to translate the max packet size and max ESIT payloads into 2230 * the units the hardware uses. 2231 */ 2232 block_size = xhci_get_block_size(virt_dev->udev); 2233 2234 /* If we are manipulating a LS/FS device under a HS hub, double check 2235 * that the HS bus has enough bandwidth if we are activing a new TT. 2236 */ 2237 if (virt_dev->tt_info) { 2238 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2239 "Recalculating BW for rootport %u", 2240 virt_dev->real_port); 2241 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2242 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2243 "newly activated TT.\n"); 2244 return -ENOMEM; 2245 } 2246 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2247 "Recalculating BW for TT slot %u port %u", 2248 virt_dev->tt_info->slot_id, 2249 virt_dev->tt_info->ttport); 2250 } else { 2251 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2252 "Recalculating BW for rootport %u", 2253 virt_dev->real_port); 2254 } 2255 2256 /* Add in how much bandwidth will be used for interval zero, or the 2257 * rounded max ESIT payload + number of packets * largest overhead. 2258 */ 2259 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2260 bw_table->interval_bw[0].num_packets * 2261 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2262 2263 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2264 unsigned int bw_added; 2265 unsigned int largest_mps; 2266 unsigned int interval_overhead; 2267 2268 /* 2269 * How many packets could we transmit in this interval? 2270 * If packets didn't fit in the previous interval, we will need 2271 * to transmit that many packets twice within this interval. 2272 */ 2273 packets_remaining = 2 * packets_remaining + 2274 bw_table->interval_bw[i].num_packets; 2275 2276 /* Find the largest max packet size of this or the previous 2277 * interval. 2278 */ 2279 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2280 largest_mps = 0; 2281 else { 2282 struct xhci_virt_ep *virt_ep; 2283 struct list_head *ep_entry; 2284 2285 ep_entry = bw_table->interval_bw[i].endpoints.next; 2286 virt_ep = list_entry(ep_entry, 2287 struct xhci_virt_ep, bw_endpoint_list); 2288 /* Convert to blocks, rounding up */ 2289 largest_mps = DIV_ROUND_UP( 2290 virt_ep->bw_info.max_packet_size, 2291 block_size); 2292 } 2293 if (largest_mps > packet_size) 2294 packet_size = largest_mps; 2295 2296 /* Use the larger overhead of this or the previous interval. */ 2297 interval_overhead = xhci_get_largest_overhead( 2298 &bw_table->interval_bw[i]); 2299 if (interval_overhead > overhead) 2300 overhead = interval_overhead; 2301 2302 /* How many packets can we evenly distribute across 2303 * (1 << (i + 1)) possible scheduling opportunities? 2304 */ 2305 packets_transmitted = packets_remaining >> (i + 1); 2306 2307 /* Add in the bandwidth used for those scheduled packets */ 2308 bw_added = packets_transmitted * (overhead + packet_size); 2309 2310 /* How many packets do we have remaining to transmit? */ 2311 packets_remaining = packets_remaining % (1 << (i + 1)); 2312 2313 /* What largest max packet size should those packets have? */ 2314 /* If we've transmitted all packets, don't carry over the 2315 * largest packet size. 2316 */ 2317 if (packets_remaining == 0) { 2318 packet_size = 0; 2319 overhead = 0; 2320 } else if (packets_transmitted > 0) { 2321 /* Otherwise if we do have remaining packets, and we've 2322 * scheduled some packets in this interval, take the 2323 * largest max packet size from endpoints with this 2324 * interval. 2325 */ 2326 packet_size = largest_mps; 2327 overhead = interval_overhead; 2328 } 2329 /* Otherwise carry over packet_size and overhead from the last 2330 * time we had a remainder. 2331 */ 2332 bw_used += bw_added; 2333 if (bw_used > max_bandwidth) { 2334 xhci_warn(xhci, "Not enough bandwidth. " 2335 "Proposed: %u, Max: %u\n", 2336 bw_used, max_bandwidth); 2337 return -ENOMEM; 2338 } 2339 } 2340 /* 2341 * Ok, we know we have some packets left over after even-handedly 2342 * scheduling interval 15. We don't know which microframes they will 2343 * fit into, so we over-schedule and say they will be scheduled every 2344 * microframe. 2345 */ 2346 if (packets_remaining > 0) 2347 bw_used += overhead + packet_size; 2348 2349 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2350 unsigned int port_index = virt_dev->real_port - 1; 2351 2352 /* OK, we're manipulating a HS device attached to a 2353 * root port bandwidth domain. Include the number of active TTs 2354 * in the bandwidth used. 2355 */ 2356 bw_used += TT_HS_OVERHEAD * 2357 xhci->rh_bw[port_index].num_active_tts; 2358 } 2359 2360 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2361 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2362 "Available: %u " "percent", 2363 bw_used, max_bandwidth, bw_reserved, 2364 (max_bandwidth - bw_used - bw_reserved) * 100 / 2365 max_bandwidth); 2366 2367 bw_used += bw_reserved; 2368 if (bw_used > max_bandwidth) { 2369 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2370 bw_used, max_bandwidth); 2371 return -ENOMEM; 2372 } 2373 2374 bw_table->bw_used = bw_used; 2375 return 0; 2376 } 2377 2378 static bool xhci_is_async_ep(unsigned int ep_type) 2379 { 2380 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2381 ep_type != ISOC_IN_EP && 2382 ep_type != INT_IN_EP); 2383 } 2384 2385 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2386 { 2387 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2388 } 2389 2390 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2391 { 2392 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2393 2394 if (ep_bw->ep_interval == 0) 2395 return SS_OVERHEAD_BURST + 2396 (ep_bw->mult * ep_bw->num_packets * 2397 (SS_OVERHEAD + mps)); 2398 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2399 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2400 1 << ep_bw->ep_interval); 2401 2402 } 2403 2404 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2405 struct xhci_bw_info *ep_bw, 2406 struct xhci_interval_bw_table *bw_table, 2407 struct usb_device *udev, 2408 struct xhci_virt_ep *virt_ep, 2409 struct xhci_tt_bw_info *tt_info) 2410 { 2411 struct xhci_interval_bw *interval_bw; 2412 int normalized_interval; 2413 2414 if (xhci_is_async_ep(ep_bw->type)) 2415 return; 2416 2417 if (udev->speed >= USB_SPEED_SUPER) { 2418 if (xhci_is_sync_in_ep(ep_bw->type)) 2419 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2420 xhci_get_ss_bw_consumed(ep_bw); 2421 else 2422 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2423 xhci_get_ss_bw_consumed(ep_bw); 2424 return; 2425 } 2426 2427 /* SuperSpeed endpoints never get added to intervals in the table, so 2428 * this check is only valid for HS/FS/LS devices. 2429 */ 2430 if (list_empty(&virt_ep->bw_endpoint_list)) 2431 return; 2432 /* For LS/FS devices, we need to translate the interval expressed in 2433 * microframes to frames. 2434 */ 2435 if (udev->speed == USB_SPEED_HIGH) 2436 normalized_interval = ep_bw->ep_interval; 2437 else 2438 normalized_interval = ep_bw->ep_interval - 3; 2439 2440 if (normalized_interval == 0) 2441 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2442 interval_bw = &bw_table->interval_bw[normalized_interval]; 2443 interval_bw->num_packets -= ep_bw->num_packets; 2444 switch (udev->speed) { 2445 case USB_SPEED_LOW: 2446 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2447 break; 2448 case USB_SPEED_FULL: 2449 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2450 break; 2451 case USB_SPEED_HIGH: 2452 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2453 break; 2454 case USB_SPEED_SUPER: 2455 case USB_SPEED_SUPER_PLUS: 2456 case USB_SPEED_UNKNOWN: 2457 case USB_SPEED_WIRELESS: 2458 /* Should never happen because only LS/FS/HS endpoints will get 2459 * added to the endpoint list. 2460 */ 2461 return; 2462 } 2463 if (tt_info) 2464 tt_info->active_eps -= 1; 2465 list_del_init(&virt_ep->bw_endpoint_list); 2466 } 2467 2468 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2469 struct xhci_bw_info *ep_bw, 2470 struct xhci_interval_bw_table *bw_table, 2471 struct usb_device *udev, 2472 struct xhci_virt_ep *virt_ep, 2473 struct xhci_tt_bw_info *tt_info) 2474 { 2475 struct xhci_interval_bw *interval_bw; 2476 struct xhci_virt_ep *smaller_ep; 2477 int normalized_interval; 2478 2479 if (xhci_is_async_ep(ep_bw->type)) 2480 return; 2481 2482 if (udev->speed == USB_SPEED_SUPER) { 2483 if (xhci_is_sync_in_ep(ep_bw->type)) 2484 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2485 xhci_get_ss_bw_consumed(ep_bw); 2486 else 2487 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2488 xhci_get_ss_bw_consumed(ep_bw); 2489 return; 2490 } 2491 2492 /* For LS/FS devices, we need to translate the interval expressed in 2493 * microframes to frames. 2494 */ 2495 if (udev->speed == USB_SPEED_HIGH) 2496 normalized_interval = ep_bw->ep_interval; 2497 else 2498 normalized_interval = ep_bw->ep_interval - 3; 2499 2500 if (normalized_interval == 0) 2501 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2502 interval_bw = &bw_table->interval_bw[normalized_interval]; 2503 interval_bw->num_packets += ep_bw->num_packets; 2504 switch (udev->speed) { 2505 case USB_SPEED_LOW: 2506 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2507 break; 2508 case USB_SPEED_FULL: 2509 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2510 break; 2511 case USB_SPEED_HIGH: 2512 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2513 break; 2514 case USB_SPEED_SUPER: 2515 case USB_SPEED_SUPER_PLUS: 2516 case USB_SPEED_UNKNOWN: 2517 case USB_SPEED_WIRELESS: 2518 /* Should never happen because only LS/FS/HS endpoints will get 2519 * added to the endpoint list. 2520 */ 2521 return; 2522 } 2523 2524 if (tt_info) 2525 tt_info->active_eps += 1; 2526 /* Insert the endpoint into the list, largest max packet size first. */ 2527 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2528 bw_endpoint_list) { 2529 if (ep_bw->max_packet_size >= 2530 smaller_ep->bw_info.max_packet_size) { 2531 /* Add the new ep before the smaller endpoint */ 2532 list_add_tail(&virt_ep->bw_endpoint_list, 2533 &smaller_ep->bw_endpoint_list); 2534 return; 2535 } 2536 } 2537 /* Add the new endpoint at the end of the list. */ 2538 list_add_tail(&virt_ep->bw_endpoint_list, 2539 &interval_bw->endpoints); 2540 } 2541 2542 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2543 struct xhci_virt_device *virt_dev, 2544 int old_active_eps) 2545 { 2546 struct xhci_root_port_bw_info *rh_bw_info; 2547 if (!virt_dev->tt_info) 2548 return; 2549 2550 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2551 if (old_active_eps == 0 && 2552 virt_dev->tt_info->active_eps != 0) { 2553 rh_bw_info->num_active_tts += 1; 2554 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2555 } else if (old_active_eps != 0 && 2556 virt_dev->tt_info->active_eps == 0) { 2557 rh_bw_info->num_active_tts -= 1; 2558 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2559 } 2560 } 2561 2562 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2563 struct xhci_virt_device *virt_dev, 2564 struct xhci_container_ctx *in_ctx) 2565 { 2566 struct xhci_bw_info ep_bw_info[31]; 2567 int i; 2568 struct xhci_input_control_ctx *ctrl_ctx; 2569 int old_active_eps = 0; 2570 2571 if (virt_dev->tt_info) 2572 old_active_eps = virt_dev->tt_info->active_eps; 2573 2574 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2575 if (!ctrl_ctx) { 2576 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2577 __func__); 2578 return -ENOMEM; 2579 } 2580 2581 for (i = 0; i < 31; i++) { 2582 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2583 continue; 2584 2585 /* Make a copy of the BW info in case we need to revert this */ 2586 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2587 sizeof(ep_bw_info[i])); 2588 /* Drop the endpoint from the interval table if the endpoint is 2589 * being dropped or changed. 2590 */ 2591 if (EP_IS_DROPPED(ctrl_ctx, i)) 2592 xhci_drop_ep_from_interval_table(xhci, 2593 &virt_dev->eps[i].bw_info, 2594 virt_dev->bw_table, 2595 virt_dev->udev, 2596 &virt_dev->eps[i], 2597 virt_dev->tt_info); 2598 } 2599 /* Overwrite the information stored in the endpoints' bw_info */ 2600 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2601 for (i = 0; i < 31; i++) { 2602 /* Add any changed or added endpoints to the interval table */ 2603 if (EP_IS_ADDED(ctrl_ctx, i)) 2604 xhci_add_ep_to_interval_table(xhci, 2605 &virt_dev->eps[i].bw_info, 2606 virt_dev->bw_table, 2607 virt_dev->udev, 2608 &virt_dev->eps[i], 2609 virt_dev->tt_info); 2610 } 2611 2612 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2613 /* Ok, this fits in the bandwidth we have. 2614 * Update the number of active TTs. 2615 */ 2616 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2617 return 0; 2618 } 2619 2620 /* We don't have enough bandwidth for this, revert the stored info. */ 2621 for (i = 0; i < 31; i++) { 2622 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2623 continue; 2624 2625 /* Drop the new copies of any added or changed endpoints from 2626 * the interval table. 2627 */ 2628 if (EP_IS_ADDED(ctrl_ctx, i)) { 2629 xhci_drop_ep_from_interval_table(xhci, 2630 &virt_dev->eps[i].bw_info, 2631 virt_dev->bw_table, 2632 virt_dev->udev, 2633 &virt_dev->eps[i], 2634 virt_dev->tt_info); 2635 } 2636 /* Revert the endpoint back to its old information */ 2637 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2638 sizeof(ep_bw_info[i])); 2639 /* Add any changed or dropped endpoints back into the table */ 2640 if (EP_IS_DROPPED(ctrl_ctx, i)) 2641 xhci_add_ep_to_interval_table(xhci, 2642 &virt_dev->eps[i].bw_info, 2643 virt_dev->bw_table, 2644 virt_dev->udev, 2645 &virt_dev->eps[i], 2646 virt_dev->tt_info); 2647 } 2648 return -ENOMEM; 2649 } 2650 2651 2652 /* Issue a configure endpoint command or evaluate context command 2653 * and wait for it to finish. 2654 */ 2655 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2656 struct usb_device *udev, 2657 struct xhci_command *command, 2658 bool ctx_change, bool must_succeed) 2659 { 2660 int ret; 2661 unsigned long flags; 2662 struct xhci_input_control_ctx *ctrl_ctx; 2663 struct xhci_virt_device *virt_dev; 2664 2665 if (!command) 2666 return -EINVAL; 2667 2668 spin_lock_irqsave(&xhci->lock, flags); 2669 virt_dev = xhci->devs[udev->slot_id]; 2670 2671 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2672 if (!ctrl_ctx) { 2673 spin_unlock_irqrestore(&xhci->lock, flags); 2674 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2675 __func__); 2676 return -ENOMEM; 2677 } 2678 2679 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2680 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2681 spin_unlock_irqrestore(&xhci->lock, flags); 2682 xhci_warn(xhci, "Not enough host resources, " 2683 "active endpoint contexts = %u\n", 2684 xhci->num_active_eps); 2685 return -ENOMEM; 2686 } 2687 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2688 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2689 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2690 xhci_free_host_resources(xhci, ctrl_ctx); 2691 spin_unlock_irqrestore(&xhci->lock, flags); 2692 xhci_warn(xhci, "Not enough bandwidth\n"); 2693 return -ENOMEM; 2694 } 2695 2696 if (!ctx_change) 2697 ret = xhci_queue_configure_endpoint(xhci, command, 2698 command->in_ctx->dma, 2699 udev->slot_id, must_succeed); 2700 else 2701 ret = xhci_queue_evaluate_context(xhci, command, 2702 command->in_ctx->dma, 2703 udev->slot_id, must_succeed); 2704 if (ret < 0) { 2705 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2706 xhci_free_host_resources(xhci, ctrl_ctx); 2707 spin_unlock_irqrestore(&xhci->lock, flags); 2708 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2709 "FIXME allocate a new ring segment"); 2710 return -ENOMEM; 2711 } 2712 xhci_ring_cmd_db(xhci); 2713 spin_unlock_irqrestore(&xhci->lock, flags); 2714 2715 /* Wait for the configure endpoint command to complete */ 2716 wait_for_completion(command->completion); 2717 2718 if (!ctx_change) 2719 ret = xhci_configure_endpoint_result(xhci, udev, 2720 &command->status); 2721 else 2722 ret = xhci_evaluate_context_result(xhci, udev, 2723 &command->status); 2724 2725 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2726 spin_lock_irqsave(&xhci->lock, flags); 2727 /* If the command failed, remove the reserved resources. 2728 * Otherwise, clean up the estimate to include dropped eps. 2729 */ 2730 if (ret) 2731 xhci_free_host_resources(xhci, ctrl_ctx); 2732 else 2733 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2734 spin_unlock_irqrestore(&xhci->lock, flags); 2735 } 2736 return ret; 2737 } 2738 2739 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2740 struct xhci_virt_device *vdev, int i) 2741 { 2742 struct xhci_virt_ep *ep = &vdev->eps[i]; 2743 2744 if (ep->ep_state & EP_HAS_STREAMS) { 2745 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2746 xhci_get_endpoint_address(i)); 2747 xhci_free_stream_info(xhci, ep->stream_info); 2748 ep->stream_info = NULL; 2749 ep->ep_state &= ~EP_HAS_STREAMS; 2750 } 2751 } 2752 2753 /* Called after one or more calls to xhci_add_endpoint() or 2754 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2755 * to call xhci_reset_bandwidth(). 2756 * 2757 * Since we are in the middle of changing either configuration or 2758 * installing a new alt setting, the USB core won't allow URBs to be 2759 * enqueued for any endpoint on the old config or interface. Nothing 2760 * else should be touching the xhci->devs[slot_id] structure, so we 2761 * don't need to take the xhci->lock for manipulating that. 2762 */ 2763 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2764 { 2765 int i; 2766 int ret = 0; 2767 struct xhci_hcd *xhci; 2768 struct xhci_virt_device *virt_dev; 2769 struct xhci_input_control_ctx *ctrl_ctx; 2770 struct xhci_slot_ctx *slot_ctx; 2771 struct xhci_command *command; 2772 2773 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2774 if (ret <= 0) 2775 return ret; 2776 xhci = hcd_to_xhci(hcd); 2777 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2778 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2779 return -ENODEV; 2780 2781 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2782 virt_dev = xhci->devs[udev->slot_id]; 2783 2784 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2785 if (!command) 2786 return -ENOMEM; 2787 2788 command->in_ctx = virt_dev->in_ctx; 2789 2790 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2791 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2792 if (!ctrl_ctx) { 2793 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2794 __func__); 2795 ret = -ENOMEM; 2796 goto command_cleanup; 2797 } 2798 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2799 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2800 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2801 2802 /* Don't issue the command if there's no endpoints to update. */ 2803 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2804 ctrl_ctx->drop_flags == 0) { 2805 ret = 0; 2806 goto command_cleanup; 2807 } 2808 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2809 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2810 for (i = 31; i >= 1; i--) { 2811 __le32 le32 = cpu_to_le32(BIT(i)); 2812 2813 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2814 || (ctrl_ctx->add_flags & le32) || i == 1) { 2815 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2816 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2817 break; 2818 } 2819 } 2820 xhci_dbg(xhci, "New Input Control Context:\n"); 2821 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2822 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2823 2824 ret = xhci_configure_endpoint(xhci, udev, command, 2825 false, false); 2826 if (ret) 2827 /* Callee should call reset_bandwidth() */ 2828 goto command_cleanup; 2829 2830 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2831 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2832 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2833 2834 /* Free any rings that were dropped, but not changed. */ 2835 for (i = 1; i < 31; ++i) { 2836 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2837 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2838 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2839 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2840 } 2841 } 2842 xhci_zero_in_ctx(xhci, virt_dev); 2843 /* 2844 * Install any rings for completely new endpoints or changed endpoints, 2845 * and free or cache any old rings from changed endpoints. 2846 */ 2847 for (i = 1; i < 31; ++i) { 2848 if (!virt_dev->eps[i].new_ring) 2849 continue; 2850 /* Only cache or free the old ring if it exists. 2851 * It may not if this is the first add of an endpoint. 2852 */ 2853 if (virt_dev->eps[i].ring) { 2854 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2855 } 2856 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2857 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2858 virt_dev->eps[i].new_ring = NULL; 2859 } 2860 command_cleanup: 2861 kfree(command->completion); 2862 kfree(command); 2863 2864 return ret; 2865 } 2866 2867 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2868 { 2869 struct xhci_hcd *xhci; 2870 struct xhci_virt_device *virt_dev; 2871 int i, ret; 2872 2873 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2874 if (ret <= 0) 2875 return; 2876 xhci = hcd_to_xhci(hcd); 2877 2878 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2879 virt_dev = xhci->devs[udev->slot_id]; 2880 /* Free any rings allocated for added endpoints */ 2881 for (i = 0; i < 31; ++i) { 2882 if (virt_dev->eps[i].new_ring) { 2883 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2884 virt_dev->eps[i].new_ring = NULL; 2885 } 2886 } 2887 xhci_zero_in_ctx(xhci, virt_dev); 2888 } 2889 2890 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2891 struct xhci_container_ctx *in_ctx, 2892 struct xhci_container_ctx *out_ctx, 2893 struct xhci_input_control_ctx *ctrl_ctx, 2894 u32 add_flags, u32 drop_flags) 2895 { 2896 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2897 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2898 xhci_slot_copy(xhci, in_ctx, out_ctx); 2899 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2900 2901 xhci_dbg(xhci, "Input Context:\n"); 2902 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2903 } 2904 2905 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2906 unsigned int slot_id, unsigned int ep_index, 2907 struct xhci_dequeue_state *deq_state) 2908 { 2909 struct xhci_input_control_ctx *ctrl_ctx; 2910 struct xhci_container_ctx *in_ctx; 2911 struct xhci_ep_ctx *ep_ctx; 2912 u32 added_ctxs; 2913 dma_addr_t addr; 2914 2915 in_ctx = xhci->devs[slot_id]->in_ctx; 2916 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2917 if (!ctrl_ctx) { 2918 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2919 __func__); 2920 return; 2921 } 2922 2923 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2924 xhci->devs[slot_id]->out_ctx, ep_index); 2925 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2926 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2927 deq_state->new_deq_ptr); 2928 if (addr == 0) { 2929 xhci_warn(xhci, "WARN Cannot submit config ep after " 2930 "reset ep command\n"); 2931 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2932 deq_state->new_deq_seg, 2933 deq_state->new_deq_ptr); 2934 return; 2935 } 2936 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2937 2938 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2939 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2940 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2941 added_ctxs, added_ctxs); 2942 } 2943 2944 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2945 unsigned int ep_index, struct xhci_td *td) 2946 { 2947 struct xhci_dequeue_state deq_state; 2948 struct xhci_virt_ep *ep; 2949 struct usb_device *udev = td->urb->dev; 2950 2951 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2952 "Cleaning up stalled endpoint ring"); 2953 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2954 /* We need to move the HW's dequeue pointer past this TD, 2955 * or it will attempt to resend it on the next doorbell ring. 2956 */ 2957 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2958 ep_index, ep->stopped_stream, td, &deq_state); 2959 2960 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2961 return; 2962 2963 /* HW with the reset endpoint quirk will use the saved dequeue state to 2964 * issue a configure endpoint command later. 2965 */ 2966 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2967 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2968 "Queueing new dequeue state"); 2969 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2970 ep_index, ep->stopped_stream, &deq_state); 2971 } else { 2972 /* Better hope no one uses the input context between now and the 2973 * reset endpoint completion! 2974 * XXX: No idea how this hardware will react when stream rings 2975 * are enabled. 2976 */ 2977 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2978 "Setting up input context for " 2979 "configure endpoint command"); 2980 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2981 ep_index, &deq_state); 2982 } 2983 } 2984 2985 /* Called when clearing halted device. The core should have sent the control 2986 * message to clear the device halt condition. The host side of the halt should 2987 * already be cleared with a reset endpoint command issued when the STALL tx 2988 * event was received. 2989 * 2990 * Context: in_interrupt 2991 */ 2992 2993 void xhci_endpoint_reset(struct usb_hcd *hcd, 2994 struct usb_host_endpoint *ep) 2995 { 2996 struct xhci_hcd *xhci; 2997 2998 xhci = hcd_to_xhci(hcd); 2999 3000 /* 3001 * We might need to implement the config ep cmd in xhci 4.8.1 note: 3002 * The Reset Endpoint Command may only be issued to endpoints in the 3003 * Halted state. If software wishes reset the Data Toggle or Sequence 3004 * Number of an endpoint that isn't in the Halted state, then software 3005 * may issue a Configure Endpoint Command with the Drop and Add bits set 3006 * for the target endpoint. that is in the Stopped state. 3007 */ 3008 3009 /* For now just print debug to follow the situation */ 3010 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 3011 ep->desc.bEndpointAddress); 3012 } 3013 3014 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3015 struct usb_device *udev, struct usb_host_endpoint *ep, 3016 unsigned int slot_id) 3017 { 3018 int ret; 3019 unsigned int ep_index; 3020 unsigned int ep_state; 3021 3022 if (!ep) 3023 return -EINVAL; 3024 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3025 if (ret <= 0) 3026 return -EINVAL; 3027 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3028 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3029 " descriptor for ep 0x%x does not support streams\n", 3030 ep->desc.bEndpointAddress); 3031 return -EINVAL; 3032 } 3033 3034 ep_index = xhci_get_endpoint_index(&ep->desc); 3035 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3036 if (ep_state & EP_HAS_STREAMS || 3037 ep_state & EP_GETTING_STREAMS) { 3038 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3039 "already has streams set up.\n", 3040 ep->desc.bEndpointAddress); 3041 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3042 "dynamic stream context array reallocation.\n"); 3043 return -EINVAL; 3044 } 3045 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3046 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3047 "endpoint 0x%x; URBs are pending.\n", 3048 ep->desc.bEndpointAddress); 3049 return -EINVAL; 3050 } 3051 return 0; 3052 } 3053 3054 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3055 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3056 { 3057 unsigned int max_streams; 3058 3059 /* The stream context array size must be a power of two */ 3060 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3061 /* 3062 * Find out how many primary stream array entries the host controller 3063 * supports. Later we may use secondary stream arrays (similar to 2nd 3064 * level page entries), but that's an optional feature for xHCI host 3065 * controllers. xHCs must support at least 4 stream IDs. 3066 */ 3067 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3068 if (*num_stream_ctxs > max_streams) { 3069 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3070 max_streams); 3071 *num_stream_ctxs = max_streams; 3072 *num_streams = max_streams; 3073 } 3074 } 3075 3076 /* Returns an error code if one of the endpoint already has streams. 3077 * This does not change any data structures, it only checks and gathers 3078 * information. 3079 */ 3080 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3081 struct usb_device *udev, 3082 struct usb_host_endpoint **eps, unsigned int num_eps, 3083 unsigned int *num_streams, u32 *changed_ep_bitmask) 3084 { 3085 unsigned int max_streams; 3086 unsigned int endpoint_flag; 3087 int i; 3088 int ret; 3089 3090 for (i = 0; i < num_eps; i++) { 3091 ret = xhci_check_streams_endpoint(xhci, udev, 3092 eps[i], udev->slot_id); 3093 if (ret < 0) 3094 return ret; 3095 3096 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3097 if (max_streams < (*num_streams - 1)) { 3098 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3099 eps[i]->desc.bEndpointAddress, 3100 max_streams); 3101 *num_streams = max_streams+1; 3102 } 3103 3104 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3105 if (*changed_ep_bitmask & endpoint_flag) 3106 return -EINVAL; 3107 *changed_ep_bitmask |= endpoint_flag; 3108 } 3109 return 0; 3110 } 3111 3112 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3113 struct usb_device *udev, 3114 struct usb_host_endpoint **eps, unsigned int num_eps) 3115 { 3116 u32 changed_ep_bitmask = 0; 3117 unsigned int slot_id; 3118 unsigned int ep_index; 3119 unsigned int ep_state; 3120 int i; 3121 3122 slot_id = udev->slot_id; 3123 if (!xhci->devs[slot_id]) 3124 return 0; 3125 3126 for (i = 0; i < num_eps; i++) { 3127 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3128 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3129 /* Are streams already being freed for the endpoint? */ 3130 if (ep_state & EP_GETTING_NO_STREAMS) { 3131 xhci_warn(xhci, "WARN Can't disable streams for " 3132 "endpoint 0x%x, " 3133 "streams are being disabled already\n", 3134 eps[i]->desc.bEndpointAddress); 3135 return 0; 3136 } 3137 /* Are there actually any streams to free? */ 3138 if (!(ep_state & EP_HAS_STREAMS) && 3139 !(ep_state & EP_GETTING_STREAMS)) { 3140 xhci_warn(xhci, "WARN Can't disable streams for " 3141 "endpoint 0x%x, " 3142 "streams are already disabled!\n", 3143 eps[i]->desc.bEndpointAddress); 3144 xhci_warn(xhci, "WARN xhci_free_streams() called " 3145 "with non-streams endpoint\n"); 3146 return 0; 3147 } 3148 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3149 } 3150 return changed_ep_bitmask; 3151 } 3152 3153 /* 3154 * The USB device drivers use this function (through the HCD interface in USB 3155 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3156 * coordinate mass storage command queueing across multiple endpoints (basically 3157 * a stream ID == a task ID). 3158 * 3159 * Setting up streams involves allocating the same size stream context array 3160 * for each endpoint and issuing a configure endpoint command for all endpoints. 3161 * 3162 * Don't allow the call to succeed if one endpoint only supports one stream 3163 * (which means it doesn't support streams at all). 3164 * 3165 * Drivers may get less stream IDs than they asked for, if the host controller 3166 * hardware or endpoints claim they can't support the number of requested 3167 * stream IDs. 3168 */ 3169 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3170 struct usb_host_endpoint **eps, unsigned int num_eps, 3171 unsigned int num_streams, gfp_t mem_flags) 3172 { 3173 int i, ret; 3174 struct xhci_hcd *xhci; 3175 struct xhci_virt_device *vdev; 3176 struct xhci_command *config_cmd; 3177 struct xhci_input_control_ctx *ctrl_ctx; 3178 unsigned int ep_index; 3179 unsigned int num_stream_ctxs; 3180 unsigned long flags; 3181 u32 changed_ep_bitmask = 0; 3182 3183 if (!eps) 3184 return -EINVAL; 3185 3186 /* Add one to the number of streams requested to account for 3187 * stream 0 that is reserved for xHCI usage. 3188 */ 3189 num_streams += 1; 3190 xhci = hcd_to_xhci(hcd); 3191 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3192 num_streams); 3193 3194 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3195 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3196 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3197 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3198 return -ENOSYS; 3199 } 3200 3201 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3202 if (!config_cmd) { 3203 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3204 return -ENOMEM; 3205 } 3206 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3207 if (!ctrl_ctx) { 3208 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3209 __func__); 3210 xhci_free_command(xhci, config_cmd); 3211 return -ENOMEM; 3212 } 3213 3214 /* Check to make sure all endpoints are not already configured for 3215 * streams. While we're at it, find the maximum number of streams that 3216 * all the endpoints will support and check for duplicate endpoints. 3217 */ 3218 spin_lock_irqsave(&xhci->lock, flags); 3219 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3220 num_eps, &num_streams, &changed_ep_bitmask); 3221 if (ret < 0) { 3222 xhci_free_command(xhci, config_cmd); 3223 spin_unlock_irqrestore(&xhci->lock, flags); 3224 return ret; 3225 } 3226 if (num_streams <= 1) { 3227 xhci_warn(xhci, "WARN: endpoints can't handle " 3228 "more than one stream.\n"); 3229 xhci_free_command(xhci, config_cmd); 3230 spin_unlock_irqrestore(&xhci->lock, flags); 3231 return -EINVAL; 3232 } 3233 vdev = xhci->devs[udev->slot_id]; 3234 /* Mark each endpoint as being in transition, so 3235 * xhci_urb_enqueue() will reject all URBs. 3236 */ 3237 for (i = 0; i < num_eps; i++) { 3238 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3239 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3240 } 3241 spin_unlock_irqrestore(&xhci->lock, flags); 3242 3243 /* Setup internal data structures and allocate HW data structures for 3244 * streams (but don't install the HW structures in the input context 3245 * until we're sure all memory allocation succeeded). 3246 */ 3247 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3248 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3249 num_stream_ctxs, num_streams); 3250 3251 for (i = 0; i < num_eps; i++) { 3252 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3253 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3254 num_stream_ctxs, 3255 num_streams, mem_flags); 3256 if (!vdev->eps[ep_index].stream_info) 3257 goto cleanup; 3258 /* Set maxPstreams in endpoint context and update deq ptr to 3259 * point to stream context array. FIXME 3260 */ 3261 } 3262 3263 /* Set up the input context for a configure endpoint command. */ 3264 for (i = 0; i < num_eps; i++) { 3265 struct xhci_ep_ctx *ep_ctx; 3266 3267 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3268 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3269 3270 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3271 vdev->out_ctx, ep_index); 3272 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3273 vdev->eps[ep_index].stream_info); 3274 } 3275 /* Tell the HW to drop its old copy of the endpoint context info 3276 * and add the updated copy from the input context. 3277 */ 3278 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3279 vdev->out_ctx, ctrl_ctx, 3280 changed_ep_bitmask, changed_ep_bitmask); 3281 3282 /* Issue and wait for the configure endpoint command */ 3283 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3284 false, false); 3285 3286 /* xHC rejected the configure endpoint command for some reason, so we 3287 * leave the old ring intact and free our internal streams data 3288 * structure. 3289 */ 3290 if (ret < 0) 3291 goto cleanup; 3292 3293 spin_lock_irqsave(&xhci->lock, flags); 3294 for (i = 0; i < num_eps; i++) { 3295 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3296 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3297 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3298 udev->slot_id, ep_index); 3299 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3300 } 3301 xhci_free_command(xhci, config_cmd); 3302 spin_unlock_irqrestore(&xhci->lock, flags); 3303 3304 /* Subtract 1 for stream 0, which drivers can't use */ 3305 return num_streams - 1; 3306 3307 cleanup: 3308 /* If it didn't work, free the streams! */ 3309 for (i = 0; i < num_eps; i++) { 3310 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3311 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3312 vdev->eps[ep_index].stream_info = NULL; 3313 /* FIXME Unset maxPstreams in endpoint context and 3314 * update deq ptr to point to normal string ring. 3315 */ 3316 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3317 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3318 xhci_endpoint_zero(xhci, vdev, eps[i]); 3319 } 3320 xhci_free_command(xhci, config_cmd); 3321 return -ENOMEM; 3322 } 3323 3324 /* Transition the endpoint from using streams to being a "normal" endpoint 3325 * without streams. 3326 * 3327 * Modify the endpoint context state, submit a configure endpoint command, 3328 * and free all endpoint rings for streams if that completes successfully. 3329 */ 3330 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3331 struct usb_host_endpoint **eps, unsigned int num_eps, 3332 gfp_t mem_flags) 3333 { 3334 int i, ret; 3335 struct xhci_hcd *xhci; 3336 struct xhci_virt_device *vdev; 3337 struct xhci_command *command; 3338 struct xhci_input_control_ctx *ctrl_ctx; 3339 unsigned int ep_index; 3340 unsigned long flags; 3341 u32 changed_ep_bitmask; 3342 3343 xhci = hcd_to_xhci(hcd); 3344 vdev = xhci->devs[udev->slot_id]; 3345 3346 /* Set up a configure endpoint command to remove the streams rings */ 3347 spin_lock_irqsave(&xhci->lock, flags); 3348 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3349 udev, eps, num_eps); 3350 if (changed_ep_bitmask == 0) { 3351 spin_unlock_irqrestore(&xhci->lock, flags); 3352 return -EINVAL; 3353 } 3354 3355 /* Use the xhci_command structure from the first endpoint. We may have 3356 * allocated too many, but the driver may call xhci_free_streams() for 3357 * each endpoint it grouped into one call to xhci_alloc_streams(). 3358 */ 3359 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3360 command = vdev->eps[ep_index].stream_info->free_streams_command; 3361 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3362 if (!ctrl_ctx) { 3363 spin_unlock_irqrestore(&xhci->lock, flags); 3364 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3365 __func__); 3366 return -EINVAL; 3367 } 3368 3369 for (i = 0; i < num_eps; i++) { 3370 struct xhci_ep_ctx *ep_ctx; 3371 3372 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3373 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3374 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3375 EP_GETTING_NO_STREAMS; 3376 3377 xhci_endpoint_copy(xhci, command->in_ctx, 3378 vdev->out_ctx, ep_index); 3379 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3380 &vdev->eps[ep_index]); 3381 } 3382 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3383 vdev->out_ctx, ctrl_ctx, 3384 changed_ep_bitmask, changed_ep_bitmask); 3385 spin_unlock_irqrestore(&xhci->lock, flags); 3386 3387 /* Issue and wait for the configure endpoint command, 3388 * which must succeed. 3389 */ 3390 ret = xhci_configure_endpoint(xhci, udev, command, 3391 false, true); 3392 3393 /* xHC rejected the configure endpoint command for some reason, so we 3394 * leave the streams rings intact. 3395 */ 3396 if (ret < 0) 3397 return ret; 3398 3399 spin_lock_irqsave(&xhci->lock, flags); 3400 for (i = 0; i < num_eps; i++) { 3401 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3402 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3403 vdev->eps[ep_index].stream_info = NULL; 3404 /* FIXME Unset maxPstreams in endpoint context and 3405 * update deq ptr to point to normal string ring. 3406 */ 3407 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3408 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3409 } 3410 spin_unlock_irqrestore(&xhci->lock, flags); 3411 3412 return 0; 3413 } 3414 3415 /* 3416 * Deletes endpoint resources for endpoints that were active before a Reset 3417 * Device command, or a Disable Slot command. The Reset Device command leaves 3418 * the control endpoint intact, whereas the Disable Slot command deletes it. 3419 * 3420 * Must be called with xhci->lock held. 3421 */ 3422 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3423 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3424 { 3425 int i; 3426 unsigned int num_dropped_eps = 0; 3427 unsigned int drop_flags = 0; 3428 3429 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3430 if (virt_dev->eps[i].ring) { 3431 drop_flags |= 1 << i; 3432 num_dropped_eps++; 3433 } 3434 } 3435 xhci->num_active_eps -= num_dropped_eps; 3436 if (num_dropped_eps) 3437 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3438 "Dropped %u ep ctxs, flags = 0x%x, " 3439 "%u now active.", 3440 num_dropped_eps, drop_flags, 3441 xhci->num_active_eps); 3442 } 3443 3444 /* 3445 * This submits a Reset Device Command, which will set the device state to 0, 3446 * set the device address to 0, and disable all the endpoints except the default 3447 * control endpoint. The USB core should come back and call 3448 * xhci_address_device(), and then re-set up the configuration. If this is 3449 * called because of a usb_reset_and_verify_device(), then the old alternate 3450 * settings will be re-installed through the normal bandwidth allocation 3451 * functions. 3452 * 3453 * Wait for the Reset Device command to finish. Remove all structures 3454 * associated with the endpoints that were disabled. Clear the input device 3455 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3456 * 3457 * If the virt_dev to be reset does not exist or does not match the udev, 3458 * it means the device is lost, possibly due to the xHC restore error and 3459 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3460 * re-allocate the device. 3461 */ 3462 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3463 { 3464 int ret, i; 3465 unsigned long flags; 3466 struct xhci_hcd *xhci; 3467 unsigned int slot_id; 3468 struct xhci_virt_device *virt_dev; 3469 struct xhci_command *reset_device_cmd; 3470 int last_freed_endpoint; 3471 struct xhci_slot_ctx *slot_ctx; 3472 int old_active_eps = 0; 3473 3474 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3475 if (ret <= 0) 3476 return ret; 3477 xhci = hcd_to_xhci(hcd); 3478 slot_id = udev->slot_id; 3479 virt_dev = xhci->devs[slot_id]; 3480 if (!virt_dev) { 3481 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3482 "not exist. Re-allocate the device\n", slot_id); 3483 ret = xhci_alloc_dev(hcd, udev); 3484 if (ret == 1) 3485 return 0; 3486 else 3487 return -EINVAL; 3488 } 3489 3490 if (virt_dev->tt_info) 3491 old_active_eps = virt_dev->tt_info->active_eps; 3492 3493 if (virt_dev->udev != udev) { 3494 /* If the virt_dev and the udev does not match, this virt_dev 3495 * may belong to another udev. 3496 * Re-allocate the device. 3497 */ 3498 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3499 "not match the udev. Re-allocate the device\n", 3500 slot_id); 3501 ret = xhci_alloc_dev(hcd, udev); 3502 if (ret == 1) 3503 return 0; 3504 else 3505 return -EINVAL; 3506 } 3507 3508 /* If device is not setup, there is no point in resetting it */ 3509 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3510 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3511 SLOT_STATE_DISABLED) 3512 return 0; 3513 3514 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3515 /* Allocate the command structure that holds the struct completion. 3516 * Assume we're in process context, since the normal device reset 3517 * process has to wait for the device anyway. Storage devices are 3518 * reset as part of error handling, so use GFP_NOIO instead of 3519 * GFP_KERNEL. 3520 */ 3521 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3522 if (!reset_device_cmd) { 3523 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3524 return -ENOMEM; 3525 } 3526 3527 /* Attempt to submit the Reset Device command to the command ring */ 3528 spin_lock_irqsave(&xhci->lock, flags); 3529 3530 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3531 if (ret) { 3532 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3533 spin_unlock_irqrestore(&xhci->lock, flags); 3534 goto command_cleanup; 3535 } 3536 xhci_ring_cmd_db(xhci); 3537 spin_unlock_irqrestore(&xhci->lock, flags); 3538 3539 /* Wait for the Reset Device command to finish */ 3540 wait_for_completion(reset_device_cmd->completion); 3541 3542 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3543 * unless we tried to reset a slot ID that wasn't enabled, 3544 * or the device wasn't in the addressed or configured state. 3545 */ 3546 ret = reset_device_cmd->status; 3547 switch (ret) { 3548 case COMP_CMD_ABORT: 3549 case COMP_CMD_STOP: 3550 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3551 ret = -ETIME; 3552 goto command_cleanup; 3553 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3554 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3555 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3556 slot_id, 3557 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3558 xhci_dbg(xhci, "Not freeing device rings.\n"); 3559 /* Don't treat this as an error. May change my mind later. */ 3560 ret = 0; 3561 goto command_cleanup; 3562 case COMP_SUCCESS: 3563 xhci_dbg(xhci, "Successful reset device command.\n"); 3564 break; 3565 default: 3566 if (xhci_is_vendor_info_code(xhci, ret)) 3567 break; 3568 xhci_warn(xhci, "Unknown completion code %u for " 3569 "reset device command.\n", ret); 3570 ret = -EINVAL; 3571 goto command_cleanup; 3572 } 3573 3574 /* Free up host controller endpoint resources */ 3575 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3576 spin_lock_irqsave(&xhci->lock, flags); 3577 /* Don't delete the default control endpoint resources */ 3578 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3579 spin_unlock_irqrestore(&xhci->lock, flags); 3580 } 3581 3582 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3583 last_freed_endpoint = 1; 3584 for (i = 1; i < 31; ++i) { 3585 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3586 3587 if (ep->ep_state & EP_HAS_STREAMS) { 3588 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3589 xhci_get_endpoint_address(i)); 3590 xhci_free_stream_info(xhci, ep->stream_info); 3591 ep->stream_info = NULL; 3592 ep->ep_state &= ~EP_HAS_STREAMS; 3593 } 3594 3595 if (ep->ring) { 3596 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3597 last_freed_endpoint = i; 3598 } 3599 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3600 xhci_drop_ep_from_interval_table(xhci, 3601 &virt_dev->eps[i].bw_info, 3602 virt_dev->bw_table, 3603 udev, 3604 &virt_dev->eps[i], 3605 virt_dev->tt_info); 3606 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3607 } 3608 /* If necessary, update the number of active TTs on this root port */ 3609 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3610 3611 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3612 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3613 ret = 0; 3614 3615 command_cleanup: 3616 xhci_free_command(xhci, reset_device_cmd); 3617 return ret; 3618 } 3619 3620 /* 3621 * At this point, the struct usb_device is about to go away, the device has 3622 * disconnected, and all traffic has been stopped and the endpoints have been 3623 * disabled. Free any HC data structures associated with that device. 3624 */ 3625 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3626 { 3627 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3628 struct xhci_virt_device *virt_dev; 3629 unsigned long flags; 3630 u32 state; 3631 int i, ret; 3632 struct xhci_command *command; 3633 3634 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3635 if (!command) 3636 return; 3637 3638 #ifndef CONFIG_USB_DEFAULT_PERSIST 3639 /* 3640 * We called pm_runtime_get_noresume when the device was attached. 3641 * Decrement the counter here to allow controller to runtime suspend 3642 * if no devices remain. 3643 */ 3644 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3645 pm_runtime_put_noidle(hcd->self.controller); 3646 #endif 3647 3648 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3649 /* If the host is halted due to driver unload, we still need to free the 3650 * device. 3651 */ 3652 if (ret <= 0 && ret != -ENODEV) { 3653 kfree(command); 3654 return; 3655 } 3656 3657 virt_dev = xhci->devs[udev->slot_id]; 3658 3659 /* Stop any wayward timer functions (which may grab the lock) */ 3660 for (i = 0; i < 31; ++i) { 3661 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3662 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3663 } 3664 3665 spin_lock_irqsave(&xhci->lock, flags); 3666 /* Don't disable the slot if the host controller is dead. */ 3667 state = readl(&xhci->op_regs->status); 3668 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3669 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3670 xhci_free_virt_device(xhci, udev->slot_id); 3671 spin_unlock_irqrestore(&xhci->lock, flags); 3672 kfree(command); 3673 return; 3674 } 3675 3676 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3677 udev->slot_id)) { 3678 spin_unlock_irqrestore(&xhci->lock, flags); 3679 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3680 return; 3681 } 3682 xhci_ring_cmd_db(xhci); 3683 spin_unlock_irqrestore(&xhci->lock, flags); 3684 3685 /* 3686 * Event command completion handler will free any data structures 3687 * associated with the slot. XXX Can free sleep? 3688 */ 3689 } 3690 3691 /* 3692 * Checks if we have enough host controller resources for the default control 3693 * endpoint. 3694 * 3695 * Must be called with xhci->lock held. 3696 */ 3697 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3698 { 3699 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3700 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3701 "Not enough ep ctxs: " 3702 "%u active, need to add 1, limit is %u.", 3703 xhci->num_active_eps, xhci->limit_active_eps); 3704 return -ENOMEM; 3705 } 3706 xhci->num_active_eps += 1; 3707 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3708 "Adding 1 ep ctx, %u now active.", 3709 xhci->num_active_eps); 3710 return 0; 3711 } 3712 3713 3714 /* 3715 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3716 * timed out, or allocating memory failed. Returns 1 on success. 3717 */ 3718 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3719 { 3720 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3721 unsigned long flags; 3722 int ret, slot_id; 3723 struct xhci_command *command; 3724 3725 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3726 if (!command) 3727 return 0; 3728 3729 /* xhci->slot_id and xhci->addr_dev are not thread-safe */ 3730 mutex_lock(&xhci->mutex); 3731 spin_lock_irqsave(&xhci->lock, flags); 3732 command->completion = &xhci->addr_dev; 3733 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3734 if (ret) { 3735 spin_unlock_irqrestore(&xhci->lock, flags); 3736 mutex_unlock(&xhci->mutex); 3737 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3738 kfree(command); 3739 return 0; 3740 } 3741 xhci_ring_cmd_db(xhci); 3742 spin_unlock_irqrestore(&xhci->lock, flags); 3743 3744 wait_for_completion(command->completion); 3745 slot_id = xhci->slot_id; 3746 mutex_unlock(&xhci->mutex); 3747 3748 if (!slot_id || command->status != COMP_SUCCESS) { 3749 xhci_err(xhci, "Error while assigning device slot ID\n"); 3750 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3751 HCS_MAX_SLOTS( 3752 readl(&xhci->cap_regs->hcs_params1))); 3753 kfree(command); 3754 return 0; 3755 } 3756 3757 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3758 spin_lock_irqsave(&xhci->lock, flags); 3759 ret = xhci_reserve_host_control_ep_resources(xhci); 3760 if (ret) { 3761 spin_unlock_irqrestore(&xhci->lock, flags); 3762 xhci_warn(xhci, "Not enough host resources, " 3763 "active endpoint contexts = %u\n", 3764 xhci->num_active_eps); 3765 goto disable_slot; 3766 } 3767 spin_unlock_irqrestore(&xhci->lock, flags); 3768 } 3769 /* Use GFP_NOIO, since this function can be called from 3770 * xhci_discover_or_reset_device(), which may be called as part of 3771 * mass storage driver error handling. 3772 */ 3773 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3774 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3775 goto disable_slot; 3776 } 3777 udev->slot_id = slot_id; 3778 3779 #ifndef CONFIG_USB_DEFAULT_PERSIST 3780 /* 3781 * If resetting upon resume, we can't put the controller into runtime 3782 * suspend if there is a device attached. 3783 */ 3784 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3785 pm_runtime_get_noresume(hcd->self.controller); 3786 #endif 3787 3788 3789 kfree(command); 3790 /* Is this a LS or FS device under a HS hub? */ 3791 /* Hub or peripherial? */ 3792 return 1; 3793 3794 disable_slot: 3795 /* Disable slot, if we can do it without mem alloc */ 3796 spin_lock_irqsave(&xhci->lock, flags); 3797 command->completion = NULL; 3798 command->status = 0; 3799 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3800 udev->slot_id)) 3801 xhci_ring_cmd_db(xhci); 3802 spin_unlock_irqrestore(&xhci->lock, flags); 3803 return 0; 3804 } 3805 3806 /* 3807 * Issue an Address Device command and optionally send a corresponding 3808 * SetAddress request to the device. 3809 */ 3810 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3811 enum xhci_setup_dev setup) 3812 { 3813 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3814 unsigned long flags; 3815 struct xhci_virt_device *virt_dev; 3816 int ret = 0; 3817 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3818 struct xhci_slot_ctx *slot_ctx; 3819 struct xhci_input_control_ctx *ctrl_ctx; 3820 u64 temp_64; 3821 struct xhci_command *command = NULL; 3822 3823 mutex_lock(&xhci->mutex); 3824 3825 if (xhci->xhc_state) /* dying, removing or halted */ 3826 goto out; 3827 3828 if (!udev->slot_id) { 3829 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3830 "Bad Slot ID %d", udev->slot_id); 3831 ret = -EINVAL; 3832 goto out; 3833 } 3834 3835 virt_dev = xhci->devs[udev->slot_id]; 3836 3837 if (WARN_ON(!virt_dev)) { 3838 /* 3839 * In plug/unplug torture test with an NEC controller, 3840 * a zero-dereference was observed once due to virt_dev = 0. 3841 * Print useful debug rather than crash if it is observed again! 3842 */ 3843 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3844 udev->slot_id); 3845 ret = -EINVAL; 3846 goto out; 3847 } 3848 3849 if (setup == SETUP_CONTEXT_ONLY) { 3850 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3851 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3852 SLOT_STATE_DEFAULT) { 3853 xhci_dbg(xhci, "Slot already in default state\n"); 3854 goto out; 3855 } 3856 } 3857 3858 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3859 if (!command) { 3860 ret = -ENOMEM; 3861 goto out; 3862 } 3863 3864 command->in_ctx = virt_dev->in_ctx; 3865 command->completion = &xhci->addr_dev; 3866 3867 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3868 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3869 if (!ctrl_ctx) { 3870 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3871 __func__); 3872 ret = -EINVAL; 3873 goto out; 3874 } 3875 /* 3876 * If this is the first Set Address since device plug-in or 3877 * virt_device realloaction after a resume with an xHCI power loss, 3878 * then set up the slot context. 3879 */ 3880 if (!slot_ctx->dev_info) 3881 xhci_setup_addressable_virt_dev(xhci, udev); 3882 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3883 else 3884 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3885 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3886 ctrl_ctx->drop_flags = 0; 3887 3888 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3889 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3890 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3891 le32_to_cpu(slot_ctx->dev_info) >> 27); 3892 3893 spin_lock_irqsave(&xhci->lock, flags); 3894 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3895 udev->slot_id, setup); 3896 if (ret) { 3897 spin_unlock_irqrestore(&xhci->lock, flags); 3898 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3899 "FIXME: allocate a command ring segment"); 3900 goto out; 3901 } 3902 xhci_ring_cmd_db(xhci); 3903 spin_unlock_irqrestore(&xhci->lock, flags); 3904 3905 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3906 wait_for_completion(command->completion); 3907 3908 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3909 * the SetAddress() "recovery interval" required by USB and aborting the 3910 * command on a timeout. 3911 */ 3912 switch (command->status) { 3913 case COMP_CMD_ABORT: 3914 case COMP_CMD_STOP: 3915 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3916 ret = -ETIME; 3917 break; 3918 case COMP_CTX_STATE: 3919 case COMP_EBADSLT: 3920 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3921 act, udev->slot_id); 3922 ret = -EINVAL; 3923 break; 3924 case COMP_TX_ERR: 3925 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3926 ret = -EPROTO; 3927 break; 3928 case COMP_DEV_ERR: 3929 dev_warn(&udev->dev, 3930 "ERROR: Incompatible device for setup %s command\n", act); 3931 ret = -ENODEV; 3932 break; 3933 case COMP_SUCCESS: 3934 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3935 "Successful setup %s command", act); 3936 break; 3937 default: 3938 xhci_err(xhci, 3939 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3940 act, command->status); 3941 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3942 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3943 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3944 ret = -EINVAL; 3945 break; 3946 } 3947 if (ret) 3948 goto out; 3949 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3950 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3951 "Op regs DCBAA ptr = %#016llx", temp_64); 3952 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3953 "Slot ID %d dcbaa entry @%p = %#016llx", 3954 udev->slot_id, 3955 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3956 (unsigned long long) 3957 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3958 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3959 "Output Context DMA address = %#08llx", 3960 (unsigned long long)virt_dev->out_ctx->dma); 3961 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3962 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3963 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3964 le32_to_cpu(slot_ctx->dev_info) >> 27); 3965 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3966 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3967 /* 3968 * USB core uses address 1 for the roothubs, so we add one to the 3969 * address given back to us by the HC. 3970 */ 3971 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3972 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3973 le32_to_cpu(slot_ctx->dev_info) >> 27); 3974 /* Zero the input context control for later use */ 3975 ctrl_ctx->add_flags = 0; 3976 ctrl_ctx->drop_flags = 0; 3977 3978 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3979 "Internal device address = %d", 3980 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3981 out: 3982 mutex_unlock(&xhci->mutex); 3983 kfree(command); 3984 return ret; 3985 } 3986 3987 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3988 { 3989 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3990 } 3991 3992 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3993 { 3994 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3995 } 3996 3997 /* 3998 * Transfer the port index into real index in the HW port status 3999 * registers. Caculate offset between the port's PORTSC register 4000 * and port status base. Divide the number of per port register 4001 * to get the real index. The raw port number bases 1. 4002 */ 4003 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4004 { 4005 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4006 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 4007 __le32 __iomem *addr; 4008 int raw_port; 4009 4010 if (hcd->speed < HCD_USB3) 4011 addr = xhci->usb2_ports[port1 - 1]; 4012 else 4013 addr = xhci->usb3_ports[port1 - 1]; 4014 4015 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 4016 return raw_port; 4017 } 4018 4019 /* 4020 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4021 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4022 */ 4023 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4024 struct usb_device *udev, u16 max_exit_latency) 4025 { 4026 struct xhci_virt_device *virt_dev; 4027 struct xhci_command *command; 4028 struct xhci_input_control_ctx *ctrl_ctx; 4029 struct xhci_slot_ctx *slot_ctx; 4030 unsigned long flags; 4031 int ret; 4032 4033 spin_lock_irqsave(&xhci->lock, flags); 4034 4035 virt_dev = xhci->devs[udev->slot_id]; 4036 4037 /* 4038 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4039 * xHC was re-initialized. Exit latency will be set later after 4040 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4041 */ 4042 4043 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4044 spin_unlock_irqrestore(&xhci->lock, flags); 4045 return 0; 4046 } 4047 4048 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4049 command = xhci->lpm_command; 4050 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4051 if (!ctrl_ctx) { 4052 spin_unlock_irqrestore(&xhci->lock, flags); 4053 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4054 __func__); 4055 return -ENOMEM; 4056 } 4057 4058 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4059 spin_unlock_irqrestore(&xhci->lock, flags); 4060 4061 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4062 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4063 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4064 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4065 slot_ctx->dev_state = 0; 4066 4067 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4068 "Set up evaluate context for LPM MEL change."); 4069 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4070 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4071 4072 /* Issue and wait for the evaluate context command. */ 4073 ret = xhci_configure_endpoint(xhci, udev, command, 4074 true, true); 4075 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4076 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4077 4078 if (!ret) { 4079 spin_lock_irqsave(&xhci->lock, flags); 4080 virt_dev->current_mel = max_exit_latency; 4081 spin_unlock_irqrestore(&xhci->lock, flags); 4082 } 4083 return ret; 4084 } 4085 4086 #ifdef CONFIG_PM 4087 4088 /* BESL to HIRD Encoding array for USB2 LPM */ 4089 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4090 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4091 4092 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4093 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4094 struct usb_device *udev) 4095 { 4096 int u2del, besl, besl_host; 4097 int besl_device = 0; 4098 u32 field; 4099 4100 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4101 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4102 4103 if (field & USB_BESL_SUPPORT) { 4104 for (besl_host = 0; besl_host < 16; besl_host++) { 4105 if (xhci_besl_encoding[besl_host] >= u2del) 4106 break; 4107 } 4108 /* Use baseline BESL value as default */ 4109 if (field & USB_BESL_BASELINE_VALID) 4110 besl_device = USB_GET_BESL_BASELINE(field); 4111 else if (field & USB_BESL_DEEP_VALID) 4112 besl_device = USB_GET_BESL_DEEP(field); 4113 } else { 4114 if (u2del <= 50) 4115 besl_host = 0; 4116 else 4117 besl_host = (u2del - 51) / 75 + 1; 4118 } 4119 4120 besl = besl_host + besl_device; 4121 if (besl > 15) 4122 besl = 15; 4123 4124 return besl; 4125 } 4126 4127 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4128 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4129 { 4130 u32 field; 4131 int l1; 4132 int besld = 0; 4133 int hirdm = 0; 4134 4135 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4136 4137 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4138 l1 = udev->l1_params.timeout / 256; 4139 4140 /* device has preferred BESLD */ 4141 if (field & USB_BESL_DEEP_VALID) { 4142 besld = USB_GET_BESL_DEEP(field); 4143 hirdm = 1; 4144 } 4145 4146 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4147 } 4148 4149 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4150 struct usb_device *udev, int enable) 4151 { 4152 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4153 __le32 __iomem **port_array; 4154 __le32 __iomem *pm_addr, *hlpm_addr; 4155 u32 pm_val, hlpm_val, field; 4156 unsigned int port_num; 4157 unsigned long flags; 4158 int hird, exit_latency; 4159 int ret; 4160 4161 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4162 !udev->lpm_capable) 4163 return -EPERM; 4164 4165 if (!udev->parent || udev->parent->parent || 4166 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4167 return -EPERM; 4168 4169 if (udev->usb2_hw_lpm_capable != 1) 4170 return -EPERM; 4171 4172 spin_lock_irqsave(&xhci->lock, flags); 4173 4174 port_array = xhci->usb2_ports; 4175 port_num = udev->portnum - 1; 4176 pm_addr = port_array[port_num] + PORTPMSC; 4177 pm_val = readl(pm_addr); 4178 hlpm_addr = port_array[port_num] + PORTHLPMC; 4179 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4180 4181 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4182 enable ? "enable" : "disable", port_num + 1); 4183 4184 if (enable) { 4185 /* Host supports BESL timeout instead of HIRD */ 4186 if (udev->usb2_hw_lpm_besl_capable) { 4187 /* if device doesn't have a preferred BESL value use a 4188 * default one which works with mixed HIRD and BESL 4189 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4190 */ 4191 if ((field & USB_BESL_SUPPORT) && 4192 (field & USB_BESL_BASELINE_VALID)) 4193 hird = USB_GET_BESL_BASELINE(field); 4194 else 4195 hird = udev->l1_params.besl; 4196 4197 exit_latency = xhci_besl_encoding[hird]; 4198 spin_unlock_irqrestore(&xhci->lock, flags); 4199 4200 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4201 * input context for link powermanagement evaluate 4202 * context commands. It is protected by hcd->bandwidth 4203 * mutex and is shared by all devices. We need to set 4204 * the max ext latency in USB 2 BESL LPM as well, so 4205 * use the same mutex and xhci_change_max_exit_latency() 4206 */ 4207 mutex_lock(hcd->bandwidth_mutex); 4208 ret = xhci_change_max_exit_latency(xhci, udev, 4209 exit_latency); 4210 mutex_unlock(hcd->bandwidth_mutex); 4211 4212 if (ret < 0) 4213 return ret; 4214 spin_lock_irqsave(&xhci->lock, flags); 4215 4216 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4217 writel(hlpm_val, hlpm_addr); 4218 /* flush write */ 4219 readl(hlpm_addr); 4220 } else { 4221 hird = xhci_calculate_hird_besl(xhci, udev); 4222 } 4223 4224 pm_val &= ~PORT_HIRD_MASK; 4225 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4226 writel(pm_val, pm_addr); 4227 pm_val = readl(pm_addr); 4228 pm_val |= PORT_HLE; 4229 writel(pm_val, pm_addr); 4230 /* flush write */ 4231 readl(pm_addr); 4232 } else { 4233 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4234 writel(pm_val, pm_addr); 4235 /* flush write */ 4236 readl(pm_addr); 4237 if (udev->usb2_hw_lpm_besl_capable) { 4238 spin_unlock_irqrestore(&xhci->lock, flags); 4239 mutex_lock(hcd->bandwidth_mutex); 4240 xhci_change_max_exit_latency(xhci, udev, 0); 4241 mutex_unlock(hcd->bandwidth_mutex); 4242 return 0; 4243 } 4244 } 4245 4246 spin_unlock_irqrestore(&xhci->lock, flags); 4247 return 0; 4248 } 4249 4250 /* check if a usb2 port supports a given extened capability protocol 4251 * only USB2 ports extended protocol capability values are cached. 4252 * Return 1 if capability is supported 4253 */ 4254 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4255 unsigned capability) 4256 { 4257 u32 port_offset, port_count; 4258 int i; 4259 4260 for (i = 0; i < xhci->num_ext_caps; i++) { 4261 if (xhci->ext_caps[i] & capability) { 4262 /* port offsets starts at 1 */ 4263 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4264 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4265 if (port >= port_offset && 4266 port < port_offset + port_count) 4267 return 1; 4268 } 4269 } 4270 return 0; 4271 } 4272 4273 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4274 { 4275 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4276 int portnum = udev->portnum - 1; 4277 4278 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4279 !udev->lpm_capable) 4280 return 0; 4281 4282 /* we only support lpm for non-hub device connected to root hub yet */ 4283 if (!udev->parent || udev->parent->parent || 4284 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4285 return 0; 4286 4287 if (xhci->hw_lpm_support == 1 && 4288 xhci_check_usb2_port_capability( 4289 xhci, portnum, XHCI_HLC)) { 4290 udev->usb2_hw_lpm_capable = 1; 4291 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4292 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4293 if (xhci_check_usb2_port_capability(xhci, portnum, 4294 XHCI_BLC)) 4295 udev->usb2_hw_lpm_besl_capable = 1; 4296 } 4297 4298 return 0; 4299 } 4300 4301 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4302 4303 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4304 static unsigned long long xhci_service_interval_to_ns( 4305 struct usb_endpoint_descriptor *desc) 4306 { 4307 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4308 } 4309 4310 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4311 enum usb3_link_state state) 4312 { 4313 unsigned long long sel; 4314 unsigned long long pel; 4315 unsigned int max_sel_pel; 4316 char *state_name; 4317 4318 switch (state) { 4319 case USB3_LPM_U1: 4320 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4321 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4322 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4323 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4324 state_name = "U1"; 4325 break; 4326 case USB3_LPM_U2: 4327 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4328 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4329 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4330 state_name = "U2"; 4331 break; 4332 default: 4333 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4334 __func__); 4335 return USB3_LPM_DISABLED; 4336 } 4337 4338 if (sel <= max_sel_pel && pel <= max_sel_pel) 4339 return USB3_LPM_DEVICE_INITIATED; 4340 4341 if (sel > max_sel_pel) 4342 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4343 "due to long SEL %llu ms\n", 4344 state_name, sel); 4345 else 4346 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4347 "due to long PEL %llu ms\n", 4348 state_name, pel); 4349 return USB3_LPM_DISABLED; 4350 } 4351 4352 /* The U1 timeout should be the maximum of the following values: 4353 * - For control endpoints, U1 system exit latency (SEL) * 3 4354 * - For bulk endpoints, U1 SEL * 5 4355 * - For interrupt endpoints: 4356 * - Notification EPs, U1 SEL * 3 4357 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4358 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4359 */ 4360 static unsigned long long xhci_calculate_intel_u1_timeout( 4361 struct usb_device *udev, 4362 struct usb_endpoint_descriptor *desc) 4363 { 4364 unsigned long long timeout_ns; 4365 int ep_type; 4366 int intr_type; 4367 4368 ep_type = usb_endpoint_type(desc); 4369 switch (ep_type) { 4370 case USB_ENDPOINT_XFER_CONTROL: 4371 timeout_ns = udev->u1_params.sel * 3; 4372 break; 4373 case USB_ENDPOINT_XFER_BULK: 4374 timeout_ns = udev->u1_params.sel * 5; 4375 break; 4376 case USB_ENDPOINT_XFER_INT: 4377 intr_type = usb_endpoint_interrupt_type(desc); 4378 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4379 timeout_ns = udev->u1_params.sel * 3; 4380 break; 4381 } 4382 /* Otherwise the calculation is the same as isoc eps */ 4383 case USB_ENDPOINT_XFER_ISOC: 4384 timeout_ns = xhci_service_interval_to_ns(desc); 4385 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4386 if (timeout_ns < udev->u1_params.sel * 2) 4387 timeout_ns = udev->u1_params.sel * 2; 4388 break; 4389 default: 4390 return 0; 4391 } 4392 4393 return timeout_ns; 4394 } 4395 4396 /* Returns the hub-encoded U1 timeout value. */ 4397 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4398 struct usb_device *udev, 4399 struct usb_endpoint_descriptor *desc) 4400 { 4401 unsigned long long timeout_ns; 4402 4403 if (xhci->quirks & XHCI_INTEL_HOST) 4404 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4405 else 4406 timeout_ns = udev->u1_params.sel; 4407 4408 /* The U1 timeout is encoded in 1us intervals. 4409 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4410 */ 4411 if (timeout_ns == USB3_LPM_DISABLED) 4412 timeout_ns = 1; 4413 else 4414 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4415 4416 /* If the necessary timeout value is bigger than what we can set in the 4417 * USB 3.0 hub, we have to disable hub-initiated U1. 4418 */ 4419 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4420 return timeout_ns; 4421 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4422 "due to long timeout %llu ms\n", timeout_ns); 4423 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4424 } 4425 4426 /* The U2 timeout should be the maximum of: 4427 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4428 * - largest bInterval of any active periodic endpoint (to avoid going 4429 * into lower power link states between intervals). 4430 * - the U2 Exit Latency of the device 4431 */ 4432 static unsigned long long xhci_calculate_intel_u2_timeout( 4433 struct usb_device *udev, 4434 struct usb_endpoint_descriptor *desc) 4435 { 4436 unsigned long long timeout_ns; 4437 unsigned long long u2_del_ns; 4438 4439 timeout_ns = 10 * 1000 * 1000; 4440 4441 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4442 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4443 timeout_ns = xhci_service_interval_to_ns(desc); 4444 4445 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4446 if (u2_del_ns > timeout_ns) 4447 timeout_ns = u2_del_ns; 4448 4449 return timeout_ns; 4450 } 4451 4452 /* Returns the hub-encoded U2 timeout value. */ 4453 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4454 struct usb_device *udev, 4455 struct usb_endpoint_descriptor *desc) 4456 { 4457 unsigned long long timeout_ns; 4458 4459 if (xhci->quirks & XHCI_INTEL_HOST) 4460 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4461 else 4462 timeout_ns = udev->u2_params.sel; 4463 4464 /* The U2 timeout is encoded in 256us intervals */ 4465 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4466 /* If the necessary timeout value is bigger than what we can set in the 4467 * USB 3.0 hub, we have to disable hub-initiated U2. 4468 */ 4469 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4470 return timeout_ns; 4471 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4472 "due to long timeout %llu ms\n", timeout_ns); 4473 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4474 } 4475 4476 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4477 struct usb_device *udev, 4478 struct usb_endpoint_descriptor *desc, 4479 enum usb3_link_state state, 4480 u16 *timeout) 4481 { 4482 if (state == USB3_LPM_U1) 4483 return xhci_calculate_u1_timeout(xhci, udev, desc); 4484 else if (state == USB3_LPM_U2) 4485 return xhci_calculate_u2_timeout(xhci, udev, desc); 4486 4487 return USB3_LPM_DISABLED; 4488 } 4489 4490 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4491 struct usb_device *udev, 4492 struct usb_endpoint_descriptor *desc, 4493 enum usb3_link_state state, 4494 u16 *timeout) 4495 { 4496 u16 alt_timeout; 4497 4498 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4499 desc, state, timeout); 4500 4501 /* If we found we can't enable hub-initiated LPM, or 4502 * the U1 or U2 exit latency was too high to allow 4503 * device-initiated LPM as well, just stop searching. 4504 */ 4505 if (alt_timeout == USB3_LPM_DISABLED || 4506 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4507 *timeout = alt_timeout; 4508 return -E2BIG; 4509 } 4510 if (alt_timeout > *timeout) 4511 *timeout = alt_timeout; 4512 return 0; 4513 } 4514 4515 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4516 struct usb_device *udev, 4517 struct usb_host_interface *alt, 4518 enum usb3_link_state state, 4519 u16 *timeout) 4520 { 4521 int j; 4522 4523 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4524 if (xhci_update_timeout_for_endpoint(xhci, udev, 4525 &alt->endpoint[j].desc, state, timeout)) 4526 return -E2BIG; 4527 continue; 4528 } 4529 return 0; 4530 } 4531 4532 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4533 enum usb3_link_state state) 4534 { 4535 struct usb_device *parent; 4536 unsigned int num_hubs; 4537 4538 if (state == USB3_LPM_U2) 4539 return 0; 4540 4541 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4542 for (parent = udev->parent, num_hubs = 0; parent->parent; 4543 parent = parent->parent) 4544 num_hubs++; 4545 4546 if (num_hubs < 2) 4547 return 0; 4548 4549 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4550 " below second-tier hub.\n"); 4551 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4552 "to decrease power consumption.\n"); 4553 return -E2BIG; 4554 } 4555 4556 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4557 struct usb_device *udev, 4558 enum usb3_link_state state) 4559 { 4560 if (xhci->quirks & XHCI_INTEL_HOST) 4561 return xhci_check_intel_tier_policy(udev, state); 4562 else 4563 return 0; 4564 } 4565 4566 /* Returns the U1 or U2 timeout that should be enabled. 4567 * If the tier check or timeout setting functions return with a non-zero exit 4568 * code, that means the timeout value has been finalized and we shouldn't look 4569 * at any more endpoints. 4570 */ 4571 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4572 struct usb_device *udev, enum usb3_link_state state) 4573 { 4574 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4575 struct usb_host_config *config; 4576 char *state_name; 4577 int i; 4578 u16 timeout = USB3_LPM_DISABLED; 4579 4580 if (state == USB3_LPM_U1) 4581 state_name = "U1"; 4582 else if (state == USB3_LPM_U2) 4583 state_name = "U2"; 4584 else { 4585 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4586 state); 4587 return timeout; 4588 } 4589 4590 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4591 return timeout; 4592 4593 /* Gather some information about the currently installed configuration 4594 * and alternate interface settings. 4595 */ 4596 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4597 state, &timeout)) 4598 return timeout; 4599 4600 config = udev->actconfig; 4601 if (!config) 4602 return timeout; 4603 4604 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4605 struct usb_driver *driver; 4606 struct usb_interface *intf = config->interface[i]; 4607 4608 if (!intf) 4609 continue; 4610 4611 /* Check if any currently bound drivers want hub-initiated LPM 4612 * disabled. 4613 */ 4614 if (intf->dev.driver) { 4615 driver = to_usb_driver(intf->dev.driver); 4616 if (driver && driver->disable_hub_initiated_lpm) { 4617 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4618 "at request of driver %s\n", 4619 state_name, driver->name); 4620 return xhci_get_timeout_no_hub_lpm(udev, state); 4621 } 4622 } 4623 4624 /* Not sure how this could happen... */ 4625 if (!intf->cur_altsetting) 4626 continue; 4627 4628 if (xhci_update_timeout_for_interface(xhci, udev, 4629 intf->cur_altsetting, 4630 state, &timeout)) 4631 return timeout; 4632 } 4633 return timeout; 4634 } 4635 4636 static int calculate_max_exit_latency(struct usb_device *udev, 4637 enum usb3_link_state state_changed, 4638 u16 hub_encoded_timeout) 4639 { 4640 unsigned long long u1_mel_us = 0; 4641 unsigned long long u2_mel_us = 0; 4642 unsigned long long mel_us = 0; 4643 bool disabling_u1; 4644 bool disabling_u2; 4645 bool enabling_u1; 4646 bool enabling_u2; 4647 4648 disabling_u1 = (state_changed == USB3_LPM_U1 && 4649 hub_encoded_timeout == USB3_LPM_DISABLED); 4650 disabling_u2 = (state_changed == USB3_LPM_U2 && 4651 hub_encoded_timeout == USB3_LPM_DISABLED); 4652 4653 enabling_u1 = (state_changed == USB3_LPM_U1 && 4654 hub_encoded_timeout != USB3_LPM_DISABLED); 4655 enabling_u2 = (state_changed == USB3_LPM_U2 && 4656 hub_encoded_timeout != USB3_LPM_DISABLED); 4657 4658 /* If U1 was already enabled and we're not disabling it, 4659 * or we're going to enable U1, account for the U1 max exit latency. 4660 */ 4661 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4662 enabling_u1) 4663 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4664 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4665 enabling_u2) 4666 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4667 4668 if (u1_mel_us > u2_mel_us) 4669 mel_us = u1_mel_us; 4670 else 4671 mel_us = u2_mel_us; 4672 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4673 if (mel_us > MAX_EXIT) { 4674 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4675 "is too big.\n", mel_us); 4676 return -E2BIG; 4677 } 4678 return mel_us; 4679 } 4680 4681 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4682 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4683 struct usb_device *udev, enum usb3_link_state state) 4684 { 4685 struct xhci_hcd *xhci; 4686 u16 hub_encoded_timeout; 4687 int mel; 4688 int ret; 4689 4690 xhci = hcd_to_xhci(hcd); 4691 /* The LPM timeout values are pretty host-controller specific, so don't 4692 * enable hub-initiated timeouts unless the vendor has provided 4693 * information about their timeout algorithm. 4694 */ 4695 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4696 !xhci->devs[udev->slot_id]) 4697 return USB3_LPM_DISABLED; 4698 4699 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4700 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4701 if (mel < 0) { 4702 /* Max Exit Latency is too big, disable LPM. */ 4703 hub_encoded_timeout = USB3_LPM_DISABLED; 4704 mel = 0; 4705 } 4706 4707 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4708 if (ret) 4709 return ret; 4710 return hub_encoded_timeout; 4711 } 4712 4713 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4714 struct usb_device *udev, enum usb3_link_state state) 4715 { 4716 struct xhci_hcd *xhci; 4717 u16 mel; 4718 4719 xhci = hcd_to_xhci(hcd); 4720 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4721 !xhci->devs[udev->slot_id]) 4722 return 0; 4723 4724 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4725 return xhci_change_max_exit_latency(xhci, udev, mel); 4726 } 4727 #else /* CONFIG_PM */ 4728 4729 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4730 struct usb_device *udev, int enable) 4731 { 4732 return 0; 4733 } 4734 4735 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4736 { 4737 return 0; 4738 } 4739 4740 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4741 struct usb_device *udev, enum usb3_link_state state) 4742 { 4743 return USB3_LPM_DISABLED; 4744 } 4745 4746 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4747 struct usb_device *udev, enum usb3_link_state state) 4748 { 4749 return 0; 4750 } 4751 #endif /* CONFIG_PM */ 4752 4753 /*-------------------------------------------------------------------------*/ 4754 4755 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4756 * internal data structures for the device. 4757 */ 4758 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4759 struct usb_tt *tt, gfp_t mem_flags) 4760 { 4761 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4762 struct xhci_virt_device *vdev; 4763 struct xhci_command *config_cmd; 4764 struct xhci_input_control_ctx *ctrl_ctx; 4765 struct xhci_slot_ctx *slot_ctx; 4766 unsigned long flags; 4767 unsigned think_time; 4768 int ret; 4769 4770 /* Ignore root hubs */ 4771 if (!hdev->parent) 4772 return 0; 4773 4774 vdev = xhci->devs[hdev->slot_id]; 4775 if (!vdev) { 4776 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4777 return -EINVAL; 4778 } 4779 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4780 if (!config_cmd) { 4781 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4782 return -ENOMEM; 4783 } 4784 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4785 if (!ctrl_ctx) { 4786 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4787 __func__); 4788 xhci_free_command(xhci, config_cmd); 4789 return -ENOMEM; 4790 } 4791 4792 spin_lock_irqsave(&xhci->lock, flags); 4793 if (hdev->speed == USB_SPEED_HIGH && 4794 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4795 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4796 xhci_free_command(xhci, config_cmd); 4797 spin_unlock_irqrestore(&xhci->lock, flags); 4798 return -ENOMEM; 4799 } 4800 4801 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4802 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4803 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4804 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4805 /* 4806 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4807 * but it may be already set to 1 when setup an xHCI virtual 4808 * device, so clear it anyway. 4809 */ 4810 if (tt->multi) 4811 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4812 else if (hdev->speed == USB_SPEED_FULL) 4813 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4814 4815 if (xhci->hci_version > 0x95) { 4816 xhci_dbg(xhci, "xHCI version %x needs hub " 4817 "TT think time and number of ports\n", 4818 (unsigned int) xhci->hci_version); 4819 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4820 /* Set TT think time - convert from ns to FS bit times. 4821 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4822 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4823 * 4824 * xHCI 1.0: this field shall be 0 if the device is not a 4825 * High-spped hub. 4826 */ 4827 think_time = tt->think_time; 4828 if (think_time != 0) 4829 think_time = (think_time / 666) - 1; 4830 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4831 slot_ctx->tt_info |= 4832 cpu_to_le32(TT_THINK_TIME(think_time)); 4833 } else { 4834 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4835 "TT think time or number of ports\n", 4836 (unsigned int) xhci->hci_version); 4837 } 4838 slot_ctx->dev_state = 0; 4839 spin_unlock_irqrestore(&xhci->lock, flags); 4840 4841 xhci_dbg(xhci, "Set up %s for hub device.\n", 4842 (xhci->hci_version > 0x95) ? 4843 "configure endpoint" : "evaluate context"); 4844 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4845 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4846 4847 /* Issue and wait for the configure endpoint or 4848 * evaluate context command. 4849 */ 4850 if (xhci->hci_version > 0x95) 4851 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4852 false, false); 4853 else 4854 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4855 true, false); 4856 4857 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4858 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4859 4860 xhci_free_command(xhci, config_cmd); 4861 return ret; 4862 } 4863 4864 int xhci_get_frame(struct usb_hcd *hcd) 4865 { 4866 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4867 /* EHCI mods by the periodic size. Why? */ 4868 return readl(&xhci->run_regs->microframe_index) >> 3; 4869 } 4870 4871 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4872 { 4873 struct xhci_hcd *xhci; 4874 struct device *dev = hcd->self.controller; 4875 int retval; 4876 4877 /* Accept arbitrarily long scatter-gather lists */ 4878 hcd->self.sg_tablesize = ~0; 4879 4880 /* support to build packet from discontinuous buffers */ 4881 hcd->self.no_sg_constraint = 1; 4882 4883 /* XHCI controllers don't stop the ep queue on short packets :| */ 4884 hcd->self.no_stop_on_short = 1; 4885 4886 xhci = hcd_to_xhci(hcd); 4887 4888 if (usb_hcd_is_primary_hcd(hcd)) { 4889 xhci->main_hcd = hcd; 4890 /* Mark the first roothub as being USB 2.0. 4891 * The xHCI driver will register the USB 3.0 roothub. 4892 */ 4893 hcd->speed = HCD_USB2; 4894 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4895 /* 4896 * USB 2.0 roothub under xHCI has an integrated TT, 4897 * (rate matching hub) as opposed to having an OHCI/UHCI 4898 * companion controller. 4899 */ 4900 hcd->has_tt = 1; 4901 } else { 4902 if (xhci->sbrn == 0x31) { 4903 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n"); 4904 hcd->speed = HCD_USB31; 4905 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4906 } 4907 /* xHCI private pointer was set in xhci_pci_probe for the second 4908 * registered roothub. 4909 */ 4910 return 0; 4911 } 4912 4913 mutex_init(&xhci->mutex); 4914 xhci->cap_regs = hcd->regs; 4915 xhci->op_regs = hcd->regs + 4916 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4917 xhci->run_regs = hcd->regs + 4918 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4919 /* Cache read-only capability registers */ 4920 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4921 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4922 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4923 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4924 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4925 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4926 if (xhci->hci_version > 0x100) 4927 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4928 xhci_print_registers(xhci); 4929 4930 xhci->quirks = quirks; 4931 4932 get_quirks(dev, xhci); 4933 4934 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4935 * success event after a short transfer. This quirk will ignore such 4936 * spurious event. 4937 */ 4938 if (xhci->hci_version > 0x96) 4939 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4940 4941 /* Make sure the HC is halted. */ 4942 retval = xhci_halt(xhci); 4943 if (retval) 4944 return retval; 4945 4946 xhci_dbg(xhci, "Resetting HCD\n"); 4947 /* Reset the internal HC memory state and registers. */ 4948 retval = xhci_reset(xhci); 4949 if (retval) 4950 return retval; 4951 xhci_dbg(xhci, "Reset complete\n"); 4952 4953 /* 4954 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 4955 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 4956 * address memory pointers actually. So, this driver clears the AC64 4957 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 4958 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 4959 */ 4960 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 4961 xhci->hcc_params &= ~BIT(0); 4962 4963 /* Set dma_mask and coherent_dma_mask to 64-bits, 4964 * if xHC supports 64-bit addressing */ 4965 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4966 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4967 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4968 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4969 } else { 4970 /* 4971 * This is to avoid error in cases where a 32-bit USB 4972 * controller is used on a 64-bit capable system. 4973 */ 4974 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4975 if (retval) 4976 return retval; 4977 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4978 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4979 } 4980 4981 xhci_dbg(xhci, "Calling HCD init\n"); 4982 /* Initialize HCD and host controller data structures. */ 4983 retval = xhci_init(hcd); 4984 if (retval) 4985 return retval; 4986 xhci_dbg(xhci, "Called HCD init\n"); 4987 4988 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4989 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4990 4991 return 0; 4992 } 4993 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4994 4995 static const struct hc_driver xhci_hc_driver = { 4996 .description = "xhci-hcd", 4997 .product_desc = "xHCI Host Controller", 4998 .hcd_priv_size = sizeof(struct xhci_hcd), 4999 5000 /* 5001 * generic hardware linkage 5002 */ 5003 .irq = xhci_irq, 5004 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 5005 5006 /* 5007 * basic lifecycle operations 5008 */ 5009 .reset = NULL, /* set in xhci_init_driver() */ 5010 .start = xhci_run, 5011 .stop = xhci_stop, 5012 .shutdown = xhci_shutdown, 5013 5014 /* 5015 * managing i/o requests and associated device resources 5016 */ 5017 .urb_enqueue = xhci_urb_enqueue, 5018 .urb_dequeue = xhci_urb_dequeue, 5019 .alloc_dev = xhci_alloc_dev, 5020 .free_dev = xhci_free_dev, 5021 .alloc_streams = xhci_alloc_streams, 5022 .free_streams = xhci_free_streams, 5023 .add_endpoint = xhci_add_endpoint, 5024 .drop_endpoint = xhci_drop_endpoint, 5025 .endpoint_reset = xhci_endpoint_reset, 5026 .check_bandwidth = xhci_check_bandwidth, 5027 .reset_bandwidth = xhci_reset_bandwidth, 5028 .address_device = xhci_address_device, 5029 .enable_device = xhci_enable_device, 5030 .update_hub_device = xhci_update_hub_device, 5031 .reset_device = xhci_discover_or_reset_device, 5032 5033 /* 5034 * scheduling support 5035 */ 5036 .get_frame_number = xhci_get_frame, 5037 5038 /* 5039 * root hub support 5040 */ 5041 .hub_control = xhci_hub_control, 5042 .hub_status_data = xhci_hub_status_data, 5043 .bus_suspend = xhci_bus_suspend, 5044 .bus_resume = xhci_bus_resume, 5045 5046 /* 5047 * call back when device connected and addressed 5048 */ 5049 .update_device = xhci_update_device, 5050 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5051 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5052 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5053 .find_raw_port_number = xhci_find_raw_port_number, 5054 }; 5055 5056 void xhci_init_driver(struct hc_driver *drv, 5057 const struct xhci_driver_overrides *over) 5058 { 5059 BUG_ON(!over); 5060 5061 /* Copy the generic table to drv then apply the overrides */ 5062 *drv = xhci_hc_driver; 5063 5064 if (over) { 5065 drv->hcd_priv_size += over->extra_priv_size; 5066 if (over->reset) 5067 drv->reset = over->reset; 5068 if (over->start) 5069 drv->start = over->start; 5070 } 5071 } 5072 EXPORT_SYMBOL_GPL(xhci_init_driver); 5073 5074 MODULE_DESCRIPTION(DRIVER_DESC); 5075 MODULE_AUTHOR(DRIVER_AUTHOR); 5076 MODULE_LICENSE("GPL"); 5077 5078 static int __init xhci_hcd_init(void) 5079 { 5080 /* 5081 * Check the compiler generated sizes of structures that must be laid 5082 * out in specific ways for hardware access. 5083 */ 5084 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5085 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5086 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5087 /* xhci_device_control has eight fields, and also 5088 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5089 */ 5090 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5091 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5092 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5093 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5094 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5095 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5096 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5097 5098 if (usb_disabled()) 5099 return -ENODEV; 5100 5101 return 0; 5102 } 5103 5104 /* 5105 * If an init function is provided, an exit function must also be provided 5106 * to allow module unload. 5107 */ 5108 static void __exit xhci_hcd_fini(void) { } 5109 5110 module_init(xhci_hcd_init); 5111 module_exit(xhci_hcd_fini); 5112