1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 41 { 42 struct xhci_segment *seg = ring->first_seg; 43 44 if (!td || !td->start_seg) 45 return false; 46 do { 47 if (seg == td->start_seg) 48 return true; 49 seg = seg->next; 50 } while (seg && seg != ring->first_seg); 51 52 return false; 53 } 54 55 /* 56 * xhci_handshake - spin reading hc until handshake completes or fails 57 * @ptr: address of hc register to be read 58 * @mask: bits to look at in result of read 59 * @done: value of those bits when handshake succeeds 60 * @usec: timeout in microseconds 61 * 62 * Returns negative errno, or zero on success 63 * 64 * Success happens when the "mask" bits have the specified value (hardware 65 * handshake done). There are two failure modes: "usec" have passed (major 66 * hardware flakeout), or the register reads as all-ones (hardware removed). 67 */ 68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 69 { 70 u32 result; 71 int ret; 72 73 ret = readl_poll_timeout_atomic(ptr, result, 74 (result & mask) == done || 75 result == U32_MAX, 76 1, usec); 77 if (result == U32_MAX) /* card removed */ 78 return -ENODEV; 79 80 return ret; 81 } 82 83 /* 84 * Disable interrupts and begin the xHCI halting process. 85 */ 86 void xhci_quiesce(struct xhci_hcd *xhci) 87 { 88 u32 halted; 89 u32 cmd; 90 u32 mask; 91 92 mask = ~(XHCI_IRQS); 93 halted = readl(&xhci->op_regs->status) & STS_HALT; 94 if (!halted) 95 mask &= ~CMD_RUN; 96 97 cmd = readl(&xhci->op_regs->command); 98 cmd &= mask; 99 writel(cmd, &xhci->op_regs->command); 100 } 101 102 /* 103 * Force HC into halt state. 104 * 105 * Disable any IRQs and clear the run/stop bit. 106 * HC will complete any current and actively pipelined transactions, and 107 * should halt within 16 ms of the run/stop bit being cleared. 108 * Read HC Halted bit in the status register to see when the HC is finished. 109 */ 110 int xhci_halt(struct xhci_hcd *xhci) 111 { 112 int ret; 113 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 114 xhci_quiesce(xhci); 115 116 ret = xhci_handshake(&xhci->op_regs->status, 117 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 118 if (ret) { 119 xhci_warn(xhci, "Host halt failed, %d\n", ret); 120 return ret; 121 } 122 xhci->xhc_state |= XHCI_STATE_HALTED; 123 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 124 return ret; 125 } 126 127 /* 128 * Set the run bit and wait for the host to be running. 129 */ 130 int xhci_start(struct xhci_hcd *xhci) 131 { 132 u32 temp; 133 int ret; 134 135 temp = readl(&xhci->op_regs->command); 136 temp |= (CMD_RUN); 137 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 138 temp); 139 writel(temp, &xhci->op_regs->command); 140 141 /* 142 * Wait for the HCHalted Status bit to be 0 to indicate the host is 143 * running. 144 */ 145 ret = xhci_handshake(&xhci->op_regs->status, 146 STS_HALT, 0, XHCI_MAX_HALT_USEC); 147 if (ret == -ETIMEDOUT) 148 xhci_err(xhci, "Host took too long to start, " 149 "waited %u microseconds.\n", 150 XHCI_MAX_HALT_USEC); 151 if (!ret) 152 /* clear state flags. Including dying, halted or removing */ 153 xhci->xhc_state = 0; 154 155 return ret; 156 } 157 158 /* 159 * Reset a halted HC. 160 * 161 * This resets pipelines, timers, counters, state machines, etc. 162 * Transactions will be terminated immediately, and operational registers 163 * will be set to their defaults. 164 */ 165 int xhci_reset(struct xhci_hcd *xhci) 166 { 167 u32 command; 168 u32 state; 169 int ret; 170 171 state = readl(&xhci->op_regs->status); 172 173 if (state == ~(u32)0) { 174 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 175 return -ENODEV; 176 } 177 178 if ((state & STS_HALT) == 0) { 179 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 180 return 0; 181 } 182 183 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 184 command = readl(&xhci->op_regs->command); 185 command |= CMD_RESET; 186 writel(command, &xhci->op_regs->command); 187 188 /* Existing Intel xHCI controllers require a delay of 1 mS, 189 * after setting the CMD_RESET bit, and before accessing any 190 * HC registers. This allows the HC to complete the 191 * reset operation and be ready for HC register access. 192 * Without this delay, the subsequent HC register access, 193 * may result in a system hang very rarely. 194 */ 195 if (xhci->quirks & XHCI_INTEL_HOST) 196 udelay(1000); 197 198 ret = xhci_handshake(&xhci->op_regs->command, 199 CMD_RESET, 0, 10 * 1000 * 1000); 200 if (ret) 201 return ret; 202 203 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 204 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 205 206 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 207 "Wait for controller to be ready for doorbell rings"); 208 /* 209 * xHCI cannot write to any doorbells or operational registers other 210 * than status until the "Controller Not Ready" flag is cleared. 211 */ 212 ret = xhci_handshake(&xhci->op_regs->status, 213 STS_CNR, 0, 10 * 1000 * 1000); 214 215 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 216 xhci->usb2_rhub.bus_state.suspended_ports = 0; 217 xhci->usb2_rhub.bus_state.resuming_ports = 0; 218 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 219 xhci->usb3_rhub.bus_state.suspended_ports = 0; 220 xhci->usb3_rhub.bus_state.resuming_ports = 0; 221 222 return ret; 223 } 224 225 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 226 { 227 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 228 int err, i; 229 u64 val; 230 u32 intrs; 231 232 /* 233 * Some Renesas controllers get into a weird state if they are 234 * reset while programmed with 64bit addresses (they will preserve 235 * the top half of the address in internal, non visible 236 * registers). You end up with half the address coming from the 237 * kernel, and the other half coming from the firmware. Also, 238 * changing the programming leads to extra accesses even if the 239 * controller is supposed to be halted. The controller ends up with 240 * a fatal fault, and is then ripe for being properly reset. 241 * 242 * Special care is taken to only apply this if the device is behind 243 * an iommu. Doing anything when there is no iommu is definitely 244 * unsafe... 245 */ 246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 247 return; 248 249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 250 251 /* Clear HSEIE so that faults do not get signaled */ 252 val = readl(&xhci->op_regs->command); 253 val &= ~CMD_HSEIE; 254 writel(val, &xhci->op_regs->command); 255 256 /* Clear HSE (aka FATAL) */ 257 val = readl(&xhci->op_regs->status); 258 val |= STS_FATAL; 259 writel(val, &xhci->op_regs->status); 260 261 /* Now zero the registers, and brace for impact */ 262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 263 if (upper_32_bits(val)) 264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 266 if (upper_32_bits(val)) 267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 268 269 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 270 ARRAY_SIZE(xhci->run_regs->ir_set)); 271 272 for (i = 0; i < intrs; i++) { 273 struct xhci_intr_reg __iomem *ir; 274 275 ir = &xhci->run_regs->ir_set[i]; 276 val = xhci_read_64(xhci, &ir->erst_base); 277 if (upper_32_bits(val)) 278 xhci_write_64(xhci, 0, &ir->erst_base); 279 val= xhci_read_64(xhci, &ir->erst_dequeue); 280 if (upper_32_bits(val)) 281 xhci_write_64(xhci, 0, &ir->erst_dequeue); 282 } 283 284 /* Wait for the fault to appear. It will be cleared on reset */ 285 err = xhci_handshake(&xhci->op_regs->status, 286 STS_FATAL, STS_FATAL, 287 XHCI_MAX_HALT_USEC); 288 if (!err) 289 xhci_info(xhci, "Fault detected\n"); 290 } 291 292 #ifdef CONFIG_USB_PCI 293 /* 294 * Set up MSI 295 */ 296 static int xhci_setup_msi(struct xhci_hcd *xhci) 297 { 298 int ret; 299 /* 300 * TODO:Check with MSI Soc for sysdev 301 */ 302 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 303 304 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 305 if (ret < 0) { 306 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 307 "failed to allocate MSI entry"); 308 return ret; 309 } 310 311 ret = request_irq(pdev->irq, xhci_msi_irq, 312 0, "xhci_hcd", xhci_to_hcd(xhci)); 313 if (ret) { 314 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 315 "disable MSI interrupt"); 316 pci_free_irq_vectors(pdev); 317 } 318 319 return ret; 320 } 321 322 /* 323 * Set up MSI-X 324 */ 325 static int xhci_setup_msix(struct xhci_hcd *xhci) 326 { 327 int i, ret = 0; 328 struct usb_hcd *hcd = xhci_to_hcd(xhci); 329 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 330 331 /* 332 * calculate number of msi-x vectors supported. 333 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 334 * with max number of interrupters based on the xhci HCSPARAMS1. 335 * - num_online_cpus: maximum msi-x vectors per CPUs core. 336 * Add additional 1 vector to ensure always available interrupt. 337 */ 338 xhci->msix_count = min(num_online_cpus() + 1, 339 HCS_MAX_INTRS(xhci->hcs_params1)); 340 341 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 342 PCI_IRQ_MSIX); 343 if (ret < 0) { 344 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 345 "Failed to enable MSI-X"); 346 return ret; 347 } 348 349 for (i = 0; i < xhci->msix_count; i++) { 350 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 351 "xhci_hcd", xhci_to_hcd(xhci)); 352 if (ret) 353 goto disable_msix; 354 } 355 356 hcd->msix_enabled = 1; 357 return ret; 358 359 disable_msix: 360 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 361 while (--i >= 0) 362 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 363 pci_free_irq_vectors(pdev); 364 return ret; 365 } 366 367 /* Free any IRQs and disable MSI-X */ 368 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 369 { 370 struct usb_hcd *hcd = xhci_to_hcd(xhci); 371 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 372 373 if (xhci->quirks & XHCI_PLAT) 374 return; 375 376 /* return if using legacy interrupt */ 377 if (hcd->irq > 0) 378 return; 379 380 if (hcd->msix_enabled) { 381 int i; 382 383 for (i = 0; i < xhci->msix_count; i++) 384 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 385 } else { 386 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 387 } 388 389 pci_free_irq_vectors(pdev); 390 hcd->msix_enabled = 0; 391 } 392 393 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 394 { 395 struct usb_hcd *hcd = xhci_to_hcd(xhci); 396 397 if (hcd->msix_enabled) { 398 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 399 int i; 400 401 for (i = 0; i < xhci->msix_count; i++) 402 synchronize_irq(pci_irq_vector(pdev, i)); 403 } 404 } 405 406 static int xhci_try_enable_msi(struct usb_hcd *hcd) 407 { 408 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 409 struct pci_dev *pdev; 410 int ret; 411 412 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 413 if (xhci->quirks & XHCI_PLAT) 414 return 0; 415 416 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 417 /* 418 * Some Fresco Logic host controllers advertise MSI, but fail to 419 * generate interrupts. Don't even try to enable MSI. 420 */ 421 if (xhci->quirks & XHCI_BROKEN_MSI) 422 goto legacy_irq; 423 424 /* unregister the legacy interrupt */ 425 if (hcd->irq) 426 free_irq(hcd->irq, hcd); 427 hcd->irq = 0; 428 429 ret = xhci_setup_msix(xhci); 430 if (ret) 431 /* fall back to msi*/ 432 ret = xhci_setup_msi(xhci); 433 434 if (!ret) { 435 hcd->msi_enabled = 1; 436 return 0; 437 } 438 439 if (!pdev->irq) { 440 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 441 return -EINVAL; 442 } 443 444 legacy_irq: 445 if (!strlen(hcd->irq_descr)) 446 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 447 hcd->driver->description, hcd->self.busnum); 448 449 /* fall back to legacy interrupt*/ 450 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 451 hcd->irq_descr, hcd); 452 if (ret) { 453 xhci_err(xhci, "request interrupt %d failed\n", 454 pdev->irq); 455 return ret; 456 } 457 hcd->irq = pdev->irq; 458 return 0; 459 } 460 461 #else 462 463 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 464 { 465 return 0; 466 } 467 468 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 469 { 470 } 471 472 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 473 { 474 } 475 476 #endif 477 478 static void compliance_mode_recovery(struct timer_list *t) 479 { 480 struct xhci_hcd *xhci; 481 struct usb_hcd *hcd; 482 struct xhci_hub *rhub; 483 u32 temp; 484 int i; 485 486 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 487 rhub = &xhci->usb3_rhub; 488 489 for (i = 0; i < rhub->num_ports; i++) { 490 temp = readl(rhub->ports[i]->addr); 491 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 492 /* 493 * Compliance Mode Detected. Letting USB Core 494 * handle the Warm Reset 495 */ 496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 497 "Compliance mode detected->port %d", 498 i + 1); 499 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 500 "Attempting compliance mode recovery"); 501 hcd = xhci->shared_hcd; 502 503 if (hcd->state == HC_STATE_SUSPENDED) 504 usb_hcd_resume_root_hub(hcd); 505 506 usb_hcd_poll_rh_status(hcd); 507 } 508 } 509 510 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 511 mod_timer(&xhci->comp_mode_recovery_timer, 512 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 513 } 514 515 /* 516 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 517 * that causes ports behind that hardware to enter compliance mode sometimes. 518 * The quirk creates a timer that polls every 2 seconds the link state of 519 * each host controller's port and recovers it by issuing a Warm reset 520 * if Compliance mode is detected, otherwise the port will become "dead" (no 521 * device connections or disconnections will be detected anymore). Becasue no 522 * status event is generated when entering compliance mode (per xhci spec), 523 * this quirk is needed on systems that have the failing hardware installed. 524 */ 525 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 526 { 527 xhci->port_status_u0 = 0; 528 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 529 0); 530 xhci->comp_mode_recovery_timer.expires = jiffies + 531 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 532 533 add_timer(&xhci->comp_mode_recovery_timer); 534 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 535 "Compliance mode recovery timer initialized"); 536 } 537 538 /* 539 * This function identifies the systems that have installed the SN65LVPE502CP 540 * USB3.0 re-driver and that need the Compliance Mode Quirk. 541 * Systems: 542 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 543 */ 544 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 545 { 546 const char *dmi_product_name, *dmi_sys_vendor; 547 548 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 549 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 550 if (!dmi_product_name || !dmi_sys_vendor) 551 return false; 552 553 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 554 return false; 555 556 if (strstr(dmi_product_name, "Z420") || 557 strstr(dmi_product_name, "Z620") || 558 strstr(dmi_product_name, "Z820") || 559 strstr(dmi_product_name, "Z1 Workstation")) 560 return true; 561 562 return false; 563 } 564 565 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 566 { 567 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 568 } 569 570 571 /* 572 * Initialize memory for HCD and xHC (one-time init). 573 * 574 * Program the PAGESIZE register, initialize the device context array, create 575 * device contexts (?), set up a command ring segment (or two?), create event 576 * ring (one for now). 577 */ 578 static int xhci_init(struct usb_hcd *hcd) 579 { 580 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 581 int retval = 0; 582 583 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 584 spin_lock_init(&xhci->lock); 585 if (xhci->hci_version == 0x95 && link_quirk) { 586 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 587 "QUIRK: Not clearing Link TRB chain bits."); 588 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 589 } else { 590 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 591 "xHCI doesn't need link TRB QUIRK"); 592 } 593 retval = xhci_mem_init(xhci, GFP_KERNEL); 594 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 595 596 /* Initializing Compliance Mode Recovery Data If Needed */ 597 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 598 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 599 compliance_mode_recovery_timer_init(xhci); 600 } 601 602 return retval; 603 } 604 605 /*-------------------------------------------------------------------------*/ 606 607 608 static int xhci_run_finished(struct xhci_hcd *xhci) 609 { 610 if (xhci_start(xhci)) { 611 xhci_halt(xhci); 612 return -ENODEV; 613 } 614 xhci->shared_hcd->state = HC_STATE_RUNNING; 615 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 616 617 if (xhci->quirks & XHCI_NEC_HOST) 618 xhci_ring_cmd_db(xhci); 619 620 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 621 "Finished xhci_run for USB3 roothub"); 622 return 0; 623 } 624 625 /* 626 * Start the HC after it was halted. 627 * 628 * This function is called by the USB core when the HC driver is added. 629 * Its opposite is xhci_stop(). 630 * 631 * xhci_init() must be called once before this function can be called. 632 * Reset the HC, enable device slot contexts, program DCBAAP, and 633 * set command ring pointer and event ring pointer. 634 * 635 * Setup MSI-X vectors and enable interrupts. 636 */ 637 int xhci_run(struct usb_hcd *hcd) 638 { 639 u32 temp; 640 u64 temp_64; 641 int ret; 642 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 643 644 /* Start the xHCI host controller running only after the USB 2.0 roothub 645 * is setup. 646 */ 647 648 hcd->uses_new_polling = 1; 649 if (!usb_hcd_is_primary_hcd(hcd)) 650 return xhci_run_finished(xhci); 651 652 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 653 654 ret = xhci_try_enable_msi(hcd); 655 if (ret) 656 return ret; 657 658 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 659 temp_64 &= ~ERST_PTR_MASK; 660 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 661 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 662 663 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 664 "// Set the interrupt modulation register"); 665 temp = readl(&xhci->ir_set->irq_control); 666 temp &= ~ER_IRQ_INTERVAL_MASK; 667 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 668 writel(temp, &xhci->ir_set->irq_control); 669 670 /* Set the HCD state before we enable the irqs */ 671 temp = readl(&xhci->op_regs->command); 672 temp |= (CMD_EIE); 673 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 674 "// Enable interrupts, cmd = 0x%x.", temp); 675 writel(temp, &xhci->op_regs->command); 676 677 temp = readl(&xhci->ir_set->irq_pending); 678 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 679 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 680 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 681 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 682 683 if (xhci->quirks & XHCI_NEC_HOST) { 684 struct xhci_command *command; 685 686 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 687 if (!command) 688 return -ENOMEM; 689 690 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 691 TRB_TYPE(TRB_NEC_GET_FW)); 692 if (ret) 693 xhci_free_command(xhci, command); 694 } 695 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 696 "Finished xhci_run for USB2 roothub"); 697 698 xhci_dbc_init(xhci); 699 700 xhci_debugfs_init(xhci); 701 702 return 0; 703 } 704 EXPORT_SYMBOL_GPL(xhci_run); 705 706 /* 707 * Stop xHCI driver. 708 * 709 * This function is called by the USB core when the HC driver is removed. 710 * Its opposite is xhci_run(). 711 * 712 * Disable device contexts, disable IRQs, and quiesce the HC. 713 * Reset the HC, finish any completed transactions, and cleanup memory. 714 */ 715 static void xhci_stop(struct usb_hcd *hcd) 716 { 717 u32 temp; 718 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 719 720 mutex_lock(&xhci->mutex); 721 722 /* Only halt host and free memory after both hcds are removed */ 723 if (!usb_hcd_is_primary_hcd(hcd)) { 724 mutex_unlock(&xhci->mutex); 725 return; 726 } 727 728 xhci_dbc_exit(xhci); 729 730 spin_lock_irq(&xhci->lock); 731 xhci->xhc_state |= XHCI_STATE_HALTED; 732 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 733 xhci_halt(xhci); 734 xhci_reset(xhci); 735 spin_unlock_irq(&xhci->lock); 736 737 xhci_cleanup_msix(xhci); 738 739 /* Deleting Compliance Mode Recovery Timer */ 740 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 741 (!(xhci_all_ports_seen_u0(xhci)))) { 742 del_timer_sync(&xhci->comp_mode_recovery_timer); 743 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 744 "%s: compliance mode recovery timer deleted", 745 __func__); 746 } 747 748 if (xhci->quirks & XHCI_AMD_PLL_FIX) 749 usb_amd_dev_put(); 750 751 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 752 "// Disabling event ring interrupts"); 753 temp = readl(&xhci->op_regs->status); 754 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 755 temp = readl(&xhci->ir_set->irq_pending); 756 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 757 758 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 759 xhci_mem_cleanup(xhci); 760 xhci_debugfs_exit(xhci); 761 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 762 "xhci_stop completed - status = %x", 763 readl(&xhci->op_regs->status)); 764 mutex_unlock(&xhci->mutex); 765 } 766 767 /* 768 * Shutdown HC (not bus-specific) 769 * 770 * This is called when the machine is rebooting or halting. We assume that the 771 * machine will be powered off, and the HC's internal state will be reset. 772 * Don't bother to free memory. 773 * 774 * This will only ever be called with the main usb_hcd (the USB3 roothub). 775 */ 776 void xhci_shutdown(struct usb_hcd *hcd) 777 { 778 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 779 780 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 781 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 782 783 spin_lock_irq(&xhci->lock); 784 xhci_halt(xhci); 785 /* Workaround for spurious wakeups at shutdown with HSW */ 786 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 787 xhci_reset(xhci); 788 spin_unlock_irq(&xhci->lock); 789 790 xhci_cleanup_msix(xhci); 791 792 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 793 "xhci_shutdown completed - status = %x", 794 readl(&xhci->op_regs->status)); 795 } 796 EXPORT_SYMBOL_GPL(xhci_shutdown); 797 798 #ifdef CONFIG_PM 799 static void xhci_save_registers(struct xhci_hcd *xhci) 800 { 801 xhci->s3.command = readl(&xhci->op_regs->command); 802 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 803 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 804 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 805 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 806 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 807 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 808 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 809 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 810 } 811 812 static void xhci_restore_registers(struct xhci_hcd *xhci) 813 { 814 writel(xhci->s3.command, &xhci->op_regs->command); 815 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 816 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 817 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 818 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 819 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 820 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 821 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 822 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 823 } 824 825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 826 { 827 u64 val_64; 828 829 /* step 2: initialize command ring buffer */ 830 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 831 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 832 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 833 xhci->cmd_ring->dequeue) & 834 (u64) ~CMD_RING_RSVD_BITS) | 835 xhci->cmd_ring->cycle_state; 836 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 837 "// Setting command ring address to 0x%llx", 838 (long unsigned long) val_64); 839 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 840 } 841 842 /* 843 * The whole command ring must be cleared to zero when we suspend the host. 844 * 845 * The host doesn't save the command ring pointer in the suspend well, so we 846 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 847 * aligned, because of the reserved bits in the command ring dequeue pointer 848 * register. Therefore, we can't just set the dequeue pointer back in the 849 * middle of the ring (TRBs are 16-byte aligned). 850 */ 851 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 852 { 853 struct xhci_ring *ring; 854 struct xhci_segment *seg; 855 856 ring = xhci->cmd_ring; 857 seg = ring->deq_seg; 858 do { 859 memset(seg->trbs, 0, 860 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 861 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 862 cpu_to_le32(~TRB_CYCLE); 863 seg = seg->next; 864 } while (seg != ring->deq_seg); 865 866 /* Reset the software enqueue and dequeue pointers */ 867 ring->deq_seg = ring->first_seg; 868 ring->dequeue = ring->first_seg->trbs; 869 ring->enq_seg = ring->deq_seg; 870 ring->enqueue = ring->dequeue; 871 872 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 873 /* 874 * Ring is now zeroed, so the HW should look for change of ownership 875 * when the cycle bit is set to 1. 876 */ 877 ring->cycle_state = 1; 878 879 /* 880 * Reset the hardware dequeue pointer. 881 * Yes, this will need to be re-written after resume, but we're paranoid 882 * and want to make sure the hardware doesn't access bogus memory 883 * because, say, the BIOS or an SMI started the host without changing 884 * the command ring pointers. 885 */ 886 xhci_set_cmd_ring_deq(xhci); 887 } 888 889 /* 890 * Disable port wake bits if do_wakeup is not set. 891 * 892 * Also clear a possible internal port wake state left hanging for ports that 893 * detected termination but never successfully enumerated (trained to 0U). 894 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 895 * at enumeration clears this wake, force one here as well for unconnected ports 896 */ 897 898 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 899 struct xhci_hub *rhub, 900 bool do_wakeup) 901 { 902 unsigned long flags; 903 u32 t1, t2, portsc; 904 int i; 905 906 spin_lock_irqsave(&xhci->lock, flags); 907 908 for (i = 0; i < rhub->num_ports; i++) { 909 portsc = readl(rhub->ports[i]->addr); 910 t1 = xhci_port_state_to_neutral(portsc); 911 t2 = t1; 912 913 /* clear wake bits if do_wake is not set */ 914 if (!do_wakeup) 915 t2 &= ~PORT_WAKE_BITS; 916 917 /* Don't touch csc bit if connected or connect change is set */ 918 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 919 t2 |= PORT_CSC; 920 921 if (t1 != t2) { 922 writel(t2, rhub->ports[i]->addr); 923 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 924 rhub->hcd->self.busnum, i + 1, portsc, t2); 925 } 926 } 927 spin_unlock_irqrestore(&xhci->lock, flags); 928 } 929 930 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 931 { 932 struct xhci_port **ports; 933 int port_index; 934 u32 status; 935 u32 portsc; 936 937 status = readl(&xhci->op_regs->status); 938 if (status & STS_EINT) 939 return true; 940 /* 941 * Checking STS_EINT is not enough as there is a lag between a change 942 * bit being set and the Port Status Change Event that it generated 943 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 944 */ 945 946 port_index = xhci->usb2_rhub.num_ports; 947 ports = xhci->usb2_rhub.ports; 948 while (port_index--) { 949 portsc = readl(ports[port_index]->addr); 950 if (portsc & PORT_CHANGE_MASK || 951 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 952 return true; 953 } 954 port_index = xhci->usb3_rhub.num_ports; 955 ports = xhci->usb3_rhub.ports; 956 while (port_index--) { 957 portsc = readl(ports[port_index]->addr); 958 if (portsc & PORT_CHANGE_MASK || 959 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 960 return true; 961 } 962 return false; 963 } 964 965 /* 966 * Stop HC (not bus-specific) 967 * 968 * This is called when the machine transition into S3/S4 mode. 969 * 970 */ 971 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 972 { 973 int rc = 0; 974 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 975 struct usb_hcd *hcd = xhci_to_hcd(xhci); 976 u32 command; 977 u32 res; 978 979 if (!hcd->state) 980 return 0; 981 982 if (hcd->state != HC_STATE_SUSPENDED || 983 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 984 return -EINVAL; 985 986 /* Clear root port wake on bits if wakeup not allowed. */ 987 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 988 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 989 990 if (!HCD_HW_ACCESSIBLE(hcd)) 991 return 0; 992 993 xhci_dbc_suspend(xhci); 994 995 /* Don't poll the roothubs on bus suspend. */ 996 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 997 __func__, hcd->self.busnum); 998 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 999 del_timer_sync(&hcd->rh_timer); 1000 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1001 del_timer_sync(&xhci->shared_hcd->rh_timer); 1002 1003 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1004 usleep_range(1000, 1500); 1005 1006 spin_lock_irq(&xhci->lock); 1007 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1008 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1009 /* step 1: stop endpoint */ 1010 /* skipped assuming that port suspend has done */ 1011 1012 /* step 2: clear Run/Stop bit */ 1013 command = readl(&xhci->op_regs->command); 1014 command &= ~CMD_RUN; 1015 writel(command, &xhci->op_regs->command); 1016 1017 /* Some chips from Fresco Logic need an extraordinary delay */ 1018 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1019 1020 if (xhci_handshake(&xhci->op_regs->status, 1021 STS_HALT, STS_HALT, delay)) { 1022 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1023 spin_unlock_irq(&xhci->lock); 1024 return -ETIMEDOUT; 1025 } 1026 xhci_clear_command_ring(xhci); 1027 1028 /* step 3: save registers */ 1029 xhci_save_registers(xhci); 1030 1031 /* step 4: set CSS flag */ 1032 command = readl(&xhci->op_regs->command); 1033 command |= CMD_CSS; 1034 writel(command, &xhci->op_regs->command); 1035 xhci->broken_suspend = 0; 1036 if (xhci_handshake(&xhci->op_regs->status, 1037 STS_SAVE, 0, 20 * 1000)) { 1038 /* 1039 * AMD SNPS xHC 3.0 occasionally does not clear the 1040 * SSS bit of USBSTS and when driver tries to poll 1041 * to see if the xHC clears BIT(8) which never happens 1042 * and driver assumes that controller is not responding 1043 * and times out. To workaround this, its good to check 1044 * if SRE and HCE bits are not set (as per xhci 1045 * Section 5.4.2) and bypass the timeout. 1046 */ 1047 res = readl(&xhci->op_regs->status); 1048 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1049 (((res & STS_SRE) == 0) && 1050 ((res & STS_HCE) == 0))) { 1051 xhci->broken_suspend = 1; 1052 } else { 1053 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1054 spin_unlock_irq(&xhci->lock); 1055 return -ETIMEDOUT; 1056 } 1057 } 1058 spin_unlock_irq(&xhci->lock); 1059 1060 /* 1061 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1062 * is about to be suspended. 1063 */ 1064 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1065 (!(xhci_all_ports_seen_u0(xhci)))) { 1066 del_timer_sync(&xhci->comp_mode_recovery_timer); 1067 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1068 "%s: compliance mode recovery timer deleted", 1069 __func__); 1070 } 1071 1072 /* step 5: remove core well power */ 1073 /* synchronize irq when using MSI-X */ 1074 xhci_msix_sync_irqs(xhci); 1075 1076 return rc; 1077 } 1078 EXPORT_SYMBOL_GPL(xhci_suspend); 1079 1080 /* 1081 * start xHC (not bus-specific) 1082 * 1083 * This is called when the machine transition from S3/S4 mode. 1084 * 1085 */ 1086 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1087 { 1088 u32 command, temp = 0; 1089 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1090 struct usb_hcd *secondary_hcd; 1091 int retval = 0; 1092 bool comp_timer_running = false; 1093 bool pending_portevent = false; 1094 1095 if (!hcd->state) 1096 return 0; 1097 1098 /* Wait a bit if either of the roothubs need to settle from the 1099 * transition into bus suspend. 1100 */ 1101 1102 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1103 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1104 msleep(100); 1105 1106 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1107 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1108 1109 spin_lock_irq(&xhci->lock); 1110 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend) 1111 hibernated = true; 1112 1113 if (!hibernated) { 1114 /* 1115 * Some controllers might lose power during suspend, so wait 1116 * for controller not ready bit to clear, just as in xHC init. 1117 */ 1118 retval = xhci_handshake(&xhci->op_regs->status, 1119 STS_CNR, 0, 10 * 1000 * 1000); 1120 if (retval) { 1121 xhci_warn(xhci, "Controller not ready at resume %d\n", 1122 retval); 1123 spin_unlock_irq(&xhci->lock); 1124 return retval; 1125 } 1126 /* step 1: restore register */ 1127 xhci_restore_registers(xhci); 1128 /* step 2: initialize command ring buffer */ 1129 xhci_set_cmd_ring_deq(xhci); 1130 /* step 3: restore state and start state*/ 1131 /* step 3: set CRS flag */ 1132 command = readl(&xhci->op_regs->command); 1133 command |= CMD_CRS; 1134 writel(command, &xhci->op_regs->command); 1135 /* 1136 * Some controllers take up to 55+ ms to complete the controller 1137 * restore so setting the timeout to 100ms. Xhci specification 1138 * doesn't mention any timeout value. 1139 */ 1140 if (xhci_handshake(&xhci->op_regs->status, 1141 STS_RESTORE, 0, 100 * 1000)) { 1142 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1143 spin_unlock_irq(&xhci->lock); 1144 return -ETIMEDOUT; 1145 } 1146 temp = readl(&xhci->op_regs->status); 1147 } 1148 1149 /* If restore operation fails, re-initialize the HC during resume */ 1150 if ((temp & STS_SRE) || hibernated) { 1151 1152 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1153 !(xhci_all_ports_seen_u0(xhci))) { 1154 del_timer_sync(&xhci->comp_mode_recovery_timer); 1155 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1156 "Compliance Mode Recovery Timer deleted!"); 1157 } 1158 1159 /* Let the USB core know _both_ roothubs lost power. */ 1160 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1161 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1162 1163 xhci_dbg(xhci, "Stop HCD\n"); 1164 xhci_halt(xhci); 1165 xhci_zero_64b_regs(xhci); 1166 retval = xhci_reset(xhci); 1167 spin_unlock_irq(&xhci->lock); 1168 if (retval) 1169 return retval; 1170 xhci_cleanup_msix(xhci); 1171 1172 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1173 temp = readl(&xhci->op_regs->status); 1174 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1175 temp = readl(&xhci->ir_set->irq_pending); 1176 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1177 1178 xhci_dbg(xhci, "cleaning up memory\n"); 1179 xhci_mem_cleanup(xhci); 1180 xhci_debugfs_exit(xhci); 1181 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1182 readl(&xhci->op_regs->status)); 1183 1184 /* USB core calls the PCI reinit and start functions twice: 1185 * first with the primary HCD, and then with the secondary HCD. 1186 * If we don't do the same, the host will never be started. 1187 */ 1188 if (!usb_hcd_is_primary_hcd(hcd)) 1189 secondary_hcd = hcd; 1190 else 1191 secondary_hcd = xhci->shared_hcd; 1192 1193 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1194 retval = xhci_init(hcd->primary_hcd); 1195 if (retval) 1196 return retval; 1197 comp_timer_running = true; 1198 1199 xhci_dbg(xhci, "Start the primary HCD\n"); 1200 retval = xhci_run(hcd->primary_hcd); 1201 if (!retval) { 1202 xhci_dbg(xhci, "Start the secondary HCD\n"); 1203 retval = xhci_run(secondary_hcd); 1204 } 1205 hcd->state = HC_STATE_SUSPENDED; 1206 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1207 goto done; 1208 } 1209 1210 /* step 4: set Run/Stop bit */ 1211 command = readl(&xhci->op_regs->command); 1212 command |= CMD_RUN; 1213 writel(command, &xhci->op_regs->command); 1214 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1215 0, 250 * 1000); 1216 1217 /* step 5: walk topology and initialize portsc, 1218 * portpmsc and portli 1219 */ 1220 /* this is done in bus_resume */ 1221 1222 /* step 6: restart each of the previously 1223 * Running endpoints by ringing their doorbells 1224 */ 1225 1226 spin_unlock_irq(&xhci->lock); 1227 1228 xhci_dbc_resume(xhci); 1229 1230 done: 1231 if (retval == 0) { 1232 /* 1233 * Resume roothubs only if there are pending events. 1234 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1235 * the first wake signalling failed, give it that chance. 1236 */ 1237 pending_portevent = xhci_pending_portevent(xhci); 1238 if (!pending_portevent) { 1239 msleep(120); 1240 pending_portevent = xhci_pending_portevent(xhci); 1241 } 1242 1243 if (pending_portevent) { 1244 usb_hcd_resume_root_hub(xhci->shared_hcd); 1245 usb_hcd_resume_root_hub(hcd); 1246 } 1247 } 1248 /* 1249 * If system is subject to the Quirk, Compliance Mode Timer needs to 1250 * be re-initialized Always after a system resume. Ports are subject 1251 * to suffer the Compliance Mode issue again. It doesn't matter if 1252 * ports have entered previously to U0 before system's suspension. 1253 */ 1254 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1255 compliance_mode_recovery_timer_init(xhci); 1256 1257 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1258 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1259 1260 /* Re-enable port polling. */ 1261 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1262 __func__, hcd->self.busnum); 1263 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1264 usb_hcd_poll_rh_status(xhci->shared_hcd); 1265 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1266 usb_hcd_poll_rh_status(hcd); 1267 1268 return retval; 1269 } 1270 EXPORT_SYMBOL_GPL(xhci_resume); 1271 #endif /* CONFIG_PM */ 1272 1273 /*-------------------------------------------------------------------------*/ 1274 1275 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1276 { 1277 void *temp; 1278 int ret = 0; 1279 unsigned int buf_len; 1280 enum dma_data_direction dir; 1281 1282 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1283 buf_len = urb->transfer_buffer_length; 1284 1285 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1286 dev_to_node(hcd->self.sysdev)); 1287 1288 if (usb_urb_dir_out(urb)) 1289 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1290 temp, buf_len, 0); 1291 1292 urb->transfer_buffer = temp; 1293 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1294 urb->transfer_buffer, 1295 urb->transfer_buffer_length, 1296 dir); 1297 1298 if (dma_mapping_error(hcd->self.sysdev, 1299 urb->transfer_dma)) { 1300 ret = -EAGAIN; 1301 kfree(temp); 1302 } else { 1303 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1304 } 1305 1306 return ret; 1307 } 1308 1309 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1310 struct urb *urb) 1311 { 1312 bool ret = false; 1313 unsigned int i; 1314 unsigned int len = 0; 1315 unsigned int trb_size; 1316 unsigned int max_pkt; 1317 struct scatterlist *sg; 1318 struct scatterlist *tail_sg; 1319 1320 tail_sg = urb->sg; 1321 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1322 1323 if (!urb->num_sgs) 1324 return ret; 1325 1326 if (urb->dev->speed >= USB_SPEED_SUPER) 1327 trb_size = TRB_CACHE_SIZE_SS; 1328 else 1329 trb_size = TRB_CACHE_SIZE_HS; 1330 1331 if (urb->transfer_buffer_length != 0 && 1332 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1333 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1334 len = len + sg->length; 1335 if (i > trb_size - 2) { 1336 len = len - tail_sg->length; 1337 if (len < max_pkt) { 1338 ret = true; 1339 break; 1340 } 1341 1342 tail_sg = sg_next(tail_sg); 1343 } 1344 } 1345 } 1346 return ret; 1347 } 1348 1349 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1350 { 1351 unsigned int len; 1352 unsigned int buf_len; 1353 enum dma_data_direction dir; 1354 1355 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1356 1357 buf_len = urb->transfer_buffer_length; 1358 1359 if (IS_ENABLED(CONFIG_HAS_DMA) && 1360 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1361 dma_unmap_single(hcd->self.sysdev, 1362 urb->transfer_dma, 1363 urb->transfer_buffer_length, 1364 dir); 1365 1366 if (usb_urb_dir_in(urb)) { 1367 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1368 urb->transfer_buffer, 1369 buf_len, 1370 0); 1371 if (len != buf_len) { 1372 xhci_dbg(hcd_to_xhci(hcd), 1373 "Copy from tmp buf to urb sg list failed\n"); 1374 urb->actual_length = len; 1375 } 1376 } 1377 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1378 kfree(urb->transfer_buffer); 1379 urb->transfer_buffer = NULL; 1380 } 1381 1382 /* 1383 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1384 * we'll copy the actual data into the TRB address register. This is limited to 1385 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1386 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1387 */ 1388 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1389 gfp_t mem_flags) 1390 { 1391 struct xhci_hcd *xhci; 1392 1393 xhci = hcd_to_xhci(hcd); 1394 1395 if (xhci_urb_suitable_for_idt(urb)) 1396 return 0; 1397 1398 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1399 if (xhci_urb_temp_buffer_required(hcd, urb)) 1400 return xhci_map_temp_buffer(hcd, urb); 1401 } 1402 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1403 } 1404 1405 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1406 { 1407 struct xhci_hcd *xhci; 1408 bool unmap_temp_buf = false; 1409 1410 xhci = hcd_to_xhci(hcd); 1411 1412 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1413 unmap_temp_buf = true; 1414 1415 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1416 xhci_unmap_temp_buf(hcd, urb); 1417 else 1418 usb_hcd_unmap_urb_for_dma(hcd, urb); 1419 } 1420 1421 /** 1422 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1423 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1424 * value to right shift 1 for the bitmask. 1425 * 1426 * Index = (epnum * 2) + direction - 1, 1427 * where direction = 0 for OUT, 1 for IN. 1428 * For control endpoints, the IN index is used (OUT index is unused), so 1429 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1430 */ 1431 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1432 { 1433 unsigned int index; 1434 if (usb_endpoint_xfer_control(desc)) 1435 index = (unsigned int) (usb_endpoint_num(desc)*2); 1436 else 1437 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1438 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1439 return index; 1440 } 1441 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1442 1443 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1444 * address from the XHCI endpoint index. 1445 */ 1446 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1447 { 1448 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1449 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1450 return direction | number; 1451 } 1452 1453 /* Find the flag for this endpoint (for use in the control context). Use the 1454 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1455 * bit 1, etc. 1456 */ 1457 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1458 { 1459 return 1 << (xhci_get_endpoint_index(desc) + 1); 1460 } 1461 1462 /* Compute the last valid endpoint context index. Basically, this is the 1463 * endpoint index plus one. For slot contexts with more than valid endpoint, 1464 * we find the most significant bit set in the added contexts flags. 1465 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1466 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1467 */ 1468 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1469 { 1470 return fls(added_ctxs) - 1; 1471 } 1472 1473 /* Returns 1 if the arguments are OK; 1474 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1475 */ 1476 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1477 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1478 const char *func) { 1479 struct xhci_hcd *xhci; 1480 struct xhci_virt_device *virt_dev; 1481 1482 if (!hcd || (check_ep && !ep) || !udev) { 1483 pr_debug("xHCI %s called with invalid args\n", func); 1484 return -EINVAL; 1485 } 1486 if (!udev->parent) { 1487 pr_debug("xHCI %s called for root hub\n", func); 1488 return 0; 1489 } 1490 1491 xhci = hcd_to_xhci(hcd); 1492 if (check_virt_dev) { 1493 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1494 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1495 func); 1496 return -EINVAL; 1497 } 1498 1499 virt_dev = xhci->devs[udev->slot_id]; 1500 if (virt_dev->udev != udev) { 1501 xhci_dbg(xhci, "xHCI %s called with udev and " 1502 "virt_dev does not match\n", func); 1503 return -EINVAL; 1504 } 1505 } 1506 1507 if (xhci->xhc_state & XHCI_STATE_HALTED) 1508 return -ENODEV; 1509 1510 return 1; 1511 } 1512 1513 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1514 struct usb_device *udev, struct xhci_command *command, 1515 bool ctx_change, bool must_succeed); 1516 1517 /* 1518 * Full speed devices may have a max packet size greater than 8 bytes, but the 1519 * USB core doesn't know that until it reads the first 8 bytes of the 1520 * descriptor. If the usb_device's max packet size changes after that point, 1521 * we need to issue an evaluate context command and wait on it. 1522 */ 1523 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1524 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1525 { 1526 struct xhci_container_ctx *out_ctx; 1527 struct xhci_input_control_ctx *ctrl_ctx; 1528 struct xhci_ep_ctx *ep_ctx; 1529 struct xhci_command *command; 1530 int max_packet_size; 1531 int hw_max_packet_size; 1532 int ret = 0; 1533 1534 out_ctx = xhci->devs[slot_id]->out_ctx; 1535 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1536 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1537 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1538 if (hw_max_packet_size != max_packet_size) { 1539 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1540 "Max Packet Size for ep 0 changed."); 1541 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1542 "Max packet size in usb_device = %d", 1543 max_packet_size); 1544 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1545 "Max packet size in xHCI HW = %d", 1546 hw_max_packet_size); 1547 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1548 "Issuing evaluate context command."); 1549 1550 /* Set up the input context flags for the command */ 1551 /* FIXME: This won't work if a non-default control endpoint 1552 * changes max packet sizes. 1553 */ 1554 1555 command = xhci_alloc_command(xhci, true, mem_flags); 1556 if (!command) 1557 return -ENOMEM; 1558 1559 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1560 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1561 if (!ctrl_ctx) { 1562 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1563 __func__); 1564 ret = -ENOMEM; 1565 goto command_cleanup; 1566 } 1567 /* Set up the modified control endpoint 0 */ 1568 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1569 xhci->devs[slot_id]->out_ctx, ep_index); 1570 1571 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1572 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1573 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1574 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1575 1576 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1577 ctrl_ctx->drop_flags = 0; 1578 1579 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1580 true, false); 1581 1582 /* Clean up the input context for later use by bandwidth 1583 * functions. 1584 */ 1585 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1586 command_cleanup: 1587 kfree(command->completion); 1588 kfree(command); 1589 } 1590 return ret; 1591 } 1592 1593 /* 1594 * non-error returns are a promise to giveback() the urb later 1595 * we drop ownership so next owner (or urb unlink) can get it 1596 */ 1597 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1598 { 1599 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1600 unsigned long flags; 1601 int ret = 0; 1602 unsigned int slot_id, ep_index; 1603 unsigned int *ep_state; 1604 struct urb_priv *urb_priv; 1605 int num_tds; 1606 1607 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1608 true, true, __func__) <= 0) 1609 return -EINVAL; 1610 1611 slot_id = urb->dev->slot_id; 1612 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1613 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1614 1615 if (!HCD_HW_ACCESSIBLE(hcd)) 1616 return -ESHUTDOWN; 1617 1618 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1619 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1620 return -ENODEV; 1621 } 1622 1623 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1624 num_tds = urb->number_of_packets; 1625 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1626 urb->transfer_buffer_length > 0 && 1627 urb->transfer_flags & URB_ZERO_PACKET && 1628 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1629 num_tds = 2; 1630 else 1631 num_tds = 1; 1632 1633 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1634 if (!urb_priv) 1635 return -ENOMEM; 1636 1637 urb_priv->num_tds = num_tds; 1638 urb_priv->num_tds_done = 0; 1639 urb->hcpriv = urb_priv; 1640 1641 trace_xhci_urb_enqueue(urb); 1642 1643 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1644 /* Check to see if the max packet size for the default control 1645 * endpoint changed during FS device enumeration 1646 */ 1647 if (urb->dev->speed == USB_SPEED_FULL) { 1648 ret = xhci_check_maxpacket(xhci, slot_id, 1649 ep_index, urb, mem_flags); 1650 if (ret < 0) { 1651 xhci_urb_free_priv(urb_priv); 1652 urb->hcpriv = NULL; 1653 return ret; 1654 } 1655 } 1656 } 1657 1658 spin_lock_irqsave(&xhci->lock, flags); 1659 1660 if (xhci->xhc_state & XHCI_STATE_DYING) { 1661 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1662 urb->ep->desc.bEndpointAddress, urb); 1663 ret = -ESHUTDOWN; 1664 goto free_priv; 1665 } 1666 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1667 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1668 *ep_state); 1669 ret = -EINVAL; 1670 goto free_priv; 1671 } 1672 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1673 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1674 ret = -EINVAL; 1675 goto free_priv; 1676 } 1677 1678 switch (usb_endpoint_type(&urb->ep->desc)) { 1679 1680 case USB_ENDPOINT_XFER_CONTROL: 1681 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1682 slot_id, ep_index); 1683 break; 1684 case USB_ENDPOINT_XFER_BULK: 1685 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1686 slot_id, ep_index); 1687 break; 1688 case USB_ENDPOINT_XFER_INT: 1689 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1690 slot_id, ep_index); 1691 break; 1692 case USB_ENDPOINT_XFER_ISOC: 1693 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1694 slot_id, ep_index); 1695 } 1696 1697 if (ret) { 1698 free_priv: 1699 xhci_urb_free_priv(urb_priv); 1700 urb->hcpriv = NULL; 1701 } 1702 spin_unlock_irqrestore(&xhci->lock, flags); 1703 return ret; 1704 } 1705 1706 /* 1707 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1708 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1709 * should pick up where it left off in the TD, unless a Set Transfer Ring 1710 * Dequeue Pointer is issued. 1711 * 1712 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1713 * the ring. Since the ring is a contiguous structure, they can't be physically 1714 * removed. Instead, there are two options: 1715 * 1716 * 1) If the HC is in the middle of processing the URB to be canceled, we 1717 * simply move the ring's dequeue pointer past those TRBs using the Set 1718 * Transfer Ring Dequeue Pointer command. This will be the common case, 1719 * when drivers timeout on the last submitted URB and attempt to cancel. 1720 * 1721 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1722 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1723 * HC will need to invalidate the any TRBs it has cached after the stop 1724 * endpoint command, as noted in the xHCI 0.95 errata. 1725 * 1726 * 3) The TD may have completed by the time the Stop Endpoint Command 1727 * completes, so software needs to handle that case too. 1728 * 1729 * This function should protect against the TD enqueueing code ringing the 1730 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1731 * It also needs to account for multiple cancellations on happening at the same 1732 * time for the same endpoint. 1733 * 1734 * Note that this function can be called in any context, or so says 1735 * usb_hcd_unlink_urb() 1736 */ 1737 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1738 { 1739 unsigned long flags; 1740 int ret, i; 1741 u32 temp; 1742 struct xhci_hcd *xhci; 1743 struct urb_priv *urb_priv; 1744 struct xhci_td *td; 1745 unsigned int ep_index; 1746 struct xhci_ring *ep_ring; 1747 struct xhci_virt_ep *ep; 1748 struct xhci_command *command; 1749 struct xhci_virt_device *vdev; 1750 1751 xhci = hcd_to_xhci(hcd); 1752 spin_lock_irqsave(&xhci->lock, flags); 1753 1754 trace_xhci_urb_dequeue(urb); 1755 1756 /* Make sure the URB hasn't completed or been unlinked already */ 1757 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1758 if (ret) 1759 goto done; 1760 1761 /* give back URB now if we can't queue it for cancel */ 1762 vdev = xhci->devs[urb->dev->slot_id]; 1763 urb_priv = urb->hcpriv; 1764 if (!vdev || !urb_priv) 1765 goto err_giveback; 1766 1767 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1768 ep = &vdev->eps[ep_index]; 1769 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1770 if (!ep || !ep_ring) 1771 goto err_giveback; 1772 1773 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1774 temp = readl(&xhci->op_regs->status); 1775 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1776 xhci_hc_died(xhci); 1777 goto done; 1778 } 1779 1780 /* 1781 * check ring is not re-allocated since URB was enqueued. If it is, then 1782 * make sure none of the ring related pointers in this URB private data 1783 * are touched, such as td_list, otherwise we overwrite freed data 1784 */ 1785 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1786 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1787 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1788 td = &urb_priv->td[i]; 1789 if (!list_empty(&td->cancelled_td_list)) 1790 list_del_init(&td->cancelled_td_list); 1791 } 1792 goto err_giveback; 1793 } 1794 1795 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1796 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1797 "HC halted, freeing TD manually."); 1798 for (i = urb_priv->num_tds_done; 1799 i < urb_priv->num_tds; 1800 i++) { 1801 td = &urb_priv->td[i]; 1802 if (!list_empty(&td->td_list)) 1803 list_del_init(&td->td_list); 1804 if (!list_empty(&td->cancelled_td_list)) 1805 list_del_init(&td->cancelled_td_list); 1806 } 1807 goto err_giveback; 1808 } 1809 1810 i = urb_priv->num_tds_done; 1811 if (i < urb_priv->num_tds) 1812 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1813 "Cancel URB %p, dev %s, ep 0x%x, " 1814 "starting at offset 0x%llx", 1815 urb, urb->dev->devpath, 1816 urb->ep->desc.bEndpointAddress, 1817 (unsigned long long) xhci_trb_virt_to_dma( 1818 urb_priv->td[i].start_seg, 1819 urb_priv->td[i].first_trb)); 1820 1821 for (; i < urb_priv->num_tds; i++) { 1822 td = &urb_priv->td[i]; 1823 /* TD can already be on cancelled list if ep halted on it */ 1824 if (list_empty(&td->cancelled_td_list)) { 1825 td->cancel_status = TD_DIRTY; 1826 list_add_tail(&td->cancelled_td_list, 1827 &ep->cancelled_td_list); 1828 } 1829 } 1830 1831 /* Queue a stop endpoint command, but only if this is 1832 * the first cancellation to be handled. 1833 */ 1834 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1835 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1836 if (!command) { 1837 ret = -ENOMEM; 1838 goto done; 1839 } 1840 ep->ep_state |= EP_STOP_CMD_PENDING; 1841 ep->stop_cmd_timer.expires = jiffies + 1842 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1843 add_timer(&ep->stop_cmd_timer); 1844 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1845 ep_index, 0); 1846 xhci_ring_cmd_db(xhci); 1847 } 1848 done: 1849 spin_unlock_irqrestore(&xhci->lock, flags); 1850 return ret; 1851 1852 err_giveback: 1853 if (urb_priv) 1854 xhci_urb_free_priv(urb_priv); 1855 usb_hcd_unlink_urb_from_ep(hcd, urb); 1856 spin_unlock_irqrestore(&xhci->lock, flags); 1857 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1858 return ret; 1859 } 1860 1861 /* Drop an endpoint from a new bandwidth configuration for this device. 1862 * Only one call to this function is allowed per endpoint before 1863 * check_bandwidth() or reset_bandwidth() must be called. 1864 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1865 * add the endpoint to the schedule with possibly new parameters denoted by a 1866 * different endpoint descriptor in usb_host_endpoint. 1867 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1868 * not allowed. 1869 * 1870 * The USB core will not allow URBs to be queued to an endpoint that is being 1871 * disabled, so there's no need for mutual exclusion to protect 1872 * the xhci->devs[slot_id] structure. 1873 */ 1874 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1875 struct usb_host_endpoint *ep) 1876 { 1877 struct xhci_hcd *xhci; 1878 struct xhci_container_ctx *in_ctx, *out_ctx; 1879 struct xhci_input_control_ctx *ctrl_ctx; 1880 unsigned int ep_index; 1881 struct xhci_ep_ctx *ep_ctx; 1882 u32 drop_flag; 1883 u32 new_add_flags, new_drop_flags; 1884 int ret; 1885 1886 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1887 if (ret <= 0) 1888 return ret; 1889 xhci = hcd_to_xhci(hcd); 1890 if (xhci->xhc_state & XHCI_STATE_DYING) 1891 return -ENODEV; 1892 1893 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1894 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1895 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1896 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1897 __func__, drop_flag); 1898 return 0; 1899 } 1900 1901 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1902 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1903 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1904 if (!ctrl_ctx) { 1905 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1906 __func__); 1907 return 0; 1908 } 1909 1910 ep_index = xhci_get_endpoint_index(&ep->desc); 1911 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1912 /* If the HC already knows the endpoint is disabled, 1913 * or the HCD has noted it is disabled, ignore this request 1914 */ 1915 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1916 le32_to_cpu(ctrl_ctx->drop_flags) & 1917 xhci_get_endpoint_flag(&ep->desc)) { 1918 /* Do not warn when called after a usb_device_reset */ 1919 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1920 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1921 __func__, ep); 1922 return 0; 1923 } 1924 1925 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1926 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1927 1928 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1929 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1930 1931 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1932 1933 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1934 1935 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1936 (unsigned int) ep->desc.bEndpointAddress, 1937 udev->slot_id, 1938 (unsigned int) new_drop_flags, 1939 (unsigned int) new_add_flags); 1940 return 0; 1941 } 1942 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1943 1944 /* Add an endpoint to a new possible bandwidth configuration for this device. 1945 * Only one call to this function is allowed per endpoint before 1946 * check_bandwidth() or reset_bandwidth() must be called. 1947 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1948 * add the endpoint to the schedule with possibly new parameters denoted by a 1949 * different endpoint descriptor in usb_host_endpoint. 1950 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1951 * not allowed. 1952 * 1953 * The USB core will not allow URBs to be queued to an endpoint until the 1954 * configuration or alt setting is installed in the device, so there's no need 1955 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1956 */ 1957 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1958 struct usb_host_endpoint *ep) 1959 { 1960 struct xhci_hcd *xhci; 1961 struct xhci_container_ctx *in_ctx; 1962 unsigned int ep_index; 1963 struct xhci_input_control_ctx *ctrl_ctx; 1964 struct xhci_ep_ctx *ep_ctx; 1965 u32 added_ctxs; 1966 u32 new_add_flags, new_drop_flags; 1967 struct xhci_virt_device *virt_dev; 1968 int ret = 0; 1969 1970 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1971 if (ret <= 0) { 1972 /* So we won't queue a reset ep command for a root hub */ 1973 ep->hcpriv = NULL; 1974 return ret; 1975 } 1976 xhci = hcd_to_xhci(hcd); 1977 if (xhci->xhc_state & XHCI_STATE_DYING) 1978 return -ENODEV; 1979 1980 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1981 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1982 /* FIXME when we have to issue an evaluate endpoint command to 1983 * deal with ep0 max packet size changing once we get the 1984 * descriptors 1985 */ 1986 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1987 __func__, added_ctxs); 1988 return 0; 1989 } 1990 1991 virt_dev = xhci->devs[udev->slot_id]; 1992 in_ctx = virt_dev->in_ctx; 1993 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1994 if (!ctrl_ctx) { 1995 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1996 __func__); 1997 return 0; 1998 } 1999 2000 ep_index = xhci_get_endpoint_index(&ep->desc); 2001 /* If this endpoint is already in use, and the upper layers are trying 2002 * to add it again without dropping it, reject the addition. 2003 */ 2004 if (virt_dev->eps[ep_index].ring && 2005 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 2006 xhci_warn(xhci, "Trying to add endpoint 0x%x " 2007 "without dropping it.\n", 2008 (unsigned int) ep->desc.bEndpointAddress); 2009 return -EINVAL; 2010 } 2011 2012 /* If the HCD has already noted the endpoint is enabled, 2013 * ignore this request. 2014 */ 2015 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2016 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2017 __func__, ep); 2018 return 0; 2019 } 2020 2021 /* 2022 * Configuration and alternate setting changes must be done in 2023 * process context, not interrupt context (or so documenation 2024 * for usb_set_interface() and usb_set_configuration() claim). 2025 */ 2026 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2027 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2028 __func__, ep->desc.bEndpointAddress); 2029 return -ENOMEM; 2030 } 2031 2032 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2033 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2034 2035 /* If xhci_endpoint_disable() was called for this endpoint, but the 2036 * xHC hasn't been notified yet through the check_bandwidth() call, 2037 * this re-adds a new state for the endpoint from the new endpoint 2038 * descriptors. We must drop and re-add this endpoint, so we leave the 2039 * drop flags alone. 2040 */ 2041 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2042 2043 /* Store the usb_device pointer for later use */ 2044 ep->hcpriv = udev; 2045 2046 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2047 trace_xhci_add_endpoint(ep_ctx); 2048 2049 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2050 (unsigned int) ep->desc.bEndpointAddress, 2051 udev->slot_id, 2052 (unsigned int) new_drop_flags, 2053 (unsigned int) new_add_flags); 2054 return 0; 2055 } 2056 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2057 2058 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2059 { 2060 struct xhci_input_control_ctx *ctrl_ctx; 2061 struct xhci_ep_ctx *ep_ctx; 2062 struct xhci_slot_ctx *slot_ctx; 2063 int i; 2064 2065 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2066 if (!ctrl_ctx) { 2067 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2068 __func__); 2069 return; 2070 } 2071 2072 /* When a device's add flag and drop flag are zero, any subsequent 2073 * configure endpoint command will leave that endpoint's state 2074 * untouched. Make sure we don't leave any old state in the input 2075 * endpoint contexts. 2076 */ 2077 ctrl_ctx->drop_flags = 0; 2078 ctrl_ctx->add_flags = 0; 2079 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2080 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2081 /* Endpoint 0 is always valid */ 2082 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2083 for (i = 1; i < 31; i++) { 2084 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2085 ep_ctx->ep_info = 0; 2086 ep_ctx->ep_info2 = 0; 2087 ep_ctx->deq = 0; 2088 ep_ctx->tx_info = 0; 2089 } 2090 } 2091 2092 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2093 struct usb_device *udev, u32 *cmd_status) 2094 { 2095 int ret; 2096 2097 switch (*cmd_status) { 2098 case COMP_COMMAND_ABORTED: 2099 case COMP_COMMAND_RING_STOPPED: 2100 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2101 ret = -ETIME; 2102 break; 2103 case COMP_RESOURCE_ERROR: 2104 dev_warn(&udev->dev, 2105 "Not enough host controller resources for new device state.\n"); 2106 ret = -ENOMEM; 2107 /* FIXME: can we allocate more resources for the HC? */ 2108 break; 2109 case COMP_BANDWIDTH_ERROR: 2110 case COMP_SECONDARY_BANDWIDTH_ERROR: 2111 dev_warn(&udev->dev, 2112 "Not enough bandwidth for new device state.\n"); 2113 ret = -ENOSPC; 2114 /* FIXME: can we go back to the old state? */ 2115 break; 2116 case COMP_TRB_ERROR: 2117 /* the HCD set up something wrong */ 2118 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2119 "add flag = 1, " 2120 "and endpoint is not disabled.\n"); 2121 ret = -EINVAL; 2122 break; 2123 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2124 dev_warn(&udev->dev, 2125 "ERROR: Incompatible device for endpoint configure command.\n"); 2126 ret = -ENODEV; 2127 break; 2128 case COMP_SUCCESS: 2129 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2130 "Successful Endpoint Configure command"); 2131 ret = 0; 2132 break; 2133 default: 2134 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2135 *cmd_status); 2136 ret = -EINVAL; 2137 break; 2138 } 2139 return ret; 2140 } 2141 2142 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2143 struct usb_device *udev, u32 *cmd_status) 2144 { 2145 int ret; 2146 2147 switch (*cmd_status) { 2148 case COMP_COMMAND_ABORTED: 2149 case COMP_COMMAND_RING_STOPPED: 2150 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2151 ret = -ETIME; 2152 break; 2153 case COMP_PARAMETER_ERROR: 2154 dev_warn(&udev->dev, 2155 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2156 ret = -EINVAL; 2157 break; 2158 case COMP_SLOT_NOT_ENABLED_ERROR: 2159 dev_warn(&udev->dev, 2160 "WARN: slot not enabled for evaluate context command.\n"); 2161 ret = -EINVAL; 2162 break; 2163 case COMP_CONTEXT_STATE_ERROR: 2164 dev_warn(&udev->dev, 2165 "WARN: invalid context state for evaluate context command.\n"); 2166 ret = -EINVAL; 2167 break; 2168 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2169 dev_warn(&udev->dev, 2170 "ERROR: Incompatible device for evaluate context command.\n"); 2171 ret = -ENODEV; 2172 break; 2173 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2174 /* Max Exit Latency too large error */ 2175 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2176 ret = -EINVAL; 2177 break; 2178 case COMP_SUCCESS: 2179 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2180 "Successful evaluate context command"); 2181 ret = 0; 2182 break; 2183 default: 2184 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2185 *cmd_status); 2186 ret = -EINVAL; 2187 break; 2188 } 2189 return ret; 2190 } 2191 2192 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2193 struct xhci_input_control_ctx *ctrl_ctx) 2194 { 2195 u32 valid_add_flags; 2196 u32 valid_drop_flags; 2197 2198 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2199 * (bit 1). The default control endpoint is added during the Address 2200 * Device command and is never removed until the slot is disabled. 2201 */ 2202 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2203 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2204 2205 /* Use hweight32 to count the number of ones in the add flags, or 2206 * number of endpoints added. Don't count endpoints that are changed 2207 * (both added and dropped). 2208 */ 2209 return hweight32(valid_add_flags) - 2210 hweight32(valid_add_flags & valid_drop_flags); 2211 } 2212 2213 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2214 struct xhci_input_control_ctx *ctrl_ctx) 2215 { 2216 u32 valid_add_flags; 2217 u32 valid_drop_flags; 2218 2219 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2220 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2221 2222 return hweight32(valid_drop_flags) - 2223 hweight32(valid_add_flags & valid_drop_flags); 2224 } 2225 2226 /* 2227 * We need to reserve the new number of endpoints before the configure endpoint 2228 * command completes. We can't subtract the dropped endpoints from the number 2229 * of active endpoints until the command completes because we can oversubscribe 2230 * the host in this case: 2231 * 2232 * - the first configure endpoint command drops more endpoints than it adds 2233 * - a second configure endpoint command that adds more endpoints is queued 2234 * - the first configure endpoint command fails, so the config is unchanged 2235 * - the second command may succeed, even though there isn't enough resources 2236 * 2237 * Must be called with xhci->lock held. 2238 */ 2239 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2240 struct xhci_input_control_ctx *ctrl_ctx) 2241 { 2242 u32 added_eps; 2243 2244 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2245 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2246 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2247 "Not enough ep ctxs: " 2248 "%u active, need to add %u, limit is %u.", 2249 xhci->num_active_eps, added_eps, 2250 xhci->limit_active_eps); 2251 return -ENOMEM; 2252 } 2253 xhci->num_active_eps += added_eps; 2254 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2255 "Adding %u ep ctxs, %u now active.", added_eps, 2256 xhci->num_active_eps); 2257 return 0; 2258 } 2259 2260 /* 2261 * The configure endpoint was failed by the xHC for some other reason, so we 2262 * need to revert the resources that failed configuration would have used. 2263 * 2264 * Must be called with xhci->lock held. 2265 */ 2266 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2267 struct xhci_input_control_ctx *ctrl_ctx) 2268 { 2269 u32 num_failed_eps; 2270 2271 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2272 xhci->num_active_eps -= num_failed_eps; 2273 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2274 "Removing %u failed ep ctxs, %u now active.", 2275 num_failed_eps, 2276 xhci->num_active_eps); 2277 } 2278 2279 /* 2280 * Now that the command has completed, clean up the active endpoint count by 2281 * subtracting out the endpoints that were dropped (but not changed). 2282 * 2283 * Must be called with xhci->lock held. 2284 */ 2285 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2286 struct xhci_input_control_ctx *ctrl_ctx) 2287 { 2288 u32 num_dropped_eps; 2289 2290 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2291 xhci->num_active_eps -= num_dropped_eps; 2292 if (num_dropped_eps) 2293 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2294 "Removing %u dropped ep ctxs, %u now active.", 2295 num_dropped_eps, 2296 xhci->num_active_eps); 2297 } 2298 2299 static unsigned int xhci_get_block_size(struct usb_device *udev) 2300 { 2301 switch (udev->speed) { 2302 case USB_SPEED_LOW: 2303 case USB_SPEED_FULL: 2304 return FS_BLOCK; 2305 case USB_SPEED_HIGH: 2306 return HS_BLOCK; 2307 case USB_SPEED_SUPER: 2308 case USB_SPEED_SUPER_PLUS: 2309 return SS_BLOCK; 2310 case USB_SPEED_UNKNOWN: 2311 case USB_SPEED_WIRELESS: 2312 default: 2313 /* Should never happen */ 2314 return 1; 2315 } 2316 } 2317 2318 static unsigned int 2319 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2320 { 2321 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2322 return LS_OVERHEAD; 2323 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2324 return FS_OVERHEAD; 2325 return HS_OVERHEAD; 2326 } 2327 2328 /* If we are changing a LS/FS device under a HS hub, 2329 * make sure (if we are activating a new TT) that the HS bus has enough 2330 * bandwidth for this new TT. 2331 */ 2332 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2333 struct xhci_virt_device *virt_dev, 2334 int old_active_eps) 2335 { 2336 struct xhci_interval_bw_table *bw_table; 2337 struct xhci_tt_bw_info *tt_info; 2338 2339 /* Find the bandwidth table for the root port this TT is attached to. */ 2340 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2341 tt_info = virt_dev->tt_info; 2342 /* If this TT already had active endpoints, the bandwidth for this TT 2343 * has already been added. Removing all periodic endpoints (and thus 2344 * making the TT enactive) will only decrease the bandwidth used. 2345 */ 2346 if (old_active_eps) 2347 return 0; 2348 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2349 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2350 return -ENOMEM; 2351 return 0; 2352 } 2353 /* Not sure why we would have no new active endpoints... 2354 * 2355 * Maybe because of an Evaluate Context change for a hub update or a 2356 * control endpoint 0 max packet size change? 2357 * FIXME: skip the bandwidth calculation in that case. 2358 */ 2359 return 0; 2360 } 2361 2362 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2363 struct xhci_virt_device *virt_dev) 2364 { 2365 unsigned int bw_reserved; 2366 2367 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2368 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2369 return -ENOMEM; 2370 2371 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2372 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2373 return -ENOMEM; 2374 2375 return 0; 2376 } 2377 2378 /* 2379 * This algorithm is a very conservative estimate of the worst-case scheduling 2380 * scenario for any one interval. The hardware dynamically schedules the 2381 * packets, so we can't tell which microframe could be the limiting factor in 2382 * the bandwidth scheduling. This only takes into account periodic endpoints. 2383 * 2384 * Obviously, we can't solve an NP complete problem to find the minimum worst 2385 * case scenario. Instead, we come up with an estimate that is no less than 2386 * the worst case bandwidth used for any one microframe, but may be an 2387 * over-estimate. 2388 * 2389 * We walk the requirements for each endpoint by interval, starting with the 2390 * smallest interval, and place packets in the schedule where there is only one 2391 * possible way to schedule packets for that interval. In order to simplify 2392 * this algorithm, we record the largest max packet size for each interval, and 2393 * assume all packets will be that size. 2394 * 2395 * For interval 0, we obviously must schedule all packets for each interval. 2396 * The bandwidth for interval 0 is just the amount of data to be transmitted 2397 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2398 * the number of packets). 2399 * 2400 * For interval 1, we have two possible microframes to schedule those packets 2401 * in. For this algorithm, if we can schedule the same number of packets for 2402 * each possible scheduling opportunity (each microframe), we will do so. The 2403 * remaining number of packets will be saved to be transmitted in the gaps in 2404 * the next interval's scheduling sequence. 2405 * 2406 * As we move those remaining packets to be scheduled with interval 2 packets, 2407 * we have to double the number of remaining packets to transmit. This is 2408 * because the intervals are actually powers of 2, and we would be transmitting 2409 * the previous interval's packets twice in this interval. We also have to be 2410 * sure that when we look at the largest max packet size for this interval, we 2411 * also look at the largest max packet size for the remaining packets and take 2412 * the greater of the two. 2413 * 2414 * The algorithm continues to evenly distribute packets in each scheduling 2415 * opportunity, and push the remaining packets out, until we get to the last 2416 * interval. Then those packets and their associated overhead are just added 2417 * to the bandwidth used. 2418 */ 2419 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2420 struct xhci_virt_device *virt_dev, 2421 int old_active_eps) 2422 { 2423 unsigned int bw_reserved; 2424 unsigned int max_bandwidth; 2425 unsigned int bw_used; 2426 unsigned int block_size; 2427 struct xhci_interval_bw_table *bw_table; 2428 unsigned int packet_size = 0; 2429 unsigned int overhead = 0; 2430 unsigned int packets_transmitted = 0; 2431 unsigned int packets_remaining = 0; 2432 unsigned int i; 2433 2434 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2435 return xhci_check_ss_bw(xhci, virt_dev); 2436 2437 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2438 max_bandwidth = HS_BW_LIMIT; 2439 /* Convert percent of bus BW reserved to blocks reserved */ 2440 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2441 } else { 2442 max_bandwidth = FS_BW_LIMIT; 2443 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2444 } 2445 2446 bw_table = virt_dev->bw_table; 2447 /* We need to translate the max packet size and max ESIT payloads into 2448 * the units the hardware uses. 2449 */ 2450 block_size = xhci_get_block_size(virt_dev->udev); 2451 2452 /* If we are manipulating a LS/FS device under a HS hub, double check 2453 * that the HS bus has enough bandwidth if we are activing a new TT. 2454 */ 2455 if (virt_dev->tt_info) { 2456 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2457 "Recalculating BW for rootport %u", 2458 virt_dev->real_port); 2459 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2460 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2461 "newly activated TT.\n"); 2462 return -ENOMEM; 2463 } 2464 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2465 "Recalculating BW for TT slot %u port %u", 2466 virt_dev->tt_info->slot_id, 2467 virt_dev->tt_info->ttport); 2468 } else { 2469 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2470 "Recalculating BW for rootport %u", 2471 virt_dev->real_port); 2472 } 2473 2474 /* Add in how much bandwidth will be used for interval zero, or the 2475 * rounded max ESIT payload + number of packets * largest overhead. 2476 */ 2477 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2478 bw_table->interval_bw[0].num_packets * 2479 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2480 2481 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2482 unsigned int bw_added; 2483 unsigned int largest_mps; 2484 unsigned int interval_overhead; 2485 2486 /* 2487 * How many packets could we transmit in this interval? 2488 * If packets didn't fit in the previous interval, we will need 2489 * to transmit that many packets twice within this interval. 2490 */ 2491 packets_remaining = 2 * packets_remaining + 2492 bw_table->interval_bw[i].num_packets; 2493 2494 /* Find the largest max packet size of this or the previous 2495 * interval. 2496 */ 2497 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2498 largest_mps = 0; 2499 else { 2500 struct xhci_virt_ep *virt_ep; 2501 struct list_head *ep_entry; 2502 2503 ep_entry = bw_table->interval_bw[i].endpoints.next; 2504 virt_ep = list_entry(ep_entry, 2505 struct xhci_virt_ep, bw_endpoint_list); 2506 /* Convert to blocks, rounding up */ 2507 largest_mps = DIV_ROUND_UP( 2508 virt_ep->bw_info.max_packet_size, 2509 block_size); 2510 } 2511 if (largest_mps > packet_size) 2512 packet_size = largest_mps; 2513 2514 /* Use the larger overhead of this or the previous interval. */ 2515 interval_overhead = xhci_get_largest_overhead( 2516 &bw_table->interval_bw[i]); 2517 if (interval_overhead > overhead) 2518 overhead = interval_overhead; 2519 2520 /* How many packets can we evenly distribute across 2521 * (1 << (i + 1)) possible scheduling opportunities? 2522 */ 2523 packets_transmitted = packets_remaining >> (i + 1); 2524 2525 /* Add in the bandwidth used for those scheduled packets */ 2526 bw_added = packets_transmitted * (overhead + packet_size); 2527 2528 /* How many packets do we have remaining to transmit? */ 2529 packets_remaining = packets_remaining % (1 << (i + 1)); 2530 2531 /* What largest max packet size should those packets have? */ 2532 /* If we've transmitted all packets, don't carry over the 2533 * largest packet size. 2534 */ 2535 if (packets_remaining == 0) { 2536 packet_size = 0; 2537 overhead = 0; 2538 } else if (packets_transmitted > 0) { 2539 /* Otherwise if we do have remaining packets, and we've 2540 * scheduled some packets in this interval, take the 2541 * largest max packet size from endpoints with this 2542 * interval. 2543 */ 2544 packet_size = largest_mps; 2545 overhead = interval_overhead; 2546 } 2547 /* Otherwise carry over packet_size and overhead from the last 2548 * time we had a remainder. 2549 */ 2550 bw_used += bw_added; 2551 if (bw_used > max_bandwidth) { 2552 xhci_warn(xhci, "Not enough bandwidth. " 2553 "Proposed: %u, Max: %u\n", 2554 bw_used, max_bandwidth); 2555 return -ENOMEM; 2556 } 2557 } 2558 /* 2559 * Ok, we know we have some packets left over after even-handedly 2560 * scheduling interval 15. We don't know which microframes they will 2561 * fit into, so we over-schedule and say they will be scheduled every 2562 * microframe. 2563 */ 2564 if (packets_remaining > 0) 2565 bw_used += overhead + packet_size; 2566 2567 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2568 unsigned int port_index = virt_dev->real_port - 1; 2569 2570 /* OK, we're manipulating a HS device attached to a 2571 * root port bandwidth domain. Include the number of active TTs 2572 * in the bandwidth used. 2573 */ 2574 bw_used += TT_HS_OVERHEAD * 2575 xhci->rh_bw[port_index].num_active_tts; 2576 } 2577 2578 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2579 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2580 "Available: %u " "percent", 2581 bw_used, max_bandwidth, bw_reserved, 2582 (max_bandwidth - bw_used - bw_reserved) * 100 / 2583 max_bandwidth); 2584 2585 bw_used += bw_reserved; 2586 if (bw_used > max_bandwidth) { 2587 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2588 bw_used, max_bandwidth); 2589 return -ENOMEM; 2590 } 2591 2592 bw_table->bw_used = bw_used; 2593 return 0; 2594 } 2595 2596 static bool xhci_is_async_ep(unsigned int ep_type) 2597 { 2598 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2599 ep_type != ISOC_IN_EP && 2600 ep_type != INT_IN_EP); 2601 } 2602 2603 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2604 { 2605 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2606 } 2607 2608 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2609 { 2610 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2611 2612 if (ep_bw->ep_interval == 0) 2613 return SS_OVERHEAD_BURST + 2614 (ep_bw->mult * ep_bw->num_packets * 2615 (SS_OVERHEAD + mps)); 2616 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2617 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2618 1 << ep_bw->ep_interval); 2619 2620 } 2621 2622 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2623 struct xhci_bw_info *ep_bw, 2624 struct xhci_interval_bw_table *bw_table, 2625 struct usb_device *udev, 2626 struct xhci_virt_ep *virt_ep, 2627 struct xhci_tt_bw_info *tt_info) 2628 { 2629 struct xhci_interval_bw *interval_bw; 2630 int normalized_interval; 2631 2632 if (xhci_is_async_ep(ep_bw->type)) 2633 return; 2634 2635 if (udev->speed >= USB_SPEED_SUPER) { 2636 if (xhci_is_sync_in_ep(ep_bw->type)) 2637 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2638 xhci_get_ss_bw_consumed(ep_bw); 2639 else 2640 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2641 xhci_get_ss_bw_consumed(ep_bw); 2642 return; 2643 } 2644 2645 /* SuperSpeed endpoints never get added to intervals in the table, so 2646 * this check is only valid for HS/FS/LS devices. 2647 */ 2648 if (list_empty(&virt_ep->bw_endpoint_list)) 2649 return; 2650 /* For LS/FS devices, we need to translate the interval expressed in 2651 * microframes to frames. 2652 */ 2653 if (udev->speed == USB_SPEED_HIGH) 2654 normalized_interval = ep_bw->ep_interval; 2655 else 2656 normalized_interval = ep_bw->ep_interval - 3; 2657 2658 if (normalized_interval == 0) 2659 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2660 interval_bw = &bw_table->interval_bw[normalized_interval]; 2661 interval_bw->num_packets -= ep_bw->num_packets; 2662 switch (udev->speed) { 2663 case USB_SPEED_LOW: 2664 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2665 break; 2666 case USB_SPEED_FULL: 2667 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2668 break; 2669 case USB_SPEED_HIGH: 2670 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2671 break; 2672 case USB_SPEED_SUPER: 2673 case USB_SPEED_SUPER_PLUS: 2674 case USB_SPEED_UNKNOWN: 2675 case USB_SPEED_WIRELESS: 2676 /* Should never happen because only LS/FS/HS endpoints will get 2677 * added to the endpoint list. 2678 */ 2679 return; 2680 } 2681 if (tt_info) 2682 tt_info->active_eps -= 1; 2683 list_del_init(&virt_ep->bw_endpoint_list); 2684 } 2685 2686 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2687 struct xhci_bw_info *ep_bw, 2688 struct xhci_interval_bw_table *bw_table, 2689 struct usb_device *udev, 2690 struct xhci_virt_ep *virt_ep, 2691 struct xhci_tt_bw_info *tt_info) 2692 { 2693 struct xhci_interval_bw *interval_bw; 2694 struct xhci_virt_ep *smaller_ep; 2695 int normalized_interval; 2696 2697 if (xhci_is_async_ep(ep_bw->type)) 2698 return; 2699 2700 if (udev->speed == USB_SPEED_SUPER) { 2701 if (xhci_is_sync_in_ep(ep_bw->type)) 2702 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2703 xhci_get_ss_bw_consumed(ep_bw); 2704 else 2705 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2706 xhci_get_ss_bw_consumed(ep_bw); 2707 return; 2708 } 2709 2710 /* For LS/FS devices, we need to translate the interval expressed in 2711 * microframes to frames. 2712 */ 2713 if (udev->speed == USB_SPEED_HIGH) 2714 normalized_interval = ep_bw->ep_interval; 2715 else 2716 normalized_interval = ep_bw->ep_interval - 3; 2717 2718 if (normalized_interval == 0) 2719 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2720 interval_bw = &bw_table->interval_bw[normalized_interval]; 2721 interval_bw->num_packets += ep_bw->num_packets; 2722 switch (udev->speed) { 2723 case USB_SPEED_LOW: 2724 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2725 break; 2726 case USB_SPEED_FULL: 2727 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2728 break; 2729 case USB_SPEED_HIGH: 2730 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2731 break; 2732 case USB_SPEED_SUPER: 2733 case USB_SPEED_SUPER_PLUS: 2734 case USB_SPEED_UNKNOWN: 2735 case USB_SPEED_WIRELESS: 2736 /* Should never happen because only LS/FS/HS endpoints will get 2737 * added to the endpoint list. 2738 */ 2739 return; 2740 } 2741 2742 if (tt_info) 2743 tt_info->active_eps += 1; 2744 /* Insert the endpoint into the list, largest max packet size first. */ 2745 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2746 bw_endpoint_list) { 2747 if (ep_bw->max_packet_size >= 2748 smaller_ep->bw_info.max_packet_size) { 2749 /* Add the new ep before the smaller endpoint */ 2750 list_add_tail(&virt_ep->bw_endpoint_list, 2751 &smaller_ep->bw_endpoint_list); 2752 return; 2753 } 2754 } 2755 /* Add the new endpoint at the end of the list. */ 2756 list_add_tail(&virt_ep->bw_endpoint_list, 2757 &interval_bw->endpoints); 2758 } 2759 2760 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2761 struct xhci_virt_device *virt_dev, 2762 int old_active_eps) 2763 { 2764 struct xhci_root_port_bw_info *rh_bw_info; 2765 if (!virt_dev->tt_info) 2766 return; 2767 2768 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2769 if (old_active_eps == 0 && 2770 virt_dev->tt_info->active_eps != 0) { 2771 rh_bw_info->num_active_tts += 1; 2772 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2773 } else if (old_active_eps != 0 && 2774 virt_dev->tt_info->active_eps == 0) { 2775 rh_bw_info->num_active_tts -= 1; 2776 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2777 } 2778 } 2779 2780 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2781 struct xhci_virt_device *virt_dev, 2782 struct xhci_container_ctx *in_ctx) 2783 { 2784 struct xhci_bw_info ep_bw_info[31]; 2785 int i; 2786 struct xhci_input_control_ctx *ctrl_ctx; 2787 int old_active_eps = 0; 2788 2789 if (virt_dev->tt_info) 2790 old_active_eps = virt_dev->tt_info->active_eps; 2791 2792 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2793 if (!ctrl_ctx) { 2794 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2795 __func__); 2796 return -ENOMEM; 2797 } 2798 2799 for (i = 0; i < 31; i++) { 2800 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2801 continue; 2802 2803 /* Make a copy of the BW info in case we need to revert this */ 2804 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2805 sizeof(ep_bw_info[i])); 2806 /* Drop the endpoint from the interval table if the endpoint is 2807 * being dropped or changed. 2808 */ 2809 if (EP_IS_DROPPED(ctrl_ctx, i)) 2810 xhci_drop_ep_from_interval_table(xhci, 2811 &virt_dev->eps[i].bw_info, 2812 virt_dev->bw_table, 2813 virt_dev->udev, 2814 &virt_dev->eps[i], 2815 virt_dev->tt_info); 2816 } 2817 /* Overwrite the information stored in the endpoints' bw_info */ 2818 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2819 for (i = 0; i < 31; i++) { 2820 /* Add any changed or added endpoints to the interval table */ 2821 if (EP_IS_ADDED(ctrl_ctx, i)) 2822 xhci_add_ep_to_interval_table(xhci, 2823 &virt_dev->eps[i].bw_info, 2824 virt_dev->bw_table, 2825 virt_dev->udev, 2826 &virt_dev->eps[i], 2827 virt_dev->tt_info); 2828 } 2829 2830 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2831 /* Ok, this fits in the bandwidth we have. 2832 * Update the number of active TTs. 2833 */ 2834 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2835 return 0; 2836 } 2837 2838 /* We don't have enough bandwidth for this, revert the stored info. */ 2839 for (i = 0; i < 31; i++) { 2840 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2841 continue; 2842 2843 /* Drop the new copies of any added or changed endpoints from 2844 * the interval table. 2845 */ 2846 if (EP_IS_ADDED(ctrl_ctx, i)) { 2847 xhci_drop_ep_from_interval_table(xhci, 2848 &virt_dev->eps[i].bw_info, 2849 virt_dev->bw_table, 2850 virt_dev->udev, 2851 &virt_dev->eps[i], 2852 virt_dev->tt_info); 2853 } 2854 /* Revert the endpoint back to its old information */ 2855 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2856 sizeof(ep_bw_info[i])); 2857 /* Add any changed or dropped endpoints back into the table */ 2858 if (EP_IS_DROPPED(ctrl_ctx, i)) 2859 xhci_add_ep_to_interval_table(xhci, 2860 &virt_dev->eps[i].bw_info, 2861 virt_dev->bw_table, 2862 virt_dev->udev, 2863 &virt_dev->eps[i], 2864 virt_dev->tt_info); 2865 } 2866 return -ENOMEM; 2867 } 2868 2869 2870 /* Issue a configure endpoint command or evaluate context command 2871 * and wait for it to finish. 2872 */ 2873 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2874 struct usb_device *udev, 2875 struct xhci_command *command, 2876 bool ctx_change, bool must_succeed) 2877 { 2878 int ret; 2879 unsigned long flags; 2880 struct xhci_input_control_ctx *ctrl_ctx; 2881 struct xhci_virt_device *virt_dev; 2882 struct xhci_slot_ctx *slot_ctx; 2883 2884 if (!command) 2885 return -EINVAL; 2886 2887 spin_lock_irqsave(&xhci->lock, flags); 2888 2889 if (xhci->xhc_state & XHCI_STATE_DYING) { 2890 spin_unlock_irqrestore(&xhci->lock, flags); 2891 return -ESHUTDOWN; 2892 } 2893 2894 virt_dev = xhci->devs[udev->slot_id]; 2895 2896 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2897 if (!ctrl_ctx) { 2898 spin_unlock_irqrestore(&xhci->lock, flags); 2899 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2900 __func__); 2901 return -ENOMEM; 2902 } 2903 2904 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2905 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2906 spin_unlock_irqrestore(&xhci->lock, flags); 2907 xhci_warn(xhci, "Not enough host resources, " 2908 "active endpoint contexts = %u\n", 2909 xhci->num_active_eps); 2910 return -ENOMEM; 2911 } 2912 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2913 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2914 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2915 xhci_free_host_resources(xhci, ctrl_ctx); 2916 spin_unlock_irqrestore(&xhci->lock, flags); 2917 xhci_warn(xhci, "Not enough bandwidth\n"); 2918 return -ENOMEM; 2919 } 2920 2921 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2922 2923 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2924 trace_xhci_configure_endpoint(slot_ctx); 2925 2926 if (!ctx_change) 2927 ret = xhci_queue_configure_endpoint(xhci, command, 2928 command->in_ctx->dma, 2929 udev->slot_id, must_succeed); 2930 else 2931 ret = xhci_queue_evaluate_context(xhci, command, 2932 command->in_ctx->dma, 2933 udev->slot_id, must_succeed); 2934 if (ret < 0) { 2935 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2936 xhci_free_host_resources(xhci, ctrl_ctx); 2937 spin_unlock_irqrestore(&xhci->lock, flags); 2938 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2939 "FIXME allocate a new ring segment"); 2940 return -ENOMEM; 2941 } 2942 xhci_ring_cmd_db(xhci); 2943 spin_unlock_irqrestore(&xhci->lock, flags); 2944 2945 /* Wait for the configure endpoint command to complete */ 2946 wait_for_completion(command->completion); 2947 2948 if (!ctx_change) 2949 ret = xhci_configure_endpoint_result(xhci, udev, 2950 &command->status); 2951 else 2952 ret = xhci_evaluate_context_result(xhci, udev, 2953 &command->status); 2954 2955 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2956 spin_lock_irqsave(&xhci->lock, flags); 2957 /* If the command failed, remove the reserved resources. 2958 * Otherwise, clean up the estimate to include dropped eps. 2959 */ 2960 if (ret) 2961 xhci_free_host_resources(xhci, ctrl_ctx); 2962 else 2963 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2964 spin_unlock_irqrestore(&xhci->lock, flags); 2965 } 2966 return ret; 2967 } 2968 2969 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2970 struct xhci_virt_device *vdev, int i) 2971 { 2972 struct xhci_virt_ep *ep = &vdev->eps[i]; 2973 2974 if (ep->ep_state & EP_HAS_STREAMS) { 2975 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2976 xhci_get_endpoint_address(i)); 2977 xhci_free_stream_info(xhci, ep->stream_info); 2978 ep->stream_info = NULL; 2979 ep->ep_state &= ~EP_HAS_STREAMS; 2980 } 2981 } 2982 2983 /* Called after one or more calls to xhci_add_endpoint() or 2984 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2985 * to call xhci_reset_bandwidth(). 2986 * 2987 * Since we are in the middle of changing either configuration or 2988 * installing a new alt setting, the USB core won't allow URBs to be 2989 * enqueued for any endpoint on the old config or interface. Nothing 2990 * else should be touching the xhci->devs[slot_id] structure, so we 2991 * don't need to take the xhci->lock for manipulating that. 2992 */ 2993 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2994 { 2995 int i; 2996 int ret = 0; 2997 struct xhci_hcd *xhci; 2998 struct xhci_virt_device *virt_dev; 2999 struct xhci_input_control_ctx *ctrl_ctx; 3000 struct xhci_slot_ctx *slot_ctx; 3001 struct xhci_command *command; 3002 3003 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3004 if (ret <= 0) 3005 return ret; 3006 xhci = hcd_to_xhci(hcd); 3007 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3008 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3009 return -ENODEV; 3010 3011 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3012 virt_dev = xhci->devs[udev->slot_id]; 3013 3014 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3015 if (!command) 3016 return -ENOMEM; 3017 3018 command->in_ctx = virt_dev->in_ctx; 3019 3020 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3021 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3022 if (!ctrl_ctx) { 3023 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3024 __func__); 3025 ret = -ENOMEM; 3026 goto command_cleanup; 3027 } 3028 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3029 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3030 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3031 3032 /* Don't issue the command if there's no endpoints to update. */ 3033 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3034 ctrl_ctx->drop_flags == 0) { 3035 ret = 0; 3036 goto command_cleanup; 3037 } 3038 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3039 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3040 for (i = 31; i >= 1; i--) { 3041 __le32 le32 = cpu_to_le32(BIT(i)); 3042 3043 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3044 || (ctrl_ctx->add_flags & le32) || i == 1) { 3045 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3046 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3047 break; 3048 } 3049 } 3050 3051 ret = xhci_configure_endpoint(xhci, udev, command, 3052 false, false); 3053 if (ret) 3054 /* Callee should call reset_bandwidth() */ 3055 goto command_cleanup; 3056 3057 /* Free any rings that were dropped, but not changed. */ 3058 for (i = 1; i < 31; i++) { 3059 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3060 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3061 xhci_free_endpoint_ring(xhci, virt_dev, i); 3062 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3063 } 3064 } 3065 xhci_zero_in_ctx(xhci, virt_dev); 3066 /* 3067 * Install any rings for completely new endpoints or changed endpoints, 3068 * and free any old rings from changed endpoints. 3069 */ 3070 for (i = 1; i < 31; i++) { 3071 if (!virt_dev->eps[i].new_ring) 3072 continue; 3073 /* Only free the old ring if it exists. 3074 * It may not if this is the first add of an endpoint. 3075 */ 3076 if (virt_dev->eps[i].ring) { 3077 xhci_free_endpoint_ring(xhci, virt_dev, i); 3078 } 3079 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3080 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3081 virt_dev->eps[i].new_ring = NULL; 3082 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3083 } 3084 command_cleanup: 3085 kfree(command->completion); 3086 kfree(command); 3087 3088 return ret; 3089 } 3090 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3091 3092 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3093 { 3094 struct xhci_hcd *xhci; 3095 struct xhci_virt_device *virt_dev; 3096 int i, ret; 3097 3098 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3099 if (ret <= 0) 3100 return; 3101 xhci = hcd_to_xhci(hcd); 3102 3103 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3104 virt_dev = xhci->devs[udev->slot_id]; 3105 /* Free any rings allocated for added endpoints */ 3106 for (i = 0; i < 31; i++) { 3107 if (virt_dev->eps[i].new_ring) { 3108 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3109 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3110 virt_dev->eps[i].new_ring = NULL; 3111 } 3112 } 3113 xhci_zero_in_ctx(xhci, virt_dev); 3114 } 3115 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3116 3117 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3118 struct xhci_container_ctx *in_ctx, 3119 struct xhci_container_ctx *out_ctx, 3120 struct xhci_input_control_ctx *ctrl_ctx, 3121 u32 add_flags, u32 drop_flags) 3122 { 3123 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3124 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3125 xhci_slot_copy(xhci, in_ctx, out_ctx); 3126 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3127 } 3128 3129 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3130 struct usb_host_endpoint *host_ep) 3131 { 3132 struct xhci_hcd *xhci; 3133 struct xhci_virt_device *vdev; 3134 struct xhci_virt_ep *ep; 3135 struct usb_device *udev; 3136 unsigned long flags; 3137 unsigned int ep_index; 3138 3139 xhci = hcd_to_xhci(hcd); 3140 rescan: 3141 spin_lock_irqsave(&xhci->lock, flags); 3142 3143 udev = (struct usb_device *)host_ep->hcpriv; 3144 if (!udev || !udev->slot_id) 3145 goto done; 3146 3147 vdev = xhci->devs[udev->slot_id]; 3148 if (!vdev) 3149 goto done; 3150 3151 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3152 ep = &vdev->eps[ep_index]; 3153 if (!ep) 3154 goto done; 3155 3156 /* wait for hub_tt_work to finish clearing hub TT */ 3157 if (ep->ep_state & EP_CLEARING_TT) { 3158 spin_unlock_irqrestore(&xhci->lock, flags); 3159 schedule_timeout_uninterruptible(1); 3160 goto rescan; 3161 } 3162 3163 if (ep->ep_state) 3164 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3165 ep->ep_state); 3166 done: 3167 host_ep->hcpriv = NULL; 3168 spin_unlock_irqrestore(&xhci->lock, flags); 3169 } 3170 3171 /* 3172 * Called after usb core issues a clear halt control message. 3173 * The host side of the halt should already be cleared by a reset endpoint 3174 * command issued when the STALL event was received. 3175 * 3176 * The reset endpoint command may only be issued to endpoints in the halted 3177 * state. For software that wishes to reset the data toggle or sequence number 3178 * of an endpoint that isn't in the halted state this function will issue a 3179 * configure endpoint command with the Drop and Add bits set for the target 3180 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3181 */ 3182 3183 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3184 struct usb_host_endpoint *host_ep) 3185 { 3186 struct xhci_hcd *xhci; 3187 struct usb_device *udev; 3188 struct xhci_virt_device *vdev; 3189 struct xhci_virt_ep *ep; 3190 struct xhci_input_control_ctx *ctrl_ctx; 3191 struct xhci_command *stop_cmd, *cfg_cmd; 3192 unsigned int ep_index; 3193 unsigned long flags; 3194 u32 ep_flag; 3195 int err; 3196 3197 xhci = hcd_to_xhci(hcd); 3198 if (!host_ep->hcpriv) 3199 return; 3200 udev = (struct usb_device *) host_ep->hcpriv; 3201 vdev = xhci->devs[udev->slot_id]; 3202 3203 /* 3204 * vdev may be lost due to xHC restore error and re-initialization 3205 * during S3/S4 resume. A new vdev will be allocated later by 3206 * xhci_discover_or_reset_device() 3207 */ 3208 if (!udev->slot_id || !vdev) 3209 return; 3210 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3211 ep = &vdev->eps[ep_index]; 3212 if (!ep) 3213 return; 3214 3215 /* Bail out if toggle is already being cleared by a endpoint reset */ 3216 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3217 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3218 return; 3219 } 3220 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3221 if (usb_endpoint_xfer_control(&host_ep->desc) || 3222 usb_endpoint_xfer_isoc(&host_ep->desc)) 3223 return; 3224 3225 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3226 3227 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3228 return; 3229 3230 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3231 if (!stop_cmd) 3232 return; 3233 3234 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3235 if (!cfg_cmd) 3236 goto cleanup; 3237 3238 spin_lock_irqsave(&xhci->lock, flags); 3239 3240 /* block queuing new trbs and ringing ep doorbell */ 3241 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3242 3243 /* 3244 * Make sure endpoint ring is empty before resetting the toggle/seq. 3245 * Driver is required to synchronously cancel all transfer request. 3246 * Stop the endpoint to force xHC to update the output context 3247 */ 3248 3249 if (!list_empty(&ep->ring->td_list)) { 3250 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3251 spin_unlock_irqrestore(&xhci->lock, flags); 3252 xhci_free_command(xhci, cfg_cmd); 3253 goto cleanup; 3254 } 3255 3256 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3257 ep_index, 0); 3258 if (err < 0) { 3259 spin_unlock_irqrestore(&xhci->lock, flags); 3260 xhci_free_command(xhci, cfg_cmd); 3261 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3262 __func__, err); 3263 goto cleanup; 3264 } 3265 3266 xhci_ring_cmd_db(xhci); 3267 spin_unlock_irqrestore(&xhci->lock, flags); 3268 3269 wait_for_completion(stop_cmd->completion); 3270 3271 spin_lock_irqsave(&xhci->lock, flags); 3272 3273 /* config ep command clears toggle if add and drop ep flags are set */ 3274 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3275 if (!ctrl_ctx) { 3276 spin_unlock_irqrestore(&xhci->lock, flags); 3277 xhci_free_command(xhci, cfg_cmd); 3278 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3279 __func__); 3280 goto cleanup; 3281 } 3282 3283 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3284 ctrl_ctx, ep_flag, ep_flag); 3285 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3286 3287 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3288 udev->slot_id, false); 3289 if (err < 0) { 3290 spin_unlock_irqrestore(&xhci->lock, flags); 3291 xhci_free_command(xhci, cfg_cmd); 3292 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3293 __func__, err); 3294 goto cleanup; 3295 } 3296 3297 xhci_ring_cmd_db(xhci); 3298 spin_unlock_irqrestore(&xhci->lock, flags); 3299 3300 wait_for_completion(cfg_cmd->completion); 3301 3302 xhci_free_command(xhci, cfg_cmd); 3303 cleanup: 3304 xhci_free_command(xhci, stop_cmd); 3305 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3306 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3307 } 3308 3309 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3310 struct usb_device *udev, struct usb_host_endpoint *ep, 3311 unsigned int slot_id) 3312 { 3313 int ret; 3314 unsigned int ep_index; 3315 unsigned int ep_state; 3316 3317 if (!ep) 3318 return -EINVAL; 3319 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3320 if (ret <= 0) 3321 return -EINVAL; 3322 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3323 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3324 " descriptor for ep 0x%x does not support streams\n", 3325 ep->desc.bEndpointAddress); 3326 return -EINVAL; 3327 } 3328 3329 ep_index = xhci_get_endpoint_index(&ep->desc); 3330 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3331 if (ep_state & EP_HAS_STREAMS || 3332 ep_state & EP_GETTING_STREAMS) { 3333 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3334 "already has streams set up.\n", 3335 ep->desc.bEndpointAddress); 3336 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3337 "dynamic stream context array reallocation.\n"); 3338 return -EINVAL; 3339 } 3340 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3341 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3342 "endpoint 0x%x; URBs are pending.\n", 3343 ep->desc.bEndpointAddress); 3344 return -EINVAL; 3345 } 3346 return 0; 3347 } 3348 3349 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3350 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3351 { 3352 unsigned int max_streams; 3353 3354 /* The stream context array size must be a power of two */ 3355 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3356 /* 3357 * Find out how many primary stream array entries the host controller 3358 * supports. Later we may use secondary stream arrays (similar to 2nd 3359 * level page entries), but that's an optional feature for xHCI host 3360 * controllers. xHCs must support at least 4 stream IDs. 3361 */ 3362 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3363 if (*num_stream_ctxs > max_streams) { 3364 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3365 max_streams); 3366 *num_stream_ctxs = max_streams; 3367 *num_streams = max_streams; 3368 } 3369 } 3370 3371 /* Returns an error code if one of the endpoint already has streams. 3372 * This does not change any data structures, it only checks and gathers 3373 * information. 3374 */ 3375 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3376 struct usb_device *udev, 3377 struct usb_host_endpoint **eps, unsigned int num_eps, 3378 unsigned int *num_streams, u32 *changed_ep_bitmask) 3379 { 3380 unsigned int max_streams; 3381 unsigned int endpoint_flag; 3382 int i; 3383 int ret; 3384 3385 for (i = 0; i < num_eps; i++) { 3386 ret = xhci_check_streams_endpoint(xhci, udev, 3387 eps[i], udev->slot_id); 3388 if (ret < 0) 3389 return ret; 3390 3391 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3392 if (max_streams < (*num_streams - 1)) { 3393 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3394 eps[i]->desc.bEndpointAddress, 3395 max_streams); 3396 *num_streams = max_streams+1; 3397 } 3398 3399 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3400 if (*changed_ep_bitmask & endpoint_flag) 3401 return -EINVAL; 3402 *changed_ep_bitmask |= endpoint_flag; 3403 } 3404 return 0; 3405 } 3406 3407 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3408 struct usb_device *udev, 3409 struct usb_host_endpoint **eps, unsigned int num_eps) 3410 { 3411 u32 changed_ep_bitmask = 0; 3412 unsigned int slot_id; 3413 unsigned int ep_index; 3414 unsigned int ep_state; 3415 int i; 3416 3417 slot_id = udev->slot_id; 3418 if (!xhci->devs[slot_id]) 3419 return 0; 3420 3421 for (i = 0; i < num_eps; i++) { 3422 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3423 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3424 /* Are streams already being freed for the endpoint? */ 3425 if (ep_state & EP_GETTING_NO_STREAMS) { 3426 xhci_warn(xhci, "WARN Can't disable streams for " 3427 "endpoint 0x%x, " 3428 "streams are being disabled already\n", 3429 eps[i]->desc.bEndpointAddress); 3430 return 0; 3431 } 3432 /* Are there actually any streams to free? */ 3433 if (!(ep_state & EP_HAS_STREAMS) && 3434 !(ep_state & EP_GETTING_STREAMS)) { 3435 xhci_warn(xhci, "WARN Can't disable streams for " 3436 "endpoint 0x%x, " 3437 "streams are already disabled!\n", 3438 eps[i]->desc.bEndpointAddress); 3439 xhci_warn(xhci, "WARN xhci_free_streams() called " 3440 "with non-streams endpoint\n"); 3441 return 0; 3442 } 3443 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3444 } 3445 return changed_ep_bitmask; 3446 } 3447 3448 /* 3449 * The USB device drivers use this function (through the HCD interface in USB 3450 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3451 * coordinate mass storage command queueing across multiple endpoints (basically 3452 * a stream ID == a task ID). 3453 * 3454 * Setting up streams involves allocating the same size stream context array 3455 * for each endpoint and issuing a configure endpoint command for all endpoints. 3456 * 3457 * Don't allow the call to succeed if one endpoint only supports one stream 3458 * (which means it doesn't support streams at all). 3459 * 3460 * Drivers may get less stream IDs than they asked for, if the host controller 3461 * hardware or endpoints claim they can't support the number of requested 3462 * stream IDs. 3463 */ 3464 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3465 struct usb_host_endpoint **eps, unsigned int num_eps, 3466 unsigned int num_streams, gfp_t mem_flags) 3467 { 3468 int i, ret; 3469 struct xhci_hcd *xhci; 3470 struct xhci_virt_device *vdev; 3471 struct xhci_command *config_cmd; 3472 struct xhci_input_control_ctx *ctrl_ctx; 3473 unsigned int ep_index; 3474 unsigned int num_stream_ctxs; 3475 unsigned int max_packet; 3476 unsigned long flags; 3477 u32 changed_ep_bitmask = 0; 3478 3479 if (!eps) 3480 return -EINVAL; 3481 3482 /* Add one to the number of streams requested to account for 3483 * stream 0 that is reserved for xHCI usage. 3484 */ 3485 num_streams += 1; 3486 xhci = hcd_to_xhci(hcd); 3487 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3488 num_streams); 3489 3490 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3491 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3492 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3493 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3494 return -ENOSYS; 3495 } 3496 3497 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3498 if (!config_cmd) 3499 return -ENOMEM; 3500 3501 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3502 if (!ctrl_ctx) { 3503 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3504 __func__); 3505 xhci_free_command(xhci, config_cmd); 3506 return -ENOMEM; 3507 } 3508 3509 /* Check to make sure all endpoints are not already configured for 3510 * streams. While we're at it, find the maximum number of streams that 3511 * all the endpoints will support and check for duplicate endpoints. 3512 */ 3513 spin_lock_irqsave(&xhci->lock, flags); 3514 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3515 num_eps, &num_streams, &changed_ep_bitmask); 3516 if (ret < 0) { 3517 xhci_free_command(xhci, config_cmd); 3518 spin_unlock_irqrestore(&xhci->lock, flags); 3519 return ret; 3520 } 3521 if (num_streams <= 1) { 3522 xhci_warn(xhci, "WARN: endpoints can't handle " 3523 "more than one stream.\n"); 3524 xhci_free_command(xhci, config_cmd); 3525 spin_unlock_irqrestore(&xhci->lock, flags); 3526 return -EINVAL; 3527 } 3528 vdev = xhci->devs[udev->slot_id]; 3529 /* Mark each endpoint as being in transition, so 3530 * xhci_urb_enqueue() will reject all URBs. 3531 */ 3532 for (i = 0; i < num_eps; i++) { 3533 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3534 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3535 } 3536 spin_unlock_irqrestore(&xhci->lock, flags); 3537 3538 /* Setup internal data structures and allocate HW data structures for 3539 * streams (but don't install the HW structures in the input context 3540 * until we're sure all memory allocation succeeded). 3541 */ 3542 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3543 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3544 num_stream_ctxs, num_streams); 3545 3546 for (i = 0; i < num_eps; i++) { 3547 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3548 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3549 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3550 num_stream_ctxs, 3551 num_streams, 3552 max_packet, mem_flags); 3553 if (!vdev->eps[ep_index].stream_info) 3554 goto cleanup; 3555 /* Set maxPstreams in endpoint context and update deq ptr to 3556 * point to stream context array. FIXME 3557 */ 3558 } 3559 3560 /* Set up the input context for a configure endpoint command. */ 3561 for (i = 0; i < num_eps; i++) { 3562 struct xhci_ep_ctx *ep_ctx; 3563 3564 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3565 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3566 3567 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3568 vdev->out_ctx, ep_index); 3569 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3570 vdev->eps[ep_index].stream_info); 3571 } 3572 /* Tell the HW to drop its old copy of the endpoint context info 3573 * and add the updated copy from the input context. 3574 */ 3575 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3576 vdev->out_ctx, ctrl_ctx, 3577 changed_ep_bitmask, changed_ep_bitmask); 3578 3579 /* Issue and wait for the configure endpoint command */ 3580 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3581 false, false); 3582 3583 /* xHC rejected the configure endpoint command for some reason, so we 3584 * leave the old ring intact and free our internal streams data 3585 * structure. 3586 */ 3587 if (ret < 0) 3588 goto cleanup; 3589 3590 spin_lock_irqsave(&xhci->lock, flags); 3591 for (i = 0; i < num_eps; i++) { 3592 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3593 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3594 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3595 udev->slot_id, ep_index); 3596 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3597 } 3598 xhci_free_command(xhci, config_cmd); 3599 spin_unlock_irqrestore(&xhci->lock, flags); 3600 3601 for (i = 0; i < num_eps; i++) { 3602 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3603 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3604 } 3605 /* Subtract 1 for stream 0, which drivers can't use */ 3606 return num_streams - 1; 3607 3608 cleanup: 3609 /* If it didn't work, free the streams! */ 3610 for (i = 0; i < num_eps; i++) { 3611 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3612 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3613 vdev->eps[ep_index].stream_info = NULL; 3614 /* FIXME Unset maxPstreams in endpoint context and 3615 * update deq ptr to point to normal string ring. 3616 */ 3617 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3618 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3619 xhci_endpoint_zero(xhci, vdev, eps[i]); 3620 } 3621 xhci_free_command(xhci, config_cmd); 3622 return -ENOMEM; 3623 } 3624 3625 /* Transition the endpoint from using streams to being a "normal" endpoint 3626 * without streams. 3627 * 3628 * Modify the endpoint context state, submit a configure endpoint command, 3629 * and free all endpoint rings for streams if that completes successfully. 3630 */ 3631 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3632 struct usb_host_endpoint **eps, unsigned int num_eps, 3633 gfp_t mem_flags) 3634 { 3635 int i, ret; 3636 struct xhci_hcd *xhci; 3637 struct xhci_virt_device *vdev; 3638 struct xhci_command *command; 3639 struct xhci_input_control_ctx *ctrl_ctx; 3640 unsigned int ep_index; 3641 unsigned long flags; 3642 u32 changed_ep_bitmask; 3643 3644 xhci = hcd_to_xhci(hcd); 3645 vdev = xhci->devs[udev->slot_id]; 3646 3647 /* Set up a configure endpoint command to remove the streams rings */ 3648 spin_lock_irqsave(&xhci->lock, flags); 3649 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3650 udev, eps, num_eps); 3651 if (changed_ep_bitmask == 0) { 3652 spin_unlock_irqrestore(&xhci->lock, flags); 3653 return -EINVAL; 3654 } 3655 3656 /* Use the xhci_command structure from the first endpoint. We may have 3657 * allocated too many, but the driver may call xhci_free_streams() for 3658 * each endpoint it grouped into one call to xhci_alloc_streams(). 3659 */ 3660 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3661 command = vdev->eps[ep_index].stream_info->free_streams_command; 3662 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3663 if (!ctrl_ctx) { 3664 spin_unlock_irqrestore(&xhci->lock, flags); 3665 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3666 __func__); 3667 return -EINVAL; 3668 } 3669 3670 for (i = 0; i < num_eps; i++) { 3671 struct xhci_ep_ctx *ep_ctx; 3672 3673 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3674 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3675 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3676 EP_GETTING_NO_STREAMS; 3677 3678 xhci_endpoint_copy(xhci, command->in_ctx, 3679 vdev->out_ctx, ep_index); 3680 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3681 &vdev->eps[ep_index]); 3682 } 3683 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3684 vdev->out_ctx, ctrl_ctx, 3685 changed_ep_bitmask, changed_ep_bitmask); 3686 spin_unlock_irqrestore(&xhci->lock, flags); 3687 3688 /* Issue and wait for the configure endpoint command, 3689 * which must succeed. 3690 */ 3691 ret = xhci_configure_endpoint(xhci, udev, command, 3692 false, true); 3693 3694 /* xHC rejected the configure endpoint command for some reason, so we 3695 * leave the streams rings intact. 3696 */ 3697 if (ret < 0) 3698 return ret; 3699 3700 spin_lock_irqsave(&xhci->lock, flags); 3701 for (i = 0; i < num_eps; i++) { 3702 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3703 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3704 vdev->eps[ep_index].stream_info = NULL; 3705 /* FIXME Unset maxPstreams in endpoint context and 3706 * update deq ptr to point to normal string ring. 3707 */ 3708 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3709 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3710 } 3711 spin_unlock_irqrestore(&xhci->lock, flags); 3712 3713 return 0; 3714 } 3715 3716 /* 3717 * Deletes endpoint resources for endpoints that were active before a Reset 3718 * Device command, or a Disable Slot command. The Reset Device command leaves 3719 * the control endpoint intact, whereas the Disable Slot command deletes it. 3720 * 3721 * Must be called with xhci->lock held. 3722 */ 3723 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3724 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3725 { 3726 int i; 3727 unsigned int num_dropped_eps = 0; 3728 unsigned int drop_flags = 0; 3729 3730 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3731 if (virt_dev->eps[i].ring) { 3732 drop_flags |= 1 << i; 3733 num_dropped_eps++; 3734 } 3735 } 3736 xhci->num_active_eps -= num_dropped_eps; 3737 if (num_dropped_eps) 3738 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3739 "Dropped %u ep ctxs, flags = 0x%x, " 3740 "%u now active.", 3741 num_dropped_eps, drop_flags, 3742 xhci->num_active_eps); 3743 } 3744 3745 /* 3746 * This submits a Reset Device Command, which will set the device state to 0, 3747 * set the device address to 0, and disable all the endpoints except the default 3748 * control endpoint. The USB core should come back and call 3749 * xhci_address_device(), and then re-set up the configuration. If this is 3750 * called because of a usb_reset_and_verify_device(), then the old alternate 3751 * settings will be re-installed through the normal bandwidth allocation 3752 * functions. 3753 * 3754 * Wait for the Reset Device command to finish. Remove all structures 3755 * associated with the endpoints that were disabled. Clear the input device 3756 * structure? Reset the control endpoint 0 max packet size? 3757 * 3758 * If the virt_dev to be reset does not exist or does not match the udev, 3759 * it means the device is lost, possibly due to the xHC restore error and 3760 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3761 * re-allocate the device. 3762 */ 3763 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3764 struct usb_device *udev) 3765 { 3766 int ret, i; 3767 unsigned long flags; 3768 struct xhci_hcd *xhci; 3769 unsigned int slot_id; 3770 struct xhci_virt_device *virt_dev; 3771 struct xhci_command *reset_device_cmd; 3772 struct xhci_slot_ctx *slot_ctx; 3773 int old_active_eps = 0; 3774 3775 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3776 if (ret <= 0) 3777 return ret; 3778 xhci = hcd_to_xhci(hcd); 3779 slot_id = udev->slot_id; 3780 virt_dev = xhci->devs[slot_id]; 3781 if (!virt_dev) { 3782 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3783 "not exist. Re-allocate the device\n", slot_id); 3784 ret = xhci_alloc_dev(hcd, udev); 3785 if (ret == 1) 3786 return 0; 3787 else 3788 return -EINVAL; 3789 } 3790 3791 if (virt_dev->tt_info) 3792 old_active_eps = virt_dev->tt_info->active_eps; 3793 3794 if (virt_dev->udev != udev) { 3795 /* If the virt_dev and the udev does not match, this virt_dev 3796 * may belong to another udev. 3797 * Re-allocate the device. 3798 */ 3799 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3800 "not match the udev. Re-allocate the device\n", 3801 slot_id); 3802 ret = xhci_alloc_dev(hcd, udev); 3803 if (ret == 1) 3804 return 0; 3805 else 3806 return -EINVAL; 3807 } 3808 3809 /* If device is not setup, there is no point in resetting it */ 3810 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3811 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3812 SLOT_STATE_DISABLED) 3813 return 0; 3814 3815 trace_xhci_discover_or_reset_device(slot_ctx); 3816 3817 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3818 /* Allocate the command structure that holds the struct completion. 3819 * Assume we're in process context, since the normal device reset 3820 * process has to wait for the device anyway. Storage devices are 3821 * reset as part of error handling, so use GFP_NOIO instead of 3822 * GFP_KERNEL. 3823 */ 3824 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3825 if (!reset_device_cmd) { 3826 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3827 return -ENOMEM; 3828 } 3829 3830 /* Attempt to submit the Reset Device command to the command ring */ 3831 spin_lock_irqsave(&xhci->lock, flags); 3832 3833 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3834 if (ret) { 3835 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3836 spin_unlock_irqrestore(&xhci->lock, flags); 3837 goto command_cleanup; 3838 } 3839 xhci_ring_cmd_db(xhci); 3840 spin_unlock_irqrestore(&xhci->lock, flags); 3841 3842 /* Wait for the Reset Device command to finish */ 3843 wait_for_completion(reset_device_cmd->completion); 3844 3845 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3846 * unless we tried to reset a slot ID that wasn't enabled, 3847 * or the device wasn't in the addressed or configured state. 3848 */ 3849 ret = reset_device_cmd->status; 3850 switch (ret) { 3851 case COMP_COMMAND_ABORTED: 3852 case COMP_COMMAND_RING_STOPPED: 3853 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3854 ret = -ETIME; 3855 goto command_cleanup; 3856 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3857 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3858 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3859 slot_id, 3860 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3861 xhci_dbg(xhci, "Not freeing device rings.\n"); 3862 /* Don't treat this as an error. May change my mind later. */ 3863 ret = 0; 3864 goto command_cleanup; 3865 case COMP_SUCCESS: 3866 xhci_dbg(xhci, "Successful reset device command.\n"); 3867 break; 3868 default: 3869 if (xhci_is_vendor_info_code(xhci, ret)) 3870 break; 3871 xhci_warn(xhci, "Unknown completion code %u for " 3872 "reset device command.\n", ret); 3873 ret = -EINVAL; 3874 goto command_cleanup; 3875 } 3876 3877 /* Free up host controller endpoint resources */ 3878 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3879 spin_lock_irqsave(&xhci->lock, flags); 3880 /* Don't delete the default control endpoint resources */ 3881 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3882 spin_unlock_irqrestore(&xhci->lock, flags); 3883 } 3884 3885 /* Everything but endpoint 0 is disabled, so free the rings. */ 3886 for (i = 1; i < 31; i++) { 3887 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3888 3889 if (ep->ep_state & EP_HAS_STREAMS) { 3890 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3891 xhci_get_endpoint_address(i)); 3892 xhci_free_stream_info(xhci, ep->stream_info); 3893 ep->stream_info = NULL; 3894 ep->ep_state &= ~EP_HAS_STREAMS; 3895 } 3896 3897 if (ep->ring) { 3898 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3899 xhci_free_endpoint_ring(xhci, virt_dev, i); 3900 } 3901 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3902 xhci_drop_ep_from_interval_table(xhci, 3903 &virt_dev->eps[i].bw_info, 3904 virt_dev->bw_table, 3905 udev, 3906 &virt_dev->eps[i], 3907 virt_dev->tt_info); 3908 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3909 } 3910 /* If necessary, update the number of active TTs on this root port */ 3911 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3912 virt_dev->flags = 0; 3913 ret = 0; 3914 3915 command_cleanup: 3916 xhci_free_command(xhci, reset_device_cmd); 3917 return ret; 3918 } 3919 3920 /* 3921 * At this point, the struct usb_device is about to go away, the device has 3922 * disconnected, and all traffic has been stopped and the endpoints have been 3923 * disabled. Free any HC data structures associated with that device. 3924 */ 3925 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3926 { 3927 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3928 struct xhci_virt_device *virt_dev; 3929 struct xhci_slot_ctx *slot_ctx; 3930 int i, ret; 3931 3932 #ifndef CONFIG_USB_DEFAULT_PERSIST 3933 /* 3934 * We called pm_runtime_get_noresume when the device was attached. 3935 * Decrement the counter here to allow controller to runtime suspend 3936 * if no devices remain. 3937 */ 3938 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3939 pm_runtime_put_noidle(hcd->self.controller); 3940 #endif 3941 3942 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3943 /* If the host is halted due to driver unload, we still need to free the 3944 * device. 3945 */ 3946 if (ret <= 0 && ret != -ENODEV) 3947 return; 3948 3949 virt_dev = xhci->devs[udev->slot_id]; 3950 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3951 trace_xhci_free_dev(slot_ctx); 3952 3953 /* Stop any wayward timer functions (which may grab the lock) */ 3954 for (i = 0; i < 31; i++) { 3955 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3956 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3957 } 3958 virt_dev->udev = NULL; 3959 ret = xhci_disable_slot(xhci, udev->slot_id); 3960 if (ret) 3961 xhci_free_virt_device(xhci, udev->slot_id); 3962 } 3963 3964 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3965 { 3966 struct xhci_command *command; 3967 unsigned long flags; 3968 u32 state; 3969 int ret = 0; 3970 3971 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3972 if (!command) 3973 return -ENOMEM; 3974 3975 xhci_debugfs_remove_slot(xhci, slot_id); 3976 3977 spin_lock_irqsave(&xhci->lock, flags); 3978 /* Don't disable the slot if the host controller is dead. */ 3979 state = readl(&xhci->op_regs->status); 3980 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3981 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3982 spin_unlock_irqrestore(&xhci->lock, flags); 3983 kfree(command); 3984 return -ENODEV; 3985 } 3986 3987 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3988 slot_id); 3989 if (ret) { 3990 spin_unlock_irqrestore(&xhci->lock, flags); 3991 kfree(command); 3992 return ret; 3993 } 3994 xhci_ring_cmd_db(xhci); 3995 spin_unlock_irqrestore(&xhci->lock, flags); 3996 return ret; 3997 } 3998 3999 /* 4000 * Checks if we have enough host controller resources for the default control 4001 * endpoint. 4002 * 4003 * Must be called with xhci->lock held. 4004 */ 4005 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4006 { 4007 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4008 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4009 "Not enough ep ctxs: " 4010 "%u active, need to add 1, limit is %u.", 4011 xhci->num_active_eps, xhci->limit_active_eps); 4012 return -ENOMEM; 4013 } 4014 xhci->num_active_eps += 1; 4015 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4016 "Adding 1 ep ctx, %u now active.", 4017 xhci->num_active_eps); 4018 return 0; 4019 } 4020 4021 4022 /* 4023 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4024 * timed out, or allocating memory failed. Returns 1 on success. 4025 */ 4026 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4027 { 4028 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4029 struct xhci_virt_device *vdev; 4030 struct xhci_slot_ctx *slot_ctx; 4031 unsigned long flags; 4032 int ret, slot_id; 4033 struct xhci_command *command; 4034 4035 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4036 if (!command) 4037 return 0; 4038 4039 spin_lock_irqsave(&xhci->lock, flags); 4040 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4041 if (ret) { 4042 spin_unlock_irqrestore(&xhci->lock, flags); 4043 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4044 xhci_free_command(xhci, command); 4045 return 0; 4046 } 4047 xhci_ring_cmd_db(xhci); 4048 spin_unlock_irqrestore(&xhci->lock, flags); 4049 4050 wait_for_completion(command->completion); 4051 slot_id = command->slot_id; 4052 4053 if (!slot_id || command->status != COMP_SUCCESS) { 4054 xhci_err(xhci, "Error while assigning device slot ID\n"); 4055 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4056 HCS_MAX_SLOTS( 4057 readl(&xhci->cap_regs->hcs_params1))); 4058 xhci_free_command(xhci, command); 4059 return 0; 4060 } 4061 4062 xhci_free_command(xhci, command); 4063 4064 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4065 spin_lock_irqsave(&xhci->lock, flags); 4066 ret = xhci_reserve_host_control_ep_resources(xhci); 4067 if (ret) { 4068 spin_unlock_irqrestore(&xhci->lock, flags); 4069 xhci_warn(xhci, "Not enough host resources, " 4070 "active endpoint contexts = %u\n", 4071 xhci->num_active_eps); 4072 goto disable_slot; 4073 } 4074 spin_unlock_irqrestore(&xhci->lock, flags); 4075 } 4076 /* Use GFP_NOIO, since this function can be called from 4077 * xhci_discover_or_reset_device(), which may be called as part of 4078 * mass storage driver error handling. 4079 */ 4080 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4081 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4082 goto disable_slot; 4083 } 4084 vdev = xhci->devs[slot_id]; 4085 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4086 trace_xhci_alloc_dev(slot_ctx); 4087 4088 udev->slot_id = slot_id; 4089 4090 xhci_debugfs_create_slot(xhci, slot_id); 4091 4092 #ifndef CONFIG_USB_DEFAULT_PERSIST 4093 /* 4094 * If resetting upon resume, we can't put the controller into runtime 4095 * suspend if there is a device attached. 4096 */ 4097 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4098 pm_runtime_get_noresume(hcd->self.controller); 4099 #endif 4100 4101 /* Is this a LS or FS device under a HS hub? */ 4102 /* Hub or peripherial? */ 4103 return 1; 4104 4105 disable_slot: 4106 ret = xhci_disable_slot(xhci, udev->slot_id); 4107 if (ret) 4108 xhci_free_virt_device(xhci, udev->slot_id); 4109 4110 return 0; 4111 } 4112 4113 /* 4114 * Issue an Address Device command and optionally send a corresponding 4115 * SetAddress request to the device. 4116 */ 4117 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4118 enum xhci_setup_dev setup) 4119 { 4120 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4121 unsigned long flags; 4122 struct xhci_virt_device *virt_dev; 4123 int ret = 0; 4124 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4125 struct xhci_slot_ctx *slot_ctx; 4126 struct xhci_input_control_ctx *ctrl_ctx; 4127 u64 temp_64; 4128 struct xhci_command *command = NULL; 4129 4130 mutex_lock(&xhci->mutex); 4131 4132 if (xhci->xhc_state) { /* dying, removing or halted */ 4133 ret = -ESHUTDOWN; 4134 goto out; 4135 } 4136 4137 if (!udev->slot_id) { 4138 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4139 "Bad Slot ID %d", udev->slot_id); 4140 ret = -EINVAL; 4141 goto out; 4142 } 4143 4144 virt_dev = xhci->devs[udev->slot_id]; 4145 4146 if (WARN_ON(!virt_dev)) { 4147 /* 4148 * In plug/unplug torture test with an NEC controller, 4149 * a zero-dereference was observed once due to virt_dev = 0. 4150 * Print useful debug rather than crash if it is observed again! 4151 */ 4152 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4153 udev->slot_id); 4154 ret = -EINVAL; 4155 goto out; 4156 } 4157 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4158 trace_xhci_setup_device_slot(slot_ctx); 4159 4160 if (setup == SETUP_CONTEXT_ONLY) { 4161 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4162 SLOT_STATE_DEFAULT) { 4163 xhci_dbg(xhci, "Slot already in default state\n"); 4164 goto out; 4165 } 4166 } 4167 4168 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4169 if (!command) { 4170 ret = -ENOMEM; 4171 goto out; 4172 } 4173 4174 command->in_ctx = virt_dev->in_ctx; 4175 4176 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4177 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4178 if (!ctrl_ctx) { 4179 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4180 __func__); 4181 ret = -EINVAL; 4182 goto out; 4183 } 4184 /* 4185 * If this is the first Set Address since device plug-in or 4186 * virt_device realloaction after a resume with an xHCI power loss, 4187 * then set up the slot context. 4188 */ 4189 if (!slot_ctx->dev_info) 4190 xhci_setup_addressable_virt_dev(xhci, udev); 4191 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4192 else 4193 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4194 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4195 ctrl_ctx->drop_flags = 0; 4196 4197 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4198 le32_to_cpu(slot_ctx->dev_info) >> 27); 4199 4200 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4201 spin_lock_irqsave(&xhci->lock, flags); 4202 trace_xhci_setup_device(virt_dev); 4203 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4204 udev->slot_id, setup); 4205 if (ret) { 4206 spin_unlock_irqrestore(&xhci->lock, flags); 4207 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4208 "FIXME: allocate a command ring segment"); 4209 goto out; 4210 } 4211 xhci_ring_cmd_db(xhci); 4212 spin_unlock_irqrestore(&xhci->lock, flags); 4213 4214 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4215 wait_for_completion(command->completion); 4216 4217 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4218 * the SetAddress() "recovery interval" required by USB and aborting the 4219 * command on a timeout. 4220 */ 4221 switch (command->status) { 4222 case COMP_COMMAND_ABORTED: 4223 case COMP_COMMAND_RING_STOPPED: 4224 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4225 ret = -ETIME; 4226 break; 4227 case COMP_CONTEXT_STATE_ERROR: 4228 case COMP_SLOT_NOT_ENABLED_ERROR: 4229 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4230 act, udev->slot_id); 4231 ret = -EINVAL; 4232 break; 4233 case COMP_USB_TRANSACTION_ERROR: 4234 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4235 4236 mutex_unlock(&xhci->mutex); 4237 ret = xhci_disable_slot(xhci, udev->slot_id); 4238 if (!ret) 4239 xhci_alloc_dev(hcd, udev); 4240 kfree(command->completion); 4241 kfree(command); 4242 return -EPROTO; 4243 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4244 dev_warn(&udev->dev, 4245 "ERROR: Incompatible device for setup %s command\n", act); 4246 ret = -ENODEV; 4247 break; 4248 case COMP_SUCCESS: 4249 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4250 "Successful setup %s command", act); 4251 break; 4252 default: 4253 xhci_err(xhci, 4254 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4255 act, command->status); 4256 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4257 ret = -EINVAL; 4258 break; 4259 } 4260 if (ret) 4261 goto out; 4262 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4263 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4264 "Op regs DCBAA ptr = %#016llx", temp_64); 4265 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4266 "Slot ID %d dcbaa entry @%p = %#016llx", 4267 udev->slot_id, 4268 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4269 (unsigned long long) 4270 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4271 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4272 "Output Context DMA address = %#08llx", 4273 (unsigned long long)virt_dev->out_ctx->dma); 4274 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4275 le32_to_cpu(slot_ctx->dev_info) >> 27); 4276 /* 4277 * USB core uses address 1 for the roothubs, so we add one to the 4278 * address given back to us by the HC. 4279 */ 4280 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4281 le32_to_cpu(slot_ctx->dev_info) >> 27); 4282 /* Zero the input context control for later use */ 4283 ctrl_ctx->add_flags = 0; 4284 ctrl_ctx->drop_flags = 0; 4285 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4286 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4287 4288 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4289 "Internal device address = %d", 4290 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4291 out: 4292 mutex_unlock(&xhci->mutex); 4293 if (command) { 4294 kfree(command->completion); 4295 kfree(command); 4296 } 4297 return ret; 4298 } 4299 4300 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4301 { 4302 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4303 } 4304 4305 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4306 { 4307 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4308 } 4309 4310 /* 4311 * Transfer the port index into real index in the HW port status 4312 * registers. Caculate offset between the port's PORTSC register 4313 * and port status base. Divide the number of per port register 4314 * to get the real index. The raw port number bases 1. 4315 */ 4316 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4317 { 4318 struct xhci_hub *rhub; 4319 4320 rhub = xhci_get_rhub(hcd); 4321 return rhub->ports[port1 - 1]->hw_portnum + 1; 4322 } 4323 4324 /* 4325 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4326 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4327 */ 4328 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4329 struct usb_device *udev, u16 max_exit_latency) 4330 { 4331 struct xhci_virt_device *virt_dev; 4332 struct xhci_command *command; 4333 struct xhci_input_control_ctx *ctrl_ctx; 4334 struct xhci_slot_ctx *slot_ctx; 4335 unsigned long flags; 4336 int ret; 4337 4338 spin_lock_irqsave(&xhci->lock, flags); 4339 4340 virt_dev = xhci->devs[udev->slot_id]; 4341 4342 /* 4343 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4344 * xHC was re-initialized. Exit latency will be set later after 4345 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4346 */ 4347 4348 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4349 spin_unlock_irqrestore(&xhci->lock, flags); 4350 return 0; 4351 } 4352 4353 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4354 command = xhci->lpm_command; 4355 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4356 if (!ctrl_ctx) { 4357 spin_unlock_irqrestore(&xhci->lock, flags); 4358 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4359 __func__); 4360 return -ENOMEM; 4361 } 4362 4363 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4364 spin_unlock_irqrestore(&xhci->lock, flags); 4365 4366 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4367 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4368 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4369 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4370 slot_ctx->dev_state = 0; 4371 4372 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4373 "Set up evaluate context for LPM MEL change."); 4374 4375 /* Issue and wait for the evaluate context command. */ 4376 ret = xhci_configure_endpoint(xhci, udev, command, 4377 true, true); 4378 4379 if (!ret) { 4380 spin_lock_irqsave(&xhci->lock, flags); 4381 virt_dev->current_mel = max_exit_latency; 4382 spin_unlock_irqrestore(&xhci->lock, flags); 4383 } 4384 return ret; 4385 } 4386 4387 #ifdef CONFIG_PM 4388 4389 /* BESL to HIRD Encoding array for USB2 LPM */ 4390 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4391 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4392 4393 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4394 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4395 struct usb_device *udev) 4396 { 4397 int u2del, besl, besl_host; 4398 int besl_device = 0; 4399 u32 field; 4400 4401 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4402 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4403 4404 if (field & USB_BESL_SUPPORT) { 4405 for (besl_host = 0; besl_host < 16; besl_host++) { 4406 if (xhci_besl_encoding[besl_host] >= u2del) 4407 break; 4408 } 4409 /* Use baseline BESL value as default */ 4410 if (field & USB_BESL_BASELINE_VALID) 4411 besl_device = USB_GET_BESL_BASELINE(field); 4412 else if (field & USB_BESL_DEEP_VALID) 4413 besl_device = USB_GET_BESL_DEEP(field); 4414 } else { 4415 if (u2del <= 50) 4416 besl_host = 0; 4417 else 4418 besl_host = (u2del - 51) / 75 + 1; 4419 } 4420 4421 besl = besl_host + besl_device; 4422 if (besl > 15) 4423 besl = 15; 4424 4425 return besl; 4426 } 4427 4428 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4429 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4430 { 4431 u32 field; 4432 int l1; 4433 int besld = 0; 4434 int hirdm = 0; 4435 4436 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4437 4438 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4439 l1 = udev->l1_params.timeout / 256; 4440 4441 /* device has preferred BESLD */ 4442 if (field & USB_BESL_DEEP_VALID) { 4443 besld = USB_GET_BESL_DEEP(field); 4444 hirdm = 1; 4445 } 4446 4447 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4448 } 4449 4450 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4451 struct usb_device *udev, int enable) 4452 { 4453 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4454 struct xhci_port **ports; 4455 __le32 __iomem *pm_addr, *hlpm_addr; 4456 u32 pm_val, hlpm_val, field; 4457 unsigned int port_num; 4458 unsigned long flags; 4459 int hird, exit_latency; 4460 int ret; 4461 4462 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4463 return -EPERM; 4464 4465 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4466 !udev->lpm_capable) 4467 return -EPERM; 4468 4469 if (!udev->parent || udev->parent->parent || 4470 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4471 return -EPERM; 4472 4473 if (udev->usb2_hw_lpm_capable != 1) 4474 return -EPERM; 4475 4476 spin_lock_irqsave(&xhci->lock, flags); 4477 4478 ports = xhci->usb2_rhub.ports; 4479 port_num = udev->portnum - 1; 4480 pm_addr = ports[port_num]->addr + PORTPMSC; 4481 pm_val = readl(pm_addr); 4482 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4483 4484 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4485 enable ? "enable" : "disable", port_num + 1); 4486 4487 if (enable) { 4488 /* Host supports BESL timeout instead of HIRD */ 4489 if (udev->usb2_hw_lpm_besl_capable) { 4490 /* if device doesn't have a preferred BESL value use a 4491 * default one which works with mixed HIRD and BESL 4492 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4493 */ 4494 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4495 if ((field & USB_BESL_SUPPORT) && 4496 (field & USB_BESL_BASELINE_VALID)) 4497 hird = USB_GET_BESL_BASELINE(field); 4498 else 4499 hird = udev->l1_params.besl; 4500 4501 exit_latency = xhci_besl_encoding[hird]; 4502 spin_unlock_irqrestore(&xhci->lock, flags); 4503 4504 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4505 * input context for link powermanagement evaluate 4506 * context commands. It is protected by hcd->bandwidth 4507 * mutex and is shared by all devices. We need to set 4508 * the max ext latency in USB 2 BESL LPM as well, so 4509 * use the same mutex and xhci_change_max_exit_latency() 4510 */ 4511 mutex_lock(hcd->bandwidth_mutex); 4512 ret = xhci_change_max_exit_latency(xhci, udev, 4513 exit_latency); 4514 mutex_unlock(hcd->bandwidth_mutex); 4515 4516 if (ret < 0) 4517 return ret; 4518 spin_lock_irqsave(&xhci->lock, flags); 4519 4520 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4521 writel(hlpm_val, hlpm_addr); 4522 /* flush write */ 4523 readl(hlpm_addr); 4524 } else { 4525 hird = xhci_calculate_hird_besl(xhci, udev); 4526 } 4527 4528 pm_val &= ~PORT_HIRD_MASK; 4529 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4530 writel(pm_val, pm_addr); 4531 pm_val = readl(pm_addr); 4532 pm_val |= PORT_HLE; 4533 writel(pm_val, pm_addr); 4534 /* flush write */ 4535 readl(pm_addr); 4536 } else { 4537 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4538 writel(pm_val, pm_addr); 4539 /* flush write */ 4540 readl(pm_addr); 4541 if (udev->usb2_hw_lpm_besl_capable) { 4542 spin_unlock_irqrestore(&xhci->lock, flags); 4543 mutex_lock(hcd->bandwidth_mutex); 4544 xhci_change_max_exit_latency(xhci, udev, 0); 4545 mutex_unlock(hcd->bandwidth_mutex); 4546 readl_poll_timeout(ports[port_num]->addr, pm_val, 4547 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4548 100, 10000); 4549 return 0; 4550 } 4551 } 4552 4553 spin_unlock_irqrestore(&xhci->lock, flags); 4554 return 0; 4555 } 4556 4557 /* check if a usb2 port supports a given extened capability protocol 4558 * only USB2 ports extended protocol capability values are cached. 4559 * Return 1 if capability is supported 4560 */ 4561 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4562 unsigned capability) 4563 { 4564 u32 port_offset, port_count; 4565 int i; 4566 4567 for (i = 0; i < xhci->num_ext_caps; i++) { 4568 if (xhci->ext_caps[i] & capability) { 4569 /* port offsets starts at 1 */ 4570 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4571 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4572 if (port >= port_offset && 4573 port < port_offset + port_count) 4574 return 1; 4575 } 4576 } 4577 return 0; 4578 } 4579 4580 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4581 { 4582 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4583 int portnum = udev->portnum - 1; 4584 4585 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4586 return 0; 4587 4588 /* we only support lpm for non-hub device connected to root hub yet */ 4589 if (!udev->parent || udev->parent->parent || 4590 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4591 return 0; 4592 4593 if (xhci->hw_lpm_support == 1 && 4594 xhci_check_usb2_port_capability( 4595 xhci, portnum, XHCI_HLC)) { 4596 udev->usb2_hw_lpm_capable = 1; 4597 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4598 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4599 if (xhci_check_usb2_port_capability(xhci, portnum, 4600 XHCI_BLC)) 4601 udev->usb2_hw_lpm_besl_capable = 1; 4602 } 4603 4604 return 0; 4605 } 4606 4607 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4608 4609 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4610 static unsigned long long xhci_service_interval_to_ns( 4611 struct usb_endpoint_descriptor *desc) 4612 { 4613 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4614 } 4615 4616 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4617 enum usb3_link_state state) 4618 { 4619 unsigned long long sel; 4620 unsigned long long pel; 4621 unsigned int max_sel_pel; 4622 char *state_name; 4623 4624 switch (state) { 4625 case USB3_LPM_U1: 4626 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4627 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4628 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4629 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4630 state_name = "U1"; 4631 break; 4632 case USB3_LPM_U2: 4633 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4634 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4635 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4636 state_name = "U2"; 4637 break; 4638 default: 4639 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4640 __func__); 4641 return USB3_LPM_DISABLED; 4642 } 4643 4644 if (sel <= max_sel_pel && pel <= max_sel_pel) 4645 return USB3_LPM_DEVICE_INITIATED; 4646 4647 if (sel > max_sel_pel) 4648 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4649 "due to long SEL %llu ms\n", 4650 state_name, sel); 4651 else 4652 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4653 "due to long PEL %llu ms\n", 4654 state_name, pel); 4655 return USB3_LPM_DISABLED; 4656 } 4657 4658 /* The U1 timeout should be the maximum of the following values: 4659 * - For control endpoints, U1 system exit latency (SEL) * 3 4660 * - For bulk endpoints, U1 SEL * 5 4661 * - For interrupt endpoints: 4662 * - Notification EPs, U1 SEL * 3 4663 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4664 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4665 */ 4666 static unsigned long long xhci_calculate_intel_u1_timeout( 4667 struct usb_device *udev, 4668 struct usb_endpoint_descriptor *desc) 4669 { 4670 unsigned long long timeout_ns; 4671 int ep_type; 4672 int intr_type; 4673 4674 ep_type = usb_endpoint_type(desc); 4675 switch (ep_type) { 4676 case USB_ENDPOINT_XFER_CONTROL: 4677 timeout_ns = udev->u1_params.sel * 3; 4678 break; 4679 case USB_ENDPOINT_XFER_BULK: 4680 timeout_ns = udev->u1_params.sel * 5; 4681 break; 4682 case USB_ENDPOINT_XFER_INT: 4683 intr_type = usb_endpoint_interrupt_type(desc); 4684 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4685 timeout_ns = udev->u1_params.sel * 3; 4686 break; 4687 } 4688 /* Otherwise the calculation is the same as isoc eps */ 4689 fallthrough; 4690 case USB_ENDPOINT_XFER_ISOC: 4691 timeout_ns = xhci_service_interval_to_ns(desc); 4692 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4693 if (timeout_ns < udev->u1_params.sel * 2) 4694 timeout_ns = udev->u1_params.sel * 2; 4695 break; 4696 default: 4697 return 0; 4698 } 4699 4700 return timeout_ns; 4701 } 4702 4703 /* Returns the hub-encoded U1 timeout value. */ 4704 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4705 struct usb_device *udev, 4706 struct usb_endpoint_descriptor *desc) 4707 { 4708 unsigned long long timeout_ns; 4709 4710 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4711 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4712 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4713 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4714 return USB3_LPM_DISABLED; 4715 } 4716 } 4717 4718 if (xhci->quirks & XHCI_INTEL_HOST) 4719 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4720 else 4721 timeout_ns = udev->u1_params.sel; 4722 4723 /* The U1 timeout is encoded in 1us intervals. 4724 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4725 */ 4726 if (timeout_ns == USB3_LPM_DISABLED) 4727 timeout_ns = 1; 4728 else 4729 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4730 4731 /* If the necessary timeout value is bigger than what we can set in the 4732 * USB 3.0 hub, we have to disable hub-initiated U1. 4733 */ 4734 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4735 return timeout_ns; 4736 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4737 "due to long timeout %llu ms\n", timeout_ns); 4738 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4739 } 4740 4741 /* The U2 timeout should be the maximum of: 4742 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4743 * - largest bInterval of any active periodic endpoint (to avoid going 4744 * into lower power link states between intervals). 4745 * - the U2 Exit Latency of the device 4746 */ 4747 static unsigned long long xhci_calculate_intel_u2_timeout( 4748 struct usb_device *udev, 4749 struct usb_endpoint_descriptor *desc) 4750 { 4751 unsigned long long timeout_ns; 4752 unsigned long long u2_del_ns; 4753 4754 timeout_ns = 10 * 1000 * 1000; 4755 4756 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4757 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4758 timeout_ns = xhci_service_interval_to_ns(desc); 4759 4760 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4761 if (u2_del_ns > timeout_ns) 4762 timeout_ns = u2_del_ns; 4763 4764 return timeout_ns; 4765 } 4766 4767 /* Returns the hub-encoded U2 timeout value. */ 4768 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4769 struct usb_device *udev, 4770 struct usb_endpoint_descriptor *desc) 4771 { 4772 unsigned long long timeout_ns; 4773 4774 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4775 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4776 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4777 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4778 return USB3_LPM_DISABLED; 4779 } 4780 } 4781 4782 if (xhci->quirks & XHCI_INTEL_HOST) 4783 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4784 else 4785 timeout_ns = udev->u2_params.sel; 4786 4787 /* The U2 timeout is encoded in 256us intervals */ 4788 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4789 /* If the necessary timeout value is bigger than what we can set in the 4790 * USB 3.0 hub, we have to disable hub-initiated U2. 4791 */ 4792 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4793 return timeout_ns; 4794 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4795 "due to long timeout %llu ms\n", timeout_ns); 4796 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4797 } 4798 4799 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4800 struct usb_device *udev, 4801 struct usb_endpoint_descriptor *desc, 4802 enum usb3_link_state state, 4803 u16 *timeout) 4804 { 4805 if (state == USB3_LPM_U1) 4806 return xhci_calculate_u1_timeout(xhci, udev, desc); 4807 else if (state == USB3_LPM_U2) 4808 return xhci_calculate_u2_timeout(xhci, udev, desc); 4809 4810 return USB3_LPM_DISABLED; 4811 } 4812 4813 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4814 struct usb_device *udev, 4815 struct usb_endpoint_descriptor *desc, 4816 enum usb3_link_state state, 4817 u16 *timeout) 4818 { 4819 u16 alt_timeout; 4820 4821 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4822 desc, state, timeout); 4823 4824 /* If we found we can't enable hub-initiated LPM, and 4825 * the U1 or U2 exit latency was too high to allow 4826 * device-initiated LPM as well, then we will disable LPM 4827 * for this device, so stop searching any further. 4828 */ 4829 if (alt_timeout == USB3_LPM_DISABLED) { 4830 *timeout = alt_timeout; 4831 return -E2BIG; 4832 } 4833 if (alt_timeout > *timeout) 4834 *timeout = alt_timeout; 4835 return 0; 4836 } 4837 4838 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4839 struct usb_device *udev, 4840 struct usb_host_interface *alt, 4841 enum usb3_link_state state, 4842 u16 *timeout) 4843 { 4844 int j; 4845 4846 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4847 if (xhci_update_timeout_for_endpoint(xhci, udev, 4848 &alt->endpoint[j].desc, state, timeout)) 4849 return -E2BIG; 4850 } 4851 return 0; 4852 } 4853 4854 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4855 enum usb3_link_state state) 4856 { 4857 struct usb_device *parent; 4858 unsigned int num_hubs; 4859 4860 if (state == USB3_LPM_U2) 4861 return 0; 4862 4863 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4864 for (parent = udev->parent, num_hubs = 0; parent->parent; 4865 parent = parent->parent) 4866 num_hubs++; 4867 4868 if (num_hubs < 2) 4869 return 0; 4870 4871 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4872 " below second-tier hub.\n"); 4873 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4874 "to decrease power consumption.\n"); 4875 return -E2BIG; 4876 } 4877 4878 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4879 struct usb_device *udev, 4880 enum usb3_link_state state) 4881 { 4882 if (xhci->quirks & XHCI_INTEL_HOST) 4883 return xhci_check_intel_tier_policy(udev, state); 4884 else 4885 return 0; 4886 } 4887 4888 /* Returns the U1 or U2 timeout that should be enabled. 4889 * If the tier check or timeout setting functions return with a non-zero exit 4890 * code, that means the timeout value has been finalized and we shouldn't look 4891 * at any more endpoints. 4892 */ 4893 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4894 struct usb_device *udev, enum usb3_link_state state) 4895 { 4896 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4897 struct usb_host_config *config; 4898 char *state_name; 4899 int i; 4900 u16 timeout = USB3_LPM_DISABLED; 4901 4902 if (state == USB3_LPM_U1) 4903 state_name = "U1"; 4904 else if (state == USB3_LPM_U2) 4905 state_name = "U2"; 4906 else { 4907 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4908 state); 4909 return timeout; 4910 } 4911 4912 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4913 return timeout; 4914 4915 /* Gather some information about the currently installed configuration 4916 * and alternate interface settings. 4917 */ 4918 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4919 state, &timeout)) 4920 return timeout; 4921 4922 config = udev->actconfig; 4923 if (!config) 4924 return timeout; 4925 4926 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4927 struct usb_driver *driver; 4928 struct usb_interface *intf = config->interface[i]; 4929 4930 if (!intf) 4931 continue; 4932 4933 /* Check if any currently bound drivers want hub-initiated LPM 4934 * disabled. 4935 */ 4936 if (intf->dev.driver) { 4937 driver = to_usb_driver(intf->dev.driver); 4938 if (driver && driver->disable_hub_initiated_lpm) { 4939 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4940 state_name, driver->name); 4941 timeout = xhci_get_timeout_no_hub_lpm(udev, 4942 state); 4943 if (timeout == USB3_LPM_DISABLED) 4944 return timeout; 4945 } 4946 } 4947 4948 /* Not sure how this could happen... */ 4949 if (!intf->cur_altsetting) 4950 continue; 4951 4952 if (xhci_update_timeout_for_interface(xhci, udev, 4953 intf->cur_altsetting, 4954 state, &timeout)) 4955 return timeout; 4956 } 4957 return timeout; 4958 } 4959 4960 static int calculate_max_exit_latency(struct usb_device *udev, 4961 enum usb3_link_state state_changed, 4962 u16 hub_encoded_timeout) 4963 { 4964 unsigned long long u1_mel_us = 0; 4965 unsigned long long u2_mel_us = 0; 4966 unsigned long long mel_us = 0; 4967 bool disabling_u1; 4968 bool disabling_u2; 4969 bool enabling_u1; 4970 bool enabling_u2; 4971 4972 disabling_u1 = (state_changed == USB3_LPM_U1 && 4973 hub_encoded_timeout == USB3_LPM_DISABLED); 4974 disabling_u2 = (state_changed == USB3_LPM_U2 && 4975 hub_encoded_timeout == USB3_LPM_DISABLED); 4976 4977 enabling_u1 = (state_changed == USB3_LPM_U1 && 4978 hub_encoded_timeout != USB3_LPM_DISABLED); 4979 enabling_u2 = (state_changed == USB3_LPM_U2 && 4980 hub_encoded_timeout != USB3_LPM_DISABLED); 4981 4982 /* If U1 was already enabled and we're not disabling it, 4983 * or we're going to enable U1, account for the U1 max exit latency. 4984 */ 4985 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4986 enabling_u1) 4987 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4988 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4989 enabling_u2) 4990 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4991 4992 if (u1_mel_us > u2_mel_us) 4993 mel_us = u1_mel_us; 4994 else 4995 mel_us = u2_mel_us; 4996 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4997 if (mel_us > MAX_EXIT) { 4998 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4999 "is too big.\n", mel_us); 5000 return -E2BIG; 5001 } 5002 return mel_us; 5003 } 5004 5005 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5006 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5007 struct usb_device *udev, enum usb3_link_state state) 5008 { 5009 struct xhci_hcd *xhci; 5010 u16 hub_encoded_timeout; 5011 int mel; 5012 int ret; 5013 5014 xhci = hcd_to_xhci(hcd); 5015 /* The LPM timeout values are pretty host-controller specific, so don't 5016 * enable hub-initiated timeouts unless the vendor has provided 5017 * information about their timeout algorithm. 5018 */ 5019 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5020 !xhci->devs[udev->slot_id]) 5021 return USB3_LPM_DISABLED; 5022 5023 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5024 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5025 if (mel < 0) { 5026 /* Max Exit Latency is too big, disable LPM. */ 5027 hub_encoded_timeout = USB3_LPM_DISABLED; 5028 mel = 0; 5029 } 5030 5031 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5032 if (ret) 5033 return ret; 5034 return hub_encoded_timeout; 5035 } 5036 5037 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5038 struct usb_device *udev, enum usb3_link_state state) 5039 { 5040 struct xhci_hcd *xhci; 5041 u16 mel; 5042 5043 xhci = hcd_to_xhci(hcd); 5044 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5045 !xhci->devs[udev->slot_id]) 5046 return 0; 5047 5048 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5049 return xhci_change_max_exit_latency(xhci, udev, mel); 5050 } 5051 #else /* CONFIG_PM */ 5052 5053 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5054 struct usb_device *udev, int enable) 5055 { 5056 return 0; 5057 } 5058 5059 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5060 { 5061 return 0; 5062 } 5063 5064 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5065 struct usb_device *udev, enum usb3_link_state state) 5066 { 5067 return USB3_LPM_DISABLED; 5068 } 5069 5070 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5071 struct usb_device *udev, enum usb3_link_state state) 5072 { 5073 return 0; 5074 } 5075 #endif /* CONFIG_PM */ 5076 5077 /*-------------------------------------------------------------------------*/ 5078 5079 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5080 * internal data structures for the device. 5081 */ 5082 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5083 struct usb_tt *tt, gfp_t mem_flags) 5084 { 5085 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5086 struct xhci_virt_device *vdev; 5087 struct xhci_command *config_cmd; 5088 struct xhci_input_control_ctx *ctrl_ctx; 5089 struct xhci_slot_ctx *slot_ctx; 5090 unsigned long flags; 5091 unsigned think_time; 5092 int ret; 5093 5094 /* Ignore root hubs */ 5095 if (!hdev->parent) 5096 return 0; 5097 5098 vdev = xhci->devs[hdev->slot_id]; 5099 if (!vdev) { 5100 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5101 return -EINVAL; 5102 } 5103 5104 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5105 if (!config_cmd) 5106 return -ENOMEM; 5107 5108 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5109 if (!ctrl_ctx) { 5110 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5111 __func__); 5112 xhci_free_command(xhci, config_cmd); 5113 return -ENOMEM; 5114 } 5115 5116 spin_lock_irqsave(&xhci->lock, flags); 5117 if (hdev->speed == USB_SPEED_HIGH && 5118 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5119 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5120 xhci_free_command(xhci, config_cmd); 5121 spin_unlock_irqrestore(&xhci->lock, flags); 5122 return -ENOMEM; 5123 } 5124 5125 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5126 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5127 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5128 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5129 /* 5130 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5131 * but it may be already set to 1 when setup an xHCI virtual 5132 * device, so clear it anyway. 5133 */ 5134 if (tt->multi) 5135 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5136 else if (hdev->speed == USB_SPEED_FULL) 5137 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5138 5139 if (xhci->hci_version > 0x95) { 5140 xhci_dbg(xhci, "xHCI version %x needs hub " 5141 "TT think time and number of ports\n", 5142 (unsigned int) xhci->hci_version); 5143 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5144 /* Set TT think time - convert from ns to FS bit times. 5145 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5146 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5147 * 5148 * xHCI 1.0: this field shall be 0 if the device is not a 5149 * High-spped hub. 5150 */ 5151 think_time = tt->think_time; 5152 if (think_time != 0) 5153 think_time = (think_time / 666) - 1; 5154 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5155 slot_ctx->tt_info |= 5156 cpu_to_le32(TT_THINK_TIME(think_time)); 5157 } else { 5158 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5159 "TT think time or number of ports\n", 5160 (unsigned int) xhci->hci_version); 5161 } 5162 slot_ctx->dev_state = 0; 5163 spin_unlock_irqrestore(&xhci->lock, flags); 5164 5165 xhci_dbg(xhci, "Set up %s for hub device.\n", 5166 (xhci->hci_version > 0x95) ? 5167 "configure endpoint" : "evaluate context"); 5168 5169 /* Issue and wait for the configure endpoint or 5170 * evaluate context command. 5171 */ 5172 if (xhci->hci_version > 0x95) 5173 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5174 false, false); 5175 else 5176 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5177 true, false); 5178 5179 xhci_free_command(xhci, config_cmd); 5180 return ret; 5181 } 5182 5183 static int xhci_get_frame(struct usb_hcd *hcd) 5184 { 5185 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5186 /* EHCI mods by the periodic size. Why? */ 5187 return readl(&xhci->run_regs->microframe_index) >> 3; 5188 } 5189 5190 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5191 { 5192 struct xhci_hcd *xhci; 5193 /* 5194 * TODO: Check with DWC3 clients for sysdev according to 5195 * quirks 5196 */ 5197 struct device *dev = hcd->self.sysdev; 5198 unsigned int minor_rev; 5199 int retval; 5200 5201 /* Accept arbitrarily long scatter-gather lists */ 5202 hcd->self.sg_tablesize = ~0; 5203 5204 /* support to build packet from discontinuous buffers */ 5205 hcd->self.no_sg_constraint = 1; 5206 5207 /* XHCI controllers don't stop the ep queue on short packets :| */ 5208 hcd->self.no_stop_on_short = 1; 5209 5210 xhci = hcd_to_xhci(hcd); 5211 5212 if (usb_hcd_is_primary_hcd(hcd)) { 5213 xhci->main_hcd = hcd; 5214 xhci->usb2_rhub.hcd = hcd; 5215 /* Mark the first roothub as being USB 2.0. 5216 * The xHCI driver will register the USB 3.0 roothub. 5217 */ 5218 hcd->speed = HCD_USB2; 5219 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5220 /* 5221 * USB 2.0 roothub under xHCI has an integrated TT, 5222 * (rate matching hub) as opposed to having an OHCI/UHCI 5223 * companion controller. 5224 */ 5225 hcd->has_tt = 1; 5226 } else { 5227 /* 5228 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5229 * should return 0x31 for sbrn, or that the minor revision 5230 * is a two digit BCD containig minor and sub-minor numbers. 5231 * This was later clarified in xHCI 1.2. 5232 * 5233 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5234 * minor revision set to 0x1 instead of 0x10. 5235 */ 5236 if (xhci->usb3_rhub.min_rev == 0x1) 5237 minor_rev = 1; 5238 else 5239 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5240 5241 switch (minor_rev) { 5242 case 2: 5243 hcd->speed = HCD_USB32; 5244 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5245 hcd->self.root_hub->rx_lanes = 2; 5246 hcd->self.root_hub->tx_lanes = 2; 5247 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5248 break; 5249 case 1: 5250 hcd->speed = HCD_USB31; 5251 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5252 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5253 break; 5254 } 5255 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5256 minor_rev, 5257 minor_rev ? "Enhanced " : ""); 5258 5259 xhci->usb3_rhub.hcd = hcd; 5260 /* xHCI private pointer was set in xhci_pci_probe for the second 5261 * registered roothub. 5262 */ 5263 return 0; 5264 } 5265 5266 mutex_init(&xhci->mutex); 5267 xhci->cap_regs = hcd->regs; 5268 xhci->op_regs = hcd->regs + 5269 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5270 xhci->run_regs = hcd->regs + 5271 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5272 /* Cache read-only capability registers */ 5273 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5274 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5275 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5276 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 5277 xhci->hci_version = HC_VERSION(xhci->hcc_params); 5278 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5279 if (xhci->hci_version > 0x100) 5280 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5281 5282 xhci->quirks |= quirks; 5283 5284 get_quirks(dev, xhci); 5285 5286 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5287 * success event after a short transfer. This quirk will ignore such 5288 * spurious event. 5289 */ 5290 if (xhci->hci_version > 0x96) 5291 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5292 5293 /* Make sure the HC is halted. */ 5294 retval = xhci_halt(xhci); 5295 if (retval) 5296 return retval; 5297 5298 xhci_zero_64b_regs(xhci); 5299 5300 xhci_dbg(xhci, "Resetting HCD\n"); 5301 /* Reset the internal HC memory state and registers. */ 5302 retval = xhci_reset(xhci); 5303 if (retval) 5304 return retval; 5305 xhci_dbg(xhci, "Reset complete\n"); 5306 5307 /* 5308 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5309 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5310 * address memory pointers actually. So, this driver clears the AC64 5311 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5312 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5313 */ 5314 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5315 xhci->hcc_params &= ~BIT(0); 5316 5317 /* Set dma_mask and coherent_dma_mask to 64-bits, 5318 * if xHC supports 64-bit addressing */ 5319 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5320 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5321 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5322 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5323 } else { 5324 /* 5325 * This is to avoid error in cases where a 32-bit USB 5326 * controller is used on a 64-bit capable system. 5327 */ 5328 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5329 if (retval) 5330 return retval; 5331 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5332 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5333 } 5334 5335 xhci_dbg(xhci, "Calling HCD init\n"); 5336 /* Initialize HCD and host controller data structures. */ 5337 retval = xhci_init(hcd); 5338 if (retval) 5339 return retval; 5340 xhci_dbg(xhci, "Called HCD init\n"); 5341 5342 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5343 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5344 5345 return 0; 5346 } 5347 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5348 5349 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5350 struct usb_host_endpoint *ep) 5351 { 5352 struct xhci_hcd *xhci; 5353 struct usb_device *udev; 5354 unsigned int slot_id; 5355 unsigned int ep_index; 5356 unsigned long flags; 5357 5358 xhci = hcd_to_xhci(hcd); 5359 5360 spin_lock_irqsave(&xhci->lock, flags); 5361 udev = (struct usb_device *)ep->hcpriv; 5362 slot_id = udev->slot_id; 5363 ep_index = xhci_get_endpoint_index(&ep->desc); 5364 5365 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5366 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5367 spin_unlock_irqrestore(&xhci->lock, flags); 5368 } 5369 5370 static const struct hc_driver xhci_hc_driver = { 5371 .description = "xhci-hcd", 5372 .product_desc = "xHCI Host Controller", 5373 .hcd_priv_size = sizeof(struct xhci_hcd), 5374 5375 /* 5376 * generic hardware linkage 5377 */ 5378 .irq = xhci_irq, 5379 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5380 HCD_BH, 5381 5382 /* 5383 * basic lifecycle operations 5384 */ 5385 .reset = NULL, /* set in xhci_init_driver() */ 5386 .start = xhci_run, 5387 .stop = xhci_stop, 5388 .shutdown = xhci_shutdown, 5389 5390 /* 5391 * managing i/o requests and associated device resources 5392 */ 5393 .map_urb_for_dma = xhci_map_urb_for_dma, 5394 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5395 .urb_enqueue = xhci_urb_enqueue, 5396 .urb_dequeue = xhci_urb_dequeue, 5397 .alloc_dev = xhci_alloc_dev, 5398 .free_dev = xhci_free_dev, 5399 .alloc_streams = xhci_alloc_streams, 5400 .free_streams = xhci_free_streams, 5401 .add_endpoint = xhci_add_endpoint, 5402 .drop_endpoint = xhci_drop_endpoint, 5403 .endpoint_disable = xhci_endpoint_disable, 5404 .endpoint_reset = xhci_endpoint_reset, 5405 .check_bandwidth = xhci_check_bandwidth, 5406 .reset_bandwidth = xhci_reset_bandwidth, 5407 .address_device = xhci_address_device, 5408 .enable_device = xhci_enable_device, 5409 .update_hub_device = xhci_update_hub_device, 5410 .reset_device = xhci_discover_or_reset_device, 5411 5412 /* 5413 * scheduling support 5414 */ 5415 .get_frame_number = xhci_get_frame, 5416 5417 /* 5418 * root hub support 5419 */ 5420 .hub_control = xhci_hub_control, 5421 .hub_status_data = xhci_hub_status_data, 5422 .bus_suspend = xhci_bus_suspend, 5423 .bus_resume = xhci_bus_resume, 5424 .get_resuming_ports = xhci_get_resuming_ports, 5425 5426 /* 5427 * call back when device connected and addressed 5428 */ 5429 .update_device = xhci_update_device, 5430 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5431 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5432 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5433 .find_raw_port_number = xhci_find_raw_port_number, 5434 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5435 }; 5436 5437 void xhci_init_driver(struct hc_driver *drv, 5438 const struct xhci_driver_overrides *over) 5439 { 5440 BUG_ON(!over); 5441 5442 /* Copy the generic table to drv then apply the overrides */ 5443 *drv = xhci_hc_driver; 5444 5445 if (over) { 5446 drv->hcd_priv_size += over->extra_priv_size; 5447 if (over->reset) 5448 drv->reset = over->reset; 5449 if (over->start) 5450 drv->start = over->start; 5451 if (over->add_endpoint) 5452 drv->add_endpoint = over->add_endpoint; 5453 if (over->drop_endpoint) 5454 drv->drop_endpoint = over->drop_endpoint; 5455 if (over->check_bandwidth) 5456 drv->check_bandwidth = over->check_bandwidth; 5457 if (over->reset_bandwidth) 5458 drv->reset_bandwidth = over->reset_bandwidth; 5459 } 5460 } 5461 EXPORT_SYMBOL_GPL(xhci_init_driver); 5462 5463 MODULE_DESCRIPTION(DRIVER_DESC); 5464 MODULE_AUTHOR(DRIVER_AUTHOR); 5465 MODULE_LICENSE("GPL"); 5466 5467 static int __init xhci_hcd_init(void) 5468 { 5469 /* 5470 * Check the compiler generated sizes of structures that must be laid 5471 * out in specific ways for hardware access. 5472 */ 5473 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5474 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5475 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5476 /* xhci_device_control has eight fields, and also 5477 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5478 */ 5479 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5480 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5481 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5482 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5483 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5484 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5485 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5486 5487 if (usb_disabled()) 5488 return -ENODEV; 5489 5490 xhci_debugfs_create_root(); 5491 5492 return 0; 5493 } 5494 5495 /* 5496 * If an init function is provided, an exit function must also be provided 5497 * to allow module unload. 5498 */ 5499 static void __exit xhci_hcd_fini(void) 5500 { 5501 xhci_debugfs_remove_root(); 5502 } 5503 5504 module_init(xhci_hcd_init); 5505 module_exit(xhci_hcd_fini); 5506