xref: /linux/drivers/usb/host/xhci.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37 
38 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39 
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44 
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48 
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
63 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
64 		      u32 mask, u32 done, int usec)
65 {
66 	u32	result;
67 
68 	do {
69 		result = readl(ptr);
70 		if (result == ~(u32)0)		/* card removed */
71 			return -ENODEV;
72 		result &= mask;
73 		if (result == done)
74 			return 0;
75 		udelay(1);
76 		usec--;
77 	} while (usec > 0);
78 	return -ETIMEDOUT;
79 }
80 
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 	u32 halted;
87 	u32 cmd;
88 	u32 mask;
89 
90 	mask = ~(XHCI_IRQS);
91 	halted = readl(&xhci->op_regs->status) & STS_HALT;
92 	if (!halted)
93 		mask &= ~CMD_RUN;
94 
95 	cmd = readl(&xhci->op_regs->command);
96 	cmd &= mask;
97 	writel(cmd, &xhci->op_regs->command);
98 }
99 
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 	int ret;
111 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 	xhci_quiesce(xhci);
113 
114 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
115 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 	if (!ret) {
117 		xhci->xhc_state |= XHCI_STATE_HALTED;
118 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119 	} else
120 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121 				XHCI_MAX_HALT_USEC);
122 	return ret;
123 }
124 
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130 	u32 temp;
131 	int ret;
132 
133 	temp = readl(&xhci->op_regs->command);
134 	temp |= (CMD_RUN);
135 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 			temp);
137 	writel(temp, &xhci->op_regs->command);
138 
139 	/*
140 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 	 * running.
142 	 */
143 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
144 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 	if (ret == -ETIMEDOUT)
146 		xhci_err(xhci, "Host took too long to start, "
147 				"waited %u microseconds.\n",
148 				XHCI_MAX_HALT_USEC);
149 	if (!ret)
150 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
151 	return ret;
152 }
153 
154 /*
155  * Reset a halted HC.
156  *
157  * This resets pipelines, timers, counters, state machines, etc.
158  * Transactions will be terminated immediately, and operational registers
159  * will be set to their defaults.
160  */
161 int xhci_reset(struct xhci_hcd *xhci)
162 {
163 	u32 command;
164 	u32 state;
165 	int ret, i;
166 
167 	state = readl(&xhci->op_regs->status);
168 	if ((state & STS_HALT) == 0) {
169 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
170 		return 0;
171 	}
172 
173 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
174 	command = readl(&xhci->op_regs->command);
175 	command |= CMD_RESET;
176 	writel(command, &xhci->op_regs->command);
177 
178 	ret = xhci_handshake(xhci, &xhci->op_regs->command,
179 			CMD_RESET, 0, 10 * 1000 * 1000);
180 	if (ret)
181 		return ret;
182 
183 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
184 			 "Wait for controller to be ready for doorbell rings");
185 	/*
186 	 * xHCI cannot write to any doorbells or operational registers other
187 	 * than status until the "Controller Not Ready" flag is cleared.
188 	 */
189 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
190 			STS_CNR, 0, 10 * 1000 * 1000);
191 
192 	for (i = 0; i < 2; ++i) {
193 		xhci->bus_state[i].port_c_suspend = 0;
194 		xhci->bus_state[i].suspended_ports = 0;
195 		xhci->bus_state[i].resuming_ports = 0;
196 	}
197 
198 	return ret;
199 }
200 
201 #ifdef CONFIG_PCI
202 static int xhci_free_msi(struct xhci_hcd *xhci)
203 {
204 	int i;
205 
206 	if (!xhci->msix_entries)
207 		return -EINVAL;
208 
209 	for (i = 0; i < xhci->msix_count; i++)
210 		if (xhci->msix_entries[i].vector)
211 			free_irq(xhci->msix_entries[i].vector,
212 					xhci_to_hcd(xhci));
213 	return 0;
214 }
215 
216 /*
217  * Set up MSI
218  */
219 static int xhci_setup_msi(struct xhci_hcd *xhci)
220 {
221 	int ret;
222 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
223 
224 	ret = pci_enable_msi(pdev);
225 	if (ret) {
226 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
227 				"failed to allocate MSI entry");
228 		return ret;
229 	}
230 
231 	ret = request_irq(pdev->irq, xhci_msi_irq,
232 				0, "xhci_hcd", xhci_to_hcd(xhci));
233 	if (ret) {
234 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
235 				"disable MSI interrupt");
236 		pci_disable_msi(pdev);
237 	}
238 
239 	return ret;
240 }
241 
242 /*
243  * Free IRQs
244  * free all IRQs request
245  */
246 static void xhci_free_irq(struct xhci_hcd *xhci)
247 {
248 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
249 	int ret;
250 
251 	/* return if using legacy interrupt */
252 	if (xhci_to_hcd(xhci)->irq > 0)
253 		return;
254 
255 	ret = xhci_free_msi(xhci);
256 	if (!ret)
257 		return;
258 	if (pdev->irq > 0)
259 		free_irq(pdev->irq, xhci_to_hcd(xhci));
260 
261 	return;
262 }
263 
264 /*
265  * Set up MSI-X
266  */
267 static int xhci_setup_msix(struct xhci_hcd *xhci)
268 {
269 	int i, ret = 0;
270 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
271 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
272 
273 	/*
274 	 * calculate number of msi-x vectors supported.
275 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
276 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
277 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
278 	 *   Add additional 1 vector to ensure always available interrupt.
279 	 */
280 	xhci->msix_count = min(num_online_cpus() + 1,
281 				HCS_MAX_INTRS(xhci->hcs_params1));
282 
283 	xhci->msix_entries =
284 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
285 				GFP_KERNEL);
286 	if (!xhci->msix_entries) {
287 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
288 		return -ENOMEM;
289 	}
290 
291 	for (i = 0; i < xhci->msix_count; i++) {
292 		xhci->msix_entries[i].entry = i;
293 		xhci->msix_entries[i].vector = 0;
294 	}
295 
296 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
297 	if (ret) {
298 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
299 				"Failed to enable MSI-X");
300 		goto free_entries;
301 	}
302 
303 	for (i = 0; i < xhci->msix_count; i++) {
304 		ret = request_irq(xhci->msix_entries[i].vector,
305 				xhci_msi_irq,
306 				0, "xhci_hcd", xhci_to_hcd(xhci));
307 		if (ret)
308 			goto disable_msix;
309 	}
310 
311 	hcd->msix_enabled = 1;
312 	return ret;
313 
314 disable_msix:
315 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
316 	xhci_free_irq(xhci);
317 	pci_disable_msix(pdev);
318 free_entries:
319 	kfree(xhci->msix_entries);
320 	xhci->msix_entries = NULL;
321 	return ret;
322 }
323 
324 /* Free any IRQs and disable MSI-X */
325 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
326 {
327 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
328 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
329 
330 	if (xhci->quirks & XHCI_PLAT)
331 		return;
332 
333 	xhci_free_irq(xhci);
334 
335 	if (xhci->msix_entries) {
336 		pci_disable_msix(pdev);
337 		kfree(xhci->msix_entries);
338 		xhci->msix_entries = NULL;
339 	} else {
340 		pci_disable_msi(pdev);
341 	}
342 
343 	hcd->msix_enabled = 0;
344 	return;
345 }
346 
347 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
348 {
349 	int i;
350 
351 	if (xhci->msix_entries) {
352 		for (i = 0; i < xhci->msix_count; i++)
353 			synchronize_irq(xhci->msix_entries[i].vector);
354 	}
355 }
356 
357 static int xhci_try_enable_msi(struct usb_hcd *hcd)
358 {
359 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
360 	struct pci_dev  *pdev;
361 	int ret;
362 
363 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
364 	if (xhci->quirks & XHCI_PLAT)
365 		return 0;
366 
367 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
368 	/*
369 	 * Some Fresco Logic host controllers advertise MSI, but fail to
370 	 * generate interrupts.  Don't even try to enable MSI.
371 	 */
372 	if (xhci->quirks & XHCI_BROKEN_MSI)
373 		goto legacy_irq;
374 
375 	/* unregister the legacy interrupt */
376 	if (hcd->irq)
377 		free_irq(hcd->irq, hcd);
378 	hcd->irq = 0;
379 
380 	ret = xhci_setup_msix(xhci);
381 	if (ret)
382 		/* fall back to msi*/
383 		ret = xhci_setup_msi(xhci);
384 
385 	if (!ret)
386 		/* hcd->irq is 0, we have MSI */
387 		return 0;
388 
389 	if (!pdev->irq) {
390 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
391 		return -EINVAL;
392 	}
393 
394  legacy_irq:
395 	if (!strlen(hcd->irq_descr))
396 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
397 			 hcd->driver->description, hcd->self.busnum);
398 
399 	/* fall back to legacy interrupt*/
400 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
401 			hcd->irq_descr, hcd);
402 	if (ret) {
403 		xhci_err(xhci, "request interrupt %d failed\n",
404 				pdev->irq);
405 		return ret;
406 	}
407 	hcd->irq = pdev->irq;
408 	return 0;
409 }
410 
411 #else
412 
413 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
414 {
415 	return 0;
416 }
417 
418 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
419 {
420 }
421 
422 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
423 {
424 }
425 
426 #endif
427 
428 static void compliance_mode_recovery(unsigned long arg)
429 {
430 	struct xhci_hcd *xhci;
431 	struct usb_hcd *hcd;
432 	u32 temp;
433 	int i;
434 
435 	xhci = (struct xhci_hcd *)arg;
436 
437 	for (i = 0; i < xhci->num_usb3_ports; i++) {
438 		temp = readl(xhci->usb3_ports[i]);
439 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
440 			/*
441 			 * Compliance Mode Detected. Letting USB Core
442 			 * handle the Warm Reset
443 			 */
444 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
445 					"Compliance mode detected->port %d",
446 					i + 1);
447 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
448 					"Attempting compliance mode recovery");
449 			hcd = xhci->shared_hcd;
450 
451 			if (hcd->state == HC_STATE_SUSPENDED)
452 				usb_hcd_resume_root_hub(hcd);
453 
454 			usb_hcd_poll_rh_status(hcd);
455 		}
456 	}
457 
458 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
459 		mod_timer(&xhci->comp_mode_recovery_timer,
460 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
461 }
462 
463 /*
464  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
465  * that causes ports behind that hardware to enter compliance mode sometimes.
466  * The quirk creates a timer that polls every 2 seconds the link state of
467  * each host controller's port and recovers it by issuing a Warm reset
468  * if Compliance mode is detected, otherwise the port will become "dead" (no
469  * device connections or disconnections will be detected anymore). Becasue no
470  * status event is generated when entering compliance mode (per xhci spec),
471  * this quirk is needed on systems that have the failing hardware installed.
472  */
473 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
474 {
475 	xhci->port_status_u0 = 0;
476 	init_timer(&xhci->comp_mode_recovery_timer);
477 
478 	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
479 	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
480 	xhci->comp_mode_recovery_timer.expires = jiffies +
481 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
482 
483 	set_timer_slack(&xhci->comp_mode_recovery_timer,
484 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
485 	add_timer(&xhci->comp_mode_recovery_timer);
486 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
487 			"Compliance mode recovery timer initialized");
488 }
489 
490 /*
491  * This function identifies the systems that have installed the SN65LVPE502CP
492  * USB3.0 re-driver and that need the Compliance Mode Quirk.
493  * Systems:
494  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
495  */
496 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
497 {
498 	const char *dmi_product_name, *dmi_sys_vendor;
499 
500 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
501 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
502 	if (!dmi_product_name || !dmi_sys_vendor)
503 		return false;
504 
505 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
506 		return false;
507 
508 	if (strstr(dmi_product_name, "Z420") ||
509 			strstr(dmi_product_name, "Z620") ||
510 			strstr(dmi_product_name, "Z820") ||
511 			strstr(dmi_product_name, "Z1 Workstation"))
512 		return true;
513 
514 	return false;
515 }
516 
517 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
518 {
519 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
520 }
521 
522 
523 /*
524  * Initialize memory for HCD and xHC (one-time init).
525  *
526  * Program the PAGESIZE register, initialize the device context array, create
527  * device contexts (?), set up a command ring segment (or two?), create event
528  * ring (one for now).
529  */
530 int xhci_init(struct usb_hcd *hcd)
531 {
532 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
533 	int retval = 0;
534 
535 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
536 	spin_lock_init(&xhci->lock);
537 	if (xhci->hci_version == 0x95 && link_quirk) {
538 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
539 				"QUIRK: Not clearing Link TRB chain bits.");
540 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
541 	} else {
542 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
543 				"xHCI doesn't need link TRB QUIRK");
544 	}
545 	retval = xhci_mem_init(xhci, GFP_KERNEL);
546 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
547 
548 	/* Initializing Compliance Mode Recovery Data If Needed */
549 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
550 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
551 		compliance_mode_recovery_timer_init(xhci);
552 	}
553 
554 	return retval;
555 }
556 
557 /*-------------------------------------------------------------------------*/
558 
559 
560 static int xhci_run_finished(struct xhci_hcd *xhci)
561 {
562 	if (xhci_start(xhci)) {
563 		xhci_halt(xhci);
564 		return -ENODEV;
565 	}
566 	xhci->shared_hcd->state = HC_STATE_RUNNING;
567 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
568 
569 	if (xhci->quirks & XHCI_NEC_HOST)
570 		xhci_ring_cmd_db(xhci);
571 
572 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
573 			"Finished xhci_run for USB3 roothub");
574 	return 0;
575 }
576 
577 /*
578  * Start the HC after it was halted.
579  *
580  * This function is called by the USB core when the HC driver is added.
581  * Its opposite is xhci_stop().
582  *
583  * xhci_init() must be called once before this function can be called.
584  * Reset the HC, enable device slot contexts, program DCBAAP, and
585  * set command ring pointer and event ring pointer.
586  *
587  * Setup MSI-X vectors and enable interrupts.
588  */
589 int xhci_run(struct usb_hcd *hcd)
590 {
591 	u32 temp;
592 	u64 temp_64;
593 	int ret;
594 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
595 
596 	/* Start the xHCI host controller running only after the USB 2.0 roothub
597 	 * is setup.
598 	 */
599 
600 	hcd->uses_new_polling = 1;
601 	if (!usb_hcd_is_primary_hcd(hcd))
602 		return xhci_run_finished(xhci);
603 
604 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
605 
606 	ret = xhci_try_enable_msi(hcd);
607 	if (ret)
608 		return ret;
609 
610 	xhci_dbg(xhci, "Command ring memory map follows:\n");
611 	xhci_debug_ring(xhci, xhci->cmd_ring);
612 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
613 	xhci_dbg_cmd_ptrs(xhci);
614 
615 	xhci_dbg(xhci, "ERST memory map follows:\n");
616 	xhci_dbg_erst(xhci, &xhci->erst);
617 	xhci_dbg(xhci, "Event ring:\n");
618 	xhci_debug_ring(xhci, xhci->event_ring);
619 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
620 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
621 	temp_64 &= ~ERST_PTR_MASK;
622 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
623 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
624 
625 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
626 			"// Set the interrupt modulation register");
627 	temp = readl(&xhci->ir_set->irq_control);
628 	temp &= ~ER_IRQ_INTERVAL_MASK;
629 	temp |= (u32) 160;
630 	writel(temp, &xhci->ir_set->irq_control);
631 
632 	/* Set the HCD state before we enable the irqs */
633 	temp = readl(&xhci->op_regs->command);
634 	temp |= (CMD_EIE);
635 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
636 			"// Enable interrupts, cmd = 0x%x.", temp);
637 	writel(temp, &xhci->op_regs->command);
638 
639 	temp = readl(&xhci->ir_set->irq_pending);
640 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
641 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
642 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
643 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
644 	xhci_print_ir_set(xhci, 0);
645 
646 	if (xhci->quirks & XHCI_NEC_HOST) {
647 		struct xhci_command *command;
648 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
649 		if (!command)
650 			return -ENOMEM;
651 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
652 				TRB_TYPE(TRB_NEC_GET_FW));
653 	}
654 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
655 			"Finished xhci_run for USB2 roothub");
656 	return 0;
657 }
658 EXPORT_SYMBOL_GPL(xhci_run);
659 
660 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
661 {
662 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
663 
664 	spin_lock_irq(&xhci->lock);
665 	xhci_halt(xhci);
666 
667 	/* The shared_hcd is going to be deallocated shortly (the USB core only
668 	 * calls this function when allocation fails in usb_add_hcd(), or
669 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
670 	 */
671 	xhci->shared_hcd = NULL;
672 	spin_unlock_irq(&xhci->lock);
673 }
674 
675 /*
676  * Stop xHCI driver.
677  *
678  * This function is called by the USB core when the HC driver is removed.
679  * Its opposite is xhci_run().
680  *
681  * Disable device contexts, disable IRQs, and quiesce the HC.
682  * Reset the HC, finish any completed transactions, and cleanup memory.
683  */
684 void xhci_stop(struct usb_hcd *hcd)
685 {
686 	u32 temp;
687 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
688 
689 	if (!usb_hcd_is_primary_hcd(hcd)) {
690 		xhci_only_stop_hcd(xhci->shared_hcd);
691 		return;
692 	}
693 
694 	spin_lock_irq(&xhci->lock);
695 	/* Make sure the xHC is halted for a USB3 roothub
696 	 * (xhci_stop() could be called as part of failed init).
697 	 */
698 	xhci_halt(xhci);
699 	xhci_reset(xhci);
700 	spin_unlock_irq(&xhci->lock);
701 
702 	xhci_cleanup_msix(xhci);
703 
704 	/* Deleting Compliance Mode Recovery Timer */
705 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
706 			(!(xhci_all_ports_seen_u0(xhci)))) {
707 		del_timer_sync(&xhci->comp_mode_recovery_timer);
708 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
709 				"%s: compliance mode recovery timer deleted",
710 				__func__);
711 	}
712 
713 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
714 		usb_amd_dev_put();
715 
716 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
717 			"// Disabling event ring interrupts");
718 	temp = readl(&xhci->op_regs->status);
719 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
720 	temp = readl(&xhci->ir_set->irq_pending);
721 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
722 	xhci_print_ir_set(xhci, 0);
723 
724 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
725 	xhci_mem_cleanup(xhci);
726 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
727 			"xhci_stop completed - status = %x",
728 			readl(&xhci->op_regs->status));
729 }
730 
731 /*
732  * Shutdown HC (not bus-specific)
733  *
734  * This is called when the machine is rebooting or halting.  We assume that the
735  * machine will be powered off, and the HC's internal state will be reset.
736  * Don't bother to free memory.
737  *
738  * This will only ever be called with the main usb_hcd (the USB3 roothub).
739  */
740 void xhci_shutdown(struct usb_hcd *hcd)
741 {
742 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
743 
744 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
745 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
746 
747 	spin_lock_irq(&xhci->lock);
748 	xhci_halt(xhci);
749 	/* Workaround for spurious wakeups at shutdown with HSW */
750 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
751 		xhci_reset(xhci);
752 	spin_unlock_irq(&xhci->lock);
753 
754 	xhci_cleanup_msix(xhci);
755 
756 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
757 			"xhci_shutdown completed - status = %x",
758 			readl(&xhci->op_regs->status));
759 
760 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
761 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
762 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
763 }
764 
765 #ifdef CONFIG_PM
766 static void xhci_save_registers(struct xhci_hcd *xhci)
767 {
768 	xhci->s3.command = readl(&xhci->op_regs->command);
769 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
770 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
771 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
772 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
773 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
774 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
775 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
776 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
777 }
778 
779 static void xhci_restore_registers(struct xhci_hcd *xhci)
780 {
781 	writel(xhci->s3.command, &xhci->op_regs->command);
782 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
783 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
784 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
785 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
786 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
787 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
788 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
789 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
790 }
791 
792 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
793 {
794 	u64	val_64;
795 
796 	/* step 2: initialize command ring buffer */
797 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
798 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
799 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
800 				      xhci->cmd_ring->dequeue) &
801 		 (u64) ~CMD_RING_RSVD_BITS) |
802 		xhci->cmd_ring->cycle_state;
803 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
804 			"// Setting command ring address to 0x%llx",
805 			(long unsigned long) val_64);
806 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
807 }
808 
809 /*
810  * The whole command ring must be cleared to zero when we suspend the host.
811  *
812  * The host doesn't save the command ring pointer in the suspend well, so we
813  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
814  * aligned, because of the reserved bits in the command ring dequeue pointer
815  * register.  Therefore, we can't just set the dequeue pointer back in the
816  * middle of the ring (TRBs are 16-byte aligned).
817  */
818 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
819 {
820 	struct xhci_ring *ring;
821 	struct xhci_segment *seg;
822 
823 	ring = xhci->cmd_ring;
824 	seg = ring->deq_seg;
825 	do {
826 		memset(seg->trbs, 0,
827 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
828 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
829 			cpu_to_le32(~TRB_CYCLE);
830 		seg = seg->next;
831 	} while (seg != ring->deq_seg);
832 
833 	/* Reset the software enqueue and dequeue pointers */
834 	ring->deq_seg = ring->first_seg;
835 	ring->dequeue = ring->first_seg->trbs;
836 	ring->enq_seg = ring->deq_seg;
837 	ring->enqueue = ring->dequeue;
838 
839 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
840 	/*
841 	 * Ring is now zeroed, so the HW should look for change of ownership
842 	 * when the cycle bit is set to 1.
843 	 */
844 	ring->cycle_state = 1;
845 
846 	/*
847 	 * Reset the hardware dequeue pointer.
848 	 * Yes, this will need to be re-written after resume, but we're paranoid
849 	 * and want to make sure the hardware doesn't access bogus memory
850 	 * because, say, the BIOS or an SMI started the host without changing
851 	 * the command ring pointers.
852 	 */
853 	xhci_set_cmd_ring_deq(xhci);
854 }
855 
856 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
857 {
858 	int port_index;
859 	__le32 __iomem **port_array;
860 	unsigned long flags;
861 	u32 t1, t2;
862 
863 	spin_lock_irqsave(&xhci->lock, flags);
864 
865 	/* disble usb3 ports Wake bits*/
866 	port_index = xhci->num_usb3_ports;
867 	port_array = xhci->usb3_ports;
868 	while (port_index--) {
869 		t1 = readl(port_array[port_index]);
870 		t1 = xhci_port_state_to_neutral(t1);
871 		t2 = t1 & ~PORT_WAKE_BITS;
872 		if (t1 != t2)
873 			writel(t2, port_array[port_index]);
874 	}
875 
876 	/* disble usb2 ports Wake bits*/
877 	port_index = xhci->num_usb2_ports;
878 	port_array = xhci->usb2_ports;
879 	while (port_index--) {
880 		t1 = readl(port_array[port_index]);
881 		t1 = xhci_port_state_to_neutral(t1);
882 		t2 = t1 & ~PORT_WAKE_BITS;
883 		if (t1 != t2)
884 			writel(t2, port_array[port_index]);
885 	}
886 
887 	spin_unlock_irqrestore(&xhci->lock, flags);
888 }
889 
890 /*
891  * Stop HC (not bus-specific)
892  *
893  * This is called when the machine transition into S3/S4 mode.
894  *
895  */
896 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
897 {
898 	int			rc = 0;
899 	unsigned int		delay = XHCI_MAX_HALT_USEC;
900 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
901 	u32			command;
902 
903 	if (hcd->state != HC_STATE_SUSPENDED ||
904 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
905 		return -EINVAL;
906 
907 	/* Clear root port wake on bits if wakeup not allowed. */
908 	if (!do_wakeup)
909 		xhci_disable_port_wake_on_bits(xhci);
910 
911 	/* Don't poll the roothubs on bus suspend. */
912 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
913 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
914 	del_timer_sync(&hcd->rh_timer);
915 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
916 	del_timer_sync(&xhci->shared_hcd->rh_timer);
917 
918 	spin_lock_irq(&xhci->lock);
919 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
920 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
921 	/* step 1: stop endpoint */
922 	/* skipped assuming that port suspend has done */
923 
924 	/* step 2: clear Run/Stop bit */
925 	command = readl(&xhci->op_regs->command);
926 	command &= ~CMD_RUN;
927 	writel(command, &xhci->op_regs->command);
928 
929 	/* Some chips from Fresco Logic need an extraordinary delay */
930 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
931 
932 	if (xhci_handshake(xhci, &xhci->op_regs->status,
933 		      STS_HALT, STS_HALT, delay)) {
934 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
935 		spin_unlock_irq(&xhci->lock);
936 		return -ETIMEDOUT;
937 	}
938 	xhci_clear_command_ring(xhci);
939 
940 	/* step 3: save registers */
941 	xhci_save_registers(xhci);
942 
943 	/* step 4: set CSS flag */
944 	command = readl(&xhci->op_regs->command);
945 	command |= CMD_CSS;
946 	writel(command, &xhci->op_regs->command);
947 	if (xhci_handshake(xhci, &xhci->op_regs->status,
948 				STS_SAVE, 0, 10 * 1000)) {
949 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
950 		spin_unlock_irq(&xhci->lock);
951 		return -ETIMEDOUT;
952 	}
953 	spin_unlock_irq(&xhci->lock);
954 
955 	/*
956 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
957 	 * is about to be suspended.
958 	 */
959 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
960 			(!(xhci_all_ports_seen_u0(xhci)))) {
961 		del_timer_sync(&xhci->comp_mode_recovery_timer);
962 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
963 				"%s: compliance mode recovery timer deleted",
964 				__func__);
965 	}
966 
967 	/* step 5: remove core well power */
968 	/* synchronize irq when using MSI-X */
969 	xhci_msix_sync_irqs(xhci);
970 
971 	return rc;
972 }
973 EXPORT_SYMBOL_GPL(xhci_suspend);
974 
975 /*
976  * start xHC (not bus-specific)
977  *
978  * This is called when the machine transition from S3/S4 mode.
979  *
980  */
981 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
982 {
983 	u32			command, temp = 0, status;
984 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
985 	struct usb_hcd		*secondary_hcd;
986 	int			retval = 0;
987 	bool			comp_timer_running = false;
988 
989 	/* Wait a bit if either of the roothubs need to settle from the
990 	 * transition into bus suspend.
991 	 */
992 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
993 			time_before(jiffies,
994 				xhci->bus_state[1].next_statechange))
995 		msleep(100);
996 
997 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
998 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
999 
1000 	spin_lock_irq(&xhci->lock);
1001 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1002 		hibernated = true;
1003 
1004 	if (!hibernated) {
1005 		/* step 1: restore register */
1006 		xhci_restore_registers(xhci);
1007 		/* step 2: initialize command ring buffer */
1008 		xhci_set_cmd_ring_deq(xhci);
1009 		/* step 3: restore state and start state*/
1010 		/* step 3: set CRS flag */
1011 		command = readl(&xhci->op_regs->command);
1012 		command |= CMD_CRS;
1013 		writel(command, &xhci->op_regs->command);
1014 		if (xhci_handshake(xhci, &xhci->op_regs->status,
1015 			      STS_RESTORE, 0, 10 * 1000)) {
1016 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1017 			spin_unlock_irq(&xhci->lock);
1018 			return -ETIMEDOUT;
1019 		}
1020 		temp = readl(&xhci->op_regs->status);
1021 	}
1022 
1023 	/* If restore operation fails, re-initialize the HC during resume */
1024 	if ((temp & STS_SRE) || hibernated) {
1025 
1026 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1027 				!(xhci_all_ports_seen_u0(xhci))) {
1028 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1029 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1030 				"Compliance Mode Recovery Timer deleted!");
1031 		}
1032 
1033 		/* Let the USB core know _both_ roothubs lost power. */
1034 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1035 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1036 
1037 		xhci_dbg(xhci, "Stop HCD\n");
1038 		xhci_halt(xhci);
1039 		xhci_reset(xhci);
1040 		spin_unlock_irq(&xhci->lock);
1041 		xhci_cleanup_msix(xhci);
1042 
1043 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1044 		temp = readl(&xhci->op_regs->status);
1045 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1046 		temp = readl(&xhci->ir_set->irq_pending);
1047 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1048 		xhci_print_ir_set(xhci, 0);
1049 
1050 		xhci_dbg(xhci, "cleaning up memory\n");
1051 		xhci_mem_cleanup(xhci);
1052 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1053 			    readl(&xhci->op_regs->status));
1054 
1055 		/* USB core calls the PCI reinit and start functions twice:
1056 		 * first with the primary HCD, and then with the secondary HCD.
1057 		 * If we don't do the same, the host will never be started.
1058 		 */
1059 		if (!usb_hcd_is_primary_hcd(hcd))
1060 			secondary_hcd = hcd;
1061 		else
1062 			secondary_hcd = xhci->shared_hcd;
1063 
1064 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1065 		retval = xhci_init(hcd->primary_hcd);
1066 		if (retval)
1067 			return retval;
1068 		comp_timer_running = true;
1069 
1070 		xhci_dbg(xhci, "Start the primary HCD\n");
1071 		retval = xhci_run(hcd->primary_hcd);
1072 		if (!retval) {
1073 			xhci_dbg(xhci, "Start the secondary HCD\n");
1074 			retval = xhci_run(secondary_hcd);
1075 		}
1076 		hcd->state = HC_STATE_SUSPENDED;
1077 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1078 		goto done;
1079 	}
1080 
1081 	/* step 4: set Run/Stop bit */
1082 	command = readl(&xhci->op_regs->command);
1083 	command |= CMD_RUN;
1084 	writel(command, &xhci->op_regs->command);
1085 	xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1086 		  0, 250 * 1000);
1087 
1088 	/* step 5: walk topology and initialize portsc,
1089 	 * portpmsc and portli
1090 	 */
1091 	/* this is done in bus_resume */
1092 
1093 	/* step 6: restart each of the previously
1094 	 * Running endpoints by ringing their doorbells
1095 	 */
1096 
1097 	spin_unlock_irq(&xhci->lock);
1098 
1099  done:
1100 	if (retval == 0) {
1101 		/* Resume root hubs only when have pending events. */
1102 		status = readl(&xhci->op_regs->status);
1103 		if (status & STS_EINT) {
1104 			usb_hcd_resume_root_hub(hcd);
1105 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1106 		}
1107 	}
1108 
1109 	/*
1110 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1111 	 * be re-initialized Always after a system resume. Ports are subject
1112 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1113 	 * ports have entered previously to U0 before system's suspension.
1114 	 */
1115 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1116 		compliance_mode_recovery_timer_init(xhci);
1117 
1118 	/* Re-enable port polling. */
1119 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1120 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1121 	usb_hcd_poll_rh_status(hcd);
1122 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1123 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1124 
1125 	return retval;
1126 }
1127 EXPORT_SYMBOL_GPL(xhci_resume);
1128 #endif	/* CONFIG_PM */
1129 
1130 /*-------------------------------------------------------------------------*/
1131 
1132 /**
1133  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1134  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1135  * value to right shift 1 for the bitmask.
1136  *
1137  * Index  = (epnum * 2) + direction - 1,
1138  * where direction = 0 for OUT, 1 for IN.
1139  * For control endpoints, the IN index is used (OUT index is unused), so
1140  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1141  */
1142 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1143 {
1144 	unsigned int index;
1145 	if (usb_endpoint_xfer_control(desc))
1146 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1147 	else
1148 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1149 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1150 	return index;
1151 }
1152 
1153 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1154  * address from the XHCI endpoint index.
1155  */
1156 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1157 {
1158 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1159 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1160 	return direction | number;
1161 }
1162 
1163 /* Find the flag for this endpoint (for use in the control context).  Use the
1164  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1165  * bit 1, etc.
1166  */
1167 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1168 {
1169 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1170 }
1171 
1172 /* Find the flag for this endpoint (for use in the control context).  Use the
1173  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1174  * bit 1, etc.
1175  */
1176 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1177 {
1178 	return 1 << (ep_index + 1);
1179 }
1180 
1181 /* Compute the last valid endpoint context index.  Basically, this is the
1182  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1183  * we find the most significant bit set in the added contexts flags.
1184  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1185  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1186  */
1187 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1188 {
1189 	return fls(added_ctxs) - 1;
1190 }
1191 
1192 /* Returns 1 if the arguments are OK;
1193  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1194  */
1195 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1196 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1197 		const char *func) {
1198 	struct xhci_hcd	*xhci;
1199 	struct xhci_virt_device	*virt_dev;
1200 
1201 	if (!hcd || (check_ep && !ep) || !udev) {
1202 		pr_debug("xHCI %s called with invalid args\n", func);
1203 		return -EINVAL;
1204 	}
1205 	if (!udev->parent) {
1206 		pr_debug("xHCI %s called for root hub\n", func);
1207 		return 0;
1208 	}
1209 
1210 	xhci = hcd_to_xhci(hcd);
1211 	if (check_virt_dev) {
1212 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1213 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1214 					func);
1215 			return -EINVAL;
1216 		}
1217 
1218 		virt_dev = xhci->devs[udev->slot_id];
1219 		if (virt_dev->udev != udev) {
1220 			xhci_dbg(xhci, "xHCI %s called with udev and "
1221 					  "virt_dev does not match\n", func);
1222 			return -EINVAL;
1223 		}
1224 	}
1225 
1226 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1227 		return -ENODEV;
1228 
1229 	return 1;
1230 }
1231 
1232 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1233 		struct usb_device *udev, struct xhci_command *command,
1234 		bool ctx_change, bool must_succeed);
1235 
1236 /*
1237  * Full speed devices may have a max packet size greater than 8 bytes, but the
1238  * USB core doesn't know that until it reads the first 8 bytes of the
1239  * descriptor.  If the usb_device's max packet size changes after that point,
1240  * we need to issue an evaluate context command and wait on it.
1241  */
1242 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1243 		unsigned int ep_index, struct urb *urb)
1244 {
1245 	struct xhci_container_ctx *out_ctx;
1246 	struct xhci_input_control_ctx *ctrl_ctx;
1247 	struct xhci_ep_ctx *ep_ctx;
1248 	struct xhci_command *command;
1249 	int max_packet_size;
1250 	int hw_max_packet_size;
1251 	int ret = 0;
1252 
1253 	out_ctx = xhci->devs[slot_id]->out_ctx;
1254 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1255 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1256 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1257 	if (hw_max_packet_size != max_packet_size) {
1258 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1259 				"Max Packet Size for ep 0 changed.");
1260 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1261 				"Max packet size in usb_device = %d",
1262 				max_packet_size);
1263 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1264 				"Max packet size in xHCI HW = %d",
1265 				hw_max_packet_size);
1266 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1267 				"Issuing evaluate context command.");
1268 
1269 		/* Set up the input context flags for the command */
1270 		/* FIXME: This won't work if a non-default control endpoint
1271 		 * changes max packet sizes.
1272 		 */
1273 
1274 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1275 		if (!command)
1276 			return -ENOMEM;
1277 
1278 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1279 		ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
1280 		if (!ctrl_ctx) {
1281 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1282 					__func__);
1283 			ret = -ENOMEM;
1284 			goto command_cleanup;
1285 		}
1286 		/* Set up the modified control endpoint 0 */
1287 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1288 				xhci->devs[slot_id]->out_ctx, ep_index);
1289 
1290 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1291 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1292 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1293 
1294 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1295 		ctrl_ctx->drop_flags = 0;
1296 
1297 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1298 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1299 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1300 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1301 
1302 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1303 				true, false);
1304 
1305 		/* Clean up the input context for later use by bandwidth
1306 		 * functions.
1307 		 */
1308 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1309 command_cleanup:
1310 		kfree(command->completion);
1311 		kfree(command);
1312 	}
1313 	return ret;
1314 }
1315 
1316 /*
1317  * non-error returns are a promise to giveback() the urb later
1318  * we drop ownership so next owner (or urb unlink) can get it
1319  */
1320 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1321 {
1322 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1323 	struct xhci_td *buffer;
1324 	unsigned long flags;
1325 	int ret = 0;
1326 	unsigned int slot_id, ep_index;
1327 	struct urb_priv	*urb_priv;
1328 	int size, i;
1329 
1330 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1331 					true, true, __func__) <= 0)
1332 		return -EINVAL;
1333 
1334 	slot_id = urb->dev->slot_id;
1335 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1336 
1337 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1338 		if (!in_interrupt())
1339 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1340 		ret = -ESHUTDOWN;
1341 		goto exit;
1342 	}
1343 
1344 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1345 		size = urb->number_of_packets;
1346 	else
1347 		size = 1;
1348 
1349 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1350 				  size * sizeof(struct xhci_td *), mem_flags);
1351 	if (!urb_priv)
1352 		return -ENOMEM;
1353 
1354 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1355 	if (!buffer) {
1356 		kfree(urb_priv);
1357 		return -ENOMEM;
1358 	}
1359 
1360 	for (i = 0; i < size; i++) {
1361 		urb_priv->td[i] = buffer;
1362 		buffer++;
1363 	}
1364 
1365 	urb_priv->length = size;
1366 	urb_priv->td_cnt = 0;
1367 	urb->hcpriv = urb_priv;
1368 
1369 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1370 		/* Check to see if the max packet size for the default control
1371 		 * endpoint changed during FS device enumeration
1372 		 */
1373 		if (urb->dev->speed == USB_SPEED_FULL) {
1374 			ret = xhci_check_maxpacket(xhci, slot_id,
1375 					ep_index, urb);
1376 			if (ret < 0) {
1377 				xhci_urb_free_priv(xhci, urb_priv);
1378 				urb->hcpriv = NULL;
1379 				return ret;
1380 			}
1381 		}
1382 
1383 		/* We have a spinlock and interrupts disabled, so we must pass
1384 		 * atomic context to this function, which may allocate memory.
1385 		 */
1386 		spin_lock_irqsave(&xhci->lock, flags);
1387 		if (xhci->xhc_state & XHCI_STATE_DYING)
1388 			goto dying;
1389 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1390 				slot_id, ep_index);
1391 		if (ret)
1392 			goto free_priv;
1393 		spin_unlock_irqrestore(&xhci->lock, flags);
1394 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1395 		spin_lock_irqsave(&xhci->lock, flags);
1396 		if (xhci->xhc_state & XHCI_STATE_DYING)
1397 			goto dying;
1398 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1399 				EP_GETTING_STREAMS) {
1400 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1401 					"is transitioning to using streams.\n");
1402 			ret = -EINVAL;
1403 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1404 				EP_GETTING_NO_STREAMS) {
1405 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1406 					"is transitioning to "
1407 					"not having streams.\n");
1408 			ret = -EINVAL;
1409 		} else {
1410 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1411 					slot_id, ep_index);
1412 		}
1413 		if (ret)
1414 			goto free_priv;
1415 		spin_unlock_irqrestore(&xhci->lock, flags);
1416 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1417 		spin_lock_irqsave(&xhci->lock, flags);
1418 		if (xhci->xhc_state & XHCI_STATE_DYING)
1419 			goto dying;
1420 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1421 				slot_id, ep_index);
1422 		if (ret)
1423 			goto free_priv;
1424 		spin_unlock_irqrestore(&xhci->lock, flags);
1425 	} else {
1426 		spin_lock_irqsave(&xhci->lock, flags);
1427 		if (xhci->xhc_state & XHCI_STATE_DYING)
1428 			goto dying;
1429 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1430 				slot_id, ep_index);
1431 		if (ret)
1432 			goto free_priv;
1433 		spin_unlock_irqrestore(&xhci->lock, flags);
1434 	}
1435 exit:
1436 	return ret;
1437 dying:
1438 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1439 			"non-responsive xHCI host.\n",
1440 			urb->ep->desc.bEndpointAddress, urb);
1441 	ret = -ESHUTDOWN;
1442 free_priv:
1443 	xhci_urb_free_priv(xhci, urb_priv);
1444 	urb->hcpriv = NULL;
1445 	spin_unlock_irqrestore(&xhci->lock, flags);
1446 	return ret;
1447 }
1448 
1449 /* Get the right ring for the given URB.
1450  * If the endpoint supports streams, boundary check the URB's stream ID.
1451  * If the endpoint doesn't support streams, return the singular endpoint ring.
1452  */
1453 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1454 		struct urb *urb)
1455 {
1456 	unsigned int slot_id;
1457 	unsigned int ep_index;
1458 	unsigned int stream_id;
1459 	struct xhci_virt_ep *ep;
1460 
1461 	slot_id = urb->dev->slot_id;
1462 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1463 	stream_id = urb->stream_id;
1464 	ep = &xhci->devs[slot_id]->eps[ep_index];
1465 	/* Common case: no streams */
1466 	if (!(ep->ep_state & EP_HAS_STREAMS))
1467 		return ep->ring;
1468 
1469 	if (stream_id == 0) {
1470 		xhci_warn(xhci,
1471 				"WARN: Slot ID %u, ep index %u has streams, "
1472 				"but URB has no stream ID.\n",
1473 				slot_id, ep_index);
1474 		return NULL;
1475 	}
1476 
1477 	if (stream_id < ep->stream_info->num_streams)
1478 		return ep->stream_info->stream_rings[stream_id];
1479 
1480 	xhci_warn(xhci,
1481 			"WARN: Slot ID %u, ep index %u has "
1482 			"stream IDs 1 to %u allocated, "
1483 			"but stream ID %u is requested.\n",
1484 			slot_id, ep_index,
1485 			ep->stream_info->num_streams - 1,
1486 			stream_id);
1487 	return NULL;
1488 }
1489 
1490 /*
1491  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1492  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1493  * should pick up where it left off in the TD, unless a Set Transfer Ring
1494  * Dequeue Pointer is issued.
1495  *
1496  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1497  * the ring.  Since the ring is a contiguous structure, they can't be physically
1498  * removed.  Instead, there are two options:
1499  *
1500  *  1) If the HC is in the middle of processing the URB to be canceled, we
1501  *     simply move the ring's dequeue pointer past those TRBs using the Set
1502  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1503  *     when drivers timeout on the last submitted URB and attempt to cancel.
1504  *
1505  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1506  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1507  *     HC will need to invalidate the any TRBs it has cached after the stop
1508  *     endpoint command, as noted in the xHCI 0.95 errata.
1509  *
1510  *  3) The TD may have completed by the time the Stop Endpoint Command
1511  *     completes, so software needs to handle that case too.
1512  *
1513  * This function should protect against the TD enqueueing code ringing the
1514  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1515  * It also needs to account for multiple cancellations on happening at the same
1516  * time for the same endpoint.
1517  *
1518  * Note that this function can be called in any context, or so says
1519  * usb_hcd_unlink_urb()
1520  */
1521 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1522 {
1523 	unsigned long flags;
1524 	int ret, i;
1525 	u32 temp;
1526 	struct xhci_hcd *xhci;
1527 	struct urb_priv	*urb_priv;
1528 	struct xhci_td *td;
1529 	unsigned int ep_index;
1530 	struct xhci_ring *ep_ring;
1531 	struct xhci_virt_ep *ep;
1532 	struct xhci_command *command;
1533 
1534 	xhci = hcd_to_xhci(hcd);
1535 	spin_lock_irqsave(&xhci->lock, flags);
1536 	/* Make sure the URB hasn't completed or been unlinked already */
1537 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1538 	if (ret || !urb->hcpriv)
1539 		goto done;
1540 	temp = readl(&xhci->op_regs->status);
1541 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1542 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1543 				"HW died, freeing TD.");
1544 		urb_priv = urb->hcpriv;
1545 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1546 			td = urb_priv->td[i];
1547 			if (!list_empty(&td->td_list))
1548 				list_del_init(&td->td_list);
1549 			if (!list_empty(&td->cancelled_td_list))
1550 				list_del_init(&td->cancelled_td_list);
1551 		}
1552 
1553 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1554 		spin_unlock_irqrestore(&xhci->lock, flags);
1555 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1556 		xhci_urb_free_priv(xhci, urb_priv);
1557 		return ret;
1558 	}
1559 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1560 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1561 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1562 				"Ep 0x%x: URB %p to be canceled on "
1563 				"non-responsive xHCI host.",
1564 				urb->ep->desc.bEndpointAddress, urb);
1565 		/* Let the stop endpoint command watchdog timer (which set this
1566 		 * state) finish cleaning up the endpoint TD lists.  We must
1567 		 * have caught it in the middle of dropping a lock and giving
1568 		 * back an URB.
1569 		 */
1570 		goto done;
1571 	}
1572 
1573 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1574 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1575 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1576 	if (!ep_ring) {
1577 		ret = -EINVAL;
1578 		goto done;
1579 	}
1580 
1581 	urb_priv = urb->hcpriv;
1582 	i = urb_priv->td_cnt;
1583 	if (i < urb_priv->length)
1584 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1585 				"Cancel URB %p, dev %s, ep 0x%x, "
1586 				"starting at offset 0x%llx",
1587 				urb, urb->dev->devpath,
1588 				urb->ep->desc.bEndpointAddress,
1589 				(unsigned long long) xhci_trb_virt_to_dma(
1590 					urb_priv->td[i]->start_seg,
1591 					urb_priv->td[i]->first_trb));
1592 
1593 	for (; i < urb_priv->length; i++) {
1594 		td = urb_priv->td[i];
1595 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1596 	}
1597 
1598 	/* Queue a stop endpoint command, but only if this is
1599 	 * the first cancellation to be handled.
1600 	 */
1601 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1602 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1603 		if (!command) {
1604 			ret = -ENOMEM;
1605 			goto done;
1606 		}
1607 		ep->ep_state |= EP_HALT_PENDING;
1608 		ep->stop_cmds_pending++;
1609 		ep->stop_cmd_timer.expires = jiffies +
1610 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1611 		add_timer(&ep->stop_cmd_timer);
1612 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1613 					 ep_index, 0);
1614 		xhci_ring_cmd_db(xhci);
1615 	}
1616 done:
1617 	spin_unlock_irqrestore(&xhci->lock, flags);
1618 	return ret;
1619 }
1620 
1621 /* Drop an endpoint from a new bandwidth configuration for this device.
1622  * Only one call to this function is allowed per endpoint before
1623  * check_bandwidth() or reset_bandwidth() must be called.
1624  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1625  * add the endpoint to the schedule with possibly new parameters denoted by a
1626  * different endpoint descriptor in usb_host_endpoint.
1627  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1628  * not allowed.
1629  *
1630  * The USB core will not allow URBs to be queued to an endpoint that is being
1631  * disabled, so there's no need for mutual exclusion to protect
1632  * the xhci->devs[slot_id] structure.
1633  */
1634 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1635 		struct usb_host_endpoint *ep)
1636 {
1637 	struct xhci_hcd *xhci;
1638 	struct xhci_container_ctx *in_ctx, *out_ctx;
1639 	struct xhci_input_control_ctx *ctrl_ctx;
1640 	unsigned int ep_index;
1641 	struct xhci_ep_ctx *ep_ctx;
1642 	u32 drop_flag;
1643 	u32 new_add_flags, new_drop_flags;
1644 	int ret;
1645 
1646 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1647 	if (ret <= 0)
1648 		return ret;
1649 	xhci = hcd_to_xhci(hcd);
1650 	if (xhci->xhc_state & XHCI_STATE_DYING)
1651 		return -ENODEV;
1652 
1653 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1654 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1655 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1656 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1657 				__func__, drop_flag);
1658 		return 0;
1659 	}
1660 
1661 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1662 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1663 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1664 	if (!ctrl_ctx) {
1665 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1666 				__func__);
1667 		return 0;
1668 	}
1669 
1670 	ep_index = xhci_get_endpoint_index(&ep->desc);
1671 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1672 	/* If the HC already knows the endpoint is disabled,
1673 	 * or the HCD has noted it is disabled, ignore this request
1674 	 */
1675 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1676 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1677 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1678 	    xhci_get_endpoint_flag(&ep->desc)) {
1679 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1680 				__func__, ep);
1681 		return 0;
1682 	}
1683 
1684 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1685 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1686 
1687 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1688 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1689 
1690 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1691 
1692 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1693 			(unsigned int) ep->desc.bEndpointAddress,
1694 			udev->slot_id,
1695 			(unsigned int) new_drop_flags,
1696 			(unsigned int) new_add_flags);
1697 	return 0;
1698 }
1699 
1700 /* Add an endpoint to a new possible bandwidth configuration for this device.
1701  * Only one call to this function is allowed per endpoint before
1702  * check_bandwidth() or reset_bandwidth() must be called.
1703  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1704  * add the endpoint to the schedule with possibly new parameters denoted by a
1705  * different endpoint descriptor in usb_host_endpoint.
1706  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1707  * not allowed.
1708  *
1709  * The USB core will not allow URBs to be queued to an endpoint until the
1710  * configuration or alt setting is installed in the device, so there's no need
1711  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1712  */
1713 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1714 		struct usb_host_endpoint *ep)
1715 {
1716 	struct xhci_hcd *xhci;
1717 	struct xhci_container_ctx *in_ctx, *out_ctx;
1718 	unsigned int ep_index;
1719 	struct xhci_input_control_ctx *ctrl_ctx;
1720 	u32 added_ctxs;
1721 	u32 new_add_flags, new_drop_flags;
1722 	struct xhci_virt_device *virt_dev;
1723 	int ret = 0;
1724 
1725 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1726 	if (ret <= 0) {
1727 		/* So we won't queue a reset ep command for a root hub */
1728 		ep->hcpriv = NULL;
1729 		return ret;
1730 	}
1731 	xhci = hcd_to_xhci(hcd);
1732 	if (xhci->xhc_state & XHCI_STATE_DYING)
1733 		return -ENODEV;
1734 
1735 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1736 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1737 		/* FIXME when we have to issue an evaluate endpoint command to
1738 		 * deal with ep0 max packet size changing once we get the
1739 		 * descriptors
1740 		 */
1741 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1742 				__func__, added_ctxs);
1743 		return 0;
1744 	}
1745 
1746 	virt_dev = xhci->devs[udev->slot_id];
1747 	in_ctx = virt_dev->in_ctx;
1748 	out_ctx = virt_dev->out_ctx;
1749 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1750 	if (!ctrl_ctx) {
1751 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1752 				__func__);
1753 		return 0;
1754 	}
1755 
1756 	ep_index = xhci_get_endpoint_index(&ep->desc);
1757 	/* If this endpoint is already in use, and the upper layers are trying
1758 	 * to add it again without dropping it, reject the addition.
1759 	 */
1760 	if (virt_dev->eps[ep_index].ring &&
1761 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1762 				xhci_get_endpoint_flag(&ep->desc))) {
1763 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1764 				"without dropping it.\n",
1765 				(unsigned int) ep->desc.bEndpointAddress);
1766 		return -EINVAL;
1767 	}
1768 
1769 	/* If the HCD has already noted the endpoint is enabled,
1770 	 * ignore this request.
1771 	 */
1772 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1773 	    xhci_get_endpoint_flag(&ep->desc)) {
1774 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1775 				__func__, ep);
1776 		return 0;
1777 	}
1778 
1779 	/*
1780 	 * Configuration and alternate setting changes must be done in
1781 	 * process context, not interrupt context (or so documenation
1782 	 * for usb_set_interface() and usb_set_configuration() claim).
1783 	 */
1784 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1785 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1786 				__func__, ep->desc.bEndpointAddress);
1787 		return -ENOMEM;
1788 	}
1789 
1790 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1791 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1792 
1793 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1794 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1795 	 * this re-adds a new state for the endpoint from the new endpoint
1796 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1797 	 * drop flags alone.
1798 	 */
1799 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1800 
1801 	/* Store the usb_device pointer for later use */
1802 	ep->hcpriv = udev;
1803 
1804 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1805 			(unsigned int) ep->desc.bEndpointAddress,
1806 			udev->slot_id,
1807 			(unsigned int) new_drop_flags,
1808 			(unsigned int) new_add_flags);
1809 	return 0;
1810 }
1811 
1812 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1813 {
1814 	struct xhci_input_control_ctx *ctrl_ctx;
1815 	struct xhci_ep_ctx *ep_ctx;
1816 	struct xhci_slot_ctx *slot_ctx;
1817 	int i;
1818 
1819 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1820 	if (!ctrl_ctx) {
1821 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1822 				__func__);
1823 		return;
1824 	}
1825 
1826 	/* When a device's add flag and drop flag are zero, any subsequent
1827 	 * configure endpoint command will leave that endpoint's state
1828 	 * untouched.  Make sure we don't leave any old state in the input
1829 	 * endpoint contexts.
1830 	 */
1831 	ctrl_ctx->drop_flags = 0;
1832 	ctrl_ctx->add_flags = 0;
1833 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1834 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1835 	/* Endpoint 0 is always valid */
1836 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1837 	for (i = 1; i < 31; ++i) {
1838 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1839 		ep_ctx->ep_info = 0;
1840 		ep_ctx->ep_info2 = 0;
1841 		ep_ctx->deq = 0;
1842 		ep_ctx->tx_info = 0;
1843 	}
1844 }
1845 
1846 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1847 		struct usb_device *udev, u32 *cmd_status)
1848 {
1849 	int ret;
1850 
1851 	switch (*cmd_status) {
1852 	case COMP_CMD_ABORT:
1853 	case COMP_CMD_STOP:
1854 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1855 		ret = -ETIME;
1856 		break;
1857 	case COMP_ENOMEM:
1858 		dev_warn(&udev->dev,
1859 			 "Not enough host controller resources for new device state.\n");
1860 		ret = -ENOMEM;
1861 		/* FIXME: can we allocate more resources for the HC? */
1862 		break;
1863 	case COMP_BW_ERR:
1864 	case COMP_2ND_BW_ERR:
1865 		dev_warn(&udev->dev,
1866 			 "Not enough bandwidth for new device state.\n");
1867 		ret = -ENOSPC;
1868 		/* FIXME: can we go back to the old state? */
1869 		break;
1870 	case COMP_TRB_ERR:
1871 		/* the HCD set up something wrong */
1872 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1873 				"add flag = 1, "
1874 				"and endpoint is not disabled.\n");
1875 		ret = -EINVAL;
1876 		break;
1877 	case COMP_DEV_ERR:
1878 		dev_warn(&udev->dev,
1879 			 "ERROR: Incompatible device for endpoint configure command.\n");
1880 		ret = -ENODEV;
1881 		break;
1882 	case COMP_SUCCESS:
1883 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1884 				"Successful Endpoint Configure command");
1885 		ret = 0;
1886 		break;
1887 	default:
1888 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1889 				*cmd_status);
1890 		ret = -EINVAL;
1891 		break;
1892 	}
1893 	return ret;
1894 }
1895 
1896 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1897 		struct usb_device *udev, u32 *cmd_status)
1898 {
1899 	int ret;
1900 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1901 
1902 	switch (*cmd_status) {
1903 	case COMP_CMD_ABORT:
1904 	case COMP_CMD_STOP:
1905 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1906 		ret = -ETIME;
1907 		break;
1908 	case COMP_EINVAL:
1909 		dev_warn(&udev->dev,
1910 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1911 		ret = -EINVAL;
1912 		break;
1913 	case COMP_EBADSLT:
1914 		dev_warn(&udev->dev,
1915 			"WARN: slot not enabled for evaluate context command.\n");
1916 		ret = -EINVAL;
1917 		break;
1918 	case COMP_CTX_STATE:
1919 		dev_warn(&udev->dev,
1920 			"WARN: invalid context state for evaluate context command.\n");
1921 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1922 		ret = -EINVAL;
1923 		break;
1924 	case COMP_DEV_ERR:
1925 		dev_warn(&udev->dev,
1926 			"ERROR: Incompatible device for evaluate context command.\n");
1927 		ret = -ENODEV;
1928 		break;
1929 	case COMP_MEL_ERR:
1930 		/* Max Exit Latency too large error */
1931 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1932 		ret = -EINVAL;
1933 		break;
1934 	case COMP_SUCCESS:
1935 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1936 				"Successful evaluate context command");
1937 		ret = 0;
1938 		break;
1939 	default:
1940 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1941 			*cmd_status);
1942 		ret = -EINVAL;
1943 		break;
1944 	}
1945 	return ret;
1946 }
1947 
1948 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1949 		struct xhci_input_control_ctx *ctrl_ctx)
1950 {
1951 	u32 valid_add_flags;
1952 	u32 valid_drop_flags;
1953 
1954 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1955 	 * (bit 1).  The default control endpoint is added during the Address
1956 	 * Device command and is never removed until the slot is disabled.
1957 	 */
1958 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1959 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1960 
1961 	/* Use hweight32 to count the number of ones in the add flags, or
1962 	 * number of endpoints added.  Don't count endpoints that are changed
1963 	 * (both added and dropped).
1964 	 */
1965 	return hweight32(valid_add_flags) -
1966 		hweight32(valid_add_flags & valid_drop_flags);
1967 }
1968 
1969 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1970 		struct xhci_input_control_ctx *ctrl_ctx)
1971 {
1972 	u32 valid_add_flags;
1973 	u32 valid_drop_flags;
1974 
1975 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1976 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1977 
1978 	return hweight32(valid_drop_flags) -
1979 		hweight32(valid_add_flags & valid_drop_flags);
1980 }
1981 
1982 /*
1983  * We need to reserve the new number of endpoints before the configure endpoint
1984  * command completes.  We can't subtract the dropped endpoints from the number
1985  * of active endpoints until the command completes because we can oversubscribe
1986  * the host in this case:
1987  *
1988  *  - the first configure endpoint command drops more endpoints than it adds
1989  *  - a second configure endpoint command that adds more endpoints is queued
1990  *  - the first configure endpoint command fails, so the config is unchanged
1991  *  - the second command may succeed, even though there isn't enough resources
1992  *
1993  * Must be called with xhci->lock held.
1994  */
1995 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1996 		struct xhci_input_control_ctx *ctrl_ctx)
1997 {
1998 	u32 added_eps;
1999 
2000 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2001 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2002 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2003 				"Not enough ep ctxs: "
2004 				"%u active, need to add %u, limit is %u.",
2005 				xhci->num_active_eps, added_eps,
2006 				xhci->limit_active_eps);
2007 		return -ENOMEM;
2008 	}
2009 	xhci->num_active_eps += added_eps;
2010 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2011 			"Adding %u ep ctxs, %u now active.", added_eps,
2012 			xhci->num_active_eps);
2013 	return 0;
2014 }
2015 
2016 /*
2017  * The configure endpoint was failed by the xHC for some other reason, so we
2018  * need to revert the resources that failed configuration would have used.
2019  *
2020  * Must be called with xhci->lock held.
2021  */
2022 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2023 		struct xhci_input_control_ctx *ctrl_ctx)
2024 {
2025 	u32 num_failed_eps;
2026 
2027 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2028 	xhci->num_active_eps -= num_failed_eps;
2029 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2030 			"Removing %u failed ep ctxs, %u now active.",
2031 			num_failed_eps,
2032 			xhci->num_active_eps);
2033 }
2034 
2035 /*
2036  * Now that the command has completed, clean up the active endpoint count by
2037  * subtracting out the endpoints that were dropped (but not changed).
2038  *
2039  * Must be called with xhci->lock held.
2040  */
2041 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2042 		struct xhci_input_control_ctx *ctrl_ctx)
2043 {
2044 	u32 num_dropped_eps;
2045 
2046 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2047 	xhci->num_active_eps -= num_dropped_eps;
2048 	if (num_dropped_eps)
2049 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2050 				"Removing %u dropped ep ctxs, %u now active.",
2051 				num_dropped_eps,
2052 				xhci->num_active_eps);
2053 }
2054 
2055 static unsigned int xhci_get_block_size(struct usb_device *udev)
2056 {
2057 	switch (udev->speed) {
2058 	case USB_SPEED_LOW:
2059 	case USB_SPEED_FULL:
2060 		return FS_BLOCK;
2061 	case USB_SPEED_HIGH:
2062 		return HS_BLOCK;
2063 	case USB_SPEED_SUPER:
2064 		return SS_BLOCK;
2065 	case USB_SPEED_UNKNOWN:
2066 	case USB_SPEED_WIRELESS:
2067 	default:
2068 		/* Should never happen */
2069 		return 1;
2070 	}
2071 }
2072 
2073 static unsigned int
2074 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2075 {
2076 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2077 		return LS_OVERHEAD;
2078 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2079 		return FS_OVERHEAD;
2080 	return HS_OVERHEAD;
2081 }
2082 
2083 /* If we are changing a LS/FS device under a HS hub,
2084  * make sure (if we are activating a new TT) that the HS bus has enough
2085  * bandwidth for this new TT.
2086  */
2087 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2088 		struct xhci_virt_device *virt_dev,
2089 		int old_active_eps)
2090 {
2091 	struct xhci_interval_bw_table *bw_table;
2092 	struct xhci_tt_bw_info *tt_info;
2093 
2094 	/* Find the bandwidth table for the root port this TT is attached to. */
2095 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2096 	tt_info = virt_dev->tt_info;
2097 	/* If this TT already had active endpoints, the bandwidth for this TT
2098 	 * has already been added.  Removing all periodic endpoints (and thus
2099 	 * making the TT enactive) will only decrease the bandwidth used.
2100 	 */
2101 	if (old_active_eps)
2102 		return 0;
2103 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2104 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2105 			return -ENOMEM;
2106 		return 0;
2107 	}
2108 	/* Not sure why we would have no new active endpoints...
2109 	 *
2110 	 * Maybe because of an Evaluate Context change for a hub update or a
2111 	 * control endpoint 0 max packet size change?
2112 	 * FIXME: skip the bandwidth calculation in that case.
2113 	 */
2114 	return 0;
2115 }
2116 
2117 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2118 		struct xhci_virt_device *virt_dev)
2119 {
2120 	unsigned int bw_reserved;
2121 
2122 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2123 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2124 		return -ENOMEM;
2125 
2126 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2127 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2128 		return -ENOMEM;
2129 
2130 	return 0;
2131 }
2132 
2133 /*
2134  * This algorithm is a very conservative estimate of the worst-case scheduling
2135  * scenario for any one interval.  The hardware dynamically schedules the
2136  * packets, so we can't tell which microframe could be the limiting factor in
2137  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2138  *
2139  * Obviously, we can't solve an NP complete problem to find the minimum worst
2140  * case scenario.  Instead, we come up with an estimate that is no less than
2141  * the worst case bandwidth used for any one microframe, but may be an
2142  * over-estimate.
2143  *
2144  * We walk the requirements for each endpoint by interval, starting with the
2145  * smallest interval, and place packets in the schedule where there is only one
2146  * possible way to schedule packets for that interval.  In order to simplify
2147  * this algorithm, we record the largest max packet size for each interval, and
2148  * assume all packets will be that size.
2149  *
2150  * For interval 0, we obviously must schedule all packets for each interval.
2151  * The bandwidth for interval 0 is just the amount of data to be transmitted
2152  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2153  * the number of packets).
2154  *
2155  * For interval 1, we have two possible microframes to schedule those packets
2156  * in.  For this algorithm, if we can schedule the same number of packets for
2157  * each possible scheduling opportunity (each microframe), we will do so.  The
2158  * remaining number of packets will be saved to be transmitted in the gaps in
2159  * the next interval's scheduling sequence.
2160  *
2161  * As we move those remaining packets to be scheduled with interval 2 packets,
2162  * we have to double the number of remaining packets to transmit.  This is
2163  * because the intervals are actually powers of 2, and we would be transmitting
2164  * the previous interval's packets twice in this interval.  We also have to be
2165  * sure that when we look at the largest max packet size for this interval, we
2166  * also look at the largest max packet size for the remaining packets and take
2167  * the greater of the two.
2168  *
2169  * The algorithm continues to evenly distribute packets in each scheduling
2170  * opportunity, and push the remaining packets out, until we get to the last
2171  * interval.  Then those packets and their associated overhead are just added
2172  * to the bandwidth used.
2173  */
2174 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2175 		struct xhci_virt_device *virt_dev,
2176 		int old_active_eps)
2177 {
2178 	unsigned int bw_reserved;
2179 	unsigned int max_bandwidth;
2180 	unsigned int bw_used;
2181 	unsigned int block_size;
2182 	struct xhci_interval_bw_table *bw_table;
2183 	unsigned int packet_size = 0;
2184 	unsigned int overhead = 0;
2185 	unsigned int packets_transmitted = 0;
2186 	unsigned int packets_remaining = 0;
2187 	unsigned int i;
2188 
2189 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2190 		return xhci_check_ss_bw(xhci, virt_dev);
2191 
2192 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2193 		max_bandwidth = HS_BW_LIMIT;
2194 		/* Convert percent of bus BW reserved to blocks reserved */
2195 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2196 	} else {
2197 		max_bandwidth = FS_BW_LIMIT;
2198 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2199 	}
2200 
2201 	bw_table = virt_dev->bw_table;
2202 	/* We need to translate the max packet size and max ESIT payloads into
2203 	 * the units the hardware uses.
2204 	 */
2205 	block_size = xhci_get_block_size(virt_dev->udev);
2206 
2207 	/* If we are manipulating a LS/FS device under a HS hub, double check
2208 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2209 	 */
2210 	if (virt_dev->tt_info) {
2211 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2212 				"Recalculating BW for rootport %u",
2213 				virt_dev->real_port);
2214 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2215 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2216 					"newly activated TT.\n");
2217 			return -ENOMEM;
2218 		}
2219 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2220 				"Recalculating BW for TT slot %u port %u",
2221 				virt_dev->tt_info->slot_id,
2222 				virt_dev->tt_info->ttport);
2223 	} else {
2224 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2225 				"Recalculating BW for rootport %u",
2226 				virt_dev->real_port);
2227 	}
2228 
2229 	/* Add in how much bandwidth will be used for interval zero, or the
2230 	 * rounded max ESIT payload + number of packets * largest overhead.
2231 	 */
2232 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2233 		bw_table->interval_bw[0].num_packets *
2234 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2235 
2236 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2237 		unsigned int bw_added;
2238 		unsigned int largest_mps;
2239 		unsigned int interval_overhead;
2240 
2241 		/*
2242 		 * How many packets could we transmit in this interval?
2243 		 * If packets didn't fit in the previous interval, we will need
2244 		 * to transmit that many packets twice within this interval.
2245 		 */
2246 		packets_remaining = 2 * packets_remaining +
2247 			bw_table->interval_bw[i].num_packets;
2248 
2249 		/* Find the largest max packet size of this or the previous
2250 		 * interval.
2251 		 */
2252 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2253 			largest_mps = 0;
2254 		else {
2255 			struct xhci_virt_ep *virt_ep;
2256 			struct list_head *ep_entry;
2257 
2258 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2259 			virt_ep = list_entry(ep_entry,
2260 					struct xhci_virt_ep, bw_endpoint_list);
2261 			/* Convert to blocks, rounding up */
2262 			largest_mps = DIV_ROUND_UP(
2263 					virt_ep->bw_info.max_packet_size,
2264 					block_size);
2265 		}
2266 		if (largest_mps > packet_size)
2267 			packet_size = largest_mps;
2268 
2269 		/* Use the larger overhead of this or the previous interval. */
2270 		interval_overhead = xhci_get_largest_overhead(
2271 				&bw_table->interval_bw[i]);
2272 		if (interval_overhead > overhead)
2273 			overhead = interval_overhead;
2274 
2275 		/* How many packets can we evenly distribute across
2276 		 * (1 << (i + 1)) possible scheduling opportunities?
2277 		 */
2278 		packets_transmitted = packets_remaining >> (i + 1);
2279 
2280 		/* Add in the bandwidth used for those scheduled packets */
2281 		bw_added = packets_transmitted * (overhead + packet_size);
2282 
2283 		/* How many packets do we have remaining to transmit? */
2284 		packets_remaining = packets_remaining % (1 << (i + 1));
2285 
2286 		/* What largest max packet size should those packets have? */
2287 		/* If we've transmitted all packets, don't carry over the
2288 		 * largest packet size.
2289 		 */
2290 		if (packets_remaining == 0) {
2291 			packet_size = 0;
2292 			overhead = 0;
2293 		} else if (packets_transmitted > 0) {
2294 			/* Otherwise if we do have remaining packets, and we've
2295 			 * scheduled some packets in this interval, take the
2296 			 * largest max packet size from endpoints with this
2297 			 * interval.
2298 			 */
2299 			packet_size = largest_mps;
2300 			overhead = interval_overhead;
2301 		}
2302 		/* Otherwise carry over packet_size and overhead from the last
2303 		 * time we had a remainder.
2304 		 */
2305 		bw_used += bw_added;
2306 		if (bw_used > max_bandwidth) {
2307 			xhci_warn(xhci, "Not enough bandwidth. "
2308 					"Proposed: %u, Max: %u\n",
2309 				bw_used, max_bandwidth);
2310 			return -ENOMEM;
2311 		}
2312 	}
2313 	/*
2314 	 * Ok, we know we have some packets left over after even-handedly
2315 	 * scheduling interval 15.  We don't know which microframes they will
2316 	 * fit into, so we over-schedule and say they will be scheduled every
2317 	 * microframe.
2318 	 */
2319 	if (packets_remaining > 0)
2320 		bw_used += overhead + packet_size;
2321 
2322 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2323 		unsigned int port_index = virt_dev->real_port - 1;
2324 
2325 		/* OK, we're manipulating a HS device attached to a
2326 		 * root port bandwidth domain.  Include the number of active TTs
2327 		 * in the bandwidth used.
2328 		 */
2329 		bw_used += TT_HS_OVERHEAD *
2330 			xhci->rh_bw[port_index].num_active_tts;
2331 	}
2332 
2333 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2334 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2335 		"Available: %u " "percent",
2336 		bw_used, max_bandwidth, bw_reserved,
2337 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2338 		max_bandwidth);
2339 
2340 	bw_used += bw_reserved;
2341 	if (bw_used > max_bandwidth) {
2342 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2343 				bw_used, max_bandwidth);
2344 		return -ENOMEM;
2345 	}
2346 
2347 	bw_table->bw_used = bw_used;
2348 	return 0;
2349 }
2350 
2351 static bool xhci_is_async_ep(unsigned int ep_type)
2352 {
2353 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2354 					ep_type != ISOC_IN_EP &&
2355 					ep_type != INT_IN_EP);
2356 }
2357 
2358 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2359 {
2360 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2361 }
2362 
2363 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2364 {
2365 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2366 
2367 	if (ep_bw->ep_interval == 0)
2368 		return SS_OVERHEAD_BURST +
2369 			(ep_bw->mult * ep_bw->num_packets *
2370 					(SS_OVERHEAD + mps));
2371 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2372 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2373 				1 << ep_bw->ep_interval);
2374 
2375 }
2376 
2377 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2378 		struct xhci_bw_info *ep_bw,
2379 		struct xhci_interval_bw_table *bw_table,
2380 		struct usb_device *udev,
2381 		struct xhci_virt_ep *virt_ep,
2382 		struct xhci_tt_bw_info *tt_info)
2383 {
2384 	struct xhci_interval_bw	*interval_bw;
2385 	int normalized_interval;
2386 
2387 	if (xhci_is_async_ep(ep_bw->type))
2388 		return;
2389 
2390 	if (udev->speed == USB_SPEED_SUPER) {
2391 		if (xhci_is_sync_in_ep(ep_bw->type))
2392 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2393 				xhci_get_ss_bw_consumed(ep_bw);
2394 		else
2395 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2396 				xhci_get_ss_bw_consumed(ep_bw);
2397 		return;
2398 	}
2399 
2400 	/* SuperSpeed endpoints never get added to intervals in the table, so
2401 	 * this check is only valid for HS/FS/LS devices.
2402 	 */
2403 	if (list_empty(&virt_ep->bw_endpoint_list))
2404 		return;
2405 	/* For LS/FS devices, we need to translate the interval expressed in
2406 	 * microframes to frames.
2407 	 */
2408 	if (udev->speed == USB_SPEED_HIGH)
2409 		normalized_interval = ep_bw->ep_interval;
2410 	else
2411 		normalized_interval = ep_bw->ep_interval - 3;
2412 
2413 	if (normalized_interval == 0)
2414 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2415 	interval_bw = &bw_table->interval_bw[normalized_interval];
2416 	interval_bw->num_packets -= ep_bw->num_packets;
2417 	switch (udev->speed) {
2418 	case USB_SPEED_LOW:
2419 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2420 		break;
2421 	case USB_SPEED_FULL:
2422 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2423 		break;
2424 	case USB_SPEED_HIGH:
2425 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2426 		break;
2427 	case USB_SPEED_SUPER:
2428 	case USB_SPEED_UNKNOWN:
2429 	case USB_SPEED_WIRELESS:
2430 		/* Should never happen because only LS/FS/HS endpoints will get
2431 		 * added to the endpoint list.
2432 		 */
2433 		return;
2434 	}
2435 	if (tt_info)
2436 		tt_info->active_eps -= 1;
2437 	list_del_init(&virt_ep->bw_endpoint_list);
2438 }
2439 
2440 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2441 		struct xhci_bw_info *ep_bw,
2442 		struct xhci_interval_bw_table *bw_table,
2443 		struct usb_device *udev,
2444 		struct xhci_virt_ep *virt_ep,
2445 		struct xhci_tt_bw_info *tt_info)
2446 {
2447 	struct xhci_interval_bw	*interval_bw;
2448 	struct xhci_virt_ep *smaller_ep;
2449 	int normalized_interval;
2450 
2451 	if (xhci_is_async_ep(ep_bw->type))
2452 		return;
2453 
2454 	if (udev->speed == USB_SPEED_SUPER) {
2455 		if (xhci_is_sync_in_ep(ep_bw->type))
2456 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2457 				xhci_get_ss_bw_consumed(ep_bw);
2458 		else
2459 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2460 				xhci_get_ss_bw_consumed(ep_bw);
2461 		return;
2462 	}
2463 
2464 	/* For LS/FS devices, we need to translate the interval expressed in
2465 	 * microframes to frames.
2466 	 */
2467 	if (udev->speed == USB_SPEED_HIGH)
2468 		normalized_interval = ep_bw->ep_interval;
2469 	else
2470 		normalized_interval = ep_bw->ep_interval - 3;
2471 
2472 	if (normalized_interval == 0)
2473 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2474 	interval_bw = &bw_table->interval_bw[normalized_interval];
2475 	interval_bw->num_packets += ep_bw->num_packets;
2476 	switch (udev->speed) {
2477 	case USB_SPEED_LOW:
2478 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2479 		break;
2480 	case USB_SPEED_FULL:
2481 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2482 		break;
2483 	case USB_SPEED_HIGH:
2484 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2485 		break;
2486 	case USB_SPEED_SUPER:
2487 	case USB_SPEED_UNKNOWN:
2488 	case USB_SPEED_WIRELESS:
2489 		/* Should never happen because only LS/FS/HS endpoints will get
2490 		 * added to the endpoint list.
2491 		 */
2492 		return;
2493 	}
2494 
2495 	if (tt_info)
2496 		tt_info->active_eps += 1;
2497 	/* Insert the endpoint into the list, largest max packet size first. */
2498 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2499 			bw_endpoint_list) {
2500 		if (ep_bw->max_packet_size >=
2501 				smaller_ep->bw_info.max_packet_size) {
2502 			/* Add the new ep before the smaller endpoint */
2503 			list_add_tail(&virt_ep->bw_endpoint_list,
2504 					&smaller_ep->bw_endpoint_list);
2505 			return;
2506 		}
2507 	}
2508 	/* Add the new endpoint at the end of the list. */
2509 	list_add_tail(&virt_ep->bw_endpoint_list,
2510 			&interval_bw->endpoints);
2511 }
2512 
2513 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2514 		struct xhci_virt_device *virt_dev,
2515 		int old_active_eps)
2516 {
2517 	struct xhci_root_port_bw_info *rh_bw_info;
2518 	if (!virt_dev->tt_info)
2519 		return;
2520 
2521 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2522 	if (old_active_eps == 0 &&
2523 				virt_dev->tt_info->active_eps != 0) {
2524 		rh_bw_info->num_active_tts += 1;
2525 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2526 	} else if (old_active_eps != 0 &&
2527 				virt_dev->tt_info->active_eps == 0) {
2528 		rh_bw_info->num_active_tts -= 1;
2529 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2530 	}
2531 }
2532 
2533 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2534 		struct xhci_virt_device *virt_dev,
2535 		struct xhci_container_ctx *in_ctx)
2536 {
2537 	struct xhci_bw_info ep_bw_info[31];
2538 	int i;
2539 	struct xhci_input_control_ctx *ctrl_ctx;
2540 	int old_active_eps = 0;
2541 
2542 	if (virt_dev->tt_info)
2543 		old_active_eps = virt_dev->tt_info->active_eps;
2544 
2545 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2546 	if (!ctrl_ctx) {
2547 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2548 				__func__);
2549 		return -ENOMEM;
2550 	}
2551 
2552 	for (i = 0; i < 31; i++) {
2553 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2554 			continue;
2555 
2556 		/* Make a copy of the BW info in case we need to revert this */
2557 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2558 				sizeof(ep_bw_info[i]));
2559 		/* Drop the endpoint from the interval table if the endpoint is
2560 		 * being dropped or changed.
2561 		 */
2562 		if (EP_IS_DROPPED(ctrl_ctx, i))
2563 			xhci_drop_ep_from_interval_table(xhci,
2564 					&virt_dev->eps[i].bw_info,
2565 					virt_dev->bw_table,
2566 					virt_dev->udev,
2567 					&virt_dev->eps[i],
2568 					virt_dev->tt_info);
2569 	}
2570 	/* Overwrite the information stored in the endpoints' bw_info */
2571 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2572 	for (i = 0; i < 31; i++) {
2573 		/* Add any changed or added endpoints to the interval table */
2574 		if (EP_IS_ADDED(ctrl_ctx, i))
2575 			xhci_add_ep_to_interval_table(xhci,
2576 					&virt_dev->eps[i].bw_info,
2577 					virt_dev->bw_table,
2578 					virt_dev->udev,
2579 					&virt_dev->eps[i],
2580 					virt_dev->tt_info);
2581 	}
2582 
2583 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2584 		/* Ok, this fits in the bandwidth we have.
2585 		 * Update the number of active TTs.
2586 		 */
2587 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2588 		return 0;
2589 	}
2590 
2591 	/* We don't have enough bandwidth for this, revert the stored info. */
2592 	for (i = 0; i < 31; i++) {
2593 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2594 			continue;
2595 
2596 		/* Drop the new copies of any added or changed endpoints from
2597 		 * the interval table.
2598 		 */
2599 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2600 			xhci_drop_ep_from_interval_table(xhci,
2601 					&virt_dev->eps[i].bw_info,
2602 					virt_dev->bw_table,
2603 					virt_dev->udev,
2604 					&virt_dev->eps[i],
2605 					virt_dev->tt_info);
2606 		}
2607 		/* Revert the endpoint back to its old information */
2608 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2609 				sizeof(ep_bw_info[i]));
2610 		/* Add any changed or dropped endpoints back into the table */
2611 		if (EP_IS_DROPPED(ctrl_ctx, i))
2612 			xhci_add_ep_to_interval_table(xhci,
2613 					&virt_dev->eps[i].bw_info,
2614 					virt_dev->bw_table,
2615 					virt_dev->udev,
2616 					&virt_dev->eps[i],
2617 					virt_dev->tt_info);
2618 	}
2619 	return -ENOMEM;
2620 }
2621 
2622 
2623 /* Issue a configure endpoint command or evaluate context command
2624  * and wait for it to finish.
2625  */
2626 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2627 		struct usb_device *udev,
2628 		struct xhci_command *command,
2629 		bool ctx_change, bool must_succeed)
2630 {
2631 	int ret;
2632 	unsigned long flags;
2633 	struct xhci_input_control_ctx *ctrl_ctx;
2634 	struct xhci_virt_device *virt_dev;
2635 
2636 	if (!command)
2637 		return -EINVAL;
2638 
2639 	spin_lock_irqsave(&xhci->lock, flags);
2640 	virt_dev = xhci->devs[udev->slot_id];
2641 
2642 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2643 	if (!ctrl_ctx) {
2644 		spin_unlock_irqrestore(&xhci->lock, flags);
2645 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2646 				__func__);
2647 		return -ENOMEM;
2648 	}
2649 
2650 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2651 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2652 		spin_unlock_irqrestore(&xhci->lock, flags);
2653 		xhci_warn(xhci, "Not enough host resources, "
2654 				"active endpoint contexts = %u\n",
2655 				xhci->num_active_eps);
2656 		return -ENOMEM;
2657 	}
2658 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2659 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2660 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2661 			xhci_free_host_resources(xhci, ctrl_ctx);
2662 		spin_unlock_irqrestore(&xhci->lock, flags);
2663 		xhci_warn(xhci, "Not enough bandwidth\n");
2664 		return -ENOMEM;
2665 	}
2666 
2667 	if (!ctx_change)
2668 		ret = xhci_queue_configure_endpoint(xhci, command,
2669 				command->in_ctx->dma,
2670 				udev->slot_id, must_succeed);
2671 	else
2672 		ret = xhci_queue_evaluate_context(xhci, command,
2673 				command->in_ctx->dma,
2674 				udev->slot_id, must_succeed);
2675 	if (ret < 0) {
2676 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2677 			xhci_free_host_resources(xhci, ctrl_ctx);
2678 		spin_unlock_irqrestore(&xhci->lock, flags);
2679 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2680 				"FIXME allocate a new ring segment");
2681 		return -ENOMEM;
2682 	}
2683 	xhci_ring_cmd_db(xhci);
2684 	spin_unlock_irqrestore(&xhci->lock, flags);
2685 
2686 	/* Wait for the configure endpoint command to complete */
2687 	wait_for_completion(command->completion);
2688 
2689 	if (!ctx_change)
2690 		ret = xhci_configure_endpoint_result(xhci, udev,
2691 						     &command->status);
2692 	else
2693 		ret = xhci_evaluate_context_result(xhci, udev,
2694 						   &command->status);
2695 
2696 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2697 		spin_lock_irqsave(&xhci->lock, flags);
2698 		/* If the command failed, remove the reserved resources.
2699 		 * Otherwise, clean up the estimate to include dropped eps.
2700 		 */
2701 		if (ret)
2702 			xhci_free_host_resources(xhci, ctrl_ctx);
2703 		else
2704 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2705 		spin_unlock_irqrestore(&xhci->lock, flags);
2706 	}
2707 	return ret;
2708 }
2709 
2710 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2711 	struct xhci_virt_device *vdev, int i)
2712 {
2713 	struct xhci_virt_ep *ep = &vdev->eps[i];
2714 
2715 	if (ep->ep_state & EP_HAS_STREAMS) {
2716 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2717 				xhci_get_endpoint_address(i));
2718 		xhci_free_stream_info(xhci, ep->stream_info);
2719 		ep->stream_info = NULL;
2720 		ep->ep_state &= ~EP_HAS_STREAMS;
2721 	}
2722 }
2723 
2724 /* Called after one or more calls to xhci_add_endpoint() or
2725  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2726  * to call xhci_reset_bandwidth().
2727  *
2728  * Since we are in the middle of changing either configuration or
2729  * installing a new alt setting, the USB core won't allow URBs to be
2730  * enqueued for any endpoint on the old config or interface.  Nothing
2731  * else should be touching the xhci->devs[slot_id] structure, so we
2732  * don't need to take the xhci->lock for manipulating that.
2733  */
2734 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2735 {
2736 	int i;
2737 	int ret = 0;
2738 	struct xhci_hcd *xhci;
2739 	struct xhci_virt_device	*virt_dev;
2740 	struct xhci_input_control_ctx *ctrl_ctx;
2741 	struct xhci_slot_ctx *slot_ctx;
2742 	struct xhci_command *command;
2743 
2744 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2745 	if (ret <= 0)
2746 		return ret;
2747 	xhci = hcd_to_xhci(hcd);
2748 	if (xhci->xhc_state & XHCI_STATE_DYING)
2749 		return -ENODEV;
2750 
2751 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2752 	virt_dev = xhci->devs[udev->slot_id];
2753 
2754 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2755 	if (!command)
2756 		return -ENOMEM;
2757 
2758 	command->in_ctx = virt_dev->in_ctx;
2759 
2760 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2761 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2762 	if (!ctrl_ctx) {
2763 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2764 				__func__);
2765 		ret = -ENOMEM;
2766 		goto command_cleanup;
2767 	}
2768 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2769 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2770 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2771 
2772 	/* Don't issue the command if there's no endpoints to update. */
2773 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2774 	    ctrl_ctx->drop_flags == 0) {
2775 		ret = 0;
2776 		goto command_cleanup;
2777 	}
2778 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2779 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2780 	for (i = 31; i >= 1; i--) {
2781 		__le32 le32 = cpu_to_le32(BIT(i));
2782 
2783 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2784 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2785 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2786 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2787 			break;
2788 		}
2789 	}
2790 	xhci_dbg(xhci, "New Input Control Context:\n");
2791 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2792 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2793 
2794 	ret = xhci_configure_endpoint(xhci, udev, command,
2795 			false, false);
2796 	if (ret)
2797 		/* Callee should call reset_bandwidth() */
2798 		goto command_cleanup;
2799 
2800 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2801 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2802 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2803 
2804 	/* Free any rings that were dropped, but not changed. */
2805 	for (i = 1; i < 31; ++i) {
2806 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2807 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2808 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2809 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2810 		}
2811 	}
2812 	xhci_zero_in_ctx(xhci, virt_dev);
2813 	/*
2814 	 * Install any rings for completely new endpoints or changed endpoints,
2815 	 * and free or cache any old rings from changed endpoints.
2816 	 */
2817 	for (i = 1; i < 31; ++i) {
2818 		if (!virt_dev->eps[i].new_ring)
2819 			continue;
2820 		/* Only cache or free the old ring if it exists.
2821 		 * It may not if this is the first add of an endpoint.
2822 		 */
2823 		if (virt_dev->eps[i].ring) {
2824 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2825 		}
2826 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2827 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2828 		virt_dev->eps[i].new_ring = NULL;
2829 	}
2830 command_cleanup:
2831 	kfree(command->completion);
2832 	kfree(command);
2833 
2834 	return ret;
2835 }
2836 
2837 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2838 {
2839 	struct xhci_hcd *xhci;
2840 	struct xhci_virt_device	*virt_dev;
2841 	int i, ret;
2842 
2843 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2844 	if (ret <= 0)
2845 		return;
2846 	xhci = hcd_to_xhci(hcd);
2847 
2848 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2849 	virt_dev = xhci->devs[udev->slot_id];
2850 	/* Free any rings allocated for added endpoints */
2851 	for (i = 0; i < 31; ++i) {
2852 		if (virt_dev->eps[i].new_ring) {
2853 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2854 			virt_dev->eps[i].new_ring = NULL;
2855 		}
2856 	}
2857 	xhci_zero_in_ctx(xhci, virt_dev);
2858 }
2859 
2860 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2861 		struct xhci_container_ctx *in_ctx,
2862 		struct xhci_container_ctx *out_ctx,
2863 		struct xhci_input_control_ctx *ctrl_ctx,
2864 		u32 add_flags, u32 drop_flags)
2865 {
2866 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2867 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2868 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2869 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2870 
2871 	xhci_dbg(xhci, "Input Context:\n");
2872 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2873 }
2874 
2875 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2876 		unsigned int slot_id, unsigned int ep_index,
2877 		struct xhci_dequeue_state *deq_state)
2878 {
2879 	struct xhci_input_control_ctx *ctrl_ctx;
2880 	struct xhci_container_ctx *in_ctx;
2881 	struct xhci_ep_ctx *ep_ctx;
2882 	u32 added_ctxs;
2883 	dma_addr_t addr;
2884 
2885 	in_ctx = xhci->devs[slot_id]->in_ctx;
2886 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2887 	if (!ctrl_ctx) {
2888 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2889 				__func__);
2890 		return;
2891 	}
2892 
2893 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2894 			xhci->devs[slot_id]->out_ctx, ep_index);
2895 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2896 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2897 			deq_state->new_deq_ptr);
2898 	if (addr == 0) {
2899 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2900 				"reset ep command\n");
2901 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2902 				deq_state->new_deq_seg,
2903 				deq_state->new_deq_ptr);
2904 		return;
2905 	}
2906 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2907 
2908 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2909 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2910 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2911 			added_ctxs, added_ctxs);
2912 }
2913 
2914 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2915 			unsigned int ep_index, struct xhci_td *td)
2916 {
2917 	struct xhci_dequeue_state deq_state;
2918 	struct xhci_virt_ep *ep;
2919 	struct usb_device *udev = td->urb->dev;
2920 
2921 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2922 			"Cleaning up stalled endpoint ring");
2923 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2924 	/* We need to move the HW's dequeue pointer past this TD,
2925 	 * or it will attempt to resend it on the next doorbell ring.
2926 	 */
2927 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2928 			ep_index, ep->stopped_stream, td, &deq_state);
2929 
2930 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2931 		return;
2932 
2933 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2934 	 * issue a configure endpoint command later.
2935 	 */
2936 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2937 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2938 				"Queueing new dequeue state");
2939 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2940 				ep_index, ep->stopped_stream, &deq_state);
2941 	} else {
2942 		/* Better hope no one uses the input context between now and the
2943 		 * reset endpoint completion!
2944 		 * XXX: No idea how this hardware will react when stream rings
2945 		 * are enabled.
2946 		 */
2947 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2948 				"Setting up input context for "
2949 				"configure endpoint command");
2950 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2951 				ep_index, &deq_state);
2952 	}
2953 }
2954 
2955 /* Called when clearing halted device. The core should have sent the control
2956  * message to clear the device halt condition. The host side of the halt should
2957  * already be cleared with a reset endpoint command issued when the STALL tx
2958  * event was received.
2959  *
2960  * Context: in_interrupt
2961  */
2962 
2963 void xhci_endpoint_reset(struct usb_hcd *hcd,
2964 		struct usb_host_endpoint *ep)
2965 {
2966 	struct xhci_hcd *xhci;
2967 
2968 	xhci = hcd_to_xhci(hcd);
2969 
2970 	/*
2971 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2972 	 * The Reset Endpoint Command may only be issued to endpoints in the
2973 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2974 	 * Number of an endpoint that isn't in the Halted state, then software
2975 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2976 	 * for the target endpoint. that is in the Stopped state.
2977 	 */
2978 
2979 	/* For now just print debug to follow the situation */
2980 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2981 		 ep->desc.bEndpointAddress);
2982 }
2983 
2984 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2985 		struct usb_device *udev, struct usb_host_endpoint *ep,
2986 		unsigned int slot_id)
2987 {
2988 	int ret;
2989 	unsigned int ep_index;
2990 	unsigned int ep_state;
2991 
2992 	if (!ep)
2993 		return -EINVAL;
2994 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2995 	if (ret <= 0)
2996 		return -EINVAL;
2997 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2998 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2999 				" descriptor for ep 0x%x does not support streams\n",
3000 				ep->desc.bEndpointAddress);
3001 		return -EINVAL;
3002 	}
3003 
3004 	ep_index = xhci_get_endpoint_index(&ep->desc);
3005 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3006 	if (ep_state & EP_HAS_STREAMS ||
3007 			ep_state & EP_GETTING_STREAMS) {
3008 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3009 				"already has streams set up.\n",
3010 				ep->desc.bEndpointAddress);
3011 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3012 				"dynamic stream context array reallocation.\n");
3013 		return -EINVAL;
3014 	}
3015 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3016 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3017 				"endpoint 0x%x; URBs are pending.\n",
3018 				ep->desc.bEndpointAddress);
3019 		return -EINVAL;
3020 	}
3021 	return 0;
3022 }
3023 
3024 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3025 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3026 {
3027 	unsigned int max_streams;
3028 
3029 	/* The stream context array size must be a power of two */
3030 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3031 	/*
3032 	 * Find out how many primary stream array entries the host controller
3033 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3034 	 * level page entries), but that's an optional feature for xHCI host
3035 	 * controllers. xHCs must support at least 4 stream IDs.
3036 	 */
3037 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3038 	if (*num_stream_ctxs > max_streams) {
3039 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3040 				max_streams);
3041 		*num_stream_ctxs = max_streams;
3042 		*num_streams = max_streams;
3043 	}
3044 }
3045 
3046 /* Returns an error code if one of the endpoint already has streams.
3047  * This does not change any data structures, it only checks and gathers
3048  * information.
3049  */
3050 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3051 		struct usb_device *udev,
3052 		struct usb_host_endpoint **eps, unsigned int num_eps,
3053 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3054 {
3055 	unsigned int max_streams;
3056 	unsigned int endpoint_flag;
3057 	int i;
3058 	int ret;
3059 
3060 	for (i = 0; i < num_eps; i++) {
3061 		ret = xhci_check_streams_endpoint(xhci, udev,
3062 				eps[i], udev->slot_id);
3063 		if (ret < 0)
3064 			return ret;
3065 
3066 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3067 		if (max_streams < (*num_streams - 1)) {
3068 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3069 					eps[i]->desc.bEndpointAddress,
3070 					max_streams);
3071 			*num_streams = max_streams+1;
3072 		}
3073 
3074 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3075 		if (*changed_ep_bitmask & endpoint_flag)
3076 			return -EINVAL;
3077 		*changed_ep_bitmask |= endpoint_flag;
3078 	}
3079 	return 0;
3080 }
3081 
3082 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3083 		struct usb_device *udev,
3084 		struct usb_host_endpoint **eps, unsigned int num_eps)
3085 {
3086 	u32 changed_ep_bitmask = 0;
3087 	unsigned int slot_id;
3088 	unsigned int ep_index;
3089 	unsigned int ep_state;
3090 	int i;
3091 
3092 	slot_id = udev->slot_id;
3093 	if (!xhci->devs[slot_id])
3094 		return 0;
3095 
3096 	for (i = 0; i < num_eps; i++) {
3097 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3098 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3099 		/* Are streams already being freed for the endpoint? */
3100 		if (ep_state & EP_GETTING_NO_STREAMS) {
3101 			xhci_warn(xhci, "WARN Can't disable streams for "
3102 					"endpoint 0x%x, "
3103 					"streams are being disabled already\n",
3104 					eps[i]->desc.bEndpointAddress);
3105 			return 0;
3106 		}
3107 		/* Are there actually any streams to free? */
3108 		if (!(ep_state & EP_HAS_STREAMS) &&
3109 				!(ep_state & EP_GETTING_STREAMS)) {
3110 			xhci_warn(xhci, "WARN Can't disable streams for "
3111 					"endpoint 0x%x, "
3112 					"streams are already disabled!\n",
3113 					eps[i]->desc.bEndpointAddress);
3114 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3115 					"with non-streams endpoint\n");
3116 			return 0;
3117 		}
3118 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3119 	}
3120 	return changed_ep_bitmask;
3121 }
3122 
3123 /*
3124  * The USB device drivers use this function (though the HCD interface in USB
3125  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3126  * coordinate mass storage command queueing across multiple endpoints (basically
3127  * a stream ID == a task ID).
3128  *
3129  * Setting up streams involves allocating the same size stream context array
3130  * for each endpoint and issuing a configure endpoint command for all endpoints.
3131  *
3132  * Don't allow the call to succeed if one endpoint only supports one stream
3133  * (which means it doesn't support streams at all).
3134  *
3135  * Drivers may get less stream IDs than they asked for, if the host controller
3136  * hardware or endpoints claim they can't support the number of requested
3137  * stream IDs.
3138  */
3139 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3140 		struct usb_host_endpoint **eps, unsigned int num_eps,
3141 		unsigned int num_streams, gfp_t mem_flags)
3142 {
3143 	int i, ret;
3144 	struct xhci_hcd *xhci;
3145 	struct xhci_virt_device *vdev;
3146 	struct xhci_command *config_cmd;
3147 	struct xhci_input_control_ctx *ctrl_ctx;
3148 	unsigned int ep_index;
3149 	unsigned int num_stream_ctxs;
3150 	unsigned long flags;
3151 	u32 changed_ep_bitmask = 0;
3152 
3153 	if (!eps)
3154 		return -EINVAL;
3155 
3156 	/* Add one to the number of streams requested to account for
3157 	 * stream 0 that is reserved for xHCI usage.
3158 	 */
3159 	num_streams += 1;
3160 	xhci = hcd_to_xhci(hcd);
3161 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3162 			num_streams);
3163 
3164 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3165 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3166 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3167 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3168 		return -ENOSYS;
3169 	}
3170 
3171 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3172 	if (!config_cmd) {
3173 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3174 		return -ENOMEM;
3175 	}
3176 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3177 	if (!ctrl_ctx) {
3178 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3179 				__func__);
3180 		xhci_free_command(xhci, config_cmd);
3181 		return -ENOMEM;
3182 	}
3183 
3184 	/* Check to make sure all endpoints are not already configured for
3185 	 * streams.  While we're at it, find the maximum number of streams that
3186 	 * all the endpoints will support and check for duplicate endpoints.
3187 	 */
3188 	spin_lock_irqsave(&xhci->lock, flags);
3189 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3190 			num_eps, &num_streams, &changed_ep_bitmask);
3191 	if (ret < 0) {
3192 		xhci_free_command(xhci, config_cmd);
3193 		spin_unlock_irqrestore(&xhci->lock, flags);
3194 		return ret;
3195 	}
3196 	if (num_streams <= 1) {
3197 		xhci_warn(xhci, "WARN: endpoints can't handle "
3198 				"more than one stream.\n");
3199 		xhci_free_command(xhci, config_cmd);
3200 		spin_unlock_irqrestore(&xhci->lock, flags);
3201 		return -EINVAL;
3202 	}
3203 	vdev = xhci->devs[udev->slot_id];
3204 	/* Mark each endpoint as being in transition, so
3205 	 * xhci_urb_enqueue() will reject all URBs.
3206 	 */
3207 	for (i = 0; i < num_eps; i++) {
3208 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3209 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3210 	}
3211 	spin_unlock_irqrestore(&xhci->lock, flags);
3212 
3213 	/* Setup internal data structures and allocate HW data structures for
3214 	 * streams (but don't install the HW structures in the input context
3215 	 * until we're sure all memory allocation succeeded).
3216 	 */
3217 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3218 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3219 			num_stream_ctxs, num_streams);
3220 
3221 	for (i = 0; i < num_eps; i++) {
3222 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3223 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3224 				num_stream_ctxs,
3225 				num_streams, mem_flags);
3226 		if (!vdev->eps[ep_index].stream_info)
3227 			goto cleanup;
3228 		/* Set maxPstreams in endpoint context and update deq ptr to
3229 		 * point to stream context array. FIXME
3230 		 */
3231 	}
3232 
3233 	/* Set up the input context for a configure endpoint command. */
3234 	for (i = 0; i < num_eps; i++) {
3235 		struct xhci_ep_ctx *ep_ctx;
3236 
3237 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3238 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3239 
3240 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3241 				vdev->out_ctx, ep_index);
3242 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3243 				vdev->eps[ep_index].stream_info);
3244 	}
3245 	/* Tell the HW to drop its old copy of the endpoint context info
3246 	 * and add the updated copy from the input context.
3247 	 */
3248 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3249 			vdev->out_ctx, ctrl_ctx,
3250 			changed_ep_bitmask, changed_ep_bitmask);
3251 
3252 	/* Issue and wait for the configure endpoint command */
3253 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3254 			false, false);
3255 
3256 	/* xHC rejected the configure endpoint command for some reason, so we
3257 	 * leave the old ring intact and free our internal streams data
3258 	 * structure.
3259 	 */
3260 	if (ret < 0)
3261 		goto cleanup;
3262 
3263 	spin_lock_irqsave(&xhci->lock, flags);
3264 	for (i = 0; i < num_eps; i++) {
3265 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3266 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3267 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3268 			 udev->slot_id, ep_index);
3269 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3270 	}
3271 	xhci_free_command(xhci, config_cmd);
3272 	spin_unlock_irqrestore(&xhci->lock, flags);
3273 
3274 	/* Subtract 1 for stream 0, which drivers can't use */
3275 	return num_streams - 1;
3276 
3277 cleanup:
3278 	/* If it didn't work, free the streams! */
3279 	for (i = 0; i < num_eps; i++) {
3280 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3281 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3282 		vdev->eps[ep_index].stream_info = NULL;
3283 		/* FIXME Unset maxPstreams in endpoint context and
3284 		 * update deq ptr to point to normal string ring.
3285 		 */
3286 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3287 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3288 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3289 	}
3290 	xhci_free_command(xhci, config_cmd);
3291 	return -ENOMEM;
3292 }
3293 
3294 /* Transition the endpoint from using streams to being a "normal" endpoint
3295  * without streams.
3296  *
3297  * Modify the endpoint context state, submit a configure endpoint command,
3298  * and free all endpoint rings for streams if that completes successfully.
3299  */
3300 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3301 		struct usb_host_endpoint **eps, unsigned int num_eps,
3302 		gfp_t mem_flags)
3303 {
3304 	int i, ret;
3305 	struct xhci_hcd *xhci;
3306 	struct xhci_virt_device *vdev;
3307 	struct xhci_command *command;
3308 	struct xhci_input_control_ctx *ctrl_ctx;
3309 	unsigned int ep_index;
3310 	unsigned long flags;
3311 	u32 changed_ep_bitmask;
3312 
3313 	xhci = hcd_to_xhci(hcd);
3314 	vdev = xhci->devs[udev->slot_id];
3315 
3316 	/* Set up a configure endpoint command to remove the streams rings */
3317 	spin_lock_irqsave(&xhci->lock, flags);
3318 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3319 			udev, eps, num_eps);
3320 	if (changed_ep_bitmask == 0) {
3321 		spin_unlock_irqrestore(&xhci->lock, flags);
3322 		return -EINVAL;
3323 	}
3324 
3325 	/* Use the xhci_command structure from the first endpoint.  We may have
3326 	 * allocated too many, but the driver may call xhci_free_streams() for
3327 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3328 	 */
3329 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3330 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3331 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3332 	if (!ctrl_ctx) {
3333 		spin_unlock_irqrestore(&xhci->lock, flags);
3334 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3335 				__func__);
3336 		return -EINVAL;
3337 	}
3338 
3339 	for (i = 0; i < num_eps; i++) {
3340 		struct xhci_ep_ctx *ep_ctx;
3341 
3342 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3343 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3344 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3345 			EP_GETTING_NO_STREAMS;
3346 
3347 		xhci_endpoint_copy(xhci, command->in_ctx,
3348 				vdev->out_ctx, ep_index);
3349 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3350 				&vdev->eps[ep_index]);
3351 	}
3352 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3353 			vdev->out_ctx, ctrl_ctx,
3354 			changed_ep_bitmask, changed_ep_bitmask);
3355 	spin_unlock_irqrestore(&xhci->lock, flags);
3356 
3357 	/* Issue and wait for the configure endpoint command,
3358 	 * which must succeed.
3359 	 */
3360 	ret = xhci_configure_endpoint(xhci, udev, command,
3361 			false, true);
3362 
3363 	/* xHC rejected the configure endpoint command for some reason, so we
3364 	 * leave the streams rings intact.
3365 	 */
3366 	if (ret < 0)
3367 		return ret;
3368 
3369 	spin_lock_irqsave(&xhci->lock, flags);
3370 	for (i = 0; i < num_eps; i++) {
3371 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3372 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3373 		vdev->eps[ep_index].stream_info = NULL;
3374 		/* FIXME Unset maxPstreams in endpoint context and
3375 		 * update deq ptr to point to normal string ring.
3376 		 */
3377 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3378 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3379 	}
3380 	spin_unlock_irqrestore(&xhci->lock, flags);
3381 
3382 	return 0;
3383 }
3384 
3385 /*
3386  * Deletes endpoint resources for endpoints that were active before a Reset
3387  * Device command, or a Disable Slot command.  The Reset Device command leaves
3388  * the control endpoint intact, whereas the Disable Slot command deletes it.
3389  *
3390  * Must be called with xhci->lock held.
3391  */
3392 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3393 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3394 {
3395 	int i;
3396 	unsigned int num_dropped_eps = 0;
3397 	unsigned int drop_flags = 0;
3398 
3399 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3400 		if (virt_dev->eps[i].ring) {
3401 			drop_flags |= 1 << i;
3402 			num_dropped_eps++;
3403 		}
3404 	}
3405 	xhci->num_active_eps -= num_dropped_eps;
3406 	if (num_dropped_eps)
3407 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3408 				"Dropped %u ep ctxs, flags = 0x%x, "
3409 				"%u now active.",
3410 				num_dropped_eps, drop_flags,
3411 				xhci->num_active_eps);
3412 }
3413 
3414 /*
3415  * This submits a Reset Device Command, which will set the device state to 0,
3416  * set the device address to 0, and disable all the endpoints except the default
3417  * control endpoint.  The USB core should come back and call
3418  * xhci_address_device(), and then re-set up the configuration.  If this is
3419  * called because of a usb_reset_and_verify_device(), then the old alternate
3420  * settings will be re-installed through the normal bandwidth allocation
3421  * functions.
3422  *
3423  * Wait for the Reset Device command to finish.  Remove all structures
3424  * associated with the endpoints that were disabled.  Clear the input device
3425  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3426  *
3427  * If the virt_dev to be reset does not exist or does not match the udev,
3428  * it means the device is lost, possibly due to the xHC restore error and
3429  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3430  * re-allocate the device.
3431  */
3432 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3433 {
3434 	int ret, i;
3435 	unsigned long flags;
3436 	struct xhci_hcd *xhci;
3437 	unsigned int slot_id;
3438 	struct xhci_virt_device *virt_dev;
3439 	struct xhci_command *reset_device_cmd;
3440 	int last_freed_endpoint;
3441 	struct xhci_slot_ctx *slot_ctx;
3442 	int old_active_eps = 0;
3443 
3444 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3445 	if (ret <= 0)
3446 		return ret;
3447 	xhci = hcd_to_xhci(hcd);
3448 	slot_id = udev->slot_id;
3449 	virt_dev = xhci->devs[slot_id];
3450 	if (!virt_dev) {
3451 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3452 				"not exist. Re-allocate the device\n", slot_id);
3453 		ret = xhci_alloc_dev(hcd, udev);
3454 		if (ret == 1)
3455 			return 0;
3456 		else
3457 			return -EINVAL;
3458 	}
3459 
3460 	if (virt_dev->udev != udev) {
3461 		/* If the virt_dev and the udev does not match, this virt_dev
3462 		 * may belong to another udev.
3463 		 * Re-allocate the device.
3464 		 */
3465 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3466 				"not match the udev. Re-allocate the device\n",
3467 				slot_id);
3468 		ret = xhci_alloc_dev(hcd, udev);
3469 		if (ret == 1)
3470 			return 0;
3471 		else
3472 			return -EINVAL;
3473 	}
3474 
3475 	/* If device is not setup, there is no point in resetting it */
3476 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3477 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3478 						SLOT_STATE_DISABLED)
3479 		return 0;
3480 
3481 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3482 	/* Allocate the command structure that holds the struct completion.
3483 	 * Assume we're in process context, since the normal device reset
3484 	 * process has to wait for the device anyway.  Storage devices are
3485 	 * reset as part of error handling, so use GFP_NOIO instead of
3486 	 * GFP_KERNEL.
3487 	 */
3488 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3489 	if (!reset_device_cmd) {
3490 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3491 		return -ENOMEM;
3492 	}
3493 
3494 	/* Attempt to submit the Reset Device command to the command ring */
3495 	spin_lock_irqsave(&xhci->lock, flags);
3496 
3497 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3498 	if (ret) {
3499 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3500 		spin_unlock_irqrestore(&xhci->lock, flags);
3501 		goto command_cleanup;
3502 	}
3503 	xhci_ring_cmd_db(xhci);
3504 	spin_unlock_irqrestore(&xhci->lock, flags);
3505 
3506 	/* Wait for the Reset Device command to finish */
3507 	wait_for_completion(reset_device_cmd->completion);
3508 
3509 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3510 	 * unless we tried to reset a slot ID that wasn't enabled,
3511 	 * or the device wasn't in the addressed or configured state.
3512 	 */
3513 	ret = reset_device_cmd->status;
3514 	switch (ret) {
3515 	case COMP_CMD_ABORT:
3516 	case COMP_CMD_STOP:
3517 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3518 		ret = -ETIME;
3519 		goto command_cleanup;
3520 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3521 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3522 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3523 				slot_id,
3524 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3525 		xhci_dbg(xhci, "Not freeing device rings.\n");
3526 		/* Don't treat this as an error.  May change my mind later. */
3527 		ret = 0;
3528 		goto command_cleanup;
3529 	case COMP_SUCCESS:
3530 		xhci_dbg(xhci, "Successful reset device command.\n");
3531 		break;
3532 	default:
3533 		if (xhci_is_vendor_info_code(xhci, ret))
3534 			break;
3535 		xhci_warn(xhci, "Unknown completion code %u for "
3536 				"reset device command.\n", ret);
3537 		ret = -EINVAL;
3538 		goto command_cleanup;
3539 	}
3540 
3541 	/* Free up host controller endpoint resources */
3542 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3543 		spin_lock_irqsave(&xhci->lock, flags);
3544 		/* Don't delete the default control endpoint resources */
3545 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3546 		spin_unlock_irqrestore(&xhci->lock, flags);
3547 	}
3548 
3549 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3550 	last_freed_endpoint = 1;
3551 	for (i = 1; i < 31; ++i) {
3552 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3553 
3554 		if (ep->ep_state & EP_HAS_STREAMS) {
3555 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3556 					xhci_get_endpoint_address(i));
3557 			xhci_free_stream_info(xhci, ep->stream_info);
3558 			ep->stream_info = NULL;
3559 			ep->ep_state &= ~EP_HAS_STREAMS;
3560 		}
3561 
3562 		if (ep->ring) {
3563 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3564 			last_freed_endpoint = i;
3565 		}
3566 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3567 			xhci_drop_ep_from_interval_table(xhci,
3568 					&virt_dev->eps[i].bw_info,
3569 					virt_dev->bw_table,
3570 					udev,
3571 					&virt_dev->eps[i],
3572 					virt_dev->tt_info);
3573 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3574 	}
3575 	/* If necessary, update the number of active TTs on this root port */
3576 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3577 
3578 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3579 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3580 	ret = 0;
3581 
3582 command_cleanup:
3583 	xhci_free_command(xhci, reset_device_cmd);
3584 	return ret;
3585 }
3586 
3587 /*
3588  * At this point, the struct usb_device is about to go away, the device has
3589  * disconnected, and all traffic has been stopped and the endpoints have been
3590  * disabled.  Free any HC data structures associated with that device.
3591  */
3592 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3593 {
3594 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3595 	struct xhci_virt_device *virt_dev;
3596 	unsigned long flags;
3597 	u32 state;
3598 	int i, ret;
3599 	struct xhci_command *command;
3600 
3601 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3602 	if (!command)
3603 		return;
3604 
3605 #ifndef CONFIG_USB_DEFAULT_PERSIST
3606 	/*
3607 	 * We called pm_runtime_get_noresume when the device was attached.
3608 	 * Decrement the counter here to allow controller to runtime suspend
3609 	 * if no devices remain.
3610 	 */
3611 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3612 		pm_runtime_put_noidle(hcd->self.controller);
3613 #endif
3614 
3615 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3616 	/* If the host is halted due to driver unload, we still need to free the
3617 	 * device.
3618 	 */
3619 	if (ret <= 0 && ret != -ENODEV) {
3620 		kfree(command);
3621 		return;
3622 	}
3623 
3624 	virt_dev = xhci->devs[udev->slot_id];
3625 
3626 	/* Stop any wayward timer functions (which may grab the lock) */
3627 	for (i = 0; i < 31; ++i) {
3628 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3629 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3630 	}
3631 
3632 	spin_lock_irqsave(&xhci->lock, flags);
3633 	/* Don't disable the slot if the host controller is dead. */
3634 	state = readl(&xhci->op_regs->status);
3635 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3636 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3637 		xhci_free_virt_device(xhci, udev->slot_id);
3638 		spin_unlock_irqrestore(&xhci->lock, flags);
3639 		kfree(command);
3640 		return;
3641 	}
3642 
3643 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3644 				    udev->slot_id)) {
3645 		spin_unlock_irqrestore(&xhci->lock, flags);
3646 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3647 		return;
3648 	}
3649 	xhci_ring_cmd_db(xhci);
3650 	spin_unlock_irqrestore(&xhci->lock, flags);
3651 
3652 	/*
3653 	 * Event command completion handler will free any data structures
3654 	 * associated with the slot.  XXX Can free sleep?
3655 	 */
3656 }
3657 
3658 /*
3659  * Checks if we have enough host controller resources for the default control
3660  * endpoint.
3661  *
3662  * Must be called with xhci->lock held.
3663  */
3664 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3665 {
3666 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3667 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3668 				"Not enough ep ctxs: "
3669 				"%u active, need to add 1, limit is %u.",
3670 				xhci->num_active_eps, xhci->limit_active_eps);
3671 		return -ENOMEM;
3672 	}
3673 	xhci->num_active_eps += 1;
3674 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3675 			"Adding 1 ep ctx, %u now active.",
3676 			xhci->num_active_eps);
3677 	return 0;
3678 }
3679 
3680 
3681 /*
3682  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3683  * timed out, or allocating memory failed.  Returns 1 on success.
3684  */
3685 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3686 {
3687 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3688 	unsigned long flags;
3689 	int ret;
3690 	struct xhci_command *command;
3691 
3692 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3693 	if (!command)
3694 		return 0;
3695 
3696 	spin_lock_irqsave(&xhci->lock, flags);
3697 	command->completion = &xhci->addr_dev;
3698 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3699 	if (ret) {
3700 		spin_unlock_irqrestore(&xhci->lock, flags);
3701 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3702 		kfree(command);
3703 		return 0;
3704 	}
3705 	xhci_ring_cmd_db(xhci);
3706 	spin_unlock_irqrestore(&xhci->lock, flags);
3707 
3708 	wait_for_completion(command->completion);
3709 
3710 	if (!xhci->slot_id || command->status != COMP_SUCCESS) {
3711 		xhci_err(xhci, "Error while assigning device slot ID\n");
3712 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3713 				HCS_MAX_SLOTS(
3714 					readl(&xhci->cap_regs->hcs_params1)));
3715 		kfree(command);
3716 		return 0;
3717 	}
3718 
3719 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3720 		spin_lock_irqsave(&xhci->lock, flags);
3721 		ret = xhci_reserve_host_control_ep_resources(xhci);
3722 		if (ret) {
3723 			spin_unlock_irqrestore(&xhci->lock, flags);
3724 			xhci_warn(xhci, "Not enough host resources, "
3725 					"active endpoint contexts = %u\n",
3726 					xhci->num_active_eps);
3727 			goto disable_slot;
3728 		}
3729 		spin_unlock_irqrestore(&xhci->lock, flags);
3730 	}
3731 	/* Use GFP_NOIO, since this function can be called from
3732 	 * xhci_discover_or_reset_device(), which may be called as part of
3733 	 * mass storage driver error handling.
3734 	 */
3735 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3736 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3737 		goto disable_slot;
3738 	}
3739 	udev->slot_id = xhci->slot_id;
3740 
3741 #ifndef CONFIG_USB_DEFAULT_PERSIST
3742 	/*
3743 	 * If resetting upon resume, we can't put the controller into runtime
3744 	 * suspend if there is a device attached.
3745 	 */
3746 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3747 		pm_runtime_get_noresume(hcd->self.controller);
3748 #endif
3749 
3750 
3751 	kfree(command);
3752 	/* Is this a LS or FS device under a HS hub? */
3753 	/* Hub or peripherial? */
3754 	return 1;
3755 
3756 disable_slot:
3757 	/* Disable slot, if we can do it without mem alloc */
3758 	spin_lock_irqsave(&xhci->lock, flags);
3759 	command->completion = NULL;
3760 	command->status = 0;
3761 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3762 				     udev->slot_id))
3763 		xhci_ring_cmd_db(xhci);
3764 	spin_unlock_irqrestore(&xhci->lock, flags);
3765 	return 0;
3766 }
3767 
3768 /*
3769  * Issue an Address Device command and optionally send a corresponding
3770  * SetAddress request to the device.
3771  * We should be protected by the usb_address0_mutex in hub_wq's hub_port_init,
3772  * so we should only issue and wait on one address command at the same time.
3773  */
3774 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3775 			     enum xhci_setup_dev setup)
3776 {
3777 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3778 	unsigned long flags;
3779 	struct xhci_virt_device *virt_dev;
3780 	int ret = 0;
3781 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3782 	struct xhci_slot_ctx *slot_ctx;
3783 	struct xhci_input_control_ctx *ctrl_ctx;
3784 	u64 temp_64;
3785 	struct xhci_command *command;
3786 
3787 	if (!udev->slot_id) {
3788 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3789 				"Bad Slot ID %d", udev->slot_id);
3790 		return -EINVAL;
3791 	}
3792 
3793 	virt_dev = xhci->devs[udev->slot_id];
3794 
3795 	if (WARN_ON(!virt_dev)) {
3796 		/*
3797 		 * In plug/unplug torture test with an NEC controller,
3798 		 * a zero-dereference was observed once due to virt_dev = 0.
3799 		 * Print useful debug rather than crash if it is observed again!
3800 		 */
3801 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3802 			udev->slot_id);
3803 		return -EINVAL;
3804 	}
3805 
3806 	if (setup == SETUP_CONTEXT_ONLY) {
3807 		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3808 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3809 		    SLOT_STATE_DEFAULT) {
3810 			xhci_dbg(xhci, "Slot already in default state\n");
3811 			return 0;
3812 		}
3813 	}
3814 
3815 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3816 	if (!command)
3817 		return -ENOMEM;
3818 
3819 	command->in_ctx = virt_dev->in_ctx;
3820 	command->completion = &xhci->addr_dev;
3821 
3822 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3823 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3824 	if (!ctrl_ctx) {
3825 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3826 				__func__);
3827 		kfree(command);
3828 		return -EINVAL;
3829 	}
3830 	/*
3831 	 * If this is the first Set Address since device plug-in or
3832 	 * virt_device realloaction after a resume with an xHCI power loss,
3833 	 * then set up the slot context.
3834 	 */
3835 	if (!slot_ctx->dev_info)
3836 		xhci_setup_addressable_virt_dev(xhci, udev);
3837 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3838 	else
3839 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3840 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3841 	ctrl_ctx->drop_flags = 0;
3842 
3843 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3844 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3845 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3846 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3847 
3848 	spin_lock_irqsave(&xhci->lock, flags);
3849 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3850 					udev->slot_id, setup);
3851 	if (ret) {
3852 		spin_unlock_irqrestore(&xhci->lock, flags);
3853 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3854 				"FIXME: allocate a command ring segment");
3855 		kfree(command);
3856 		return ret;
3857 	}
3858 	xhci_ring_cmd_db(xhci);
3859 	spin_unlock_irqrestore(&xhci->lock, flags);
3860 
3861 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3862 	wait_for_completion(command->completion);
3863 
3864 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3865 	 * the SetAddress() "recovery interval" required by USB and aborting the
3866 	 * command on a timeout.
3867 	 */
3868 	switch (command->status) {
3869 	case COMP_CMD_ABORT:
3870 	case COMP_CMD_STOP:
3871 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3872 		ret = -ETIME;
3873 		break;
3874 	case COMP_CTX_STATE:
3875 	case COMP_EBADSLT:
3876 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3877 			 act, udev->slot_id);
3878 		ret = -EINVAL;
3879 		break;
3880 	case COMP_TX_ERR:
3881 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3882 		ret = -EPROTO;
3883 		break;
3884 	case COMP_DEV_ERR:
3885 		dev_warn(&udev->dev,
3886 			 "ERROR: Incompatible device for setup %s command\n", act);
3887 		ret = -ENODEV;
3888 		break;
3889 	case COMP_SUCCESS:
3890 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3891 			       "Successful setup %s command", act);
3892 		break;
3893 	default:
3894 		xhci_err(xhci,
3895 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3896 			 act, command->status);
3897 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3898 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3899 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3900 		ret = -EINVAL;
3901 		break;
3902 	}
3903 	if (ret) {
3904 		kfree(command);
3905 		return ret;
3906 	}
3907 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3908 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3909 			"Op regs DCBAA ptr = %#016llx", temp_64);
3910 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3911 		"Slot ID %d dcbaa entry @%p = %#016llx",
3912 		udev->slot_id,
3913 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3914 		(unsigned long long)
3915 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3916 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3917 			"Output Context DMA address = %#08llx",
3918 			(unsigned long long)virt_dev->out_ctx->dma);
3919 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3920 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3921 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3922 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3923 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3924 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3925 	/*
3926 	 * USB core uses address 1 for the roothubs, so we add one to the
3927 	 * address given back to us by the HC.
3928 	 */
3929 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3930 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3931 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3932 	/* Zero the input context control for later use */
3933 	ctrl_ctx->add_flags = 0;
3934 	ctrl_ctx->drop_flags = 0;
3935 
3936 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3937 		       "Internal device address = %d",
3938 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3939 	kfree(command);
3940 	return 0;
3941 }
3942 
3943 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3944 {
3945 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3946 }
3947 
3948 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3949 {
3950 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3951 }
3952 
3953 /*
3954  * Transfer the port index into real index in the HW port status
3955  * registers. Caculate offset between the port's PORTSC register
3956  * and port status base. Divide the number of per port register
3957  * to get the real index. The raw port number bases 1.
3958  */
3959 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3960 {
3961 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3962 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3963 	__le32 __iomem *addr;
3964 	int raw_port;
3965 
3966 	if (hcd->speed != HCD_USB3)
3967 		addr = xhci->usb2_ports[port1 - 1];
3968 	else
3969 		addr = xhci->usb3_ports[port1 - 1];
3970 
3971 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3972 	return raw_port;
3973 }
3974 
3975 /*
3976  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3977  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3978  */
3979 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3980 			struct usb_device *udev, u16 max_exit_latency)
3981 {
3982 	struct xhci_virt_device *virt_dev;
3983 	struct xhci_command *command;
3984 	struct xhci_input_control_ctx *ctrl_ctx;
3985 	struct xhci_slot_ctx *slot_ctx;
3986 	unsigned long flags;
3987 	int ret;
3988 
3989 	spin_lock_irqsave(&xhci->lock, flags);
3990 
3991 	virt_dev = xhci->devs[udev->slot_id];
3992 
3993 	/*
3994 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3995 	 * xHC was re-initialized. Exit latency will be set later after
3996 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3997 	 */
3998 
3999 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4000 		spin_unlock_irqrestore(&xhci->lock, flags);
4001 		return 0;
4002 	}
4003 
4004 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4005 	command = xhci->lpm_command;
4006 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4007 	if (!ctrl_ctx) {
4008 		spin_unlock_irqrestore(&xhci->lock, flags);
4009 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4010 				__func__);
4011 		return -ENOMEM;
4012 	}
4013 
4014 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4015 	spin_unlock_irqrestore(&xhci->lock, flags);
4016 
4017 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4018 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4019 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4020 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4021 	slot_ctx->dev_state = 0;
4022 
4023 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4024 			"Set up evaluate context for LPM MEL change.");
4025 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4026 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4027 
4028 	/* Issue and wait for the evaluate context command. */
4029 	ret = xhci_configure_endpoint(xhci, udev, command,
4030 			true, true);
4031 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4032 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4033 
4034 	if (!ret) {
4035 		spin_lock_irqsave(&xhci->lock, flags);
4036 		virt_dev->current_mel = max_exit_latency;
4037 		spin_unlock_irqrestore(&xhci->lock, flags);
4038 	}
4039 	return ret;
4040 }
4041 
4042 #ifdef CONFIG_PM
4043 
4044 /* BESL to HIRD Encoding array for USB2 LPM */
4045 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4046 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4047 
4048 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4049 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4050 					struct usb_device *udev)
4051 {
4052 	int u2del, besl, besl_host;
4053 	int besl_device = 0;
4054 	u32 field;
4055 
4056 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4057 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4058 
4059 	if (field & USB_BESL_SUPPORT) {
4060 		for (besl_host = 0; besl_host < 16; besl_host++) {
4061 			if (xhci_besl_encoding[besl_host] >= u2del)
4062 				break;
4063 		}
4064 		/* Use baseline BESL value as default */
4065 		if (field & USB_BESL_BASELINE_VALID)
4066 			besl_device = USB_GET_BESL_BASELINE(field);
4067 		else if (field & USB_BESL_DEEP_VALID)
4068 			besl_device = USB_GET_BESL_DEEP(field);
4069 	} else {
4070 		if (u2del <= 50)
4071 			besl_host = 0;
4072 		else
4073 			besl_host = (u2del - 51) / 75 + 1;
4074 	}
4075 
4076 	besl = besl_host + besl_device;
4077 	if (besl > 15)
4078 		besl = 15;
4079 
4080 	return besl;
4081 }
4082 
4083 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4084 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4085 {
4086 	u32 field;
4087 	int l1;
4088 	int besld = 0;
4089 	int hirdm = 0;
4090 
4091 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4092 
4093 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4094 	l1 = udev->l1_params.timeout / 256;
4095 
4096 	/* device has preferred BESLD */
4097 	if (field & USB_BESL_DEEP_VALID) {
4098 		besld = USB_GET_BESL_DEEP(field);
4099 		hirdm = 1;
4100 	}
4101 
4102 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4103 }
4104 
4105 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4106 			struct usb_device *udev, int enable)
4107 {
4108 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4109 	__le32 __iomem	**port_array;
4110 	__le32 __iomem	*pm_addr, *hlpm_addr;
4111 	u32		pm_val, hlpm_val, field;
4112 	unsigned int	port_num;
4113 	unsigned long	flags;
4114 	int		hird, exit_latency;
4115 	int		ret;
4116 
4117 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4118 			!udev->lpm_capable)
4119 		return -EPERM;
4120 
4121 	if (!udev->parent || udev->parent->parent ||
4122 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4123 		return -EPERM;
4124 
4125 	if (udev->usb2_hw_lpm_capable != 1)
4126 		return -EPERM;
4127 
4128 	spin_lock_irqsave(&xhci->lock, flags);
4129 
4130 	port_array = xhci->usb2_ports;
4131 	port_num = udev->portnum - 1;
4132 	pm_addr = port_array[port_num] + PORTPMSC;
4133 	pm_val = readl(pm_addr);
4134 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4135 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4136 
4137 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4138 			enable ? "enable" : "disable", port_num + 1);
4139 
4140 	if (enable) {
4141 		/* Host supports BESL timeout instead of HIRD */
4142 		if (udev->usb2_hw_lpm_besl_capable) {
4143 			/* if device doesn't have a preferred BESL value use a
4144 			 * default one which works with mixed HIRD and BESL
4145 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4146 			 */
4147 			if ((field & USB_BESL_SUPPORT) &&
4148 			    (field & USB_BESL_BASELINE_VALID))
4149 				hird = USB_GET_BESL_BASELINE(field);
4150 			else
4151 				hird = udev->l1_params.besl;
4152 
4153 			exit_latency = xhci_besl_encoding[hird];
4154 			spin_unlock_irqrestore(&xhci->lock, flags);
4155 
4156 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4157 			 * input context for link powermanagement evaluate
4158 			 * context commands. It is protected by hcd->bandwidth
4159 			 * mutex and is shared by all devices. We need to set
4160 			 * the max ext latency in USB 2 BESL LPM as well, so
4161 			 * use the same mutex and xhci_change_max_exit_latency()
4162 			 */
4163 			mutex_lock(hcd->bandwidth_mutex);
4164 			ret = xhci_change_max_exit_latency(xhci, udev,
4165 							   exit_latency);
4166 			mutex_unlock(hcd->bandwidth_mutex);
4167 
4168 			if (ret < 0)
4169 				return ret;
4170 			spin_lock_irqsave(&xhci->lock, flags);
4171 
4172 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4173 			writel(hlpm_val, hlpm_addr);
4174 			/* flush write */
4175 			readl(hlpm_addr);
4176 		} else {
4177 			hird = xhci_calculate_hird_besl(xhci, udev);
4178 		}
4179 
4180 		pm_val &= ~PORT_HIRD_MASK;
4181 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4182 		writel(pm_val, pm_addr);
4183 		pm_val = readl(pm_addr);
4184 		pm_val |= PORT_HLE;
4185 		writel(pm_val, pm_addr);
4186 		/* flush write */
4187 		readl(pm_addr);
4188 	} else {
4189 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4190 		writel(pm_val, pm_addr);
4191 		/* flush write */
4192 		readl(pm_addr);
4193 		if (udev->usb2_hw_lpm_besl_capable) {
4194 			spin_unlock_irqrestore(&xhci->lock, flags);
4195 			mutex_lock(hcd->bandwidth_mutex);
4196 			xhci_change_max_exit_latency(xhci, udev, 0);
4197 			mutex_unlock(hcd->bandwidth_mutex);
4198 			return 0;
4199 		}
4200 	}
4201 
4202 	spin_unlock_irqrestore(&xhci->lock, flags);
4203 	return 0;
4204 }
4205 
4206 /* check if a usb2 port supports a given extened capability protocol
4207  * only USB2 ports extended protocol capability values are cached.
4208  * Return 1 if capability is supported
4209  */
4210 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4211 					   unsigned capability)
4212 {
4213 	u32 port_offset, port_count;
4214 	int i;
4215 
4216 	for (i = 0; i < xhci->num_ext_caps; i++) {
4217 		if (xhci->ext_caps[i] & capability) {
4218 			/* port offsets starts at 1 */
4219 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4220 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4221 			if (port >= port_offset &&
4222 			    port < port_offset + port_count)
4223 				return 1;
4224 		}
4225 	}
4226 	return 0;
4227 }
4228 
4229 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4230 {
4231 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4232 	int		portnum = udev->portnum - 1;
4233 
4234 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4235 			!udev->lpm_capable)
4236 		return 0;
4237 
4238 	/* we only support lpm for non-hub device connected to root hub yet */
4239 	if (!udev->parent || udev->parent->parent ||
4240 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4241 		return 0;
4242 
4243 	if (xhci->hw_lpm_support == 1 &&
4244 			xhci_check_usb2_port_capability(
4245 				xhci, portnum, XHCI_HLC)) {
4246 		udev->usb2_hw_lpm_capable = 1;
4247 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4248 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4249 		if (xhci_check_usb2_port_capability(xhci, portnum,
4250 					XHCI_BLC))
4251 			udev->usb2_hw_lpm_besl_capable = 1;
4252 	}
4253 
4254 	return 0;
4255 }
4256 
4257 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4258 
4259 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4260 static unsigned long long xhci_service_interval_to_ns(
4261 		struct usb_endpoint_descriptor *desc)
4262 {
4263 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4264 }
4265 
4266 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4267 		enum usb3_link_state state)
4268 {
4269 	unsigned long long sel;
4270 	unsigned long long pel;
4271 	unsigned int max_sel_pel;
4272 	char *state_name;
4273 
4274 	switch (state) {
4275 	case USB3_LPM_U1:
4276 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4277 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4278 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4279 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4280 		state_name = "U1";
4281 		break;
4282 	case USB3_LPM_U2:
4283 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4284 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4285 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4286 		state_name = "U2";
4287 		break;
4288 	default:
4289 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4290 				__func__);
4291 		return USB3_LPM_DISABLED;
4292 	}
4293 
4294 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4295 		return USB3_LPM_DEVICE_INITIATED;
4296 
4297 	if (sel > max_sel_pel)
4298 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4299 				"due to long SEL %llu ms\n",
4300 				state_name, sel);
4301 	else
4302 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4303 				"due to long PEL %llu ms\n",
4304 				state_name, pel);
4305 	return USB3_LPM_DISABLED;
4306 }
4307 
4308 /* The U1 timeout should be the maximum of the following values:
4309  *  - For control endpoints, U1 system exit latency (SEL) * 3
4310  *  - For bulk endpoints, U1 SEL * 5
4311  *  - For interrupt endpoints:
4312  *    - Notification EPs, U1 SEL * 3
4313  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4314  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4315  */
4316 static unsigned long long xhci_calculate_intel_u1_timeout(
4317 		struct usb_device *udev,
4318 		struct usb_endpoint_descriptor *desc)
4319 {
4320 	unsigned long long timeout_ns;
4321 	int ep_type;
4322 	int intr_type;
4323 
4324 	ep_type = usb_endpoint_type(desc);
4325 	switch (ep_type) {
4326 	case USB_ENDPOINT_XFER_CONTROL:
4327 		timeout_ns = udev->u1_params.sel * 3;
4328 		break;
4329 	case USB_ENDPOINT_XFER_BULK:
4330 		timeout_ns = udev->u1_params.sel * 5;
4331 		break;
4332 	case USB_ENDPOINT_XFER_INT:
4333 		intr_type = usb_endpoint_interrupt_type(desc);
4334 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4335 			timeout_ns = udev->u1_params.sel * 3;
4336 			break;
4337 		}
4338 		/* Otherwise the calculation is the same as isoc eps */
4339 	case USB_ENDPOINT_XFER_ISOC:
4340 		timeout_ns = xhci_service_interval_to_ns(desc);
4341 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4342 		if (timeout_ns < udev->u1_params.sel * 2)
4343 			timeout_ns = udev->u1_params.sel * 2;
4344 		break;
4345 	default:
4346 		return 0;
4347 	}
4348 
4349 	return timeout_ns;
4350 }
4351 
4352 /* Returns the hub-encoded U1 timeout value. */
4353 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4354 		struct usb_device *udev,
4355 		struct usb_endpoint_descriptor *desc)
4356 {
4357 	unsigned long long timeout_ns;
4358 
4359 	if (xhci->quirks & XHCI_INTEL_HOST)
4360 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4361 	else
4362 		timeout_ns = udev->u1_params.sel;
4363 
4364 	/* The U1 timeout is encoded in 1us intervals.
4365 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4366 	 */
4367 	if (timeout_ns == USB3_LPM_DISABLED)
4368 		timeout_ns = 1;
4369 	else
4370 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4371 
4372 	/* If the necessary timeout value is bigger than what we can set in the
4373 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4374 	 */
4375 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4376 		return timeout_ns;
4377 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4378 			"due to long timeout %llu ms\n", timeout_ns);
4379 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4380 }
4381 
4382 /* The U2 timeout should be the maximum of:
4383  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4384  *  - largest bInterval of any active periodic endpoint (to avoid going
4385  *    into lower power link states between intervals).
4386  *  - the U2 Exit Latency of the device
4387  */
4388 static unsigned long long xhci_calculate_intel_u2_timeout(
4389 		struct usb_device *udev,
4390 		struct usb_endpoint_descriptor *desc)
4391 {
4392 	unsigned long long timeout_ns;
4393 	unsigned long long u2_del_ns;
4394 
4395 	timeout_ns = 10 * 1000 * 1000;
4396 
4397 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4398 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4399 		timeout_ns = xhci_service_interval_to_ns(desc);
4400 
4401 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4402 	if (u2_del_ns > timeout_ns)
4403 		timeout_ns = u2_del_ns;
4404 
4405 	return timeout_ns;
4406 }
4407 
4408 /* Returns the hub-encoded U2 timeout value. */
4409 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4410 		struct usb_device *udev,
4411 		struct usb_endpoint_descriptor *desc)
4412 {
4413 	unsigned long long timeout_ns;
4414 
4415 	if (xhci->quirks & XHCI_INTEL_HOST)
4416 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4417 	else
4418 		timeout_ns = udev->u2_params.sel;
4419 
4420 	/* The U2 timeout is encoded in 256us intervals */
4421 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4422 	/* If the necessary timeout value is bigger than what we can set in the
4423 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4424 	 */
4425 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4426 		return timeout_ns;
4427 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4428 			"due to long timeout %llu ms\n", timeout_ns);
4429 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4430 }
4431 
4432 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4433 		struct usb_device *udev,
4434 		struct usb_endpoint_descriptor *desc,
4435 		enum usb3_link_state state,
4436 		u16 *timeout)
4437 {
4438 	if (state == USB3_LPM_U1)
4439 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4440 	else if (state == USB3_LPM_U2)
4441 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4442 
4443 	return USB3_LPM_DISABLED;
4444 }
4445 
4446 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4447 		struct usb_device *udev,
4448 		struct usb_endpoint_descriptor *desc,
4449 		enum usb3_link_state state,
4450 		u16 *timeout)
4451 {
4452 	u16 alt_timeout;
4453 
4454 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4455 		desc, state, timeout);
4456 
4457 	/* If we found we can't enable hub-initiated LPM, or
4458 	 * the U1 or U2 exit latency was too high to allow
4459 	 * device-initiated LPM as well, just stop searching.
4460 	 */
4461 	if (alt_timeout == USB3_LPM_DISABLED ||
4462 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4463 		*timeout = alt_timeout;
4464 		return -E2BIG;
4465 	}
4466 	if (alt_timeout > *timeout)
4467 		*timeout = alt_timeout;
4468 	return 0;
4469 }
4470 
4471 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4472 		struct usb_device *udev,
4473 		struct usb_host_interface *alt,
4474 		enum usb3_link_state state,
4475 		u16 *timeout)
4476 {
4477 	int j;
4478 
4479 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4480 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4481 					&alt->endpoint[j].desc, state, timeout))
4482 			return -E2BIG;
4483 		continue;
4484 	}
4485 	return 0;
4486 }
4487 
4488 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4489 		enum usb3_link_state state)
4490 {
4491 	struct usb_device *parent;
4492 	unsigned int num_hubs;
4493 
4494 	if (state == USB3_LPM_U2)
4495 		return 0;
4496 
4497 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4498 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4499 			parent = parent->parent)
4500 		num_hubs++;
4501 
4502 	if (num_hubs < 2)
4503 		return 0;
4504 
4505 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4506 			" below second-tier hub.\n");
4507 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4508 			"to decrease power consumption.\n");
4509 	return -E2BIG;
4510 }
4511 
4512 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4513 		struct usb_device *udev,
4514 		enum usb3_link_state state)
4515 {
4516 	if (xhci->quirks & XHCI_INTEL_HOST)
4517 		return xhci_check_intel_tier_policy(udev, state);
4518 	else
4519 		return 0;
4520 }
4521 
4522 /* Returns the U1 or U2 timeout that should be enabled.
4523  * If the tier check or timeout setting functions return with a non-zero exit
4524  * code, that means the timeout value has been finalized and we shouldn't look
4525  * at any more endpoints.
4526  */
4527 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4528 			struct usb_device *udev, enum usb3_link_state state)
4529 {
4530 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4531 	struct usb_host_config *config;
4532 	char *state_name;
4533 	int i;
4534 	u16 timeout = USB3_LPM_DISABLED;
4535 
4536 	if (state == USB3_LPM_U1)
4537 		state_name = "U1";
4538 	else if (state == USB3_LPM_U2)
4539 		state_name = "U2";
4540 	else {
4541 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4542 				state);
4543 		return timeout;
4544 	}
4545 
4546 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4547 		return timeout;
4548 
4549 	/* Gather some information about the currently installed configuration
4550 	 * and alternate interface settings.
4551 	 */
4552 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4553 			state, &timeout))
4554 		return timeout;
4555 
4556 	config = udev->actconfig;
4557 	if (!config)
4558 		return timeout;
4559 
4560 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4561 		struct usb_driver *driver;
4562 		struct usb_interface *intf = config->interface[i];
4563 
4564 		if (!intf)
4565 			continue;
4566 
4567 		/* Check if any currently bound drivers want hub-initiated LPM
4568 		 * disabled.
4569 		 */
4570 		if (intf->dev.driver) {
4571 			driver = to_usb_driver(intf->dev.driver);
4572 			if (driver && driver->disable_hub_initiated_lpm) {
4573 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4574 						"at request of driver %s\n",
4575 						state_name, driver->name);
4576 				return xhci_get_timeout_no_hub_lpm(udev, state);
4577 			}
4578 		}
4579 
4580 		/* Not sure how this could happen... */
4581 		if (!intf->cur_altsetting)
4582 			continue;
4583 
4584 		if (xhci_update_timeout_for_interface(xhci, udev,
4585 					intf->cur_altsetting,
4586 					state, &timeout))
4587 			return timeout;
4588 	}
4589 	return timeout;
4590 }
4591 
4592 static int calculate_max_exit_latency(struct usb_device *udev,
4593 		enum usb3_link_state state_changed,
4594 		u16 hub_encoded_timeout)
4595 {
4596 	unsigned long long u1_mel_us = 0;
4597 	unsigned long long u2_mel_us = 0;
4598 	unsigned long long mel_us = 0;
4599 	bool disabling_u1;
4600 	bool disabling_u2;
4601 	bool enabling_u1;
4602 	bool enabling_u2;
4603 
4604 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4605 			hub_encoded_timeout == USB3_LPM_DISABLED);
4606 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4607 			hub_encoded_timeout == USB3_LPM_DISABLED);
4608 
4609 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4610 			hub_encoded_timeout != USB3_LPM_DISABLED);
4611 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4612 			hub_encoded_timeout != USB3_LPM_DISABLED);
4613 
4614 	/* If U1 was already enabled and we're not disabling it,
4615 	 * or we're going to enable U1, account for the U1 max exit latency.
4616 	 */
4617 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4618 			enabling_u1)
4619 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4620 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4621 			enabling_u2)
4622 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4623 
4624 	if (u1_mel_us > u2_mel_us)
4625 		mel_us = u1_mel_us;
4626 	else
4627 		mel_us = u2_mel_us;
4628 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4629 	if (mel_us > MAX_EXIT) {
4630 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4631 				"is too big.\n", mel_us);
4632 		return -E2BIG;
4633 	}
4634 	return mel_us;
4635 }
4636 
4637 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4638 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4639 			struct usb_device *udev, enum usb3_link_state state)
4640 {
4641 	struct xhci_hcd	*xhci;
4642 	u16 hub_encoded_timeout;
4643 	int mel;
4644 	int ret;
4645 
4646 	xhci = hcd_to_xhci(hcd);
4647 	/* The LPM timeout values are pretty host-controller specific, so don't
4648 	 * enable hub-initiated timeouts unless the vendor has provided
4649 	 * information about their timeout algorithm.
4650 	 */
4651 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4652 			!xhci->devs[udev->slot_id])
4653 		return USB3_LPM_DISABLED;
4654 
4655 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4656 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4657 	if (mel < 0) {
4658 		/* Max Exit Latency is too big, disable LPM. */
4659 		hub_encoded_timeout = USB3_LPM_DISABLED;
4660 		mel = 0;
4661 	}
4662 
4663 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4664 	if (ret)
4665 		return ret;
4666 	return hub_encoded_timeout;
4667 }
4668 
4669 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4670 			struct usb_device *udev, enum usb3_link_state state)
4671 {
4672 	struct xhci_hcd	*xhci;
4673 	u16 mel;
4674 	int ret;
4675 
4676 	xhci = hcd_to_xhci(hcd);
4677 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4678 			!xhci->devs[udev->slot_id])
4679 		return 0;
4680 
4681 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4682 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4683 	if (ret)
4684 		return ret;
4685 	return 0;
4686 }
4687 #else /* CONFIG_PM */
4688 
4689 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4690 				struct usb_device *udev, int enable)
4691 {
4692 	return 0;
4693 }
4694 
4695 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4696 {
4697 	return 0;
4698 }
4699 
4700 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4701 			struct usb_device *udev, enum usb3_link_state state)
4702 {
4703 	return USB3_LPM_DISABLED;
4704 }
4705 
4706 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4707 			struct usb_device *udev, enum usb3_link_state state)
4708 {
4709 	return 0;
4710 }
4711 #endif	/* CONFIG_PM */
4712 
4713 /*-------------------------------------------------------------------------*/
4714 
4715 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4716  * internal data structures for the device.
4717  */
4718 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4719 			struct usb_tt *tt, gfp_t mem_flags)
4720 {
4721 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4722 	struct xhci_virt_device *vdev;
4723 	struct xhci_command *config_cmd;
4724 	struct xhci_input_control_ctx *ctrl_ctx;
4725 	struct xhci_slot_ctx *slot_ctx;
4726 	unsigned long flags;
4727 	unsigned think_time;
4728 	int ret;
4729 
4730 	/* Ignore root hubs */
4731 	if (!hdev->parent)
4732 		return 0;
4733 
4734 	vdev = xhci->devs[hdev->slot_id];
4735 	if (!vdev) {
4736 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4737 		return -EINVAL;
4738 	}
4739 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4740 	if (!config_cmd) {
4741 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4742 		return -ENOMEM;
4743 	}
4744 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4745 	if (!ctrl_ctx) {
4746 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4747 				__func__);
4748 		xhci_free_command(xhci, config_cmd);
4749 		return -ENOMEM;
4750 	}
4751 
4752 	spin_lock_irqsave(&xhci->lock, flags);
4753 	if (hdev->speed == USB_SPEED_HIGH &&
4754 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4755 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4756 		xhci_free_command(xhci, config_cmd);
4757 		spin_unlock_irqrestore(&xhci->lock, flags);
4758 		return -ENOMEM;
4759 	}
4760 
4761 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4762 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4763 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4764 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4765 	if (tt->multi)
4766 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4767 	if (xhci->hci_version > 0x95) {
4768 		xhci_dbg(xhci, "xHCI version %x needs hub "
4769 				"TT think time and number of ports\n",
4770 				(unsigned int) xhci->hci_version);
4771 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4772 		/* Set TT think time - convert from ns to FS bit times.
4773 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4774 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4775 		 *
4776 		 * xHCI 1.0: this field shall be 0 if the device is not a
4777 		 * High-spped hub.
4778 		 */
4779 		think_time = tt->think_time;
4780 		if (think_time != 0)
4781 			think_time = (think_time / 666) - 1;
4782 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4783 			slot_ctx->tt_info |=
4784 				cpu_to_le32(TT_THINK_TIME(think_time));
4785 	} else {
4786 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4787 				"TT think time or number of ports\n",
4788 				(unsigned int) xhci->hci_version);
4789 	}
4790 	slot_ctx->dev_state = 0;
4791 	spin_unlock_irqrestore(&xhci->lock, flags);
4792 
4793 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4794 			(xhci->hci_version > 0x95) ?
4795 			"configure endpoint" : "evaluate context");
4796 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4797 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4798 
4799 	/* Issue and wait for the configure endpoint or
4800 	 * evaluate context command.
4801 	 */
4802 	if (xhci->hci_version > 0x95)
4803 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4804 				false, false);
4805 	else
4806 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4807 				true, false);
4808 
4809 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4810 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4811 
4812 	xhci_free_command(xhci, config_cmd);
4813 	return ret;
4814 }
4815 
4816 int xhci_get_frame(struct usb_hcd *hcd)
4817 {
4818 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4819 	/* EHCI mods by the periodic size.  Why? */
4820 	return readl(&xhci->run_regs->microframe_index) >> 3;
4821 }
4822 
4823 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4824 {
4825 	struct xhci_hcd		*xhci;
4826 	struct device		*dev = hcd->self.controller;
4827 	int			retval;
4828 
4829 	/* Accept arbitrarily long scatter-gather lists */
4830 	hcd->self.sg_tablesize = ~0;
4831 
4832 	/* support to build packet from discontinuous buffers */
4833 	hcd->self.no_sg_constraint = 1;
4834 
4835 	/* XHCI controllers don't stop the ep queue on short packets :| */
4836 	hcd->self.no_stop_on_short = 1;
4837 
4838 	if (usb_hcd_is_primary_hcd(hcd)) {
4839 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4840 		if (!xhci)
4841 			return -ENOMEM;
4842 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4843 		xhci->main_hcd = hcd;
4844 		/* Mark the first roothub as being USB 2.0.
4845 		 * The xHCI driver will register the USB 3.0 roothub.
4846 		 */
4847 		hcd->speed = HCD_USB2;
4848 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4849 		/*
4850 		 * USB 2.0 roothub under xHCI has an integrated TT,
4851 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4852 		 * companion controller.
4853 		 */
4854 		hcd->has_tt = 1;
4855 	} else {
4856 		/* xHCI private pointer was set in xhci_pci_probe for the second
4857 		 * registered roothub.
4858 		 */
4859 		return 0;
4860 	}
4861 
4862 	xhci->cap_regs = hcd->regs;
4863 	xhci->op_regs = hcd->regs +
4864 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4865 	xhci->run_regs = hcd->regs +
4866 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4867 	/* Cache read-only capability registers */
4868 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4869 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4870 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4871 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4872 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4873 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4874 	xhci_print_registers(xhci);
4875 
4876 	xhci->quirks = quirks;
4877 
4878 	get_quirks(dev, xhci);
4879 
4880 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4881 	 * success event after a short transfer. This quirk will ignore such
4882 	 * spurious event.
4883 	 */
4884 	if (xhci->hci_version > 0x96)
4885 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4886 
4887 	/* Make sure the HC is halted. */
4888 	retval = xhci_halt(xhci);
4889 	if (retval)
4890 		goto error;
4891 
4892 	xhci_dbg(xhci, "Resetting HCD\n");
4893 	/* Reset the internal HC memory state and registers. */
4894 	retval = xhci_reset(xhci);
4895 	if (retval)
4896 		goto error;
4897 	xhci_dbg(xhci, "Reset complete\n");
4898 
4899 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4900 	 * if xHC supports 64-bit addressing */
4901 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4902 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4903 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4904 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4905 	}
4906 
4907 	xhci_dbg(xhci, "Calling HCD init\n");
4908 	/* Initialize HCD and host controller data structures. */
4909 	retval = xhci_init(hcd);
4910 	if (retval)
4911 		goto error;
4912 	xhci_dbg(xhci, "Called HCD init\n");
4913 	return 0;
4914 error:
4915 	kfree(xhci);
4916 	return retval;
4917 }
4918 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4919 
4920 static const struct hc_driver xhci_hc_driver = {
4921 	.description =		"xhci-hcd",
4922 	.product_desc =		"xHCI Host Controller",
4923 	.hcd_priv_size =	sizeof(struct xhci_hcd *),
4924 
4925 	/*
4926 	 * generic hardware linkage
4927 	 */
4928 	.irq =			xhci_irq,
4929 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4930 
4931 	/*
4932 	 * basic lifecycle operations
4933 	 */
4934 	.reset =		NULL, /* set in xhci_init_driver() */
4935 	.start =		xhci_run,
4936 	.stop =			xhci_stop,
4937 	.shutdown =		xhci_shutdown,
4938 
4939 	/*
4940 	 * managing i/o requests and associated device resources
4941 	 */
4942 	.urb_enqueue =		xhci_urb_enqueue,
4943 	.urb_dequeue =		xhci_urb_dequeue,
4944 	.alloc_dev =		xhci_alloc_dev,
4945 	.free_dev =		xhci_free_dev,
4946 	.alloc_streams =	xhci_alloc_streams,
4947 	.free_streams =		xhci_free_streams,
4948 	.add_endpoint =		xhci_add_endpoint,
4949 	.drop_endpoint =	xhci_drop_endpoint,
4950 	.endpoint_reset =	xhci_endpoint_reset,
4951 	.check_bandwidth =	xhci_check_bandwidth,
4952 	.reset_bandwidth =	xhci_reset_bandwidth,
4953 	.address_device =	xhci_address_device,
4954 	.enable_device =	xhci_enable_device,
4955 	.update_hub_device =	xhci_update_hub_device,
4956 	.reset_device =		xhci_discover_or_reset_device,
4957 
4958 	/*
4959 	 * scheduling support
4960 	 */
4961 	.get_frame_number =	xhci_get_frame,
4962 
4963 	/*
4964 	 * root hub support
4965 	 */
4966 	.hub_control =		xhci_hub_control,
4967 	.hub_status_data =	xhci_hub_status_data,
4968 	.bus_suspend =		xhci_bus_suspend,
4969 	.bus_resume =		xhci_bus_resume,
4970 
4971 	/*
4972 	 * call back when device connected and addressed
4973 	 */
4974 	.update_device =        xhci_update_device,
4975 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
4976 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
4977 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
4978 	.find_raw_port_number =	xhci_find_raw_port_number,
4979 };
4980 
4981 void xhci_init_driver(struct hc_driver *drv, int (*setup_fn)(struct usb_hcd *))
4982 {
4983 	BUG_ON(!setup_fn);
4984 	*drv = xhci_hc_driver;
4985 	drv->reset = setup_fn;
4986 }
4987 EXPORT_SYMBOL_GPL(xhci_init_driver);
4988 
4989 MODULE_DESCRIPTION(DRIVER_DESC);
4990 MODULE_AUTHOR(DRIVER_AUTHOR);
4991 MODULE_LICENSE("GPL");
4992 
4993 static int __init xhci_hcd_init(void)
4994 {
4995 	/*
4996 	 * Check the compiler generated sizes of structures that must be laid
4997 	 * out in specific ways for hardware access.
4998 	 */
4999 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5000 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5001 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5002 	/* xhci_device_control has eight fields, and also
5003 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5004 	 */
5005 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5006 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5007 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5008 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
5009 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5010 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5011 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5012 	return 0;
5013 }
5014 module_init(xhci_hcd_init);
5015