xref: /linux/drivers/usb/host/xhci.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 
31 #include "xhci.h"
32 
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35 
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40 
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43  * handshake - spin reading hc until handshake completes or fails
44  * @ptr: address of hc register to be read
45  * @mask: bits to look at in result of read
46  * @done: value of those bits when handshake succeeds
47  * @usec: timeout in microseconds
48  *
49  * Returns negative errno, or zero on success
50  *
51  * Success happens when the "mask" bits have the specified value (hardware
52  * handshake done).  There are two failure modes:  "usec" have passed (major
53  * hardware flakeout), or the register reads as all-ones (hardware removed).
54  */
55 int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56 		      u32 mask, u32 done, int usec)
57 {
58 	u32	result;
59 
60 	do {
61 		result = xhci_readl(xhci, ptr);
62 		if (result == ~(u32)0)		/* card removed */
63 			return -ENODEV;
64 		result &= mask;
65 		if (result == done)
66 			return 0;
67 		udelay(1);
68 		usec--;
69 	} while (usec > 0);
70 	return -ETIMEDOUT;
71 }
72 
73 /*
74  * Disable interrupts and begin the xHCI halting process.
75  */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78 	u32 halted;
79 	u32 cmd;
80 	u32 mask;
81 
82 	mask = ~(XHCI_IRQS);
83 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84 	if (!halted)
85 		mask &= ~CMD_RUN;
86 
87 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
88 	cmd &= mask;
89 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91 
92 /*
93  * Force HC into halt state.
94  *
95  * Disable any IRQs and clear the run/stop bit.
96  * HC will complete any current and actively pipelined transactions, and
97  * should halt within 16 ms of the run/stop bit being cleared.
98  * Read HC Halted bit in the status register to see when the HC is finished.
99  */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102 	int ret;
103 	xhci_dbg(xhci, "// Halt the HC\n");
104 	xhci_quiesce(xhci);
105 
106 	ret = handshake(xhci, &xhci->op_regs->status,
107 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108 	if (!ret) {
109 		xhci->xhc_state |= XHCI_STATE_HALTED;
110 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111 	} else
112 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113 				XHCI_MAX_HALT_USEC);
114 	return ret;
115 }
116 
117 /*
118  * Set the run bit and wait for the host to be running.
119  */
120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122 	u32 temp;
123 	int ret;
124 
125 	temp = xhci_readl(xhci, &xhci->op_regs->command);
126 	temp |= (CMD_RUN);
127 	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128 			temp);
129 	xhci_writel(xhci, temp, &xhci->op_regs->command);
130 
131 	/*
132 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
133 	 * running.
134 	 */
135 	ret = handshake(xhci, &xhci->op_regs->status,
136 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
137 	if (ret == -ETIMEDOUT)
138 		xhci_err(xhci, "Host took too long to start, "
139 				"waited %u microseconds.\n",
140 				XHCI_MAX_HALT_USEC);
141 	if (!ret)
142 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
143 	return ret;
144 }
145 
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155 	u32 command;
156 	u32 state;
157 	int ret, i;
158 
159 	state = xhci_readl(xhci, &xhci->op_regs->status);
160 	if ((state & STS_HALT) == 0) {
161 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162 		return 0;
163 	}
164 
165 	xhci_dbg(xhci, "// Reset the HC\n");
166 	command = xhci_readl(xhci, &xhci->op_regs->command);
167 	command |= CMD_RESET;
168 	xhci_writel(xhci, command, &xhci->op_regs->command);
169 
170 	ret = handshake(xhci, &xhci->op_regs->command,
171 			CMD_RESET, 0, 10 * 1000 * 1000);
172 	if (ret)
173 		return ret;
174 
175 	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176 	/*
177 	 * xHCI cannot write to any doorbells or operational registers other
178 	 * than status until the "Controller Not Ready" flag is cleared.
179 	 */
180 	ret = handshake(xhci, &xhci->op_regs->status,
181 			STS_CNR, 0, 10 * 1000 * 1000);
182 
183 	for (i = 0; i < 2; ++i) {
184 		xhci->bus_state[i].port_c_suspend = 0;
185 		xhci->bus_state[i].suspended_ports = 0;
186 		xhci->bus_state[i].resuming_ports = 0;
187 	}
188 
189 	return ret;
190 }
191 
192 #ifdef CONFIG_PCI
193 static int xhci_free_msi(struct xhci_hcd *xhci)
194 {
195 	int i;
196 
197 	if (!xhci->msix_entries)
198 		return -EINVAL;
199 
200 	for (i = 0; i < xhci->msix_count; i++)
201 		if (xhci->msix_entries[i].vector)
202 			free_irq(xhci->msix_entries[i].vector,
203 					xhci_to_hcd(xhci));
204 	return 0;
205 }
206 
207 /*
208  * Set up MSI
209  */
210 static int xhci_setup_msi(struct xhci_hcd *xhci)
211 {
212 	int ret;
213 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214 
215 	ret = pci_enable_msi(pdev);
216 	if (ret) {
217 		xhci_dbg(xhci, "failed to allocate MSI entry\n");
218 		return ret;
219 	}
220 
221 	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
222 				0, "xhci_hcd", xhci_to_hcd(xhci));
223 	if (ret) {
224 		xhci_dbg(xhci, "disable MSI interrupt\n");
225 		pci_disable_msi(pdev);
226 	}
227 
228 	return ret;
229 }
230 
231 /*
232  * Free IRQs
233  * free all IRQs request
234  */
235 static void xhci_free_irq(struct xhci_hcd *xhci)
236 {
237 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238 	int ret;
239 
240 	/* return if using legacy interrupt */
241 	if (xhci_to_hcd(xhci)->irq > 0)
242 		return;
243 
244 	ret = xhci_free_msi(xhci);
245 	if (!ret)
246 		return;
247 	if (pdev->irq > 0)
248 		free_irq(pdev->irq, xhci_to_hcd(xhci));
249 
250 	return;
251 }
252 
253 /*
254  * Set up MSI-X
255  */
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258 	int i, ret = 0;
259 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
260 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261 
262 	/*
263 	 * calculate number of msi-x vectors supported.
264 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
266 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
267 	 *   Add additional 1 vector to ensure always available interrupt.
268 	 */
269 	xhci->msix_count = min(num_online_cpus() + 1,
270 				HCS_MAX_INTRS(xhci->hcs_params1));
271 
272 	xhci->msix_entries =
273 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274 				GFP_KERNEL);
275 	if (!xhci->msix_entries) {
276 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277 		return -ENOMEM;
278 	}
279 
280 	for (i = 0; i < xhci->msix_count; i++) {
281 		xhci->msix_entries[i].entry = i;
282 		xhci->msix_entries[i].vector = 0;
283 	}
284 
285 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286 	if (ret) {
287 		xhci_dbg(xhci, "Failed to enable MSI-X\n");
288 		goto free_entries;
289 	}
290 
291 	for (i = 0; i < xhci->msix_count; i++) {
292 		ret = request_irq(xhci->msix_entries[i].vector,
293 				(irq_handler_t)xhci_msi_irq,
294 				0, "xhci_hcd", xhci_to_hcd(xhci));
295 		if (ret)
296 			goto disable_msix;
297 	}
298 
299 	hcd->msix_enabled = 1;
300 	return ret;
301 
302 disable_msix:
303 	xhci_dbg(xhci, "disable MSI-X interrupt\n");
304 	xhci_free_irq(xhci);
305 	pci_disable_msix(pdev);
306 free_entries:
307 	kfree(xhci->msix_entries);
308 	xhci->msix_entries = NULL;
309 	return ret;
310 }
311 
312 /* Free any IRQs and disable MSI-X */
313 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314 {
315 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
316 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
317 
318 	xhci_free_irq(xhci);
319 
320 	if (xhci->msix_entries) {
321 		pci_disable_msix(pdev);
322 		kfree(xhci->msix_entries);
323 		xhci->msix_entries = NULL;
324 	} else {
325 		pci_disable_msi(pdev);
326 	}
327 
328 	hcd->msix_enabled = 0;
329 	return;
330 }
331 
332 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
333 {
334 	int i;
335 
336 	if (xhci->msix_entries) {
337 		for (i = 0; i < xhci->msix_count; i++)
338 			synchronize_irq(xhci->msix_entries[i].vector);
339 	}
340 }
341 
342 static int xhci_try_enable_msi(struct usb_hcd *hcd)
343 {
344 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
345 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
346 	int ret;
347 
348 	/*
349 	 * Some Fresco Logic host controllers advertise MSI, but fail to
350 	 * generate interrupts.  Don't even try to enable MSI.
351 	 */
352 	if (xhci->quirks & XHCI_BROKEN_MSI)
353 		return 0;
354 
355 	/* unregister the legacy interrupt */
356 	if (hcd->irq)
357 		free_irq(hcd->irq, hcd);
358 	hcd->irq = 0;
359 
360 	ret = xhci_setup_msix(xhci);
361 	if (ret)
362 		/* fall back to msi*/
363 		ret = xhci_setup_msi(xhci);
364 
365 	if (!ret)
366 		/* hcd->irq is 0, we have MSI */
367 		return 0;
368 
369 	if (!pdev->irq) {
370 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
371 		return -EINVAL;
372 	}
373 
374 	/* fall back to legacy interrupt*/
375 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
376 			hcd->irq_descr, hcd);
377 	if (ret) {
378 		xhci_err(xhci, "request interrupt %d failed\n",
379 				pdev->irq);
380 		return ret;
381 	}
382 	hcd->irq = pdev->irq;
383 	return 0;
384 }
385 
386 #else
387 
388 static int xhci_try_enable_msi(struct usb_hcd *hcd)
389 {
390 	return 0;
391 }
392 
393 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
394 {
395 }
396 
397 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
398 {
399 }
400 
401 #endif
402 
403 static void compliance_mode_recovery(unsigned long arg)
404 {
405 	struct xhci_hcd *xhci;
406 	struct usb_hcd *hcd;
407 	u32 temp;
408 	int i;
409 
410 	xhci = (struct xhci_hcd *)arg;
411 
412 	for (i = 0; i < xhci->num_usb3_ports; i++) {
413 		temp = xhci_readl(xhci, xhci->usb3_ports[i]);
414 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
415 			/*
416 			 * Compliance Mode Detected. Letting USB Core
417 			 * handle the Warm Reset
418 			 */
419 			xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
420 					i + 1);
421 			xhci_dbg(xhci, "Attempting Recovery routine!\n");
422 			hcd = xhci->shared_hcd;
423 
424 			if (hcd->state == HC_STATE_SUSPENDED)
425 				usb_hcd_resume_root_hub(hcd);
426 
427 			usb_hcd_poll_rh_status(hcd);
428 		}
429 	}
430 
431 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
432 		mod_timer(&xhci->comp_mode_recovery_timer,
433 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
434 }
435 
436 /*
437  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
438  * that causes ports behind that hardware to enter compliance mode sometimes.
439  * The quirk creates a timer that polls every 2 seconds the link state of
440  * each host controller's port and recovers it by issuing a Warm reset
441  * if Compliance mode is detected, otherwise the port will become "dead" (no
442  * device connections or disconnections will be detected anymore). Becasue no
443  * status event is generated when entering compliance mode (per xhci spec),
444  * this quirk is needed on systems that have the failing hardware installed.
445  */
446 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
447 {
448 	xhci->port_status_u0 = 0;
449 	init_timer(&xhci->comp_mode_recovery_timer);
450 
451 	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
452 	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
453 	xhci->comp_mode_recovery_timer.expires = jiffies +
454 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
455 
456 	set_timer_slack(&xhci->comp_mode_recovery_timer,
457 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
458 	add_timer(&xhci->comp_mode_recovery_timer);
459 	xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
460 }
461 
462 /*
463  * This function identifies the systems that have installed the SN65LVPE502CP
464  * USB3.0 re-driver and that need the Compliance Mode Quirk.
465  * Systems:
466  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
467  */
468 static bool compliance_mode_recovery_timer_quirk_check(void)
469 {
470 	const char *dmi_product_name, *dmi_sys_vendor;
471 
472 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
473 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
474 	if (!dmi_product_name || !dmi_sys_vendor)
475 		return false;
476 
477 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
478 		return false;
479 
480 	if (strstr(dmi_product_name, "Z420") ||
481 			strstr(dmi_product_name, "Z620") ||
482 			strstr(dmi_product_name, "Z820"))
483 		return true;
484 
485 	return false;
486 }
487 
488 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
489 {
490 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
491 }
492 
493 
494 /*
495  * Initialize memory for HCD and xHC (one-time init).
496  *
497  * Program the PAGESIZE register, initialize the device context array, create
498  * device contexts (?), set up a command ring segment (or two?), create event
499  * ring (one for now).
500  */
501 int xhci_init(struct usb_hcd *hcd)
502 {
503 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
504 	int retval = 0;
505 
506 	xhci_dbg(xhci, "xhci_init\n");
507 	spin_lock_init(&xhci->lock);
508 	if (xhci->hci_version == 0x95 && link_quirk) {
509 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
510 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
511 	} else {
512 		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
513 	}
514 	retval = xhci_mem_init(xhci, GFP_KERNEL);
515 	xhci_dbg(xhci, "Finished xhci_init\n");
516 
517 	/* Initializing Compliance Mode Recovery Data If Needed */
518 	if (compliance_mode_recovery_timer_quirk_check()) {
519 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
520 		compliance_mode_recovery_timer_init(xhci);
521 	}
522 
523 	return retval;
524 }
525 
526 /*-------------------------------------------------------------------------*/
527 
528 
529 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
530 static void xhci_event_ring_work(unsigned long arg)
531 {
532 	unsigned long flags;
533 	int temp;
534 	u64 temp_64;
535 	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
536 	int i, j;
537 
538 	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
539 
540 	spin_lock_irqsave(&xhci->lock, flags);
541 	temp = xhci_readl(xhci, &xhci->op_regs->status);
542 	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
543 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
544 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
545 		xhci_dbg(xhci, "HW died, polling stopped.\n");
546 		spin_unlock_irqrestore(&xhci->lock, flags);
547 		return;
548 	}
549 
550 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
551 	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
552 	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
553 	xhci->error_bitmask = 0;
554 	xhci_dbg(xhci, "Event ring:\n");
555 	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
556 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
557 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
558 	temp_64 &= ~ERST_PTR_MASK;
559 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
560 	xhci_dbg(xhci, "Command ring:\n");
561 	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
562 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
563 	xhci_dbg_cmd_ptrs(xhci);
564 	for (i = 0; i < MAX_HC_SLOTS; ++i) {
565 		if (!xhci->devs[i])
566 			continue;
567 		for (j = 0; j < 31; ++j) {
568 			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
569 		}
570 	}
571 	spin_unlock_irqrestore(&xhci->lock, flags);
572 
573 	if (!xhci->zombie)
574 		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
575 	else
576 		xhci_dbg(xhci, "Quit polling the event ring.\n");
577 }
578 #endif
579 
580 static int xhci_run_finished(struct xhci_hcd *xhci)
581 {
582 	if (xhci_start(xhci)) {
583 		xhci_halt(xhci);
584 		return -ENODEV;
585 	}
586 	xhci->shared_hcd->state = HC_STATE_RUNNING;
587 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
588 
589 	if (xhci->quirks & XHCI_NEC_HOST)
590 		xhci_ring_cmd_db(xhci);
591 
592 	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
593 	return 0;
594 }
595 
596 /*
597  * Start the HC after it was halted.
598  *
599  * This function is called by the USB core when the HC driver is added.
600  * Its opposite is xhci_stop().
601  *
602  * xhci_init() must be called once before this function can be called.
603  * Reset the HC, enable device slot contexts, program DCBAAP, and
604  * set command ring pointer and event ring pointer.
605  *
606  * Setup MSI-X vectors and enable interrupts.
607  */
608 int xhci_run(struct usb_hcd *hcd)
609 {
610 	u32 temp;
611 	u64 temp_64;
612 	int ret;
613 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
614 
615 	/* Start the xHCI host controller running only after the USB 2.0 roothub
616 	 * is setup.
617 	 */
618 
619 	hcd->uses_new_polling = 1;
620 	if (!usb_hcd_is_primary_hcd(hcd))
621 		return xhci_run_finished(xhci);
622 
623 	xhci_dbg(xhci, "xhci_run\n");
624 
625 	ret = xhci_try_enable_msi(hcd);
626 	if (ret)
627 		return ret;
628 
629 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
630 	init_timer(&xhci->event_ring_timer);
631 	xhci->event_ring_timer.data = (unsigned long) xhci;
632 	xhci->event_ring_timer.function = xhci_event_ring_work;
633 	/* Poll the event ring */
634 	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
635 	xhci->zombie = 0;
636 	xhci_dbg(xhci, "Setting event ring polling timer\n");
637 	add_timer(&xhci->event_ring_timer);
638 #endif
639 
640 	xhci_dbg(xhci, "Command ring memory map follows:\n");
641 	xhci_debug_ring(xhci, xhci->cmd_ring);
642 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
643 	xhci_dbg_cmd_ptrs(xhci);
644 
645 	xhci_dbg(xhci, "ERST memory map follows:\n");
646 	xhci_dbg_erst(xhci, &xhci->erst);
647 	xhci_dbg(xhci, "Event ring:\n");
648 	xhci_debug_ring(xhci, xhci->event_ring);
649 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
650 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
651 	temp_64 &= ~ERST_PTR_MASK;
652 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
653 
654 	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
655 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
656 	temp &= ~ER_IRQ_INTERVAL_MASK;
657 	temp |= (u32) 160;
658 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
659 
660 	/* Set the HCD state before we enable the irqs */
661 	temp = xhci_readl(xhci, &xhci->op_regs->command);
662 	temp |= (CMD_EIE);
663 	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
664 			temp);
665 	xhci_writel(xhci, temp, &xhci->op_regs->command);
666 
667 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
668 	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
669 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
670 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
671 			&xhci->ir_set->irq_pending);
672 	xhci_print_ir_set(xhci, 0);
673 
674 	if (xhci->quirks & XHCI_NEC_HOST)
675 		xhci_queue_vendor_command(xhci, 0, 0, 0,
676 				TRB_TYPE(TRB_NEC_GET_FW));
677 
678 	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
679 	return 0;
680 }
681 
682 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
683 {
684 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
685 
686 	spin_lock_irq(&xhci->lock);
687 	xhci_halt(xhci);
688 
689 	/* The shared_hcd is going to be deallocated shortly (the USB core only
690 	 * calls this function when allocation fails in usb_add_hcd(), or
691 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
692 	 */
693 	xhci->shared_hcd = NULL;
694 	spin_unlock_irq(&xhci->lock);
695 }
696 
697 /*
698  * Stop xHCI driver.
699  *
700  * This function is called by the USB core when the HC driver is removed.
701  * Its opposite is xhci_run().
702  *
703  * Disable device contexts, disable IRQs, and quiesce the HC.
704  * Reset the HC, finish any completed transactions, and cleanup memory.
705  */
706 void xhci_stop(struct usb_hcd *hcd)
707 {
708 	u32 temp;
709 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
710 
711 	if (!usb_hcd_is_primary_hcd(hcd)) {
712 		xhci_only_stop_hcd(xhci->shared_hcd);
713 		return;
714 	}
715 
716 	spin_lock_irq(&xhci->lock);
717 	/* Make sure the xHC is halted for a USB3 roothub
718 	 * (xhci_stop() could be called as part of failed init).
719 	 */
720 	xhci_halt(xhci);
721 	xhci_reset(xhci);
722 	spin_unlock_irq(&xhci->lock);
723 
724 	xhci_cleanup_msix(xhci);
725 
726 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
727 	/* Tell the event ring poll function not to reschedule */
728 	xhci->zombie = 1;
729 	del_timer_sync(&xhci->event_ring_timer);
730 #endif
731 
732 	/* Deleting Compliance Mode Recovery Timer */
733 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
734 			(!(xhci_all_ports_seen_u0(xhci))))
735 		del_timer_sync(&xhci->comp_mode_recovery_timer);
736 
737 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
738 		usb_amd_dev_put();
739 
740 	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
741 	temp = xhci_readl(xhci, &xhci->op_regs->status);
742 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
743 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
744 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
745 			&xhci->ir_set->irq_pending);
746 	xhci_print_ir_set(xhci, 0);
747 
748 	xhci_dbg(xhci, "cleaning up memory\n");
749 	xhci_mem_cleanup(xhci);
750 	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
751 		    xhci_readl(xhci, &xhci->op_regs->status));
752 }
753 
754 /*
755  * Shutdown HC (not bus-specific)
756  *
757  * This is called when the machine is rebooting or halting.  We assume that the
758  * machine will be powered off, and the HC's internal state will be reset.
759  * Don't bother to free memory.
760  *
761  * This will only ever be called with the main usb_hcd (the USB3 roothub).
762  */
763 void xhci_shutdown(struct usb_hcd *hcd)
764 {
765 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
766 
767 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
768 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
769 
770 	spin_lock_irq(&xhci->lock);
771 	xhci_halt(xhci);
772 	spin_unlock_irq(&xhci->lock);
773 
774 	xhci_cleanup_msix(xhci);
775 
776 	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
777 		    xhci_readl(xhci, &xhci->op_regs->status));
778 }
779 
780 #ifdef CONFIG_PM
781 static void xhci_save_registers(struct xhci_hcd *xhci)
782 {
783 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
784 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
785 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
786 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
787 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
788 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
789 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
790 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
791 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
792 }
793 
794 static void xhci_restore_registers(struct xhci_hcd *xhci)
795 {
796 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
797 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
798 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
799 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
800 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
801 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
802 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
803 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
804 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
805 }
806 
807 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
808 {
809 	u64	val_64;
810 
811 	/* step 2: initialize command ring buffer */
812 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
813 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
814 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
815 				      xhci->cmd_ring->dequeue) &
816 		 (u64) ~CMD_RING_RSVD_BITS) |
817 		xhci->cmd_ring->cycle_state;
818 	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
819 			(long unsigned long) val_64);
820 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
821 }
822 
823 /*
824  * The whole command ring must be cleared to zero when we suspend the host.
825  *
826  * The host doesn't save the command ring pointer in the suspend well, so we
827  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
828  * aligned, because of the reserved bits in the command ring dequeue pointer
829  * register.  Therefore, we can't just set the dequeue pointer back in the
830  * middle of the ring (TRBs are 16-byte aligned).
831  */
832 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
833 {
834 	struct xhci_ring *ring;
835 	struct xhci_segment *seg;
836 
837 	ring = xhci->cmd_ring;
838 	seg = ring->deq_seg;
839 	do {
840 		memset(seg->trbs, 0,
841 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
842 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
843 			cpu_to_le32(~TRB_CYCLE);
844 		seg = seg->next;
845 	} while (seg != ring->deq_seg);
846 
847 	/* Reset the software enqueue and dequeue pointers */
848 	ring->deq_seg = ring->first_seg;
849 	ring->dequeue = ring->first_seg->trbs;
850 	ring->enq_seg = ring->deq_seg;
851 	ring->enqueue = ring->dequeue;
852 
853 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
854 	/*
855 	 * Ring is now zeroed, so the HW should look for change of ownership
856 	 * when the cycle bit is set to 1.
857 	 */
858 	ring->cycle_state = 1;
859 
860 	/*
861 	 * Reset the hardware dequeue pointer.
862 	 * Yes, this will need to be re-written after resume, but we're paranoid
863 	 * and want to make sure the hardware doesn't access bogus memory
864 	 * because, say, the BIOS or an SMI started the host without changing
865 	 * the command ring pointers.
866 	 */
867 	xhci_set_cmd_ring_deq(xhci);
868 }
869 
870 /*
871  * Stop HC (not bus-specific)
872  *
873  * This is called when the machine transition into S3/S4 mode.
874  *
875  */
876 int xhci_suspend(struct xhci_hcd *xhci)
877 {
878 	int			rc = 0;
879 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
880 	u32			command;
881 
882 	spin_lock_irq(&xhci->lock);
883 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
884 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
885 	/* step 1: stop endpoint */
886 	/* skipped assuming that port suspend has done */
887 
888 	/* step 2: clear Run/Stop bit */
889 	command = xhci_readl(xhci, &xhci->op_regs->command);
890 	command &= ~CMD_RUN;
891 	xhci_writel(xhci, command, &xhci->op_regs->command);
892 	if (handshake(xhci, &xhci->op_regs->status,
893 		      STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
894 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
895 		spin_unlock_irq(&xhci->lock);
896 		return -ETIMEDOUT;
897 	}
898 	xhci_clear_command_ring(xhci);
899 
900 	/* step 3: save registers */
901 	xhci_save_registers(xhci);
902 
903 	/* step 4: set CSS flag */
904 	command = xhci_readl(xhci, &xhci->op_regs->command);
905 	command |= CMD_CSS;
906 	xhci_writel(xhci, command, &xhci->op_regs->command);
907 	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
908 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
909 		spin_unlock_irq(&xhci->lock);
910 		return -ETIMEDOUT;
911 	}
912 	spin_unlock_irq(&xhci->lock);
913 
914 	/*
915 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
916 	 * is about to be suspended.
917 	 */
918 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
919 			(!(xhci_all_ports_seen_u0(xhci)))) {
920 		del_timer_sync(&xhci->comp_mode_recovery_timer);
921 		xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
922 	}
923 
924 	/* step 5: remove core well power */
925 	/* synchronize irq when using MSI-X */
926 	xhci_msix_sync_irqs(xhci);
927 
928 	return rc;
929 }
930 
931 /*
932  * start xHC (not bus-specific)
933  *
934  * This is called when the machine transition from S3/S4 mode.
935  *
936  */
937 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
938 {
939 	u32			command, temp = 0;
940 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
941 	struct usb_hcd		*secondary_hcd;
942 	int			retval = 0;
943 
944 	/* Wait a bit if either of the roothubs need to settle from the
945 	 * transition into bus suspend.
946 	 */
947 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
948 			time_before(jiffies,
949 				xhci->bus_state[1].next_statechange))
950 		msleep(100);
951 
952 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
953 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
954 
955 	spin_lock_irq(&xhci->lock);
956 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
957 		hibernated = true;
958 
959 	if (!hibernated) {
960 		/* step 1: restore register */
961 		xhci_restore_registers(xhci);
962 		/* step 2: initialize command ring buffer */
963 		xhci_set_cmd_ring_deq(xhci);
964 		/* step 3: restore state and start state*/
965 		/* step 3: set CRS flag */
966 		command = xhci_readl(xhci, &xhci->op_regs->command);
967 		command |= CMD_CRS;
968 		xhci_writel(xhci, command, &xhci->op_regs->command);
969 		if (handshake(xhci, &xhci->op_regs->status,
970 			      STS_RESTORE, 0, 10 * 1000)) {
971 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
972 			spin_unlock_irq(&xhci->lock);
973 			return -ETIMEDOUT;
974 		}
975 		temp = xhci_readl(xhci, &xhci->op_regs->status);
976 	}
977 
978 	/* If restore operation fails, re-initialize the HC during resume */
979 	if ((temp & STS_SRE) || hibernated) {
980 		/* Let the USB core know _both_ roothubs lost power. */
981 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
982 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
983 
984 		xhci_dbg(xhci, "Stop HCD\n");
985 		xhci_halt(xhci);
986 		xhci_reset(xhci);
987 		spin_unlock_irq(&xhci->lock);
988 		xhci_cleanup_msix(xhci);
989 
990 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
991 		/* Tell the event ring poll function not to reschedule */
992 		xhci->zombie = 1;
993 		del_timer_sync(&xhci->event_ring_timer);
994 #endif
995 
996 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
997 		temp = xhci_readl(xhci, &xhci->op_regs->status);
998 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
999 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1000 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1001 				&xhci->ir_set->irq_pending);
1002 		xhci_print_ir_set(xhci, 0);
1003 
1004 		xhci_dbg(xhci, "cleaning up memory\n");
1005 		xhci_mem_cleanup(xhci);
1006 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1007 			    xhci_readl(xhci, &xhci->op_regs->status));
1008 
1009 		/* USB core calls the PCI reinit and start functions twice:
1010 		 * first with the primary HCD, and then with the secondary HCD.
1011 		 * If we don't do the same, the host will never be started.
1012 		 */
1013 		if (!usb_hcd_is_primary_hcd(hcd))
1014 			secondary_hcd = hcd;
1015 		else
1016 			secondary_hcd = xhci->shared_hcd;
1017 
1018 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1019 		retval = xhci_init(hcd->primary_hcd);
1020 		if (retval)
1021 			return retval;
1022 		xhci_dbg(xhci, "Start the primary HCD\n");
1023 		retval = xhci_run(hcd->primary_hcd);
1024 		if (!retval) {
1025 			xhci_dbg(xhci, "Start the secondary HCD\n");
1026 			retval = xhci_run(secondary_hcd);
1027 		}
1028 		hcd->state = HC_STATE_SUSPENDED;
1029 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1030 		goto done;
1031 	}
1032 
1033 	/* step 4: set Run/Stop bit */
1034 	command = xhci_readl(xhci, &xhci->op_regs->command);
1035 	command |= CMD_RUN;
1036 	xhci_writel(xhci, command, &xhci->op_regs->command);
1037 	handshake(xhci, &xhci->op_regs->status, STS_HALT,
1038 		  0, 250 * 1000);
1039 
1040 	/* step 5: walk topology and initialize portsc,
1041 	 * portpmsc and portli
1042 	 */
1043 	/* this is done in bus_resume */
1044 
1045 	/* step 6: restart each of the previously
1046 	 * Running endpoints by ringing their doorbells
1047 	 */
1048 
1049 	spin_unlock_irq(&xhci->lock);
1050 
1051  done:
1052 	if (retval == 0) {
1053 		usb_hcd_resume_root_hub(hcd);
1054 		usb_hcd_resume_root_hub(xhci->shared_hcd);
1055 	}
1056 
1057 	/*
1058 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1059 	 * be re-initialized Always after a system resume. Ports are subject
1060 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1061 	 * ports have entered previously to U0 before system's suspension.
1062 	 */
1063 	if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1064 		compliance_mode_recovery_timer_init(xhci);
1065 
1066 	return retval;
1067 }
1068 #endif	/* CONFIG_PM */
1069 
1070 /*-------------------------------------------------------------------------*/
1071 
1072 /**
1073  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1074  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1075  * value to right shift 1 for the bitmask.
1076  *
1077  * Index  = (epnum * 2) + direction - 1,
1078  * where direction = 0 for OUT, 1 for IN.
1079  * For control endpoints, the IN index is used (OUT index is unused), so
1080  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1081  */
1082 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1083 {
1084 	unsigned int index;
1085 	if (usb_endpoint_xfer_control(desc))
1086 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1087 	else
1088 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1089 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1090 	return index;
1091 }
1092 
1093 /* Find the flag for this endpoint (for use in the control context).  Use the
1094  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1095  * bit 1, etc.
1096  */
1097 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1098 {
1099 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1100 }
1101 
1102 /* Find the flag for this endpoint (for use in the control context).  Use the
1103  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1104  * bit 1, etc.
1105  */
1106 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1107 {
1108 	return 1 << (ep_index + 1);
1109 }
1110 
1111 /* Compute the last valid endpoint context index.  Basically, this is the
1112  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1113  * we find the most significant bit set in the added contexts flags.
1114  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1115  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1116  */
1117 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1118 {
1119 	return fls(added_ctxs) - 1;
1120 }
1121 
1122 /* Returns 1 if the arguments are OK;
1123  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1124  */
1125 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1126 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1127 		const char *func) {
1128 	struct xhci_hcd	*xhci;
1129 	struct xhci_virt_device	*virt_dev;
1130 
1131 	if (!hcd || (check_ep && !ep) || !udev) {
1132 		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1133 				func);
1134 		return -EINVAL;
1135 	}
1136 	if (!udev->parent) {
1137 		printk(KERN_DEBUG "xHCI %s called for root hub\n",
1138 				func);
1139 		return 0;
1140 	}
1141 
1142 	xhci = hcd_to_xhci(hcd);
1143 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1144 		return -ENODEV;
1145 
1146 	if (check_virt_dev) {
1147 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1148 			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1149 						"device\n", func);
1150 			return -EINVAL;
1151 		}
1152 
1153 		virt_dev = xhci->devs[udev->slot_id];
1154 		if (virt_dev->udev != udev) {
1155 			printk(KERN_DEBUG "xHCI %s called with udev and "
1156 					  "virt_dev does not match\n", func);
1157 			return -EINVAL;
1158 		}
1159 	}
1160 
1161 	return 1;
1162 }
1163 
1164 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1165 		struct usb_device *udev, struct xhci_command *command,
1166 		bool ctx_change, bool must_succeed);
1167 
1168 /*
1169  * Full speed devices may have a max packet size greater than 8 bytes, but the
1170  * USB core doesn't know that until it reads the first 8 bytes of the
1171  * descriptor.  If the usb_device's max packet size changes after that point,
1172  * we need to issue an evaluate context command and wait on it.
1173  */
1174 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1175 		unsigned int ep_index, struct urb *urb)
1176 {
1177 	struct xhci_container_ctx *in_ctx;
1178 	struct xhci_container_ctx *out_ctx;
1179 	struct xhci_input_control_ctx *ctrl_ctx;
1180 	struct xhci_ep_ctx *ep_ctx;
1181 	int max_packet_size;
1182 	int hw_max_packet_size;
1183 	int ret = 0;
1184 
1185 	out_ctx = xhci->devs[slot_id]->out_ctx;
1186 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1187 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1188 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1189 	if (hw_max_packet_size != max_packet_size) {
1190 		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1191 		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1192 				max_packet_size);
1193 		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1194 				hw_max_packet_size);
1195 		xhci_dbg(xhci, "Issuing evaluate context command.\n");
1196 
1197 		/* Set up the modified control endpoint 0 */
1198 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1199 				xhci->devs[slot_id]->out_ctx, ep_index);
1200 		in_ctx = xhci->devs[slot_id]->in_ctx;
1201 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1202 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1203 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1204 
1205 		/* Set up the input context flags for the command */
1206 		/* FIXME: This won't work if a non-default control endpoint
1207 		 * changes max packet sizes.
1208 		 */
1209 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1210 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1211 		ctrl_ctx->drop_flags = 0;
1212 
1213 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1214 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1215 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1216 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1217 
1218 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1219 				true, false);
1220 
1221 		/* Clean up the input context for later use by bandwidth
1222 		 * functions.
1223 		 */
1224 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1225 	}
1226 	return ret;
1227 }
1228 
1229 /*
1230  * non-error returns are a promise to giveback() the urb later
1231  * we drop ownership so next owner (or urb unlink) can get it
1232  */
1233 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1234 {
1235 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1236 	struct xhci_td *buffer;
1237 	unsigned long flags;
1238 	int ret = 0;
1239 	unsigned int slot_id, ep_index;
1240 	struct urb_priv	*urb_priv;
1241 	int size, i;
1242 
1243 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1244 					true, true, __func__) <= 0)
1245 		return -EINVAL;
1246 
1247 	slot_id = urb->dev->slot_id;
1248 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1249 
1250 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1251 		if (!in_interrupt())
1252 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1253 		ret = -ESHUTDOWN;
1254 		goto exit;
1255 	}
1256 
1257 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1258 		size = urb->number_of_packets;
1259 	else
1260 		size = 1;
1261 
1262 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1263 				  size * sizeof(struct xhci_td *), mem_flags);
1264 	if (!urb_priv)
1265 		return -ENOMEM;
1266 
1267 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1268 	if (!buffer) {
1269 		kfree(urb_priv);
1270 		return -ENOMEM;
1271 	}
1272 
1273 	for (i = 0; i < size; i++) {
1274 		urb_priv->td[i] = buffer;
1275 		buffer++;
1276 	}
1277 
1278 	urb_priv->length = size;
1279 	urb_priv->td_cnt = 0;
1280 	urb->hcpriv = urb_priv;
1281 
1282 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1283 		/* Check to see if the max packet size for the default control
1284 		 * endpoint changed during FS device enumeration
1285 		 */
1286 		if (urb->dev->speed == USB_SPEED_FULL) {
1287 			ret = xhci_check_maxpacket(xhci, slot_id,
1288 					ep_index, urb);
1289 			if (ret < 0) {
1290 				xhci_urb_free_priv(xhci, urb_priv);
1291 				urb->hcpriv = NULL;
1292 				return ret;
1293 			}
1294 		}
1295 
1296 		/* We have a spinlock and interrupts disabled, so we must pass
1297 		 * atomic context to this function, which may allocate memory.
1298 		 */
1299 		spin_lock_irqsave(&xhci->lock, flags);
1300 		if (xhci->xhc_state & XHCI_STATE_DYING)
1301 			goto dying;
1302 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1303 				slot_id, ep_index);
1304 		if (ret)
1305 			goto free_priv;
1306 		spin_unlock_irqrestore(&xhci->lock, flags);
1307 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1308 		spin_lock_irqsave(&xhci->lock, flags);
1309 		if (xhci->xhc_state & XHCI_STATE_DYING)
1310 			goto dying;
1311 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1312 				EP_GETTING_STREAMS) {
1313 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1314 					"is transitioning to using streams.\n");
1315 			ret = -EINVAL;
1316 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1317 				EP_GETTING_NO_STREAMS) {
1318 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1319 					"is transitioning to "
1320 					"not having streams.\n");
1321 			ret = -EINVAL;
1322 		} else {
1323 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1324 					slot_id, ep_index);
1325 		}
1326 		if (ret)
1327 			goto free_priv;
1328 		spin_unlock_irqrestore(&xhci->lock, flags);
1329 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1330 		spin_lock_irqsave(&xhci->lock, flags);
1331 		if (xhci->xhc_state & XHCI_STATE_DYING)
1332 			goto dying;
1333 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1334 				slot_id, ep_index);
1335 		if (ret)
1336 			goto free_priv;
1337 		spin_unlock_irqrestore(&xhci->lock, flags);
1338 	} else {
1339 		spin_lock_irqsave(&xhci->lock, flags);
1340 		if (xhci->xhc_state & XHCI_STATE_DYING)
1341 			goto dying;
1342 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1343 				slot_id, ep_index);
1344 		if (ret)
1345 			goto free_priv;
1346 		spin_unlock_irqrestore(&xhci->lock, flags);
1347 	}
1348 exit:
1349 	return ret;
1350 dying:
1351 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1352 			"non-responsive xHCI host.\n",
1353 			urb->ep->desc.bEndpointAddress, urb);
1354 	ret = -ESHUTDOWN;
1355 free_priv:
1356 	xhci_urb_free_priv(xhci, urb_priv);
1357 	urb->hcpriv = NULL;
1358 	spin_unlock_irqrestore(&xhci->lock, flags);
1359 	return ret;
1360 }
1361 
1362 /* Get the right ring for the given URB.
1363  * If the endpoint supports streams, boundary check the URB's stream ID.
1364  * If the endpoint doesn't support streams, return the singular endpoint ring.
1365  */
1366 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1367 		struct urb *urb)
1368 {
1369 	unsigned int slot_id;
1370 	unsigned int ep_index;
1371 	unsigned int stream_id;
1372 	struct xhci_virt_ep *ep;
1373 
1374 	slot_id = urb->dev->slot_id;
1375 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1376 	stream_id = urb->stream_id;
1377 	ep = &xhci->devs[slot_id]->eps[ep_index];
1378 	/* Common case: no streams */
1379 	if (!(ep->ep_state & EP_HAS_STREAMS))
1380 		return ep->ring;
1381 
1382 	if (stream_id == 0) {
1383 		xhci_warn(xhci,
1384 				"WARN: Slot ID %u, ep index %u has streams, "
1385 				"but URB has no stream ID.\n",
1386 				slot_id, ep_index);
1387 		return NULL;
1388 	}
1389 
1390 	if (stream_id < ep->stream_info->num_streams)
1391 		return ep->stream_info->stream_rings[stream_id];
1392 
1393 	xhci_warn(xhci,
1394 			"WARN: Slot ID %u, ep index %u has "
1395 			"stream IDs 1 to %u allocated, "
1396 			"but stream ID %u is requested.\n",
1397 			slot_id, ep_index,
1398 			ep->stream_info->num_streams - 1,
1399 			stream_id);
1400 	return NULL;
1401 }
1402 
1403 /*
1404  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1405  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1406  * should pick up where it left off in the TD, unless a Set Transfer Ring
1407  * Dequeue Pointer is issued.
1408  *
1409  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1410  * the ring.  Since the ring is a contiguous structure, they can't be physically
1411  * removed.  Instead, there are two options:
1412  *
1413  *  1) If the HC is in the middle of processing the URB to be canceled, we
1414  *     simply move the ring's dequeue pointer past those TRBs using the Set
1415  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1416  *     when drivers timeout on the last submitted URB and attempt to cancel.
1417  *
1418  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1419  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1420  *     HC will need to invalidate the any TRBs it has cached after the stop
1421  *     endpoint command, as noted in the xHCI 0.95 errata.
1422  *
1423  *  3) The TD may have completed by the time the Stop Endpoint Command
1424  *     completes, so software needs to handle that case too.
1425  *
1426  * This function should protect against the TD enqueueing code ringing the
1427  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1428  * It also needs to account for multiple cancellations on happening at the same
1429  * time for the same endpoint.
1430  *
1431  * Note that this function can be called in any context, or so says
1432  * usb_hcd_unlink_urb()
1433  */
1434 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1435 {
1436 	unsigned long flags;
1437 	int ret, i;
1438 	u32 temp;
1439 	struct xhci_hcd *xhci;
1440 	struct urb_priv	*urb_priv;
1441 	struct xhci_td *td;
1442 	unsigned int ep_index;
1443 	struct xhci_ring *ep_ring;
1444 	struct xhci_virt_ep *ep;
1445 
1446 	xhci = hcd_to_xhci(hcd);
1447 	spin_lock_irqsave(&xhci->lock, flags);
1448 	/* Make sure the URB hasn't completed or been unlinked already */
1449 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1450 	if (ret || !urb->hcpriv)
1451 		goto done;
1452 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1453 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1454 		xhci_dbg(xhci, "HW died, freeing TD.\n");
1455 		urb_priv = urb->hcpriv;
1456 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1457 			td = urb_priv->td[i];
1458 			if (!list_empty(&td->td_list))
1459 				list_del_init(&td->td_list);
1460 			if (!list_empty(&td->cancelled_td_list))
1461 				list_del_init(&td->cancelled_td_list);
1462 		}
1463 
1464 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1465 		spin_unlock_irqrestore(&xhci->lock, flags);
1466 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1467 		xhci_urb_free_priv(xhci, urb_priv);
1468 		return ret;
1469 	}
1470 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1471 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1472 		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1473 				"non-responsive xHCI host.\n",
1474 				urb->ep->desc.bEndpointAddress, urb);
1475 		/* Let the stop endpoint command watchdog timer (which set this
1476 		 * state) finish cleaning up the endpoint TD lists.  We must
1477 		 * have caught it in the middle of dropping a lock and giving
1478 		 * back an URB.
1479 		 */
1480 		goto done;
1481 	}
1482 
1483 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1484 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1485 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1486 	if (!ep_ring) {
1487 		ret = -EINVAL;
1488 		goto done;
1489 	}
1490 
1491 	urb_priv = urb->hcpriv;
1492 	i = urb_priv->td_cnt;
1493 	if (i < urb_priv->length)
1494 		xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1495 				"starting at offset 0x%llx\n",
1496 				urb, urb->dev->devpath,
1497 				urb->ep->desc.bEndpointAddress,
1498 				(unsigned long long) xhci_trb_virt_to_dma(
1499 					urb_priv->td[i]->start_seg,
1500 					urb_priv->td[i]->first_trb));
1501 
1502 	for (; i < urb_priv->length; i++) {
1503 		td = urb_priv->td[i];
1504 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1505 	}
1506 
1507 	/* Queue a stop endpoint command, but only if this is
1508 	 * the first cancellation to be handled.
1509 	 */
1510 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1511 		ep->ep_state |= EP_HALT_PENDING;
1512 		ep->stop_cmds_pending++;
1513 		ep->stop_cmd_timer.expires = jiffies +
1514 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1515 		add_timer(&ep->stop_cmd_timer);
1516 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1517 		xhci_ring_cmd_db(xhci);
1518 	}
1519 done:
1520 	spin_unlock_irqrestore(&xhci->lock, flags);
1521 	return ret;
1522 }
1523 
1524 /* Drop an endpoint from a new bandwidth configuration for this device.
1525  * Only one call to this function is allowed per endpoint before
1526  * check_bandwidth() or reset_bandwidth() must be called.
1527  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1528  * add the endpoint to the schedule with possibly new parameters denoted by a
1529  * different endpoint descriptor in usb_host_endpoint.
1530  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1531  * not allowed.
1532  *
1533  * The USB core will not allow URBs to be queued to an endpoint that is being
1534  * disabled, so there's no need for mutual exclusion to protect
1535  * the xhci->devs[slot_id] structure.
1536  */
1537 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1538 		struct usb_host_endpoint *ep)
1539 {
1540 	struct xhci_hcd *xhci;
1541 	struct xhci_container_ctx *in_ctx, *out_ctx;
1542 	struct xhci_input_control_ctx *ctrl_ctx;
1543 	struct xhci_slot_ctx *slot_ctx;
1544 	unsigned int last_ctx;
1545 	unsigned int ep_index;
1546 	struct xhci_ep_ctx *ep_ctx;
1547 	u32 drop_flag;
1548 	u32 new_add_flags, new_drop_flags, new_slot_info;
1549 	int ret;
1550 
1551 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1552 	if (ret <= 0)
1553 		return ret;
1554 	xhci = hcd_to_xhci(hcd);
1555 	if (xhci->xhc_state & XHCI_STATE_DYING)
1556 		return -ENODEV;
1557 
1558 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1559 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1560 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1561 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1562 				__func__, drop_flag);
1563 		return 0;
1564 	}
1565 
1566 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1567 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1568 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1569 	ep_index = xhci_get_endpoint_index(&ep->desc);
1570 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1571 	/* If the HC already knows the endpoint is disabled,
1572 	 * or the HCD has noted it is disabled, ignore this request
1573 	 */
1574 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1575 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1576 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1577 	    xhci_get_endpoint_flag(&ep->desc)) {
1578 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1579 				__func__, ep);
1580 		return 0;
1581 	}
1582 
1583 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1584 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1585 
1586 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1587 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1588 
1589 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1590 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1591 	/* Update the last valid endpoint context, if we deleted the last one */
1592 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1593 	    LAST_CTX(last_ctx)) {
1594 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1595 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1596 	}
1597 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1598 
1599 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1600 
1601 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1602 			(unsigned int) ep->desc.bEndpointAddress,
1603 			udev->slot_id,
1604 			(unsigned int) new_drop_flags,
1605 			(unsigned int) new_add_flags,
1606 			(unsigned int) new_slot_info);
1607 	return 0;
1608 }
1609 
1610 /* Add an endpoint to a new possible bandwidth configuration for this device.
1611  * Only one call to this function is allowed per endpoint before
1612  * check_bandwidth() or reset_bandwidth() must be called.
1613  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1614  * add the endpoint to the schedule with possibly new parameters denoted by a
1615  * different endpoint descriptor in usb_host_endpoint.
1616  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1617  * not allowed.
1618  *
1619  * The USB core will not allow URBs to be queued to an endpoint until the
1620  * configuration or alt setting is installed in the device, so there's no need
1621  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1622  */
1623 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1624 		struct usb_host_endpoint *ep)
1625 {
1626 	struct xhci_hcd *xhci;
1627 	struct xhci_container_ctx *in_ctx, *out_ctx;
1628 	unsigned int ep_index;
1629 	struct xhci_ep_ctx *ep_ctx;
1630 	struct xhci_slot_ctx *slot_ctx;
1631 	struct xhci_input_control_ctx *ctrl_ctx;
1632 	u32 added_ctxs;
1633 	unsigned int last_ctx;
1634 	u32 new_add_flags, new_drop_flags, new_slot_info;
1635 	struct xhci_virt_device *virt_dev;
1636 	int ret = 0;
1637 
1638 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1639 	if (ret <= 0) {
1640 		/* So we won't queue a reset ep command for a root hub */
1641 		ep->hcpriv = NULL;
1642 		return ret;
1643 	}
1644 	xhci = hcd_to_xhci(hcd);
1645 	if (xhci->xhc_state & XHCI_STATE_DYING)
1646 		return -ENODEV;
1647 
1648 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1649 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1650 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1651 		/* FIXME when we have to issue an evaluate endpoint command to
1652 		 * deal with ep0 max packet size changing once we get the
1653 		 * descriptors
1654 		 */
1655 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1656 				__func__, added_ctxs);
1657 		return 0;
1658 	}
1659 
1660 	virt_dev = xhci->devs[udev->slot_id];
1661 	in_ctx = virt_dev->in_ctx;
1662 	out_ctx = virt_dev->out_ctx;
1663 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1664 	ep_index = xhci_get_endpoint_index(&ep->desc);
1665 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1666 
1667 	/* If this endpoint is already in use, and the upper layers are trying
1668 	 * to add it again without dropping it, reject the addition.
1669 	 */
1670 	if (virt_dev->eps[ep_index].ring &&
1671 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1672 				xhci_get_endpoint_flag(&ep->desc))) {
1673 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1674 				"without dropping it.\n",
1675 				(unsigned int) ep->desc.bEndpointAddress);
1676 		return -EINVAL;
1677 	}
1678 
1679 	/* If the HCD has already noted the endpoint is enabled,
1680 	 * ignore this request.
1681 	 */
1682 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1683 	    xhci_get_endpoint_flag(&ep->desc)) {
1684 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1685 				__func__, ep);
1686 		return 0;
1687 	}
1688 
1689 	/*
1690 	 * Configuration and alternate setting changes must be done in
1691 	 * process context, not interrupt context (or so documenation
1692 	 * for usb_set_interface() and usb_set_configuration() claim).
1693 	 */
1694 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1695 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1696 				__func__, ep->desc.bEndpointAddress);
1697 		return -ENOMEM;
1698 	}
1699 
1700 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1701 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1702 
1703 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1704 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1705 	 * this re-adds a new state for the endpoint from the new endpoint
1706 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1707 	 * drop flags alone.
1708 	 */
1709 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1710 
1711 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1712 	/* Update the last valid endpoint context, if we just added one past */
1713 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1714 	    LAST_CTX(last_ctx)) {
1715 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1716 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1717 	}
1718 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1719 
1720 	/* Store the usb_device pointer for later use */
1721 	ep->hcpriv = udev;
1722 
1723 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1724 			(unsigned int) ep->desc.bEndpointAddress,
1725 			udev->slot_id,
1726 			(unsigned int) new_drop_flags,
1727 			(unsigned int) new_add_flags,
1728 			(unsigned int) new_slot_info);
1729 	return 0;
1730 }
1731 
1732 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1733 {
1734 	struct xhci_input_control_ctx *ctrl_ctx;
1735 	struct xhci_ep_ctx *ep_ctx;
1736 	struct xhci_slot_ctx *slot_ctx;
1737 	int i;
1738 
1739 	/* When a device's add flag and drop flag are zero, any subsequent
1740 	 * configure endpoint command will leave that endpoint's state
1741 	 * untouched.  Make sure we don't leave any old state in the input
1742 	 * endpoint contexts.
1743 	 */
1744 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1745 	ctrl_ctx->drop_flags = 0;
1746 	ctrl_ctx->add_flags = 0;
1747 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1748 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1749 	/* Endpoint 0 is always valid */
1750 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1751 	for (i = 1; i < 31; ++i) {
1752 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1753 		ep_ctx->ep_info = 0;
1754 		ep_ctx->ep_info2 = 0;
1755 		ep_ctx->deq = 0;
1756 		ep_ctx->tx_info = 0;
1757 	}
1758 }
1759 
1760 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1761 		struct usb_device *udev, u32 *cmd_status)
1762 {
1763 	int ret;
1764 
1765 	switch (*cmd_status) {
1766 	case COMP_ENOMEM:
1767 		dev_warn(&udev->dev, "Not enough host controller resources "
1768 				"for new device state.\n");
1769 		ret = -ENOMEM;
1770 		/* FIXME: can we allocate more resources for the HC? */
1771 		break;
1772 	case COMP_BW_ERR:
1773 	case COMP_2ND_BW_ERR:
1774 		dev_warn(&udev->dev, "Not enough bandwidth "
1775 				"for new device state.\n");
1776 		ret = -ENOSPC;
1777 		/* FIXME: can we go back to the old state? */
1778 		break;
1779 	case COMP_TRB_ERR:
1780 		/* the HCD set up something wrong */
1781 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1782 				"add flag = 1, "
1783 				"and endpoint is not disabled.\n");
1784 		ret = -EINVAL;
1785 		break;
1786 	case COMP_DEV_ERR:
1787 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1788 				"configure command.\n");
1789 		ret = -ENODEV;
1790 		break;
1791 	case COMP_SUCCESS:
1792 		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1793 		ret = 0;
1794 		break;
1795 	default:
1796 		xhci_err(xhci, "ERROR: unexpected command completion "
1797 				"code 0x%x.\n", *cmd_status);
1798 		ret = -EINVAL;
1799 		break;
1800 	}
1801 	return ret;
1802 }
1803 
1804 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1805 		struct usb_device *udev, u32 *cmd_status)
1806 {
1807 	int ret;
1808 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1809 
1810 	switch (*cmd_status) {
1811 	case COMP_EINVAL:
1812 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1813 				"context command.\n");
1814 		ret = -EINVAL;
1815 		break;
1816 	case COMP_EBADSLT:
1817 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1818 				"evaluate context command.\n");
1819 	case COMP_CTX_STATE:
1820 		dev_warn(&udev->dev, "WARN: invalid context state for "
1821 				"evaluate context command.\n");
1822 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1823 		ret = -EINVAL;
1824 		break;
1825 	case COMP_DEV_ERR:
1826 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1827 				"context command.\n");
1828 		ret = -ENODEV;
1829 		break;
1830 	case COMP_MEL_ERR:
1831 		/* Max Exit Latency too large error */
1832 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1833 		ret = -EINVAL;
1834 		break;
1835 	case COMP_SUCCESS:
1836 		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1837 		ret = 0;
1838 		break;
1839 	default:
1840 		xhci_err(xhci, "ERROR: unexpected command completion "
1841 				"code 0x%x.\n", *cmd_status);
1842 		ret = -EINVAL;
1843 		break;
1844 	}
1845 	return ret;
1846 }
1847 
1848 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1849 		struct xhci_container_ctx *in_ctx)
1850 {
1851 	struct xhci_input_control_ctx *ctrl_ctx;
1852 	u32 valid_add_flags;
1853 	u32 valid_drop_flags;
1854 
1855 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1856 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1857 	 * (bit 1).  The default control endpoint is added during the Address
1858 	 * Device command and is never removed until the slot is disabled.
1859 	 */
1860 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1861 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1862 
1863 	/* Use hweight32 to count the number of ones in the add flags, or
1864 	 * number of endpoints added.  Don't count endpoints that are changed
1865 	 * (both added and dropped).
1866 	 */
1867 	return hweight32(valid_add_flags) -
1868 		hweight32(valid_add_flags & valid_drop_flags);
1869 }
1870 
1871 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1872 		struct xhci_container_ctx *in_ctx)
1873 {
1874 	struct xhci_input_control_ctx *ctrl_ctx;
1875 	u32 valid_add_flags;
1876 	u32 valid_drop_flags;
1877 
1878 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1879 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1880 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1881 
1882 	return hweight32(valid_drop_flags) -
1883 		hweight32(valid_add_flags & valid_drop_flags);
1884 }
1885 
1886 /*
1887  * We need to reserve the new number of endpoints before the configure endpoint
1888  * command completes.  We can't subtract the dropped endpoints from the number
1889  * of active endpoints until the command completes because we can oversubscribe
1890  * the host in this case:
1891  *
1892  *  - the first configure endpoint command drops more endpoints than it adds
1893  *  - a second configure endpoint command that adds more endpoints is queued
1894  *  - the first configure endpoint command fails, so the config is unchanged
1895  *  - the second command may succeed, even though there isn't enough resources
1896  *
1897  * Must be called with xhci->lock held.
1898  */
1899 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1900 		struct xhci_container_ctx *in_ctx)
1901 {
1902 	u32 added_eps;
1903 
1904 	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1905 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1906 		xhci_dbg(xhci, "Not enough ep ctxs: "
1907 				"%u active, need to add %u, limit is %u.\n",
1908 				xhci->num_active_eps, added_eps,
1909 				xhci->limit_active_eps);
1910 		return -ENOMEM;
1911 	}
1912 	xhci->num_active_eps += added_eps;
1913 	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1914 			xhci->num_active_eps);
1915 	return 0;
1916 }
1917 
1918 /*
1919  * The configure endpoint was failed by the xHC for some other reason, so we
1920  * need to revert the resources that failed configuration would have used.
1921  *
1922  * Must be called with xhci->lock held.
1923  */
1924 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1925 		struct xhci_container_ctx *in_ctx)
1926 {
1927 	u32 num_failed_eps;
1928 
1929 	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1930 	xhci->num_active_eps -= num_failed_eps;
1931 	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1932 			num_failed_eps,
1933 			xhci->num_active_eps);
1934 }
1935 
1936 /*
1937  * Now that the command has completed, clean up the active endpoint count by
1938  * subtracting out the endpoints that were dropped (but not changed).
1939  *
1940  * Must be called with xhci->lock held.
1941  */
1942 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1943 		struct xhci_container_ctx *in_ctx)
1944 {
1945 	u32 num_dropped_eps;
1946 
1947 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1948 	xhci->num_active_eps -= num_dropped_eps;
1949 	if (num_dropped_eps)
1950 		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1951 				num_dropped_eps,
1952 				xhci->num_active_eps);
1953 }
1954 
1955 static unsigned int xhci_get_block_size(struct usb_device *udev)
1956 {
1957 	switch (udev->speed) {
1958 	case USB_SPEED_LOW:
1959 	case USB_SPEED_FULL:
1960 		return FS_BLOCK;
1961 	case USB_SPEED_HIGH:
1962 		return HS_BLOCK;
1963 	case USB_SPEED_SUPER:
1964 		return SS_BLOCK;
1965 	case USB_SPEED_UNKNOWN:
1966 	case USB_SPEED_WIRELESS:
1967 	default:
1968 		/* Should never happen */
1969 		return 1;
1970 	}
1971 }
1972 
1973 static unsigned int
1974 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1975 {
1976 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1977 		return LS_OVERHEAD;
1978 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1979 		return FS_OVERHEAD;
1980 	return HS_OVERHEAD;
1981 }
1982 
1983 /* If we are changing a LS/FS device under a HS hub,
1984  * make sure (if we are activating a new TT) that the HS bus has enough
1985  * bandwidth for this new TT.
1986  */
1987 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1988 		struct xhci_virt_device *virt_dev,
1989 		int old_active_eps)
1990 {
1991 	struct xhci_interval_bw_table *bw_table;
1992 	struct xhci_tt_bw_info *tt_info;
1993 
1994 	/* Find the bandwidth table for the root port this TT is attached to. */
1995 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1996 	tt_info = virt_dev->tt_info;
1997 	/* If this TT already had active endpoints, the bandwidth for this TT
1998 	 * has already been added.  Removing all periodic endpoints (and thus
1999 	 * making the TT enactive) will only decrease the bandwidth used.
2000 	 */
2001 	if (old_active_eps)
2002 		return 0;
2003 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2004 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2005 			return -ENOMEM;
2006 		return 0;
2007 	}
2008 	/* Not sure why we would have no new active endpoints...
2009 	 *
2010 	 * Maybe because of an Evaluate Context change for a hub update or a
2011 	 * control endpoint 0 max packet size change?
2012 	 * FIXME: skip the bandwidth calculation in that case.
2013 	 */
2014 	return 0;
2015 }
2016 
2017 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2018 		struct xhci_virt_device *virt_dev)
2019 {
2020 	unsigned int bw_reserved;
2021 
2022 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2023 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2024 		return -ENOMEM;
2025 
2026 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2027 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2028 		return -ENOMEM;
2029 
2030 	return 0;
2031 }
2032 
2033 /*
2034  * This algorithm is a very conservative estimate of the worst-case scheduling
2035  * scenario for any one interval.  The hardware dynamically schedules the
2036  * packets, so we can't tell which microframe could be the limiting factor in
2037  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2038  *
2039  * Obviously, we can't solve an NP complete problem to find the minimum worst
2040  * case scenario.  Instead, we come up with an estimate that is no less than
2041  * the worst case bandwidth used for any one microframe, but may be an
2042  * over-estimate.
2043  *
2044  * We walk the requirements for each endpoint by interval, starting with the
2045  * smallest interval, and place packets in the schedule where there is only one
2046  * possible way to schedule packets for that interval.  In order to simplify
2047  * this algorithm, we record the largest max packet size for each interval, and
2048  * assume all packets will be that size.
2049  *
2050  * For interval 0, we obviously must schedule all packets for each interval.
2051  * The bandwidth for interval 0 is just the amount of data to be transmitted
2052  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2053  * the number of packets).
2054  *
2055  * For interval 1, we have two possible microframes to schedule those packets
2056  * in.  For this algorithm, if we can schedule the same number of packets for
2057  * each possible scheduling opportunity (each microframe), we will do so.  The
2058  * remaining number of packets will be saved to be transmitted in the gaps in
2059  * the next interval's scheduling sequence.
2060  *
2061  * As we move those remaining packets to be scheduled with interval 2 packets,
2062  * we have to double the number of remaining packets to transmit.  This is
2063  * because the intervals are actually powers of 2, and we would be transmitting
2064  * the previous interval's packets twice in this interval.  We also have to be
2065  * sure that when we look at the largest max packet size for this interval, we
2066  * also look at the largest max packet size for the remaining packets and take
2067  * the greater of the two.
2068  *
2069  * The algorithm continues to evenly distribute packets in each scheduling
2070  * opportunity, and push the remaining packets out, until we get to the last
2071  * interval.  Then those packets and their associated overhead are just added
2072  * to the bandwidth used.
2073  */
2074 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2075 		struct xhci_virt_device *virt_dev,
2076 		int old_active_eps)
2077 {
2078 	unsigned int bw_reserved;
2079 	unsigned int max_bandwidth;
2080 	unsigned int bw_used;
2081 	unsigned int block_size;
2082 	struct xhci_interval_bw_table *bw_table;
2083 	unsigned int packet_size = 0;
2084 	unsigned int overhead = 0;
2085 	unsigned int packets_transmitted = 0;
2086 	unsigned int packets_remaining = 0;
2087 	unsigned int i;
2088 
2089 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2090 		return xhci_check_ss_bw(xhci, virt_dev);
2091 
2092 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2093 		max_bandwidth = HS_BW_LIMIT;
2094 		/* Convert percent of bus BW reserved to blocks reserved */
2095 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2096 	} else {
2097 		max_bandwidth = FS_BW_LIMIT;
2098 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2099 	}
2100 
2101 	bw_table = virt_dev->bw_table;
2102 	/* We need to translate the max packet size and max ESIT payloads into
2103 	 * the units the hardware uses.
2104 	 */
2105 	block_size = xhci_get_block_size(virt_dev->udev);
2106 
2107 	/* If we are manipulating a LS/FS device under a HS hub, double check
2108 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2109 	 */
2110 	if (virt_dev->tt_info) {
2111 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2112 				virt_dev->real_port);
2113 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2114 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2115 					"newly activated TT.\n");
2116 			return -ENOMEM;
2117 		}
2118 		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2119 				virt_dev->tt_info->slot_id,
2120 				virt_dev->tt_info->ttport);
2121 	} else {
2122 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2123 				virt_dev->real_port);
2124 	}
2125 
2126 	/* Add in how much bandwidth will be used for interval zero, or the
2127 	 * rounded max ESIT payload + number of packets * largest overhead.
2128 	 */
2129 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2130 		bw_table->interval_bw[0].num_packets *
2131 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2132 
2133 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2134 		unsigned int bw_added;
2135 		unsigned int largest_mps;
2136 		unsigned int interval_overhead;
2137 
2138 		/*
2139 		 * How many packets could we transmit in this interval?
2140 		 * If packets didn't fit in the previous interval, we will need
2141 		 * to transmit that many packets twice within this interval.
2142 		 */
2143 		packets_remaining = 2 * packets_remaining +
2144 			bw_table->interval_bw[i].num_packets;
2145 
2146 		/* Find the largest max packet size of this or the previous
2147 		 * interval.
2148 		 */
2149 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2150 			largest_mps = 0;
2151 		else {
2152 			struct xhci_virt_ep *virt_ep;
2153 			struct list_head *ep_entry;
2154 
2155 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2156 			virt_ep = list_entry(ep_entry,
2157 					struct xhci_virt_ep, bw_endpoint_list);
2158 			/* Convert to blocks, rounding up */
2159 			largest_mps = DIV_ROUND_UP(
2160 					virt_ep->bw_info.max_packet_size,
2161 					block_size);
2162 		}
2163 		if (largest_mps > packet_size)
2164 			packet_size = largest_mps;
2165 
2166 		/* Use the larger overhead of this or the previous interval. */
2167 		interval_overhead = xhci_get_largest_overhead(
2168 				&bw_table->interval_bw[i]);
2169 		if (interval_overhead > overhead)
2170 			overhead = interval_overhead;
2171 
2172 		/* How many packets can we evenly distribute across
2173 		 * (1 << (i + 1)) possible scheduling opportunities?
2174 		 */
2175 		packets_transmitted = packets_remaining >> (i + 1);
2176 
2177 		/* Add in the bandwidth used for those scheduled packets */
2178 		bw_added = packets_transmitted * (overhead + packet_size);
2179 
2180 		/* How many packets do we have remaining to transmit? */
2181 		packets_remaining = packets_remaining % (1 << (i + 1));
2182 
2183 		/* What largest max packet size should those packets have? */
2184 		/* If we've transmitted all packets, don't carry over the
2185 		 * largest packet size.
2186 		 */
2187 		if (packets_remaining == 0) {
2188 			packet_size = 0;
2189 			overhead = 0;
2190 		} else if (packets_transmitted > 0) {
2191 			/* Otherwise if we do have remaining packets, and we've
2192 			 * scheduled some packets in this interval, take the
2193 			 * largest max packet size from endpoints with this
2194 			 * interval.
2195 			 */
2196 			packet_size = largest_mps;
2197 			overhead = interval_overhead;
2198 		}
2199 		/* Otherwise carry over packet_size and overhead from the last
2200 		 * time we had a remainder.
2201 		 */
2202 		bw_used += bw_added;
2203 		if (bw_used > max_bandwidth) {
2204 			xhci_warn(xhci, "Not enough bandwidth. "
2205 					"Proposed: %u, Max: %u\n",
2206 				bw_used, max_bandwidth);
2207 			return -ENOMEM;
2208 		}
2209 	}
2210 	/*
2211 	 * Ok, we know we have some packets left over after even-handedly
2212 	 * scheduling interval 15.  We don't know which microframes they will
2213 	 * fit into, so we over-schedule and say they will be scheduled every
2214 	 * microframe.
2215 	 */
2216 	if (packets_remaining > 0)
2217 		bw_used += overhead + packet_size;
2218 
2219 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2220 		unsigned int port_index = virt_dev->real_port - 1;
2221 
2222 		/* OK, we're manipulating a HS device attached to a
2223 		 * root port bandwidth domain.  Include the number of active TTs
2224 		 * in the bandwidth used.
2225 		 */
2226 		bw_used += TT_HS_OVERHEAD *
2227 			xhci->rh_bw[port_index].num_active_tts;
2228 	}
2229 
2230 	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2231 		"Available: %u " "percent\n",
2232 		bw_used, max_bandwidth, bw_reserved,
2233 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2234 		max_bandwidth);
2235 
2236 	bw_used += bw_reserved;
2237 	if (bw_used > max_bandwidth) {
2238 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2239 				bw_used, max_bandwidth);
2240 		return -ENOMEM;
2241 	}
2242 
2243 	bw_table->bw_used = bw_used;
2244 	return 0;
2245 }
2246 
2247 static bool xhci_is_async_ep(unsigned int ep_type)
2248 {
2249 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2250 					ep_type != ISOC_IN_EP &&
2251 					ep_type != INT_IN_EP);
2252 }
2253 
2254 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2255 {
2256 	return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2257 }
2258 
2259 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2260 {
2261 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2262 
2263 	if (ep_bw->ep_interval == 0)
2264 		return SS_OVERHEAD_BURST +
2265 			(ep_bw->mult * ep_bw->num_packets *
2266 					(SS_OVERHEAD + mps));
2267 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2268 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2269 				1 << ep_bw->ep_interval);
2270 
2271 }
2272 
2273 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2274 		struct xhci_bw_info *ep_bw,
2275 		struct xhci_interval_bw_table *bw_table,
2276 		struct usb_device *udev,
2277 		struct xhci_virt_ep *virt_ep,
2278 		struct xhci_tt_bw_info *tt_info)
2279 {
2280 	struct xhci_interval_bw	*interval_bw;
2281 	int normalized_interval;
2282 
2283 	if (xhci_is_async_ep(ep_bw->type))
2284 		return;
2285 
2286 	if (udev->speed == USB_SPEED_SUPER) {
2287 		if (xhci_is_sync_in_ep(ep_bw->type))
2288 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2289 				xhci_get_ss_bw_consumed(ep_bw);
2290 		else
2291 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2292 				xhci_get_ss_bw_consumed(ep_bw);
2293 		return;
2294 	}
2295 
2296 	/* SuperSpeed endpoints never get added to intervals in the table, so
2297 	 * this check is only valid for HS/FS/LS devices.
2298 	 */
2299 	if (list_empty(&virt_ep->bw_endpoint_list))
2300 		return;
2301 	/* For LS/FS devices, we need to translate the interval expressed in
2302 	 * microframes to frames.
2303 	 */
2304 	if (udev->speed == USB_SPEED_HIGH)
2305 		normalized_interval = ep_bw->ep_interval;
2306 	else
2307 		normalized_interval = ep_bw->ep_interval - 3;
2308 
2309 	if (normalized_interval == 0)
2310 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2311 	interval_bw = &bw_table->interval_bw[normalized_interval];
2312 	interval_bw->num_packets -= ep_bw->num_packets;
2313 	switch (udev->speed) {
2314 	case USB_SPEED_LOW:
2315 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2316 		break;
2317 	case USB_SPEED_FULL:
2318 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2319 		break;
2320 	case USB_SPEED_HIGH:
2321 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2322 		break;
2323 	case USB_SPEED_SUPER:
2324 	case USB_SPEED_UNKNOWN:
2325 	case USB_SPEED_WIRELESS:
2326 		/* Should never happen because only LS/FS/HS endpoints will get
2327 		 * added to the endpoint list.
2328 		 */
2329 		return;
2330 	}
2331 	if (tt_info)
2332 		tt_info->active_eps -= 1;
2333 	list_del_init(&virt_ep->bw_endpoint_list);
2334 }
2335 
2336 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2337 		struct xhci_bw_info *ep_bw,
2338 		struct xhci_interval_bw_table *bw_table,
2339 		struct usb_device *udev,
2340 		struct xhci_virt_ep *virt_ep,
2341 		struct xhci_tt_bw_info *tt_info)
2342 {
2343 	struct xhci_interval_bw	*interval_bw;
2344 	struct xhci_virt_ep *smaller_ep;
2345 	int normalized_interval;
2346 
2347 	if (xhci_is_async_ep(ep_bw->type))
2348 		return;
2349 
2350 	if (udev->speed == USB_SPEED_SUPER) {
2351 		if (xhci_is_sync_in_ep(ep_bw->type))
2352 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2353 				xhci_get_ss_bw_consumed(ep_bw);
2354 		else
2355 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2356 				xhci_get_ss_bw_consumed(ep_bw);
2357 		return;
2358 	}
2359 
2360 	/* For LS/FS devices, we need to translate the interval expressed in
2361 	 * microframes to frames.
2362 	 */
2363 	if (udev->speed == USB_SPEED_HIGH)
2364 		normalized_interval = ep_bw->ep_interval;
2365 	else
2366 		normalized_interval = ep_bw->ep_interval - 3;
2367 
2368 	if (normalized_interval == 0)
2369 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2370 	interval_bw = &bw_table->interval_bw[normalized_interval];
2371 	interval_bw->num_packets += ep_bw->num_packets;
2372 	switch (udev->speed) {
2373 	case USB_SPEED_LOW:
2374 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2375 		break;
2376 	case USB_SPEED_FULL:
2377 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2378 		break;
2379 	case USB_SPEED_HIGH:
2380 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2381 		break;
2382 	case USB_SPEED_SUPER:
2383 	case USB_SPEED_UNKNOWN:
2384 	case USB_SPEED_WIRELESS:
2385 		/* Should never happen because only LS/FS/HS endpoints will get
2386 		 * added to the endpoint list.
2387 		 */
2388 		return;
2389 	}
2390 
2391 	if (tt_info)
2392 		tt_info->active_eps += 1;
2393 	/* Insert the endpoint into the list, largest max packet size first. */
2394 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2395 			bw_endpoint_list) {
2396 		if (ep_bw->max_packet_size >=
2397 				smaller_ep->bw_info.max_packet_size) {
2398 			/* Add the new ep before the smaller endpoint */
2399 			list_add_tail(&virt_ep->bw_endpoint_list,
2400 					&smaller_ep->bw_endpoint_list);
2401 			return;
2402 		}
2403 	}
2404 	/* Add the new endpoint at the end of the list. */
2405 	list_add_tail(&virt_ep->bw_endpoint_list,
2406 			&interval_bw->endpoints);
2407 }
2408 
2409 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2410 		struct xhci_virt_device *virt_dev,
2411 		int old_active_eps)
2412 {
2413 	struct xhci_root_port_bw_info *rh_bw_info;
2414 	if (!virt_dev->tt_info)
2415 		return;
2416 
2417 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2418 	if (old_active_eps == 0 &&
2419 				virt_dev->tt_info->active_eps != 0) {
2420 		rh_bw_info->num_active_tts += 1;
2421 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2422 	} else if (old_active_eps != 0 &&
2423 				virt_dev->tt_info->active_eps == 0) {
2424 		rh_bw_info->num_active_tts -= 1;
2425 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2426 	}
2427 }
2428 
2429 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2430 		struct xhci_virt_device *virt_dev,
2431 		struct xhci_container_ctx *in_ctx)
2432 {
2433 	struct xhci_bw_info ep_bw_info[31];
2434 	int i;
2435 	struct xhci_input_control_ctx *ctrl_ctx;
2436 	int old_active_eps = 0;
2437 
2438 	if (virt_dev->tt_info)
2439 		old_active_eps = virt_dev->tt_info->active_eps;
2440 
2441 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2442 
2443 	for (i = 0; i < 31; i++) {
2444 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2445 			continue;
2446 
2447 		/* Make a copy of the BW info in case we need to revert this */
2448 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2449 				sizeof(ep_bw_info[i]));
2450 		/* Drop the endpoint from the interval table if the endpoint is
2451 		 * being dropped or changed.
2452 		 */
2453 		if (EP_IS_DROPPED(ctrl_ctx, i))
2454 			xhci_drop_ep_from_interval_table(xhci,
2455 					&virt_dev->eps[i].bw_info,
2456 					virt_dev->bw_table,
2457 					virt_dev->udev,
2458 					&virt_dev->eps[i],
2459 					virt_dev->tt_info);
2460 	}
2461 	/* Overwrite the information stored in the endpoints' bw_info */
2462 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2463 	for (i = 0; i < 31; i++) {
2464 		/* Add any changed or added endpoints to the interval table */
2465 		if (EP_IS_ADDED(ctrl_ctx, i))
2466 			xhci_add_ep_to_interval_table(xhci,
2467 					&virt_dev->eps[i].bw_info,
2468 					virt_dev->bw_table,
2469 					virt_dev->udev,
2470 					&virt_dev->eps[i],
2471 					virt_dev->tt_info);
2472 	}
2473 
2474 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2475 		/* Ok, this fits in the bandwidth we have.
2476 		 * Update the number of active TTs.
2477 		 */
2478 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2479 		return 0;
2480 	}
2481 
2482 	/* We don't have enough bandwidth for this, revert the stored info. */
2483 	for (i = 0; i < 31; i++) {
2484 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2485 			continue;
2486 
2487 		/* Drop the new copies of any added or changed endpoints from
2488 		 * the interval table.
2489 		 */
2490 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2491 			xhci_drop_ep_from_interval_table(xhci,
2492 					&virt_dev->eps[i].bw_info,
2493 					virt_dev->bw_table,
2494 					virt_dev->udev,
2495 					&virt_dev->eps[i],
2496 					virt_dev->tt_info);
2497 		}
2498 		/* Revert the endpoint back to its old information */
2499 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2500 				sizeof(ep_bw_info[i]));
2501 		/* Add any changed or dropped endpoints back into the table */
2502 		if (EP_IS_DROPPED(ctrl_ctx, i))
2503 			xhci_add_ep_to_interval_table(xhci,
2504 					&virt_dev->eps[i].bw_info,
2505 					virt_dev->bw_table,
2506 					virt_dev->udev,
2507 					&virt_dev->eps[i],
2508 					virt_dev->tt_info);
2509 	}
2510 	return -ENOMEM;
2511 }
2512 
2513 
2514 /* Issue a configure endpoint command or evaluate context command
2515  * and wait for it to finish.
2516  */
2517 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2518 		struct usb_device *udev,
2519 		struct xhci_command *command,
2520 		bool ctx_change, bool must_succeed)
2521 {
2522 	int ret;
2523 	int timeleft;
2524 	unsigned long flags;
2525 	struct xhci_container_ctx *in_ctx;
2526 	struct completion *cmd_completion;
2527 	u32 *cmd_status;
2528 	struct xhci_virt_device *virt_dev;
2529 	union xhci_trb *cmd_trb;
2530 
2531 	spin_lock_irqsave(&xhci->lock, flags);
2532 	virt_dev = xhci->devs[udev->slot_id];
2533 
2534 	if (command)
2535 		in_ctx = command->in_ctx;
2536 	else
2537 		in_ctx = virt_dev->in_ctx;
2538 
2539 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2540 			xhci_reserve_host_resources(xhci, in_ctx)) {
2541 		spin_unlock_irqrestore(&xhci->lock, flags);
2542 		xhci_warn(xhci, "Not enough host resources, "
2543 				"active endpoint contexts = %u\n",
2544 				xhci->num_active_eps);
2545 		return -ENOMEM;
2546 	}
2547 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2548 			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2549 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2550 			xhci_free_host_resources(xhci, in_ctx);
2551 		spin_unlock_irqrestore(&xhci->lock, flags);
2552 		xhci_warn(xhci, "Not enough bandwidth\n");
2553 		return -ENOMEM;
2554 	}
2555 
2556 	if (command) {
2557 		cmd_completion = command->completion;
2558 		cmd_status = &command->status;
2559 		command->command_trb = xhci->cmd_ring->enqueue;
2560 
2561 		/* Enqueue pointer can be left pointing to the link TRB,
2562 		 * we must handle that
2563 		 */
2564 		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2565 			command->command_trb =
2566 				xhci->cmd_ring->enq_seg->next->trbs;
2567 
2568 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2569 	} else {
2570 		cmd_completion = &virt_dev->cmd_completion;
2571 		cmd_status = &virt_dev->cmd_status;
2572 	}
2573 	init_completion(cmd_completion);
2574 
2575 	cmd_trb = xhci->cmd_ring->dequeue;
2576 	if (!ctx_change)
2577 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2578 				udev->slot_id, must_succeed);
2579 	else
2580 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2581 				udev->slot_id, must_succeed);
2582 	if (ret < 0) {
2583 		if (command)
2584 			list_del(&command->cmd_list);
2585 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2586 			xhci_free_host_resources(xhci, in_ctx);
2587 		spin_unlock_irqrestore(&xhci->lock, flags);
2588 		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2589 		return -ENOMEM;
2590 	}
2591 	xhci_ring_cmd_db(xhci);
2592 	spin_unlock_irqrestore(&xhci->lock, flags);
2593 
2594 	/* Wait for the configure endpoint command to complete */
2595 	timeleft = wait_for_completion_interruptible_timeout(
2596 			cmd_completion,
2597 			XHCI_CMD_DEFAULT_TIMEOUT);
2598 	if (timeleft <= 0) {
2599 		xhci_warn(xhci, "%s while waiting for %s command\n",
2600 				timeleft == 0 ? "Timeout" : "Signal",
2601 				ctx_change == 0 ?
2602 					"configure endpoint" :
2603 					"evaluate context");
2604 		/* cancel the configure endpoint command */
2605 		ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2606 		if (ret < 0)
2607 			return ret;
2608 		return -ETIME;
2609 	}
2610 
2611 	if (!ctx_change)
2612 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2613 	else
2614 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2615 
2616 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2617 		spin_lock_irqsave(&xhci->lock, flags);
2618 		/* If the command failed, remove the reserved resources.
2619 		 * Otherwise, clean up the estimate to include dropped eps.
2620 		 */
2621 		if (ret)
2622 			xhci_free_host_resources(xhci, in_ctx);
2623 		else
2624 			xhci_finish_resource_reservation(xhci, in_ctx);
2625 		spin_unlock_irqrestore(&xhci->lock, flags);
2626 	}
2627 	return ret;
2628 }
2629 
2630 /* Called after one or more calls to xhci_add_endpoint() or
2631  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2632  * to call xhci_reset_bandwidth().
2633  *
2634  * Since we are in the middle of changing either configuration or
2635  * installing a new alt setting, the USB core won't allow URBs to be
2636  * enqueued for any endpoint on the old config or interface.  Nothing
2637  * else should be touching the xhci->devs[slot_id] structure, so we
2638  * don't need to take the xhci->lock for manipulating that.
2639  */
2640 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2641 {
2642 	int i;
2643 	int ret = 0;
2644 	struct xhci_hcd *xhci;
2645 	struct xhci_virt_device	*virt_dev;
2646 	struct xhci_input_control_ctx *ctrl_ctx;
2647 	struct xhci_slot_ctx *slot_ctx;
2648 
2649 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2650 	if (ret <= 0)
2651 		return ret;
2652 	xhci = hcd_to_xhci(hcd);
2653 	if (xhci->xhc_state & XHCI_STATE_DYING)
2654 		return -ENODEV;
2655 
2656 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2657 	virt_dev = xhci->devs[udev->slot_id];
2658 
2659 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2660 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2661 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2662 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2663 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2664 
2665 	/* Don't issue the command if there's no endpoints to update. */
2666 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2667 			ctrl_ctx->drop_flags == 0)
2668 		return 0;
2669 
2670 	xhci_dbg(xhci, "New Input Control Context:\n");
2671 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2672 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2673 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2674 
2675 	ret = xhci_configure_endpoint(xhci, udev, NULL,
2676 			false, false);
2677 	if (ret) {
2678 		/* Callee should call reset_bandwidth() */
2679 		return ret;
2680 	}
2681 
2682 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2683 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2684 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2685 
2686 	/* Free any rings that were dropped, but not changed. */
2687 	for (i = 1; i < 31; ++i) {
2688 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2689 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2690 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2691 	}
2692 	xhci_zero_in_ctx(xhci, virt_dev);
2693 	/*
2694 	 * Install any rings for completely new endpoints or changed endpoints,
2695 	 * and free or cache any old rings from changed endpoints.
2696 	 */
2697 	for (i = 1; i < 31; ++i) {
2698 		if (!virt_dev->eps[i].new_ring)
2699 			continue;
2700 		/* Only cache or free the old ring if it exists.
2701 		 * It may not if this is the first add of an endpoint.
2702 		 */
2703 		if (virt_dev->eps[i].ring) {
2704 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2705 		}
2706 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2707 		virt_dev->eps[i].new_ring = NULL;
2708 	}
2709 
2710 	return ret;
2711 }
2712 
2713 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2714 {
2715 	struct xhci_hcd *xhci;
2716 	struct xhci_virt_device	*virt_dev;
2717 	int i, ret;
2718 
2719 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2720 	if (ret <= 0)
2721 		return;
2722 	xhci = hcd_to_xhci(hcd);
2723 
2724 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2725 	virt_dev = xhci->devs[udev->slot_id];
2726 	/* Free any rings allocated for added endpoints */
2727 	for (i = 0; i < 31; ++i) {
2728 		if (virt_dev->eps[i].new_ring) {
2729 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2730 			virt_dev->eps[i].new_ring = NULL;
2731 		}
2732 	}
2733 	xhci_zero_in_ctx(xhci, virt_dev);
2734 }
2735 
2736 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2737 		struct xhci_container_ctx *in_ctx,
2738 		struct xhci_container_ctx *out_ctx,
2739 		u32 add_flags, u32 drop_flags)
2740 {
2741 	struct xhci_input_control_ctx *ctrl_ctx;
2742 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2743 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2744 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2745 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2746 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2747 
2748 	xhci_dbg(xhci, "Input Context:\n");
2749 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2750 }
2751 
2752 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2753 		unsigned int slot_id, unsigned int ep_index,
2754 		struct xhci_dequeue_state *deq_state)
2755 {
2756 	struct xhci_container_ctx *in_ctx;
2757 	struct xhci_ep_ctx *ep_ctx;
2758 	u32 added_ctxs;
2759 	dma_addr_t addr;
2760 
2761 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2762 			xhci->devs[slot_id]->out_ctx, ep_index);
2763 	in_ctx = xhci->devs[slot_id]->in_ctx;
2764 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2765 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2766 			deq_state->new_deq_ptr);
2767 	if (addr == 0) {
2768 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2769 				"reset ep command\n");
2770 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2771 				deq_state->new_deq_seg,
2772 				deq_state->new_deq_ptr);
2773 		return;
2774 	}
2775 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2776 
2777 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2778 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2779 			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2780 }
2781 
2782 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2783 		struct usb_device *udev, unsigned int ep_index)
2784 {
2785 	struct xhci_dequeue_state deq_state;
2786 	struct xhci_virt_ep *ep;
2787 
2788 	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2789 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2790 	/* We need to move the HW's dequeue pointer past this TD,
2791 	 * or it will attempt to resend it on the next doorbell ring.
2792 	 */
2793 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2794 			ep_index, ep->stopped_stream, ep->stopped_td,
2795 			&deq_state);
2796 
2797 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2798 	 * issue a configure endpoint command later.
2799 	 */
2800 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2801 		xhci_dbg(xhci, "Queueing new dequeue state\n");
2802 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2803 				ep_index, ep->stopped_stream, &deq_state);
2804 	} else {
2805 		/* Better hope no one uses the input context between now and the
2806 		 * reset endpoint completion!
2807 		 * XXX: No idea how this hardware will react when stream rings
2808 		 * are enabled.
2809 		 */
2810 		xhci_dbg(xhci, "Setting up input context for "
2811 				"configure endpoint command\n");
2812 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2813 				ep_index, &deq_state);
2814 	}
2815 }
2816 
2817 /* Deal with stalled endpoints.  The core should have sent the control message
2818  * to clear the halt condition.  However, we need to make the xHCI hardware
2819  * reset its sequence number, since a device will expect a sequence number of
2820  * zero after the halt condition is cleared.
2821  * Context: in_interrupt
2822  */
2823 void xhci_endpoint_reset(struct usb_hcd *hcd,
2824 		struct usb_host_endpoint *ep)
2825 {
2826 	struct xhci_hcd *xhci;
2827 	struct usb_device *udev;
2828 	unsigned int ep_index;
2829 	unsigned long flags;
2830 	int ret;
2831 	struct xhci_virt_ep *virt_ep;
2832 
2833 	xhci = hcd_to_xhci(hcd);
2834 	udev = (struct usb_device *) ep->hcpriv;
2835 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2836 	 * with xhci_add_endpoint()
2837 	 */
2838 	if (!ep->hcpriv)
2839 		return;
2840 	ep_index = xhci_get_endpoint_index(&ep->desc);
2841 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2842 	if (!virt_ep->stopped_td) {
2843 		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2844 				ep->desc.bEndpointAddress);
2845 		return;
2846 	}
2847 	if (usb_endpoint_xfer_control(&ep->desc)) {
2848 		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2849 		return;
2850 	}
2851 
2852 	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2853 	spin_lock_irqsave(&xhci->lock, flags);
2854 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2855 	/*
2856 	 * Can't change the ring dequeue pointer until it's transitioned to the
2857 	 * stopped state, which is only upon a successful reset endpoint
2858 	 * command.  Better hope that last command worked!
2859 	 */
2860 	if (!ret) {
2861 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2862 		kfree(virt_ep->stopped_td);
2863 		xhci_ring_cmd_db(xhci);
2864 	}
2865 	virt_ep->stopped_td = NULL;
2866 	virt_ep->stopped_trb = NULL;
2867 	virt_ep->stopped_stream = 0;
2868 	spin_unlock_irqrestore(&xhci->lock, flags);
2869 
2870 	if (ret)
2871 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2872 }
2873 
2874 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2875 		struct usb_device *udev, struct usb_host_endpoint *ep,
2876 		unsigned int slot_id)
2877 {
2878 	int ret;
2879 	unsigned int ep_index;
2880 	unsigned int ep_state;
2881 
2882 	if (!ep)
2883 		return -EINVAL;
2884 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2885 	if (ret <= 0)
2886 		return -EINVAL;
2887 	if (ep->ss_ep_comp.bmAttributes == 0) {
2888 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2889 				" descriptor for ep 0x%x does not support streams\n",
2890 				ep->desc.bEndpointAddress);
2891 		return -EINVAL;
2892 	}
2893 
2894 	ep_index = xhci_get_endpoint_index(&ep->desc);
2895 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2896 	if (ep_state & EP_HAS_STREAMS ||
2897 			ep_state & EP_GETTING_STREAMS) {
2898 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2899 				"already has streams set up.\n",
2900 				ep->desc.bEndpointAddress);
2901 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2902 				"dynamic stream context array reallocation.\n");
2903 		return -EINVAL;
2904 	}
2905 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2906 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2907 				"endpoint 0x%x; URBs are pending.\n",
2908 				ep->desc.bEndpointAddress);
2909 		return -EINVAL;
2910 	}
2911 	return 0;
2912 }
2913 
2914 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2915 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2916 {
2917 	unsigned int max_streams;
2918 
2919 	/* The stream context array size must be a power of two */
2920 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2921 	/*
2922 	 * Find out how many primary stream array entries the host controller
2923 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2924 	 * level page entries), but that's an optional feature for xHCI host
2925 	 * controllers. xHCs must support at least 4 stream IDs.
2926 	 */
2927 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2928 	if (*num_stream_ctxs > max_streams) {
2929 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2930 				max_streams);
2931 		*num_stream_ctxs = max_streams;
2932 		*num_streams = max_streams;
2933 	}
2934 }
2935 
2936 /* Returns an error code if one of the endpoint already has streams.
2937  * This does not change any data structures, it only checks and gathers
2938  * information.
2939  */
2940 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2941 		struct usb_device *udev,
2942 		struct usb_host_endpoint **eps, unsigned int num_eps,
2943 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2944 {
2945 	unsigned int max_streams;
2946 	unsigned int endpoint_flag;
2947 	int i;
2948 	int ret;
2949 
2950 	for (i = 0; i < num_eps; i++) {
2951 		ret = xhci_check_streams_endpoint(xhci, udev,
2952 				eps[i], udev->slot_id);
2953 		if (ret < 0)
2954 			return ret;
2955 
2956 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2957 		if (max_streams < (*num_streams - 1)) {
2958 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2959 					eps[i]->desc.bEndpointAddress,
2960 					max_streams);
2961 			*num_streams = max_streams+1;
2962 		}
2963 
2964 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2965 		if (*changed_ep_bitmask & endpoint_flag)
2966 			return -EINVAL;
2967 		*changed_ep_bitmask |= endpoint_flag;
2968 	}
2969 	return 0;
2970 }
2971 
2972 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2973 		struct usb_device *udev,
2974 		struct usb_host_endpoint **eps, unsigned int num_eps)
2975 {
2976 	u32 changed_ep_bitmask = 0;
2977 	unsigned int slot_id;
2978 	unsigned int ep_index;
2979 	unsigned int ep_state;
2980 	int i;
2981 
2982 	slot_id = udev->slot_id;
2983 	if (!xhci->devs[slot_id])
2984 		return 0;
2985 
2986 	for (i = 0; i < num_eps; i++) {
2987 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2988 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2989 		/* Are streams already being freed for the endpoint? */
2990 		if (ep_state & EP_GETTING_NO_STREAMS) {
2991 			xhci_warn(xhci, "WARN Can't disable streams for "
2992 					"endpoint 0x%x\n, "
2993 					"streams are being disabled already.",
2994 					eps[i]->desc.bEndpointAddress);
2995 			return 0;
2996 		}
2997 		/* Are there actually any streams to free? */
2998 		if (!(ep_state & EP_HAS_STREAMS) &&
2999 				!(ep_state & EP_GETTING_STREAMS)) {
3000 			xhci_warn(xhci, "WARN Can't disable streams for "
3001 					"endpoint 0x%x\n, "
3002 					"streams are already disabled!",
3003 					eps[i]->desc.bEndpointAddress);
3004 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3005 					"with non-streams endpoint\n");
3006 			return 0;
3007 		}
3008 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3009 	}
3010 	return changed_ep_bitmask;
3011 }
3012 
3013 /*
3014  * The USB device drivers use this function (though the HCD interface in USB
3015  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3016  * coordinate mass storage command queueing across multiple endpoints (basically
3017  * a stream ID == a task ID).
3018  *
3019  * Setting up streams involves allocating the same size stream context array
3020  * for each endpoint and issuing a configure endpoint command for all endpoints.
3021  *
3022  * Don't allow the call to succeed if one endpoint only supports one stream
3023  * (which means it doesn't support streams at all).
3024  *
3025  * Drivers may get less stream IDs than they asked for, if the host controller
3026  * hardware or endpoints claim they can't support the number of requested
3027  * stream IDs.
3028  */
3029 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3030 		struct usb_host_endpoint **eps, unsigned int num_eps,
3031 		unsigned int num_streams, gfp_t mem_flags)
3032 {
3033 	int i, ret;
3034 	struct xhci_hcd *xhci;
3035 	struct xhci_virt_device *vdev;
3036 	struct xhci_command *config_cmd;
3037 	unsigned int ep_index;
3038 	unsigned int num_stream_ctxs;
3039 	unsigned long flags;
3040 	u32 changed_ep_bitmask = 0;
3041 
3042 	if (!eps)
3043 		return -EINVAL;
3044 
3045 	/* Add one to the number of streams requested to account for
3046 	 * stream 0 that is reserved for xHCI usage.
3047 	 */
3048 	num_streams += 1;
3049 	xhci = hcd_to_xhci(hcd);
3050 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3051 			num_streams);
3052 
3053 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3054 	if (!config_cmd) {
3055 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3056 		return -ENOMEM;
3057 	}
3058 
3059 	/* Check to make sure all endpoints are not already configured for
3060 	 * streams.  While we're at it, find the maximum number of streams that
3061 	 * all the endpoints will support and check for duplicate endpoints.
3062 	 */
3063 	spin_lock_irqsave(&xhci->lock, flags);
3064 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3065 			num_eps, &num_streams, &changed_ep_bitmask);
3066 	if (ret < 0) {
3067 		xhci_free_command(xhci, config_cmd);
3068 		spin_unlock_irqrestore(&xhci->lock, flags);
3069 		return ret;
3070 	}
3071 	if (num_streams <= 1) {
3072 		xhci_warn(xhci, "WARN: endpoints can't handle "
3073 				"more than one stream.\n");
3074 		xhci_free_command(xhci, config_cmd);
3075 		spin_unlock_irqrestore(&xhci->lock, flags);
3076 		return -EINVAL;
3077 	}
3078 	vdev = xhci->devs[udev->slot_id];
3079 	/* Mark each endpoint as being in transition, so
3080 	 * xhci_urb_enqueue() will reject all URBs.
3081 	 */
3082 	for (i = 0; i < num_eps; i++) {
3083 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3084 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3085 	}
3086 	spin_unlock_irqrestore(&xhci->lock, flags);
3087 
3088 	/* Setup internal data structures and allocate HW data structures for
3089 	 * streams (but don't install the HW structures in the input context
3090 	 * until we're sure all memory allocation succeeded).
3091 	 */
3092 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3093 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3094 			num_stream_ctxs, num_streams);
3095 
3096 	for (i = 0; i < num_eps; i++) {
3097 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3098 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3099 				num_stream_ctxs,
3100 				num_streams, mem_flags);
3101 		if (!vdev->eps[ep_index].stream_info)
3102 			goto cleanup;
3103 		/* Set maxPstreams in endpoint context and update deq ptr to
3104 		 * point to stream context array. FIXME
3105 		 */
3106 	}
3107 
3108 	/* Set up the input context for a configure endpoint command. */
3109 	for (i = 0; i < num_eps; i++) {
3110 		struct xhci_ep_ctx *ep_ctx;
3111 
3112 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3113 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3114 
3115 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3116 				vdev->out_ctx, ep_index);
3117 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3118 				vdev->eps[ep_index].stream_info);
3119 	}
3120 	/* Tell the HW to drop its old copy of the endpoint context info
3121 	 * and add the updated copy from the input context.
3122 	 */
3123 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3124 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3125 
3126 	/* Issue and wait for the configure endpoint command */
3127 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3128 			false, false);
3129 
3130 	/* xHC rejected the configure endpoint command for some reason, so we
3131 	 * leave the old ring intact and free our internal streams data
3132 	 * structure.
3133 	 */
3134 	if (ret < 0)
3135 		goto cleanup;
3136 
3137 	spin_lock_irqsave(&xhci->lock, flags);
3138 	for (i = 0; i < num_eps; i++) {
3139 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3140 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3141 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3142 			 udev->slot_id, ep_index);
3143 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3144 	}
3145 	xhci_free_command(xhci, config_cmd);
3146 	spin_unlock_irqrestore(&xhci->lock, flags);
3147 
3148 	/* Subtract 1 for stream 0, which drivers can't use */
3149 	return num_streams - 1;
3150 
3151 cleanup:
3152 	/* If it didn't work, free the streams! */
3153 	for (i = 0; i < num_eps; i++) {
3154 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3155 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3156 		vdev->eps[ep_index].stream_info = NULL;
3157 		/* FIXME Unset maxPstreams in endpoint context and
3158 		 * update deq ptr to point to normal string ring.
3159 		 */
3160 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3161 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3162 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3163 	}
3164 	xhci_free_command(xhci, config_cmd);
3165 	return -ENOMEM;
3166 }
3167 
3168 /* Transition the endpoint from using streams to being a "normal" endpoint
3169  * without streams.
3170  *
3171  * Modify the endpoint context state, submit a configure endpoint command,
3172  * and free all endpoint rings for streams if that completes successfully.
3173  */
3174 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3175 		struct usb_host_endpoint **eps, unsigned int num_eps,
3176 		gfp_t mem_flags)
3177 {
3178 	int i, ret;
3179 	struct xhci_hcd *xhci;
3180 	struct xhci_virt_device *vdev;
3181 	struct xhci_command *command;
3182 	unsigned int ep_index;
3183 	unsigned long flags;
3184 	u32 changed_ep_bitmask;
3185 
3186 	xhci = hcd_to_xhci(hcd);
3187 	vdev = xhci->devs[udev->slot_id];
3188 
3189 	/* Set up a configure endpoint command to remove the streams rings */
3190 	spin_lock_irqsave(&xhci->lock, flags);
3191 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3192 			udev, eps, num_eps);
3193 	if (changed_ep_bitmask == 0) {
3194 		spin_unlock_irqrestore(&xhci->lock, flags);
3195 		return -EINVAL;
3196 	}
3197 
3198 	/* Use the xhci_command structure from the first endpoint.  We may have
3199 	 * allocated too many, but the driver may call xhci_free_streams() for
3200 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3201 	 */
3202 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3203 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3204 	for (i = 0; i < num_eps; i++) {
3205 		struct xhci_ep_ctx *ep_ctx;
3206 
3207 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3208 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3209 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3210 			EP_GETTING_NO_STREAMS;
3211 
3212 		xhci_endpoint_copy(xhci, command->in_ctx,
3213 				vdev->out_ctx, ep_index);
3214 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3215 				&vdev->eps[ep_index]);
3216 	}
3217 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3218 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3219 	spin_unlock_irqrestore(&xhci->lock, flags);
3220 
3221 	/* Issue and wait for the configure endpoint command,
3222 	 * which must succeed.
3223 	 */
3224 	ret = xhci_configure_endpoint(xhci, udev, command,
3225 			false, true);
3226 
3227 	/* xHC rejected the configure endpoint command for some reason, so we
3228 	 * leave the streams rings intact.
3229 	 */
3230 	if (ret < 0)
3231 		return ret;
3232 
3233 	spin_lock_irqsave(&xhci->lock, flags);
3234 	for (i = 0; i < num_eps; i++) {
3235 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3236 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3237 		vdev->eps[ep_index].stream_info = NULL;
3238 		/* FIXME Unset maxPstreams in endpoint context and
3239 		 * update deq ptr to point to normal string ring.
3240 		 */
3241 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3242 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3243 	}
3244 	spin_unlock_irqrestore(&xhci->lock, flags);
3245 
3246 	return 0;
3247 }
3248 
3249 /*
3250  * Deletes endpoint resources for endpoints that were active before a Reset
3251  * Device command, or a Disable Slot command.  The Reset Device command leaves
3252  * the control endpoint intact, whereas the Disable Slot command deletes it.
3253  *
3254  * Must be called with xhci->lock held.
3255  */
3256 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3257 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3258 {
3259 	int i;
3260 	unsigned int num_dropped_eps = 0;
3261 	unsigned int drop_flags = 0;
3262 
3263 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3264 		if (virt_dev->eps[i].ring) {
3265 			drop_flags |= 1 << i;
3266 			num_dropped_eps++;
3267 		}
3268 	}
3269 	xhci->num_active_eps -= num_dropped_eps;
3270 	if (num_dropped_eps)
3271 		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3272 				"%u now active.\n",
3273 				num_dropped_eps, drop_flags,
3274 				xhci->num_active_eps);
3275 }
3276 
3277 /*
3278  * This submits a Reset Device Command, which will set the device state to 0,
3279  * set the device address to 0, and disable all the endpoints except the default
3280  * control endpoint.  The USB core should come back and call
3281  * xhci_address_device(), and then re-set up the configuration.  If this is
3282  * called because of a usb_reset_and_verify_device(), then the old alternate
3283  * settings will be re-installed through the normal bandwidth allocation
3284  * functions.
3285  *
3286  * Wait for the Reset Device command to finish.  Remove all structures
3287  * associated with the endpoints that were disabled.  Clear the input device
3288  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3289  *
3290  * If the virt_dev to be reset does not exist or does not match the udev,
3291  * it means the device is lost, possibly due to the xHC restore error and
3292  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3293  * re-allocate the device.
3294  */
3295 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3296 {
3297 	int ret, i;
3298 	unsigned long flags;
3299 	struct xhci_hcd *xhci;
3300 	unsigned int slot_id;
3301 	struct xhci_virt_device *virt_dev;
3302 	struct xhci_command *reset_device_cmd;
3303 	int timeleft;
3304 	int last_freed_endpoint;
3305 	struct xhci_slot_ctx *slot_ctx;
3306 	int old_active_eps = 0;
3307 
3308 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3309 	if (ret <= 0)
3310 		return ret;
3311 	xhci = hcd_to_xhci(hcd);
3312 	slot_id = udev->slot_id;
3313 	virt_dev = xhci->devs[slot_id];
3314 	if (!virt_dev) {
3315 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3316 				"not exist. Re-allocate the device\n", slot_id);
3317 		ret = xhci_alloc_dev(hcd, udev);
3318 		if (ret == 1)
3319 			return 0;
3320 		else
3321 			return -EINVAL;
3322 	}
3323 
3324 	if (virt_dev->udev != udev) {
3325 		/* If the virt_dev and the udev does not match, this virt_dev
3326 		 * may belong to another udev.
3327 		 * Re-allocate the device.
3328 		 */
3329 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3330 				"not match the udev. Re-allocate the device\n",
3331 				slot_id);
3332 		ret = xhci_alloc_dev(hcd, udev);
3333 		if (ret == 1)
3334 			return 0;
3335 		else
3336 			return -EINVAL;
3337 	}
3338 
3339 	/* If device is not setup, there is no point in resetting it */
3340 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3341 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3342 						SLOT_STATE_DISABLED)
3343 		return 0;
3344 
3345 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3346 	/* Allocate the command structure that holds the struct completion.
3347 	 * Assume we're in process context, since the normal device reset
3348 	 * process has to wait for the device anyway.  Storage devices are
3349 	 * reset as part of error handling, so use GFP_NOIO instead of
3350 	 * GFP_KERNEL.
3351 	 */
3352 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3353 	if (!reset_device_cmd) {
3354 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3355 		return -ENOMEM;
3356 	}
3357 
3358 	/* Attempt to submit the Reset Device command to the command ring */
3359 	spin_lock_irqsave(&xhci->lock, flags);
3360 	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3361 
3362 	/* Enqueue pointer can be left pointing to the link TRB,
3363 	 * we must handle that
3364 	 */
3365 	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3366 		reset_device_cmd->command_trb =
3367 			xhci->cmd_ring->enq_seg->next->trbs;
3368 
3369 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3370 	ret = xhci_queue_reset_device(xhci, slot_id);
3371 	if (ret) {
3372 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3373 		list_del(&reset_device_cmd->cmd_list);
3374 		spin_unlock_irqrestore(&xhci->lock, flags);
3375 		goto command_cleanup;
3376 	}
3377 	xhci_ring_cmd_db(xhci);
3378 	spin_unlock_irqrestore(&xhci->lock, flags);
3379 
3380 	/* Wait for the Reset Device command to finish */
3381 	timeleft = wait_for_completion_interruptible_timeout(
3382 			reset_device_cmd->completion,
3383 			USB_CTRL_SET_TIMEOUT);
3384 	if (timeleft <= 0) {
3385 		xhci_warn(xhci, "%s while waiting for reset device command\n",
3386 				timeleft == 0 ? "Timeout" : "Signal");
3387 		spin_lock_irqsave(&xhci->lock, flags);
3388 		/* The timeout might have raced with the event ring handler, so
3389 		 * only delete from the list if the item isn't poisoned.
3390 		 */
3391 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3392 			list_del(&reset_device_cmd->cmd_list);
3393 		spin_unlock_irqrestore(&xhci->lock, flags);
3394 		ret = -ETIME;
3395 		goto command_cleanup;
3396 	}
3397 
3398 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3399 	 * unless we tried to reset a slot ID that wasn't enabled,
3400 	 * or the device wasn't in the addressed or configured state.
3401 	 */
3402 	ret = reset_device_cmd->status;
3403 	switch (ret) {
3404 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3405 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3406 		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3407 				slot_id,
3408 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3409 		xhci_info(xhci, "Not freeing device rings.\n");
3410 		/* Don't treat this as an error.  May change my mind later. */
3411 		ret = 0;
3412 		goto command_cleanup;
3413 	case COMP_SUCCESS:
3414 		xhci_dbg(xhci, "Successful reset device command.\n");
3415 		break;
3416 	default:
3417 		if (xhci_is_vendor_info_code(xhci, ret))
3418 			break;
3419 		xhci_warn(xhci, "Unknown completion code %u for "
3420 				"reset device command.\n", ret);
3421 		ret = -EINVAL;
3422 		goto command_cleanup;
3423 	}
3424 
3425 	/* Free up host controller endpoint resources */
3426 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3427 		spin_lock_irqsave(&xhci->lock, flags);
3428 		/* Don't delete the default control endpoint resources */
3429 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3430 		spin_unlock_irqrestore(&xhci->lock, flags);
3431 	}
3432 
3433 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3434 	last_freed_endpoint = 1;
3435 	for (i = 1; i < 31; ++i) {
3436 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3437 
3438 		if (ep->ep_state & EP_HAS_STREAMS) {
3439 			xhci_free_stream_info(xhci, ep->stream_info);
3440 			ep->stream_info = NULL;
3441 			ep->ep_state &= ~EP_HAS_STREAMS;
3442 		}
3443 
3444 		if (ep->ring) {
3445 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3446 			last_freed_endpoint = i;
3447 		}
3448 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3449 			xhci_drop_ep_from_interval_table(xhci,
3450 					&virt_dev->eps[i].bw_info,
3451 					virt_dev->bw_table,
3452 					udev,
3453 					&virt_dev->eps[i],
3454 					virt_dev->tt_info);
3455 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3456 	}
3457 	/* If necessary, update the number of active TTs on this root port */
3458 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3459 
3460 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3461 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3462 	ret = 0;
3463 
3464 command_cleanup:
3465 	xhci_free_command(xhci, reset_device_cmd);
3466 	return ret;
3467 }
3468 
3469 /*
3470  * At this point, the struct usb_device is about to go away, the device has
3471  * disconnected, and all traffic has been stopped and the endpoints have been
3472  * disabled.  Free any HC data structures associated with that device.
3473  */
3474 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3475 {
3476 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3477 	struct xhci_virt_device *virt_dev;
3478 	unsigned long flags;
3479 	u32 state;
3480 	int i, ret;
3481 
3482 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3483 	/* If the host is halted due to driver unload, we still need to free the
3484 	 * device.
3485 	 */
3486 	if (ret <= 0 && ret != -ENODEV)
3487 		return;
3488 
3489 	virt_dev = xhci->devs[udev->slot_id];
3490 
3491 	/* Stop any wayward timer functions (which may grab the lock) */
3492 	for (i = 0; i < 31; ++i) {
3493 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3494 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3495 	}
3496 
3497 	if (udev->usb2_hw_lpm_enabled) {
3498 		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3499 		udev->usb2_hw_lpm_enabled = 0;
3500 	}
3501 
3502 	spin_lock_irqsave(&xhci->lock, flags);
3503 	/* Don't disable the slot if the host controller is dead. */
3504 	state = xhci_readl(xhci, &xhci->op_regs->status);
3505 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3506 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3507 		xhci_free_virt_device(xhci, udev->slot_id);
3508 		spin_unlock_irqrestore(&xhci->lock, flags);
3509 		return;
3510 	}
3511 
3512 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3513 		spin_unlock_irqrestore(&xhci->lock, flags);
3514 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3515 		return;
3516 	}
3517 	xhci_ring_cmd_db(xhci);
3518 	spin_unlock_irqrestore(&xhci->lock, flags);
3519 	/*
3520 	 * Event command completion handler will free any data structures
3521 	 * associated with the slot.  XXX Can free sleep?
3522 	 */
3523 }
3524 
3525 /*
3526  * Checks if we have enough host controller resources for the default control
3527  * endpoint.
3528  *
3529  * Must be called with xhci->lock held.
3530  */
3531 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3532 {
3533 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3534 		xhci_dbg(xhci, "Not enough ep ctxs: "
3535 				"%u active, need to add 1, limit is %u.\n",
3536 				xhci->num_active_eps, xhci->limit_active_eps);
3537 		return -ENOMEM;
3538 	}
3539 	xhci->num_active_eps += 1;
3540 	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3541 			xhci->num_active_eps);
3542 	return 0;
3543 }
3544 
3545 
3546 /*
3547  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3548  * timed out, or allocating memory failed.  Returns 1 on success.
3549  */
3550 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3551 {
3552 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3553 	unsigned long flags;
3554 	int timeleft;
3555 	int ret;
3556 	union xhci_trb *cmd_trb;
3557 
3558 	spin_lock_irqsave(&xhci->lock, flags);
3559 	cmd_trb = xhci->cmd_ring->dequeue;
3560 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3561 	if (ret) {
3562 		spin_unlock_irqrestore(&xhci->lock, flags);
3563 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3564 		return 0;
3565 	}
3566 	xhci_ring_cmd_db(xhci);
3567 	spin_unlock_irqrestore(&xhci->lock, flags);
3568 
3569 	/* XXX: how much time for xHC slot assignment? */
3570 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3571 			XHCI_CMD_DEFAULT_TIMEOUT);
3572 	if (timeleft <= 0) {
3573 		xhci_warn(xhci, "%s while waiting for a slot\n",
3574 				timeleft == 0 ? "Timeout" : "Signal");
3575 		/* cancel the enable slot request */
3576 		return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3577 	}
3578 
3579 	if (!xhci->slot_id) {
3580 		xhci_err(xhci, "Error while assigning device slot ID\n");
3581 		return 0;
3582 	}
3583 
3584 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3585 		spin_lock_irqsave(&xhci->lock, flags);
3586 		ret = xhci_reserve_host_control_ep_resources(xhci);
3587 		if (ret) {
3588 			spin_unlock_irqrestore(&xhci->lock, flags);
3589 			xhci_warn(xhci, "Not enough host resources, "
3590 					"active endpoint contexts = %u\n",
3591 					xhci->num_active_eps);
3592 			goto disable_slot;
3593 		}
3594 		spin_unlock_irqrestore(&xhci->lock, flags);
3595 	}
3596 	/* Use GFP_NOIO, since this function can be called from
3597 	 * xhci_discover_or_reset_device(), which may be called as part of
3598 	 * mass storage driver error handling.
3599 	 */
3600 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3601 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3602 		goto disable_slot;
3603 	}
3604 	udev->slot_id = xhci->slot_id;
3605 	/* Is this a LS or FS device under a HS hub? */
3606 	/* Hub or peripherial? */
3607 	return 1;
3608 
3609 disable_slot:
3610 	/* Disable slot, if we can do it without mem alloc */
3611 	spin_lock_irqsave(&xhci->lock, flags);
3612 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3613 		xhci_ring_cmd_db(xhci);
3614 	spin_unlock_irqrestore(&xhci->lock, flags);
3615 	return 0;
3616 }
3617 
3618 /*
3619  * Issue an Address Device command (which will issue a SetAddress request to
3620  * the device).
3621  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3622  * we should only issue and wait on one address command at the same time.
3623  *
3624  * We add one to the device address issued by the hardware because the USB core
3625  * uses address 1 for the root hubs (even though they're not really devices).
3626  */
3627 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3628 {
3629 	unsigned long flags;
3630 	int timeleft;
3631 	struct xhci_virt_device *virt_dev;
3632 	int ret = 0;
3633 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3634 	struct xhci_slot_ctx *slot_ctx;
3635 	struct xhci_input_control_ctx *ctrl_ctx;
3636 	u64 temp_64;
3637 	union xhci_trb *cmd_trb;
3638 
3639 	if (!udev->slot_id) {
3640 		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3641 		return -EINVAL;
3642 	}
3643 
3644 	virt_dev = xhci->devs[udev->slot_id];
3645 
3646 	if (WARN_ON(!virt_dev)) {
3647 		/*
3648 		 * In plug/unplug torture test with an NEC controller,
3649 		 * a zero-dereference was observed once due to virt_dev = 0.
3650 		 * Print useful debug rather than crash if it is observed again!
3651 		 */
3652 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3653 			udev->slot_id);
3654 		return -EINVAL;
3655 	}
3656 
3657 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3658 	/*
3659 	 * If this is the first Set Address since device plug-in or
3660 	 * virt_device realloaction after a resume with an xHCI power loss,
3661 	 * then set up the slot context.
3662 	 */
3663 	if (!slot_ctx->dev_info)
3664 		xhci_setup_addressable_virt_dev(xhci, udev);
3665 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3666 	else
3667 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3668 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3669 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3670 	ctrl_ctx->drop_flags = 0;
3671 
3672 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3673 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3674 
3675 	spin_lock_irqsave(&xhci->lock, flags);
3676 	cmd_trb = xhci->cmd_ring->dequeue;
3677 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3678 					udev->slot_id);
3679 	if (ret) {
3680 		spin_unlock_irqrestore(&xhci->lock, flags);
3681 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3682 		return ret;
3683 	}
3684 	xhci_ring_cmd_db(xhci);
3685 	spin_unlock_irqrestore(&xhci->lock, flags);
3686 
3687 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3688 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3689 			XHCI_CMD_DEFAULT_TIMEOUT);
3690 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3691 	 * the SetAddress() "recovery interval" required by USB and aborting the
3692 	 * command on a timeout.
3693 	 */
3694 	if (timeleft <= 0) {
3695 		xhci_warn(xhci, "%s while waiting for address device command\n",
3696 				timeleft == 0 ? "Timeout" : "Signal");
3697 		/* cancel the address device command */
3698 		ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3699 		if (ret < 0)
3700 			return ret;
3701 		return -ETIME;
3702 	}
3703 
3704 	switch (virt_dev->cmd_status) {
3705 	case COMP_CTX_STATE:
3706 	case COMP_EBADSLT:
3707 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3708 				udev->slot_id);
3709 		ret = -EINVAL;
3710 		break;
3711 	case COMP_TX_ERR:
3712 		dev_warn(&udev->dev, "Device not responding to set address.\n");
3713 		ret = -EPROTO;
3714 		break;
3715 	case COMP_DEV_ERR:
3716 		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3717 				"device command.\n");
3718 		ret = -ENODEV;
3719 		break;
3720 	case COMP_SUCCESS:
3721 		xhci_dbg(xhci, "Successful Address Device command\n");
3722 		break;
3723 	default:
3724 		xhci_err(xhci, "ERROR: unexpected command completion "
3725 				"code 0x%x.\n", virt_dev->cmd_status);
3726 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3727 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3728 		ret = -EINVAL;
3729 		break;
3730 	}
3731 	if (ret) {
3732 		return ret;
3733 	}
3734 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3735 	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3736 	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3737 		 udev->slot_id,
3738 		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3739 		 (unsigned long long)
3740 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3741 	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3742 			(unsigned long long)virt_dev->out_ctx->dma);
3743 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3744 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3745 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3746 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3747 	/*
3748 	 * USB core uses address 1 for the roothubs, so we add one to the
3749 	 * address given back to us by the HC.
3750 	 */
3751 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3752 	/* Use kernel assigned address for devices; store xHC assigned
3753 	 * address locally. */
3754 	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3755 		+ 1;
3756 	/* Zero the input context control for later use */
3757 	ctrl_ctx->add_flags = 0;
3758 	ctrl_ctx->drop_flags = 0;
3759 
3760 	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3761 
3762 	return 0;
3763 }
3764 
3765 #ifdef CONFIG_USB_SUSPEND
3766 
3767 /* BESL to HIRD Encoding array for USB2 LPM */
3768 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3769 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3770 
3771 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3772 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3773 					struct usb_device *udev)
3774 {
3775 	int u2del, besl, besl_host;
3776 	int besl_device = 0;
3777 	u32 field;
3778 
3779 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3780 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3781 
3782 	if (field & USB_BESL_SUPPORT) {
3783 		for (besl_host = 0; besl_host < 16; besl_host++) {
3784 			if (xhci_besl_encoding[besl_host] >= u2del)
3785 				break;
3786 		}
3787 		/* Use baseline BESL value as default */
3788 		if (field & USB_BESL_BASELINE_VALID)
3789 			besl_device = USB_GET_BESL_BASELINE(field);
3790 		else if (field & USB_BESL_DEEP_VALID)
3791 			besl_device = USB_GET_BESL_DEEP(field);
3792 	} else {
3793 		if (u2del <= 50)
3794 			besl_host = 0;
3795 		else
3796 			besl_host = (u2del - 51) / 75 + 1;
3797 	}
3798 
3799 	besl = besl_host + besl_device;
3800 	if (besl > 15)
3801 		besl = 15;
3802 
3803 	return besl;
3804 }
3805 
3806 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3807 					struct usb_device *udev)
3808 {
3809 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3810 	struct dev_info	*dev_info;
3811 	__le32 __iomem	**port_array;
3812 	__le32 __iomem	*addr, *pm_addr;
3813 	u32		temp, dev_id;
3814 	unsigned int	port_num;
3815 	unsigned long	flags;
3816 	int		hird;
3817 	int		ret;
3818 
3819 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3820 			!udev->lpm_capable)
3821 		return -EINVAL;
3822 
3823 	/* we only support lpm for non-hub device connected to root hub yet */
3824 	if (!udev->parent || udev->parent->parent ||
3825 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3826 		return -EINVAL;
3827 
3828 	spin_lock_irqsave(&xhci->lock, flags);
3829 
3830 	/* Look for devices in lpm_failed_devs list */
3831 	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3832 			le16_to_cpu(udev->descriptor.idProduct);
3833 	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3834 		if (dev_info->dev_id == dev_id) {
3835 			ret = -EINVAL;
3836 			goto finish;
3837 		}
3838 	}
3839 
3840 	port_array = xhci->usb2_ports;
3841 	port_num = udev->portnum - 1;
3842 
3843 	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3844 		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3845 		ret = -EINVAL;
3846 		goto finish;
3847 	}
3848 
3849 	/*
3850 	 * Test USB 2.0 software LPM.
3851 	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3852 	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3853 	 * in the June 2011 errata release.
3854 	 */
3855 	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3856 	/*
3857 	 * Set L1 Device Slot and HIRD/BESL.
3858 	 * Check device's USB 2.0 extension descriptor to determine whether
3859 	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3860 	 */
3861 	pm_addr = port_array[port_num] + 1;
3862 	hird = xhci_calculate_hird_besl(xhci, udev);
3863 	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3864 	xhci_writel(xhci, temp, pm_addr);
3865 
3866 	/* Set port link state to U2(L1) */
3867 	addr = port_array[port_num];
3868 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3869 
3870 	/* wait for ACK */
3871 	spin_unlock_irqrestore(&xhci->lock, flags);
3872 	msleep(10);
3873 	spin_lock_irqsave(&xhci->lock, flags);
3874 
3875 	/* Check L1 Status */
3876 	ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3877 	if (ret != -ETIMEDOUT) {
3878 		/* enter L1 successfully */
3879 		temp = xhci_readl(xhci, addr);
3880 		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3881 				port_num, temp);
3882 		ret = 0;
3883 	} else {
3884 		temp = xhci_readl(xhci, pm_addr);
3885 		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3886 				port_num, temp & PORT_L1S_MASK);
3887 		ret = -EINVAL;
3888 	}
3889 
3890 	/* Resume the port */
3891 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3892 
3893 	spin_unlock_irqrestore(&xhci->lock, flags);
3894 	msleep(10);
3895 	spin_lock_irqsave(&xhci->lock, flags);
3896 
3897 	/* Clear PLC */
3898 	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3899 
3900 	/* Check PORTSC to make sure the device is in the right state */
3901 	if (!ret) {
3902 		temp = xhci_readl(xhci, addr);
3903 		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
3904 		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3905 				(temp & PORT_PLS_MASK) != XDEV_U0) {
3906 			xhci_dbg(xhci, "port L1 resume fail\n");
3907 			ret = -EINVAL;
3908 		}
3909 	}
3910 
3911 	if (ret) {
3912 		/* Insert dev to lpm_failed_devs list */
3913 		xhci_warn(xhci, "device LPM test failed, may disconnect and "
3914 				"re-enumerate\n");
3915 		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3916 		if (!dev_info) {
3917 			ret = -ENOMEM;
3918 			goto finish;
3919 		}
3920 		dev_info->dev_id = dev_id;
3921 		INIT_LIST_HEAD(&dev_info->list);
3922 		list_add(&dev_info->list, &xhci->lpm_failed_devs);
3923 	} else {
3924 		xhci_ring_device(xhci, udev->slot_id);
3925 	}
3926 
3927 finish:
3928 	spin_unlock_irqrestore(&xhci->lock, flags);
3929 	return ret;
3930 }
3931 
3932 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3933 			struct usb_device *udev, int enable)
3934 {
3935 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3936 	__le32 __iomem	**port_array;
3937 	__le32 __iomem	*pm_addr;
3938 	u32		temp;
3939 	unsigned int	port_num;
3940 	unsigned long	flags;
3941 	int		hird;
3942 
3943 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3944 			!udev->lpm_capable)
3945 		return -EPERM;
3946 
3947 	if (!udev->parent || udev->parent->parent ||
3948 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3949 		return -EPERM;
3950 
3951 	if (udev->usb2_hw_lpm_capable != 1)
3952 		return -EPERM;
3953 
3954 	spin_lock_irqsave(&xhci->lock, flags);
3955 
3956 	port_array = xhci->usb2_ports;
3957 	port_num = udev->portnum - 1;
3958 	pm_addr = port_array[port_num] + 1;
3959 	temp = xhci_readl(xhci, pm_addr);
3960 
3961 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3962 			enable ? "enable" : "disable", port_num);
3963 
3964 	hird = xhci_calculate_hird_besl(xhci, udev);
3965 
3966 	if (enable) {
3967 		temp &= ~PORT_HIRD_MASK;
3968 		temp |= PORT_HIRD(hird) | PORT_RWE;
3969 		xhci_writel(xhci, temp, pm_addr);
3970 		temp = xhci_readl(xhci, pm_addr);
3971 		temp |= PORT_HLE;
3972 		xhci_writel(xhci, temp, pm_addr);
3973 	} else {
3974 		temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3975 		xhci_writel(xhci, temp, pm_addr);
3976 	}
3977 
3978 	spin_unlock_irqrestore(&xhci->lock, flags);
3979 	return 0;
3980 }
3981 
3982 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3983 {
3984 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3985 	int		ret;
3986 
3987 	ret = xhci_usb2_software_lpm_test(hcd, udev);
3988 	if (!ret) {
3989 		xhci_dbg(xhci, "software LPM test succeed\n");
3990 		if (xhci->hw_lpm_support == 1) {
3991 			udev->usb2_hw_lpm_capable = 1;
3992 			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3993 			if (!ret)
3994 				udev->usb2_hw_lpm_enabled = 1;
3995 		}
3996 	}
3997 
3998 	return 0;
3999 }
4000 
4001 #else
4002 
4003 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4004 				struct usb_device *udev, int enable)
4005 {
4006 	return 0;
4007 }
4008 
4009 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4010 {
4011 	return 0;
4012 }
4013 
4014 #endif /* CONFIG_USB_SUSPEND */
4015 
4016 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4017 
4018 #ifdef CONFIG_PM
4019 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4020 static unsigned long long xhci_service_interval_to_ns(
4021 		struct usb_endpoint_descriptor *desc)
4022 {
4023 	return (1 << (desc->bInterval - 1)) * 125 * 1000;
4024 }
4025 
4026 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4027 		enum usb3_link_state state)
4028 {
4029 	unsigned long long sel;
4030 	unsigned long long pel;
4031 	unsigned int max_sel_pel;
4032 	char *state_name;
4033 
4034 	switch (state) {
4035 	case USB3_LPM_U1:
4036 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4037 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4038 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4039 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4040 		state_name = "U1";
4041 		break;
4042 	case USB3_LPM_U2:
4043 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4044 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4045 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4046 		state_name = "U2";
4047 		break;
4048 	default:
4049 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4050 				__func__);
4051 		return USB3_LPM_DISABLED;
4052 	}
4053 
4054 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4055 		return USB3_LPM_DEVICE_INITIATED;
4056 
4057 	if (sel > max_sel_pel)
4058 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4059 				"due to long SEL %llu ms\n",
4060 				state_name, sel);
4061 	else
4062 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4063 				"due to long PEL %llu\n ms",
4064 				state_name, pel);
4065 	return USB3_LPM_DISABLED;
4066 }
4067 
4068 /* Returns the hub-encoded U1 timeout value.
4069  * The U1 timeout should be the maximum of the following values:
4070  *  - For control endpoints, U1 system exit latency (SEL) * 3
4071  *  - For bulk endpoints, U1 SEL * 5
4072  *  - For interrupt endpoints:
4073  *    - Notification EPs, U1 SEL * 3
4074  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4075  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4076  */
4077 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4078 		struct usb_endpoint_descriptor *desc)
4079 {
4080 	unsigned long long timeout_ns;
4081 	int ep_type;
4082 	int intr_type;
4083 
4084 	ep_type = usb_endpoint_type(desc);
4085 	switch (ep_type) {
4086 	case USB_ENDPOINT_XFER_CONTROL:
4087 		timeout_ns = udev->u1_params.sel * 3;
4088 		break;
4089 	case USB_ENDPOINT_XFER_BULK:
4090 		timeout_ns = udev->u1_params.sel * 5;
4091 		break;
4092 	case USB_ENDPOINT_XFER_INT:
4093 		intr_type = usb_endpoint_interrupt_type(desc);
4094 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4095 			timeout_ns = udev->u1_params.sel * 3;
4096 			break;
4097 		}
4098 		/* Otherwise the calculation is the same as isoc eps */
4099 	case USB_ENDPOINT_XFER_ISOC:
4100 		timeout_ns = xhci_service_interval_to_ns(desc);
4101 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4102 		if (timeout_ns < udev->u1_params.sel * 2)
4103 			timeout_ns = udev->u1_params.sel * 2;
4104 		break;
4105 	default:
4106 		return 0;
4107 	}
4108 
4109 	/* The U1 timeout is encoded in 1us intervals. */
4110 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4111 	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4112 	if (timeout_ns == USB3_LPM_DISABLED)
4113 		timeout_ns++;
4114 
4115 	/* If the necessary timeout value is bigger than what we can set in the
4116 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4117 	 */
4118 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4119 		return timeout_ns;
4120 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4121 			"due to long timeout %llu ms\n", timeout_ns);
4122 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4123 }
4124 
4125 /* Returns the hub-encoded U2 timeout value.
4126  * The U2 timeout should be the maximum of:
4127  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4128  *  - largest bInterval of any active periodic endpoint (to avoid going
4129  *    into lower power link states between intervals).
4130  *  - the U2 Exit Latency of the device
4131  */
4132 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4133 		struct usb_endpoint_descriptor *desc)
4134 {
4135 	unsigned long long timeout_ns;
4136 	unsigned long long u2_del_ns;
4137 
4138 	timeout_ns = 10 * 1000 * 1000;
4139 
4140 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4141 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4142 		timeout_ns = xhci_service_interval_to_ns(desc);
4143 
4144 	u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000;
4145 	if (u2_del_ns > timeout_ns)
4146 		timeout_ns = u2_del_ns;
4147 
4148 	/* The U2 timeout is encoded in 256us intervals */
4149 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4150 	/* If the necessary timeout value is bigger than what we can set in the
4151 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4152 	 */
4153 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4154 		return timeout_ns;
4155 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4156 			"due to long timeout %llu ms\n", timeout_ns);
4157 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4158 }
4159 
4160 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4161 		struct usb_device *udev,
4162 		struct usb_endpoint_descriptor *desc,
4163 		enum usb3_link_state state,
4164 		u16 *timeout)
4165 {
4166 	if (state == USB3_LPM_U1) {
4167 		if (xhci->quirks & XHCI_INTEL_HOST)
4168 			return xhci_calculate_intel_u1_timeout(udev, desc);
4169 	} else {
4170 		if (xhci->quirks & XHCI_INTEL_HOST)
4171 			return xhci_calculate_intel_u2_timeout(udev, desc);
4172 	}
4173 
4174 	return USB3_LPM_DISABLED;
4175 }
4176 
4177 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4178 		struct usb_device *udev,
4179 		struct usb_endpoint_descriptor *desc,
4180 		enum usb3_link_state state,
4181 		u16 *timeout)
4182 {
4183 	u16 alt_timeout;
4184 
4185 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4186 		desc, state, timeout);
4187 
4188 	/* If we found we can't enable hub-initiated LPM, or
4189 	 * the U1 or U2 exit latency was too high to allow
4190 	 * device-initiated LPM as well, just stop searching.
4191 	 */
4192 	if (alt_timeout == USB3_LPM_DISABLED ||
4193 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4194 		*timeout = alt_timeout;
4195 		return -E2BIG;
4196 	}
4197 	if (alt_timeout > *timeout)
4198 		*timeout = alt_timeout;
4199 	return 0;
4200 }
4201 
4202 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4203 		struct usb_device *udev,
4204 		struct usb_host_interface *alt,
4205 		enum usb3_link_state state,
4206 		u16 *timeout)
4207 {
4208 	int j;
4209 
4210 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4211 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4212 					&alt->endpoint[j].desc, state, timeout))
4213 			return -E2BIG;
4214 		continue;
4215 	}
4216 	return 0;
4217 }
4218 
4219 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4220 		enum usb3_link_state state)
4221 {
4222 	struct usb_device *parent;
4223 	unsigned int num_hubs;
4224 
4225 	if (state == USB3_LPM_U2)
4226 		return 0;
4227 
4228 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4229 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4230 			parent = parent->parent)
4231 		num_hubs++;
4232 
4233 	if (num_hubs < 2)
4234 		return 0;
4235 
4236 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4237 			" below second-tier hub.\n");
4238 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4239 			"to decrease power consumption.\n");
4240 	return -E2BIG;
4241 }
4242 
4243 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4244 		struct usb_device *udev,
4245 		enum usb3_link_state state)
4246 {
4247 	if (xhci->quirks & XHCI_INTEL_HOST)
4248 		return xhci_check_intel_tier_policy(udev, state);
4249 	return -EINVAL;
4250 }
4251 
4252 /* Returns the U1 or U2 timeout that should be enabled.
4253  * If the tier check or timeout setting functions return with a non-zero exit
4254  * code, that means the timeout value has been finalized and we shouldn't look
4255  * at any more endpoints.
4256  */
4257 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4258 			struct usb_device *udev, enum usb3_link_state state)
4259 {
4260 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4261 	struct usb_host_config *config;
4262 	char *state_name;
4263 	int i;
4264 	u16 timeout = USB3_LPM_DISABLED;
4265 
4266 	if (state == USB3_LPM_U1)
4267 		state_name = "U1";
4268 	else if (state == USB3_LPM_U2)
4269 		state_name = "U2";
4270 	else {
4271 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4272 				state);
4273 		return timeout;
4274 	}
4275 
4276 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4277 		return timeout;
4278 
4279 	/* Gather some information about the currently installed configuration
4280 	 * and alternate interface settings.
4281 	 */
4282 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4283 			state, &timeout))
4284 		return timeout;
4285 
4286 	config = udev->actconfig;
4287 	if (!config)
4288 		return timeout;
4289 
4290 	for (i = 0; i < USB_MAXINTERFACES; i++) {
4291 		struct usb_driver *driver;
4292 		struct usb_interface *intf = config->interface[i];
4293 
4294 		if (!intf)
4295 			continue;
4296 
4297 		/* Check if any currently bound drivers want hub-initiated LPM
4298 		 * disabled.
4299 		 */
4300 		if (intf->dev.driver) {
4301 			driver = to_usb_driver(intf->dev.driver);
4302 			if (driver && driver->disable_hub_initiated_lpm) {
4303 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4304 						"at request of driver %s\n",
4305 						state_name, driver->name);
4306 				return xhci_get_timeout_no_hub_lpm(udev, state);
4307 			}
4308 		}
4309 
4310 		/* Not sure how this could happen... */
4311 		if (!intf->cur_altsetting)
4312 			continue;
4313 
4314 		if (xhci_update_timeout_for_interface(xhci, udev,
4315 					intf->cur_altsetting,
4316 					state, &timeout))
4317 			return timeout;
4318 	}
4319 	return timeout;
4320 }
4321 
4322 /*
4323  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4324  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4325  */
4326 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4327 			struct usb_device *udev, u16 max_exit_latency)
4328 {
4329 	struct xhci_virt_device *virt_dev;
4330 	struct xhci_command *command;
4331 	struct xhci_input_control_ctx *ctrl_ctx;
4332 	struct xhci_slot_ctx *slot_ctx;
4333 	unsigned long flags;
4334 	int ret;
4335 
4336 	spin_lock_irqsave(&xhci->lock, flags);
4337 	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4338 		spin_unlock_irqrestore(&xhci->lock, flags);
4339 		return 0;
4340 	}
4341 
4342 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4343 	virt_dev = xhci->devs[udev->slot_id];
4344 	command = xhci->lpm_command;
4345 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4346 	spin_unlock_irqrestore(&xhci->lock, flags);
4347 
4348 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4349 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4350 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4351 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4352 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4353 
4354 	xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4355 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4356 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4357 
4358 	/* Issue and wait for the evaluate context command. */
4359 	ret = xhci_configure_endpoint(xhci, udev, command,
4360 			true, true);
4361 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4362 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4363 
4364 	if (!ret) {
4365 		spin_lock_irqsave(&xhci->lock, flags);
4366 		virt_dev->current_mel = max_exit_latency;
4367 		spin_unlock_irqrestore(&xhci->lock, flags);
4368 	}
4369 	return ret;
4370 }
4371 
4372 static int calculate_max_exit_latency(struct usb_device *udev,
4373 		enum usb3_link_state state_changed,
4374 		u16 hub_encoded_timeout)
4375 {
4376 	unsigned long long u1_mel_us = 0;
4377 	unsigned long long u2_mel_us = 0;
4378 	unsigned long long mel_us = 0;
4379 	bool disabling_u1;
4380 	bool disabling_u2;
4381 	bool enabling_u1;
4382 	bool enabling_u2;
4383 
4384 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4385 			hub_encoded_timeout == USB3_LPM_DISABLED);
4386 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4387 			hub_encoded_timeout == USB3_LPM_DISABLED);
4388 
4389 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4390 			hub_encoded_timeout != USB3_LPM_DISABLED);
4391 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4392 			hub_encoded_timeout != USB3_LPM_DISABLED);
4393 
4394 	/* If U1 was already enabled and we're not disabling it,
4395 	 * or we're going to enable U1, account for the U1 max exit latency.
4396 	 */
4397 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4398 			enabling_u1)
4399 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4400 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4401 			enabling_u2)
4402 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4403 
4404 	if (u1_mel_us > u2_mel_us)
4405 		mel_us = u1_mel_us;
4406 	else
4407 		mel_us = u2_mel_us;
4408 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4409 	if (mel_us > MAX_EXIT) {
4410 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4411 				"is too big.\n", mel_us);
4412 		return -E2BIG;
4413 	}
4414 	return mel_us;
4415 }
4416 
4417 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4418 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4419 			struct usb_device *udev, enum usb3_link_state state)
4420 {
4421 	struct xhci_hcd	*xhci;
4422 	u16 hub_encoded_timeout;
4423 	int mel;
4424 	int ret;
4425 
4426 	xhci = hcd_to_xhci(hcd);
4427 	/* The LPM timeout values are pretty host-controller specific, so don't
4428 	 * enable hub-initiated timeouts unless the vendor has provided
4429 	 * information about their timeout algorithm.
4430 	 */
4431 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4432 			!xhci->devs[udev->slot_id])
4433 		return USB3_LPM_DISABLED;
4434 
4435 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4436 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4437 	if (mel < 0) {
4438 		/* Max Exit Latency is too big, disable LPM. */
4439 		hub_encoded_timeout = USB3_LPM_DISABLED;
4440 		mel = 0;
4441 	}
4442 
4443 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4444 	if (ret)
4445 		return ret;
4446 	return hub_encoded_timeout;
4447 }
4448 
4449 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4450 			struct usb_device *udev, enum usb3_link_state state)
4451 {
4452 	struct xhci_hcd	*xhci;
4453 	u16 mel;
4454 	int ret;
4455 
4456 	xhci = hcd_to_xhci(hcd);
4457 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4458 			!xhci->devs[udev->slot_id])
4459 		return 0;
4460 
4461 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4462 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4463 	if (ret)
4464 		return ret;
4465 	return 0;
4466 }
4467 #else /* CONFIG_PM */
4468 
4469 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4470 			struct usb_device *udev, enum usb3_link_state state)
4471 {
4472 	return USB3_LPM_DISABLED;
4473 }
4474 
4475 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4476 			struct usb_device *udev, enum usb3_link_state state)
4477 {
4478 	return 0;
4479 }
4480 #endif	/* CONFIG_PM */
4481 
4482 /*-------------------------------------------------------------------------*/
4483 
4484 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4485  * internal data structures for the device.
4486  */
4487 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4488 			struct usb_tt *tt, gfp_t mem_flags)
4489 {
4490 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4491 	struct xhci_virt_device *vdev;
4492 	struct xhci_command *config_cmd;
4493 	struct xhci_input_control_ctx *ctrl_ctx;
4494 	struct xhci_slot_ctx *slot_ctx;
4495 	unsigned long flags;
4496 	unsigned think_time;
4497 	int ret;
4498 
4499 	/* Ignore root hubs */
4500 	if (!hdev->parent)
4501 		return 0;
4502 
4503 	vdev = xhci->devs[hdev->slot_id];
4504 	if (!vdev) {
4505 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4506 		return -EINVAL;
4507 	}
4508 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4509 	if (!config_cmd) {
4510 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4511 		return -ENOMEM;
4512 	}
4513 
4514 	spin_lock_irqsave(&xhci->lock, flags);
4515 	if (hdev->speed == USB_SPEED_HIGH &&
4516 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4517 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4518 		xhci_free_command(xhci, config_cmd);
4519 		spin_unlock_irqrestore(&xhci->lock, flags);
4520 		return -ENOMEM;
4521 	}
4522 
4523 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4524 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4525 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4526 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4527 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4528 	if (tt->multi)
4529 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4530 	if (xhci->hci_version > 0x95) {
4531 		xhci_dbg(xhci, "xHCI version %x needs hub "
4532 				"TT think time and number of ports\n",
4533 				(unsigned int) xhci->hci_version);
4534 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4535 		/* Set TT think time - convert from ns to FS bit times.
4536 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4537 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4538 		 *
4539 		 * xHCI 1.0: this field shall be 0 if the device is not a
4540 		 * High-spped hub.
4541 		 */
4542 		think_time = tt->think_time;
4543 		if (think_time != 0)
4544 			think_time = (think_time / 666) - 1;
4545 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4546 			slot_ctx->tt_info |=
4547 				cpu_to_le32(TT_THINK_TIME(think_time));
4548 	} else {
4549 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4550 				"TT think time or number of ports\n",
4551 				(unsigned int) xhci->hci_version);
4552 	}
4553 	slot_ctx->dev_state = 0;
4554 	spin_unlock_irqrestore(&xhci->lock, flags);
4555 
4556 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4557 			(xhci->hci_version > 0x95) ?
4558 			"configure endpoint" : "evaluate context");
4559 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4560 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4561 
4562 	/* Issue and wait for the configure endpoint or
4563 	 * evaluate context command.
4564 	 */
4565 	if (xhci->hci_version > 0x95)
4566 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4567 				false, false);
4568 	else
4569 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4570 				true, false);
4571 
4572 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4573 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4574 
4575 	xhci_free_command(xhci, config_cmd);
4576 	return ret;
4577 }
4578 
4579 int xhci_get_frame(struct usb_hcd *hcd)
4580 {
4581 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4582 	/* EHCI mods by the periodic size.  Why? */
4583 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4584 }
4585 
4586 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4587 {
4588 	struct xhci_hcd		*xhci;
4589 	struct device		*dev = hcd->self.controller;
4590 	int			retval;
4591 	u32			temp;
4592 
4593 	/* Accept arbitrarily long scatter-gather lists */
4594 	hcd->self.sg_tablesize = ~0;
4595 	/* XHCI controllers don't stop the ep queue on short packets :| */
4596 	hcd->self.no_stop_on_short = 1;
4597 
4598 	if (usb_hcd_is_primary_hcd(hcd)) {
4599 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4600 		if (!xhci)
4601 			return -ENOMEM;
4602 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4603 		xhci->main_hcd = hcd;
4604 		/* Mark the first roothub as being USB 2.0.
4605 		 * The xHCI driver will register the USB 3.0 roothub.
4606 		 */
4607 		hcd->speed = HCD_USB2;
4608 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4609 		/*
4610 		 * USB 2.0 roothub under xHCI has an integrated TT,
4611 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4612 		 * companion controller.
4613 		 */
4614 		hcd->has_tt = 1;
4615 	} else {
4616 		/* xHCI private pointer was set in xhci_pci_probe for the second
4617 		 * registered roothub.
4618 		 */
4619 		xhci = hcd_to_xhci(hcd);
4620 		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4621 		if (HCC_64BIT_ADDR(temp)) {
4622 			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4623 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4624 		} else {
4625 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4626 		}
4627 		return 0;
4628 	}
4629 
4630 	xhci->cap_regs = hcd->regs;
4631 	xhci->op_regs = hcd->regs +
4632 		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4633 	xhci->run_regs = hcd->regs +
4634 		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4635 	/* Cache read-only capability registers */
4636 	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4637 	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4638 	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4639 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4640 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4641 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4642 	xhci_print_registers(xhci);
4643 
4644 	get_quirks(dev, xhci);
4645 
4646 	/* Make sure the HC is halted. */
4647 	retval = xhci_halt(xhci);
4648 	if (retval)
4649 		goto error;
4650 
4651 	xhci_dbg(xhci, "Resetting HCD\n");
4652 	/* Reset the internal HC memory state and registers. */
4653 	retval = xhci_reset(xhci);
4654 	if (retval)
4655 		goto error;
4656 	xhci_dbg(xhci, "Reset complete\n");
4657 
4658 	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4659 	if (HCC_64BIT_ADDR(temp)) {
4660 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4661 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4662 	} else {
4663 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4664 	}
4665 
4666 	xhci_dbg(xhci, "Calling HCD init\n");
4667 	/* Initialize HCD and host controller data structures. */
4668 	retval = xhci_init(hcd);
4669 	if (retval)
4670 		goto error;
4671 	xhci_dbg(xhci, "Called HCD init\n");
4672 	return 0;
4673 error:
4674 	kfree(xhci);
4675 	return retval;
4676 }
4677 
4678 MODULE_DESCRIPTION(DRIVER_DESC);
4679 MODULE_AUTHOR(DRIVER_AUTHOR);
4680 MODULE_LICENSE("GPL");
4681 
4682 static int __init xhci_hcd_init(void)
4683 {
4684 	int retval;
4685 
4686 	retval = xhci_register_pci();
4687 	if (retval < 0) {
4688 		printk(KERN_DEBUG "Problem registering PCI driver.");
4689 		return retval;
4690 	}
4691 	retval = xhci_register_plat();
4692 	if (retval < 0) {
4693 		printk(KERN_DEBUG "Problem registering platform driver.");
4694 		goto unreg_pci;
4695 	}
4696 	/*
4697 	 * Check the compiler generated sizes of structures that must be laid
4698 	 * out in specific ways for hardware access.
4699 	 */
4700 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4701 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4702 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4703 	/* xhci_device_control has eight fields, and also
4704 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4705 	 */
4706 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4707 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4708 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4709 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4710 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4711 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4712 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4713 	return 0;
4714 unreg_pci:
4715 	xhci_unregister_pci();
4716 	return retval;
4717 }
4718 module_init(xhci_hcd_init);
4719 
4720 static void __exit xhci_hcd_cleanup(void)
4721 {
4722 	xhci_unregister_pci();
4723 	xhci_unregister_plat();
4724 }
4725 module_exit(xhci_hcd_cleanup);
4726