1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iommu.h> 13 #include <linux/iopoll.h> 14 #include <linux/irq.h> 15 #include <linux/log2.h> 16 #include <linux/module.h> 17 #include <linux/moduleparam.h> 18 #include <linux/slab.h> 19 #include <linux/dmi.h> 20 #include <linux/dma-mapping.h> 21 22 #include "xhci.h" 23 #include "xhci-trace.h" 24 #include "xhci-debugfs.h" 25 #include "xhci-dbgcap.h" 26 27 #define DRIVER_AUTHOR "Sarah Sharp" 28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 29 30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 31 32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 33 static int link_quirk; 34 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 36 37 static unsigned long long quirks; 38 module_param(quirks, ullong, S_IRUGO); 39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 40 41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 42 { 43 struct xhci_segment *seg = ring->first_seg; 44 45 if (!td || !td->start_seg) 46 return false; 47 do { 48 if (seg == td->start_seg) 49 return true; 50 seg = seg->next; 51 } while (seg && seg != ring->first_seg); 52 53 return false; 54 } 55 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 70 { 71 u32 result; 72 int ret; 73 74 ret = readl_poll_timeout_atomic(ptr, result, 75 (result & mask) == done || 76 result == U32_MAX, 77 1, timeout_us); 78 if (result == U32_MAX) /* card removed */ 79 return -ENODEV; 80 81 return ret; 82 } 83 84 /* 85 * xhci_handshake_check_state - same as xhci_handshake but takes an additional 86 * exit_state parameter, and bails out with an error immediately when xhc_state 87 * has exit_state flag set. 88 */ 89 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr, 90 u32 mask, u32 done, int usec, unsigned int exit_state) 91 { 92 u32 result; 93 int ret; 94 95 ret = readl_poll_timeout_atomic(ptr, result, 96 (result & mask) == done || 97 result == U32_MAX || 98 xhci->xhc_state & exit_state, 99 1, usec); 100 101 if (result == U32_MAX || xhci->xhc_state & exit_state) 102 return -ENODEV; 103 104 return ret; 105 } 106 107 /* 108 * Disable interrupts and begin the xHCI halting process. 109 */ 110 void xhci_quiesce(struct xhci_hcd *xhci) 111 { 112 u32 halted; 113 u32 cmd; 114 u32 mask; 115 116 mask = ~(XHCI_IRQS); 117 halted = readl(&xhci->op_regs->status) & STS_HALT; 118 if (!halted) 119 mask &= ~CMD_RUN; 120 121 cmd = readl(&xhci->op_regs->command); 122 cmd &= mask; 123 writel(cmd, &xhci->op_regs->command); 124 } 125 126 /* 127 * Force HC into halt state. 128 * 129 * Disable any IRQs and clear the run/stop bit. 130 * HC will complete any current and actively pipelined transactions, and 131 * should halt within 16 ms of the run/stop bit being cleared. 132 * Read HC Halted bit in the status register to see when the HC is finished. 133 */ 134 int xhci_halt(struct xhci_hcd *xhci) 135 { 136 int ret; 137 138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 139 xhci_quiesce(xhci); 140 141 ret = xhci_handshake(&xhci->op_regs->status, 142 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 143 if (ret) { 144 xhci_warn(xhci, "Host halt failed, %d\n", ret); 145 return ret; 146 } 147 148 xhci->xhc_state |= XHCI_STATE_HALTED; 149 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 150 151 return ret; 152 } 153 154 /* 155 * Set the run bit and wait for the host to be running. 156 */ 157 int xhci_start(struct xhci_hcd *xhci) 158 { 159 u32 temp; 160 int ret; 161 162 temp = readl(&xhci->op_regs->command); 163 temp |= (CMD_RUN); 164 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 165 temp); 166 writel(temp, &xhci->op_regs->command); 167 168 /* 169 * Wait for the HCHalted Status bit to be 0 to indicate the host is 170 * running. 171 */ 172 ret = xhci_handshake(&xhci->op_regs->status, 173 STS_HALT, 0, XHCI_MAX_HALT_USEC); 174 if (ret == -ETIMEDOUT) 175 xhci_err(xhci, "Host took too long to start, " 176 "waited %u microseconds.\n", 177 XHCI_MAX_HALT_USEC); 178 if (!ret) { 179 /* clear state flags. Including dying, halted or removing */ 180 xhci->xhc_state = 0; 181 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 182 } 183 184 return ret; 185 } 186 187 /* 188 * Reset a halted HC. 189 * 190 * This resets pipelines, timers, counters, state machines, etc. 191 * Transactions will be terminated immediately, and operational registers 192 * will be set to their defaults. 193 */ 194 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 195 { 196 u32 command; 197 u32 state; 198 int ret; 199 200 state = readl(&xhci->op_regs->status); 201 202 if (state == ~(u32)0) { 203 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 204 return -ENODEV; 205 } 206 207 if ((state & STS_HALT) == 0) { 208 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 209 return 0; 210 } 211 212 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 213 command = readl(&xhci->op_regs->command); 214 command |= CMD_RESET; 215 writel(command, &xhci->op_regs->command); 216 217 /* Existing Intel xHCI controllers require a delay of 1 mS, 218 * after setting the CMD_RESET bit, and before accessing any 219 * HC registers. This allows the HC to complete the 220 * reset operation and be ready for HC register access. 221 * Without this delay, the subsequent HC register access, 222 * may result in a system hang very rarely. 223 */ 224 if (xhci->quirks & XHCI_INTEL_HOST) 225 udelay(1000); 226 227 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command, 228 CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING); 229 if (ret) 230 return ret; 231 232 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 233 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 234 235 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 236 "Wait for controller to be ready for doorbell rings"); 237 /* 238 * xHCI cannot write to any doorbells or operational registers other 239 * than status until the "Controller Not Ready" flag is cleared. 240 */ 241 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 242 243 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 244 xhci->usb2_rhub.bus_state.suspended_ports = 0; 245 xhci->usb2_rhub.bus_state.resuming_ports = 0; 246 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 247 xhci->usb3_rhub.bus_state.suspended_ports = 0; 248 xhci->usb3_rhub.bus_state.resuming_ports = 0; 249 250 return ret; 251 } 252 253 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 254 { 255 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 256 struct iommu_domain *domain; 257 int err, i; 258 u64 val; 259 u32 intrs; 260 261 /* 262 * Some Renesas controllers get into a weird state if they are 263 * reset while programmed with 64bit addresses (they will preserve 264 * the top half of the address in internal, non visible 265 * registers). You end up with half the address coming from the 266 * kernel, and the other half coming from the firmware. Also, 267 * changing the programming leads to extra accesses even if the 268 * controller is supposed to be halted. The controller ends up with 269 * a fatal fault, and is then ripe for being properly reset. 270 * 271 * Special care is taken to only apply this if the device is behind 272 * an iommu. Doing anything when there is no iommu is definitely 273 * unsafe... 274 */ 275 domain = iommu_get_domain_for_dev(dev); 276 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || 277 domain->type == IOMMU_DOMAIN_IDENTITY) 278 return; 279 280 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 281 282 /* Clear HSEIE so that faults do not get signaled */ 283 val = readl(&xhci->op_regs->command); 284 val &= ~CMD_HSEIE; 285 writel(val, &xhci->op_regs->command); 286 287 /* Clear HSE (aka FATAL) */ 288 val = readl(&xhci->op_regs->status); 289 val |= STS_FATAL; 290 writel(val, &xhci->op_regs->status); 291 292 /* Now zero the registers, and brace for impact */ 293 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 294 if (upper_32_bits(val)) 295 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 296 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 297 if (upper_32_bits(val)) 298 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 299 300 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 301 ARRAY_SIZE(xhci->run_regs->ir_set)); 302 303 for (i = 0; i < intrs; i++) { 304 struct xhci_intr_reg __iomem *ir; 305 306 ir = &xhci->run_regs->ir_set[i]; 307 val = xhci_read_64(xhci, &ir->erst_base); 308 if (upper_32_bits(val)) 309 xhci_write_64(xhci, 0, &ir->erst_base); 310 val= xhci_read_64(xhci, &ir->erst_dequeue); 311 if (upper_32_bits(val)) 312 xhci_write_64(xhci, 0, &ir->erst_dequeue); 313 } 314 315 /* Wait for the fault to appear. It will be cleared on reset */ 316 err = xhci_handshake(&xhci->op_regs->status, 317 STS_FATAL, STS_FATAL, 318 XHCI_MAX_HALT_USEC); 319 if (!err) 320 xhci_info(xhci, "Fault detected\n"); 321 } 322 323 static int xhci_enable_interrupter(struct xhci_interrupter *ir) 324 { 325 u32 iman; 326 327 if (!ir || !ir->ir_set) 328 return -EINVAL; 329 330 iman = readl(&ir->ir_set->irq_pending); 331 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending); 332 333 return 0; 334 } 335 336 static int xhci_disable_interrupter(struct xhci_interrupter *ir) 337 { 338 u32 iman; 339 340 if (!ir || !ir->ir_set) 341 return -EINVAL; 342 343 iman = readl(&ir->ir_set->irq_pending); 344 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending); 345 346 return 0; 347 } 348 349 /* interrupt moderation interval imod_interval in nanoseconds */ 350 static int xhci_set_interrupter_moderation(struct xhci_interrupter *ir, 351 u32 imod_interval) 352 { 353 u32 imod; 354 355 if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250) 356 return -EINVAL; 357 358 imod = readl(&ir->ir_set->irq_control); 359 imod &= ~ER_IRQ_INTERVAL_MASK; 360 imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 361 writel(imod, &ir->ir_set->irq_control); 362 363 return 0; 364 } 365 366 static void compliance_mode_recovery(struct timer_list *t) 367 { 368 struct xhci_hcd *xhci; 369 struct usb_hcd *hcd; 370 struct xhci_hub *rhub; 371 u32 temp; 372 int i; 373 374 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 375 rhub = &xhci->usb3_rhub; 376 hcd = rhub->hcd; 377 378 if (!hcd) 379 return; 380 381 for (i = 0; i < rhub->num_ports; i++) { 382 temp = readl(rhub->ports[i]->addr); 383 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 384 /* 385 * Compliance Mode Detected. Letting USB Core 386 * handle the Warm Reset 387 */ 388 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 389 "Compliance mode detected->port %d", 390 i + 1); 391 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 392 "Attempting compliance mode recovery"); 393 394 if (hcd->state == HC_STATE_SUSPENDED) 395 usb_hcd_resume_root_hub(hcd); 396 397 usb_hcd_poll_rh_status(hcd); 398 } 399 } 400 401 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 402 mod_timer(&xhci->comp_mode_recovery_timer, 403 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 404 } 405 406 /* 407 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 408 * that causes ports behind that hardware to enter compliance mode sometimes. 409 * The quirk creates a timer that polls every 2 seconds the link state of 410 * each host controller's port and recovers it by issuing a Warm reset 411 * if Compliance mode is detected, otherwise the port will become "dead" (no 412 * device connections or disconnections will be detected anymore). Becasue no 413 * status event is generated when entering compliance mode (per xhci spec), 414 * this quirk is needed on systems that have the failing hardware installed. 415 */ 416 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 417 { 418 xhci->port_status_u0 = 0; 419 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 420 0); 421 xhci->comp_mode_recovery_timer.expires = jiffies + 422 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 423 424 add_timer(&xhci->comp_mode_recovery_timer); 425 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 426 "Compliance mode recovery timer initialized"); 427 } 428 429 /* 430 * This function identifies the systems that have installed the SN65LVPE502CP 431 * USB3.0 re-driver and that need the Compliance Mode Quirk. 432 * Systems: 433 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 434 */ 435 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 436 { 437 const char *dmi_product_name, *dmi_sys_vendor; 438 439 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 440 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 441 if (!dmi_product_name || !dmi_sys_vendor) 442 return false; 443 444 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 445 return false; 446 447 if (strstr(dmi_product_name, "Z420") || 448 strstr(dmi_product_name, "Z620") || 449 strstr(dmi_product_name, "Z820") || 450 strstr(dmi_product_name, "Z1 Workstation")) 451 return true; 452 453 return false; 454 } 455 456 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 457 { 458 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 459 } 460 461 462 /* 463 * Initialize memory for HCD and xHC (one-time init). 464 * 465 * Program the PAGESIZE register, initialize the device context array, create 466 * device contexts (?), set up a command ring segment (or two?), create event 467 * ring (one for now). 468 */ 469 static int xhci_init(struct usb_hcd *hcd) 470 { 471 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 472 int retval; 473 474 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 475 spin_lock_init(&xhci->lock); 476 if (xhci->hci_version == 0x95 && link_quirk) { 477 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 478 "QUIRK: Not clearing Link TRB chain bits."); 479 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 480 } else { 481 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 482 "xHCI doesn't need link TRB QUIRK"); 483 } 484 retval = xhci_mem_init(xhci, GFP_KERNEL); 485 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 486 487 /* Initializing Compliance Mode Recovery Data If Needed */ 488 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 489 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 490 compliance_mode_recovery_timer_init(xhci); 491 } 492 493 return retval; 494 } 495 496 /*-------------------------------------------------------------------------*/ 497 498 static int xhci_run_finished(struct xhci_hcd *xhci) 499 { 500 struct xhci_interrupter *ir = xhci->interrupters[0]; 501 unsigned long flags; 502 u32 temp; 503 504 /* 505 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 506 * Protect the short window before host is running with a lock 507 */ 508 spin_lock_irqsave(&xhci->lock, flags); 509 510 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 511 temp = readl(&xhci->op_regs->command); 512 temp |= (CMD_EIE); 513 writel(temp, &xhci->op_regs->command); 514 515 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 516 xhci_enable_interrupter(ir); 517 518 if (xhci_start(xhci)) { 519 xhci_halt(xhci); 520 spin_unlock_irqrestore(&xhci->lock, flags); 521 return -ENODEV; 522 } 523 524 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 525 526 if (xhci->quirks & XHCI_NEC_HOST) 527 xhci_ring_cmd_db(xhci); 528 529 spin_unlock_irqrestore(&xhci->lock, flags); 530 531 return 0; 532 } 533 534 /* 535 * Start the HC after it was halted. 536 * 537 * This function is called by the USB core when the HC driver is added. 538 * Its opposite is xhci_stop(). 539 * 540 * xhci_init() must be called once before this function can be called. 541 * Reset the HC, enable device slot contexts, program DCBAAP, and 542 * set command ring pointer and event ring pointer. 543 * 544 * Setup MSI-X vectors and enable interrupts. 545 */ 546 int xhci_run(struct usb_hcd *hcd) 547 { 548 u64 temp_64; 549 int ret; 550 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 551 struct xhci_interrupter *ir = xhci->interrupters[0]; 552 /* Start the xHCI host controller running only after the USB 2.0 roothub 553 * is setup. 554 */ 555 556 hcd->uses_new_polling = 1; 557 if (hcd->msi_enabled) 558 ir->ip_autoclear = true; 559 560 if (!usb_hcd_is_primary_hcd(hcd)) 561 return xhci_run_finished(xhci); 562 563 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 564 565 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 566 temp_64 &= ERST_PTR_MASK; 567 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 568 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 569 570 xhci_set_interrupter_moderation(ir, xhci->imod_interval); 571 572 if (xhci->quirks & XHCI_NEC_HOST) { 573 struct xhci_command *command; 574 575 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 576 if (!command) 577 return -ENOMEM; 578 579 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 580 TRB_TYPE(TRB_NEC_GET_FW)); 581 if (ret) 582 xhci_free_command(xhci, command); 583 } 584 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 585 "Finished %s for main hcd", __func__); 586 587 xhci_create_dbc_dev(xhci); 588 589 xhci_debugfs_init(xhci); 590 591 if (xhci_has_one_roothub(xhci)) 592 return xhci_run_finished(xhci); 593 594 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 595 596 return 0; 597 } 598 EXPORT_SYMBOL_GPL(xhci_run); 599 600 /* 601 * Stop xHCI driver. 602 * 603 * This function is called by the USB core when the HC driver is removed. 604 * Its opposite is xhci_run(). 605 * 606 * Disable device contexts, disable IRQs, and quiesce the HC. 607 * Reset the HC, finish any completed transactions, and cleanup memory. 608 */ 609 void xhci_stop(struct usb_hcd *hcd) 610 { 611 u32 temp; 612 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 613 struct xhci_interrupter *ir = xhci->interrupters[0]; 614 615 mutex_lock(&xhci->mutex); 616 617 /* Only halt host and free memory after both hcds are removed */ 618 if (!usb_hcd_is_primary_hcd(hcd)) { 619 mutex_unlock(&xhci->mutex); 620 return; 621 } 622 623 xhci_remove_dbc_dev(xhci); 624 625 spin_lock_irq(&xhci->lock); 626 xhci->xhc_state |= XHCI_STATE_HALTED; 627 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 628 xhci_halt(xhci); 629 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 630 spin_unlock_irq(&xhci->lock); 631 632 /* Deleting Compliance Mode Recovery Timer */ 633 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 634 (!(xhci_all_ports_seen_u0(xhci)))) { 635 del_timer_sync(&xhci->comp_mode_recovery_timer); 636 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 637 "%s: compliance mode recovery timer deleted", 638 __func__); 639 } 640 641 if (xhci->quirks & XHCI_AMD_PLL_FIX) 642 usb_amd_dev_put(); 643 644 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 645 "// Disabling event ring interrupts"); 646 temp = readl(&xhci->op_regs->status); 647 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 648 xhci_disable_interrupter(ir); 649 650 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 651 xhci_mem_cleanup(xhci); 652 xhci_debugfs_exit(xhci); 653 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 654 "xhci_stop completed - status = %x", 655 readl(&xhci->op_regs->status)); 656 mutex_unlock(&xhci->mutex); 657 } 658 EXPORT_SYMBOL_GPL(xhci_stop); 659 660 /* 661 * Shutdown HC (not bus-specific) 662 * 663 * This is called when the machine is rebooting or halting. We assume that the 664 * machine will be powered off, and the HC's internal state will be reset. 665 * Don't bother to free memory. 666 * 667 * This will only ever be called with the main usb_hcd (the USB3 roothub). 668 */ 669 void xhci_shutdown(struct usb_hcd *hcd) 670 { 671 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 672 673 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 674 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 675 676 /* Don't poll the roothubs after shutdown. */ 677 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 678 __func__, hcd->self.busnum); 679 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 680 del_timer_sync(&hcd->rh_timer); 681 682 if (xhci->shared_hcd) { 683 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 684 del_timer_sync(&xhci->shared_hcd->rh_timer); 685 } 686 687 spin_lock_irq(&xhci->lock); 688 xhci_halt(xhci); 689 690 /* 691 * Workaround for spurious wakeps at shutdown with HSW, and for boot 692 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 693 */ 694 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 695 xhci->quirks & XHCI_RESET_TO_DEFAULT) 696 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 697 698 spin_unlock_irq(&xhci->lock); 699 700 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 701 "xhci_shutdown completed - status = %x", 702 readl(&xhci->op_regs->status)); 703 } 704 EXPORT_SYMBOL_GPL(xhci_shutdown); 705 706 #ifdef CONFIG_PM 707 static void xhci_save_registers(struct xhci_hcd *xhci) 708 { 709 struct xhci_interrupter *ir; 710 unsigned int i; 711 712 xhci->s3.command = readl(&xhci->op_regs->command); 713 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 714 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 715 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 716 717 /* save both primary and all secondary interrupters */ 718 /* fixme, shold we lock to prevent race with remove secondary interrupter? */ 719 for (i = 0; i < xhci->max_interrupters; i++) { 720 ir = xhci->interrupters[i]; 721 if (!ir) 722 continue; 723 724 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 725 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 726 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 727 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending); 728 ir->s3_irq_control = readl(&ir->ir_set->irq_control); 729 } 730 } 731 732 static void xhci_restore_registers(struct xhci_hcd *xhci) 733 { 734 struct xhci_interrupter *ir; 735 unsigned int i; 736 737 writel(xhci->s3.command, &xhci->op_regs->command); 738 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 739 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 740 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 741 742 /* FIXME should we lock to protect against freeing of interrupters */ 743 for (i = 0; i < xhci->max_interrupters; i++) { 744 ir = xhci->interrupters[i]; 745 if (!ir) 746 continue; 747 748 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 749 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 750 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 751 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending); 752 writel(ir->s3_irq_control, &ir->ir_set->irq_control); 753 } 754 } 755 756 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 757 { 758 u64 val_64; 759 760 /* step 2: initialize command ring buffer */ 761 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 762 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 763 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 764 xhci->cmd_ring->dequeue) & 765 (u64) ~CMD_RING_RSVD_BITS) | 766 xhci->cmd_ring->cycle_state; 767 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 768 "// Setting command ring address to 0x%llx", 769 (long unsigned long) val_64); 770 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 771 } 772 773 /* 774 * The whole command ring must be cleared to zero when we suspend the host. 775 * 776 * The host doesn't save the command ring pointer in the suspend well, so we 777 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 778 * aligned, because of the reserved bits in the command ring dequeue pointer 779 * register. Therefore, we can't just set the dequeue pointer back in the 780 * middle of the ring (TRBs are 16-byte aligned). 781 */ 782 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 783 { 784 struct xhci_ring *ring; 785 struct xhci_segment *seg; 786 787 ring = xhci->cmd_ring; 788 seg = ring->deq_seg; 789 do { 790 memset(seg->trbs, 0, 791 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 792 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 793 cpu_to_le32(~TRB_CYCLE); 794 seg = seg->next; 795 } while (seg != ring->deq_seg); 796 797 xhci_initialize_ring_info(ring, 1); 798 /* 799 * Reset the hardware dequeue pointer. 800 * Yes, this will need to be re-written after resume, but we're paranoid 801 * and want to make sure the hardware doesn't access bogus memory 802 * because, say, the BIOS or an SMI started the host without changing 803 * the command ring pointers. 804 */ 805 xhci_set_cmd_ring_deq(xhci); 806 } 807 808 /* 809 * Disable port wake bits if do_wakeup is not set. 810 * 811 * Also clear a possible internal port wake state left hanging for ports that 812 * detected termination but never successfully enumerated (trained to 0U). 813 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 814 * at enumeration clears this wake, force one here as well for unconnected ports 815 */ 816 817 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 818 struct xhci_hub *rhub, 819 bool do_wakeup) 820 { 821 unsigned long flags; 822 u32 t1, t2, portsc; 823 int i; 824 825 spin_lock_irqsave(&xhci->lock, flags); 826 827 for (i = 0; i < rhub->num_ports; i++) { 828 portsc = readl(rhub->ports[i]->addr); 829 t1 = xhci_port_state_to_neutral(portsc); 830 t2 = t1; 831 832 /* clear wake bits if do_wake is not set */ 833 if (!do_wakeup) 834 t2 &= ~PORT_WAKE_BITS; 835 836 /* Don't touch csc bit if connected or connect change is set */ 837 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 838 t2 |= PORT_CSC; 839 840 if (t1 != t2) { 841 writel(t2, rhub->ports[i]->addr); 842 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 843 rhub->hcd->self.busnum, i + 1, portsc, t2); 844 } 845 } 846 spin_unlock_irqrestore(&xhci->lock, flags); 847 } 848 849 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 850 { 851 struct xhci_port **ports; 852 int port_index; 853 u32 status; 854 u32 portsc; 855 856 status = readl(&xhci->op_regs->status); 857 if (status & STS_EINT) 858 return true; 859 /* 860 * Checking STS_EINT is not enough as there is a lag between a change 861 * bit being set and the Port Status Change Event that it generated 862 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 863 */ 864 865 port_index = xhci->usb2_rhub.num_ports; 866 ports = xhci->usb2_rhub.ports; 867 while (port_index--) { 868 portsc = readl(ports[port_index]->addr); 869 if (portsc & PORT_CHANGE_MASK || 870 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 871 return true; 872 } 873 port_index = xhci->usb3_rhub.num_ports; 874 ports = xhci->usb3_rhub.ports; 875 while (port_index--) { 876 portsc = readl(ports[port_index]->addr); 877 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) || 878 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 879 return true; 880 } 881 return false; 882 } 883 884 /* 885 * Stop HC (not bus-specific) 886 * 887 * This is called when the machine transition into S3/S4 mode. 888 * 889 */ 890 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 891 { 892 int rc = 0; 893 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 894 struct usb_hcd *hcd = xhci_to_hcd(xhci); 895 u32 command; 896 u32 res; 897 898 if (!hcd->state) 899 return 0; 900 901 if (hcd->state != HC_STATE_SUSPENDED || 902 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 903 return -EINVAL; 904 905 /* Clear root port wake on bits if wakeup not allowed. */ 906 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 907 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 908 909 if (!HCD_HW_ACCESSIBLE(hcd)) 910 return 0; 911 912 xhci_dbc_suspend(xhci); 913 914 /* Don't poll the roothubs on bus suspend. */ 915 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 916 __func__, hcd->self.busnum); 917 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 918 del_timer_sync(&hcd->rh_timer); 919 if (xhci->shared_hcd) { 920 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 921 del_timer_sync(&xhci->shared_hcd->rh_timer); 922 } 923 924 if (xhci->quirks & XHCI_SUSPEND_DELAY) 925 usleep_range(1000, 1500); 926 927 spin_lock_irq(&xhci->lock); 928 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 929 if (xhci->shared_hcd) 930 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 931 /* step 1: stop endpoint */ 932 /* skipped assuming that port suspend has done */ 933 934 /* step 2: clear Run/Stop bit */ 935 command = readl(&xhci->op_regs->command); 936 command &= ~CMD_RUN; 937 writel(command, &xhci->op_regs->command); 938 939 /* Some chips from Fresco Logic need an extraordinary delay */ 940 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 941 942 if (xhci_handshake(&xhci->op_regs->status, 943 STS_HALT, STS_HALT, delay)) { 944 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 945 spin_unlock_irq(&xhci->lock); 946 return -ETIMEDOUT; 947 } 948 xhci_clear_command_ring(xhci); 949 950 /* step 3: save registers */ 951 xhci_save_registers(xhci); 952 953 /* step 4: set CSS flag */ 954 command = readl(&xhci->op_regs->command); 955 command |= CMD_CSS; 956 writel(command, &xhci->op_regs->command); 957 xhci->broken_suspend = 0; 958 if (xhci_handshake(&xhci->op_regs->status, 959 STS_SAVE, 0, 20 * 1000)) { 960 /* 961 * AMD SNPS xHC 3.0 occasionally does not clear the 962 * SSS bit of USBSTS and when driver tries to poll 963 * to see if the xHC clears BIT(8) which never happens 964 * and driver assumes that controller is not responding 965 * and times out. To workaround this, its good to check 966 * if SRE and HCE bits are not set (as per xhci 967 * Section 5.4.2) and bypass the timeout. 968 */ 969 res = readl(&xhci->op_regs->status); 970 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 971 (((res & STS_SRE) == 0) && 972 ((res & STS_HCE) == 0))) { 973 xhci->broken_suspend = 1; 974 } else { 975 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 976 spin_unlock_irq(&xhci->lock); 977 return -ETIMEDOUT; 978 } 979 } 980 spin_unlock_irq(&xhci->lock); 981 982 /* 983 * Deleting Compliance Mode Recovery Timer because the xHCI Host 984 * is about to be suspended. 985 */ 986 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 987 (!(xhci_all_ports_seen_u0(xhci)))) { 988 del_timer_sync(&xhci->comp_mode_recovery_timer); 989 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 990 "%s: compliance mode recovery timer deleted", 991 __func__); 992 } 993 994 return rc; 995 } 996 EXPORT_SYMBOL_GPL(xhci_suspend); 997 998 /* 999 * start xHC (not bus-specific) 1000 * 1001 * This is called when the machine transition from S3/S4 mode. 1002 * 1003 */ 1004 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg) 1005 { 1006 bool hibernated = (msg.event == PM_EVENT_RESTORE); 1007 u32 command, temp = 0; 1008 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1009 int retval = 0; 1010 bool comp_timer_running = false; 1011 bool pending_portevent = false; 1012 bool suspended_usb3_devs = false; 1013 bool reinit_xhc = false; 1014 1015 if (!hcd->state) 1016 return 0; 1017 1018 /* Wait a bit if either of the roothubs need to settle from the 1019 * transition into bus suspend. 1020 */ 1021 1022 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1023 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1024 msleep(100); 1025 1026 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1027 if (xhci->shared_hcd) 1028 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1029 1030 spin_lock_irq(&xhci->lock); 1031 1032 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1033 reinit_xhc = true; 1034 1035 if (!reinit_xhc) { 1036 /* 1037 * Some controllers might lose power during suspend, so wait 1038 * for controller not ready bit to clear, just as in xHC init. 1039 */ 1040 retval = xhci_handshake(&xhci->op_regs->status, 1041 STS_CNR, 0, 10 * 1000 * 1000); 1042 if (retval) { 1043 xhci_warn(xhci, "Controller not ready at resume %d\n", 1044 retval); 1045 spin_unlock_irq(&xhci->lock); 1046 return retval; 1047 } 1048 /* step 1: restore register */ 1049 xhci_restore_registers(xhci); 1050 /* step 2: initialize command ring buffer */ 1051 xhci_set_cmd_ring_deq(xhci); 1052 /* step 3: restore state and start state*/ 1053 /* step 3: set CRS flag */ 1054 command = readl(&xhci->op_regs->command); 1055 command |= CMD_CRS; 1056 writel(command, &xhci->op_regs->command); 1057 /* 1058 * Some controllers take up to 55+ ms to complete the controller 1059 * restore so setting the timeout to 100ms. Xhci specification 1060 * doesn't mention any timeout value. 1061 */ 1062 if (xhci_handshake(&xhci->op_regs->status, 1063 STS_RESTORE, 0, 100 * 1000)) { 1064 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1065 spin_unlock_irq(&xhci->lock); 1066 return -ETIMEDOUT; 1067 } 1068 } 1069 1070 temp = readl(&xhci->op_regs->status); 1071 1072 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1073 if ((temp & (STS_SRE | STS_HCE)) && 1074 !(xhci->xhc_state & XHCI_STATE_REMOVING)) { 1075 reinit_xhc = true; 1076 if (!xhci->broken_suspend) 1077 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1078 } 1079 1080 if (reinit_xhc) { 1081 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1082 !(xhci_all_ports_seen_u0(xhci))) { 1083 del_timer_sync(&xhci->comp_mode_recovery_timer); 1084 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1085 "Compliance Mode Recovery Timer deleted!"); 1086 } 1087 1088 /* Let the USB core know _both_ roothubs lost power. */ 1089 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1090 if (xhci->shared_hcd) 1091 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1092 1093 xhci_dbg(xhci, "Stop HCD\n"); 1094 xhci_halt(xhci); 1095 xhci_zero_64b_regs(xhci); 1096 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1097 spin_unlock_irq(&xhci->lock); 1098 if (retval) 1099 return retval; 1100 1101 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1102 temp = readl(&xhci->op_regs->status); 1103 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1104 xhci_disable_interrupter(xhci->interrupters[0]); 1105 1106 xhci_dbg(xhci, "cleaning up memory\n"); 1107 xhci_mem_cleanup(xhci); 1108 xhci_debugfs_exit(xhci); 1109 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1110 readl(&xhci->op_regs->status)); 1111 1112 /* USB core calls the PCI reinit and start functions twice: 1113 * first with the primary HCD, and then with the secondary HCD. 1114 * If we don't do the same, the host will never be started. 1115 */ 1116 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1117 retval = xhci_init(hcd); 1118 if (retval) 1119 return retval; 1120 comp_timer_running = true; 1121 1122 xhci_dbg(xhci, "Start the primary HCD\n"); 1123 retval = xhci_run(hcd); 1124 if (!retval && xhci->shared_hcd) { 1125 xhci_dbg(xhci, "Start the secondary HCD\n"); 1126 retval = xhci_run(xhci->shared_hcd); 1127 } 1128 1129 hcd->state = HC_STATE_SUSPENDED; 1130 if (xhci->shared_hcd) 1131 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1132 goto done; 1133 } 1134 1135 /* step 4: set Run/Stop bit */ 1136 command = readl(&xhci->op_regs->command); 1137 command |= CMD_RUN; 1138 writel(command, &xhci->op_regs->command); 1139 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1140 0, 250 * 1000); 1141 1142 /* step 5: walk topology and initialize portsc, 1143 * portpmsc and portli 1144 */ 1145 /* this is done in bus_resume */ 1146 1147 /* step 6: restart each of the previously 1148 * Running endpoints by ringing their doorbells 1149 */ 1150 1151 spin_unlock_irq(&xhci->lock); 1152 1153 xhci_dbc_resume(xhci); 1154 1155 done: 1156 if (retval == 0) { 1157 /* 1158 * Resume roothubs only if there are pending events. 1159 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1160 * the first wake signalling failed, give it that chance if 1161 * there are suspended USB 3 devices. 1162 */ 1163 if (xhci->usb3_rhub.bus_state.suspended_ports || 1164 xhci->usb3_rhub.bus_state.bus_suspended) 1165 suspended_usb3_devs = true; 1166 1167 pending_portevent = xhci_pending_portevent(xhci); 1168 1169 if (suspended_usb3_devs && !pending_portevent && 1170 msg.event == PM_EVENT_AUTO_RESUME) { 1171 msleep(120); 1172 pending_portevent = xhci_pending_portevent(xhci); 1173 } 1174 1175 if (pending_portevent) { 1176 if (xhci->shared_hcd) 1177 usb_hcd_resume_root_hub(xhci->shared_hcd); 1178 usb_hcd_resume_root_hub(hcd); 1179 } 1180 } 1181 /* 1182 * If system is subject to the Quirk, Compliance Mode Timer needs to 1183 * be re-initialized Always after a system resume. Ports are subject 1184 * to suffer the Compliance Mode issue again. It doesn't matter if 1185 * ports have entered previously to U0 before system's suspension. 1186 */ 1187 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1188 compliance_mode_recovery_timer_init(xhci); 1189 1190 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1191 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1192 1193 /* Re-enable port polling. */ 1194 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1195 __func__, hcd->self.busnum); 1196 if (xhci->shared_hcd) { 1197 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1198 usb_hcd_poll_rh_status(xhci->shared_hcd); 1199 } 1200 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1201 usb_hcd_poll_rh_status(hcd); 1202 1203 return retval; 1204 } 1205 EXPORT_SYMBOL_GPL(xhci_resume); 1206 #endif /* CONFIG_PM */ 1207 1208 /*-------------------------------------------------------------------------*/ 1209 1210 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1211 { 1212 void *temp; 1213 int ret = 0; 1214 unsigned int buf_len; 1215 enum dma_data_direction dir; 1216 1217 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1218 buf_len = urb->transfer_buffer_length; 1219 1220 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1221 dev_to_node(hcd->self.sysdev)); 1222 if (!temp) 1223 return -ENOMEM; 1224 1225 if (usb_urb_dir_out(urb)) 1226 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1227 temp, buf_len, 0); 1228 1229 urb->transfer_buffer = temp; 1230 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1231 urb->transfer_buffer, 1232 urb->transfer_buffer_length, 1233 dir); 1234 1235 if (dma_mapping_error(hcd->self.sysdev, 1236 urb->transfer_dma)) { 1237 ret = -EAGAIN; 1238 kfree(temp); 1239 } else { 1240 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1241 } 1242 1243 return ret; 1244 } 1245 1246 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1247 struct urb *urb) 1248 { 1249 bool ret = false; 1250 unsigned int i; 1251 unsigned int len = 0; 1252 unsigned int trb_size; 1253 unsigned int max_pkt; 1254 struct scatterlist *sg; 1255 struct scatterlist *tail_sg; 1256 1257 tail_sg = urb->sg; 1258 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1259 1260 if (!urb->num_sgs) 1261 return ret; 1262 1263 if (urb->dev->speed >= USB_SPEED_SUPER) 1264 trb_size = TRB_CACHE_SIZE_SS; 1265 else 1266 trb_size = TRB_CACHE_SIZE_HS; 1267 1268 if (urb->transfer_buffer_length != 0 && 1269 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1270 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1271 len = len + sg->length; 1272 if (i > trb_size - 2) { 1273 len = len - tail_sg->length; 1274 if (len < max_pkt) { 1275 ret = true; 1276 break; 1277 } 1278 1279 tail_sg = sg_next(tail_sg); 1280 } 1281 } 1282 } 1283 return ret; 1284 } 1285 1286 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1287 { 1288 unsigned int len; 1289 unsigned int buf_len; 1290 enum dma_data_direction dir; 1291 1292 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1293 1294 buf_len = urb->transfer_buffer_length; 1295 1296 if (IS_ENABLED(CONFIG_HAS_DMA) && 1297 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1298 dma_unmap_single(hcd->self.sysdev, 1299 urb->transfer_dma, 1300 urb->transfer_buffer_length, 1301 dir); 1302 1303 if (usb_urb_dir_in(urb)) { 1304 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1305 urb->transfer_buffer, 1306 buf_len, 1307 0); 1308 if (len != buf_len) { 1309 xhci_dbg(hcd_to_xhci(hcd), 1310 "Copy from tmp buf to urb sg list failed\n"); 1311 urb->actual_length = len; 1312 } 1313 } 1314 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1315 kfree(urb->transfer_buffer); 1316 urb->transfer_buffer = NULL; 1317 } 1318 1319 /* 1320 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1321 * we'll copy the actual data into the TRB address register. This is limited to 1322 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1323 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1324 */ 1325 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1326 gfp_t mem_flags) 1327 { 1328 struct xhci_hcd *xhci; 1329 1330 xhci = hcd_to_xhci(hcd); 1331 1332 if (xhci_urb_suitable_for_idt(urb)) 1333 return 0; 1334 1335 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1336 if (xhci_urb_temp_buffer_required(hcd, urb)) 1337 return xhci_map_temp_buffer(hcd, urb); 1338 } 1339 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1340 } 1341 1342 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1343 { 1344 struct xhci_hcd *xhci; 1345 bool unmap_temp_buf = false; 1346 1347 xhci = hcd_to_xhci(hcd); 1348 1349 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1350 unmap_temp_buf = true; 1351 1352 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1353 xhci_unmap_temp_buf(hcd, urb); 1354 else 1355 usb_hcd_unmap_urb_for_dma(hcd, urb); 1356 } 1357 1358 /** 1359 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1360 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1361 * value to right shift 1 for the bitmask. 1362 * 1363 * Index = (epnum * 2) + direction - 1, 1364 * where direction = 0 for OUT, 1 for IN. 1365 * For control endpoints, the IN index is used (OUT index is unused), so 1366 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1367 */ 1368 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1369 { 1370 unsigned int index; 1371 if (usb_endpoint_xfer_control(desc)) 1372 index = (unsigned int) (usb_endpoint_num(desc)*2); 1373 else 1374 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1375 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1376 return index; 1377 } 1378 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1379 1380 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1381 * address from the XHCI endpoint index. 1382 */ 1383 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1384 { 1385 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1386 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1387 return direction | number; 1388 } 1389 1390 /* Find the flag for this endpoint (for use in the control context). Use the 1391 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1392 * bit 1, etc. 1393 */ 1394 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1395 { 1396 return 1 << (xhci_get_endpoint_index(desc) + 1); 1397 } 1398 1399 /* Compute the last valid endpoint context index. Basically, this is the 1400 * endpoint index plus one. For slot contexts with more than valid endpoint, 1401 * we find the most significant bit set in the added contexts flags. 1402 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1403 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1404 */ 1405 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1406 { 1407 return fls(added_ctxs) - 1; 1408 } 1409 1410 /* Returns 1 if the arguments are OK; 1411 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1412 */ 1413 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1414 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1415 const char *func) { 1416 struct xhci_hcd *xhci; 1417 struct xhci_virt_device *virt_dev; 1418 1419 if (!hcd || (check_ep && !ep) || !udev) { 1420 pr_debug("xHCI %s called with invalid args\n", func); 1421 return -EINVAL; 1422 } 1423 if (!udev->parent) { 1424 pr_debug("xHCI %s called for root hub\n", func); 1425 return 0; 1426 } 1427 1428 xhci = hcd_to_xhci(hcd); 1429 if (check_virt_dev) { 1430 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1431 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1432 func); 1433 return -EINVAL; 1434 } 1435 1436 virt_dev = xhci->devs[udev->slot_id]; 1437 if (virt_dev->udev != udev) { 1438 xhci_dbg(xhci, "xHCI %s called with udev and " 1439 "virt_dev does not match\n", func); 1440 return -EINVAL; 1441 } 1442 } 1443 1444 if (xhci->xhc_state & XHCI_STATE_HALTED) 1445 return -ENODEV; 1446 1447 return 1; 1448 } 1449 1450 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1451 struct usb_device *udev, struct xhci_command *command, 1452 bool ctx_change, bool must_succeed); 1453 1454 /* 1455 * Full speed devices may have a max packet size greater than 8 bytes, but the 1456 * USB core doesn't know that until it reads the first 8 bytes of the 1457 * descriptor. If the usb_device's max packet size changes after that point, 1458 * we need to issue an evaluate context command and wait on it. 1459 */ 1460 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev) 1461 { 1462 struct xhci_input_control_ctx *ctrl_ctx; 1463 struct xhci_ep_ctx *ep_ctx; 1464 struct xhci_command *command; 1465 int max_packet_size; 1466 int hw_max_packet_size; 1467 int ret = 0; 1468 1469 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0); 1470 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1471 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc); 1472 1473 if (hw_max_packet_size == max_packet_size) 1474 return 0; 1475 1476 switch (max_packet_size) { 1477 case 8: case 16: case 32: case 64: case 9: 1478 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1479 "Max Packet Size for ep 0 changed."); 1480 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1481 "Max packet size in usb_device = %d", 1482 max_packet_size); 1483 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1484 "Max packet size in xHCI HW = %d", 1485 hw_max_packet_size); 1486 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1487 "Issuing evaluate context command."); 1488 1489 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1490 if (!command) 1491 return -ENOMEM; 1492 1493 command->in_ctx = vdev->in_ctx; 1494 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1495 if (!ctrl_ctx) { 1496 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1497 __func__); 1498 ret = -ENOMEM; 1499 break; 1500 } 1501 /* Set up the modified control endpoint 0 */ 1502 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0); 1503 1504 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0); 1505 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1506 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1507 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1508 1509 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1510 ctrl_ctx->drop_flags = 0; 1511 1512 ret = xhci_configure_endpoint(xhci, vdev->udev, command, 1513 true, false); 1514 /* Clean up the input context for later use by bandwidth functions */ 1515 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1516 break; 1517 default: 1518 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n", 1519 max_packet_size); 1520 return -EINVAL; 1521 } 1522 1523 kfree(command->completion); 1524 kfree(command); 1525 1526 return ret; 1527 } 1528 1529 /* 1530 * non-error returns are a promise to giveback() the urb later 1531 * we drop ownership so next owner (or urb unlink) can get it 1532 */ 1533 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1534 { 1535 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1536 unsigned long flags; 1537 int ret = 0; 1538 unsigned int slot_id, ep_index; 1539 unsigned int *ep_state; 1540 struct urb_priv *urb_priv; 1541 int num_tds; 1542 1543 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1544 1545 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1546 num_tds = urb->number_of_packets; 1547 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1548 urb->transfer_buffer_length > 0 && 1549 urb->transfer_flags & URB_ZERO_PACKET && 1550 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1551 num_tds = 2; 1552 else 1553 num_tds = 1; 1554 1555 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1556 if (!urb_priv) 1557 return -ENOMEM; 1558 1559 urb_priv->num_tds = num_tds; 1560 urb_priv->num_tds_done = 0; 1561 urb->hcpriv = urb_priv; 1562 1563 trace_xhci_urb_enqueue(urb); 1564 1565 spin_lock_irqsave(&xhci->lock, flags); 1566 1567 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1568 true, true, __func__); 1569 if (ret <= 0) { 1570 ret = ret ? ret : -EINVAL; 1571 goto free_priv; 1572 } 1573 1574 slot_id = urb->dev->slot_id; 1575 1576 if (!HCD_HW_ACCESSIBLE(hcd)) { 1577 ret = -ESHUTDOWN; 1578 goto free_priv; 1579 } 1580 1581 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1582 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1583 ret = -ENODEV; 1584 goto free_priv; 1585 } 1586 1587 if (xhci->xhc_state & XHCI_STATE_DYING) { 1588 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1589 urb->ep->desc.bEndpointAddress, urb); 1590 ret = -ESHUTDOWN; 1591 goto free_priv; 1592 } 1593 1594 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1595 1596 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1597 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1598 *ep_state); 1599 ret = -EINVAL; 1600 goto free_priv; 1601 } 1602 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1603 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1604 ret = -EINVAL; 1605 goto free_priv; 1606 } 1607 1608 switch (usb_endpoint_type(&urb->ep->desc)) { 1609 1610 case USB_ENDPOINT_XFER_CONTROL: 1611 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1612 slot_id, ep_index); 1613 break; 1614 case USB_ENDPOINT_XFER_BULK: 1615 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1616 slot_id, ep_index); 1617 break; 1618 case USB_ENDPOINT_XFER_INT: 1619 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1620 slot_id, ep_index); 1621 break; 1622 case USB_ENDPOINT_XFER_ISOC: 1623 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1624 slot_id, ep_index); 1625 } 1626 1627 if (ret) { 1628 free_priv: 1629 xhci_urb_free_priv(urb_priv); 1630 urb->hcpriv = NULL; 1631 } 1632 spin_unlock_irqrestore(&xhci->lock, flags); 1633 return ret; 1634 } 1635 1636 /* 1637 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1638 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1639 * should pick up where it left off in the TD, unless a Set Transfer Ring 1640 * Dequeue Pointer is issued. 1641 * 1642 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1643 * the ring. Since the ring is a contiguous structure, they can't be physically 1644 * removed. Instead, there are two options: 1645 * 1646 * 1) If the HC is in the middle of processing the URB to be canceled, we 1647 * simply move the ring's dequeue pointer past those TRBs using the Set 1648 * Transfer Ring Dequeue Pointer command. This will be the common case, 1649 * when drivers timeout on the last submitted URB and attempt to cancel. 1650 * 1651 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1652 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1653 * HC will need to invalidate the any TRBs it has cached after the stop 1654 * endpoint command, as noted in the xHCI 0.95 errata. 1655 * 1656 * 3) The TD may have completed by the time the Stop Endpoint Command 1657 * completes, so software needs to handle that case too. 1658 * 1659 * This function should protect against the TD enqueueing code ringing the 1660 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1661 * It also needs to account for multiple cancellations on happening at the same 1662 * time for the same endpoint. 1663 * 1664 * Note that this function can be called in any context, or so says 1665 * usb_hcd_unlink_urb() 1666 */ 1667 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1668 { 1669 unsigned long flags; 1670 int ret, i; 1671 u32 temp; 1672 struct xhci_hcd *xhci; 1673 struct urb_priv *urb_priv; 1674 struct xhci_td *td; 1675 unsigned int ep_index; 1676 struct xhci_ring *ep_ring; 1677 struct xhci_virt_ep *ep; 1678 struct xhci_command *command; 1679 struct xhci_virt_device *vdev; 1680 1681 xhci = hcd_to_xhci(hcd); 1682 spin_lock_irqsave(&xhci->lock, flags); 1683 1684 trace_xhci_urb_dequeue(urb); 1685 1686 /* Make sure the URB hasn't completed or been unlinked already */ 1687 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1688 if (ret) 1689 goto done; 1690 1691 /* give back URB now if we can't queue it for cancel */ 1692 vdev = xhci->devs[urb->dev->slot_id]; 1693 urb_priv = urb->hcpriv; 1694 if (!vdev || !urb_priv) 1695 goto err_giveback; 1696 1697 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1698 ep = &vdev->eps[ep_index]; 1699 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1700 if (!ep || !ep_ring) 1701 goto err_giveback; 1702 1703 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1704 temp = readl(&xhci->op_regs->status); 1705 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1706 xhci_hc_died(xhci); 1707 goto done; 1708 } 1709 1710 /* 1711 * check ring is not re-allocated since URB was enqueued. If it is, then 1712 * make sure none of the ring related pointers in this URB private data 1713 * are touched, such as td_list, otherwise we overwrite freed data 1714 */ 1715 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1716 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1717 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1718 td = &urb_priv->td[i]; 1719 if (!list_empty(&td->cancelled_td_list)) 1720 list_del_init(&td->cancelled_td_list); 1721 } 1722 goto err_giveback; 1723 } 1724 1725 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1726 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1727 "HC halted, freeing TD manually."); 1728 for (i = urb_priv->num_tds_done; 1729 i < urb_priv->num_tds; 1730 i++) { 1731 td = &urb_priv->td[i]; 1732 if (!list_empty(&td->td_list)) 1733 list_del_init(&td->td_list); 1734 if (!list_empty(&td->cancelled_td_list)) 1735 list_del_init(&td->cancelled_td_list); 1736 } 1737 goto err_giveback; 1738 } 1739 1740 i = urb_priv->num_tds_done; 1741 if (i < urb_priv->num_tds) 1742 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1743 "Cancel URB %p, dev %s, ep 0x%x, " 1744 "starting at offset 0x%llx", 1745 urb, urb->dev->devpath, 1746 urb->ep->desc.bEndpointAddress, 1747 (unsigned long long) xhci_trb_virt_to_dma( 1748 urb_priv->td[i].start_seg, 1749 urb_priv->td[i].first_trb)); 1750 1751 for (; i < urb_priv->num_tds; i++) { 1752 td = &urb_priv->td[i]; 1753 /* TD can already be on cancelled list if ep halted on it */ 1754 if (list_empty(&td->cancelled_td_list)) { 1755 td->cancel_status = TD_DIRTY; 1756 list_add_tail(&td->cancelled_td_list, 1757 &ep->cancelled_td_list); 1758 } 1759 } 1760 1761 /* Queue a stop endpoint command, but only if this is 1762 * the first cancellation to be handled. 1763 */ 1764 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1765 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1766 if (!command) { 1767 ret = -ENOMEM; 1768 goto done; 1769 } 1770 ep->ep_state |= EP_STOP_CMD_PENDING; 1771 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1772 ep_index, 0); 1773 xhci_ring_cmd_db(xhci); 1774 } 1775 done: 1776 spin_unlock_irqrestore(&xhci->lock, flags); 1777 return ret; 1778 1779 err_giveback: 1780 if (urb_priv) 1781 xhci_urb_free_priv(urb_priv); 1782 usb_hcd_unlink_urb_from_ep(hcd, urb); 1783 spin_unlock_irqrestore(&xhci->lock, flags); 1784 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1785 return ret; 1786 } 1787 1788 /* Drop an endpoint from a new bandwidth configuration for this device. 1789 * Only one call to this function is allowed per endpoint before 1790 * check_bandwidth() or reset_bandwidth() must be called. 1791 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1792 * add the endpoint to the schedule with possibly new parameters denoted by a 1793 * different endpoint descriptor in usb_host_endpoint. 1794 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1795 * not allowed. 1796 * 1797 * The USB core will not allow URBs to be queued to an endpoint that is being 1798 * disabled, so there's no need for mutual exclusion to protect 1799 * the xhci->devs[slot_id] structure. 1800 */ 1801 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1802 struct usb_host_endpoint *ep) 1803 { 1804 struct xhci_hcd *xhci; 1805 struct xhci_container_ctx *in_ctx, *out_ctx; 1806 struct xhci_input_control_ctx *ctrl_ctx; 1807 unsigned int ep_index; 1808 struct xhci_ep_ctx *ep_ctx; 1809 u32 drop_flag; 1810 u32 new_add_flags, new_drop_flags; 1811 int ret; 1812 1813 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1814 if (ret <= 0) 1815 return ret; 1816 xhci = hcd_to_xhci(hcd); 1817 if (xhci->xhc_state & XHCI_STATE_DYING) 1818 return -ENODEV; 1819 1820 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1821 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1822 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1823 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1824 __func__, drop_flag); 1825 return 0; 1826 } 1827 1828 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1829 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1830 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1831 if (!ctrl_ctx) { 1832 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1833 __func__); 1834 return 0; 1835 } 1836 1837 ep_index = xhci_get_endpoint_index(&ep->desc); 1838 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1839 /* If the HC already knows the endpoint is disabled, 1840 * or the HCD has noted it is disabled, ignore this request 1841 */ 1842 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1843 le32_to_cpu(ctrl_ctx->drop_flags) & 1844 xhci_get_endpoint_flag(&ep->desc)) { 1845 /* Do not warn when called after a usb_device_reset */ 1846 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1847 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1848 __func__, ep); 1849 return 0; 1850 } 1851 1852 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1853 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1854 1855 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1856 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1857 1858 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1859 1860 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1861 1862 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1863 (unsigned int) ep->desc.bEndpointAddress, 1864 udev->slot_id, 1865 (unsigned int) new_drop_flags, 1866 (unsigned int) new_add_flags); 1867 return 0; 1868 } 1869 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1870 1871 /* Add an endpoint to a new possible bandwidth configuration for this device. 1872 * Only one call to this function is allowed per endpoint before 1873 * check_bandwidth() or reset_bandwidth() must be called. 1874 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1875 * add the endpoint to the schedule with possibly new parameters denoted by a 1876 * different endpoint descriptor in usb_host_endpoint. 1877 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1878 * not allowed. 1879 * 1880 * The USB core will not allow URBs to be queued to an endpoint until the 1881 * configuration or alt setting is installed in the device, so there's no need 1882 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1883 */ 1884 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1885 struct usb_host_endpoint *ep) 1886 { 1887 struct xhci_hcd *xhci; 1888 struct xhci_container_ctx *in_ctx; 1889 unsigned int ep_index; 1890 struct xhci_input_control_ctx *ctrl_ctx; 1891 struct xhci_ep_ctx *ep_ctx; 1892 u32 added_ctxs; 1893 u32 new_add_flags, new_drop_flags; 1894 struct xhci_virt_device *virt_dev; 1895 int ret = 0; 1896 1897 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1898 if (ret <= 0) { 1899 /* So we won't queue a reset ep command for a root hub */ 1900 ep->hcpriv = NULL; 1901 return ret; 1902 } 1903 xhci = hcd_to_xhci(hcd); 1904 if (xhci->xhc_state & XHCI_STATE_DYING) 1905 return -ENODEV; 1906 1907 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1908 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1909 /* FIXME when we have to issue an evaluate endpoint command to 1910 * deal with ep0 max packet size changing once we get the 1911 * descriptors 1912 */ 1913 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1914 __func__, added_ctxs); 1915 return 0; 1916 } 1917 1918 virt_dev = xhci->devs[udev->slot_id]; 1919 in_ctx = virt_dev->in_ctx; 1920 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1921 if (!ctrl_ctx) { 1922 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1923 __func__); 1924 return 0; 1925 } 1926 1927 ep_index = xhci_get_endpoint_index(&ep->desc); 1928 /* If this endpoint is already in use, and the upper layers are trying 1929 * to add it again without dropping it, reject the addition. 1930 */ 1931 if (virt_dev->eps[ep_index].ring && 1932 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1933 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1934 "without dropping it.\n", 1935 (unsigned int) ep->desc.bEndpointAddress); 1936 return -EINVAL; 1937 } 1938 1939 /* If the HCD has already noted the endpoint is enabled, 1940 * ignore this request. 1941 */ 1942 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1943 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1944 __func__, ep); 1945 return 0; 1946 } 1947 1948 /* 1949 * Configuration and alternate setting changes must be done in 1950 * process context, not interrupt context (or so documenation 1951 * for usb_set_interface() and usb_set_configuration() claim). 1952 */ 1953 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1954 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1955 __func__, ep->desc.bEndpointAddress); 1956 return -ENOMEM; 1957 } 1958 1959 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1960 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1961 1962 /* If xhci_endpoint_disable() was called for this endpoint, but the 1963 * xHC hasn't been notified yet through the check_bandwidth() call, 1964 * this re-adds a new state for the endpoint from the new endpoint 1965 * descriptors. We must drop and re-add this endpoint, so we leave the 1966 * drop flags alone. 1967 */ 1968 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1969 1970 /* Store the usb_device pointer for later use */ 1971 ep->hcpriv = udev; 1972 1973 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1974 trace_xhci_add_endpoint(ep_ctx); 1975 1976 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1977 (unsigned int) ep->desc.bEndpointAddress, 1978 udev->slot_id, 1979 (unsigned int) new_drop_flags, 1980 (unsigned int) new_add_flags); 1981 return 0; 1982 } 1983 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 1984 1985 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1986 { 1987 struct xhci_input_control_ctx *ctrl_ctx; 1988 struct xhci_ep_ctx *ep_ctx; 1989 struct xhci_slot_ctx *slot_ctx; 1990 int i; 1991 1992 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1993 if (!ctrl_ctx) { 1994 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1995 __func__); 1996 return; 1997 } 1998 1999 /* When a device's add flag and drop flag are zero, any subsequent 2000 * configure endpoint command will leave that endpoint's state 2001 * untouched. Make sure we don't leave any old state in the input 2002 * endpoint contexts. 2003 */ 2004 ctrl_ctx->drop_flags = 0; 2005 ctrl_ctx->add_flags = 0; 2006 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2007 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2008 /* Endpoint 0 is always valid */ 2009 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2010 for (i = 1; i < 31; i++) { 2011 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2012 ep_ctx->ep_info = 0; 2013 ep_ctx->ep_info2 = 0; 2014 ep_ctx->deq = 0; 2015 ep_ctx->tx_info = 0; 2016 } 2017 } 2018 2019 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2020 struct usb_device *udev, u32 *cmd_status) 2021 { 2022 int ret; 2023 2024 switch (*cmd_status) { 2025 case COMP_COMMAND_ABORTED: 2026 case COMP_COMMAND_RING_STOPPED: 2027 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2028 ret = -ETIME; 2029 break; 2030 case COMP_RESOURCE_ERROR: 2031 dev_warn(&udev->dev, 2032 "Not enough host controller resources for new device state.\n"); 2033 ret = -ENOMEM; 2034 /* FIXME: can we allocate more resources for the HC? */ 2035 break; 2036 case COMP_BANDWIDTH_ERROR: 2037 case COMP_SECONDARY_BANDWIDTH_ERROR: 2038 dev_warn(&udev->dev, 2039 "Not enough bandwidth for new device state.\n"); 2040 ret = -ENOSPC; 2041 /* FIXME: can we go back to the old state? */ 2042 break; 2043 case COMP_TRB_ERROR: 2044 /* the HCD set up something wrong */ 2045 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2046 "add flag = 1, " 2047 "and endpoint is not disabled.\n"); 2048 ret = -EINVAL; 2049 break; 2050 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2051 dev_warn(&udev->dev, 2052 "ERROR: Incompatible device for endpoint configure command.\n"); 2053 ret = -ENODEV; 2054 break; 2055 case COMP_SUCCESS: 2056 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2057 "Successful Endpoint Configure command"); 2058 ret = 0; 2059 break; 2060 default: 2061 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2062 *cmd_status); 2063 ret = -EINVAL; 2064 break; 2065 } 2066 return ret; 2067 } 2068 2069 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2070 struct usb_device *udev, u32 *cmd_status) 2071 { 2072 int ret; 2073 2074 switch (*cmd_status) { 2075 case COMP_COMMAND_ABORTED: 2076 case COMP_COMMAND_RING_STOPPED: 2077 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2078 ret = -ETIME; 2079 break; 2080 case COMP_PARAMETER_ERROR: 2081 dev_warn(&udev->dev, 2082 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2083 ret = -EINVAL; 2084 break; 2085 case COMP_SLOT_NOT_ENABLED_ERROR: 2086 dev_warn(&udev->dev, 2087 "WARN: slot not enabled for evaluate context command.\n"); 2088 ret = -EINVAL; 2089 break; 2090 case COMP_CONTEXT_STATE_ERROR: 2091 dev_warn(&udev->dev, 2092 "WARN: invalid context state for evaluate context command.\n"); 2093 ret = -EINVAL; 2094 break; 2095 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2096 dev_warn(&udev->dev, 2097 "ERROR: Incompatible device for evaluate context command.\n"); 2098 ret = -ENODEV; 2099 break; 2100 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2101 /* Max Exit Latency too large error */ 2102 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2103 ret = -EINVAL; 2104 break; 2105 case COMP_SUCCESS: 2106 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2107 "Successful evaluate context command"); 2108 ret = 0; 2109 break; 2110 default: 2111 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2112 *cmd_status); 2113 ret = -EINVAL; 2114 break; 2115 } 2116 return ret; 2117 } 2118 2119 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2120 struct xhci_input_control_ctx *ctrl_ctx) 2121 { 2122 u32 valid_add_flags; 2123 u32 valid_drop_flags; 2124 2125 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2126 * (bit 1). The default control endpoint is added during the Address 2127 * Device command and is never removed until the slot is disabled. 2128 */ 2129 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2130 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2131 2132 /* Use hweight32 to count the number of ones in the add flags, or 2133 * number of endpoints added. Don't count endpoints that are changed 2134 * (both added and dropped). 2135 */ 2136 return hweight32(valid_add_flags) - 2137 hweight32(valid_add_flags & valid_drop_flags); 2138 } 2139 2140 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2141 struct xhci_input_control_ctx *ctrl_ctx) 2142 { 2143 u32 valid_add_flags; 2144 u32 valid_drop_flags; 2145 2146 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2147 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2148 2149 return hweight32(valid_drop_flags) - 2150 hweight32(valid_add_flags & valid_drop_flags); 2151 } 2152 2153 /* 2154 * We need to reserve the new number of endpoints before the configure endpoint 2155 * command completes. We can't subtract the dropped endpoints from the number 2156 * of active endpoints until the command completes because we can oversubscribe 2157 * the host in this case: 2158 * 2159 * - the first configure endpoint command drops more endpoints than it adds 2160 * - a second configure endpoint command that adds more endpoints is queued 2161 * - the first configure endpoint command fails, so the config is unchanged 2162 * - the second command may succeed, even though there isn't enough resources 2163 * 2164 * Must be called with xhci->lock held. 2165 */ 2166 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2167 struct xhci_input_control_ctx *ctrl_ctx) 2168 { 2169 u32 added_eps; 2170 2171 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2172 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2173 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2174 "Not enough ep ctxs: " 2175 "%u active, need to add %u, limit is %u.", 2176 xhci->num_active_eps, added_eps, 2177 xhci->limit_active_eps); 2178 return -ENOMEM; 2179 } 2180 xhci->num_active_eps += added_eps; 2181 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2182 "Adding %u ep ctxs, %u now active.", added_eps, 2183 xhci->num_active_eps); 2184 return 0; 2185 } 2186 2187 /* 2188 * The configure endpoint was failed by the xHC for some other reason, so we 2189 * need to revert the resources that failed configuration would have used. 2190 * 2191 * Must be called with xhci->lock held. 2192 */ 2193 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2194 struct xhci_input_control_ctx *ctrl_ctx) 2195 { 2196 u32 num_failed_eps; 2197 2198 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2199 xhci->num_active_eps -= num_failed_eps; 2200 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2201 "Removing %u failed ep ctxs, %u now active.", 2202 num_failed_eps, 2203 xhci->num_active_eps); 2204 } 2205 2206 /* 2207 * Now that the command has completed, clean up the active endpoint count by 2208 * subtracting out the endpoints that were dropped (but not changed). 2209 * 2210 * Must be called with xhci->lock held. 2211 */ 2212 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2213 struct xhci_input_control_ctx *ctrl_ctx) 2214 { 2215 u32 num_dropped_eps; 2216 2217 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2218 xhci->num_active_eps -= num_dropped_eps; 2219 if (num_dropped_eps) 2220 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2221 "Removing %u dropped ep ctxs, %u now active.", 2222 num_dropped_eps, 2223 xhci->num_active_eps); 2224 } 2225 2226 static unsigned int xhci_get_block_size(struct usb_device *udev) 2227 { 2228 switch (udev->speed) { 2229 case USB_SPEED_LOW: 2230 case USB_SPEED_FULL: 2231 return FS_BLOCK; 2232 case USB_SPEED_HIGH: 2233 return HS_BLOCK; 2234 case USB_SPEED_SUPER: 2235 case USB_SPEED_SUPER_PLUS: 2236 return SS_BLOCK; 2237 case USB_SPEED_UNKNOWN: 2238 default: 2239 /* Should never happen */ 2240 return 1; 2241 } 2242 } 2243 2244 static unsigned int 2245 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2246 { 2247 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2248 return LS_OVERHEAD; 2249 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2250 return FS_OVERHEAD; 2251 return HS_OVERHEAD; 2252 } 2253 2254 /* If we are changing a LS/FS device under a HS hub, 2255 * make sure (if we are activating a new TT) that the HS bus has enough 2256 * bandwidth for this new TT. 2257 */ 2258 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2259 struct xhci_virt_device *virt_dev, 2260 int old_active_eps) 2261 { 2262 struct xhci_interval_bw_table *bw_table; 2263 struct xhci_tt_bw_info *tt_info; 2264 2265 /* Find the bandwidth table for the root port this TT is attached to. */ 2266 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table; 2267 tt_info = virt_dev->tt_info; 2268 /* If this TT already had active endpoints, the bandwidth for this TT 2269 * has already been added. Removing all periodic endpoints (and thus 2270 * making the TT enactive) will only decrease the bandwidth used. 2271 */ 2272 if (old_active_eps) 2273 return 0; 2274 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2275 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2276 return -ENOMEM; 2277 return 0; 2278 } 2279 /* Not sure why we would have no new active endpoints... 2280 * 2281 * Maybe because of an Evaluate Context change for a hub update or a 2282 * control endpoint 0 max packet size change? 2283 * FIXME: skip the bandwidth calculation in that case. 2284 */ 2285 return 0; 2286 } 2287 2288 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2289 struct xhci_virt_device *virt_dev) 2290 { 2291 unsigned int bw_reserved; 2292 2293 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2294 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2295 return -ENOMEM; 2296 2297 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2298 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2299 return -ENOMEM; 2300 2301 return 0; 2302 } 2303 2304 /* 2305 * This algorithm is a very conservative estimate of the worst-case scheduling 2306 * scenario for any one interval. The hardware dynamically schedules the 2307 * packets, so we can't tell which microframe could be the limiting factor in 2308 * the bandwidth scheduling. This only takes into account periodic endpoints. 2309 * 2310 * Obviously, we can't solve an NP complete problem to find the minimum worst 2311 * case scenario. Instead, we come up with an estimate that is no less than 2312 * the worst case bandwidth used for any one microframe, but may be an 2313 * over-estimate. 2314 * 2315 * We walk the requirements for each endpoint by interval, starting with the 2316 * smallest interval, and place packets in the schedule where there is only one 2317 * possible way to schedule packets for that interval. In order to simplify 2318 * this algorithm, we record the largest max packet size for each interval, and 2319 * assume all packets will be that size. 2320 * 2321 * For interval 0, we obviously must schedule all packets for each interval. 2322 * The bandwidth for interval 0 is just the amount of data to be transmitted 2323 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2324 * the number of packets). 2325 * 2326 * For interval 1, we have two possible microframes to schedule those packets 2327 * in. For this algorithm, if we can schedule the same number of packets for 2328 * each possible scheduling opportunity (each microframe), we will do so. The 2329 * remaining number of packets will be saved to be transmitted in the gaps in 2330 * the next interval's scheduling sequence. 2331 * 2332 * As we move those remaining packets to be scheduled with interval 2 packets, 2333 * we have to double the number of remaining packets to transmit. This is 2334 * because the intervals are actually powers of 2, and we would be transmitting 2335 * the previous interval's packets twice in this interval. We also have to be 2336 * sure that when we look at the largest max packet size for this interval, we 2337 * also look at the largest max packet size for the remaining packets and take 2338 * the greater of the two. 2339 * 2340 * The algorithm continues to evenly distribute packets in each scheduling 2341 * opportunity, and push the remaining packets out, until we get to the last 2342 * interval. Then those packets and their associated overhead are just added 2343 * to the bandwidth used. 2344 */ 2345 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2346 struct xhci_virt_device *virt_dev, 2347 int old_active_eps) 2348 { 2349 unsigned int bw_reserved; 2350 unsigned int max_bandwidth; 2351 unsigned int bw_used; 2352 unsigned int block_size; 2353 struct xhci_interval_bw_table *bw_table; 2354 unsigned int packet_size = 0; 2355 unsigned int overhead = 0; 2356 unsigned int packets_transmitted = 0; 2357 unsigned int packets_remaining = 0; 2358 unsigned int i; 2359 2360 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2361 return xhci_check_ss_bw(xhci, virt_dev); 2362 2363 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2364 max_bandwidth = HS_BW_LIMIT; 2365 /* Convert percent of bus BW reserved to blocks reserved */ 2366 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2367 } else { 2368 max_bandwidth = FS_BW_LIMIT; 2369 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2370 } 2371 2372 bw_table = virt_dev->bw_table; 2373 /* We need to translate the max packet size and max ESIT payloads into 2374 * the units the hardware uses. 2375 */ 2376 block_size = xhci_get_block_size(virt_dev->udev); 2377 2378 /* If we are manipulating a LS/FS device under a HS hub, double check 2379 * that the HS bus has enough bandwidth if we are activing a new TT. 2380 */ 2381 if (virt_dev->tt_info) { 2382 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2383 "Recalculating BW for rootport %u", 2384 virt_dev->rhub_port->hw_portnum + 1); 2385 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2386 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2387 "newly activated TT.\n"); 2388 return -ENOMEM; 2389 } 2390 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2391 "Recalculating BW for TT slot %u port %u", 2392 virt_dev->tt_info->slot_id, 2393 virt_dev->tt_info->ttport); 2394 } else { 2395 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2396 "Recalculating BW for rootport %u", 2397 virt_dev->rhub_port->hw_portnum + 1); 2398 } 2399 2400 /* Add in how much bandwidth will be used for interval zero, or the 2401 * rounded max ESIT payload + number of packets * largest overhead. 2402 */ 2403 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2404 bw_table->interval_bw[0].num_packets * 2405 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2406 2407 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2408 unsigned int bw_added; 2409 unsigned int largest_mps; 2410 unsigned int interval_overhead; 2411 2412 /* 2413 * How many packets could we transmit in this interval? 2414 * If packets didn't fit in the previous interval, we will need 2415 * to transmit that many packets twice within this interval. 2416 */ 2417 packets_remaining = 2 * packets_remaining + 2418 bw_table->interval_bw[i].num_packets; 2419 2420 /* Find the largest max packet size of this or the previous 2421 * interval. 2422 */ 2423 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2424 largest_mps = 0; 2425 else { 2426 struct xhci_virt_ep *virt_ep; 2427 struct list_head *ep_entry; 2428 2429 ep_entry = bw_table->interval_bw[i].endpoints.next; 2430 virt_ep = list_entry(ep_entry, 2431 struct xhci_virt_ep, bw_endpoint_list); 2432 /* Convert to blocks, rounding up */ 2433 largest_mps = DIV_ROUND_UP( 2434 virt_ep->bw_info.max_packet_size, 2435 block_size); 2436 } 2437 if (largest_mps > packet_size) 2438 packet_size = largest_mps; 2439 2440 /* Use the larger overhead of this or the previous interval. */ 2441 interval_overhead = xhci_get_largest_overhead( 2442 &bw_table->interval_bw[i]); 2443 if (interval_overhead > overhead) 2444 overhead = interval_overhead; 2445 2446 /* How many packets can we evenly distribute across 2447 * (1 << (i + 1)) possible scheduling opportunities? 2448 */ 2449 packets_transmitted = packets_remaining >> (i + 1); 2450 2451 /* Add in the bandwidth used for those scheduled packets */ 2452 bw_added = packets_transmitted * (overhead + packet_size); 2453 2454 /* How many packets do we have remaining to transmit? */ 2455 packets_remaining = packets_remaining % (1 << (i + 1)); 2456 2457 /* What largest max packet size should those packets have? */ 2458 /* If we've transmitted all packets, don't carry over the 2459 * largest packet size. 2460 */ 2461 if (packets_remaining == 0) { 2462 packet_size = 0; 2463 overhead = 0; 2464 } else if (packets_transmitted > 0) { 2465 /* Otherwise if we do have remaining packets, and we've 2466 * scheduled some packets in this interval, take the 2467 * largest max packet size from endpoints with this 2468 * interval. 2469 */ 2470 packet_size = largest_mps; 2471 overhead = interval_overhead; 2472 } 2473 /* Otherwise carry over packet_size and overhead from the last 2474 * time we had a remainder. 2475 */ 2476 bw_used += bw_added; 2477 if (bw_used > max_bandwidth) { 2478 xhci_warn(xhci, "Not enough bandwidth. " 2479 "Proposed: %u, Max: %u\n", 2480 bw_used, max_bandwidth); 2481 return -ENOMEM; 2482 } 2483 } 2484 /* 2485 * Ok, we know we have some packets left over after even-handedly 2486 * scheduling interval 15. We don't know which microframes they will 2487 * fit into, so we over-schedule and say they will be scheduled every 2488 * microframe. 2489 */ 2490 if (packets_remaining > 0) 2491 bw_used += overhead + packet_size; 2492 2493 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2494 /* OK, we're manipulating a HS device attached to a 2495 * root port bandwidth domain. Include the number of active TTs 2496 * in the bandwidth used. 2497 */ 2498 bw_used += TT_HS_OVERHEAD * 2499 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts; 2500 } 2501 2502 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2503 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2504 "Available: %u " "percent", 2505 bw_used, max_bandwidth, bw_reserved, 2506 (max_bandwidth - bw_used - bw_reserved) * 100 / 2507 max_bandwidth); 2508 2509 bw_used += bw_reserved; 2510 if (bw_used > max_bandwidth) { 2511 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2512 bw_used, max_bandwidth); 2513 return -ENOMEM; 2514 } 2515 2516 bw_table->bw_used = bw_used; 2517 return 0; 2518 } 2519 2520 static bool xhci_is_async_ep(unsigned int ep_type) 2521 { 2522 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2523 ep_type != ISOC_IN_EP && 2524 ep_type != INT_IN_EP); 2525 } 2526 2527 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2528 { 2529 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2530 } 2531 2532 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2533 { 2534 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2535 2536 if (ep_bw->ep_interval == 0) 2537 return SS_OVERHEAD_BURST + 2538 (ep_bw->mult * ep_bw->num_packets * 2539 (SS_OVERHEAD + mps)); 2540 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2541 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2542 1 << ep_bw->ep_interval); 2543 2544 } 2545 2546 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2547 struct xhci_bw_info *ep_bw, 2548 struct xhci_interval_bw_table *bw_table, 2549 struct usb_device *udev, 2550 struct xhci_virt_ep *virt_ep, 2551 struct xhci_tt_bw_info *tt_info) 2552 { 2553 struct xhci_interval_bw *interval_bw; 2554 int normalized_interval; 2555 2556 if (xhci_is_async_ep(ep_bw->type)) 2557 return; 2558 2559 if (udev->speed >= USB_SPEED_SUPER) { 2560 if (xhci_is_sync_in_ep(ep_bw->type)) 2561 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2562 xhci_get_ss_bw_consumed(ep_bw); 2563 else 2564 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2565 xhci_get_ss_bw_consumed(ep_bw); 2566 return; 2567 } 2568 2569 /* SuperSpeed endpoints never get added to intervals in the table, so 2570 * this check is only valid for HS/FS/LS devices. 2571 */ 2572 if (list_empty(&virt_ep->bw_endpoint_list)) 2573 return; 2574 /* For LS/FS devices, we need to translate the interval expressed in 2575 * microframes to frames. 2576 */ 2577 if (udev->speed == USB_SPEED_HIGH) 2578 normalized_interval = ep_bw->ep_interval; 2579 else 2580 normalized_interval = ep_bw->ep_interval - 3; 2581 2582 if (normalized_interval == 0) 2583 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2584 interval_bw = &bw_table->interval_bw[normalized_interval]; 2585 interval_bw->num_packets -= ep_bw->num_packets; 2586 switch (udev->speed) { 2587 case USB_SPEED_LOW: 2588 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2589 break; 2590 case USB_SPEED_FULL: 2591 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2592 break; 2593 case USB_SPEED_HIGH: 2594 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2595 break; 2596 default: 2597 /* Should never happen because only LS/FS/HS endpoints will get 2598 * added to the endpoint list. 2599 */ 2600 return; 2601 } 2602 if (tt_info) 2603 tt_info->active_eps -= 1; 2604 list_del_init(&virt_ep->bw_endpoint_list); 2605 } 2606 2607 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2608 struct xhci_bw_info *ep_bw, 2609 struct xhci_interval_bw_table *bw_table, 2610 struct usb_device *udev, 2611 struct xhci_virt_ep *virt_ep, 2612 struct xhci_tt_bw_info *tt_info) 2613 { 2614 struct xhci_interval_bw *interval_bw; 2615 struct xhci_virt_ep *smaller_ep; 2616 int normalized_interval; 2617 2618 if (xhci_is_async_ep(ep_bw->type)) 2619 return; 2620 2621 if (udev->speed == USB_SPEED_SUPER) { 2622 if (xhci_is_sync_in_ep(ep_bw->type)) 2623 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2624 xhci_get_ss_bw_consumed(ep_bw); 2625 else 2626 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2627 xhci_get_ss_bw_consumed(ep_bw); 2628 return; 2629 } 2630 2631 /* For LS/FS devices, we need to translate the interval expressed in 2632 * microframes to frames. 2633 */ 2634 if (udev->speed == USB_SPEED_HIGH) 2635 normalized_interval = ep_bw->ep_interval; 2636 else 2637 normalized_interval = ep_bw->ep_interval - 3; 2638 2639 if (normalized_interval == 0) 2640 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2641 interval_bw = &bw_table->interval_bw[normalized_interval]; 2642 interval_bw->num_packets += ep_bw->num_packets; 2643 switch (udev->speed) { 2644 case USB_SPEED_LOW: 2645 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2646 break; 2647 case USB_SPEED_FULL: 2648 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2649 break; 2650 case USB_SPEED_HIGH: 2651 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2652 break; 2653 default: 2654 /* Should never happen because only LS/FS/HS endpoints will get 2655 * added to the endpoint list. 2656 */ 2657 return; 2658 } 2659 2660 if (tt_info) 2661 tt_info->active_eps += 1; 2662 /* Insert the endpoint into the list, largest max packet size first. */ 2663 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2664 bw_endpoint_list) { 2665 if (ep_bw->max_packet_size >= 2666 smaller_ep->bw_info.max_packet_size) { 2667 /* Add the new ep before the smaller endpoint */ 2668 list_add_tail(&virt_ep->bw_endpoint_list, 2669 &smaller_ep->bw_endpoint_list); 2670 return; 2671 } 2672 } 2673 /* Add the new endpoint at the end of the list. */ 2674 list_add_tail(&virt_ep->bw_endpoint_list, 2675 &interval_bw->endpoints); 2676 } 2677 2678 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2679 struct xhci_virt_device *virt_dev, 2680 int old_active_eps) 2681 { 2682 struct xhci_root_port_bw_info *rh_bw_info; 2683 if (!virt_dev->tt_info) 2684 return; 2685 2686 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum]; 2687 if (old_active_eps == 0 && 2688 virt_dev->tt_info->active_eps != 0) { 2689 rh_bw_info->num_active_tts += 1; 2690 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2691 } else if (old_active_eps != 0 && 2692 virt_dev->tt_info->active_eps == 0) { 2693 rh_bw_info->num_active_tts -= 1; 2694 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2695 } 2696 } 2697 2698 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2699 struct xhci_virt_device *virt_dev, 2700 struct xhci_container_ctx *in_ctx) 2701 { 2702 struct xhci_bw_info ep_bw_info[31]; 2703 int i; 2704 struct xhci_input_control_ctx *ctrl_ctx; 2705 int old_active_eps = 0; 2706 2707 if (virt_dev->tt_info) 2708 old_active_eps = virt_dev->tt_info->active_eps; 2709 2710 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2711 if (!ctrl_ctx) { 2712 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2713 __func__); 2714 return -ENOMEM; 2715 } 2716 2717 for (i = 0; i < 31; i++) { 2718 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2719 continue; 2720 2721 /* Make a copy of the BW info in case we need to revert this */ 2722 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2723 sizeof(ep_bw_info[i])); 2724 /* Drop the endpoint from the interval table if the endpoint is 2725 * being dropped or changed. 2726 */ 2727 if (EP_IS_DROPPED(ctrl_ctx, i)) 2728 xhci_drop_ep_from_interval_table(xhci, 2729 &virt_dev->eps[i].bw_info, 2730 virt_dev->bw_table, 2731 virt_dev->udev, 2732 &virt_dev->eps[i], 2733 virt_dev->tt_info); 2734 } 2735 /* Overwrite the information stored in the endpoints' bw_info */ 2736 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2737 for (i = 0; i < 31; i++) { 2738 /* Add any changed or added endpoints to the interval table */ 2739 if (EP_IS_ADDED(ctrl_ctx, i)) 2740 xhci_add_ep_to_interval_table(xhci, 2741 &virt_dev->eps[i].bw_info, 2742 virt_dev->bw_table, 2743 virt_dev->udev, 2744 &virt_dev->eps[i], 2745 virt_dev->tt_info); 2746 } 2747 2748 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2749 /* Ok, this fits in the bandwidth we have. 2750 * Update the number of active TTs. 2751 */ 2752 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2753 return 0; 2754 } 2755 2756 /* We don't have enough bandwidth for this, revert the stored info. */ 2757 for (i = 0; i < 31; i++) { 2758 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2759 continue; 2760 2761 /* Drop the new copies of any added or changed endpoints from 2762 * the interval table. 2763 */ 2764 if (EP_IS_ADDED(ctrl_ctx, i)) { 2765 xhci_drop_ep_from_interval_table(xhci, 2766 &virt_dev->eps[i].bw_info, 2767 virt_dev->bw_table, 2768 virt_dev->udev, 2769 &virt_dev->eps[i], 2770 virt_dev->tt_info); 2771 } 2772 /* Revert the endpoint back to its old information */ 2773 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2774 sizeof(ep_bw_info[i])); 2775 /* Add any changed or dropped endpoints back into the table */ 2776 if (EP_IS_DROPPED(ctrl_ctx, i)) 2777 xhci_add_ep_to_interval_table(xhci, 2778 &virt_dev->eps[i].bw_info, 2779 virt_dev->bw_table, 2780 virt_dev->udev, 2781 &virt_dev->eps[i], 2782 virt_dev->tt_info); 2783 } 2784 return -ENOMEM; 2785 } 2786 2787 2788 /* Issue a configure endpoint command or evaluate context command 2789 * and wait for it to finish. 2790 */ 2791 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2792 struct usb_device *udev, 2793 struct xhci_command *command, 2794 bool ctx_change, bool must_succeed) 2795 { 2796 int ret; 2797 unsigned long flags; 2798 struct xhci_input_control_ctx *ctrl_ctx; 2799 struct xhci_virt_device *virt_dev; 2800 struct xhci_slot_ctx *slot_ctx; 2801 2802 if (!command) 2803 return -EINVAL; 2804 2805 spin_lock_irqsave(&xhci->lock, flags); 2806 2807 if (xhci->xhc_state & XHCI_STATE_DYING) { 2808 spin_unlock_irqrestore(&xhci->lock, flags); 2809 return -ESHUTDOWN; 2810 } 2811 2812 virt_dev = xhci->devs[udev->slot_id]; 2813 2814 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2815 if (!ctrl_ctx) { 2816 spin_unlock_irqrestore(&xhci->lock, flags); 2817 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2818 __func__); 2819 return -ENOMEM; 2820 } 2821 2822 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2823 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2824 spin_unlock_irqrestore(&xhci->lock, flags); 2825 xhci_warn(xhci, "Not enough host resources, " 2826 "active endpoint contexts = %u\n", 2827 xhci->num_active_eps); 2828 return -ENOMEM; 2829 } 2830 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2831 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2832 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2833 xhci_free_host_resources(xhci, ctrl_ctx); 2834 spin_unlock_irqrestore(&xhci->lock, flags); 2835 xhci_warn(xhci, "Not enough bandwidth\n"); 2836 return -ENOMEM; 2837 } 2838 2839 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2840 2841 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2842 trace_xhci_configure_endpoint(slot_ctx); 2843 2844 if (!ctx_change) 2845 ret = xhci_queue_configure_endpoint(xhci, command, 2846 command->in_ctx->dma, 2847 udev->slot_id, must_succeed); 2848 else 2849 ret = xhci_queue_evaluate_context(xhci, command, 2850 command->in_ctx->dma, 2851 udev->slot_id, must_succeed); 2852 if (ret < 0) { 2853 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2854 xhci_free_host_resources(xhci, ctrl_ctx); 2855 spin_unlock_irqrestore(&xhci->lock, flags); 2856 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2857 "FIXME allocate a new ring segment"); 2858 return -ENOMEM; 2859 } 2860 xhci_ring_cmd_db(xhci); 2861 spin_unlock_irqrestore(&xhci->lock, flags); 2862 2863 /* Wait for the configure endpoint command to complete */ 2864 wait_for_completion(command->completion); 2865 2866 if (!ctx_change) 2867 ret = xhci_configure_endpoint_result(xhci, udev, 2868 &command->status); 2869 else 2870 ret = xhci_evaluate_context_result(xhci, udev, 2871 &command->status); 2872 2873 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2874 spin_lock_irqsave(&xhci->lock, flags); 2875 /* If the command failed, remove the reserved resources. 2876 * Otherwise, clean up the estimate to include dropped eps. 2877 */ 2878 if (ret) 2879 xhci_free_host_resources(xhci, ctrl_ctx); 2880 else 2881 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2882 spin_unlock_irqrestore(&xhci->lock, flags); 2883 } 2884 return ret; 2885 } 2886 2887 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2888 struct xhci_virt_device *vdev, int i) 2889 { 2890 struct xhci_virt_ep *ep = &vdev->eps[i]; 2891 2892 if (ep->ep_state & EP_HAS_STREAMS) { 2893 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2894 xhci_get_endpoint_address(i)); 2895 xhci_free_stream_info(xhci, ep->stream_info); 2896 ep->stream_info = NULL; 2897 ep->ep_state &= ~EP_HAS_STREAMS; 2898 } 2899 } 2900 2901 /* Called after one or more calls to xhci_add_endpoint() or 2902 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2903 * to call xhci_reset_bandwidth(). 2904 * 2905 * Since we are in the middle of changing either configuration or 2906 * installing a new alt setting, the USB core won't allow URBs to be 2907 * enqueued for any endpoint on the old config or interface. Nothing 2908 * else should be touching the xhci->devs[slot_id] structure, so we 2909 * don't need to take the xhci->lock for manipulating that. 2910 */ 2911 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2912 { 2913 int i; 2914 int ret = 0; 2915 struct xhci_hcd *xhci; 2916 struct xhci_virt_device *virt_dev; 2917 struct xhci_input_control_ctx *ctrl_ctx; 2918 struct xhci_slot_ctx *slot_ctx; 2919 struct xhci_command *command; 2920 2921 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2922 if (ret <= 0) 2923 return ret; 2924 xhci = hcd_to_xhci(hcd); 2925 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2926 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2927 return -ENODEV; 2928 2929 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2930 virt_dev = xhci->devs[udev->slot_id]; 2931 2932 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2933 if (!command) 2934 return -ENOMEM; 2935 2936 command->in_ctx = virt_dev->in_ctx; 2937 2938 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2939 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2940 if (!ctrl_ctx) { 2941 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2942 __func__); 2943 ret = -ENOMEM; 2944 goto command_cleanup; 2945 } 2946 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2947 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2948 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2949 2950 /* Don't issue the command if there's no endpoints to update. */ 2951 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2952 ctrl_ctx->drop_flags == 0) { 2953 ret = 0; 2954 goto command_cleanup; 2955 } 2956 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2957 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2958 for (i = 31; i >= 1; i--) { 2959 __le32 le32 = cpu_to_le32(BIT(i)); 2960 2961 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2962 || (ctrl_ctx->add_flags & le32) || i == 1) { 2963 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2964 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2965 break; 2966 } 2967 } 2968 2969 ret = xhci_configure_endpoint(xhci, udev, command, 2970 false, false); 2971 if (ret) 2972 /* Callee should call reset_bandwidth() */ 2973 goto command_cleanup; 2974 2975 /* Free any rings that were dropped, but not changed. */ 2976 for (i = 1; i < 31; i++) { 2977 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2978 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2979 xhci_free_endpoint_ring(xhci, virt_dev, i); 2980 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2981 } 2982 } 2983 xhci_zero_in_ctx(xhci, virt_dev); 2984 /* 2985 * Install any rings for completely new endpoints or changed endpoints, 2986 * and free any old rings from changed endpoints. 2987 */ 2988 for (i = 1; i < 31; i++) { 2989 if (!virt_dev->eps[i].new_ring) 2990 continue; 2991 /* Only free the old ring if it exists. 2992 * It may not if this is the first add of an endpoint. 2993 */ 2994 if (virt_dev->eps[i].ring) { 2995 xhci_free_endpoint_ring(xhci, virt_dev, i); 2996 } 2997 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2998 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2999 virt_dev->eps[i].new_ring = NULL; 3000 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3001 } 3002 command_cleanup: 3003 kfree(command->completion); 3004 kfree(command); 3005 3006 return ret; 3007 } 3008 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3009 3010 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3011 { 3012 struct xhci_hcd *xhci; 3013 struct xhci_virt_device *virt_dev; 3014 int i, ret; 3015 3016 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3017 if (ret <= 0) 3018 return; 3019 xhci = hcd_to_xhci(hcd); 3020 3021 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3022 virt_dev = xhci->devs[udev->slot_id]; 3023 /* Free any rings allocated for added endpoints */ 3024 for (i = 0; i < 31; i++) { 3025 if (virt_dev->eps[i].new_ring) { 3026 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3027 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3028 virt_dev->eps[i].new_ring = NULL; 3029 } 3030 } 3031 xhci_zero_in_ctx(xhci, virt_dev); 3032 } 3033 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3034 3035 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3036 struct xhci_container_ctx *in_ctx, 3037 struct xhci_container_ctx *out_ctx, 3038 struct xhci_input_control_ctx *ctrl_ctx, 3039 u32 add_flags, u32 drop_flags) 3040 { 3041 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3042 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3043 xhci_slot_copy(xhci, in_ctx, out_ctx); 3044 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3045 } 3046 3047 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3048 struct usb_host_endpoint *host_ep) 3049 { 3050 struct xhci_hcd *xhci; 3051 struct xhci_virt_device *vdev; 3052 struct xhci_virt_ep *ep; 3053 struct usb_device *udev; 3054 unsigned long flags; 3055 unsigned int ep_index; 3056 3057 xhci = hcd_to_xhci(hcd); 3058 rescan: 3059 spin_lock_irqsave(&xhci->lock, flags); 3060 3061 udev = (struct usb_device *)host_ep->hcpriv; 3062 if (!udev || !udev->slot_id) 3063 goto done; 3064 3065 vdev = xhci->devs[udev->slot_id]; 3066 if (!vdev) 3067 goto done; 3068 3069 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3070 ep = &vdev->eps[ep_index]; 3071 3072 /* wait for hub_tt_work to finish clearing hub TT */ 3073 if (ep->ep_state & EP_CLEARING_TT) { 3074 spin_unlock_irqrestore(&xhci->lock, flags); 3075 schedule_timeout_uninterruptible(1); 3076 goto rescan; 3077 } 3078 3079 if (ep->ep_state) 3080 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3081 ep->ep_state); 3082 done: 3083 host_ep->hcpriv = NULL; 3084 spin_unlock_irqrestore(&xhci->lock, flags); 3085 } 3086 3087 /* 3088 * Called after usb core issues a clear halt control message. 3089 * The host side of the halt should already be cleared by a reset endpoint 3090 * command issued when the STALL event was received. 3091 * 3092 * The reset endpoint command may only be issued to endpoints in the halted 3093 * state. For software that wishes to reset the data toggle or sequence number 3094 * of an endpoint that isn't in the halted state this function will issue a 3095 * configure endpoint command with the Drop and Add bits set for the target 3096 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3097 * 3098 * vdev may be lost due to xHC restore error and re-initialization during S3/S4 3099 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device() 3100 */ 3101 3102 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3103 struct usb_host_endpoint *host_ep) 3104 { 3105 struct xhci_hcd *xhci; 3106 struct usb_device *udev; 3107 struct xhci_virt_device *vdev; 3108 struct xhci_virt_ep *ep; 3109 struct xhci_input_control_ctx *ctrl_ctx; 3110 struct xhci_command *stop_cmd, *cfg_cmd; 3111 unsigned int ep_index; 3112 unsigned long flags; 3113 u32 ep_flag; 3114 int err; 3115 3116 xhci = hcd_to_xhci(hcd); 3117 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3118 3119 /* 3120 * Usb core assumes a max packet value for ep0 on FS devices until the 3121 * real value is read from the descriptor. Core resets Ep0 if values 3122 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case 3123 */ 3124 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) { 3125 3126 udev = container_of(host_ep, struct usb_device, ep0); 3127 if (udev->speed != USB_SPEED_FULL || !udev->slot_id) 3128 return; 3129 3130 vdev = xhci->devs[udev->slot_id]; 3131 if (!vdev || vdev->udev != udev) 3132 return; 3133 3134 xhci_check_ep0_maxpacket(xhci, vdev); 3135 3136 /* Nothing else should be done here for ep0 during ep reset */ 3137 return; 3138 } 3139 3140 if (!host_ep->hcpriv) 3141 return; 3142 udev = (struct usb_device *) host_ep->hcpriv; 3143 vdev = xhci->devs[udev->slot_id]; 3144 3145 if (!udev->slot_id || !vdev) 3146 return; 3147 3148 ep = &vdev->eps[ep_index]; 3149 3150 /* Bail out if toggle is already being cleared by a endpoint reset */ 3151 spin_lock_irqsave(&xhci->lock, flags); 3152 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3153 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3154 spin_unlock_irqrestore(&xhci->lock, flags); 3155 return; 3156 } 3157 spin_unlock_irqrestore(&xhci->lock, flags); 3158 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3159 if (usb_endpoint_xfer_control(&host_ep->desc) || 3160 usb_endpoint_xfer_isoc(&host_ep->desc)) 3161 return; 3162 3163 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3164 3165 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3166 return; 3167 3168 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3169 if (!stop_cmd) 3170 return; 3171 3172 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3173 if (!cfg_cmd) 3174 goto cleanup; 3175 3176 spin_lock_irqsave(&xhci->lock, flags); 3177 3178 /* block queuing new trbs and ringing ep doorbell */ 3179 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3180 3181 /* 3182 * Make sure endpoint ring is empty before resetting the toggle/seq. 3183 * Driver is required to synchronously cancel all transfer request. 3184 * Stop the endpoint to force xHC to update the output context 3185 */ 3186 3187 if (!list_empty(&ep->ring->td_list)) { 3188 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3189 spin_unlock_irqrestore(&xhci->lock, flags); 3190 xhci_free_command(xhci, cfg_cmd); 3191 goto cleanup; 3192 } 3193 3194 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3195 ep_index, 0); 3196 if (err < 0) { 3197 spin_unlock_irqrestore(&xhci->lock, flags); 3198 xhci_free_command(xhci, cfg_cmd); 3199 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3200 __func__, err); 3201 goto cleanup; 3202 } 3203 3204 xhci_ring_cmd_db(xhci); 3205 spin_unlock_irqrestore(&xhci->lock, flags); 3206 3207 wait_for_completion(stop_cmd->completion); 3208 3209 spin_lock_irqsave(&xhci->lock, flags); 3210 3211 /* config ep command clears toggle if add and drop ep flags are set */ 3212 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3213 if (!ctrl_ctx) { 3214 spin_unlock_irqrestore(&xhci->lock, flags); 3215 xhci_free_command(xhci, cfg_cmd); 3216 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3217 __func__); 3218 goto cleanup; 3219 } 3220 3221 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3222 ctrl_ctx, ep_flag, ep_flag); 3223 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3224 3225 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3226 udev->slot_id, false); 3227 if (err < 0) { 3228 spin_unlock_irqrestore(&xhci->lock, flags); 3229 xhci_free_command(xhci, cfg_cmd); 3230 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3231 __func__, err); 3232 goto cleanup; 3233 } 3234 3235 xhci_ring_cmd_db(xhci); 3236 spin_unlock_irqrestore(&xhci->lock, flags); 3237 3238 wait_for_completion(cfg_cmd->completion); 3239 3240 xhci_free_command(xhci, cfg_cmd); 3241 cleanup: 3242 xhci_free_command(xhci, stop_cmd); 3243 spin_lock_irqsave(&xhci->lock, flags); 3244 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3245 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3246 spin_unlock_irqrestore(&xhci->lock, flags); 3247 } 3248 3249 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3250 struct usb_device *udev, struct usb_host_endpoint *ep, 3251 unsigned int slot_id) 3252 { 3253 int ret; 3254 unsigned int ep_index; 3255 unsigned int ep_state; 3256 3257 if (!ep) 3258 return -EINVAL; 3259 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3260 if (ret <= 0) 3261 return ret ? ret : -EINVAL; 3262 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3263 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3264 " descriptor for ep 0x%x does not support streams\n", 3265 ep->desc.bEndpointAddress); 3266 return -EINVAL; 3267 } 3268 3269 ep_index = xhci_get_endpoint_index(&ep->desc); 3270 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3271 if (ep_state & EP_HAS_STREAMS || 3272 ep_state & EP_GETTING_STREAMS) { 3273 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3274 "already has streams set up.\n", 3275 ep->desc.bEndpointAddress); 3276 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3277 "dynamic stream context array reallocation.\n"); 3278 return -EINVAL; 3279 } 3280 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3281 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3282 "endpoint 0x%x; URBs are pending.\n", 3283 ep->desc.bEndpointAddress); 3284 return -EINVAL; 3285 } 3286 return 0; 3287 } 3288 3289 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3290 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3291 { 3292 unsigned int max_streams; 3293 3294 /* The stream context array size must be a power of two */ 3295 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3296 /* 3297 * Find out how many primary stream array entries the host controller 3298 * supports. Later we may use secondary stream arrays (similar to 2nd 3299 * level page entries), but that's an optional feature for xHCI host 3300 * controllers. xHCs must support at least 4 stream IDs. 3301 */ 3302 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3303 if (*num_stream_ctxs > max_streams) { 3304 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3305 max_streams); 3306 *num_stream_ctxs = max_streams; 3307 *num_streams = max_streams; 3308 } 3309 } 3310 3311 /* Returns an error code if one of the endpoint already has streams. 3312 * This does not change any data structures, it only checks and gathers 3313 * information. 3314 */ 3315 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3316 struct usb_device *udev, 3317 struct usb_host_endpoint **eps, unsigned int num_eps, 3318 unsigned int *num_streams, u32 *changed_ep_bitmask) 3319 { 3320 unsigned int max_streams; 3321 unsigned int endpoint_flag; 3322 int i; 3323 int ret; 3324 3325 for (i = 0; i < num_eps; i++) { 3326 ret = xhci_check_streams_endpoint(xhci, udev, 3327 eps[i], udev->slot_id); 3328 if (ret < 0) 3329 return ret; 3330 3331 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3332 if (max_streams < (*num_streams - 1)) { 3333 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3334 eps[i]->desc.bEndpointAddress, 3335 max_streams); 3336 *num_streams = max_streams+1; 3337 } 3338 3339 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3340 if (*changed_ep_bitmask & endpoint_flag) 3341 return -EINVAL; 3342 *changed_ep_bitmask |= endpoint_flag; 3343 } 3344 return 0; 3345 } 3346 3347 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3348 struct usb_device *udev, 3349 struct usb_host_endpoint **eps, unsigned int num_eps) 3350 { 3351 u32 changed_ep_bitmask = 0; 3352 unsigned int slot_id; 3353 unsigned int ep_index; 3354 unsigned int ep_state; 3355 int i; 3356 3357 slot_id = udev->slot_id; 3358 if (!xhci->devs[slot_id]) 3359 return 0; 3360 3361 for (i = 0; i < num_eps; i++) { 3362 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3363 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3364 /* Are streams already being freed for the endpoint? */ 3365 if (ep_state & EP_GETTING_NO_STREAMS) { 3366 xhci_warn(xhci, "WARN Can't disable streams for " 3367 "endpoint 0x%x, " 3368 "streams are being disabled already\n", 3369 eps[i]->desc.bEndpointAddress); 3370 return 0; 3371 } 3372 /* Are there actually any streams to free? */ 3373 if (!(ep_state & EP_HAS_STREAMS) && 3374 !(ep_state & EP_GETTING_STREAMS)) { 3375 xhci_warn(xhci, "WARN Can't disable streams for " 3376 "endpoint 0x%x, " 3377 "streams are already disabled!\n", 3378 eps[i]->desc.bEndpointAddress); 3379 xhci_warn(xhci, "WARN xhci_free_streams() called " 3380 "with non-streams endpoint\n"); 3381 return 0; 3382 } 3383 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3384 } 3385 return changed_ep_bitmask; 3386 } 3387 3388 /* 3389 * The USB device drivers use this function (through the HCD interface in USB 3390 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3391 * coordinate mass storage command queueing across multiple endpoints (basically 3392 * a stream ID == a task ID). 3393 * 3394 * Setting up streams involves allocating the same size stream context array 3395 * for each endpoint and issuing a configure endpoint command for all endpoints. 3396 * 3397 * Don't allow the call to succeed if one endpoint only supports one stream 3398 * (which means it doesn't support streams at all). 3399 * 3400 * Drivers may get less stream IDs than they asked for, if the host controller 3401 * hardware or endpoints claim they can't support the number of requested 3402 * stream IDs. 3403 */ 3404 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3405 struct usb_host_endpoint **eps, unsigned int num_eps, 3406 unsigned int num_streams, gfp_t mem_flags) 3407 { 3408 int i, ret; 3409 struct xhci_hcd *xhci; 3410 struct xhci_virt_device *vdev; 3411 struct xhci_command *config_cmd; 3412 struct xhci_input_control_ctx *ctrl_ctx; 3413 unsigned int ep_index; 3414 unsigned int num_stream_ctxs; 3415 unsigned int max_packet; 3416 unsigned long flags; 3417 u32 changed_ep_bitmask = 0; 3418 3419 if (!eps) 3420 return -EINVAL; 3421 3422 /* Add one to the number of streams requested to account for 3423 * stream 0 that is reserved for xHCI usage. 3424 */ 3425 num_streams += 1; 3426 xhci = hcd_to_xhci(hcd); 3427 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3428 num_streams); 3429 3430 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3431 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3432 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3433 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3434 return -ENOSYS; 3435 } 3436 3437 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3438 if (!config_cmd) 3439 return -ENOMEM; 3440 3441 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3442 if (!ctrl_ctx) { 3443 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3444 __func__); 3445 xhci_free_command(xhci, config_cmd); 3446 return -ENOMEM; 3447 } 3448 3449 /* Check to make sure all endpoints are not already configured for 3450 * streams. While we're at it, find the maximum number of streams that 3451 * all the endpoints will support and check for duplicate endpoints. 3452 */ 3453 spin_lock_irqsave(&xhci->lock, flags); 3454 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3455 num_eps, &num_streams, &changed_ep_bitmask); 3456 if (ret < 0) { 3457 xhci_free_command(xhci, config_cmd); 3458 spin_unlock_irqrestore(&xhci->lock, flags); 3459 return ret; 3460 } 3461 if (num_streams <= 1) { 3462 xhci_warn(xhci, "WARN: endpoints can't handle " 3463 "more than one stream.\n"); 3464 xhci_free_command(xhci, config_cmd); 3465 spin_unlock_irqrestore(&xhci->lock, flags); 3466 return -EINVAL; 3467 } 3468 vdev = xhci->devs[udev->slot_id]; 3469 /* Mark each endpoint as being in transition, so 3470 * xhci_urb_enqueue() will reject all URBs. 3471 */ 3472 for (i = 0; i < num_eps; i++) { 3473 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3474 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3475 } 3476 spin_unlock_irqrestore(&xhci->lock, flags); 3477 3478 /* Setup internal data structures and allocate HW data structures for 3479 * streams (but don't install the HW structures in the input context 3480 * until we're sure all memory allocation succeeded). 3481 */ 3482 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3483 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3484 num_stream_ctxs, num_streams); 3485 3486 for (i = 0; i < num_eps; i++) { 3487 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3488 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3489 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3490 num_stream_ctxs, 3491 num_streams, 3492 max_packet, mem_flags); 3493 if (!vdev->eps[ep_index].stream_info) 3494 goto cleanup; 3495 /* Set maxPstreams in endpoint context and update deq ptr to 3496 * point to stream context array. FIXME 3497 */ 3498 } 3499 3500 /* Set up the input context for a configure endpoint command. */ 3501 for (i = 0; i < num_eps; i++) { 3502 struct xhci_ep_ctx *ep_ctx; 3503 3504 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3505 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3506 3507 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3508 vdev->out_ctx, ep_index); 3509 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3510 vdev->eps[ep_index].stream_info); 3511 } 3512 /* Tell the HW to drop its old copy of the endpoint context info 3513 * and add the updated copy from the input context. 3514 */ 3515 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3516 vdev->out_ctx, ctrl_ctx, 3517 changed_ep_bitmask, changed_ep_bitmask); 3518 3519 /* Issue and wait for the configure endpoint command */ 3520 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3521 false, false); 3522 3523 /* xHC rejected the configure endpoint command for some reason, so we 3524 * leave the old ring intact and free our internal streams data 3525 * structure. 3526 */ 3527 if (ret < 0) 3528 goto cleanup; 3529 3530 spin_lock_irqsave(&xhci->lock, flags); 3531 for (i = 0; i < num_eps; i++) { 3532 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3533 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3534 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3535 udev->slot_id, ep_index); 3536 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3537 } 3538 xhci_free_command(xhci, config_cmd); 3539 spin_unlock_irqrestore(&xhci->lock, flags); 3540 3541 for (i = 0; i < num_eps; i++) { 3542 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3543 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3544 } 3545 /* Subtract 1 for stream 0, which drivers can't use */ 3546 return num_streams - 1; 3547 3548 cleanup: 3549 /* If it didn't work, free the streams! */ 3550 for (i = 0; i < num_eps; i++) { 3551 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3552 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3553 vdev->eps[ep_index].stream_info = NULL; 3554 /* FIXME Unset maxPstreams in endpoint context and 3555 * update deq ptr to point to normal string ring. 3556 */ 3557 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3558 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3559 xhci_endpoint_zero(xhci, vdev, eps[i]); 3560 } 3561 xhci_free_command(xhci, config_cmd); 3562 return -ENOMEM; 3563 } 3564 3565 /* Transition the endpoint from using streams to being a "normal" endpoint 3566 * without streams. 3567 * 3568 * Modify the endpoint context state, submit a configure endpoint command, 3569 * and free all endpoint rings for streams if that completes successfully. 3570 */ 3571 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3572 struct usb_host_endpoint **eps, unsigned int num_eps, 3573 gfp_t mem_flags) 3574 { 3575 int i, ret; 3576 struct xhci_hcd *xhci; 3577 struct xhci_virt_device *vdev; 3578 struct xhci_command *command; 3579 struct xhci_input_control_ctx *ctrl_ctx; 3580 unsigned int ep_index; 3581 unsigned long flags; 3582 u32 changed_ep_bitmask; 3583 3584 xhci = hcd_to_xhci(hcd); 3585 vdev = xhci->devs[udev->slot_id]; 3586 3587 /* Set up a configure endpoint command to remove the streams rings */ 3588 spin_lock_irqsave(&xhci->lock, flags); 3589 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3590 udev, eps, num_eps); 3591 if (changed_ep_bitmask == 0) { 3592 spin_unlock_irqrestore(&xhci->lock, flags); 3593 return -EINVAL; 3594 } 3595 3596 /* Use the xhci_command structure from the first endpoint. We may have 3597 * allocated too many, but the driver may call xhci_free_streams() for 3598 * each endpoint it grouped into one call to xhci_alloc_streams(). 3599 */ 3600 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3601 command = vdev->eps[ep_index].stream_info->free_streams_command; 3602 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3603 if (!ctrl_ctx) { 3604 spin_unlock_irqrestore(&xhci->lock, flags); 3605 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3606 __func__); 3607 return -EINVAL; 3608 } 3609 3610 for (i = 0; i < num_eps; i++) { 3611 struct xhci_ep_ctx *ep_ctx; 3612 3613 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3614 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3615 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3616 EP_GETTING_NO_STREAMS; 3617 3618 xhci_endpoint_copy(xhci, command->in_ctx, 3619 vdev->out_ctx, ep_index); 3620 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3621 &vdev->eps[ep_index]); 3622 } 3623 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3624 vdev->out_ctx, ctrl_ctx, 3625 changed_ep_bitmask, changed_ep_bitmask); 3626 spin_unlock_irqrestore(&xhci->lock, flags); 3627 3628 /* Issue and wait for the configure endpoint command, 3629 * which must succeed. 3630 */ 3631 ret = xhci_configure_endpoint(xhci, udev, command, 3632 false, true); 3633 3634 /* xHC rejected the configure endpoint command for some reason, so we 3635 * leave the streams rings intact. 3636 */ 3637 if (ret < 0) 3638 return ret; 3639 3640 spin_lock_irqsave(&xhci->lock, flags); 3641 for (i = 0; i < num_eps; i++) { 3642 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3643 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3644 vdev->eps[ep_index].stream_info = NULL; 3645 /* FIXME Unset maxPstreams in endpoint context and 3646 * update deq ptr to point to normal string ring. 3647 */ 3648 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3649 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3650 } 3651 spin_unlock_irqrestore(&xhci->lock, flags); 3652 3653 return 0; 3654 } 3655 3656 /* 3657 * Deletes endpoint resources for endpoints that were active before a Reset 3658 * Device command, or a Disable Slot command. The Reset Device command leaves 3659 * the control endpoint intact, whereas the Disable Slot command deletes it. 3660 * 3661 * Must be called with xhci->lock held. 3662 */ 3663 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3664 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3665 { 3666 int i; 3667 unsigned int num_dropped_eps = 0; 3668 unsigned int drop_flags = 0; 3669 3670 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3671 if (virt_dev->eps[i].ring) { 3672 drop_flags |= 1 << i; 3673 num_dropped_eps++; 3674 } 3675 } 3676 xhci->num_active_eps -= num_dropped_eps; 3677 if (num_dropped_eps) 3678 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3679 "Dropped %u ep ctxs, flags = 0x%x, " 3680 "%u now active.", 3681 num_dropped_eps, drop_flags, 3682 xhci->num_active_eps); 3683 } 3684 3685 /* 3686 * This submits a Reset Device Command, which will set the device state to 0, 3687 * set the device address to 0, and disable all the endpoints except the default 3688 * control endpoint. The USB core should come back and call 3689 * xhci_address_device(), and then re-set up the configuration. If this is 3690 * called because of a usb_reset_and_verify_device(), then the old alternate 3691 * settings will be re-installed through the normal bandwidth allocation 3692 * functions. 3693 * 3694 * Wait for the Reset Device command to finish. Remove all structures 3695 * associated with the endpoints that were disabled. Clear the input device 3696 * structure? Reset the control endpoint 0 max packet size? 3697 * 3698 * If the virt_dev to be reset does not exist or does not match the udev, 3699 * it means the device is lost, possibly due to the xHC restore error and 3700 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3701 * re-allocate the device. 3702 */ 3703 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3704 struct usb_device *udev) 3705 { 3706 int ret, i; 3707 unsigned long flags; 3708 struct xhci_hcd *xhci; 3709 unsigned int slot_id; 3710 struct xhci_virt_device *virt_dev; 3711 struct xhci_command *reset_device_cmd; 3712 struct xhci_slot_ctx *slot_ctx; 3713 int old_active_eps = 0; 3714 3715 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3716 if (ret <= 0) 3717 return ret; 3718 xhci = hcd_to_xhci(hcd); 3719 slot_id = udev->slot_id; 3720 virt_dev = xhci->devs[slot_id]; 3721 if (!virt_dev) { 3722 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3723 "not exist. Re-allocate the device\n", slot_id); 3724 ret = xhci_alloc_dev(hcd, udev); 3725 if (ret == 1) 3726 return 0; 3727 else 3728 return -EINVAL; 3729 } 3730 3731 if (virt_dev->tt_info) 3732 old_active_eps = virt_dev->tt_info->active_eps; 3733 3734 if (virt_dev->udev != udev) { 3735 /* If the virt_dev and the udev does not match, this virt_dev 3736 * may belong to another udev. 3737 * Re-allocate the device. 3738 */ 3739 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3740 "not match the udev. Re-allocate the device\n", 3741 slot_id); 3742 ret = xhci_alloc_dev(hcd, udev); 3743 if (ret == 1) 3744 return 0; 3745 else 3746 return -EINVAL; 3747 } 3748 3749 /* If device is not setup, there is no point in resetting it */ 3750 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3751 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3752 SLOT_STATE_DISABLED) 3753 return 0; 3754 3755 trace_xhci_discover_or_reset_device(slot_ctx); 3756 3757 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3758 /* Allocate the command structure that holds the struct completion. 3759 * Assume we're in process context, since the normal device reset 3760 * process has to wait for the device anyway. Storage devices are 3761 * reset as part of error handling, so use GFP_NOIO instead of 3762 * GFP_KERNEL. 3763 */ 3764 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3765 if (!reset_device_cmd) { 3766 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3767 return -ENOMEM; 3768 } 3769 3770 /* Attempt to submit the Reset Device command to the command ring */ 3771 spin_lock_irqsave(&xhci->lock, flags); 3772 3773 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3774 if (ret) { 3775 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3776 spin_unlock_irqrestore(&xhci->lock, flags); 3777 goto command_cleanup; 3778 } 3779 xhci_ring_cmd_db(xhci); 3780 spin_unlock_irqrestore(&xhci->lock, flags); 3781 3782 /* Wait for the Reset Device command to finish */ 3783 wait_for_completion(reset_device_cmd->completion); 3784 3785 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3786 * unless we tried to reset a slot ID that wasn't enabled, 3787 * or the device wasn't in the addressed or configured state. 3788 */ 3789 ret = reset_device_cmd->status; 3790 switch (ret) { 3791 case COMP_COMMAND_ABORTED: 3792 case COMP_COMMAND_RING_STOPPED: 3793 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3794 ret = -ETIME; 3795 goto command_cleanup; 3796 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3797 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3798 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3799 slot_id, 3800 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3801 xhci_dbg(xhci, "Not freeing device rings.\n"); 3802 /* Don't treat this as an error. May change my mind later. */ 3803 ret = 0; 3804 goto command_cleanup; 3805 case COMP_SUCCESS: 3806 xhci_dbg(xhci, "Successful reset device command.\n"); 3807 break; 3808 default: 3809 if (xhci_is_vendor_info_code(xhci, ret)) 3810 break; 3811 xhci_warn(xhci, "Unknown completion code %u for " 3812 "reset device command.\n", ret); 3813 ret = -EINVAL; 3814 goto command_cleanup; 3815 } 3816 3817 /* Free up host controller endpoint resources */ 3818 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3819 spin_lock_irqsave(&xhci->lock, flags); 3820 /* Don't delete the default control endpoint resources */ 3821 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3822 spin_unlock_irqrestore(&xhci->lock, flags); 3823 } 3824 3825 /* Everything but endpoint 0 is disabled, so free the rings. */ 3826 for (i = 1; i < 31; i++) { 3827 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3828 3829 if (ep->ep_state & EP_HAS_STREAMS) { 3830 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3831 xhci_get_endpoint_address(i)); 3832 xhci_free_stream_info(xhci, ep->stream_info); 3833 ep->stream_info = NULL; 3834 ep->ep_state &= ~EP_HAS_STREAMS; 3835 } 3836 3837 if (ep->ring) { 3838 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3839 xhci_free_endpoint_ring(xhci, virt_dev, i); 3840 } 3841 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3842 xhci_drop_ep_from_interval_table(xhci, 3843 &virt_dev->eps[i].bw_info, 3844 virt_dev->bw_table, 3845 udev, 3846 &virt_dev->eps[i], 3847 virt_dev->tt_info); 3848 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3849 } 3850 /* If necessary, update the number of active TTs on this root port */ 3851 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3852 virt_dev->flags = 0; 3853 ret = 0; 3854 3855 command_cleanup: 3856 xhci_free_command(xhci, reset_device_cmd); 3857 return ret; 3858 } 3859 3860 /* 3861 * At this point, the struct usb_device is about to go away, the device has 3862 * disconnected, and all traffic has been stopped and the endpoints have been 3863 * disabled. Free any HC data structures associated with that device. 3864 */ 3865 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3866 { 3867 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3868 struct xhci_virt_device *virt_dev; 3869 struct xhci_slot_ctx *slot_ctx; 3870 unsigned long flags; 3871 int i, ret; 3872 3873 /* 3874 * We called pm_runtime_get_noresume when the device was attached. 3875 * Decrement the counter here to allow controller to runtime suspend 3876 * if no devices remain. 3877 */ 3878 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3879 pm_runtime_put_noidle(hcd->self.controller); 3880 3881 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3882 /* If the host is halted due to driver unload, we still need to free the 3883 * device. 3884 */ 3885 if (ret <= 0 && ret != -ENODEV) 3886 return; 3887 3888 virt_dev = xhci->devs[udev->slot_id]; 3889 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3890 trace_xhci_free_dev(slot_ctx); 3891 3892 /* Stop any wayward timer functions (which may grab the lock) */ 3893 for (i = 0; i < 31; i++) 3894 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3895 virt_dev->udev = NULL; 3896 xhci_disable_slot(xhci, udev->slot_id); 3897 3898 spin_lock_irqsave(&xhci->lock, flags); 3899 xhci_free_virt_device(xhci, udev->slot_id); 3900 spin_unlock_irqrestore(&xhci->lock, flags); 3901 3902 } 3903 3904 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3905 { 3906 struct xhci_command *command; 3907 unsigned long flags; 3908 u32 state; 3909 int ret; 3910 3911 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3912 if (!command) 3913 return -ENOMEM; 3914 3915 xhci_debugfs_remove_slot(xhci, slot_id); 3916 3917 spin_lock_irqsave(&xhci->lock, flags); 3918 /* Don't disable the slot if the host controller is dead. */ 3919 state = readl(&xhci->op_regs->status); 3920 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3921 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3922 spin_unlock_irqrestore(&xhci->lock, flags); 3923 kfree(command); 3924 return -ENODEV; 3925 } 3926 3927 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3928 slot_id); 3929 if (ret) { 3930 spin_unlock_irqrestore(&xhci->lock, flags); 3931 kfree(command); 3932 return ret; 3933 } 3934 xhci_ring_cmd_db(xhci); 3935 spin_unlock_irqrestore(&xhci->lock, flags); 3936 3937 wait_for_completion(command->completion); 3938 3939 if (command->status != COMP_SUCCESS) 3940 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 3941 slot_id, command->status); 3942 3943 xhci_free_command(xhci, command); 3944 3945 return 0; 3946 } 3947 3948 /* 3949 * Checks if we have enough host controller resources for the default control 3950 * endpoint. 3951 * 3952 * Must be called with xhci->lock held. 3953 */ 3954 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3955 { 3956 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3957 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3958 "Not enough ep ctxs: " 3959 "%u active, need to add 1, limit is %u.", 3960 xhci->num_active_eps, xhci->limit_active_eps); 3961 return -ENOMEM; 3962 } 3963 xhci->num_active_eps += 1; 3964 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3965 "Adding 1 ep ctx, %u now active.", 3966 xhci->num_active_eps); 3967 return 0; 3968 } 3969 3970 3971 /* 3972 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3973 * timed out, or allocating memory failed. Returns 1 on success. 3974 */ 3975 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3976 { 3977 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3978 struct xhci_virt_device *vdev; 3979 struct xhci_slot_ctx *slot_ctx; 3980 unsigned long flags; 3981 int ret, slot_id; 3982 struct xhci_command *command; 3983 3984 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3985 if (!command) 3986 return 0; 3987 3988 spin_lock_irqsave(&xhci->lock, flags); 3989 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3990 if (ret) { 3991 spin_unlock_irqrestore(&xhci->lock, flags); 3992 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3993 xhci_free_command(xhci, command); 3994 return 0; 3995 } 3996 xhci_ring_cmd_db(xhci); 3997 spin_unlock_irqrestore(&xhci->lock, flags); 3998 3999 wait_for_completion(command->completion); 4000 slot_id = command->slot_id; 4001 4002 if (!slot_id || command->status != COMP_SUCCESS) { 4003 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 4004 xhci_trb_comp_code_string(command->status)); 4005 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4006 HCS_MAX_SLOTS( 4007 readl(&xhci->cap_regs->hcs_params1))); 4008 xhci_free_command(xhci, command); 4009 return 0; 4010 } 4011 4012 xhci_free_command(xhci, command); 4013 4014 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4015 spin_lock_irqsave(&xhci->lock, flags); 4016 ret = xhci_reserve_host_control_ep_resources(xhci); 4017 if (ret) { 4018 spin_unlock_irqrestore(&xhci->lock, flags); 4019 xhci_warn(xhci, "Not enough host resources, " 4020 "active endpoint contexts = %u\n", 4021 xhci->num_active_eps); 4022 goto disable_slot; 4023 } 4024 spin_unlock_irqrestore(&xhci->lock, flags); 4025 } 4026 /* Use GFP_NOIO, since this function can be called from 4027 * xhci_discover_or_reset_device(), which may be called as part of 4028 * mass storage driver error handling. 4029 */ 4030 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4031 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4032 goto disable_slot; 4033 } 4034 vdev = xhci->devs[slot_id]; 4035 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4036 trace_xhci_alloc_dev(slot_ctx); 4037 4038 udev->slot_id = slot_id; 4039 4040 xhci_debugfs_create_slot(xhci, slot_id); 4041 4042 /* 4043 * If resetting upon resume, we can't put the controller into runtime 4044 * suspend if there is a device attached. 4045 */ 4046 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4047 pm_runtime_get_noresume(hcd->self.controller); 4048 4049 /* Is this a LS or FS device under a HS hub? */ 4050 /* Hub or peripherial? */ 4051 return 1; 4052 4053 disable_slot: 4054 xhci_disable_slot(xhci, udev->slot_id); 4055 xhci_free_virt_device(xhci, udev->slot_id); 4056 4057 return 0; 4058 } 4059 4060 /** 4061 * xhci_setup_device - issues an Address Device command to assign a unique 4062 * USB bus address. 4063 * @hcd: USB host controller data structure. 4064 * @udev: USB dev structure representing the connected device. 4065 * @setup: Enum specifying setup mode: address only or with context. 4066 * @timeout_ms: Max wait time (ms) for the command operation to complete. 4067 * 4068 * Return: 0 if successful; otherwise, negative error code. 4069 */ 4070 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4071 enum xhci_setup_dev setup, unsigned int timeout_ms) 4072 { 4073 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4074 unsigned long flags; 4075 struct xhci_virt_device *virt_dev; 4076 int ret = 0; 4077 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4078 struct xhci_slot_ctx *slot_ctx; 4079 struct xhci_input_control_ctx *ctrl_ctx; 4080 u64 temp_64; 4081 struct xhci_command *command = NULL; 4082 4083 mutex_lock(&xhci->mutex); 4084 4085 if (xhci->xhc_state) { /* dying, removing or halted */ 4086 ret = -ESHUTDOWN; 4087 goto out; 4088 } 4089 4090 if (!udev->slot_id) { 4091 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4092 "Bad Slot ID %d", udev->slot_id); 4093 ret = -EINVAL; 4094 goto out; 4095 } 4096 4097 virt_dev = xhci->devs[udev->slot_id]; 4098 4099 if (WARN_ON(!virt_dev)) { 4100 /* 4101 * In plug/unplug torture test with an NEC controller, 4102 * a zero-dereference was observed once due to virt_dev = 0. 4103 * Print useful debug rather than crash if it is observed again! 4104 */ 4105 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4106 udev->slot_id); 4107 ret = -EINVAL; 4108 goto out; 4109 } 4110 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4111 trace_xhci_setup_device_slot(slot_ctx); 4112 4113 if (setup == SETUP_CONTEXT_ONLY) { 4114 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4115 SLOT_STATE_DEFAULT) { 4116 xhci_dbg(xhci, "Slot already in default state\n"); 4117 goto out; 4118 } 4119 } 4120 4121 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4122 if (!command) { 4123 ret = -ENOMEM; 4124 goto out; 4125 } 4126 4127 command->in_ctx = virt_dev->in_ctx; 4128 command->timeout_ms = timeout_ms; 4129 4130 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4131 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4132 if (!ctrl_ctx) { 4133 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4134 __func__); 4135 ret = -EINVAL; 4136 goto out; 4137 } 4138 /* 4139 * If this is the first Set Address since device plug-in or 4140 * virt_device realloaction after a resume with an xHCI power loss, 4141 * then set up the slot context. 4142 */ 4143 if (!slot_ctx->dev_info) 4144 xhci_setup_addressable_virt_dev(xhci, udev); 4145 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4146 else 4147 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4148 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4149 ctrl_ctx->drop_flags = 0; 4150 4151 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4152 le32_to_cpu(slot_ctx->dev_info) >> 27); 4153 4154 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4155 spin_lock_irqsave(&xhci->lock, flags); 4156 trace_xhci_setup_device(virt_dev); 4157 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4158 udev->slot_id, setup); 4159 if (ret) { 4160 spin_unlock_irqrestore(&xhci->lock, flags); 4161 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4162 "FIXME: allocate a command ring segment"); 4163 goto out; 4164 } 4165 xhci_ring_cmd_db(xhci); 4166 spin_unlock_irqrestore(&xhci->lock, flags); 4167 4168 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4169 wait_for_completion(command->completion); 4170 4171 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4172 * the SetAddress() "recovery interval" required by USB and aborting the 4173 * command on a timeout. 4174 */ 4175 switch (command->status) { 4176 case COMP_COMMAND_ABORTED: 4177 case COMP_COMMAND_RING_STOPPED: 4178 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4179 ret = -ETIME; 4180 break; 4181 case COMP_CONTEXT_STATE_ERROR: 4182 case COMP_SLOT_NOT_ENABLED_ERROR: 4183 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4184 act, udev->slot_id); 4185 ret = -EINVAL; 4186 break; 4187 case COMP_USB_TRANSACTION_ERROR: 4188 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4189 4190 mutex_unlock(&xhci->mutex); 4191 ret = xhci_disable_slot(xhci, udev->slot_id); 4192 xhci_free_virt_device(xhci, udev->slot_id); 4193 if (!ret) 4194 xhci_alloc_dev(hcd, udev); 4195 kfree(command->completion); 4196 kfree(command); 4197 return -EPROTO; 4198 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4199 dev_warn(&udev->dev, 4200 "ERROR: Incompatible device for setup %s command\n", act); 4201 ret = -ENODEV; 4202 break; 4203 case COMP_SUCCESS: 4204 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4205 "Successful setup %s command", act); 4206 break; 4207 default: 4208 xhci_err(xhci, 4209 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4210 act, command->status); 4211 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4212 ret = -EINVAL; 4213 break; 4214 } 4215 if (ret) 4216 goto out; 4217 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4218 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4219 "Op regs DCBAA ptr = %#016llx", temp_64); 4220 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4221 "Slot ID %d dcbaa entry @%p = %#016llx", 4222 udev->slot_id, 4223 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4224 (unsigned long long) 4225 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4226 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4227 "Output Context DMA address = %#08llx", 4228 (unsigned long long)virt_dev->out_ctx->dma); 4229 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4230 le32_to_cpu(slot_ctx->dev_info) >> 27); 4231 /* 4232 * USB core uses address 1 for the roothubs, so we add one to the 4233 * address given back to us by the HC. 4234 */ 4235 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4236 le32_to_cpu(slot_ctx->dev_info) >> 27); 4237 /* Zero the input context control for later use */ 4238 ctrl_ctx->add_flags = 0; 4239 ctrl_ctx->drop_flags = 0; 4240 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4241 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4242 4243 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4244 "Internal device address = %d", 4245 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4246 out: 4247 mutex_unlock(&xhci->mutex); 4248 if (command) { 4249 kfree(command->completion); 4250 kfree(command); 4251 } 4252 return ret; 4253 } 4254 4255 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev, 4256 unsigned int timeout_ms) 4257 { 4258 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms); 4259 } 4260 4261 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4262 { 4263 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY, 4264 XHCI_CMD_DEFAULT_TIMEOUT); 4265 } 4266 4267 /* 4268 * Transfer the port index into real index in the HW port status 4269 * registers. Caculate offset between the port's PORTSC register 4270 * and port status base. Divide the number of per port register 4271 * to get the real index. The raw port number bases 1. 4272 */ 4273 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4274 { 4275 struct xhci_hub *rhub; 4276 4277 rhub = xhci_get_rhub(hcd); 4278 return rhub->ports[port1 - 1]->hw_portnum + 1; 4279 } 4280 4281 /* 4282 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4283 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4284 */ 4285 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4286 struct usb_device *udev, u16 max_exit_latency) 4287 { 4288 struct xhci_virt_device *virt_dev; 4289 struct xhci_command *command; 4290 struct xhci_input_control_ctx *ctrl_ctx; 4291 struct xhci_slot_ctx *slot_ctx; 4292 unsigned long flags; 4293 int ret; 4294 4295 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4296 if (!command) 4297 return -ENOMEM; 4298 4299 spin_lock_irqsave(&xhci->lock, flags); 4300 4301 virt_dev = xhci->devs[udev->slot_id]; 4302 4303 /* 4304 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4305 * xHC was re-initialized. Exit latency will be set later after 4306 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4307 */ 4308 4309 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4310 spin_unlock_irqrestore(&xhci->lock, flags); 4311 xhci_free_command(xhci, command); 4312 return 0; 4313 } 4314 4315 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4316 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4317 if (!ctrl_ctx) { 4318 spin_unlock_irqrestore(&xhci->lock, flags); 4319 xhci_free_command(xhci, command); 4320 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4321 __func__); 4322 return -ENOMEM; 4323 } 4324 4325 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4326 spin_unlock_irqrestore(&xhci->lock, flags); 4327 4328 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4329 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4330 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4331 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4332 slot_ctx->dev_state = 0; 4333 4334 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4335 "Set up evaluate context for LPM MEL change."); 4336 4337 /* Issue and wait for the evaluate context command. */ 4338 ret = xhci_configure_endpoint(xhci, udev, command, 4339 true, true); 4340 4341 if (!ret) { 4342 spin_lock_irqsave(&xhci->lock, flags); 4343 virt_dev->current_mel = max_exit_latency; 4344 spin_unlock_irqrestore(&xhci->lock, flags); 4345 } 4346 4347 xhci_free_command(xhci, command); 4348 4349 return ret; 4350 } 4351 4352 #ifdef CONFIG_PM 4353 4354 /* BESL to HIRD Encoding array for USB2 LPM */ 4355 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4356 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4357 4358 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4359 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4360 struct usb_device *udev) 4361 { 4362 int u2del, besl, besl_host; 4363 int besl_device = 0; 4364 u32 field; 4365 4366 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4367 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4368 4369 if (field & USB_BESL_SUPPORT) { 4370 for (besl_host = 0; besl_host < 16; besl_host++) { 4371 if (xhci_besl_encoding[besl_host] >= u2del) 4372 break; 4373 } 4374 /* Use baseline BESL value as default */ 4375 if (field & USB_BESL_BASELINE_VALID) 4376 besl_device = USB_GET_BESL_BASELINE(field); 4377 else if (field & USB_BESL_DEEP_VALID) 4378 besl_device = USB_GET_BESL_DEEP(field); 4379 } else { 4380 if (u2del <= 50) 4381 besl_host = 0; 4382 else 4383 besl_host = (u2del - 51) / 75 + 1; 4384 } 4385 4386 besl = besl_host + besl_device; 4387 if (besl > 15) 4388 besl = 15; 4389 4390 return besl; 4391 } 4392 4393 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4394 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4395 { 4396 u32 field; 4397 int l1; 4398 int besld = 0; 4399 int hirdm = 0; 4400 4401 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4402 4403 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4404 l1 = udev->l1_params.timeout / 256; 4405 4406 /* device has preferred BESLD */ 4407 if (field & USB_BESL_DEEP_VALID) { 4408 besld = USB_GET_BESL_DEEP(field); 4409 hirdm = 1; 4410 } 4411 4412 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4413 } 4414 4415 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4416 struct usb_device *udev, int enable) 4417 { 4418 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4419 struct xhci_port **ports; 4420 __le32 __iomem *pm_addr, *hlpm_addr; 4421 u32 pm_val, hlpm_val, field; 4422 unsigned int port_num; 4423 unsigned long flags; 4424 int hird, exit_latency; 4425 int ret; 4426 4427 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4428 return -EPERM; 4429 4430 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4431 !udev->lpm_capable) 4432 return -EPERM; 4433 4434 if (!udev->parent || udev->parent->parent || 4435 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4436 return -EPERM; 4437 4438 if (udev->usb2_hw_lpm_capable != 1) 4439 return -EPERM; 4440 4441 spin_lock_irqsave(&xhci->lock, flags); 4442 4443 ports = xhci->usb2_rhub.ports; 4444 port_num = udev->portnum - 1; 4445 pm_addr = ports[port_num]->addr + PORTPMSC; 4446 pm_val = readl(pm_addr); 4447 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4448 4449 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4450 enable ? "enable" : "disable", port_num + 1); 4451 4452 if (enable) { 4453 /* Host supports BESL timeout instead of HIRD */ 4454 if (udev->usb2_hw_lpm_besl_capable) { 4455 /* if device doesn't have a preferred BESL value use a 4456 * default one which works with mixed HIRD and BESL 4457 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4458 */ 4459 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4460 if ((field & USB_BESL_SUPPORT) && 4461 (field & USB_BESL_BASELINE_VALID)) 4462 hird = USB_GET_BESL_BASELINE(field); 4463 else 4464 hird = udev->l1_params.besl; 4465 4466 exit_latency = xhci_besl_encoding[hird]; 4467 spin_unlock_irqrestore(&xhci->lock, flags); 4468 4469 ret = xhci_change_max_exit_latency(xhci, udev, 4470 exit_latency); 4471 if (ret < 0) 4472 return ret; 4473 spin_lock_irqsave(&xhci->lock, flags); 4474 4475 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4476 writel(hlpm_val, hlpm_addr); 4477 /* flush write */ 4478 readl(hlpm_addr); 4479 } else { 4480 hird = xhci_calculate_hird_besl(xhci, udev); 4481 } 4482 4483 pm_val &= ~PORT_HIRD_MASK; 4484 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4485 writel(pm_val, pm_addr); 4486 pm_val = readl(pm_addr); 4487 pm_val |= PORT_HLE; 4488 writel(pm_val, pm_addr); 4489 /* flush write */ 4490 readl(pm_addr); 4491 } else { 4492 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4493 writel(pm_val, pm_addr); 4494 /* flush write */ 4495 readl(pm_addr); 4496 if (udev->usb2_hw_lpm_besl_capable) { 4497 spin_unlock_irqrestore(&xhci->lock, flags); 4498 xhci_change_max_exit_latency(xhci, udev, 0); 4499 readl_poll_timeout(ports[port_num]->addr, pm_val, 4500 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4501 100, 10000); 4502 return 0; 4503 } 4504 } 4505 4506 spin_unlock_irqrestore(&xhci->lock, flags); 4507 return 0; 4508 } 4509 4510 /* check if a usb2 port supports a given extened capability protocol 4511 * only USB2 ports extended protocol capability values are cached. 4512 * Return 1 if capability is supported 4513 */ 4514 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4515 unsigned capability) 4516 { 4517 u32 port_offset, port_count; 4518 int i; 4519 4520 for (i = 0; i < xhci->num_ext_caps; i++) { 4521 if (xhci->ext_caps[i] & capability) { 4522 /* port offsets starts at 1 */ 4523 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4524 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4525 if (port >= port_offset && 4526 port < port_offset + port_count) 4527 return 1; 4528 } 4529 } 4530 return 0; 4531 } 4532 4533 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4534 { 4535 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4536 int portnum = udev->portnum - 1; 4537 4538 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4539 return 0; 4540 4541 /* we only support lpm for non-hub device connected to root hub yet */ 4542 if (!udev->parent || udev->parent->parent || 4543 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4544 return 0; 4545 4546 if (xhci->hw_lpm_support == 1 && 4547 xhci_check_usb2_port_capability( 4548 xhci, portnum, XHCI_HLC)) { 4549 udev->usb2_hw_lpm_capable = 1; 4550 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4551 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4552 if (xhci_check_usb2_port_capability(xhci, portnum, 4553 XHCI_BLC)) 4554 udev->usb2_hw_lpm_besl_capable = 1; 4555 } 4556 4557 return 0; 4558 } 4559 4560 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4561 4562 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4563 static unsigned long long xhci_service_interval_to_ns( 4564 struct usb_endpoint_descriptor *desc) 4565 { 4566 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4567 } 4568 4569 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4570 enum usb3_link_state state) 4571 { 4572 unsigned long long sel; 4573 unsigned long long pel; 4574 unsigned int max_sel_pel; 4575 char *state_name; 4576 4577 switch (state) { 4578 case USB3_LPM_U1: 4579 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4580 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4581 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4582 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4583 state_name = "U1"; 4584 break; 4585 case USB3_LPM_U2: 4586 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4587 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4588 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4589 state_name = "U2"; 4590 break; 4591 default: 4592 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4593 __func__); 4594 return USB3_LPM_DISABLED; 4595 } 4596 4597 if (sel <= max_sel_pel && pel <= max_sel_pel) 4598 return USB3_LPM_DEVICE_INITIATED; 4599 4600 if (sel > max_sel_pel) 4601 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4602 "due to long SEL %llu ms\n", 4603 state_name, sel); 4604 else 4605 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4606 "due to long PEL %llu ms\n", 4607 state_name, pel); 4608 return USB3_LPM_DISABLED; 4609 } 4610 4611 /* The U1 timeout should be the maximum of the following values: 4612 * - For control endpoints, U1 system exit latency (SEL) * 3 4613 * - For bulk endpoints, U1 SEL * 5 4614 * - For interrupt endpoints: 4615 * - Notification EPs, U1 SEL * 3 4616 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4617 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4618 */ 4619 static unsigned long long xhci_calculate_intel_u1_timeout( 4620 struct usb_device *udev, 4621 struct usb_endpoint_descriptor *desc) 4622 { 4623 unsigned long long timeout_ns; 4624 int ep_type; 4625 int intr_type; 4626 4627 ep_type = usb_endpoint_type(desc); 4628 switch (ep_type) { 4629 case USB_ENDPOINT_XFER_CONTROL: 4630 timeout_ns = udev->u1_params.sel * 3; 4631 break; 4632 case USB_ENDPOINT_XFER_BULK: 4633 timeout_ns = udev->u1_params.sel * 5; 4634 break; 4635 case USB_ENDPOINT_XFER_INT: 4636 intr_type = usb_endpoint_interrupt_type(desc); 4637 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4638 timeout_ns = udev->u1_params.sel * 3; 4639 break; 4640 } 4641 /* Otherwise the calculation is the same as isoc eps */ 4642 fallthrough; 4643 case USB_ENDPOINT_XFER_ISOC: 4644 timeout_ns = xhci_service_interval_to_ns(desc); 4645 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4646 if (timeout_ns < udev->u1_params.sel * 2) 4647 timeout_ns = udev->u1_params.sel * 2; 4648 break; 4649 default: 4650 return 0; 4651 } 4652 4653 return timeout_ns; 4654 } 4655 4656 /* Returns the hub-encoded U1 timeout value. */ 4657 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4658 struct usb_device *udev, 4659 struct usb_endpoint_descriptor *desc) 4660 { 4661 unsigned long long timeout_ns; 4662 4663 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4664 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4665 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4666 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4667 return USB3_LPM_DISABLED; 4668 } 4669 } 4670 4671 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4672 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4673 else 4674 timeout_ns = udev->u1_params.sel; 4675 4676 /* The U1 timeout is encoded in 1us intervals. 4677 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4678 */ 4679 if (timeout_ns == USB3_LPM_DISABLED) 4680 timeout_ns = 1; 4681 else 4682 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4683 4684 /* If the necessary timeout value is bigger than what we can set in the 4685 * USB 3.0 hub, we have to disable hub-initiated U1. 4686 */ 4687 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4688 return timeout_ns; 4689 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4690 "due to long timeout %llu ms\n", timeout_ns); 4691 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4692 } 4693 4694 /* The U2 timeout should be the maximum of: 4695 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4696 * - largest bInterval of any active periodic endpoint (to avoid going 4697 * into lower power link states between intervals). 4698 * - the U2 Exit Latency of the device 4699 */ 4700 static unsigned long long xhci_calculate_intel_u2_timeout( 4701 struct usb_device *udev, 4702 struct usb_endpoint_descriptor *desc) 4703 { 4704 unsigned long long timeout_ns; 4705 unsigned long long u2_del_ns; 4706 4707 timeout_ns = 10 * 1000 * 1000; 4708 4709 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4710 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4711 timeout_ns = xhci_service_interval_to_ns(desc); 4712 4713 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4714 if (u2_del_ns > timeout_ns) 4715 timeout_ns = u2_del_ns; 4716 4717 return timeout_ns; 4718 } 4719 4720 /* Returns the hub-encoded U2 timeout value. */ 4721 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4722 struct usb_device *udev, 4723 struct usb_endpoint_descriptor *desc) 4724 { 4725 unsigned long long timeout_ns; 4726 4727 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4728 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4729 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4730 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4731 return USB3_LPM_DISABLED; 4732 } 4733 } 4734 4735 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4736 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4737 else 4738 timeout_ns = udev->u2_params.sel; 4739 4740 /* The U2 timeout is encoded in 256us intervals */ 4741 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4742 /* If the necessary timeout value is bigger than what we can set in the 4743 * USB 3.0 hub, we have to disable hub-initiated U2. 4744 */ 4745 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4746 return timeout_ns; 4747 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4748 "due to long timeout %llu ms\n", timeout_ns); 4749 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4750 } 4751 4752 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4753 struct usb_device *udev, 4754 struct usb_endpoint_descriptor *desc, 4755 enum usb3_link_state state, 4756 u16 *timeout) 4757 { 4758 if (state == USB3_LPM_U1) 4759 return xhci_calculate_u1_timeout(xhci, udev, desc); 4760 else if (state == USB3_LPM_U2) 4761 return xhci_calculate_u2_timeout(xhci, udev, desc); 4762 4763 return USB3_LPM_DISABLED; 4764 } 4765 4766 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4767 struct usb_device *udev, 4768 struct usb_endpoint_descriptor *desc, 4769 enum usb3_link_state state, 4770 u16 *timeout) 4771 { 4772 u16 alt_timeout; 4773 4774 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4775 desc, state, timeout); 4776 4777 /* If we found we can't enable hub-initiated LPM, and 4778 * the U1 or U2 exit latency was too high to allow 4779 * device-initiated LPM as well, then we will disable LPM 4780 * for this device, so stop searching any further. 4781 */ 4782 if (alt_timeout == USB3_LPM_DISABLED) { 4783 *timeout = alt_timeout; 4784 return -E2BIG; 4785 } 4786 if (alt_timeout > *timeout) 4787 *timeout = alt_timeout; 4788 return 0; 4789 } 4790 4791 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4792 struct usb_device *udev, 4793 struct usb_host_interface *alt, 4794 enum usb3_link_state state, 4795 u16 *timeout) 4796 { 4797 int j; 4798 4799 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4800 if (xhci_update_timeout_for_endpoint(xhci, udev, 4801 &alt->endpoint[j].desc, state, timeout)) 4802 return -E2BIG; 4803 } 4804 return 0; 4805 } 4806 4807 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4808 struct usb_device *udev, 4809 enum usb3_link_state state) 4810 { 4811 struct usb_device *parent = udev->parent; 4812 int tier = 1; /* roothub is tier1 */ 4813 4814 while (parent) { 4815 parent = parent->parent; 4816 tier++; 4817 } 4818 4819 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3) 4820 goto fail; 4821 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2) 4822 goto fail; 4823 4824 return 0; 4825 fail: 4826 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n", 4827 tier); 4828 return -E2BIG; 4829 } 4830 4831 /* Returns the U1 or U2 timeout that should be enabled. 4832 * If the tier check or timeout setting functions return with a non-zero exit 4833 * code, that means the timeout value has been finalized and we shouldn't look 4834 * at any more endpoints. 4835 */ 4836 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4837 struct usb_device *udev, enum usb3_link_state state) 4838 { 4839 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4840 struct usb_host_config *config; 4841 char *state_name; 4842 int i; 4843 u16 timeout = USB3_LPM_DISABLED; 4844 4845 if (state == USB3_LPM_U1) 4846 state_name = "U1"; 4847 else if (state == USB3_LPM_U2) 4848 state_name = "U2"; 4849 else { 4850 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4851 state); 4852 return timeout; 4853 } 4854 4855 /* Gather some information about the currently installed configuration 4856 * and alternate interface settings. 4857 */ 4858 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4859 state, &timeout)) 4860 return timeout; 4861 4862 config = udev->actconfig; 4863 if (!config) 4864 return timeout; 4865 4866 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4867 struct usb_driver *driver; 4868 struct usb_interface *intf = config->interface[i]; 4869 4870 if (!intf) 4871 continue; 4872 4873 /* Check if any currently bound drivers want hub-initiated LPM 4874 * disabled. 4875 */ 4876 if (intf->dev.driver) { 4877 driver = to_usb_driver(intf->dev.driver); 4878 if (driver && driver->disable_hub_initiated_lpm) { 4879 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4880 state_name, driver->name); 4881 timeout = xhci_get_timeout_no_hub_lpm(udev, 4882 state); 4883 if (timeout == USB3_LPM_DISABLED) 4884 return timeout; 4885 } 4886 } 4887 4888 /* Not sure how this could happen... */ 4889 if (!intf->cur_altsetting) 4890 continue; 4891 4892 if (xhci_update_timeout_for_interface(xhci, udev, 4893 intf->cur_altsetting, 4894 state, &timeout)) 4895 return timeout; 4896 } 4897 return timeout; 4898 } 4899 4900 static int calculate_max_exit_latency(struct usb_device *udev, 4901 enum usb3_link_state state_changed, 4902 u16 hub_encoded_timeout) 4903 { 4904 unsigned long long u1_mel_us = 0; 4905 unsigned long long u2_mel_us = 0; 4906 unsigned long long mel_us = 0; 4907 bool disabling_u1; 4908 bool disabling_u2; 4909 bool enabling_u1; 4910 bool enabling_u2; 4911 4912 disabling_u1 = (state_changed == USB3_LPM_U1 && 4913 hub_encoded_timeout == USB3_LPM_DISABLED); 4914 disabling_u2 = (state_changed == USB3_LPM_U2 && 4915 hub_encoded_timeout == USB3_LPM_DISABLED); 4916 4917 enabling_u1 = (state_changed == USB3_LPM_U1 && 4918 hub_encoded_timeout != USB3_LPM_DISABLED); 4919 enabling_u2 = (state_changed == USB3_LPM_U2 && 4920 hub_encoded_timeout != USB3_LPM_DISABLED); 4921 4922 /* If U1 was already enabled and we're not disabling it, 4923 * or we're going to enable U1, account for the U1 max exit latency. 4924 */ 4925 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4926 enabling_u1) 4927 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4928 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4929 enabling_u2) 4930 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4931 4932 mel_us = max(u1_mel_us, u2_mel_us); 4933 4934 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4935 if (mel_us > MAX_EXIT) { 4936 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4937 "is too big.\n", mel_us); 4938 return -E2BIG; 4939 } 4940 return mel_us; 4941 } 4942 4943 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4944 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4945 struct usb_device *udev, enum usb3_link_state state) 4946 { 4947 struct xhci_hcd *xhci; 4948 struct xhci_port *port; 4949 u16 hub_encoded_timeout; 4950 int mel; 4951 int ret; 4952 4953 xhci = hcd_to_xhci(hcd); 4954 /* The LPM timeout values are pretty host-controller specific, so don't 4955 * enable hub-initiated timeouts unless the vendor has provided 4956 * information about their timeout algorithm. 4957 */ 4958 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4959 !xhci->devs[udev->slot_id]) 4960 return USB3_LPM_DISABLED; 4961 4962 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4963 return USB3_LPM_DISABLED; 4964 4965 /* If connected to root port then check port can handle lpm */ 4966 if (udev->parent && !udev->parent->parent) { 4967 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 4968 if (port->lpm_incapable) 4969 return USB3_LPM_DISABLED; 4970 } 4971 4972 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4973 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4974 if (mel < 0) { 4975 /* Max Exit Latency is too big, disable LPM. */ 4976 hub_encoded_timeout = USB3_LPM_DISABLED; 4977 mel = 0; 4978 } 4979 4980 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4981 if (ret) 4982 return ret; 4983 return hub_encoded_timeout; 4984 } 4985 4986 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4987 struct usb_device *udev, enum usb3_link_state state) 4988 { 4989 struct xhci_hcd *xhci; 4990 u16 mel; 4991 4992 xhci = hcd_to_xhci(hcd); 4993 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4994 !xhci->devs[udev->slot_id]) 4995 return 0; 4996 4997 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4998 return xhci_change_max_exit_latency(xhci, udev, mel); 4999 } 5000 #else /* CONFIG_PM */ 5001 5002 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5003 struct usb_device *udev, int enable) 5004 { 5005 return 0; 5006 } 5007 5008 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5009 { 5010 return 0; 5011 } 5012 5013 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5014 struct usb_device *udev, enum usb3_link_state state) 5015 { 5016 return USB3_LPM_DISABLED; 5017 } 5018 5019 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5020 struct usb_device *udev, enum usb3_link_state state) 5021 { 5022 return 0; 5023 } 5024 #endif /* CONFIG_PM */ 5025 5026 /*-------------------------------------------------------------------------*/ 5027 5028 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5029 * internal data structures for the device. 5030 */ 5031 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5032 struct usb_tt *tt, gfp_t mem_flags) 5033 { 5034 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5035 struct xhci_virt_device *vdev; 5036 struct xhci_command *config_cmd; 5037 struct xhci_input_control_ctx *ctrl_ctx; 5038 struct xhci_slot_ctx *slot_ctx; 5039 unsigned long flags; 5040 unsigned think_time; 5041 int ret; 5042 5043 /* Ignore root hubs */ 5044 if (!hdev->parent) 5045 return 0; 5046 5047 vdev = xhci->devs[hdev->slot_id]; 5048 if (!vdev) { 5049 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5050 return -EINVAL; 5051 } 5052 5053 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5054 if (!config_cmd) 5055 return -ENOMEM; 5056 5057 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5058 if (!ctrl_ctx) { 5059 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5060 __func__); 5061 xhci_free_command(xhci, config_cmd); 5062 return -ENOMEM; 5063 } 5064 5065 spin_lock_irqsave(&xhci->lock, flags); 5066 if (hdev->speed == USB_SPEED_HIGH && 5067 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5068 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5069 xhci_free_command(xhci, config_cmd); 5070 spin_unlock_irqrestore(&xhci->lock, flags); 5071 return -ENOMEM; 5072 } 5073 5074 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5075 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5076 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5077 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5078 /* 5079 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5080 * but it may be already set to 1 when setup an xHCI virtual 5081 * device, so clear it anyway. 5082 */ 5083 if (tt->multi) 5084 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5085 else if (hdev->speed == USB_SPEED_FULL) 5086 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5087 5088 if (xhci->hci_version > 0x95) { 5089 xhci_dbg(xhci, "xHCI version %x needs hub " 5090 "TT think time and number of ports\n", 5091 (unsigned int) xhci->hci_version); 5092 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5093 /* Set TT think time - convert from ns to FS bit times. 5094 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5095 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5096 * 5097 * xHCI 1.0: this field shall be 0 if the device is not a 5098 * High-spped hub. 5099 */ 5100 think_time = tt->think_time; 5101 if (think_time != 0) 5102 think_time = (think_time / 666) - 1; 5103 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5104 slot_ctx->tt_info |= 5105 cpu_to_le32(TT_THINK_TIME(think_time)); 5106 } else { 5107 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5108 "TT think time or number of ports\n", 5109 (unsigned int) xhci->hci_version); 5110 } 5111 slot_ctx->dev_state = 0; 5112 spin_unlock_irqrestore(&xhci->lock, flags); 5113 5114 xhci_dbg(xhci, "Set up %s for hub device.\n", 5115 (xhci->hci_version > 0x95) ? 5116 "configure endpoint" : "evaluate context"); 5117 5118 /* Issue and wait for the configure endpoint or 5119 * evaluate context command. 5120 */ 5121 if (xhci->hci_version > 0x95) 5122 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5123 false, false); 5124 else 5125 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5126 true, false); 5127 5128 xhci_free_command(xhci, config_cmd); 5129 return ret; 5130 } 5131 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5132 5133 static int xhci_get_frame(struct usb_hcd *hcd) 5134 { 5135 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5136 /* EHCI mods by the periodic size. Why? */ 5137 return readl(&xhci->run_regs->microframe_index) >> 3; 5138 } 5139 5140 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5141 { 5142 xhci->usb2_rhub.hcd = hcd; 5143 hcd->speed = HCD_USB2; 5144 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5145 /* 5146 * USB 2.0 roothub under xHCI has an integrated TT, 5147 * (rate matching hub) as opposed to having an OHCI/UHCI 5148 * companion controller. 5149 */ 5150 hcd->has_tt = 1; 5151 } 5152 5153 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5154 { 5155 unsigned int minor_rev; 5156 5157 /* 5158 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5159 * should return 0x31 for sbrn, or that the minor revision 5160 * is a two digit BCD containig minor and sub-minor numbers. 5161 * This was later clarified in xHCI 1.2. 5162 * 5163 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5164 * minor revision set to 0x1 instead of 0x10. 5165 */ 5166 if (xhci->usb3_rhub.min_rev == 0x1) 5167 minor_rev = 1; 5168 else 5169 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5170 5171 switch (minor_rev) { 5172 case 2: 5173 hcd->speed = HCD_USB32; 5174 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5175 hcd->self.root_hub->rx_lanes = 2; 5176 hcd->self.root_hub->tx_lanes = 2; 5177 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5178 break; 5179 case 1: 5180 hcd->speed = HCD_USB31; 5181 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5182 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5183 break; 5184 } 5185 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5186 minor_rev, minor_rev ? "Enhanced " : ""); 5187 5188 xhci->usb3_rhub.hcd = hcd; 5189 } 5190 5191 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5192 { 5193 struct xhci_hcd *xhci; 5194 /* 5195 * TODO: Check with DWC3 clients for sysdev according to 5196 * quirks 5197 */ 5198 struct device *dev = hcd->self.sysdev; 5199 int retval; 5200 5201 /* Accept arbitrarily long scatter-gather lists */ 5202 hcd->self.sg_tablesize = ~0; 5203 5204 /* support to build packet from discontinuous buffers */ 5205 hcd->self.no_sg_constraint = 1; 5206 5207 /* XHCI controllers don't stop the ep queue on short packets :| */ 5208 hcd->self.no_stop_on_short = 1; 5209 5210 xhci = hcd_to_xhci(hcd); 5211 5212 if (!usb_hcd_is_primary_hcd(hcd)) { 5213 xhci_hcd_init_usb3_data(xhci, hcd); 5214 return 0; 5215 } 5216 5217 mutex_init(&xhci->mutex); 5218 xhci->main_hcd = hcd; 5219 xhci->cap_regs = hcd->regs; 5220 xhci->op_regs = hcd->regs + 5221 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5222 xhci->run_regs = hcd->regs + 5223 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5224 /* Cache read-only capability registers */ 5225 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5226 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5227 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5228 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5229 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5230 if (xhci->hci_version > 0x100) 5231 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5232 5233 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5234 if ((!xhci->max_interrupters) || 5235 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1)) 5236 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1); 5237 5238 xhci->quirks |= quirks; 5239 5240 if (get_quirks) 5241 get_quirks(dev, xhci); 5242 5243 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5244 * success event after a short transfer. This quirk will ignore such 5245 * spurious event. 5246 */ 5247 if (xhci->hci_version > 0x96) 5248 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5249 5250 /* Make sure the HC is halted. */ 5251 retval = xhci_halt(xhci); 5252 if (retval) 5253 return retval; 5254 5255 xhci_zero_64b_regs(xhci); 5256 5257 xhci_dbg(xhci, "Resetting HCD\n"); 5258 /* Reset the internal HC memory state and registers. */ 5259 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5260 if (retval) 5261 return retval; 5262 xhci_dbg(xhci, "Reset complete\n"); 5263 5264 /* 5265 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5266 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5267 * address memory pointers actually. So, this driver clears the AC64 5268 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5269 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5270 */ 5271 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5272 xhci->hcc_params &= ~BIT(0); 5273 5274 /* Set dma_mask and coherent_dma_mask to 64-bits, 5275 * if xHC supports 64-bit addressing */ 5276 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5277 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5278 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5279 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5280 } else { 5281 /* 5282 * This is to avoid error in cases where a 32-bit USB 5283 * controller is used on a 64-bit capable system. 5284 */ 5285 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5286 if (retval) 5287 return retval; 5288 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5289 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5290 } 5291 5292 xhci_dbg(xhci, "Calling HCD init\n"); 5293 /* Initialize HCD and host controller data structures. */ 5294 retval = xhci_init(hcd); 5295 if (retval) 5296 return retval; 5297 xhci_dbg(xhci, "Called HCD init\n"); 5298 5299 if (xhci_hcd_is_usb3(hcd)) 5300 xhci_hcd_init_usb3_data(xhci, hcd); 5301 else 5302 xhci_hcd_init_usb2_data(xhci, hcd); 5303 5304 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5305 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5306 5307 return 0; 5308 } 5309 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5310 5311 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5312 struct usb_host_endpoint *ep) 5313 { 5314 struct xhci_hcd *xhci; 5315 struct usb_device *udev; 5316 unsigned int slot_id; 5317 unsigned int ep_index; 5318 unsigned long flags; 5319 5320 xhci = hcd_to_xhci(hcd); 5321 5322 spin_lock_irqsave(&xhci->lock, flags); 5323 udev = (struct usb_device *)ep->hcpriv; 5324 slot_id = udev->slot_id; 5325 ep_index = xhci_get_endpoint_index(&ep->desc); 5326 5327 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5328 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5329 spin_unlock_irqrestore(&xhci->lock, flags); 5330 } 5331 5332 static const struct hc_driver xhci_hc_driver = { 5333 .description = "xhci-hcd", 5334 .product_desc = "xHCI Host Controller", 5335 .hcd_priv_size = sizeof(struct xhci_hcd), 5336 5337 /* 5338 * generic hardware linkage 5339 */ 5340 .irq = xhci_irq, 5341 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5342 HCD_BH, 5343 5344 /* 5345 * basic lifecycle operations 5346 */ 5347 .reset = NULL, /* set in xhci_init_driver() */ 5348 .start = xhci_run, 5349 .stop = xhci_stop, 5350 .shutdown = xhci_shutdown, 5351 5352 /* 5353 * managing i/o requests and associated device resources 5354 */ 5355 .map_urb_for_dma = xhci_map_urb_for_dma, 5356 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5357 .urb_enqueue = xhci_urb_enqueue, 5358 .urb_dequeue = xhci_urb_dequeue, 5359 .alloc_dev = xhci_alloc_dev, 5360 .free_dev = xhci_free_dev, 5361 .alloc_streams = xhci_alloc_streams, 5362 .free_streams = xhci_free_streams, 5363 .add_endpoint = xhci_add_endpoint, 5364 .drop_endpoint = xhci_drop_endpoint, 5365 .endpoint_disable = xhci_endpoint_disable, 5366 .endpoint_reset = xhci_endpoint_reset, 5367 .check_bandwidth = xhci_check_bandwidth, 5368 .reset_bandwidth = xhci_reset_bandwidth, 5369 .address_device = xhci_address_device, 5370 .enable_device = xhci_enable_device, 5371 .update_hub_device = xhci_update_hub_device, 5372 .reset_device = xhci_discover_or_reset_device, 5373 5374 /* 5375 * scheduling support 5376 */ 5377 .get_frame_number = xhci_get_frame, 5378 5379 /* 5380 * root hub support 5381 */ 5382 .hub_control = xhci_hub_control, 5383 .hub_status_data = xhci_hub_status_data, 5384 .bus_suspend = xhci_bus_suspend, 5385 .bus_resume = xhci_bus_resume, 5386 .get_resuming_ports = xhci_get_resuming_ports, 5387 5388 /* 5389 * call back when device connected and addressed 5390 */ 5391 .update_device = xhci_update_device, 5392 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5393 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5394 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5395 .find_raw_port_number = xhci_find_raw_port_number, 5396 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5397 }; 5398 5399 void xhci_init_driver(struct hc_driver *drv, 5400 const struct xhci_driver_overrides *over) 5401 { 5402 BUG_ON(!over); 5403 5404 /* Copy the generic table to drv then apply the overrides */ 5405 *drv = xhci_hc_driver; 5406 5407 if (over) { 5408 drv->hcd_priv_size += over->extra_priv_size; 5409 if (over->reset) 5410 drv->reset = over->reset; 5411 if (over->start) 5412 drv->start = over->start; 5413 if (over->add_endpoint) 5414 drv->add_endpoint = over->add_endpoint; 5415 if (over->drop_endpoint) 5416 drv->drop_endpoint = over->drop_endpoint; 5417 if (over->check_bandwidth) 5418 drv->check_bandwidth = over->check_bandwidth; 5419 if (over->reset_bandwidth) 5420 drv->reset_bandwidth = over->reset_bandwidth; 5421 if (over->update_hub_device) 5422 drv->update_hub_device = over->update_hub_device; 5423 if (over->hub_control) 5424 drv->hub_control = over->hub_control; 5425 } 5426 } 5427 EXPORT_SYMBOL_GPL(xhci_init_driver); 5428 5429 MODULE_DESCRIPTION(DRIVER_DESC); 5430 MODULE_AUTHOR(DRIVER_AUTHOR); 5431 MODULE_LICENSE("GPL"); 5432 5433 static int __init xhci_hcd_init(void) 5434 { 5435 /* 5436 * Check the compiler generated sizes of structures that must be laid 5437 * out in specific ways for hardware access. 5438 */ 5439 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5440 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5441 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5442 /* xhci_device_control has eight fields, and also 5443 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5444 */ 5445 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5446 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5447 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5448 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5449 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5450 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5451 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5452 5453 if (usb_disabled()) 5454 return -ENODEV; 5455 5456 xhci_debugfs_create_root(); 5457 xhci_dbc_init(); 5458 5459 return 0; 5460 } 5461 5462 /* 5463 * If an init function is provided, an exit function must also be provided 5464 * to allow module unload. 5465 */ 5466 static void __exit xhci_hcd_fini(void) 5467 { 5468 xhci_debugfs_remove_root(); 5469 xhci_dbc_exit(); 5470 } 5471 5472 module_init(xhci_hcd_init); 5473 module_exit(xhci_hcd_fini); 5474