1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 41 { 42 struct xhci_segment *seg = ring->first_seg; 43 44 if (!td || !td->start_seg) 45 return false; 46 do { 47 if (seg == td->start_seg) 48 return true; 49 seg = seg->next; 50 } while (seg && seg != ring->first_seg); 51 52 return false; 53 } 54 55 /* 56 * xhci_handshake - spin reading hc until handshake completes or fails 57 * @ptr: address of hc register to be read 58 * @mask: bits to look at in result of read 59 * @done: value of those bits when handshake succeeds 60 * @usec: timeout in microseconds 61 * 62 * Returns negative errno, or zero on success 63 * 64 * Success happens when the "mask" bits have the specified value (hardware 65 * handshake done). There are two failure modes: "usec" have passed (major 66 * hardware flakeout), or the register reads as all-ones (hardware removed). 67 */ 68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 69 { 70 u32 result; 71 int ret; 72 73 ret = readl_poll_timeout_atomic(ptr, result, 74 (result & mask) == done || 75 result == U32_MAX, 76 1, timeout_us); 77 if (result == U32_MAX) /* card removed */ 78 return -ENODEV; 79 80 return ret; 81 } 82 83 /* 84 * Disable interrupts and begin the xHCI halting process. 85 */ 86 void xhci_quiesce(struct xhci_hcd *xhci) 87 { 88 u32 halted; 89 u32 cmd; 90 u32 mask; 91 92 mask = ~(XHCI_IRQS); 93 halted = readl(&xhci->op_regs->status) & STS_HALT; 94 if (!halted) 95 mask &= ~CMD_RUN; 96 97 cmd = readl(&xhci->op_regs->command); 98 cmd &= mask; 99 writel(cmd, &xhci->op_regs->command); 100 } 101 102 /* 103 * Force HC into halt state. 104 * 105 * Disable any IRQs and clear the run/stop bit. 106 * HC will complete any current and actively pipelined transactions, and 107 * should halt within 16 ms of the run/stop bit being cleared. 108 * Read HC Halted bit in the status register to see when the HC is finished. 109 */ 110 int xhci_halt(struct xhci_hcd *xhci) 111 { 112 int ret; 113 114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 115 xhci_quiesce(xhci); 116 117 ret = xhci_handshake(&xhci->op_regs->status, 118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 119 if (ret) { 120 xhci_warn(xhci, "Host halt failed, %d\n", ret); 121 return ret; 122 } 123 124 xhci->xhc_state |= XHCI_STATE_HALTED; 125 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 126 127 return ret; 128 } 129 130 /* 131 * Set the run bit and wait for the host to be running. 132 */ 133 int xhci_start(struct xhci_hcd *xhci) 134 { 135 u32 temp; 136 int ret; 137 138 temp = readl(&xhci->op_regs->command); 139 temp |= (CMD_RUN); 140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 141 temp); 142 writel(temp, &xhci->op_regs->command); 143 144 /* 145 * Wait for the HCHalted Status bit to be 0 to indicate the host is 146 * running. 147 */ 148 ret = xhci_handshake(&xhci->op_regs->status, 149 STS_HALT, 0, XHCI_MAX_HALT_USEC); 150 if (ret == -ETIMEDOUT) 151 xhci_err(xhci, "Host took too long to start, " 152 "waited %u microseconds.\n", 153 XHCI_MAX_HALT_USEC); 154 if (!ret) { 155 /* clear state flags. Including dying, halted or removing */ 156 xhci->xhc_state = 0; 157 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 158 } 159 160 return ret; 161 } 162 163 /* 164 * Reset a halted HC. 165 * 166 * This resets pipelines, timers, counters, state machines, etc. 167 * Transactions will be terminated immediately, and operational registers 168 * will be set to their defaults. 169 */ 170 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 171 { 172 u32 command; 173 u32 state; 174 int ret; 175 176 state = readl(&xhci->op_regs->status); 177 178 if (state == ~(u32)0) { 179 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 180 return -ENODEV; 181 } 182 183 if ((state & STS_HALT) == 0) { 184 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 185 return 0; 186 } 187 188 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 189 command = readl(&xhci->op_regs->command); 190 command |= CMD_RESET; 191 writel(command, &xhci->op_regs->command); 192 193 /* Existing Intel xHCI controllers require a delay of 1 mS, 194 * after setting the CMD_RESET bit, and before accessing any 195 * HC registers. This allows the HC to complete the 196 * reset operation and be ready for HC register access. 197 * Without this delay, the subsequent HC register access, 198 * may result in a system hang very rarely. 199 */ 200 if (xhci->quirks & XHCI_INTEL_HOST) 201 udelay(1000); 202 203 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us); 204 if (ret) 205 return ret; 206 207 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 208 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 209 210 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 211 "Wait for controller to be ready for doorbell rings"); 212 /* 213 * xHCI cannot write to any doorbells or operational registers other 214 * than status until the "Controller Not Ready" flag is cleared. 215 */ 216 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 217 218 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 219 xhci->usb2_rhub.bus_state.suspended_ports = 0; 220 xhci->usb2_rhub.bus_state.resuming_ports = 0; 221 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 222 xhci->usb3_rhub.bus_state.suspended_ports = 0; 223 xhci->usb3_rhub.bus_state.resuming_ports = 0; 224 225 return ret; 226 } 227 228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 229 { 230 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 231 int err, i; 232 u64 val; 233 u32 intrs; 234 235 /* 236 * Some Renesas controllers get into a weird state if they are 237 * reset while programmed with 64bit addresses (they will preserve 238 * the top half of the address in internal, non visible 239 * registers). You end up with half the address coming from the 240 * kernel, and the other half coming from the firmware. Also, 241 * changing the programming leads to extra accesses even if the 242 * controller is supposed to be halted. The controller ends up with 243 * a fatal fault, and is then ripe for being properly reset. 244 * 245 * Special care is taken to only apply this if the device is behind 246 * an iommu. Doing anything when there is no iommu is definitely 247 * unsafe... 248 */ 249 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 250 return; 251 252 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 253 254 /* Clear HSEIE so that faults do not get signaled */ 255 val = readl(&xhci->op_regs->command); 256 val &= ~CMD_HSEIE; 257 writel(val, &xhci->op_regs->command); 258 259 /* Clear HSE (aka FATAL) */ 260 val = readl(&xhci->op_regs->status); 261 val |= STS_FATAL; 262 writel(val, &xhci->op_regs->status); 263 264 /* Now zero the registers, and brace for impact */ 265 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 266 if (upper_32_bits(val)) 267 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 268 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 269 if (upper_32_bits(val)) 270 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 271 272 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 273 ARRAY_SIZE(xhci->run_regs->ir_set)); 274 275 for (i = 0; i < intrs; i++) { 276 struct xhci_intr_reg __iomem *ir; 277 278 ir = &xhci->run_regs->ir_set[i]; 279 val = xhci_read_64(xhci, &ir->erst_base); 280 if (upper_32_bits(val)) 281 xhci_write_64(xhci, 0, &ir->erst_base); 282 val= xhci_read_64(xhci, &ir->erst_dequeue); 283 if (upper_32_bits(val)) 284 xhci_write_64(xhci, 0, &ir->erst_dequeue); 285 } 286 287 /* Wait for the fault to appear. It will be cleared on reset */ 288 err = xhci_handshake(&xhci->op_regs->status, 289 STS_FATAL, STS_FATAL, 290 XHCI_MAX_HALT_USEC); 291 if (!err) 292 xhci_info(xhci, "Fault detected\n"); 293 } 294 295 #ifdef CONFIG_USB_PCI 296 /* 297 * Set up MSI 298 */ 299 static int xhci_setup_msi(struct xhci_hcd *xhci) 300 { 301 int ret; 302 /* 303 * TODO:Check with MSI Soc for sysdev 304 */ 305 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 306 307 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 308 if (ret < 0) { 309 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 310 "failed to allocate MSI entry"); 311 return ret; 312 } 313 314 ret = request_irq(pdev->irq, xhci_msi_irq, 315 0, "xhci_hcd", xhci_to_hcd(xhci)); 316 if (ret) { 317 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 318 "disable MSI interrupt"); 319 pci_free_irq_vectors(pdev); 320 } 321 322 return ret; 323 } 324 325 /* 326 * Set up MSI-X 327 */ 328 static int xhci_setup_msix(struct xhci_hcd *xhci) 329 { 330 int i, ret; 331 struct usb_hcd *hcd = xhci_to_hcd(xhci); 332 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 333 334 /* 335 * calculate number of msi-x vectors supported. 336 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 337 * with max number of interrupters based on the xhci HCSPARAMS1. 338 * - num_online_cpus: maximum msi-x vectors per CPUs core. 339 * Add additional 1 vector to ensure always available interrupt. 340 */ 341 xhci->msix_count = min(num_online_cpus() + 1, 342 HCS_MAX_INTRS(xhci->hcs_params1)); 343 344 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 345 PCI_IRQ_MSIX); 346 if (ret < 0) { 347 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 348 "Failed to enable MSI-X"); 349 return ret; 350 } 351 352 for (i = 0; i < xhci->msix_count; i++) { 353 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 354 "xhci_hcd", xhci_to_hcd(xhci)); 355 if (ret) 356 goto disable_msix; 357 } 358 359 hcd->msix_enabled = 1; 360 return ret; 361 362 disable_msix: 363 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 364 while (--i >= 0) 365 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 366 pci_free_irq_vectors(pdev); 367 return ret; 368 } 369 370 /* Free any IRQs and disable MSI-X */ 371 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 372 { 373 struct usb_hcd *hcd = xhci_to_hcd(xhci); 374 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 375 376 if (xhci->quirks & XHCI_PLAT) 377 return; 378 379 /* return if using legacy interrupt */ 380 if (hcd->irq > 0) 381 return; 382 383 if (hcd->msix_enabled) { 384 int i; 385 386 for (i = 0; i < xhci->msix_count; i++) 387 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 388 } else { 389 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 390 } 391 392 pci_free_irq_vectors(pdev); 393 hcd->msix_enabled = 0; 394 } 395 396 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 397 { 398 struct usb_hcd *hcd = xhci_to_hcd(xhci); 399 400 if (hcd->msix_enabled) { 401 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 402 int i; 403 404 for (i = 0; i < xhci->msix_count; i++) 405 synchronize_irq(pci_irq_vector(pdev, i)); 406 } 407 } 408 409 static int xhci_try_enable_msi(struct usb_hcd *hcd) 410 { 411 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 412 struct pci_dev *pdev; 413 int ret; 414 415 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 416 if (xhci->quirks & XHCI_PLAT) 417 return 0; 418 419 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 420 /* 421 * Some Fresco Logic host controllers advertise MSI, but fail to 422 * generate interrupts. Don't even try to enable MSI. 423 */ 424 if (xhci->quirks & XHCI_BROKEN_MSI) 425 goto legacy_irq; 426 427 /* unregister the legacy interrupt */ 428 if (hcd->irq) 429 free_irq(hcd->irq, hcd); 430 hcd->irq = 0; 431 432 ret = xhci_setup_msix(xhci); 433 if (ret) 434 /* fall back to msi*/ 435 ret = xhci_setup_msi(xhci); 436 437 if (!ret) { 438 hcd->msi_enabled = 1; 439 return 0; 440 } 441 442 if (!pdev->irq) { 443 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 444 return -EINVAL; 445 } 446 447 legacy_irq: 448 if (!strlen(hcd->irq_descr)) 449 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 450 hcd->driver->description, hcd->self.busnum); 451 452 /* fall back to legacy interrupt*/ 453 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 454 hcd->irq_descr, hcd); 455 if (ret) { 456 xhci_err(xhci, "request interrupt %d failed\n", 457 pdev->irq); 458 return ret; 459 } 460 hcd->irq = pdev->irq; 461 return 0; 462 } 463 464 #else 465 466 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 467 { 468 return 0; 469 } 470 471 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 472 { 473 } 474 475 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 476 { 477 } 478 479 #endif 480 481 static void compliance_mode_recovery(struct timer_list *t) 482 { 483 struct xhci_hcd *xhci; 484 struct usb_hcd *hcd; 485 struct xhci_hub *rhub; 486 u32 temp; 487 int i; 488 489 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 490 rhub = &xhci->usb3_rhub; 491 hcd = rhub->hcd; 492 493 if (!hcd) 494 return; 495 496 for (i = 0; i < rhub->num_ports; i++) { 497 temp = readl(rhub->ports[i]->addr); 498 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 499 /* 500 * Compliance Mode Detected. Letting USB Core 501 * handle the Warm Reset 502 */ 503 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 504 "Compliance mode detected->port %d", 505 i + 1); 506 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 507 "Attempting compliance mode recovery"); 508 509 if (hcd->state == HC_STATE_SUSPENDED) 510 usb_hcd_resume_root_hub(hcd); 511 512 usb_hcd_poll_rh_status(hcd); 513 } 514 } 515 516 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 517 mod_timer(&xhci->comp_mode_recovery_timer, 518 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 519 } 520 521 /* 522 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 523 * that causes ports behind that hardware to enter compliance mode sometimes. 524 * The quirk creates a timer that polls every 2 seconds the link state of 525 * each host controller's port and recovers it by issuing a Warm reset 526 * if Compliance mode is detected, otherwise the port will become "dead" (no 527 * device connections or disconnections will be detected anymore). Becasue no 528 * status event is generated when entering compliance mode (per xhci spec), 529 * this quirk is needed on systems that have the failing hardware installed. 530 */ 531 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 532 { 533 xhci->port_status_u0 = 0; 534 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 535 0); 536 xhci->comp_mode_recovery_timer.expires = jiffies + 537 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 538 539 add_timer(&xhci->comp_mode_recovery_timer); 540 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 541 "Compliance mode recovery timer initialized"); 542 } 543 544 /* 545 * This function identifies the systems that have installed the SN65LVPE502CP 546 * USB3.0 re-driver and that need the Compliance Mode Quirk. 547 * Systems: 548 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 549 */ 550 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 551 { 552 const char *dmi_product_name, *dmi_sys_vendor; 553 554 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 555 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 556 if (!dmi_product_name || !dmi_sys_vendor) 557 return false; 558 559 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 560 return false; 561 562 if (strstr(dmi_product_name, "Z420") || 563 strstr(dmi_product_name, "Z620") || 564 strstr(dmi_product_name, "Z820") || 565 strstr(dmi_product_name, "Z1 Workstation")) 566 return true; 567 568 return false; 569 } 570 571 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 572 { 573 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 574 } 575 576 577 /* 578 * Initialize memory for HCD and xHC (one-time init). 579 * 580 * Program the PAGESIZE register, initialize the device context array, create 581 * device contexts (?), set up a command ring segment (or two?), create event 582 * ring (one for now). 583 */ 584 static int xhci_init(struct usb_hcd *hcd) 585 { 586 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 587 int retval; 588 589 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 590 spin_lock_init(&xhci->lock); 591 if (xhci->hci_version == 0x95 && link_quirk) { 592 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 593 "QUIRK: Not clearing Link TRB chain bits."); 594 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 595 } else { 596 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 597 "xHCI doesn't need link TRB QUIRK"); 598 } 599 retval = xhci_mem_init(xhci, GFP_KERNEL); 600 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 601 602 /* Initializing Compliance Mode Recovery Data If Needed */ 603 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 604 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 605 compliance_mode_recovery_timer_init(xhci); 606 } 607 608 return retval; 609 } 610 611 /*-------------------------------------------------------------------------*/ 612 613 614 static int xhci_run_finished(struct xhci_hcd *xhci) 615 { 616 unsigned long flags; 617 u32 temp; 618 619 /* 620 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 621 * Protect the short window before host is running with a lock 622 */ 623 spin_lock_irqsave(&xhci->lock, flags); 624 625 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 626 temp = readl(&xhci->op_regs->command); 627 temp |= (CMD_EIE); 628 writel(temp, &xhci->op_regs->command); 629 630 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 631 temp = readl(&xhci->ir_set->irq_pending); 632 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 633 634 if (xhci_start(xhci)) { 635 xhci_halt(xhci); 636 spin_unlock_irqrestore(&xhci->lock, flags); 637 return -ENODEV; 638 } 639 640 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 641 642 if (xhci->quirks & XHCI_NEC_HOST) 643 xhci_ring_cmd_db(xhci); 644 645 spin_unlock_irqrestore(&xhci->lock, flags); 646 647 return 0; 648 } 649 650 /* 651 * Start the HC after it was halted. 652 * 653 * This function is called by the USB core when the HC driver is added. 654 * Its opposite is xhci_stop(). 655 * 656 * xhci_init() must be called once before this function can be called. 657 * Reset the HC, enable device slot contexts, program DCBAAP, and 658 * set command ring pointer and event ring pointer. 659 * 660 * Setup MSI-X vectors and enable interrupts. 661 */ 662 int xhci_run(struct usb_hcd *hcd) 663 { 664 u32 temp; 665 u64 temp_64; 666 int ret; 667 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 668 669 /* Start the xHCI host controller running only after the USB 2.0 roothub 670 * is setup. 671 */ 672 673 hcd->uses_new_polling = 1; 674 if (!usb_hcd_is_primary_hcd(hcd)) 675 return xhci_run_finished(xhci); 676 677 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 678 679 ret = xhci_try_enable_msi(hcd); 680 if (ret) 681 return ret; 682 683 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 684 temp_64 &= ~ERST_PTR_MASK; 685 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 686 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 687 688 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 689 "// Set the interrupt modulation register"); 690 temp = readl(&xhci->ir_set->irq_control); 691 temp &= ~ER_IRQ_INTERVAL_MASK; 692 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 693 writel(temp, &xhci->ir_set->irq_control); 694 695 if (xhci->quirks & XHCI_NEC_HOST) { 696 struct xhci_command *command; 697 698 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 699 if (!command) 700 return -ENOMEM; 701 702 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 703 TRB_TYPE(TRB_NEC_GET_FW)); 704 if (ret) 705 xhci_free_command(xhci, command); 706 } 707 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 708 "Finished %s for main hcd", __func__); 709 710 xhci_create_dbc_dev(xhci); 711 712 xhci_debugfs_init(xhci); 713 714 if (xhci_has_one_roothub(xhci)) 715 return xhci_run_finished(xhci); 716 717 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 718 719 return 0; 720 } 721 EXPORT_SYMBOL_GPL(xhci_run); 722 723 /* 724 * Stop xHCI driver. 725 * 726 * This function is called by the USB core when the HC driver is removed. 727 * Its opposite is xhci_run(). 728 * 729 * Disable device contexts, disable IRQs, and quiesce the HC. 730 * Reset the HC, finish any completed transactions, and cleanup memory. 731 */ 732 static void xhci_stop(struct usb_hcd *hcd) 733 { 734 u32 temp; 735 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 736 737 mutex_lock(&xhci->mutex); 738 739 /* Only halt host and free memory after both hcds are removed */ 740 if (!usb_hcd_is_primary_hcd(hcd)) { 741 mutex_unlock(&xhci->mutex); 742 return; 743 } 744 745 xhci_remove_dbc_dev(xhci); 746 747 spin_lock_irq(&xhci->lock); 748 xhci->xhc_state |= XHCI_STATE_HALTED; 749 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 750 xhci_halt(xhci); 751 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 752 spin_unlock_irq(&xhci->lock); 753 754 xhci_cleanup_msix(xhci); 755 756 /* Deleting Compliance Mode Recovery Timer */ 757 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 758 (!(xhci_all_ports_seen_u0(xhci)))) { 759 del_timer_sync(&xhci->comp_mode_recovery_timer); 760 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 761 "%s: compliance mode recovery timer deleted", 762 __func__); 763 } 764 765 if (xhci->quirks & XHCI_AMD_PLL_FIX) 766 usb_amd_dev_put(); 767 768 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 769 "// Disabling event ring interrupts"); 770 temp = readl(&xhci->op_regs->status); 771 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 772 temp = readl(&xhci->ir_set->irq_pending); 773 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 774 775 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 776 xhci_mem_cleanup(xhci); 777 xhci_debugfs_exit(xhci); 778 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 779 "xhci_stop completed - status = %x", 780 readl(&xhci->op_regs->status)); 781 mutex_unlock(&xhci->mutex); 782 } 783 784 /* 785 * Shutdown HC (not bus-specific) 786 * 787 * This is called when the machine is rebooting or halting. We assume that the 788 * machine will be powered off, and the HC's internal state will be reset. 789 * Don't bother to free memory. 790 * 791 * This will only ever be called with the main usb_hcd (the USB3 roothub). 792 */ 793 void xhci_shutdown(struct usb_hcd *hcd) 794 { 795 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 796 797 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 798 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 799 800 /* Don't poll the roothubs after shutdown. */ 801 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 802 __func__, hcd->self.busnum); 803 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 804 del_timer_sync(&hcd->rh_timer); 805 806 if (xhci->shared_hcd) { 807 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 808 del_timer_sync(&xhci->shared_hcd->rh_timer); 809 } 810 811 spin_lock_irq(&xhci->lock); 812 xhci_halt(xhci); 813 /* Workaround for spurious wakeups at shutdown with HSW */ 814 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 815 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 816 spin_unlock_irq(&xhci->lock); 817 818 xhci_cleanup_msix(xhci); 819 820 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 821 "xhci_shutdown completed - status = %x", 822 readl(&xhci->op_regs->status)); 823 } 824 EXPORT_SYMBOL_GPL(xhci_shutdown); 825 826 #ifdef CONFIG_PM 827 static void xhci_save_registers(struct xhci_hcd *xhci) 828 { 829 xhci->s3.command = readl(&xhci->op_regs->command); 830 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 831 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 832 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 833 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 834 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 835 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 836 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 837 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 838 } 839 840 static void xhci_restore_registers(struct xhci_hcd *xhci) 841 { 842 writel(xhci->s3.command, &xhci->op_regs->command); 843 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 844 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 845 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 846 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 847 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 848 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 849 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 850 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 851 } 852 853 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 854 { 855 u64 val_64; 856 857 /* step 2: initialize command ring buffer */ 858 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 859 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 860 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 861 xhci->cmd_ring->dequeue) & 862 (u64) ~CMD_RING_RSVD_BITS) | 863 xhci->cmd_ring->cycle_state; 864 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 865 "// Setting command ring address to 0x%llx", 866 (long unsigned long) val_64); 867 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 868 } 869 870 /* 871 * The whole command ring must be cleared to zero when we suspend the host. 872 * 873 * The host doesn't save the command ring pointer in the suspend well, so we 874 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 875 * aligned, because of the reserved bits in the command ring dequeue pointer 876 * register. Therefore, we can't just set the dequeue pointer back in the 877 * middle of the ring (TRBs are 16-byte aligned). 878 */ 879 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 880 { 881 struct xhci_ring *ring; 882 struct xhci_segment *seg; 883 884 ring = xhci->cmd_ring; 885 seg = ring->deq_seg; 886 do { 887 memset(seg->trbs, 0, 888 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 889 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 890 cpu_to_le32(~TRB_CYCLE); 891 seg = seg->next; 892 } while (seg != ring->deq_seg); 893 894 /* Reset the software enqueue and dequeue pointers */ 895 ring->deq_seg = ring->first_seg; 896 ring->dequeue = ring->first_seg->trbs; 897 ring->enq_seg = ring->deq_seg; 898 ring->enqueue = ring->dequeue; 899 900 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 901 /* 902 * Ring is now zeroed, so the HW should look for change of ownership 903 * when the cycle bit is set to 1. 904 */ 905 ring->cycle_state = 1; 906 907 /* 908 * Reset the hardware dequeue pointer. 909 * Yes, this will need to be re-written after resume, but we're paranoid 910 * and want to make sure the hardware doesn't access bogus memory 911 * because, say, the BIOS or an SMI started the host without changing 912 * the command ring pointers. 913 */ 914 xhci_set_cmd_ring_deq(xhci); 915 } 916 917 /* 918 * Disable port wake bits if do_wakeup is not set. 919 * 920 * Also clear a possible internal port wake state left hanging for ports that 921 * detected termination but never successfully enumerated (trained to 0U). 922 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 923 * at enumeration clears this wake, force one here as well for unconnected ports 924 */ 925 926 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 927 struct xhci_hub *rhub, 928 bool do_wakeup) 929 { 930 unsigned long flags; 931 u32 t1, t2, portsc; 932 int i; 933 934 spin_lock_irqsave(&xhci->lock, flags); 935 936 for (i = 0; i < rhub->num_ports; i++) { 937 portsc = readl(rhub->ports[i]->addr); 938 t1 = xhci_port_state_to_neutral(portsc); 939 t2 = t1; 940 941 /* clear wake bits if do_wake is not set */ 942 if (!do_wakeup) 943 t2 &= ~PORT_WAKE_BITS; 944 945 /* Don't touch csc bit if connected or connect change is set */ 946 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 947 t2 |= PORT_CSC; 948 949 if (t1 != t2) { 950 writel(t2, rhub->ports[i]->addr); 951 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 952 rhub->hcd->self.busnum, i + 1, portsc, t2); 953 } 954 } 955 spin_unlock_irqrestore(&xhci->lock, flags); 956 } 957 958 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 959 { 960 struct xhci_port **ports; 961 int port_index; 962 u32 status; 963 u32 portsc; 964 965 status = readl(&xhci->op_regs->status); 966 if (status & STS_EINT) 967 return true; 968 /* 969 * Checking STS_EINT is not enough as there is a lag between a change 970 * bit being set and the Port Status Change Event that it generated 971 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 972 */ 973 974 port_index = xhci->usb2_rhub.num_ports; 975 ports = xhci->usb2_rhub.ports; 976 while (port_index--) { 977 portsc = readl(ports[port_index]->addr); 978 if (portsc & PORT_CHANGE_MASK || 979 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 980 return true; 981 } 982 port_index = xhci->usb3_rhub.num_ports; 983 ports = xhci->usb3_rhub.ports; 984 while (port_index--) { 985 portsc = readl(ports[port_index]->addr); 986 if (portsc & PORT_CHANGE_MASK || 987 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 988 return true; 989 } 990 return false; 991 } 992 993 /* 994 * Stop HC (not bus-specific) 995 * 996 * This is called when the machine transition into S3/S4 mode. 997 * 998 */ 999 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 1000 { 1001 int rc = 0; 1002 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 1003 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1004 u32 command; 1005 u32 res; 1006 1007 if (!hcd->state) 1008 return 0; 1009 1010 if (hcd->state != HC_STATE_SUSPENDED || 1011 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 1012 return -EINVAL; 1013 1014 /* Clear root port wake on bits if wakeup not allowed. */ 1015 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 1016 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 1017 1018 if (!HCD_HW_ACCESSIBLE(hcd)) 1019 return 0; 1020 1021 xhci_dbc_suspend(xhci); 1022 1023 /* Don't poll the roothubs on bus suspend. */ 1024 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 1025 __func__, hcd->self.busnum); 1026 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1027 del_timer_sync(&hcd->rh_timer); 1028 if (xhci->shared_hcd) { 1029 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1030 del_timer_sync(&xhci->shared_hcd->rh_timer); 1031 } 1032 1033 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1034 usleep_range(1000, 1500); 1035 1036 spin_lock_irq(&xhci->lock); 1037 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1038 if (xhci->shared_hcd) 1039 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1040 /* step 1: stop endpoint */ 1041 /* skipped assuming that port suspend has done */ 1042 1043 /* step 2: clear Run/Stop bit */ 1044 command = readl(&xhci->op_regs->command); 1045 command &= ~CMD_RUN; 1046 writel(command, &xhci->op_regs->command); 1047 1048 /* Some chips from Fresco Logic need an extraordinary delay */ 1049 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1050 1051 if (xhci_handshake(&xhci->op_regs->status, 1052 STS_HALT, STS_HALT, delay)) { 1053 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1054 spin_unlock_irq(&xhci->lock); 1055 return -ETIMEDOUT; 1056 } 1057 xhci_clear_command_ring(xhci); 1058 1059 /* step 3: save registers */ 1060 xhci_save_registers(xhci); 1061 1062 /* step 4: set CSS flag */ 1063 command = readl(&xhci->op_regs->command); 1064 command |= CMD_CSS; 1065 writel(command, &xhci->op_regs->command); 1066 xhci->broken_suspend = 0; 1067 if (xhci_handshake(&xhci->op_regs->status, 1068 STS_SAVE, 0, 20 * 1000)) { 1069 /* 1070 * AMD SNPS xHC 3.0 occasionally does not clear the 1071 * SSS bit of USBSTS and when driver tries to poll 1072 * to see if the xHC clears BIT(8) which never happens 1073 * and driver assumes that controller is not responding 1074 * and times out. To workaround this, its good to check 1075 * if SRE and HCE bits are not set (as per xhci 1076 * Section 5.4.2) and bypass the timeout. 1077 */ 1078 res = readl(&xhci->op_regs->status); 1079 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1080 (((res & STS_SRE) == 0) && 1081 ((res & STS_HCE) == 0))) { 1082 xhci->broken_suspend = 1; 1083 } else { 1084 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1085 spin_unlock_irq(&xhci->lock); 1086 return -ETIMEDOUT; 1087 } 1088 } 1089 spin_unlock_irq(&xhci->lock); 1090 1091 /* 1092 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1093 * is about to be suspended. 1094 */ 1095 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1096 (!(xhci_all_ports_seen_u0(xhci)))) { 1097 del_timer_sync(&xhci->comp_mode_recovery_timer); 1098 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1099 "%s: compliance mode recovery timer deleted", 1100 __func__); 1101 } 1102 1103 /* step 5: remove core well power */ 1104 /* synchronize irq when using MSI-X */ 1105 xhci_msix_sync_irqs(xhci); 1106 1107 return rc; 1108 } 1109 EXPORT_SYMBOL_GPL(xhci_suspend); 1110 1111 /* 1112 * start xHC (not bus-specific) 1113 * 1114 * This is called when the machine transition from S3/S4 mode. 1115 * 1116 */ 1117 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1118 { 1119 u32 command, temp = 0; 1120 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1121 int retval = 0; 1122 bool comp_timer_running = false; 1123 bool pending_portevent = false; 1124 bool reinit_xhc = false; 1125 1126 if (!hcd->state) 1127 return 0; 1128 1129 /* Wait a bit if either of the roothubs need to settle from the 1130 * transition into bus suspend. 1131 */ 1132 1133 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1134 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1135 msleep(100); 1136 1137 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1138 if (xhci->shared_hcd) 1139 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1140 1141 spin_lock_irq(&xhci->lock); 1142 1143 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1144 reinit_xhc = true; 1145 1146 if (!reinit_xhc) { 1147 /* 1148 * Some controllers might lose power during suspend, so wait 1149 * for controller not ready bit to clear, just as in xHC init. 1150 */ 1151 retval = xhci_handshake(&xhci->op_regs->status, 1152 STS_CNR, 0, 10 * 1000 * 1000); 1153 if (retval) { 1154 xhci_warn(xhci, "Controller not ready at resume %d\n", 1155 retval); 1156 spin_unlock_irq(&xhci->lock); 1157 return retval; 1158 } 1159 /* step 1: restore register */ 1160 xhci_restore_registers(xhci); 1161 /* step 2: initialize command ring buffer */ 1162 xhci_set_cmd_ring_deq(xhci); 1163 /* step 3: restore state and start state*/ 1164 /* step 3: set CRS flag */ 1165 command = readl(&xhci->op_regs->command); 1166 command |= CMD_CRS; 1167 writel(command, &xhci->op_regs->command); 1168 /* 1169 * Some controllers take up to 55+ ms to complete the controller 1170 * restore so setting the timeout to 100ms. Xhci specification 1171 * doesn't mention any timeout value. 1172 */ 1173 if (xhci_handshake(&xhci->op_regs->status, 1174 STS_RESTORE, 0, 100 * 1000)) { 1175 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1176 spin_unlock_irq(&xhci->lock); 1177 return -ETIMEDOUT; 1178 } 1179 } 1180 1181 temp = readl(&xhci->op_regs->status); 1182 1183 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1184 if (temp & (STS_SRE | STS_HCE)) { 1185 reinit_xhc = true; 1186 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1187 } 1188 1189 if (reinit_xhc) { 1190 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1191 !(xhci_all_ports_seen_u0(xhci))) { 1192 del_timer_sync(&xhci->comp_mode_recovery_timer); 1193 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1194 "Compliance Mode Recovery Timer deleted!"); 1195 } 1196 1197 /* Let the USB core know _both_ roothubs lost power. */ 1198 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1199 if (xhci->shared_hcd) 1200 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1201 1202 xhci_dbg(xhci, "Stop HCD\n"); 1203 xhci_halt(xhci); 1204 xhci_zero_64b_regs(xhci); 1205 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1206 spin_unlock_irq(&xhci->lock); 1207 if (retval) 1208 return retval; 1209 xhci_cleanup_msix(xhci); 1210 1211 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1212 temp = readl(&xhci->op_regs->status); 1213 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1214 temp = readl(&xhci->ir_set->irq_pending); 1215 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1216 1217 xhci_dbg(xhci, "cleaning up memory\n"); 1218 xhci_mem_cleanup(xhci); 1219 xhci_debugfs_exit(xhci); 1220 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1221 readl(&xhci->op_regs->status)); 1222 1223 /* USB core calls the PCI reinit and start functions twice: 1224 * first with the primary HCD, and then with the secondary HCD. 1225 * If we don't do the same, the host will never be started. 1226 */ 1227 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1228 retval = xhci_init(hcd); 1229 if (retval) 1230 return retval; 1231 comp_timer_running = true; 1232 1233 xhci_dbg(xhci, "Start the primary HCD\n"); 1234 retval = xhci_run(hcd); 1235 if (!retval && xhci->shared_hcd) { 1236 xhci_dbg(xhci, "Start the secondary HCD\n"); 1237 retval = xhci_run(xhci->shared_hcd); 1238 } 1239 1240 hcd->state = HC_STATE_SUSPENDED; 1241 if (xhci->shared_hcd) 1242 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1243 goto done; 1244 } 1245 1246 /* step 4: set Run/Stop bit */ 1247 command = readl(&xhci->op_regs->command); 1248 command |= CMD_RUN; 1249 writel(command, &xhci->op_regs->command); 1250 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1251 0, 250 * 1000); 1252 1253 /* step 5: walk topology and initialize portsc, 1254 * portpmsc and portli 1255 */ 1256 /* this is done in bus_resume */ 1257 1258 /* step 6: restart each of the previously 1259 * Running endpoints by ringing their doorbells 1260 */ 1261 1262 spin_unlock_irq(&xhci->lock); 1263 1264 xhci_dbc_resume(xhci); 1265 1266 done: 1267 if (retval == 0) { 1268 /* 1269 * Resume roothubs only if there are pending events. 1270 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1271 * the first wake signalling failed, give it that chance. 1272 */ 1273 pending_portevent = xhci_pending_portevent(xhci); 1274 if (!pending_portevent) { 1275 msleep(120); 1276 pending_portevent = xhci_pending_portevent(xhci); 1277 } 1278 1279 if (pending_portevent) { 1280 if (xhci->shared_hcd) 1281 usb_hcd_resume_root_hub(xhci->shared_hcd); 1282 usb_hcd_resume_root_hub(hcd); 1283 } 1284 } 1285 /* 1286 * If system is subject to the Quirk, Compliance Mode Timer needs to 1287 * be re-initialized Always after a system resume. Ports are subject 1288 * to suffer the Compliance Mode issue again. It doesn't matter if 1289 * ports have entered previously to U0 before system's suspension. 1290 */ 1291 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1292 compliance_mode_recovery_timer_init(xhci); 1293 1294 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1295 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1296 1297 /* Re-enable port polling. */ 1298 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1299 __func__, hcd->self.busnum); 1300 if (xhci->shared_hcd) { 1301 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1302 usb_hcd_poll_rh_status(xhci->shared_hcd); 1303 } 1304 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1305 usb_hcd_poll_rh_status(hcd); 1306 1307 return retval; 1308 } 1309 EXPORT_SYMBOL_GPL(xhci_resume); 1310 #endif /* CONFIG_PM */ 1311 1312 /*-------------------------------------------------------------------------*/ 1313 1314 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1315 { 1316 void *temp; 1317 int ret = 0; 1318 unsigned int buf_len; 1319 enum dma_data_direction dir; 1320 1321 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1322 buf_len = urb->transfer_buffer_length; 1323 1324 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1325 dev_to_node(hcd->self.sysdev)); 1326 1327 if (usb_urb_dir_out(urb)) 1328 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1329 temp, buf_len, 0); 1330 1331 urb->transfer_buffer = temp; 1332 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1333 urb->transfer_buffer, 1334 urb->transfer_buffer_length, 1335 dir); 1336 1337 if (dma_mapping_error(hcd->self.sysdev, 1338 urb->transfer_dma)) { 1339 ret = -EAGAIN; 1340 kfree(temp); 1341 } else { 1342 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1343 } 1344 1345 return ret; 1346 } 1347 1348 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1349 struct urb *urb) 1350 { 1351 bool ret = false; 1352 unsigned int i; 1353 unsigned int len = 0; 1354 unsigned int trb_size; 1355 unsigned int max_pkt; 1356 struct scatterlist *sg; 1357 struct scatterlist *tail_sg; 1358 1359 tail_sg = urb->sg; 1360 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1361 1362 if (!urb->num_sgs) 1363 return ret; 1364 1365 if (urb->dev->speed >= USB_SPEED_SUPER) 1366 trb_size = TRB_CACHE_SIZE_SS; 1367 else 1368 trb_size = TRB_CACHE_SIZE_HS; 1369 1370 if (urb->transfer_buffer_length != 0 && 1371 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1372 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1373 len = len + sg->length; 1374 if (i > trb_size - 2) { 1375 len = len - tail_sg->length; 1376 if (len < max_pkt) { 1377 ret = true; 1378 break; 1379 } 1380 1381 tail_sg = sg_next(tail_sg); 1382 } 1383 } 1384 } 1385 return ret; 1386 } 1387 1388 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1389 { 1390 unsigned int len; 1391 unsigned int buf_len; 1392 enum dma_data_direction dir; 1393 1394 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1395 1396 buf_len = urb->transfer_buffer_length; 1397 1398 if (IS_ENABLED(CONFIG_HAS_DMA) && 1399 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1400 dma_unmap_single(hcd->self.sysdev, 1401 urb->transfer_dma, 1402 urb->transfer_buffer_length, 1403 dir); 1404 1405 if (usb_urb_dir_in(urb)) { 1406 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1407 urb->transfer_buffer, 1408 buf_len, 1409 0); 1410 if (len != buf_len) { 1411 xhci_dbg(hcd_to_xhci(hcd), 1412 "Copy from tmp buf to urb sg list failed\n"); 1413 urb->actual_length = len; 1414 } 1415 } 1416 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1417 kfree(urb->transfer_buffer); 1418 urb->transfer_buffer = NULL; 1419 } 1420 1421 /* 1422 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1423 * we'll copy the actual data into the TRB address register. This is limited to 1424 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1425 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1426 */ 1427 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1428 gfp_t mem_flags) 1429 { 1430 struct xhci_hcd *xhci; 1431 1432 xhci = hcd_to_xhci(hcd); 1433 1434 if (xhci_urb_suitable_for_idt(urb)) 1435 return 0; 1436 1437 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1438 if (xhci_urb_temp_buffer_required(hcd, urb)) 1439 return xhci_map_temp_buffer(hcd, urb); 1440 } 1441 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1442 } 1443 1444 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1445 { 1446 struct xhci_hcd *xhci; 1447 bool unmap_temp_buf = false; 1448 1449 xhci = hcd_to_xhci(hcd); 1450 1451 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1452 unmap_temp_buf = true; 1453 1454 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1455 xhci_unmap_temp_buf(hcd, urb); 1456 else 1457 usb_hcd_unmap_urb_for_dma(hcd, urb); 1458 } 1459 1460 /** 1461 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1462 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1463 * value to right shift 1 for the bitmask. 1464 * 1465 * Index = (epnum * 2) + direction - 1, 1466 * where direction = 0 for OUT, 1 for IN. 1467 * For control endpoints, the IN index is used (OUT index is unused), so 1468 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1469 */ 1470 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1471 { 1472 unsigned int index; 1473 if (usb_endpoint_xfer_control(desc)) 1474 index = (unsigned int) (usb_endpoint_num(desc)*2); 1475 else 1476 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1477 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1478 return index; 1479 } 1480 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1481 1482 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1483 * address from the XHCI endpoint index. 1484 */ 1485 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1486 { 1487 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1488 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1489 return direction | number; 1490 } 1491 1492 /* Find the flag for this endpoint (for use in the control context). Use the 1493 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1494 * bit 1, etc. 1495 */ 1496 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1497 { 1498 return 1 << (xhci_get_endpoint_index(desc) + 1); 1499 } 1500 1501 /* Compute the last valid endpoint context index. Basically, this is the 1502 * endpoint index plus one. For slot contexts with more than valid endpoint, 1503 * we find the most significant bit set in the added contexts flags. 1504 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1505 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1506 */ 1507 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1508 { 1509 return fls(added_ctxs) - 1; 1510 } 1511 1512 /* Returns 1 if the arguments are OK; 1513 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1514 */ 1515 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1516 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1517 const char *func) { 1518 struct xhci_hcd *xhci; 1519 struct xhci_virt_device *virt_dev; 1520 1521 if (!hcd || (check_ep && !ep) || !udev) { 1522 pr_debug("xHCI %s called with invalid args\n", func); 1523 return -EINVAL; 1524 } 1525 if (!udev->parent) { 1526 pr_debug("xHCI %s called for root hub\n", func); 1527 return 0; 1528 } 1529 1530 xhci = hcd_to_xhci(hcd); 1531 if (check_virt_dev) { 1532 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1533 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1534 func); 1535 return -EINVAL; 1536 } 1537 1538 virt_dev = xhci->devs[udev->slot_id]; 1539 if (virt_dev->udev != udev) { 1540 xhci_dbg(xhci, "xHCI %s called with udev and " 1541 "virt_dev does not match\n", func); 1542 return -EINVAL; 1543 } 1544 } 1545 1546 if (xhci->xhc_state & XHCI_STATE_HALTED) 1547 return -ENODEV; 1548 1549 return 1; 1550 } 1551 1552 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1553 struct usb_device *udev, struct xhci_command *command, 1554 bool ctx_change, bool must_succeed); 1555 1556 /* 1557 * Full speed devices may have a max packet size greater than 8 bytes, but the 1558 * USB core doesn't know that until it reads the first 8 bytes of the 1559 * descriptor. If the usb_device's max packet size changes after that point, 1560 * we need to issue an evaluate context command and wait on it. 1561 */ 1562 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1563 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1564 { 1565 struct xhci_container_ctx *out_ctx; 1566 struct xhci_input_control_ctx *ctrl_ctx; 1567 struct xhci_ep_ctx *ep_ctx; 1568 struct xhci_command *command; 1569 int max_packet_size; 1570 int hw_max_packet_size; 1571 int ret = 0; 1572 1573 out_ctx = xhci->devs[slot_id]->out_ctx; 1574 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1575 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1576 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1577 if (hw_max_packet_size != max_packet_size) { 1578 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1579 "Max Packet Size for ep 0 changed."); 1580 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1581 "Max packet size in usb_device = %d", 1582 max_packet_size); 1583 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1584 "Max packet size in xHCI HW = %d", 1585 hw_max_packet_size); 1586 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1587 "Issuing evaluate context command."); 1588 1589 /* Set up the input context flags for the command */ 1590 /* FIXME: This won't work if a non-default control endpoint 1591 * changes max packet sizes. 1592 */ 1593 1594 command = xhci_alloc_command(xhci, true, mem_flags); 1595 if (!command) 1596 return -ENOMEM; 1597 1598 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1599 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1600 if (!ctrl_ctx) { 1601 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1602 __func__); 1603 ret = -ENOMEM; 1604 goto command_cleanup; 1605 } 1606 /* Set up the modified control endpoint 0 */ 1607 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1608 xhci->devs[slot_id]->out_ctx, ep_index); 1609 1610 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1611 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1612 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1613 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1614 1615 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1616 ctrl_ctx->drop_flags = 0; 1617 1618 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1619 true, false); 1620 1621 /* Clean up the input context for later use by bandwidth 1622 * functions. 1623 */ 1624 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1625 command_cleanup: 1626 kfree(command->completion); 1627 kfree(command); 1628 } 1629 return ret; 1630 } 1631 1632 /* 1633 * non-error returns are a promise to giveback() the urb later 1634 * we drop ownership so next owner (or urb unlink) can get it 1635 */ 1636 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1637 { 1638 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1639 unsigned long flags; 1640 int ret = 0; 1641 unsigned int slot_id, ep_index; 1642 unsigned int *ep_state; 1643 struct urb_priv *urb_priv; 1644 int num_tds; 1645 1646 if (!urb) 1647 return -EINVAL; 1648 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1649 true, true, __func__); 1650 if (ret <= 0) 1651 return ret ? ret : -EINVAL; 1652 1653 slot_id = urb->dev->slot_id; 1654 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1655 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1656 1657 if (!HCD_HW_ACCESSIBLE(hcd)) 1658 return -ESHUTDOWN; 1659 1660 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1661 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1662 return -ENODEV; 1663 } 1664 1665 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1666 num_tds = urb->number_of_packets; 1667 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1668 urb->transfer_buffer_length > 0 && 1669 urb->transfer_flags & URB_ZERO_PACKET && 1670 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1671 num_tds = 2; 1672 else 1673 num_tds = 1; 1674 1675 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1676 if (!urb_priv) 1677 return -ENOMEM; 1678 1679 urb_priv->num_tds = num_tds; 1680 urb_priv->num_tds_done = 0; 1681 urb->hcpriv = urb_priv; 1682 1683 trace_xhci_urb_enqueue(urb); 1684 1685 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1686 /* Check to see if the max packet size for the default control 1687 * endpoint changed during FS device enumeration 1688 */ 1689 if (urb->dev->speed == USB_SPEED_FULL) { 1690 ret = xhci_check_maxpacket(xhci, slot_id, 1691 ep_index, urb, mem_flags); 1692 if (ret < 0) { 1693 xhci_urb_free_priv(urb_priv); 1694 urb->hcpriv = NULL; 1695 return ret; 1696 } 1697 } 1698 } 1699 1700 spin_lock_irqsave(&xhci->lock, flags); 1701 1702 if (xhci->xhc_state & XHCI_STATE_DYING) { 1703 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1704 urb->ep->desc.bEndpointAddress, urb); 1705 ret = -ESHUTDOWN; 1706 goto free_priv; 1707 } 1708 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1709 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1710 *ep_state); 1711 ret = -EINVAL; 1712 goto free_priv; 1713 } 1714 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1715 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1716 ret = -EINVAL; 1717 goto free_priv; 1718 } 1719 1720 switch (usb_endpoint_type(&urb->ep->desc)) { 1721 1722 case USB_ENDPOINT_XFER_CONTROL: 1723 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1724 slot_id, ep_index); 1725 break; 1726 case USB_ENDPOINT_XFER_BULK: 1727 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1728 slot_id, ep_index); 1729 break; 1730 case USB_ENDPOINT_XFER_INT: 1731 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1732 slot_id, ep_index); 1733 break; 1734 case USB_ENDPOINT_XFER_ISOC: 1735 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1736 slot_id, ep_index); 1737 } 1738 1739 if (ret) { 1740 free_priv: 1741 xhci_urb_free_priv(urb_priv); 1742 urb->hcpriv = NULL; 1743 } 1744 spin_unlock_irqrestore(&xhci->lock, flags); 1745 return ret; 1746 } 1747 1748 /* 1749 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1750 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1751 * should pick up where it left off in the TD, unless a Set Transfer Ring 1752 * Dequeue Pointer is issued. 1753 * 1754 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1755 * the ring. Since the ring is a contiguous structure, they can't be physically 1756 * removed. Instead, there are two options: 1757 * 1758 * 1) If the HC is in the middle of processing the URB to be canceled, we 1759 * simply move the ring's dequeue pointer past those TRBs using the Set 1760 * Transfer Ring Dequeue Pointer command. This will be the common case, 1761 * when drivers timeout on the last submitted URB and attempt to cancel. 1762 * 1763 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1764 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1765 * HC will need to invalidate the any TRBs it has cached after the stop 1766 * endpoint command, as noted in the xHCI 0.95 errata. 1767 * 1768 * 3) The TD may have completed by the time the Stop Endpoint Command 1769 * completes, so software needs to handle that case too. 1770 * 1771 * This function should protect against the TD enqueueing code ringing the 1772 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1773 * It also needs to account for multiple cancellations on happening at the same 1774 * time for the same endpoint. 1775 * 1776 * Note that this function can be called in any context, or so says 1777 * usb_hcd_unlink_urb() 1778 */ 1779 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1780 { 1781 unsigned long flags; 1782 int ret, i; 1783 u32 temp; 1784 struct xhci_hcd *xhci; 1785 struct urb_priv *urb_priv; 1786 struct xhci_td *td; 1787 unsigned int ep_index; 1788 struct xhci_ring *ep_ring; 1789 struct xhci_virt_ep *ep; 1790 struct xhci_command *command; 1791 struct xhci_virt_device *vdev; 1792 1793 xhci = hcd_to_xhci(hcd); 1794 spin_lock_irqsave(&xhci->lock, flags); 1795 1796 trace_xhci_urb_dequeue(urb); 1797 1798 /* Make sure the URB hasn't completed or been unlinked already */ 1799 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1800 if (ret) 1801 goto done; 1802 1803 /* give back URB now if we can't queue it for cancel */ 1804 vdev = xhci->devs[urb->dev->slot_id]; 1805 urb_priv = urb->hcpriv; 1806 if (!vdev || !urb_priv) 1807 goto err_giveback; 1808 1809 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1810 ep = &vdev->eps[ep_index]; 1811 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1812 if (!ep || !ep_ring) 1813 goto err_giveback; 1814 1815 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1816 temp = readl(&xhci->op_regs->status); 1817 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1818 xhci_hc_died(xhci); 1819 goto done; 1820 } 1821 1822 /* 1823 * check ring is not re-allocated since URB was enqueued. If it is, then 1824 * make sure none of the ring related pointers in this URB private data 1825 * are touched, such as td_list, otherwise we overwrite freed data 1826 */ 1827 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1828 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1829 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1830 td = &urb_priv->td[i]; 1831 if (!list_empty(&td->cancelled_td_list)) 1832 list_del_init(&td->cancelled_td_list); 1833 } 1834 goto err_giveback; 1835 } 1836 1837 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1838 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1839 "HC halted, freeing TD manually."); 1840 for (i = urb_priv->num_tds_done; 1841 i < urb_priv->num_tds; 1842 i++) { 1843 td = &urb_priv->td[i]; 1844 if (!list_empty(&td->td_list)) 1845 list_del_init(&td->td_list); 1846 if (!list_empty(&td->cancelled_td_list)) 1847 list_del_init(&td->cancelled_td_list); 1848 } 1849 goto err_giveback; 1850 } 1851 1852 i = urb_priv->num_tds_done; 1853 if (i < urb_priv->num_tds) 1854 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1855 "Cancel URB %p, dev %s, ep 0x%x, " 1856 "starting at offset 0x%llx", 1857 urb, urb->dev->devpath, 1858 urb->ep->desc.bEndpointAddress, 1859 (unsigned long long) xhci_trb_virt_to_dma( 1860 urb_priv->td[i].start_seg, 1861 urb_priv->td[i].first_trb)); 1862 1863 for (; i < urb_priv->num_tds; i++) { 1864 td = &urb_priv->td[i]; 1865 /* TD can already be on cancelled list if ep halted on it */ 1866 if (list_empty(&td->cancelled_td_list)) { 1867 td->cancel_status = TD_DIRTY; 1868 list_add_tail(&td->cancelled_td_list, 1869 &ep->cancelled_td_list); 1870 } 1871 } 1872 1873 /* Queue a stop endpoint command, but only if this is 1874 * the first cancellation to be handled. 1875 */ 1876 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1877 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1878 if (!command) { 1879 ret = -ENOMEM; 1880 goto done; 1881 } 1882 ep->ep_state |= EP_STOP_CMD_PENDING; 1883 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1884 ep_index, 0); 1885 xhci_ring_cmd_db(xhci); 1886 } 1887 done: 1888 spin_unlock_irqrestore(&xhci->lock, flags); 1889 return ret; 1890 1891 err_giveback: 1892 if (urb_priv) 1893 xhci_urb_free_priv(urb_priv); 1894 usb_hcd_unlink_urb_from_ep(hcd, urb); 1895 spin_unlock_irqrestore(&xhci->lock, flags); 1896 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1897 return ret; 1898 } 1899 1900 /* Drop an endpoint from a new bandwidth configuration for this device. 1901 * Only one call to this function is allowed per endpoint before 1902 * check_bandwidth() or reset_bandwidth() must be called. 1903 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1904 * add the endpoint to the schedule with possibly new parameters denoted by a 1905 * different endpoint descriptor in usb_host_endpoint. 1906 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1907 * not allowed. 1908 * 1909 * The USB core will not allow URBs to be queued to an endpoint that is being 1910 * disabled, so there's no need for mutual exclusion to protect 1911 * the xhci->devs[slot_id] structure. 1912 */ 1913 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1914 struct usb_host_endpoint *ep) 1915 { 1916 struct xhci_hcd *xhci; 1917 struct xhci_container_ctx *in_ctx, *out_ctx; 1918 struct xhci_input_control_ctx *ctrl_ctx; 1919 unsigned int ep_index; 1920 struct xhci_ep_ctx *ep_ctx; 1921 u32 drop_flag; 1922 u32 new_add_flags, new_drop_flags; 1923 int ret; 1924 1925 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1926 if (ret <= 0) 1927 return ret; 1928 xhci = hcd_to_xhci(hcd); 1929 if (xhci->xhc_state & XHCI_STATE_DYING) 1930 return -ENODEV; 1931 1932 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1933 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1934 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1935 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1936 __func__, drop_flag); 1937 return 0; 1938 } 1939 1940 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1941 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1942 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1943 if (!ctrl_ctx) { 1944 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1945 __func__); 1946 return 0; 1947 } 1948 1949 ep_index = xhci_get_endpoint_index(&ep->desc); 1950 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1951 /* If the HC already knows the endpoint is disabled, 1952 * or the HCD has noted it is disabled, ignore this request 1953 */ 1954 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1955 le32_to_cpu(ctrl_ctx->drop_flags) & 1956 xhci_get_endpoint_flag(&ep->desc)) { 1957 /* Do not warn when called after a usb_device_reset */ 1958 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1959 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1960 __func__, ep); 1961 return 0; 1962 } 1963 1964 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1965 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1966 1967 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1968 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1969 1970 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1971 1972 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1973 1974 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1975 (unsigned int) ep->desc.bEndpointAddress, 1976 udev->slot_id, 1977 (unsigned int) new_drop_flags, 1978 (unsigned int) new_add_flags); 1979 return 0; 1980 } 1981 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1982 1983 /* Add an endpoint to a new possible bandwidth configuration for this device. 1984 * Only one call to this function is allowed per endpoint before 1985 * check_bandwidth() or reset_bandwidth() must be called. 1986 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1987 * add the endpoint to the schedule with possibly new parameters denoted by a 1988 * different endpoint descriptor in usb_host_endpoint. 1989 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1990 * not allowed. 1991 * 1992 * The USB core will not allow URBs to be queued to an endpoint until the 1993 * configuration or alt setting is installed in the device, so there's no need 1994 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1995 */ 1996 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1997 struct usb_host_endpoint *ep) 1998 { 1999 struct xhci_hcd *xhci; 2000 struct xhci_container_ctx *in_ctx; 2001 unsigned int ep_index; 2002 struct xhci_input_control_ctx *ctrl_ctx; 2003 struct xhci_ep_ctx *ep_ctx; 2004 u32 added_ctxs; 2005 u32 new_add_flags, new_drop_flags; 2006 struct xhci_virt_device *virt_dev; 2007 int ret = 0; 2008 2009 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 2010 if (ret <= 0) { 2011 /* So we won't queue a reset ep command for a root hub */ 2012 ep->hcpriv = NULL; 2013 return ret; 2014 } 2015 xhci = hcd_to_xhci(hcd); 2016 if (xhci->xhc_state & XHCI_STATE_DYING) 2017 return -ENODEV; 2018 2019 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 2020 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 2021 /* FIXME when we have to issue an evaluate endpoint command to 2022 * deal with ep0 max packet size changing once we get the 2023 * descriptors 2024 */ 2025 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 2026 __func__, added_ctxs); 2027 return 0; 2028 } 2029 2030 virt_dev = xhci->devs[udev->slot_id]; 2031 in_ctx = virt_dev->in_ctx; 2032 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2033 if (!ctrl_ctx) { 2034 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2035 __func__); 2036 return 0; 2037 } 2038 2039 ep_index = xhci_get_endpoint_index(&ep->desc); 2040 /* If this endpoint is already in use, and the upper layers are trying 2041 * to add it again without dropping it, reject the addition. 2042 */ 2043 if (virt_dev->eps[ep_index].ring && 2044 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 2045 xhci_warn(xhci, "Trying to add endpoint 0x%x " 2046 "without dropping it.\n", 2047 (unsigned int) ep->desc.bEndpointAddress); 2048 return -EINVAL; 2049 } 2050 2051 /* If the HCD has already noted the endpoint is enabled, 2052 * ignore this request. 2053 */ 2054 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2055 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2056 __func__, ep); 2057 return 0; 2058 } 2059 2060 /* 2061 * Configuration and alternate setting changes must be done in 2062 * process context, not interrupt context (or so documenation 2063 * for usb_set_interface() and usb_set_configuration() claim). 2064 */ 2065 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2066 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2067 __func__, ep->desc.bEndpointAddress); 2068 return -ENOMEM; 2069 } 2070 2071 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2072 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2073 2074 /* If xhci_endpoint_disable() was called for this endpoint, but the 2075 * xHC hasn't been notified yet through the check_bandwidth() call, 2076 * this re-adds a new state for the endpoint from the new endpoint 2077 * descriptors. We must drop and re-add this endpoint, so we leave the 2078 * drop flags alone. 2079 */ 2080 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2081 2082 /* Store the usb_device pointer for later use */ 2083 ep->hcpriv = udev; 2084 2085 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2086 trace_xhci_add_endpoint(ep_ctx); 2087 2088 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2089 (unsigned int) ep->desc.bEndpointAddress, 2090 udev->slot_id, 2091 (unsigned int) new_drop_flags, 2092 (unsigned int) new_add_flags); 2093 return 0; 2094 } 2095 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2096 2097 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2098 { 2099 struct xhci_input_control_ctx *ctrl_ctx; 2100 struct xhci_ep_ctx *ep_ctx; 2101 struct xhci_slot_ctx *slot_ctx; 2102 int i; 2103 2104 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2105 if (!ctrl_ctx) { 2106 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2107 __func__); 2108 return; 2109 } 2110 2111 /* When a device's add flag and drop flag are zero, any subsequent 2112 * configure endpoint command will leave that endpoint's state 2113 * untouched. Make sure we don't leave any old state in the input 2114 * endpoint contexts. 2115 */ 2116 ctrl_ctx->drop_flags = 0; 2117 ctrl_ctx->add_flags = 0; 2118 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2119 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2120 /* Endpoint 0 is always valid */ 2121 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2122 for (i = 1; i < 31; i++) { 2123 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2124 ep_ctx->ep_info = 0; 2125 ep_ctx->ep_info2 = 0; 2126 ep_ctx->deq = 0; 2127 ep_ctx->tx_info = 0; 2128 } 2129 } 2130 2131 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2132 struct usb_device *udev, u32 *cmd_status) 2133 { 2134 int ret; 2135 2136 switch (*cmd_status) { 2137 case COMP_COMMAND_ABORTED: 2138 case COMP_COMMAND_RING_STOPPED: 2139 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2140 ret = -ETIME; 2141 break; 2142 case COMP_RESOURCE_ERROR: 2143 dev_warn(&udev->dev, 2144 "Not enough host controller resources for new device state.\n"); 2145 ret = -ENOMEM; 2146 /* FIXME: can we allocate more resources for the HC? */ 2147 break; 2148 case COMP_BANDWIDTH_ERROR: 2149 case COMP_SECONDARY_BANDWIDTH_ERROR: 2150 dev_warn(&udev->dev, 2151 "Not enough bandwidth for new device state.\n"); 2152 ret = -ENOSPC; 2153 /* FIXME: can we go back to the old state? */ 2154 break; 2155 case COMP_TRB_ERROR: 2156 /* the HCD set up something wrong */ 2157 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2158 "add flag = 1, " 2159 "and endpoint is not disabled.\n"); 2160 ret = -EINVAL; 2161 break; 2162 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2163 dev_warn(&udev->dev, 2164 "ERROR: Incompatible device for endpoint configure command.\n"); 2165 ret = -ENODEV; 2166 break; 2167 case COMP_SUCCESS: 2168 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2169 "Successful Endpoint Configure command"); 2170 ret = 0; 2171 break; 2172 default: 2173 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2174 *cmd_status); 2175 ret = -EINVAL; 2176 break; 2177 } 2178 return ret; 2179 } 2180 2181 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2182 struct usb_device *udev, u32 *cmd_status) 2183 { 2184 int ret; 2185 2186 switch (*cmd_status) { 2187 case COMP_COMMAND_ABORTED: 2188 case COMP_COMMAND_RING_STOPPED: 2189 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2190 ret = -ETIME; 2191 break; 2192 case COMP_PARAMETER_ERROR: 2193 dev_warn(&udev->dev, 2194 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2195 ret = -EINVAL; 2196 break; 2197 case COMP_SLOT_NOT_ENABLED_ERROR: 2198 dev_warn(&udev->dev, 2199 "WARN: slot not enabled for evaluate context command.\n"); 2200 ret = -EINVAL; 2201 break; 2202 case COMP_CONTEXT_STATE_ERROR: 2203 dev_warn(&udev->dev, 2204 "WARN: invalid context state for evaluate context command.\n"); 2205 ret = -EINVAL; 2206 break; 2207 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2208 dev_warn(&udev->dev, 2209 "ERROR: Incompatible device for evaluate context command.\n"); 2210 ret = -ENODEV; 2211 break; 2212 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2213 /* Max Exit Latency too large error */ 2214 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2215 ret = -EINVAL; 2216 break; 2217 case COMP_SUCCESS: 2218 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2219 "Successful evaluate context command"); 2220 ret = 0; 2221 break; 2222 default: 2223 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2224 *cmd_status); 2225 ret = -EINVAL; 2226 break; 2227 } 2228 return ret; 2229 } 2230 2231 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2232 struct xhci_input_control_ctx *ctrl_ctx) 2233 { 2234 u32 valid_add_flags; 2235 u32 valid_drop_flags; 2236 2237 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2238 * (bit 1). The default control endpoint is added during the Address 2239 * Device command and is never removed until the slot is disabled. 2240 */ 2241 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2242 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2243 2244 /* Use hweight32 to count the number of ones in the add flags, or 2245 * number of endpoints added. Don't count endpoints that are changed 2246 * (both added and dropped). 2247 */ 2248 return hweight32(valid_add_flags) - 2249 hweight32(valid_add_flags & valid_drop_flags); 2250 } 2251 2252 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2253 struct xhci_input_control_ctx *ctrl_ctx) 2254 { 2255 u32 valid_add_flags; 2256 u32 valid_drop_flags; 2257 2258 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2259 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2260 2261 return hweight32(valid_drop_flags) - 2262 hweight32(valid_add_flags & valid_drop_flags); 2263 } 2264 2265 /* 2266 * We need to reserve the new number of endpoints before the configure endpoint 2267 * command completes. We can't subtract the dropped endpoints from the number 2268 * of active endpoints until the command completes because we can oversubscribe 2269 * the host in this case: 2270 * 2271 * - the first configure endpoint command drops more endpoints than it adds 2272 * - a second configure endpoint command that adds more endpoints is queued 2273 * - the first configure endpoint command fails, so the config is unchanged 2274 * - the second command may succeed, even though there isn't enough resources 2275 * 2276 * Must be called with xhci->lock held. 2277 */ 2278 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2279 struct xhci_input_control_ctx *ctrl_ctx) 2280 { 2281 u32 added_eps; 2282 2283 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2284 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2285 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2286 "Not enough ep ctxs: " 2287 "%u active, need to add %u, limit is %u.", 2288 xhci->num_active_eps, added_eps, 2289 xhci->limit_active_eps); 2290 return -ENOMEM; 2291 } 2292 xhci->num_active_eps += added_eps; 2293 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2294 "Adding %u ep ctxs, %u now active.", added_eps, 2295 xhci->num_active_eps); 2296 return 0; 2297 } 2298 2299 /* 2300 * The configure endpoint was failed by the xHC for some other reason, so we 2301 * need to revert the resources that failed configuration would have used. 2302 * 2303 * Must be called with xhci->lock held. 2304 */ 2305 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2306 struct xhci_input_control_ctx *ctrl_ctx) 2307 { 2308 u32 num_failed_eps; 2309 2310 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2311 xhci->num_active_eps -= num_failed_eps; 2312 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2313 "Removing %u failed ep ctxs, %u now active.", 2314 num_failed_eps, 2315 xhci->num_active_eps); 2316 } 2317 2318 /* 2319 * Now that the command has completed, clean up the active endpoint count by 2320 * subtracting out the endpoints that were dropped (but not changed). 2321 * 2322 * Must be called with xhci->lock held. 2323 */ 2324 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2325 struct xhci_input_control_ctx *ctrl_ctx) 2326 { 2327 u32 num_dropped_eps; 2328 2329 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2330 xhci->num_active_eps -= num_dropped_eps; 2331 if (num_dropped_eps) 2332 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2333 "Removing %u dropped ep ctxs, %u now active.", 2334 num_dropped_eps, 2335 xhci->num_active_eps); 2336 } 2337 2338 static unsigned int xhci_get_block_size(struct usb_device *udev) 2339 { 2340 switch (udev->speed) { 2341 case USB_SPEED_LOW: 2342 case USB_SPEED_FULL: 2343 return FS_BLOCK; 2344 case USB_SPEED_HIGH: 2345 return HS_BLOCK; 2346 case USB_SPEED_SUPER: 2347 case USB_SPEED_SUPER_PLUS: 2348 return SS_BLOCK; 2349 case USB_SPEED_UNKNOWN: 2350 case USB_SPEED_WIRELESS: 2351 default: 2352 /* Should never happen */ 2353 return 1; 2354 } 2355 } 2356 2357 static unsigned int 2358 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2359 { 2360 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2361 return LS_OVERHEAD; 2362 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2363 return FS_OVERHEAD; 2364 return HS_OVERHEAD; 2365 } 2366 2367 /* If we are changing a LS/FS device under a HS hub, 2368 * make sure (if we are activating a new TT) that the HS bus has enough 2369 * bandwidth for this new TT. 2370 */ 2371 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2372 struct xhci_virt_device *virt_dev, 2373 int old_active_eps) 2374 { 2375 struct xhci_interval_bw_table *bw_table; 2376 struct xhci_tt_bw_info *tt_info; 2377 2378 /* Find the bandwidth table for the root port this TT is attached to. */ 2379 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2380 tt_info = virt_dev->tt_info; 2381 /* If this TT already had active endpoints, the bandwidth for this TT 2382 * has already been added. Removing all periodic endpoints (and thus 2383 * making the TT enactive) will only decrease the bandwidth used. 2384 */ 2385 if (old_active_eps) 2386 return 0; 2387 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2388 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2389 return -ENOMEM; 2390 return 0; 2391 } 2392 /* Not sure why we would have no new active endpoints... 2393 * 2394 * Maybe because of an Evaluate Context change for a hub update or a 2395 * control endpoint 0 max packet size change? 2396 * FIXME: skip the bandwidth calculation in that case. 2397 */ 2398 return 0; 2399 } 2400 2401 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2402 struct xhci_virt_device *virt_dev) 2403 { 2404 unsigned int bw_reserved; 2405 2406 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2407 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2408 return -ENOMEM; 2409 2410 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2411 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2412 return -ENOMEM; 2413 2414 return 0; 2415 } 2416 2417 /* 2418 * This algorithm is a very conservative estimate of the worst-case scheduling 2419 * scenario for any one interval. The hardware dynamically schedules the 2420 * packets, so we can't tell which microframe could be the limiting factor in 2421 * the bandwidth scheduling. This only takes into account periodic endpoints. 2422 * 2423 * Obviously, we can't solve an NP complete problem to find the minimum worst 2424 * case scenario. Instead, we come up with an estimate that is no less than 2425 * the worst case bandwidth used for any one microframe, but may be an 2426 * over-estimate. 2427 * 2428 * We walk the requirements for each endpoint by interval, starting with the 2429 * smallest interval, and place packets in the schedule where there is only one 2430 * possible way to schedule packets for that interval. In order to simplify 2431 * this algorithm, we record the largest max packet size for each interval, and 2432 * assume all packets will be that size. 2433 * 2434 * For interval 0, we obviously must schedule all packets for each interval. 2435 * The bandwidth for interval 0 is just the amount of data to be transmitted 2436 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2437 * the number of packets). 2438 * 2439 * For interval 1, we have two possible microframes to schedule those packets 2440 * in. For this algorithm, if we can schedule the same number of packets for 2441 * each possible scheduling opportunity (each microframe), we will do so. The 2442 * remaining number of packets will be saved to be transmitted in the gaps in 2443 * the next interval's scheduling sequence. 2444 * 2445 * As we move those remaining packets to be scheduled with interval 2 packets, 2446 * we have to double the number of remaining packets to transmit. This is 2447 * because the intervals are actually powers of 2, and we would be transmitting 2448 * the previous interval's packets twice in this interval. We also have to be 2449 * sure that when we look at the largest max packet size for this interval, we 2450 * also look at the largest max packet size for the remaining packets and take 2451 * the greater of the two. 2452 * 2453 * The algorithm continues to evenly distribute packets in each scheduling 2454 * opportunity, and push the remaining packets out, until we get to the last 2455 * interval. Then those packets and their associated overhead are just added 2456 * to the bandwidth used. 2457 */ 2458 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2459 struct xhci_virt_device *virt_dev, 2460 int old_active_eps) 2461 { 2462 unsigned int bw_reserved; 2463 unsigned int max_bandwidth; 2464 unsigned int bw_used; 2465 unsigned int block_size; 2466 struct xhci_interval_bw_table *bw_table; 2467 unsigned int packet_size = 0; 2468 unsigned int overhead = 0; 2469 unsigned int packets_transmitted = 0; 2470 unsigned int packets_remaining = 0; 2471 unsigned int i; 2472 2473 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2474 return xhci_check_ss_bw(xhci, virt_dev); 2475 2476 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2477 max_bandwidth = HS_BW_LIMIT; 2478 /* Convert percent of bus BW reserved to blocks reserved */ 2479 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2480 } else { 2481 max_bandwidth = FS_BW_LIMIT; 2482 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2483 } 2484 2485 bw_table = virt_dev->bw_table; 2486 /* We need to translate the max packet size and max ESIT payloads into 2487 * the units the hardware uses. 2488 */ 2489 block_size = xhci_get_block_size(virt_dev->udev); 2490 2491 /* If we are manipulating a LS/FS device under a HS hub, double check 2492 * that the HS bus has enough bandwidth if we are activing a new TT. 2493 */ 2494 if (virt_dev->tt_info) { 2495 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2496 "Recalculating BW for rootport %u", 2497 virt_dev->real_port); 2498 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2499 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2500 "newly activated TT.\n"); 2501 return -ENOMEM; 2502 } 2503 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2504 "Recalculating BW for TT slot %u port %u", 2505 virt_dev->tt_info->slot_id, 2506 virt_dev->tt_info->ttport); 2507 } else { 2508 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2509 "Recalculating BW for rootport %u", 2510 virt_dev->real_port); 2511 } 2512 2513 /* Add in how much bandwidth will be used for interval zero, or the 2514 * rounded max ESIT payload + number of packets * largest overhead. 2515 */ 2516 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2517 bw_table->interval_bw[0].num_packets * 2518 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2519 2520 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2521 unsigned int bw_added; 2522 unsigned int largest_mps; 2523 unsigned int interval_overhead; 2524 2525 /* 2526 * How many packets could we transmit in this interval? 2527 * If packets didn't fit in the previous interval, we will need 2528 * to transmit that many packets twice within this interval. 2529 */ 2530 packets_remaining = 2 * packets_remaining + 2531 bw_table->interval_bw[i].num_packets; 2532 2533 /* Find the largest max packet size of this or the previous 2534 * interval. 2535 */ 2536 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2537 largest_mps = 0; 2538 else { 2539 struct xhci_virt_ep *virt_ep; 2540 struct list_head *ep_entry; 2541 2542 ep_entry = bw_table->interval_bw[i].endpoints.next; 2543 virt_ep = list_entry(ep_entry, 2544 struct xhci_virt_ep, bw_endpoint_list); 2545 /* Convert to blocks, rounding up */ 2546 largest_mps = DIV_ROUND_UP( 2547 virt_ep->bw_info.max_packet_size, 2548 block_size); 2549 } 2550 if (largest_mps > packet_size) 2551 packet_size = largest_mps; 2552 2553 /* Use the larger overhead of this or the previous interval. */ 2554 interval_overhead = xhci_get_largest_overhead( 2555 &bw_table->interval_bw[i]); 2556 if (interval_overhead > overhead) 2557 overhead = interval_overhead; 2558 2559 /* How many packets can we evenly distribute across 2560 * (1 << (i + 1)) possible scheduling opportunities? 2561 */ 2562 packets_transmitted = packets_remaining >> (i + 1); 2563 2564 /* Add in the bandwidth used for those scheduled packets */ 2565 bw_added = packets_transmitted * (overhead + packet_size); 2566 2567 /* How many packets do we have remaining to transmit? */ 2568 packets_remaining = packets_remaining % (1 << (i + 1)); 2569 2570 /* What largest max packet size should those packets have? */ 2571 /* If we've transmitted all packets, don't carry over the 2572 * largest packet size. 2573 */ 2574 if (packets_remaining == 0) { 2575 packet_size = 0; 2576 overhead = 0; 2577 } else if (packets_transmitted > 0) { 2578 /* Otherwise if we do have remaining packets, and we've 2579 * scheduled some packets in this interval, take the 2580 * largest max packet size from endpoints with this 2581 * interval. 2582 */ 2583 packet_size = largest_mps; 2584 overhead = interval_overhead; 2585 } 2586 /* Otherwise carry over packet_size and overhead from the last 2587 * time we had a remainder. 2588 */ 2589 bw_used += bw_added; 2590 if (bw_used > max_bandwidth) { 2591 xhci_warn(xhci, "Not enough bandwidth. " 2592 "Proposed: %u, Max: %u\n", 2593 bw_used, max_bandwidth); 2594 return -ENOMEM; 2595 } 2596 } 2597 /* 2598 * Ok, we know we have some packets left over after even-handedly 2599 * scheduling interval 15. We don't know which microframes they will 2600 * fit into, so we over-schedule and say they will be scheduled every 2601 * microframe. 2602 */ 2603 if (packets_remaining > 0) 2604 bw_used += overhead + packet_size; 2605 2606 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2607 unsigned int port_index = virt_dev->real_port - 1; 2608 2609 /* OK, we're manipulating a HS device attached to a 2610 * root port bandwidth domain. Include the number of active TTs 2611 * in the bandwidth used. 2612 */ 2613 bw_used += TT_HS_OVERHEAD * 2614 xhci->rh_bw[port_index].num_active_tts; 2615 } 2616 2617 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2618 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2619 "Available: %u " "percent", 2620 bw_used, max_bandwidth, bw_reserved, 2621 (max_bandwidth - bw_used - bw_reserved) * 100 / 2622 max_bandwidth); 2623 2624 bw_used += bw_reserved; 2625 if (bw_used > max_bandwidth) { 2626 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2627 bw_used, max_bandwidth); 2628 return -ENOMEM; 2629 } 2630 2631 bw_table->bw_used = bw_used; 2632 return 0; 2633 } 2634 2635 static bool xhci_is_async_ep(unsigned int ep_type) 2636 { 2637 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2638 ep_type != ISOC_IN_EP && 2639 ep_type != INT_IN_EP); 2640 } 2641 2642 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2643 { 2644 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2645 } 2646 2647 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2648 { 2649 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2650 2651 if (ep_bw->ep_interval == 0) 2652 return SS_OVERHEAD_BURST + 2653 (ep_bw->mult * ep_bw->num_packets * 2654 (SS_OVERHEAD + mps)); 2655 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2656 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2657 1 << ep_bw->ep_interval); 2658 2659 } 2660 2661 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2662 struct xhci_bw_info *ep_bw, 2663 struct xhci_interval_bw_table *bw_table, 2664 struct usb_device *udev, 2665 struct xhci_virt_ep *virt_ep, 2666 struct xhci_tt_bw_info *tt_info) 2667 { 2668 struct xhci_interval_bw *interval_bw; 2669 int normalized_interval; 2670 2671 if (xhci_is_async_ep(ep_bw->type)) 2672 return; 2673 2674 if (udev->speed >= USB_SPEED_SUPER) { 2675 if (xhci_is_sync_in_ep(ep_bw->type)) 2676 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2677 xhci_get_ss_bw_consumed(ep_bw); 2678 else 2679 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2680 xhci_get_ss_bw_consumed(ep_bw); 2681 return; 2682 } 2683 2684 /* SuperSpeed endpoints never get added to intervals in the table, so 2685 * this check is only valid for HS/FS/LS devices. 2686 */ 2687 if (list_empty(&virt_ep->bw_endpoint_list)) 2688 return; 2689 /* For LS/FS devices, we need to translate the interval expressed in 2690 * microframes to frames. 2691 */ 2692 if (udev->speed == USB_SPEED_HIGH) 2693 normalized_interval = ep_bw->ep_interval; 2694 else 2695 normalized_interval = ep_bw->ep_interval - 3; 2696 2697 if (normalized_interval == 0) 2698 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2699 interval_bw = &bw_table->interval_bw[normalized_interval]; 2700 interval_bw->num_packets -= ep_bw->num_packets; 2701 switch (udev->speed) { 2702 case USB_SPEED_LOW: 2703 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2704 break; 2705 case USB_SPEED_FULL: 2706 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2707 break; 2708 case USB_SPEED_HIGH: 2709 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2710 break; 2711 case USB_SPEED_SUPER: 2712 case USB_SPEED_SUPER_PLUS: 2713 case USB_SPEED_UNKNOWN: 2714 case USB_SPEED_WIRELESS: 2715 /* Should never happen because only LS/FS/HS endpoints will get 2716 * added to the endpoint list. 2717 */ 2718 return; 2719 } 2720 if (tt_info) 2721 tt_info->active_eps -= 1; 2722 list_del_init(&virt_ep->bw_endpoint_list); 2723 } 2724 2725 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2726 struct xhci_bw_info *ep_bw, 2727 struct xhci_interval_bw_table *bw_table, 2728 struct usb_device *udev, 2729 struct xhci_virt_ep *virt_ep, 2730 struct xhci_tt_bw_info *tt_info) 2731 { 2732 struct xhci_interval_bw *interval_bw; 2733 struct xhci_virt_ep *smaller_ep; 2734 int normalized_interval; 2735 2736 if (xhci_is_async_ep(ep_bw->type)) 2737 return; 2738 2739 if (udev->speed == USB_SPEED_SUPER) { 2740 if (xhci_is_sync_in_ep(ep_bw->type)) 2741 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2742 xhci_get_ss_bw_consumed(ep_bw); 2743 else 2744 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2745 xhci_get_ss_bw_consumed(ep_bw); 2746 return; 2747 } 2748 2749 /* For LS/FS devices, we need to translate the interval expressed in 2750 * microframes to frames. 2751 */ 2752 if (udev->speed == USB_SPEED_HIGH) 2753 normalized_interval = ep_bw->ep_interval; 2754 else 2755 normalized_interval = ep_bw->ep_interval - 3; 2756 2757 if (normalized_interval == 0) 2758 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2759 interval_bw = &bw_table->interval_bw[normalized_interval]; 2760 interval_bw->num_packets += ep_bw->num_packets; 2761 switch (udev->speed) { 2762 case USB_SPEED_LOW: 2763 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2764 break; 2765 case USB_SPEED_FULL: 2766 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2767 break; 2768 case USB_SPEED_HIGH: 2769 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2770 break; 2771 case USB_SPEED_SUPER: 2772 case USB_SPEED_SUPER_PLUS: 2773 case USB_SPEED_UNKNOWN: 2774 case USB_SPEED_WIRELESS: 2775 /* Should never happen because only LS/FS/HS endpoints will get 2776 * added to the endpoint list. 2777 */ 2778 return; 2779 } 2780 2781 if (tt_info) 2782 tt_info->active_eps += 1; 2783 /* Insert the endpoint into the list, largest max packet size first. */ 2784 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2785 bw_endpoint_list) { 2786 if (ep_bw->max_packet_size >= 2787 smaller_ep->bw_info.max_packet_size) { 2788 /* Add the new ep before the smaller endpoint */ 2789 list_add_tail(&virt_ep->bw_endpoint_list, 2790 &smaller_ep->bw_endpoint_list); 2791 return; 2792 } 2793 } 2794 /* Add the new endpoint at the end of the list. */ 2795 list_add_tail(&virt_ep->bw_endpoint_list, 2796 &interval_bw->endpoints); 2797 } 2798 2799 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2800 struct xhci_virt_device *virt_dev, 2801 int old_active_eps) 2802 { 2803 struct xhci_root_port_bw_info *rh_bw_info; 2804 if (!virt_dev->tt_info) 2805 return; 2806 2807 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2808 if (old_active_eps == 0 && 2809 virt_dev->tt_info->active_eps != 0) { 2810 rh_bw_info->num_active_tts += 1; 2811 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2812 } else if (old_active_eps != 0 && 2813 virt_dev->tt_info->active_eps == 0) { 2814 rh_bw_info->num_active_tts -= 1; 2815 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2816 } 2817 } 2818 2819 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2820 struct xhci_virt_device *virt_dev, 2821 struct xhci_container_ctx *in_ctx) 2822 { 2823 struct xhci_bw_info ep_bw_info[31]; 2824 int i; 2825 struct xhci_input_control_ctx *ctrl_ctx; 2826 int old_active_eps = 0; 2827 2828 if (virt_dev->tt_info) 2829 old_active_eps = virt_dev->tt_info->active_eps; 2830 2831 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2832 if (!ctrl_ctx) { 2833 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2834 __func__); 2835 return -ENOMEM; 2836 } 2837 2838 for (i = 0; i < 31; i++) { 2839 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2840 continue; 2841 2842 /* Make a copy of the BW info in case we need to revert this */ 2843 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2844 sizeof(ep_bw_info[i])); 2845 /* Drop the endpoint from the interval table if the endpoint is 2846 * being dropped or changed. 2847 */ 2848 if (EP_IS_DROPPED(ctrl_ctx, i)) 2849 xhci_drop_ep_from_interval_table(xhci, 2850 &virt_dev->eps[i].bw_info, 2851 virt_dev->bw_table, 2852 virt_dev->udev, 2853 &virt_dev->eps[i], 2854 virt_dev->tt_info); 2855 } 2856 /* Overwrite the information stored in the endpoints' bw_info */ 2857 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2858 for (i = 0; i < 31; i++) { 2859 /* Add any changed or added endpoints to the interval table */ 2860 if (EP_IS_ADDED(ctrl_ctx, i)) 2861 xhci_add_ep_to_interval_table(xhci, 2862 &virt_dev->eps[i].bw_info, 2863 virt_dev->bw_table, 2864 virt_dev->udev, 2865 &virt_dev->eps[i], 2866 virt_dev->tt_info); 2867 } 2868 2869 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2870 /* Ok, this fits in the bandwidth we have. 2871 * Update the number of active TTs. 2872 */ 2873 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2874 return 0; 2875 } 2876 2877 /* We don't have enough bandwidth for this, revert the stored info. */ 2878 for (i = 0; i < 31; i++) { 2879 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2880 continue; 2881 2882 /* Drop the new copies of any added or changed endpoints from 2883 * the interval table. 2884 */ 2885 if (EP_IS_ADDED(ctrl_ctx, i)) { 2886 xhci_drop_ep_from_interval_table(xhci, 2887 &virt_dev->eps[i].bw_info, 2888 virt_dev->bw_table, 2889 virt_dev->udev, 2890 &virt_dev->eps[i], 2891 virt_dev->tt_info); 2892 } 2893 /* Revert the endpoint back to its old information */ 2894 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2895 sizeof(ep_bw_info[i])); 2896 /* Add any changed or dropped endpoints back into the table */ 2897 if (EP_IS_DROPPED(ctrl_ctx, i)) 2898 xhci_add_ep_to_interval_table(xhci, 2899 &virt_dev->eps[i].bw_info, 2900 virt_dev->bw_table, 2901 virt_dev->udev, 2902 &virt_dev->eps[i], 2903 virt_dev->tt_info); 2904 } 2905 return -ENOMEM; 2906 } 2907 2908 2909 /* Issue a configure endpoint command or evaluate context command 2910 * and wait for it to finish. 2911 */ 2912 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2913 struct usb_device *udev, 2914 struct xhci_command *command, 2915 bool ctx_change, bool must_succeed) 2916 { 2917 int ret; 2918 unsigned long flags; 2919 struct xhci_input_control_ctx *ctrl_ctx; 2920 struct xhci_virt_device *virt_dev; 2921 struct xhci_slot_ctx *slot_ctx; 2922 2923 if (!command) 2924 return -EINVAL; 2925 2926 spin_lock_irqsave(&xhci->lock, flags); 2927 2928 if (xhci->xhc_state & XHCI_STATE_DYING) { 2929 spin_unlock_irqrestore(&xhci->lock, flags); 2930 return -ESHUTDOWN; 2931 } 2932 2933 virt_dev = xhci->devs[udev->slot_id]; 2934 2935 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2936 if (!ctrl_ctx) { 2937 spin_unlock_irqrestore(&xhci->lock, flags); 2938 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2939 __func__); 2940 return -ENOMEM; 2941 } 2942 2943 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2944 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2945 spin_unlock_irqrestore(&xhci->lock, flags); 2946 xhci_warn(xhci, "Not enough host resources, " 2947 "active endpoint contexts = %u\n", 2948 xhci->num_active_eps); 2949 return -ENOMEM; 2950 } 2951 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2952 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2953 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2954 xhci_free_host_resources(xhci, ctrl_ctx); 2955 spin_unlock_irqrestore(&xhci->lock, flags); 2956 xhci_warn(xhci, "Not enough bandwidth\n"); 2957 return -ENOMEM; 2958 } 2959 2960 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2961 2962 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2963 trace_xhci_configure_endpoint(slot_ctx); 2964 2965 if (!ctx_change) 2966 ret = xhci_queue_configure_endpoint(xhci, command, 2967 command->in_ctx->dma, 2968 udev->slot_id, must_succeed); 2969 else 2970 ret = xhci_queue_evaluate_context(xhci, command, 2971 command->in_ctx->dma, 2972 udev->slot_id, must_succeed); 2973 if (ret < 0) { 2974 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2975 xhci_free_host_resources(xhci, ctrl_ctx); 2976 spin_unlock_irqrestore(&xhci->lock, flags); 2977 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2978 "FIXME allocate a new ring segment"); 2979 return -ENOMEM; 2980 } 2981 xhci_ring_cmd_db(xhci); 2982 spin_unlock_irqrestore(&xhci->lock, flags); 2983 2984 /* Wait for the configure endpoint command to complete */ 2985 wait_for_completion(command->completion); 2986 2987 if (!ctx_change) 2988 ret = xhci_configure_endpoint_result(xhci, udev, 2989 &command->status); 2990 else 2991 ret = xhci_evaluate_context_result(xhci, udev, 2992 &command->status); 2993 2994 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2995 spin_lock_irqsave(&xhci->lock, flags); 2996 /* If the command failed, remove the reserved resources. 2997 * Otherwise, clean up the estimate to include dropped eps. 2998 */ 2999 if (ret) 3000 xhci_free_host_resources(xhci, ctrl_ctx); 3001 else 3002 xhci_finish_resource_reservation(xhci, ctrl_ctx); 3003 spin_unlock_irqrestore(&xhci->lock, flags); 3004 } 3005 return ret; 3006 } 3007 3008 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 3009 struct xhci_virt_device *vdev, int i) 3010 { 3011 struct xhci_virt_ep *ep = &vdev->eps[i]; 3012 3013 if (ep->ep_state & EP_HAS_STREAMS) { 3014 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 3015 xhci_get_endpoint_address(i)); 3016 xhci_free_stream_info(xhci, ep->stream_info); 3017 ep->stream_info = NULL; 3018 ep->ep_state &= ~EP_HAS_STREAMS; 3019 } 3020 } 3021 3022 /* Called after one or more calls to xhci_add_endpoint() or 3023 * xhci_drop_endpoint(). If this call fails, the USB core is expected 3024 * to call xhci_reset_bandwidth(). 3025 * 3026 * Since we are in the middle of changing either configuration or 3027 * installing a new alt setting, the USB core won't allow URBs to be 3028 * enqueued for any endpoint on the old config or interface. Nothing 3029 * else should be touching the xhci->devs[slot_id] structure, so we 3030 * don't need to take the xhci->lock for manipulating that. 3031 */ 3032 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3033 { 3034 int i; 3035 int ret = 0; 3036 struct xhci_hcd *xhci; 3037 struct xhci_virt_device *virt_dev; 3038 struct xhci_input_control_ctx *ctrl_ctx; 3039 struct xhci_slot_ctx *slot_ctx; 3040 struct xhci_command *command; 3041 3042 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3043 if (ret <= 0) 3044 return ret; 3045 xhci = hcd_to_xhci(hcd); 3046 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3047 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3048 return -ENODEV; 3049 3050 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3051 virt_dev = xhci->devs[udev->slot_id]; 3052 3053 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3054 if (!command) 3055 return -ENOMEM; 3056 3057 command->in_ctx = virt_dev->in_ctx; 3058 3059 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3060 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3061 if (!ctrl_ctx) { 3062 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3063 __func__); 3064 ret = -ENOMEM; 3065 goto command_cleanup; 3066 } 3067 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3068 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3069 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3070 3071 /* Don't issue the command if there's no endpoints to update. */ 3072 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3073 ctrl_ctx->drop_flags == 0) { 3074 ret = 0; 3075 goto command_cleanup; 3076 } 3077 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3078 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3079 for (i = 31; i >= 1; i--) { 3080 __le32 le32 = cpu_to_le32(BIT(i)); 3081 3082 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3083 || (ctrl_ctx->add_flags & le32) || i == 1) { 3084 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3085 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3086 break; 3087 } 3088 } 3089 3090 ret = xhci_configure_endpoint(xhci, udev, command, 3091 false, false); 3092 if (ret) 3093 /* Callee should call reset_bandwidth() */ 3094 goto command_cleanup; 3095 3096 /* Free any rings that were dropped, but not changed. */ 3097 for (i = 1; i < 31; i++) { 3098 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3099 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3100 xhci_free_endpoint_ring(xhci, virt_dev, i); 3101 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3102 } 3103 } 3104 xhci_zero_in_ctx(xhci, virt_dev); 3105 /* 3106 * Install any rings for completely new endpoints or changed endpoints, 3107 * and free any old rings from changed endpoints. 3108 */ 3109 for (i = 1; i < 31; i++) { 3110 if (!virt_dev->eps[i].new_ring) 3111 continue; 3112 /* Only free the old ring if it exists. 3113 * It may not if this is the first add of an endpoint. 3114 */ 3115 if (virt_dev->eps[i].ring) { 3116 xhci_free_endpoint_ring(xhci, virt_dev, i); 3117 } 3118 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3119 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3120 virt_dev->eps[i].new_ring = NULL; 3121 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3122 } 3123 command_cleanup: 3124 kfree(command->completion); 3125 kfree(command); 3126 3127 return ret; 3128 } 3129 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3130 3131 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3132 { 3133 struct xhci_hcd *xhci; 3134 struct xhci_virt_device *virt_dev; 3135 int i, ret; 3136 3137 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3138 if (ret <= 0) 3139 return; 3140 xhci = hcd_to_xhci(hcd); 3141 3142 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3143 virt_dev = xhci->devs[udev->slot_id]; 3144 /* Free any rings allocated for added endpoints */ 3145 for (i = 0; i < 31; i++) { 3146 if (virt_dev->eps[i].new_ring) { 3147 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3148 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3149 virt_dev->eps[i].new_ring = NULL; 3150 } 3151 } 3152 xhci_zero_in_ctx(xhci, virt_dev); 3153 } 3154 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3155 3156 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3157 struct xhci_container_ctx *in_ctx, 3158 struct xhci_container_ctx *out_ctx, 3159 struct xhci_input_control_ctx *ctrl_ctx, 3160 u32 add_flags, u32 drop_flags) 3161 { 3162 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3163 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3164 xhci_slot_copy(xhci, in_ctx, out_ctx); 3165 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3166 } 3167 3168 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3169 struct usb_host_endpoint *host_ep) 3170 { 3171 struct xhci_hcd *xhci; 3172 struct xhci_virt_device *vdev; 3173 struct xhci_virt_ep *ep; 3174 struct usb_device *udev; 3175 unsigned long flags; 3176 unsigned int ep_index; 3177 3178 xhci = hcd_to_xhci(hcd); 3179 rescan: 3180 spin_lock_irqsave(&xhci->lock, flags); 3181 3182 udev = (struct usb_device *)host_ep->hcpriv; 3183 if (!udev || !udev->slot_id) 3184 goto done; 3185 3186 vdev = xhci->devs[udev->slot_id]; 3187 if (!vdev) 3188 goto done; 3189 3190 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3191 ep = &vdev->eps[ep_index]; 3192 3193 /* wait for hub_tt_work to finish clearing hub TT */ 3194 if (ep->ep_state & EP_CLEARING_TT) { 3195 spin_unlock_irqrestore(&xhci->lock, flags); 3196 schedule_timeout_uninterruptible(1); 3197 goto rescan; 3198 } 3199 3200 if (ep->ep_state) 3201 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3202 ep->ep_state); 3203 done: 3204 host_ep->hcpriv = NULL; 3205 spin_unlock_irqrestore(&xhci->lock, flags); 3206 } 3207 3208 /* 3209 * Called after usb core issues a clear halt control message. 3210 * The host side of the halt should already be cleared by a reset endpoint 3211 * command issued when the STALL event was received. 3212 * 3213 * The reset endpoint command may only be issued to endpoints in the halted 3214 * state. For software that wishes to reset the data toggle or sequence number 3215 * of an endpoint that isn't in the halted state this function will issue a 3216 * configure endpoint command with the Drop and Add bits set for the target 3217 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3218 */ 3219 3220 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3221 struct usb_host_endpoint *host_ep) 3222 { 3223 struct xhci_hcd *xhci; 3224 struct usb_device *udev; 3225 struct xhci_virt_device *vdev; 3226 struct xhci_virt_ep *ep; 3227 struct xhci_input_control_ctx *ctrl_ctx; 3228 struct xhci_command *stop_cmd, *cfg_cmd; 3229 unsigned int ep_index; 3230 unsigned long flags; 3231 u32 ep_flag; 3232 int err; 3233 3234 xhci = hcd_to_xhci(hcd); 3235 if (!host_ep->hcpriv) 3236 return; 3237 udev = (struct usb_device *) host_ep->hcpriv; 3238 vdev = xhci->devs[udev->slot_id]; 3239 3240 /* 3241 * vdev may be lost due to xHC restore error and re-initialization 3242 * during S3/S4 resume. A new vdev will be allocated later by 3243 * xhci_discover_or_reset_device() 3244 */ 3245 if (!udev->slot_id || !vdev) 3246 return; 3247 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3248 ep = &vdev->eps[ep_index]; 3249 3250 /* Bail out if toggle is already being cleared by a endpoint reset */ 3251 spin_lock_irqsave(&xhci->lock, flags); 3252 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3253 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3254 spin_unlock_irqrestore(&xhci->lock, flags); 3255 return; 3256 } 3257 spin_unlock_irqrestore(&xhci->lock, flags); 3258 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3259 if (usb_endpoint_xfer_control(&host_ep->desc) || 3260 usb_endpoint_xfer_isoc(&host_ep->desc)) 3261 return; 3262 3263 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3264 3265 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3266 return; 3267 3268 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3269 if (!stop_cmd) 3270 return; 3271 3272 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3273 if (!cfg_cmd) 3274 goto cleanup; 3275 3276 spin_lock_irqsave(&xhci->lock, flags); 3277 3278 /* block queuing new trbs and ringing ep doorbell */ 3279 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3280 3281 /* 3282 * Make sure endpoint ring is empty before resetting the toggle/seq. 3283 * Driver is required to synchronously cancel all transfer request. 3284 * Stop the endpoint to force xHC to update the output context 3285 */ 3286 3287 if (!list_empty(&ep->ring->td_list)) { 3288 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3289 spin_unlock_irqrestore(&xhci->lock, flags); 3290 xhci_free_command(xhci, cfg_cmd); 3291 goto cleanup; 3292 } 3293 3294 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3295 ep_index, 0); 3296 if (err < 0) { 3297 spin_unlock_irqrestore(&xhci->lock, flags); 3298 xhci_free_command(xhci, cfg_cmd); 3299 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3300 __func__, err); 3301 goto cleanup; 3302 } 3303 3304 xhci_ring_cmd_db(xhci); 3305 spin_unlock_irqrestore(&xhci->lock, flags); 3306 3307 wait_for_completion(stop_cmd->completion); 3308 3309 spin_lock_irqsave(&xhci->lock, flags); 3310 3311 /* config ep command clears toggle if add and drop ep flags are set */ 3312 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3313 if (!ctrl_ctx) { 3314 spin_unlock_irqrestore(&xhci->lock, flags); 3315 xhci_free_command(xhci, cfg_cmd); 3316 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3317 __func__); 3318 goto cleanup; 3319 } 3320 3321 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3322 ctrl_ctx, ep_flag, ep_flag); 3323 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3324 3325 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3326 udev->slot_id, false); 3327 if (err < 0) { 3328 spin_unlock_irqrestore(&xhci->lock, flags); 3329 xhci_free_command(xhci, cfg_cmd); 3330 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3331 __func__, err); 3332 goto cleanup; 3333 } 3334 3335 xhci_ring_cmd_db(xhci); 3336 spin_unlock_irqrestore(&xhci->lock, flags); 3337 3338 wait_for_completion(cfg_cmd->completion); 3339 3340 xhci_free_command(xhci, cfg_cmd); 3341 cleanup: 3342 xhci_free_command(xhci, stop_cmd); 3343 spin_lock_irqsave(&xhci->lock, flags); 3344 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3345 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3346 spin_unlock_irqrestore(&xhci->lock, flags); 3347 } 3348 3349 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3350 struct usb_device *udev, struct usb_host_endpoint *ep, 3351 unsigned int slot_id) 3352 { 3353 int ret; 3354 unsigned int ep_index; 3355 unsigned int ep_state; 3356 3357 if (!ep) 3358 return -EINVAL; 3359 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3360 if (ret <= 0) 3361 return ret ? ret : -EINVAL; 3362 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3363 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3364 " descriptor for ep 0x%x does not support streams\n", 3365 ep->desc.bEndpointAddress); 3366 return -EINVAL; 3367 } 3368 3369 ep_index = xhci_get_endpoint_index(&ep->desc); 3370 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3371 if (ep_state & EP_HAS_STREAMS || 3372 ep_state & EP_GETTING_STREAMS) { 3373 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3374 "already has streams set up.\n", 3375 ep->desc.bEndpointAddress); 3376 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3377 "dynamic stream context array reallocation.\n"); 3378 return -EINVAL; 3379 } 3380 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3381 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3382 "endpoint 0x%x; URBs are pending.\n", 3383 ep->desc.bEndpointAddress); 3384 return -EINVAL; 3385 } 3386 return 0; 3387 } 3388 3389 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3390 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3391 { 3392 unsigned int max_streams; 3393 3394 /* The stream context array size must be a power of two */ 3395 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3396 /* 3397 * Find out how many primary stream array entries the host controller 3398 * supports. Later we may use secondary stream arrays (similar to 2nd 3399 * level page entries), but that's an optional feature for xHCI host 3400 * controllers. xHCs must support at least 4 stream IDs. 3401 */ 3402 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3403 if (*num_stream_ctxs > max_streams) { 3404 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3405 max_streams); 3406 *num_stream_ctxs = max_streams; 3407 *num_streams = max_streams; 3408 } 3409 } 3410 3411 /* Returns an error code if one of the endpoint already has streams. 3412 * This does not change any data structures, it only checks and gathers 3413 * information. 3414 */ 3415 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3416 struct usb_device *udev, 3417 struct usb_host_endpoint **eps, unsigned int num_eps, 3418 unsigned int *num_streams, u32 *changed_ep_bitmask) 3419 { 3420 unsigned int max_streams; 3421 unsigned int endpoint_flag; 3422 int i; 3423 int ret; 3424 3425 for (i = 0; i < num_eps; i++) { 3426 ret = xhci_check_streams_endpoint(xhci, udev, 3427 eps[i], udev->slot_id); 3428 if (ret < 0) 3429 return ret; 3430 3431 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3432 if (max_streams < (*num_streams - 1)) { 3433 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3434 eps[i]->desc.bEndpointAddress, 3435 max_streams); 3436 *num_streams = max_streams+1; 3437 } 3438 3439 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3440 if (*changed_ep_bitmask & endpoint_flag) 3441 return -EINVAL; 3442 *changed_ep_bitmask |= endpoint_flag; 3443 } 3444 return 0; 3445 } 3446 3447 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3448 struct usb_device *udev, 3449 struct usb_host_endpoint **eps, unsigned int num_eps) 3450 { 3451 u32 changed_ep_bitmask = 0; 3452 unsigned int slot_id; 3453 unsigned int ep_index; 3454 unsigned int ep_state; 3455 int i; 3456 3457 slot_id = udev->slot_id; 3458 if (!xhci->devs[slot_id]) 3459 return 0; 3460 3461 for (i = 0; i < num_eps; i++) { 3462 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3463 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3464 /* Are streams already being freed for the endpoint? */ 3465 if (ep_state & EP_GETTING_NO_STREAMS) { 3466 xhci_warn(xhci, "WARN Can't disable streams for " 3467 "endpoint 0x%x, " 3468 "streams are being disabled already\n", 3469 eps[i]->desc.bEndpointAddress); 3470 return 0; 3471 } 3472 /* Are there actually any streams to free? */ 3473 if (!(ep_state & EP_HAS_STREAMS) && 3474 !(ep_state & EP_GETTING_STREAMS)) { 3475 xhci_warn(xhci, "WARN Can't disable streams for " 3476 "endpoint 0x%x, " 3477 "streams are already disabled!\n", 3478 eps[i]->desc.bEndpointAddress); 3479 xhci_warn(xhci, "WARN xhci_free_streams() called " 3480 "with non-streams endpoint\n"); 3481 return 0; 3482 } 3483 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3484 } 3485 return changed_ep_bitmask; 3486 } 3487 3488 /* 3489 * The USB device drivers use this function (through the HCD interface in USB 3490 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3491 * coordinate mass storage command queueing across multiple endpoints (basically 3492 * a stream ID == a task ID). 3493 * 3494 * Setting up streams involves allocating the same size stream context array 3495 * for each endpoint and issuing a configure endpoint command for all endpoints. 3496 * 3497 * Don't allow the call to succeed if one endpoint only supports one stream 3498 * (which means it doesn't support streams at all). 3499 * 3500 * Drivers may get less stream IDs than they asked for, if the host controller 3501 * hardware or endpoints claim they can't support the number of requested 3502 * stream IDs. 3503 */ 3504 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3505 struct usb_host_endpoint **eps, unsigned int num_eps, 3506 unsigned int num_streams, gfp_t mem_flags) 3507 { 3508 int i, ret; 3509 struct xhci_hcd *xhci; 3510 struct xhci_virt_device *vdev; 3511 struct xhci_command *config_cmd; 3512 struct xhci_input_control_ctx *ctrl_ctx; 3513 unsigned int ep_index; 3514 unsigned int num_stream_ctxs; 3515 unsigned int max_packet; 3516 unsigned long flags; 3517 u32 changed_ep_bitmask = 0; 3518 3519 if (!eps) 3520 return -EINVAL; 3521 3522 /* Add one to the number of streams requested to account for 3523 * stream 0 that is reserved for xHCI usage. 3524 */ 3525 num_streams += 1; 3526 xhci = hcd_to_xhci(hcd); 3527 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3528 num_streams); 3529 3530 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3531 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3532 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3533 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3534 return -ENOSYS; 3535 } 3536 3537 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3538 if (!config_cmd) 3539 return -ENOMEM; 3540 3541 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3542 if (!ctrl_ctx) { 3543 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3544 __func__); 3545 xhci_free_command(xhci, config_cmd); 3546 return -ENOMEM; 3547 } 3548 3549 /* Check to make sure all endpoints are not already configured for 3550 * streams. While we're at it, find the maximum number of streams that 3551 * all the endpoints will support and check for duplicate endpoints. 3552 */ 3553 spin_lock_irqsave(&xhci->lock, flags); 3554 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3555 num_eps, &num_streams, &changed_ep_bitmask); 3556 if (ret < 0) { 3557 xhci_free_command(xhci, config_cmd); 3558 spin_unlock_irqrestore(&xhci->lock, flags); 3559 return ret; 3560 } 3561 if (num_streams <= 1) { 3562 xhci_warn(xhci, "WARN: endpoints can't handle " 3563 "more than one stream.\n"); 3564 xhci_free_command(xhci, config_cmd); 3565 spin_unlock_irqrestore(&xhci->lock, flags); 3566 return -EINVAL; 3567 } 3568 vdev = xhci->devs[udev->slot_id]; 3569 /* Mark each endpoint as being in transition, so 3570 * xhci_urb_enqueue() will reject all URBs. 3571 */ 3572 for (i = 0; i < num_eps; i++) { 3573 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3574 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3575 } 3576 spin_unlock_irqrestore(&xhci->lock, flags); 3577 3578 /* Setup internal data structures and allocate HW data structures for 3579 * streams (but don't install the HW structures in the input context 3580 * until we're sure all memory allocation succeeded). 3581 */ 3582 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3583 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3584 num_stream_ctxs, num_streams); 3585 3586 for (i = 0; i < num_eps; i++) { 3587 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3588 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3589 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3590 num_stream_ctxs, 3591 num_streams, 3592 max_packet, mem_flags); 3593 if (!vdev->eps[ep_index].stream_info) 3594 goto cleanup; 3595 /* Set maxPstreams in endpoint context and update deq ptr to 3596 * point to stream context array. FIXME 3597 */ 3598 } 3599 3600 /* Set up the input context for a configure endpoint command. */ 3601 for (i = 0; i < num_eps; i++) { 3602 struct xhci_ep_ctx *ep_ctx; 3603 3604 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3605 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3606 3607 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3608 vdev->out_ctx, ep_index); 3609 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3610 vdev->eps[ep_index].stream_info); 3611 } 3612 /* Tell the HW to drop its old copy of the endpoint context info 3613 * and add the updated copy from the input context. 3614 */ 3615 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3616 vdev->out_ctx, ctrl_ctx, 3617 changed_ep_bitmask, changed_ep_bitmask); 3618 3619 /* Issue and wait for the configure endpoint command */ 3620 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3621 false, false); 3622 3623 /* xHC rejected the configure endpoint command for some reason, so we 3624 * leave the old ring intact and free our internal streams data 3625 * structure. 3626 */ 3627 if (ret < 0) 3628 goto cleanup; 3629 3630 spin_lock_irqsave(&xhci->lock, flags); 3631 for (i = 0; i < num_eps; i++) { 3632 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3633 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3634 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3635 udev->slot_id, ep_index); 3636 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3637 } 3638 xhci_free_command(xhci, config_cmd); 3639 spin_unlock_irqrestore(&xhci->lock, flags); 3640 3641 for (i = 0; i < num_eps; i++) { 3642 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3643 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3644 } 3645 /* Subtract 1 for stream 0, which drivers can't use */ 3646 return num_streams - 1; 3647 3648 cleanup: 3649 /* If it didn't work, free the streams! */ 3650 for (i = 0; i < num_eps; i++) { 3651 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3652 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3653 vdev->eps[ep_index].stream_info = NULL; 3654 /* FIXME Unset maxPstreams in endpoint context and 3655 * update deq ptr to point to normal string ring. 3656 */ 3657 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3658 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3659 xhci_endpoint_zero(xhci, vdev, eps[i]); 3660 } 3661 xhci_free_command(xhci, config_cmd); 3662 return -ENOMEM; 3663 } 3664 3665 /* Transition the endpoint from using streams to being a "normal" endpoint 3666 * without streams. 3667 * 3668 * Modify the endpoint context state, submit a configure endpoint command, 3669 * and free all endpoint rings for streams if that completes successfully. 3670 */ 3671 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3672 struct usb_host_endpoint **eps, unsigned int num_eps, 3673 gfp_t mem_flags) 3674 { 3675 int i, ret; 3676 struct xhci_hcd *xhci; 3677 struct xhci_virt_device *vdev; 3678 struct xhci_command *command; 3679 struct xhci_input_control_ctx *ctrl_ctx; 3680 unsigned int ep_index; 3681 unsigned long flags; 3682 u32 changed_ep_bitmask; 3683 3684 xhci = hcd_to_xhci(hcd); 3685 vdev = xhci->devs[udev->slot_id]; 3686 3687 /* Set up a configure endpoint command to remove the streams rings */ 3688 spin_lock_irqsave(&xhci->lock, flags); 3689 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3690 udev, eps, num_eps); 3691 if (changed_ep_bitmask == 0) { 3692 spin_unlock_irqrestore(&xhci->lock, flags); 3693 return -EINVAL; 3694 } 3695 3696 /* Use the xhci_command structure from the first endpoint. We may have 3697 * allocated too many, but the driver may call xhci_free_streams() for 3698 * each endpoint it grouped into one call to xhci_alloc_streams(). 3699 */ 3700 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3701 command = vdev->eps[ep_index].stream_info->free_streams_command; 3702 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3703 if (!ctrl_ctx) { 3704 spin_unlock_irqrestore(&xhci->lock, flags); 3705 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3706 __func__); 3707 return -EINVAL; 3708 } 3709 3710 for (i = 0; i < num_eps; i++) { 3711 struct xhci_ep_ctx *ep_ctx; 3712 3713 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3714 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3715 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3716 EP_GETTING_NO_STREAMS; 3717 3718 xhci_endpoint_copy(xhci, command->in_ctx, 3719 vdev->out_ctx, ep_index); 3720 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3721 &vdev->eps[ep_index]); 3722 } 3723 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3724 vdev->out_ctx, ctrl_ctx, 3725 changed_ep_bitmask, changed_ep_bitmask); 3726 spin_unlock_irqrestore(&xhci->lock, flags); 3727 3728 /* Issue and wait for the configure endpoint command, 3729 * which must succeed. 3730 */ 3731 ret = xhci_configure_endpoint(xhci, udev, command, 3732 false, true); 3733 3734 /* xHC rejected the configure endpoint command for some reason, so we 3735 * leave the streams rings intact. 3736 */ 3737 if (ret < 0) 3738 return ret; 3739 3740 spin_lock_irqsave(&xhci->lock, flags); 3741 for (i = 0; i < num_eps; i++) { 3742 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3743 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3744 vdev->eps[ep_index].stream_info = NULL; 3745 /* FIXME Unset maxPstreams in endpoint context and 3746 * update deq ptr to point to normal string ring. 3747 */ 3748 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3749 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3750 } 3751 spin_unlock_irqrestore(&xhci->lock, flags); 3752 3753 return 0; 3754 } 3755 3756 /* 3757 * Deletes endpoint resources for endpoints that were active before a Reset 3758 * Device command, or a Disable Slot command. The Reset Device command leaves 3759 * the control endpoint intact, whereas the Disable Slot command deletes it. 3760 * 3761 * Must be called with xhci->lock held. 3762 */ 3763 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3764 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3765 { 3766 int i; 3767 unsigned int num_dropped_eps = 0; 3768 unsigned int drop_flags = 0; 3769 3770 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3771 if (virt_dev->eps[i].ring) { 3772 drop_flags |= 1 << i; 3773 num_dropped_eps++; 3774 } 3775 } 3776 xhci->num_active_eps -= num_dropped_eps; 3777 if (num_dropped_eps) 3778 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3779 "Dropped %u ep ctxs, flags = 0x%x, " 3780 "%u now active.", 3781 num_dropped_eps, drop_flags, 3782 xhci->num_active_eps); 3783 } 3784 3785 /* 3786 * This submits a Reset Device Command, which will set the device state to 0, 3787 * set the device address to 0, and disable all the endpoints except the default 3788 * control endpoint. The USB core should come back and call 3789 * xhci_address_device(), and then re-set up the configuration. If this is 3790 * called because of a usb_reset_and_verify_device(), then the old alternate 3791 * settings will be re-installed through the normal bandwidth allocation 3792 * functions. 3793 * 3794 * Wait for the Reset Device command to finish. Remove all structures 3795 * associated with the endpoints that were disabled. Clear the input device 3796 * structure? Reset the control endpoint 0 max packet size? 3797 * 3798 * If the virt_dev to be reset does not exist or does not match the udev, 3799 * it means the device is lost, possibly due to the xHC restore error and 3800 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3801 * re-allocate the device. 3802 */ 3803 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3804 struct usb_device *udev) 3805 { 3806 int ret, i; 3807 unsigned long flags; 3808 struct xhci_hcd *xhci; 3809 unsigned int slot_id; 3810 struct xhci_virt_device *virt_dev; 3811 struct xhci_command *reset_device_cmd; 3812 struct xhci_slot_ctx *slot_ctx; 3813 int old_active_eps = 0; 3814 3815 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3816 if (ret <= 0) 3817 return ret; 3818 xhci = hcd_to_xhci(hcd); 3819 slot_id = udev->slot_id; 3820 virt_dev = xhci->devs[slot_id]; 3821 if (!virt_dev) { 3822 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3823 "not exist. Re-allocate the device\n", slot_id); 3824 ret = xhci_alloc_dev(hcd, udev); 3825 if (ret == 1) 3826 return 0; 3827 else 3828 return -EINVAL; 3829 } 3830 3831 if (virt_dev->tt_info) 3832 old_active_eps = virt_dev->tt_info->active_eps; 3833 3834 if (virt_dev->udev != udev) { 3835 /* If the virt_dev and the udev does not match, this virt_dev 3836 * may belong to another udev. 3837 * Re-allocate the device. 3838 */ 3839 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3840 "not match the udev. Re-allocate the device\n", 3841 slot_id); 3842 ret = xhci_alloc_dev(hcd, udev); 3843 if (ret == 1) 3844 return 0; 3845 else 3846 return -EINVAL; 3847 } 3848 3849 /* If device is not setup, there is no point in resetting it */ 3850 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3851 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3852 SLOT_STATE_DISABLED) 3853 return 0; 3854 3855 trace_xhci_discover_or_reset_device(slot_ctx); 3856 3857 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3858 /* Allocate the command structure that holds the struct completion. 3859 * Assume we're in process context, since the normal device reset 3860 * process has to wait for the device anyway. Storage devices are 3861 * reset as part of error handling, so use GFP_NOIO instead of 3862 * GFP_KERNEL. 3863 */ 3864 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3865 if (!reset_device_cmd) { 3866 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3867 return -ENOMEM; 3868 } 3869 3870 /* Attempt to submit the Reset Device command to the command ring */ 3871 spin_lock_irqsave(&xhci->lock, flags); 3872 3873 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3874 if (ret) { 3875 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3876 spin_unlock_irqrestore(&xhci->lock, flags); 3877 goto command_cleanup; 3878 } 3879 xhci_ring_cmd_db(xhci); 3880 spin_unlock_irqrestore(&xhci->lock, flags); 3881 3882 /* Wait for the Reset Device command to finish */ 3883 wait_for_completion(reset_device_cmd->completion); 3884 3885 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3886 * unless we tried to reset a slot ID that wasn't enabled, 3887 * or the device wasn't in the addressed or configured state. 3888 */ 3889 ret = reset_device_cmd->status; 3890 switch (ret) { 3891 case COMP_COMMAND_ABORTED: 3892 case COMP_COMMAND_RING_STOPPED: 3893 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3894 ret = -ETIME; 3895 goto command_cleanup; 3896 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3897 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3898 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3899 slot_id, 3900 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3901 xhci_dbg(xhci, "Not freeing device rings.\n"); 3902 /* Don't treat this as an error. May change my mind later. */ 3903 ret = 0; 3904 goto command_cleanup; 3905 case COMP_SUCCESS: 3906 xhci_dbg(xhci, "Successful reset device command.\n"); 3907 break; 3908 default: 3909 if (xhci_is_vendor_info_code(xhci, ret)) 3910 break; 3911 xhci_warn(xhci, "Unknown completion code %u for " 3912 "reset device command.\n", ret); 3913 ret = -EINVAL; 3914 goto command_cleanup; 3915 } 3916 3917 /* Free up host controller endpoint resources */ 3918 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3919 spin_lock_irqsave(&xhci->lock, flags); 3920 /* Don't delete the default control endpoint resources */ 3921 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3922 spin_unlock_irqrestore(&xhci->lock, flags); 3923 } 3924 3925 /* Everything but endpoint 0 is disabled, so free the rings. */ 3926 for (i = 1; i < 31; i++) { 3927 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3928 3929 if (ep->ep_state & EP_HAS_STREAMS) { 3930 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3931 xhci_get_endpoint_address(i)); 3932 xhci_free_stream_info(xhci, ep->stream_info); 3933 ep->stream_info = NULL; 3934 ep->ep_state &= ~EP_HAS_STREAMS; 3935 } 3936 3937 if (ep->ring) { 3938 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3939 xhci_free_endpoint_ring(xhci, virt_dev, i); 3940 } 3941 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3942 xhci_drop_ep_from_interval_table(xhci, 3943 &virt_dev->eps[i].bw_info, 3944 virt_dev->bw_table, 3945 udev, 3946 &virt_dev->eps[i], 3947 virt_dev->tt_info); 3948 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3949 } 3950 /* If necessary, update the number of active TTs on this root port */ 3951 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3952 virt_dev->flags = 0; 3953 ret = 0; 3954 3955 command_cleanup: 3956 xhci_free_command(xhci, reset_device_cmd); 3957 return ret; 3958 } 3959 3960 /* 3961 * At this point, the struct usb_device is about to go away, the device has 3962 * disconnected, and all traffic has been stopped and the endpoints have been 3963 * disabled. Free any HC data structures associated with that device. 3964 */ 3965 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3966 { 3967 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3968 struct xhci_virt_device *virt_dev; 3969 struct xhci_slot_ctx *slot_ctx; 3970 int i, ret; 3971 3972 /* 3973 * We called pm_runtime_get_noresume when the device was attached. 3974 * Decrement the counter here to allow controller to runtime suspend 3975 * if no devices remain. 3976 */ 3977 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3978 pm_runtime_put_noidle(hcd->self.controller); 3979 3980 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3981 /* If the host is halted due to driver unload, we still need to free the 3982 * device. 3983 */ 3984 if (ret <= 0 && ret != -ENODEV) 3985 return; 3986 3987 virt_dev = xhci->devs[udev->slot_id]; 3988 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3989 trace_xhci_free_dev(slot_ctx); 3990 3991 /* Stop any wayward timer functions (which may grab the lock) */ 3992 for (i = 0; i < 31; i++) 3993 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3994 virt_dev->udev = NULL; 3995 xhci_disable_slot(xhci, udev->slot_id); 3996 xhci_free_virt_device(xhci, udev->slot_id); 3997 } 3998 3999 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 4000 { 4001 struct xhci_command *command; 4002 unsigned long flags; 4003 u32 state; 4004 int ret; 4005 4006 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4007 if (!command) 4008 return -ENOMEM; 4009 4010 xhci_debugfs_remove_slot(xhci, slot_id); 4011 4012 spin_lock_irqsave(&xhci->lock, flags); 4013 /* Don't disable the slot if the host controller is dead. */ 4014 state = readl(&xhci->op_regs->status); 4015 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 4016 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4017 spin_unlock_irqrestore(&xhci->lock, flags); 4018 kfree(command); 4019 return -ENODEV; 4020 } 4021 4022 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 4023 slot_id); 4024 if (ret) { 4025 spin_unlock_irqrestore(&xhci->lock, flags); 4026 kfree(command); 4027 return ret; 4028 } 4029 xhci_ring_cmd_db(xhci); 4030 spin_unlock_irqrestore(&xhci->lock, flags); 4031 4032 wait_for_completion(command->completion); 4033 4034 if (command->status != COMP_SUCCESS) 4035 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4036 slot_id, command->status); 4037 4038 xhci_free_command(xhci, command); 4039 4040 return 0; 4041 } 4042 4043 /* 4044 * Checks if we have enough host controller resources for the default control 4045 * endpoint. 4046 * 4047 * Must be called with xhci->lock held. 4048 */ 4049 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4050 { 4051 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4052 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4053 "Not enough ep ctxs: " 4054 "%u active, need to add 1, limit is %u.", 4055 xhci->num_active_eps, xhci->limit_active_eps); 4056 return -ENOMEM; 4057 } 4058 xhci->num_active_eps += 1; 4059 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4060 "Adding 1 ep ctx, %u now active.", 4061 xhci->num_active_eps); 4062 return 0; 4063 } 4064 4065 4066 /* 4067 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4068 * timed out, or allocating memory failed. Returns 1 on success. 4069 */ 4070 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4071 { 4072 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4073 struct xhci_virt_device *vdev; 4074 struct xhci_slot_ctx *slot_ctx; 4075 unsigned long flags; 4076 int ret, slot_id; 4077 struct xhci_command *command; 4078 4079 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4080 if (!command) 4081 return 0; 4082 4083 spin_lock_irqsave(&xhci->lock, flags); 4084 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4085 if (ret) { 4086 spin_unlock_irqrestore(&xhci->lock, flags); 4087 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4088 xhci_free_command(xhci, command); 4089 return 0; 4090 } 4091 xhci_ring_cmd_db(xhci); 4092 spin_unlock_irqrestore(&xhci->lock, flags); 4093 4094 wait_for_completion(command->completion); 4095 slot_id = command->slot_id; 4096 4097 if (!slot_id || command->status != COMP_SUCCESS) { 4098 xhci_err(xhci, "Error while assigning device slot ID\n"); 4099 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4100 HCS_MAX_SLOTS( 4101 readl(&xhci->cap_regs->hcs_params1))); 4102 xhci_free_command(xhci, command); 4103 return 0; 4104 } 4105 4106 xhci_free_command(xhci, command); 4107 4108 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4109 spin_lock_irqsave(&xhci->lock, flags); 4110 ret = xhci_reserve_host_control_ep_resources(xhci); 4111 if (ret) { 4112 spin_unlock_irqrestore(&xhci->lock, flags); 4113 xhci_warn(xhci, "Not enough host resources, " 4114 "active endpoint contexts = %u\n", 4115 xhci->num_active_eps); 4116 goto disable_slot; 4117 } 4118 spin_unlock_irqrestore(&xhci->lock, flags); 4119 } 4120 /* Use GFP_NOIO, since this function can be called from 4121 * xhci_discover_or_reset_device(), which may be called as part of 4122 * mass storage driver error handling. 4123 */ 4124 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4125 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4126 goto disable_slot; 4127 } 4128 vdev = xhci->devs[slot_id]; 4129 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4130 trace_xhci_alloc_dev(slot_ctx); 4131 4132 udev->slot_id = slot_id; 4133 4134 xhci_debugfs_create_slot(xhci, slot_id); 4135 4136 /* 4137 * If resetting upon resume, we can't put the controller into runtime 4138 * suspend if there is a device attached. 4139 */ 4140 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4141 pm_runtime_get_noresume(hcd->self.controller); 4142 4143 /* Is this a LS or FS device under a HS hub? */ 4144 /* Hub or peripherial? */ 4145 return 1; 4146 4147 disable_slot: 4148 xhci_disable_slot(xhci, udev->slot_id); 4149 xhci_free_virt_device(xhci, udev->slot_id); 4150 4151 return 0; 4152 } 4153 4154 /* 4155 * Issue an Address Device command and optionally send a corresponding 4156 * SetAddress request to the device. 4157 */ 4158 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4159 enum xhci_setup_dev setup) 4160 { 4161 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4162 unsigned long flags; 4163 struct xhci_virt_device *virt_dev; 4164 int ret = 0; 4165 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4166 struct xhci_slot_ctx *slot_ctx; 4167 struct xhci_input_control_ctx *ctrl_ctx; 4168 u64 temp_64; 4169 struct xhci_command *command = NULL; 4170 4171 mutex_lock(&xhci->mutex); 4172 4173 if (xhci->xhc_state) { /* dying, removing or halted */ 4174 ret = -ESHUTDOWN; 4175 goto out; 4176 } 4177 4178 if (!udev->slot_id) { 4179 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4180 "Bad Slot ID %d", udev->slot_id); 4181 ret = -EINVAL; 4182 goto out; 4183 } 4184 4185 virt_dev = xhci->devs[udev->slot_id]; 4186 4187 if (WARN_ON(!virt_dev)) { 4188 /* 4189 * In plug/unplug torture test with an NEC controller, 4190 * a zero-dereference was observed once due to virt_dev = 0. 4191 * Print useful debug rather than crash if it is observed again! 4192 */ 4193 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4194 udev->slot_id); 4195 ret = -EINVAL; 4196 goto out; 4197 } 4198 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4199 trace_xhci_setup_device_slot(slot_ctx); 4200 4201 if (setup == SETUP_CONTEXT_ONLY) { 4202 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4203 SLOT_STATE_DEFAULT) { 4204 xhci_dbg(xhci, "Slot already in default state\n"); 4205 goto out; 4206 } 4207 } 4208 4209 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4210 if (!command) { 4211 ret = -ENOMEM; 4212 goto out; 4213 } 4214 4215 command->in_ctx = virt_dev->in_ctx; 4216 4217 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4218 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4219 if (!ctrl_ctx) { 4220 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4221 __func__); 4222 ret = -EINVAL; 4223 goto out; 4224 } 4225 /* 4226 * If this is the first Set Address since device plug-in or 4227 * virt_device realloaction after a resume with an xHCI power loss, 4228 * then set up the slot context. 4229 */ 4230 if (!slot_ctx->dev_info) 4231 xhci_setup_addressable_virt_dev(xhci, udev); 4232 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4233 else 4234 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4235 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4236 ctrl_ctx->drop_flags = 0; 4237 4238 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4239 le32_to_cpu(slot_ctx->dev_info) >> 27); 4240 4241 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4242 spin_lock_irqsave(&xhci->lock, flags); 4243 trace_xhci_setup_device(virt_dev); 4244 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4245 udev->slot_id, setup); 4246 if (ret) { 4247 spin_unlock_irqrestore(&xhci->lock, flags); 4248 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4249 "FIXME: allocate a command ring segment"); 4250 goto out; 4251 } 4252 xhci_ring_cmd_db(xhci); 4253 spin_unlock_irqrestore(&xhci->lock, flags); 4254 4255 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4256 wait_for_completion(command->completion); 4257 4258 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4259 * the SetAddress() "recovery interval" required by USB and aborting the 4260 * command on a timeout. 4261 */ 4262 switch (command->status) { 4263 case COMP_COMMAND_ABORTED: 4264 case COMP_COMMAND_RING_STOPPED: 4265 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4266 ret = -ETIME; 4267 break; 4268 case COMP_CONTEXT_STATE_ERROR: 4269 case COMP_SLOT_NOT_ENABLED_ERROR: 4270 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4271 act, udev->slot_id); 4272 ret = -EINVAL; 4273 break; 4274 case COMP_USB_TRANSACTION_ERROR: 4275 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4276 4277 mutex_unlock(&xhci->mutex); 4278 ret = xhci_disable_slot(xhci, udev->slot_id); 4279 xhci_free_virt_device(xhci, udev->slot_id); 4280 if (!ret) 4281 xhci_alloc_dev(hcd, udev); 4282 kfree(command->completion); 4283 kfree(command); 4284 return -EPROTO; 4285 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4286 dev_warn(&udev->dev, 4287 "ERROR: Incompatible device for setup %s command\n", act); 4288 ret = -ENODEV; 4289 break; 4290 case COMP_SUCCESS: 4291 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4292 "Successful setup %s command", act); 4293 break; 4294 default: 4295 xhci_err(xhci, 4296 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4297 act, command->status); 4298 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4299 ret = -EINVAL; 4300 break; 4301 } 4302 if (ret) 4303 goto out; 4304 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4305 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4306 "Op regs DCBAA ptr = %#016llx", temp_64); 4307 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4308 "Slot ID %d dcbaa entry @%p = %#016llx", 4309 udev->slot_id, 4310 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4311 (unsigned long long) 4312 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4313 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4314 "Output Context DMA address = %#08llx", 4315 (unsigned long long)virt_dev->out_ctx->dma); 4316 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4317 le32_to_cpu(slot_ctx->dev_info) >> 27); 4318 /* 4319 * USB core uses address 1 for the roothubs, so we add one to the 4320 * address given back to us by the HC. 4321 */ 4322 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4323 le32_to_cpu(slot_ctx->dev_info) >> 27); 4324 /* Zero the input context control for later use */ 4325 ctrl_ctx->add_flags = 0; 4326 ctrl_ctx->drop_flags = 0; 4327 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4328 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4329 4330 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4331 "Internal device address = %d", 4332 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4333 out: 4334 mutex_unlock(&xhci->mutex); 4335 if (command) { 4336 kfree(command->completion); 4337 kfree(command); 4338 } 4339 return ret; 4340 } 4341 4342 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4343 { 4344 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4345 } 4346 4347 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4348 { 4349 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4350 } 4351 4352 /* 4353 * Transfer the port index into real index in the HW port status 4354 * registers. Caculate offset between the port's PORTSC register 4355 * and port status base. Divide the number of per port register 4356 * to get the real index. The raw port number bases 1. 4357 */ 4358 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4359 { 4360 struct xhci_hub *rhub; 4361 4362 rhub = xhci_get_rhub(hcd); 4363 return rhub->ports[port1 - 1]->hw_portnum + 1; 4364 } 4365 4366 /* 4367 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4368 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4369 */ 4370 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4371 struct usb_device *udev, u16 max_exit_latency) 4372 { 4373 struct xhci_virt_device *virt_dev; 4374 struct xhci_command *command; 4375 struct xhci_input_control_ctx *ctrl_ctx; 4376 struct xhci_slot_ctx *slot_ctx; 4377 unsigned long flags; 4378 int ret; 4379 4380 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4381 if (!command) 4382 return -ENOMEM; 4383 4384 spin_lock_irqsave(&xhci->lock, flags); 4385 4386 virt_dev = xhci->devs[udev->slot_id]; 4387 4388 /* 4389 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4390 * xHC was re-initialized. Exit latency will be set later after 4391 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4392 */ 4393 4394 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4395 spin_unlock_irqrestore(&xhci->lock, flags); 4396 return 0; 4397 } 4398 4399 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4400 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4401 if (!ctrl_ctx) { 4402 spin_unlock_irqrestore(&xhci->lock, flags); 4403 xhci_free_command(xhci, command); 4404 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4405 __func__); 4406 return -ENOMEM; 4407 } 4408 4409 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4410 spin_unlock_irqrestore(&xhci->lock, flags); 4411 4412 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4413 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4414 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4415 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4416 slot_ctx->dev_state = 0; 4417 4418 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4419 "Set up evaluate context for LPM MEL change."); 4420 4421 /* Issue and wait for the evaluate context command. */ 4422 ret = xhci_configure_endpoint(xhci, udev, command, 4423 true, true); 4424 4425 if (!ret) { 4426 spin_lock_irqsave(&xhci->lock, flags); 4427 virt_dev->current_mel = max_exit_latency; 4428 spin_unlock_irqrestore(&xhci->lock, flags); 4429 } 4430 4431 xhci_free_command(xhci, command); 4432 4433 return ret; 4434 } 4435 4436 #ifdef CONFIG_PM 4437 4438 /* BESL to HIRD Encoding array for USB2 LPM */ 4439 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4440 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4441 4442 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4443 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4444 struct usb_device *udev) 4445 { 4446 int u2del, besl, besl_host; 4447 int besl_device = 0; 4448 u32 field; 4449 4450 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4451 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4452 4453 if (field & USB_BESL_SUPPORT) { 4454 for (besl_host = 0; besl_host < 16; besl_host++) { 4455 if (xhci_besl_encoding[besl_host] >= u2del) 4456 break; 4457 } 4458 /* Use baseline BESL value as default */ 4459 if (field & USB_BESL_BASELINE_VALID) 4460 besl_device = USB_GET_BESL_BASELINE(field); 4461 else if (field & USB_BESL_DEEP_VALID) 4462 besl_device = USB_GET_BESL_DEEP(field); 4463 } else { 4464 if (u2del <= 50) 4465 besl_host = 0; 4466 else 4467 besl_host = (u2del - 51) / 75 + 1; 4468 } 4469 4470 besl = besl_host + besl_device; 4471 if (besl > 15) 4472 besl = 15; 4473 4474 return besl; 4475 } 4476 4477 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4478 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4479 { 4480 u32 field; 4481 int l1; 4482 int besld = 0; 4483 int hirdm = 0; 4484 4485 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4486 4487 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4488 l1 = udev->l1_params.timeout / 256; 4489 4490 /* device has preferred BESLD */ 4491 if (field & USB_BESL_DEEP_VALID) { 4492 besld = USB_GET_BESL_DEEP(field); 4493 hirdm = 1; 4494 } 4495 4496 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4497 } 4498 4499 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4500 struct usb_device *udev, int enable) 4501 { 4502 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4503 struct xhci_port **ports; 4504 __le32 __iomem *pm_addr, *hlpm_addr; 4505 u32 pm_val, hlpm_val, field; 4506 unsigned int port_num; 4507 unsigned long flags; 4508 int hird, exit_latency; 4509 int ret; 4510 4511 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4512 return -EPERM; 4513 4514 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4515 !udev->lpm_capable) 4516 return -EPERM; 4517 4518 if (!udev->parent || udev->parent->parent || 4519 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4520 return -EPERM; 4521 4522 if (udev->usb2_hw_lpm_capable != 1) 4523 return -EPERM; 4524 4525 spin_lock_irqsave(&xhci->lock, flags); 4526 4527 ports = xhci->usb2_rhub.ports; 4528 port_num = udev->portnum - 1; 4529 pm_addr = ports[port_num]->addr + PORTPMSC; 4530 pm_val = readl(pm_addr); 4531 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4532 4533 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4534 enable ? "enable" : "disable", port_num + 1); 4535 4536 if (enable) { 4537 /* Host supports BESL timeout instead of HIRD */ 4538 if (udev->usb2_hw_lpm_besl_capable) { 4539 /* if device doesn't have a preferred BESL value use a 4540 * default one which works with mixed HIRD and BESL 4541 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4542 */ 4543 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4544 if ((field & USB_BESL_SUPPORT) && 4545 (field & USB_BESL_BASELINE_VALID)) 4546 hird = USB_GET_BESL_BASELINE(field); 4547 else 4548 hird = udev->l1_params.besl; 4549 4550 exit_latency = xhci_besl_encoding[hird]; 4551 spin_unlock_irqrestore(&xhci->lock, flags); 4552 4553 ret = xhci_change_max_exit_latency(xhci, udev, 4554 exit_latency); 4555 if (ret < 0) 4556 return ret; 4557 spin_lock_irqsave(&xhci->lock, flags); 4558 4559 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4560 writel(hlpm_val, hlpm_addr); 4561 /* flush write */ 4562 readl(hlpm_addr); 4563 } else { 4564 hird = xhci_calculate_hird_besl(xhci, udev); 4565 } 4566 4567 pm_val &= ~PORT_HIRD_MASK; 4568 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4569 writel(pm_val, pm_addr); 4570 pm_val = readl(pm_addr); 4571 pm_val |= PORT_HLE; 4572 writel(pm_val, pm_addr); 4573 /* flush write */ 4574 readl(pm_addr); 4575 } else { 4576 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4577 writel(pm_val, pm_addr); 4578 /* flush write */ 4579 readl(pm_addr); 4580 if (udev->usb2_hw_lpm_besl_capable) { 4581 spin_unlock_irqrestore(&xhci->lock, flags); 4582 xhci_change_max_exit_latency(xhci, udev, 0); 4583 readl_poll_timeout(ports[port_num]->addr, pm_val, 4584 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4585 100, 10000); 4586 return 0; 4587 } 4588 } 4589 4590 spin_unlock_irqrestore(&xhci->lock, flags); 4591 return 0; 4592 } 4593 4594 /* check if a usb2 port supports a given extened capability protocol 4595 * only USB2 ports extended protocol capability values are cached. 4596 * Return 1 if capability is supported 4597 */ 4598 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4599 unsigned capability) 4600 { 4601 u32 port_offset, port_count; 4602 int i; 4603 4604 for (i = 0; i < xhci->num_ext_caps; i++) { 4605 if (xhci->ext_caps[i] & capability) { 4606 /* port offsets starts at 1 */ 4607 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4608 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4609 if (port >= port_offset && 4610 port < port_offset + port_count) 4611 return 1; 4612 } 4613 } 4614 return 0; 4615 } 4616 4617 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4618 { 4619 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4620 int portnum = udev->portnum - 1; 4621 4622 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4623 return 0; 4624 4625 /* we only support lpm for non-hub device connected to root hub yet */ 4626 if (!udev->parent || udev->parent->parent || 4627 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4628 return 0; 4629 4630 if (xhci->hw_lpm_support == 1 && 4631 xhci_check_usb2_port_capability( 4632 xhci, portnum, XHCI_HLC)) { 4633 udev->usb2_hw_lpm_capable = 1; 4634 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4635 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4636 if (xhci_check_usb2_port_capability(xhci, portnum, 4637 XHCI_BLC)) 4638 udev->usb2_hw_lpm_besl_capable = 1; 4639 } 4640 4641 return 0; 4642 } 4643 4644 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4645 4646 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4647 static unsigned long long xhci_service_interval_to_ns( 4648 struct usb_endpoint_descriptor *desc) 4649 { 4650 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4651 } 4652 4653 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4654 enum usb3_link_state state) 4655 { 4656 unsigned long long sel; 4657 unsigned long long pel; 4658 unsigned int max_sel_pel; 4659 char *state_name; 4660 4661 switch (state) { 4662 case USB3_LPM_U1: 4663 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4664 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4665 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4666 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4667 state_name = "U1"; 4668 break; 4669 case USB3_LPM_U2: 4670 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4671 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4672 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4673 state_name = "U2"; 4674 break; 4675 default: 4676 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4677 __func__); 4678 return USB3_LPM_DISABLED; 4679 } 4680 4681 if (sel <= max_sel_pel && pel <= max_sel_pel) 4682 return USB3_LPM_DEVICE_INITIATED; 4683 4684 if (sel > max_sel_pel) 4685 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4686 "due to long SEL %llu ms\n", 4687 state_name, sel); 4688 else 4689 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4690 "due to long PEL %llu ms\n", 4691 state_name, pel); 4692 return USB3_LPM_DISABLED; 4693 } 4694 4695 /* The U1 timeout should be the maximum of the following values: 4696 * - For control endpoints, U1 system exit latency (SEL) * 3 4697 * - For bulk endpoints, U1 SEL * 5 4698 * - For interrupt endpoints: 4699 * - Notification EPs, U1 SEL * 3 4700 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4701 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4702 */ 4703 static unsigned long long xhci_calculate_intel_u1_timeout( 4704 struct usb_device *udev, 4705 struct usb_endpoint_descriptor *desc) 4706 { 4707 unsigned long long timeout_ns; 4708 int ep_type; 4709 int intr_type; 4710 4711 ep_type = usb_endpoint_type(desc); 4712 switch (ep_type) { 4713 case USB_ENDPOINT_XFER_CONTROL: 4714 timeout_ns = udev->u1_params.sel * 3; 4715 break; 4716 case USB_ENDPOINT_XFER_BULK: 4717 timeout_ns = udev->u1_params.sel * 5; 4718 break; 4719 case USB_ENDPOINT_XFER_INT: 4720 intr_type = usb_endpoint_interrupt_type(desc); 4721 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4722 timeout_ns = udev->u1_params.sel * 3; 4723 break; 4724 } 4725 /* Otherwise the calculation is the same as isoc eps */ 4726 fallthrough; 4727 case USB_ENDPOINT_XFER_ISOC: 4728 timeout_ns = xhci_service_interval_to_ns(desc); 4729 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4730 if (timeout_ns < udev->u1_params.sel * 2) 4731 timeout_ns = udev->u1_params.sel * 2; 4732 break; 4733 default: 4734 return 0; 4735 } 4736 4737 return timeout_ns; 4738 } 4739 4740 /* Returns the hub-encoded U1 timeout value. */ 4741 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4742 struct usb_device *udev, 4743 struct usb_endpoint_descriptor *desc) 4744 { 4745 unsigned long long timeout_ns; 4746 4747 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4748 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4749 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4750 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4751 return USB3_LPM_DISABLED; 4752 } 4753 } 4754 4755 if (xhci->quirks & XHCI_INTEL_HOST) 4756 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4757 else 4758 timeout_ns = udev->u1_params.sel; 4759 4760 /* The U1 timeout is encoded in 1us intervals. 4761 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4762 */ 4763 if (timeout_ns == USB3_LPM_DISABLED) 4764 timeout_ns = 1; 4765 else 4766 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4767 4768 /* If the necessary timeout value is bigger than what we can set in the 4769 * USB 3.0 hub, we have to disable hub-initiated U1. 4770 */ 4771 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4772 return timeout_ns; 4773 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4774 "due to long timeout %llu ms\n", timeout_ns); 4775 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4776 } 4777 4778 /* The U2 timeout should be the maximum of: 4779 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4780 * - largest bInterval of any active periodic endpoint (to avoid going 4781 * into lower power link states between intervals). 4782 * - the U2 Exit Latency of the device 4783 */ 4784 static unsigned long long xhci_calculate_intel_u2_timeout( 4785 struct usb_device *udev, 4786 struct usb_endpoint_descriptor *desc) 4787 { 4788 unsigned long long timeout_ns; 4789 unsigned long long u2_del_ns; 4790 4791 timeout_ns = 10 * 1000 * 1000; 4792 4793 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4794 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4795 timeout_ns = xhci_service_interval_to_ns(desc); 4796 4797 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4798 if (u2_del_ns > timeout_ns) 4799 timeout_ns = u2_del_ns; 4800 4801 return timeout_ns; 4802 } 4803 4804 /* Returns the hub-encoded U2 timeout value. */ 4805 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4806 struct usb_device *udev, 4807 struct usb_endpoint_descriptor *desc) 4808 { 4809 unsigned long long timeout_ns; 4810 4811 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4812 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4813 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4814 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4815 return USB3_LPM_DISABLED; 4816 } 4817 } 4818 4819 if (xhci->quirks & XHCI_INTEL_HOST) 4820 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4821 else 4822 timeout_ns = udev->u2_params.sel; 4823 4824 /* The U2 timeout is encoded in 256us intervals */ 4825 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4826 /* If the necessary timeout value is bigger than what we can set in the 4827 * USB 3.0 hub, we have to disable hub-initiated U2. 4828 */ 4829 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4830 return timeout_ns; 4831 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4832 "due to long timeout %llu ms\n", timeout_ns); 4833 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4834 } 4835 4836 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4837 struct usb_device *udev, 4838 struct usb_endpoint_descriptor *desc, 4839 enum usb3_link_state state, 4840 u16 *timeout) 4841 { 4842 if (state == USB3_LPM_U1) 4843 return xhci_calculate_u1_timeout(xhci, udev, desc); 4844 else if (state == USB3_LPM_U2) 4845 return xhci_calculate_u2_timeout(xhci, udev, desc); 4846 4847 return USB3_LPM_DISABLED; 4848 } 4849 4850 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4851 struct usb_device *udev, 4852 struct usb_endpoint_descriptor *desc, 4853 enum usb3_link_state state, 4854 u16 *timeout) 4855 { 4856 u16 alt_timeout; 4857 4858 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4859 desc, state, timeout); 4860 4861 /* If we found we can't enable hub-initiated LPM, and 4862 * the U1 or U2 exit latency was too high to allow 4863 * device-initiated LPM as well, then we will disable LPM 4864 * for this device, so stop searching any further. 4865 */ 4866 if (alt_timeout == USB3_LPM_DISABLED) { 4867 *timeout = alt_timeout; 4868 return -E2BIG; 4869 } 4870 if (alt_timeout > *timeout) 4871 *timeout = alt_timeout; 4872 return 0; 4873 } 4874 4875 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4876 struct usb_device *udev, 4877 struct usb_host_interface *alt, 4878 enum usb3_link_state state, 4879 u16 *timeout) 4880 { 4881 int j; 4882 4883 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4884 if (xhci_update_timeout_for_endpoint(xhci, udev, 4885 &alt->endpoint[j].desc, state, timeout)) 4886 return -E2BIG; 4887 } 4888 return 0; 4889 } 4890 4891 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4892 enum usb3_link_state state) 4893 { 4894 struct usb_device *parent; 4895 unsigned int num_hubs; 4896 4897 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4898 for (parent = udev->parent, num_hubs = 0; parent->parent; 4899 parent = parent->parent) 4900 num_hubs++; 4901 4902 if (num_hubs < 2) 4903 return 0; 4904 4905 dev_dbg(&udev->dev, "Disabling U1/U2 link state for device" 4906 " below second-tier hub.\n"); 4907 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4908 "to decrease power consumption.\n"); 4909 return -E2BIG; 4910 } 4911 4912 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4913 struct usb_device *udev, 4914 enum usb3_link_state state) 4915 { 4916 if (xhci->quirks & XHCI_INTEL_HOST) 4917 return xhci_check_intel_tier_policy(udev, state); 4918 else 4919 return 0; 4920 } 4921 4922 /* Returns the U1 or U2 timeout that should be enabled. 4923 * If the tier check or timeout setting functions return with a non-zero exit 4924 * code, that means the timeout value has been finalized and we shouldn't look 4925 * at any more endpoints. 4926 */ 4927 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4928 struct usb_device *udev, enum usb3_link_state state) 4929 { 4930 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4931 struct usb_host_config *config; 4932 char *state_name; 4933 int i; 4934 u16 timeout = USB3_LPM_DISABLED; 4935 4936 if (state == USB3_LPM_U1) 4937 state_name = "U1"; 4938 else if (state == USB3_LPM_U2) 4939 state_name = "U2"; 4940 else { 4941 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4942 state); 4943 return timeout; 4944 } 4945 4946 /* Gather some information about the currently installed configuration 4947 * and alternate interface settings. 4948 */ 4949 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4950 state, &timeout)) 4951 return timeout; 4952 4953 config = udev->actconfig; 4954 if (!config) 4955 return timeout; 4956 4957 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4958 struct usb_driver *driver; 4959 struct usb_interface *intf = config->interface[i]; 4960 4961 if (!intf) 4962 continue; 4963 4964 /* Check if any currently bound drivers want hub-initiated LPM 4965 * disabled. 4966 */ 4967 if (intf->dev.driver) { 4968 driver = to_usb_driver(intf->dev.driver); 4969 if (driver && driver->disable_hub_initiated_lpm) { 4970 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4971 state_name, driver->name); 4972 timeout = xhci_get_timeout_no_hub_lpm(udev, 4973 state); 4974 if (timeout == USB3_LPM_DISABLED) 4975 return timeout; 4976 } 4977 } 4978 4979 /* Not sure how this could happen... */ 4980 if (!intf->cur_altsetting) 4981 continue; 4982 4983 if (xhci_update_timeout_for_interface(xhci, udev, 4984 intf->cur_altsetting, 4985 state, &timeout)) 4986 return timeout; 4987 } 4988 return timeout; 4989 } 4990 4991 static int calculate_max_exit_latency(struct usb_device *udev, 4992 enum usb3_link_state state_changed, 4993 u16 hub_encoded_timeout) 4994 { 4995 unsigned long long u1_mel_us = 0; 4996 unsigned long long u2_mel_us = 0; 4997 unsigned long long mel_us = 0; 4998 bool disabling_u1; 4999 bool disabling_u2; 5000 bool enabling_u1; 5001 bool enabling_u2; 5002 5003 disabling_u1 = (state_changed == USB3_LPM_U1 && 5004 hub_encoded_timeout == USB3_LPM_DISABLED); 5005 disabling_u2 = (state_changed == USB3_LPM_U2 && 5006 hub_encoded_timeout == USB3_LPM_DISABLED); 5007 5008 enabling_u1 = (state_changed == USB3_LPM_U1 && 5009 hub_encoded_timeout != USB3_LPM_DISABLED); 5010 enabling_u2 = (state_changed == USB3_LPM_U2 && 5011 hub_encoded_timeout != USB3_LPM_DISABLED); 5012 5013 /* If U1 was already enabled and we're not disabling it, 5014 * or we're going to enable U1, account for the U1 max exit latency. 5015 */ 5016 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 5017 enabling_u1) 5018 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 5019 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 5020 enabling_u2) 5021 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5022 5023 mel_us = max(u1_mel_us, u2_mel_us); 5024 5025 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5026 if (mel_us > MAX_EXIT) { 5027 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5028 "is too big.\n", mel_us); 5029 return -E2BIG; 5030 } 5031 return mel_us; 5032 } 5033 5034 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5035 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5036 struct usb_device *udev, enum usb3_link_state state) 5037 { 5038 struct xhci_hcd *xhci; 5039 u16 hub_encoded_timeout; 5040 int mel; 5041 int ret; 5042 5043 xhci = hcd_to_xhci(hcd); 5044 /* The LPM timeout values are pretty host-controller specific, so don't 5045 * enable hub-initiated timeouts unless the vendor has provided 5046 * information about their timeout algorithm. 5047 */ 5048 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5049 !xhci->devs[udev->slot_id]) 5050 return USB3_LPM_DISABLED; 5051 5052 if (xhci_check_tier_policy(xhci, udev, state) < 0) 5053 return USB3_LPM_DISABLED; 5054 5055 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5056 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5057 if (mel < 0) { 5058 /* Max Exit Latency is too big, disable LPM. */ 5059 hub_encoded_timeout = USB3_LPM_DISABLED; 5060 mel = 0; 5061 } 5062 5063 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5064 if (ret) 5065 return ret; 5066 return hub_encoded_timeout; 5067 } 5068 5069 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5070 struct usb_device *udev, enum usb3_link_state state) 5071 { 5072 struct xhci_hcd *xhci; 5073 u16 mel; 5074 5075 xhci = hcd_to_xhci(hcd); 5076 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5077 !xhci->devs[udev->slot_id]) 5078 return 0; 5079 5080 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5081 return xhci_change_max_exit_latency(xhci, udev, mel); 5082 } 5083 #else /* CONFIG_PM */ 5084 5085 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5086 struct usb_device *udev, int enable) 5087 { 5088 return 0; 5089 } 5090 5091 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5092 { 5093 return 0; 5094 } 5095 5096 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5097 struct usb_device *udev, enum usb3_link_state state) 5098 { 5099 return USB3_LPM_DISABLED; 5100 } 5101 5102 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5103 struct usb_device *udev, enum usb3_link_state state) 5104 { 5105 return 0; 5106 } 5107 #endif /* CONFIG_PM */ 5108 5109 /*-------------------------------------------------------------------------*/ 5110 5111 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5112 * internal data structures for the device. 5113 */ 5114 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5115 struct usb_tt *tt, gfp_t mem_flags) 5116 { 5117 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5118 struct xhci_virt_device *vdev; 5119 struct xhci_command *config_cmd; 5120 struct xhci_input_control_ctx *ctrl_ctx; 5121 struct xhci_slot_ctx *slot_ctx; 5122 unsigned long flags; 5123 unsigned think_time; 5124 int ret; 5125 5126 /* Ignore root hubs */ 5127 if (!hdev->parent) 5128 return 0; 5129 5130 vdev = xhci->devs[hdev->slot_id]; 5131 if (!vdev) { 5132 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5133 return -EINVAL; 5134 } 5135 5136 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5137 if (!config_cmd) 5138 return -ENOMEM; 5139 5140 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5141 if (!ctrl_ctx) { 5142 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5143 __func__); 5144 xhci_free_command(xhci, config_cmd); 5145 return -ENOMEM; 5146 } 5147 5148 spin_lock_irqsave(&xhci->lock, flags); 5149 if (hdev->speed == USB_SPEED_HIGH && 5150 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5151 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5152 xhci_free_command(xhci, config_cmd); 5153 spin_unlock_irqrestore(&xhci->lock, flags); 5154 return -ENOMEM; 5155 } 5156 5157 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5158 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5159 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5160 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5161 /* 5162 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5163 * but it may be already set to 1 when setup an xHCI virtual 5164 * device, so clear it anyway. 5165 */ 5166 if (tt->multi) 5167 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5168 else if (hdev->speed == USB_SPEED_FULL) 5169 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5170 5171 if (xhci->hci_version > 0x95) { 5172 xhci_dbg(xhci, "xHCI version %x needs hub " 5173 "TT think time and number of ports\n", 5174 (unsigned int) xhci->hci_version); 5175 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5176 /* Set TT think time - convert from ns to FS bit times. 5177 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5178 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5179 * 5180 * xHCI 1.0: this field shall be 0 if the device is not a 5181 * High-spped hub. 5182 */ 5183 think_time = tt->think_time; 5184 if (think_time != 0) 5185 think_time = (think_time / 666) - 1; 5186 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5187 slot_ctx->tt_info |= 5188 cpu_to_le32(TT_THINK_TIME(think_time)); 5189 } else { 5190 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5191 "TT think time or number of ports\n", 5192 (unsigned int) xhci->hci_version); 5193 } 5194 slot_ctx->dev_state = 0; 5195 spin_unlock_irqrestore(&xhci->lock, flags); 5196 5197 xhci_dbg(xhci, "Set up %s for hub device.\n", 5198 (xhci->hci_version > 0x95) ? 5199 "configure endpoint" : "evaluate context"); 5200 5201 /* Issue and wait for the configure endpoint or 5202 * evaluate context command. 5203 */ 5204 if (xhci->hci_version > 0x95) 5205 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5206 false, false); 5207 else 5208 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5209 true, false); 5210 5211 xhci_free_command(xhci, config_cmd); 5212 return ret; 5213 } 5214 5215 static int xhci_get_frame(struct usb_hcd *hcd) 5216 { 5217 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5218 /* EHCI mods by the periodic size. Why? */ 5219 return readl(&xhci->run_regs->microframe_index) >> 3; 5220 } 5221 5222 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5223 { 5224 xhci->usb2_rhub.hcd = hcd; 5225 hcd->speed = HCD_USB2; 5226 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5227 /* 5228 * USB 2.0 roothub under xHCI has an integrated TT, 5229 * (rate matching hub) as opposed to having an OHCI/UHCI 5230 * companion controller. 5231 */ 5232 hcd->has_tt = 1; 5233 } 5234 5235 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5236 { 5237 unsigned int minor_rev; 5238 5239 /* 5240 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5241 * should return 0x31 for sbrn, or that the minor revision 5242 * is a two digit BCD containig minor and sub-minor numbers. 5243 * This was later clarified in xHCI 1.2. 5244 * 5245 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5246 * minor revision set to 0x1 instead of 0x10. 5247 */ 5248 if (xhci->usb3_rhub.min_rev == 0x1) 5249 minor_rev = 1; 5250 else 5251 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5252 5253 switch (minor_rev) { 5254 case 2: 5255 hcd->speed = HCD_USB32; 5256 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5257 hcd->self.root_hub->rx_lanes = 2; 5258 hcd->self.root_hub->tx_lanes = 2; 5259 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5260 break; 5261 case 1: 5262 hcd->speed = HCD_USB31; 5263 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5264 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5265 break; 5266 } 5267 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5268 minor_rev, minor_rev ? "Enhanced " : ""); 5269 5270 xhci->usb3_rhub.hcd = hcd; 5271 } 5272 5273 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5274 { 5275 struct xhci_hcd *xhci; 5276 /* 5277 * TODO: Check with DWC3 clients for sysdev according to 5278 * quirks 5279 */ 5280 struct device *dev = hcd->self.sysdev; 5281 int retval; 5282 5283 /* Accept arbitrarily long scatter-gather lists */ 5284 hcd->self.sg_tablesize = ~0; 5285 5286 /* support to build packet from discontinuous buffers */ 5287 hcd->self.no_sg_constraint = 1; 5288 5289 /* XHCI controllers don't stop the ep queue on short packets :| */ 5290 hcd->self.no_stop_on_short = 1; 5291 5292 xhci = hcd_to_xhci(hcd); 5293 5294 if (!usb_hcd_is_primary_hcd(hcd)) { 5295 xhci_hcd_init_usb3_data(xhci, hcd); 5296 return 0; 5297 } 5298 5299 mutex_init(&xhci->mutex); 5300 xhci->main_hcd = hcd; 5301 xhci->cap_regs = hcd->regs; 5302 xhci->op_regs = hcd->regs + 5303 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5304 xhci->run_regs = hcd->regs + 5305 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5306 /* Cache read-only capability registers */ 5307 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5308 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5309 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5310 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5311 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5312 if (xhci->hci_version > 0x100) 5313 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5314 5315 xhci->quirks |= quirks; 5316 5317 get_quirks(dev, xhci); 5318 5319 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5320 * success event after a short transfer. This quirk will ignore such 5321 * spurious event. 5322 */ 5323 if (xhci->hci_version > 0x96) 5324 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5325 5326 /* Make sure the HC is halted. */ 5327 retval = xhci_halt(xhci); 5328 if (retval) 5329 return retval; 5330 5331 xhci_zero_64b_regs(xhci); 5332 5333 xhci_dbg(xhci, "Resetting HCD\n"); 5334 /* Reset the internal HC memory state and registers. */ 5335 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5336 if (retval) 5337 return retval; 5338 xhci_dbg(xhci, "Reset complete\n"); 5339 5340 /* 5341 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5342 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5343 * address memory pointers actually. So, this driver clears the AC64 5344 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5345 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5346 */ 5347 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5348 xhci->hcc_params &= ~BIT(0); 5349 5350 /* Set dma_mask and coherent_dma_mask to 64-bits, 5351 * if xHC supports 64-bit addressing */ 5352 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5353 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5354 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5355 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5356 } else { 5357 /* 5358 * This is to avoid error in cases where a 32-bit USB 5359 * controller is used on a 64-bit capable system. 5360 */ 5361 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5362 if (retval) 5363 return retval; 5364 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5365 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5366 } 5367 5368 xhci_dbg(xhci, "Calling HCD init\n"); 5369 /* Initialize HCD and host controller data structures. */ 5370 retval = xhci_init(hcd); 5371 if (retval) 5372 return retval; 5373 xhci_dbg(xhci, "Called HCD init\n"); 5374 5375 if (xhci_hcd_is_usb3(hcd)) 5376 xhci_hcd_init_usb3_data(xhci, hcd); 5377 else 5378 xhci_hcd_init_usb2_data(xhci, hcd); 5379 5380 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5381 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5382 5383 return 0; 5384 } 5385 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5386 5387 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5388 struct usb_host_endpoint *ep) 5389 { 5390 struct xhci_hcd *xhci; 5391 struct usb_device *udev; 5392 unsigned int slot_id; 5393 unsigned int ep_index; 5394 unsigned long flags; 5395 5396 xhci = hcd_to_xhci(hcd); 5397 5398 spin_lock_irqsave(&xhci->lock, flags); 5399 udev = (struct usb_device *)ep->hcpriv; 5400 slot_id = udev->slot_id; 5401 ep_index = xhci_get_endpoint_index(&ep->desc); 5402 5403 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5404 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5405 spin_unlock_irqrestore(&xhci->lock, flags); 5406 } 5407 5408 static const struct hc_driver xhci_hc_driver = { 5409 .description = "xhci-hcd", 5410 .product_desc = "xHCI Host Controller", 5411 .hcd_priv_size = sizeof(struct xhci_hcd), 5412 5413 /* 5414 * generic hardware linkage 5415 */ 5416 .irq = xhci_irq, 5417 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5418 HCD_BH, 5419 5420 /* 5421 * basic lifecycle operations 5422 */ 5423 .reset = NULL, /* set in xhci_init_driver() */ 5424 .start = xhci_run, 5425 .stop = xhci_stop, 5426 .shutdown = xhci_shutdown, 5427 5428 /* 5429 * managing i/o requests and associated device resources 5430 */ 5431 .map_urb_for_dma = xhci_map_urb_for_dma, 5432 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5433 .urb_enqueue = xhci_urb_enqueue, 5434 .urb_dequeue = xhci_urb_dequeue, 5435 .alloc_dev = xhci_alloc_dev, 5436 .free_dev = xhci_free_dev, 5437 .alloc_streams = xhci_alloc_streams, 5438 .free_streams = xhci_free_streams, 5439 .add_endpoint = xhci_add_endpoint, 5440 .drop_endpoint = xhci_drop_endpoint, 5441 .endpoint_disable = xhci_endpoint_disable, 5442 .endpoint_reset = xhci_endpoint_reset, 5443 .check_bandwidth = xhci_check_bandwidth, 5444 .reset_bandwidth = xhci_reset_bandwidth, 5445 .address_device = xhci_address_device, 5446 .enable_device = xhci_enable_device, 5447 .update_hub_device = xhci_update_hub_device, 5448 .reset_device = xhci_discover_or_reset_device, 5449 5450 /* 5451 * scheduling support 5452 */ 5453 .get_frame_number = xhci_get_frame, 5454 5455 /* 5456 * root hub support 5457 */ 5458 .hub_control = xhci_hub_control, 5459 .hub_status_data = xhci_hub_status_data, 5460 .bus_suspend = xhci_bus_suspend, 5461 .bus_resume = xhci_bus_resume, 5462 .get_resuming_ports = xhci_get_resuming_ports, 5463 5464 /* 5465 * call back when device connected and addressed 5466 */ 5467 .update_device = xhci_update_device, 5468 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5469 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5470 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5471 .find_raw_port_number = xhci_find_raw_port_number, 5472 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5473 }; 5474 5475 void xhci_init_driver(struct hc_driver *drv, 5476 const struct xhci_driver_overrides *over) 5477 { 5478 BUG_ON(!over); 5479 5480 /* Copy the generic table to drv then apply the overrides */ 5481 *drv = xhci_hc_driver; 5482 5483 if (over) { 5484 drv->hcd_priv_size += over->extra_priv_size; 5485 if (over->reset) 5486 drv->reset = over->reset; 5487 if (over->start) 5488 drv->start = over->start; 5489 if (over->add_endpoint) 5490 drv->add_endpoint = over->add_endpoint; 5491 if (over->drop_endpoint) 5492 drv->drop_endpoint = over->drop_endpoint; 5493 if (over->check_bandwidth) 5494 drv->check_bandwidth = over->check_bandwidth; 5495 if (over->reset_bandwidth) 5496 drv->reset_bandwidth = over->reset_bandwidth; 5497 } 5498 } 5499 EXPORT_SYMBOL_GPL(xhci_init_driver); 5500 5501 MODULE_DESCRIPTION(DRIVER_DESC); 5502 MODULE_AUTHOR(DRIVER_AUTHOR); 5503 MODULE_LICENSE("GPL"); 5504 5505 static int __init xhci_hcd_init(void) 5506 { 5507 /* 5508 * Check the compiler generated sizes of structures that must be laid 5509 * out in specific ways for hardware access. 5510 */ 5511 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5512 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5513 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5514 /* xhci_device_control has eight fields, and also 5515 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5516 */ 5517 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5518 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5519 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5520 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5521 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5522 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5523 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5524 5525 if (usb_disabled()) 5526 return -ENODEV; 5527 5528 xhci_debugfs_create_root(); 5529 xhci_dbc_init(); 5530 5531 return 0; 5532 } 5533 5534 /* 5535 * If an init function is provided, an exit function must also be provided 5536 * to allow module unload. 5537 */ 5538 static void __exit xhci_hcd_fini(void) 5539 { 5540 xhci_debugfs_remove_root(); 5541 xhci_dbc_exit(); 5542 } 5543 5544 module_init(xhci_hcd_init); 5545 module_exit(xhci_hcd_fini); 5546