xref: /linux/drivers/usb/host/xhci.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37 
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42 
43 static unsigned int quirks;
44 module_param(quirks, uint, S_IRUGO);
45 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
46 
47 /* TODO: copied from ehci-hcd.c - can this be refactored? */
48 /*
49  * xhci_handshake - spin reading hc until handshake completes or fails
50  * @ptr: address of hc register to be read
51  * @mask: bits to look at in result of read
52  * @done: value of those bits when handshake succeeds
53  * @usec: timeout in microseconds
54  *
55  * Returns negative errno, or zero on success
56  *
57  * Success happens when the "mask" bits have the specified value (hardware
58  * handshake done).  There are two failure modes:  "usec" have passed (major
59  * hardware flakeout), or the register reads as all-ones (hardware removed).
60  */
61 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
62 		      u32 mask, u32 done, int usec)
63 {
64 	u32	result;
65 
66 	do {
67 		result = readl(ptr);
68 		if (result == ~(u32)0)		/* card removed */
69 			return -ENODEV;
70 		result &= mask;
71 		if (result == done)
72 			return 0;
73 		udelay(1);
74 		usec--;
75 	} while (usec > 0);
76 	return -ETIMEDOUT;
77 }
78 
79 /*
80  * Disable interrupts and begin the xHCI halting process.
81  */
82 void xhci_quiesce(struct xhci_hcd *xhci)
83 {
84 	u32 halted;
85 	u32 cmd;
86 	u32 mask;
87 
88 	mask = ~(XHCI_IRQS);
89 	halted = readl(&xhci->op_regs->status) & STS_HALT;
90 	if (!halted)
91 		mask &= ~CMD_RUN;
92 
93 	cmd = readl(&xhci->op_regs->command);
94 	cmd &= mask;
95 	writel(cmd, &xhci->op_regs->command);
96 }
97 
98 /*
99  * Force HC into halt state.
100  *
101  * Disable any IRQs and clear the run/stop bit.
102  * HC will complete any current and actively pipelined transactions, and
103  * should halt within 16 ms of the run/stop bit being cleared.
104  * Read HC Halted bit in the status register to see when the HC is finished.
105  */
106 int xhci_halt(struct xhci_hcd *xhci)
107 {
108 	int ret;
109 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
110 	xhci_quiesce(xhci);
111 
112 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
113 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
114 	if (!ret) {
115 		xhci->xhc_state |= XHCI_STATE_HALTED;
116 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
117 	} else
118 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
119 				XHCI_MAX_HALT_USEC);
120 	return ret;
121 }
122 
123 /*
124  * Set the run bit and wait for the host to be running.
125  */
126 static int xhci_start(struct xhci_hcd *xhci)
127 {
128 	u32 temp;
129 	int ret;
130 
131 	temp = readl(&xhci->op_regs->command);
132 	temp |= (CMD_RUN);
133 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
134 			temp);
135 	writel(temp, &xhci->op_regs->command);
136 
137 	/*
138 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
139 	 * running.
140 	 */
141 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
142 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
143 	if (ret == -ETIMEDOUT)
144 		xhci_err(xhci, "Host took too long to start, "
145 				"waited %u microseconds.\n",
146 				XHCI_MAX_HALT_USEC);
147 	if (!ret)
148 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
149 	return ret;
150 }
151 
152 /*
153  * Reset a halted HC.
154  *
155  * This resets pipelines, timers, counters, state machines, etc.
156  * Transactions will be terminated immediately, and operational registers
157  * will be set to their defaults.
158  */
159 int xhci_reset(struct xhci_hcd *xhci)
160 {
161 	u32 command;
162 	u32 state;
163 	int ret, i;
164 
165 	state = readl(&xhci->op_regs->status);
166 	if ((state & STS_HALT) == 0) {
167 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 		return 0;
169 	}
170 
171 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 	command = readl(&xhci->op_regs->command);
173 	command |= CMD_RESET;
174 	writel(command, &xhci->op_regs->command);
175 
176 	ret = xhci_handshake(xhci, &xhci->op_regs->command,
177 			CMD_RESET, 0, 10 * 1000 * 1000);
178 	if (ret)
179 		return ret;
180 
181 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
182 			 "Wait for controller to be ready for doorbell rings");
183 	/*
184 	 * xHCI cannot write to any doorbells or operational registers other
185 	 * than status until the "Controller Not Ready" flag is cleared.
186 	 */
187 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
188 			STS_CNR, 0, 10 * 1000 * 1000);
189 
190 	for (i = 0; i < 2; ++i) {
191 		xhci->bus_state[i].port_c_suspend = 0;
192 		xhci->bus_state[i].suspended_ports = 0;
193 		xhci->bus_state[i].resuming_ports = 0;
194 	}
195 
196 	return ret;
197 }
198 
199 #ifdef CONFIG_PCI
200 static int xhci_free_msi(struct xhci_hcd *xhci)
201 {
202 	int i;
203 
204 	if (!xhci->msix_entries)
205 		return -EINVAL;
206 
207 	for (i = 0; i < xhci->msix_count; i++)
208 		if (xhci->msix_entries[i].vector)
209 			free_irq(xhci->msix_entries[i].vector,
210 					xhci_to_hcd(xhci));
211 	return 0;
212 }
213 
214 /*
215  * Set up MSI
216  */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219 	int ret;
220 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
221 
222 	ret = pci_enable_msi(pdev);
223 	if (ret) {
224 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
225 				"failed to allocate MSI entry");
226 		return ret;
227 	}
228 
229 	ret = request_irq(pdev->irq, xhci_msi_irq,
230 				0, "xhci_hcd", xhci_to_hcd(xhci));
231 	if (ret) {
232 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
233 				"disable MSI interrupt");
234 		pci_disable_msi(pdev);
235 	}
236 
237 	return ret;
238 }
239 
240 /*
241  * Free IRQs
242  * free all IRQs request
243  */
244 static void xhci_free_irq(struct xhci_hcd *xhci)
245 {
246 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
247 	int ret;
248 
249 	/* return if using legacy interrupt */
250 	if (xhci_to_hcd(xhci)->irq > 0)
251 		return;
252 
253 	ret = xhci_free_msi(xhci);
254 	if (!ret)
255 		return;
256 	if (pdev->irq > 0)
257 		free_irq(pdev->irq, xhci_to_hcd(xhci));
258 
259 	return;
260 }
261 
262 /*
263  * Set up MSI-X
264  */
265 static int xhci_setup_msix(struct xhci_hcd *xhci)
266 {
267 	int i, ret = 0;
268 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
269 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
270 
271 	/*
272 	 * calculate number of msi-x vectors supported.
273 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
274 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
275 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
276 	 *   Add additional 1 vector to ensure always available interrupt.
277 	 */
278 	xhci->msix_count = min(num_online_cpus() + 1,
279 				HCS_MAX_INTRS(xhci->hcs_params1));
280 
281 	xhci->msix_entries =
282 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
283 				GFP_KERNEL);
284 	if (!xhci->msix_entries) {
285 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
286 		return -ENOMEM;
287 	}
288 
289 	for (i = 0; i < xhci->msix_count; i++) {
290 		xhci->msix_entries[i].entry = i;
291 		xhci->msix_entries[i].vector = 0;
292 	}
293 
294 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
295 	if (ret) {
296 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
297 				"Failed to enable MSI-X");
298 		goto free_entries;
299 	}
300 
301 	for (i = 0; i < xhci->msix_count; i++) {
302 		ret = request_irq(xhci->msix_entries[i].vector,
303 				xhci_msi_irq,
304 				0, "xhci_hcd", xhci_to_hcd(xhci));
305 		if (ret)
306 			goto disable_msix;
307 	}
308 
309 	hcd->msix_enabled = 1;
310 	return ret;
311 
312 disable_msix:
313 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
314 	xhci_free_irq(xhci);
315 	pci_disable_msix(pdev);
316 free_entries:
317 	kfree(xhci->msix_entries);
318 	xhci->msix_entries = NULL;
319 	return ret;
320 }
321 
322 /* Free any IRQs and disable MSI-X */
323 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
324 {
325 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327 
328 	if (xhci->quirks & XHCI_PLAT)
329 		return;
330 
331 	xhci_free_irq(xhci);
332 
333 	if (xhci->msix_entries) {
334 		pci_disable_msix(pdev);
335 		kfree(xhci->msix_entries);
336 		xhci->msix_entries = NULL;
337 	} else {
338 		pci_disable_msi(pdev);
339 	}
340 
341 	hcd->msix_enabled = 0;
342 	return;
343 }
344 
345 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
346 {
347 	int i;
348 
349 	if (xhci->msix_entries) {
350 		for (i = 0; i < xhci->msix_count; i++)
351 			synchronize_irq(xhci->msix_entries[i].vector);
352 	}
353 }
354 
355 static int xhci_try_enable_msi(struct usb_hcd *hcd)
356 {
357 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
358 	struct pci_dev  *pdev;
359 	int ret;
360 
361 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
362 	if (xhci->quirks & XHCI_PLAT)
363 		return 0;
364 
365 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
366 	/*
367 	 * Some Fresco Logic host controllers advertise MSI, but fail to
368 	 * generate interrupts.  Don't even try to enable MSI.
369 	 */
370 	if (xhci->quirks & XHCI_BROKEN_MSI)
371 		goto legacy_irq;
372 
373 	/* unregister the legacy interrupt */
374 	if (hcd->irq)
375 		free_irq(hcd->irq, hcd);
376 	hcd->irq = 0;
377 
378 	ret = xhci_setup_msix(xhci);
379 	if (ret)
380 		/* fall back to msi*/
381 		ret = xhci_setup_msi(xhci);
382 
383 	if (!ret)
384 		/* hcd->irq is 0, we have MSI */
385 		return 0;
386 
387 	if (!pdev->irq) {
388 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
389 		return -EINVAL;
390 	}
391 
392  legacy_irq:
393 	if (!strlen(hcd->irq_descr))
394 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
395 			 hcd->driver->description, hcd->self.busnum);
396 
397 	/* fall back to legacy interrupt*/
398 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
399 			hcd->irq_descr, hcd);
400 	if (ret) {
401 		xhci_err(xhci, "request interrupt %d failed\n",
402 				pdev->irq);
403 		return ret;
404 	}
405 	hcd->irq = pdev->irq;
406 	return 0;
407 }
408 
409 #else
410 
411 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
412 {
413 	return 0;
414 }
415 
416 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
417 {
418 }
419 
420 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
421 {
422 }
423 
424 #endif
425 
426 static void compliance_mode_recovery(unsigned long arg)
427 {
428 	struct xhci_hcd *xhci;
429 	struct usb_hcd *hcd;
430 	u32 temp;
431 	int i;
432 
433 	xhci = (struct xhci_hcd *)arg;
434 
435 	for (i = 0; i < xhci->num_usb3_ports; i++) {
436 		temp = readl(xhci->usb3_ports[i]);
437 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
438 			/*
439 			 * Compliance Mode Detected. Letting USB Core
440 			 * handle the Warm Reset
441 			 */
442 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
443 					"Compliance mode detected->port %d",
444 					i + 1);
445 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
446 					"Attempting compliance mode recovery");
447 			hcd = xhci->shared_hcd;
448 
449 			if (hcd->state == HC_STATE_SUSPENDED)
450 				usb_hcd_resume_root_hub(hcd);
451 
452 			usb_hcd_poll_rh_status(hcd);
453 		}
454 	}
455 
456 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
457 		mod_timer(&xhci->comp_mode_recovery_timer,
458 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
459 }
460 
461 /*
462  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
463  * that causes ports behind that hardware to enter compliance mode sometimes.
464  * The quirk creates a timer that polls every 2 seconds the link state of
465  * each host controller's port and recovers it by issuing a Warm reset
466  * if Compliance mode is detected, otherwise the port will become "dead" (no
467  * device connections or disconnections will be detected anymore). Becasue no
468  * status event is generated when entering compliance mode (per xhci spec),
469  * this quirk is needed on systems that have the failing hardware installed.
470  */
471 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
472 {
473 	xhci->port_status_u0 = 0;
474 	init_timer(&xhci->comp_mode_recovery_timer);
475 
476 	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
477 	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
478 	xhci->comp_mode_recovery_timer.expires = jiffies +
479 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
480 
481 	set_timer_slack(&xhci->comp_mode_recovery_timer,
482 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
483 	add_timer(&xhci->comp_mode_recovery_timer);
484 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
485 			"Compliance mode recovery timer initialized");
486 }
487 
488 /*
489  * This function identifies the systems that have installed the SN65LVPE502CP
490  * USB3.0 re-driver and that need the Compliance Mode Quirk.
491  * Systems:
492  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
493  */
494 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
495 {
496 	const char *dmi_product_name, *dmi_sys_vendor;
497 
498 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
499 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
500 	if (!dmi_product_name || !dmi_sys_vendor)
501 		return false;
502 
503 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
504 		return false;
505 
506 	if (strstr(dmi_product_name, "Z420") ||
507 			strstr(dmi_product_name, "Z620") ||
508 			strstr(dmi_product_name, "Z820") ||
509 			strstr(dmi_product_name, "Z1 Workstation"))
510 		return true;
511 
512 	return false;
513 }
514 
515 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
516 {
517 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
518 }
519 
520 
521 /*
522  * Initialize memory for HCD and xHC (one-time init).
523  *
524  * Program the PAGESIZE register, initialize the device context array, create
525  * device contexts (?), set up a command ring segment (or two?), create event
526  * ring (one for now).
527  */
528 int xhci_init(struct usb_hcd *hcd)
529 {
530 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
531 	int retval = 0;
532 
533 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
534 	spin_lock_init(&xhci->lock);
535 	if (xhci->hci_version == 0x95 && link_quirk) {
536 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
537 				"QUIRK: Not clearing Link TRB chain bits.");
538 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
539 	} else {
540 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
541 				"xHCI doesn't need link TRB QUIRK");
542 	}
543 	retval = xhci_mem_init(xhci, GFP_KERNEL);
544 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
545 
546 	/* Initializing Compliance Mode Recovery Data If Needed */
547 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
548 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
549 		compliance_mode_recovery_timer_init(xhci);
550 	}
551 
552 	return retval;
553 }
554 
555 /*-------------------------------------------------------------------------*/
556 
557 
558 static int xhci_run_finished(struct xhci_hcd *xhci)
559 {
560 	if (xhci_start(xhci)) {
561 		xhci_halt(xhci);
562 		return -ENODEV;
563 	}
564 	xhci->shared_hcd->state = HC_STATE_RUNNING;
565 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
566 
567 	if (xhci->quirks & XHCI_NEC_HOST)
568 		xhci_ring_cmd_db(xhci);
569 
570 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
571 			"Finished xhci_run for USB3 roothub");
572 	return 0;
573 }
574 
575 /*
576  * Start the HC after it was halted.
577  *
578  * This function is called by the USB core when the HC driver is added.
579  * Its opposite is xhci_stop().
580  *
581  * xhci_init() must be called once before this function can be called.
582  * Reset the HC, enable device slot contexts, program DCBAAP, and
583  * set command ring pointer and event ring pointer.
584  *
585  * Setup MSI-X vectors and enable interrupts.
586  */
587 int xhci_run(struct usb_hcd *hcd)
588 {
589 	u32 temp;
590 	u64 temp_64;
591 	int ret;
592 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
593 
594 	/* Start the xHCI host controller running only after the USB 2.0 roothub
595 	 * is setup.
596 	 */
597 
598 	hcd->uses_new_polling = 1;
599 	if (!usb_hcd_is_primary_hcd(hcd))
600 		return xhci_run_finished(xhci);
601 
602 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
603 
604 	ret = xhci_try_enable_msi(hcd);
605 	if (ret)
606 		return ret;
607 
608 	xhci_dbg(xhci, "Command ring memory map follows:\n");
609 	xhci_debug_ring(xhci, xhci->cmd_ring);
610 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
611 	xhci_dbg_cmd_ptrs(xhci);
612 
613 	xhci_dbg(xhci, "ERST memory map follows:\n");
614 	xhci_dbg_erst(xhci, &xhci->erst);
615 	xhci_dbg(xhci, "Event ring:\n");
616 	xhci_debug_ring(xhci, xhci->event_ring);
617 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
618 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
619 	temp_64 &= ~ERST_PTR_MASK;
620 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
622 
623 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624 			"// Set the interrupt modulation register");
625 	temp = readl(&xhci->ir_set->irq_control);
626 	temp &= ~ER_IRQ_INTERVAL_MASK;
627 	temp |= (u32) 160;
628 	writel(temp, &xhci->ir_set->irq_control);
629 
630 	/* Set the HCD state before we enable the irqs */
631 	temp = readl(&xhci->op_regs->command);
632 	temp |= (CMD_EIE);
633 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634 			"// Enable interrupts, cmd = 0x%x.", temp);
635 	writel(temp, &xhci->op_regs->command);
636 
637 	temp = readl(&xhci->ir_set->irq_pending);
638 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
640 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
641 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
642 	xhci_print_ir_set(xhci, 0);
643 
644 	if (xhci->quirks & XHCI_NEC_HOST) {
645 		struct xhci_command *command;
646 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
647 		if (!command)
648 			return -ENOMEM;
649 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
650 				TRB_TYPE(TRB_NEC_GET_FW));
651 	}
652 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
653 			"Finished xhci_run for USB2 roothub");
654 	return 0;
655 }
656 
657 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
658 {
659 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
660 
661 	spin_lock_irq(&xhci->lock);
662 	xhci_halt(xhci);
663 
664 	/* The shared_hcd is going to be deallocated shortly (the USB core only
665 	 * calls this function when allocation fails in usb_add_hcd(), or
666 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
667 	 */
668 	xhci->shared_hcd = NULL;
669 	spin_unlock_irq(&xhci->lock);
670 }
671 
672 /*
673  * Stop xHCI driver.
674  *
675  * This function is called by the USB core when the HC driver is removed.
676  * Its opposite is xhci_run().
677  *
678  * Disable device contexts, disable IRQs, and quiesce the HC.
679  * Reset the HC, finish any completed transactions, and cleanup memory.
680  */
681 void xhci_stop(struct usb_hcd *hcd)
682 {
683 	u32 temp;
684 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
685 
686 	if (!usb_hcd_is_primary_hcd(hcd)) {
687 		xhci_only_stop_hcd(xhci->shared_hcd);
688 		return;
689 	}
690 
691 	spin_lock_irq(&xhci->lock);
692 	/* Make sure the xHC is halted for a USB3 roothub
693 	 * (xhci_stop() could be called as part of failed init).
694 	 */
695 	xhci_halt(xhci);
696 	xhci_reset(xhci);
697 	spin_unlock_irq(&xhci->lock);
698 
699 	xhci_cleanup_msix(xhci);
700 
701 	/* Deleting Compliance Mode Recovery Timer */
702 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
703 			(!(xhci_all_ports_seen_u0(xhci)))) {
704 		del_timer_sync(&xhci->comp_mode_recovery_timer);
705 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
706 				"%s: compliance mode recovery timer deleted",
707 				__func__);
708 	}
709 
710 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
711 		usb_amd_dev_put();
712 
713 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
714 			"// Disabling event ring interrupts");
715 	temp = readl(&xhci->op_regs->status);
716 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
717 	temp = readl(&xhci->ir_set->irq_pending);
718 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
719 	xhci_print_ir_set(xhci, 0);
720 
721 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
722 	xhci_mem_cleanup(xhci);
723 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
724 			"xhci_stop completed - status = %x",
725 			readl(&xhci->op_regs->status));
726 }
727 
728 /*
729  * Shutdown HC (not bus-specific)
730  *
731  * This is called when the machine is rebooting or halting.  We assume that the
732  * machine will be powered off, and the HC's internal state will be reset.
733  * Don't bother to free memory.
734  *
735  * This will only ever be called with the main usb_hcd (the USB3 roothub).
736  */
737 void xhci_shutdown(struct usb_hcd *hcd)
738 {
739 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
740 
741 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
742 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
743 
744 	spin_lock_irq(&xhci->lock);
745 	xhci_halt(xhci);
746 	/* Workaround for spurious wakeups at shutdown with HSW */
747 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
748 		xhci_reset(xhci);
749 	spin_unlock_irq(&xhci->lock);
750 
751 	xhci_cleanup_msix(xhci);
752 
753 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
754 			"xhci_shutdown completed - status = %x",
755 			readl(&xhci->op_regs->status));
756 
757 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
758 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
759 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
760 }
761 
762 #ifdef CONFIG_PM
763 static void xhci_save_registers(struct xhci_hcd *xhci)
764 {
765 	xhci->s3.command = readl(&xhci->op_regs->command);
766 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
767 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
768 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
769 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
770 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
771 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
772 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
773 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
774 }
775 
776 static void xhci_restore_registers(struct xhci_hcd *xhci)
777 {
778 	writel(xhci->s3.command, &xhci->op_regs->command);
779 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
780 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
781 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
782 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
783 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
784 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
785 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
786 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
787 }
788 
789 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
790 {
791 	u64	val_64;
792 
793 	/* step 2: initialize command ring buffer */
794 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
795 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
796 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
797 				      xhci->cmd_ring->dequeue) &
798 		 (u64) ~CMD_RING_RSVD_BITS) |
799 		xhci->cmd_ring->cycle_state;
800 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
801 			"// Setting command ring address to 0x%llx",
802 			(long unsigned long) val_64);
803 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
804 }
805 
806 /*
807  * The whole command ring must be cleared to zero when we suspend the host.
808  *
809  * The host doesn't save the command ring pointer in the suspend well, so we
810  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
811  * aligned, because of the reserved bits in the command ring dequeue pointer
812  * register.  Therefore, we can't just set the dequeue pointer back in the
813  * middle of the ring (TRBs are 16-byte aligned).
814  */
815 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
816 {
817 	struct xhci_ring *ring;
818 	struct xhci_segment *seg;
819 
820 	ring = xhci->cmd_ring;
821 	seg = ring->deq_seg;
822 	do {
823 		memset(seg->trbs, 0,
824 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
825 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
826 			cpu_to_le32(~TRB_CYCLE);
827 		seg = seg->next;
828 	} while (seg != ring->deq_seg);
829 
830 	/* Reset the software enqueue and dequeue pointers */
831 	ring->deq_seg = ring->first_seg;
832 	ring->dequeue = ring->first_seg->trbs;
833 	ring->enq_seg = ring->deq_seg;
834 	ring->enqueue = ring->dequeue;
835 
836 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
837 	/*
838 	 * Ring is now zeroed, so the HW should look for change of ownership
839 	 * when the cycle bit is set to 1.
840 	 */
841 	ring->cycle_state = 1;
842 
843 	/*
844 	 * Reset the hardware dequeue pointer.
845 	 * Yes, this will need to be re-written after resume, but we're paranoid
846 	 * and want to make sure the hardware doesn't access bogus memory
847 	 * because, say, the BIOS or an SMI started the host without changing
848 	 * the command ring pointers.
849 	 */
850 	xhci_set_cmd_ring_deq(xhci);
851 }
852 
853 /*
854  * Stop HC (not bus-specific)
855  *
856  * This is called when the machine transition into S3/S4 mode.
857  *
858  */
859 int xhci_suspend(struct xhci_hcd *xhci)
860 {
861 	int			rc = 0;
862 	unsigned int		delay = XHCI_MAX_HALT_USEC;
863 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
864 	u32			command;
865 
866 	if (hcd->state != HC_STATE_SUSPENDED ||
867 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
868 		return -EINVAL;
869 
870 	/* Don't poll the roothubs on bus suspend. */
871 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
872 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
873 	del_timer_sync(&hcd->rh_timer);
874 
875 	spin_lock_irq(&xhci->lock);
876 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
877 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
878 	/* step 1: stop endpoint */
879 	/* skipped assuming that port suspend has done */
880 
881 	/* step 2: clear Run/Stop bit */
882 	command = readl(&xhci->op_regs->command);
883 	command &= ~CMD_RUN;
884 	writel(command, &xhci->op_regs->command);
885 
886 	/* Some chips from Fresco Logic need an extraordinary delay */
887 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
888 
889 	if (xhci_handshake(xhci, &xhci->op_regs->status,
890 		      STS_HALT, STS_HALT, delay)) {
891 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
892 		spin_unlock_irq(&xhci->lock);
893 		return -ETIMEDOUT;
894 	}
895 	xhci_clear_command_ring(xhci);
896 
897 	/* step 3: save registers */
898 	xhci_save_registers(xhci);
899 
900 	/* step 4: set CSS flag */
901 	command = readl(&xhci->op_regs->command);
902 	command |= CMD_CSS;
903 	writel(command, &xhci->op_regs->command);
904 	if (xhci_handshake(xhci, &xhci->op_regs->status,
905 				STS_SAVE, 0, 10 * 1000)) {
906 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
907 		spin_unlock_irq(&xhci->lock);
908 		return -ETIMEDOUT;
909 	}
910 	spin_unlock_irq(&xhci->lock);
911 
912 	/*
913 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
914 	 * is about to be suspended.
915 	 */
916 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
917 			(!(xhci_all_ports_seen_u0(xhci)))) {
918 		del_timer_sync(&xhci->comp_mode_recovery_timer);
919 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
920 				"%s: compliance mode recovery timer deleted",
921 				__func__);
922 	}
923 
924 	/* step 5: remove core well power */
925 	/* synchronize irq when using MSI-X */
926 	xhci_msix_sync_irqs(xhci);
927 
928 	return rc;
929 }
930 
931 /*
932  * start xHC (not bus-specific)
933  *
934  * This is called when the machine transition from S3/S4 mode.
935  *
936  */
937 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
938 {
939 	u32			command, temp = 0, status;
940 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
941 	struct usb_hcd		*secondary_hcd;
942 	int			retval = 0;
943 	bool			comp_timer_running = false;
944 
945 	/* Wait a bit if either of the roothubs need to settle from the
946 	 * transition into bus suspend.
947 	 */
948 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
949 			time_before(jiffies,
950 				xhci->bus_state[1].next_statechange))
951 		msleep(100);
952 
953 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
954 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
955 
956 	spin_lock_irq(&xhci->lock);
957 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
958 		hibernated = true;
959 
960 	if (!hibernated) {
961 		/* step 1: restore register */
962 		xhci_restore_registers(xhci);
963 		/* step 2: initialize command ring buffer */
964 		xhci_set_cmd_ring_deq(xhci);
965 		/* step 3: restore state and start state*/
966 		/* step 3: set CRS flag */
967 		command = readl(&xhci->op_regs->command);
968 		command |= CMD_CRS;
969 		writel(command, &xhci->op_regs->command);
970 		if (xhci_handshake(xhci, &xhci->op_regs->status,
971 			      STS_RESTORE, 0, 10 * 1000)) {
972 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
973 			spin_unlock_irq(&xhci->lock);
974 			return -ETIMEDOUT;
975 		}
976 		temp = readl(&xhci->op_regs->status);
977 	}
978 
979 	/* If restore operation fails, re-initialize the HC during resume */
980 	if ((temp & STS_SRE) || hibernated) {
981 
982 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
983 				!(xhci_all_ports_seen_u0(xhci))) {
984 			del_timer_sync(&xhci->comp_mode_recovery_timer);
985 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
986 				"Compliance Mode Recovery Timer deleted!");
987 		}
988 
989 		/* Let the USB core know _both_ roothubs lost power. */
990 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
991 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
992 
993 		xhci_dbg(xhci, "Stop HCD\n");
994 		xhci_halt(xhci);
995 		xhci_reset(xhci);
996 		spin_unlock_irq(&xhci->lock);
997 		xhci_cleanup_msix(xhci);
998 
999 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1000 		temp = readl(&xhci->op_regs->status);
1001 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1002 		temp = readl(&xhci->ir_set->irq_pending);
1003 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1004 		xhci_print_ir_set(xhci, 0);
1005 
1006 		xhci_dbg(xhci, "cleaning up memory\n");
1007 		xhci_mem_cleanup(xhci);
1008 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1009 			    readl(&xhci->op_regs->status));
1010 
1011 		/* USB core calls the PCI reinit and start functions twice:
1012 		 * first with the primary HCD, and then with the secondary HCD.
1013 		 * If we don't do the same, the host will never be started.
1014 		 */
1015 		if (!usb_hcd_is_primary_hcd(hcd))
1016 			secondary_hcd = hcd;
1017 		else
1018 			secondary_hcd = xhci->shared_hcd;
1019 
1020 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1021 		retval = xhci_init(hcd->primary_hcd);
1022 		if (retval)
1023 			return retval;
1024 		comp_timer_running = true;
1025 
1026 		xhci_dbg(xhci, "Start the primary HCD\n");
1027 		retval = xhci_run(hcd->primary_hcd);
1028 		if (!retval) {
1029 			xhci_dbg(xhci, "Start the secondary HCD\n");
1030 			retval = xhci_run(secondary_hcd);
1031 		}
1032 		hcd->state = HC_STATE_SUSPENDED;
1033 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1034 		goto done;
1035 	}
1036 
1037 	/* step 4: set Run/Stop bit */
1038 	command = readl(&xhci->op_regs->command);
1039 	command |= CMD_RUN;
1040 	writel(command, &xhci->op_regs->command);
1041 	xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1042 		  0, 250 * 1000);
1043 
1044 	/* step 5: walk topology and initialize portsc,
1045 	 * portpmsc and portli
1046 	 */
1047 	/* this is done in bus_resume */
1048 
1049 	/* step 6: restart each of the previously
1050 	 * Running endpoints by ringing their doorbells
1051 	 */
1052 
1053 	spin_unlock_irq(&xhci->lock);
1054 
1055  done:
1056 	if (retval == 0) {
1057 		/* Resume root hubs only when have pending events. */
1058 		status = readl(&xhci->op_regs->status);
1059 		if (status & STS_EINT) {
1060 			usb_hcd_resume_root_hub(hcd);
1061 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1062 		}
1063 	}
1064 
1065 	/*
1066 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1067 	 * be re-initialized Always after a system resume. Ports are subject
1068 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1069 	 * ports have entered previously to U0 before system's suspension.
1070 	 */
1071 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1072 		compliance_mode_recovery_timer_init(xhci);
1073 
1074 	/* Re-enable port polling. */
1075 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1076 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1077 	usb_hcd_poll_rh_status(hcd);
1078 
1079 	return retval;
1080 }
1081 #endif	/* CONFIG_PM */
1082 
1083 /*-------------------------------------------------------------------------*/
1084 
1085 /**
1086  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1087  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1088  * value to right shift 1 for the bitmask.
1089  *
1090  * Index  = (epnum * 2) + direction - 1,
1091  * where direction = 0 for OUT, 1 for IN.
1092  * For control endpoints, the IN index is used (OUT index is unused), so
1093  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1094  */
1095 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1096 {
1097 	unsigned int index;
1098 	if (usb_endpoint_xfer_control(desc))
1099 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1100 	else
1101 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1102 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1103 	return index;
1104 }
1105 
1106 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1107  * address from the XHCI endpoint index.
1108  */
1109 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1110 {
1111 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1112 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1113 	return direction | number;
1114 }
1115 
1116 /* Find the flag for this endpoint (for use in the control context).  Use the
1117  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1118  * bit 1, etc.
1119  */
1120 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1121 {
1122 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1123 }
1124 
1125 /* Find the flag for this endpoint (for use in the control context).  Use the
1126  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1127  * bit 1, etc.
1128  */
1129 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1130 {
1131 	return 1 << (ep_index + 1);
1132 }
1133 
1134 /* Compute the last valid endpoint context index.  Basically, this is the
1135  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1136  * we find the most significant bit set in the added contexts flags.
1137  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1138  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1139  */
1140 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1141 {
1142 	return fls(added_ctxs) - 1;
1143 }
1144 
1145 /* Returns 1 if the arguments are OK;
1146  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1147  */
1148 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1149 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1150 		const char *func) {
1151 	struct xhci_hcd	*xhci;
1152 	struct xhci_virt_device	*virt_dev;
1153 
1154 	if (!hcd || (check_ep && !ep) || !udev) {
1155 		pr_debug("xHCI %s called with invalid args\n", func);
1156 		return -EINVAL;
1157 	}
1158 	if (!udev->parent) {
1159 		pr_debug("xHCI %s called for root hub\n", func);
1160 		return 0;
1161 	}
1162 
1163 	xhci = hcd_to_xhci(hcd);
1164 	if (check_virt_dev) {
1165 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1166 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1167 					func);
1168 			return -EINVAL;
1169 		}
1170 
1171 		virt_dev = xhci->devs[udev->slot_id];
1172 		if (virt_dev->udev != udev) {
1173 			xhci_dbg(xhci, "xHCI %s called with udev and "
1174 					  "virt_dev does not match\n", func);
1175 			return -EINVAL;
1176 		}
1177 	}
1178 
1179 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1180 		return -ENODEV;
1181 
1182 	return 1;
1183 }
1184 
1185 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1186 		struct usb_device *udev, struct xhci_command *command,
1187 		bool ctx_change, bool must_succeed);
1188 
1189 /*
1190  * Full speed devices may have a max packet size greater than 8 bytes, but the
1191  * USB core doesn't know that until it reads the first 8 bytes of the
1192  * descriptor.  If the usb_device's max packet size changes after that point,
1193  * we need to issue an evaluate context command and wait on it.
1194  */
1195 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1196 		unsigned int ep_index, struct urb *urb)
1197 {
1198 	struct xhci_container_ctx *out_ctx;
1199 	struct xhci_input_control_ctx *ctrl_ctx;
1200 	struct xhci_ep_ctx *ep_ctx;
1201 	struct xhci_command *command;
1202 	int max_packet_size;
1203 	int hw_max_packet_size;
1204 	int ret = 0;
1205 
1206 	out_ctx = xhci->devs[slot_id]->out_ctx;
1207 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1208 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1209 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1210 	if (hw_max_packet_size != max_packet_size) {
1211 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1212 				"Max Packet Size for ep 0 changed.");
1213 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1214 				"Max packet size in usb_device = %d",
1215 				max_packet_size);
1216 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1217 				"Max packet size in xHCI HW = %d",
1218 				hw_max_packet_size);
1219 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1220 				"Issuing evaluate context command.");
1221 
1222 		/* Set up the input context flags for the command */
1223 		/* FIXME: This won't work if a non-default control endpoint
1224 		 * changes max packet sizes.
1225 		 */
1226 
1227 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1228 		if (!command)
1229 			return -ENOMEM;
1230 
1231 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1232 		ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
1233 		if (!ctrl_ctx) {
1234 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1235 					__func__);
1236 			ret = -ENOMEM;
1237 			goto command_cleanup;
1238 		}
1239 		/* Set up the modified control endpoint 0 */
1240 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1241 				xhci->devs[slot_id]->out_ctx, ep_index);
1242 
1243 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1244 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1245 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1246 
1247 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1248 		ctrl_ctx->drop_flags = 0;
1249 
1250 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1251 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1252 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1253 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1254 
1255 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1256 				true, false);
1257 
1258 		/* Clean up the input context for later use by bandwidth
1259 		 * functions.
1260 		 */
1261 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1262 command_cleanup:
1263 		kfree(command->completion);
1264 		kfree(command);
1265 	}
1266 	return ret;
1267 }
1268 
1269 /*
1270  * non-error returns are a promise to giveback() the urb later
1271  * we drop ownership so next owner (or urb unlink) can get it
1272  */
1273 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1274 {
1275 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1276 	struct xhci_td *buffer;
1277 	unsigned long flags;
1278 	int ret = 0;
1279 	unsigned int slot_id, ep_index;
1280 	struct urb_priv	*urb_priv;
1281 	int size, i;
1282 
1283 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1284 					true, true, __func__) <= 0)
1285 		return -EINVAL;
1286 
1287 	slot_id = urb->dev->slot_id;
1288 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1289 
1290 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1291 		if (!in_interrupt())
1292 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1293 		ret = -ESHUTDOWN;
1294 		goto exit;
1295 	}
1296 
1297 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1298 		size = urb->number_of_packets;
1299 	else
1300 		size = 1;
1301 
1302 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1303 				  size * sizeof(struct xhci_td *), mem_flags);
1304 	if (!urb_priv)
1305 		return -ENOMEM;
1306 
1307 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1308 	if (!buffer) {
1309 		kfree(urb_priv);
1310 		return -ENOMEM;
1311 	}
1312 
1313 	for (i = 0; i < size; i++) {
1314 		urb_priv->td[i] = buffer;
1315 		buffer++;
1316 	}
1317 
1318 	urb_priv->length = size;
1319 	urb_priv->td_cnt = 0;
1320 	urb->hcpriv = urb_priv;
1321 
1322 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1323 		/* Check to see if the max packet size for the default control
1324 		 * endpoint changed during FS device enumeration
1325 		 */
1326 		if (urb->dev->speed == USB_SPEED_FULL) {
1327 			ret = xhci_check_maxpacket(xhci, slot_id,
1328 					ep_index, urb);
1329 			if (ret < 0) {
1330 				xhci_urb_free_priv(xhci, urb_priv);
1331 				urb->hcpriv = NULL;
1332 				return ret;
1333 			}
1334 		}
1335 
1336 		/* We have a spinlock and interrupts disabled, so we must pass
1337 		 * atomic context to this function, which may allocate memory.
1338 		 */
1339 		spin_lock_irqsave(&xhci->lock, flags);
1340 		if (xhci->xhc_state & XHCI_STATE_DYING)
1341 			goto dying;
1342 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1343 				slot_id, ep_index);
1344 		if (ret)
1345 			goto free_priv;
1346 		spin_unlock_irqrestore(&xhci->lock, flags);
1347 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1348 		spin_lock_irqsave(&xhci->lock, flags);
1349 		if (xhci->xhc_state & XHCI_STATE_DYING)
1350 			goto dying;
1351 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1352 				EP_GETTING_STREAMS) {
1353 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1354 					"is transitioning to using streams.\n");
1355 			ret = -EINVAL;
1356 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1357 				EP_GETTING_NO_STREAMS) {
1358 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1359 					"is transitioning to "
1360 					"not having streams.\n");
1361 			ret = -EINVAL;
1362 		} else {
1363 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1364 					slot_id, ep_index);
1365 		}
1366 		if (ret)
1367 			goto free_priv;
1368 		spin_unlock_irqrestore(&xhci->lock, flags);
1369 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1370 		spin_lock_irqsave(&xhci->lock, flags);
1371 		if (xhci->xhc_state & XHCI_STATE_DYING)
1372 			goto dying;
1373 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1374 				slot_id, ep_index);
1375 		if (ret)
1376 			goto free_priv;
1377 		spin_unlock_irqrestore(&xhci->lock, flags);
1378 	} else {
1379 		spin_lock_irqsave(&xhci->lock, flags);
1380 		if (xhci->xhc_state & XHCI_STATE_DYING)
1381 			goto dying;
1382 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1383 				slot_id, ep_index);
1384 		if (ret)
1385 			goto free_priv;
1386 		spin_unlock_irqrestore(&xhci->lock, flags);
1387 	}
1388 exit:
1389 	return ret;
1390 dying:
1391 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1392 			"non-responsive xHCI host.\n",
1393 			urb->ep->desc.bEndpointAddress, urb);
1394 	ret = -ESHUTDOWN;
1395 free_priv:
1396 	xhci_urb_free_priv(xhci, urb_priv);
1397 	urb->hcpriv = NULL;
1398 	spin_unlock_irqrestore(&xhci->lock, flags);
1399 	return ret;
1400 }
1401 
1402 /* Get the right ring for the given URB.
1403  * If the endpoint supports streams, boundary check the URB's stream ID.
1404  * If the endpoint doesn't support streams, return the singular endpoint ring.
1405  */
1406 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1407 		struct urb *urb)
1408 {
1409 	unsigned int slot_id;
1410 	unsigned int ep_index;
1411 	unsigned int stream_id;
1412 	struct xhci_virt_ep *ep;
1413 
1414 	slot_id = urb->dev->slot_id;
1415 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1416 	stream_id = urb->stream_id;
1417 	ep = &xhci->devs[slot_id]->eps[ep_index];
1418 	/* Common case: no streams */
1419 	if (!(ep->ep_state & EP_HAS_STREAMS))
1420 		return ep->ring;
1421 
1422 	if (stream_id == 0) {
1423 		xhci_warn(xhci,
1424 				"WARN: Slot ID %u, ep index %u has streams, "
1425 				"but URB has no stream ID.\n",
1426 				slot_id, ep_index);
1427 		return NULL;
1428 	}
1429 
1430 	if (stream_id < ep->stream_info->num_streams)
1431 		return ep->stream_info->stream_rings[stream_id];
1432 
1433 	xhci_warn(xhci,
1434 			"WARN: Slot ID %u, ep index %u has "
1435 			"stream IDs 1 to %u allocated, "
1436 			"but stream ID %u is requested.\n",
1437 			slot_id, ep_index,
1438 			ep->stream_info->num_streams - 1,
1439 			stream_id);
1440 	return NULL;
1441 }
1442 
1443 /*
1444  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1445  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1446  * should pick up where it left off in the TD, unless a Set Transfer Ring
1447  * Dequeue Pointer is issued.
1448  *
1449  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1450  * the ring.  Since the ring is a contiguous structure, they can't be physically
1451  * removed.  Instead, there are two options:
1452  *
1453  *  1) If the HC is in the middle of processing the URB to be canceled, we
1454  *     simply move the ring's dequeue pointer past those TRBs using the Set
1455  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1456  *     when drivers timeout on the last submitted URB and attempt to cancel.
1457  *
1458  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1459  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1460  *     HC will need to invalidate the any TRBs it has cached after the stop
1461  *     endpoint command, as noted in the xHCI 0.95 errata.
1462  *
1463  *  3) The TD may have completed by the time the Stop Endpoint Command
1464  *     completes, so software needs to handle that case too.
1465  *
1466  * This function should protect against the TD enqueueing code ringing the
1467  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1468  * It also needs to account for multiple cancellations on happening at the same
1469  * time for the same endpoint.
1470  *
1471  * Note that this function can be called in any context, or so says
1472  * usb_hcd_unlink_urb()
1473  */
1474 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1475 {
1476 	unsigned long flags;
1477 	int ret, i;
1478 	u32 temp;
1479 	struct xhci_hcd *xhci;
1480 	struct urb_priv	*urb_priv;
1481 	struct xhci_td *td;
1482 	unsigned int ep_index;
1483 	struct xhci_ring *ep_ring;
1484 	struct xhci_virt_ep *ep;
1485 	struct xhci_command *command;
1486 
1487 	xhci = hcd_to_xhci(hcd);
1488 	spin_lock_irqsave(&xhci->lock, flags);
1489 	/* Make sure the URB hasn't completed or been unlinked already */
1490 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1491 	if (ret || !urb->hcpriv)
1492 		goto done;
1493 	temp = readl(&xhci->op_regs->status);
1494 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1495 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1496 				"HW died, freeing TD.");
1497 		urb_priv = urb->hcpriv;
1498 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1499 			td = urb_priv->td[i];
1500 			if (!list_empty(&td->td_list))
1501 				list_del_init(&td->td_list);
1502 			if (!list_empty(&td->cancelled_td_list))
1503 				list_del_init(&td->cancelled_td_list);
1504 		}
1505 
1506 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1507 		spin_unlock_irqrestore(&xhci->lock, flags);
1508 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1509 		xhci_urb_free_priv(xhci, urb_priv);
1510 		return ret;
1511 	}
1512 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1513 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1514 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1515 				"Ep 0x%x: URB %p to be canceled on "
1516 				"non-responsive xHCI host.",
1517 				urb->ep->desc.bEndpointAddress, urb);
1518 		/* Let the stop endpoint command watchdog timer (which set this
1519 		 * state) finish cleaning up the endpoint TD lists.  We must
1520 		 * have caught it in the middle of dropping a lock and giving
1521 		 * back an URB.
1522 		 */
1523 		goto done;
1524 	}
1525 
1526 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1527 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1528 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1529 	if (!ep_ring) {
1530 		ret = -EINVAL;
1531 		goto done;
1532 	}
1533 
1534 	urb_priv = urb->hcpriv;
1535 	i = urb_priv->td_cnt;
1536 	if (i < urb_priv->length)
1537 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1538 				"Cancel URB %p, dev %s, ep 0x%x, "
1539 				"starting at offset 0x%llx",
1540 				urb, urb->dev->devpath,
1541 				urb->ep->desc.bEndpointAddress,
1542 				(unsigned long long) xhci_trb_virt_to_dma(
1543 					urb_priv->td[i]->start_seg,
1544 					urb_priv->td[i]->first_trb));
1545 
1546 	for (; i < urb_priv->length; i++) {
1547 		td = urb_priv->td[i];
1548 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1549 	}
1550 
1551 	/* Queue a stop endpoint command, but only if this is
1552 	 * the first cancellation to be handled.
1553 	 */
1554 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1555 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1556 		if (!command) {
1557 			ret = -ENOMEM;
1558 			goto done;
1559 		}
1560 		ep->ep_state |= EP_HALT_PENDING;
1561 		ep->stop_cmds_pending++;
1562 		ep->stop_cmd_timer.expires = jiffies +
1563 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1564 		add_timer(&ep->stop_cmd_timer);
1565 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1566 					 ep_index, 0);
1567 		xhci_ring_cmd_db(xhci);
1568 	}
1569 done:
1570 	spin_unlock_irqrestore(&xhci->lock, flags);
1571 	return ret;
1572 }
1573 
1574 /* Drop an endpoint from a new bandwidth configuration for this device.
1575  * Only one call to this function is allowed per endpoint before
1576  * check_bandwidth() or reset_bandwidth() must be called.
1577  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1578  * add the endpoint to the schedule with possibly new parameters denoted by a
1579  * different endpoint descriptor in usb_host_endpoint.
1580  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1581  * not allowed.
1582  *
1583  * The USB core will not allow URBs to be queued to an endpoint that is being
1584  * disabled, so there's no need for mutual exclusion to protect
1585  * the xhci->devs[slot_id] structure.
1586  */
1587 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1588 		struct usb_host_endpoint *ep)
1589 {
1590 	struct xhci_hcd *xhci;
1591 	struct xhci_container_ctx *in_ctx, *out_ctx;
1592 	struct xhci_input_control_ctx *ctrl_ctx;
1593 	unsigned int ep_index;
1594 	struct xhci_ep_ctx *ep_ctx;
1595 	u32 drop_flag;
1596 	u32 new_add_flags, new_drop_flags;
1597 	int ret;
1598 
1599 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1600 	if (ret <= 0)
1601 		return ret;
1602 	xhci = hcd_to_xhci(hcd);
1603 	if (xhci->xhc_state & XHCI_STATE_DYING)
1604 		return -ENODEV;
1605 
1606 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1607 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1608 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1609 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1610 				__func__, drop_flag);
1611 		return 0;
1612 	}
1613 
1614 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1615 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1616 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1617 	if (!ctrl_ctx) {
1618 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1619 				__func__);
1620 		return 0;
1621 	}
1622 
1623 	ep_index = xhci_get_endpoint_index(&ep->desc);
1624 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1625 	/* If the HC already knows the endpoint is disabled,
1626 	 * or the HCD has noted it is disabled, ignore this request
1627 	 */
1628 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1629 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1630 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1631 	    xhci_get_endpoint_flag(&ep->desc)) {
1632 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1633 				__func__, ep);
1634 		return 0;
1635 	}
1636 
1637 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1638 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1639 
1640 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1641 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1642 
1643 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1644 
1645 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1646 			(unsigned int) ep->desc.bEndpointAddress,
1647 			udev->slot_id,
1648 			(unsigned int) new_drop_flags,
1649 			(unsigned int) new_add_flags);
1650 	return 0;
1651 }
1652 
1653 /* Add an endpoint to a new possible bandwidth configuration for this device.
1654  * Only one call to this function is allowed per endpoint before
1655  * check_bandwidth() or reset_bandwidth() must be called.
1656  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1657  * add the endpoint to the schedule with possibly new parameters denoted by a
1658  * different endpoint descriptor in usb_host_endpoint.
1659  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1660  * not allowed.
1661  *
1662  * The USB core will not allow URBs to be queued to an endpoint until the
1663  * configuration or alt setting is installed in the device, so there's no need
1664  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1665  */
1666 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1667 		struct usb_host_endpoint *ep)
1668 {
1669 	struct xhci_hcd *xhci;
1670 	struct xhci_container_ctx *in_ctx, *out_ctx;
1671 	unsigned int ep_index;
1672 	struct xhci_input_control_ctx *ctrl_ctx;
1673 	u32 added_ctxs;
1674 	u32 new_add_flags, new_drop_flags;
1675 	struct xhci_virt_device *virt_dev;
1676 	int ret = 0;
1677 
1678 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1679 	if (ret <= 0) {
1680 		/* So we won't queue a reset ep command for a root hub */
1681 		ep->hcpriv = NULL;
1682 		return ret;
1683 	}
1684 	xhci = hcd_to_xhci(hcd);
1685 	if (xhci->xhc_state & XHCI_STATE_DYING)
1686 		return -ENODEV;
1687 
1688 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1689 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1690 		/* FIXME when we have to issue an evaluate endpoint command to
1691 		 * deal with ep0 max packet size changing once we get the
1692 		 * descriptors
1693 		 */
1694 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1695 				__func__, added_ctxs);
1696 		return 0;
1697 	}
1698 
1699 	virt_dev = xhci->devs[udev->slot_id];
1700 	in_ctx = virt_dev->in_ctx;
1701 	out_ctx = virt_dev->out_ctx;
1702 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1703 	if (!ctrl_ctx) {
1704 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1705 				__func__);
1706 		return 0;
1707 	}
1708 
1709 	ep_index = xhci_get_endpoint_index(&ep->desc);
1710 	/* If this endpoint is already in use, and the upper layers are trying
1711 	 * to add it again without dropping it, reject the addition.
1712 	 */
1713 	if (virt_dev->eps[ep_index].ring &&
1714 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1715 				xhci_get_endpoint_flag(&ep->desc))) {
1716 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1717 				"without dropping it.\n",
1718 				(unsigned int) ep->desc.bEndpointAddress);
1719 		return -EINVAL;
1720 	}
1721 
1722 	/* If the HCD has already noted the endpoint is enabled,
1723 	 * ignore this request.
1724 	 */
1725 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1726 	    xhci_get_endpoint_flag(&ep->desc)) {
1727 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1728 				__func__, ep);
1729 		return 0;
1730 	}
1731 
1732 	/*
1733 	 * Configuration and alternate setting changes must be done in
1734 	 * process context, not interrupt context (or so documenation
1735 	 * for usb_set_interface() and usb_set_configuration() claim).
1736 	 */
1737 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1738 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1739 				__func__, ep->desc.bEndpointAddress);
1740 		return -ENOMEM;
1741 	}
1742 
1743 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1744 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1745 
1746 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1747 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1748 	 * this re-adds a new state for the endpoint from the new endpoint
1749 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1750 	 * drop flags alone.
1751 	 */
1752 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1753 
1754 	/* Store the usb_device pointer for later use */
1755 	ep->hcpriv = udev;
1756 
1757 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1758 			(unsigned int) ep->desc.bEndpointAddress,
1759 			udev->slot_id,
1760 			(unsigned int) new_drop_flags,
1761 			(unsigned int) new_add_flags);
1762 	return 0;
1763 }
1764 
1765 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1766 {
1767 	struct xhci_input_control_ctx *ctrl_ctx;
1768 	struct xhci_ep_ctx *ep_ctx;
1769 	struct xhci_slot_ctx *slot_ctx;
1770 	int i;
1771 
1772 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1773 	if (!ctrl_ctx) {
1774 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1775 				__func__);
1776 		return;
1777 	}
1778 
1779 	/* When a device's add flag and drop flag are zero, any subsequent
1780 	 * configure endpoint command will leave that endpoint's state
1781 	 * untouched.  Make sure we don't leave any old state in the input
1782 	 * endpoint contexts.
1783 	 */
1784 	ctrl_ctx->drop_flags = 0;
1785 	ctrl_ctx->add_flags = 0;
1786 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1787 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1788 	/* Endpoint 0 is always valid */
1789 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1790 	for (i = 1; i < 31; ++i) {
1791 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1792 		ep_ctx->ep_info = 0;
1793 		ep_ctx->ep_info2 = 0;
1794 		ep_ctx->deq = 0;
1795 		ep_ctx->tx_info = 0;
1796 	}
1797 }
1798 
1799 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1800 		struct usb_device *udev, u32 *cmd_status)
1801 {
1802 	int ret;
1803 
1804 	switch (*cmd_status) {
1805 	case COMP_CMD_ABORT:
1806 	case COMP_CMD_STOP:
1807 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1808 		ret = -ETIME;
1809 		break;
1810 	case COMP_ENOMEM:
1811 		dev_warn(&udev->dev,
1812 			 "Not enough host controller resources for new device state.\n");
1813 		ret = -ENOMEM;
1814 		/* FIXME: can we allocate more resources for the HC? */
1815 		break;
1816 	case COMP_BW_ERR:
1817 	case COMP_2ND_BW_ERR:
1818 		dev_warn(&udev->dev,
1819 			 "Not enough bandwidth for new device state.\n");
1820 		ret = -ENOSPC;
1821 		/* FIXME: can we go back to the old state? */
1822 		break;
1823 	case COMP_TRB_ERR:
1824 		/* the HCD set up something wrong */
1825 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1826 				"add flag = 1, "
1827 				"and endpoint is not disabled.\n");
1828 		ret = -EINVAL;
1829 		break;
1830 	case COMP_DEV_ERR:
1831 		dev_warn(&udev->dev,
1832 			 "ERROR: Incompatible device for endpoint configure command.\n");
1833 		ret = -ENODEV;
1834 		break;
1835 	case COMP_SUCCESS:
1836 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1837 				"Successful Endpoint Configure command");
1838 		ret = 0;
1839 		break;
1840 	default:
1841 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1842 				*cmd_status);
1843 		ret = -EINVAL;
1844 		break;
1845 	}
1846 	return ret;
1847 }
1848 
1849 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1850 		struct usb_device *udev, u32 *cmd_status)
1851 {
1852 	int ret;
1853 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1854 
1855 	switch (*cmd_status) {
1856 	case COMP_CMD_ABORT:
1857 	case COMP_CMD_STOP:
1858 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1859 		ret = -ETIME;
1860 		break;
1861 	case COMP_EINVAL:
1862 		dev_warn(&udev->dev,
1863 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1864 		ret = -EINVAL;
1865 		break;
1866 	case COMP_EBADSLT:
1867 		dev_warn(&udev->dev,
1868 			"WARN: slot not enabled for evaluate context command.\n");
1869 		ret = -EINVAL;
1870 		break;
1871 	case COMP_CTX_STATE:
1872 		dev_warn(&udev->dev,
1873 			"WARN: invalid context state for evaluate context command.\n");
1874 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1875 		ret = -EINVAL;
1876 		break;
1877 	case COMP_DEV_ERR:
1878 		dev_warn(&udev->dev,
1879 			"ERROR: Incompatible device for evaluate context command.\n");
1880 		ret = -ENODEV;
1881 		break;
1882 	case COMP_MEL_ERR:
1883 		/* Max Exit Latency too large error */
1884 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1885 		ret = -EINVAL;
1886 		break;
1887 	case COMP_SUCCESS:
1888 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1889 				"Successful evaluate context command");
1890 		ret = 0;
1891 		break;
1892 	default:
1893 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1894 			*cmd_status);
1895 		ret = -EINVAL;
1896 		break;
1897 	}
1898 	return ret;
1899 }
1900 
1901 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1902 		struct xhci_input_control_ctx *ctrl_ctx)
1903 {
1904 	u32 valid_add_flags;
1905 	u32 valid_drop_flags;
1906 
1907 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1908 	 * (bit 1).  The default control endpoint is added during the Address
1909 	 * Device command and is never removed until the slot is disabled.
1910 	 */
1911 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1912 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1913 
1914 	/* Use hweight32 to count the number of ones in the add flags, or
1915 	 * number of endpoints added.  Don't count endpoints that are changed
1916 	 * (both added and dropped).
1917 	 */
1918 	return hweight32(valid_add_flags) -
1919 		hweight32(valid_add_flags & valid_drop_flags);
1920 }
1921 
1922 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1923 		struct xhci_input_control_ctx *ctrl_ctx)
1924 {
1925 	u32 valid_add_flags;
1926 	u32 valid_drop_flags;
1927 
1928 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1929 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1930 
1931 	return hweight32(valid_drop_flags) -
1932 		hweight32(valid_add_flags & valid_drop_flags);
1933 }
1934 
1935 /*
1936  * We need to reserve the new number of endpoints before the configure endpoint
1937  * command completes.  We can't subtract the dropped endpoints from the number
1938  * of active endpoints until the command completes because we can oversubscribe
1939  * the host in this case:
1940  *
1941  *  - the first configure endpoint command drops more endpoints than it adds
1942  *  - a second configure endpoint command that adds more endpoints is queued
1943  *  - the first configure endpoint command fails, so the config is unchanged
1944  *  - the second command may succeed, even though there isn't enough resources
1945  *
1946  * Must be called with xhci->lock held.
1947  */
1948 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1949 		struct xhci_input_control_ctx *ctrl_ctx)
1950 {
1951 	u32 added_eps;
1952 
1953 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1954 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1955 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1956 				"Not enough ep ctxs: "
1957 				"%u active, need to add %u, limit is %u.",
1958 				xhci->num_active_eps, added_eps,
1959 				xhci->limit_active_eps);
1960 		return -ENOMEM;
1961 	}
1962 	xhci->num_active_eps += added_eps;
1963 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1964 			"Adding %u ep ctxs, %u now active.", added_eps,
1965 			xhci->num_active_eps);
1966 	return 0;
1967 }
1968 
1969 /*
1970  * The configure endpoint was failed by the xHC for some other reason, so we
1971  * need to revert the resources that failed configuration would have used.
1972  *
1973  * Must be called with xhci->lock held.
1974  */
1975 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1976 		struct xhci_input_control_ctx *ctrl_ctx)
1977 {
1978 	u32 num_failed_eps;
1979 
1980 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1981 	xhci->num_active_eps -= num_failed_eps;
1982 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1983 			"Removing %u failed ep ctxs, %u now active.",
1984 			num_failed_eps,
1985 			xhci->num_active_eps);
1986 }
1987 
1988 /*
1989  * Now that the command has completed, clean up the active endpoint count by
1990  * subtracting out the endpoints that were dropped (but not changed).
1991  *
1992  * Must be called with xhci->lock held.
1993  */
1994 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1995 		struct xhci_input_control_ctx *ctrl_ctx)
1996 {
1997 	u32 num_dropped_eps;
1998 
1999 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2000 	xhci->num_active_eps -= num_dropped_eps;
2001 	if (num_dropped_eps)
2002 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2003 				"Removing %u dropped ep ctxs, %u now active.",
2004 				num_dropped_eps,
2005 				xhci->num_active_eps);
2006 }
2007 
2008 static unsigned int xhci_get_block_size(struct usb_device *udev)
2009 {
2010 	switch (udev->speed) {
2011 	case USB_SPEED_LOW:
2012 	case USB_SPEED_FULL:
2013 		return FS_BLOCK;
2014 	case USB_SPEED_HIGH:
2015 		return HS_BLOCK;
2016 	case USB_SPEED_SUPER:
2017 		return SS_BLOCK;
2018 	case USB_SPEED_UNKNOWN:
2019 	case USB_SPEED_WIRELESS:
2020 	default:
2021 		/* Should never happen */
2022 		return 1;
2023 	}
2024 }
2025 
2026 static unsigned int
2027 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2028 {
2029 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2030 		return LS_OVERHEAD;
2031 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2032 		return FS_OVERHEAD;
2033 	return HS_OVERHEAD;
2034 }
2035 
2036 /* If we are changing a LS/FS device under a HS hub,
2037  * make sure (if we are activating a new TT) that the HS bus has enough
2038  * bandwidth for this new TT.
2039  */
2040 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2041 		struct xhci_virt_device *virt_dev,
2042 		int old_active_eps)
2043 {
2044 	struct xhci_interval_bw_table *bw_table;
2045 	struct xhci_tt_bw_info *tt_info;
2046 
2047 	/* Find the bandwidth table for the root port this TT is attached to. */
2048 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2049 	tt_info = virt_dev->tt_info;
2050 	/* If this TT already had active endpoints, the bandwidth for this TT
2051 	 * has already been added.  Removing all periodic endpoints (and thus
2052 	 * making the TT enactive) will only decrease the bandwidth used.
2053 	 */
2054 	if (old_active_eps)
2055 		return 0;
2056 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2057 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2058 			return -ENOMEM;
2059 		return 0;
2060 	}
2061 	/* Not sure why we would have no new active endpoints...
2062 	 *
2063 	 * Maybe because of an Evaluate Context change for a hub update or a
2064 	 * control endpoint 0 max packet size change?
2065 	 * FIXME: skip the bandwidth calculation in that case.
2066 	 */
2067 	return 0;
2068 }
2069 
2070 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2071 		struct xhci_virt_device *virt_dev)
2072 {
2073 	unsigned int bw_reserved;
2074 
2075 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2076 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2077 		return -ENOMEM;
2078 
2079 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2080 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2081 		return -ENOMEM;
2082 
2083 	return 0;
2084 }
2085 
2086 /*
2087  * This algorithm is a very conservative estimate of the worst-case scheduling
2088  * scenario for any one interval.  The hardware dynamically schedules the
2089  * packets, so we can't tell which microframe could be the limiting factor in
2090  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2091  *
2092  * Obviously, we can't solve an NP complete problem to find the minimum worst
2093  * case scenario.  Instead, we come up with an estimate that is no less than
2094  * the worst case bandwidth used for any one microframe, but may be an
2095  * over-estimate.
2096  *
2097  * We walk the requirements for each endpoint by interval, starting with the
2098  * smallest interval, and place packets in the schedule where there is only one
2099  * possible way to schedule packets for that interval.  In order to simplify
2100  * this algorithm, we record the largest max packet size for each interval, and
2101  * assume all packets will be that size.
2102  *
2103  * For interval 0, we obviously must schedule all packets for each interval.
2104  * The bandwidth for interval 0 is just the amount of data to be transmitted
2105  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2106  * the number of packets).
2107  *
2108  * For interval 1, we have two possible microframes to schedule those packets
2109  * in.  For this algorithm, if we can schedule the same number of packets for
2110  * each possible scheduling opportunity (each microframe), we will do so.  The
2111  * remaining number of packets will be saved to be transmitted in the gaps in
2112  * the next interval's scheduling sequence.
2113  *
2114  * As we move those remaining packets to be scheduled with interval 2 packets,
2115  * we have to double the number of remaining packets to transmit.  This is
2116  * because the intervals are actually powers of 2, and we would be transmitting
2117  * the previous interval's packets twice in this interval.  We also have to be
2118  * sure that when we look at the largest max packet size for this interval, we
2119  * also look at the largest max packet size for the remaining packets and take
2120  * the greater of the two.
2121  *
2122  * The algorithm continues to evenly distribute packets in each scheduling
2123  * opportunity, and push the remaining packets out, until we get to the last
2124  * interval.  Then those packets and their associated overhead are just added
2125  * to the bandwidth used.
2126  */
2127 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2128 		struct xhci_virt_device *virt_dev,
2129 		int old_active_eps)
2130 {
2131 	unsigned int bw_reserved;
2132 	unsigned int max_bandwidth;
2133 	unsigned int bw_used;
2134 	unsigned int block_size;
2135 	struct xhci_interval_bw_table *bw_table;
2136 	unsigned int packet_size = 0;
2137 	unsigned int overhead = 0;
2138 	unsigned int packets_transmitted = 0;
2139 	unsigned int packets_remaining = 0;
2140 	unsigned int i;
2141 
2142 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2143 		return xhci_check_ss_bw(xhci, virt_dev);
2144 
2145 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2146 		max_bandwidth = HS_BW_LIMIT;
2147 		/* Convert percent of bus BW reserved to blocks reserved */
2148 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2149 	} else {
2150 		max_bandwidth = FS_BW_LIMIT;
2151 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2152 	}
2153 
2154 	bw_table = virt_dev->bw_table;
2155 	/* We need to translate the max packet size and max ESIT payloads into
2156 	 * the units the hardware uses.
2157 	 */
2158 	block_size = xhci_get_block_size(virt_dev->udev);
2159 
2160 	/* If we are manipulating a LS/FS device under a HS hub, double check
2161 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2162 	 */
2163 	if (virt_dev->tt_info) {
2164 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2165 				"Recalculating BW for rootport %u",
2166 				virt_dev->real_port);
2167 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2168 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2169 					"newly activated TT.\n");
2170 			return -ENOMEM;
2171 		}
2172 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2173 				"Recalculating BW for TT slot %u port %u",
2174 				virt_dev->tt_info->slot_id,
2175 				virt_dev->tt_info->ttport);
2176 	} else {
2177 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2178 				"Recalculating BW for rootport %u",
2179 				virt_dev->real_port);
2180 	}
2181 
2182 	/* Add in how much bandwidth will be used for interval zero, or the
2183 	 * rounded max ESIT payload + number of packets * largest overhead.
2184 	 */
2185 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2186 		bw_table->interval_bw[0].num_packets *
2187 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2188 
2189 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2190 		unsigned int bw_added;
2191 		unsigned int largest_mps;
2192 		unsigned int interval_overhead;
2193 
2194 		/*
2195 		 * How many packets could we transmit in this interval?
2196 		 * If packets didn't fit in the previous interval, we will need
2197 		 * to transmit that many packets twice within this interval.
2198 		 */
2199 		packets_remaining = 2 * packets_remaining +
2200 			bw_table->interval_bw[i].num_packets;
2201 
2202 		/* Find the largest max packet size of this or the previous
2203 		 * interval.
2204 		 */
2205 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2206 			largest_mps = 0;
2207 		else {
2208 			struct xhci_virt_ep *virt_ep;
2209 			struct list_head *ep_entry;
2210 
2211 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2212 			virt_ep = list_entry(ep_entry,
2213 					struct xhci_virt_ep, bw_endpoint_list);
2214 			/* Convert to blocks, rounding up */
2215 			largest_mps = DIV_ROUND_UP(
2216 					virt_ep->bw_info.max_packet_size,
2217 					block_size);
2218 		}
2219 		if (largest_mps > packet_size)
2220 			packet_size = largest_mps;
2221 
2222 		/* Use the larger overhead of this or the previous interval. */
2223 		interval_overhead = xhci_get_largest_overhead(
2224 				&bw_table->interval_bw[i]);
2225 		if (interval_overhead > overhead)
2226 			overhead = interval_overhead;
2227 
2228 		/* How many packets can we evenly distribute across
2229 		 * (1 << (i + 1)) possible scheduling opportunities?
2230 		 */
2231 		packets_transmitted = packets_remaining >> (i + 1);
2232 
2233 		/* Add in the bandwidth used for those scheduled packets */
2234 		bw_added = packets_transmitted * (overhead + packet_size);
2235 
2236 		/* How many packets do we have remaining to transmit? */
2237 		packets_remaining = packets_remaining % (1 << (i + 1));
2238 
2239 		/* What largest max packet size should those packets have? */
2240 		/* If we've transmitted all packets, don't carry over the
2241 		 * largest packet size.
2242 		 */
2243 		if (packets_remaining == 0) {
2244 			packet_size = 0;
2245 			overhead = 0;
2246 		} else if (packets_transmitted > 0) {
2247 			/* Otherwise if we do have remaining packets, and we've
2248 			 * scheduled some packets in this interval, take the
2249 			 * largest max packet size from endpoints with this
2250 			 * interval.
2251 			 */
2252 			packet_size = largest_mps;
2253 			overhead = interval_overhead;
2254 		}
2255 		/* Otherwise carry over packet_size and overhead from the last
2256 		 * time we had a remainder.
2257 		 */
2258 		bw_used += bw_added;
2259 		if (bw_used > max_bandwidth) {
2260 			xhci_warn(xhci, "Not enough bandwidth. "
2261 					"Proposed: %u, Max: %u\n",
2262 				bw_used, max_bandwidth);
2263 			return -ENOMEM;
2264 		}
2265 	}
2266 	/*
2267 	 * Ok, we know we have some packets left over after even-handedly
2268 	 * scheduling interval 15.  We don't know which microframes they will
2269 	 * fit into, so we over-schedule and say they will be scheduled every
2270 	 * microframe.
2271 	 */
2272 	if (packets_remaining > 0)
2273 		bw_used += overhead + packet_size;
2274 
2275 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2276 		unsigned int port_index = virt_dev->real_port - 1;
2277 
2278 		/* OK, we're manipulating a HS device attached to a
2279 		 * root port bandwidth domain.  Include the number of active TTs
2280 		 * in the bandwidth used.
2281 		 */
2282 		bw_used += TT_HS_OVERHEAD *
2283 			xhci->rh_bw[port_index].num_active_tts;
2284 	}
2285 
2286 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2287 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2288 		"Available: %u " "percent",
2289 		bw_used, max_bandwidth, bw_reserved,
2290 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2291 		max_bandwidth);
2292 
2293 	bw_used += bw_reserved;
2294 	if (bw_used > max_bandwidth) {
2295 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2296 				bw_used, max_bandwidth);
2297 		return -ENOMEM;
2298 	}
2299 
2300 	bw_table->bw_used = bw_used;
2301 	return 0;
2302 }
2303 
2304 static bool xhci_is_async_ep(unsigned int ep_type)
2305 {
2306 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2307 					ep_type != ISOC_IN_EP &&
2308 					ep_type != INT_IN_EP);
2309 }
2310 
2311 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2312 {
2313 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2314 }
2315 
2316 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2317 {
2318 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2319 
2320 	if (ep_bw->ep_interval == 0)
2321 		return SS_OVERHEAD_BURST +
2322 			(ep_bw->mult * ep_bw->num_packets *
2323 					(SS_OVERHEAD + mps));
2324 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2325 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2326 				1 << ep_bw->ep_interval);
2327 
2328 }
2329 
2330 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2331 		struct xhci_bw_info *ep_bw,
2332 		struct xhci_interval_bw_table *bw_table,
2333 		struct usb_device *udev,
2334 		struct xhci_virt_ep *virt_ep,
2335 		struct xhci_tt_bw_info *tt_info)
2336 {
2337 	struct xhci_interval_bw	*interval_bw;
2338 	int normalized_interval;
2339 
2340 	if (xhci_is_async_ep(ep_bw->type))
2341 		return;
2342 
2343 	if (udev->speed == USB_SPEED_SUPER) {
2344 		if (xhci_is_sync_in_ep(ep_bw->type))
2345 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2346 				xhci_get_ss_bw_consumed(ep_bw);
2347 		else
2348 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2349 				xhci_get_ss_bw_consumed(ep_bw);
2350 		return;
2351 	}
2352 
2353 	/* SuperSpeed endpoints never get added to intervals in the table, so
2354 	 * this check is only valid for HS/FS/LS devices.
2355 	 */
2356 	if (list_empty(&virt_ep->bw_endpoint_list))
2357 		return;
2358 	/* For LS/FS devices, we need to translate the interval expressed in
2359 	 * microframes to frames.
2360 	 */
2361 	if (udev->speed == USB_SPEED_HIGH)
2362 		normalized_interval = ep_bw->ep_interval;
2363 	else
2364 		normalized_interval = ep_bw->ep_interval - 3;
2365 
2366 	if (normalized_interval == 0)
2367 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2368 	interval_bw = &bw_table->interval_bw[normalized_interval];
2369 	interval_bw->num_packets -= ep_bw->num_packets;
2370 	switch (udev->speed) {
2371 	case USB_SPEED_LOW:
2372 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2373 		break;
2374 	case USB_SPEED_FULL:
2375 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2376 		break;
2377 	case USB_SPEED_HIGH:
2378 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2379 		break;
2380 	case USB_SPEED_SUPER:
2381 	case USB_SPEED_UNKNOWN:
2382 	case USB_SPEED_WIRELESS:
2383 		/* Should never happen because only LS/FS/HS endpoints will get
2384 		 * added to the endpoint list.
2385 		 */
2386 		return;
2387 	}
2388 	if (tt_info)
2389 		tt_info->active_eps -= 1;
2390 	list_del_init(&virt_ep->bw_endpoint_list);
2391 }
2392 
2393 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2394 		struct xhci_bw_info *ep_bw,
2395 		struct xhci_interval_bw_table *bw_table,
2396 		struct usb_device *udev,
2397 		struct xhci_virt_ep *virt_ep,
2398 		struct xhci_tt_bw_info *tt_info)
2399 {
2400 	struct xhci_interval_bw	*interval_bw;
2401 	struct xhci_virt_ep *smaller_ep;
2402 	int normalized_interval;
2403 
2404 	if (xhci_is_async_ep(ep_bw->type))
2405 		return;
2406 
2407 	if (udev->speed == USB_SPEED_SUPER) {
2408 		if (xhci_is_sync_in_ep(ep_bw->type))
2409 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2410 				xhci_get_ss_bw_consumed(ep_bw);
2411 		else
2412 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2413 				xhci_get_ss_bw_consumed(ep_bw);
2414 		return;
2415 	}
2416 
2417 	/* For LS/FS devices, we need to translate the interval expressed in
2418 	 * microframes to frames.
2419 	 */
2420 	if (udev->speed == USB_SPEED_HIGH)
2421 		normalized_interval = ep_bw->ep_interval;
2422 	else
2423 		normalized_interval = ep_bw->ep_interval - 3;
2424 
2425 	if (normalized_interval == 0)
2426 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2427 	interval_bw = &bw_table->interval_bw[normalized_interval];
2428 	interval_bw->num_packets += ep_bw->num_packets;
2429 	switch (udev->speed) {
2430 	case USB_SPEED_LOW:
2431 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2432 		break;
2433 	case USB_SPEED_FULL:
2434 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2435 		break;
2436 	case USB_SPEED_HIGH:
2437 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2438 		break;
2439 	case USB_SPEED_SUPER:
2440 	case USB_SPEED_UNKNOWN:
2441 	case USB_SPEED_WIRELESS:
2442 		/* Should never happen because only LS/FS/HS endpoints will get
2443 		 * added to the endpoint list.
2444 		 */
2445 		return;
2446 	}
2447 
2448 	if (tt_info)
2449 		tt_info->active_eps += 1;
2450 	/* Insert the endpoint into the list, largest max packet size first. */
2451 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2452 			bw_endpoint_list) {
2453 		if (ep_bw->max_packet_size >=
2454 				smaller_ep->bw_info.max_packet_size) {
2455 			/* Add the new ep before the smaller endpoint */
2456 			list_add_tail(&virt_ep->bw_endpoint_list,
2457 					&smaller_ep->bw_endpoint_list);
2458 			return;
2459 		}
2460 	}
2461 	/* Add the new endpoint at the end of the list. */
2462 	list_add_tail(&virt_ep->bw_endpoint_list,
2463 			&interval_bw->endpoints);
2464 }
2465 
2466 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2467 		struct xhci_virt_device *virt_dev,
2468 		int old_active_eps)
2469 {
2470 	struct xhci_root_port_bw_info *rh_bw_info;
2471 	if (!virt_dev->tt_info)
2472 		return;
2473 
2474 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2475 	if (old_active_eps == 0 &&
2476 				virt_dev->tt_info->active_eps != 0) {
2477 		rh_bw_info->num_active_tts += 1;
2478 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2479 	} else if (old_active_eps != 0 &&
2480 				virt_dev->tt_info->active_eps == 0) {
2481 		rh_bw_info->num_active_tts -= 1;
2482 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2483 	}
2484 }
2485 
2486 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2487 		struct xhci_virt_device *virt_dev,
2488 		struct xhci_container_ctx *in_ctx)
2489 {
2490 	struct xhci_bw_info ep_bw_info[31];
2491 	int i;
2492 	struct xhci_input_control_ctx *ctrl_ctx;
2493 	int old_active_eps = 0;
2494 
2495 	if (virt_dev->tt_info)
2496 		old_active_eps = virt_dev->tt_info->active_eps;
2497 
2498 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2499 	if (!ctrl_ctx) {
2500 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2501 				__func__);
2502 		return -ENOMEM;
2503 	}
2504 
2505 	for (i = 0; i < 31; i++) {
2506 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2507 			continue;
2508 
2509 		/* Make a copy of the BW info in case we need to revert this */
2510 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2511 				sizeof(ep_bw_info[i]));
2512 		/* Drop the endpoint from the interval table if the endpoint is
2513 		 * being dropped or changed.
2514 		 */
2515 		if (EP_IS_DROPPED(ctrl_ctx, i))
2516 			xhci_drop_ep_from_interval_table(xhci,
2517 					&virt_dev->eps[i].bw_info,
2518 					virt_dev->bw_table,
2519 					virt_dev->udev,
2520 					&virt_dev->eps[i],
2521 					virt_dev->tt_info);
2522 	}
2523 	/* Overwrite the information stored in the endpoints' bw_info */
2524 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2525 	for (i = 0; i < 31; i++) {
2526 		/* Add any changed or added endpoints to the interval table */
2527 		if (EP_IS_ADDED(ctrl_ctx, i))
2528 			xhci_add_ep_to_interval_table(xhci,
2529 					&virt_dev->eps[i].bw_info,
2530 					virt_dev->bw_table,
2531 					virt_dev->udev,
2532 					&virt_dev->eps[i],
2533 					virt_dev->tt_info);
2534 	}
2535 
2536 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2537 		/* Ok, this fits in the bandwidth we have.
2538 		 * Update the number of active TTs.
2539 		 */
2540 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2541 		return 0;
2542 	}
2543 
2544 	/* We don't have enough bandwidth for this, revert the stored info. */
2545 	for (i = 0; i < 31; i++) {
2546 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2547 			continue;
2548 
2549 		/* Drop the new copies of any added or changed endpoints from
2550 		 * the interval table.
2551 		 */
2552 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2553 			xhci_drop_ep_from_interval_table(xhci,
2554 					&virt_dev->eps[i].bw_info,
2555 					virt_dev->bw_table,
2556 					virt_dev->udev,
2557 					&virt_dev->eps[i],
2558 					virt_dev->tt_info);
2559 		}
2560 		/* Revert the endpoint back to its old information */
2561 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2562 				sizeof(ep_bw_info[i]));
2563 		/* Add any changed or dropped endpoints back into the table */
2564 		if (EP_IS_DROPPED(ctrl_ctx, i))
2565 			xhci_add_ep_to_interval_table(xhci,
2566 					&virt_dev->eps[i].bw_info,
2567 					virt_dev->bw_table,
2568 					virt_dev->udev,
2569 					&virt_dev->eps[i],
2570 					virt_dev->tt_info);
2571 	}
2572 	return -ENOMEM;
2573 }
2574 
2575 
2576 /* Issue a configure endpoint command or evaluate context command
2577  * and wait for it to finish.
2578  */
2579 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2580 		struct usb_device *udev,
2581 		struct xhci_command *command,
2582 		bool ctx_change, bool must_succeed)
2583 {
2584 	int ret;
2585 	unsigned long flags;
2586 	struct xhci_input_control_ctx *ctrl_ctx;
2587 	struct xhci_virt_device *virt_dev;
2588 
2589 	if (!command)
2590 		return -EINVAL;
2591 
2592 	spin_lock_irqsave(&xhci->lock, flags);
2593 	virt_dev = xhci->devs[udev->slot_id];
2594 
2595 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2596 	if (!ctrl_ctx) {
2597 		spin_unlock_irqrestore(&xhci->lock, flags);
2598 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2599 				__func__);
2600 		return -ENOMEM;
2601 	}
2602 
2603 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2604 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2605 		spin_unlock_irqrestore(&xhci->lock, flags);
2606 		xhci_warn(xhci, "Not enough host resources, "
2607 				"active endpoint contexts = %u\n",
2608 				xhci->num_active_eps);
2609 		return -ENOMEM;
2610 	}
2611 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2612 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2613 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2614 			xhci_free_host_resources(xhci, ctrl_ctx);
2615 		spin_unlock_irqrestore(&xhci->lock, flags);
2616 		xhci_warn(xhci, "Not enough bandwidth\n");
2617 		return -ENOMEM;
2618 	}
2619 
2620 	if (!ctx_change)
2621 		ret = xhci_queue_configure_endpoint(xhci, command,
2622 				command->in_ctx->dma,
2623 				udev->slot_id, must_succeed);
2624 	else
2625 		ret = xhci_queue_evaluate_context(xhci, command,
2626 				command->in_ctx->dma,
2627 				udev->slot_id, must_succeed);
2628 	if (ret < 0) {
2629 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2630 			xhci_free_host_resources(xhci, ctrl_ctx);
2631 		spin_unlock_irqrestore(&xhci->lock, flags);
2632 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2633 				"FIXME allocate a new ring segment");
2634 		return -ENOMEM;
2635 	}
2636 	xhci_ring_cmd_db(xhci);
2637 	spin_unlock_irqrestore(&xhci->lock, flags);
2638 
2639 	/* Wait for the configure endpoint command to complete */
2640 	wait_for_completion(command->completion);
2641 
2642 	if (!ctx_change)
2643 		ret = xhci_configure_endpoint_result(xhci, udev,
2644 						     &command->status);
2645 	else
2646 		ret = xhci_evaluate_context_result(xhci, udev,
2647 						   &command->status);
2648 
2649 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2650 		spin_lock_irqsave(&xhci->lock, flags);
2651 		/* If the command failed, remove the reserved resources.
2652 		 * Otherwise, clean up the estimate to include dropped eps.
2653 		 */
2654 		if (ret)
2655 			xhci_free_host_resources(xhci, ctrl_ctx);
2656 		else
2657 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2658 		spin_unlock_irqrestore(&xhci->lock, flags);
2659 	}
2660 	return ret;
2661 }
2662 
2663 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2664 	struct xhci_virt_device *vdev, int i)
2665 {
2666 	struct xhci_virt_ep *ep = &vdev->eps[i];
2667 
2668 	if (ep->ep_state & EP_HAS_STREAMS) {
2669 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2670 				xhci_get_endpoint_address(i));
2671 		xhci_free_stream_info(xhci, ep->stream_info);
2672 		ep->stream_info = NULL;
2673 		ep->ep_state &= ~EP_HAS_STREAMS;
2674 	}
2675 }
2676 
2677 /* Called after one or more calls to xhci_add_endpoint() or
2678  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2679  * to call xhci_reset_bandwidth().
2680  *
2681  * Since we are in the middle of changing either configuration or
2682  * installing a new alt setting, the USB core won't allow URBs to be
2683  * enqueued for any endpoint on the old config or interface.  Nothing
2684  * else should be touching the xhci->devs[slot_id] structure, so we
2685  * don't need to take the xhci->lock for manipulating that.
2686  */
2687 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2688 {
2689 	int i;
2690 	int ret = 0;
2691 	struct xhci_hcd *xhci;
2692 	struct xhci_virt_device	*virt_dev;
2693 	struct xhci_input_control_ctx *ctrl_ctx;
2694 	struct xhci_slot_ctx *slot_ctx;
2695 	struct xhci_command *command;
2696 
2697 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2698 	if (ret <= 0)
2699 		return ret;
2700 	xhci = hcd_to_xhci(hcd);
2701 	if (xhci->xhc_state & XHCI_STATE_DYING)
2702 		return -ENODEV;
2703 
2704 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2705 	virt_dev = xhci->devs[udev->slot_id];
2706 
2707 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2708 	if (!command)
2709 		return -ENOMEM;
2710 
2711 	command->in_ctx = virt_dev->in_ctx;
2712 
2713 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2714 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2715 	if (!ctrl_ctx) {
2716 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2717 				__func__);
2718 		ret = -ENOMEM;
2719 		goto command_cleanup;
2720 	}
2721 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2722 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2723 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2724 
2725 	/* Don't issue the command if there's no endpoints to update. */
2726 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2727 	    ctrl_ctx->drop_flags == 0) {
2728 		ret = 0;
2729 		goto command_cleanup;
2730 	}
2731 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2732 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2733 	for (i = 31; i >= 1; i--) {
2734 		__le32 le32 = cpu_to_le32(BIT(i));
2735 
2736 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2737 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2738 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2739 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2740 			break;
2741 		}
2742 	}
2743 	xhci_dbg(xhci, "New Input Control Context:\n");
2744 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2745 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2746 
2747 	ret = xhci_configure_endpoint(xhci, udev, command,
2748 			false, false);
2749 	if (ret)
2750 		/* Callee should call reset_bandwidth() */
2751 		goto command_cleanup;
2752 
2753 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2754 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2755 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2756 
2757 	/* Free any rings that were dropped, but not changed. */
2758 	for (i = 1; i < 31; ++i) {
2759 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2760 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2761 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2762 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2763 		}
2764 	}
2765 	xhci_zero_in_ctx(xhci, virt_dev);
2766 	/*
2767 	 * Install any rings for completely new endpoints or changed endpoints,
2768 	 * and free or cache any old rings from changed endpoints.
2769 	 */
2770 	for (i = 1; i < 31; ++i) {
2771 		if (!virt_dev->eps[i].new_ring)
2772 			continue;
2773 		/* Only cache or free the old ring if it exists.
2774 		 * It may not if this is the first add of an endpoint.
2775 		 */
2776 		if (virt_dev->eps[i].ring) {
2777 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2778 		}
2779 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2780 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2781 		virt_dev->eps[i].new_ring = NULL;
2782 	}
2783 command_cleanup:
2784 	kfree(command->completion);
2785 	kfree(command);
2786 
2787 	return ret;
2788 }
2789 
2790 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2791 {
2792 	struct xhci_hcd *xhci;
2793 	struct xhci_virt_device	*virt_dev;
2794 	int i, ret;
2795 
2796 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2797 	if (ret <= 0)
2798 		return;
2799 	xhci = hcd_to_xhci(hcd);
2800 
2801 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2802 	virt_dev = xhci->devs[udev->slot_id];
2803 	/* Free any rings allocated for added endpoints */
2804 	for (i = 0; i < 31; ++i) {
2805 		if (virt_dev->eps[i].new_ring) {
2806 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2807 			virt_dev->eps[i].new_ring = NULL;
2808 		}
2809 	}
2810 	xhci_zero_in_ctx(xhci, virt_dev);
2811 }
2812 
2813 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2814 		struct xhci_container_ctx *in_ctx,
2815 		struct xhci_container_ctx *out_ctx,
2816 		struct xhci_input_control_ctx *ctrl_ctx,
2817 		u32 add_flags, u32 drop_flags)
2818 {
2819 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2820 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2821 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2822 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2823 
2824 	xhci_dbg(xhci, "Input Context:\n");
2825 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2826 }
2827 
2828 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2829 		unsigned int slot_id, unsigned int ep_index,
2830 		struct xhci_dequeue_state *deq_state)
2831 {
2832 	struct xhci_input_control_ctx *ctrl_ctx;
2833 	struct xhci_container_ctx *in_ctx;
2834 	struct xhci_ep_ctx *ep_ctx;
2835 	u32 added_ctxs;
2836 	dma_addr_t addr;
2837 
2838 	in_ctx = xhci->devs[slot_id]->in_ctx;
2839 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2840 	if (!ctrl_ctx) {
2841 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2842 				__func__);
2843 		return;
2844 	}
2845 
2846 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2847 			xhci->devs[slot_id]->out_ctx, ep_index);
2848 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2849 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2850 			deq_state->new_deq_ptr);
2851 	if (addr == 0) {
2852 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2853 				"reset ep command\n");
2854 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2855 				deq_state->new_deq_seg,
2856 				deq_state->new_deq_ptr);
2857 		return;
2858 	}
2859 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2860 
2861 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2862 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2863 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2864 			added_ctxs, added_ctxs);
2865 }
2866 
2867 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2868 		struct usb_device *udev, unsigned int ep_index)
2869 {
2870 	struct xhci_dequeue_state deq_state;
2871 	struct xhci_virt_ep *ep;
2872 
2873 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2874 			"Cleaning up stalled endpoint ring");
2875 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2876 	/* We need to move the HW's dequeue pointer past this TD,
2877 	 * or it will attempt to resend it on the next doorbell ring.
2878 	 */
2879 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2880 			ep_index, ep->stopped_stream, ep->stopped_td,
2881 			&deq_state);
2882 
2883 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2884 		return;
2885 
2886 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2887 	 * issue a configure endpoint command later.
2888 	 */
2889 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2890 		struct xhci_command *command;
2891 		/* Can't sleep if we're called from cleanup_halted_endpoint() */
2892 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
2893 		if (!command)
2894 			return;
2895 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2896 				"Queueing new dequeue state");
2897 		xhci_queue_new_dequeue_state(xhci, command, udev->slot_id,
2898 				ep_index, ep->stopped_stream, &deq_state);
2899 	} else {
2900 		/* Better hope no one uses the input context between now and the
2901 		 * reset endpoint completion!
2902 		 * XXX: No idea how this hardware will react when stream rings
2903 		 * are enabled.
2904 		 */
2905 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2906 				"Setting up input context for "
2907 				"configure endpoint command");
2908 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2909 				ep_index, &deq_state);
2910 	}
2911 }
2912 
2913 /* Deal with stalled endpoints.  The core should have sent the control message
2914  * to clear the halt condition.  However, we need to make the xHCI hardware
2915  * reset its sequence number, since a device will expect a sequence number of
2916  * zero after the halt condition is cleared.
2917  * Context: in_interrupt
2918  */
2919 void xhci_endpoint_reset(struct usb_hcd *hcd,
2920 		struct usb_host_endpoint *ep)
2921 {
2922 	struct xhci_hcd *xhci;
2923 	struct usb_device *udev;
2924 	unsigned int ep_index;
2925 	unsigned long flags;
2926 	int ret;
2927 	struct xhci_virt_ep *virt_ep;
2928 	struct xhci_command *command;
2929 
2930 	xhci = hcd_to_xhci(hcd);
2931 	udev = (struct usb_device *) ep->hcpriv;
2932 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2933 	 * with xhci_add_endpoint()
2934 	 */
2935 	if (!ep->hcpriv)
2936 		return;
2937 	ep_index = xhci_get_endpoint_index(&ep->desc);
2938 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2939 	if (!virt_ep->stopped_td) {
2940 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2941 			"Endpoint 0x%x not halted, refusing to reset.",
2942 			ep->desc.bEndpointAddress);
2943 		return;
2944 	}
2945 	if (usb_endpoint_xfer_control(&ep->desc)) {
2946 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2947 				"Control endpoint stall already handled.");
2948 		return;
2949 	}
2950 
2951 	command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
2952 	if (!command)
2953 		return;
2954 
2955 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2956 			"Queueing reset endpoint command");
2957 	spin_lock_irqsave(&xhci->lock, flags);
2958 	ret = xhci_queue_reset_ep(xhci, command, udev->slot_id, ep_index);
2959 	/*
2960 	 * Can't change the ring dequeue pointer until it's transitioned to the
2961 	 * stopped state, which is only upon a successful reset endpoint
2962 	 * command.  Better hope that last command worked!
2963 	 */
2964 	if (!ret) {
2965 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2966 		kfree(virt_ep->stopped_td);
2967 		xhci_ring_cmd_db(xhci);
2968 	}
2969 	virt_ep->stopped_td = NULL;
2970 	virt_ep->stopped_stream = 0;
2971 	spin_unlock_irqrestore(&xhci->lock, flags);
2972 
2973 	if (ret)
2974 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2975 }
2976 
2977 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2978 		struct usb_device *udev, struct usb_host_endpoint *ep,
2979 		unsigned int slot_id)
2980 {
2981 	int ret;
2982 	unsigned int ep_index;
2983 	unsigned int ep_state;
2984 
2985 	if (!ep)
2986 		return -EINVAL;
2987 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2988 	if (ret <= 0)
2989 		return -EINVAL;
2990 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2991 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2992 				" descriptor for ep 0x%x does not support streams\n",
2993 				ep->desc.bEndpointAddress);
2994 		return -EINVAL;
2995 	}
2996 
2997 	ep_index = xhci_get_endpoint_index(&ep->desc);
2998 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2999 	if (ep_state & EP_HAS_STREAMS ||
3000 			ep_state & EP_GETTING_STREAMS) {
3001 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3002 				"already has streams set up.\n",
3003 				ep->desc.bEndpointAddress);
3004 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3005 				"dynamic stream context array reallocation.\n");
3006 		return -EINVAL;
3007 	}
3008 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3009 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3010 				"endpoint 0x%x; URBs are pending.\n",
3011 				ep->desc.bEndpointAddress);
3012 		return -EINVAL;
3013 	}
3014 	return 0;
3015 }
3016 
3017 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3018 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3019 {
3020 	unsigned int max_streams;
3021 
3022 	/* The stream context array size must be a power of two */
3023 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3024 	/*
3025 	 * Find out how many primary stream array entries the host controller
3026 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3027 	 * level page entries), but that's an optional feature for xHCI host
3028 	 * controllers. xHCs must support at least 4 stream IDs.
3029 	 */
3030 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3031 	if (*num_stream_ctxs > max_streams) {
3032 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3033 				max_streams);
3034 		*num_stream_ctxs = max_streams;
3035 		*num_streams = max_streams;
3036 	}
3037 }
3038 
3039 /* Returns an error code if one of the endpoint already has streams.
3040  * This does not change any data structures, it only checks and gathers
3041  * information.
3042  */
3043 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3044 		struct usb_device *udev,
3045 		struct usb_host_endpoint **eps, unsigned int num_eps,
3046 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3047 {
3048 	unsigned int max_streams;
3049 	unsigned int endpoint_flag;
3050 	int i;
3051 	int ret;
3052 
3053 	for (i = 0; i < num_eps; i++) {
3054 		ret = xhci_check_streams_endpoint(xhci, udev,
3055 				eps[i], udev->slot_id);
3056 		if (ret < 0)
3057 			return ret;
3058 
3059 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3060 		if (max_streams < (*num_streams - 1)) {
3061 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3062 					eps[i]->desc.bEndpointAddress,
3063 					max_streams);
3064 			*num_streams = max_streams+1;
3065 		}
3066 
3067 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3068 		if (*changed_ep_bitmask & endpoint_flag)
3069 			return -EINVAL;
3070 		*changed_ep_bitmask |= endpoint_flag;
3071 	}
3072 	return 0;
3073 }
3074 
3075 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3076 		struct usb_device *udev,
3077 		struct usb_host_endpoint **eps, unsigned int num_eps)
3078 {
3079 	u32 changed_ep_bitmask = 0;
3080 	unsigned int slot_id;
3081 	unsigned int ep_index;
3082 	unsigned int ep_state;
3083 	int i;
3084 
3085 	slot_id = udev->slot_id;
3086 	if (!xhci->devs[slot_id])
3087 		return 0;
3088 
3089 	for (i = 0; i < num_eps; i++) {
3090 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3091 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3092 		/* Are streams already being freed for the endpoint? */
3093 		if (ep_state & EP_GETTING_NO_STREAMS) {
3094 			xhci_warn(xhci, "WARN Can't disable streams for "
3095 					"endpoint 0x%x, "
3096 					"streams are being disabled already\n",
3097 					eps[i]->desc.bEndpointAddress);
3098 			return 0;
3099 		}
3100 		/* Are there actually any streams to free? */
3101 		if (!(ep_state & EP_HAS_STREAMS) &&
3102 				!(ep_state & EP_GETTING_STREAMS)) {
3103 			xhci_warn(xhci, "WARN Can't disable streams for "
3104 					"endpoint 0x%x, "
3105 					"streams are already disabled!\n",
3106 					eps[i]->desc.bEndpointAddress);
3107 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3108 					"with non-streams endpoint\n");
3109 			return 0;
3110 		}
3111 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3112 	}
3113 	return changed_ep_bitmask;
3114 }
3115 
3116 /*
3117  * The USB device drivers use this function (though the HCD interface in USB
3118  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3119  * coordinate mass storage command queueing across multiple endpoints (basically
3120  * a stream ID == a task ID).
3121  *
3122  * Setting up streams involves allocating the same size stream context array
3123  * for each endpoint and issuing a configure endpoint command for all endpoints.
3124  *
3125  * Don't allow the call to succeed if one endpoint only supports one stream
3126  * (which means it doesn't support streams at all).
3127  *
3128  * Drivers may get less stream IDs than they asked for, if the host controller
3129  * hardware or endpoints claim they can't support the number of requested
3130  * stream IDs.
3131  */
3132 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3133 		struct usb_host_endpoint **eps, unsigned int num_eps,
3134 		unsigned int num_streams, gfp_t mem_flags)
3135 {
3136 	int i, ret;
3137 	struct xhci_hcd *xhci;
3138 	struct xhci_virt_device *vdev;
3139 	struct xhci_command *config_cmd;
3140 	struct xhci_input_control_ctx *ctrl_ctx;
3141 	unsigned int ep_index;
3142 	unsigned int num_stream_ctxs;
3143 	unsigned long flags;
3144 	u32 changed_ep_bitmask = 0;
3145 
3146 	if (!eps)
3147 		return -EINVAL;
3148 
3149 	/* Add one to the number of streams requested to account for
3150 	 * stream 0 that is reserved for xHCI usage.
3151 	 */
3152 	num_streams += 1;
3153 	xhci = hcd_to_xhci(hcd);
3154 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3155 			num_streams);
3156 
3157 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3158 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3159 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3160 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3161 		return -ENOSYS;
3162 	}
3163 
3164 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3165 	if (!config_cmd) {
3166 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3167 		return -ENOMEM;
3168 	}
3169 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3170 	if (!ctrl_ctx) {
3171 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3172 				__func__);
3173 		xhci_free_command(xhci, config_cmd);
3174 		return -ENOMEM;
3175 	}
3176 
3177 	/* Check to make sure all endpoints are not already configured for
3178 	 * streams.  While we're at it, find the maximum number of streams that
3179 	 * all the endpoints will support and check for duplicate endpoints.
3180 	 */
3181 	spin_lock_irqsave(&xhci->lock, flags);
3182 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3183 			num_eps, &num_streams, &changed_ep_bitmask);
3184 	if (ret < 0) {
3185 		xhci_free_command(xhci, config_cmd);
3186 		spin_unlock_irqrestore(&xhci->lock, flags);
3187 		return ret;
3188 	}
3189 	if (num_streams <= 1) {
3190 		xhci_warn(xhci, "WARN: endpoints can't handle "
3191 				"more than one stream.\n");
3192 		xhci_free_command(xhci, config_cmd);
3193 		spin_unlock_irqrestore(&xhci->lock, flags);
3194 		return -EINVAL;
3195 	}
3196 	vdev = xhci->devs[udev->slot_id];
3197 	/* Mark each endpoint as being in transition, so
3198 	 * xhci_urb_enqueue() will reject all URBs.
3199 	 */
3200 	for (i = 0; i < num_eps; i++) {
3201 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3202 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3203 	}
3204 	spin_unlock_irqrestore(&xhci->lock, flags);
3205 
3206 	/* Setup internal data structures and allocate HW data structures for
3207 	 * streams (but don't install the HW structures in the input context
3208 	 * until we're sure all memory allocation succeeded).
3209 	 */
3210 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3211 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3212 			num_stream_ctxs, num_streams);
3213 
3214 	for (i = 0; i < num_eps; i++) {
3215 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3216 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3217 				num_stream_ctxs,
3218 				num_streams, mem_flags);
3219 		if (!vdev->eps[ep_index].stream_info)
3220 			goto cleanup;
3221 		/* Set maxPstreams in endpoint context and update deq ptr to
3222 		 * point to stream context array. FIXME
3223 		 */
3224 	}
3225 
3226 	/* Set up the input context for a configure endpoint command. */
3227 	for (i = 0; i < num_eps; i++) {
3228 		struct xhci_ep_ctx *ep_ctx;
3229 
3230 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3231 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3232 
3233 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3234 				vdev->out_ctx, ep_index);
3235 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3236 				vdev->eps[ep_index].stream_info);
3237 	}
3238 	/* Tell the HW to drop its old copy of the endpoint context info
3239 	 * and add the updated copy from the input context.
3240 	 */
3241 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3242 			vdev->out_ctx, ctrl_ctx,
3243 			changed_ep_bitmask, changed_ep_bitmask);
3244 
3245 	/* Issue and wait for the configure endpoint command */
3246 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3247 			false, false);
3248 
3249 	/* xHC rejected the configure endpoint command for some reason, so we
3250 	 * leave the old ring intact and free our internal streams data
3251 	 * structure.
3252 	 */
3253 	if (ret < 0)
3254 		goto cleanup;
3255 
3256 	spin_lock_irqsave(&xhci->lock, flags);
3257 	for (i = 0; i < num_eps; i++) {
3258 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3259 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3260 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3261 			 udev->slot_id, ep_index);
3262 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3263 	}
3264 	xhci_free_command(xhci, config_cmd);
3265 	spin_unlock_irqrestore(&xhci->lock, flags);
3266 
3267 	/* Subtract 1 for stream 0, which drivers can't use */
3268 	return num_streams - 1;
3269 
3270 cleanup:
3271 	/* If it didn't work, free the streams! */
3272 	for (i = 0; i < num_eps; i++) {
3273 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3274 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3275 		vdev->eps[ep_index].stream_info = NULL;
3276 		/* FIXME Unset maxPstreams in endpoint context and
3277 		 * update deq ptr to point to normal string ring.
3278 		 */
3279 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3280 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3281 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3282 	}
3283 	xhci_free_command(xhci, config_cmd);
3284 	return -ENOMEM;
3285 }
3286 
3287 /* Transition the endpoint from using streams to being a "normal" endpoint
3288  * without streams.
3289  *
3290  * Modify the endpoint context state, submit a configure endpoint command,
3291  * and free all endpoint rings for streams if that completes successfully.
3292  */
3293 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3294 		struct usb_host_endpoint **eps, unsigned int num_eps,
3295 		gfp_t mem_flags)
3296 {
3297 	int i, ret;
3298 	struct xhci_hcd *xhci;
3299 	struct xhci_virt_device *vdev;
3300 	struct xhci_command *command;
3301 	struct xhci_input_control_ctx *ctrl_ctx;
3302 	unsigned int ep_index;
3303 	unsigned long flags;
3304 	u32 changed_ep_bitmask;
3305 
3306 	xhci = hcd_to_xhci(hcd);
3307 	vdev = xhci->devs[udev->slot_id];
3308 
3309 	/* Set up a configure endpoint command to remove the streams rings */
3310 	spin_lock_irqsave(&xhci->lock, flags);
3311 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3312 			udev, eps, num_eps);
3313 	if (changed_ep_bitmask == 0) {
3314 		spin_unlock_irqrestore(&xhci->lock, flags);
3315 		return -EINVAL;
3316 	}
3317 
3318 	/* Use the xhci_command structure from the first endpoint.  We may have
3319 	 * allocated too many, but the driver may call xhci_free_streams() for
3320 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3321 	 */
3322 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3323 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3324 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3325 	if (!ctrl_ctx) {
3326 		spin_unlock_irqrestore(&xhci->lock, flags);
3327 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3328 				__func__);
3329 		return -EINVAL;
3330 	}
3331 
3332 	for (i = 0; i < num_eps; i++) {
3333 		struct xhci_ep_ctx *ep_ctx;
3334 
3335 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3336 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3337 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3338 			EP_GETTING_NO_STREAMS;
3339 
3340 		xhci_endpoint_copy(xhci, command->in_ctx,
3341 				vdev->out_ctx, ep_index);
3342 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3343 				&vdev->eps[ep_index]);
3344 	}
3345 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3346 			vdev->out_ctx, ctrl_ctx,
3347 			changed_ep_bitmask, changed_ep_bitmask);
3348 	spin_unlock_irqrestore(&xhci->lock, flags);
3349 
3350 	/* Issue and wait for the configure endpoint command,
3351 	 * which must succeed.
3352 	 */
3353 	ret = xhci_configure_endpoint(xhci, udev, command,
3354 			false, true);
3355 
3356 	/* xHC rejected the configure endpoint command for some reason, so we
3357 	 * leave the streams rings intact.
3358 	 */
3359 	if (ret < 0)
3360 		return ret;
3361 
3362 	spin_lock_irqsave(&xhci->lock, flags);
3363 	for (i = 0; i < num_eps; i++) {
3364 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3365 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3366 		vdev->eps[ep_index].stream_info = NULL;
3367 		/* FIXME Unset maxPstreams in endpoint context and
3368 		 * update deq ptr to point to normal string ring.
3369 		 */
3370 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3371 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3372 	}
3373 	spin_unlock_irqrestore(&xhci->lock, flags);
3374 
3375 	return 0;
3376 }
3377 
3378 /*
3379  * Deletes endpoint resources for endpoints that were active before a Reset
3380  * Device command, or a Disable Slot command.  The Reset Device command leaves
3381  * the control endpoint intact, whereas the Disable Slot command deletes it.
3382  *
3383  * Must be called with xhci->lock held.
3384  */
3385 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3386 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3387 {
3388 	int i;
3389 	unsigned int num_dropped_eps = 0;
3390 	unsigned int drop_flags = 0;
3391 
3392 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3393 		if (virt_dev->eps[i].ring) {
3394 			drop_flags |= 1 << i;
3395 			num_dropped_eps++;
3396 		}
3397 	}
3398 	xhci->num_active_eps -= num_dropped_eps;
3399 	if (num_dropped_eps)
3400 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3401 				"Dropped %u ep ctxs, flags = 0x%x, "
3402 				"%u now active.",
3403 				num_dropped_eps, drop_flags,
3404 				xhci->num_active_eps);
3405 }
3406 
3407 /*
3408  * This submits a Reset Device Command, which will set the device state to 0,
3409  * set the device address to 0, and disable all the endpoints except the default
3410  * control endpoint.  The USB core should come back and call
3411  * xhci_address_device(), and then re-set up the configuration.  If this is
3412  * called because of a usb_reset_and_verify_device(), then the old alternate
3413  * settings will be re-installed through the normal bandwidth allocation
3414  * functions.
3415  *
3416  * Wait for the Reset Device command to finish.  Remove all structures
3417  * associated with the endpoints that were disabled.  Clear the input device
3418  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3419  *
3420  * If the virt_dev to be reset does not exist or does not match the udev,
3421  * it means the device is lost, possibly due to the xHC restore error and
3422  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3423  * re-allocate the device.
3424  */
3425 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3426 {
3427 	int ret, i;
3428 	unsigned long flags;
3429 	struct xhci_hcd *xhci;
3430 	unsigned int slot_id;
3431 	struct xhci_virt_device *virt_dev;
3432 	struct xhci_command *reset_device_cmd;
3433 	int last_freed_endpoint;
3434 	struct xhci_slot_ctx *slot_ctx;
3435 	int old_active_eps = 0;
3436 
3437 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3438 	if (ret <= 0)
3439 		return ret;
3440 	xhci = hcd_to_xhci(hcd);
3441 	slot_id = udev->slot_id;
3442 	virt_dev = xhci->devs[slot_id];
3443 	if (!virt_dev) {
3444 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3445 				"not exist. Re-allocate the device\n", slot_id);
3446 		ret = xhci_alloc_dev(hcd, udev);
3447 		if (ret == 1)
3448 			return 0;
3449 		else
3450 			return -EINVAL;
3451 	}
3452 
3453 	if (virt_dev->udev != udev) {
3454 		/* If the virt_dev and the udev does not match, this virt_dev
3455 		 * may belong to another udev.
3456 		 * Re-allocate the device.
3457 		 */
3458 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3459 				"not match the udev. Re-allocate the device\n",
3460 				slot_id);
3461 		ret = xhci_alloc_dev(hcd, udev);
3462 		if (ret == 1)
3463 			return 0;
3464 		else
3465 			return -EINVAL;
3466 	}
3467 
3468 	/* If device is not setup, there is no point in resetting it */
3469 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3470 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3471 						SLOT_STATE_DISABLED)
3472 		return 0;
3473 
3474 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3475 	/* Allocate the command structure that holds the struct completion.
3476 	 * Assume we're in process context, since the normal device reset
3477 	 * process has to wait for the device anyway.  Storage devices are
3478 	 * reset as part of error handling, so use GFP_NOIO instead of
3479 	 * GFP_KERNEL.
3480 	 */
3481 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3482 	if (!reset_device_cmd) {
3483 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3484 		return -ENOMEM;
3485 	}
3486 
3487 	/* Attempt to submit the Reset Device command to the command ring */
3488 	spin_lock_irqsave(&xhci->lock, flags);
3489 
3490 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3491 	if (ret) {
3492 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3493 		spin_unlock_irqrestore(&xhci->lock, flags);
3494 		goto command_cleanup;
3495 	}
3496 	xhci_ring_cmd_db(xhci);
3497 	spin_unlock_irqrestore(&xhci->lock, flags);
3498 
3499 	/* Wait for the Reset Device command to finish */
3500 	wait_for_completion(reset_device_cmd->completion);
3501 
3502 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3503 	 * unless we tried to reset a slot ID that wasn't enabled,
3504 	 * or the device wasn't in the addressed or configured state.
3505 	 */
3506 	ret = reset_device_cmd->status;
3507 	switch (ret) {
3508 	case COMP_CMD_ABORT:
3509 	case COMP_CMD_STOP:
3510 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3511 		ret = -ETIME;
3512 		goto command_cleanup;
3513 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3514 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3515 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3516 				slot_id,
3517 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3518 		xhci_dbg(xhci, "Not freeing device rings.\n");
3519 		/* Don't treat this as an error.  May change my mind later. */
3520 		ret = 0;
3521 		goto command_cleanup;
3522 	case COMP_SUCCESS:
3523 		xhci_dbg(xhci, "Successful reset device command.\n");
3524 		break;
3525 	default:
3526 		if (xhci_is_vendor_info_code(xhci, ret))
3527 			break;
3528 		xhci_warn(xhci, "Unknown completion code %u for "
3529 				"reset device command.\n", ret);
3530 		ret = -EINVAL;
3531 		goto command_cleanup;
3532 	}
3533 
3534 	/* Free up host controller endpoint resources */
3535 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3536 		spin_lock_irqsave(&xhci->lock, flags);
3537 		/* Don't delete the default control endpoint resources */
3538 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3539 		spin_unlock_irqrestore(&xhci->lock, flags);
3540 	}
3541 
3542 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3543 	last_freed_endpoint = 1;
3544 	for (i = 1; i < 31; ++i) {
3545 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3546 
3547 		if (ep->ep_state & EP_HAS_STREAMS) {
3548 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3549 					xhci_get_endpoint_address(i));
3550 			xhci_free_stream_info(xhci, ep->stream_info);
3551 			ep->stream_info = NULL;
3552 			ep->ep_state &= ~EP_HAS_STREAMS;
3553 		}
3554 
3555 		if (ep->ring) {
3556 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3557 			last_freed_endpoint = i;
3558 		}
3559 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3560 			xhci_drop_ep_from_interval_table(xhci,
3561 					&virt_dev->eps[i].bw_info,
3562 					virt_dev->bw_table,
3563 					udev,
3564 					&virt_dev->eps[i],
3565 					virt_dev->tt_info);
3566 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3567 	}
3568 	/* If necessary, update the number of active TTs on this root port */
3569 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3570 
3571 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3572 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3573 	ret = 0;
3574 
3575 command_cleanup:
3576 	xhci_free_command(xhci, reset_device_cmd);
3577 	return ret;
3578 }
3579 
3580 /*
3581  * At this point, the struct usb_device is about to go away, the device has
3582  * disconnected, and all traffic has been stopped and the endpoints have been
3583  * disabled.  Free any HC data structures associated with that device.
3584  */
3585 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3586 {
3587 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3588 	struct xhci_virt_device *virt_dev;
3589 	unsigned long flags;
3590 	u32 state;
3591 	int i, ret;
3592 	struct xhci_command *command;
3593 
3594 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3595 	if (!command)
3596 		return;
3597 
3598 #ifndef CONFIG_USB_DEFAULT_PERSIST
3599 	/*
3600 	 * We called pm_runtime_get_noresume when the device was attached.
3601 	 * Decrement the counter here to allow controller to runtime suspend
3602 	 * if no devices remain.
3603 	 */
3604 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3605 		pm_runtime_put_noidle(hcd->self.controller);
3606 #endif
3607 
3608 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3609 	/* If the host is halted due to driver unload, we still need to free the
3610 	 * device.
3611 	 */
3612 	if (ret <= 0 && ret != -ENODEV) {
3613 		kfree(command);
3614 		return;
3615 	}
3616 
3617 	virt_dev = xhci->devs[udev->slot_id];
3618 
3619 	/* Stop any wayward timer functions (which may grab the lock) */
3620 	for (i = 0; i < 31; ++i) {
3621 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3622 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3623 	}
3624 
3625 	spin_lock_irqsave(&xhci->lock, flags);
3626 	/* Don't disable the slot if the host controller is dead. */
3627 	state = readl(&xhci->op_regs->status);
3628 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3629 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3630 		xhci_free_virt_device(xhci, udev->slot_id);
3631 		spin_unlock_irqrestore(&xhci->lock, flags);
3632 		kfree(command);
3633 		return;
3634 	}
3635 
3636 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3637 				    udev->slot_id)) {
3638 		spin_unlock_irqrestore(&xhci->lock, flags);
3639 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3640 		return;
3641 	}
3642 	xhci_ring_cmd_db(xhci);
3643 	spin_unlock_irqrestore(&xhci->lock, flags);
3644 
3645 	/*
3646 	 * Event command completion handler will free any data structures
3647 	 * associated with the slot.  XXX Can free sleep?
3648 	 */
3649 }
3650 
3651 /*
3652  * Checks if we have enough host controller resources for the default control
3653  * endpoint.
3654  *
3655  * Must be called with xhci->lock held.
3656  */
3657 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3658 {
3659 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3660 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3661 				"Not enough ep ctxs: "
3662 				"%u active, need to add 1, limit is %u.",
3663 				xhci->num_active_eps, xhci->limit_active_eps);
3664 		return -ENOMEM;
3665 	}
3666 	xhci->num_active_eps += 1;
3667 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3668 			"Adding 1 ep ctx, %u now active.",
3669 			xhci->num_active_eps);
3670 	return 0;
3671 }
3672 
3673 
3674 /*
3675  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3676  * timed out, or allocating memory failed.  Returns 1 on success.
3677  */
3678 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3679 {
3680 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3681 	unsigned long flags;
3682 	int ret;
3683 	struct xhci_command *command;
3684 
3685 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3686 	if (!command)
3687 		return 0;
3688 
3689 	spin_lock_irqsave(&xhci->lock, flags);
3690 	command->completion = &xhci->addr_dev;
3691 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3692 	if (ret) {
3693 		spin_unlock_irqrestore(&xhci->lock, flags);
3694 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3695 		kfree(command);
3696 		return 0;
3697 	}
3698 	xhci_ring_cmd_db(xhci);
3699 	spin_unlock_irqrestore(&xhci->lock, flags);
3700 
3701 	wait_for_completion(command->completion);
3702 
3703 	if (!xhci->slot_id || command->status != COMP_SUCCESS) {
3704 		xhci_err(xhci, "Error while assigning device slot ID\n");
3705 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3706 				HCS_MAX_SLOTS(
3707 					readl(&xhci->cap_regs->hcs_params1)));
3708 		kfree(command);
3709 		return 0;
3710 	}
3711 
3712 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3713 		spin_lock_irqsave(&xhci->lock, flags);
3714 		ret = xhci_reserve_host_control_ep_resources(xhci);
3715 		if (ret) {
3716 			spin_unlock_irqrestore(&xhci->lock, flags);
3717 			xhci_warn(xhci, "Not enough host resources, "
3718 					"active endpoint contexts = %u\n",
3719 					xhci->num_active_eps);
3720 			goto disable_slot;
3721 		}
3722 		spin_unlock_irqrestore(&xhci->lock, flags);
3723 	}
3724 	/* Use GFP_NOIO, since this function can be called from
3725 	 * xhci_discover_or_reset_device(), which may be called as part of
3726 	 * mass storage driver error handling.
3727 	 */
3728 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3729 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3730 		goto disable_slot;
3731 	}
3732 	udev->slot_id = xhci->slot_id;
3733 
3734 #ifndef CONFIG_USB_DEFAULT_PERSIST
3735 	/*
3736 	 * If resetting upon resume, we can't put the controller into runtime
3737 	 * suspend if there is a device attached.
3738 	 */
3739 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3740 		pm_runtime_get_noresume(hcd->self.controller);
3741 #endif
3742 
3743 
3744 	kfree(command);
3745 	/* Is this a LS or FS device under a HS hub? */
3746 	/* Hub or peripherial? */
3747 	return 1;
3748 
3749 disable_slot:
3750 	/* Disable slot, if we can do it without mem alloc */
3751 	spin_lock_irqsave(&xhci->lock, flags);
3752 	command->completion = NULL;
3753 	command->status = 0;
3754 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3755 				     udev->slot_id))
3756 		xhci_ring_cmd_db(xhci);
3757 	spin_unlock_irqrestore(&xhci->lock, flags);
3758 	return 0;
3759 }
3760 
3761 /*
3762  * Issue an Address Device command and optionally send a corresponding
3763  * SetAddress request to the device.
3764  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3765  * we should only issue and wait on one address command at the same time.
3766  */
3767 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3768 			     enum xhci_setup_dev setup)
3769 {
3770 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3771 	unsigned long flags;
3772 	struct xhci_virt_device *virt_dev;
3773 	int ret = 0;
3774 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3775 	struct xhci_slot_ctx *slot_ctx;
3776 	struct xhci_input_control_ctx *ctrl_ctx;
3777 	u64 temp_64;
3778 	struct xhci_command *command;
3779 
3780 	if (!udev->slot_id) {
3781 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3782 				"Bad Slot ID %d", udev->slot_id);
3783 		return -EINVAL;
3784 	}
3785 
3786 	virt_dev = xhci->devs[udev->slot_id];
3787 
3788 	if (WARN_ON(!virt_dev)) {
3789 		/*
3790 		 * In plug/unplug torture test with an NEC controller,
3791 		 * a zero-dereference was observed once due to virt_dev = 0.
3792 		 * Print useful debug rather than crash if it is observed again!
3793 		 */
3794 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3795 			udev->slot_id);
3796 		return -EINVAL;
3797 	}
3798 
3799 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3800 	if (!command)
3801 		return -ENOMEM;
3802 
3803 	command->in_ctx = virt_dev->in_ctx;
3804 	command->completion = &xhci->addr_dev;
3805 
3806 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3807 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3808 	if (!ctrl_ctx) {
3809 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3810 				__func__);
3811 		kfree(command);
3812 		return -EINVAL;
3813 	}
3814 	/*
3815 	 * If this is the first Set Address since device plug-in or
3816 	 * virt_device realloaction after a resume with an xHCI power loss,
3817 	 * then set up the slot context.
3818 	 */
3819 	if (!slot_ctx->dev_info)
3820 		xhci_setup_addressable_virt_dev(xhci, udev);
3821 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3822 	else
3823 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3824 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3825 	ctrl_ctx->drop_flags = 0;
3826 
3827 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3828 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3829 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3830 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3831 
3832 	spin_lock_irqsave(&xhci->lock, flags);
3833 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3834 					udev->slot_id, setup);
3835 	if (ret) {
3836 		spin_unlock_irqrestore(&xhci->lock, flags);
3837 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3838 				"FIXME: allocate a command ring segment");
3839 		kfree(command);
3840 		return ret;
3841 	}
3842 	xhci_ring_cmd_db(xhci);
3843 	spin_unlock_irqrestore(&xhci->lock, flags);
3844 
3845 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3846 	wait_for_completion(command->completion);
3847 
3848 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3849 	 * the SetAddress() "recovery interval" required by USB and aborting the
3850 	 * command on a timeout.
3851 	 */
3852 	switch (command->status) {
3853 	case COMP_CMD_ABORT:
3854 	case COMP_CMD_STOP:
3855 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3856 		ret = -ETIME;
3857 		break;
3858 	case COMP_CTX_STATE:
3859 	case COMP_EBADSLT:
3860 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3861 			 act, udev->slot_id);
3862 		ret = -EINVAL;
3863 		break;
3864 	case COMP_TX_ERR:
3865 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3866 		ret = -EPROTO;
3867 		break;
3868 	case COMP_DEV_ERR:
3869 		dev_warn(&udev->dev,
3870 			 "ERROR: Incompatible device for setup %s command\n", act);
3871 		ret = -ENODEV;
3872 		break;
3873 	case COMP_SUCCESS:
3874 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3875 			       "Successful setup %s command", act);
3876 		break;
3877 	default:
3878 		xhci_err(xhci,
3879 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3880 			 act, command->status);
3881 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3882 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3883 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3884 		ret = -EINVAL;
3885 		break;
3886 	}
3887 	if (ret) {
3888 		kfree(command);
3889 		return ret;
3890 	}
3891 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3892 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3893 			"Op regs DCBAA ptr = %#016llx", temp_64);
3894 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3895 		"Slot ID %d dcbaa entry @%p = %#016llx",
3896 		udev->slot_id,
3897 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3898 		(unsigned long long)
3899 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3900 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3901 			"Output Context DMA address = %#08llx",
3902 			(unsigned long long)virt_dev->out_ctx->dma);
3903 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3904 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3905 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3906 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3907 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3908 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3909 	/*
3910 	 * USB core uses address 1 for the roothubs, so we add one to the
3911 	 * address given back to us by the HC.
3912 	 */
3913 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3914 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3915 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3916 	/* Zero the input context control for later use */
3917 	ctrl_ctx->add_flags = 0;
3918 	ctrl_ctx->drop_flags = 0;
3919 
3920 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3921 		       "Internal device address = %d",
3922 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3923 	kfree(command);
3924 	return 0;
3925 }
3926 
3927 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3928 {
3929 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3930 }
3931 
3932 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3933 {
3934 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3935 }
3936 
3937 /*
3938  * Transfer the port index into real index in the HW port status
3939  * registers. Caculate offset between the port's PORTSC register
3940  * and port status base. Divide the number of per port register
3941  * to get the real index. The raw port number bases 1.
3942  */
3943 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3944 {
3945 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3946 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3947 	__le32 __iomem *addr;
3948 	int raw_port;
3949 
3950 	if (hcd->speed != HCD_USB3)
3951 		addr = xhci->usb2_ports[port1 - 1];
3952 	else
3953 		addr = xhci->usb3_ports[port1 - 1];
3954 
3955 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3956 	return raw_port;
3957 }
3958 
3959 /*
3960  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3961  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3962  */
3963 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3964 			struct usb_device *udev, u16 max_exit_latency)
3965 {
3966 	struct xhci_virt_device *virt_dev;
3967 	struct xhci_command *command;
3968 	struct xhci_input_control_ctx *ctrl_ctx;
3969 	struct xhci_slot_ctx *slot_ctx;
3970 	unsigned long flags;
3971 	int ret;
3972 
3973 	spin_lock_irqsave(&xhci->lock, flags);
3974 
3975 	virt_dev = xhci->devs[udev->slot_id];
3976 
3977 	/*
3978 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3979 	 * xHC was re-initialized. Exit latency will be set later after
3980 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3981 	 */
3982 
3983 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3984 		spin_unlock_irqrestore(&xhci->lock, flags);
3985 		return 0;
3986 	}
3987 
3988 	/* Attempt to issue an Evaluate Context command to change the MEL. */
3989 	command = xhci->lpm_command;
3990 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3991 	if (!ctrl_ctx) {
3992 		spin_unlock_irqrestore(&xhci->lock, flags);
3993 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3994 				__func__);
3995 		return -ENOMEM;
3996 	}
3997 
3998 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3999 	spin_unlock_irqrestore(&xhci->lock, flags);
4000 
4001 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4002 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4003 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4004 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4005 
4006 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4007 			"Set up evaluate context for LPM MEL change.");
4008 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4009 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4010 
4011 	/* Issue and wait for the evaluate context command. */
4012 	ret = xhci_configure_endpoint(xhci, udev, command,
4013 			true, true);
4014 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4015 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4016 
4017 	if (!ret) {
4018 		spin_lock_irqsave(&xhci->lock, flags);
4019 		virt_dev->current_mel = max_exit_latency;
4020 		spin_unlock_irqrestore(&xhci->lock, flags);
4021 	}
4022 	return ret;
4023 }
4024 
4025 #ifdef CONFIG_PM_RUNTIME
4026 
4027 /* BESL to HIRD Encoding array for USB2 LPM */
4028 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4029 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4030 
4031 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4032 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4033 					struct usb_device *udev)
4034 {
4035 	int u2del, besl, besl_host;
4036 	int besl_device = 0;
4037 	u32 field;
4038 
4039 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4040 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4041 
4042 	if (field & USB_BESL_SUPPORT) {
4043 		for (besl_host = 0; besl_host < 16; besl_host++) {
4044 			if (xhci_besl_encoding[besl_host] >= u2del)
4045 				break;
4046 		}
4047 		/* Use baseline BESL value as default */
4048 		if (field & USB_BESL_BASELINE_VALID)
4049 			besl_device = USB_GET_BESL_BASELINE(field);
4050 		else if (field & USB_BESL_DEEP_VALID)
4051 			besl_device = USB_GET_BESL_DEEP(field);
4052 	} else {
4053 		if (u2del <= 50)
4054 			besl_host = 0;
4055 		else
4056 			besl_host = (u2del - 51) / 75 + 1;
4057 	}
4058 
4059 	besl = besl_host + besl_device;
4060 	if (besl > 15)
4061 		besl = 15;
4062 
4063 	return besl;
4064 }
4065 
4066 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4067 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4068 {
4069 	u32 field;
4070 	int l1;
4071 	int besld = 0;
4072 	int hirdm = 0;
4073 
4074 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4075 
4076 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4077 	l1 = udev->l1_params.timeout / 256;
4078 
4079 	/* device has preferred BESLD */
4080 	if (field & USB_BESL_DEEP_VALID) {
4081 		besld = USB_GET_BESL_DEEP(field);
4082 		hirdm = 1;
4083 	}
4084 
4085 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4086 }
4087 
4088 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4089 			struct usb_device *udev, int enable)
4090 {
4091 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4092 	__le32 __iomem	**port_array;
4093 	__le32 __iomem	*pm_addr, *hlpm_addr;
4094 	u32		pm_val, hlpm_val, field;
4095 	unsigned int	port_num;
4096 	unsigned long	flags;
4097 	int		hird, exit_latency;
4098 	int		ret;
4099 
4100 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4101 			!udev->lpm_capable)
4102 		return -EPERM;
4103 
4104 	if (!udev->parent || udev->parent->parent ||
4105 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4106 		return -EPERM;
4107 
4108 	if (udev->usb2_hw_lpm_capable != 1)
4109 		return -EPERM;
4110 
4111 	spin_lock_irqsave(&xhci->lock, flags);
4112 
4113 	port_array = xhci->usb2_ports;
4114 	port_num = udev->portnum - 1;
4115 	pm_addr = port_array[port_num] + PORTPMSC;
4116 	pm_val = readl(pm_addr);
4117 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4118 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4119 
4120 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4121 			enable ? "enable" : "disable", port_num + 1);
4122 
4123 	if (enable) {
4124 		/* Host supports BESL timeout instead of HIRD */
4125 		if (udev->usb2_hw_lpm_besl_capable) {
4126 			/* if device doesn't have a preferred BESL value use a
4127 			 * default one which works with mixed HIRD and BESL
4128 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4129 			 */
4130 			if ((field & USB_BESL_SUPPORT) &&
4131 			    (field & USB_BESL_BASELINE_VALID))
4132 				hird = USB_GET_BESL_BASELINE(field);
4133 			else
4134 				hird = udev->l1_params.besl;
4135 
4136 			exit_latency = xhci_besl_encoding[hird];
4137 			spin_unlock_irqrestore(&xhci->lock, flags);
4138 
4139 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4140 			 * input context for link powermanagement evaluate
4141 			 * context commands. It is protected by hcd->bandwidth
4142 			 * mutex and is shared by all devices. We need to set
4143 			 * the max ext latency in USB 2 BESL LPM as well, so
4144 			 * use the same mutex and xhci_change_max_exit_latency()
4145 			 */
4146 			mutex_lock(hcd->bandwidth_mutex);
4147 			ret = xhci_change_max_exit_latency(xhci, udev,
4148 							   exit_latency);
4149 			mutex_unlock(hcd->bandwidth_mutex);
4150 
4151 			if (ret < 0)
4152 				return ret;
4153 			spin_lock_irqsave(&xhci->lock, flags);
4154 
4155 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4156 			writel(hlpm_val, hlpm_addr);
4157 			/* flush write */
4158 			readl(hlpm_addr);
4159 		} else {
4160 			hird = xhci_calculate_hird_besl(xhci, udev);
4161 		}
4162 
4163 		pm_val &= ~PORT_HIRD_MASK;
4164 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4165 		writel(pm_val, pm_addr);
4166 		pm_val = readl(pm_addr);
4167 		pm_val |= PORT_HLE;
4168 		writel(pm_val, pm_addr);
4169 		/* flush write */
4170 		readl(pm_addr);
4171 	} else {
4172 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4173 		writel(pm_val, pm_addr);
4174 		/* flush write */
4175 		readl(pm_addr);
4176 		if (udev->usb2_hw_lpm_besl_capable) {
4177 			spin_unlock_irqrestore(&xhci->lock, flags);
4178 			mutex_lock(hcd->bandwidth_mutex);
4179 			xhci_change_max_exit_latency(xhci, udev, 0);
4180 			mutex_unlock(hcd->bandwidth_mutex);
4181 			return 0;
4182 		}
4183 	}
4184 
4185 	spin_unlock_irqrestore(&xhci->lock, flags);
4186 	return 0;
4187 }
4188 
4189 /* check if a usb2 port supports a given extened capability protocol
4190  * only USB2 ports extended protocol capability values are cached.
4191  * Return 1 if capability is supported
4192  */
4193 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4194 					   unsigned capability)
4195 {
4196 	u32 port_offset, port_count;
4197 	int i;
4198 
4199 	for (i = 0; i < xhci->num_ext_caps; i++) {
4200 		if (xhci->ext_caps[i] & capability) {
4201 			/* port offsets starts at 1 */
4202 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4203 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4204 			if (port >= port_offset &&
4205 			    port < port_offset + port_count)
4206 				return 1;
4207 		}
4208 	}
4209 	return 0;
4210 }
4211 
4212 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4213 {
4214 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4215 	int		portnum = udev->portnum - 1;
4216 
4217 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4218 			!udev->lpm_capable)
4219 		return 0;
4220 
4221 	/* we only support lpm for non-hub device connected to root hub yet */
4222 	if (!udev->parent || udev->parent->parent ||
4223 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4224 		return 0;
4225 
4226 	if (xhci->hw_lpm_support == 1 &&
4227 			xhci_check_usb2_port_capability(
4228 				xhci, portnum, XHCI_HLC)) {
4229 		udev->usb2_hw_lpm_capable = 1;
4230 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4231 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4232 		if (xhci_check_usb2_port_capability(xhci, portnum,
4233 					XHCI_BLC))
4234 			udev->usb2_hw_lpm_besl_capable = 1;
4235 	}
4236 
4237 	return 0;
4238 }
4239 
4240 #else
4241 
4242 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4243 				struct usb_device *udev, int enable)
4244 {
4245 	return 0;
4246 }
4247 
4248 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4249 {
4250 	return 0;
4251 }
4252 
4253 #endif /* CONFIG_PM_RUNTIME */
4254 
4255 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4256 
4257 #ifdef CONFIG_PM
4258 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4259 static unsigned long long xhci_service_interval_to_ns(
4260 		struct usb_endpoint_descriptor *desc)
4261 {
4262 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4263 }
4264 
4265 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4266 		enum usb3_link_state state)
4267 {
4268 	unsigned long long sel;
4269 	unsigned long long pel;
4270 	unsigned int max_sel_pel;
4271 	char *state_name;
4272 
4273 	switch (state) {
4274 	case USB3_LPM_U1:
4275 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4276 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4277 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4278 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4279 		state_name = "U1";
4280 		break;
4281 	case USB3_LPM_U2:
4282 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4283 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4284 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4285 		state_name = "U2";
4286 		break;
4287 	default:
4288 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4289 				__func__);
4290 		return USB3_LPM_DISABLED;
4291 	}
4292 
4293 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4294 		return USB3_LPM_DEVICE_INITIATED;
4295 
4296 	if (sel > max_sel_pel)
4297 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4298 				"due to long SEL %llu ms\n",
4299 				state_name, sel);
4300 	else
4301 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4302 				"due to long PEL %llu ms\n",
4303 				state_name, pel);
4304 	return USB3_LPM_DISABLED;
4305 }
4306 
4307 /* The U1 timeout should be the maximum of the following values:
4308  *  - For control endpoints, U1 system exit latency (SEL) * 3
4309  *  - For bulk endpoints, U1 SEL * 5
4310  *  - For interrupt endpoints:
4311  *    - Notification EPs, U1 SEL * 3
4312  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4313  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4314  */
4315 static unsigned long long xhci_calculate_intel_u1_timeout(
4316 		struct usb_device *udev,
4317 		struct usb_endpoint_descriptor *desc)
4318 {
4319 	unsigned long long timeout_ns;
4320 	int ep_type;
4321 	int intr_type;
4322 
4323 	ep_type = usb_endpoint_type(desc);
4324 	switch (ep_type) {
4325 	case USB_ENDPOINT_XFER_CONTROL:
4326 		timeout_ns = udev->u1_params.sel * 3;
4327 		break;
4328 	case USB_ENDPOINT_XFER_BULK:
4329 		timeout_ns = udev->u1_params.sel * 5;
4330 		break;
4331 	case USB_ENDPOINT_XFER_INT:
4332 		intr_type = usb_endpoint_interrupt_type(desc);
4333 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4334 			timeout_ns = udev->u1_params.sel * 3;
4335 			break;
4336 		}
4337 		/* Otherwise the calculation is the same as isoc eps */
4338 	case USB_ENDPOINT_XFER_ISOC:
4339 		timeout_ns = xhci_service_interval_to_ns(desc);
4340 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4341 		if (timeout_ns < udev->u1_params.sel * 2)
4342 			timeout_ns = udev->u1_params.sel * 2;
4343 		break;
4344 	default:
4345 		return 0;
4346 	}
4347 
4348 	return timeout_ns;
4349 }
4350 
4351 /* Returns the hub-encoded U1 timeout value. */
4352 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4353 		struct usb_device *udev,
4354 		struct usb_endpoint_descriptor *desc)
4355 {
4356 	unsigned long long timeout_ns;
4357 
4358 	if (xhci->quirks & XHCI_INTEL_HOST)
4359 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4360 	else
4361 		timeout_ns = udev->u1_params.sel;
4362 
4363 	/* The U1 timeout is encoded in 1us intervals.
4364 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4365 	 */
4366 	if (timeout_ns == USB3_LPM_DISABLED)
4367 		timeout_ns = 1;
4368 	else
4369 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4370 
4371 	/* If the necessary timeout value is bigger than what we can set in the
4372 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4373 	 */
4374 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4375 		return timeout_ns;
4376 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4377 			"due to long timeout %llu ms\n", timeout_ns);
4378 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4379 }
4380 
4381 /* The U2 timeout should be the maximum of:
4382  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4383  *  - largest bInterval of any active periodic endpoint (to avoid going
4384  *    into lower power link states between intervals).
4385  *  - the U2 Exit Latency of the device
4386  */
4387 static unsigned long long xhci_calculate_intel_u2_timeout(
4388 		struct usb_device *udev,
4389 		struct usb_endpoint_descriptor *desc)
4390 {
4391 	unsigned long long timeout_ns;
4392 	unsigned long long u2_del_ns;
4393 
4394 	timeout_ns = 10 * 1000 * 1000;
4395 
4396 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4397 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4398 		timeout_ns = xhci_service_interval_to_ns(desc);
4399 
4400 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4401 	if (u2_del_ns > timeout_ns)
4402 		timeout_ns = u2_del_ns;
4403 
4404 	return timeout_ns;
4405 }
4406 
4407 /* Returns the hub-encoded U2 timeout value. */
4408 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4409 		struct usb_device *udev,
4410 		struct usb_endpoint_descriptor *desc)
4411 {
4412 	unsigned long long timeout_ns;
4413 
4414 	if (xhci->quirks & XHCI_INTEL_HOST)
4415 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4416 	else
4417 		timeout_ns = udev->u2_params.sel;
4418 
4419 	/* The U2 timeout is encoded in 256us intervals */
4420 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4421 	/* If the necessary timeout value is bigger than what we can set in the
4422 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4423 	 */
4424 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4425 		return timeout_ns;
4426 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4427 			"due to long timeout %llu ms\n", timeout_ns);
4428 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4429 }
4430 
4431 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4432 		struct usb_device *udev,
4433 		struct usb_endpoint_descriptor *desc,
4434 		enum usb3_link_state state,
4435 		u16 *timeout)
4436 {
4437 	if (state == USB3_LPM_U1)
4438 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4439 	else if (state == USB3_LPM_U2)
4440 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4441 
4442 	return USB3_LPM_DISABLED;
4443 }
4444 
4445 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4446 		struct usb_device *udev,
4447 		struct usb_endpoint_descriptor *desc,
4448 		enum usb3_link_state state,
4449 		u16 *timeout)
4450 {
4451 	u16 alt_timeout;
4452 
4453 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4454 		desc, state, timeout);
4455 
4456 	/* If we found we can't enable hub-initiated LPM, or
4457 	 * the U1 or U2 exit latency was too high to allow
4458 	 * device-initiated LPM as well, just stop searching.
4459 	 */
4460 	if (alt_timeout == USB3_LPM_DISABLED ||
4461 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4462 		*timeout = alt_timeout;
4463 		return -E2BIG;
4464 	}
4465 	if (alt_timeout > *timeout)
4466 		*timeout = alt_timeout;
4467 	return 0;
4468 }
4469 
4470 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4471 		struct usb_device *udev,
4472 		struct usb_host_interface *alt,
4473 		enum usb3_link_state state,
4474 		u16 *timeout)
4475 {
4476 	int j;
4477 
4478 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4479 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4480 					&alt->endpoint[j].desc, state, timeout))
4481 			return -E2BIG;
4482 		continue;
4483 	}
4484 	return 0;
4485 }
4486 
4487 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4488 		enum usb3_link_state state)
4489 {
4490 	struct usb_device *parent;
4491 	unsigned int num_hubs;
4492 
4493 	if (state == USB3_LPM_U2)
4494 		return 0;
4495 
4496 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4497 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4498 			parent = parent->parent)
4499 		num_hubs++;
4500 
4501 	if (num_hubs < 2)
4502 		return 0;
4503 
4504 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4505 			" below second-tier hub.\n");
4506 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4507 			"to decrease power consumption.\n");
4508 	return -E2BIG;
4509 }
4510 
4511 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4512 		struct usb_device *udev,
4513 		enum usb3_link_state state)
4514 {
4515 	if (xhci->quirks & XHCI_INTEL_HOST)
4516 		return xhci_check_intel_tier_policy(udev, state);
4517 	else
4518 		return 0;
4519 }
4520 
4521 /* Returns the U1 or U2 timeout that should be enabled.
4522  * If the tier check or timeout setting functions return with a non-zero exit
4523  * code, that means the timeout value has been finalized and we shouldn't look
4524  * at any more endpoints.
4525  */
4526 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4527 			struct usb_device *udev, enum usb3_link_state state)
4528 {
4529 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4530 	struct usb_host_config *config;
4531 	char *state_name;
4532 	int i;
4533 	u16 timeout = USB3_LPM_DISABLED;
4534 
4535 	if (state == USB3_LPM_U1)
4536 		state_name = "U1";
4537 	else if (state == USB3_LPM_U2)
4538 		state_name = "U2";
4539 	else {
4540 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4541 				state);
4542 		return timeout;
4543 	}
4544 
4545 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4546 		return timeout;
4547 
4548 	/* Gather some information about the currently installed configuration
4549 	 * and alternate interface settings.
4550 	 */
4551 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4552 			state, &timeout))
4553 		return timeout;
4554 
4555 	config = udev->actconfig;
4556 	if (!config)
4557 		return timeout;
4558 
4559 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4560 		struct usb_driver *driver;
4561 		struct usb_interface *intf = config->interface[i];
4562 
4563 		if (!intf)
4564 			continue;
4565 
4566 		/* Check if any currently bound drivers want hub-initiated LPM
4567 		 * disabled.
4568 		 */
4569 		if (intf->dev.driver) {
4570 			driver = to_usb_driver(intf->dev.driver);
4571 			if (driver && driver->disable_hub_initiated_lpm) {
4572 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4573 						"at request of driver %s\n",
4574 						state_name, driver->name);
4575 				return xhci_get_timeout_no_hub_lpm(udev, state);
4576 			}
4577 		}
4578 
4579 		/* Not sure how this could happen... */
4580 		if (!intf->cur_altsetting)
4581 			continue;
4582 
4583 		if (xhci_update_timeout_for_interface(xhci, udev,
4584 					intf->cur_altsetting,
4585 					state, &timeout))
4586 			return timeout;
4587 	}
4588 	return timeout;
4589 }
4590 
4591 static int calculate_max_exit_latency(struct usb_device *udev,
4592 		enum usb3_link_state state_changed,
4593 		u16 hub_encoded_timeout)
4594 {
4595 	unsigned long long u1_mel_us = 0;
4596 	unsigned long long u2_mel_us = 0;
4597 	unsigned long long mel_us = 0;
4598 	bool disabling_u1;
4599 	bool disabling_u2;
4600 	bool enabling_u1;
4601 	bool enabling_u2;
4602 
4603 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4604 			hub_encoded_timeout == USB3_LPM_DISABLED);
4605 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4606 			hub_encoded_timeout == USB3_LPM_DISABLED);
4607 
4608 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4609 			hub_encoded_timeout != USB3_LPM_DISABLED);
4610 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4611 			hub_encoded_timeout != USB3_LPM_DISABLED);
4612 
4613 	/* If U1 was already enabled and we're not disabling it,
4614 	 * or we're going to enable U1, account for the U1 max exit latency.
4615 	 */
4616 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4617 			enabling_u1)
4618 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4619 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4620 			enabling_u2)
4621 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4622 
4623 	if (u1_mel_us > u2_mel_us)
4624 		mel_us = u1_mel_us;
4625 	else
4626 		mel_us = u2_mel_us;
4627 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4628 	if (mel_us > MAX_EXIT) {
4629 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4630 				"is too big.\n", mel_us);
4631 		return -E2BIG;
4632 	}
4633 	return mel_us;
4634 }
4635 
4636 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4637 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4638 			struct usb_device *udev, enum usb3_link_state state)
4639 {
4640 	struct xhci_hcd	*xhci;
4641 	u16 hub_encoded_timeout;
4642 	int mel;
4643 	int ret;
4644 
4645 	xhci = hcd_to_xhci(hcd);
4646 	/* The LPM timeout values are pretty host-controller specific, so don't
4647 	 * enable hub-initiated timeouts unless the vendor has provided
4648 	 * information about their timeout algorithm.
4649 	 */
4650 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4651 			!xhci->devs[udev->slot_id])
4652 		return USB3_LPM_DISABLED;
4653 
4654 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4655 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4656 	if (mel < 0) {
4657 		/* Max Exit Latency is too big, disable LPM. */
4658 		hub_encoded_timeout = USB3_LPM_DISABLED;
4659 		mel = 0;
4660 	}
4661 
4662 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4663 	if (ret)
4664 		return ret;
4665 	return hub_encoded_timeout;
4666 }
4667 
4668 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4669 			struct usb_device *udev, enum usb3_link_state state)
4670 {
4671 	struct xhci_hcd	*xhci;
4672 	u16 mel;
4673 	int ret;
4674 
4675 	xhci = hcd_to_xhci(hcd);
4676 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4677 			!xhci->devs[udev->slot_id])
4678 		return 0;
4679 
4680 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4681 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4682 	if (ret)
4683 		return ret;
4684 	return 0;
4685 }
4686 #else /* CONFIG_PM */
4687 
4688 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4689 			struct usb_device *udev, enum usb3_link_state state)
4690 {
4691 	return USB3_LPM_DISABLED;
4692 }
4693 
4694 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4695 			struct usb_device *udev, enum usb3_link_state state)
4696 {
4697 	return 0;
4698 }
4699 #endif	/* CONFIG_PM */
4700 
4701 /*-------------------------------------------------------------------------*/
4702 
4703 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4704  * internal data structures for the device.
4705  */
4706 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4707 			struct usb_tt *tt, gfp_t mem_flags)
4708 {
4709 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4710 	struct xhci_virt_device *vdev;
4711 	struct xhci_command *config_cmd;
4712 	struct xhci_input_control_ctx *ctrl_ctx;
4713 	struct xhci_slot_ctx *slot_ctx;
4714 	unsigned long flags;
4715 	unsigned think_time;
4716 	int ret;
4717 
4718 	/* Ignore root hubs */
4719 	if (!hdev->parent)
4720 		return 0;
4721 
4722 	vdev = xhci->devs[hdev->slot_id];
4723 	if (!vdev) {
4724 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4725 		return -EINVAL;
4726 	}
4727 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4728 	if (!config_cmd) {
4729 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4730 		return -ENOMEM;
4731 	}
4732 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4733 	if (!ctrl_ctx) {
4734 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4735 				__func__);
4736 		xhci_free_command(xhci, config_cmd);
4737 		return -ENOMEM;
4738 	}
4739 
4740 	spin_lock_irqsave(&xhci->lock, flags);
4741 	if (hdev->speed == USB_SPEED_HIGH &&
4742 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4743 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4744 		xhci_free_command(xhci, config_cmd);
4745 		spin_unlock_irqrestore(&xhci->lock, flags);
4746 		return -ENOMEM;
4747 	}
4748 
4749 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4750 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4751 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4752 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4753 	if (tt->multi)
4754 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4755 	if (xhci->hci_version > 0x95) {
4756 		xhci_dbg(xhci, "xHCI version %x needs hub "
4757 				"TT think time and number of ports\n",
4758 				(unsigned int) xhci->hci_version);
4759 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4760 		/* Set TT think time - convert from ns to FS bit times.
4761 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4762 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4763 		 *
4764 		 * xHCI 1.0: this field shall be 0 if the device is not a
4765 		 * High-spped hub.
4766 		 */
4767 		think_time = tt->think_time;
4768 		if (think_time != 0)
4769 			think_time = (think_time / 666) - 1;
4770 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4771 			slot_ctx->tt_info |=
4772 				cpu_to_le32(TT_THINK_TIME(think_time));
4773 	} else {
4774 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4775 				"TT think time or number of ports\n",
4776 				(unsigned int) xhci->hci_version);
4777 	}
4778 	slot_ctx->dev_state = 0;
4779 	spin_unlock_irqrestore(&xhci->lock, flags);
4780 
4781 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4782 			(xhci->hci_version > 0x95) ?
4783 			"configure endpoint" : "evaluate context");
4784 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4785 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4786 
4787 	/* Issue and wait for the configure endpoint or
4788 	 * evaluate context command.
4789 	 */
4790 	if (xhci->hci_version > 0x95)
4791 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4792 				false, false);
4793 	else
4794 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4795 				true, false);
4796 
4797 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4798 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4799 
4800 	xhci_free_command(xhci, config_cmd);
4801 	return ret;
4802 }
4803 
4804 int xhci_get_frame(struct usb_hcd *hcd)
4805 {
4806 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4807 	/* EHCI mods by the periodic size.  Why? */
4808 	return readl(&xhci->run_regs->microframe_index) >> 3;
4809 }
4810 
4811 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4812 {
4813 	struct xhci_hcd		*xhci;
4814 	struct device		*dev = hcd->self.controller;
4815 	int			retval;
4816 
4817 	/* Accept arbitrarily long scatter-gather lists */
4818 	hcd->self.sg_tablesize = ~0;
4819 
4820 	/* support to build packet from discontinuous buffers */
4821 	hcd->self.no_sg_constraint = 1;
4822 
4823 	/* XHCI controllers don't stop the ep queue on short packets :| */
4824 	hcd->self.no_stop_on_short = 1;
4825 
4826 	if (usb_hcd_is_primary_hcd(hcd)) {
4827 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4828 		if (!xhci)
4829 			return -ENOMEM;
4830 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4831 		xhci->main_hcd = hcd;
4832 		/* Mark the first roothub as being USB 2.0.
4833 		 * The xHCI driver will register the USB 3.0 roothub.
4834 		 */
4835 		hcd->speed = HCD_USB2;
4836 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4837 		/*
4838 		 * USB 2.0 roothub under xHCI has an integrated TT,
4839 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4840 		 * companion controller.
4841 		 */
4842 		hcd->has_tt = 1;
4843 	} else {
4844 		/* xHCI private pointer was set in xhci_pci_probe for the second
4845 		 * registered roothub.
4846 		 */
4847 		return 0;
4848 	}
4849 
4850 	xhci->cap_regs = hcd->regs;
4851 	xhci->op_regs = hcd->regs +
4852 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4853 	xhci->run_regs = hcd->regs +
4854 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4855 	/* Cache read-only capability registers */
4856 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4857 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4858 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4859 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4860 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4861 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4862 	xhci_print_registers(xhci);
4863 
4864 	xhci->quirks = quirks;
4865 
4866 	get_quirks(dev, xhci);
4867 
4868 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4869 	 * success event after a short transfer. This quirk will ignore such
4870 	 * spurious event.
4871 	 */
4872 	if (xhci->hci_version > 0x96)
4873 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4874 
4875 	/* Make sure the HC is halted. */
4876 	retval = xhci_halt(xhci);
4877 	if (retval)
4878 		goto error;
4879 
4880 	xhci_dbg(xhci, "Resetting HCD\n");
4881 	/* Reset the internal HC memory state and registers. */
4882 	retval = xhci_reset(xhci);
4883 	if (retval)
4884 		goto error;
4885 	xhci_dbg(xhci, "Reset complete\n");
4886 
4887 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4888 	 * if xHC supports 64-bit addressing */
4889 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4890 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4891 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4892 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4893 	}
4894 
4895 	xhci_dbg(xhci, "Calling HCD init\n");
4896 	/* Initialize HCD and host controller data structures. */
4897 	retval = xhci_init(hcd);
4898 	if (retval)
4899 		goto error;
4900 	xhci_dbg(xhci, "Called HCD init\n");
4901 	return 0;
4902 error:
4903 	kfree(xhci);
4904 	return retval;
4905 }
4906 
4907 MODULE_DESCRIPTION(DRIVER_DESC);
4908 MODULE_AUTHOR(DRIVER_AUTHOR);
4909 MODULE_LICENSE("GPL");
4910 
4911 static int __init xhci_hcd_init(void)
4912 {
4913 	int retval;
4914 
4915 	retval = xhci_register_pci();
4916 	if (retval < 0) {
4917 		pr_debug("Problem registering PCI driver.\n");
4918 		return retval;
4919 	}
4920 	retval = xhci_register_plat();
4921 	if (retval < 0) {
4922 		pr_debug("Problem registering platform driver.\n");
4923 		goto unreg_pci;
4924 	}
4925 	/*
4926 	 * Check the compiler generated sizes of structures that must be laid
4927 	 * out in specific ways for hardware access.
4928 	 */
4929 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4930 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4931 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4932 	/* xhci_device_control has eight fields, and also
4933 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4934 	 */
4935 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4936 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4937 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4938 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4939 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4940 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4941 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4942 	return 0;
4943 unreg_pci:
4944 	xhci_unregister_pci();
4945 	return retval;
4946 }
4947 module_init(xhci_hcd_init);
4948 
4949 static void __exit xhci_hcd_cleanup(void)
4950 {
4951 	xhci_unregister_pci();
4952 	xhci_unregister_plat();
4953 }
4954 module_exit(xhci_hcd_cleanup);
4955