1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 #include "xhci-mtk.h" 35 36 #define DRIVER_AUTHOR "Sarah Sharp" 37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 38 39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 40 41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 42 static int link_quirk; 43 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 45 46 static unsigned int quirks; 47 module_param(quirks, uint, S_IRUGO); 48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 49 50 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 51 /* 52 * xhci_handshake - spin reading hc until handshake completes or fails 53 * @ptr: address of hc register to be read 54 * @mask: bits to look at in result of read 55 * @done: value of those bits when handshake succeeds 56 * @usec: timeout in microseconds 57 * 58 * Returns negative errno, or zero on success 59 * 60 * Success happens when the "mask" bits have the specified value (hardware 61 * handshake done). There are two failure modes: "usec" have passed (major 62 * hardware flakeout), or the register reads as all-ones (hardware removed). 63 */ 64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 65 { 66 u32 result; 67 68 do { 69 result = readl(ptr); 70 if (result == ~(u32)0) /* card removed */ 71 return -ENODEV; 72 result &= mask; 73 if (result == done) 74 return 0; 75 udelay(1); 76 usec--; 77 } while (usec > 0); 78 return -ETIMEDOUT; 79 } 80 81 /* 82 * Disable interrupts and begin the xHCI halting process. 83 */ 84 void xhci_quiesce(struct xhci_hcd *xhci) 85 { 86 u32 halted; 87 u32 cmd; 88 u32 mask; 89 90 mask = ~(XHCI_IRQS); 91 halted = readl(&xhci->op_regs->status) & STS_HALT; 92 if (!halted) 93 mask &= ~CMD_RUN; 94 95 cmd = readl(&xhci->op_regs->command); 96 cmd &= mask; 97 writel(cmd, &xhci->op_regs->command); 98 } 99 100 /* 101 * Force HC into halt state. 102 * 103 * Disable any IRQs and clear the run/stop bit. 104 * HC will complete any current and actively pipelined transactions, and 105 * should halt within 16 ms of the run/stop bit being cleared. 106 * Read HC Halted bit in the status register to see when the HC is finished. 107 */ 108 int xhci_halt(struct xhci_hcd *xhci) 109 { 110 int ret; 111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 112 xhci_quiesce(xhci); 113 114 ret = xhci_handshake(&xhci->op_regs->status, 115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 116 if (ret) { 117 xhci_warn(xhci, "Host halt failed, %d\n", ret); 118 return ret; 119 } 120 xhci->xhc_state |= XHCI_STATE_HALTED; 121 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 122 return ret; 123 } 124 125 /* 126 * Set the run bit and wait for the host to be running. 127 */ 128 static int xhci_start(struct xhci_hcd *xhci) 129 { 130 u32 temp; 131 int ret; 132 133 temp = readl(&xhci->op_regs->command); 134 temp |= (CMD_RUN); 135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 136 temp); 137 writel(temp, &xhci->op_regs->command); 138 139 /* 140 * Wait for the HCHalted Status bit to be 0 to indicate the host is 141 * running. 142 */ 143 ret = xhci_handshake(&xhci->op_regs->status, 144 STS_HALT, 0, XHCI_MAX_HALT_USEC); 145 if (ret == -ETIMEDOUT) 146 xhci_err(xhci, "Host took too long to start, " 147 "waited %u microseconds.\n", 148 XHCI_MAX_HALT_USEC); 149 if (!ret) 150 /* clear state flags. Including dying, halted or removing */ 151 xhci->xhc_state = 0; 152 153 return ret; 154 } 155 156 /* 157 * Reset a halted HC. 158 * 159 * This resets pipelines, timers, counters, state machines, etc. 160 * Transactions will be terminated immediately, and operational registers 161 * will be set to their defaults. 162 */ 163 int xhci_reset(struct xhci_hcd *xhci) 164 { 165 u32 command; 166 u32 state; 167 int ret, i; 168 169 state = readl(&xhci->op_regs->status); 170 171 if (state == ~(u32)0) { 172 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 173 return -ENODEV; 174 } 175 176 if ((state & STS_HALT) == 0) { 177 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 178 return 0; 179 } 180 181 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 182 command = readl(&xhci->op_regs->command); 183 command |= CMD_RESET; 184 writel(command, &xhci->op_regs->command); 185 186 /* Existing Intel xHCI controllers require a delay of 1 mS, 187 * after setting the CMD_RESET bit, and before accessing any 188 * HC registers. This allows the HC to complete the 189 * reset operation and be ready for HC register access. 190 * Without this delay, the subsequent HC register access, 191 * may result in a system hang very rarely. 192 */ 193 if (xhci->quirks & XHCI_INTEL_HOST) 194 udelay(1000); 195 196 ret = xhci_handshake(&xhci->op_regs->command, 197 CMD_RESET, 0, 10 * 1000 * 1000); 198 if (ret) 199 return ret; 200 201 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 202 "Wait for controller to be ready for doorbell rings"); 203 /* 204 * xHCI cannot write to any doorbells or operational registers other 205 * than status until the "Controller Not Ready" flag is cleared. 206 */ 207 ret = xhci_handshake(&xhci->op_regs->status, 208 STS_CNR, 0, 10 * 1000 * 1000); 209 210 for (i = 0; i < 2; ++i) { 211 xhci->bus_state[i].port_c_suspend = 0; 212 xhci->bus_state[i].suspended_ports = 0; 213 xhci->bus_state[i].resuming_ports = 0; 214 } 215 216 return ret; 217 } 218 219 #ifdef CONFIG_PCI 220 static int xhci_free_msi(struct xhci_hcd *xhci) 221 { 222 int i; 223 224 if (!xhci->msix_entries) 225 return -EINVAL; 226 227 for (i = 0; i < xhci->msix_count; i++) 228 if (xhci->msix_entries[i].vector) 229 free_irq(xhci->msix_entries[i].vector, 230 xhci_to_hcd(xhci)); 231 return 0; 232 } 233 234 /* 235 * Set up MSI 236 */ 237 static int xhci_setup_msi(struct xhci_hcd *xhci) 238 { 239 int ret; 240 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 241 242 ret = pci_enable_msi(pdev); 243 if (ret) { 244 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 245 "failed to allocate MSI entry"); 246 return ret; 247 } 248 249 ret = request_irq(pdev->irq, xhci_msi_irq, 250 0, "xhci_hcd", xhci_to_hcd(xhci)); 251 if (ret) { 252 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 253 "disable MSI interrupt"); 254 pci_disable_msi(pdev); 255 } 256 257 return ret; 258 } 259 260 /* 261 * Free IRQs 262 * free all IRQs request 263 */ 264 static void xhci_free_irq(struct xhci_hcd *xhci) 265 { 266 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 267 int ret; 268 269 /* return if using legacy interrupt */ 270 if (xhci_to_hcd(xhci)->irq > 0) 271 return; 272 273 ret = xhci_free_msi(xhci); 274 if (!ret) 275 return; 276 if (pdev->irq > 0) 277 free_irq(pdev->irq, xhci_to_hcd(xhci)); 278 279 return; 280 } 281 282 /* 283 * Set up MSI-X 284 */ 285 static int xhci_setup_msix(struct xhci_hcd *xhci) 286 { 287 int i, ret = 0; 288 struct usb_hcd *hcd = xhci_to_hcd(xhci); 289 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 290 291 /* 292 * calculate number of msi-x vectors supported. 293 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 294 * with max number of interrupters based on the xhci HCSPARAMS1. 295 * - num_online_cpus: maximum msi-x vectors per CPUs core. 296 * Add additional 1 vector to ensure always available interrupt. 297 */ 298 xhci->msix_count = min(num_online_cpus() + 1, 299 HCS_MAX_INTRS(xhci->hcs_params1)); 300 301 xhci->msix_entries = 302 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 303 GFP_KERNEL); 304 if (!xhci->msix_entries) 305 return -ENOMEM; 306 307 for (i = 0; i < xhci->msix_count; i++) { 308 xhci->msix_entries[i].entry = i; 309 xhci->msix_entries[i].vector = 0; 310 } 311 312 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count); 313 if (ret) { 314 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 315 "Failed to enable MSI-X"); 316 goto free_entries; 317 } 318 319 for (i = 0; i < xhci->msix_count; i++) { 320 ret = request_irq(xhci->msix_entries[i].vector, 321 xhci_msi_irq, 322 0, "xhci_hcd", xhci_to_hcd(xhci)); 323 if (ret) 324 goto disable_msix; 325 } 326 327 hcd->msix_enabled = 1; 328 return ret; 329 330 disable_msix: 331 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 332 xhci_free_irq(xhci); 333 pci_disable_msix(pdev); 334 free_entries: 335 kfree(xhci->msix_entries); 336 xhci->msix_entries = NULL; 337 return ret; 338 } 339 340 /* Free any IRQs and disable MSI-X */ 341 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 342 { 343 struct usb_hcd *hcd = xhci_to_hcd(xhci); 344 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 345 346 if (xhci->quirks & XHCI_PLAT) 347 return; 348 349 xhci_free_irq(xhci); 350 351 if (xhci->msix_entries) { 352 pci_disable_msix(pdev); 353 kfree(xhci->msix_entries); 354 xhci->msix_entries = NULL; 355 } else { 356 pci_disable_msi(pdev); 357 } 358 359 hcd->msix_enabled = 0; 360 return; 361 } 362 363 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 364 { 365 int i; 366 367 if (xhci->msix_entries) { 368 for (i = 0; i < xhci->msix_count; i++) 369 synchronize_irq(xhci->msix_entries[i].vector); 370 } 371 } 372 373 static int xhci_try_enable_msi(struct usb_hcd *hcd) 374 { 375 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 376 struct pci_dev *pdev; 377 int ret; 378 379 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 380 if (xhci->quirks & XHCI_PLAT) 381 return 0; 382 383 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 384 /* 385 * Some Fresco Logic host controllers advertise MSI, but fail to 386 * generate interrupts. Don't even try to enable MSI. 387 */ 388 if (xhci->quirks & XHCI_BROKEN_MSI) 389 goto legacy_irq; 390 391 /* unregister the legacy interrupt */ 392 if (hcd->irq) 393 free_irq(hcd->irq, hcd); 394 hcd->irq = 0; 395 396 ret = xhci_setup_msix(xhci); 397 if (ret) 398 /* fall back to msi*/ 399 ret = xhci_setup_msi(xhci); 400 401 if (!ret) 402 /* hcd->irq is 0, we have MSI */ 403 return 0; 404 405 if (!pdev->irq) { 406 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 407 return -EINVAL; 408 } 409 410 legacy_irq: 411 if (!strlen(hcd->irq_descr)) 412 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 413 hcd->driver->description, hcd->self.busnum); 414 415 /* fall back to legacy interrupt*/ 416 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 417 hcd->irq_descr, hcd); 418 if (ret) { 419 xhci_err(xhci, "request interrupt %d failed\n", 420 pdev->irq); 421 return ret; 422 } 423 hcd->irq = pdev->irq; 424 return 0; 425 } 426 427 #else 428 429 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 430 { 431 return 0; 432 } 433 434 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 435 { 436 } 437 438 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 439 { 440 } 441 442 #endif 443 444 static void compliance_mode_recovery(unsigned long arg) 445 { 446 struct xhci_hcd *xhci; 447 struct usb_hcd *hcd; 448 u32 temp; 449 int i; 450 451 xhci = (struct xhci_hcd *)arg; 452 453 for (i = 0; i < xhci->num_usb3_ports; i++) { 454 temp = readl(xhci->usb3_ports[i]); 455 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 456 /* 457 * Compliance Mode Detected. Letting USB Core 458 * handle the Warm Reset 459 */ 460 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 461 "Compliance mode detected->port %d", 462 i + 1); 463 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 464 "Attempting compliance mode recovery"); 465 hcd = xhci->shared_hcd; 466 467 if (hcd->state == HC_STATE_SUSPENDED) 468 usb_hcd_resume_root_hub(hcd); 469 470 usb_hcd_poll_rh_status(hcd); 471 } 472 } 473 474 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 475 mod_timer(&xhci->comp_mode_recovery_timer, 476 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 477 } 478 479 /* 480 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 481 * that causes ports behind that hardware to enter compliance mode sometimes. 482 * The quirk creates a timer that polls every 2 seconds the link state of 483 * each host controller's port and recovers it by issuing a Warm reset 484 * if Compliance mode is detected, otherwise the port will become "dead" (no 485 * device connections or disconnections will be detected anymore). Becasue no 486 * status event is generated when entering compliance mode (per xhci spec), 487 * this quirk is needed on systems that have the failing hardware installed. 488 */ 489 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 490 { 491 xhci->port_status_u0 = 0; 492 setup_timer(&xhci->comp_mode_recovery_timer, 493 compliance_mode_recovery, (unsigned long)xhci); 494 xhci->comp_mode_recovery_timer.expires = jiffies + 495 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 496 497 add_timer(&xhci->comp_mode_recovery_timer); 498 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 499 "Compliance mode recovery timer initialized"); 500 } 501 502 /* 503 * This function identifies the systems that have installed the SN65LVPE502CP 504 * USB3.0 re-driver and that need the Compliance Mode Quirk. 505 * Systems: 506 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 507 */ 508 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 509 { 510 const char *dmi_product_name, *dmi_sys_vendor; 511 512 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 513 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 514 if (!dmi_product_name || !dmi_sys_vendor) 515 return false; 516 517 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 518 return false; 519 520 if (strstr(dmi_product_name, "Z420") || 521 strstr(dmi_product_name, "Z620") || 522 strstr(dmi_product_name, "Z820") || 523 strstr(dmi_product_name, "Z1 Workstation")) 524 return true; 525 526 return false; 527 } 528 529 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 530 { 531 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 532 } 533 534 535 /* 536 * Initialize memory for HCD and xHC (one-time init). 537 * 538 * Program the PAGESIZE register, initialize the device context array, create 539 * device contexts (?), set up a command ring segment (or two?), create event 540 * ring (one for now). 541 */ 542 int xhci_init(struct usb_hcd *hcd) 543 { 544 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 545 int retval = 0; 546 547 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 548 spin_lock_init(&xhci->lock); 549 if (xhci->hci_version == 0x95 && link_quirk) { 550 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 551 "QUIRK: Not clearing Link TRB chain bits."); 552 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 553 } else { 554 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 555 "xHCI doesn't need link TRB QUIRK"); 556 } 557 retval = xhci_mem_init(xhci, GFP_KERNEL); 558 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 559 560 /* Initializing Compliance Mode Recovery Data If Needed */ 561 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 562 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 563 compliance_mode_recovery_timer_init(xhci); 564 } 565 566 return retval; 567 } 568 569 /*-------------------------------------------------------------------------*/ 570 571 572 static int xhci_run_finished(struct xhci_hcd *xhci) 573 { 574 if (xhci_start(xhci)) { 575 xhci_halt(xhci); 576 return -ENODEV; 577 } 578 xhci->shared_hcd->state = HC_STATE_RUNNING; 579 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 580 581 if (xhci->quirks & XHCI_NEC_HOST) 582 xhci_ring_cmd_db(xhci); 583 584 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 585 "Finished xhci_run for USB3 roothub"); 586 return 0; 587 } 588 589 /* 590 * Start the HC after it was halted. 591 * 592 * This function is called by the USB core when the HC driver is added. 593 * Its opposite is xhci_stop(). 594 * 595 * xhci_init() must be called once before this function can be called. 596 * Reset the HC, enable device slot contexts, program DCBAAP, and 597 * set command ring pointer and event ring pointer. 598 * 599 * Setup MSI-X vectors and enable interrupts. 600 */ 601 int xhci_run(struct usb_hcd *hcd) 602 { 603 u32 temp; 604 u64 temp_64; 605 int ret; 606 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 607 608 /* Start the xHCI host controller running only after the USB 2.0 roothub 609 * is setup. 610 */ 611 612 hcd->uses_new_polling = 1; 613 if (!usb_hcd_is_primary_hcd(hcd)) 614 return xhci_run_finished(xhci); 615 616 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 617 618 ret = xhci_try_enable_msi(hcd); 619 if (ret) 620 return ret; 621 622 xhci_dbg(xhci, "Command ring memory map follows:\n"); 623 xhci_debug_ring(xhci, xhci->cmd_ring); 624 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 625 xhci_dbg_cmd_ptrs(xhci); 626 627 xhci_dbg(xhci, "ERST memory map follows:\n"); 628 xhci_dbg_erst(xhci, &xhci->erst); 629 xhci_dbg(xhci, "Event ring:\n"); 630 xhci_debug_ring(xhci, xhci->event_ring); 631 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 632 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 633 temp_64 &= ~ERST_PTR_MASK; 634 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 635 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 636 637 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 638 "// Set the interrupt modulation register"); 639 temp = readl(&xhci->ir_set->irq_control); 640 temp &= ~ER_IRQ_INTERVAL_MASK; 641 /* 642 * the increment interval is 8 times as much as that defined 643 * in xHCI spec on MTK's controller 644 */ 645 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160); 646 writel(temp, &xhci->ir_set->irq_control); 647 648 /* Set the HCD state before we enable the irqs */ 649 temp = readl(&xhci->op_regs->command); 650 temp |= (CMD_EIE); 651 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 652 "// Enable interrupts, cmd = 0x%x.", temp); 653 writel(temp, &xhci->op_regs->command); 654 655 temp = readl(&xhci->ir_set->irq_pending); 656 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 657 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 658 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 659 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 660 xhci_print_ir_set(xhci, 0); 661 662 if (xhci->quirks & XHCI_NEC_HOST) { 663 struct xhci_command *command; 664 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 665 if (!command) 666 return -ENOMEM; 667 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 668 TRB_TYPE(TRB_NEC_GET_FW)); 669 } 670 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 671 "Finished xhci_run for USB2 roothub"); 672 return 0; 673 } 674 EXPORT_SYMBOL_GPL(xhci_run); 675 676 /* 677 * Stop xHCI driver. 678 * 679 * This function is called by the USB core when the HC driver is removed. 680 * Its opposite is xhci_run(). 681 * 682 * Disable device contexts, disable IRQs, and quiesce the HC. 683 * Reset the HC, finish any completed transactions, and cleanup memory. 684 */ 685 void xhci_stop(struct usb_hcd *hcd) 686 { 687 u32 temp; 688 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 689 690 mutex_lock(&xhci->mutex); 691 692 if (!(xhci->xhc_state & XHCI_STATE_HALTED)) { 693 spin_lock_irq(&xhci->lock); 694 695 xhci->xhc_state |= XHCI_STATE_HALTED; 696 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 697 xhci_halt(xhci); 698 xhci_reset(xhci); 699 spin_unlock_irq(&xhci->lock); 700 } 701 702 if (!usb_hcd_is_primary_hcd(hcd)) { 703 mutex_unlock(&xhci->mutex); 704 return; 705 } 706 707 xhci_cleanup_msix(xhci); 708 709 /* Deleting Compliance Mode Recovery Timer */ 710 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 711 (!(xhci_all_ports_seen_u0(xhci)))) { 712 del_timer_sync(&xhci->comp_mode_recovery_timer); 713 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 714 "%s: compliance mode recovery timer deleted", 715 __func__); 716 } 717 718 if (xhci->quirks & XHCI_AMD_PLL_FIX) 719 usb_amd_dev_put(); 720 721 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 722 "// Disabling event ring interrupts"); 723 temp = readl(&xhci->op_regs->status); 724 writel(temp & ~STS_EINT, &xhci->op_regs->status); 725 temp = readl(&xhci->ir_set->irq_pending); 726 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 727 xhci_print_ir_set(xhci, 0); 728 729 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 730 xhci_mem_cleanup(xhci); 731 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 732 "xhci_stop completed - status = %x", 733 readl(&xhci->op_regs->status)); 734 mutex_unlock(&xhci->mutex); 735 } 736 737 /* 738 * Shutdown HC (not bus-specific) 739 * 740 * This is called when the machine is rebooting or halting. We assume that the 741 * machine will be powered off, and the HC's internal state will be reset. 742 * Don't bother to free memory. 743 * 744 * This will only ever be called with the main usb_hcd (the USB3 roothub). 745 */ 746 void xhci_shutdown(struct usb_hcd *hcd) 747 { 748 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 749 750 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 751 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 752 753 spin_lock_irq(&xhci->lock); 754 xhci_halt(xhci); 755 /* Workaround for spurious wakeups at shutdown with HSW */ 756 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 757 xhci_reset(xhci); 758 spin_unlock_irq(&xhci->lock); 759 760 xhci_cleanup_msix(xhci); 761 762 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 763 "xhci_shutdown completed - status = %x", 764 readl(&xhci->op_regs->status)); 765 766 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 767 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 768 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 769 } 770 771 #ifdef CONFIG_PM 772 static void xhci_save_registers(struct xhci_hcd *xhci) 773 { 774 xhci->s3.command = readl(&xhci->op_regs->command); 775 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 776 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 777 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 778 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 779 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 780 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 781 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 782 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 783 } 784 785 static void xhci_restore_registers(struct xhci_hcd *xhci) 786 { 787 writel(xhci->s3.command, &xhci->op_regs->command); 788 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 789 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 790 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 791 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 792 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 793 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 794 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 795 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 796 } 797 798 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 799 { 800 u64 val_64; 801 802 /* step 2: initialize command ring buffer */ 803 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 804 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 805 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 806 xhci->cmd_ring->dequeue) & 807 (u64) ~CMD_RING_RSVD_BITS) | 808 xhci->cmd_ring->cycle_state; 809 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 810 "// Setting command ring address to 0x%llx", 811 (long unsigned long) val_64); 812 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 813 } 814 815 /* 816 * The whole command ring must be cleared to zero when we suspend the host. 817 * 818 * The host doesn't save the command ring pointer in the suspend well, so we 819 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 820 * aligned, because of the reserved bits in the command ring dequeue pointer 821 * register. Therefore, we can't just set the dequeue pointer back in the 822 * middle of the ring (TRBs are 16-byte aligned). 823 */ 824 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 825 { 826 struct xhci_ring *ring; 827 struct xhci_segment *seg; 828 829 ring = xhci->cmd_ring; 830 seg = ring->deq_seg; 831 do { 832 memset(seg->trbs, 0, 833 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 834 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 835 cpu_to_le32(~TRB_CYCLE); 836 seg = seg->next; 837 } while (seg != ring->deq_seg); 838 839 /* Reset the software enqueue and dequeue pointers */ 840 ring->deq_seg = ring->first_seg; 841 ring->dequeue = ring->first_seg->trbs; 842 ring->enq_seg = ring->deq_seg; 843 ring->enqueue = ring->dequeue; 844 845 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 846 /* 847 * Ring is now zeroed, so the HW should look for change of ownership 848 * when the cycle bit is set to 1. 849 */ 850 ring->cycle_state = 1; 851 852 /* 853 * Reset the hardware dequeue pointer. 854 * Yes, this will need to be re-written after resume, but we're paranoid 855 * and want to make sure the hardware doesn't access bogus memory 856 * because, say, the BIOS or an SMI started the host without changing 857 * the command ring pointers. 858 */ 859 xhci_set_cmd_ring_deq(xhci); 860 } 861 862 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 863 { 864 int port_index; 865 __le32 __iomem **port_array; 866 unsigned long flags; 867 u32 t1, t2; 868 869 spin_lock_irqsave(&xhci->lock, flags); 870 871 /* disble usb3 ports Wake bits*/ 872 port_index = xhci->num_usb3_ports; 873 port_array = xhci->usb3_ports; 874 while (port_index--) { 875 t1 = readl(port_array[port_index]); 876 t1 = xhci_port_state_to_neutral(t1); 877 t2 = t1 & ~PORT_WAKE_BITS; 878 if (t1 != t2) 879 writel(t2, port_array[port_index]); 880 } 881 882 /* disble usb2 ports Wake bits*/ 883 port_index = xhci->num_usb2_ports; 884 port_array = xhci->usb2_ports; 885 while (port_index--) { 886 t1 = readl(port_array[port_index]); 887 t1 = xhci_port_state_to_neutral(t1); 888 t2 = t1 & ~PORT_WAKE_BITS; 889 if (t1 != t2) 890 writel(t2, port_array[port_index]); 891 } 892 893 spin_unlock_irqrestore(&xhci->lock, flags); 894 } 895 896 /* 897 * Stop HC (not bus-specific) 898 * 899 * This is called when the machine transition into S3/S4 mode. 900 * 901 */ 902 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 903 { 904 int rc = 0; 905 unsigned int delay = XHCI_MAX_HALT_USEC; 906 struct usb_hcd *hcd = xhci_to_hcd(xhci); 907 u32 command; 908 909 if (!hcd->state) 910 return 0; 911 912 if (hcd->state != HC_STATE_SUSPENDED || 913 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 914 return -EINVAL; 915 916 /* Clear root port wake on bits if wakeup not allowed. */ 917 if (!do_wakeup) 918 xhci_disable_port_wake_on_bits(xhci); 919 920 /* Don't poll the roothubs on bus suspend. */ 921 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 922 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 923 del_timer_sync(&hcd->rh_timer); 924 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 925 del_timer_sync(&xhci->shared_hcd->rh_timer); 926 927 spin_lock_irq(&xhci->lock); 928 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 929 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 930 /* step 1: stop endpoint */ 931 /* skipped assuming that port suspend has done */ 932 933 /* step 2: clear Run/Stop bit */ 934 command = readl(&xhci->op_regs->command); 935 command &= ~CMD_RUN; 936 writel(command, &xhci->op_regs->command); 937 938 /* Some chips from Fresco Logic need an extraordinary delay */ 939 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 940 941 if (xhci_handshake(&xhci->op_regs->status, 942 STS_HALT, STS_HALT, delay)) { 943 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 944 spin_unlock_irq(&xhci->lock); 945 return -ETIMEDOUT; 946 } 947 xhci_clear_command_ring(xhci); 948 949 /* step 3: save registers */ 950 xhci_save_registers(xhci); 951 952 /* step 4: set CSS flag */ 953 command = readl(&xhci->op_regs->command); 954 command |= CMD_CSS; 955 writel(command, &xhci->op_regs->command); 956 if (xhci_handshake(&xhci->op_regs->status, 957 STS_SAVE, 0, 10 * 1000)) { 958 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 959 spin_unlock_irq(&xhci->lock); 960 return -ETIMEDOUT; 961 } 962 spin_unlock_irq(&xhci->lock); 963 964 /* 965 * Deleting Compliance Mode Recovery Timer because the xHCI Host 966 * is about to be suspended. 967 */ 968 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 969 (!(xhci_all_ports_seen_u0(xhci)))) { 970 del_timer_sync(&xhci->comp_mode_recovery_timer); 971 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 972 "%s: compliance mode recovery timer deleted", 973 __func__); 974 } 975 976 /* step 5: remove core well power */ 977 /* synchronize irq when using MSI-X */ 978 xhci_msix_sync_irqs(xhci); 979 980 return rc; 981 } 982 EXPORT_SYMBOL_GPL(xhci_suspend); 983 984 /* 985 * start xHC (not bus-specific) 986 * 987 * This is called when the machine transition from S3/S4 mode. 988 * 989 */ 990 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 991 { 992 u32 command, temp = 0, status; 993 struct usb_hcd *hcd = xhci_to_hcd(xhci); 994 struct usb_hcd *secondary_hcd; 995 int retval = 0; 996 bool comp_timer_running = false; 997 998 if (!hcd->state) 999 return 0; 1000 1001 /* Wait a bit if either of the roothubs need to settle from the 1002 * transition into bus suspend. 1003 */ 1004 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 1005 time_before(jiffies, 1006 xhci->bus_state[1].next_statechange)) 1007 msleep(100); 1008 1009 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1010 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1011 1012 spin_lock_irq(&xhci->lock); 1013 if (xhci->quirks & XHCI_RESET_ON_RESUME) 1014 hibernated = true; 1015 1016 if (!hibernated) { 1017 /* step 1: restore register */ 1018 xhci_restore_registers(xhci); 1019 /* step 2: initialize command ring buffer */ 1020 xhci_set_cmd_ring_deq(xhci); 1021 /* step 3: restore state and start state*/ 1022 /* step 3: set CRS flag */ 1023 command = readl(&xhci->op_regs->command); 1024 command |= CMD_CRS; 1025 writel(command, &xhci->op_regs->command); 1026 if (xhci_handshake(&xhci->op_regs->status, 1027 STS_RESTORE, 0, 10 * 1000)) { 1028 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1029 spin_unlock_irq(&xhci->lock); 1030 return -ETIMEDOUT; 1031 } 1032 temp = readl(&xhci->op_regs->status); 1033 } 1034 1035 /* If restore operation fails, re-initialize the HC during resume */ 1036 if ((temp & STS_SRE) || hibernated) { 1037 1038 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1039 !(xhci_all_ports_seen_u0(xhci))) { 1040 del_timer_sync(&xhci->comp_mode_recovery_timer); 1041 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1042 "Compliance Mode Recovery Timer deleted!"); 1043 } 1044 1045 /* Let the USB core know _both_ roothubs lost power. */ 1046 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1047 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1048 1049 xhci_dbg(xhci, "Stop HCD\n"); 1050 xhci_halt(xhci); 1051 xhci_reset(xhci); 1052 spin_unlock_irq(&xhci->lock); 1053 xhci_cleanup_msix(xhci); 1054 1055 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1056 temp = readl(&xhci->op_regs->status); 1057 writel(temp & ~STS_EINT, &xhci->op_regs->status); 1058 temp = readl(&xhci->ir_set->irq_pending); 1059 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1060 xhci_print_ir_set(xhci, 0); 1061 1062 xhci_dbg(xhci, "cleaning up memory\n"); 1063 xhci_mem_cleanup(xhci); 1064 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1065 readl(&xhci->op_regs->status)); 1066 1067 /* USB core calls the PCI reinit and start functions twice: 1068 * first with the primary HCD, and then with the secondary HCD. 1069 * If we don't do the same, the host will never be started. 1070 */ 1071 if (!usb_hcd_is_primary_hcd(hcd)) 1072 secondary_hcd = hcd; 1073 else 1074 secondary_hcd = xhci->shared_hcd; 1075 1076 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1077 retval = xhci_init(hcd->primary_hcd); 1078 if (retval) 1079 return retval; 1080 comp_timer_running = true; 1081 1082 xhci_dbg(xhci, "Start the primary HCD\n"); 1083 retval = xhci_run(hcd->primary_hcd); 1084 if (!retval) { 1085 xhci_dbg(xhci, "Start the secondary HCD\n"); 1086 retval = xhci_run(secondary_hcd); 1087 } 1088 hcd->state = HC_STATE_SUSPENDED; 1089 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1090 goto done; 1091 } 1092 1093 /* step 4: set Run/Stop bit */ 1094 command = readl(&xhci->op_regs->command); 1095 command |= CMD_RUN; 1096 writel(command, &xhci->op_regs->command); 1097 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1098 0, 250 * 1000); 1099 1100 /* step 5: walk topology and initialize portsc, 1101 * portpmsc and portli 1102 */ 1103 /* this is done in bus_resume */ 1104 1105 /* step 6: restart each of the previously 1106 * Running endpoints by ringing their doorbells 1107 */ 1108 1109 spin_unlock_irq(&xhci->lock); 1110 1111 done: 1112 if (retval == 0) { 1113 /* Resume root hubs only when have pending events. */ 1114 status = readl(&xhci->op_regs->status); 1115 if (status & STS_EINT) { 1116 usb_hcd_resume_root_hub(xhci->shared_hcd); 1117 usb_hcd_resume_root_hub(hcd); 1118 } 1119 } 1120 1121 /* 1122 * If system is subject to the Quirk, Compliance Mode Timer needs to 1123 * be re-initialized Always after a system resume. Ports are subject 1124 * to suffer the Compliance Mode issue again. It doesn't matter if 1125 * ports have entered previously to U0 before system's suspension. 1126 */ 1127 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1128 compliance_mode_recovery_timer_init(xhci); 1129 1130 /* Re-enable port polling. */ 1131 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1132 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1133 usb_hcd_poll_rh_status(xhci->shared_hcd); 1134 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1135 usb_hcd_poll_rh_status(hcd); 1136 1137 return retval; 1138 } 1139 EXPORT_SYMBOL_GPL(xhci_resume); 1140 #endif /* CONFIG_PM */ 1141 1142 /*-------------------------------------------------------------------------*/ 1143 1144 /** 1145 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1146 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1147 * value to right shift 1 for the bitmask. 1148 * 1149 * Index = (epnum * 2) + direction - 1, 1150 * where direction = 0 for OUT, 1 for IN. 1151 * For control endpoints, the IN index is used (OUT index is unused), so 1152 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1153 */ 1154 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1155 { 1156 unsigned int index; 1157 if (usb_endpoint_xfer_control(desc)) 1158 index = (unsigned int) (usb_endpoint_num(desc)*2); 1159 else 1160 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1161 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1162 return index; 1163 } 1164 1165 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1166 * address from the XHCI endpoint index. 1167 */ 1168 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1169 { 1170 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1171 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1172 return direction | number; 1173 } 1174 1175 /* Find the flag for this endpoint (for use in the control context). Use the 1176 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1177 * bit 1, etc. 1178 */ 1179 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1180 { 1181 return 1 << (xhci_get_endpoint_index(desc) + 1); 1182 } 1183 1184 /* Find the flag for this endpoint (for use in the control context). Use the 1185 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1186 * bit 1, etc. 1187 */ 1188 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1189 { 1190 return 1 << (ep_index + 1); 1191 } 1192 1193 /* Compute the last valid endpoint context index. Basically, this is the 1194 * endpoint index plus one. For slot contexts with more than valid endpoint, 1195 * we find the most significant bit set in the added contexts flags. 1196 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1197 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1198 */ 1199 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1200 { 1201 return fls(added_ctxs) - 1; 1202 } 1203 1204 /* Returns 1 if the arguments are OK; 1205 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1206 */ 1207 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1208 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1209 const char *func) { 1210 struct xhci_hcd *xhci; 1211 struct xhci_virt_device *virt_dev; 1212 1213 if (!hcd || (check_ep && !ep) || !udev) { 1214 pr_debug("xHCI %s called with invalid args\n", func); 1215 return -EINVAL; 1216 } 1217 if (!udev->parent) { 1218 pr_debug("xHCI %s called for root hub\n", func); 1219 return 0; 1220 } 1221 1222 xhci = hcd_to_xhci(hcd); 1223 if (check_virt_dev) { 1224 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1225 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1226 func); 1227 return -EINVAL; 1228 } 1229 1230 virt_dev = xhci->devs[udev->slot_id]; 1231 if (virt_dev->udev != udev) { 1232 xhci_dbg(xhci, "xHCI %s called with udev and " 1233 "virt_dev does not match\n", func); 1234 return -EINVAL; 1235 } 1236 } 1237 1238 if (xhci->xhc_state & XHCI_STATE_HALTED) 1239 return -ENODEV; 1240 1241 return 1; 1242 } 1243 1244 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1245 struct usb_device *udev, struct xhci_command *command, 1246 bool ctx_change, bool must_succeed); 1247 1248 /* 1249 * Full speed devices may have a max packet size greater than 8 bytes, but the 1250 * USB core doesn't know that until it reads the first 8 bytes of the 1251 * descriptor. If the usb_device's max packet size changes after that point, 1252 * we need to issue an evaluate context command and wait on it. 1253 */ 1254 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1255 unsigned int ep_index, struct urb *urb) 1256 { 1257 struct xhci_container_ctx *out_ctx; 1258 struct xhci_input_control_ctx *ctrl_ctx; 1259 struct xhci_ep_ctx *ep_ctx; 1260 struct xhci_command *command; 1261 int max_packet_size; 1262 int hw_max_packet_size; 1263 int ret = 0; 1264 1265 out_ctx = xhci->devs[slot_id]->out_ctx; 1266 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1267 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1268 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1269 if (hw_max_packet_size != max_packet_size) { 1270 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1271 "Max Packet Size for ep 0 changed."); 1272 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1273 "Max packet size in usb_device = %d", 1274 max_packet_size); 1275 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1276 "Max packet size in xHCI HW = %d", 1277 hw_max_packet_size); 1278 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1279 "Issuing evaluate context command."); 1280 1281 /* Set up the input context flags for the command */ 1282 /* FIXME: This won't work if a non-default control endpoint 1283 * changes max packet sizes. 1284 */ 1285 1286 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1287 if (!command) 1288 return -ENOMEM; 1289 1290 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1291 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1292 if (!ctrl_ctx) { 1293 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1294 __func__); 1295 ret = -ENOMEM; 1296 goto command_cleanup; 1297 } 1298 /* Set up the modified control endpoint 0 */ 1299 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1300 xhci->devs[slot_id]->out_ctx, ep_index); 1301 1302 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1303 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1304 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1305 1306 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1307 ctrl_ctx->drop_flags = 0; 1308 1309 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1310 xhci_dbg_ctx(xhci, command->in_ctx, ep_index); 1311 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1312 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1313 1314 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1315 true, false); 1316 1317 /* Clean up the input context for later use by bandwidth 1318 * functions. 1319 */ 1320 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1321 command_cleanup: 1322 kfree(command->completion); 1323 kfree(command); 1324 } 1325 return ret; 1326 } 1327 1328 /* 1329 * non-error returns are a promise to giveback() the urb later 1330 * we drop ownership so next owner (or urb unlink) can get it 1331 */ 1332 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1333 { 1334 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1335 struct xhci_td *buffer; 1336 unsigned long flags; 1337 int ret = 0; 1338 unsigned int slot_id, ep_index; 1339 struct urb_priv *urb_priv; 1340 int size, i; 1341 1342 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1343 true, true, __func__) <= 0) 1344 return -EINVAL; 1345 1346 slot_id = urb->dev->slot_id; 1347 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1348 1349 if (!HCD_HW_ACCESSIBLE(hcd)) { 1350 if (!in_interrupt()) 1351 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1352 ret = -ESHUTDOWN; 1353 goto exit; 1354 } 1355 1356 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1357 size = urb->number_of_packets; 1358 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1359 urb->transfer_buffer_length > 0 && 1360 urb->transfer_flags & URB_ZERO_PACKET && 1361 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1362 size = 2; 1363 else 1364 size = 1; 1365 1366 urb_priv = kzalloc(sizeof(struct urb_priv) + 1367 size * sizeof(struct xhci_td *), mem_flags); 1368 if (!urb_priv) 1369 return -ENOMEM; 1370 1371 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1372 if (!buffer) { 1373 kfree(urb_priv); 1374 return -ENOMEM; 1375 } 1376 1377 for (i = 0; i < size; i++) { 1378 urb_priv->td[i] = buffer; 1379 buffer++; 1380 } 1381 1382 urb_priv->length = size; 1383 urb_priv->td_cnt = 0; 1384 urb->hcpriv = urb_priv; 1385 1386 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1387 /* Check to see if the max packet size for the default control 1388 * endpoint changed during FS device enumeration 1389 */ 1390 if (urb->dev->speed == USB_SPEED_FULL) { 1391 ret = xhci_check_maxpacket(xhci, slot_id, 1392 ep_index, urb); 1393 if (ret < 0) { 1394 xhci_urb_free_priv(urb_priv); 1395 urb->hcpriv = NULL; 1396 return ret; 1397 } 1398 } 1399 1400 /* We have a spinlock and interrupts disabled, so we must pass 1401 * atomic context to this function, which may allocate memory. 1402 */ 1403 spin_lock_irqsave(&xhci->lock, flags); 1404 if (xhci->xhc_state & XHCI_STATE_DYING) 1405 goto dying; 1406 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1407 slot_id, ep_index); 1408 if (ret) 1409 goto free_priv; 1410 spin_unlock_irqrestore(&xhci->lock, flags); 1411 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1412 spin_lock_irqsave(&xhci->lock, flags); 1413 if (xhci->xhc_state & XHCI_STATE_DYING) 1414 goto dying; 1415 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1416 EP_GETTING_STREAMS) { 1417 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1418 "is transitioning to using streams.\n"); 1419 ret = -EINVAL; 1420 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1421 EP_GETTING_NO_STREAMS) { 1422 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1423 "is transitioning to " 1424 "not having streams.\n"); 1425 ret = -EINVAL; 1426 } else { 1427 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1428 slot_id, ep_index); 1429 } 1430 if (ret) 1431 goto free_priv; 1432 spin_unlock_irqrestore(&xhci->lock, flags); 1433 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1434 spin_lock_irqsave(&xhci->lock, flags); 1435 if (xhci->xhc_state & XHCI_STATE_DYING) 1436 goto dying; 1437 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1438 slot_id, ep_index); 1439 if (ret) 1440 goto free_priv; 1441 spin_unlock_irqrestore(&xhci->lock, flags); 1442 } else { 1443 spin_lock_irqsave(&xhci->lock, flags); 1444 if (xhci->xhc_state & XHCI_STATE_DYING) 1445 goto dying; 1446 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1447 slot_id, ep_index); 1448 if (ret) 1449 goto free_priv; 1450 spin_unlock_irqrestore(&xhci->lock, flags); 1451 } 1452 exit: 1453 return ret; 1454 dying: 1455 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1456 "non-responsive xHCI host.\n", 1457 urb->ep->desc.bEndpointAddress, urb); 1458 ret = -ESHUTDOWN; 1459 free_priv: 1460 xhci_urb_free_priv(urb_priv); 1461 urb->hcpriv = NULL; 1462 spin_unlock_irqrestore(&xhci->lock, flags); 1463 return ret; 1464 } 1465 1466 /* 1467 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1468 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1469 * should pick up where it left off in the TD, unless a Set Transfer Ring 1470 * Dequeue Pointer is issued. 1471 * 1472 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1473 * the ring. Since the ring is a contiguous structure, they can't be physically 1474 * removed. Instead, there are two options: 1475 * 1476 * 1) If the HC is in the middle of processing the URB to be canceled, we 1477 * simply move the ring's dequeue pointer past those TRBs using the Set 1478 * Transfer Ring Dequeue Pointer command. This will be the common case, 1479 * when drivers timeout on the last submitted URB and attempt to cancel. 1480 * 1481 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1482 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1483 * HC will need to invalidate the any TRBs it has cached after the stop 1484 * endpoint command, as noted in the xHCI 0.95 errata. 1485 * 1486 * 3) The TD may have completed by the time the Stop Endpoint Command 1487 * completes, so software needs to handle that case too. 1488 * 1489 * This function should protect against the TD enqueueing code ringing the 1490 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1491 * It also needs to account for multiple cancellations on happening at the same 1492 * time for the same endpoint. 1493 * 1494 * Note that this function can be called in any context, or so says 1495 * usb_hcd_unlink_urb() 1496 */ 1497 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1498 { 1499 unsigned long flags; 1500 int ret, i; 1501 u32 temp; 1502 struct xhci_hcd *xhci; 1503 struct urb_priv *urb_priv; 1504 struct xhci_td *td; 1505 unsigned int ep_index; 1506 struct xhci_ring *ep_ring; 1507 struct xhci_virt_ep *ep; 1508 struct xhci_command *command; 1509 1510 xhci = hcd_to_xhci(hcd); 1511 spin_lock_irqsave(&xhci->lock, flags); 1512 /* Make sure the URB hasn't completed or been unlinked already */ 1513 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1514 if (ret || !urb->hcpriv) 1515 goto done; 1516 temp = readl(&xhci->op_regs->status); 1517 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1518 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1519 "HW died, freeing TD."); 1520 urb_priv = urb->hcpriv; 1521 for (i = urb_priv->td_cnt; 1522 i < urb_priv->length && xhci->devs[urb->dev->slot_id]; 1523 i++) { 1524 td = urb_priv->td[i]; 1525 if (!list_empty(&td->td_list)) 1526 list_del_init(&td->td_list); 1527 if (!list_empty(&td->cancelled_td_list)) 1528 list_del_init(&td->cancelled_td_list); 1529 } 1530 1531 usb_hcd_unlink_urb_from_ep(hcd, urb); 1532 spin_unlock_irqrestore(&xhci->lock, flags); 1533 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1534 xhci_urb_free_priv(urb_priv); 1535 return ret; 1536 } 1537 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1538 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1539 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1540 "Ep 0x%x: URB %p to be canceled on " 1541 "non-responsive xHCI host.", 1542 urb->ep->desc.bEndpointAddress, urb); 1543 /* Let the stop endpoint command watchdog timer (which set this 1544 * state) finish cleaning up the endpoint TD lists. We must 1545 * have caught it in the middle of dropping a lock and giving 1546 * back an URB. 1547 */ 1548 goto done; 1549 } 1550 1551 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1552 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1553 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1554 if (!ep_ring) { 1555 ret = -EINVAL; 1556 goto done; 1557 } 1558 1559 urb_priv = urb->hcpriv; 1560 i = urb_priv->td_cnt; 1561 if (i < urb_priv->length) 1562 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1563 "Cancel URB %p, dev %s, ep 0x%x, " 1564 "starting at offset 0x%llx", 1565 urb, urb->dev->devpath, 1566 urb->ep->desc.bEndpointAddress, 1567 (unsigned long long) xhci_trb_virt_to_dma( 1568 urb_priv->td[i]->start_seg, 1569 urb_priv->td[i]->first_trb)); 1570 1571 for (; i < urb_priv->length; i++) { 1572 td = urb_priv->td[i]; 1573 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1574 } 1575 1576 /* Queue a stop endpoint command, but only if this is 1577 * the first cancellation to be handled. 1578 */ 1579 if (!(ep->ep_state & EP_HALT_PENDING)) { 1580 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1581 if (!command) { 1582 ret = -ENOMEM; 1583 goto done; 1584 } 1585 ep->ep_state |= EP_HALT_PENDING; 1586 ep->stop_cmds_pending++; 1587 ep->stop_cmd_timer.expires = jiffies + 1588 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1589 add_timer(&ep->stop_cmd_timer); 1590 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1591 ep_index, 0); 1592 xhci_ring_cmd_db(xhci); 1593 } 1594 done: 1595 spin_unlock_irqrestore(&xhci->lock, flags); 1596 return ret; 1597 } 1598 1599 /* Drop an endpoint from a new bandwidth configuration for this device. 1600 * Only one call to this function is allowed per endpoint before 1601 * check_bandwidth() or reset_bandwidth() must be called. 1602 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1603 * add the endpoint to the schedule with possibly new parameters denoted by a 1604 * different endpoint descriptor in usb_host_endpoint. 1605 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1606 * not allowed. 1607 * 1608 * The USB core will not allow URBs to be queued to an endpoint that is being 1609 * disabled, so there's no need for mutual exclusion to protect 1610 * the xhci->devs[slot_id] structure. 1611 */ 1612 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1613 struct usb_host_endpoint *ep) 1614 { 1615 struct xhci_hcd *xhci; 1616 struct xhci_container_ctx *in_ctx, *out_ctx; 1617 struct xhci_input_control_ctx *ctrl_ctx; 1618 unsigned int ep_index; 1619 struct xhci_ep_ctx *ep_ctx; 1620 u32 drop_flag; 1621 u32 new_add_flags, new_drop_flags; 1622 int ret; 1623 1624 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1625 if (ret <= 0) 1626 return ret; 1627 xhci = hcd_to_xhci(hcd); 1628 if (xhci->xhc_state & XHCI_STATE_DYING) 1629 return -ENODEV; 1630 1631 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1632 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1633 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1634 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1635 __func__, drop_flag); 1636 return 0; 1637 } 1638 1639 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1640 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1641 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1642 if (!ctrl_ctx) { 1643 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1644 __func__); 1645 return 0; 1646 } 1647 1648 ep_index = xhci_get_endpoint_index(&ep->desc); 1649 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1650 /* If the HC already knows the endpoint is disabled, 1651 * or the HCD has noted it is disabled, ignore this request 1652 */ 1653 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1654 le32_to_cpu(ctrl_ctx->drop_flags) & 1655 xhci_get_endpoint_flag(&ep->desc)) { 1656 /* Do not warn when called after a usb_device_reset */ 1657 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1658 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1659 __func__, ep); 1660 return 0; 1661 } 1662 1663 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1664 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1665 1666 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1667 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1668 1669 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1670 1671 if (xhci->quirks & XHCI_MTK_HOST) 1672 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1673 1674 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1675 (unsigned int) ep->desc.bEndpointAddress, 1676 udev->slot_id, 1677 (unsigned int) new_drop_flags, 1678 (unsigned int) new_add_flags); 1679 return 0; 1680 } 1681 1682 /* Add an endpoint to a new possible bandwidth configuration for this device. 1683 * Only one call to this function is allowed per endpoint before 1684 * check_bandwidth() or reset_bandwidth() must be called. 1685 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1686 * add the endpoint to the schedule with possibly new parameters denoted by a 1687 * different endpoint descriptor in usb_host_endpoint. 1688 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1689 * not allowed. 1690 * 1691 * The USB core will not allow URBs to be queued to an endpoint until the 1692 * configuration or alt setting is installed in the device, so there's no need 1693 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1694 */ 1695 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1696 struct usb_host_endpoint *ep) 1697 { 1698 struct xhci_hcd *xhci; 1699 struct xhci_container_ctx *in_ctx; 1700 unsigned int ep_index; 1701 struct xhci_input_control_ctx *ctrl_ctx; 1702 u32 added_ctxs; 1703 u32 new_add_flags, new_drop_flags; 1704 struct xhci_virt_device *virt_dev; 1705 int ret = 0; 1706 1707 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1708 if (ret <= 0) { 1709 /* So we won't queue a reset ep command for a root hub */ 1710 ep->hcpriv = NULL; 1711 return ret; 1712 } 1713 xhci = hcd_to_xhci(hcd); 1714 if (xhci->xhc_state & XHCI_STATE_DYING) 1715 return -ENODEV; 1716 1717 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1718 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1719 /* FIXME when we have to issue an evaluate endpoint command to 1720 * deal with ep0 max packet size changing once we get the 1721 * descriptors 1722 */ 1723 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1724 __func__, added_ctxs); 1725 return 0; 1726 } 1727 1728 virt_dev = xhci->devs[udev->slot_id]; 1729 in_ctx = virt_dev->in_ctx; 1730 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1731 if (!ctrl_ctx) { 1732 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1733 __func__); 1734 return 0; 1735 } 1736 1737 ep_index = xhci_get_endpoint_index(&ep->desc); 1738 /* If this endpoint is already in use, and the upper layers are trying 1739 * to add it again without dropping it, reject the addition. 1740 */ 1741 if (virt_dev->eps[ep_index].ring && 1742 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1743 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1744 "without dropping it.\n", 1745 (unsigned int) ep->desc.bEndpointAddress); 1746 return -EINVAL; 1747 } 1748 1749 /* If the HCD has already noted the endpoint is enabled, 1750 * ignore this request. 1751 */ 1752 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1753 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1754 __func__, ep); 1755 return 0; 1756 } 1757 1758 /* 1759 * Configuration and alternate setting changes must be done in 1760 * process context, not interrupt context (or so documenation 1761 * for usb_set_interface() and usb_set_configuration() claim). 1762 */ 1763 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1764 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1765 __func__, ep->desc.bEndpointAddress); 1766 return -ENOMEM; 1767 } 1768 1769 if (xhci->quirks & XHCI_MTK_HOST) { 1770 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1771 if (ret < 0) { 1772 xhci_free_or_cache_endpoint_ring(xhci, 1773 virt_dev, ep_index); 1774 return ret; 1775 } 1776 } 1777 1778 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1779 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1780 1781 /* If xhci_endpoint_disable() was called for this endpoint, but the 1782 * xHC hasn't been notified yet through the check_bandwidth() call, 1783 * this re-adds a new state for the endpoint from the new endpoint 1784 * descriptors. We must drop and re-add this endpoint, so we leave the 1785 * drop flags alone. 1786 */ 1787 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1788 1789 /* Store the usb_device pointer for later use */ 1790 ep->hcpriv = udev; 1791 1792 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1793 (unsigned int) ep->desc.bEndpointAddress, 1794 udev->slot_id, 1795 (unsigned int) new_drop_flags, 1796 (unsigned int) new_add_flags); 1797 return 0; 1798 } 1799 1800 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1801 { 1802 struct xhci_input_control_ctx *ctrl_ctx; 1803 struct xhci_ep_ctx *ep_ctx; 1804 struct xhci_slot_ctx *slot_ctx; 1805 int i; 1806 1807 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1808 if (!ctrl_ctx) { 1809 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1810 __func__); 1811 return; 1812 } 1813 1814 /* When a device's add flag and drop flag are zero, any subsequent 1815 * configure endpoint command will leave that endpoint's state 1816 * untouched. Make sure we don't leave any old state in the input 1817 * endpoint contexts. 1818 */ 1819 ctrl_ctx->drop_flags = 0; 1820 ctrl_ctx->add_flags = 0; 1821 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1822 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1823 /* Endpoint 0 is always valid */ 1824 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1825 for (i = 1; i < 31; ++i) { 1826 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1827 ep_ctx->ep_info = 0; 1828 ep_ctx->ep_info2 = 0; 1829 ep_ctx->deq = 0; 1830 ep_ctx->tx_info = 0; 1831 } 1832 } 1833 1834 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1835 struct usb_device *udev, u32 *cmd_status) 1836 { 1837 int ret; 1838 1839 switch (*cmd_status) { 1840 case COMP_CMD_ABORT: 1841 case COMP_CMD_STOP: 1842 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1843 ret = -ETIME; 1844 break; 1845 case COMP_ENOMEM: 1846 dev_warn(&udev->dev, 1847 "Not enough host controller resources for new device state.\n"); 1848 ret = -ENOMEM; 1849 /* FIXME: can we allocate more resources for the HC? */ 1850 break; 1851 case COMP_BW_ERR: 1852 case COMP_2ND_BW_ERR: 1853 dev_warn(&udev->dev, 1854 "Not enough bandwidth for new device state.\n"); 1855 ret = -ENOSPC; 1856 /* FIXME: can we go back to the old state? */ 1857 break; 1858 case COMP_TRB_ERR: 1859 /* the HCD set up something wrong */ 1860 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1861 "add flag = 1, " 1862 "and endpoint is not disabled.\n"); 1863 ret = -EINVAL; 1864 break; 1865 case COMP_DEV_ERR: 1866 dev_warn(&udev->dev, 1867 "ERROR: Incompatible device for endpoint configure command.\n"); 1868 ret = -ENODEV; 1869 break; 1870 case COMP_SUCCESS: 1871 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1872 "Successful Endpoint Configure command"); 1873 ret = 0; 1874 break; 1875 default: 1876 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1877 *cmd_status); 1878 ret = -EINVAL; 1879 break; 1880 } 1881 return ret; 1882 } 1883 1884 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1885 struct usb_device *udev, u32 *cmd_status) 1886 { 1887 int ret; 1888 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1889 1890 switch (*cmd_status) { 1891 case COMP_CMD_ABORT: 1892 case COMP_CMD_STOP: 1893 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1894 ret = -ETIME; 1895 break; 1896 case COMP_EINVAL: 1897 dev_warn(&udev->dev, 1898 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1899 ret = -EINVAL; 1900 break; 1901 case COMP_EBADSLT: 1902 dev_warn(&udev->dev, 1903 "WARN: slot not enabled for evaluate context command.\n"); 1904 ret = -EINVAL; 1905 break; 1906 case COMP_CTX_STATE: 1907 dev_warn(&udev->dev, 1908 "WARN: invalid context state for evaluate context command.\n"); 1909 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1910 ret = -EINVAL; 1911 break; 1912 case COMP_DEV_ERR: 1913 dev_warn(&udev->dev, 1914 "ERROR: Incompatible device for evaluate context command.\n"); 1915 ret = -ENODEV; 1916 break; 1917 case COMP_MEL_ERR: 1918 /* Max Exit Latency too large error */ 1919 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1920 ret = -EINVAL; 1921 break; 1922 case COMP_SUCCESS: 1923 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1924 "Successful evaluate context command"); 1925 ret = 0; 1926 break; 1927 default: 1928 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1929 *cmd_status); 1930 ret = -EINVAL; 1931 break; 1932 } 1933 return ret; 1934 } 1935 1936 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1937 struct xhci_input_control_ctx *ctrl_ctx) 1938 { 1939 u32 valid_add_flags; 1940 u32 valid_drop_flags; 1941 1942 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1943 * (bit 1). The default control endpoint is added during the Address 1944 * Device command and is never removed until the slot is disabled. 1945 */ 1946 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1947 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1948 1949 /* Use hweight32 to count the number of ones in the add flags, or 1950 * number of endpoints added. Don't count endpoints that are changed 1951 * (both added and dropped). 1952 */ 1953 return hweight32(valid_add_flags) - 1954 hweight32(valid_add_flags & valid_drop_flags); 1955 } 1956 1957 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1958 struct xhci_input_control_ctx *ctrl_ctx) 1959 { 1960 u32 valid_add_flags; 1961 u32 valid_drop_flags; 1962 1963 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1964 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1965 1966 return hweight32(valid_drop_flags) - 1967 hweight32(valid_add_flags & valid_drop_flags); 1968 } 1969 1970 /* 1971 * We need to reserve the new number of endpoints before the configure endpoint 1972 * command completes. We can't subtract the dropped endpoints from the number 1973 * of active endpoints until the command completes because we can oversubscribe 1974 * the host in this case: 1975 * 1976 * - the first configure endpoint command drops more endpoints than it adds 1977 * - a second configure endpoint command that adds more endpoints is queued 1978 * - the first configure endpoint command fails, so the config is unchanged 1979 * - the second command may succeed, even though there isn't enough resources 1980 * 1981 * Must be called with xhci->lock held. 1982 */ 1983 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1984 struct xhci_input_control_ctx *ctrl_ctx) 1985 { 1986 u32 added_eps; 1987 1988 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1989 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1990 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1991 "Not enough ep ctxs: " 1992 "%u active, need to add %u, limit is %u.", 1993 xhci->num_active_eps, added_eps, 1994 xhci->limit_active_eps); 1995 return -ENOMEM; 1996 } 1997 xhci->num_active_eps += added_eps; 1998 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1999 "Adding %u ep ctxs, %u now active.", added_eps, 2000 xhci->num_active_eps); 2001 return 0; 2002 } 2003 2004 /* 2005 * The configure endpoint was failed by the xHC for some other reason, so we 2006 * need to revert the resources that failed configuration would have used. 2007 * 2008 * Must be called with xhci->lock held. 2009 */ 2010 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2011 struct xhci_input_control_ctx *ctrl_ctx) 2012 { 2013 u32 num_failed_eps; 2014 2015 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2016 xhci->num_active_eps -= num_failed_eps; 2017 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2018 "Removing %u failed ep ctxs, %u now active.", 2019 num_failed_eps, 2020 xhci->num_active_eps); 2021 } 2022 2023 /* 2024 * Now that the command has completed, clean up the active endpoint count by 2025 * subtracting out the endpoints that were dropped (but not changed). 2026 * 2027 * Must be called with xhci->lock held. 2028 */ 2029 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2030 struct xhci_input_control_ctx *ctrl_ctx) 2031 { 2032 u32 num_dropped_eps; 2033 2034 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2035 xhci->num_active_eps -= num_dropped_eps; 2036 if (num_dropped_eps) 2037 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2038 "Removing %u dropped ep ctxs, %u now active.", 2039 num_dropped_eps, 2040 xhci->num_active_eps); 2041 } 2042 2043 static unsigned int xhci_get_block_size(struct usb_device *udev) 2044 { 2045 switch (udev->speed) { 2046 case USB_SPEED_LOW: 2047 case USB_SPEED_FULL: 2048 return FS_BLOCK; 2049 case USB_SPEED_HIGH: 2050 return HS_BLOCK; 2051 case USB_SPEED_SUPER: 2052 case USB_SPEED_SUPER_PLUS: 2053 return SS_BLOCK; 2054 case USB_SPEED_UNKNOWN: 2055 case USB_SPEED_WIRELESS: 2056 default: 2057 /* Should never happen */ 2058 return 1; 2059 } 2060 } 2061 2062 static unsigned int 2063 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2064 { 2065 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2066 return LS_OVERHEAD; 2067 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2068 return FS_OVERHEAD; 2069 return HS_OVERHEAD; 2070 } 2071 2072 /* If we are changing a LS/FS device under a HS hub, 2073 * make sure (if we are activating a new TT) that the HS bus has enough 2074 * bandwidth for this new TT. 2075 */ 2076 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2077 struct xhci_virt_device *virt_dev, 2078 int old_active_eps) 2079 { 2080 struct xhci_interval_bw_table *bw_table; 2081 struct xhci_tt_bw_info *tt_info; 2082 2083 /* Find the bandwidth table for the root port this TT is attached to. */ 2084 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2085 tt_info = virt_dev->tt_info; 2086 /* If this TT already had active endpoints, the bandwidth for this TT 2087 * has already been added. Removing all periodic endpoints (and thus 2088 * making the TT enactive) will only decrease the bandwidth used. 2089 */ 2090 if (old_active_eps) 2091 return 0; 2092 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2093 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2094 return -ENOMEM; 2095 return 0; 2096 } 2097 /* Not sure why we would have no new active endpoints... 2098 * 2099 * Maybe because of an Evaluate Context change for a hub update or a 2100 * control endpoint 0 max packet size change? 2101 * FIXME: skip the bandwidth calculation in that case. 2102 */ 2103 return 0; 2104 } 2105 2106 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2107 struct xhci_virt_device *virt_dev) 2108 { 2109 unsigned int bw_reserved; 2110 2111 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2112 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2113 return -ENOMEM; 2114 2115 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2116 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2117 return -ENOMEM; 2118 2119 return 0; 2120 } 2121 2122 /* 2123 * This algorithm is a very conservative estimate of the worst-case scheduling 2124 * scenario for any one interval. The hardware dynamically schedules the 2125 * packets, so we can't tell which microframe could be the limiting factor in 2126 * the bandwidth scheduling. This only takes into account periodic endpoints. 2127 * 2128 * Obviously, we can't solve an NP complete problem to find the minimum worst 2129 * case scenario. Instead, we come up with an estimate that is no less than 2130 * the worst case bandwidth used for any one microframe, but may be an 2131 * over-estimate. 2132 * 2133 * We walk the requirements for each endpoint by interval, starting with the 2134 * smallest interval, and place packets in the schedule where there is only one 2135 * possible way to schedule packets for that interval. In order to simplify 2136 * this algorithm, we record the largest max packet size for each interval, and 2137 * assume all packets will be that size. 2138 * 2139 * For interval 0, we obviously must schedule all packets for each interval. 2140 * The bandwidth for interval 0 is just the amount of data to be transmitted 2141 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2142 * the number of packets). 2143 * 2144 * For interval 1, we have two possible microframes to schedule those packets 2145 * in. For this algorithm, if we can schedule the same number of packets for 2146 * each possible scheduling opportunity (each microframe), we will do so. The 2147 * remaining number of packets will be saved to be transmitted in the gaps in 2148 * the next interval's scheduling sequence. 2149 * 2150 * As we move those remaining packets to be scheduled with interval 2 packets, 2151 * we have to double the number of remaining packets to transmit. This is 2152 * because the intervals are actually powers of 2, and we would be transmitting 2153 * the previous interval's packets twice in this interval. We also have to be 2154 * sure that when we look at the largest max packet size for this interval, we 2155 * also look at the largest max packet size for the remaining packets and take 2156 * the greater of the two. 2157 * 2158 * The algorithm continues to evenly distribute packets in each scheduling 2159 * opportunity, and push the remaining packets out, until we get to the last 2160 * interval. Then those packets and their associated overhead are just added 2161 * to the bandwidth used. 2162 */ 2163 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2164 struct xhci_virt_device *virt_dev, 2165 int old_active_eps) 2166 { 2167 unsigned int bw_reserved; 2168 unsigned int max_bandwidth; 2169 unsigned int bw_used; 2170 unsigned int block_size; 2171 struct xhci_interval_bw_table *bw_table; 2172 unsigned int packet_size = 0; 2173 unsigned int overhead = 0; 2174 unsigned int packets_transmitted = 0; 2175 unsigned int packets_remaining = 0; 2176 unsigned int i; 2177 2178 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2179 return xhci_check_ss_bw(xhci, virt_dev); 2180 2181 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2182 max_bandwidth = HS_BW_LIMIT; 2183 /* Convert percent of bus BW reserved to blocks reserved */ 2184 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2185 } else { 2186 max_bandwidth = FS_BW_LIMIT; 2187 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2188 } 2189 2190 bw_table = virt_dev->bw_table; 2191 /* We need to translate the max packet size and max ESIT payloads into 2192 * the units the hardware uses. 2193 */ 2194 block_size = xhci_get_block_size(virt_dev->udev); 2195 2196 /* If we are manipulating a LS/FS device under a HS hub, double check 2197 * that the HS bus has enough bandwidth if we are activing a new TT. 2198 */ 2199 if (virt_dev->tt_info) { 2200 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2201 "Recalculating BW for rootport %u", 2202 virt_dev->real_port); 2203 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2204 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2205 "newly activated TT.\n"); 2206 return -ENOMEM; 2207 } 2208 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2209 "Recalculating BW for TT slot %u port %u", 2210 virt_dev->tt_info->slot_id, 2211 virt_dev->tt_info->ttport); 2212 } else { 2213 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2214 "Recalculating BW for rootport %u", 2215 virt_dev->real_port); 2216 } 2217 2218 /* Add in how much bandwidth will be used for interval zero, or the 2219 * rounded max ESIT payload + number of packets * largest overhead. 2220 */ 2221 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2222 bw_table->interval_bw[0].num_packets * 2223 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2224 2225 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2226 unsigned int bw_added; 2227 unsigned int largest_mps; 2228 unsigned int interval_overhead; 2229 2230 /* 2231 * How many packets could we transmit in this interval? 2232 * If packets didn't fit in the previous interval, we will need 2233 * to transmit that many packets twice within this interval. 2234 */ 2235 packets_remaining = 2 * packets_remaining + 2236 bw_table->interval_bw[i].num_packets; 2237 2238 /* Find the largest max packet size of this or the previous 2239 * interval. 2240 */ 2241 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2242 largest_mps = 0; 2243 else { 2244 struct xhci_virt_ep *virt_ep; 2245 struct list_head *ep_entry; 2246 2247 ep_entry = bw_table->interval_bw[i].endpoints.next; 2248 virt_ep = list_entry(ep_entry, 2249 struct xhci_virt_ep, bw_endpoint_list); 2250 /* Convert to blocks, rounding up */ 2251 largest_mps = DIV_ROUND_UP( 2252 virt_ep->bw_info.max_packet_size, 2253 block_size); 2254 } 2255 if (largest_mps > packet_size) 2256 packet_size = largest_mps; 2257 2258 /* Use the larger overhead of this or the previous interval. */ 2259 interval_overhead = xhci_get_largest_overhead( 2260 &bw_table->interval_bw[i]); 2261 if (interval_overhead > overhead) 2262 overhead = interval_overhead; 2263 2264 /* How many packets can we evenly distribute across 2265 * (1 << (i + 1)) possible scheduling opportunities? 2266 */ 2267 packets_transmitted = packets_remaining >> (i + 1); 2268 2269 /* Add in the bandwidth used for those scheduled packets */ 2270 bw_added = packets_transmitted * (overhead + packet_size); 2271 2272 /* How many packets do we have remaining to transmit? */ 2273 packets_remaining = packets_remaining % (1 << (i + 1)); 2274 2275 /* What largest max packet size should those packets have? */ 2276 /* If we've transmitted all packets, don't carry over the 2277 * largest packet size. 2278 */ 2279 if (packets_remaining == 0) { 2280 packet_size = 0; 2281 overhead = 0; 2282 } else if (packets_transmitted > 0) { 2283 /* Otherwise if we do have remaining packets, and we've 2284 * scheduled some packets in this interval, take the 2285 * largest max packet size from endpoints with this 2286 * interval. 2287 */ 2288 packet_size = largest_mps; 2289 overhead = interval_overhead; 2290 } 2291 /* Otherwise carry over packet_size and overhead from the last 2292 * time we had a remainder. 2293 */ 2294 bw_used += bw_added; 2295 if (bw_used > max_bandwidth) { 2296 xhci_warn(xhci, "Not enough bandwidth. " 2297 "Proposed: %u, Max: %u\n", 2298 bw_used, max_bandwidth); 2299 return -ENOMEM; 2300 } 2301 } 2302 /* 2303 * Ok, we know we have some packets left over after even-handedly 2304 * scheduling interval 15. We don't know which microframes they will 2305 * fit into, so we over-schedule and say they will be scheduled every 2306 * microframe. 2307 */ 2308 if (packets_remaining > 0) 2309 bw_used += overhead + packet_size; 2310 2311 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2312 unsigned int port_index = virt_dev->real_port - 1; 2313 2314 /* OK, we're manipulating a HS device attached to a 2315 * root port bandwidth domain. Include the number of active TTs 2316 * in the bandwidth used. 2317 */ 2318 bw_used += TT_HS_OVERHEAD * 2319 xhci->rh_bw[port_index].num_active_tts; 2320 } 2321 2322 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2323 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2324 "Available: %u " "percent", 2325 bw_used, max_bandwidth, bw_reserved, 2326 (max_bandwidth - bw_used - bw_reserved) * 100 / 2327 max_bandwidth); 2328 2329 bw_used += bw_reserved; 2330 if (bw_used > max_bandwidth) { 2331 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2332 bw_used, max_bandwidth); 2333 return -ENOMEM; 2334 } 2335 2336 bw_table->bw_used = bw_used; 2337 return 0; 2338 } 2339 2340 static bool xhci_is_async_ep(unsigned int ep_type) 2341 { 2342 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2343 ep_type != ISOC_IN_EP && 2344 ep_type != INT_IN_EP); 2345 } 2346 2347 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2348 { 2349 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2350 } 2351 2352 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2353 { 2354 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2355 2356 if (ep_bw->ep_interval == 0) 2357 return SS_OVERHEAD_BURST + 2358 (ep_bw->mult * ep_bw->num_packets * 2359 (SS_OVERHEAD + mps)); 2360 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2361 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2362 1 << ep_bw->ep_interval); 2363 2364 } 2365 2366 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2367 struct xhci_bw_info *ep_bw, 2368 struct xhci_interval_bw_table *bw_table, 2369 struct usb_device *udev, 2370 struct xhci_virt_ep *virt_ep, 2371 struct xhci_tt_bw_info *tt_info) 2372 { 2373 struct xhci_interval_bw *interval_bw; 2374 int normalized_interval; 2375 2376 if (xhci_is_async_ep(ep_bw->type)) 2377 return; 2378 2379 if (udev->speed >= USB_SPEED_SUPER) { 2380 if (xhci_is_sync_in_ep(ep_bw->type)) 2381 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2382 xhci_get_ss_bw_consumed(ep_bw); 2383 else 2384 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2385 xhci_get_ss_bw_consumed(ep_bw); 2386 return; 2387 } 2388 2389 /* SuperSpeed endpoints never get added to intervals in the table, so 2390 * this check is only valid for HS/FS/LS devices. 2391 */ 2392 if (list_empty(&virt_ep->bw_endpoint_list)) 2393 return; 2394 /* For LS/FS devices, we need to translate the interval expressed in 2395 * microframes to frames. 2396 */ 2397 if (udev->speed == USB_SPEED_HIGH) 2398 normalized_interval = ep_bw->ep_interval; 2399 else 2400 normalized_interval = ep_bw->ep_interval - 3; 2401 2402 if (normalized_interval == 0) 2403 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2404 interval_bw = &bw_table->interval_bw[normalized_interval]; 2405 interval_bw->num_packets -= ep_bw->num_packets; 2406 switch (udev->speed) { 2407 case USB_SPEED_LOW: 2408 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2409 break; 2410 case USB_SPEED_FULL: 2411 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2412 break; 2413 case USB_SPEED_HIGH: 2414 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2415 break; 2416 case USB_SPEED_SUPER: 2417 case USB_SPEED_SUPER_PLUS: 2418 case USB_SPEED_UNKNOWN: 2419 case USB_SPEED_WIRELESS: 2420 /* Should never happen because only LS/FS/HS endpoints will get 2421 * added to the endpoint list. 2422 */ 2423 return; 2424 } 2425 if (tt_info) 2426 tt_info->active_eps -= 1; 2427 list_del_init(&virt_ep->bw_endpoint_list); 2428 } 2429 2430 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2431 struct xhci_bw_info *ep_bw, 2432 struct xhci_interval_bw_table *bw_table, 2433 struct usb_device *udev, 2434 struct xhci_virt_ep *virt_ep, 2435 struct xhci_tt_bw_info *tt_info) 2436 { 2437 struct xhci_interval_bw *interval_bw; 2438 struct xhci_virt_ep *smaller_ep; 2439 int normalized_interval; 2440 2441 if (xhci_is_async_ep(ep_bw->type)) 2442 return; 2443 2444 if (udev->speed == USB_SPEED_SUPER) { 2445 if (xhci_is_sync_in_ep(ep_bw->type)) 2446 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2447 xhci_get_ss_bw_consumed(ep_bw); 2448 else 2449 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2450 xhci_get_ss_bw_consumed(ep_bw); 2451 return; 2452 } 2453 2454 /* For LS/FS devices, we need to translate the interval expressed in 2455 * microframes to frames. 2456 */ 2457 if (udev->speed == USB_SPEED_HIGH) 2458 normalized_interval = ep_bw->ep_interval; 2459 else 2460 normalized_interval = ep_bw->ep_interval - 3; 2461 2462 if (normalized_interval == 0) 2463 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2464 interval_bw = &bw_table->interval_bw[normalized_interval]; 2465 interval_bw->num_packets += ep_bw->num_packets; 2466 switch (udev->speed) { 2467 case USB_SPEED_LOW: 2468 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2469 break; 2470 case USB_SPEED_FULL: 2471 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2472 break; 2473 case USB_SPEED_HIGH: 2474 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2475 break; 2476 case USB_SPEED_SUPER: 2477 case USB_SPEED_SUPER_PLUS: 2478 case USB_SPEED_UNKNOWN: 2479 case USB_SPEED_WIRELESS: 2480 /* Should never happen because only LS/FS/HS endpoints will get 2481 * added to the endpoint list. 2482 */ 2483 return; 2484 } 2485 2486 if (tt_info) 2487 tt_info->active_eps += 1; 2488 /* Insert the endpoint into the list, largest max packet size first. */ 2489 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2490 bw_endpoint_list) { 2491 if (ep_bw->max_packet_size >= 2492 smaller_ep->bw_info.max_packet_size) { 2493 /* Add the new ep before the smaller endpoint */ 2494 list_add_tail(&virt_ep->bw_endpoint_list, 2495 &smaller_ep->bw_endpoint_list); 2496 return; 2497 } 2498 } 2499 /* Add the new endpoint at the end of the list. */ 2500 list_add_tail(&virt_ep->bw_endpoint_list, 2501 &interval_bw->endpoints); 2502 } 2503 2504 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2505 struct xhci_virt_device *virt_dev, 2506 int old_active_eps) 2507 { 2508 struct xhci_root_port_bw_info *rh_bw_info; 2509 if (!virt_dev->tt_info) 2510 return; 2511 2512 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2513 if (old_active_eps == 0 && 2514 virt_dev->tt_info->active_eps != 0) { 2515 rh_bw_info->num_active_tts += 1; 2516 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2517 } else if (old_active_eps != 0 && 2518 virt_dev->tt_info->active_eps == 0) { 2519 rh_bw_info->num_active_tts -= 1; 2520 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2521 } 2522 } 2523 2524 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2525 struct xhci_virt_device *virt_dev, 2526 struct xhci_container_ctx *in_ctx) 2527 { 2528 struct xhci_bw_info ep_bw_info[31]; 2529 int i; 2530 struct xhci_input_control_ctx *ctrl_ctx; 2531 int old_active_eps = 0; 2532 2533 if (virt_dev->tt_info) 2534 old_active_eps = virt_dev->tt_info->active_eps; 2535 2536 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2537 if (!ctrl_ctx) { 2538 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2539 __func__); 2540 return -ENOMEM; 2541 } 2542 2543 for (i = 0; i < 31; i++) { 2544 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2545 continue; 2546 2547 /* Make a copy of the BW info in case we need to revert this */ 2548 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2549 sizeof(ep_bw_info[i])); 2550 /* Drop the endpoint from the interval table if the endpoint is 2551 * being dropped or changed. 2552 */ 2553 if (EP_IS_DROPPED(ctrl_ctx, i)) 2554 xhci_drop_ep_from_interval_table(xhci, 2555 &virt_dev->eps[i].bw_info, 2556 virt_dev->bw_table, 2557 virt_dev->udev, 2558 &virt_dev->eps[i], 2559 virt_dev->tt_info); 2560 } 2561 /* Overwrite the information stored in the endpoints' bw_info */ 2562 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2563 for (i = 0; i < 31; i++) { 2564 /* Add any changed or added endpoints to the interval table */ 2565 if (EP_IS_ADDED(ctrl_ctx, i)) 2566 xhci_add_ep_to_interval_table(xhci, 2567 &virt_dev->eps[i].bw_info, 2568 virt_dev->bw_table, 2569 virt_dev->udev, 2570 &virt_dev->eps[i], 2571 virt_dev->tt_info); 2572 } 2573 2574 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2575 /* Ok, this fits in the bandwidth we have. 2576 * Update the number of active TTs. 2577 */ 2578 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2579 return 0; 2580 } 2581 2582 /* We don't have enough bandwidth for this, revert the stored info. */ 2583 for (i = 0; i < 31; i++) { 2584 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2585 continue; 2586 2587 /* Drop the new copies of any added or changed endpoints from 2588 * the interval table. 2589 */ 2590 if (EP_IS_ADDED(ctrl_ctx, i)) { 2591 xhci_drop_ep_from_interval_table(xhci, 2592 &virt_dev->eps[i].bw_info, 2593 virt_dev->bw_table, 2594 virt_dev->udev, 2595 &virt_dev->eps[i], 2596 virt_dev->tt_info); 2597 } 2598 /* Revert the endpoint back to its old information */ 2599 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2600 sizeof(ep_bw_info[i])); 2601 /* Add any changed or dropped endpoints back into the table */ 2602 if (EP_IS_DROPPED(ctrl_ctx, i)) 2603 xhci_add_ep_to_interval_table(xhci, 2604 &virt_dev->eps[i].bw_info, 2605 virt_dev->bw_table, 2606 virt_dev->udev, 2607 &virt_dev->eps[i], 2608 virt_dev->tt_info); 2609 } 2610 return -ENOMEM; 2611 } 2612 2613 2614 /* Issue a configure endpoint command or evaluate context command 2615 * and wait for it to finish. 2616 */ 2617 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2618 struct usb_device *udev, 2619 struct xhci_command *command, 2620 bool ctx_change, bool must_succeed) 2621 { 2622 int ret; 2623 unsigned long flags; 2624 struct xhci_input_control_ctx *ctrl_ctx; 2625 struct xhci_virt_device *virt_dev; 2626 2627 if (!command) 2628 return -EINVAL; 2629 2630 spin_lock_irqsave(&xhci->lock, flags); 2631 virt_dev = xhci->devs[udev->slot_id]; 2632 2633 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2634 if (!ctrl_ctx) { 2635 spin_unlock_irqrestore(&xhci->lock, flags); 2636 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2637 __func__); 2638 return -ENOMEM; 2639 } 2640 2641 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2642 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2643 spin_unlock_irqrestore(&xhci->lock, flags); 2644 xhci_warn(xhci, "Not enough host resources, " 2645 "active endpoint contexts = %u\n", 2646 xhci->num_active_eps); 2647 return -ENOMEM; 2648 } 2649 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2650 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2651 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2652 xhci_free_host_resources(xhci, ctrl_ctx); 2653 spin_unlock_irqrestore(&xhci->lock, flags); 2654 xhci_warn(xhci, "Not enough bandwidth\n"); 2655 return -ENOMEM; 2656 } 2657 2658 if (!ctx_change) 2659 ret = xhci_queue_configure_endpoint(xhci, command, 2660 command->in_ctx->dma, 2661 udev->slot_id, must_succeed); 2662 else 2663 ret = xhci_queue_evaluate_context(xhci, command, 2664 command->in_ctx->dma, 2665 udev->slot_id, must_succeed); 2666 if (ret < 0) { 2667 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2668 xhci_free_host_resources(xhci, ctrl_ctx); 2669 spin_unlock_irqrestore(&xhci->lock, flags); 2670 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2671 "FIXME allocate a new ring segment"); 2672 return -ENOMEM; 2673 } 2674 xhci_ring_cmd_db(xhci); 2675 spin_unlock_irqrestore(&xhci->lock, flags); 2676 2677 /* Wait for the configure endpoint command to complete */ 2678 wait_for_completion(command->completion); 2679 2680 if (!ctx_change) 2681 ret = xhci_configure_endpoint_result(xhci, udev, 2682 &command->status); 2683 else 2684 ret = xhci_evaluate_context_result(xhci, udev, 2685 &command->status); 2686 2687 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2688 spin_lock_irqsave(&xhci->lock, flags); 2689 /* If the command failed, remove the reserved resources. 2690 * Otherwise, clean up the estimate to include dropped eps. 2691 */ 2692 if (ret) 2693 xhci_free_host_resources(xhci, ctrl_ctx); 2694 else 2695 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2696 spin_unlock_irqrestore(&xhci->lock, flags); 2697 } 2698 return ret; 2699 } 2700 2701 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2702 struct xhci_virt_device *vdev, int i) 2703 { 2704 struct xhci_virt_ep *ep = &vdev->eps[i]; 2705 2706 if (ep->ep_state & EP_HAS_STREAMS) { 2707 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2708 xhci_get_endpoint_address(i)); 2709 xhci_free_stream_info(xhci, ep->stream_info); 2710 ep->stream_info = NULL; 2711 ep->ep_state &= ~EP_HAS_STREAMS; 2712 } 2713 } 2714 2715 /* Called after one or more calls to xhci_add_endpoint() or 2716 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2717 * to call xhci_reset_bandwidth(). 2718 * 2719 * Since we are in the middle of changing either configuration or 2720 * installing a new alt setting, the USB core won't allow URBs to be 2721 * enqueued for any endpoint on the old config or interface. Nothing 2722 * else should be touching the xhci->devs[slot_id] structure, so we 2723 * don't need to take the xhci->lock for manipulating that. 2724 */ 2725 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2726 { 2727 int i; 2728 int ret = 0; 2729 struct xhci_hcd *xhci; 2730 struct xhci_virt_device *virt_dev; 2731 struct xhci_input_control_ctx *ctrl_ctx; 2732 struct xhci_slot_ctx *slot_ctx; 2733 struct xhci_command *command; 2734 2735 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2736 if (ret <= 0) 2737 return ret; 2738 xhci = hcd_to_xhci(hcd); 2739 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2740 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2741 return -ENODEV; 2742 2743 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2744 virt_dev = xhci->devs[udev->slot_id]; 2745 2746 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2747 if (!command) 2748 return -ENOMEM; 2749 2750 command->in_ctx = virt_dev->in_ctx; 2751 2752 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2753 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2754 if (!ctrl_ctx) { 2755 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2756 __func__); 2757 ret = -ENOMEM; 2758 goto command_cleanup; 2759 } 2760 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2761 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2762 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2763 2764 /* Don't issue the command if there's no endpoints to update. */ 2765 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2766 ctrl_ctx->drop_flags == 0) { 2767 ret = 0; 2768 goto command_cleanup; 2769 } 2770 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2771 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2772 for (i = 31; i >= 1; i--) { 2773 __le32 le32 = cpu_to_le32(BIT(i)); 2774 2775 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2776 || (ctrl_ctx->add_flags & le32) || i == 1) { 2777 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2778 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2779 break; 2780 } 2781 } 2782 xhci_dbg(xhci, "New Input Control Context:\n"); 2783 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2784 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2785 2786 ret = xhci_configure_endpoint(xhci, udev, command, 2787 false, false); 2788 if (ret) 2789 /* Callee should call reset_bandwidth() */ 2790 goto command_cleanup; 2791 2792 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2793 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2794 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2795 2796 /* Free any rings that were dropped, but not changed. */ 2797 for (i = 1; i < 31; ++i) { 2798 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2799 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2800 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2801 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2802 } 2803 } 2804 xhci_zero_in_ctx(xhci, virt_dev); 2805 /* 2806 * Install any rings for completely new endpoints or changed endpoints, 2807 * and free or cache any old rings from changed endpoints. 2808 */ 2809 for (i = 1; i < 31; ++i) { 2810 if (!virt_dev->eps[i].new_ring) 2811 continue; 2812 /* Only cache or free the old ring if it exists. 2813 * It may not if this is the first add of an endpoint. 2814 */ 2815 if (virt_dev->eps[i].ring) { 2816 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2817 } 2818 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2819 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2820 virt_dev->eps[i].new_ring = NULL; 2821 } 2822 command_cleanup: 2823 kfree(command->completion); 2824 kfree(command); 2825 2826 return ret; 2827 } 2828 2829 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2830 { 2831 struct xhci_hcd *xhci; 2832 struct xhci_virt_device *virt_dev; 2833 int i, ret; 2834 2835 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2836 if (ret <= 0) 2837 return; 2838 xhci = hcd_to_xhci(hcd); 2839 2840 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2841 virt_dev = xhci->devs[udev->slot_id]; 2842 /* Free any rings allocated for added endpoints */ 2843 for (i = 0; i < 31; ++i) { 2844 if (virt_dev->eps[i].new_ring) { 2845 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2846 virt_dev->eps[i].new_ring = NULL; 2847 } 2848 } 2849 xhci_zero_in_ctx(xhci, virt_dev); 2850 } 2851 2852 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2853 struct xhci_container_ctx *in_ctx, 2854 struct xhci_container_ctx *out_ctx, 2855 struct xhci_input_control_ctx *ctrl_ctx, 2856 u32 add_flags, u32 drop_flags) 2857 { 2858 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2859 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2860 xhci_slot_copy(xhci, in_ctx, out_ctx); 2861 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2862 2863 xhci_dbg(xhci, "Input Context:\n"); 2864 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2865 } 2866 2867 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2868 unsigned int slot_id, unsigned int ep_index, 2869 struct xhci_dequeue_state *deq_state) 2870 { 2871 struct xhci_input_control_ctx *ctrl_ctx; 2872 struct xhci_container_ctx *in_ctx; 2873 struct xhci_ep_ctx *ep_ctx; 2874 u32 added_ctxs; 2875 dma_addr_t addr; 2876 2877 in_ctx = xhci->devs[slot_id]->in_ctx; 2878 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2879 if (!ctrl_ctx) { 2880 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2881 __func__); 2882 return; 2883 } 2884 2885 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2886 xhci->devs[slot_id]->out_ctx, ep_index); 2887 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2888 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2889 deq_state->new_deq_ptr); 2890 if (addr == 0) { 2891 xhci_warn(xhci, "WARN Cannot submit config ep after " 2892 "reset ep command\n"); 2893 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2894 deq_state->new_deq_seg, 2895 deq_state->new_deq_ptr); 2896 return; 2897 } 2898 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2899 2900 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2901 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2902 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2903 added_ctxs, added_ctxs); 2904 } 2905 2906 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2907 unsigned int ep_index, struct xhci_td *td) 2908 { 2909 struct xhci_dequeue_state deq_state; 2910 struct xhci_virt_ep *ep; 2911 struct usb_device *udev = td->urb->dev; 2912 2913 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2914 "Cleaning up stalled endpoint ring"); 2915 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2916 /* We need to move the HW's dequeue pointer past this TD, 2917 * or it will attempt to resend it on the next doorbell ring. 2918 */ 2919 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2920 ep_index, ep->stopped_stream, td, &deq_state); 2921 2922 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2923 return; 2924 2925 /* HW with the reset endpoint quirk will use the saved dequeue state to 2926 * issue a configure endpoint command later. 2927 */ 2928 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2929 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2930 "Queueing new dequeue state"); 2931 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2932 ep_index, ep->stopped_stream, &deq_state); 2933 } else { 2934 /* Better hope no one uses the input context between now and the 2935 * reset endpoint completion! 2936 * XXX: No idea how this hardware will react when stream rings 2937 * are enabled. 2938 */ 2939 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2940 "Setting up input context for " 2941 "configure endpoint command"); 2942 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2943 ep_index, &deq_state); 2944 } 2945 } 2946 2947 /* Called when clearing halted device. The core should have sent the control 2948 * message to clear the device halt condition. The host side of the halt should 2949 * already be cleared with a reset endpoint command issued when the STALL tx 2950 * event was received. 2951 * 2952 * Context: in_interrupt 2953 */ 2954 2955 void xhci_endpoint_reset(struct usb_hcd *hcd, 2956 struct usb_host_endpoint *ep) 2957 { 2958 struct xhci_hcd *xhci; 2959 2960 xhci = hcd_to_xhci(hcd); 2961 2962 /* 2963 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2964 * The Reset Endpoint Command may only be issued to endpoints in the 2965 * Halted state. If software wishes reset the Data Toggle or Sequence 2966 * Number of an endpoint that isn't in the Halted state, then software 2967 * may issue a Configure Endpoint Command with the Drop and Add bits set 2968 * for the target endpoint. that is in the Stopped state. 2969 */ 2970 2971 /* For now just print debug to follow the situation */ 2972 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 2973 ep->desc.bEndpointAddress); 2974 } 2975 2976 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2977 struct usb_device *udev, struct usb_host_endpoint *ep, 2978 unsigned int slot_id) 2979 { 2980 int ret; 2981 unsigned int ep_index; 2982 unsigned int ep_state; 2983 2984 if (!ep) 2985 return -EINVAL; 2986 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2987 if (ret <= 0) 2988 return -EINVAL; 2989 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2990 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2991 " descriptor for ep 0x%x does not support streams\n", 2992 ep->desc.bEndpointAddress); 2993 return -EINVAL; 2994 } 2995 2996 ep_index = xhci_get_endpoint_index(&ep->desc); 2997 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2998 if (ep_state & EP_HAS_STREAMS || 2999 ep_state & EP_GETTING_STREAMS) { 3000 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3001 "already has streams set up.\n", 3002 ep->desc.bEndpointAddress); 3003 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3004 "dynamic stream context array reallocation.\n"); 3005 return -EINVAL; 3006 } 3007 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3008 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3009 "endpoint 0x%x; URBs are pending.\n", 3010 ep->desc.bEndpointAddress); 3011 return -EINVAL; 3012 } 3013 return 0; 3014 } 3015 3016 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3017 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3018 { 3019 unsigned int max_streams; 3020 3021 /* The stream context array size must be a power of two */ 3022 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3023 /* 3024 * Find out how many primary stream array entries the host controller 3025 * supports. Later we may use secondary stream arrays (similar to 2nd 3026 * level page entries), but that's an optional feature for xHCI host 3027 * controllers. xHCs must support at least 4 stream IDs. 3028 */ 3029 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3030 if (*num_stream_ctxs > max_streams) { 3031 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3032 max_streams); 3033 *num_stream_ctxs = max_streams; 3034 *num_streams = max_streams; 3035 } 3036 } 3037 3038 /* Returns an error code if one of the endpoint already has streams. 3039 * This does not change any data structures, it only checks and gathers 3040 * information. 3041 */ 3042 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3043 struct usb_device *udev, 3044 struct usb_host_endpoint **eps, unsigned int num_eps, 3045 unsigned int *num_streams, u32 *changed_ep_bitmask) 3046 { 3047 unsigned int max_streams; 3048 unsigned int endpoint_flag; 3049 int i; 3050 int ret; 3051 3052 for (i = 0; i < num_eps; i++) { 3053 ret = xhci_check_streams_endpoint(xhci, udev, 3054 eps[i], udev->slot_id); 3055 if (ret < 0) 3056 return ret; 3057 3058 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3059 if (max_streams < (*num_streams - 1)) { 3060 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3061 eps[i]->desc.bEndpointAddress, 3062 max_streams); 3063 *num_streams = max_streams+1; 3064 } 3065 3066 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3067 if (*changed_ep_bitmask & endpoint_flag) 3068 return -EINVAL; 3069 *changed_ep_bitmask |= endpoint_flag; 3070 } 3071 return 0; 3072 } 3073 3074 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3075 struct usb_device *udev, 3076 struct usb_host_endpoint **eps, unsigned int num_eps) 3077 { 3078 u32 changed_ep_bitmask = 0; 3079 unsigned int slot_id; 3080 unsigned int ep_index; 3081 unsigned int ep_state; 3082 int i; 3083 3084 slot_id = udev->slot_id; 3085 if (!xhci->devs[slot_id]) 3086 return 0; 3087 3088 for (i = 0; i < num_eps; i++) { 3089 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3090 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3091 /* Are streams already being freed for the endpoint? */ 3092 if (ep_state & EP_GETTING_NO_STREAMS) { 3093 xhci_warn(xhci, "WARN Can't disable streams for " 3094 "endpoint 0x%x, " 3095 "streams are being disabled already\n", 3096 eps[i]->desc.bEndpointAddress); 3097 return 0; 3098 } 3099 /* Are there actually any streams to free? */ 3100 if (!(ep_state & EP_HAS_STREAMS) && 3101 !(ep_state & EP_GETTING_STREAMS)) { 3102 xhci_warn(xhci, "WARN Can't disable streams for " 3103 "endpoint 0x%x, " 3104 "streams are already disabled!\n", 3105 eps[i]->desc.bEndpointAddress); 3106 xhci_warn(xhci, "WARN xhci_free_streams() called " 3107 "with non-streams endpoint\n"); 3108 return 0; 3109 } 3110 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3111 } 3112 return changed_ep_bitmask; 3113 } 3114 3115 /* 3116 * The USB device drivers use this function (through the HCD interface in USB 3117 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3118 * coordinate mass storage command queueing across multiple endpoints (basically 3119 * a stream ID == a task ID). 3120 * 3121 * Setting up streams involves allocating the same size stream context array 3122 * for each endpoint and issuing a configure endpoint command for all endpoints. 3123 * 3124 * Don't allow the call to succeed if one endpoint only supports one stream 3125 * (which means it doesn't support streams at all). 3126 * 3127 * Drivers may get less stream IDs than they asked for, if the host controller 3128 * hardware or endpoints claim they can't support the number of requested 3129 * stream IDs. 3130 */ 3131 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3132 struct usb_host_endpoint **eps, unsigned int num_eps, 3133 unsigned int num_streams, gfp_t mem_flags) 3134 { 3135 int i, ret; 3136 struct xhci_hcd *xhci; 3137 struct xhci_virt_device *vdev; 3138 struct xhci_command *config_cmd; 3139 struct xhci_input_control_ctx *ctrl_ctx; 3140 unsigned int ep_index; 3141 unsigned int num_stream_ctxs; 3142 unsigned int max_packet; 3143 unsigned long flags; 3144 u32 changed_ep_bitmask = 0; 3145 3146 if (!eps) 3147 return -EINVAL; 3148 3149 /* Add one to the number of streams requested to account for 3150 * stream 0 that is reserved for xHCI usage. 3151 */ 3152 num_streams += 1; 3153 xhci = hcd_to_xhci(hcd); 3154 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3155 num_streams); 3156 3157 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3158 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3159 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3160 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3161 return -ENOSYS; 3162 } 3163 3164 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3165 if (!config_cmd) { 3166 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3167 return -ENOMEM; 3168 } 3169 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3170 if (!ctrl_ctx) { 3171 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3172 __func__); 3173 xhci_free_command(xhci, config_cmd); 3174 return -ENOMEM; 3175 } 3176 3177 /* Check to make sure all endpoints are not already configured for 3178 * streams. While we're at it, find the maximum number of streams that 3179 * all the endpoints will support and check for duplicate endpoints. 3180 */ 3181 spin_lock_irqsave(&xhci->lock, flags); 3182 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3183 num_eps, &num_streams, &changed_ep_bitmask); 3184 if (ret < 0) { 3185 xhci_free_command(xhci, config_cmd); 3186 spin_unlock_irqrestore(&xhci->lock, flags); 3187 return ret; 3188 } 3189 if (num_streams <= 1) { 3190 xhci_warn(xhci, "WARN: endpoints can't handle " 3191 "more than one stream.\n"); 3192 xhci_free_command(xhci, config_cmd); 3193 spin_unlock_irqrestore(&xhci->lock, flags); 3194 return -EINVAL; 3195 } 3196 vdev = xhci->devs[udev->slot_id]; 3197 /* Mark each endpoint as being in transition, so 3198 * xhci_urb_enqueue() will reject all URBs. 3199 */ 3200 for (i = 0; i < num_eps; i++) { 3201 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3202 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3203 } 3204 spin_unlock_irqrestore(&xhci->lock, flags); 3205 3206 /* Setup internal data structures and allocate HW data structures for 3207 * streams (but don't install the HW structures in the input context 3208 * until we're sure all memory allocation succeeded). 3209 */ 3210 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3211 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3212 num_stream_ctxs, num_streams); 3213 3214 for (i = 0; i < num_eps; i++) { 3215 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3216 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3217 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3218 num_stream_ctxs, 3219 num_streams, 3220 max_packet, mem_flags); 3221 if (!vdev->eps[ep_index].stream_info) 3222 goto cleanup; 3223 /* Set maxPstreams in endpoint context and update deq ptr to 3224 * point to stream context array. FIXME 3225 */ 3226 } 3227 3228 /* Set up the input context for a configure endpoint command. */ 3229 for (i = 0; i < num_eps; i++) { 3230 struct xhci_ep_ctx *ep_ctx; 3231 3232 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3233 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3234 3235 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3236 vdev->out_ctx, ep_index); 3237 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3238 vdev->eps[ep_index].stream_info); 3239 } 3240 /* Tell the HW to drop its old copy of the endpoint context info 3241 * and add the updated copy from the input context. 3242 */ 3243 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3244 vdev->out_ctx, ctrl_ctx, 3245 changed_ep_bitmask, changed_ep_bitmask); 3246 3247 /* Issue and wait for the configure endpoint command */ 3248 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3249 false, false); 3250 3251 /* xHC rejected the configure endpoint command for some reason, so we 3252 * leave the old ring intact and free our internal streams data 3253 * structure. 3254 */ 3255 if (ret < 0) 3256 goto cleanup; 3257 3258 spin_lock_irqsave(&xhci->lock, flags); 3259 for (i = 0; i < num_eps; i++) { 3260 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3261 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3262 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3263 udev->slot_id, ep_index); 3264 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3265 } 3266 xhci_free_command(xhci, config_cmd); 3267 spin_unlock_irqrestore(&xhci->lock, flags); 3268 3269 /* Subtract 1 for stream 0, which drivers can't use */ 3270 return num_streams - 1; 3271 3272 cleanup: 3273 /* If it didn't work, free the streams! */ 3274 for (i = 0; i < num_eps; i++) { 3275 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3276 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3277 vdev->eps[ep_index].stream_info = NULL; 3278 /* FIXME Unset maxPstreams in endpoint context and 3279 * update deq ptr to point to normal string ring. 3280 */ 3281 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3282 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3283 xhci_endpoint_zero(xhci, vdev, eps[i]); 3284 } 3285 xhci_free_command(xhci, config_cmd); 3286 return -ENOMEM; 3287 } 3288 3289 /* Transition the endpoint from using streams to being a "normal" endpoint 3290 * without streams. 3291 * 3292 * Modify the endpoint context state, submit a configure endpoint command, 3293 * and free all endpoint rings for streams if that completes successfully. 3294 */ 3295 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3296 struct usb_host_endpoint **eps, unsigned int num_eps, 3297 gfp_t mem_flags) 3298 { 3299 int i, ret; 3300 struct xhci_hcd *xhci; 3301 struct xhci_virt_device *vdev; 3302 struct xhci_command *command; 3303 struct xhci_input_control_ctx *ctrl_ctx; 3304 unsigned int ep_index; 3305 unsigned long flags; 3306 u32 changed_ep_bitmask; 3307 3308 xhci = hcd_to_xhci(hcd); 3309 vdev = xhci->devs[udev->slot_id]; 3310 3311 /* Set up a configure endpoint command to remove the streams rings */ 3312 spin_lock_irqsave(&xhci->lock, flags); 3313 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3314 udev, eps, num_eps); 3315 if (changed_ep_bitmask == 0) { 3316 spin_unlock_irqrestore(&xhci->lock, flags); 3317 return -EINVAL; 3318 } 3319 3320 /* Use the xhci_command structure from the first endpoint. We may have 3321 * allocated too many, but the driver may call xhci_free_streams() for 3322 * each endpoint it grouped into one call to xhci_alloc_streams(). 3323 */ 3324 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3325 command = vdev->eps[ep_index].stream_info->free_streams_command; 3326 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3327 if (!ctrl_ctx) { 3328 spin_unlock_irqrestore(&xhci->lock, flags); 3329 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3330 __func__); 3331 return -EINVAL; 3332 } 3333 3334 for (i = 0; i < num_eps; i++) { 3335 struct xhci_ep_ctx *ep_ctx; 3336 3337 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3338 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3339 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3340 EP_GETTING_NO_STREAMS; 3341 3342 xhci_endpoint_copy(xhci, command->in_ctx, 3343 vdev->out_ctx, ep_index); 3344 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3345 &vdev->eps[ep_index]); 3346 } 3347 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3348 vdev->out_ctx, ctrl_ctx, 3349 changed_ep_bitmask, changed_ep_bitmask); 3350 spin_unlock_irqrestore(&xhci->lock, flags); 3351 3352 /* Issue and wait for the configure endpoint command, 3353 * which must succeed. 3354 */ 3355 ret = xhci_configure_endpoint(xhci, udev, command, 3356 false, true); 3357 3358 /* xHC rejected the configure endpoint command for some reason, so we 3359 * leave the streams rings intact. 3360 */ 3361 if (ret < 0) 3362 return ret; 3363 3364 spin_lock_irqsave(&xhci->lock, flags); 3365 for (i = 0; i < num_eps; i++) { 3366 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3367 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3368 vdev->eps[ep_index].stream_info = NULL; 3369 /* FIXME Unset maxPstreams in endpoint context and 3370 * update deq ptr to point to normal string ring. 3371 */ 3372 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3373 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3374 } 3375 spin_unlock_irqrestore(&xhci->lock, flags); 3376 3377 return 0; 3378 } 3379 3380 /* 3381 * Deletes endpoint resources for endpoints that were active before a Reset 3382 * Device command, or a Disable Slot command. The Reset Device command leaves 3383 * the control endpoint intact, whereas the Disable Slot command deletes it. 3384 * 3385 * Must be called with xhci->lock held. 3386 */ 3387 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3388 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3389 { 3390 int i; 3391 unsigned int num_dropped_eps = 0; 3392 unsigned int drop_flags = 0; 3393 3394 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3395 if (virt_dev->eps[i].ring) { 3396 drop_flags |= 1 << i; 3397 num_dropped_eps++; 3398 } 3399 } 3400 xhci->num_active_eps -= num_dropped_eps; 3401 if (num_dropped_eps) 3402 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3403 "Dropped %u ep ctxs, flags = 0x%x, " 3404 "%u now active.", 3405 num_dropped_eps, drop_flags, 3406 xhci->num_active_eps); 3407 } 3408 3409 /* 3410 * This submits a Reset Device Command, which will set the device state to 0, 3411 * set the device address to 0, and disable all the endpoints except the default 3412 * control endpoint. The USB core should come back and call 3413 * xhci_address_device(), and then re-set up the configuration. If this is 3414 * called because of a usb_reset_and_verify_device(), then the old alternate 3415 * settings will be re-installed through the normal bandwidth allocation 3416 * functions. 3417 * 3418 * Wait for the Reset Device command to finish. Remove all structures 3419 * associated with the endpoints that were disabled. Clear the input device 3420 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3421 * 3422 * If the virt_dev to be reset does not exist or does not match the udev, 3423 * it means the device is lost, possibly due to the xHC restore error and 3424 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3425 * re-allocate the device. 3426 */ 3427 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3428 { 3429 int ret, i; 3430 unsigned long flags; 3431 struct xhci_hcd *xhci; 3432 unsigned int slot_id; 3433 struct xhci_virt_device *virt_dev; 3434 struct xhci_command *reset_device_cmd; 3435 int last_freed_endpoint; 3436 struct xhci_slot_ctx *slot_ctx; 3437 int old_active_eps = 0; 3438 3439 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3440 if (ret <= 0) 3441 return ret; 3442 xhci = hcd_to_xhci(hcd); 3443 slot_id = udev->slot_id; 3444 virt_dev = xhci->devs[slot_id]; 3445 if (!virt_dev) { 3446 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3447 "not exist. Re-allocate the device\n", slot_id); 3448 ret = xhci_alloc_dev(hcd, udev); 3449 if (ret == 1) 3450 return 0; 3451 else 3452 return -EINVAL; 3453 } 3454 3455 if (virt_dev->tt_info) 3456 old_active_eps = virt_dev->tt_info->active_eps; 3457 3458 if (virt_dev->udev != udev) { 3459 /* If the virt_dev and the udev does not match, this virt_dev 3460 * may belong to another udev. 3461 * Re-allocate the device. 3462 */ 3463 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3464 "not match the udev. Re-allocate the device\n", 3465 slot_id); 3466 ret = xhci_alloc_dev(hcd, udev); 3467 if (ret == 1) 3468 return 0; 3469 else 3470 return -EINVAL; 3471 } 3472 3473 /* If device is not setup, there is no point in resetting it */ 3474 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3475 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3476 SLOT_STATE_DISABLED) 3477 return 0; 3478 3479 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3480 /* Allocate the command structure that holds the struct completion. 3481 * Assume we're in process context, since the normal device reset 3482 * process has to wait for the device anyway. Storage devices are 3483 * reset as part of error handling, so use GFP_NOIO instead of 3484 * GFP_KERNEL. 3485 */ 3486 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3487 if (!reset_device_cmd) { 3488 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3489 return -ENOMEM; 3490 } 3491 3492 /* Attempt to submit the Reset Device command to the command ring */ 3493 spin_lock_irqsave(&xhci->lock, flags); 3494 3495 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3496 if (ret) { 3497 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3498 spin_unlock_irqrestore(&xhci->lock, flags); 3499 goto command_cleanup; 3500 } 3501 xhci_ring_cmd_db(xhci); 3502 spin_unlock_irqrestore(&xhci->lock, flags); 3503 3504 /* Wait for the Reset Device command to finish */ 3505 wait_for_completion(reset_device_cmd->completion); 3506 3507 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3508 * unless we tried to reset a slot ID that wasn't enabled, 3509 * or the device wasn't in the addressed or configured state. 3510 */ 3511 ret = reset_device_cmd->status; 3512 switch (ret) { 3513 case COMP_CMD_ABORT: 3514 case COMP_CMD_STOP: 3515 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3516 ret = -ETIME; 3517 goto command_cleanup; 3518 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3519 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3520 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3521 slot_id, 3522 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3523 xhci_dbg(xhci, "Not freeing device rings.\n"); 3524 /* Don't treat this as an error. May change my mind later. */ 3525 ret = 0; 3526 goto command_cleanup; 3527 case COMP_SUCCESS: 3528 xhci_dbg(xhci, "Successful reset device command.\n"); 3529 break; 3530 default: 3531 if (xhci_is_vendor_info_code(xhci, ret)) 3532 break; 3533 xhci_warn(xhci, "Unknown completion code %u for " 3534 "reset device command.\n", ret); 3535 ret = -EINVAL; 3536 goto command_cleanup; 3537 } 3538 3539 /* Free up host controller endpoint resources */ 3540 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3541 spin_lock_irqsave(&xhci->lock, flags); 3542 /* Don't delete the default control endpoint resources */ 3543 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3544 spin_unlock_irqrestore(&xhci->lock, flags); 3545 } 3546 3547 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3548 last_freed_endpoint = 1; 3549 for (i = 1; i < 31; ++i) { 3550 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3551 3552 if (ep->ep_state & EP_HAS_STREAMS) { 3553 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3554 xhci_get_endpoint_address(i)); 3555 xhci_free_stream_info(xhci, ep->stream_info); 3556 ep->stream_info = NULL; 3557 ep->ep_state &= ~EP_HAS_STREAMS; 3558 } 3559 3560 if (ep->ring) { 3561 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3562 last_freed_endpoint = i; 3563 } 3564 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3565 xhci_drop_ep_from_interval_table(xhci, 3566 &virt_dev->eps[i].bw_info, 3567 virt_dev->bw_table, 3568 udev, 3569 &virt_dev->eps[i], 3570 virt_dev->tt_info); 3571 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3572 } 3573 /* If necessary, update the number of active TTs on this root port */ 3574 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3575 3576 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3577 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3578 ret = 0; 3579 3580 command_cleanup: 3581 xhci_free_command(xhci, reset_device_cmd); 3582 return ret; 3583 } 3584 3585 /* 3586 * At this point, the struct usb_device is about to go away, the device has 3587 * disconnected, and all traffic has been stopped and the endpoints have been 3588 * disabled. Free any HC data structures associated with that device. 3589 */ 3590 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3591 { 3592 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3593 struct xhci_virt_device *virt_dev; 3594 unsigned long flags; 3595 u32 state; 3596 int i, ret; 3597 struct xhci_command *command; 3598 3599 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3600 if (!command) 3601 return; 3602 3603 #ifndef CONFIG_USB_DEFAULT_PERSIST 3604 /* 3605 * We called pm_runtime_get_noresume when the device was attached. 3606 * Decrement the counter here to allow controller to runtime suspend 3607 * if no devices remain. 3608 */ 3609 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3610 pm_runtime_put_noidle(hcd->self.controller); 3611 #endif 3612 3613 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3614 /* If the host is halted due to driver unload, we still need to free the 3615 * device. 3616 */ 3617 if (ret <= 0 && ret != -ENODEV) { 3618 kfree(command); 3619 return; 3620 } 3621 3622 virt_dev = xhci->devs[udev->slot_id]; 3623 3624 /* Stop any wayward timer functions (which may grab the lock) */ 3625 for (i = 0; i < 31; ++i) { 3626 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3627 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3628 } 3629 3630 spin_lock_irqsave(&xhci->lock, flags); 3631 /* Don't disable the slot if the host controller is dead. */ 3632 state = readl(&xhci->op_regs->status); 3633 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3634 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3635 xhci_free_virt_device(xhci, udev->slot_id); 3636 spin_unlock_irqrestore(&xhci->lock, flags); 3637 kfree(command); 3638 return; 3639 } 3640 3641 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3642 udev->slot_id)) { 3643 spin_unlock_irqrestore(&xhci->lock, flags); 3644 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3645 return; 3646 } 3647 xhci_ring_cmd_db(xhci); 3648 spin_unlock_irqrestore(&xhci->lock, flags); 3649 3650 /* 3651 * Event command completion handler will free any data structures 3652 * associated with the slot. XXX Can free sleep? 3653 */ 3654 } 3655 3656 /* 3657 * Checks if we have enough host controller resources for the default control 3658 * endpoint. 3659 * 3660 * Must be called with xhci->lock held. 3661 */ 3662 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3663 { 3664 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3665 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3666 "Not enough ep ctxs: " 3667 "%u active, need to add 1, limit is %u.", 3668 xhci->num_active_eps, xhci->limit_active_eps); 3669 return -ENOMEM; 3670 } 3671 xhci->num_active_eps += 1; 3672 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3673 "Adding 1 ep ctx, %u now active.", 3674 xhci->num_active_eps); 3675 return 0; 3676 } 3677 3678 3679 /* 3680 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3681 * timed out, or allocating memory failed. Returns 1 on success. 3682 */ 3683 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3684 { 3685 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3686 unsigned long flags; 3687 int ret, slot_id; 3688 struct xhci_command *command; 3689 3690 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 3691 if (!command) 3692 return 0; 3693 3694 /* xhci->slot_id and xhci->addr_dev are not thread-safe */ 3695 mutex_lock(&xhci->mutex); 3696 spin_lock_irqsave(&xhci->lock, flags); 3697 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3698 if (ret) { 3699 spin_unlock_irqrestore(&xhci->lock, flags); 3700 mutex_unlock(&xhci->mutex); 3701 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3702 xhci_free_command(xhci, command); 3703 return 0; 3704 } 3705 xhci_ring_cmd_db(xhci); 3706 spin_unlock_irqrestore(&xhci->lock, flags); 3707 3708 wait_for_completion(command->completion); 3709 slot_id = command->slot_id; 3710 mutex_unlock(&xhci->mutex); 3711 3712 if (!slot_id || command->status != COMP_SUCCESS) { 3713 xhci_err(xhci, "Error while assigning device slot ID\n"); 3714 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3715 HCS_MAX_SLOTS( 3716 readl(&xhci->cap_regs->hcs_params1))); 3717 xhci_free_command(xhci, command); 3718 return 0; 3719 } 3720 3721 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3722 spin_lock_irqsave(&xhci->lock, flags); 3723 ret = xhci_reserve_host_control_ep_resources(xhci); 3724 if (ret) { 3725 spin_unlock_irqrestore(&xhci->lock, flags); 3726 xhci_warn(xhci, "Not enough host resources, " 3727 "active endpoint contexts = %u\n", 3728 xhci->num_active_eps); 3729 goto disable_slot; 3730 } 3731 spin_unlock_irqrestore(&xhci->lock, flags); 3732 } 3733 /* Use GFP_NOIO, since this function can be called from 3734 * xhci_discover_or_reset_device(), which may be called as part of 3735 * mass storage driver error handling. 3736 */ 3737 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3738 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3739 goto disable_slot; 3740 } 3741 udev->slot_id = slot_id; 3742 3743 #ifndef CONFIG_USB_DEFAULT_PERSIST 3744 /* 3745 * If resetting upon resume, we can't put the controller into runtime 3746 * suspend if there is a device attached. 3747 */ 3748 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3749 pm_runtime_get_noresume(hcd->self.controller); 3750 #endif 3751 3752 3753 xhci_free_command(xhci, command); 3754 /* Is this a LS or FS device under a HS hub? */ 3755 /* Hub or peripherial? */ 3756 return 1; 3757 3758 disable_slot: 3759 /* Disable slot, if we can do it without mem alloc */ 3760 spin_lock_irqsave(&xhci->lock, flags); 3761 kfree(command->completion); 3762 command->completion = NULL; 3763 command->status = 0; 3764 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3765 udev->slot_id)) 3766 xhci_ring_cmd_db(xhci); 3767 spin_unlock_irqrestore(&xhci->lock, flags); 3768 return 0; 3769 } 3770 3771 /* 3772 * Issue an Address Device command and optionally send a corresponding 3773 * SetAddress request to the device. 3774 */ 3775 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3776 enum xhci_setup_dev setup) 3777 { 3778 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3779 unsigned long flags; 3780 struct xhci_virt_device *virt_dev; 3781 int ret = 0; 3782 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3783 struct xhci_slot_ctx *slot_ctx; 3784 struct xhci_input_control_ctx *ctrl_ctx; 3785 u64 temp_64; 3786 struct xhci_command *command = NULL; 3787 3788 mutex_lock(&xhci->mutex); 3789 3790 if (xhci->xhc_state) /* dying, removing or halted */ 3791 goto out; 3792 3793 if (!udev->slot_id) { 3794 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3795 "Bad Slot ID %d", udev->slot_id); 3796 ret = -EINVAL; 3797 goto out; 3798 } 3799 3800 virt_dev = xhci->devs[udev->slot_id]; 3801 3802 if (WARN_ON(!virt_dev)) { 3803 /* 3804 * In plug/unplug torture test with an NEC controller, 3805 * a zero-dereference was observed once due to virt_dev = 0. 3806 * Print useful debug rather than crash if it is observed again! 3807 */ 3808 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3809 udev->slot_id); 3810 ret = -EINVAL; 3811 goto out; 3812 } 3813 3814 if (setup == SETUP_CONTEXT_ONLY) { 3815 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3816 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3817 SLOT_STATE_DEFAULT) { 3818 xhci_dbg(xhci, "Slot already in default state\n"); 3819 goto out; 3820 } 3821 } 3822 3823 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 3824 if (!command) { 3825 ret = -ENOMEM; 3826 goto out; 3827 } 3828 3829 command->in_ctx = virt_dev->in_ctx; 3830 3831 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3832 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3833 if (!ctrl_ctx) { 3834 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3835 __func__); 3836 ret = -EINVAL; 3837 goto out; 3838 } 3839 /* 3840 * If this is the first Set Address since device plug-in or 3841 * virt_device realloaction after a resume with an xHCI power loss, 3842 * then set up the slot context. 3843 */ 3844 if (!slot_ctx->dev_info) 3845 xhci_setup_addressable_virt_dev(xhci, udev); 3846 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3847 else 3848 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3849 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3850 ctrl_ctx->drop_flags = 0; 3851 3852 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3853 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3854 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3855 le32_to_cpu(slot_ctx->dev_info) >> 27); 3856 3857 spin_lock_irqsave(&xhci->lock, flags); 3858 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3859 udev->slot_id, setup); 3860 if (ret) { 3861 spin_unlock_irqrestore(&xhci->lock, flags); 3862 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3863 "FIXME: allocate a command ring segment"); 3864 goto out; 3865 } 3866 xhci_ring_cmd_db(xhci); 3867 spin_unlock_irqrestore(&xhci->lock, flags); 3868 3869 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3870 wait_for_completion(command->completion); 3871 3872 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3873 * the SetAddress() "recovery interval" required by USB and aborting the 3874 * command on a timeout. 3875 */ 3876 switch (command->status) { 3877 case COMP_CMD_ABORT: 3878 case COMP_CMD_STOP: 3879 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3880 ret = -ETIME; 3881 break; 3882 case COMP_CTX_STATE: 3883 case COMP_EBADSLT: 3884 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3885 act, udev->slot_id); 3886 ret = -EINVAL; 3887 break; 3888 case COMP_TX_ERR: 3889 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3890 ret = -EPROTO; 3891 break; 3892 case COMP_DEV_ERR: 3893 dev_warn(&udev->dev, 3894 "ERROR: Incompatible device for setup %s command\n", act); 3895 ret = -ENODEV; 3896 break; 3897 case COMP_SUCCESS: 3898 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3899 "Successful setup %s command", act); 3900 break; 3901 default: 3902 xhci_err(xhci, 3903 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3904 act, command->status); 3905 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3906 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3907 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3908 ret = -EINVAL; 3909 break; 3910 } 3911 if (ret) 3912 goto out; 3913 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3914 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3915 "Op regs DCBAA ptr = %#016llx", temp_64); 3916 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3917 "Slot ID %d dcbaa entry @%p = %#016llx", 3918 udev->slot_id, 3919 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3920 (unsigned long long) 3921 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3922 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3923 "Output Context DMA address = %#08llx", 3924 (unsigned long long)virt_dev->out_ctx->dma); 3925 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3926 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3927 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3928 le32_to_cpu(slot_ctx->dev_info) >> 27); 3929 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3930 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3931 /* 3932 * USB core uses address 1 for the roothubs, so we add one to the 3933 * address given back to us by the HC. 3934 */ 3935 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3936 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3937 le32_to_cpu(slot_ctx->dev_info) >> 27); 3938 /* Zero the input context control for later use */ 3939 ctrl_ctx->add_flags = 0; 3940 ctrl_ctx->drop_flags = 0; 3941 3942 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3943 "Internal device address = %d", 3944 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3945 out: 3946 mutex_unlock(&xhci->mutex); 3947 if (command) { 3948 kfree(command->completion); 3949 kfree(command); 3950 } 3951 return ret; 3952 } 3953 3954 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3955 { 3956 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3957 } 3958 3959 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3960 { 3961 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3962 } 3963 3964 /* 3965 * Transfer the port index into real index in the HW port status 3966 * registers. Caculate offset between the port's PORTSC register 3967 * and port status base. Divide the number of per port register 3968 * to get the real index. The raw port number bases 1. 3969 */ 3970 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3971 { 3972 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3973 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3974 __le32 __iomem *addr; 3975 int raw_port; 3976 3977 if (hcd->speed < HCD_USB3) 3978 addr = xhci->usb2_ports[port1 - 1]; 3979 else 3980 addr = xhci->usb3_ports[port1 - 1]; 3981 3982 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3983 return raw_port; 3984 } 3985 3986 /* 3987 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3988 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3989 */ 3990 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3991 struct usb_device *udev, u16 max_exit_latency) 3992 { 3993 struct xhci_virt_device *virt_dev; 3994 struct xhci_command *command; 3995 struct xhci_input_control_ctx *ctrl_ctx; 3996 struct xhci_slot_ctx *slot_ctx; 3997 unsigned long flags; 3998 int ret; 3999 4000 spin_lock_irqsave(&xhci->lock, flags); 4001 4002 virt_dev = xhci->devs[udev->slot_id]; 4003 4004 /* 4005 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4006 * xHC was re-initialized. Exit latency will be set later after 4007 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4008 */ 4009 4010 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4011 spin_unlock_irqrestore(&xhci->lock, flags); 4012 return 0; 4013 } 4014 4015 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4016 command = xhci->lpm_command; 4017 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4018 if (!ctrl_ctx) { 4019 spin_unlock_irqrestore(&xhci->lock, flags); 4020 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4021 __func__); 4022 return -ENOMEM; 4023 } 4024 4025 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4026 spin_unlock_irqrestore(&xhci->lock, flags); 4027 4028 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4029 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4030 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4031 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4032 slot_ctx->dev_state = 0; 4033 4034 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4035 "Set up evaluate context for LPM MEL change."); 4036 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4037 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4038 4039 /* Issue and wait for the evaluate context command. */ 4040 ret = xhci_configure_endpoint(xhci, udev, command, 4041 true, true); 4042 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4043 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4044 4045 if (!ret) { 4046 spin_lock_irqsave(&xhci->lock, flags); 4047 virt_dev->current_mel = max_exit_latency; 4048 spin_unlock_irqrestore(&xhci->lock, flags); 4049 } 4050 return ret; 4051 } 4052 4053 #ifdef CONFIG_PM 4054 4055 /* BESL to HIRD Encoding array for USB2 LPM */ 4056 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4057 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4058 4059 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4060 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4061 struct usb_device *udev) 4062 { 4063 int u2del, besl, besl_host; 4064 int besl_device = 0; 4065 u32 field; 4066 4067 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4068 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4069 4070 if (field & USB_BESL_SUPPORT) { 4071 for (besl_host = 0; besl_host < 16; besl_host++) { 4072 if (xhci_besl_encoding[besl_host] >= u2del) 4073 break; 4074 } 4075 /* Use baseline BESL value as default */ 4076 if (field & USB_BESL_BASELINE_VALID) 4077 besl_device = USB_GET_BESL_BASELINE(field); 4078 else if (field & USB_BESL_DEEP_VALID) 4079 besl_device = USB_GET_BESL_DEEP(field); 4080 } else { 4081 if (u2del <= 50) 4082 besl_host = 0; 4083 else 4084 besl_host = (u2del - 51) / 75 + 1; 4085 } 4086 4087 besl = besl_host + besl_device; 4088 if (besl > 15) 4089 besl = 15; 4090 4091 return besl; 4092 } 4093 4094 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4095 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4096 { 4097 u32 field; 4098 int l1; 4099 int besld = 0; 4100 int hirdm = 0; 4101 4102 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4103 4104 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4105 l1 = udev->l1_params.timeout / 256; 4106 4107 /* device has preferred BESLD */ 4108 if (field & USB_BESL_DEEP_VALID) { 4109 besld = USB_GET_BESL_DEEP(field); 4110 hirdm = 1; 4111 } 4112 4113 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4114 } 4115 4116 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4117 struct usb_device *udev, int enable) 4118 { 4119 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4120 __le32 __iomem **port_array; 4121 __le32 __iomem *pm_addr, *hlpm_addr; 4122 u32 pm_val, hlpm_val, field; 4123 unsigned int port_num; 4124 unsigned long flags; 4125 int hird, exit_latency; 4126 int ret; 4127 4128 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4129 !udev->lpm_capable) 4130 return -EPERM; 4131 4132 if (!udev->parent || udev->parent->parent || 4133 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4134 return -EPERM; 4135 4136 if (udev->usb2_hw_lpm_capable != 1) 4137 return -EPERM; 4138 4139 spin_lock_irqsave(&xhci->lock, flags); 4140 4141 port_array = xhci->usb2_ports; 4142 port_num = udev->portnum - 1; 4143 pm_addr = port_array[port_num] + PORTPMSC; 4144 pm_val = readl(pm_addr); 4145 hlpm_addr = port_array[port_num] + PORTHLPMC; 4146 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4147 4148 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4149 enable ? "enable" : "disable", port_num + 1); 4150 4151 if (enable) { 4152 /* Host supports BESL timeout instead of HIRD */ 4153 if (udev->usb2_hw_lpm_besl_capable) { 4154 /* if device doesn't have a preferred BESL value use a 4155 * default one which works with mixed HIRD and BESL 4156 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4157 */ 4158 if ((field & USB_BESL_SUPPORT) && 4159 (field & USB_BESL_BASELINE_VALID)) 4160 hird = USB_GET_BESL_BASELINE(field); 4161 else 4162 hird = udev->l1_params.besl; 4163 4164 exit_latency = xhci_besl_encoding[hird]; 4165 spin_unlock_irqrestore(&xhci->lock, flags); 4166 4167 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4168 * input context for link powermanagement evaluate 4169 * context commands. It is protected by hcd->bandwidth 4170 * mutex and is shared by all devices. We need to set 4171 * the max ext latency in USB 2 BESL LPM as well, so 4172 * use the same mutex and xhci_change_max_exit_latency() 4173 */ 4174 mutex_lock(hcd->bandwidth_mutex); 4175 ret = xhci_change_max_exit_latency(xhci, udev, 4176 exit_latency); 4177 mutex_unlock(hcd->bandwidth_mutex); 4178 4179 if (ret < 0) 4180 return ret; 4181 spin_lock_irqsave(&xhci->lock, flags); 4182 4183 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4184 writel(hlpm_val, hlpm_addr); 4185 /* flush write */ 4186 readl(hlpm_addr); 4187 } else { 4188 hird = xhci_calculate_hird_besl(xhci, udev); 4189 } 4190 4191 pm_val &= ~PORT_HIRD_MASK; 4192 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4193 writel(pm_val, pm_addr); 4194 pm_val = readl(pm_addr); 4195 pm_val |= PORT_HLE; 4196 writel(pm_val, pm_addr); 4197 /* flush write */ 4198 readl(pm_addr); 4199 } else { 4200 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4201 writel(pm_val, pm_addr); 4202 /* flush write */ 4203 readl(pm_addr); 4204 if (udev->usb2_hw_lpm_besl_capable) { 4205 spin_unlock_irqrestore(&xhci->lock, flags); 4206 mutex_lock(hcd->bandwidth_mutex); 4207 xhci_change_max_exit_latency(xhci, udev, 0); 4208 mutex_unlock(hcd->bandwidth_mutex); 4209 return 0; 4210 } 4211 } 4212 4213 spin_unlock_irqrestore(&xhci->lock, flags); 4214 return 0; 4215 } 4216 4217 /* check if a usb2 port supports a given extened capability protocol 4218 * only USB2 ports extended protocol capability values are cached. 4219 * Return 1 if capability is supported 4220 */ 4221 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4222 unsigned capability) 4223 { 4224 u32 port_offset, port_count; 4225 int i; 4226 4227 for (i = 0; i < xhci->num_ext_caps; i++) { 4228 if (xhci->ext_caps[i] & capability) { 4229 /* port offsets starts at 1 */ 4230 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4231 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4232 if (port >= port_offset && 4233 port < port_offset + port_count) 4234 return 1; 4235 } 4236 } 4237 return 0; 4238 } 4239 4240 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4241 { 4242 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4243 int portnum = udev->portnum - 1; 4244 4245 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4246 !udev->lpm_capable) 4247 return 0; 4248 4249 /* we only support lpm for non-hub device connected to root hub yet */ 4250 if (!udev->parent || udev->parent->parent || 4251 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4252 return 0; 4253 4254 if (xhci->hw_lpm_support == 1 && 4255 xhci_check_usb2_port_capability( 4256 xhci, portnum, XHCI_HLC)) { 4257 udev->usb2_hw_lpm_capable = 1; 4258 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4259 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4260 if (xhci_check_usb2_port_capability(xhci, portnum, 4261 XHCI_BLC)) 4262 udev->usb2_hw_lpm_besl_capable = 1; 4263 } 4264 4265 return 0; 4266 } 4267 4268 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4269 4270 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4271 static unsigned long long xhci_service_interval_to_ns( 4272 struct usb_endpoint_descriptor *desc) 4273 { 4274 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4275 } 4276 4277 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4278 enum usb3_link_state state) 4279 { 4280 unsigned long long sel; 4281 unsigned long long pel; 4282 unsigned int max_sel_pel; 4283 char *state_name; 4284 4285 switch (state) { 4286 case USB3_LPM_U1: 4287 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4288 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4289 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4290 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4291 state_name = "U1"; 4292 break; 4293 case USB3_LPM_U2: 4294 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4295 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4296 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4297 state_name = "U2"; 4298 break; 4299 default: 4300 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4301 __func__); 4302 return USB3_LPM_DISABLED; 4303 } 4304 4305 if (sel <= max_sel_pel && pel <= max_sel_pel) 4306 return USB3_LPM_DEVICE_INITIATED; 4307 4308 if (sel > max_sel_pel) 4309 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4310 "due to long SEL %llu ms\n", 4311 state_name, sel); 4312 else 4313 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4314 "due to long PEL %llu ms\n", 4315 state_name, pel); 4316 return USB3_LPM_DISABLED; 4317 } 4318 4319 /* The U1 timeout should be the maximum of the following values: 4320 * - For control endpoints, U1 system exit latency (SEL) * 3 4321 * - For bulk endpoints, U1 SEL * 5 4322 * - For interrupt endpoints: 4323 * - Notification EPs, U1 SEL * 3 4324 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4325 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4326 */ 4327 static unsigned long long xhci_calculate_intel_u1_timeout( 4328 struct usb_device *udev, 4329 struct usb_endpoint_descriptor *desc) 4330 { 4331 unsigned long long timeout_ns; 4332 int ep_type; 4333 int intr_type; 4334 4335 ep_type = usb_endpoint_type(desc); 4336 switch (ep_type) { 4337 case USB_ENDPOINT_XFER_CONTROL: 4338 timeout_ns = udev->u1_params.sel * 3; 4339 break; 4340 case USB_ENDPOINT_XFER_BULK: 4341 timeout_ns = udev->u1_params.sel * 5; 4342 break; 4343 case USB_ENDPOINT_XFER_INT: 4344 intr_type = usb_endpoint_interrupt_type(desc); 4345 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4346 timeout_ns = udev->u1_params.sel * 3; 4347 break; 4348 } 4349 /* Otherwise the calculation is the same as isoc eps */ 4350 case USB_ENDPOINT_XFER_ISOC: 4351 timeout_ns = xhci_service_interval_to_ns(desc); 4352 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4353 if (timeout_ns < udev->u1_params.sel * 2) 4354 timeout_ns = udev->u1_params.sel * 2; 4355 break; 4356 default: 4357 return 0; 4358 } 4359 4360 return timeout_ns; 4361 } 4362 4363 /* Returns the hub-encoded U1 timeout value. */ 4364 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4365 struct usb_device *udev, 4366 struct usb_endpoint_descriptor *desc) 4367 { 4368 unsigned long long timeout_ns; 4369 4370 if (xhci->quirks & XHCI_INTEL_HOST) 4371 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4372 else 4373 timeout_ns = udev->u1_params.sel; 4374 4375 /* The U1 timeout is encoded in 1us intervals. 4376 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4377 */ 4378 if (timeout_ns == USB3_LPM_DISABLED) 4379 timeout_ns = 1; 4380 else 4381 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4382 4383 /* If the necessary timeout value is bigger than what we can set in the 4384 * USB 3.0 hub, we have to disable hub-initiated U1. 4385 */ 4386 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4387 return timeout_ns; 4388 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4389 "due to long timeout %llu ms\n", timeout_ns); 4390 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4391 } 4392 4393 /* The U2 timeout should be the maximum of: 4394 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4395 * - largest bInterval of any active periodic endpoint (to avoid going 4396 * into lower power link states between intervals). 4397 * - the U2 Exit Latency of the device 4398 */ 4399 static unsigned long long xhci_calculate_intel_u2_timeout( 4400 struct usb_device *udev, 4401 struct usb_endpoint_descriptor *desc) 4402 { 4403 unsigned long long timeout_ns; 4404 unsigned long long u2_del_ns; 4405 4406 timeout_ns = 10 * 1000 * 1000; 4407 4408 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4409 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4410 timeout_ns = xhci_service_interval_to_ns(desc); 4411 4412 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4413 if (u2_del_ns > timeout_ns) 4414 timeout_ns = u2_del_ns; 4415 4416 return timeout_ns; 4417 } 4418 4419 /* Returns the hub-encoded U2 timeout value. */ 4420 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4421 struct usb_device *udev, 4422 struct usb_endpoint_descriptor *desc) 4423 { 4424 unsigned long long timeout_ns; 4425 4426 if (xhci->quirks & XHCI_INTEL_HOST) 4427 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4428 else 4429 timeout_ns = udev->u2_params.sel; 4430 4431 /* The U2 timeout is encoded in 256us intervals */ 4432 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4433 /* If the necessary timeout value is bigger than what we can set in the 4434 * USB 3.0 hub, we have to disable hub-initiated U2. 4435 */ 4436 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4437 return timeout_ns; 4438 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4439 "due to long timeout %llu ms\n", timeout_ns); 4440 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4441 } 4442 4443 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4444 struct usb_device *udev, 4445 struct usb_endpoint_descriptor *desc, 4446 enum usb3_link_state state, 4447 u16 *timeout) 4448 { 4449 if (state == USB3_LPM_U1) 4450 return xhci_calculate_u1_timeout(xhci, udev, desc); 4451 else if (state == USB3_LPM_U2) 4452 return xhci_calculate_u2_timeout(xhci, udev, desc); 4453 4454 return USB3_LPM_DISABLED; 4455 } 4456 4457 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4458 struct usb_device *udev, 4459 struct usb_endpoint_descriptor *desc, 4460 enum usb3_link_state state, 4461 u16 *timeout) 4462 { 4463 u16 alt_timeout; 4464 4465 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4466 desc, state, timeout); 4467 4468 /* If we found we can't enable hub-initiated LPM, or 4469 * the U1 or U2 exit latency was too high to allow 4470 * device-initiated LPM as well, just stop searching. 4471 */ 4472 if (alt_timeout == USB3_LPM_DISABLED || 4473 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4474 *timeout = alt_timeout; 4475 return -E2BIG; 4476 } 4477 if (alt_timeout > *timeout) 4478 *timeout = alt_timeout; 4479 return 0; 4480 } 4481 4482 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4483 struct usb_device *udev, 4484 struct usb_host_interface *alt, 4485 enum usb3_link_state state, 4486 u16 *timeout) 4487 { 4488 int j; 4489 4490 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4491 if (xhci_update_timeout_for_endpoint(xhci, udev, 4492 &alt->endpoint[j].desc, state, timeout)) 4493 return -E2BIG; 4494 continue; 4495 } 4496 return 0; 4497 } 4498 4499 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4500 enum usb3_link_state state) 4501 { 4502 struct usb_device *parent; 4503 unsigned int num_hubs; 4504 4505 if (state == USB3_LPM_U2) 4506 return 0; 4507 4508 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4509 for (parent = udev->parent, num_hubs = 0; parent->parent; 4510 parent = parent->parent) 4511 num_hubs++; 4512 4513 if (num_hubs < 2) 4514 return 0; 4515 4516 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4517 " below second-tier hub.\n"); 4518 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4519 "to decrease power consumption.\n"); 4520 return -E2BIG; 4521 } 4522 4523 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4524 struct usb_device *udev, 4525 enum usb3_link_state state) 4526 { 4527 if (xhci->quirks & XHCI_INTEL_HOST) 4528 return xhci_check_intel_tier_policy(udev, state); 4529 else 4530 return 0; 4531 } 4532 4533 /* Returns the U1 or U2 timeout that should be enabled. 4534 * If the tier check or timeout setting functions return with a non-zero exit 4535 * code, that means the timeout value has been finalized and we shouldn't look 4536 * at any more endpoints. 4537 */ 4538 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4539 struct usb_device *udev, enum usb3_link_state state) 4540 { 4541 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4542 struct usb_host_config *config; 4543 char *state_name; 4544 int i; 4545 u16 timeout = USB3_LPM_DISABLED; 4546 4547 if (state == USB3_LPM_U1) 4548 state_name = "U1"; 4549 else if (state == USB3_LPM_U2) 4550 state_name = "U2"; 4551 else { 4552 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4553 state); 4554 return timeout; 4555 } 4556 4557 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4558 return timeout; 4559 4560 /* Gather some information about the currently installed configuration 4561 * and alternate interface settings. 4562 */ 4563 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4564 state, &timeout)) 4565 return timeout; 4566 4567 config = udev->actconfig; 4568 if (!config) 4569 return timeout; 4570 4571 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4572 struct usb_driver *driver; 4573 struct usb_interface *intf = config->interface[i]; 4574 4575 if (!intf) 4576 continue; 4577 4578 /* Check if any currently bound drivers want hub-initiated LPM 4579 * disabled. 4580 */ 4581 if (intf->dev.driver) { 4582 driver = to_usb_driver(intf->dev.driver); 4583 if (driver && driver->disable_hub_initiated_lpm) { 4584 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4585 "at request of driver %s\n", 4586 state_name, driver->name); 4587 return xhci_get_timeout_no_hub_lpm(udev, state); 4588 } 4589 } 4590 4591 /* Not sure how this could happen... */ 4592 if (!intf->cur_altsetting) 4593 continue; 4594 4595 if (xhci_update_timeout_for_interface(xhci, udev, 4596 intf->cur_altsetting, 4597 state, &timeout)) 4598 return timeout; 4599 } 4600 return timeout; 4601 } 4602 4603 static int calculate_max_exit_latency(struct usb_device *udev, 4604 enum usb3_link_state state_changed, 4605 u16 hub_encoded_timeout) 4606 { 4607 unsigned long long u1_mel_us = 0; 4608 unsigned long long u2_mel_us = 0; 4609 unsigned long long mel_us = 0; 4610 bool disabling_u1; 4611 bool disabling_u2; 4612 bool enabling_u1; 4613 bool enabling_u2; 4614 4615 disabling_u1 = (state_changed == USB3_LPM_U1 && 4616 hub_encoded_timeout == USB3_LPM_DISABLED); 4617 disabling_u2 = (state_changed == USB3_LPM_U2 && 4618 hub_encoded_timeout == USB3_LPM_DISABLED); 4619 4620 enabling_u1 = (state_changed == USB3_LPM_U1 && 4621 hub_encoded_timeout != USB3_LPM_DISABLED); 4622 enabling_u2 = (state_changed == USB3_LPM_U2 && 4623 hub_encoded_timeout != USB3_LPM_DISABLED); 4624 4625 /* If U1 was already enabled and we're not disabling it, 4626 * or we're going to enable U1, account for the U1 max exit latency. 4627 */ 4628 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4629 enabling_u1) 4630 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4631 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4632 enabling_u2) 4633 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4634 4635 if (u1_mel_us > u2_mel_us) 4636 mel_us = u1_mel_us; 4637 else 4638 mel_us = u2_mel_us; 4639 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4640 if (mel_us > MAX_EXIT) { 4641 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4642 "is too big.\n", mel_us); 4643 return -E2BIG; 4644 } 4645 return mel_us; 4646 } 4647 4648 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4649 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4650 struct usb_device *udev, enum usb3_link_state state) 4651 { 4652 struct xhci_hcd *xhci; 4653 u16 hub_encoded_timeout; 4654 int mel; 4655 int ret; 4656 4657 xhci = hcd_to_xhci(hcd); 4658 /* The LPM timeout values are pretty host-controller specific, so don't 4659 * enable hub-initiated timeouts unless the vendor has provided 4660 * information about their timeout algorithm. 4661 */ 4662 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4663 !xhci->devs[udev->slot_id]) 4664 return USB3_LPM_DISABLED; 4665 4666 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4667 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4668 if (mel < 0) { 4669 /* Max Exit Latency is too big, disable LPM. */ 4670 hub_encoded_timeout = USB3_LPM_DISABLED; 4671 mel = 0; 4672 } 4673 4674 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4675 if (ret) 4676 return ret; 4677 return hub_encoded_timeout; 4678 } 4679 4680 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4681 struct usb_device *udev, enum usb3_link_state state) 4682 { 4683 struct xhci_hcd *xhci; 4684 u16 mel; 4685 4686 xhci = hcd_to_xhci(hcd); 4687 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4688 !xhci->devs[udev->slot_id]) 4689 return 0; 4690 4691 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4692 return xhci_change_max_exit_latency(xhci, udev, mel); 4693 } 4694 #else /* CONFIG_PM */ 4695 4696 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4697 struct usb_device *udev, int enable) 4698 { 4699 return 0; 4700 } 4701 4702 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4703 { 4704 return 0; 4705 } 4706 4707 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4708 struct usb_device *udev, enum usb3_link_state state) 4709 { 4710 return USB3_LPM_DISABLED; 4711 } 4712 4713 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4714 struct usb_device *udev, enum usb3_link_state state) 4715 { 4716 return 0; 4717 } 4718 #endif /* CONFIG_PM */ 4719 4720 /*-------------------------------------------------------------------------*/ 4721 4722 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4723 * internal data structures for the device. 4724 */ 4725 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4726 struct usb_tt *tt, gfp_t mem_flags) 4727 { 4728 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4729 struct xhci_virt_device *vdev; 4730 struct xhci_command *config_cmd; 4731 struct xhci_input_control_ctx *ctrl_ctx; 4732 struct xhci_slot_ctx *slot_ctx; 4733 unsigned long flags; 4734 unsigned think_time; 4735 int ret; 4736 4737 /* Ignore root hubs */ 4738 if (!hdev->parent) 4739 return 0; 4740 4741 vdev = xhci->devs[hdev->slot_id]; 4742 if (!vdev) { 4743 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4744 return -EINVAL; 4745 } 4746 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4747 if (!config_cmd) { 4748 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4749 return -ENOMEM; 4750 } 4751 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4752 if (!ctrl_ctx) { 4753 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4754 __func__); 4755 xhci_free_command(xhci, config_cmd); 4756 return -ENOMEM; 4757 } 4758 4759 spin_lock_irqsave(&xhci->lock, flags); 4760 if (hdev->speed == USB_SPEED_HIGH && 4761 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4762 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4763 xhci_free_command(xhci, config_cmd); 4764 spin_unlock_irqrestore(&xhci->lock, flags); 4765 return -ENOMEM; 4766 } 4767 4768 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4769 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4770 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4771 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4772 /* 4773 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4774 * but it may be already set to 1 when setup an xHCI virtual 4775 * device, so clear it anyway. 4776 */ 4777 if (tt->multi) 4778 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4779 else if (hdev->speed == USB_SPEED_FULL) 4780 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4781 4782 if (xhci->hci_version > 0x95) { 4783 xhci_dbg(xhci, "xHCI version %x needs hub " 4784 "TT think time and number of ports\n", 4785 (unsigned int) xhci->hci_version); 4786 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4787 /* Set TT think time - convert from ns to FS bit times. 4788 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4789 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4790 * 4791 * xHCI 1.0: this field shall be 0 if the device is not a 4792 * High-spped hub. 4793 */ 4794 think_time = tt->think_time; 4795 if (think_time != 0) 4796 think_time = (think_time / 666) - 1; 4797 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4798 slot_ctx->tt_info |= 4799 cpu_to_le32(TT_THINK_TIME(think_time)); 4800 } else { 4801 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4802 "TT think time or number of ports\n", 4803 (unsigned int) xhci->hci_version); 4804 } 4805 slot_ctx->dev_state = 0; 4806 spin_unlock_irqrestore(&xhci->lock, flags); 4807 4808 xhci_dbg(xhci, "Set up %s for hub device.\n", 4809 (xhci->hci_version > 0x95) ? 4810 "configure endpoint" : "evaluate context"); 4811 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4812 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4813 4814 /* Issue and wait for the configure endpoint or 4815 * evaluate context command. 4816 */ 4817 if (xhci->hci_version > 0x95) 4818 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4819 false, false); 4820 else 4821 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4822 true, false); 4823 4824 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4825 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4826 4827 xhci_free_command(xhci, config_cmd); 4828 return ret; 4829 } 4830 4831 int xhci_get_frame(struct usb_hcd *hcd) 4832 { 4833 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4834 /* EHCI mods by the periodic size. Why? */ 4835 return readl(&xhci->run_regs->microframe_index) >> 3; 4836 } 4837 4838 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4839 { 4840 struct xhci_hcd *xhci; 4841 struct device *dev = hcd->self.controller; 4842 int retval; 4843 4844 /* Accept arbitrarily long scatter-gather lists */ 4845 hcd->self.sg_tablesize = ~0; 4846 4847 /* support to build packet from discontinuous buffers */ 4848 hcd->self.no_sg_constraint = 1; 4849 4850 /* XHCI controllers don't stop the ep queue on short packets :| */ 4851 hcd->self.no_stop_on_short = 1; 4852 4853 xhci = hcd_to_xhci(hcd); 4854 4855 if (usb_hcd_is_primary_hcd(hcd)) { 4856 xhci->main_hcd = hcd; 4857 /* Mark the first roothub as being USB 2.0. 4858 * The xHCI driver will register the USB 3.0 roothub. 4859 */ 4860 hcd->speed = HCD_USB2; 4861 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4862 /* 4863 * USB 2.0 roothub under xHCI has an integrated TT, 4864 * (rate matching hub) as opposed to having an OHCI/UHCI 4865 * companion controller. 4866 */ 4867 hcd->has_tt = 1; 4868 } else { 4869 if (xhci->sbrn == 0x31) { 4870 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n"); 4871 hcd->speed = HCD_USB31; 4872 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4873 } 4874 /* xHCI private pointer was set in xhci_pci_probe for the second 4875 * registered roothub. 4876 */ 4877 return 0; 4878 } 4879 4880 mutex_init(&xhci->mutex); 4881 xhci->cap_regs = hcd->regs; 4882 xhci->op_regs = hcd->regs + 4883 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4884 xhci->run_regs = hcd->regs + 4885 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4886 /* Cache read-only capability registers */ 4887 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4888 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4889 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4890 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4891 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4892 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4893 if (xhci->hci_version > 0x100) 4894 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4895 xhci_print_registers(xhci); 4896 4897 xhci->quirks |= quirks; 4898 4899 get_quirks(dev, xhci); 4900 4901 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4902 * success event after a short transfer. This quirk will ignore such 4903 * spurious event. 4904 */ 4905 if (xhci->hci_version > 0x96) 4906 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4907 4908 /* Make sure the HC is halted. */ 4909 retval = xhci_halt(xhci); 4910 if (retval) 4911 return retval; 4912 4913 xhci_dbg(xhci, "Resetting HCD\n"); 4914 /* Reset the internal HC memory state and registers. */ 4915 retval = xhci_reset(xhci); 4916 if (retval) 4917 return retval; 4918 xhci_dbg(xhci, "Reset complete\n"); 4919 4920 /* 4921 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 4922 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 4923 * address memory pointers actually. So, this driver clears the AC64 4924 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 4925 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 4926 */ 4927 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 4928 xhci->hcc_params &= ~BIT(0); 4929 4930 /* Set dma_mask and coherent_dma_mask to 64-bits, 4931 * if xHC supports 64-bit addressing */ 4932 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4933 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4934 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4935 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4936 } else { 4937 /* 4938 * This is to avoid error in cases where a 32-bit USB 4939 * controller is used on a 64-bit capable system. 4940 */ 4941 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4942 if (retval) 4943 return retval; 4944 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4945 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4946 } 4947 4948 xhci_dbg(xhci, "Calling HCD init\n"); 4949 /* Initialize HCD and host controller data structures. */ 4950 retval = xhci_init(hcd); 4951 if (retval) 4952 return retval; 4953 xhci_dbg(xhci, "Called HCD init\n"); 4954 4955 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4956 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4957 4958 return 0; 4959 } 4960 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4961 4962 static const struct hc_driver xhci_hc_driver = { 4963 .description = "xhci-hcd", 4964 .product_desc = "xHCI Host Controller", 4965 .hcd_priv_size = sizeof(struct xhci_hcd), 4966 4967 /* 4968 * generic hardware linkage 4969 */ 4970 .irq = xhci_irq, 4971 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4972 4973 /* 4974 * basic lifecycle operations 4975 */ 4976 .reset = NULL, /* set in xhci_init_driver() */ 4977 .start = xhci_run, 4978 .stop = xhci_stop, 4979 .shutdown = xhci_shutdown, 4980 4981 /* 4982 * managing i/o requests and associated device resources 4983 */ 4984 .urb_enqueue = xhci_urb_enqueue, 4985 .urb_dequeue = xhci_urb_dequeue, 4986 .alloc_dev = xhci_alloc_dev, 4987 .free_dev = xhci_free_dev, 4988 .alloc_streams = xhci_alloc_streams, 4989 .free_streams = xhci_free_streams, 4990 .add_endpoint = xhci_add_endpoint, 4991 .drop_endpoint = xhci_drop_endpoint, 4992 .endpoint_reset = xhci_endpoint_reset, 4993 .check_bandwidth = xhci_check_bandwidth, 4994 .reset_bandwidth = xhci_reset_bandwidth, 4995 .address_device = xhci_address_device, 4996 .enable_device = xhci_enable_device, 4997 .update_hub_device = xhci_update_hub_device, 4998 .reset_device = xhci_discover_or_reset_device, 4999 5000 /* 5001 * scheduling support 5002 */ 5003 .get_frame_number = xhci_get_frame, 5004 5005 /* 5006 * root hub support 5007 */ 5008 .hub_control = xhci_hub_control, 5009 .hub_status_data = xhci_hub_status_data, 5010 .bus_suspend = xhci_bus_suspend, 5011 .bus_resume = xhci_bus_resume, 5012 5013 /* 5014 * call back when device connected and addressed 5015 */ 5016 .update_device = xhci_update_device, 5017 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5018 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5019 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5020 .find_raw_port_number = xhci_find_raw_port_number, 5021 }; 5022 5023 void xhci_init_driver(struct hc_driver *drv, 5024 const struct xhci_driver_overrides *over) 5025 { 5026 BUG_ON(!over); 5027 5028 /* Copy the generic table to drv then apply the overrides */ 5029 *drv = xhci_hc_driver; 5030 5031 if (over) { 5032 drv->hcd_priv_size += over->extra_priv_size; 5033 if (over->reset) 5034 drv->reset = over->reset; 5035 if (over->start) 5036 drv->start = over->start; 5037 } 5038 } 5039 EXPORT_SYMBOL_GPL(xhci_init_driver); 5040 5041 MODULE_DESCRIPTION(DRIVER_DESC); 5042 MODULE_AUTHOR(DRIVER_AUTHOR); 5043 MODULE_LICENSE("GPL"); 5044 5045 static int __init xhci_hcd_init(void) 5046 { 5047 /* 5048 * Check the compiler generated sizes of structures that must be laid 5049 * out in specific ways for hardware access. 5050 */ 5051 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5052 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5053 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5054 /* xhci_device_control has eight fields, and also 5055 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5056 */ 5057 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5058 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5059 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5060 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5061 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5062 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5063 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5064 5065 if (usb_disabled()) 5066 return -ENODEV; 5067 5068 return 0; 5069 } 5070 5071 /* 5072 * If an init function is provided, an exit function must also be provided 5073 * to allow module unload. 5074 */ 5075 static void __exit xhci_hcd_fini(void) { } 5076 5077 module_init(xhci_hcd_init); 5078 module_exit(xhci_hcd_fini); 5079