xref: /linux/drivers/usb/host/xhci.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 	struct xhci_segment *seg = ring->first_seg;
43 
44 	if (!td || !td->start_seg)
45 		return false;
46 	do {
47 		if (seg == td->start_seg)
48 			return true;
49 		seg = seg->next;
50 	} while (seg && seg != ring->first_seg);
51 
52 	return false;
53 }
54 
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
69 {
70 	u32	result;
71 	int	ret;
72 
73 	ret = readl_poll_timeout_atomic(ptr, result,
74 					(result & mask) == done ||
75 					result == U32_MAX,
76 					1, timeout_us);
77 	if (result == U32_MAX)		/* card removed */
78 		return -ENODEV;
79 
80 	return ret;
81 }
82 
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88 	u32 halted;
89 	u32 cmd;
90 	u32 mask;
91 
92 	mask = ~(XHCI_IRQS);
93 	halted = readl(&xhci->op_regs->status) & STS_HALT;
94 	if (!halted)
95 		mask &= ~CMD_RUN;
96 
97 	cmd = readl(&xhci->op_regs->command);
98 	cmd &= mask;
99 	writel(cmd, &xhci->op_regs->command);
100 }
101 
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112 	int ret;
113 
114 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 	xhci_quiesce(xhci);
116 
117 	ret = xhci_handshake(&xhci->op_regs->status,
118 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 	if (ret) {
120 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 		return ret;
122 	}
123 
124 	xhci->xhc_state |= XHCI_STATE_HALTED;
125 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
126 
127 	return ret;
128 }
129 
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135 	u32 temp;
136 	int ret;
137 
138 	temp = readl(&xhci->op_regs->command);
139 	temp |= (CMD_RUN);
140 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141 			temp);
142 	writel(temp, &xhci->op_regs->command);
143 
144 	/*
145 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
146 	 * running.
147 	 */
148 	ret = xhci_handshake(&xhci->op_regs->status,
149 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
150 	if (ret == -ETIMEDOUT)
151 		xhci_err(xhci, "Host took too long to start, "
152 				"waited %u microseconds.\n",
153 				XHCI_MAX_HALT_USEC);
154 	if (!ret)
155 		/* clear state flags. Including dying, halted or removing */
156 		xhci->xhc_state = 0;
157 
158 	return ret;
159 }
160 
161 /*
162  * Reset a halted HC.
163  *
164  * This resets pipelines, timers, counters, state machines, etc.
165  * Transactions will be terminated immediately, and operational registers
166  * will be set to their defaults.
167  */
168 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
169 {
170 	u32 command;
171 	u32 state;
172 	int ret;
173 
174 	state = readl(&xhci->op_regs->status);
175 
176 	if (state == ~(u32)0) {
177 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
178 		return -ENODEV;
179 	}
180 
181 	if ((state & STS_HALT) == 0) {
182 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183 		return 0;
184 	}
185 
186 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187 	command = readl(&xhci->op_regs->command);
188 	command |= CMD_RESET;
189 	writel(command, &xhci->op_regs->command);
190 
191 	/* Existing Intel xHCI controllers require a delay of 1 mS,
192 	 * after setting the CMD_RESET bit, and before accessing any
193 	 * HC registers. This allows the HC to complete the
194 	 * reset operation and be ready for HC register access.
195 	 * Without this delay, the subsequent HC register access,
196 	 * may result in a system hang very rarely.
197 	 */
198 	if (xhci->quirks & XHCI_INTEL_HOST)
199 		udelay(1000);
200 
201 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
202 	if (ret)
203 		return ret;
204 
205 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
206 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
207 
208 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
209 			 "Wait for controller to be ready for doorbell rings");
210 	/*
211 	 * xHCI cannot write to any doorbells or operational registers other
212 	 * than status until the "Controller Not Ready" flag is cleared.
213 	 */
214 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
215 
216 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
222 
223 	return ret;
224 }
225 
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 	int err, i;
230 	u64 val;
231 	u32 intrs;
232 
233 	/*
234 	 * Some Renesas controllers get into a weird state if they are
235 	 * reset while programmed with 64bit addresses (they will preserve
236 	 * the top half of the address in internal, non visible
237 	 * registers). You end up with half the address coming from the
238 	 * kernel, and the other half coming from the firmware. Also,
239 	 * changing the programming leads to extra accesses even if the
240 	 * controller is supposed to be halted. The controller ends up with
241 	 * a fatal fault, and is then ripe for being properly reset.
242 	 *
243 	 * Special care is taken to only apply this if the device is behind
244 	 * an iommu. Doing anything when there is no iommu is definitely
245 	 * unsafe...
246 	 */
247 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
248 		return;
249 
250 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
251 
252 	/* Clear HSEIE so that faults do not get signaled */
253 	val = readl(&xhci->op_regs->command);
254 	val &= ~CMD_HSEIE;
255 	writel(val, &xhci->op_regs->command);
256 
257 	/* Clear HSE (aka FATAL) */
258 	val = readl(&xhci->op_regs->status);
259 	val |= STS_FATAL;
260 	writel(val, &xhci->op_regs->status);
261 
262 	/* Now zero the registers, and brace for impact */
263 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
264 	if (upper_32_bits(val))
265 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
266 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
267 	if (upper_32_bits(val))
268 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
269 
270 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
271 		      ARRAY_SIZE(xhci->run_regs->ir_set));
272 
273 	for (i = 0; i < intrs; i++) {
274 		struct xhci_intr_reg __iomem *ir;
275 
276 		ir = &xhci->run_regs->ir_set[i];
277 		val = xhci_read_64(xhci, &ir->erst_base);
278 		if (upper_32_bits(val))
279 			xhci_write_64(xhci, 0, &ir->erst_base);
280 		val= xhci_read_64(xhci, &ir->erst_dequeue);
281 		if (upper_32_bits(val))
282 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
283 	}
284 
285 	/* Wait for the fault to appear. It will be cleared on reset */
286 	err = xhci_handshake(&xhci->op_regs->status,
287 			     STS_FATAL, STS_FATAL,
288 			     XHCI_MAX_HALT_USEC);
289 	if (!err)
290 		xhci_info(xhci, "Fault detected\n");
291 }
292 
293 #ifdef CONFIG_USB_PCI
294 /*
295  * Set up MSI
296  */
297 static int xhci_setup_msi(struct xhci_hcd *xhci)
298 {
299 	int ret;
300 	/*
301 	 * TODO:Check with MSI Soc for sysdev
302 	 */
303 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
304 
305 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
306 	if (ret < 0) {
307 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
308 				"failed to allocate MSI entry");
309 		return ret;
310 	}
311 
312 	ret = request_irq(pdev->irq, xhci_msi_irq,
313 				0, "xhci_hcd", xhci_to_hcd(xhci));
314 	if (ret) {
315 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
316 				"disable MSI interrupt");
317 		pci_free_irq_vectors(pdev);
318 	}
319 
320 	return ret;
321 }
322 
323 /*
324  * Set up MSI-X
325  */
326 static int xhci_setup_msix(struct xhci_hcd *xhci)
327 {
328 	int i, ret;
329 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
330 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
331 
332 	/*
333 	 * calculate number of msi-x vectors supported.
334 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
335 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
336 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
337 	 *   Add additional 1 vector to ensure always available interrupt.
338 	 */
339 	xhci->msix_count = min(num_online_cpus() + 1,
340 				HCS_MAX_INTRS(xhci->hcs_params1));
341 
342 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
343 			PCI_IRQ_MSIX);
344 	if (ret < 0) {
345 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
346 				"Failed to enable MSI-X");
347 		return ret;
348 	}
349 
350 	for (i = 0; i < xhci->msix_count; i++) {
351 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
352 				"xhci_hcd", xhci_to_hcd(xhci));
353 		if (ret)
354 			goto disable_msix;
355 	}
356 
357 	hcd->msix_enabled = 1;
358 	return ret;
359 
360 disable_msix:
361 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
362 	while (--i >= 0)
363 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
364 	pci_free_irq_vectors(pdev);
365 	return ret;
366 }
367 
368 /* Free any IRQs and disable MSI-X */
369 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
370 {
371 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
372 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
373 
374 	if (xhci->quirks & XHCI_PLAT)
375 		return;
376 
377 	/* return if using legacy interrupt */
378 	if (hcd->irq > 0)
379 		return;
380 
381 	if (hcd->msix_enabled) {
382 		int i;
383 
384 		for (i = 0; i < xhci->msix_count; i++)
385 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
386 	} else {
387 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
388 	}
389 
390 	pci_free_irq_vectors(pdev);
391 	hcd->msix_enabled = 0;
392 }
393 
394 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
395 {
396 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
397 
398 	if (hcd->msix_enabled) {
399 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
400 		int i;
401 
402 		for (i = 0; i < xhci->msix_count; i++)
403 			synchronize_irq(pci_irq_vector(pdev, i));
404 	}
405 }
406 
407 static int xhci_try_enable_msi(struct usb_hcd *hcd)
408 {
409 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
410 	struct pci_dev  *pdev;
411 	int ret;
412 
413 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
414 	if (xhci->quirks & XHCI_PLAT)
415 		return 0;
416 
417 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
418 	/*
419 	 * Some Fresco Logic host controllers advertise MSI, but fail to
420 	 * generate interrupts.  Don't even try to enable MSI.
421 	 */
422 	if (xhci->quirks & XHCI_BROKEN_MSI)
423 		goto legacy_irq;
424 
425 	/* unregister the legacy interrupt */
426 	if (hcd->irq)
427 		free_irq(hcd->irq, hcd);
428 	hcd->irq = 0;
429 
430 	ret = xhci_setup_msix(xhci);
431 	if (ret)
432 		/* fall back to msi*/
433 		ret = xhci_setup_msi(xhci);
434 
435 	if (!ret) {
436 		hcd->msi_enabled = 1;
437 		return 0;
438 	}
439 
440 	if (!pdev->irq) {
441 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
442 		return -EINVAL;
443 	}
444 
445  legacy_irq:
446 	if (!strlen(hcd->irq_descr))
447 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
448 			 hcd->driver->description, hcd->self.busnum);
449 
450 	/* fall back to legacy interrupt*/
451 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
452 			hcd->irq_descr, hcd);
453 	if (ret) {
454 		xhci_err(xhci, "request interrupt %d failed\n",
455 				pdev->irq);
456 		return ret;
457 	}
458 	hcd->irq = pdev->irq;
459 	return 0;
460 }
461 
462 #else
463 
464 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
465 {
466 	return 0;
467 }
468 
469 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
470 {
471 }
472 
473 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
474 {
475 }
476 
477 #endif
478 
479 static void compliance_mode_recovery(struct timer_list *t)
480 {
481 	struct xhci_hcd *xhci;
482 	struct usb_hcd *hcd;
483 	struct xhci_hub *rhub;
484 	u32 temp;
485 	int i;
486 
487 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
488 	rhub = &xhci->usb3_rhub;
489 	hcd = rhub->hcd;
490 
491 	if (!hcd)
492 		return;
493 
494 	for (i = 0; i < rhub->num_ports; i++) {
495 		temp = readl(rhub->ports[i]->addr);
496 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
497 			/*
498 			 * Compliance Mode Detected. Letting USB Core
499 			 * handle the Warm Reset
500 			 */
501 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
502 					"Compliance mode detected->port %d",
503 					i + 1);
504 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
505 					"Attempting compliance mode recovery");
506 
507 			if (hcd->state == HC_STATE_SUSPENDED)
508 				usb_hcd_resume_root_hub(hcd);
509 
510 			usb_hcd_poll_rh_status(hcd);
511 		}
512 	}
513 
514 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
515 		mod_timer(&xhci->comp_mode_recovery_timer,
516 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
517 }
518 
519 /*
520  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
521  * that causes ports behind that hardware to enter compliance mode sometimes.
522  * The quirk creates a timer that polls every 2 seconds the link state of
523  * each host controller's port and recovers it by issuing a Warm reset
524  * if Compliance mode is detected, otherwise the port will become "dead" (no
525  * device connections or disconnections will be detected anymore). Becasue no
526  * status event is generated when entering compliance mode (per xhci spec),
527  * this quirk is needed on systems that have the failing hardware installed.
528  */
529 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
530 {
531 	xhci->port_status_u0 = 0;
532 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
533 		    0);
534 	xhci->comp_mode_recovery_timer.expires = jiffies +
535 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
536 
537 	add_timer(&xhci->comp_mode_recovery_timer);
538 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
539 			"Compliance mode recovery timer initialized");
540 }
541 
542 /*
543  * This function identifies the systems that have installed the SN65LVPE502CP
544  * USB3.0 re-driver and that need the Compliance Mode Quirk.
545  * Systems:
546  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
547  */
548 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
549 {
550 	const char *dmi_product_name, *dmi_sys_vendor;
551 
552 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
553 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
554 	if (!dmi_product_name || !dmi_sys_vendor)
555 		return false;
556 
557 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
558 		return false;
559 
560 	if (strstr(dmi_product_name, "Z420") ||
561 			strstr(dmi_product_name, "Z620") ||
562 			strstr(dmi_product_name, "Z820") ||
563 			strstr(dmi_product_name, "Z1 Workstation"))
564 		return true;
565 
566 	return false;
567 }
568 
569 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
570 {
571 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
572 }
573 
574 
575 /*
576  * Initialize memory for HCD and xHC (one-time init).
577  *
578  * Program the PAGESIZE register, initialize the device context array, create
579  * device contexts (?), set up a command ring segment (or two?), create event
580  * ring (one for now).
581  */
582 static int xhci_init(struct usb_hcd *hcd)
583 {
584 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
585 	int retval;
586 
587 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
588 	spin_lock_init(&xhci->lock);
589 	if (xhci->hci_version == 0x95 && link_quirk) {
590 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
591 				"QUIRK: Not clearing Link TRB chain bits.");
592 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
593 	} else {
594 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
595 				"xHCI doesn't need link TRB QUIRK");
596 	}
597 	retval = xhci_mem_init(xhci, GFP_KERNEL);
598 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
599 
600 	/* Initializing Compliance Mode Recovery Data If Needed */
601 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
602 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
603 		compliance_mode_recovery_timer_init(xhci);
604 	}
605 
606 	return retval;
607 }
608 
609 /*-------------------------------------------------------------------------*/
610 
611 
612 static int xhci_run_finished(struct xhci_hcd *xhci)
613 {
614 	unsigned long	flags;
615 	u32		temp;
616 
617 	/*
618 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
619 	 * Protect the short window before host is running with a lock
620 	 */
621 	spin_lock_irqsave(&xhci->lock, flags);
622 
623 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
624 	temp = readl(&xhci->op_regs->command);
625 	temp |= (CMD_EIE);
626 	writel(temp, &xhci->op_regs->command);
627 
628 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
629 	temp = readl(&xhci->ir_set->irq_pending);
630 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
631 
632 	if (xhci_start(xhci)) {
633 		xhci_halt(xhci);
634 		spin_unlock_irqrestore(&xhci->lock, flags);
635 		return -ENODEV;
636 	}
637 
638 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
639 
640 	if (xhci->quirks & XHCI_NEC_HOST)
641 		xhci_ring_cmd_db(xhci);
642 
643 	spin_unlock_irqrestore(&xhci->lock, flags);
644 
645 	return 0;
646 }
647 
648 /*
649  * Start the HC after it was halted.
650  *
651  * This function is called by the USB core when the HC driver is added.
652  * Its opposite is xhci_stop().
653  *
654  * xhci_init() must be called once before this function can be called.
655  * Reset the HC, enable device slot contexts, program DCBAAP, and
656  * set command ring pointer and event ring pointer.
657  *
658  * Setup MSI-X vectors and enable interrupts.
659  */
660 int xhci_run(struct usb_hcd *hcd)
661 {
662 	u32 temp;
663 	u64 temp_64;
664 	int ret;
665 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
666 
667 	/* Start the xHCI host controller running only after the USB 2.0 roothub
668 	 * is setup.
669 	 */
670 
671 	hcd->uses_new_polling = 1;
672 	if (!usb_hcd_is_primary_hcd(hcd))
673 		return xhci_run_finished(xhci);
674 
675 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
676 
677 	ret = xhci_try_enable_msi(hcd);
678 	if (ret)
679 		return ret;
680 
681 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
682 	temp_64 &= ~ERST_PTR_MASK;
683 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
684 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
685 
686 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
687 			"// Set the interrupt modulation register");
688 	temp = readl(&xhci->ir_set->irq_control);
689 	temp &= ~ER_IRQ_INTERVAL_MASK;
690 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
691 	writel(temp, &xhci->ir_set->irq_control);
692 
693 	if (xhci->quirks & XHCI_NEC_HOST) {
694 		struct xhci_command *command;
695 
696 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
697 		if (!command)
698 			return -ENOMEM;
699 
700 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
701 				TRB_TYPE(TRB_NEC_GET_FW));
702 		if (ret)
703 			xhci_free_command(xhci, command);
704 	}
705 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
706 			"Finished %s for main hcd", __func__);
707 
708 	xhci_create_dbc_dev(xhci);
709 
710 	xhci_debugfs_init(xhci);
711 
712 	if (xhci_has_one_roothub(xhci))
713 		return xhci_run_finished(xhci);
714 
715 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
716 
717 	return 0;
718 }
719 EXPORT_SYMBOL_GPL(xhci_run);
720 
721 /*
722  * Stop xHCI driver.
723  *
724  * This function is called by the USB core when the HC driver is removed.
725  * Its opposite is xhci_run().
726  *
727  * Disable device contexts, disable IRQs, and quiesce the HC.
728  * Reset the HC, finish any completed transactions, and cleanup memory.
729  */
730 static void xhci_stop(struct usb_hcd *hcd)
731 {
732 	u32 temp;
733 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
734 
735 	mutex_lock(&xhci->mutex);
736 
737 	/* Only halt host and free memory after both hcds are removed */
738 	if (!usb_hcd_is_primary_hcd(hcd)) {
739 		mutex_unlock(&xhci->mutex);
740 		return;
741 	}
742 
743 	xhci_remove_dbc_dev(xhci);
744 
745 	spin_lock_irq(&xhci->lock);
746 	xhci->xhc_state |= XHCI_STATE_HALTED;
747 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
748 	xhci_halt(xhci);
749 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
750 	spin_unlock_irq(&xhci->lock);
751 
752 	xhci_cleanup_msix(xhci);
753 
754 	/* Deleting Compliance Mode Recovery Timer */
755 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
756 			(!(xhci_all_ports_seen_u0(xhci)))) {
757 		del_timer_sync(&xhci->comp_mode_recovery_timer);
758 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
759 				"%s: compliance mode recovery timer deleted",
760 				__func__);
761 	}
762 
763 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
764 		usb_amd_dev_put();
765 
766 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
767 			"// Disabling event ring interrupts");
768 	temp = readl(&xhci->op_regs->status);
769 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
770 	temp = readl(&xhci->ir_set->irq_pending);
771 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
772 
773 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
774 	xhci_mem_cleanup(xhci);
775 	xhci_debugfs_exit(xhci);
776 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
777 			"xhci_stop completed - status = %x",
778 			readl(&xhci->op_regs->status));
779 	mutex_unlock(&xhci->mutex);
780 }
781 
782 /*
783  * Shutdown HC (not bus-specific)
784  *
785  * This is called when the machine is rebooting or halting.  We assume that the
786  * machine will be powered off, and the HC's internal state will be reset.
787  * Don't bother to free memory.
788  *
789  * This will only ever be called with the main usb_hcd (the USB3 roothub).
790  */
791 void xhci_shutdown(struct usb_hcd *hcd)
792 {
793 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
794 	unsigned long flags;
795 	int i;
796 
797 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
798 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
799 
800 	/* Don't poll the roothubs after shutdown. */
801 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
802 			__func__, hcd->self.busnum);
803 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
804 	del_timer_sync(&hcd->rh_timer);
805 
806 	if (xhci->shared_hcd) {
807 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
808 		del_timer_sync(&xhci->shared_hcd->rh_timer);
809 	}
810 
811 	spin_lock_irqsave(&xhci->lock, flags);
812 	xhci_halt(xhci);
813 
814 	/* Power off USB2 ports*/
815 	for (i = 0; i < xhci->usb2_rhub.num_ports; i++)
816 		xhci_set_port_power(xhci, xhci->main_hcd, i, false, &flags);
817 
818 	/* Power off USB3 ports*/
819 	for (i = 0; i < xhci->usb3_rhub.num_ports; i++)
820 		xhci_set_port_power(xhci, xhci->shared_hcd, i, false, &flags);
821 
822 	/* Workaround for spurious wakeups at shutdown with HSW */
823 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
824 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
825 	spin_unlock_irqrestore(&xhci->lock, flags);
826 
827 	xhci_cleanup_msix(xhci);
828 
829 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
830 			"xhci_shutdown completed - status = %x",
831 			readl(&xhci->op_regs->status));
832 }
833 EXPORT_SYMBOL_GPL(xhci_shutdown);
834 
835 #ifdef CONFIG_PM
836 static void xhci_save_registers(struct xhci_hcd *xhci)
837 {
838 	xhci->s3.command = readl(&xhci->op_regs->command);
839 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
840 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
841 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
842 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
843 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
844 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
845 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
846 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
847 }
848 
849 static void xhci_restore_registers(struct xhci_hcd *xhci)
850 {
851 	writel(xhci->s3.command, &xhci->op_regs->command);
852 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
853 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
854 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
855 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
856 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
857 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
858 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
859 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
860 }
861 
862 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
863 {
864 	u64	val_64;
865 
866 	/* step 2: initialize command ring buffer */
867 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
868 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
869 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
870 				      xhci->cmd_ring->dequeue) &
871 		 (u64) ~CMD_RING_RSVD_BITS) |
872 		xhci->cmd_ring->cycle_state;
873 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
874 			"// Setting command ring address to 0x%llx",
875 			(long unsigned long) val_64);
876 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
877 }
878 
879 /*
880  * The whole command ring must be cleared to zero when we suspend the host.
881  *
882  * The host doesn't save the command ring pointer in the suspend well, so we
883  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
884  * aligned, because of the reserved bits in the command ring dequeue pointer
885  * register.  Therefore, we can't just set the dequeue pointer back in the
886  * middle of the ring (TRBs are 16-byte aligned).
887  */
888 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
889 {
890 	struct xhci_ring *ring;
891 	struct xhci_segment *seg;
892 
893 	ring = xhci->cmd_ring;
894 	seg = ring->deq_seg;
895 	do {
896 		memset(seg->trbs, 0,
897 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
898 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
899 			cpu_to_le32(~TRB_CYCLE);
900 		seg = seg->next;
901 	} while (seg != ring->deq_seg);
902 
903 	/* Reset the software enqueue and dequeue pointers */
904 	ring->deq_seg = ring->first_seg;
905 	ring->dequeue = ring->first_seg->trbs;
906 	ring->enq_seg = ring->deq_seg;
907 	ring->enqueue = ring->dequeue;
908 
909 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
910 	/*
911 	 * Ring is now zeroed, so the HW should look for change of ownership
912 	 * when the cycle bit is set to 1.
913 	 */
914 	ring->cycle_state = 1;
915 
916 	/*
917 	 * Reset the hardware dequeue pointer.
918 	 * Yes, this will need to be re-written after resume, but we're paranoid
919 	 * and want to make sure the hardware doesn't access bogus memory
920 	 * because, say, the BIOS or an SMI started the host without changing
921 	 * the command ring pointers.
922 	 */
923 	xhci_set_cmd_ring_deq(xhci);
924 }
925 
926 /*
927  * Disable port wake bits if do_wakeup is not set.
928  *
929  * Also clear a possible internal port wake state left hanging for ports that
930  * detected termination but never successfully enumerated (trained to 0U).
931  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
932  * at enumeration clears this wake, force one here as well for unconnected ports
933  */
934 
935 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
936 				       struct xhci_hub *rhub,
937 				       bool do_wakeup)
938 {
939 	unsigned long flags;
940 	u32 t1, t2, portsc;
941 	int i;
942 
943 	spin_lock_irqsave(&xhci->lock, flags);
944 
945 	for (i = 0; i < rhub->num_ports; i++) {
946 		portsc = readl(rhub->ports[i]->addr);
947 		t1 = xhci_port_state_to_neutral(portsc);
948 		t2 = t1;
949 
950 		/* clear wake bits if do_wake is not set */
951 		if (!do_wakeup)
952 			t2 &= ~PORT_WAKE_BITS;
953 
954 		/* Don't touch csc bit if connected or connect change is set */
955 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
956 			t2 |= PORT_CSC;
957 
958 		if (t1 != t2) {
959 			writel(t2, rhub->ports[i]->addr);
960 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
961 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
962 		}
963 	}
964 	spin_unlock_irqrestore(&xhci->lock, flags);
965 }
966 
967 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
968 {
969 	struct xhci_port	**ports;
970 	int			port_index;
971 	u32			status;
972 	u32			portsc;
973 
974 	status = readl(&xhci->op_regs->status);
975 	if (status & STS_EINT)
976 		return true;
977 	/*
978 	 * Checking STS_EINT is not enough as there is a lag between a change
979 	 * bit being set and the Port Status Change Event that it generated
980 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
981 	 */
982 
983 	port_index = xhci->usb2_rhub.num_ports;
984 	ports = xhci->usb2_rhub.ports;
985 	while (port_index--) {
986 		portsc = readl(ports[port_index]->addr);
987 		if (portsc & PORT_CHANGE_MASK ||
988 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
989 			return true;
990 	}
991 	port_index = xhci->usb3_rhub.num_ports;
992 	ports = xhci->usb3_rhub.ports;
993 	while (port_index--) {
994 		portsc = readl(ports[port_index]->addr);
995 		if (portsc & PORT_CHANGE_MASK ||
996 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
997 			return true;
998 	}
999 	return false;
1000 }
1001 
1002 /*
1003  * Stop HC (not bus-specific)
1004  *
1005  * This is called when the machine transition into S3/S4 mode.
1006  *
1007  */
1008 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
1009 {
1010 	int			rc = 0;
1011 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
1012 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1013 	u32			command;
1014 	u32			res;
1015 
1016 	if (!hcd->state)
1017 		return 0;
1018 
1019 	if (hcd->state != HC_STATE_SUSPENDED ||
1020 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1021 		return -EINVAL;
1022 
1023 	/* Clear root port wake on bits if wakeup not allowed. */
1024 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1025 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1026 
1027 	if (!HCD_HW_ACCESSIBLE(hcd))
1028 		return 0;
1029 
1030 	xhci_dbc_suspend(xhci);
1031 
1032 	/* Don't poll the roothubs on bus suspend. */
1033 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1034 		 __func__, hcd->self.busnum);
1035 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1036 	del_timer_sync(&hcd->rh_timer);
1037 	if (xhci->shared_hcd) {
1038 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1039 		del_timer_sync(&xhci->shared_hcd->rh_timer);
1040 	}
1041 
1042 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1043 		usleep_range(1000, 1500);
1044 
1045 	spin_lock_irq(&xhci->lock);
1046 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1047 	if (xhci->shared_hcd)
1048 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1049 	/* step 1: stop endpoint */
1050 	/* skipped assuming that port suspend has done */
1051 
1052 	/* step 2: clear Run/Stop bit */
1053 	command = readl(&xhci->op_regs->command);
1054 	command &= ~CMD_RUN;
1055 	writel(command, &xhci->op_regs->command);
1056 
1057 	/* Some chips from Fresco Logic need an extraordinary delay */
1058 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1059 
1060 	if (xhci_handshake(&xhci->op_regs->status,
1061 		      STS_HALT, STS_HALT, delay)) {
1062 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1063 		spin_unlock_irq(&xhci->lock);
1064 		return -ETIMEDOUT;
1065 	}
1066 	xhci_clear_command_ring(xhci);
1067 
1068 	/* step 3: save registers */
1069 	xhci_save_registers(xhci);
1070 
1071 	/* step 4: set CSS flag */
1072 	command = readl(&xhci->op_regs->command);
1073 	command |= CMD_CSS;
1074 	writel(command, &xhci->op_regs->command);
1075 	xhci->broken_suspend = 0;
1076 	if (xhci_handshake(&xhci->op_regs->status,
1077 				STS_SAVE, 0, 20 * 1000)) {
1078 	/*
1079 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1080 	 * SSS bit of USBSTS and when driver tries to poll
1081 	 * to see if the xHC clears BIT(8) which never happens
1082 	 * and driver assumes that controller is not responding
1083 	 * and times out. To workaround this, its good to check
1084 	 * if SRE and HCE bits are not set (as per xhci
1085 	 * Section 5.4.2) and bypass the timeout.
1086 	 */
1087 		res = readl(&xhci->op_regs->status);
1088 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1089 		    (((res & STS_SRE) == 0) &&
1090 				((res & STS_HCE) == 0))) {
1091 			xhci->broken_suspend = 1;
1092 		} else {
1093 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1094 			spin_unlock_irq(&xhci->lock);
1095 			return -ETIMEDOUT;
1096 		}
1097 	}
1098 	spin_unlock_irq(&xhci->lock);
1099 
1100 	/*
1101 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1102 	 * is about to be suspended.
1103 	 */
1104 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1105 			(!(xhci_all_ports_seen_u0(xhci)))) {
1106 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1107 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1108 				"%s: compliance mode recovery timer deleted",
1109 				__func__);
1110 	}
1111 
1112 	/* step 5: remove core well power */
1113 	/* synchronize irq when using MSI-X */
1114 	xhci_msix_sync_irqs(xhci);
1115 
1116 	return rc;
1117 }
1118 EXPORT_SYMBOL_GPL(xhci_suspend);
1119 
1120 /*
1121  * start xHC (not bus-specific)
1122  *
1123  * This is called when the machine transition from S3/S4 mode.
1124  *
1125  */
1126 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1127 {
1128 	u32			command, temp = 0;
1129 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1130 	int			retval = 0;
1131 	bool			comp_timer_running = false;
1132 	bool			pending_portevent = false;
1133 	bool			reinit_xhc = false;
1134 
1135 	if (!hcd->state)
1136 		return 0;
1137 
1138 	/* Wait a bit if either of the roothubs need to settle from the
1139 	 * transition into bus suspend.
1140 	 */
1141 
1142 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1143 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1144 		msleep(100);
1145 
1146 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1147 	if (xhci->shared_hcd)
1148 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1149 
1150 	spin_lock_irq(&xhci->lock);
1151 
1152 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1153 		reinit_xhc = true;
1154 
1155 	if (!reinit_xhc) {
1156 		/*
1157 		 * Some controllers might lose power during suspend, so wait
1158 		 * for controller not ready bit to clear, just as in xHC init.
1159 		 */
1160 		retval = xhci_handshake(&xhci->op_regs->status,
1161 					STS_CNR, 0, 10 * 1000 * 1000);
1162 		if (retval) {
1163 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1164 				  retval);
1165 			spin_unlock_irq(&xhci->lock);
1166 			return retval;
1167 		}
1168 		/* step 1: restore register */
1169 		xhci_restore_registers(xhci);
1170 		/* step 2: initialize command ring buffer */
1171 		xhci_set_cmd_ring_deq(xhci);
1172 		/* step 3: restore state and start state*/
1173 		/* step 3: set CRS flag */
1174 		command = readl(&xhci->op_regs->command);
1175 		command |= CMD_CRS;
1176 		writel(command, &xhci->op_regs->command);
1177 		/*
1178 		 * Some controllers take up to 55+ ms to complete the controller
1179 		 * restore so setting the timeout to 100ms. Xhci specification
1180 		 * doesn't mention any timeout value.
1181 		 */
1182 		if (xhci_handshake(&xhci->op_regs->status,
1183 			      STS_RESTORE, 0, 100 * 1000)) {
1184 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1185 			spin_unlock_irq(&xhci->lock);
1186 			return -ETIMEDOUT;
1187 		}
1188 	}
1189 
1190 	temp = readl(&xhci->op_regs->status);
1191 
1192 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1193 	if (temp & (STS_SRE | STS_HCE)) {
1194 		reinit_xhc = true;
1195 		xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1196 	}
1197 
1198 	if (reinit_xhc) {
1199 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1200 				!(xhci_all_ports_seen_u0(xhci))) {
1201 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1202 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1203 				"Compliance Mode Recovery Timer deleted!");
1204 		}
1205 
1206 		/* Let the USB core know _both_ roothubs lost power. */
1207 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1208 		if (xhci->shared_hcd)
1209 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1210 
1211 		xhci_dbg(xhci, "Stop HCD\n");
1212 		xhci_halt(xhci);
1213 		xhci_zero_64b_regs(xhci);
1214 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1215 		spin_unlock_irq(&xhci->lock);
1216 		if (retval)
1217 			return retval;
1218 		xhci_cleanup_msix(xhci);
1219 
1220 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1221 		temp = readl(&xhci->op_regs->status);
1222 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1223 		temp = readl(&xhci->ir_set->irq_pending);
1224 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1225 
1226 		xhci_dbg(xhci, "cleaning up memory\n");
1227 		xhci_mem_cleanup(xhci);
1228 		xhci_debugfs_exit(xhci);
1229 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1230 			    readl(&xhci->op_regs->status));
1231 
1232 		/* USB core calls the PCI reinit and start functions twice:
1233 		 * first with the primary HCD, and then with the secondary HCD.
1234 		 * If we don't do the same, the host will never be started.
1235 		 */
1236 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1237 		retval = xhci_init(hcd);
1238 		if (retval)
1239 			return retval;
1240 		comp_timer_running = true;
1241 
1242 		xhci_dbg(xhci, "Start the primary HCD\n");
1243 		retval = xhci_run(hcd);
1244 		if (!retval && xhci->shared_hcd) {
1245 			xhci_dbg(xhci, "Start the secondary HCD\n");
1246 			retval = xhci_run(xhci->shared_hcd);
1247 		}
1248 
1249 		hcd->state = HC_STATE_SUSPENDED;
1250 		if (xhci->shared_hcd)
1251 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1252 		goto done;
1253 	}
1254 
1255 	/* step 4: set Run/Stop bit */
1256 	command = readl(&xhci->op_regs->command);
1257 	command |= CMD_RUN;
1258 	writel(command, &xhci->op_regs->command);
1259 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1260 		  0, 250 * 1000);
1261 
1262 	/* step 5: walk topology and initialize portsc,
1263 	 * portpmsc and portli
1264 	 */
1265 	/* this is done in bus_resume */
1266 
1267 	/* step 6: restart each of the previously
1268 	 * Running endpoints by ringing their doorbells
1269 	 */
1270 
1271 	spin_unlock_irq(&xhci->lock);
1272 
1273 	xhci_dbc_resume(xhci);
1274 
1275  done:
1276 	if (retval == 0) {
1277 		/*
1278 		 * Resume roothubs only if there are pending events.
1279 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1280 		 * the first wake signalling failed, give it that chance.
1281 		 */
1282 		pending_portevent = xhci_pending_portevent(xhci);
1283 		if (!pending_portevent) {
1284 			msleep(120);
1285 			pending_portevent = xhci_pending_portevent(xhci);
1286 		}
1287 
1288 		if (pending_portevent) {
1289 			if (xhci->shared_hcd)
1290 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1291 			usb_hcd_resume_root_hub(hcd);
1292 		}
1293 	}
1294 	/*
1295 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1296 	 * be re-initialized Always after a system resume. Ports are subject
1297 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1298 	 * ports have entered previously to U0 before system's suspension.
1299 	 */
1300 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1301 		compliance_mode_recovery_timer_init(xhci);
1302 
1303 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1304 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1305 
1306 	/* Re-enable port polling. */
1307 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1308 		 __func__, hcd->self.busnum);
1309 	if (xhci->shared_hcd) {
1310 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1311 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1312 	}
1313 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1314 	usb_hcd_poll_rh_status(hcd);
1315 
1316 	return retval;
1317 }
1318 EXPORT_SYMBOL_GPL(xhci_resume);
1319 #endif	/* CONFIG_PM */
1320 
1321 /*-------------------------------------------------------------------------*/
1322 
1323 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1324 {
1325 	void *temp;
1326 	int ret = 0;
1327 	unsigned int buf_len;
1328 	enum dma_data_direction dir;
1329 
1330 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1331 	buf_len = urb->transfer_buffer_length;
1332 
1333 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1334 			    dev_to_node(hcd->self.sysdev));
1335 
1336 	if (usb_urb_dir_out(urb))
1337 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1338 				   temp, buf_len, 0);
1339 
1340 	urb->transfer_buffer = temp;
1341 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1342 					   urb->transfer_buffer,
1343 					   urb->transfer_buffer_length,
1344 					   dir);
1345 
1346 	if (dma_mapping_error(hcd->self.sysdev,
1347 			      urb->transfer_dma)) {
1348 		ret = -EAGAIN;
1349 		kfree(temp);
1350 	} else {
1351 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1352 	}
1353 
1354 	return ret;
1355 }
1356 
1357 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1358 					  struct urb *urb)
1359 {
1360 	bool ret = false;
1361 	unsigned int i;
1362 	unsigned int len = 0;
1363 	unsigned int trb_size;
1364 	unsigned int max_pkt;
1365 	struct scatterlist *sg;
1366 	struct scatterlist *tail_sg;
1367 
1368 	tail_sg = urb->sg;
1369 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1370 
1371 	if (!urb->num_sgs)
1372 		return ret;
1373 
1374 	if (urb->dev->speed >= USB_SPEED_SUPER)
1375 		trb_size = TRB_CACHE_SIZE_SS;
1376 	else
1377 		trb_size = TRB_CACHE_SIZE_HS;
1378 
1379 	if (urb->transfer_buffer_length != 0 &&
1380 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1381 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1382 			len = len + sg->length;
1383 			if (i > trb_size - 2) {
1384 				len = len - tail_sg->length;
1385 				if (len < max_pkt) {
1386 					ret = true;
1387 					break;
1388 				}
1389 
1390 				tail_sg = sg_next(tail_sg);
1391 			}
1392 		}
1393 	}
1394 	return ret;
1395 }
1396 
1397 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1398 {
1399 	unsigned int len;
1400 	unsigned int buf_len;
1401 	enum dma_data_direction dir;
1402 
1403 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1404 
1405 	buf_len = urb->transfer_buffer_length;
1406 
1407 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1408 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1409 		dma_unmap_single(hcd->self.sysdev,
1410 				 urb->transfer_dma,
1411 				 urb->transfer_buffer_length,
1412 				 dir);
1413 
1414 	if (usb_urb_dir_in(urb)) {
1415 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1416 					   urb->transfer_buffer,
1417 					   buf_len,
1418 					   0);
1419 		if (len != buf_len) {
1420 			xhci_dbg(hcd_to_xhci(hcd),
1421 				 "Copy from tmp buf to urb sg list failed\n");
1422 			urb->actual_length = len;
1423 		}
1424 	}
1425 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1426 	kfree(urb->transfer_buffer);
1427 	urb->transfer_buffer = NULL;
1428 }
1429 
1430 /*
1431  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1432  * we'll copy the actual data into the TRB address register. This is limited to
1433  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1434  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1435  */
1436 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1437 				gfp_t mem_flags)
1438 {
1439 	struct xhci_hcd *xhci;
1440 
1441 	xhci = hcd_to_xhci(hcd);
1442 
1443 	if (xhci_urb_suitable_for_idt(urb))
1444 		return 0;
1445 
1446 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1447 		if (xhci_urb_temp_buffer_required(hcd, urb))
1448 			return xhci_map_temp_buffer(hcd, urb);
1449 	}
1450 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1451 }
1452 
1453 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1454 {
1455 	struct xhci_hcd *xhci;
1456 	bool unmap_temp_buf = false;
1457 
1458 	xhci = hcd_to_xhci(hcd);
1459 
1460 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1461 		unmap_temp_buf = true;
1462 
1463 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1464 		xhci_unmap_temp_buf(hcd, urb);
1465 	else
1466 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1467 }
1468 
1469 /**
1470  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1471  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1472  * value to right shift 1 for the bitmask.
1473  *
1474  * Index  = (epnum * 2) + direction - 1,
1475  * where direction = 0 for OUT, 1 for IN.
1476  * For control endpoints, the IN index is used (OUT index is unused), so
1477  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1478  */
1479 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1480 {
1481 	unsigned int index;
1482 	if (usb_endpoint_xfer_control(desc))
1483 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1484 	else
1485 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1486 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1487 	return index;
1488 }
1489 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1490 
1491 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1492  * address from the XHCI endpoint index.
1493  */
1494 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1495 {
1496 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1497 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1498 	return direction | number;
1499 }
1500 
1501 /* Find the flag for this endpoint (for use in the control context).  Use the
1502  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1503  * bit 1, etc.
1504  */
1505 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1506 {
1507 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1508 }
1509 
1510 /* Compute the last valid endpoint context index.  Basically, this is the
1511  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1512  * we find the most significant bit set in the added contexts flags.
1513  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1514  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1515  */
1516 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1517 {
1518 	return fls(added_ctxs) - 1;
1519 }
1520 
1521 /* Returns 1 if the arguments are OK;
1522  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1523  */
1524 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1525 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1526 		const char *func) {
1527 	struct xhci_hcd	*xhci;
1528 	struct xhci_virt_device	*virt_dev;
1529 
1530 	if (!hcd || (check_ep && !ep) || !udev) {
1531 		pr_debug("xHCI %s called with invalid args\n", func);
1532 		return -EINVAL;
1533 	}
1534 	if (!udev->parent) {
1535 		pr_debug("xHCI %s called for root hub\n", func);
1536 		return 0;
1537 	}
1538 
1539 	xhci = hcd_to_xhci(hcd);
1540 	if (check_virt_dev) {
1541 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1542 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1543 					func);
1544 			return -EINVAL;
1545 		}
1546 
1547 		virt_dev = xhci->devs[udev->slot_id];
1548 		if (virt_dev->udev != udev) {
1549 			xhci_dbg(xhci, "xHCI %s called with udev and "
1550 					  "virt_dev does not match\n", func);
1551 			return -EINVAL;
1552 		}
1553 	}
1554 
1555 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1556 		return -ENODEV;
1557 
1558 	return 1;
1559 }
1560 
1561 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1562 		struct usb_device *udev, struct xhci_command *command,
1563 		bool ctx_change, bool must_succeed);
1564 
1565 /*
1566  * Full speed devices may have a max packet size greater than 8 bytes, but the
1567  * USB core doesn't know that until it reads the first 8 bytes of the
1568  * descriptor.  If the usb_device's max packet size changes after that point,
1569  * we need to issue an evaluate context command and wait on it.
1570  */
1571 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1572 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1573 {
1574 	struct xhci_container_ctx *out_ctx;
1575 	struct xhci_input_control_ctx *ctrl_ctx;
1576 	struct xhci_ep_ctx *ep_ctx;
1577 	struct xhci_command *command;
1578 	int max_packet_size;
1579 	int hw_max_packet_size;
1580 	int ret = 0;
1581 
1582 	out_ctx = xhci->devs[slot_id]->out_ctx;
1583 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1584 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1585 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1586 	if (hw_max_packet_size != max_packet_size) {
1587 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1588 				"Max Packet Size for ep 0 changed.");
1589 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1590 				"Max packet size in usb_device = %d",
1591 				max_packet_size);
1592 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1593 				"Max packet size in xHCI HW = %d",
1594 				hw_max_packet_size);
1595 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1596 				"Issuing evaluate context command.");
1597 
1598 		/* Set up the input context flags for the command */
1599 		/* FIXME: This won't work if a non-default control endpoint
1600 		 * changes max packet sizes.
1601 		 */
1602 
1603 		command = xhci_alloc_command(xhci, true, mem_flags);
1604 		if (!command)
1605 			return -ENOMEM;
1606 
1607 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1608 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1609 		if (!ctrl_ctx) {
1610 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1611 					__func__);
1612 			ret = -ENOMEM;
1613 			goto command_cleanup;
1614 		}
1615 		/* Set up the modified control endpoint 0 */
1616 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1617 				xhci->devs[slot_id]->out_ctx, ep_index);
1618 
1619 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1620 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1621 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1622 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1623 
1624 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1625 		ctrl_ctx->drop_flags = 0;
1626 
1627 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1628 				true, false);
1629 
1630 		/* Clean up the input context for later use by bandwidth
1631 		 * functions.
1632 		 */
1633 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1634 command_cleanup:
1635 		kfree(command->completion);
1636 		kfree(command);
1637 	}
1638 	return ret;
1639 }
1640 
1641 /*
1642  * non-error returns are a promise to giveback() the urb later
1643  * we drop ownership so next owner (or urb unlink) can get it
1644  */
1645 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1646 {
1647 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1648 	unsigned long flags;
1649 	int ret = 0;
1650 	unsigned int slot_id, ep_index;
1651 	unsigned int *ep_state;
1652 	struct urb_priv	*urb_priv;
1653 	int num_tds;
1654 
1655 	if (!urb)
1656 		return -EINVAL;
1657 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1658 					true, true, __func__);
1659 	if (ret <= 0)
1660 		return ret ? ret : -EINVAL;
1661 
1662 	slot_id = urb->dev->slot_id;
1663 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1664 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1665 
1666 	if (!HCD_HW_ACCESSIBLE(hcd))
1667 		return -ESHUTDOWN;
1668 
1669 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1670 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1671 		return -ENODEV;
1672 	}
1673 
1674 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1675 		num_tds = urb->number_of_packets;
1676 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1677 	    urb->transfer_buffer_length > 0 &&
1678 	    urb->transfer_flags & URB_ZERO_PACKET &&
1679 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1680 		num_tds = 2;
1681 	else
1682 		num_tds = 1;
1683 
1684 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1685 	if (!urb_priv)
1686 		return -ENOMEM;
1687 
1688 	urb_priv->num_tds = num_tds;
1689 	urb_priv->num_tds_done = 0;
1690 	urb->hcpriv = urb_priv;
1691 
1692 	trace_xhci_urb_enqueue(urb);
1693 
1694 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1695 		/* Check to see if the max packet size for the default control
1696 		 * endpoint changed during FS device enumeration
1697 		 */
1698 		if (urb->dev->speed == USB_SPEED_FULL) {
1699 			ret = xhci_check_maxpacket(xhci, slot_id,
1700 					ep_index, urb, mem_flags);
1701 			if (ret < 0) {
1702 				xhci_urb_free_priv(urb_priv);
1703 				urb->hcpriv = NULL;
1704 				return ret;
1705 			}
1706 		}
1707 	}
1708 
1709 	spin_lock_irqsave(&xhci->lock, flags);
1710 
1711 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1712 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1713 			 urb->ep->desc.bEndpointAddress, urb);
1714 		ret = -ESHUTDOWN;
1715 		goto free_priv;
1716 	}
1717 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1718 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1719 			  *ep_state);
1720 		ret = -EINVAL;
1721 		goto free_priv;
1722 	}
1723 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1724 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1725 		ret = -EINVAL;
1726 		goto free_priv;
1727 	}
1728 
1729 	switch (usb_endpoint_type(&urb->ep->desc)) {
1730 
1731 	case USB_ENDPOINT_XFER_CONTROL:
1732 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1733 					 slot_id, ep_index);
1734 		break;
1735 	case USB_ENDPOINT_XFER_BULK:
1736 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1737 					 slot_id, ep_index);
1738 		break;
1739 	case USB_ENDPOINT_XFER_INT:
1740 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1741 				slot_id, ep_index);
1742 		break;
1743 	case USB_ENDPOINT_XFER_ISOC:
1744 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1745 				slot_id, ep_index);
1746 	}
1747 
1748 	if (ret) {
1749 free_priv:
1750 		xhci_urb_free_priv(urb_priv);
1751 		urb->hcpriv = NULL;
1752 	}
1753 	spin_unlock_irqrestore(&xhci->lock, flags);
1754 	return ret;
1755 }
1756 
1757 /*
1758  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1759  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1760  * should pick up where it left off in the TD, unless a Set Transfer Ring
1761  * Dequeue Pointer is issued.
1762  *
1763  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1764  * the ring.  Since the ring is a contiguous structure, they can't be physically
1765  * removed.  Instead, there are two options:
1766  *
1767  *  1) If the HC is in the middle of processing the URB to be canceled, we
1768  *     simply move the ring's dequeue pointer past those TRBs using the Set
1769  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1770  *     when drivers timeout on the last submitted URB and attempt to cancel.
1771  *
1772  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1773  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1774  *     HC will need to invalidate the any TRBs it has cached after the stop
1775  *     endpoint command, as noted in the xHCI 0.95 errata.
1776  *
1777  *  3) The TD may have completed by the time the Stop Endpoint Command
1778  *     completes, so software needs to handle that case too.
1779  *
1780  * This function should protect against the TD enqueueing code ringing the
1781  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1782  * It also needs to account for multiple cancellations on happening at the same
1783  * time for the same endpoint.
1784  *
1785  * Note that this function can be called in any context, or so says
1786  * usb_hcd_unlink_urb()
1787  */
1788 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1789 {
1790 	unsigned long flags;
1791 	int ret, i;
1792 	u32 temp;
1793 	struct xhci_hcd *xhci;
1794 	struct urb_priv	*urb_priv;
1795 	struct xhci_td *td;
1796 	unsigned int ep_index;
1797 	struct xhci_ring *ep_ring;
1798 	struct xhci_virt_ep *ep;
1799 	struct xhci_command *command;
1800 	struct xhci_virt_device *vdev;
1801 
1802 	xhci = hcd_to_xhci(hcd);
1803 	spin_lock_irqsave(&xhci->lock, flags);
1804 
1805 	trace_xhci_urb_dequeue(urb);
1806 
1807 	/* Make sure the URB hasn't completed or been unlinked already */
1808 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1809 	if (ret)
1810 		goto done;
1811 
1812 	/* give back URB now if we can't queue it for cancel */
1813 	vdev = xhci->devs[urb->dev->slot_id];
1814 	urb_priv = urb->hcpriv;
1815 	if (!vdev || !urb_priv)
1816 		goto err_giveback;
1817 
1818 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1819 	ep = &vdev->eps[ep_index];
1820 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1821 	if (!ep || !ep_ring)
1822 		goto err_giveback;
1823 
1824 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1825 	temp = readl(&xhci->op_regs->status);
1826 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1827 		xhci_hc_died(xhci);
1828 		goto done;
1829 	}
1830 
1831 	/*
1832 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1833 	 * make sure none of the ring related pointers in this URB private data
1834 	 * are touched, such as td_list, otherwise we overwrite freed data
1835 	 */
1836 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1837 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1838 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1839 			td = &urb_priv->td[i];
1840 			if (!list_empty(&td->cancelled_td_list))
1841 				list_del_init(&td->cancelled_td_list);
1842 		}
1843 		goto err_giveback;
1844 	}
1845 
1846 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1847 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1848 				"HC halted, freeing TD manually.");
1849 		for (i = urb_priv->num_tds_done;
1850 		     i < urb_priv->num_tds;
1851 		     i++) {
1852 			td = &urb_priv->td[i];
1853 			if (!list_empty(&td->td_list))
1854 				list_del_init(&td->td_list);
1855 			if (!list_empty(&td->cancelled_td_list))
1856 				list_del_init(&td->cancelled_td_list);
1857 		}
1858 		goto err_giveback;
1859 	}
1860 
1861 	i = urb_priv->num_tds_done;
1862 	if (i < urb_priv->num_tds)
1863 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1864 				"Cancel URB %p, dev %s, ep 0x%x, "
1865 				"starting at offset 0x%llx",
1866 				urb, urb->dev->devpath,
1867 				urb->ep->desc.bEndpointAddress,
1868 				(unsigned long long) xhci_trb_virt_to_dma(
1869 					urb_priv->td[i].start_seg,
1870 					urb_priv->td[i].first_trb));
1871 
1872 	for (; i < urb_priv->num_tds; i++) {
1873 		td = &urb_priv->td[i];
1874 		/* TD can already be on cancelled list if ep halted on it */
1875 		if (list_empty(&td->cancelled_td_list)) {
1876 			td->cancel_status = TD_DIRTY;
1877 			list_add_tail(&td->cancelled_td_list,
1878 				      &ep->cancelled_td_list);
1879 		}
1880 	}
1881 
1882 	/* Queue a stop endpoint command, but only if this is
1883 	 * the first cancellation to be handled.
1884 	 */
1885 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1886 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1887 		if (!command) {
1888 			ret = -ENOMEM;
1889 			goto done;
1890 		}
1891 		ep->ep_state |= EP_STOP_CMD_PENDING;
1892 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1893 					 ep_index, 0);
1894 		xhci_ring_cmd_db(xhci);
1895 	}
1896 done:
1897 	spin_unlock_irqrestore(&xhci->lock, flags);
1898 	return ret;
1899 
1900 err_giveback:
1901 	if (urb_priv)
1902 		xhci_urb_free_priv(urb_priv);
1903 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1904 	spin_unlock_irqrestore(&xhci->lock, flags);
1905 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1906 	return ret;
1907 }
1908 
1909 /* Drop an endpoint from a new bandwidth configuration for this device.
1910  * Only one call to this function is allowed per endpoint before
1911  * check_bandwidth() or reset_bandwidth() must be called.
1912  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1913  * add the endpoint to the schedule with possibly new parameters denoted by a
1914  * different endpoint descriptor in usb_host_endpoint.
1915  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1916  * not allowed.
1917  *
1918  * The USB core will not allow URBs to be queued to an endpoint that is being
1919  * disabled, so there's no need for mutual exclusion to protect
1920  * the xhci->devs[slot_id] structure.
1921  */
1922 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1923 		       struct usb_host_endpoint *ep)
1924 {
1925 	struct xhci_hcd *xhci;
1926 	struct xhci_container_ctx *in_ctx, *out_ctx;
1927 	struct xhci_input_control_ctx *ctrl_ctx;
1928 	unsigned int ep_index;
1929 	struct xhci_ep_ctx *ep_ctx;
1930 	u32 drop_flag;
1931 	u32 new_add_flags, new_drop_flags;
1932 	int ret;
1933 
1934 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1935 	if (ret <= 0)
1936 		return ret;
1937 	xhci = hcd_to_xhci(hcd);
1938 	if (xhci->xhc_state & XHCI_STATE_DYING)
1939 		return -ENODEV;
1940 
1941 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1942 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1943 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1944 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1945 				__func__, drop_flag);
1946 		return 0;
1947 	}
1948 
1949 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1950 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1951 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1952 	if (!ctrl_ctx) {
1953 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1954 				__func__);
1955 		return 0;
1956 	}
1957 
1958 	ep_index = xhci_get_endpoint_index(&ep->desc);
1959 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1960 	/* If the HC already knows the endpoint is disabled,
1961 	 * or the HCD has noted it is disabled, ignore this request
1962 	 */
1963 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1964 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1965 	    xhci_get_endpoint_flag(&ep->desc)) {
1966 		/* Do not warn when called after a usb_device_reset */
1967 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1968 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1969 				  __func__, ep);
1970 		return 0;
1971 	}
1972 
1973 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1974 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1975 
1976 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1977 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1978 
1979 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1980 
1981 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1982 
1983 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1984 			(unsigned int) ep->desc.bEndpointAddress,
1985 			udev->slot_id,
1986 			(unsigned int) new_drop_flags,
1987 			(unsigned int) new_add_flags);
1988 	return 0;
1989 }
1990 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1991 
1992 /* Add an endpoint to a new possible bandwidth configuration for this device.
1993  * Only one call to this function is allowed per endpoint before
1994  * check_bandwidth() or reset_bandwidth() must be called.
1995  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1996  * add the endpoint to the schedule with possibly new parameters denoted by a
1997  * different endpoint descriptor in usb_host_endpoint.
1998  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1999  * not allowed.
2000  *
2001  * The USB core will not allow URBs to be queued to an endpoint until the
2002  * configuration or alt setting is installed in the device, so there's no need
2003  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
2004  */
2005 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
2006 		      struct usb_host_endpoint *ep)
2007 {
2008 	struct xhci_hcd *xhci;
2009 	struct xhci_container_ctx *in_ctx;
2010 	unsigned int ep_index;
2011 	struct xhci_input_control_ctx *ctrl_ctx;
2012 	struct xhci_ep_ctx *ep_ctx;
2013 	u32 added_ctxs;
2014 	u32 new_add_flags, new_drop_flags;
2015 	struct xhci_virt_device *virt_dev;
2016 	int ret = 0;
2017 
2018 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2019 	if (ret <= 0) {
2020 		/* So we won't queue a reset ep command for a root hub */
2021 		ep->hcpriv = NULL;
2022 		return ret;
2023 	}
2024 	xhci = hcd_to_xhci(hcd);
2025 	if (xhci->xhc_state & XHCI_STATE_DYING)
2026 		return -ENODEV;
2027 
2028 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2029 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2030 		/* FIXME when we have to issue an evaluate endpoint command to
2031 		 * deal with ep0 max packet size changing once we get the
2032 		 * descriptors
2033 		 */
2034 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2035 				__func__, added_ctxs);
2036 		return 0;
2037 	}
2038 
2039 	virt_dev = xhci->devs[udev->slot_id];
2040 	in_ctx = virt_dev->in_ctx;
2041 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2042 	if (!ctrl_ctx) {
2043 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2044 				__func__);
2045 		return 0;
2046 	}
2047 
2048 	ep_index = xhci_get_endpoint_index(&ep->desc);
2049 	/* If this endpoint is already in use, and the upper layers are trying
2050 	 * to add it again without dropping it, reject the addition.
2051 	 */
2052 	if (virt_dev->eps[ep_index].ring &&
2053 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2054 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2055 				"without dropping it.\n",
2056 				(unsigned int) ep->desc.bEndpointAddress);
2057 		return -EINVAL;
2058 	}
2059 
2060 	/* If the HCD has already noted the endpoint is enabled,
2061 	 * ignore this request.
2062 	 */
2063 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2064 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2065 				__func__, ep);
2066 		return 0;
2067 	}
2068 
2069 	/*
2070 	 * Configuration and alternate setting changes must be done in
2071 	 * process context, not interrupt context (or so documenation
2072 	 * for usb_set_interface() and usb_set_configuration() claim).
2073 	 */
2074 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2075 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2076 				__func__, ep->desc.bEndpointAddress);
2077 		return -ENOMEM;
2078 	}
2079 
2080 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2081 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2082 
2083 	/* If xhci_endpoint_disable() was called for this endpoint, but the
2084 	 * xHC hasn't been notified yet through the check_bandwidth() call,
2085 	 * this re-adds a new state for the endpoint from the new endpoint
2086 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2087 	 * drop flags alone.
2088 	 */
2089 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2090 
2091 	/* Store the usb_device pointer for later use */
2092 	ep->hcpriv = udev;
2093 
2094 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2095 	trace_xhci_add_endpoint(ep_ctx);
2096 
2097 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2098 			(unsigned int) ep->desc.bEndpointAddress,
2099 			udev->slot_id,
2100 			(unsigned int) new_drop_flags,
2101 			(unsigned int) new_add_flags);
2102 	return 0;
2103 }
2104 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2105 
2106 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2107 {
2108 	struct xhci_input_control_ctx *ctrl_ctx;
2109 	struct xhci_ep_ctx *ep_ctx;
2110 	struct xhci_slot_ctx *slot_ctx;
2111 	int i;
2112 
2113 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2114 	if (!ctrl_ctx) {
2115 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2116 				__func__);
2117 		return;
2118 	}
2119 
2120 	/* When a device's add flag and drop flag are zero, any subsequent
2121 	 * configure endpoint command will leave that endpoint's state
2122 	 * untouched.  Make sure we don't leave any old state in the input
2123 	 * endpoint contexts.
2124 	 */
2125 	ctrl_ctx->drop_flags = 0;
2126 	ctrl_ctx->add_flags = 0;
2127 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2128 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2129 	/* Endpoint 0 is always valid */
2130 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2131 	for (i = 1; i < 31; i++) {
2132 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2133 		ep_ctx->ep_info = 0;
2134 		ep_ctx->ep_info2 = 0;
2135 		ep_ctx->deq = 0;
2136 		ep_ctx->tx_info = 0;
2137 	}
2138 }
2139 
2140 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2141 		struct usb_device *udev, u32 *cmd_status)
2142 {
2143 	int ret;
2144 
2145 	switch (*cmd_status) {
2146 	case COMP_COMMAND_ABORTED:
2147 	case COMP_COMMAND_RING_STOPPED:
2148 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2149 		ret = -ETIME;
2150 		break;
2151 	case COMP_RESOURCE_ERROR:
2152 		dev_warn(&udev->dev,
2153 			 "Not enough host controller resources for new device state.\n");
2154 		ret = -ENOMEM;
2155 		/* FIXME: can we allocate more resources for the HC? */
2156 		break;
2157 	case COMP_BANDWIDTH_ERROR:
2158 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2159 		dev_warn(&udev->dev,
2160 			 "Not enough bandwidth for new device state.\n");
2161 		ret = -ENOSPC;
2162 		/* FIXME: can we go back to the old state? */
2163 		break;
2164 	case COMP_TRB_ERROR:
2165 		/* the HCD set up something wrong */
2166 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2167 				"add flag = 1, "
2168 				"and endpoint is not disabled.\n");
2169 		ret = -EINVAL;
2170 		break;
2171 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2172 		dev_warn(&udev->dev,
2173 			 "ERROR: Incompatible device for endpoint configure command.\n");
2174 		ret = -ENODEV;
2175 		break;
2176 	case COMP_SUCCESS:
2177 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2178 				"Successful Endpoint Configure command");
2179 		ret = 0;
2180 		break;
2181 	default:
2182 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2183 				*cmd_status);
2184 		ret = -EINVAL;
2185 		break;
2186 	}
2187 	return ret;
2188 }
2189 
2190 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2191 		struct usb_device *udev, u32 *cmd_status)
2192 {
2193 	int ret;
2194 
2195 	switch (*cmd_status) {
2196 	case COMP_COMMAND_ABORTED:
2197 	case COMP_COMMAND_RING_STOPPED:
2198 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2199 		ret = -ETIME;
2200 		break;
2201 	case COMP_PARAMETER_ERROR:
2202 		dev_warn(&udev->dev,
2203 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2204 		ret = -EINVAL;
2205 		break;
2206 	case COMP_SLOT_NOT_ENABLED_ERROR:
2207 		dev_warn(&udev->dev,
2208 			"WARN: slot not enabled for evaluate context command.\n");
2209 		ret = -EINVAL;
2210 		break;
2211 	case COMP_CONTEXT_STATE_ERROR:
2212 		dev_warn(&udev->dev,
2213 			"WARN: invalid context state for evaluate context command.\n");
2214 		ret = -EINVAL;
2215 		break;
2216 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2217 		dev_warn(&udev->dev,
2218 			"ERROR: Incompatible device for evaluate context command.\n");
2219 		ret = -ENODEV;
2220 		break;
2221 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2222 		/* Max Exit Latency too large error */
2223 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2224 		ret = -EINVAL;
2225 		break;
2226 	case COMP_SUCCESS:
2227 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2228 				"Successful evaluate context command");
2229 		ret = 0;
2230 		break;
2231 	default:
2232 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2233 			*cmd_status);
2234 		ret = -EINVAL;
2235 		break;
2236 	}
2237 	return ret;
2238 }
2239 
2240 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2241 		struct xhci_input_control_ctx *ctrl_ctx)
2242 {
2243 	u32 valid_add_flags;
2244 	u32 valid_drop_flags;
2245 
2246 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2247 	 * (bit 1).  The default control endpoint is added during the Address
2248 	 * Device command and is never removed until the slot is disabled.
2249 	 */
2250 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2251 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2252 
2253 	/* Use hweight32 to count the number of ones in the add flags, or
2254 	 * number of endpoints added.  Don't count endpoints that are changed
2255 	 * (both added and dropped).
2256 	 */
2257 	return hweight32(valid_add_flags) -
2258 		hweight32(valid_add_flags & valid_drop_flags);
2259 }
2260 
2261 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2262 		struct xhci_input_control_ctx *ctrl_ctx)
2263 {
2264 	u32 valid_add_flags;
2265 	u32 valid_drop_flags;
2266 
2267 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2268 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2269 
2270 	return hweight32(valid_drop_flags) -
2271 		hweight32(valid_add_flags & valid_drop_flags);
2272 }
2273 
2274 /*
2275  * We need to reserve the new number of endpoints before the configure endpoint
2276  * command completes.  We can't subtract the dropped endpoints from the number
2277  * of active endpoints until the command completes because we can oversubscribe
2278  * the host in this case:
2279  *
2280  *  - the first configure endpoint command drops more endpoints than it adds
2281  *  - a second configure endpoint command that adds more endpoints is queued
2282  *  - the first configure endpoint command fails, so the config is unchanged
2283  *  - the second command may succeed, even though there isn't enough resources
2284  *
2285  * Must be called with xhci->lock held.
2286  */
2287 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2288 		struct xhci_input_control_ctx *ctrl_ctx)
2289 {
2290 	u32 added_eps;
2291 
2292 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2293 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2294 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2295 				"Not enough ep ctxs: "
2296 				"%u active, need to add %u, limit is %u.",
2297 				xhci->num_active_eps, added_eps,
2298 				xhci->limit_active_eps);
2299 		return -ENOMEM;
2300 	}
2301 	xhci->num_active_eps += added_eps;
2302 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2303 			"Adding %u ep ctxs, %u now active.", added_eps,
2304 			xhci->num_active_eps);
2305 	return 0;
2306 }
2307 
2308 /*
2309  * The configure endpoint was failed by the xHC for some other reason, so we
2310  * need to revert the resources that failed configuration would have used.
2311  *
2312  * Must be called with xhci->lock held.
2313  */
2314 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2315 		struct xhci_input_control_ctx *ctrl_ctx)
2316 {
2317 	u32 num_failed_eps;
2318 
2319 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2320 	xhci->num_active_eps -= num_failed_eps;
2321 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2322 			"Removing %u failed ep ctxs, %u now active.",
2323 			num_failed_eps,
2324 			xhci->num_active_eps);
2325 }
2326 
2327 /*
2328  * Now that the command has completed, clean up the active endpoint count by
2329  * subtracting out the endpoints that were dropped (but not changed).
2330  *
2331  * Must be called with xhci->lock held.
2332  */
2333 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2334 		struct xhci_input_control_ctx *ctrl_ctx)
2335 {
2336 	u32 num_dropped_eps;
2337 
2338 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2339 	xhci->num_active_eps -= num_dropped_eps;
2340 	if (num_dropped_eps)
2341 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2342 				"Removing %u dropped ep ctxs, %u now active.",
2343 				num_dropped_eps,
2344 				xhci->num_active_eps);
2345 }
2346 
2347 static unsigned int xhci_get_block_size(struct usb_device *udev)
2348 {
2349 	switch (udev->speed) {
2350 	case USB_SPEED_LOW:
2351 	case USB_SPEED_FULL:
2352 		return FS_BLOCK;
2353 	case USB_SPEED_HIGH:
2354 		return HS_BLOCK;
2355 	case USB_SPEED_SUPER:
2356 	case USB_SPEED_SUPER_PLUS:
2357 		return SS_BLOCK;
2358 	case USB_SPEED_UNKNOWN:
2359 	case USB_SPEED_WIRELESS:
2360 	default:
2361 		/* Should never happen */
2362 		return 1;
2363 	}
2364 }
2365 
2366 static unsigned int
2367 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2368 {
2369 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2370 		return LS_OVERHEAD;
2371 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2372 		return FS_OVERHEAD;
2373 	return HS_OVERHEAD;
2374 }
2375 
2376 /* If we are changing a LS/FS device under a HS hub,
2377  * make sure (if we are activating a new TT) that the HS bus has enough
2378  * bandwidth for this new TT.
2379  */
2380 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2381 		struct xhci_virt_device *virt_dev,
2382 		int old_active_eps)
2383 {
2384 	struct xhci_interval_bw_table *bw_table;
2385 	struct xhci_tt_bw_info *tt_info;
2386 
2387 	/* Find the bandwidth table for the root port this TT is attached to. */
2388 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2389 	tt_info = virt_dev->tt_info;
2390 	/* If this TT already had active endpoints, the bandwidth for this TT
2391 	 * has already been added.  Removing all periodic endpoints (and thus
2392 	 * making the TT enactive) will only decrease the bandwidth used.
2393 	 */
2394 	if (old_active_eps)
2395 		return 0;
2396 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2397 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2398 			return -ENOMEM;
2399 		return 0;
2400 	}
2401 	/* Not sure why we would have no new active endpoints...
2402 	 *
2403 	 * Maybe because of an Evaluate Context change for a hub update or a
2404 	 * control endpoint 0 max packet size change?
2405 	 * FIXME: skip the bandwidth calculation in that case.
2406 	 */
2407 	return 0;
2408 }
2409 
2410 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2411 		struct xhci_virt_device *virt_dev)
2412 {
2413 	unsigned int bw_reserved;
2414 
2415 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2416 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2417 		return -ENOMEM;
2418 
2419 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2420 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2421 		return -ENOMEM;
2422 
2423 	return 0;
2424 }
2425 
2426 /*
2427  * This algorithm is a very conservative estimate of the worst-case scheduling
2428  * scenario for any one interval.  The hardware dynamically schedules the
2429  * packets, so we can't tell which microframe could be the limiting factor in
2430  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2431  *
2432  * Obviously, we can't solve an NP complete problem to find the minimum worst
2433  * case scenario.  Instead, we come up with an estimate that is no less than
2434  * the worst case bandwidth used for any one microframe, but may be an
2435  * over-estimate.
2436  *
2437  * We walk the requirements for each endpoint by interval, starting with the
2438  * smallest interval, and place packets in the schedule where there is only one
2439  * possible way to schedule packets for that interval.  In order to simplify
2440  * this algorithm, we record the largest max packet size for each interval, and
2441  * assume all packets will be that size.
2442  *
2443  * For interval 0, we obviously must schedule all packets for each interval.
2444  * The bandwidth for interval 0 is just the amount of data to be transmitted
2445  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2446  * the number of packets).
2447  *
2448  * For interval 1, we have two possible microframes to schedule those packets
2449  * in.  For this algorithm, if we can schedule the same number of packets for
2450  * each possible scheduling opportunity (each microframe), we will do so.  The
2451  * remaining number of packets will be saved to be transmitted in the gaps in
2452  * the next interval's scheduling sequence.
2453  *
2454  * As we move those remaining packets to be scheduled with interval 2 packets,
2455  * we have to double the number of remaining packets to transmit.  This is
2456  * because the intervals are actually powers of 2, and we would be transmitting
2457  * the previous interval's packets twice in this interval.  We also have to be
2458  * sure that when we look at the largest max packet size for this interval, we
2459  * also look at the largest max packet size for the remaining packets and take
2460  * the greater of the two.
2461  *
2462  * The algorithm continues to evenly distribute packets in each scheduling
2463  * opportunity, and push the remaining packets out, until we get to the last
2464  * interval.  Then those packets and their associated overhead are just added
2465  * to the bandwidth used.
2466  */
2467 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2468 		struct xhci_virt_device *virt_dev,
2469 		int old_active_eps)
2470 {
2471 	unsigned int bw_reserved;
2472 	unsigned int max_bandwidth;
2473 	unsigned int bw_used;
2474 	unsigned int block_size;
2475 	struct xhci_interval_bw_table *bw_table;
2476 	unsigned int packet_size = 0;
2477 	unsigned int overhead = 0;
2478 	unsigned int packets_transmitted = 0;
2479 	unsigned int packets_remaining = 0;
2480 	unsigned int i;
2481 
2482 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2483 		return xhci_check_ss_bw(xhci, virt_dev);
2484 
2485 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2486 		max_bandwidth = HS_BW_LIMIT;
2487 		/* Convert percent of bus BW reserved to blocks reserved */
2488 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2489 	} else {
2490 		max_bandwidth = FS_BW_LIMIT;
2491 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2492 	}
2493 
2494 	bw_table = virt_dev->bw_table;
2495 	/* We need to translate the max packet size and max ESIT payloads into
2496 	 * the units the hardware uses.
2497 	 */
2498 	block_size = xhci_get_block_size(virt_dev->udev);
2499 
2500 	/* If we are manipulating a LS/FS device under a HS hub, double check
2501 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2502 	 */
2503 	if (virt_dev->tt_info) {
2504 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2505 				"Recalculating BW for rootport %u",
2506 				virt_dev->real_port);
2507 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2508 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2509 					"newly activated TT.\n");
2510 			return -ENOMEM;
2511 		}
2512 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2513 				"Recalculating BW for TT slot %u port %u",
2514 				virt_dev->tt_info->slot_id,
2515 				virt_dev->tt_info->ttport);
2516 	} else {
2517 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2518 				"Recalculating BW for rootport %u",
2519 				virt_dev->real_port);
2520 	}
2521 
2522 	/* Add in how much bandwidth will be used for interval zero, or the
2523 	 * rounded max ESIT payload + number of packets * largest overhead.
2524 	 */
2525 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2526 		bw_table->interval_bw[0].num_packets *
2527 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2528 
2529 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2530 		unsigned int bw_added;
2531 		unsigned int largest_mps;
2532 		unsigned int interval_overhead;
2533 
2534 		/*
2535 		 * How many packets could we transmit in this interval?
2536 		 * If packets didn't fit in the previous interval, we will need
2537 		 * to transmit that many packets twice within this interval.
2538 		 */
2539 		packets_remaining = 2 * packets_remaining +
2540 			bw_table->interval_bw[i].num_packets;
2541 
2542 		/* Find the largest max packet size of this or the previous
2543 		 * interval.
2544 		 */
2545 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2546 			largest_mps = 0;
2547 		else {
2548 			struct xhci_virt_ep *virt_ep;
2549 			struct list_head *ep_entry;
2550 
2551 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2552 			virt_ep = list_entry(ep_entry,
2553 					struct xhci_virt_ep, bw_endpoint_list);
2554 			/* Convert to blocks, rounding up */
2555 			largest_mps = DIV_ROUND_UP(
2556 					virt_ep->bw_info.max_packet_size,
2557 					block_size);
2558 		}
2559 		if (largest_mps > packet_size)
2560 			packet_size = largest_mps;
2561 
2562 		/* Use the larger overhead of this or the previous interval. */
2563 		interval_overhead = xhci_get_largest_overhead(
2564 				&bw_table->interval_bw[i]);
2565 		if (interval_overhead > overhead)
2566 			overhead = interval_overhead;
2567 
2568 		/* How many packets can we evenly distribute across
2569 		 * (1 << (i + 1)) possible scheduling opportunities?
2570 		 */
2571 		packets_transmitted = packets_remaining >> (i + 1);
2572 
2573 		/* Add in the bandwidth used for those scheduled packets */
2574 		bw_added = packets_transmitted * (overhead + packet_size);
2575 
2576 		/* How many packets do we have remaining to transmit? */
2577 		packets_remaining = packets_remaining % (1 << (i + 1));
2578 
2579 		/* What largest max packet size should those packets have? */
2580 		/* If we've transmitted all packets, don't carry over the
2581 		 * largest packet size.
2582 		 */
2583 		if (packets_remaining == 0) {
2584 			packet_size = 0;
2585 			overhead = 0;
2586 		} else if (packets_transmitted > 0) {
2587 			/* Otherwise if we do have remaining packets, and we've
2588 			 * scheduled some packets in this interval, take the
2589 			 * largest max packet size from endpoints with this
2590 			 * interval.
2591 			 */
2592 			packet_size = largest_mps;
2593 			overhead = interval_overhead;
2594 		}
2595 		/* Otherwise carry over packet_size and overhead from the last
2596 		 * time we had a remainder.
2597 		 */
2598 		bw_used += bw_added;
2599 		if (bw_used > max_bandwidth) {
2600 			xhci_warn(xhci, "Not enough bandwidth. "
2601 					"Proposed: %u, Max: %u\n",
2602 				bw_used, max_bandwidth);
2603 			return -ENOMEM;
2604 		}
2605 	}
2606 	/*
2607 	 * Ok, we know we have some packets left over after even-handedly
2608 	 * scheduling interval 15.  We don't know which microframes they will
2609 	 * fit into, so we over-schedule and say they will be scheduled every
2610 	 * microframe.
2611 	 */
2612 	if (packets_remaining > 0)
2613 		bw_used += overhead + packet_size;
2614 
2615 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2616 		unsigned int port_index = virt_dev->real_port - 1;
2617 
2618 		/* OK, we're manipulating a HS device attached to a
2619 		 * root port bandwidth domain.  Include the number of active TTs
2620 		 * in the bandwidth used.
2621 		 */
2622 		bw_used += TT_HS_OVERHEAD *
2623 			xhci->rh_bw[port_index].num_active_tts;
2624 	}
2625 
2626 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2627 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2628 		"Available: %u " "percent",
2629 		bw_used, max_bandwidth, bw_reserved,
2630 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2631 		max_bandwidth);
2632 
2633 	bw_used += bw_reserved;
2634 	if (bw_used > max_bandwidth) {
2635 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2636 				bw_used, max_bandwidth);
2637 		return -ENOMEM;
2638 	}
2639 
2640 	bw_table->bw_used = bw_used;
2641 	return 0;
2642 }
2643 
2644 static bool xhci_is_async_ep(unsigned int ep_type)
2645 {
2646 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2647 					ep_type != ISOC_IN_EP &&
2648 					ep_type != INT_IN_EP);
2649 }
2650 
2651 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2652 {
2653 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2654 }
2655 
2656 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2657 {
2658 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2659 
2660 	if (ep_bw->ep_interval == 0)
2661 		return SS_OVERHEAD_BURST +
2662 			(ep_bw->mult * ep_bw->num_packets *
2663 					(SS_OVERHEAD + mps));
2664 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2665 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2666 				1 << ep_bw->ep_interval);
2667 
2668 }
2669 
2670 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2671 		struct xhci_bw_info *ep_bw,
2672 		struct xhci_interval_bw_table *bw_table,
2673 		struct usb_device *udev,
2674 		struct xhci_virt_ep *virt_ep,
2675 		struct xhci_tt_bw_info *tt_info)
2676 {
2677 	struct xhci_interval_bw	*interval_bw;
2678 	int normalized_interval;
2679 
2680 	if (xhci_is_async_ep(ep_bw->type))
2681 		return;
2682 
2683 	if (udev->speed >= USB_SPEED_SUPER) {
2684 		if (xhci_is_sync_in_ep(ep_bw->type))
2685 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2686 				xhci_get_ss_bw_consumed(ep_bw);
2687 		else
2688 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2689 				xhci_get_ss_bw_consumed(ep_bw);
2690 		return;
2691 	}
2692 
2693 	/* SuperSpeed endpoints never get added to intervals in the table, so
2694 	 * this check is only valid for HS/FS/LS devices.
2695 	 */
2696 	if (list_empty(&virt_ep->bw_endpoint_list))
2697 		return;
2698 	/* For LS/FS devices, we need to translate the interval expressed in
2699 	 * microframes to frames.
2700 	 */
2701 	if (udev->speed == USB_SPEED_HIGH)
2702 		normalized_interval = ep_bw->ep_interval;
2703 	else
2704 		normalized_interval = ep_bw->ep_interval - 3;
2705 
2706 	if (normalized_interval == 0)
2707 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2708 	interval_bw = &bw_table->interval_bw[normalized_interval];
2709 	interval_bw->num_packets -= ep_bw->num_packets;
2710 	switch (udev->speed) {
2711 	case USB_SPEED_LOW:
2712 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2713 		break;
2714 	case USB_SPEED_FULL:
2715 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2716 		break;
2717 	case USB_SPEED_HIGH:
2718 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2719 		break;
2720 	case USB_SPEED_SUPER:
2721 	case USB_SPEED_SUPER_PLUS:
2722 	case USB_SPEED_UNKNOWN:
2723 	case USB_SPEED_WIRELESS:
2724 		/* Should never happen because only LS/FS/HS endpoints will get
2725 		 * added to the endpoint list.
2726 		 */
2727 		return;
2728 	}
2729 	if (tt_info)
2730 		tt_info->active_eps -= 1;
2731 	list_del_init(&virt_ep->bw_endpoint_list);
2732 }
2733 
2734 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2735 		struct xhci_bw_info *ep_bw,
2736 		struct xhci_interval_bw_table *bw_table,
2737 		struct usb_device *udev,
2738 		struct xhci_virt_ep *virt_ep,
2739 		struct xhci_tt_bw_info *tt_info)
2740 {
2741 	struct xhci_interval_bw	*interval_bw;
2742 	struct xhci_virt_ep *smaller_ep;
2743 	int normalized_interval;
2744 
2745 	if (xhci_is_async_ep(ep_bw->type))
2746 		return;
2747 
2748 	if (udev->speed == USB_SPEED_SUPER) {
2749 		if (xhci_is_sync_in_ep(ep_bw->type))
2750 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2751 				xhci_get_ss_bw_consumed(ep_bw);
2752 		else
2753 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2754 				xhci_get_ss_bw_consumed(ep_bw);
2755 		return;
2756 	}
2757 
2758 	/* For LS/FS devices, we need to translate the interval expressed in
2759 	 * microframes to frames.
2760 	 */
2761 	if (udev->speed == USB_SPEED_HIGH)
2762 		normalized_interval = ep_bw->ep_interval;
2763 	else
2764 		normalized_interval = ep_bw->ep_interval - 3;
2765 
2766 	if (normalized_interval == 0)
2767 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2768 	interval_bw = &bw_table->interval_bw[normalized_interval];
2769 	interval_bw->num_packets += ep_bw->num_packets;
2770 	switch (udev->speed) {
2771 	case USB_SPEED_LOW:
2772 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2773 		break;
2774 	case USB_SPEED_FULL:
2775 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2776 		break;
2777 	case USB_SPEED_HIGH:
2778 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2779 		break;
2780 	case USB_SPEED_SUPER:
2781 	case USB_SPEED_SUPER_PLUS:
2782 	case USB_SPEED_UNKNOWN:
2783 	case USB_SPEED_WIRELESS:
2784 		/* Should never happen because only LS/FS/HS endpoints will get
2785 		 * added to the endpoint list.
2786 		 */
2787 		return;
2788 	}
2789 
2790 	if (tt_info)
2791 		tt_info->active_eps += 1;
2792 	/* Insert the endpoint into the list, largest max packet size first. */
2793 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2794 			bw_endpoint_list) {
2795 		if (ep_bw->max_packet_size >=
2796 				smaller_ep->bw_info.max_packet_size) {
2797 			/* Add the new ep before the smaller endpoint */
2798 			list_add_tail(&virt_ep->bw_endpoint_list,
2799 					&smaller_ep->bw_endpoint_list);
2800 			return;
2801 		}
2802 	}
2803 	/* Add the new endpoint at the end of the list. */
2804 	list_add_tail(&virt_ep->bw_endpoint_list,
2805 			&interval_bw->endpoints);
2806 }
2807 
2808 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2809 		struct xhci_virt_device *virt_dev,
2810 		int old_active_eps)
2811 {
2812 	struct xhci_root_port_bw_info *rh_bw_info;
2813 	if (!virt_dev->tt_info)
2814 		return;
2815 
2816 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2817 	if (old_active_eps == 0 &&
2818 				virt_dev->tt_info->active_eps != 0) {
2819 		rh_bw_info->num_active_tts += 1;
2820 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2821 	} else if (old_active_eps != 0 &&
2822 				virt_dev->tt_info->active_eps == 0) {
2823 		rh_bw_info->num_active_tts -= 1;
2824 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2825 	}
2826 }
2827 
2828 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2829 		struct xhci_virt_device *virt_dev,
2830 		struct xhci_container_ctx *in_ctx)
2831 {
2832 	struct xhci_bw_info ep_bw_info[31];
2833 	int i;
2834 	struct xhci_input_control_ctx *ctrl_ctx;
2835 	int old_active_eps = 0;
2836 
2837 	if (virt_dev->tt_info)
2838 		old_active_eps = virt_dev->tt_info->active_eps;
2839 
2840 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2841 	if (!ctrl_ctx) {
2842 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2843 				__func__);
2844 		return -ENOMEM;
2845 	}
2846 
2847 	for (i = 0; i < 31; i++) {
2848 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2849 			continue;
2850 
2851 		/* Make a copy of the BW info in case we need to revert this */
2852 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2853 				sizeof(ep_bw_info[i]));
2854 		/* Drop the endpoint from the interval table if the endpoint is
2855 		 * being dropped or changed.
2856 		 */
2857 		if (EP_IS_DROPPED(ctrl_ctx, i))
2858 			xhci_drop_ep_from_interval_table(xhci,
2859 					&virt_dev->eps[i].bw_info,
2860 					virt_dev->bw_table,
2861 					virt_dev->udev,
2862 					&virt_dev->eps[i],
2863 					virt_dev->tt_info);
2864 	}
2865 	/* Overwrite the information stored in the endpoints' bw_info */
2866 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2867 	for (i = 0; i < 31; i++) {
2868 		/* Add any changed or added endpoints to the interval table */
2869 		if (EP_IS_ADDED(ctrl_ctx, i))
2870 			xhci_add_ep_to_interval_table(xhci,
2871 					&virt_dev->eps[i].bw_info,
2872 					virt_dev->bw_table,
2873 					virt_dev->udev,
2874 					&virt_dev->eps[i],
2875 					virt_dev->tt_info);
2876 	}
2877 
2878 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2879 		/* Ok, this fits in the bandwidth we have.
2880 		 * Update the number of active TTs.
2881 		 */
2882 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2883 		return 0;
2884 	}
2885 
2886 	/* We don't have enough bandwidth for this, revert the stored info. */
2887 	for (i = 0; i < 31; i++) {
2888 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2889 			continue;
2890 
2891 		/* Drop the new copies of any added or changed endpoints from
2892 		 * the interval table.
2893 		 */
2894 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2895 			xhci_drop_ep_from_interval_table(xhci,
2896 					&virt_dev->eps[i].bw_info,
2897 					virt_dev->bw_table,
2898 					virt_dev->udev,
2899 					&virt_dev->eps[i],
2900 					virt_dev->tt_info);
2901 		}
2902 		/* Revert the endpoint back to its old information */
2903 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2904 				sizeof(ep_bw_info[i]));
2905 		/* Add any changed or dropped endpoints back into the table */
2906 		if (EP_IS_DROPPED(ctrl_ctx, i))
2907 			xhci_add_ep_to_interval_table(xhci,
2908 					&virt_dev->eps[i].bw_info,
2909 					virt_dev->bw_table,
2910 					virt_dev->udev,
2911 					&virt_dev->eps[i],
2912 					virt_dev->tt_info);
2913 	}
2914 	return -ENOMEM;
2915 }
2916 
2917 
2918 /* Issue a configure endpoint command or evaluate context command
2919  * and wait for it to finish.
2920  */
2921 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2922 		struct usb_device *udev,
2923 		struct xhci_command *command,
2924 		bool ctx_change, bool must_succeed)
2925 {
2926 	int ret;
2927 	unsigned long flags;
2928 	struct xhci_input_control_ctx *ctrl_ctx;
2929 	struct xhci_virt_device *virt_dev;
2930 	struct xhci_slot_ctx *slot_ctx;
2931 
2932 	if (!command)
2933 		return -EINVAL;
2934 
2935 	spin_lock_irqsave(&xhci->lock, flags);
2936 
2937 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2938 		spin_unlock_irqrestore(&xhci->lock, flags);
2939 		return -ESHUTDOWN;
2940 	}
2941 
2942 	virt_dev = xhci->devs[udev->slot_id];
2943 
2944 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2945 	if (!ctrl_ctx) {
2946 		spin_unlock_irqrestore(&xhci->lock, flags);
2947 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2948 				__func__);
2949 		return -ENOMEM;
2950 	}
2951 
2952 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2953 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2954 		spin_unlock_irqrestore(&xhci->lock, flags);
2955 		xhci_warn(xhci, "Not enough host resources, "
2956 				"active endpoint contexts = %u\n",
2957 				xhci->num_active_eps);
2958 		return -ENOMEM;
2959 	}
2960 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2961 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2962 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2963 			xhci_free_host_resources(xhci, ctrl_ctx);
2964 		spin_unlock_irqrestore(&xhci->lock, flags);
2965 		xhci_warn(xhci, "Not enough bandwidth\n");
2966 		return -ENOMEM;
2967 	}
2968 
2969 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2970 
2971 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2972 	trace_xhci_configure_endpoint(slot_ctx);
2973 
2974 	if (!ctx_change)
2975 		ret = xhci_queue_configure_endpoint(xhci, command,
2976 				command->in_ctx->dma,
2977 				udev->slot_id, must_succeed);
2978 	else
2979 		ret = xhci_queue_evaluate_context(xhci, command,
2980 				command->in_ctx->dma,
2981 				udev->slot_id, must_succeed);
2982 	if (ret < 0) {
2983 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2984 			xhci_free_host_resources(xhci, ctrl_ctx);
2985 		spin_unlock_irqrestore(&xhci->lock, flags);
2986 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2987 				"FIXME allocate a new ring segment");
2988 		return -ENOMEM;
2989 	}
2990 	xhci_ring_cmd_db(xhci);
2991 	spin_unlock_irqrestore(&xhci->lock, flags);
2992 
2993 	/* Wait for the configure endpoint command to complete */
2994 	wait_for_completion(command->completion);
2995 
2996 	if (!ctx_change)
2997 		ret = xhci_configure_endpoint_result(xhci, udev,
2998 						     &command->status);
2999 	else
3000 		ret = xhci_evaluate_context_result(xhci, udev,
3001 						   &command->status);
3002 
3003 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3004 		spin_lock_irqsave(&xhci->lock, flags);
3005 		/* If the command failed, remove the reserved resources.
3006 		 * Otherwise, clean up the estimate to include dropped eps.
3007 		 */
3008 		if (ret)
3009 			xhci_free_host_resources(xhci, ctrl_ctx);
3010 		else
3011 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
3012 		spin_unlock_irqrestore(&xhci->lock, flags);
3013 	}
3014 	return ret;
3015 }
3016 
3017 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3018 	struct xhci_virt_device *vdev, int i)
3019 {
3020 	struct xhci_virt_ep *ep = &vdev->eps[i];
3021 
3022 	if (ep->ep_state & EP_HAS_STREAMS) {
3023 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3024 				xhci_get_endpoint_address(i));
3025 		xhci_free_stream_info(xhci, ep->stream_info);
3026 		ep->stream_info = NULL;
3027 		ep->ep_state &= ~EP_HAS_STREAMS;
3028 	}
3029 }
3030 
3031 /* Called after one or more calls to xhci_add_endpoint() or
3032  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3033  * to call xhci_reset_bandwidth().
3034  *
3035  * Since we are in the middle of changing either configuration or
3036  * installing a new alt setting, the USB core won't allow URBs to be
3037  * enqueued for any endpoint on the old config or interface.  Nothing
3038  * else should be touching the xhci->devs[slot_id] structure, so we
3039  * don't need to take the xhci->lock for manipulating that.
3040  */
3041 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3042 {
3043 	int i;
3044 	int ret = 0;
3045 	struct xhci_hcd *xhci;
3046 	struct xhci_virt_device	*virt_dev;
3047 	struct xhci_input_control_ctx *ctrl_ctx;
3048 	struct xhci_slot_ctx *slot_ctx;
3049 	struct xhci_command *command;
3050 
3051 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3052 	if (ret <= 0)
3053 		return ret;
3054 	xhci = hcd_to_xhci(hcd);
3055 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3056 		(xhci->xhc_state & XHCI_STATE_REMOVING))
3057 		return -ENODEV;
3058 
3059 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3060 	virt_dev = xhci->devs[udev->slot_id];
3061 
3062 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3063 	if (!command)
3064 		return -ENOMEM;
3065 
3066 	command->in_ctx = virt_dev->in_ctx;
3067 
3068 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3069 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3070 	if (!ctrl_ctx) {
3071 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3072 				__func__);
3073 		ret = -ENOMEM;
3074 		goto command_cleanup;
3075 	}
3076 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3077 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3078 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3079 
3080 	/* Don't issue the command if there's no endpoints to update. */
3081 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3082 	    ctrl_ctx->drop_flags == 0) {
3083 		ret = 0;
3084 		goto command_cleanup;
3085 	}
3086 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3087 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3088 	for (i = 31; i >= 1; i--) {
3089 		__le32 le32 = cpu_to_le32(BIT(i));
3090 
3091 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3092 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3093 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3094 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3095 			break;
3096 		}
3097 	}
3098 
3099 	ret = xhci_configure_endpoint(xhci, udev, command,
3100 			false, false);
3101 	if (ret)
3102 		/* Callee should call reset_bandwidth() */
3103 		goto command_cleanup;
3104 
3105 	/* Free any rings that were dropped, but not changed. */
3106 	for (i = 1; i < 31; i++) {
3107 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3108 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3109 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3110 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3111 		}
3112 	}
3113 	xhci_zero_in_ctx(xhci, virt_dev);
3114 	/*
3115 	 * Install any rings for completely new endpoints or changed endpoints,
3116 	 * and free any old rings from changed endpoints.
3117 	 */
3118 	for (i = 1; i < 31; i++) {
3119 		if (!virt_dev->eps[i].new_ring)
3120 			continue;
3121 		/* Only free the old ring if it exists.
3122 		 * It may not if this is the first add of an endpoint.
3123 		 */
3124 		if (virt_dev->eps[i].ring) {
3125 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3126 		}
3127 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3128 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3129 		virt_dev->eps[i].new_ring = NULL;
3130 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3131 	}
3132 command_cleanup:
3133 	kfree(command->completion);
3134 	kfree(command);
3135 
3136 	return ret;
3137 }
3138 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3139 
3140 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3141 {
3142 	struct xhci_hcd *xhci;
3143 	struct xhci_virt_device	*virt_dev;
3144 	int i, ret;
3145 
3146 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3147 	if (ret <= 0)
3148 		return;
3149 	xhci = hcd_to_xhci(hcd);
3150 
3151 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3152 	virt_dev = xhci->devs[udev->slot_id];
3153 	/* Free any rings allocated for added endpoints */
3154 	for (i = 0; i < 31; i++) {
3155 		if (virt_dev->eps[i].new_ring) {
3156 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3157 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3158 			virt_dev->eps[i].new_ring = NULL;
3159 		}
3160 	}
3161 	xhci_zero_in_ctx(xhci, virt_dev);
3162 }
3163 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3164 
3165 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3166 		struct xhci_container_ctx *in_ctx,
3167 		struct xhci_container_ctx *out_ctx,
3168 		struct xhci_input_control_ctx *ctrl_ctx,
3169 		u32 add_flags, u32 drop_flags)
3170 {
3171 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3172 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3173 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3174 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3175 }
3176 
3177 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3178 				  struct usb_host_endpoint *host_ep)
3179 {
3180 	struct xhci_hcd		*xhci;
3181 	struct xhci_virt_device	*vdev;
3182 	struct xhci_virt_ep	*ep;
3183 	struct usb_device	*udev;
3184 	unsigned long		flags;
3185 	unsigned int		ep_index;
3186 
3187 	xhci = hcd_to_xhci(hcd);
3188 rescan:
3189 	spin_lock_irqsave(&xhci->lock, flags);
3190 
3191 	udev = (struct usb_device *)host_ep->hcpriv;
3192 	if (!udev || !udev->slot_id)
3193 		goto done;
3194 
3195 	vdev = xhci->devs[udev->slot_id];
3196 	if (!vdev)
3197 		goto done;
3198 
3199 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3200 	ep = &vdev->eps[ep_index];
3201 
3202 	/* wait for hub_tt_work to finish clearing hub TT */
3203 	if (ep->ep_state & EP_CLEARING_TT) {
3204 		spin_unlock_irqrestore(&xhci->lock, flags);
3205 		schedule_timeout_uninterruptible(1);
3206 		goto rescan;
3207 	}
3208 
3209 	if (ep->ep_state)
3210 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3211 			 ep->ep_state);
3212 done:
3213 	host_ep->hcpriv = NULL;
3214 	spin_unlock_irqrestore(&xhci->lock, flags);
3215 }
3216 
3217 /*
3218  * Called after usb core issues a clear halt control message.
3219  * The host side of the halt should already be cleared by a reset endpoint
3220  * command issued when the STALL event was received.
3221  *
3222  * The reset endpoint command may only be issued to endpoints in the halted
3223  * state. For software that wishes to reset the data toggle or sequence number
3224  * of an endpoint that isn't in the halted state this function will issue a
3225  * configure endpoint command with the Drop and Add bits set for the target
3226  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3227  */
3228 
3229 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3230 		struct usb_host_endpoint *host_ep)
3231 {
3232 	struct xhci_hcd *xhci;
3233 	struct usb_device *udev;
3234 	struct xhci_virt_device *vdev;
3235 	struct xhci_virt_ep *ep;
3236 	struct xhci_input_control_ctx *ctrl_ctx;
3237 	struct xhci_command *stop_cmd, *cfg_cmd;
3238 	unsigned int ep_index;
3239 	unsigned long flags;
3240 	u32 ep_flag;
3241 	int err;
3242 
3243 	xhci = hcd_to_xhci(hcd);
3244 	if (!host_ep->hcpriv)
3245 		return;
3246 	udev = (struct usb_device *) host_ep->hcpriv;
3247 	vdev = xhci->devs[udev->slot_id];
3248 
3249 	/*
3250 	 * vdev may be lost due to xHC restore error and re-initialization
3251 	 * during S3/S4 resume. A new vdev will be allocated later by
3252 	 * xhci_discover_or_reset_device()
3253 	 */
3254 	if (!udev->slot_id || !vdev)
3255 		return;
3256 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3257 	ep = &vdev->eps[ep_index];
3258 
3259 	/* Bail out if toggle is already being cleared by a endpoint reset */
3260 	spin_lock_irqsave(&xhci->lock, flags);
3261 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3262 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3263 		spin_unlock_irqrestore(&xhci->lock, flags);
3264 		return;
3265 	}
3266 	spin_unlock_irqrestore(&xhci->lock, flags);
3267 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3268 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3269 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3270 		return;
3271 
3272 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3273 
3274 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3275 		return;
3276 
3277 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3278 	if (!stop_cmd)
3279 		return;
3280 
3281 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3282 	if (!cfg_cmd)
3283 		goto cleanup;
3284 
3285 	spin_lock_irqsave(&xhci->lock, flags);
3286 
3287 	/* block queuing new trbs and ringing ep doorbell */
3288 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3289 
3290 	/*
3291 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3292 	 * Driver is required to synchronously cancel all transfer request.
3293 	 * Stop the endpoint to force xHC to update the output context
3294 	 */
3295 
3296 	if (!list_empty(&ep->ring->td_list)) {
3297 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3298 		spin_unlock_irqrestore(&xhci->lock, flags);
3299 		xhci_free_command(xhci, cfg_cmd);
3300 		goto cleanup;
3301 	}
3302 
3303 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3304 					ep_index, 0);
3305 	if (err < 0) {
3306 		spin_unlock_irqrestore(&xhci->lock, flags);
3307 		xhci_free_command(xhci, cfg_cmd);
3308 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3309 				__func__, err);
3310 		goto cleanup;
3311 	}
3312 
3313 	xhci_ring_cmd_db(xhci);
3314 	spin_unlock_irqrestore(&xhci->lock, flags);
3315 
3316 	wait_for_completion(stop_cmd->completion);
3317 
3318 	spin_lock_irqsave(&xhci->lock, flags);
3319 
3320 	/* config ep command clears toggle if add and drop ep flags are set */
3321 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3322 	if (!ctrl_ctx) {
3323 		spin_unlock_irqrestore(&xhci->lock, flags);
3324 		xhci_free_command(xhci, cfg_cmd);
3325 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3326 				__func__);
3327 		goto cleanup;
3328 	}
3329 
3330 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3331 					   ctrl_ctx, ep_flag, ep_flag);
3332 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3333 
3334 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3335 				      udev->slot_id, false);
3336 	if (err < 0) {
3337 		spin_unlock_irqrestore(&xhci->lock, flags);
3338 		xhci_free_command(xhci, cfg_cmd);
3339 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3340 				__func__, err);
3341 		goto cleanup;
3342 	}
3343 
3344 	xhci_ring_cmd_db(xhci);
3345 	spin_unlock_irqrestore(&xhci->lock, flags);
3346 
3347 	wait_for_completion(cfg_cmd->completion);
3348 
3349 	xhci_free_command(xhci, cfg_cmd);
3350 cleanup:
3351 	xhci_free_command(xhci, stop_cmd);
3352 	spin_lock_irqsave(&xhci->lock, flags);
3353 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3354 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3355 	spin_unlock_irqrestore(&xhci->lock, flags);
3356 }
3357 
3358 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3359 		struct usb_device *udev, struct usb_host_endpoint *ep,
3360 		unsigned int slot_id)
3361 {
3362 	int ret;
3363 	unsigned int ep_index;
3364 	unsigned int ep_state;
3365 
3366 	if (!ep)
3367 		return -EINVAL;
3368 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3369 	if (ret <= 0)
3370 		return ret ? ret : -EINVAL;
3371 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3372 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3373 				" descriptor for ep 0x%x does not support streams\n",
3374 				ep->desc.bEndpointAddress);
3375 		return -EINVAL;
3376 	}
3377 
3378 	ep_index = xhci_get_endpoint_index(&ep->desc);
3379 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3380 	if (ep_state & EP_HAS_STREAMS ||
3381 			ep_state & EP_GETTING_STREAMS) {
3382 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3383 				"already has streams set up.\n",
3384 				ep->desc.bEndpointAddress);
3385 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3386 				"dynamic stream context array reallocation.\n");
3387 		return -EINVAL;
3388 	}
3389 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3390 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3391 				"endpoint 0x%x; URBs are pending.\n",
3392 				ep->desc.bEndpointAddress);
3393 		return -EINVAL;
3394 	}
3395 	return 0;
3396 }
3397 
3398 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3399 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3400 {
3401 	unsigned int max_streams;
3402 
3403 	/* The stream context array size must be a power of two */
3404 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3405 	/*
3406 	 * Find out how many primary stream array entries the host controller
3407 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3408 	 * level page entries), but that's an optional feature for xHCI host
3409 	 * controllers. xHCs must support at least 4 stream IDs.
3410 	 */
3411 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3412 	if (*num_stream_ctxs > max_streams) {
3413 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3414 				max_streams);
3415 		*num_stream_ctxs = max_streams;
3416 		*num_streams = max_streams;
3417 	}
3418 }
3419 
3420 /* Returns an error code if one of the endpoint already has streams.
3421  * This does not change any data structures, it only checks and gathers
3422  * information.
3423  */
3424 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3425 		struct usb_device *udev,
3426 		struct usb_host_endpoint **eps, unsigned int num_eps,
3427 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3428 {
3429 	unsigned int max_streams;
3430 	unsigned int endpoint_flag;
3431 	int i;
3432 	int ret;
3433 
3434 	for (i = 0; i < num_eps; i++) {
3435 		ret = xhci_check_streams_endpoint(xhci, udev,
3436 				eps[i], udev->slot_id);
3437 		if (ret < 0)
3438 			return ret;
3439 
3440 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3441 		if (max_streams < (*num_streams - 1)) {
3442 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3443 					eps[i]->desc.bEndpointAddress,
3444 					max_streams);
3445 			*num_streams = max_streams+1;
3446 		}
3447 
3448 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3449 		if (*changed_ep_bitmask & endpoint_flag)
3450 			return -EINVAL;
3451 		*changed_ep_bitmask |= endpoint_flag;
3452 	}
3453 	return 0;
3454 }
3455 
3456 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3457 		struct usb_device *udev,
3458 		struct usb_host_endpoint **eps, unsigned int num_eps)
3459 {
3460 	u32 changed_ep_bitmask = 0;
3461 	unsigned int slot_id;
3462 	unsigned int ep_index;
3463 	unsigned int ep_state;
3464 	int i;
3465 
3466 	slot_id = udev->slot_id;
3467 	if (!xhci->devs[slot_id])
3468 		return 0;
3469 
3470 	for (i = 0; i < num_eps; i++) {
3471 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3472 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3473 		/* Are streams already being freed for the endpoint? */
3474 		if (ep_state & EP_GETTING_NO_STREAMS) {
3475 			xhci_warn(xhci, "WARN Can't disable streams for "
3476 					"endpoint 0x%x, "
3477 					"streams are being disabled already\n",
3478 					eps[i]->desc.bEndpointAddress);
3479 			return 0;
3480 		}
3481 		/* Are there actually any streams to free? */
3482 		if (!(ep_state & EP_HAS_STREAMS) &&
3483 				!(ep_state & EP_GETTING_STREAMS)) {
3484 			xhci_warn(xhci, "WARN Can't disable streams for "
3485 					"endpoint 0x%x, "
3486 					"streams are already disabled!\n",
3487 					eps[i]->desc.bEndpointAddress);
3488 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3489 					"with non-streams endpoint\n");
3490 			return 0;
3491 		}
3492 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3493 	}
3494 	return changed_ep_bitmask;
3495 }
3496 
3497 /*
3498  * The USB device drivers use this function (through the HCD interface in USB
3499  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3500  * coordinate mass storage command queueing across multiple endpoints (basically
3501  * a stream ID == a task ID).
3502  *
3503  * Setting up streams involves allocating the same size stream context array
3504  * for each endpoint and issuing a configure endpoint command for all endpoints.
3505  *
3506  * Don't allow the call to succeed if one endpoint only supports one stream
3507  * (which means it doesn't support streams at all).
3508  *
3509  * Drivers may get less stream IDs than they asked for, if the host controller
3510  * hardware or endpoints claim they can't support the number of requested
3511  * stream IDs.
3512  */
3513 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3514 		struct usb_host_endpoint **eps, unsigned int num_eps,
3515 		unsigned int num_streams, gfp_t mem_flags)
3516 {
3517 	int i, ret;
3518 	struct xhci_hcd *xhci;
3519 	struct xhci_virt_device *vdev;
3520 	struct xhci_command *config_cmd;
3521 	struct xhci_input_control_ctx *ctrl_ctx;
3522 	unsigned int ep_index;
3523 	unsigned int num_stream_ctxs;
3524 	unsigned int max_packet;
3525 	unsigned long flags;
3526 	u32 changed_ep_bitmask = 0;
3527 
3528 	if (!eps)
3529 		return -EINVAL;
3530 
3531 	/* Add one to the number of streams requested to account for
3532 	 * stream 0 that is reserved for xHCI usage.
3533 	 */
3534 	num_streams += 1;
3535 	xhci = hcd_to_xhci(hcd);
3536 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3537 			num_streams);
3538 
3539 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3540 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3541 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3542 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3543 		return -ENOSYS;
3544 	}
3545 
3546 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3547 	if (!config_cmd)
3548 		return -ENOMEM;
3549 
3550 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3551 	if (!ctrl_ctx) {
3552 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3553 				__func__);
3554 		xhci_free_command(xhci, config_cmd);
3555 		return -ENOMEM;
3556 	}
3557 
3558 	/* Check to make sure all endpoints are not already configured for
3559 	 * streams.  While we're at it, find the maximum number of streams that
3560 	 * all the endpoints will support and check for duplicate endpoints.
3561 	 */
3562 	spin_lock_irqsave(&xhci->lock, flags);
3563 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3564 			num_eps, &num_streams, &changed_ep_bitmask);
3565 	if (ret < 0) {
3566 		xhci_free_command(xhci, config_cmd);
3567 		spin_unlock_irqrestore(&xhci->lock, flags);
3568 		return ret;
3569 	}
3570 	if (num_streams <= 1) {
3571 		xhci_warn(xhci, "WARN: endpoints can't handle "
3572 				"more than one stream.\n");
3573 		xhci_free_command(xhci, config_cmd);
3574 		spin_unlock_irqrestore(&xhci->lock, flags);
3575 		return -EINVAL;
3576 	}
3577 	vdev = xhci->devs[udev->slot_id];
3578 	/* Mark each endpoint as being in transition, so
3579 	 * xhci_urb_enqueue() will reject all URBs.
3580 	 */
3581 	for (i = 0; i < num_eps; i++) {
3582 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3583 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3584 	}
3585 	spin_unlock_irqrestore(&xhci->lock, flags);
3586 
3587 	/* Setup internal data structures and allocate HW data structures for
3588 	 * streams (but don't install the HW structures in the input context
3589 	 * until we're sure all memory allocation succeeded).
3590 	 */
3591 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3592 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3593 			num_stream_ctxs, num_streams);
3594 
3595 	for (i = 0; i < num_eps; i++) {
3596 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3597 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3598 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3599 				num_stream_ctxs,
3600 				num_streams,
3601 				max_packet, mem_flags);
3602 		if (!vdev->eps[ep_index].stream_info)
3603 			goto cleanup;
3604 		/* Set maxPstreams in endpoint context and update deq ptr to
3605 		 * point to stream context array. FIXME
3606 		 */
3607 	}
3608 
3609 	/* Set up the input context for a configure endpoint command. */
3610 	for (i = 0; i < num_eps; i++) {
3611 		struct xhci_ep_ctx *ep_ctx;
3612 
3613 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3614 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3615 
3616 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3617 				vdev->out_ctx, ep_index);
3618 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3619 				vdev->eps[ep_index].stream_info);
3620 	}
3621 	/* Tell the HW to drop its old copy of the endpoint context info
3622 	 * and add the updated copy from the input context.
3623 	 */
3624 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3625 			vdev->out_ctx, ctrl_ctx,
3626 			changed_ep_bitmask, changed_ep_bitmask);
3627 
3628 	/* Issue and wait for the configure endpoint command */
3629 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3630 			false, false);
3631 
3632 	/* xHC rejected the configure endpoint command for some reason, so we
3633 	 * leave the old ring intact and free our internal streams data
3634 	 * structure.
3635 	 */
3636 	if (ret < 0)
3637 		goto cleanup;
3638 
3639 	spin_lock_irqsave(&xhci->lock, flags);
3640 	for (i = 0; i < num_eps; i++) {
3641 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3642 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3643 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3644 			 udev->slot_id, ep_index);
3645 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3646 	}
3647 	xhci_free_command(xhci, config_cmd);
3648 	spin_unlock_irqrestore(&xhci->lock, flags);
3649 
3650 	for (i = 0; i < num_eps; i++) {
3651 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3652 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3653 	}
3654 	/* Subtract 1 for stream 0, which drivers can't use */
3655 	return num_streams - 1;
3656 
3657 cleanup:
3658 	/* If it didn't work, free the streams! */
3659 	for (i = 0; i < num_eps; i++) {
3660 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3661 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3662 		vdev->eps[ep_index].stream_info = NULL;
3663 		/* FIXME Unset maxPstreams in endpoint context and
3664 		 * update deq ptr to point to normal string ring.
3665 		 */
3666 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3667 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3668 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3669 	}
3670 	xhci_free_command(xhci, config_cmd);
3671 	return -ENOMEM;
3672 }
3673 
3674 /* Transition the endpoint from using streams to being a "normal" endpoint
3675  * without streams.
3676  *
3677  * Modify the endpoint context state, submit a configure endpoint command,
3678  * and free all endpoint rings for streams if that completes successfully.
3679  */
3680 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3681 		struct usb_host_endpoint **eps, unsigned int num_eps,
3682 		gfp_t mem_flags)
3683 {
3684 	int i, ret;
3685 	struct xhci_hcd *xhci;
3686 	struct xhci_virt_device *vdev;
3687 	struct xhci_command *command;
3688 	struct xhci_input_control_ctx *ctrl_ctx;
3689 	unsigned int ep_index;
3690 	unsigned long flags;
3691 	u32 changed_ep_bitmask;
3692 
3693 	xhci = hcd_to_xhci(hcd);
3694 	vdev = xhci->devs[udev->slot_id];
3695 
3696 	/* Set up a configure endpoint command to remove the streams rings */
3697 	spin_lock_irqsave(&xhci->lock, flags);
3698 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3699 			udev, eps, num_eps);
3700 	if (changed_ep_bitmask == 0) {
3701 		spin_unlock_irqrestore(&xhci->lock, flags);
3702 		return -EINVAL;
3703 	}
3704 
3705 	/* Use the xhci_command structure from the first endpoint.  We may have
3706 	 * allocated too many, but the driver may call xhci_free_streams() for
3707 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3708 	 */
3709 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3710 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3711 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3712 	if (!ctrl_ctx) {
3713 		spin_unlock_irqrestore(&xhci->lock, flags);
3714 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3715 				__func__);
3716 		return -EINVAL;
3717 	}
3718 
3719 	for (i = 0; i < num_eps; i++) {
3720 		struct xhci_ep_ctx *ep_ctx;
3721 
3722 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3723 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3724 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3725 			EP_GETTING_NO_STREAMS;
3726 
3727 		xhci_endpoint_copy(xhci, command->in_ctx,
3728 				vdev->out_ctx, ep_index);
3729 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3730 				&vdev->eps[ep_index]);
3731 	}
3732 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3733 			vdev->out_ctx, ctrl_ctx,
3734 			changed_ep_bitmask, changed_ep_bitmask);
3735 	spin_unlock_irqrestore(&xhci->lock, flags);
3736 
3737 	/* Issue and wait for the configure endpoint command,
3738 	 * which must succeed.
3739 	 */
3740 	ret = xhci_configure_endpoint(xhci, udev, command,
3741 			false, true);
3742 
3743 	/* xHC rejected the configure endpoint command for some reason, so we
3744 	 * leave the streams rings intact.
3745 	 */
3746 	if (ret < 0)
3747 		return ret;
3748 
3749 	spin_lock_irqsave(&xhci->lock, flags);
3750 	for (i = 0; i < num_eps; i++) {
3751 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3752 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3753 		vdev->eps[ep_index].stream_info = NULL;
3754 		/* FIXME Unset maxPstreams in endpoint context and
3755 		 * update deq ptr to point to normal string ring.
3756 		 */
3757 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3758 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3759 	}
3760 	spin_unlock_irqrestore(&xhci->lock, flags);
3761 
3762 	return 0;
3763 }
3764 
3765 /*
3766  * Deletes endpoint resources for endpoints that were active before a Reset
3767  * Device command, or a Disable Slot command.  The Reset Device command leaves
3768  * the control endpoint intact, whereas the Disable Slot command deletes it.
3769  *
3770  * Must be called with xhci->lock held.
3771  */
3772 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3773 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3774 {
3775 	int i;
3776 	unsigned int num_dropped_eps = 0;
3777 	unsigned int drop_flags = 0;
3778 
3779 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3780 		if (virt_dev->eps[i].ring) {
3781 			drop_flags |= 1 << i;
3782 			num_dropped_eps++;
3783 		}
3784 	}
3785 	xhci->num_active_eps -= num_dropped_eps;
3786 	if (num_dropped_eps)
3787 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3788 				"Dropped %u ep ctxs, flags = 0x%x, "
3789 				"%u now active.",
3790 				num_dropped_eps, drop_flags,
3791 				xhci->num_active_eps);
3792 }
3793 
3794 /*
3795  * This submits a Reset Device Command, which will set the device state to 0,
3796  * set the device address to 0, and disable all the endpoints except the default
3797  * control endpoint.  The USB core should come back and call
3798  * xhci_address_device(), and then re-set up the configuration.  If this is
3799  * called because of a usb_reset_and_verify_device(), then the old alternate
3800  * settings will be re-installed through the normal bandwidth allocation
3801  * functions.
3802  *
3803  * Wait for the Reset Device command to finish.  Remove all structures
3804  * associated with the endpoints that were disabled.  Clear the input device
3805  * structure? Reset the control endpoint 0 max packet size?
3806  *
3807  * If the virt_dev to be reset does not exist or does not match the udev,
3808  * it means the device is lost, possibly due to the xHC restore error and
3809  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3810  * re-allocate the device.
3811  */
3812 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3813 		struct usb_device *udev)
3814 {
3815 	int ret, i;
3816 	unsigned long flags;
3817 	struct xhci_hcd *xhci;
3818 	unsigned int slot_id;
3819 	struct xhci_virt_device *virt_dev;
3820 	struct xhci_command *reset_device_cmd;
3821 	struct xhci_slot_ctx *slot_ctx;
3822 	int old_active_eps = 0;
3823 
3824 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3825 	if (ret <= 0)
3826 		return ret;
3827 	xhci = hcd_to_xhci(hcd);
3828 	slot_id = udev->slot_id;
3829 	virt_dev = xhci->devs[slot_id];
3830 	if (!virt_dev) {
3831 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3832 				"not exist. Re-allocate the device\n", slot_id);
3833 		ret = xhci_alloc_dev(hcd, udev);
3834 		if (ret == 1)
3835 			return 0;
3836 		else
3837 			return -EINVAL;
3838 	}
3839 
3840 	if (virt_dev->tt_info)
3841 		old_active_eps = virt_dev->tt_info->active_eps;
3842 
3843 	if (virt_dev->udev != udev) {
3844 		/* If the virt_dev and the udev does not match, this virt_dev
3845 		 * may belong to another udev.
3846 		 * Re-allocate the device.
3847 		 */
3848 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3849 				"not match the udev. Re-allocate the device\n",
3850 				slot_id);
3851 		ret = xhci_alloc_dev(hcd, udev);
3852 		if (ret == 1)
3853 			return 0;
3854 		else
3855 			return -EINVAL;
3856 	}
3857 
3858 	/* If device is not setup, there is no point in resetting it */
3859 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3860 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3861 						SLOT_STATE_DISABLED)
3862 		return 0;
3863 
3864 	trace_xhci_discover_or_reset_device(slot_ctx);
3865 
3866 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3867 	/* Allocate the command structure that holds the struct completion.
3868 	 * Assume we're in process context, since the normal device reset
3869 	 * process has to wait for the device anyway.  Storage devices are
3870 	 * reset as part of error handling, so use GFP_NOIO instead of
3871 	 * GFP_KERNEL.
3872 	 */
3873 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3874 	if (!reset_device_cmd) {
3875 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3876 		return -ENOMEM;
3877 	}
3878 
3879 	/* Attempt to submit the Reset Device command to the command ring */
3880 	spin_lock_irqsave(&xhci->lock, flags);
3881 
3882 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3883 	if (ret) {
3884 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3885 		spin_unlock_irqrestore(&xhci->lock, flags);
3886 		goto command_cleanup;
3887 	}
3888 	xhci_ring_cmd_db(xhci);
3889 	spin_unlock_irqrestore(&xhci->lock, flags);
3890 
3891 	/* Wait for the Reset Device command to finish */
3892 	wait_for_completion(reset_device_cmd->completion);
3893 
3894 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3895 	 * unless we tried to reset a slot ID that wasn't enabled,
3896 	 * or the device wasn't in the addressed or configured state.
3897 	 */
3898 	ret = reset_device_cmd->status;
3899 	switch (ret) {
3900 	case COMP_COMMAND_ABORTED:
3901 	case COMP_COMMAND_RING_STOPPED:
3902 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3903 		ret = -ETIME;
3904 		goto command_cleanup;
3905 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3906 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3907 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3908 				slot_id,
3909 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3910 		xhci_dbg(xhci, "Not freeing device rings.\n");
3911 		/* Don't treat this as an error.  May change my mind later. */
3912 		ret = 0;
3913 		goto command_cleanup;
3914 	case COMP_SUCCESS:
3915 		xhci_dbg(xhci, "Successful reset device command.\n");
3916 		break;
3917 	default:
3918 		if (xhci_is_vendor_info_code(xhci, ret))
3919 			break;
3920 		xhci_warn(xhci, "Unknown completion code %u for "
3921 				"reset device command.\n", ret);
3922 		ret = -EINVAL;
3923 		goto command_cleanup;
3924 	}
3925 
3926 	/* Free up host controller endpoint resources */
3927 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3928 		spin_lock_irqsave(&xhci->lock, flags);
3929 		/* Don't delete the default control endpoint resources */
3930 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3931 		spin_unlock_irqrestore(&xhci->lock, flags);
3932 	}
3933 
3934 	/* Everything but endpoint 0 is disabled, so free the rings. */
3935 	for (i = 1; i < 31; i++) {
3936 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3937 
3938 		if (ep->ep_state & EP_HAS_STREAMS) {
3939 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3940 					xhci_get_endpoint_address(i));
3941 			xhci_free_stream_info(xhci, ep->stream_info);
3942 			ep->stream_info = NULL;
3943 			ep->ep_state &= ~EP_HAS_STREAMS;
3944 		}
3945 
3946 		if (ep->ring) {
3947 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3948 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3949 		}
3950 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3951 			xhci_drop_ep_from_interval_table(xhci,
3952 					&virt_dev->eps[i].bw_info,
3953 					virt_dev->bw_table,
3954 					udev,
3955 					&virt_dev->eps[i],
3956 					virt_dev->tt_info);
3957 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3958 	}
3959 	/* If necessary, update the number of active TTs on this root port */
3960 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3961 	virt_dev->flags = 0;
3962 	ret = 0;
3963 
3964 command_cleanup:
3965 	xhci_free_command(xhci, reset_device_cmd);
3966 	return ret;
3967 }
3968 
3969 /*
3970  * At this point, the struct usb_device is about to go away, the device has
3971  * disconnected, and all traffic has been stopped and the endpoints have been
3972  * disabled.  Free any HC data structures associated with that device.
3973  */
3974 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3975 {
3976 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3977 	struct xhci_virt_device *virt_dev;
3978 	struct xhci_slot_ctx *slot_ctx;
3979 	int i, ret;
3980 
3981 	/*
3982 	 * We called pm_runtime_get_noresume when the device was attached.
3983 	 * Decrement the counter here to allow controller to runtime suspend
3984 	 * if no devices remain.
3985 	 */
3986 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3987 		pm_runtime_put_noidle(hcd->self.controller);
3988 
3989 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3990 	/* If the host is halted due to driver unload, we still need to free the
3991 	 * device.
3992 	 */
3993 	if (ret <= 0 && ret != -ENODEV)
3994 		return;
3995 
3996 	virt_dev = xhci->devs[udev->slot_id];
3997 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3998 	trace_xhci_free_dev(slot_ctx);
3999 
4000 	/* Stop any wayward timer functions (which may grab the lock) */
4001 	for (i = 0; i < 31; i++)
4002 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
4003 	virt_dev->udev = NULL;
4004 	xhci_disable_slot(xhci, udev->slot_id);
4005 	xhci_free_virt_device(xhci, udev->slot_id);
4006 }
4007 
4008 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4009 {
4010 	struct xhci_command *command;
4011 	unsigned long flags;
4012 	u32 state;
4013 	int ret;
4014 
4015 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4016 	if (!command)
4017 		return -ENOMEM;
4018 
4019 	xhci_debugfs_remove_slot(xhci, slot_id);
4020 
4021 	spin_lock_irqsave(&xhci->lock, flags);
4022 	/* Don't disable the slot if the host controller is dead. */
4023 	state = readl(&xhci->op_regs->status);
4024 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4025 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
4026 		spin_unlock_irqrestore(&xhci->lock, flags);
4027 		kfree(command);
4028 		return -ENODEV;
4029 	}
4030 
4031 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4032 				slot_id);
4033 	if (ret) {
4034 		spin_unlock_irqrestore(&xhci->lock, flags);
4035 		kfree(command);
4036 		return ret;
4037 	}
4038 	xhci_ring_cmd_db(xhci);
4039 	spin_unlock_irqrestore(&xhci->lock, flags);
4040 
4041 	wait_for_completion(command->completion);
4042 
4043 	if (command->status != COMP_SUCCESS)
4044 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4045 			  slot_id, command->status);
4046 
4047 	xhci_free_command(xhci, command);
4048 
4049 	return 0;
4050 }
4051 
4052 /*
4053  * Checks if we have enough host controller resources for the default control
4054  * endpoint.
4055  *
4056  * Must be called with xhci->lock held.
4057  */
4058 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4059 {
4060 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4061 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4062 				"Not enough ep ctxs: "
4063 				"%u active, need to add 1, limit is %u.",
4064 				xhci->num_active_eps, xhci->limit_active_eps);
4065 		return -ENOMEM;
4066 	}
4067 	xhci->num_active_eps += 1;
4068 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4069 			"Adding 1 ep ctx, %u now active.",
4070 			xhci->num_active_eps);
4071 	return 0;
4072 }
4073 
4074 
4075 /*
4076  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4077  * timed out, or allocating memory failed.  Returns 1 on success.
4078  */
4079 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4080 {
4081 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4082 	struct xhci_virt_device *vdev;
4083 	struct xhci_slot_ctx *slot_ctx;
4084 	unsigned long flags;
4085 	int ret, slot_id;
4086 	struct xhci_command *command;
4087 
4088 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4089 	if (!command)
4090 		return 0;
4091 
4092 	spin_lock_irqsave(&xhci->lock, flags);
4093 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4094 	if (ret) {
4095 		spin_unlock_irqrestore(&xhci->lock, flags);
4096 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4097 		xhci_free_command(xhci, command);
4098 		return 0;
4099 	}
4100 	xhci_ring_cmd_db(xhci);
4101 	spin_unlock_irqrestore(&xhci->lock, flags);
4102 
4103 	wait_for_completion(command->completion);
4104 	slot_id = command->slot_id;
4105 
4106 	if (!slot_id || command->status != COMP_SUCCESS) {
4107 		xhci_err(xhci, "Error while assigning device slot ID\n");
4108 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4109 				HCS_MAX_SLOTS(
4110 					readl(&xhci->cap_regs->hcs_params1)));
4111 		xhci_free_command(xhci, command);
4112 		return 0;
4113 	}
4114 
4115 	xhci_free_command(xhci, command);
4116 
4117 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4118 		spin_lock_irqsave(&xhci->lock, flags);
4119 		ret = xhci_reserve_host_control_ep_resources(xhci);
4120 		if (ret) {
4121 			spin_unlock_irqrestore(&xhci->lock, flags);
4122 			xhci_warn(xhci, "Not enough host resources, "
4123 					"active endpoint contexts = %u\n",
4124 					xhci->num_active_eps);
4125 			goto disable_slot;
4126 		}
4127 		spin_unlock_irqrestore(&xhci->lock, flags);
4128 	}
4129 	/* Use GFP_NOIO, since this function can be called from
4130 	 * xhci_discover_or_reset_device(), which may be called as part of
4131 	 * mass storage driver error handling.
4132 	 */
4133 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4134 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4135 		goto disable_slot;
4136 	}
4137 	vdev = xhci->devs[slot_id];
4138 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4139 	trace_xhci_alloc_dev(slot_ctx);
4140 
4141 	udev->slot_id = slot_id;
4142 
4143 	xhci_debugfs_create_slot(xhci, slot_id);
4144 
4145 	/*
4146 	 * If resetting upon resume, we can't put the controller into runtime
4147 	 * suspend if there is a device attached.
4148 	 */
4149 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4150 		pm_runtime_get_noresume(hcd->self.controller);
4151 
4152 	/* Is this a LS or FS device under a HS hub? */
4153 	/* Hub or peripherial? */
4154 	return 1;
4155 
4156 disable_slot:
4157 	xhci_disable_slot(xhci, udev->slot_id);
4158 	xhci_free_virt_device(xhci, udev->slot_id);
4159 
4160 	return 0;
4161 }
4162 
4163 /*
4164  * Issue an Address Device command and optionally send a corresponding
4165  * SetAddress request to the device.
4166  */
4167 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4168 			     enum xhci_setup_dev setup)
4169 {
4170 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4171 	unsigned long flags;
4172 	struct xhci_virt_device *virt_dev;
4173 	int ret = 0;
4174 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4175 	struct xhci_slot_ctx *slot_ctx;
4176 	struct xhci_input_control_ctx *ctrl_ctx;
4177 	u64 temp_64;
4178 	struct xhci_command *command = NULL;
4179 
4180 	mutex_lock(&xhci->mutex);
4181 
4182 	if (xhci->xhc_state) {	/* dying, removing or halted */
4183 		ret = -ESHUTDOWN;
4184 		goto out;
4185 	}
4186 
4187 	if (!udev->slot_id) {
4188 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4189 				"Bad Slot ID %d", udev->slot_id);
4190 		ret = -EINVAL;
4191 		goto out;
4192 	}
4193 
4194 	virt_dev = xhci->devs[udev->slot_id];
4195 
4196 	if (WARN_ON(!virt_dev)) {
4197 		/*
4198 		 * In plug/unplug torture test with an NEC controller,
4199 		 * a zero-dereference was observed once due to virt_dev = 0.
4200 		 * Print useful debug rather than crash if it is observed again!
4201 		 */
4202 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4203 			udev->slot_id);
4204 		ret = -EINVAL;
4205 		goto out;
4206 	}
4207 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4208 	trace_xhci_setup_device_slot(slot_ctx);
4209 
4210 	if (setup == SETUP_CONTEXT_ONLY) {
4211 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4212 		    SLOT_STATE_DEFAULT) {
4213 			xhci_dbg(xhci, "Slot already in default state\n");
4214 			goto out;
4215 		}
4216 	}
4217 
4218 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4219 	if (!command) {
4220 		ret = -ENOMEM;
4221 		goto out;
4222 	}
4223 
4224 	command->in_ctx = virt_dev->in_ctx;
4225 
4226 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4227 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4228 	if (!ctrl_ctx) {
4229 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4230 				__func__);
4231 		ret = -EINVAL;
4232 		goto out;
4233 	}
4234 	/*
4235 	 * If this is the first Set Address since device plug-in or
4236 	 * virt_device realloaction after a resume with an xHCI power loss,
4237 	 * then set up the slot context.
4238 	 */
4239 	if (!slot_ctx->dev_info)
4240 		xhci_setup_addressable_virt_dev(xhci, udev);
4241 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4242 	else
4243 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4244 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4245 	ctrl_ctx->drop_flags = 0;
4246 
4247 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4248 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4249 
4250 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4251 	spin_lock_irqsave(&xhci->lock, flags);
4252 	trace_xhci_setup_device(virt_dev);
4253 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4254 					udev->slot_id, setup);
4255 	if (ret) {
4256 		spin_unlock_irqrestore(&xhci->lock, flags);
4257 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4258 				"FIXME: allocate a command ring segment");
4259 		goto out;
4260 	}
4261 	xhci_ring_cmd_db(xhci);
4262 	spin_unlock_irqrestore(&xhci->lock, flags);
4263 
4264 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4265 	wait_for_completion(command->completion);
4266 
4267 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4268 	 * the SetAddress() "recovery interval" required by USB and aborting the
4269 	 * command on a timeout.
4270 	 */
4271 	switch (command->status) {
4272 	case COMP_COMMAND_ABORTED:
4273 	case COMP_COMMAND_RING_STOPPED:
4274 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4275 		ret = -ETIME;
4276 		break;
4277 	case COMP_CONTEXT_STATE_ERROR:
4278 	case COMP_SLOT_NOT_ENABLED_ERROR:
4279 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4280 			 act, udev->slot_id);
4281 		ret = -EINVAL;
4282 		break;
4283 	case COMP_USB_TRANSACTION_ERROR:
4284 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4285 
4286 		mutex_unlock(&xhci->mutex);
4287 		ret = xhci_disable_slot(xhci, udev->slot_id);
4288 		xhci_free_virt_device(xhci, udev->slot_id);
4289 		if (!ret)
4290 			xhci_alloc_dev(hcd, udev);
4291 		kfree(command->completion);
4292 		kfree(command);
4293 		return -EPROTO;
4294 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4295 		dev_warn(&udev->dev,
4296 			 "ERROR: Incompatible device for setup %s command\n", act);
4297 		ret = -ENODEV;
4298 		break;
4299 	case COMP_SUCCESS:
4300 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4301 			       "Successful setup %s command", act);
4302 		break;
4303 	default:
4304 		xhci_err(xhci,
4305 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4306 			 act, command->status);
4307 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4308 		ret = -EINVAL;
4309 		break;
4310 	}
4311 	if (ret)
4312 		goto out;
4313 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4314 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4315 			"Op regs DCBAA ptr = %#016llx", temp_64);
4316 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4317 		"Slot ID %d dcbaa entry @%p = %#016llx",
4318 		udev->slot_id,
4319 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4320 		(unsigned long long)
4321 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4322 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4323 			"Output Context DMA address = %#08llx",
4324 			(unsigned long long)virt_dev->out_ctx->dma);
4325 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4326 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4327 	/*
4328 	 * USB core uses address 1 for the roothubs, so we add one to the
4329 	 * address given back to us by the HC.
4330 	 */
4331 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4332 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4333 	/* Zero the input context control for later use */
4334 	ctrl_ctx->add_flags = 0;
4335 	ctrl_ctx->drop_flags = 0;
4336 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4337 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4338 
4339 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4340 		       "Internal device address = %d",
4341 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4342 out:
4343 	mutex_unlock(&xhci->mutex);
4344 	if (command) {
4345 		kfree(command->completion);
4346 		kfree(command);
4347 	}
4348 	return ret;
4349 }
4350 
4351 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4352 {
4353 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4354 }
4355 
4356 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4357 {
4358 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4359 }
4360 
4361 /*
4362  * Transfer the port index into real index in the HW port status
4363  * registers. Caculate offset between the port's PORTSC register
4364  * and port status base. Divide the number of per port register
4365  * to get the real index. The raw port number bases 1.
4366  */
4367 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4368 {
4369 	struct xhci_hub *rhub;
4370 
4371 	rhub = xhci_get_rhub(hcd);
4372 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4373 }
4374 
4375 /*
4376  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4377  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4378  */
4379 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4380 			struct usb_device *udev, u16 max_exit_latency)
4381 {
4382 	struct xhci_virt_device *virt_dev;
4383 	struct xhci_command *command;
4384 	struct xhci_input_control_ctx *ctrl_ctx;
4385 	struct xhci_slot_ctx *slot_ctx;
4386 	unsigned long flags;
4387 	int ret;
4388 
4389 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4390 	if (!command)
4391 		return -ENOMEM;
4392 
4393 	spin_lock_irqsave(&xhci->lock, flags);
4394 
4395 	virt_dev = xhci->devs[udev->slot_id];
4396 
4397 	/*
4398 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4399 	 * xHC was re-initialized. Exit latency will be set later after
4400 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4401 	 */
4402 
4403 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4404 		spin_unlock_irqrestore(&xhci->lock, flags);
4405 		return 0;
4406 	}
4407 
4408 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4409 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4410 	if (!ctrl_ctx) {
4411 		spin_unlock_irqrestore(&xhci->lock, flags);
4412 		xhci_free_command(xhci, command);
4413 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4414 				__func__);
4415 		return -ENOMEM;
4416 	}
4417 
4418 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4419 	spin_unlock_irqrestore(&xhci->lock, flags);
4420 
4421 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4422 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4423 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4424 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4425 	slot_ctx->dev_state = 0;
4426 
4427 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4428 			"Set up evaluate context for LPM MEL change.");
4429 
4430 	/* Issue and wait for the evaluate context command. */
4431 	ret = xhci_configure_endpoint(xhci, udev, command,
4432 			true, true);
4433 
4434 	if (!ret) {
4435 		spin_lock_irqsave(&xhci->lock, flags);
4436 		virt_dev->current_mel = max_exit_latency;
4437 		spin_unlock_irqrestore(&xhci->lock, flags);
4438 	}
4439 
4440 	xhci_free_command(xhci, command);
4441 
4442 	return ret;
4443 }
4444 
4445 #ifdef CONFIG_PM
4446 
4447 /* BESL to HIRD Encoding array for USB2 LPM */
4448 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4449 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4450 
4451 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4452 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4453 					struct usb_device *udev)
4454 {
4455 	int u2del, besl, besl_host;
4456 	int besl_device = 0;
4457 	u32 field;
4458 
4459 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4460 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4461 
4462 	if (field & USB_BESL_SUPPORT) {
4463 		for (besl_host = 0; besl_host < 16; besl_host++) {
4464 			if (xhci_besl_encoding[besl_host] >= u2del)
4465 				break;
4466 		}
4467 		/* Use baseline BESL value as default */
4468 		if (field & USB_BESL_BASELINE_VALID)
4469 			besl_device = USB_GET_BESL_BASELINE(field);
4470 		else if (field & USB_BESL_DEEP_VALID)
4471 			besl_device = USB_GET_BESL_DEEP(field);
4472 	} else {
4473 		if (u2del <= 50)
4474 			besl_host = 0;
4475 		else
4476 			besl_host = (u2del - 51) / 75 + 1;
4477 	}
4478 
4479 	besl = besl_host + besl_device;
4480 	if (besl > 15)
4481 		besl = 15;
4482 
4483 	return besl;
4484 }
4485 
4486 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4487 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4488 {
4489 	u32 field;
4490 	int l1;
4491 	int besld = 0;
4492 	int hirdm = 0;
4493 
4494 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4495 
4496 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4497 	l1 = udev->l1_params.timeout / 256;
4498 
4499 	/* device has preferred BESLD */
4500 	if (field & USB_BESL_DEEP_VALID) {
4501 		besld = USB_GET_BESL_DEEP(field);
4502 		hirdm = 1;
4503 	}
4504 
4505 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4506 }
4507 
4508 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4509 			struct usb_device *udev, int enable)
4510 {
4511 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4512 	struct xhci_port **ports;
4513 	__le32 __iomem	*pm_addr, *hlpm_addr;
4514 	u32		pm_val, hlpm_val, field;
4515 	unsigned int	port_num;
4516 	unsigned long	flags;
4517 	int		hird, exit_latency;
4518 	int		ret;
4519 
4520 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4521 		return -EPERM;
4522 
4523 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4524 			!udev->lpm_capable)
4525 		return -EPERM;
4526 
4527 	if (!udev->parent || udev->parent->parent ||
4528 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4529 		return -EPERM;
4530 
4531 	if (udev->usb2_hw_lpm_capable != 1)
4532 		return -EPERM;
4533 
4534 	spin_lock_irqsave(&xhci->lock, flags);
4535 
4536 	ports = xhci->usb2_rhub.ports;
4537 	port_num = udev->portnum - 1;
4538 	pm_addr = ports[port_num]->addr + PORTPMSC;
4539 	pm_val = readl(pm_addr);
4540 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4541 
4542 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4543 			enable ? "enable" : "disable", port_num + 1);
4544 
4545 	if (enable) {
4546 		/* Host supports BESL timeout instead of HIRD */
4547 		if (udev->usb2_hw_lpm_besl_capable) {
4548 			/* if device doesn't have a preferred BESL value use a
4549 			 * default one which works with mixed HIRD and BESL
4550 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4551 			 */
4552 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4553 			if ((field & USB_BESL_SUPPORT) &&
4554 			    (field & USB_BESL_BASELINE_VALID))
4555 				hird = USB_GET_BESL_BASELINE(field);
4556 			else
4557 				hird = udev->l1_params.besl;
4558 
4559 			exit_latency = xhci_besl_encoding[hird];
4560 			spin_unlock_irqrestore(&xhci->lock, flags);
4561 
4562 			ret = xhci_change_max_exit_latency(xhci, udev,
4563 							   exit_latency);
4564 			if (ret < 0)
4565 				return ret;
4566 			spin_lock_irqsave(&xhci->lock, flags);
4567 
4568 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4569 			writel(hlpm_val, hlpm_addr);
4570 			/* flush write */
4571 			readl(hlpm_addr);
4572 		} else {
4573 			hird = xhci_calculate_hird_besl(xhci, udev);
4574 		}
4575 
4576 		pm_val &= ~PORT_HIRD_MASK;
4577 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4578 		writel(pm_val, pm_addr);
4579 		pm_val = readl(pm_addr);
4580 		pm_val |= PORT_HLE;
4581 		writel(pm_val, pm_addr);
4582 		/* flush write */
4583 		readl(pm_addr);
4584 	} else {
4585 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4586 		writel(pm_val, pm_addr);
4587 		/* flush write */
4588 		readl(pm_addr);
4589 		if (udev->usb2_hw_lpm_besl_capable) {
4590 			spin_unlock_irqrestore(&xhci->lock, flags);
4591 			xhci_change_max_exit_latency(xhci, udev, 0);
4592 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4593 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4594 					   100, 10000);
4595 			return 0;
4596 		}
4597 	}
4598 
4599 	spin_unlock_irqrestore(&xhci->lock, flags);
4600 	return 0;
4601 }
4602 
4603 /* check if a usb2 port supports a given extened capability protocol
4604  * only USB2 ports extended protocol capability values are cached.
4605  * Return 1 if capability is supported
4606  */
4607 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4608 					   unsigned capability)
4609 {
4610 	u32 port_offset, port_count;
4611 	int i;
4612 
4613 	for (i = 0; i < xhci->num_ext_caps; i++) {
4614 		if (xhci->ext_caps[i] & capability) {
4615 			/* port offsets starts at 1 */
4616 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4617 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4618 			if (port >= port_offset &&
4619 			    port < port_offset + port_count)
4620 				return 1;
4621 		}
4622 	}
4623 	return 0;
4624 }
4625 
4626 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4627 {
4628 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4629 	int		portnum = udev->portnum - 1;
4630 
4631 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4632 		return 0;
4633 
4634 	/* we only support lpm for non-hub device connected to root hub yet */
4635 	if (!udev->parent || udev->parent->parent ||
4636 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4637 		return 0;
4638 
4639 	if (xhci->hw_lpm_support == 1 &&
4640 			xhci_check_usb2_port_capability(
4641 				xhci, portnum, XHCI_HLC)) {
4642 		udev->usb2_hw_lpm_capable = 1;
4643 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4644 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4645 		if (xhci_check_usb2_port_capability(xhci, portnum,
4646 					XHCI_BLC))
4647 			udev->usb2_hw_lpm_besl_capable = 1;
4648 	}
4649 
4650 	return 0;
4651 }
4652 
4653 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4654 
4655 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4656 static unsigned long long xhci_service_interval_to_ns(
4657 		struct usb_endpoint_descriptor *desc)
4658 {
4659 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4660 }
4661 
4662 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4663 		enum usb3_link_state state)
4664 {
4665 	unsigned long long sel;
4666 	unsigned long long pel;
4667 	unsigned int max_sel_pel;
4668 	char *state_name;
4669 
4670 	switch (state) {
4671 	case USB3_LPM_U1:
4672 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4673 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4674 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4675 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4676 		state_name = "U1";
4677 		break;
4678 	case USB3_LPM_U2:
4679 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4680 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4681 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4682 		state_name = "U2";
4683 		break;
4684 	default:
4685 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4686 				__func__);
4687 		return USB3_LPM_DISABLED;
4688 	}
4689 
4690 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4691 		return USB3_LPM_DEVICE_INITIATED;
4692 
4693 	if (sel > max_sel_pel)
4694 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4695 				"due to long SEL %llu ms\n",
4696 				state_name, sel);
4697 	else
4698 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4699 				"due to long PEL %llu ms\n",
4700 				state_name, pel);
4701 	return USB3_LPM_DISABLED;
4702 }
4703 
4704 /* The U1 timeout should be the maximum of the following values:
4705  *  - For control endpoints, U1 system exit latency (SEL) * 3
4706  *  - For bulk endpoints, U1 SEL * 5
4707  *  - For interrupt endpoints:
4708  *    - Notification EPs, U1 SEL * 3
4709  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4710  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4711  */
4712 static unsigned long long xhci_calculate_intel_u1_timeout(
4713 		struct usb_device *udev,
4714 		struct usb_endpoint_descriptor *desc)
4715 {
4716 	unsigned long long timeout_ns;
4717 	int ep_type;
4718 	int intr_type;
4719 
4720 	ep_type = usb_endpoint_type(desc);
4721 	switch (ep_type) {
4722 	case USB_ENDPOINT_XFER_CONTROL:
4723 		timeout_ns = udev->u1_params.sel * 3;
4724 		break;
4725 	case USB_ENDPOINT_XFER_BULK:
4726 		timeout_ns = udev->u1_params.sel * 5;
4727 		break;
4728 	case USB_ENDPOINT_XFER_INT:
4729 		intr_type = usb_endpoint_interrupt_type(desc);
4730 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4731 			timeout_ns = udev->u1_params.sel * 3;
4732 			break;
4733 		}
4734 		/* Otherwise the calculation is the same as isoc eps */
4735 		fallthrough;
4736 	case USB_ENDPOINT_XFER_ISOC:
4737 		timeout_ns = xhci_service_interval_to_ns(desc);
4738 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4739 		if (timeout_ns < udev->u1_params.sel * 2)
4740 			timeout_ns = udev->u1_params.sel * 2;
4741 		break;
4742 	default:
4743 		return 0;
4744 	}
4745 
4746 	return timeout_ns;
4747 }
4748 
4749 /* Returns the hub-encoded U1 timeout value. */
4750 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4751 		struct usb_device *udev,
4752 		struct usb_endpoint_descriptor *desc)
4753 {
4754 	unsigned long long timeout_ns;
4755 
4756 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4757 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4758 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4759 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4760 			return USB3_LPM_DISABLED;
4761 		}
4762 	}
4763 
4764 	if (xhci->quirks & XHCI_INTEL_HOST)
4765 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4766 	else
4767 		timeout_ns = udev->u1_params.sel;
4768 
4769 	/* The U1 timeout is encoded in 1us intervals.
4770 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4771 	 */
4772 	if (timeout_ns == USB3_LPM_DISABLED)
4773 		timeout_ns = 1;
4774 	else
4775 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4776 
4777 	/* If the necessary timeout value is bigger than what we can set in the
4778 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4779 	 */
4780 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4781 		return timeout_ns;
4782 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4783 			"due to long timeout %llu ms\n", timeout_ns);
4784 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4785 }
4786 
4787 /* The U2 timeout should be the maximum of:
4788  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4789  *  - largest bInterval of any active periodic endpoint (to avoid going
4790  *    into lower power link states between intervals).
4791  *  - the U2 Exit Latency of the device
4792  */
4793 static unsigned long long xhci_calculate_intel_u2_timeout(
4794 		struct usb_device *udev,
4795 		struct usb_endpoint_descriptor *desc)
4796 {
4797 	unsigned long long timeout_ns;
4798 	unsigned long long u2_del_ns;
4799 
4800 	timeout_ns = 10 * 1000 * 1000;
4801 
4802 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4803 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4804 		timeout_ns = xhci_service_interval_to_ns(desc);
4805 
4806 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4807 	if (u2_del_ns > timeout_ns)
4808 		timeout_ns = u2_del_ns;
4809 
4810 	return timeout_ns;
4811 }
4812 
4813 /* Returns the hub-encoded U2 timeout value. */
4814 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4815 		struct usb_device *udev,
4816 		struct usb_endpoint_descriptor *desc)
4817 {
4818 	unsigned long long timeout_ns;
4819 
4820 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4821 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4822 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4823 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4824 			return USB3_LPM_DISABLED;
4825 		}
4826 	}
4827 
4828 	if (xhci->quirks & XHCI_INTEL_HOST)
4829 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4830 	else
4831 		timeout_ns = udev->u2_params.sel;
4832 
4833 	/* The U2 timeout is encoded in 256us intervals */
4834 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4835 	/* If the necessary timeout value is bigger than what we can set in the
4836 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4837 	 */
4838 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4839 		return timeout_ns;
4840 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4841 			"due to long timeout %llu ms\n", timeout_ns);
4842 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4843 }
4844 
4845 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4846 		struct usb_device *udev,
4847 		struct usb_endpoint_descriptor *desc,
4848 		enum usb3_link_state state,
4849 		u16 *timeout)
4850 {
4851 	if (state == USB3_LPM_U1)
4852 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4853 	else if (state == USB3_LPM_U2)
4854 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4855 
4856 	return USB3_LPM_DISABLED;
4857 }
4858 
4859 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4860 		struct usb_device *udev,
4861 		struct usb_endpoint_descriptor *desc,
4862 		enum usb3_link_state state,
4863 		u16 *timeout)
4864 {
4865 	u16 alt_timeout;
4866 
4867 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4868 		desc, state, timeout);
4869 
4870 	/* If we found we can't enable hub-initiated LPM, and
4871 	 * the U1 or U2 exit latency was too high to allow
4872 	 * device-initiated LPM as well, then we will disable LPM
4873 	 * for this device, so stop searching any further.
4874 	 */
4875 	if (alt_timeout == USB3_LPM_DISABLED) {
4876 		*timeout = alt_timeout;
4877 		return -E2BIG;
4878 	}
4879 	if (alt_timeout > *timeout)
4880 		*timeout = alt_timeout;
4881 	return 0;
4882 }
4883 
4884 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4885 		struct usb_device *udev,
4886 		struct usb_host_interface *alt,
4887 		enum usb3_link_state state,
4888 		u16 *timeout)
4889 {
4890 	int j;
4891 
4892 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4893 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4894 					&alt->endpoint[j].desc, state, timeout))
4895 			return -E2BIG;
4896 	}
4897 	return 0;
4898 }
4899 
4900 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4901 		enum usb3_link_state state)
4902 {
4903 	struct usb_device *parent;
4904 	unsigned int num_hubs;
4905 
4906 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4907 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4908 			parent = parent->parent)
4909 		num_hubs++;
4910 
4911 	if (num_hubs < 2)
4912 		return 0;
4913 
4914 	dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4915 			" below second-tier hub.\n");
4916 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4917 			"to decrease power consumption.\n");
4918 	return -E2BIG;
4919 }
4920 
4921 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4922 		struct usb_device *udev,
4923 		enum usb3_link_state state)
4924 {
4925 	if (xhci->quirks & XHCI_INTEL_HOST)
4926 		return xhci_check_intel_tier_policy(udev, state);
4927 	else
4928 		return 0;
4929 }
4930 
4931 /* Returns the U1 or U2 timeout that should be enabled.
4932  * If the tier check or timeout setting functions return with a non-zero exit
4933  * code, that means the timeout value has been finalized and we shouldn't look
4934  * at any more endpoints.
4935  */
4936 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4937 			struct usb_device *udev, enum usb3_link_state state)
4938 {
4939 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4940 	struct usb_host_config *config;
4941 	char *state_name;
4942 	int i;
4943 	u16 timeout = USB3_LPM_DISABLED;
4944 
4945 	if (state == USB3_LPM_U1)
4946 		state_name = "U1";
4947 	else if (state == USB3_LPM_U2)
4948 		state_name = "U2";
4949 	else {
4950 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4951 				state);
4952 		return timeout;
4953 	}
4954 
4955 	/* Gather some information about the currently installed configuration
4956 	 * and alternate interface settings.
4957 	 */
4958 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4959 			state, &timeout))
4960 		return timeout;
4961 
4962 	config = udev->actconfig;
4963 	if (!config)
4964 		return timeout;
4965 
4966 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4967 		struct usb_driver *driver;
4968 		struct usb_interface *intf = config->interface[i];
4969 
4970 		if (!intf)
4971 			continue;
4972 
4973 		/* Check if any currently bound drivers want hub-initiated LPM
4974 		 * disabled.
4975 		 */
4976 		if (intf->dev.driver) {
4977 			driver = to_usb_driver(intf->dev.driver);
4978 			if (driver && driver->disable_hub_initiated_lpm) {
4979 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4980 					state_name, driver->name);
4981 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4982 								      state);
4983 				if (timeout == USB3_LPM_DISABLED)
4984 					return timeout;
4985 			}
4986 		}
4987 
4988 		/* Not sure how this could happen... */
4989 		if (!intf->cur_altsetting)
4990 			continue;
4991 
4992 		if (xhci_update_timeout_for_interface(xhci, udev,
4993 					intf->cur_altsetting,
4994 					state, &timeout))
4995 			return timeout;
4996 	}
4997 	return timeout;
4998 }
4999 
5000 static int calculate_max_exit_latency(struct usb_device *udev,
5001 		enum usb3_link_state state_changed,
5002 		u16 hub_encoded_timeout)
5003 {
5004 	unsigned long long u1_mel_us = 0;
5005 	unsigned long long u2_mel_us = 0;
5006 	unsigned long long mel_us = 0;
5007 	bool disabling_u1;
5008 	bool disabling_u2;
5009 	bool enabling_u1;
5010 	bool enabling_u2;
5011 
5012 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
5013 			hub_encoded_timeout == USB3_LPM_DISABLED);
5014 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
5015 			hub_encoded_timeout == USB3_LPM_DISABLED);
5016 
5017 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
5018 			hub_encoded_timeout != USB3_LPM_DISABLED);
5019 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
5020 			hub_encoded_timeout != USB3_LPM_DISABLED);
5021 
5022 	/* If U1 was already enabled and we're not disabling it,
5023 	 * or we're going to enable U1, account for the U1 max exit latency.
5024 	 */
5025 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5026 			enabling_u1)
5027 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5028 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5029 			enabling_u2)
5030 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5031 
5032 	mel_us = max(u1_mel_us, u2_mel_us);
5033 
5034 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5035 	if (mel_us > MAX_EXIT) {
5036 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5037 				"is too big.\n", mel_us);
5038 		return -E2BIG;
5039 	}
5040 	return mel_us;
5041 }
5042 
5043 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5044 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5045 			struct usb_device *udev, enum usb3_link_state state)
5046 {
5047 	struct xhci_hcd	*xhci;
5048 	u16 hub_encoded_timeout;
5049 	int mel;
5050 	int ret;
5051 
5052 	xhci = hcd_to_xhci(hcd);
5053 	/* The LPM timeout values are pretty host-controller specific, so don't
5054 	 * enable hub-initiated timeouts unless the vendor has provided
5055 	 * information about their timeout algorithm.
5056 	 */
5057 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5058 			!xhci->devs[udev->slot_id])
5059 		return USB3_LPM_DISABLED;
5060 
5061 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
5062 		return USB3_LPM_DISABLED;
5063 
5064 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5065 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5066 	if (mel < 0) {
5067 		/* Max Exit Latency is too big, disable LPM. */
5068 		hub_encoded_timeout = USB3_LPM_DISABLED;
5069 		mel = 0;
5070 	}
5071 
5072 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5073 	if (ret)
5074 		return ret;
5075 	return hub_encoded_timeout;
5076 }
5077 
5078 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5079 			struct usb_device *udev, enum usb3_link_state state)
5080 {
5081 	struct xhci_hcd	*xhci;
5082 	u16 mel;
5083 
5084 	xhci = hcd_to_xhci(hcd);
5085 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5086 			!xhci->devs[udev->slot_id])
5087 		return 0;
5088 
5089 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5090 	return xhci_change_max_exit_latency(xhci, udev, mel);
5091 }
5092 #else /* CONFIG_PM */
5093 
5094 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5095 				struct usb_device *udev, int enable)
5096 {
5097 	return 0;
5098 }
5099 
5100 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5101 {
5102 	return 0;
5103 }
5104 
5105 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5106 			struct usb_device *udev, enum usb3_link_state state)
5107 {
5108 	return USB3_LPM_DISABLED;
5109 }
5110 
5111 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5112 			struct usb_device *udev, enum usb3_link_state state)
5113 {
5114 	return 0;
5115 }
5116 #endif	/* CONFIG_PM */
5117 
5118 /*-------------------------------------------------------------------------*/
5119 
5120 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5121  * internal data structures for the device.
5122  */
5123 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5124 			struct usb_tt *tt, gfp_t mem_flags)
5125 {
5126 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5127 	struct xhci_virt_device *vdev;
5128 	struct xhci_command *config_cmd;
5129 	struct xhci_input_control_ctx *ctrl_ctx;
5130 	struct xhci_slot_ctx *slot_ctx;
5131 	unsigned long flags;
5132 	unsigned think_time;
5133 	int ret;
5134 
5135 	/* Ignore root hubs */
5136 	if (!hdev->parent)
5137 		return 0;
5138 
5139 	vdev = xhci->devs[hdev->slot_id];
5140 	if (!vdev) {
5141 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5142 		return -EINVAL;
5143 	}
5144 
5145 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5146 	if (!config_cmd)
5147 		return -ENOMEM;
5148 
5149 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5150 	if (!ctrl_ctx) {
5151 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5152 				__func__);
5153 		xhci_free_command(xhci, config_cmd);
5154 		return -ENOMEM;
5155 	}
5156 
5157 	spin_lock_irqsave(&xhci->lock, flags);
5158 	if (hdev->speed == USB_SPEED_HIGH &&
5159 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5160 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5161 		xhci_free_command(xhci, config_cmd);
5162 		spin_unlock_irqrestore(&xhci->lock, flags);
5163 		return -ENOMEM;
5164 	}
5165 
5166 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5167 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5168 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5169 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5170 	/*
5171 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5172 	 * but it may be already set to 1 when setup an xHCI virtual
5173 	 * device, so clear it anyway.
5174 	 */
5175 	if (tt->multi)
5176 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5177 	else if (hdev->speed == USB_SPEED_FULL)
5178 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5179 
5180 	if (xhci->hci_version > 0x95) {
5181 		xhci_dbg(xhci, "xHCI version %x needs hub "
5182 				"TT think time and number of ports\n",
5183 				(unsigned int) xhci->hci_version);
5184 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5185 		/* Set TT think time - convert from ns to FS bit times.
5186 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5187 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5188 		 *
5189 		 * xHCI 1.0: this field shall be 0 if the device is not a
5190 		 * High-spped hub.
5191 		 */
5192 		think_time = tt->think_time;
5193 		if (think_time != 0)
5194 			think_time = (think_time / 666) - 1;
5195 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5196 			slot_ctx->tt_info |=
5197 				cpu_to_le32(TT_THINK_TIME(think_time));
5198 	} else {
5199 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5200 				"TT think time or number of ports\n",
5201 				(unsigned int) xhci->hci_version);
5202 	}
5203 	slot_ctx->dev_state = 0;
5204 	spin_unlock_irqrestore(&xhci->lock, flags);
5205 
5206 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5207 			(xhci->hci_version > 0x95) ?
5208 			"configure endpoint" : "evaluate context");
5209 
5210 	/* Issue and wait for the configure endpoint or
5211 	 * evaluate context command.
5212 	 */
5213 	if (xhci->hci_version > 0x95)
5214 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5215 				false, false);
5216 	else
5217 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5218 				true, false);
5219 
5220 	xhci_free_command(xhci, config_cmd);
5221 	return ret;
5222 }
5223 
5224 static int xhci_get_frame(struct usb_hcd *hcd)
5225 {
5226 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5227 	/* EHCI mods by the periodic size.  Why? */
5228 	return readl(&xhci->run_regs->microframe_index) >> 3;
5229 }
5230 
5231 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5232 {
5233 	xhci->usb2_rhub.hcd = hcd;
5234 	hcd->speed = HCD_USB2;
5235 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5236 	/*
5237 	 * USB 2.0 roothub under xHCI has an integrated TT,
5238 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5239 	 * companion controller.
5240 	 */
5241 	hcd->has_tt = 1;
5242 }
5243 
5244 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5245 {
5246 	unsigned int minor_rev;
5247 
5248 	/*
5249 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5250 	 * should return 0x31 for sbrn, or that the minor revision
5251 	 * is a two digit BCD containig minor and sub-minor numbers.
5252 	 * This was later clarified in xHCI 1.2.
5253 	 *
5254 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5255 	 * minor revision set to 0x1 instead of 0x10.
5256 	 */
5257 	if (xhci->usb3_rhub.min_rev == 0x1)
5258 		minor_rev = 1;
5259 	else
5260 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5261 
5262 	switch (minor_rev) {
5263 	case 2:
5264 		hcd->speed = HCD_USB32;
5265 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5266 		hcd->self.root_hub->rx_lanes = 2;
5267 		hcd->self.root_hub->tx_lanes = 2;
5268 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5269 		break;
5270 	case 1:
5271 		hcd->speed = HCD_USB31;
5272 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5273 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5274 		break;
5275 	}
5276 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5277 		  minor_rev, minor_rev ? "Enhanced " : "");
5278 
5279 	xhci->usb3_rhub.hcd = hcd;
5280 }
5281 
5282 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5283 {
5284 	struct xhci_hcd		*xhci;
5285 	/*
5286 	 * TODO: Check with DWC3 clients for sysdev according to
5287 	 * quirks
5288 	 */
5289 	struct device		*dev = hcd->self.sysdev;
5290 	int			retval;
5291 
5292 	/* Accept arbitrarily long scatter-gather lists */
5293 	hcd->self.sg_tablesize = ~0;
5294 
5295 	/* support to build packet from discontinuous buffers */
5296 	hcd->self.no_sg_constraint = 1;
5297 
5298 	/* XHCI controllers don't stop the ep queue on short packets :| */
5299 	hcd->self.no_stop_on_short = 1;
5300 
5301 	xhci = hcd_to_xhci(hcd);
5302 
5303 	if (!usb_hcd_is_primary_hcd(hcd)) {
5304 		xhci_hcd_init_usb3_data(xhci, hcd);
5305 		return 0;
5306 	}
5307 
5308 	mutex_init(&xhci->mutex);
5309 	xhci->main_hcd = hcd;
5310 	xhci->cap_regs = hcd->regs;
5311 	xhci->op_regs = hcd->regs +
5312 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5313 	xhci->run_regs = hcd->regs +
5314 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5315 	/* Cache read-only capability registers */
5316 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5317 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5318 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5319 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5320 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5321 	if (xhci->hci_version > 0x100)
5322 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5323 
5324 	xhci->quirks |= quirks;
5325 
5326 	get_quirks(dev, xhci);
5327 
5328 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5329 	 * success event after a short transfer. This quirk will ignore such
5330 	 * spurious event.
5331 	 */
5332 	if (xhci->hci_version > 0x96)
5333 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5334 
5335 	/* Make sure the HC is halted. */
5336 	retval = xhci_halt(xhci);
5337 	if (retval)
5338 		return retval;
5339 
5340 	xhci_zero_64b_regs(xhci);
5341 
5342 	xhci_dbg(xhci, "Resetting HCD\n");
5343 	/* Reset the internal HC memory state and registers. */
5344 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5345 	if (retval)
5346 		return retval;
5347 	xhci_dbg(xhci, "Reset complete\n");
5348 
5349 	/*
5350 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5351 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5352 	 * address memory pointers actually. So, this driver clears the AC64
5353 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5354 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5355 	 */
5356 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5357 		xhci->hcc_params &= ~BIT(0);
5358 
5359 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5360 	 * if xHC supports 64-bit addressing */
5361 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5362 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5363 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5364 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5365 	} else {
5366 		/*
5367 		 * This is to avoid error in cases where a 32-bit USB
5368 		 * controller is used on a 64-bit capable system.
5369 		 */
5370 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5371 		if (retval)
5372 			return retval;
5373 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5374 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5375 	}
5376 
5377 	xhci_dbg(xhci, "Calling HCD init\n");
5378 	/* Initialize HCD and host controller data structures. */
5379 	retval = xhci_init(hcd);
5380 	if (retval)
5381 		return retval;
5382 	xhci_dbg(xhci, "Called HCD init\n");
5383 
5384 	if (xhci_hcd_is_usb3(hcd))
5385 		xhci_hcd_init_usb3_data(xhci, hcd);
5386 	else
5387 		xhci_hcd_init_usb2_data(xhci, hcd);
5388 
5389 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5390 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5391 
5392 	return 0;
5393 }
5394 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5395 
5396 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5397 		struct usb_host_endpoint *ep)
5398 {
5399 	struct xhci_hcd *xhci;
5400 	struct usb_device *udev;
5401 	unsigned int slot_id;
5402 	unsigned int ep_index;
5403 	unsigned long flags;
5404 
5405 	xhci = hcd_to_xhci(hcd);
5406 
5407 	spin_lock_irqsave(&xhci->lock, flags);
5408 	udev = (struct usb_device *)ep->hcpriv;
5409 	slot_id = udev->slot_id;
5410 	ep_index = xhci_get_endpoint_index(&ep->desc);
5411 
5412 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5413 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5414 	spin_unlock_irqrestore(&xhci->lock, flags);
5415 }
5416 
5417 static const struct hc_driver xhci_hc_driver = {
5418 	.description =		"xhci-hcd",
5419 	.product_desc =		"xHCI Host Controller",
5420 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5421 
5422 	/*
5423 	 * generic hardware linkage
5424 	 */
5425 	.irq =			xhci_irq,
5426 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5427 				HCD_BH,
5428 
5429 	/*
5430 	 * basic lifecycle operations
5431 	 */
5432 	.reset =		NULL, /* set in xhci_init_driver() */
5433 	.start =		xhci_run,
5434 	.stop =			xhci_stop,
5435 	.shutdown =		xhci_shutdown,
5436 
5437 	/*
5438 	 * managing i/o requests and associated device resources
5439 	 */
5440 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5441 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5442 	.urb_enqueue =		xhci_urb_enqueue,
5443 	.urb_dequeue =		xhci_urb_dequeue,
5444 	.alloc_dev =		xhci_alloc_dev,
5445 	.free_dev =		xhci_free_dev,
5446 	.alloc_streams =	xhci_alloc_streams,
5447 	.free_streams =		xhci_free_streams,
5448 	.add_endpoint =		xhci_add_endpoint,
5449 	.drop_endpoint =	xhci_drop_endpoint,
5450 	.endpoint_disable =	xhci_endpoint_disable,
5451 	.endpoint_reset =	xhci_endpoint_reset,
5452 	.check_bandwidth =	xhci_check_bandwidth,
5453 	.reset_bandwidth =	xhci_reset_bandwidth,
5454 	.address_device =	xhci_address_device,
5455 	.enable_device =	xhci_enable_device,
5456 	.update_hub_device =	xhci_update_hub_device,
5457 	.reset_device =		xhci_discover_or_reset_device,
5458 
5459 	/*
5460 	 * scheduling support
5461 	 */
5462 	.get_frame_number =	xhci_get_frame,
5463 
5464 	/*
5465 	 * root hub support
5466 	 */
5467 	.hub_control =		xhci_hub_control,
5468 	.hub_status_data =	xhci_hub_status_data,
5469 	.bus_suspend =		xhci_bus_suspend,
5470 	.bus_resume =		xhci_bus_resume,
5471 	.get_resuming_ports =	xhci_get_resuming_ports,
5472 
5473 	/*
5474 	 * call back when device connected and addressed
5475 	 */
5476 	.update_device =        xhci_update_device,
5477 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5478 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5479 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5480 	.find_raw_port_number =	xhci_find_raw_port_number,
5481 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5482 };
5483 
5484 void xhci_init_driver(struct hc_driver *drv,
5485 		      const struct xhci_driver_overrides *over)
5486 {
5487 	BUG_ON(!over);
5488 
5489 	/* Copy the generic table to drv then apply the overrides */
5490 	*drv = xhci_hc_driver;
5491 
5492 	if (over) {
5493 		drv->hcd_priv_size += over->extra_priv_size;
5494 		if (over->reset)
5495 			drv->reset = over->reset;
5496 		if (over->start)
5497 			drv->start = over->start;
5498 		if (over->add_endpoint)
5499 			drv->add_endpoint = over->add_endpoint;
5500 		if (over->drop_endpoint)
5501 			drv->drop_endpoint = over->drop_endpoint;
5502 		if (over->check_bandwidth)
5503 			drv->check_bandwidth = over->check_bandwidth;
5504 		if (over->reset_bandwidth)
5505 			drv->reset_bandwidth = over->reset_bandwidth;
5506 	}
5507 }
5508 EXPORT_SYMBOL_GPL(xhci_init_driver);
5509 
5510 MODULE_DESCRIPTION(DRIVER_DESC);
5511 MODULE_AUTHOR(DRIVER_AUTHOR);
5512 MODULE_LICENSE("GPL");
5513 
5514 static int __init xhci_hcd_init(void)
5515 {
5516 	/*
5517 	 * Check the compiler generated sizes of structures that must be laid
5518 	 * out in specific ways for hardware access.
5519 	 */
5520 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5521 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5522 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5523 	/* xhci_device_control has eight fields, and also
5524 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5525 	 */
5526 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5527 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5528 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5529 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5530 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5531 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5532 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5533 
5534 	if (usb_disabled())
5535 		return -ENODEV;
5536 
5537 	xhci_debugfs_create_root();
5538 	xhci_dbc_init();
5539 
5540 	return 0;
5541 }
5542 
5543 /*
5544  * If an init function is provided, an exit function must also be provided
5545  * to allow module unload.
5546  */
5547 static void __exit xhci_hcd_fini(void)
5548 {
5549 	xhci_debugfs_remove_root();
5550 	xhci_dbc_exit();
5551 }
5552 
5553 module_init(xhci_hcd_init);
5554 module_exit(xhci_hcd_fini);
5555