1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iommu.h> 13 #include <linux/iopoll.h> 14 #include <linux/irq.h> 15 #include <linux/log2.h> 16 #include <linux/module.h> 17 #include <linux/moduleparam.h> 18 #include <linux/slab.h> 19 #include <linux/dmi.h> 20 #include <linux/dma-mapping.h> 21 22 #include "xhci.h" 23 #include "xhci-trace.h" 24 #include "xhci-debugfs.h" 25 #include "xhci-dbgcap.h" 26 27 #define DRIVER_AUTHOR "Sarah Sharp" 28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 29 30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 31 32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 33 static int link_quirk; 34 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 36 37 static unsigned long long quirks; 38 module_param(quirks, ullong, S_IRUGO); 39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 40 41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 42 { 43 struct xhci_segment *seg = ring->first_seg; 44 45 if (!td || !td->start_seg) 46 return false; 47 do { 48 if (seg == td->start_seg) 49 return true; 50 seg = seg->next; 51 } while (seg && seg != ring->first_seg); 52 53 return false; 54 } 55 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 70 { 71 u32 result; 72 int ret; 73 74 ret = readl_poll_timeout_atomic(ptr, result, 75 (result & mask) == done || 76 result == U32_MAX, 77 1, timeout_us); 78 if (result == U32_MAX) /* card removed */ 79 return -ENODEV; 80 81 return ret; 82 } 83 84 /* 85 * xhci_handshake_check_state - same as xhci_handshake but takes an additional 86 * exit_state parameter, and bails out with an error immediately when xhc_state 87 * has exit_state flag set. 88 */ 89 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr, 90 u32 mask, u32 done, int usec, unsigned int exit_state) 91 { 92 u32 result; 93 int ret; 94 95 ret = readl_poll_timeout_atomic(ptr, result, 96 (result & mask) == done || 97 result == U32_MAX || 98 xhci->xhc_state & exit_state, 99 1, usec); 100 101 if (result == U32_MAX || xhci->xhc_state & exit_state) 102 return -ENODEV; 103 104 return ret; 105 } 106 107 /* 108 * Disable interrupts and begin the xHCI halting process. 109 */ 110 void xhci_quiesce(struct xhci_hcd *xhci) 111 { 112 u32 halted; 113 u32 cmd; 114 u32 mask; 115 116 mask = ~(XHCI_IRQS); 117 halted = readl(&xhci->op_regs->status) & STS_HALT; 118 if (!halted) 119 mask &= ~CMD_RUN; 120 121 cmd = readl(&xhci->op_regs->command); 122 cmd &= mask; 123 writel(cmd, &xhci->op_regs->command); 124 } 125 126 /* 127 * Force HC into halt state. 128 * 129 * Disable any IRQs and clear the run/stop bit. 130 * HC will complete any current and actively pipelined transactions, and 131 * should halt within 16 ms of the run/stop bit being cleared. 132 * Read HC Halted bit in the status register to see when the HC is finished. 133 */ 134 int xhci_halt(struct xhci_hcd *xhci) 135 { 136 int ret; 137 138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 139 xhci_quiesce(xhci); 140 141 ret = xhci_handshake(&xhci->op_regs->status, 142 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 143 if (ret) { 144 xhci_warn(xhci, "Host halt failed, %d\n", ret); 145 return ret; 146 } 147 148 xhci->xhc_state |= XHCI_STATE_HALTED; 149 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 150 151 return ret; 152 } 153 154 /* 155 * Set the run bit and wait for the host to be running. 156 */ 157 int xhci_start(struct xhci_hcd *xhci) 158 { 159 u32 temp; 160 int ret; 161 162 temp = readl(&xhci->op_regs->command); 163 temp |= (CMD_RUN); 164 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 165 temp); 166 writel(temp, &xhci->op_regs->command); 167 168 /* 169 * Wait for the HCHalted Status bit to be 0 to indicate the host is 170 * running. 171 */ 172 ret = xhci_handshake(&xhci->op_regs->status, 173 STS_HALT, 0, XHCI_MAX_HALT_USEC); 174 if (ret == -ETIMEDOUT) 175 xhci_err(xhci, "Host took too long to start, " 176 "waited %u microseconds.\n", 177 XHCI_MAX_HALT_USEC); 178 if (!ret) { 179 /* clear state flags. Including dying, halted or removing */ 180 xhci->xhc_state = 0; 181 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 182 } 183 184 return ret; 185 } 186 187 /* 188 * Reset a halted HC. 189 * 190 * This resets pipelines, timers, counters, state machines, etc. 191 * Transactions will be terminated immediately, and operational registers 192 * will be set to their defaults. 193 */ 194 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 195 { 196 u32 command; 197 u32 state; 198 int ret; 199 200 state = readl(&xhci->op_regs->status); 201 202 if (state == ~(u32)0) { 203 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 204 return -ENODEV; 205 } 206 207 if ((state & STS_HALT) == 0) { 208 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 209 return 0; 210 } 211 212 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 213 command = readl(&xhci->op_regs->command); 214 command |= CMD_RESET; 215 writel(command, &xhci->op_regs->command); 216 217 /* Existing Intel xHCI controllers require a delay of 1 mS, 218 * after setting the CMD_RESET bit, and before accessing any 219 * HC registers. This allows the HC to complete the 220 * reset operation and be ready for HC register access. 221 * Without this delay, the subsequent HC register access, 222 * may result in a system hang very rarely. 223 */ 224 if (xhci->quirks & XHCI_INTEL_HOST) 225 udelay(1000); 226 227 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command, 228 CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING); 229 if (ret) 230 return ret; 231 232 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 233 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 234 235 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 236 "Wait for controller to be ready for doorbell rings"); 237 /* 238 * xHCI cannot write to any doorbells or operational registers other 239 * than status until the "Controller Not Ready" flag is cleared. 240 */ 241 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 242 243 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 244 xhci->usb2_rhub.bus_state.suspended_ports = 0; 245 xhci->usb2_rhub.bus_state.resuming_ports = 0; 246 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 247 xhci->usb3_rhub.bus_state.suspended_ports = 0; 248 xhci->usb3_rhub.bus_state.resuming_ports = 0; 249 250 return ret; 251 } 252 253 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 254 { 255 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 256 struct iommu_domain *domain; 257 int err, i; 258 u64 val; 259 u32 intrs; 260 261 /* 262 * Some Renesas controllers get into a weird state if they are 263 * reset while programmed with 64bit addresses (they will preserve 264 * the top half of the address in internal, non visible 265 * registers). You end up with half the address coming from the 266 * kernel, and the other half coming from the firmware. Also, 267 * changing the programming leads to extra accesses even if the 268 * controller is supposed to be halted. The controller ends up with 269 * a fatal fault, and is then ripe for being properly reset. 270 * 271 * Special care is taken to only apply this if the device is behind 272 * an iommu. Doing anything when there is no iommu is definitely 273 * unsafe... 274 */ 275 domain = iommu_get_domain_for_dev(dev); 276 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || 277 domain->type == IOMMU_DOMAIN_IDENTITY) 278 return; 279 280 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 281 282 /* Clear HSEIE so that faults do not get signaled */ 283 val = readl(&xhci->op_regs->command); 284 val &= ~CMD_HSEIE; 285 writel(val, &xhci->op_regs->command); 286 287 /* Clear HSE (aka FATAL) */ 288 val = readl(&xhci->op_regs->status); 289 val |= STS_FATAL; 290 writel(val, &xhci->op_regs->status); 291 292 /* Now zero the registers, and brace for impact */ 293 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 294 if (upper_32_bits(val)) 295 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 296 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 297 if (upper_32_bits(val)) 298 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 299 300 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 301 ARRAY_SIZE(xhci->run_regs->ir_set)); 302 303 for (i = 0; i < intrs; i++) { 304 struct xhci_intr_reg __iomem *ir; 305 306 ir = &xhci->run_regs->ir_set[i]; 307 val = xhci_read_64(xhci, &ir->erst_base); 308 if (upper_32_bits(val)) 309 xhci_write_64(xhci, 0, &ir->erst_base); 310 val= xhci_read_64(xhci, &ir->erst_dequeue); 311 if (upper_32_bits(val)) 312 xhci_write_64(xhci, 0, &ir->erst_dequeue); 313 } 314 315 /* Wait for the fault to appear. It will be cleared on reset */ 316 err = xhci_handshake(&xhci->op_regs->status, 317 STS_FATAL, STS_FATAL, 318 XHCI_MAX_HALT_USEC); 319 if (!err) 320 xhci_info(xhci, "Fault detected\n"); 321 } 322 323 static int xhci_enable_interrupter(struct xhci_interrupter *ir) 324 { 325 u32 iman; 326 327 if (!ir || !ir->ir_set) 328 return -EINVAL; 329 330 iman = readl(&ir->ir_set->irq_pending); 331 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending); 332 333 return 0; 334 } 335 336 static int xhci_disable_interrupter(struct xhci_interrupter *ir) 337 { 338 u32 iman; 339 340 if (!ir || !ir->ir_set) 341 return -EINVAL; 342 343 iman = readl(&ir->ir_set->irq_pending); 344 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending); 345 346 return 0; 347 } 348 349 /* interrupt moderation interval imod_interval in nanoseconds */ 350 static int xhci_set_interrupter_moderation(struct xhci_interrupter *ir, 351 u32 imod_interval) 352 { 353 u32 imod; 354 355 if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250) 356 return -EINVAL; 357 358 imod = readl(&ir->ir_set->irq_control); 359 imod &= ~ER_IRQ_INTERVAL_MASK; 360 imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 361 writel(imod, &ir->ir_set->irq_control); 362 363 return 0; 364 } 365 366 static void compliance_mode_recovery(struct timer_list *t) 367 { 368 struct xhci_hcd *xhci; 369 struct usb_hcd *hcd; 370 struct xhci_hub *rhub; 371 u32 temp; 372 int i; 373 374 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 375 rhub = &xhci->usb3_rhub; 376 hcd = rhub->hcd; 377 378 if (!hcd) 379 return; 380 381 for (i = 0; i < rhub->num_ports; i++) { 382 temp = readl(rhub->ports[i]->addr); 383 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 384 /* 385 * Compliance Mode Detected. Letting USB Core 386 * handle the Warm Reset 387 */ 388 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 389 "Compliance mode detected->port %d", 390 i + 1); 391 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 392 "Attempting compliance mode recovery"); 393 394 if (hcd->state == HC_STATE_SUSPENDED) 395 usb_hcd_resume_root_hub(hcd); 396 397 usb_hcd_poll_rh_status(hcd); 398 } 399 } 400 401 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 402 mod_timer(&xhci->comp_mode_recovery_timer, 403 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 404 } 405 406 /* 407 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 408 * that causes ports behind that hardware to enter compliance mode sometimes. 409 * The quirk creates a timer that polls every 2 seconds the link state of 410 * each host controller's port and recovers it by issuing a Warm reset 411 * if Compliance mode is detected, otherwise the port will become "dead" (no 412 * device connections or disconnections will be detected anymore). Becasue no 413 * status event is generated when entering compliance mode (per xhci spec), 414 * this quirk is needed on systems that have the failing hardware installed. 415 */ 416 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 417 { 418 xhci->port_status_u0 = 0; 419 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 420 0); 421 xhci->comp_mode_recovery_timer.expires = jiffies + 422 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 423 424 add_timer(&xhci->comp_mode_recovery_timer); 425 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 426 "Compliance mode recovery timer initialized"); 427 } 428 429 /* 430 * This function identifies the systems that have installed the SN65LVPE502CP 431 * USB3.0 re-driver and that need the Compliance Mode Quirk. 432 * Systems: 433 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 434 */ 435 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 436 { 437 const char *dmi_product_name, *dmi_sys_vendor; 438 439 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 440 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 441 if (!dmi_product_name || !dmi_sys_vendor) 442 return false; 443 444 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 445 return false; 446 447 if (strstr(dmi_product_name, "Z420") || 448 strstr(dmi_product_name, "Z620") || 449 strstr(dmi_product_name, "Z820") || 450 strstr(dmi_product_name, "Z1 Workstation")) 451 return true; 452 453 return false; 454 } 455 456 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 457 { 458 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 459 } 460 461 462 /* 463 * Initialize memory for HCD and xHC (one-time init). 464 * 465 * Program the PAGESIZE register, initialize the device context array, create 466 * device contexts (?), set up a command ring segment (or two?), create event 467 * ring (one for now). 468 */ 469 static int xhci_init(struct usb_hcd *hcd) 470 { 471 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 472 int retval; 473 474 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 475 spin_lock_init(&xhci->lock); 476 if (xhci->hci_version == 0x95 && link_quirk) { 477 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 478 "QUIRK: Not clearing Link TRB chain bits."); 479 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 480 } else { 481 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 482 "xHCI doesn't need link TRB QUIRK"); 483 } 484 retval = xhci_mem_init(xhci, GFP_KERNEL); 485 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 486 487 /* Initializing Compliance Mode Recovery Data If Needed */ 488 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 489 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 490 compliance_mode_recovery_timer_init(xhci); 491 } 492 493 return retval; 494 } 495 496 /*-------------------------------------------------------------------------*/ 497 498 static int xhci_run_finished(struct xhci_hcd *xhci) 499 { 500 struct xhci_interrupter *ir = xhci->interrupters[0]; 501 unsigned long flags; 502 u32 temp; 503 504 /* 505 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 506 * Protect the short window before host is running with a lock 507 */ 508 spin_lock_irqsave(&xhci->lock, flags); 509 510 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 511 temp = readl(&xhci->op_regs->command); 512 temp |= (CMD_EIE); 513 writel(temp, &xhci->op_regs->command); 514 515 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 516 xhci_enable_interrupter(ir); 517 518 if (xhci_start(xhci)) { 519 xhci_halt(xhci); 520 spin_unlock_irqrestore(&xhci->lock, flags); 521 return -ENODEV; 522 } 523 524 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 525 526 if (xhci->quirks & XHCI_NEC_HOST) 527 xhci_ring_cmd_db(xhci); 528 529 spin_unlock_irqrestore(&xhci->lock, flags); 530 531 return 0; 532 } 533 534 /* 535 * Start the HC after it was halted. 536 * 537 * This function is called by the USB core when the HC driver is added. 538 * Its opposite is xhci_stop(). 539 * 540 * xhci_init() must be called once before this function can be called. 541 * Reset the HC, enable device slot contexts, program DCBAAP, and 542 * set command ring pointer and event ring pointer. 543 * 544 * Setup MSI-X vectors and enable interrupts. 545 */ 546 int xhci_run(struct usb_hcd *hcd) 547 { 548 u64 temp_64; 549 int ret; 550 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 551 struct xhci_interrupter *ir = xhci->interrupters[0]; 552 /* Start the xHCI host controller running only after the USB 2.0 roothub 553 * is setup. 554 */ 555 556 hcd->uses_new_polling = 1; 557 if (hcd->msi_enabled) 558 ir->ip_autoclear = true; 559 560 if (!usb_hcd_is_primary_hcd(hcd)) 561 return xhci_run_finished(xhci); 562 563 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 564 565 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 566 temp_64 &= ERST_PTR_MASK; 567 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 568 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 569 570 xhci_set_interrupter_moderation(ir, xhci->imod_interval); 571 572 if (xhci->quirks & XHCI_NEC_HOST) { 573 struct xhci_command *command; 574 575 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 576 if (!command) 577 return -ENOMEM; 578 579 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 580 TRB_TYPE(TRB_NEC_GET_FW)); 581 if (ret) 582 xhci_free_command(xhci, command); 583 } 584 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 585 "Finished %s for main hcd", __func__); 586 587 xhci_create_dbc_dev(xhci); 588 589 xhci_debugfs_init(xhci); 590 591 if (xhci_has_one_roothub(xhci)) 592 return xhci_run_finished(xhci); 593 594 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 595 596 return 0; 597 } 598 EXPORT_SYMBOL_GPL(xhci_run); 599 600 /* 601 * Stop xHCI driver. 602 * 603 * This function is called by the USB core when the HC driver is removed. 604 * Its opposite is xhci_run(). 605 * 606 * Disable device contexts, disable IRQs, and quiesce the HC. 607 * Reset the HC, finish any completed transactions, and cleanup memory. 608 */ 609 void xhci_stop(struct usb_hcd *hcd) 610 { 611 u32 temp; 612 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 613 struct xhci_interrupter *ir = xhci->interrupters[0]; 614 615 mutex_lock(&xhci->mutex); 616 617 /* Only halt host and free memory after both hcds are removed */ 618 if (!usb_hcd_is_primary_hcd(hcd)) { 619 mutex_unlock(&xhci->mutex); 620 return; 621 } 622 623 xhci_remove_dbc_dev(xhci); 624 625 spin_lock_irq(&xhci->lock); 626 xhci->xhc_state |= XHCI_STATE_HALTED; 627 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 628 xhci_halt(xhci); 629 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 630 spin_unlock_irq(&xhci->lock); 631 632 /* Deleting Compliance Mode Recovery Timer */ 633 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 634 (!(xhci_all_ports_seen_u0(xhci)))) { 635 del_timer_sync(&xhci->comp_mode_recovery_timer); 636 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 637 "%s: compliance mode recovery timer deleted", 638 __func__); 639 } 640 641 if (xhci->quirks & XHCI_AMD_PLL_FIX) 642 usb_amd_dev_put(); 643 644 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 645 "// Disabling event ring interrupts"); 646 temp = readl(&xhci->op_regs->status); 647 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 648 xhci_disable_interrupter(ir); 649 650 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 651 xhci_mem_cleanup(xhci); 652 xhci_debugfs_exit(xhci); 653 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 654 "xhci_stop completed - status = %x", 655 readl(&xhci->op_regs->status)); 656 mutex_unlock(&xhci->mutex); 657 } 658 EXPORT_SYMBOL_GPL(xhci_stop); 659 660 /* 661 * Shutdown HC (not bus-specific) 662 * 663 * This is called when the machine is rebooting or halting. We assume that the 664 * machine will be powered off, and the HC's internal state will be reset. 665 * Don't bother to free memory. 666 * 667 * This will only ever be called with the main usb_hcd (the USB3 roothub). 668 */ 669 void xhci_shutdown(struct usb_hcd *hcd) 670 { 671 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 672 673 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 674 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 675 676 /* Don't poll the roothubs after shutdown. */ 677 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 678 __func__, hcd->self.busnum); 679 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 680 del_timer_sync(&hcd->rh_timer); 681 682 if (xhci->shared_hcd) { 683 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 684 del_timer_sync(&xhci->shared_hcd->rh_timer); 685 } 686 687 spin_lock_irq(&xhci->lock); 688 xhci_halt(xhci); 689 690 /* 691 * Workaround for spurious wakeps at shutdown with HSW, and for boot 692 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 693 */ 694 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 695 xhci->quirks & XHCI_RESET_TO_DEFAULT) 696 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 697 698 spin_unlock_irq(&xhci->lock); 699 700 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 701 "xhci_shutdown completed - status = %x", 702 readl(&xhci->op_regs->status)); 703 } 704 EXPORT_SYMBOL_GPL(xhci_shutdown); 705 706 #ifdef CONFIG_PM 707 static void xhci_save_registers(struct xhci_hcd *xhci) 708 { 709 struct xhci_interrupter *ir; 710 unsigned int i; 711 712 xhci->s3.command = readl(&xhci->op_regs->command); 713 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 714 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 715 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 716 717 /* save both primary and all secondary interrupters */ 718 /* fixme, shold we lock to prevent race with remove secondary interrupter? */ 719 for (i = 0; i < xhci->max_interrupters; i++) { 720 ir = xhci->interrupters[i]; 721 if (!ir) 722 continue; 723 724 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 725 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 726 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 727 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending); 728 ir->s3_irq_control = readl(&ir->ir_set->irq_control); 729 } 730 } 731 732 static void xhci_restore_registers(struct xhci_hcd *xhci) 733 { 734 struct xhci_interrupter *ir; 735 unsigned int i; 736 737 writel(xhci->s3.command, &xhci->op_regs->command); 738 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 739 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 740 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 741 742 /* FIXME should we lock to protect against freeing of interrupters */ 743 for (i = 0; i < xhci->max_interrupters; i++) { 744 ir = xhci->interrupters[i]; 745 if (!ir) 746 continue; 747 748 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 749 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 750 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 751 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending); 752 writel(ir->s3_irq_control, &ir->ir_set->irq_control); 753 } 754 } 755 756 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 757 { 758 u64 val_64; 759 760 /* step 2: initialize command ring buffer */ 761 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 762 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 763 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 764 xhci->cmd_ring->dequeue) & 765 (u64) ~CMD_RING_RSVD_BITS) | 766 xhci->cmd_ring->cycle_state; 767 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 768 "// Setting command ring address to 0x%llx", 769 (long unsigned long) val_64); 770 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 771 } 772 773 /* 774 * The whole command ring must be cleared to zero when we suspend the host. 775 * 776 * The host doesn't save the command ring pointer in the suspend well, so we 777 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 778 * aligned, because of the reserved bits in the command ring dequeue pointer 779 * register. Therefore, we can't just set the dequeue pointer back in the 780 * middle of the ring (TRBs are 16-byte aligned). 781 */ 782 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 783 { 784 struct xhci_ring *ring; 785 struct xhci_segment *seg; 786 787 ring = xhci->cmd_ring; 788 seg = ring->deq_seg; 789 do { 790 memset(seg->trbs, 0, 791 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 792 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 793 cpu_to_le32(~TRB_CYCLE); 794 seg = seg->next; 795 } while (seg != ring->deq_seg); 796 797 xhci_initialize_ring_info(ring, 1); 798 /* 799 * Reset the hardware dequeue pointer. 800 * Yes, this will need to be re-written after resume, but we're paranoid 801 * and want to make sure the hardware doesn't access bogus memory 802 * because, say, the BIOS or an SMI started the host without changing 803 * the command ring pointers. 804 */ 805 xhci_set_cmd_ring_deq(xhci); 806 } 807 808 /* 809 * Disable port wake bits if do_wakeup is not set. 810 * 811 * Also clear a possible internal port wake state left hanging for ports that 812 * detected termination but never successfully enumerated (trained to 0U). 813 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 814 * at enumeration clears this wake, force one here as well for unconnected ports 815 */ 816 817 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 818 struct xhci_hub *rhub, 819 bool do_wakeup) 820 { 821 unsigned long flags; 822 u32 t1, t2, portsc; 823 int i; 824 825 spin_lock_irqsave(&xhci->lock, flags); 826 827 for (i = 0; i < rhub->num_ports; i++) { 828 portsc = readl(rhub->ports[i]->addr); 829 t1 = xhci_port_state_to_neutral(portsc); 830 t2 = t1; 831 832 /* clear wake bits if do_wake is not set */ 833 if (!do_wakeup) 834 t2 &= ~PORT_WAKE_BITS; 835 836 /* Don't touch csc bit if connected or connect change is set */ 837 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 838 t2 |= PORT_CSC; 839 840 if (t1 != t2) { 841 writel(t2, rhub->ports[i]->addr); 842 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 843 rhub->hcd->self.busnum, i + 1, portsc, t2); 844 } 845 } 846 spin_unlock_irqrestore(&xhci->lock, flags); 847 } 848 849 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 850 { 851 struct xhci_port **ports; 852 int port_index; 853 u32 status; 854 u32 portsc; 855 856 status = readl(&xhci->op_regs->status); 857 if (status & STS_EINT) 858 return true; 859 /* 860 * Checking STS_EINT is not enough as there is a lag between a change 861 * bit being set and the Port Status Change Event that it generated 862 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 863 */ 864 865 port_index = xhci->usb2_rhub.num_ports; 866 ports = xhci->usb2_rhub.ports; 867 while (port_index--) { 868 portsc = readl(ports[port_index]->addr); 869 if (portsc & PORT_CHANGE_MASK || 870 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 871 return true; 872 } 873 port_index = xhci->usb3_rhub.num_ports; 874 ports = xhci->usb3_rhub.ports; 875 while (port_index--) { 876 portsc = readl(ports[port_index]->addr); 877 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) || 878 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 879 return true; 880 } 881 return false; 882 } 883 884 /* 885 * Stop HC (not bus-specific) 886 * 887 * This is called when the machine transition into S3/S4 mode. 888 * 889 */ 890 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 891 { 892 int rc = 0; 893 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 894 struct usb_hcd *hcd = xhci_to_hcd(xhci); 895 u32 command; 896 u32 res; 897 898 if (!hcd->state) 899 return 0; 900 901 if (hcd->state != HC_STATE_SUSPENDED || 902 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 903 return -EINVAL; 904 905 /* Clear root port wake on bits if wakeup not allowed. */ 906 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 907 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 908 909 if (!HCD_HW_ACCESSIBLE(hcd)) 910 return 0; 911 912 xhci_dbc_suspend(xhci); 913 914 /* Don't poll the roothubs on bus suspend. */ 915 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 916 __func__, hcd->self.busnum); 917 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 918 del_timer_sync(&hcd->rh_timer); 919 if (xhci->shared_hcd) { 920 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 921 del_timer_sync(&xhci->shared_hcd->rh_timer); 922 } 923 924 if (xhci->quirks & XHCI_SUSPEND_DELAY) 925 usleep_range(1000, 1500); 926 927 spin_lock_irq(&xhci->lock); 928 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 929 if (xhci->shared_hcd) 930 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 931 /* step 1: stop endpoint */ 932 /* skipped assuming that port suspend has done */ 933 934 /* step 2: clear Run/Stop bit */ 935 command = readl(&xhci->op_regs->command); 936 command &= ~CMD_RUN; 937 writel(command, &xhci->op_regs->command); 938 939 /* Some chips from Fresco Logic need an extraordinary delay */ 940 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 941 942 if (xhci_handshake(&xhci->op_regs->status, 943 STS_HALT, STS_HALT, delay)) { 944 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 945 spin_unlock_irq(&xhci->lock); 946 return -ETIMEDOUT; 947 } 948 xhci_clear_command_ring(xhci); 949 950 /* step 3: save registers */ 951 xhci_save_registers(xhci); 952 953 /* step 4: set CSS flag */ 954 command = readl(&xhci->op_regs->command); 955 command |= CMD_CSS; 956 writel(command, &xhci->op_regs->command); 957 xhci->broken_suspend = 0; 958 if (xhci_handshake(&xhci->op_regs->status, 959 STS_SAVE, 0, 20 * 1000)) { 960 /* 961 * AMD SNPS xHC 3.0 occasionally does not clear the 962 * SSS bit of USBSTS and when driver tries to poll 963 * to see if the xHC clears BIT(8) which never happens 964 * and driver assumes that controller is not responding 965 * and times out. To workaround this, its good to check 966 * if SRE and HCE bits are not set (as per xhci 967 * Section 5.4.2) and bypass the timeout. 968 */ 969 res = readl(&xhci->op_regs->status); 970 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 971 (((res & STS_SRE) == 0) && 972 ((res & STS_HCE) == 0))) { 973 xhci->broken_suspend = 1; 974 } else { 975 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 976 spin_unlock_irq(&xhci->lock); 977 return -ETIMEDOUT; 978 } 979 } 980 spin_unlock_irq(&xhci->lock); 981 982 /* 983 * Deleting Compliance Mode Recovery Timer because the xHCI Host 984 * is about to be suspended. 985 */ 986 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 987 (!(xhci_all_ports_seen_u0(xhci)))) { 988 del_timer_sync(&xhci->comp_mode_recovery_timer); 989 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 990 "%s: compliance mode recovery timer deleted", 991 __func__); 992 } 993 994 return rc; 995 } 996 EXPORT_SYMBOL_GPL(xhci_suspend); 997 998 /* 999 * start xHC (not bus-specific) 1000 * 1001 * This is called when the machine transition from S3/S4 mode. 1002 * 1003 */ 1004 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg) 1005 { 1006 bool hibernated = (msg.event == PM_EVENT_RESTORE); 1007 u32 command, temp = 0; 1008 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1009 int retval = 0; 1010 bool comp_timer_running = false; 1011 bool pending_portevent = false; 1012 bool suspended_usb3_devs = false; 1013 bool reinit_xhc = false; 1014 1015 if (!hcd->state) 1016 return 0; 1017 1018 /* Wait a bit if either of the roothubs need to settle from the 1019 * transition into bus suspend. 1020 */ 1021 1022 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1023 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1024 msleep(100); 1025 1026 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1027 if (xhci->shared_hcd) 1028 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1029 1030 spin_lock_irq(&xhci->lock); 1031 1032 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1033 reinit_xhc = true; 1034 1035 if (!reinit_xhc) { 1036 /* 1037 * Some controllers might lose power during suspend, so wait 1038 * for controller not ready bit to clear, just as in xHC init. 1039 */ 1040 retval = xhci_handshake(&xhci->op_regs->status, 1041 STS_CNR, 0, 10 * 1000 * 1000); 1042 if (retval) { 1043 xhci_warn(xhci, "Controller not ready at resume %d\n", 1044 retval); 1045 spin_unlock_irq(&xhci->lock); 1046 return retval; 1047 } 1048 /* step 1: restore register */ 1049 xhci_restore_registers(xhci); 1050 /* step 2: initialize command ring buffer */ 1051 xhci_set_cmd_ring_deq(xhci); 1052 /* step 3: restore state and start state*/ 1053 /* step 3: set CRS flag */ 1054 command = readl(&xhci->op_regs->command); 1055 command |= CMD_CRS; 1056 writel(command, &xhci->op_regs->command); 1057 /* 1058 * Some controllers take up to 55+ ms to complete the controller 1059 * restore so setting the timeout to 100ms. Xhci specification 1060 * doesn't mention any timeout value. 1061 */ 1062 if (xhci_handshake(&xhci->op_regs->status, 1063 STS_RESTORE, 0, 100 * 1000)) { 1064 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1065 spin_unlock_irq(&xhci->lock); 1066 return -ETIMEDOUT; 1067 } 1068 } 1069 1070 temp = readl(&xhci->op_regs->status); 1071 1072 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1073 if ((temp & (STS_SRE | STS_HCE)) && 1074 !(xhci->xhc_state & XHCI_STATE_REMOVING)) { 1075 reinit_xhc = true; 1076 if (!xhci->broken_suspend) 1077 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1078 } 1079 1080 if (reinit_xhc) { 1081 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1082 !(xhci_all_ports_seen_u0(xhci))) { 1083 del_timer_sync(&xhci->comp_mode_recovery_timer); 1084 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1085 "Compliance Mode Recovery Timer deleted!"); 1086 } 1087 1088 /* Let the USB core know _both_ roothubs lost power. */ 1089 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1090 if (xhci->shared_hcd) 1091 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1092 1093 xhci_dbg(xhci, "Stop HCD\n"); 1094 xhci_halt(xhci); 1095 xhci_zero_64b_regs(xhci); 1096 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1097 spin_unlock_irq(&xhci->lock); 1098 if (retval) 1099 return retval; 1100 1101 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1102 temp = readl(&xhci->op_regs->status); 1103 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1104 xhci_disable_interrupter(xhci->interrupters[0]); 1105 1106 xhci_dbg(xhci, "cleaning up memory\n"); 1107 xhci_mem_cleanup(xhci); 1108 xhci_debugfs_exit(xhci); 1109 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1110 readl(&xhci->op_regs->status)); 1111 1112 /* USB core calls the PCI reinit and start functions twice: 1113 * first with the primary HCD, and then with the secondary HCD. 1114 * If we don't do the same, the host will never be started. 1115 */ 1116 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1117 retval = xhci_init(hcd); 1118 if (retval) 1119 return retval; 1120 comp_timer_running = true; 1121 1122 xhci_dbg(xhci, "Start the primary HCD\n"); 1123 retval = xhci_run(hcd); 1124 if (!retval && xhci->shared_hcd) { 1125 xhci_dbg(xhci, "Start the secondary HCD\n"); 1126 retval = xhci_run(xhci->shared_hcd); 1127 } 1128 if (retval) 1129 return retval; 1130 /* 1131 * Resume roothubs unconditionally as PORTSC change bits are not 1132 * immediately visible after xHC reset 1133 */ 1134 hcd->state = HC_STATE_SUSPENDED; 1135 1136 if (xhci->shared_hcd) { 1137 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1138 usb_hcd_resume_root_hub(xhci->shared_hcd); 1139 } 1140 usb_hcd_resume_root_hub(hcd); 1141 1142 goto done; 1143 } 1144 1145 /* step 4: set Run/Stop bit */ 1146 command = readl(&xhci->op_regs->command); 1147 command |= CMD_RUN; 1148 writel(command, &xhci->op_regs->command); 1149 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1150 0, 250 * 1000); 1151 1152 /* step 5: walk topology and initialize portsc, 1153 * portpmsc and portli 1154 */ 1155 /* this is done in bus_resume */ 1156 1157 /* step 6: restart each of the previously 1158 * Running endpoints by ringing their doorbells 1159 */ 1160 1161 spin_unlock_irq(&xhci->lock); 1162 1163 xhci_dbc_resume(xhci); 1164 1165 if (retval == 0) { 1166 /* 1167 * Resume roothubs only if there are pending events. 1168 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1169 * the first wake signalling failed, give it that chance if 1170 * there are suspended USB 3 devices. 1171 */ 1172 if (xhci->usb3_rhub.bus_state.suspended_ports || 1173 xhci->usb3_rhub.bus_state.bus_suspended) 1174 suspended_usb3_devs = true; 1175 1176 pending_portevent = xhci_pending_portevent(xhci); 1177 1178 if (suspended_usb3_devs && !pending_portevent && 1179 msg.event == PM_EVENT_AUTO_RESUME) { 1180 msleep(120); 1181 pending_portevent = xhci_pending_portevent(xhci); 1182 } 1183 1184 if (pending_portevent) { 1185 if (xhci->shared_hcd) 1186 usb_hcd_resume_root_hub(xhci->shared_hcd); 1187 usb_hcd_resume_root_hub(hcd); 1188 } 1189 } 1190 done: 1191 /* 1192 * If system is subject to the Quirk, Compliance Mode Timer needs to 1193 * be re-initialized Always after a system resume. Ports are subject 1194 * to suffer the Compliance Mode issue again. It doesn't matter if 1195 * ports have entered previously to U0 before system's suspension. 1196 */ 1197 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1198 compliance_mode_recovery_timer_init(xhci); 1199 1200 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1201 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1202 1203 /* Re-enable port polling. */ 1204 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1205 __func__, hcd->self.busnum); 1206 if (xhci->shared_hcd) { 1207 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1208 usb_hcd_poll_rh_status(xhci->shared_hcd); 1209 } 1210 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1211 usb_hcd_poll_rh_status(hcd); 1212 1213 return retval; 1214 } 1215 EXPORT_SYMBOL_GPL(xhci_resume); 1216 #endif /* CONFIG_PM */ 1217 1218 /*-------------------------------------------------------------------------*/ 1219 1220 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1221 { 1222 void *temp; 1223 int ret = 0; 1224 unsigned int buf_len; 1225 enum dma_data_direction dir; 1226 1227 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1228 buf_len = urb->transfer_buffer_length; 1229 1230 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1231 dev_to_node(hcd->self.sysdev)); 1232 if (!temp) 1233 return -ENOMEM; 1234 1235 if (usb_urb_dir_out(urb)) 1236 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1237 temp, buf_len, 0); 1238 1239 urb->transfer_buffer = temp; 1240 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1241 urb->transfer_buffer, 1242 urb->transfer_buffer_length, 1243 dir); 1244 1245 if (dma_mapping_error(hcd->self.sysdev, 1246 urb->transfer_dma)) { 1247 ret = -EAGAIN; 1248 kfree(temp); 1249 } else { 1250 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1251 } 1252 1253 return ret; 1254 } 1255 1256 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1257 struct urb *urb) 1258 { 1259 bool ret = false; 1260 unsigned int i; 1261 unsigned int len = 0; 1262 unsigned int trb_size; 1263 unsigned int max_pkt; 1264 struct scatterlist *sg; 1265 struct scatterlist *tail_sg; 1266 1267 tail_sg = urb->sg; 1268 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1269 1270 if (!urb->num_sgs) 1271 return ret; 1272 1273 if (urb->dev->speed >= USB_SPEED_SUPER) 1274 trb_size = TRB_CACHE_SIZE_SS; 1275 else 1276 trb_size = TRB_CACHE_SIZE_HS; 1277 1278 if (urb->transfer_buffer_length != 0 && 1279 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1280 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1281 len = len + sg->length; 1282 if (i > trb_size - 2) { 1283 len = len - tail_sg->length; 1284 if (len < max_pkt) { 1285 ret = true; 1286 break; 1287 } 1288 1289 tail_sg = sg_next(tail_sg); 1290 } 1291 } 1292 } 1293 return ret; 1294 } 1295 1296 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1297 { 1298 unsigned int len; 1299 unsigned int buf_len; 1300 enum dma_data_direction dir; 1301 1302 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1303 1304 buf_len = urb->transfer_buffer_length; 1305 1306 if (IS_ENABLED(CONFIG_HAS_DMA) && 1307 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1308 dma_unmap_single(hcd->self.sysdev, 1309 urb->transfer_dma, 1310 urb->transfer_buffer_length, 1311 dir); 1312 1313 if (usb_urb_dir_in(urb)) { 1314 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1315 urb->transfer_buffer, 1316 buf_len, 1317 0); 1318 if (len != buf_len) { 1319 xhci_dbg(hcd_to_xhci(hcd), 1320 "Copy from tmp buf to urb sg list failed\n"); 1321 urb->actual_length = len; 1322 } 1323 } 1324 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1325 kfree(urb->transfer_buffer); 1326 urb->transfer_buffer = NULL; 1327 } 1328 1329 /* 1330 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1331 * we'll copy the actual data into the TRB address register. This is limited to 1332 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1333 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1334 */ 1335 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1336 gfp_t mem_flags) 1337 { 1338 struct xhci_hcd *xhci; 1339 1340 xhci = hcd_to_xhci(hcd); 1341 1342 if (xhci_urb_suitable_for_idt(urb)) 1343 return 0; 1344 1345 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1346 if (xhci_urb_temp_buffer_required(hcd, urb)) 1347 return xhci_map_temp_buffer(hcd, urb); 1348 } 1349 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1350 } 1351 1352 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1353 { 1354 struct xhci_hcd *xhci; 1355 bool unmap_temp_buf = false; 1356 1357 xhci = hcd_to_xhci(hcd); 1358 1359 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1360 unmap_temp_buf = true; 1361 1362 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1363 xhci_unmap_temp_buf(hcd, urb); 1364 else 1365 usb_hcd_unmap_urb_for_dma(hcd, urb); 1366 } 1367 1368 /** 1369 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1370 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1371 * value to right shift 1 for the bitmask. 1372 * 1373 * Index = (epnum * 2) + direction - 1, 1374 * where direction = 0 for OUT, 1 for IN. 1375 * For control endpoints, the IN index is used (OUT index is unused), so 1376 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1377 */ 1378 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1379 { 1380 unsigned int index; 1381 if (usb_endpoint_xfer_control(desc)) 1382 index = (unsigned int) (usb_endpoint_num(desc)*2); 1383 else 1384 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1385 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1386 return index; 1387 } 1388 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1389 1390 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1391 * address from the XHCI endpoint index. 1392 */ 1393 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1394 { 1395 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1396 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1397 return direction | number; 1398 } 1399 1400 /* Find the flag for this endpoint (for use in the control context). Use the 1401 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1402 * bit 1, etc. 1403 */ 1404 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1405 { 1406 return 1 << (xhci_get_endpoint_index(desc) + 1); 1407 } 1408 1409 /* Compute the last valid endpoint context index. Basically, this is the 1410 * endpoint index plus one. For slot contexts with more than valid endpoint, 1411 * we find the most significant bit set in the added contexts flags. 1412 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1413 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1414 */ 1415 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1416 { 1417 return fls(added_ctxs) - 1; 1418 } 1419 1420 /* Returns 1 if the arguments are OK; 1421 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1422 */ 1423 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1424 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1425 const char *func) { 1426 struct xhci_hcd *xhci; 1427 struct xhci_virt_device *virt_dev; 1428 1429 if (!hcd || (check_ep && !ep) || !udev) { 1430 pr_debug("xHCI %s called with invalid args\n", func); 1431 return -EINVAL; 1432 } 1433 if (!udev->parent) { 1434 pr_debug("xHCI %s called for root hub\n", func); 1435 return 0; 1436 } 1437 1438 xhci = hcd_to_xhci(hcd); 1439 if (check_virt_dev) { 1440 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1441 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1442 func); 1443 return -EINVAL; 1444 } 1445 1446 virt_dev = xhci->devs[udev->slot_id]; 1447 if (virt_dev->udev != udev) { 1448 xhci_dbg(xhci, "xHCI %s called with udev and " 1449 "virt_dev does not match\n", func); 1450 return -EINVAL; 1451 } 1452 } 1453 1454 if (xhci->xhc_state & XHCI_STATE_HALTED) 1455 return -ENODEV; 1456 1457 return 1; 1458 } 1459 1460 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1461 struct usb_device *udev, struct xhci_command *command, 1462 bool ctx_change, bool must_succeed); 1463 1464 /* 1465 * Full speed devices may have a max packet size greater than 8 bytes, but the 1466 * USB core doesn't know that until it reads the first 8 bytes of the 1467 * descriptor. If the usb_device's max packet size changes after that point, 1468 * we need to issue an evaluate context command and wait on it. 1469 */ 1470 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev) 1471 { 1472 struct xhci_input_control_ctx *ctrl_ctx; 1473 struct xhci_ep_ctx *ep_ctx; 1474 struct xhci_command *command; 1475 int max_packet_size; 1476 int hw_max_packet_size; 1477 int ret = 0; 1478 1479 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0); 1480 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1481 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc); 1482 1483 if (hw_max_packet_size == max_packet_size) 1484 return 0; 1485 1486 switch (max_packet_size) { 1487 case 8: case 16: case 32: case 64: case 9: 1488 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1489 "Max Packet Size for ep 0 changed."); 1490 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1491 "Max packet size in usb_device = %d", 1492 max_packet_size); 1493 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1494 "Max packet size in xHCI HW = %d", 1495 hw_max_packet_size); 1496 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1497 "Issuing evaluate context command."); 1498 1499 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1500 if (!command) 1501 return -ENOMEM; 1502 1503 command->in_ctx = vdev->in_ctx; 1504 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1505 if (!ctrl_ctx) { 1506 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1507 __func__); 1508 ret = -ENOMEM; 1509 break; 1510 } 1511 /* Set up the modified control endpoint 0 */ 1512 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0); 1513 1514 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0); 1515 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1516 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1517 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1518 1519 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1520 ctrl_ctx->drop_flags = 0; 1521 1522 ret = xhci_configure_endpoint(xhci, vdev->udev, command, 1523 true, false); 1524 /* Clean up the input context for later use by bandwidth functions */ 1525 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1526 break; 1527 default: 1528 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n", 1529 max_packet_size); 1530 return -EINVAL; 1531 } 1532 1533 kfree(command->completion); 1534 kfree(command); 1535 1536 return ret; 1537 } 1538 1539 /* 1540 * non-error returns are a promise to giveback() the urb later 1541 * we drop ownership so next owner (or urb unlink) can get it 1542 */ 1543 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1544 { 1545 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1546 unsigned long flags; 1547 int ret = 0; 1548 unsigned int slot_id, ep_index; 1549 unsigned int *ep_state; 1550 struct urb_priv *urb_priv; 1551 int num_tds; 1552 1553 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1554 1555 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1556 num_tds = urb->number_of_packets; 1557 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1558 urb->transfer_buffer_length > 0 && 1559 urb->transfer_flags & URB_ZERO_PACKET && 1560 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1561 num_tds = 2; 1562 else 1563 num_tds = 1; 1564 1565 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1566 if (!urb_priv) 1567 return -ENOMEM; 1568 1569 urb_priv->num_tds = num_tds; 1570 urb_priv->num_tds_done = 0; 1571 urb->hcpriv = urb_priv; 1572 1573 trace_xhci_urb_enqueue(urb); 1574 1575 spin_lock_irqsave(&xhci->lock, flags); 1576 1577 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1578 true, true, __func__); 1579 if (ret <= 0) { 1580 ret = ret ? ret : -EINVAL; 1581 goto free_priv; 1582 } 1583 1584 slot_id = urb->dev->slot_id; 1585 1586 if (!HCD_HW_ACCESSIBLE(hcd)) { 1587 ret = -ESHUTDOWN; 1588 goto free_priv; 1589 } 1590 1591 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1592 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1593 ret = -ENODEV; 1594 goto free_priv; 1595 } 1596 1597 if (xhci->xhc_state & XHCI_STATE_DYING) { 1598 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1599 urb->ep->desc.bEndpointAddress, urb); 1600 ret = -ESHUTDOWN; 1601 goto free_priv; 1602 } 1603 1604 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1605 1606 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1607 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1608 *ep_state); 1609 ret = -EINVAL; 1610 goto free_priv; 1611 } 1612 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1613 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1614 ret = -EINVAL; 1615 goto free_priv; 1616 } 1617 1618 switch (usb_endpoint_type(&urb->ep->desc)) { 1619 1620 case USB_ENDPOINT_XFER_CONTROL: 1621 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1622 slot_id, ep_index); 1623 break; 1624 case USB_ENDPOINT_XFER_BULK: 1625 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1626 slot_id, ep_index); 1627 break; 1628 case USB_ENDPOINT_XFER_INT: 1629 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1630 slot_id, ep_index); 1631 break; 1632 case USB_ENDPOINT_XFER_ISOC: 1633 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1634 slot_id, ep_index); 1635 } 1636 1637 if (ret) { 1638 free_priv: 1639 xhci_urb_free_priv(urb_priv); 1640 urb->hcpriv = NULL; 1641 } 1642 spin_unlock_irqrestore(&xhci->lock, flags); 1643 return ret; 1644 } 1645 1646 /* 1647 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1648 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1649 * should pick up where it left off in the TD, unless a Set Transfer Ring 1650 * Dequeue Pointer is issued. 1651 * 1652 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1653 * the ring. Since the ring is a contiguous structure, they can't be physically 1654 * removed. Instead, there are two options: 1655 * 1656 * 1) If the HC is in the middle of processing the URB to be canceled, we 1657 * simply move the ring's dequeue pointer past those TRBs using the Set 1658 * Transfer Ring Dequeue Pointer command. This will be the common case, 1659 * when drivers timeout on the last submitted URB and attempt to cancel. 1660 * 1661 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1662 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1663 * HC will need to invalidate the any TRBs it has cached after the stop 1664 * endpoint command, as noted in the xHCI 0.95 errata. 1665 * 1666 * 3) The TD may have completed by the time the Stop Endpoint Command 1667 * completes, so software needs to handle that case too. 1668 * 1669 * This function should protect against the TD enqueueing code ringing the 1670 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1671 * It also needs to account for multiple cancellations on happening at the same 1672 * time for the same endpoint. 1673 * 1674 * Note that this function can be called in any context, or so says 1675 * usb_hcd_unlink_urb() 1676 */ 1677 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1678 { 1679 unsigned long flags; 1680 int ret, i; 1681 u32 temp; 1682 struct xhci_hcd *xhci; 1683 struct urb_priv *urb_priv; 1684 struct xhci_td *td; 1685 unsigned int ep_index; 1686 struct xhci_ring *ep_ring; 1687 struct xhci_virt_ep *ep; 1688 struct xhci_command *command; 1689 struct xhci_virt_device *vdev; 1690 1691 xhci = hcd_to_xhci(hcd); 1692 spin_lock_irqsave(&xhci->lock, flags); 1693 1694 trace_xhci_urb_dequeue(urb); 1695 1696 /* Make sure the URB hasn't completed or been unlinked already */ 1697 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1698 if (ret) 1699 goto done; 1700 1701 /* give back URB now if we can't queue it for cancel */ 1702 vdev = xhci->devs[urb->dev->slot_id]; 1703 urb_priv = urb->hcpriv; 1704 if (!vdev || !urb_priv) 1705 goto err_giveback; 1706 1707 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1708 ep = &vdev->eps[ep_index]; 1709 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1710 if (!ep || !ep_ring) 1711 goto err_giveback; 1712 1713 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1714 temp = readl(&xhci->op_regs->status); 1715 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1716 xhci_hc_died(xhci); 1717 goto done; 1718 } 1719 1720 /* 1721 * check ring is not re-allocated since URB was enqueued. If it is, then 1722 * make sure none of the ring related pointers in this URB private data 1723 * are touched, such as td_list, otherwise we overwrite freed data 1724 */ 1725 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1726 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1727 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1728 td = &urb_priv->td[i]; 1729 if (!list_empty(&td->cancelled_td_list)) 1730 list_del_init(&td->cancelled_td_list); 1731 } 1732 goto err_giveback; 1733 } 1734 1735 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1736 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1737 "HC halted, freeing TD manually."); 1738 for (i = urb_priv->num_tds_done; 1739 i < urb_priv->num_tds; 1740 i++) { 1741 td = &urb_priv->td[i]; 1742 if (!list_empty(&td->td_list)) 1743 list_del_init(&td->td_list); 1744 if (!list_empty(&td->cancelled_td_list)) 1745 list_del_init(&td->cancelled_td_list); 1746 } 1747 goto err_giveback; 1748 } 1749 1750 i = urb_priv->num_tds_done; 1751 if (i < urb_priv->num_tds) 1752 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1753 "Cancel URB %p, dev %s, ep 0x%x, " 1754 "starting at offset 0x%llx", 1755 urb, urb->dev->devpath, 1756 urb->ep->desc.bEndpointAddress, 1757 (unsigned long long) xhci_trb_virt_to_dma( 1758 urb_priv->td[i].start_seg, 1759 urb_priv->td[i].first_trb)); 1760 1761 for (; i < urb_priv->num_tds; i++) { 1762 td = &urb_priv->td[i]; 1763 /* TD can already be on cancelled list if ep halted on it */ 1764 if (list_empty(&td->cancelled_td_list)) { 1765 td->cancel_status = TD_DIRTY; 1766 list_add_tail(&td->cancelled_td_list, 1767 &ep->cancelled_td_list); 1768 } 1769 } 1770 1771 /* Queue a stop endpoint command, but only if this is 1772 * the first cancellation to be handled. 1773 */ 1774 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1775 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1776 if (!command) { 1777 ret = -ENOMEM; 1778 goto done; 1779 } 1780 ep->ep_state |= EP_STOP_CMD_PENDING; 1781 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1782 ep_index, 0); 1783 xhci_ring_cmd_db(xhci); 1784 } 1785 done: 1786 spin_unlock_irqrestore(&xhci->lock, flags); 1787 return ret; 1788 1789 err_giveback: 1790 if (urb_priv) 1791 xhci_urb_free_priv(urb_priv); 1792 usb_hcd_unlink_urb_from_ep(hcd, urb); 1793 spin_unlock_irqrestore(&xhci->lock, flags); 1794 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1795 return ret; 1796 } 1797 1798 /* Drop an endpoint from a new bandwidth configuration for this device. 1799 * Only one call to this function is allowed per endpoint before 1800 * check_bandwidth() or reset_bandwidth() must be called. 1801 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1802 * add the endpoint to the schedule with possibly new parameters denoted by a 1803 * different endpoint descriptor in usb_host_endpoint. 1804 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1805 * not allowed. 1806 * 1807 * The USB core will not allow URBs to be queued to an endpoint that is being 1808 * disabled, so there's no need for mutual exclusion to protect 1809 * the xhci->devs[slot_id] structure. 1810 */ 1811 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1812 struct usb_host_endpoint *ep) 1813 { 1814 struct xhci_hcd *xhci; 1815 struct xhci_container_ctx *in_ctx, *out_ctx; 1816 struct xhci_input_control_ctx *ctrl_ctx; 1817 unsigned int ep_index; 1818 struct xhci_ep_ctx *ep_ctx; 1819 u32 drop_flag; 1820 u32 new_add_flags, new_drop_flags; 1821 int ret; 1822 1823 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1824 if (ret <= 0) 1825 return ret; 1826 xhci = hcd_to_xhci(hcd); 1827 if (xhci->xhc_state & XHCI_STATE_DYING) 1828 return -ENODEV; 1829 1830 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1831 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1832 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1833 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1834 __func__, drop_flag); 1835 return 0; 1836 } 1837 1838 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1839 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1840 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1841 if (!ctrl_ctx) { 1842 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1843 __func__); 1844 return 0; 1845 } 1846 1847 ep_index = xhci_get_endpoint_index(&ep->desc); 1848 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1849 /* If the HC already knows the endpoint is disabled, 1850 * or the HCD has noted it is disabled, ignore this request 1851 */ 1852 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1853 le32_to_cpu(ctrl_ctx->drop_flags) & 1854 xhci_get_endpoint_flag(&ep->desc)) { 1855 /* Do not warn when called after a usb_device_reset */ 1856 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1857 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1858 __func__, ep); 1859 return 0; 1860 } 1861 1862 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1863 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1864 1865 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1866 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1867 1868 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1869 1870 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1871 1872 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1873 (unsigned int) ep->desc.bEndpointAddress, 1874 udev->slot_id, 1875 (unsigned int) new_drop_flags, 1876 (unsigned int) new_add_flags); 1877 return 0; 1878 } 1879 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1880 1881 /* Add an endpoint to a new possible bandwidth configuration for this device. 1882 * Only one call to this function is allowed per endpoint before 1883 * check_bandwidth() or reset_bandwidth() must be called. 1884 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1885 * add the endpoint to the schedule with possibly new parameters denoted by a 1886 * different endpoint descriptor in usb_host_endpoint. 1887 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1888 * not allowed. 1889 * 1890 * The USB core will not allow URBs to be queued to an endpoint until the 1891 * configuration or alt setting is installed in the device, so there's no need 1892 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1893 */ 1894 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1895 struct usb_host_endpoint *ep) 1896 { 1897 struct xhci_hcd *xhci; 1898 struct xhci_container_ctx *in_ctx; 1899 unsigned int ep_index; 1900 struct xhci_input_control_ctx *ctrl_ctx; 1901 struct xhci_ep_ctx *ep_ctx; 1902 u32 added_ctxs; 1903 u32 new_add_flags, new_drop_flags; 1904 struct xhci_virt_device *virt_dev; 1905 int ret = 0; 1906 1907 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1908 if (ret <= 0) { 1909 /* So we won't queue a reset ep command for a root hub */ 1910 ep->hcpriv = NULL; 1911 return ret; 1912 } 1913 xhci = hcd_to_xhci(hcd); 1914 if (xhci->xhc_state & XHCI_STATE_DYING) 1915 return -ENODEV; 1916 1917 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1918 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1919 /* FIXME when we have to issue an evaluate endpoint command to 1920 * deal with ep0 max packet size changing once we get the 1921 * descriptors 1922 */ 1923 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1924 __func__, added_ctxs); 1925 return 0; 1926 } 1927 1928 virt_dev = xhci->devs[udev->slot_id]; 1929 in_ctx = virt_dev->in_ctx; 1930 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1931 if (!ctrl_ctx) { 1932 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1933 __func__); 1934 return 0; 1935 } 1936 1937 ep_index = xhci_get_endpoint_index(&ep->desc); 1938 /* If this endpoint is already in use, and the upper layers are trying 1939 * to add it again without dropping it, reject the addition. 1940 */ 1941 if (virt_dev->eps[ep_index].ring && 1942 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1943 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1944 "without dropping it.\n", 1945 (unsigned int) ep->desc.bEndpointAddress); 1946 return -EINVAL; 1947 } 1948 1949 /* If the HCD has already noted the endpoint is enabled, 1950 * ignore this request. 1951 */ 1952 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1953 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1954 __func__, ep); 1955 return 0; 1956 } 1957 1958 /* 1959 * Configuration and alternate setting changes must be done in 1960 * process context, not interrupt context (or so documenation 1961 * for usb_set_interface() and usb_set_configuration() claim). 1962 */ 1963 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1964 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1965 __func__, ep->desc.bEndpointAddress); 1966 return -ENOMEM; 1967 } 1968 1969 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1970 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1971 1972 /* If xhci_endpoint_disable() was called for this endpoint, but the 1973 * xHC hasn't been notified yet through the check_bandwidth() call, 1974 * this re-adds a new state for the endpoint from the new endpoint 1975 * descriptors. We must drop and re-add this endpoint, so we leave the 1976 * drop flags alone. 1977 */ 1978 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1979 1980 /* Store the usb_device pointer for later use */ 1981 ep->hcpriv = udev; 1982 1983 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1984 trace_xhci_add_endpoint(ep_ctx); 1985 1986 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1987 (unsigned int) ep->desc.bEndpointAddress, 1988 udev->slot_id, 1989 (unsigned int) new_drop_flags, 1990 (unsigned int) new_add_flags); 1991 return 0; 1992 } 1993 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 1994 1995 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1996 { 1997 struct xhci_input_control_ctx *ctrl_ctx; 1998 struct xhci_ep_ctx *ep_ctx; 1999 struct xhci_slot_ctx *slot_ctx; 2000 int i; 2001 2002 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2003 if (!ctrl_ctx) { 2004 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2005 __func__); 2006 return; 2007 } 2008 2009 /* When a device's add flag and drop flag are zero, any subsequent 2010 * configure endpoint command will leave that endpoint's state 2011 * untouched. Make sure we don't leave any old state in the input 2012 * endpoint contexts. 2013 */ 2014 ctrl_ctx->drop_flags = 0; 2015 ctrl_ctx->add_flags = 0; 2016 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2017 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2018 /* Endpoint 0 is always valid */ 2019 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2020 for (i = 1; i < 31; i++) { 2021 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2022 ep_ctx->ep_info = 0; 2023 ep_ctx->ep_info2 = 0; 2024 ep_ctx->deq = 0; 2025 ep_ctx->tx_info = 0; 2026 } 2027 } 2028 2029 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2030 struct usb_device *udev, u32 *cmd_status) 2031 { 2032 int ret; 2033 2034 switch (*cmd_status) { 2035 case COMP_COMMAND_ABORTED: 2036 case COMP_COMMAND_RING_STOPPED: 2037 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2038 ret = -ETIME; 2039 break; 2040 case COMP_RESOURCE_ERROR: 2041 dev_warn(&udev->dev, 2042 "Not enough host controller resources for new device state.\n"); 2043 ret = -ENOMEM; 2044 /* FIXME: can we allocate more resources for the HC? */ 2045 break; 2046 case COMP_BANDWIDTH_ERROR: 2047 case COMP_SECONDARY_BANDWIDTH_ERROR: 2048 dev_warn(&udev->dev, 2049 "Not enough bandwidth for new device state.\n"); 2050 ret = -ENOSPC; 2051 /* FIXME: can we go back to the old state? */ 2052 break; 2053 case COMP_TRB_ERROR: 2054 /* the HCD set up something wrong */ 2055 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2056 "add flag = 1, " 2057 "and endpoint is not disabled.\n"); 2058 ret = -EINVAL; 2059 break; 2060 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2061 dev_warn(&udev->dev, 2062 "ERROR: Incompatible device for endpoint configure command.\n"); 2063 ret = -ENODEV; 2064 break; 2065 case COMP_SUCCESS: 2066 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2067 "Successful Endpoint Configure command"); 2068 ret = 0; 2069 break; 2070 default: 2071 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2072 *cmd_status); 2073 ret = -EINVAL; 2074 break; 2075 } 2076 return ret; 2077 } 2078 2079 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2080 struct usb_device *udev, u32 *cmd_status) 2081 { 2082 int ret; 2083 2084 switch (*cmd_status) { 2085 case COMP_COMMAND_ABORTED: 2086 case COMP_COMMAND_RING_STOPPED: 2087 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2088 ret = -ETIME; 2089 break; 2090 case COMP_PARAMETER_ERROR: 2091 dev_warn(&udev->dev, 2092 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2093 ret = -EINVAL; 2094 break; 2095 case COMP_SLOT_NOT_ENABLED_ERROR: 2096 dev_warn(&udev->dev, 2097 "WARN: slot not enabled for evaluate context command.\n"); 2098 ret = -EINVAL; 2099 break; 2100 case COMP_CONTEXT_STATE_ERROR: 2101 dev_warn(&udev->dev, 2102 "WARN: invalid context state for evaluate context command.\n"); 2103 ret = -EINVAL; 2104 break; 2105 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2106 dev_warn(&udev->dev, 2107 "ERROR: Incompatible device for evaluate context command.\n"); 2108 ret = -ENODEV; 2109 break; 2110 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2111 /* Max Exit Latency too large error */ 2112 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2113 ret = -EINVAL; 2114 break; 2115 case COMP_SUCCESS: 2116 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2117 "Successful evaluate context command"); 2118 ret = 0; 2119 break; 2120 default: 2121 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2122 *cmd_status); 2123 ret = -EINVAL; 2124 break; 2125 } 2126 return ret; 2127 } 2128 2129 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2130 struct xhci_input_control_ctx *ctrl_ctx) 2131 { 2132 u32 valid_add_flags; 2133 u32 valid_drop_flags; 2134 2135 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2136 * (bit 1). The default control endpoint is added during the Address 2137 * Device command and is never removed until the slot is disabled. 2138 */ 2139 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2140 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2141 2142 /* Use hweight32 to count the number of ones in the add flags, or 2143 * number of endpoints added. Don't count endpoints that are changed 2144 * (both added and dropped). 2145 */ 2146 return hweight32(valid_add_flags) - 2147 hweight32(valid_add_flags & valid_drop_flags); 2148 } 2149 2150 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2151 struct xhci_input_control_ctx *ctrl_ctx) 2152 { 2153 u32 valid_add_flags; 2154 u32 valid_drop_flags; 2155 2156 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2157 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2158 2159 return hweight32(valid_drop_flags) - 2160 hweight32(valid_add_flags & valid_drop_flags); 2161 } 2162 2163 /* 2164 * We need to reserve the new number of endpoints before the configure endpoint 2165 * command completes. We can't subtract the dropped endpoints from the number 2166 * of active endpoints until the command completes because we can oversubscribe 2167 * the host in this case: 2168 * 2169 * - the first configure endpoint command drops more endpoints than it adds 2170 * - a second configure endpoint command that adds more endpoints is queued 2171 * - the first configure endpoint command fails, so the config is unchanged 2172 * - the second command may succeed, even though there isn't enough resources 2173 * 2174 * Must be called with xhci->lock held. 2175 */ 2176 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2177 struct xhci_input_control_ctx *ctrl_ctx) 2178 { 2179 u32 added_eps; 2180 2181 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2182 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2183 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2184 "Not enough ep ctxs: " 2185 "%u active, need to add %u, limit is %u.", 2186 xhci->num_active_eps, added_eps, 2187 xhci->limit_active_eps); 2188 return -ENOMEM; 2189 } 2190 xhci->num_active_eps += added_eps; 2191 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2192 "Adding %u ep ctxs, %u now active.", added_eps, 2193 xhci->num_active_eps); 2194 return 0; 2195 } 2196 2197 /* 2198 * The configure endpoint was failed by the xHC for some other reason, so we 2199 * need to revert the resources that failed configuration would have used. 2200 * 2201 * Must be called with xhci->lock held. 2202 */ 2203 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2204 struct xhci_input_control_ctx *ctrl_ctx) 2205 { 2206 u32 num_failed_eps; 2207 2208 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2209 xhci->num_active_eps -= num_failed_eps; 2210 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2211 "Removing %u failed ep ctxs, %u now active.", 2212 num_failed_eps, 2213 xhci->num_active_eps); 2214 } 2215 2216 /* 2217 * Now that the command has completed, clean up the active endpoint count by 2218 * subtracting out the endpoints that were dropped (but not changed). 2219 * 2220 * Must be called with xhci->lock held. 2221 */ 2222 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2223 struct xhci_input_control_ctx *ctrl_ctx) 2224 { 2225 u32 num_dropped_eps; 2226 2227 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2228 xhci->num_active_eps -= num_dropped_eps; 2229 if (num_dropped_eps) 2230 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2231 "Removing %u dropped ep ctxs, %u now active.", 2232 num_dropped_eps, 2233 xhci->num_active_eps); 2234 } 2235 2236 static unsigned int xhci_get_block_size(struct usb_device *udev) 2237 { 2238 switch (udev->speed) { 2239 case USB_SPEED_LOW: 2240 case USB_SPEED_FULL: 2241 return FS_BLOCK; 2242 case USB_SPEED_HIGH: 2243 return HS_BLOCK; 2244 case USB_SPEED_SUPER: 2245 case USB_SPEED_SUPER_PLUS: 2246 return SS_BLOCK; 2247 case USB_SPEED_UNKNOWN: 2248 default: 2249 /* Should never happen */ 2250 return 1; 2251 } 2252 } 2253 2254 static unsigned int 2255 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2256 { 2257 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2258 return LS_OVERHEAD; 2259 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2260 return FS_OVERHEAD; 2261 return HS_OVERHEAD; 2262 } 2263 2264 /* If we are changing a LS/FS device under a HS hub, 2265 * make sure (if we are activating a new TT) that the HS bus has enough 2266 * bandwidth for this new TT. 2267 */ 2268 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2269 struct xhci_virt_device *virt_dev, 2270 int old_active_eps) 2271 { 2272 struct xhci_interval_bw_table *bw_table; 2273 struct xhci_tt_bw_info *tt_info; 2274 2275 /* Find the bandwidth table for the root port this TT is attached to. */ 2276 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table; 2277 tt_info = virt_dev->tt_info; 2278 /* If this TT already had active endpoints, the bandwidth for this TT 2279 * has already been added. Removing all periodic endpoints (and thus 2280 * making the TT enactive) will only decrease the bandwidth used. 2281 */ 2282 if (old_active_eps) 2283 return 0; 2284 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2285 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2286 return -ENOMEM; 2287 return 0; 2288 } 2289 /* Not sure why we would have no new active endpoints... 2290 * 2291 * Maybe because of an Evaluate Context change for a hub update or a 2292 * control endpoint 0 max packet size change? 2293 * FIXME: skip the bandwidth calculation in that case. 2294 */ 2295 return 0; 2296 } 2297 2298 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2299 struct xhci_virt_device *virt_dev) 2300 { 2301 unsigned int bw_reserved; 2302 2303 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2304 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2305 return -ENOMEM; 2306 2307 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2308 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2309 return -ENOMEM; 2310 2311 return 0; 2312 } 2313 2314 /* 2315 * This algorithm is a very conservative estimate of the worst-case scheduling 2316 * scenario for any one interval. The hardware dynamically schedules the 2317 * packets, so we can't tell which microframe could be the limiting factor in 2318 * the bandwidth scheduling. This only takes into account periodic endpoints. 2319 * 2320 * Obviously, we can't solve an NP complete problem to find the minimum worst 2321 * case scenario. Instead, we come up with an estimate that is no less than 2322 * the worst case bandwidth used for any one microframe, but may be an 2323 * over-estimate. 2324 * 2325 * We walk the requirements for each endpoint by interval, starting with the 2326 * smallest interval, and place packets in the schedule where there is only one 2327 * possible way to schedule packets for that interval. In order to simplify 2328 * this algorithm, we record the largest max packet size for each interval, and 2329 * assume all packets will be that size. 2330 * 2331 * For interval 0, we obviously must schedule all packets for each interval. 2332 * The bandwidth for interval 0 is just the amount of data to be transmitted 2333 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2334 * the number of packets). 2335 * 2336 * For interval 1, we have two possible microframes to schedule those packets 2337 * in. For this algorithm, if we can schedule the same number of packets for 2338 * each possible scheduling opportunity (each microframe), we will do so. The 2339 * remaining number of packets will be saved to be transmitted in the gaps in 2340 * the next interval's scheduling sequence. 2341 * 2342 * As we move those remaining packets to be scheduled with interval 2 packets, 2343 * we have to double the number of remaining packets to transmit. This is 2344 * because the intervals are actually powers of 2, and we would be transmitting 2345 * the previous interval's packets twice in this interval. We also have to be 2346 * sure that when we look at the largest max packet size for this interval, we 2347 * also look at the largest max packet size for the remaining packets and take 2348 * the greater of the two. 2349 * 2350 * The algorithm continues to evenly distribute packets in each scheduling 2351 * opportunity, and push the remaining packets out, until we get to the last 2352 * interval. Then those packets and their associated overhead are just added 2353 * to the bandwidth used. 2354 */ 2355 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2356 struct xhci_virt_device *virt_dev, 2357 int old_active_eps) 2358 { 2359 unsigned int bw_reserved; 2360 unsigned int max_bandwidth; 2361 unsigned int bw_used; 2362 unsigned int block_size; 2363 struct xhci_interval_bw_table *bw_table; 2364 unsigned int packet_size = 0; 2365 unsigned int overhead = 0; 2366 unsigned int packets_transmitted = 0; 2367 unsigned int packets_remaining = 0; 2368 unsigned int i; 2369 2370 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2371 return xhci_check_ss_bw(xhci, virt_dev); 2372 2373 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2374 max_bandwidth = HS_BW_LIMIT; 2375 /* Convert percent of bus BW reserved to blocks reserved */ 2376 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2377 } else { 2378 max_bandwidth = FS_BW_LIMIT; 2379 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2380 } 2381 2382 bw_table = virt_dev->bw_table; 2383 /* We need to translate the max packet size and max ESIT payloads into 2384 * the units the hardware uses. 2385 */ 2386 block_size = xhci_get_block_size(virt_dev->udev); 2387 2388 /* If we are manipulating a LS/FS device under a HS hub, double check 2389 * that the HS bus has enough bandwidth if we are activing a new TT. 2390 */ 2391 if (virt_dev->tt_info) { 2392 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2393 "Recalculating BW for rootport %u", 2394 virt_dev->rhub_port->hw_portnum + 1); 2395 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2396 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2397 "newly activated TT.\n"); 2398 return -ENOMEM; 2399 } 2400 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2401 "Recalculating BW for TT slot %u port %u", 2402 virt_dev->tt_info->slot_id, 2403 virt_dev->tt_info->ttport); 2404 } else { 2405 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2406 "Recalculating BW for rootport %u", 2407 virt_dev->rhub_port->hw_portnum + 1); 2408 } 2409 2410 /* Add in how much bandwidth will be used for interval zero, or the 2411 * rounded max ESIT payload + number of packets * largest overhead. 2412 */ 2413 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2414 bw_table->interval_bw[0].num_packets * 2415 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2416 2417 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2418 unsigned int bw_added; 2419 unsigned int largest_mps; 2420 unsigned int interval_overhead; 2421 2422 /* 2423 * How many packets could we transmit in this interval? 2424 * If packets didn't fit in the previous interval, we will need 2425 * to transmit that many packets twice within this interval. 2426 */ 2427 packets_remaining = 2 * packets_remaining + 2428 bw_table->interval_bw[i].num_packets; 2429 2430 /* Find the largest max packet size of this or the previous 2431 * interval. 2432 */ 2433 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2434 largest_mps = 0; 2435 else { 2436 struct xhci_virt_ep *virt_ep; 2437 struct list_head *ep_entry; 2438 2439 ep_entry = bw_table->interval_bw[i].endpoints.next; 2440 virt_ep = list_entry(ep_entry, 2441 struct xhci_virt_ep, bw_endpoint_list); 2442 /* Convert to blocks, rounding up */ 2443 largest_mps = DIV_ROUND_UP( 2444 virt_ep->bw_info.max_packet_size, 2445 block_size); 2446 } 2447 if (largest_mps > packet_size) 2448 packet_size = largest_mps; 2449 2450 /* Use the larger overhead of this or the previous interval. */ 2451 interval_overhead = xhci_get_largest_overhead( 2452 &bw_table->interval_bw[i]); 2453 if (interval_overhead > overhead) 2454 overhead = interval_overhead; 2455 2456 /* How many packets can we evenly distribute across 2457 * (1 << (i + 1)) possible scheduling opportunities? 2458 */ 2459 packets_transmitted = packets_remaining >> (i + 1); 2460 2461 /* Add in the bandwidth used for those scheduled packets */ 2462 bw_added = packets_transmitted * (overhead + packet_size); 2463 2464 /* How many packets do we have remaining to transmit? */ 2465 packets_remaining = packets_remaining % (1 << (i + 1)); 2466 2467 /* What largest max packet size should those packets have? */ 2468 /* If we've transmitted all packets, don't carry over the 2469 * largest packet size. 2470 */ 2471 if (packets_remaining == 0) { 2472 packet_size = 0; 2473 overhead = 0; 2474 } else if (packets_transmitted > 0) { 2475 /* Otherwise if we do have remaining packets, and we've 2476 * scheduled some packets in this interval, take the 2477 * largest max packet size from endpoints with this 2478 * interval. 2479 */ 2480 packet_size = largest_mps; 2481 overhead = interval_overhead; 2482 } 2483 /* Otherwise carry over packet_size and overhead from the last 2484 * time we had a remainder. 2485 */ 2486 bw_used += bw_added; 2487 if (bw_used > max_bandwidth) { 2488 xhci_warn(xhci, "Not enough bandwidth. " 2489 "Proposed: %u, Max: %u\n", 2490 bw_used, max_bandwidth); 2491 return -ENOMEM; 2492 } 2493 } 2494 /* 2495 * Ok, we know we have some packets left over after even-handedly 2496 * scheduling interval 15. We don't know which microframes they will 2497 * fit into, so we over-schedule and say they will be scheduled every 2498 * microframe. 2499 */ 2500 if (packets_remaining > 0) 2501 bw_used += overhead + packet_size; 2502 2503 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2504 /* OK, we're manipulating a HS device attached to a 2505 * root port bandwidth domain. Include the number of active TTs 2506 * in the bandwidth used. 2507 */ 2508 bw_used += TT_HS_OVERHEAD * 2509 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts; 2510 } 2511 2512 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2513 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2514 "Available: %u " "percent", 2515 bw_used, max_bandwidth, bw_reserved, 2516 (max_bandwidth - bw_used - bw_reserved) * 100 / 2517 max_bandwidth); 2518 2519 bw_used += bw_reserved; 2520 if (bw_used > max_bandwidth) { 2521 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2522 bw_used, max_bandwidth); 2523 return -ENOMEM; 2524 } 2525 2526 bw_table->bw_used = bw_used; 2527 return 0; 2528 } 2529 2530 static bool xhci_is_async_ep(unsigned int ep_type) 2531 { 2532 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2533 ep_type != ISOC_IN_EP && 2534 ep_type != INT_IN_EP); 2535 } 2536 2537 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2538 { 2539 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2540 } 2541 2542 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2543 { 2544 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2545 2546 if (ep_bw->ep_interval == 0) 2547 return SS_OVERHEAD_BURST + 2548 (ep_bw->mult * ep_bw->num_packets * 2549 (SS_OVERHEAD + mps)); 2550 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2551 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2552 1 << ep_bw->ep_interval); 2553 2554 } 2555 2556 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2557 struct xhci_bw_info *ep_bw, 2558 struct xhci_interval_bw_table *bw_table, 2559 struct usb_device *udev, 2560 struct xhci_virt_ep *virt_ep, 2561 struct xhci_tt_bw_info *tt_info) 2562 { 2563 struct xhci_interval_bw *interval_bw; 2564 int normalized_interval; 2565 2566 if (xhci_is_async_ep(ep_bw->type)) 2567 return; 2568 2569 if (udev->speed >= USB_SPEED_SUPER) { 2570 if (xhci_is_sync_in_ep(ep_bw->type)) 2571 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2572 xhci_get_ss_bw_consumed(ep_bw); 2573 else 2574 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2575 xhci_get_ss_bw_consumed(ep_bw); 2576 return; 2577 } 2578 2579 /* SuperSpeed endpoints never get added to intervals in the table, so 2580 * this check is only valid for HS/FS/LS devices. 2581 */ 2582 if (list_empty(&virt_ep->bw_endpoint_list)) 2583 return; 2584 /* For LS/FS devices, we need to translate the interval expressed in 2585 * microframes to frames. 2586 */ 2587 if (udev->speed == USB_SPEED_HIGH) 2588 normalized_interval = ep_bw->ep_interval; 2589 else 2590 normalized_interval = ep_bw->ep_interval - 3; 2591 2592 if (normalized_interval == 0) 2593 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2594 interval_bw = &bw_table->interval_bw[normalized_interval]; 2595 interval_bw->num_packets -= ep_bw->num_packets; 2596 switch (udev->speed) { 2597 case USB_SPEED_LOW: 2598 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2599 break; 2600 case USB_SPEED_FULL: 2601 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2602 break; 2603 case USB_SPEED_HIGH: 2604 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2605 break; 2606 default: 2607 /* Should never happen because only LS/FS/HS endpoints will get 2608 * added to the endpoint list. 2609 */ 2610 return; 2611 } 2612 if (tt_info) 2613 tt_info->active_eps -= 1; 2614 list_del_init(&virt_ep->bw_endpoint_list); 2615 } 2616 2617 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2618 struct xhci_bw_info *ep_bw, 2619 struct xhci_interval_bw_table *bw_table, 2620 struct usb_device *udev, 2621 struct xhci_virt_ep *virt_ep, 2622 struct xhci_tt_bw_info *tt_info) 2623 { 2624 struct xhci_interval_bw *interval_bw; 2625 struct xhci_virt_ep *smaller_ep; 2626 int normalized_interval; 2627 2628 if (xhci_is_async_ep(ep_bw->type)) 2629 return; 2630 2631 if (udev->speed == USB_SPEED_SUPER) { 2632 if (xhci_is_sync_in_ep(ep_bw->type)) 2633 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2634 xhci_get_ss_bw_consumed(ep_bw); 2635 else 2636 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2637 xhci_get_ss_bw_consumed(ep_bw); 2638 return; 2639 } 2640 2641 /* For LS/FS devices, we need to translate the interval expressed in 2642 * microframes to frames. 2643 */ 2644 if (udev->speed == USB_SPEED_HIGH) 2645 normalized_interval = ep_bw->ep_interval; 2646 else 2647 normalized_interval = ep_bw->ep_interval - 3; 2648 2649 if (normalized_interval == 0) 2650 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2651 interval_bw = &bw_table->interval_bw[normalized_interval]; 2652 interval_bw->num_packets += ep_bw->num_packets; 2653 switch (udev->speed) { 2654 case USB_SPEED_LOW: 2655 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2656 break; 2657 case USB_SPEED_FULL: 2658 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2659 break; 2660 case USB_SPEED_HIGH: 2661 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2662 break; 2663 default: 2664 /* Should never happen because only LS/FS/HS endpoints will get 2665 * added to the endpoint list. 2666 */ 2667 return; 2668 } 2669 2670 if (tt_info) 2671 tt_info->active_eps += 1; 2672 /* Insert the endpoint into the list, largest max packet size first. */ 2673 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2674 bw_endpoint_list) { 2675 if (ep_bw->max_packet_size >= 2676 smaller_ep->bw_info.max_packet_size) { 2677 /* Add the new ep before the smaller endpoint */ 2678 list_add_tail(&virt_ep->bw_endpoint_list, 2679 &smaller_ep->bw_endpoint_list); 2680 return; 2681 } 2682 } 2683 /* Add the new endpoint at the end of the list. */ 2684 list_add_tail(&virt_ep->bw_endpoint_list, 2685 &interval_bw->endpoints); 2686 } 2687 2688 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2689 struct xhci_virt_device *virt_dev, 2690 int old_active_eps) 2691 { 2692 struct xhci_root_port_bw_info *rh_bw_info; 2693 if (!virt_dev->tt_info) 2694 return; 2695 2696 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum]; 2697 if (old_active_eps == 0 && 2698 virt_dev->tt_info->active_eps != 0) { 2699 rh_bw_info->num_active_tts += 1; 2700 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2701 } else if (old_active_eps != 0 && 2702 virt_dev->tt_info->active_eps == 0) { 2703 rh_bw_info->num_active_tts -= 1; 2704 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2705 } 2706 } 2707 2708 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2709 struct xhci_virt_device *virt_dev, 2710 struct xhci_container_ctx *in_ctx) 2711 { 2712 struct xhci_bw_info ep_bw_info[31]; 2713 int i; 2714 struct xhci_input_control_ctx *ctrl_ctx; 2715 int old_active_eps = 0; 2716 2717 if (virt_dev->tt_info) 2718 old_active_eps = virt_dev->tt_info->active_eps; 2719 2720 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2721 if (!ctrl_ctx) { 2722 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2723 __func__); 2724 return -ENOMEM; 2725 } 2726 2727 for (i = 0; i < 31; i++) { 2728 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2729 continue; 2730 2731 /* Make a copy of the BW info in case we need to revert this */ 2732 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2733 sizeof(ep_bw_info[i])); 2734 /* Drop the endpoint from the interval table if the endpoint is 2735 * being dropped or changed. 2736 */ 2737 if (EP_IS_DROPPED(ctrl_ctx, i)) 2738 xhci_drop_ep_from_interval_table(xhci, 2739 &virt_dev->eps[i].bw_info, 2740 virt_dev->bw_table, 2741 virt_dev->udev, 2742 &virt_dev->eps[i], 2743 virt_dev->tt_info); 2744 } 2745 /* Overwrite the information stored in the endpoints' bw_info */ 2746 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2747 for (i = 0; i < 31; i++) { 2748 /* Add any changed or added endpoints to the interval table */ 2749 if (EP_IS_ADDED(ctrl_ctx, i)) 2750 xhci_add_ep_to_interval_table(xhci, 2751 &virt_dev->eps[i].bw_info, 2752 virt_dev->bw_table, 2753 virt_dev->udev, 2754 &virt_dev->eps[i], 2755 virt_dev->tt_info); 2756 } 2757 2758 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2759 /* Ok, this fits in the bandwidth we have. 2760 * Update the number of active TTs. 2761 */ 2762 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2763 return 0; 2764 } 2765 2766 /* We don't have enough bandwidth for this, revert the stored info. */ 2767 for (i = 0; i < 31; i++) { 2768 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2769 continue; 2770 2771 /* Drop the new copies of any added or changed endpoints from 2772 * the interval table. 2773 */ 2774 if (EP_IS_ADDED(ctrl_ctx, i)) { 2775 xhci_drop_ep_from_interval_table(xhci, 2776 &virt_dev->eps[i].bw_info, 2777 virt_dev->bw_table, 2778 virt_dev->udev, 2779 &virt_dev->eps[i], 2780 virt_dev->tt_info); 2781 } 2782 /* Revert the endpoint back to its old information */ 2783 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2784 sizeof(ep_bw_info[i])); 2785 /* Add any changed or dropped endpoints back into the table */ 2786 if (EP_IS_DROPPED(ctrl_ctx, i)) 2787 xhci_add_ep_to_interval_table(xhci, 2788 &virt_dev->eps[i].bw_info, 2789 virt_dev->bw_table, 2790 virt_dev->udev, 2791 &virt_dev->eps[i], 2792 virt_dev->tt_info); 2793 } 2794 return -ENOMEM; 2795 } 2796 2797 2798 /* Issue a configure endpoint command or evaluate context command 2799 * and wait for it to finish. 2800 */ 2801 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2802 struct usb_device *udev, 2803 struct xhci_command *command, 2804 bool ctx_change, bool must_succeed) 2805 { 2806 int ret; 2807 unsigned long flags; 2808 struct xhci_input_control_ctx *ctrl_ctx; 2809 struct xhci_virt_device *virt_dev; 2810 struct xhci_slot_ctx *slot_ctx; 2811 2812 if (!command) 2813 return -EINVAL; 2814 2815 spin_lock_irqsave(&xhci->lock, flags); 2816 2817 if (xhci->xhc_state & XHCI_STATE_DYING) { 2818 spin_unlock_irqrestore(&xhci->lock, flags); 2819 return -ESHUTDOWN; 2820 } 2821 2822 virt_dev = xhci->devs[udev->slot_id]; 2823 2824 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2825 if (!ctrl_ctx) { 2826 spin_unlock_irqrestore(&xhci->lock, flags); 2827 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2828 __func__); 2829 return -ENOMEM; 2830 } 2831 2832 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2833 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2834 spin_unlock_irqrestore(&xhci->lock, flags); 2835 xhci_warn(xhci, "Not enough host resources, " 2836 "active endpoint contexts = %u\n", 2837 xhci->num_active_eps); 2838 return -ENOMEM; 2839 } 2840 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change && 2841 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2842 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2843 xhci_free_host_resources(xhci, ctrl_ctx); 2844 spin_unlock_irqrestore(&xhci->lock, flags); 2845 xhci_warn(xhci, "Not enough bandwidth\n"); 2846 return -ENOMEM; 2847 } 2848 2849 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2850 2851 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2852 trace_xhci_configure_endpoint(slot_ctx); 2853 2854 if (!ctx_change) 2855 ret = xhci_queue_configure_endpoint(xhci, command, 2856 command->in_ctx->dma, 2857 udev->slot_id, must_succeed); 2858 else 2859 ret = xhci_queue_evaluate_context(xhci, command, 2860 command->in_ctx->dma, 2861 udev->slot_id, must_succeed); 2862 if (ret < 0) { 2863 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2864 xhci_free_host_resources(xhci, ctrl_ctx); 2865 spin_unlock_irqrestore(&xhci->lock, flags); 2866 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2867 "FIXME allocate a new ring segment"); 2868 return -ENOMEM; 2869 } 2870 xhci_ring_cmd_db(xhci); 2871 spin_unlock_irqrestore(&xhci->lock, flags); 2872 2873 /* Wait for the configure endpoint command to complete */ 2874 wait_for_completion(command->completion); 2875 2876 if (!ctx_change) 2877 ret = xhci_configure_endpoint_result(xhci, udev, 2878 &command->status); 2879 else 2880 ret = xhci_evaluate_context_result(xhci, udev, 2881 &command->status); 2882 2883 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2884 spin_lock_irqsave(&xhci->lock, flags); 2885 /* If the command failed, remove the reserved resources. 2886 * Otherwise, clean up the estimate to include dropped eps. 2887 */ 2888 if (ret) 2889 xhci_free_host_resources(xhci, ctrl_ctx); 2890 else 2891 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2892 spin_unlock_irqrestore(&xhci->lock, flags); 2893 } 2894 return ret; 2895 } 2896 2897 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2898 struct xhci_virt_device *vdev, int i) 2899 { 2900 struct xhci_virt_ep *ep = &vdev->eps[i]; 2901 2902 if (ep->ep_state & EP_HAS_STREAMS) { 2903 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2904 xhci_get_endpoint_address(i)); 2905 xhci_free_stream_info(xhci, ep->stream_info); 2906 ep->stream_info = NULL; 2907 ep->ep_state &= ~EP_HAS_STREAMS; 2908 } 2909 } 2910 2911 /* Called after one or more calls to xhci_add_endpoint() or 2912 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2913 * to call xhci_reset_bandwidth(). 2914 * 2915 * Since we are in the middle of changing either configuration or 2916 * installing a new alt setting, the USB core won't allow URBs to be 2917 * enqueued for any endpoint on the old config or interface. Nothing 2918 * else should be touching the xhci->devs[slot_id] structure, so we 2919 * don't need to take the xhci->lock for manipulating that. 2920 */ 2921 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2922 { 2923 int i; 2924 int ret = 0; 2925 struct xhci_hcd *xhci; 2926 struct xhci_virt_device *virt_dev; 2927 struct xhci_input_control_ctx *ctrl_ctx; 2928 struct xhci_slot_ctx *slot_ctx; 2929 struct xhci_command *command; 2930 2931 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2932 if (ret <= 0) 2933 return ret; 2934 xhci = hcd_to_xhci(hcd); 2935 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2936 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2937 return -ENODEV; 2938 2939 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2940 virt_dev = xhci->devs[udev->slot_id]; 2941 2942 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2943 if (!command) 2944 return -ENOMEM; 2945 2946 command->in_ctx = virt_dev->in_ctx; 2947 2948 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2949 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2950 if (!ctrl_ctx) { 2951 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2952 __func__); 2953 ret = -ENOMEM; 2954 goto command_cleanup; 2955 } 2956 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2957 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2958 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2959 2960 /* Don't issue the command if there's no endpoints to update. */ 2961 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2962 ctrl_ctx->drop_flags == 0) { 2963 ret = 0; 2964 goto command_cleanup; 2965 } 2966 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2967 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2968 for (i = 31; i >= 1; i--) { 2969 __le32 le32 = cpu_to_le32(BIT(i)); 2970 2971 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2972 || (ctrl_ctx->add_flags & le32) || i == 1) { 2973 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2974 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2975 break; 2976 } 2977 } 2978 2979 ret = xhci_configure_endpoint(xhci, udev, command, 2980 false, false); 2981 if (ret) 2982 /* Callee should call reset_bandwidth() */ 2983 goto command_cleanup; 2984 2985 /* Free any rings that were dropped, but not changed. */ 2986 for (i = 1; i < 31; i++) { 2987 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2988 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2989 xhci_free_endpoint_ring(xhci, virt_dev, i); 2990 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2991 } 2992 } 2993 xhci_zero_in_ctx(xhci, virt_dev); 2994 /* 2995 * Install any rings for completely new endpoints or changed endpoints, 2996 * and free any old rings from changed endpoints. 2997 */ 2998 for (i = 1; i < 31; i++) { 2999 if (!virt_dev->eps[i].new_ring) 3000 continue; 3001 /* Only free the old ring if it exists. 3002 * It may not if this is the first add of an endpoint. 3003 */ 3004 if (virt_dev->eps[i].ring) { 3005 xhci_free_endpoint_ring(xhci, virt_dev, i); 3006 } 3007 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3008 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3009 virt_dev->eps[i].new_ring = NULL; 3010 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3011 } 3012 command_cleanup: 3013 kfree(command->completion); 3014 kfree(command); 3015 3016 return ret; 3017 } 3018 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3019 3020 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3021 { 3022 struct xhci_hcd *xhci; 3023 struct xhci_virt_device *virt_dev; 3024 int i, ret; 3025 3026 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3027 if (ret <= 0) 3028 return; 3029 xhci = hcd_to_xhci(hcd); 3030 3031 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3032 virt_dev = xhci->devs[udev->slot_id]; 3033 /* Free any rings allocated for added endpoints */ 3034 for (i = 0; i < 31; i++) { 3035 if (virt_dev->eps[i].new_ring) { 3036 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3037 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3038 virt_dev->eps[i].new_ring = NULL; 3039 } 3040 } 3041 xhci_zero_in_ctx(xhci, virt_dev); 3042 } 3043 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3044 3045 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3046 struct xhci_container_ctx *in_ctx, 3047 struct xhci_container_ctx *out_ctx, 3048 struct xhci_input_control_ctx *ctrl_ctx, 3049 u32 add_flags, u32 drop_flags) 3050 { 3051 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3052 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3053 xhci_slot_copy(xhci, in_ctx, out_ctx); 3054 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3055 } 3056 3057 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3058 struct usb_host_endpoint *host_ep) 3059 { 3060 struct xhci_hcd *xhci; 3061 struct xhci_virt_device *vdev; 3062 struct xhci_virt_ep *ep; 3063 struct usb_device *udev; 3064 unsigned long flags; 3065 unsigned int ep_index; 3066 3067 xhci = hcd_to_xhci(hcd); 3068 rescan: 3069 spin_lock_irqsave(&xhci->lock, flags); 3070 3071 udev = (struct usb_device *)host_ep->hcpriv; 3072 if (!udev || !udev->slot_id) 3073 goto done; 3074 3075 vdev = xhci->devs[udev->slot_id]; 3076 if (!vdev) 3077 goto done; 3078 3079 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3080 ep = &vdev->eps[ep_index]; 3081 3082 /* wait for hub_tt_work to finish clearing hub TT */ 3083 if (ep->ep_state & EP_CLEARING_TT) { 3084 spin_unlock_irqrestore(&xhci->lock, flags); 3085 schedule_timeout_uninterruptible(1); 3086 goto rescan; 3087 } 3088 3089 if (ep->ep_state) 3090 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3091 ep->ep_state); 3092 done: 3093 host_ep->hcpriv = NULL; 3094 spin_unlock_irqrestore(&xhci->lock, flags); 3095 } 3096 3097 /* 3098 * Called after usb core issues a clear halt control message. 3099 * The host side of the halt should already be cleared by a reset endpoint 3100 * command issued when the STALL event was received. 3101 * 3102 * The reset endpoint command may only be issued to endpoints in the halted 3103 * state. For software that wishes to reset the data toggle or sequence number 3104 * of an endpoint that isn't in the halted state this function will issue a 3105 * configure endpoint command with the Drop and Add bits set for the target 3106 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3107 * 3108 * vdev may be lost due to xHC restore error and re-initialization during S3/S4 3109 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device() 3110 */ 3111 3112 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3113 struct usb_host_endpoint *host_ep) 3114 { 3115 struct xhci_hcd *xhci; 3116 struct usb_device *udev; 3117 struct xhci_virt_device *vdev; 3118 struct xhci_virt_ep *ep; 3119 struct xhci_input_control_ctx *ctrl_ctx; 3120 struct xhci_command *stop_cmd, *cfg_cmd; 3121 unsigned int ep_index; 3122 unsigned long flags; 3123 u32 ep_flag; 3124 int err; 3125 3126 xhci = hcd_to_xhci(hcd); 3127 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3128 3129 /* 3130 * Usb core assumes a max packet value for ep0 on FS devices until the 3131 * real value is read from the descriptor. Core resets Ep0 if values 3132 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case 3133 */ 3134 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) { 3135 3136 udev = container_of(host_ep, struct usb_device, ep0); 3137 if (udev->speed != USB_SPEED_FULL || !udev->slot_id) 3138 return; 3139 3140 vdev = xhci->devs[udev->slot_id]; 3141 if (!vdev || vdev->udev != udev) 3142 return; 3143 3144 xhci_check_ep0_maxpacket(xhci, vdev); 3145 3146 /* Nothing else should be done here for ep0 during ep reset */ 3147 return; 3148 } 3149 3150 if (!host_ep->hcpriv) 3151 return; 3152 udev = (struct usb_device *) host_ep->hcpriv; 3153 vdev = xhci->devs[udev->slot_id]; 3154 3155 if (!udev->slot_id || !vdev) 3156 return; 3157 3158 ep = &vdev->eps[ep_index]; 3159 3160 /* Bail out if toggle is already being cleared by a endpoint reset */ 3161 spin_lock_irqsave(&xhci->lock, flags); 3162 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3163 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3164 spin_unlock_irqrestore(&xhci->lock, flags); 3165 return; 3166 } 3167 spin_unlock_irqrestore(&xhci->lock, flags); 3168 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3169 if (usb_endpoint_xfer_control(&host_ep->desc) || 3170 usb_endpoint_xfer_isoc(&host_ep->desc)) 3171 return; 3172 3173 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3174 3175 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3176 return; 3177 3178 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3179 if (!stop_cmd) 3180 return; 3181 3182 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3183 if (!cfg_cmd) 3184 goto cleanup; 3185 3186 spin_lock_irqsave(&xhci->lock, flags); 3187 3188 /* block queuing new trbs and ringing ep doorbell */ 3189 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3190 3191 /* 3192 * Make sure endpoint ring is empty before resetting the toggle/seq. 3193 * Driver is required to synchronously cancel all transfer request. 3194 * Stop the endpoint to force xHC to update the output context 3195 */ 3196 3197 if (!list_empty(&ep->ring->td_list)) { 3198 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3199 spin_unlock_irqrestore(&xhci->lock, flags); 3200 xhci_free_command(xhci, cfg_cmd); 3201 goto cleanup; 3202 } 3203 3204 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3205 ep_index, 0); 3206 if (err < 0) { 3207 spin_unlock_irqrestore(&xhci->lock, flags); 3208 xhci_free_command(xhci, cfg_cmd); 3209 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3210 __func__, err); 3211 goto cleanup; 3212 } 3213 3214 xhci_ring_cmd_db(xhci); 3215 spin_unlock_irqrestore(&xhci->lock, flags); 3216 3217 wait_for_completion(stop_cmd->completion); 3218 3219 spin_lock_irqsave(&xhci->lock, flags); 3220 3221 /* config ep command clears toggle if add and drop ep flags are set */ 3222 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3223 if (!ctrl_ctx) { 3224 spin_unlock_irqrestore(&xhci->lock, flags); 3225 xhci_free_command(xhci, cfg_cmd); 3226 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3227 __func__); 3228 goto cleanup; 3229 } 3230 3231 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3232 ctrl_ctx, ep_flag, ep_flag); 3233 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3234 3235 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3236 udev->slot_id, false); 3237 if (err < 0) { 3238 spin_unlock_irqrestore(&xhci->lock, flags); 3239 xhci_free_command(xhci, cfg_cmd); 3240 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3241 __func__, err); 3242 goto cleanup; 3243 } 3244 3245 xhci_ring_cmd_db(xhci); 3246 spin_unlock_irqrestore(&xhci->lock, flags); 3247 3248 wait_for_completion(cfg_cmd->completion); 3249 3250 xhci_free_command(xhci, cfg_cmd); 3251 cleanup: 3252 xhci_free_command(xhci, stop_cmd); 3253 spin_lock_irqsave(&xhci->lock, flags); 3254 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3255 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3256 spin_unlock_irqrestore(&xhci->lock, flags); 3257 } 3258 3259 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3260 struct usb_device *udev, struct usb_host_endpoint *ep, 3261 unsigned int slot_id) 3262 { 3263 int ret; 3264 unsigned int ep_index; 3265 unsigned int ep_state; 3266 3267 if (!ep) 3268 return -EINVAL; 3269 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3270 if (ret <= 0) 3271 return ret ? ret : -EINVAL; 3272 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3273 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3274 " descriptor for ep 0x%x does not support streams\n", 3275 ep->desc.bEndpointAddress); 3276 return -EINVAL; 3277 } 3278 3279 ep_index = xhci_get_endpoint_index(&ep->desc); 3280 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3281 if (ep_state & EP_HAS_STREAMS || 3282 ep_state & EP_GETTING_STREAMS) { 3283 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3284 "already has streams set up.\n", 3285 ep->desc.bEndpointAddress); 3286 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3287 "dynamic stream context array reallocation.\n"); 3288 return -EINVAL; 3289 } 3290 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3291 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3292 "endpoint 0x%x; URBs are pending.\n", 3293 ep->desc.bEndpointAddress); 3294 return -EINVAL; 3295 } 3296 return 0; 3297 } 3298 3299 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3300 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3301 { 3302 unsigned int max_streams; 3303 3304 /* The stream context array size must be a power of two */ 3305 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3306 /* 3307 * Find out how many primary stream array entries the host controller 3308 * supports. Later we may use secondary stream arrays (similar to 2nd 3309 * level page entries), but that's an optional feature for xHCI host 3310 * controllers. xHCs must support at least 4 stream IDs. 3311 */ 3312 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3313 if (*num_stream_ctxs > max_streams) { 3314 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3315 max_streams); 3316 *num_stream_ctxs = max_streams; 3317 *num_streams = max_streams; 3318 } 3319 } 3320 3321 /* Returns an error code if one of the endpoint already has streams. 3322 * This does not change any data structures, it only checks and gathers 3323 * information. 3324 */ 3325 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3326 struct usb_device *udev, 3327 struct usb_host_endpoint **eps, unsigned int num_eps, 3328 unsigned int *num_streams, u32 *changed_ep_bitmask) 3329 { 3330 unsigned int max_streams; 3331 unsigned int endpoint_flag; 3332 int i; 3333 int ret; 3334 3335 for (i = 0; i < num_eps; i++) { 3336 ret = xhci_check_streams_endpoint(xhci, udev, 3337 eps[i], udev->slot_id); 3338 if (ret < 0) 3339 return ret; 3340 3341 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3342 if (max_streams < (*num_streams - 1)) { 3343 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3344 eps[i]->desc.bEndpointAddress, 3345 max_streams); 3346 *num_streams = max_streams+1; 3347 } 3348 3349 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3350 if (*changed_ep_bitmask & endpoint_flag) 3351 return -EINVAL; 3352 *changed_ep_bitmask |= endpoint_flag; 3353 } 3354 return 0; 3355 } 3356 3357 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3358 struct usb_device *udev, 3359 struct usb_host_endpoint **eps, unsigned int num_eps) 3360 { 3361 u32 changed_ep_bitmask = 0; 3362 unsigned int slot_id; 3363 unsigned int ep_index; 3364 unsigned int ep_state; 3365 int i; 3366 3367 slot_id = udev->slot_id; 3368 if (!xhci->devs[slot_id]) 3369 return 0; 3370 3371 for (i = 0; i < num_eps; i++) { 3372 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3373 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3374 /* Are streams already being freed for the endpoint? */ 3375 if (ep_state & EP_GETTING_NO_STREAMS) { 3376 xhci_warn(xhci, "WARN Can't disable streams for " 3377 "endpoint 0x%x, " 3378 "streams are being disabled already\n", 3379 eps[i]->desc.bEndpointAddress); 3380 return 0; 3381 } 3382 /* Are there actually any streams to free? */ 3383 if (!(ep_state & EP_HAS_STREAMS) && 3384 !(ep_state & EP_GETTING_STREAMS)) { 3385 xhci_warn(xhci, "WARN Can't disable streams for " 3386 "endpoint 0x%x, " 3387 "streams are already disabled!\n", 3388 eps[i]->desc.bEndpointAddress); 3389 xhci_warn(xhci, "WARN xhci_free_streams() called " 3390 "with non-streams endpoint\n"); 3391 return 0; 3392 } 3393 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3394 } 3395 return changed_ep_bitmask; 3396 } 3397 3398 /* 3399 * The USB device drivers use this function (through the HCD interface in USB 3400 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3401 * coordinate mass storage command queueing across multiple endpoints (basically 3402 * a stream ID == a task ID). 3403 * 3404 * Setting up streams involves allocating the same size stream context array 3405 * for each endpoint and issuing a configure endpoint command for all endpoints. 3406 * 3407 * Don't allow the call to succeed if one endpoint only supports one stream 3408 * (which means it doesn't support streams at all). 3409 * 3410 * Drivers may get less stream IDs than they asked for, if the host controller 3411 * hardware or endpoints claim they can't support the number of requested 3412 * stream IDs. 3413 */ 3414 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3415 struct usb_host_endpoint **eps, unsigned int num_eps, 3416 unsigned int num_streams, gfp_t mem_flags) 3417 { 3418 int i, ret; 3419 struct xhci_hcd *xhci; 3420 struct xhci_virt_device *vdev; 3421 struct xhci_command *config_cmd; 3422 struct xhci_input_control_ctx *ctrl_ctx; 3423 unsigned int ep_index; 3424 unsigned int num_stream_ctxs; 3425 unsigned int max_packet; 3426 unsigned long flags; 3427 u32 changed_ep_bitmask = 0; 3428 3429 if (!eps) 3430 return -EINVAL; 3431 3432 /* Add one to the number of streams requested to account for 3433 * stream 0 that is reserved for xHCI usage. 3434 */ 3435 num_streams += 1; 3436 xhci = hcd_to_xhci(hcd); 3437 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3438 num_streams); 3439 3440 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3441 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3442 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3443 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3444 return -ENOSYS; 3445 } 3446 3447 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3448 if (!config_cmd) 3449 return -ENOMEM; 3450 3451 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3452 if (!ctrl_ctx) { 3453 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3454 __func__); 3455 xhci_free_command(xhci, config_cmd); 3456 return -ENOMEM; 3457 } 3458 3459 /* Check to make sure all endpoints are not already configured for 3460 * streams. While we're at it, find the maximum number of streams that 3461 * all the endpoints will support and check for duplicate endpoints. 3462 */ 3463 spin_lock_irqsave(&xhci->lock, flags); 3464 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3465 num_eps, &num_streams, &changed_ep_bitmask); 3466 if (ret < 0) { 3467 xhci_free_command(xhci, config_cmd); 3468 spin_unlock_irqrestore(&xhci->lock, flags); 3469 return ret; 3470 } 3471 if (num_streams <= 1) { 3472 xhci_warn(xhci, "WARN: endpoints can't handle " 3473 "more than one stream.\n"); 3474 xhci_free_command(xhci, config_cmd); 3475 spin_unlock_irqrestore(&xhci->lock, flags); 3476 return -EINVAL; 3477 } 3478 vdev = xhci->devs[udev->slot_id]; 3479 /* Mark each endpoint as being in transition, so 3480 * xhci_urb_enqueue() will reject all URBs. 3481 */ 3482 for (i = 0; i < num_eps; i++) { 3483 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3484 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3485 } 3486 spin_unlock_irqrestore(&xhci->lock, flags); 3487 3488 /* Setup internal data structures and allocate HW data structures for 3489 * streams (but don't install the HW structures in the input context 3490 * until we're sure all memory allocation succeeded). 3491 */ 3492 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3493 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3494 num_stream_ctxs, num_streams); 3495 3496 for (i = 0; i < num_eps; i++) { 3497 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3498 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3499 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3500 num_stream_ctxs, 3501 num_streams, 3502 max_packet, mem_flags); 3503 if (!vdev->eps[ep_index].stream_info) 3504 goto cleanup; 3505 /* Set maxPstreams in endpoint context and update deq ptr to 3506 * point to stream context array. FIXME 3507 */ 3508 } 3509 3510 /* Set up the input context for a configure endpoint command. */ 3511 for (i = 0; i < num_eps; i++) { 3512 struct xhci_ep_ctx *ep_ctx; 3513 3514 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3515 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3516 3517 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3518 vdev->out_ctx, ep_index); 3519 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3520 vdev->eps[ep_index].stream_info); 3521 } 3522 /* Tell the HW to drop its old copy of the endpoint context info 3523 * and add the updated copy from the input context. 3524 */ 3525 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3526 vdev->out_ctx, ctrl_ctx, 3527 changed_ep_bitmask, changed_ep_bitmask); 3528 3529 /* Issue and wait for the configure endpoint command */ 3530 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3531 false, false); 3532 3533 /* xHC rejected the configure endpoint command for some reason, so we 3534 * leave the old ring intact and free our internal streams data 3535 * structure. 3536 */ 3537 if (ret < 0) 3538 goto cleanup; 3539 3540 spin_lock_irqsave(&xhci->lock, flags); 3541 for (i = 0; i < num_eps; i++) { 3542 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3543 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3544 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3545 udev->slot_id, ep_index); 3546 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3547 } 3548 xhci_free_command(xhci, config_cmd); 3549 spin_unlock_irqrestore(&xhci->lock, flags); 3550 3551 for (i = 0; i < num_eps; i++) { 3552 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3553 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3554 } 3555 /* Subtract 1 for stream 0, which drivers can't use */ 3556 return num_streams - 1; 3557 3558 cleanup: 3559 /* If it didn't work, free the streams! */ 3560 for (i = 0; i < num_eps; i++) { 3561 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3562 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3563 vdev->eps[ep_index].stream_info = NULL; 3564 /* FIXME Unset maxPstreams in endpoint context and 3565 * update deq ptr to point to normal string ring. 3566 */ 3567 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3568 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3569 xhci_endpoint_zero(xhci, vdev, eps[i]); 3570 } 3571 xhci_free_command(xhci, config_cmd); 3572 return -ENOMEM; 3573 } 3574 3575 /* Transition the endpoint from using streams to being a "normal" endpoint 3576 * without streams. 3577 * 3578 * Modify the endpoint context state, submit a configure endpoint command, 3579 * and free all endpoint rings for streams if that completes successfully. 3580 */ 3581 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3582 struct usb_host_endpoint **eps, unsigned int num_eps, 3583 gfp_t mem_flags) 3584 { 3585 int i, ret; 3586 struct xhci_hcd *xhci; 3587 struct xhci_virt_device *vdev; 3588 struct xhci_command *command; 3589 struct xhci_input_control_ctx *ctrl_ctx; 3590 unsigned int ep_index; 3591 unsigned long flags; 3592 u32 changed_ep_bitmask; 3593 3594 xhci = hcd_to_xhci(hcd); 3595 vdev = xhci->devs[udev->slot_id]; 3596 3597 /* Set up a configure endpoint command to remove the streams rings */ 3598 spin_lock_irqsave(&xhci->lock, flags); 3599 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3600 udev, eps, num_eps); 3601 if (changed_ep_bitmask == 0) { 3602 spin_unlock_irqrestore(&xhci->lock, flags); 3603 return -EINVAL; 3604 } 3605 3606 /* Use the xhci_command structure from the first endpoint. We may have 3607 * allocated too many, but the driver may call xhci_free_streams() for 3608 * each endpoint it grouped into one call to xhci_alloc_streams(). 3609 */ 3610 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3611 command = vdev->eps[ep_index].stream_info->free_streams_command; 3612 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3613 if (!ctrl_ctx) { 3614 spin_unlock_irqrestore(&xhci->lock, flags); 3615 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3616 __func__); 3617 return -EINVAL; 3618 } 3619 3620 for (i = 0; i < num_eps; i++) { 3621 struct xhci_ep_ctx *ep_ctx; 3622 3623 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3624 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3625 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3626 EP_GETTING_NO_STREAMS; 3627 3628 xhci_endpoint_copy(xhci, command->in_ctx, 3629 vdev->out_ctx, ep_index); 3630 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3631 &vdev->eps[ep_index]); 3632 } 3633 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3634 vdev->out_ctx, ctrl_ctx, 3635 changed_ep_bitmask, changed_ep_bitmask); 3636 spin_unlock_irqrestore(&xhci->lock, flags); 3637 3638 /* Issue and wait for the configure endpoint command, 3639 * which must succeed. 3640 */ 3641 ret = xhci_configure_endpoint(xhci, udev, command, 3642 false, true); 3643 3644 /* xHC rejected the configure endpoint command for some reason, so we 3645 * leave the streams rings intact. 3646 */ 3647 if (ret < 0) 3648 return ret; 3649 3650 spin_lock_irqsave(&xhci->lock, flags); 3651 for (i = 0; i < num_eps; i++) { 3652 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3653 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3654 vdev->eps[ep_index].stream_info = NULL; 3655 /* FIXME Unset maxPstreams in endpoint context and 3656 * update deq ptr to point to normal string ring. 3657 */ 3658 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3659 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3660 } 3661 spin_unlock_irqrestore(&xhci->lock, flags); 3662 3663 return 0; 3664 } 3665 3666 /* 3667 * Deletes endpoint resources for endpoints that were active before a Reset 3668 * Device command, or a Disable Slot command. The Reset Device command leaves 3669 * the control endpoint intact, whereas the Disable Slot command deletes it. 3670 * 3671 * Must be called with xhci->lock held. 3672 */ 3673 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3674 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3675 { 3676 int i; 3677 unsigned int num_dropped_eps = 0; 3678 unsigned int drop_flags = 0; 3679 3680 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3681 if (virt_dev->eps[i].ring) { 3682 drop_flags |= 1 << i; 3683 num_dropped_eps++; 3684 } 3685 } 3686 xhci->num_active_eps -= num_dropped_eps; 3687 if (num_dropped_eps) 3688 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3689 "Dropped %u ep ctxs, flags = 0x%x, " 3690 "%u now active.", 3691 num_dropped_eps, drop_flags, 3692 xhci->num_active_eps); 3693 } 3694 3695 /* 3696 * This submits a Reset Device Command, which will set the device state to 0, 3697 * set the device address to 0, and disable all the endpoints except the default 3698 * control endpoint. The USB core should come back and call 3699 * xhci_address_device(), and then re-set up the configuration. If this is 3700 * called because of a usb_reset_and_verify_device(), then the old alternate 3701 * settings will be re-installed through the normal bandwidth allocation 3702 * functions. 3703 * 3704 * Wait for the Reset Device command to finish. Remove all structures 3705 * associated with the endpoints that were disabled. Clear the input device 3706 * structure? Reset the control endpoint 0 max packet size? 3707 * 3708 * If the virt_dev to be reset does not exist or does not match the udev, 3709 * it means the device is lost, possibly due to the xHC restore error and 3710 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3711 * re-allocate the device. 3712 */ 3713 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3714 struct usb_device *udev) 3715 { 3716 int ret, i; 3717 unsigned long flags; 3718 struct xhci_hcd *xhci; 3719 unsigned int slot_id; 3720 struct xhci_virt_device *virt_dev; 3721 struct xhci_command *reset_device_cmd; 3722 struct xhci_slot_ctx *slot_ctx; 3723 int old_active_eps = 0; 3724 3725 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3726 if (ret <= 0) 3727 return ret; 3728 xhci = hcd_to_xhci(hcd); 3729 slot_id = udev->slot_id; 3730 virt_dev = xhci->devs[slot_id]; 3731 if (!virt_dev) { 3732 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3733 "not exist. Re-allocate the device\n", slot_id); 3734 ret = xhci_alloc_dev(hcd, udev); 3735 if (ret == 1) 3736 return 0; 3737 else 3738 return -EINVAL; 3739 } 3740 3741 if (virt_dev->tt_info) 3742 old_active_eps = virt_dev->tt_info->active_eps; 3743 3744 if (virt_dev->udev != udev) { 3745 /* If the virt_dev and the udev does not match, this virt_dev 3746 * may belong to another udev. 3747 * Re-allocate the device. 3748 */ 3749 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3750 "not match the udev. Re-allocate the device\n", 3751 slot_id); 3752 ret = xhci_alloc_dev(hcd, udev); 3753 if (ret == 1) 3754 return 0; 3755 else 3756 return -EINVAL; 3757 } 3758 3759 /* If device is not setup, there is no point in resetting it */ 3760 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3761 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3762 SLOT_STATE_DISABLED) 3763 return 0; 3764 3765 trace_xhci_discover_or_reset_device(slot_ctx); 3766 3767 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3768 /* Allocate the command structure that holds the struct completion. 3769 * Assume we're in process context, since the normal device reset 3770 * process has to wait for the device anyway. Storage devices are 3771 * reset as part of error handling, so use GFP_NOIO instead of 3772 * GFP_KERNEL. 3773 */ 3774 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3775 if (!reset_device_cmd) { 3776 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3777 return -ENOMEM; 3778 } 3779 3780 /* Attempt to submit the Reset Device command to the command ring */ 3781 spin_lock_irqsave(&xhci->lock, flags); 3782 3783 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3784 if (ret) { 3785 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3786 spin_unlock_irqrestore(&xhci->lock, flags); 3787 goto command_cleanup; 3788 } 3789 xhci_ring_cmd_db(xhci); 3790 spin_unlock_irqrestore(&xhci->lock, flags); 3791 3792 /* Wait for the Reset Device command to finish */ 3793 wait_for_completion(reset_device_cmd->completion); 3794 3795 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3796 * unless we tried to reset a slot ID that wasn't enabled, 3797 * or the device wasn't in the addressed or configured state. 3798 */ 3799 ret = reset_device_cmd->status; 3800 switch (ret) { 3801 case COMP_COMMAND_ABORTED: 3802 case COMP_COMMAND_RING_STOPPED: 3803 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3804 ret = -ETIME; 3805 goto command_cleanup; 3806 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3807 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3808 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3809 slot_id, 3810 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3811 xhci_dbg(xhci, "Not freeing device rings.\n"); 3812 /* Don't treat this as an error. May change my mind later. */ 3813 ret = 0; 3814 goto command_cleanup; 3815 case COMP_SUCCESS: 3816 xhci_dbg(xhci, "Successful reset device command.\n"); 3817 break; 3818 default: 3819 if (xhci_is_vendor_info_code(xhci, ret)) 3820 break; 3821 xhci_warn(xhci, "Unknown completion code %u for " 3822 "reset device command.\n", ret); 3823 ret = -EINVAL; 3824 goto command_cleanup; 3825 } 3826 3827 /* Free up host controller endpoint resources */ 3828 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3829 spin_lock_irqsave(&xhci->lock, flags); 3830 /* Don't delete the default control endpoint resources */ 3831 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3832 spin_unlock_irqrestore(&xhci->lock, flags); 3833 } 3834 3835 /* Everything but endpoint 0 is disabled, so free the rings. */ 3836 for (i = 1; i < 31; i++) { 3837 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3838 3839 if (ep->ep_state & EP_HAS_STREAMS) { 3840 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3841 xhci_get_endpoint_address(i)); 3842 xhci_free_stream_info(xhci, ep->stream_info); 3843 ep->stream_info = NULL; 3844 ep->ep_state &= ~EP_HAS_STREAMS; 3845 } 3846 3847 if (ep->ring) { 3848 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3849 xhci_free_endpoint_ring(xhci, virt_dev, i); 3850 } 3851 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3852 xhci_drop_ep_from_interval_table(xhci, 3853 &virt_dev->eps[i].bw_info, 3854 virt_dev->bw_table, 3855 udev, 3856 &virt_dev->eps[i], 3857 virt_dev->tt_info); 3858 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3859 } 3860 /* If necessary, update the number of active TTs on this root port */ 3861 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3862 virt_dev->flags = 0; 3863 ret = 0; 3864 3865 command_cleanup: 3866 xhci_free_command(xhci, reset_device_cmd); 3867 return ret; 3868 } 3869 3870 /* 3871 * At this point, the struct usb_device is about to go away, the device has 3872 * disconnected, and all traffic has been stopped and the endpoints have been 3873 * disabled. Free any HC data structures associated with that device. 3874 */ 3875 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3876 { 3877 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3878 struct xhci_virt_device *virt_dev; 3879 struct xhci_slot_ctx *slot_ctx; 3880 unsigned long flags; 3881 int i, ret; 3882 3883 /* 3884 * We called pm_runtime_get_noresume when the device was attached. 3885 * Decrement the counter here to allow controller to runtime suspend 3886 * if no devices remain. 3887 */ 3888 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3889 pm_runtime_put_noidle(hcd->self.controller); 3890 3891 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3892 /* If the host is halted due to driver unload, we still need to free the 3893 * device. 3894 */ 3895 if (ret <= 0 && ret != -ENODEV) 3896 return; 3897 3898 virt_dev = xhci->devs[udev->slot_id]; 3899 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3900 trace_xhci_free_dev(slot_ctx); 3901 3902 /* Stop any wayward timer functions (which may grab the lock) */ 3903 for (i = 0; i < 31; i++) 3904 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3905 virt_dev->udev = NULL; 3906 xhci_disable_slot(xhci, udev->slot_id); 3907 3908 spin_lock_irqsave(&xhci->lock, flags); 3909 xhci_free_virt_device(xhci, udev->slot_id); 3910 spin_unlock_irqrestore(&xhci->lock, flags); 3911 3912 } 3913 3914 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3915 { 3916 struct xhci_command *command; 3917 unsigned long flags; 3918 u32 state; 3919 int ret; 3920 3921 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3922 if (!command) 3923 return -ENOMEM; 3924 3925 xhci_debugfs_remove_slot(xhci, slot_id); 3926 3927 spin_lock_irqsave(&xhci->lock, flags); 3928 /* Don't disable the slot if the host controller is dead. */ 3929 state = readl(&xhci->op_regs->status); 3930 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3931 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3932 spin_unlock_irqrestore(&xhci->lock, flags); 3933 kfree(command); 3934 return -ENODEV; 3935 } 3936 3937 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3938 slot_id); 3939 if (ret) { 3940 spin_unlock_irqrestore(&xhci->lock, flags); 3941 kfree(command); 3942 return ret; 3943 } 3944 xhci_ring_cmd_db(xhci); 3945 spin_unlock_irqrestore(&xhci->lock, flags); 3946 3947 wait_for_completion(command->completion); 3948 3949 if (command->status != COMP_SUCCESS) 3950 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 3951 slot_id, command->status); 3952 3953 xhci_free_command(xhci, command); 3954 3955 return 0; 3956 } 3957 3958 /* 3959 * Checks if we have enough host controller resources for the default control 3960 * endpoint. 3961 * 3962 * Must be called with xhci->lock held. 3963 */ 3964 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3965 { 3966 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3967 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3968 "Not enough ep ctxs: " 3969 "%u active, need to add 1, limit is %u.", 3970 xhci->num_active_eps, xhci->limit_active_eps); 3971 return -ENOMEM; 3972 } 3973 xhci->num_active_eps += 1; 3974 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3975 "Adding 1 ep ctx, %u now active.", 3976 xhci->num_active_eps); 3977 return 0; 3978 } 3979 3980 3981 /* 3982 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3983 * timed out, or allocating memory failed. Returns 1 on success. 3984 */ 3985 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3986 { 3987 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3988 struct xhci_virt_device *vdev; 3989 struct xhci_slot_ctx *slot_ctx; 3990 unsigned long flags; 3991 int ret, slot_id; 3992 struct xhci_command *command; 3993 3994 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3995 if (!command) 3996 return 0; 3997 3998 spin_lock_irqsave(&xhci->lock, flags); 3999 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4000 if (ret) { 4001 spin_unlock_irqrestore(&xhci->lock, flags); 4002 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4003 xhci_free_command(xhci, command); 4004 return 0; 4005 } 4006 xhci_ring_cmd_db(xhci); 4007 spin_unlock_irqrestore(&xhci->lock, flags); 4008 4009 wait_for_completion(command->completion); 4010 slot_id = command->slot_id; 4011 4012 if (!slot_id || command->status != COMP_SUCCESS) { 4013 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 4014 xhci_trb_comp_code_string(command->status)); 4015 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4016 HCS_MAX_SLOTS( 4017 readl(&xhci->cap_regs->hcs_params1))); 4018 xhci_free_command(xhci, command); 4019 return 0; 4020 } 4021 4022 xhci_free_command(xhci, command); 4023 4024 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4025 spin_lock_irqsave(&xhci->lock, flags); 4026 ret = xhci_reserve_host_control_ep_resources(xhci); 4027 if (ret) { 4028 spin_unlock_irqrestore(&xhci->lock, flags); 4029 xhci_warn(xhci, "Not enough host resources, " 4030 "active endpoint contexts = %u\n", 4031 xhci->num_active_eps); 4032 goto disable_slot; 4033 } 4034 spin_unlock_irqrestore(&xhci->lock, flags); 4035 } 4036 /* Use GFP_NOIO, since this function can be called from 4037 * xhci_discover_or_reset_device(), which may be called as part of 4038 * mass storage driver error handling. 4039 */ 4040 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4041 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4042 goto disable_slot; 4043 } 4044 vdev = xhci->devs[slot_id]; 4045 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4046 trace_xhci_alloc_dev(slot_ctx); 4047 4048 udev->slot_id = slot_id; 4049 4050 xhci_debugfs_create_slot(xhci, slot_id); 4051 4052 /* 4053 * If resetting upon resume, we can't put the controller into runtime 4054 * suspend if there is a device attached. 4055 */ 4056 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4057 pm_runtime_get_noresume(hcd->self.controller); 4058 4059 /* Is this a LS or FS device under a HS hub? */ 4060 /* Hub or peripherial? */ 4061 return 1; 4062 4063 disable_slot: 4064 xhci_disable_slot(xhci, udev->slot_id); 4065 xhci_free_virt_device(xhci, udev->slot_id); 4066 4067 return 0; 4068 } 4069 4070 /** 4071 * xhci_setup_device - issues an Address Device command to assign a unique 4072 * USB bus address. 4073 * @hcd: USB host controller data structure. 4074 * @udev: USB dev structure representing the connected device. 4075 * @setup: Enum specifying setup mode: address only or with context. 4076 * @timeout_ms: Max wait time (ms) for the command operation to complete. 4077 * 4078 * Return: 0 if successful; otherwise, negative error code. 4079 */ 4080 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4081 enum xhci_setup_dev setup, unsigned int timeout_ms) 4082 { 4083 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4084 unsigned long flags; 4085 struct xhci_virt_device *virt_dev; 4086 int ret = 0; 4087 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4088 struct xhci_slot_ctx *slot_ctx; 4089 struct xhci_input_control_ctx *ctrl_ctx; 4090 u64 temp_64; 4091 struct xhci_command *command = NULL; 4092 4093 mutex_lock(&xhci->mutex); 4094 4095 if (xhci->xhc_state) { /* dying, removing or halted */ 4096 ret = -ESHUTDOWN; 4097 goto out; 4098 } 4099 4100 if (!udev->slot_id) { 4101 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4102 "Bad Slot ID %d", udev->slot_id); 4103 ret = -EINVAL; 4104 goto out; 4105 } 4106 4107 virt_dev = xhci->devs[udev->slot_id]; 4108 4109 if (WARN_ON(!virt_dev)) { 4110 /* 4111 * In plug/unplug torture test with an NEC controller, 4112 * a zero-dereference was observed once due to virt_dev = 0. 4113 * Print useful debug rather than crash if it is observed again! 4114 */ 4115 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4116 udev->slot_id); 4117 ret = -EINVAL; 4118 goto out; 4119 } 4120 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4121 trace_xhci_setup_device_slot(slot_ctx); 4122 4123 if (setup == SETUP_CONTEXT_ONLY) { 4124 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4125 SLOT_STATE_DEFAULT) { 4126 xhci_dbg(xhci, "Slot already in default state\n"); 4127 goto out; 4128 } 4129 } 4130 4131 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4132 if (!command) { 4133 ret = -ENOMEM; 4134 goto out; 4135 } 4136 4137 command->in_ctx = virt_dev->in_ctx; 4138 command->timeout_ms = timeout_ms; 4139 4140 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4141 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4142 if (!ctrl_ctx) { 4143 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4144 __func__); 4145 ret = -EINVAL; 4146 goto out; 4147 } 4148 /* 4149 * If this is the first Set Address since device plug-in or 4150 * virt_device realloaction after a resume with an xHCI power loss, 4151 * then set up the slot context. 4152 */ 4153 if (!slot_ctx->dev_info) 4154 xhci_setup_addressable_virt_dev(xhci, udev); 4155 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4156 else 4157 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4158 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4159 ctrl_ctx->drop_flags = 0; 4160 4161 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4162 le32_to_cpu(slot_ctx->dev_info) >> 27); 4163 4164 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4165 spin_lock_irqsave(&xhci->lock, flags); 4166 trace_xhci_setup_device(virt_dev); 4167 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4168 udev->slot_id, setup); 4169 if (ret) { 4170 spin_unlock_irqrestore(&xhci->lock, flags); 4171 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4172 "FIXME: allocate a command ring segment"); 4173 goto out; 4174 } 4175 xhci_ring_cmd_db(xhci); 4176 spin_unlock_irqrestore(&xhci->lock, flags); 4177 4178 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4179 wait_for_completion(command->completion); 4180 4181 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4182 * the SetAddress() "recovery interval" required by USB and aborting the 4183 * command on a timeout. 4184 */ 4185 switch (command->status) { 4186 case COMP_COMMAND_ABORTED: 4187 case COMP_COMMAND_RING_STOPPED: 4188 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4189 ret = -ETIME; 4190 break; 4191 case COMP_CONTEXT_STATE_ERROR: 4192 case COMP_SLOT_NOT_ENABLED_ERROR: 4193 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4194 act, udev->slot_id); 4195 ret = -EINVAL; 4196 break; 4197 case COMP_USB_TRANSACTION_ERROR: 4198 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4199 4200 mutex_unlock(&xhci->mutex); 4201 ret = xhci_disable_slot(xhci, udev->slot_id); 4202 xhci_free_virt_device(xhci, udev->slot_id); 4203 if (!ret) { 4204 if (xhci_alloc_dev(hcd, udev) == 1) 4205 xhci_setup_addressable_virt_dev(xhci, udev); 4206 } 4207 kfree(command->completion); 4208 kfree(command); 4209 return -EPROTO; 4210 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4211 dev_warn(&udev->dev, 4212 "ERROR: Incompatible device for setup %s command\n", act); 4213 ret = -ENODEV; 4214 break; 4215 case COMP_SUCCESS: 4216 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4217 "Successful setup %s command", act); 4218 break; 4219 default: 4220 xhci_err(xhci, 4221 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4222 act, command->status); 4223 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4224 ret = -EINVAL; 4225 break; 4226 } 4227 if (ret) 4228 goto out; 4229 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4230 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4231 "Op regs DCBAA ptr = %#016llx", temp_64); 4232 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4233 "Slot ID %d dcbaa entry @%p = %#016llx", 4234 udev->slot_id, 4235 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4236 (unsigned long long) 4237 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4238 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4239 "Output Context DMA address = %#08llx", 4240 (unsigned long long)virt_dev->out_ctx->dma); 4241 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4242 le32_to_cpu(slot_ctx->dev_info) >> 27); 4243 /* 4244 * USB core uses address 1 for the roothubs, so we add one to the 4245 * address given back to us by the HC. 4246 */ 4247 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4248 le32_to_cpu(slot_ctx->dev_info) >> 27); 4249 /* Zero the input context control for later use */ 4250 ctrl_ctx->add_flags = 0; 4251 ctrl_ctx->drop_flags = 0; 4252 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4253 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4254 4255 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4256 "Internal device address = %d", 4257 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4258 out: 4259 mutex_unlock(&xhci->mutex); 4260 if (command) { 4261 kfree(command->completion); 4262 kfree(command); 4263 } 4264 return ret; 4265 } 4266 4267 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev, 4268 unsigned int timeout_ms) 4269 { 4270 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms); 4271 } 4272 4273 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4274 { 4275 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY, 4276 XHCI_CMD_DEFAULT_TIMEOUT); 4277 } 4278 4279 /* 4280 * Transfer the port index into real index in the HW port status 4281 * registers. Caculate offset between the port's PORTSC register 4282 * and port status base. Divide the number of per port register 4283 * to get the real index. The raw port number bases 1. 4284 */ 4285 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4286 { 4287 struct xhci_hub *rhub; 4288 4289 rhub = xhci_get_rhub(hcd); 4290 return rhub->ports[port1 - 1]->hw_portnum + 1; 4291 } 4292 4293 /* 4294 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4295 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4296 */ 4297 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4298 struct usb_device *udev, u16 max_exit_latency) 4299 { 4300 struct xhci_virt_device *virt_dev; 4301 struct xhci_command *command; 4302 struct xhci_input_control_ctx *ctrl_ctx; 4303 struct xhci_slot_ctx *slot_ctx; 4304 unsigned long flags; 4305 int ret; 4306 4307 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4308 if (!command) 4309 return -ENOMEM; 4310 4311 spin_lock_irqsave(&xhci->lock, flags); 4312 4313 virt_dev = xhci->devs[udev->slot_id]; 4314 4315 /* 4316 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4317 * xHC was re-initialized. Exit latency will be set later after 4318 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4319 */ 4320 4321 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4322 spin_unlock_irqrestore(&xhci->lock, flags); 4323 xhci_free_command(xhci, command); 4324 return 0; 4325 } 4326 4327 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4328 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4329 if (!ctrl_ctx) { 4330 spin_unlock_irqrestore(&xhci->lock, flags); 4331 xhci_free_command(xhci, command); 4332 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4333 __func__); 4334 return -ENOMEM; 4335 } 4336 4337 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4338 spin_unlock_irqrestore(&xhci->lock, flags); 4339 4340 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4341 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4342 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4343 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4344 slot_ctx->dev_state = 0; 4345 4346 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4347 "Set up evaluate context for LPM MEL change."); 4348 4349 /* Issue and wait for the evaluate context command. */ 4350 ret = xhci_configure_endpoint(xhci, udev, command, 4351 true, true); 4352 4353 if (!ret) { 4354 spin_lock_irqsave(&xhci->lock, flags); 4355 virt_dev->current_mel = max_exit_latency; 4356 spin_unlock_irqrestore(&xhci->lock, flags); 4357 } 4358 4359 xhci_free_command(xhci, command); 4360 4361 return ret; 4362 } 4363 4364 #ifdef CONFIG_PM 4365 4366 /* BESL to HIRD Encoding array for USB2 LPM */ 4367 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4368 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4369 4370 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4371 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4372 struct usb_device *udev) 4373 { 4374 int u2del, besl, besl_host; 4375 int besl_device = 0; 4376 u32 field; 4377 4378 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4379 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4380 4381 if (field & USB_BESL_SUPPORT) { 4382 for (besl_host = 0; besl_host < 16; besl_host++) { 4383 if (xhci_besl_encoding[besl_host] >= u2del) 4384 break; 4385 } 4386 /* Use baseline BESL value as default */ 4387 if (field & USB_BESL_BASELINE_VALID) 4388 besl_device = USB_GET_BESL_BASELINE(field); 4389 else if (field & USB_BESL_DEEP_VALID) 4390 besl_device = USB_GET_BESL_DEEP(field); 4391 } else { 4392 if (u2del <= 50) 4393 besl_host = 0; 4394 else 4395 besl_host = (u2del - 51) / 75 + 1; 4396 } 4397 4398 besl = besl_host + besl_device; 4399 if (besl > 15) 4400 besl = 15; 4401 4402 return besl; 4403 } 4404 4405 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4406 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4407 { 4408 u32 field; 4409 int l1; 4410 int besld = 0; 4411 int hirdm = 0; 4412 4413 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4414 4415 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4416 l1 = udev->l1_params.timeout / 256; 4417 4418 /* device has preferred BESLD */ 4419 if (field & USB_BESL_DEEP_VALID) { 4420 besld = USB_GET_BESL_DEEP(field); 4421 hirdm = 1; 4422 } 4423 4424 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4425 } 4426 4427 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4428 struct usb_device *udev, int enable) 4429 { 4430 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4431 struct xhci_port **ports; 4432 __le32 __iomem *pm_addr, *hlpm_addr; 4433 u32 pm_val, hlpm_val, field; 4434 unsigned int port_num; 4435 unsigned long flags; 4436 int hird, exit_latency; 4437 int ret; 4438 4439 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4440 return -EPERM; 4441 4442 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4443 !udev->lpm_capable) 4444 return -EPERM; 4445 4446 if (!udev->parent || udev->parent->parent || 4447 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4448 return -EPERM; 4449 4450 if (udev->usb2_hw_lpm_capable != 1) 4451 return -EPERM; 4452 4453 spin_lock_irqsave(&xhci->lock, flags); 4454 4455 ports = xhci->usb2_rhub.ports; 4456 port_num = udev->portnum - 1; 4457 pm_addr = ports[port_num]->addr + PORTPMSC; 4458 pm_val = readl(pm_addr); 4459 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4460 4461 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4462 enable ? "enable" : "disable", port_num + 1); 4463 4464 if (enable) { 4465 /* Host supports BESL timeout instead of HIRD */ 4466 if (udev->usb2_hw_lpm_besl_capable) { 4467 /* if device doesn't have a preferred BESL value use a 4468 * default one which works with mixed HIRD and BESL 4469 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4470 */ 4471 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4472 if ((field & USB_BESL_SUPPORT) && 4473 (field & USB_BESL_BASELINE_VALID)) 4474 hird = USB_GET_BESL_BASELINE(field); 4475 else 4476 hird = udev->l1_params.besl; 4477 4478 exit_latency = xhci_besl_encoding[hird]; 4479 spin_unlock_irqrestore(&xhci->lock, flags); 4480 4481 ret = xhci_change_max_exit_latency(xhci, udev, 4482 exit_latency); 4483 if (ret < 0) 4484 return ret; 4485 spin_lock_irqsave(&xhci->lock, flags); 4486 4487 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4488 writel(hlpm_val, hlpm_addr); 4489 /* flush write */ 4490 readl(hlpm_addr); 4491 } else { 4492 hird = xhci_calculate_hird_besl(xhci, udev); 4493 } 4494 4495 pm_val &= ~PORT_HIRD_MASK; 4496 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4497 writel(pm_val, pm_addr); 4498 pm_val = readl(pm_addr); 4499 pm_val |= PORT_HLE; 4500 writel(pm_val, pm_addr); 4501 /* flush write */ 4502 readl(pm_addr); 4503 } else { 4504 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4505 writel(pm_val, pm_addr); 4506 /* flush write */ 4507 readl(pm_addr); 4508 if (udev->usb2_hw_lpm_besl_capable) { 4509 spin_unlock_irqrestore(&xhci->lock, flags); 4510 xhci_change_max_exit_latency(xhci, udev, 0); 4511 readl_poll_timeout(ports[port_num]->addr, pm_val, 4512 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4513 100, 10000); 4514 return 0; 4515 } 4516 } 4517 4518 spin_unlock_irqrestore(&xhci->lock, flags); 4519 return 0; 4520 } 4521 4522 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4523 { 4524 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4525 struct xhci_port *port; 4526 u32 capability; 4527 4528 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support) 4529 return 0; 4530 4531 /* we only support lpm for non-hub device connected to root hub yet */ 4532 if (!udev->parent || udev->parent->parent || 4533 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4534 return 0; 4535 4536 port = xhci->usb2_rhub.ports[udev->portnum - 1]; 4537 capability = port->port_cap->protocol_caps; 4538 4539 if (capability & XHCI_HLC) { 4540 udev->usb2_hw_lpm_capable = 1; 4541 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4542 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4543 if (capability & XHCI_BLC) 4544 udev->usb2_hw_lpm_besl_capable = 1; 4545 } 4546 4547 return 0; 4548 } 4549 4550 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4551 4552 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4553 static unsigned long long xhci_service_interval_to_ns( 4554 struct usb_endpoint_descriptor *desc) 4555 { 4556 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4557 } 4558 4559 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4560 enum usb3_link_state state) 4561 { 4562 unsigned long long sel; 4563 unsigned long long pel; 4564 unsigned int max_sel_pel; 4565 char *state_name; 4566 4567 switch (state) { 4568 case USB3_LPM_U1: 4569 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4570 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4571 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4572 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4573 state_name = "U1"; 4574 break; 4575 case USB3_LPM_U2: 4576 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4577 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4578 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4579 state_name = "U2"; 4580 break; 4581 default: 4582 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4583 __func__); 4584 return USB3_LPM_DISABLED; 4585 } 4586 4587 if (sel <= max_sel_pel && pel <= max_sel_pel) 4588 return USB3_LPM_DEVICE_INITIATED; 4589 4590 if (sel > max_sel_pel) 4591 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4592 "due to long SEL %llu ms\n", 4593 state_name, sel); 4594 else 4595 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4596 "due to long PEL %llu ms\n", 4597 state_name, pel); 4598 return USB3_LPM_DISABLED; 4599 } 4600 4601 /* The U1 timeout should be the maximum of the following values: 4602 * - For control endpoints, U1 system exit latency (SEL) * 3 4603 * - For bulk endpoints, U1 SEL * 5 4604 * - For interrupt endpoints: 4605 * - Notification EPs, U1 SEL * 3 4606 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4607 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4608 */ 4609 static unsigned long long xhci_calculate_intel_u1_timeout( 4610 struct usb_device *udev, 4611 struct usb_endpoint_descriptor *desc) 4612 { 4613 unsigned long long timeout_ns; 4614 int ep_type; 4615 int intr_type; 4616 4617 ep_type = usb_endpoint_type(desc); 4618 switch (ep_type) { 4619 case USB_ENDPOINT_XFER_CONTROL: 4620 timeout_ns = udev->u1_params.sel * 3; 4621 break; 4622 case USB_ENDPOINT_XFER_BULK: 4623 timeout_ns = udev->u1_params.sel * 5; 4624 break; 4625 case USB_ENDPOINT_XFER_INT: 4626 intr_type = usb_endpoint_interrupt_type(desc); 4627 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4628 timeout_ns = udev->u1_params.sel * 3; 4629 break; 4630 } 4631 /* Otherwise the calculation is the same as isoc eps */ 4632 fallthrough; 4633 case USB_ENDPOINT_XFER_ISOC: 4634 timeout_ns = xhci_service_interval_to_ns(desc); 4635 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4636 if (timeout_ns < udev->u1_params.sel * 2) 4637 timeout_ns = udev->u1_params.sel * 2; 4638 break; 4639 default: 4640 return 0; 4641 } 4642 4643 return timeout_ns; 4644 } 4645 4646 /* Returns the hub-encoded U1 timeout value. */ 4647 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4648 struct usb_device *udev, 4649 struct usb_endpoint_descriptor *desc) 4650 { 4651 unsigned long long timeout_ns; 4652 4653 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4654 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4655 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4656 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4657 return USB3_LPM_DISABLED; 4658 } 4659 } 4660 4661 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4662 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4663 else 4664 timeout_ns = udev->u1_params.sel; 4665 4666 /* The U1 timeout is encoded in 1us intervals. 4667 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4668 */ 4669 if (timeout_ns == USB3_LPM_DISABLED) 4670 timeout_ns = 1; 4671 else 4672 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4673 4674 /* If the necessary timeout value is bigger than what we can set in the 4675 * USB 3.0 hub, we have to disable hub-initiated U1. 4676 */ 4677 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4678 return timeout_ns; 4679 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4680 "due to long timeout %llu ms\n", timeout_ns); 4681 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4682 } 4683 4684 /* The U2 timeout should be the maximum of: 4685 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4686 * - largest bInterval of any active periodic endpoint (to avoid going 4687 * into lower power link states between intervals). 4688 * - the U2 Exit Latency of the device 4689 */ 4690 static unsigned long long xhci_calculate_intel_u2_timeout( 4691 struct usb_device *udev, 4692 struct usb_endpoint_descriptor *desc) 4693 { 4694 unsigned long long timeout_ns; 4695 unsigned long long u2_del_ns; 4696 4697 timeout_ns = 10 * 1000 * 1000; 4698 4699 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4700 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4701 timeout_ns = xhci_service_interval_to_ns(desc); 4702 4703 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4704 if (u2_del_ns > timeout_ns) 4705 timeout_ns = u2_del_ns; 4706 4707 return timeout_ns; 4708 } 4709 4710 /* Returns the hub-encoded U2 timeout value. */ 4711 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4712 struct usb_device *udev, 4713 struct usb_endpoint_descriptor *desc) 4714 { 4715 unsigned long long timeout_ns; 4716 4717 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4718 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4719 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4720 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4721 return USB3_LPM_DISABLED; 4722 } 4723 } 4724 4725 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4726 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4727 else 4728 timeout_ns = udev->u2_params.sel; 4729 4730 /* The U2 timeout is encoded in 256us intervals */ 4731 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4732 /* If the necessary timeout value is bigger than what we can set in the 4733 * USB 3.0 hub, we have to disable hub-initiated U2. 4734 */ 4735 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4736 return timeout_ns; 4737 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4738 "due to long timeout %llu ms\n", timeout_ns); 4739 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4740 } 4741 4742 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4743 struct usb_device *udev, 4744 struct usb_endpoint_descriptor *desc, 4745 enum usb3_link_state state, 4746 u16 *timeout) 4747 { 4748 if (state == USB3_LPM_U1) 4749 return xhci_calculate_u1_timeout(xhci, udev, desc); 4750 else if (state == USB3_LPM_U2) 4751 return xhci_calculate_u2_timeout(xhci, udev, desc); 4752 4753 return USB3_LPM_DISABLED; 4754 } 4755 4756 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4757 struct usb_device *udev, 4758 struct usb_endpoint_descriptor *desc, 4759 enum usb3_link_state state, 4760 u16 *timeout) 4761 { 4762 u16 alt_timeout; 4763 4764 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4765 desc, state, timeout); 4766 4767 /* If we found we can't enable hub-initiated LPM, and 4768 * the U1 or U2 exit latency was too high to allow 4769 * device-initiated LPM as well, then we will disable LPM 4770 * for this device, so stop searching any further. 4771 */ 4772 if (alt_timeout == USB3_LPM_DISABLED) { 4773 *timeout = alt_timeout; 4774 return -E2BIG; 4775 } 4776 if (alt_timeout > *timeout) 4777 *timeout = alt_timeout; 4778 return 0; 4779 } 4780 4781 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4782 struct usb_device *udev, 4783 struct usb_host_interface *alt, 4784 enum usb3_link_state state, 4785 u16 *timeout) 4786 { 4787 int j; 4788 4789 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4790 if (xhci_update_timeout_for_endpoint(xhci, udev, 4791 &alt->endpoint[j].desc, state, timeout)) 4792 return -E2BIG; 4793 } 4794 return 0; 4795 } 4796 4797 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4798 struct usb_device *udev, 4799 enum usb3_link_state state) 4800 { 4801 struct usb_device *parent = udev->parent; 4802 int tier = 1; /* roothub is tier1 */ 4803 4804 while (parent) { 4805 parent = parent->parent; 4806 tier++; 4807 } 4808 4809 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3) 4810 goto fail; 4811 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2) 4812 goto fail; 4813 4814 return 0; 4815 fail: 4816 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n", 4817 tier); 4818 return -E2BIG; 4819 } 4820 4821 /* Returns the U1 or U2 timeout that should be enabled. 4822 * If the tier check or timeout setting functions return with a non-zero exit 4823 * code, that means the timeout value has been finalized and we shouldn't look 4824 * at any more endpoints. 4825 */ 4826 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4827 struct usb_device *udev, enum usb3_link_state state) 4828 { 4829 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4830 struct usb_host_config *config; 4831 char *state_name; 4832 int i; 4833 u16 timeout = USB3_LPM_DISABLED; 4834 4835 if (state == USB3_LPM_U1) 4836 state_name = "U1"; 4837 else if (state == USB3_LPM_U2) 4838 state_name = "U2"; 4839 else { 4840 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4841 state); 4842 return timeout; 4843 } 4844 4845 /* Gather some information about the currently installed configuration 4846 * and alternate interface settings. 4847 */ 4848 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4849 state, &timeout)) 4850 return timeout; 4851 4852 config = udev->actconfig; 4853 if (!config) 4854 return timeout; 4855 4856 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4857 struct usb_driver *driver; 4858 struct usb_interface *intf = config->interface[i]; 4859 4860 if (!intf) 4861 continue; 4862 4863 /* Check if any currently bound drivers want hub-initiated LPM 4864 * disabled. 4865 */ 4866 if (intf->dev.driver) { 4867 driver = to_usb_driver(intf->dev.driver); 4868 if (driver && driver->disable_hub_initiated_lpm) { 4869 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4870 state_name, driver->name); 4871 timeout = xhci_get_timeout_no_hub_lpm(udev, 4872 state); 4873 if (timeout == USB3_LPM_DISABLED) 4874 return timeout; 4875 } 4876 } 4877 4878 /* Not sure how this could happen... */ 4879 if (!intf->cur_altsetting) 4880 continue; 4881 4882 if (xhci_update_timeout_for_interface(xhci, udev, 4883 intf->cur_altsetting, 4884 state, &timeout)) 4885 return timeout; 4886 } 4887 return timeout; 4888 } 4889 4890 static int calculate_max_exit_latency(struct usb_device *udev, 4891 enum usb3_link_state state_changed, 4892 u16 hub_encoded_timeout) 4893 { 4894 unsigned long long u1_mel_us = 0; 4895 unsigned long long u2_mel_us = 0; 4896 unsigned long long mel_us = 0; 4897 bool disabling_u1; 4898 bool disabling_u2; 4899 bool enabling_u1; 4900 bool enabling_u2; 4901 4902 disabling_u1 = (state_changed == USB3_LPM_U1 && 4903 hub_encoded_timeout == USB3_LPM_DISABLED); 4904 disabling_u2 = (state_changed == USB3_LPM_U2 && 4905 hub_encoded_timeout == USB3_LPM_DISABLED); 4906 4907 enabling_u1 = (state_changed == USB3_LPM_U1 && 4908 hub_encoded_timeout != USB3_LPM_DISABLED); 4909 enabling_u2 = (state_changed == USB3_LPM_U2 && 4910 hub_encoded_timeout != USB3_LPM_DISABLED); 4911 4912 /* If U1 was already enabled and we're not disabling it, 4913 * or we're going to enable U1, account for the U1 max exit latency. 4914 */ 4915 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4916 enabling_u1) 4917 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4918 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4919 enabling_u2) 4920 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4921 4922 mel_us = max(u1_mel_us, u2_mel_us); 4923 4924 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4925 if (mel_us > MAX_EXIT) { 4926 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4927 "is too big.\n", mel_us); 4928 return -E2BIG; 4929 } 4930 return mel_us; 4931 } 4932 4933 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4934 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4935 struct usb_device *udev, enum usb3_link_state state) 4936 { 4937 struct xhci_hcd *xhci; 4938 struct xhci_port *port; 4939 u16 hub_encoded_timeout; 4940 int mel; 4941 int ret; 4942 4943 xhci = hcd_to_xhci(hcd); 4944 /* The LPM timeout values are pretty host-controller specific, so don't 4945 * enable hub-initiated timeouts unless the vendor has provided 4946 * information about their timeout algorithm. 4947 */ 4948 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4949 !xhci->devs[udev->slot_id]) 4950 return USB3_LPM_DISABLED; 4951 4952 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4953 return USB3_LPM_DISABLED; 4954 4955 /* If connected to root port then check port can handle lpm */ 4956 if (udev->parent && !udev->parent->parent) { 4957 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 4958 if (port->lpm_incapable) 4959 return USB3_LPM_DISABLED; 4960 } 4961 4962 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4963 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4964 if (mel < 0) { 4965 /* Max Exit Latency is too big, disable LPM. */ 4966 hub_encoded_timeout = USB3_LPM_DISABLED; 4967 mel = 0; 4968 } 4969 4970 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4971 if (ret) 4972 return ret; 4973 return hub_encoded_timeout; 4974 } 4975 4976 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4977 struct usb_device *udev, enum usb3_link_state state) 4978 { 4979 struct xhci_hcd *xhci; 4980 u16 mel; 4981 4982 xhci = hcd_to_xhci(hcd); 4983 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4984 !xhci->devs[udev->slot_id]) 4985 return 0; 4986 4987 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4988 return xhci_change_max_exit_latency(xhci, udev, mel); 4989 } 4990 #else /* CONFIG_PM */ 4991 4992 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4993 struct usb_device *udev, int enable) 4994 { 4995 return 0; 4996 } 4997 4998 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4999 { 5000 return 0; 5001 } 5002 5003 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5004 struct usb_device *udev, enum usb3_link_state state) 5005 { 5006 return USB3_LPM_DISABLED; 5007 } 5008 5009 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5010 struct usb_device *udev, enum usb3_link_state state) 5011 { 5012 return 0; 5013 } 5014 #endif /* CONFIG_PM */ 5015 5016 /*-------------------------------------------------------------------------*/ 5017 5018 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5019 * internal data structures for the device. 5020 */ 5021 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5022 struct usb_tt *tt, gfp_t mem_flags) 5023 { 5024 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5025 struct xhci_virt_device *vdev; 5026 struct xhci_command *config_cmd; 5027 struct xhci_input_control_ctx *ctrl_ctx; 5028 struct xhci_slot_ctx *slot_ctx; 5029 unsigned long flags; 5030 unsigned think_time; 5031 int ret; 5032 5033 /* Ignore root hubs */ 5034 if (!hdev->parent) 5035 return 0; 5036 5037 vdev = xhci->devs[hdev->slot_id]; 5038 if (!vdev) { 5039 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5040 return -EINVAL; 5041 } 5042 5043 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5044 if (!config_cmd) 5045 return -ENOMEM; 5046 5047 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5048 if (!ctrl_ctx) { 5049 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5050 __func__); 5051 xhci_free_command(xhci, config_cmd); 5052 return -ENOMEM; 5053 } 5054 5055 spin_lock_irqsave(&xhci->lock, flags); 5056 if (hdev->speed == USB_SPEED_HIGH && 5057 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5058 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5059 xhci_free_command(xhci, config_cmd); 5060 spin_unlock_irqrestore(&xhci->lock, flags); 5061 return -ENOMEM; 5062 } 5063 5064 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5065 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5066 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5067 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5068 /* 5069 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5070 * but it may be already set to 1 when setup an xHCI virtual 5071 * device, so clear it anyway. 5072 */ 5073 if (tt->multi) 5074 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5075 else if (hdev->speed == USB_SPEED_FULL) 5076 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5077 5078 if (xhci->hci_version > 0x95) { 5079 xhci_dbg(xhci, "xHCI version %x needs hub " 5080 "TT think time and number of ports\n", 5081 (unsigned int) xhci->hci_version); 5082 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5083 /* Set TT think time - convert from ns to FS bit times. 5084 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5085 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5086 * 5087 * xHCI 1.0: this field shall be 0 if the device is not a 5088 * High-spped hub. 5089 */ 5090 think_time = tt->think_time; 5091 if (think_time != 0) 5092 think_time = (think_time / 666) - 1; 5093 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5094 slot_ctx->tt_info |= 5095 cpu_to_le32(TT_THINK_TIME(think_time)); 5096 } else { 5097 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5098 "TT think time or number of ports\n", 5099 (unsigned int) xhci->hci_version); 5100 } 5101 slot_ctx->dev_state = 0; 5102 spin_unlock_irqrestore(&xhci->lock, flags); 5103 5104 xhci_dbg(xhci, "Set up %s for hub device.\n", 5105 (xhci->hci_version > 0x95) ? 5106 "configure endpoint" : "evaluate context"); 5107 5108 /* Issue and wait for the configure endpoint or 5109 * evaluate context command. 5110 */ 5111 if (xhci->hci_version > 0x95) 5112 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5113 false, false); 5114 else 5115 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5116 true, false); 5117 5118 xhci_free_command(xhci, config_cmd); 5119 return ret; 5120 } 5121 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5122 5123 static int xhci_get_frame(struct usb_hcd *hcd) 5124 { 5125 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5126 /* EHCI mods by the periodic size. Why? */ 5127 return readl(&xhci->run_regs->microframe_index) >> 3; 5128 } 5129 5130 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5131 { 5132 xhci->usb2_rhub.hcd = hcd; 5133 hcd->speed = HCD_USB2; 5134 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5135 /* 5136 * USB 2.0 roothub under xHCI has an integrated TT, 5137 * (rate matching hub) as opposed to having an OHCI/UHCI 5138 * companion controller. 5139 */ 5140 hcd->has_tt = 1; 5141 } 5142 5143 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5144 { 5145 unsigned int minor_rev; 5146 5147 /* 5148 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5149 * should return 0x31 for sbrn, or that the minor revision 5150 * is a two digit BCD containig minor and sub-minor numbers. 5151 * This was later clarified in xHCI 1.2. 5152 * 5153 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5154 * minor revision set to 0x1 instead of 0x10. 5155 */ 5156 if (xhci->usb3_rhub.min_rev == 0x1) 5157 minor_rev = 1; 5158 else 5159 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5160 5161 switch (minor_rev) { 5162 case 2: 5163 hcd->speed = HCD_USB32; 5164 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5165 hcd->self.root_hub->rx_lanes = 2; 5166 hcd->self.root_hub->tx_lanes = 2; 5167 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5168 break; 5169 case 1: 5170 hcd->speed = HCD_USB31; 5171 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5172 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5173 break; 5174 } 5175 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5176 minor_rev, minor_rev ? "Enhanced " : ""); 5177 5178 xhci->usb3_rhub.hcd = hcd; 5179 } 5180 5181 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5182 { 5183 struct xhci_hcd *xhci; 5184 /* 5185 * TODO: Check with DWC3 clients for sysdev according to 5186 * quirks 5187 */ 5188 struct device *dev = hcd->self.sysdev; 5189 int retval; 5190 5191 /* Accept arbitrarily long scatter-gather lists */ 5192 hcd->self.sg_tablesize = ~0; 5193 5194 /* support to build packet from discontinuous buffers */ 5195 hcd->self.no_sg_constraint = 1; 5196 5197 /* XHCI controllers don't stop the ep queue on short packets :| */ 5198 hcd->self.no_stop_on_short = 1; 5199 5200 xhci = hcd_to_xhci(hcd); 5201 5202 if (!usb_hcd_is_primary_hcd(hcd)) { 5203 xhci_hcd_init_usb3_data(xhci, hcd); 5204 return 0; 5205 } 5206 5207 mutex_init(&xhci->mutex); 5208 xhci->main_hcd = hcd; 5209 xhci->cap_regs = hcd->regs; 5210 xhci->op_regs = hcd->regs + 5211 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5212 xhci->run_regs = hcd->regs + 5213 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5214 /* Cache read-only capability registers */ 5215 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5216 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5217 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5218 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5219 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5220 if (xhci->hci_version > 0x100) 5221 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5222 5223 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5224 if ((!xhci->max_interrupters) || 5225 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1)) 5226 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1); 5227 5228 xhci->quirks |= quirks; 5229 5230 if (get_quirks) 5231 get_quirks(dev, xhci); 5232 5233 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5234 * success event after a short transfer. This quirk will ignore such 5235 * spurious event. 5236 */ 5237 if (xhci->hci_version > 0x96) 5238 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5239 5240 /* Make sure the HC is halted. */ 5241 retval = xhci_halt(xhci); 5242 if (retval) 5243 return retval; 5244 5245 xhci_zero_64b_regs(xhci); 5246 5247 xhci_dbg(xhci, "Resetting HCD\n"); 5248 /* Reset the internal HC memory state and registers. */ 5249 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5250 if (retval) 5251 return retval; 5252 xhci_dbg(xhci, "Reset complete\n"); 5253 5254 /* 5255 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5256 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5257 * address memory pointers actually. So, this driver clears the AC64 5258 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5259 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5260 */ 5261 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5262 xhci->hcc_params &= ~BIT(0); 5263 5264 /* Set dma_mask and coherent_dma_mask to 64-bits, 5265 * if xHC supports 64-bit addressing */ 5266 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5267 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5268 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5269 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5270 } else { 5271 /* 5272 * This is to avoid error in cases where a 32-bit USB 5273 * controller is used on a 64-bit capable system. 5274 */ 5275 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5276 if (retval) 5277 return retval; 5278 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5279 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5280 } 5281 5282 xhci_dbg(xhci, "Calling HCD init\n"); 5283 /* Initialize HCD and host controller data structures. */ 5284 retval = xhci_init(hcd); 5285 if (retval) 5286 return retval; 5287 xhci_dbg(xhci, "Called HCD init\n"); 5288 5289 if (xhci_hcd_is_usb3(hcd)) 5290 xhci_hcd_init_usb3_data(xhci, hcd); 5291 else 5292 xhci_hcd_init_usb2_data(xhci, hcd); 5293 5294 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5295 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5296 5297 return 0; 5298 } 5299 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5300 5301 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5302 struct usb_host_endpoint *ep) 5303 { 5304 struct xhci_hcd *xhci; 5305 struct usb_device *udev; 5306 unsigned int slot_id; 5307 unsigned int ep_index; 5308 unsigned long flags; 5309 5310 xhci = hcd_to_xhci(hcd); 5311 5312 spin_lock_irqsave(&xhci->lock, flags); 5313 udev = (struct usb_device *)ep->hcpriv; 5314 slot_id = udev->slot_id; 5315 ep_index = xhci_get_endpoint_index(&ep->desc); 5316 5317 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5318 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5319 spin_unlock_irqrestore(&xhci->lock, flags); 5320 } 5321 5322 static const struct hc_driver xhci_hc_driver = { 5323 .description = "xhci-hcd", 5324 .product_desc = "xHCI Host Controller", 5325 .hcd_priv_size = sizeof(struct xhci_hcd), 5326 5327 /* 5328 * generic hardware linkage 5329 */ 5330 .irq = xhci_irq, 5331 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5332 HCD_BH, 5333 5334 /* 5335 * basic lifecycle operations 5336 */ 5337 .reset = NULL, /* set in xhci_init_driver() */ 5338 .start = xhci_run, 5339 .stop = xhci_stop, 5340 .shutdown = xhci_shutdown, 5341 5342 /* 5343 * managing i/o requests and associated device resources 5344 */ 5345 .map_urb_for_dma = xhci_map_urb_for_dma, 5346 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5347 .urb_enqueue = xhci_urb_enqueue, 5348 .urb_dequeue = xhci_urb_dequeue, 5349 .alloc_dev = xhci_alloc_dev, 5350 .free_dev = xhci_free_dev, 5351 .alloc_streams = xhci_alloc_streams, 5352 .free_streams = xhci_free_streams, 5353 .add_endpoint = xhci_add_endpoint, 5354 .drop_endpoint = xhci_drop_endpoint, 5355 .endpoint_disable = xhci_endpoint_disable, 5356 .endpoint_reset = xhci_endpoint_reset, 5357 .check_bandwidth = xhci_check_bandwidth, 5358 .reset_bandwidth = xhci_reset_bandwidth, 5359 .address_device = xhci_address_device, 5360 .enable_device = xhci_enable_device, 5361 .update_hub_device = xhci_update_hub_device, 5362 .reset_device = xhci_discover_or_reset_device, 5363 5364 /* 5365 * scheduling support 5366 */ 5367 .get_frame_number = xhci_get_frame, 5368 5369 /* 5370 * root hub support 5371 */ 5372 .hub_control = xhci_hub_control, 5373 .hub_status_data = xhci_hub_status_data, 5374 .bus_suspend = xhci_bus_suspend, 5375 .bus_resume = xhci_bus_resume, 5376 .get_resuming_ports = xhci_get_resuming_ports, 5377 5378 /* 5379 * call back when device connected and addressed 5380 */ 5381 .update_device = xhci_update_device, 5382 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5383 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5384 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5385 .find_raw_port_number = xhci_find_raw_port_number, 5386 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5387 }; 5388 5389 void xhci_init_driver(struct hc_driver *drv, 5390 const struct xhci_driver_overrides *over) 5391 { 5392 BUG_ON(!over); 5393 5394 /* Copy the generic table to drv then apply the overrides */ 5395 *drv = xhci_hc_driver; 5396 5397 if (over) { 5398 drv->hcd_priv_size += over->extra_priv_size; 5399 if (over->reset) 5400 drv->reset = over->reset; 5401 if (over->start) 5402 drv->start = over->start; 5403 if (over->add_endpoint) 5404 drv->add_endpoint = over->add_endpoint; 5405 if (over->drop_endpoint) 5406 drv->drop_endpoint = over->drop_endpoint; 5407 if (over->check_bandwidth) 5408 drv->check_bandwidth = over->check_bandwidth; 5409 if (over->reset_bandwidth) 5410 drv->reset_bandwidth = over->reset_bandwidth; 5411 if (over->update_hub_device) 5412 drv->update_hub_device = over->update_hub_device; 5413 if (over->hub_control) 5414 drv->hub_control = over->hub_control; 5415 } 5416 } 5417 EXPORT_SYMBOL_GPL(xhci_init_driver); 5418 5419 MODULE_DESCRIPTION(DRIVER_DESC); 5420 MODULE_AUTHOR(DRIVER_AUTHOR); 5421 MODULE_LICENSE("GPL"); 5422 5423 static int __init xhci_hcd_init(void) 5424 { 5425 /* 5426 * Check the compiler generated sizes of structures that must be laid 5427 * out in specific ways for hardware access. 5428 */ 5429 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5430 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5431 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5432 /* xhci_device_control has eight fields, and also 5433 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5434 */ 5435 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5436 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5437 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5438 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5439 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5440 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5441 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5442 5443 if (usb_disabled()) 5444 return -ENODEV; 5445 5446 xhci_debugfs_create_root(); 5447 xhci_dbc_init(); 5448 5449 return 0; 5450 } 5451 5452 /* 5453 * If an init function is provided, an exit function must also be provided 5454 * to allow module unload. 5455 */ 5456 static void __exit xhci_hcd_fini(void) 5457 { 5458 xhci_debugfs_remove_root(); 5459 xhci_dbc_exit(); 5460 } 5461 5462 module_init(xhci_hcd_init); 5463 module_exit(xhci_hcd_fini); 5464