1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/log2.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/slab.h> 17 #include <linux/dmi.h> 18 #include <linux/dma-mapping.h> 19 20 #include "xhci.h" 21 #include "xhci-trace.h" 22 #include "xhci-mtk.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 41 { 42 struct xhci_segment *seg = ring->first_seg; 43 44 if (!td || !td->start_seg) 45 return false; 46 do { 47 if (seg == td->start_seg) 48 return true; 49 seg = seg->next; 50 } while (seg && seg != ring->first_seg); 51 52 return false; 53 } 54 55 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 70 { 71 u32 result; 72 73 do { 74 result = readl(ptr); 75 if (result == ~(u32)0) /* card removed */ 76 return -ENODEV; 77 result &= mask; 78 if (result == done) 79 return 0; 80 udelay(1); 81 usec--; 82 } while (usec > 0); 83 return -ETIMEDOUT; 84 } 85 86 /* 87 * Disable interrupts and begin the xHCI halting process. 88 */ 89 void xhci_quiesce(struct xhci_hcd *xhci) 90 { 91 u32 halted; 92 u32 cmd; 93 u32 mask; 94 95 mask = ~(XHCI_IRQS); 96 halted = readl(&xhci->op_regs->status) & STS_HALT; 97 if (!halted) 98 mask &= ~CMD_RUN; 99 100 cmd = readl(&xhci->op_regs->command); 101 cmd &= mask; 102 writel(cmd, &xhci->op_regs->command); 103 } 104 105 /* 106 * Force HC into halt state. 107 * 108 * Disable any IRQs and clear the run/stop bit. 109 * HC will complete any current and actively pipelined transactions, and 110 * should halt within 16 ms of the run/stop bit being cleared. 111 * Read HC Halted bit in the status register to see when the HC is finished. 112 */ 113 int xhci_halt(struct xhci_hcd *xhci) 114 { 115 int ret; 116 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 117 xhci_quiesce(xhci); 118 119 ret = xhci_handshake(&xhci->op_regs->status, 120 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 121 if (ret) { 122 xhci_warn(xhci, "Host halt failed, %d\n", ret); 123 return ret; 124 } 125 xhci->xhc_state |= XHCI_STATE_HALTED; 126 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 127 return ret; 128 } 129 130 /* 131 * Set the run bit and wait for the host to be running. 132 */ 133 int xhci_start(struct xhci_hcd *xhci) 134 { 135 u32 temp; 136 int ret; 137 138 temp = readl(&xhci->op_regs->command); 139 temp |= (CMD_RUN); 140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 141 temp); 142 writel(temp, &xhci->op_regs->command); 143 144 /* 145 * Wait for the HCHalted Status bit to be 0 to indicate the host is 146 * running. 147 */ 148 ret = xhci_handshake(&xhci->op_regs->status, 149 STS_HALT, 0, XHCI_MAX_HALT_USEC); 150 if (ret == -ETIMEDOUT) 151 xhci_err(xhci, "Host took too long to start, " 152 "waited %u microseconds.\n", 153 XHCI_MAX_HALT_USEC); 154 if (!ret) 155 /* clear state flags. Including dying, halted or removing */ 156 xhci->xhc_state = 0; 157 158 return ret; 159 } 160 161 /* 162 * Reset a halted HC. 163 * 164 * This resets pipelines, timers, counters, state machines, etc. 165 * Transactions will be terminated immediately, and operational registers 166 * will be set to their defaults. 167 */ 168 int xhci_reset(struct xhci_hcd *xhci) 169 { 170 u32 command; 171 u32 state; 172 int ret; 173 174 state = readl(&xhci->op_regs->status); 175 176 if (state == ~(u32)0) { 177 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 178 return -ENODEV; 179 } 180 181 if ((state & STS_HALT) == 0) { 182 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 183 return 0; 184 } 185 186 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 187 command = readl(&xhci->op_regs->command); 188 command |= CMD_RESET; 189 writel(command, &xhci->op_regs->command); 190 191 /* Existing Intel xHCI controllers require a delay of 1 mS, 192 * after setting the CMD_RESET bit, and before accessing any 193 * HC registers. This allows the HC to complete the 194 * reset operation and be ready for HC register access. 195 * Without this delay, the subsequent HC register access, 196 * may result in a system hang very rarely. 197 */ 198 if (xhci->quirks & XHCI_INTEL_HOST) 199 udelay(1000); 200 201 ret = xhci_handshake(&xhci->op_regs->command, 202 CMD_RESET, 0, 10 * 1000 * 1000); 203 if (ret) 204 return ret; 205 206 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 207 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 208 209 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 210 "Wait for controller to be ready for doorbell rings"); 211 /* 212 * xHCI cannot write to any doorbells or operational registers other 213 * than status until the "Controller Not Ready" flag is cleared. 214 */ 215 ret = xhci_handshake(&xhci->op_regs->status, 216 STS_CNR, 0, 10 * 1000 * 1000); 217 218 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 219 xhci->usb2_rhub.bus_state.suspended_ports = 0; 220 xhci->usb2_rhub.bus_state.resuming_ports = 0; 221 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 222 xhci->usb3_rhub.bus_state.suspended_ports = 0; 223 xhci->usb3_rhub.bus_state.resuming_ports = 0; 224 225 return ret; 226 } 227 228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 229 { 230 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 231 int err, i; 232 u64 val; 233 234 /* 235 * Some Renesas controllers get into a weird state if they are 236 * reset while programmed with 64bit addresses (they will preserve 237 * the top half of the address in internal, non visible 238 * registers). You end up with half the address coming from the 239 * kernel, and the other half coming from the firmware. Also, 240 * changing the programming leads to extra accesses even if the 241 * controller is supposed to be halted. The controller ends up with 242 * a fatal fault, and is then ripe for being properly reset. 243 * 244 * Special care is taken to only apply this if the device is behind 245 * an iommu. Doing anything when there is no iommu is definitely 246 * unsafe... 247 */ 248 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 249 return; 250 251 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 252 253 /* Clear HSEIE so that faults do not get signaled */ 254 val = readl(&xhci->op_regs->command); 255 val &= ~CMD_HSEIE; 256 writel(val, &xhci->op_regs->command); 257 258 /* Clear HSE (aka FATAL) */ 259 val = readl(&xhci->op_regs->status); 260 val |= STS_FATAL; 261 writel(val, &xhci->op_regs->status); 262 263 /* Now zero the registers, and brace for impact */ 264 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 265 if (upper_32_bits(val)) 266 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 267 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 268 if (upper_32_bits(val)) 269 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 270 271 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) { 272 struct xhci_intr_reg __iomem *ir; 273 274 ir = &xhci->run_regs->ir_set[i]; 275 val = xhci_read_64(xhci, &ir->erst_base); 276 if (upper_32_bits(val)) 277 xhci_write_64(xhci, 0, &ir->erst_base); 278 val= xhci_read_64(xhci, &ir->erst_dequeue); 279 if (upper_32_bits(val)) 280 xhci_write_64(xhci, 0, &ir->erst_dequeue); 281 } 282 283 /* Wait for the fault to appear. It will be cleared on reset */ 284 err = xhci_handshake(&xhci->op_regs->status, 285 STS_FATAL, STS_FATAL, 286 XHCI_MAX_HALT_USEC); 287 if (!err) 288 xhci_info(xhci, "Fault detected\n"); 289 } 290 291 #ifdef CONFIG_USB_PCI 292 /* 293 * Set up MSI 294 */ 295 static int xhci_setup_msi(struct xhci_hcd *xhci) 296 { 297 int ret; 298 /* 299 * TODO:Check with MSI Soc for sysdev 300 */ 301 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 302 303 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 304 if (ret < 0) { 305 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 306 "failed to allocate MSI entry"); 307 return ret; 308 } 309 310 ret = request_irq(pdev->irq, xhci_msi_irq, 311 0, "xhci_hcd", xhci_to_hcd(xhci)); 312 if (ret) { 313 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 314 "disable MSI interrupt"); 315 pci_free_irq_vectors(pdev); 316 } 317 318 return ret; 319 } 320 321 /* 322 * Set up MSI-X 323 */ 324 static int xhci_setup_msix(struct xhci_hcd *xhci) 325 { 326 int i, ret = 0; 327 struct usb_hcd *hcd = xhci_to_hcd(xhci); 328 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 329 330 /* 331 * calculate number of msi-x vectors supported. 332 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 333 * with max number of interrupters based on the xhci HCSPARAMS1. 334 * - num_online_cpus: maximum msi-x vectors per CPUs core. 335 * Add additional 1 vector to ensure always available interrupt. 336 */ 337 xhci->msix_count = min(num_online_cpus() + 1, 338 HCS_MAX_INTRS(xhci->hcs_params1)); 339 340 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 341 PCI_IRQ_MSIX); 342 if (ret < 0) { 343 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 344 "Failed to enable MSI-X"); 345 return ret; 346 } 347 348 for (i = 0; i < xhci->msix_count; i++) { 349 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 350 "xhci_hcd", xhci_to_hcd(xhci)); 351 if (ret) 352 goto disable_msix; 353 } 354 355 hcd->msix_enabled = 1; 356 return ret; 357 358 disable_msix: 359 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 360 while (--i >= 0) 361 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 362 pci_free_irq_vectors(pdev); 363 return ret; 364 } 365 366 /* Free any IRQs and disable MSI-X */ 367 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 368 { 369 struct usb_hcd *hcd = xhci_to_hcd(xhci); 370 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 371 372 if (xhci->quirks & XHCI_PLAT) 373 return; 374 375 /* return if using legacy interrupt */ 376 if (hcd->irq > 0) 377 return; 378 379 if (hcd->msix_enabled) { 380 int i; 381 382 for (i = 0; i < xhci->msix_count; i++) 383 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 384 } else { 385 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 386 } 387 388 pci_free_irq_vectors(pdev); 389 hcd->msix_enabled = 0; 390 } 391 392 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 393 { 394 struct usb_hcd *hcd = xhci_to_hcd(xhci); 395 396 if (hcd->msix_enabled) { 397 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 398 int i; 399 400 for (i = 0; i < xhci->msix_count; i++) 401 synchronize_irq(pci_irq_vector(pdev, i)); 402 } 403 } 404 405 static int xhci_try_enable_msi(struct usb_hcd *hcd) 406 { 407 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 408 struct pci_dev *pdev; 409 int ret; 410 411 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 412 if (xhci->quirks & XHCI_PLAT) 413 return 0; 414 415 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 416 /* 417 * Some Fresco Logic host controllers advertise MSI, but fail to 418 * generate interrupts. Don't even try to enable MSI. 419 */ 420 if (xhci->quirks & XHCI_BROKEN_MSI) 421 goto legacy_irq; 422 423 /* unregister the legacy interrupt */ 424 if (hcd->irq) 425 free_irq(hcd->irq, hcd); 426 hcd->irq = 0; 427 428 ret = xhci_setup_msix(xhci); 429 if (ret) 430 /* fall back to msi*/ 431 ret = xhci_setup_msi(xhci); 432 433 if (!ret) { 434 hcd->msi_enabled = 1; 435 return 0; 436 } 437 438 if (!pdev->irq) { 439 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 440 return -EINVAL; 441 } 442 443 legacy_irq: 444 if (!strlen(hcd->irq_descr)) 445 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 446 hcd->driver->description, hcd->self.busnum); 447 448 /* fall back to legacy interrupt*/ 449 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 450 hcd->irq_descr, hcd); 451 if (ret) { 452 xhci_err(xhci, "request interrupt %d failed\n", 453 pdev->irq); 454 return ret; 455 } 456 hcd->irq = pdev->irq; 457 return 0; 458 } 459 460 #else 461 462 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 463 { 464 return 0; 465 } 466 467 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 468 { 469 } 470 471 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 472 { 473 } 474 475 #endif 476 477 static void compliance_mode_recovery(struct timer_list *t) 478 { 479 struct xhci_hcd *xhci; 480 struct usb_hcd *hcd; 481 struct xhci_hub *rhub; 482 u32 temp; 483 int i; 484 485 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 486 rhub = &xhci->usb3_rhub; 487 488 for (i = 0; i < rhub->num_ports; i++) { 489 temp = readl(rhub->ports[i]->addr); 490 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 491 /* 492 * Compliance Mode Detected. Letting USB Core 493 * handle the Warm Reset 494 */ 495 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 496 "Compliance mode detected->port %d", 497 i + 1); 498 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 499 "Attempting compliance mode recovery"); 500 hcd = xhci->shared_hcd; 501 502 if (hcd->state == HC_STATE_SUSPENDED) 503 usb_hcd_resume_root_hub(hcd); 504 505 usb_hcd_poll_rh_status(hcd); 506 } 507 } 508 509 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 510 mod_timer(&xhci->comp_mode_recovery_timer, 511 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 512 } 513 514 /* 515 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 516 * that causes ports behind that hardware to enter compliance mode sometimes. 517 * The quirk creates a timer that polls every 2 seconds the link state of 518 * each host controller's port and recovers it by issuing a Warm reset 519 * if Compliance mode is detected, otherwise the port will become "dead" (no 520 * device connections or disconnections will be detected anymore). Becasue no 521 * status event is generated when entering compliance mode (per xhci spec), 522 * this quirk is needed on systems that have the failing hardware installed. 523 */ 524 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 525 { 526 xhci->port_status_u0 = 0; 527 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 528 0); 529 xhci->comp_mode_recovery_timer.expires = jiffies + 530 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 531 532 add_timer(&xhci->comp_mode_recovery_timer); 533 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 534 "Compliance mode recovery timer initialized"); 535 } 536 537 /* 538 * This function identifies the systems that have installed the SN65LVPE502CP 539 * USB3.0 re-driver and that need the Compliance Mode Quirk. 540 * Systems: 541 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 542 */ 543 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 544 { 545 const char *dmi_product_name, *dmi_sys_vendor; 546 547 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 548 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 549 if (!dmi_product_name || !dmi_sys_vendor) 550 return false; 551 552 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 553 return false; 554 555 if (strstr(dmi_product_name, "Z420") || 556 strstr(dmi_product_name, "Z620") || 557 strstr(dmi_product_name, "Z820") || 558 strstr(dmi_product_name, "Z1 Workstation")) 559 return true; 560 561 return false; 562 } 563 564 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 565 { 566 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 567 } 568 569 570 /* 571 * Initialize memory for HCD and xHC (one-time init). 572 * 573 * Program the PAGESIZE register, initialize the device context array, create 574 * device contexts (?), set up a command ring segment (or two?), create event 575 * ring (one for now). 576 */ 577 static int xhci_init(struct usb_hcd *hcd) 578 { 579 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 580 int retval = 0; 581 582 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 583 spin_lock_init(&xhci->lock); 584 if (xhci->hci_version == 0x95 && link_quirk) { 585 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 586 "QUIRK: Not clearing Link TRB chain bits."); 587 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 588 } else { 589 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 590 "xHCI doesn't need link TRB QUIRK"); 591 } 592 retval = xhci_mem_init(xhci, GFP_KERNEL); 593 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 594 595 /* Initializing Compliance Mode Recovery Data If Needed */ 596 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 597 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 598 compliance_mode_recovery_timer_init(xhci); 599 } 600 601 return retval; 602 } 603 604 /*-------------------------------------------------------------------------*/ 605 606 607 static int xhci_run_finished(struct xhci_hcd *xhci) 608 { 609 if (xhci_start(xhci)) { 610 xhci_halt(xhci); 611 return -ENODEV; 612 } 613 xhci->shared_hcd->state = HC_STATE_RUNNING; 614 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 615 616 if (xhci->quirks & XHCI_NEC_HOST) 617 xhci_ring_cmd_db(xhci); 618 619 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 620 "Finished xhci_run for USB3 roothub"); 621 return 0; 622 } 623 624 /* 625 * Start the HC after it was halted. 626 * 627 * This function is called by the USB core when the HC driver is added. 628 * Its opposite is xhci_stop(). 629 * 630 * xhci_init() must be called once before this function can be called. 631 * Reset the HC, enable device slot contexts, program DCBAAP, and 632 * set command ring pointer and event ring pointer. 633 * 634 * Setup MSI-X vectors and enable interrupts. 635 */ 636 int xhci_run(struct usb_hcd *hcd) 637 { 638 u32 temp; 639 u64 temp_64; 640 int ret; 641 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 642 643 /* Start the xHCI host controller running only after the USB 2.0 roothub 644 * is setup. 645 */ 646 647 hcd->uses_new_polling = 1; 648 if (!usb_hcd_is_primary_hcd(hcd)) 649 return xhci_run_finished(xhci); 650 651 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 652 653 ret = xhci_try_enable_msi(hcd); 654 if (ret) 655 return ret; 656 657 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 658 temp_64 &= ~ERST_PTR_MASK; 659 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 660 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 661 662 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 663 "// Set the interrupt modulation register"); 664 temp = readl(&xhci->ir_set->irq_control); 665 temp &= ~ER_IRQ_INTERVAL_MASK; 666 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 667 writel(temp, &xhci->ir_set->irq_control); 668 669 /* Set the HCD state before we enable the irqs */ 670 temp = readl(&xhci->op_regs->command); 671 temp |= (CMD_EIE); 672 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 673 "// Enable interrupts, cmd = 0x%x.", temp); 674 writel(temp, &xhci->op_regs->command); 675 676 temp = readl(&xhci->ir_set->irq_pending); 677 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 678 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 679 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 680 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 681 682 if (xhci->quirks & XHCI_NEC_HOST) { 683 struct xhci_command *command; 684 685 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 686 if (!command) 687 return -ENOMEM; 688 689 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 690 TRB_TYPE(TRB_NEC_GET_FW)); 691 if (ret) 692 xhci_free_command(xhci, command); 693 } 694 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 695 "Finished xhci_run for USB2 roothub"); 696 697 xhci_dbc_init(xhci); 698 699 xhci_debugfs_init(xhci); 700 701 return 0; 702 } 703 EXPORT_SYMBOL_GPL(xhci_run); 704 705 /* 706 * Stop xHCI driver. 707 * 708 * This function is called by the USB core when the HC driver is removed. 709 * Its opposite is xhci_run(). 710 * 711 * Disable device contexts, disable IRQs, and quiesce the HC. 712 * Reset the HC, finish any completed transactions, and cleanup memory. 713 */ 714 static void xhci_stop(struct usb_hcd *hcd) 715 { 716 u32 temp; 717 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 718 719 mutex_lock(&xhci->mutex); 720 721 /* Only halt host and free memory after both hcds are removed */ 722 if (!usb_hcd_is_primary_hcd(hcd)) { 723 mutex_unlock(&xhci->mutex); 724 return; 725 } 726 727 xhci_dbc_exit(xhci); 728 729 spin_lock_irq(&xhci->lock); 730 xhci->xhc_state |= XHCI_STATE_HALTED; 731 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 732 xhci_halt(xhci); 733 xhci_reset(xhci); 734 spin_unlock_irq(&xhci->lock); 735 736 xhci_cleanup_msix(xhci); 737 738 /* Deleting Compliance Mode Recovery Timer */ 739 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 740 (!(xhci_all_ports_seen_u0(xhci)))) { 741 del_timer_sync(&xhci->comp_mode_recovery_timer); 742 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 743 "%s: compliance mode recovery timer deleted", 744 __func__); 745 } 746 747 if (xhci->quirks & XHCI_AMD_PLL_FIX) 748 usb_amd_dev_put(); 749 750 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 751 "// Disabling event ring interrupts"); 752 temp = readl(&xhci->op_regs->status); 753 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 754 temp = readl(&xhci->ir_set->irq_pending); 755 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 756 757 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 758 xhci_mem_cleanup(xhci); 759 xhci_debugfs_exit(xhci); 760 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 761 "xhci_stop completed - status = %x", 762 readl(&xhci->op_regs->status)); 763 mutex_unlock(&xhci->mutex); 764 } 765 766 /* 767 * Shutdown HC (not bus-specific) 768 * 769 * This is called when the machine is rebooting or halting. We assume that the 770 * machine will be powered off, and the HC's internal state will be reset. 771 * Don't bother to free memory. 772 * 773 * This will only ever be called with the main usb_hcd (the USB3 roothub). 774 */ 775 static void xhci_shutdown(struct usb_hcd *hcd) 776 { 777 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 778 779 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 780 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 781 782 spin_lock_irq(&xhci->lock); 783 xhci_halt(xhci); 784 /* Workaround for spurious wakeups at shutdown with HSW */ 785 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 786 xhci_reset(xhci); 787 spin_unlock_irq(&xhci->lock); 788 789 xhci_cleanup_msix(xhci); 790 791 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 792 "xhci_shutdown completed - status = %x", 793 readl(&xhci->op_regs->status)); 794 795 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 796 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 797 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot); 798 } 799 800 #ifdef CONFIG_PM 801 static void xhci_save_registers(struct xhci_hcd *xhci) 802 { 803 xhci->s3.command = readl(&xhci->op_regs->command); 804 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 805 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 806 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 807 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 808 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 809 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 810 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 811 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 812 } 813 814 static void xhci_restore_registers(struct xhci_hcd *xhci) 815 { 816 writel(xhci->s3.command, &xhci->op_regs->command); 817 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 818 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 819 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 820 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 821 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 822 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 823 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 824 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 825 } 826 827 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 828 { 829 u64 val_64; 830 831 /* step 2: initialize command ring buffer */ 832 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 833 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 834 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 835 xhci->cmd_ring->dequeue) & 836 (u64) ~CMD_RING_RSVD_BITS) | 837 xhci->cmd_ring->cycle_state; 838 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 839 "// Setting command ring address to 0x%llx", 840 (long unsigned long) val_64); 841 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 842 } 843 844 /* 845 * The whole command ring must be cleared to zero when we suspend the host. 846 * 847 * The host doesn't save the command ring pointer in the suspend well, so we 848 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 849 * aligned, because of the reserved bits in the command ring dequeue pointer 850 * register. Therefore, we can't just set the dequeue pointer back in the 851 * middle of the ring (TRBs are 16-byte aligned). 852 */ 853 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 854 { 855 struct xhci_ring *ring; 856 struct xhci_segment *seg; 857 858 ring = xhci->cmd_ring; 859 seg = ring->deq_seg; 860 do { 861 memset(seg->trbs, 0, 862 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 863 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 864 cpu_to_le32(~TRB_CYCLE); 865 seg = seg->next; 866 } while (seg != ring->deq_seg); 867 868 /* Reset the software enqueue and dequeue pointers */ 869 ring->deq_seg = ring->first_seg; 870 ring->dequeue = ring->first_seg->trbs; 871 ring->enq_seg = ring->deq_seg; 872 ring->enqueue = ring->dequeue; 873 874 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 875 /* 876 * Ring is now zeroed, so the HW should look for change of ownership 877 * when the cycle bit is set to 1. 878 */ 879 ring->cycle_state = 1; 880 881 /* 882 * Reset the hardware dequeue pointer. 883 * Yes, this will need to be re-written after resume, but we're paranoid 884 * and want to make sure the hardware doesn't access bogus memory 885 * because, say, the BIOS or an SMI started the host without changing 886 * the command ring pointers. 887 */ 888 xhci_set_cmd_ring_deq(xhci); 889 } 890 891 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 892 { 893 struct xhci_port **ports; 894 int port_index; 895 unsigned long flags; 896 u32 t1, t2; 897 898 spin_lock_irqsave(&xhci->lock, flags); 899 900 /* disable usb3 ports Wake bits */ 901 port_index = xhci->usb3_rhub.num_ports; 902 ports = xhci->usb3_rhub.ports; 903 while (port_index--) { 904 t1 = readl(ports[port_index]->addr); 905 t1 = xhci_port_state_to_neutral(t1); 906 t2 = t1 & ~PORT_WAKE_BITS; 907 if (t1 != t2) 908 writel(t2, ports[port_index]->addr); 909 } 910 911 /* disable usb2 ports Wake bits */ 912 port_index = xhci->usb2_rhub.num_ports; 913 ports = xhci->usb2_rhub.ports; 914 while (port_index--) { 915 t1 = readl(ports[port_index]->addr); 916 t1 = xhci_port_state_to_neutral(t1); 917 t2 = t1 & ~PORT_WAKE_BITS; 918 if (t1 != t2) 919 writel(t2, ports[port_index]->addr); 920 } 921 922 spin_unlock_irqrestore(&xhci->lock, flags); 923 } 924 925 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 926 { 927 struct xhci_port **ports; 928 int port_index; 929 u32 status; 930 u32 portsc; 931 932 status = readl(&xhci->op_regs->status); 933 if (status & STS_EINT) 934 return true; 935 /* 936 * Checking STS_EINT is not enough as there is a lag between a change 937 * bit being set and the Port Status Change Event that it generated 938 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 939 */ 940 941 port_index = xhci->usb2_rhub.num_ports; 942 ports = xhci->usb2_rhub.ports; 943 while (port_index--) { 944 portsc = readl(ports[port_index]->addr); 945 if (portsc & PORT_CHANGE_MASK || 946 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 947 return true; 948 } 949 port_index = xhci->usb3_rhub.num_ports; 950 ports = xhci->usb3_rhub.ports; 951 while (port_index--) { 952 portsc = readl(ports[port_index]->addr); 953 if (portsc & PORT_CHANGE_MASK || 954 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 955 return true; 956 } 957 return false; 958 } 959 960 /* 961 * Stop HC (not bus-specific) 962 * 963 * This is called when the machine transition into S3/S4 mode. 964 * 965 */ 966 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 967 { 968 int rc = 0; 969 unsigned int delay = XHCI_MAX_HALT_USEC; 970 struct usb_hcd *hcd = xhci_to_hcd(xhci); 971 u32 command; 972 u32 res; 973 974 if (!hcd->state) 975 return 0; 976 977 if (hcd->state != HC_STATE_SUSPENDED || 978 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 979 return -EINVAL; 980 981 xhci_dbc_suspend(xhci); 982 983 /* Clear root port wake on bits if wakeup not allowed. */ 984 if (!do_wakeup) 985 xhci_disable_port_wake_on_bits(xhci); 986 987 /* Don't poll the roothubs on bus suspend. */ 988 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 989 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 990 del_timer_sync(&hcd->rh_timer); 991 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 992 del_timer_sync(&xhci->shared_hcd->rh_timer); 993 994 if (xhci->quirks & XHCI_SUSPEND_DELAY) 995 usleep_range(1000, 1500); 996 997 spin_lock_irq(&xhci->lock); 998 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 999 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1000 /* step 1: stop endpoint */ 1001 /* skipped assuming that port suspend has done */ 1002 1003 /* step 2: clear Run/Stop bit */ 1004 command = readl(&xhci->op_regs->command); 1005 command &= ~CMD_RUN; 1006 writel(command, &xhci->op_regs->command); 1007 1008 /* Some chips from Fresco Logic need an extraordinary delay */ 1009 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1010 1011 if (xhci_handshake(&xhci->op_regs->status, 1012 STS_HALT, STS_HALT, delay)) { 1013 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1014 spin_unlock_irq(&xhci->lock); 1015 return -ETIMEDOUT; 1016 } 1017 xhci_clear_command_ring(xhci); 1018 1019 /* step 3: save registers */ 1020 xhci_save_registers(xhci); 1021 1022 /* step 4: set CSS flag */ 1023 command = readl(&xhci->op_regs->command); 1024 command |= CMD_CSS; 1025 writel(command, &xhci->op_regs->command); 1026 xhci->broken_suspend = 0; 1027 if (xhci_handshake(&xhci->op_regs->status, 1028 STS_SAVE, 0, 10 * 1000)) { 1029 /* 1030 * AMD SNPS xHC 3.0 occasionally does not clear the 1031 * SSS bit of USBSTS and when driver tries to poll 1032 * to see if the xHC clears BIT(8) which never happens 1033 * and driver assumes that controller is not responding 1034 * and times out. To workaround this, its good to check 1035 * if SRE and HCE bits are not set (as per xhci 1036 * Section 5.4.2) and bypass the timeout. 1037 */ 1038 res = readl(&xhci->op_regs->status); 1039 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1040 (((res & STS_SRE) == 0) && 1041 ((res & STS_HCE) == 0))) { 1042 xhci->broken_suspend = 1; 1043 } else { 1044 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1045 spin_unlock_irq(&xhci->lock); 1046 return -ETIMEDOUT; 1047 } 1048 } 1049 spin_unlock_irq(&xhci->lock); 1050 1051 /* 1052 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1053 * is about to be suspended. 1054 */ 1055 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1056 (!(xhci_all_ports_seen_u0(xhci)))) { 1057 del_timer_sync(&xhci->comp_mode_recovery_timer); 1058 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1059 "%s: compliance mode recovery timer deleted", 1060 __func__); 1061 } 1062 1063 /* step 5: remove core well power */ 1064 /* synchronize irq when using MSI-X */ 1065 xhci_msix_sync_irqs(xhci); 1066 1067 return rc; 1068 } 1069 EXPORT_SYMBOL_GPL(xhci_suspend); 1070 1071 /* 1072 * start xHC (not bus-specific) 1073 * 1074 * This is called when the machine transition from S3/S4 mode. 1075 * 1076 */ 1077 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1078 { 1079 u32 command, temp = 0; 1080 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1081 struct usb_hcd *secondary_hcd; 1082 int retval = 0; 1083 bool comp_timer_running = false; 1084 1085 if (!hcd->state) 1086 return 0; 1087 1088 /* Wait a bit if either of the roothubs need to settle from the 1089 * transition into bus suspend. 1090 */ 1091 1092 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1093 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1094 msleep(100); 1095 1096 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1097 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1098 1099 spin_lock_irq(&xhci->lock); 1100 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend) 1101 hibernated = true; 1102 1103 if (!hibernated) { 1104 /* step 1: restore register */ 1105 xhci_restore_registers(xhci); 1106 /* step 2: initialize command ring buffer */ 1107 xhci_set_cmd_ring_deq(xhci); 1108 /* step 3: restore state and start state*/ 1109 /* step 3: set CRS flag */ 1110 command = readl(&xhci->op_regs->command); 1111 command |= CMD_CRS; 1112 writel(command, &xhci->op_regs->command); 1113 /* 1114 * Some controllers take up to 55+ ms to complete the controller 1115 * restore so setting the timeout to 100ms. Xhci specification 1116 * doesn't mention any timeout value. 1117 */ 1118 if (xhci_handshake(&xhci->op_regs->status, 1119 STS_RESTORE, 0, 100 * 1000)) { 1120 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1121 spin_unlock_irq(&xhci->lock); 1122 return -ETIMEDOUT; 1123 } 1124 temp = readl(&xhci->op_regs->status); 1125 } 1126 1127 /* If restore operation fails, re-initialize the HC during resume */ 1128 if ((temp & STS_SRE) || hibernated) { 1129 1130 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1131 !(xhci_all_ports_seen_u0(xhci))) { 1132 del_timer_sync(&xhci->comp_mode_recovery_timer); 1133 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1134 "Compliance Mode Recovery Timer deleted!"); 1135 } 1136 1137 /* Let the USB core know _both_ roothubs lost power. */ 1138 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1139 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1140 1141 xhci_dbg(xhci, "Stop HCD\n"); 1142 xhci_halt(xhci); 1143 xhci_zero_64b_regs(xhci); 1144 xhci_reset(xhci); 1145 spin_unlock_irq(&xhci->lock); 1146 xhci_cleanup_msix(xhci); 1147 1148 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1149 temp = readl(&xhci->op_regs->status); 1150 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1151 temp = readl(&xhci->ir_set->irq_pending); 1152 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1153 1154 xhci_dbg(xhci, "cleaning up memory\n"); 1155 xhci_mem_cleanup(xhci); 1156 xhci_debugfs_exit(xhci); 1157 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1158 readl(&xhci->op_regs->status)); 1159 1160 /* USB core calls the PCI reinit and start functions twice: 1161 * first with the primary HCD, and then with the secondary HCD. 1162 * If we don't do the same, the host will never be started. 1163 */ 1164 if (!usb_hcd_is_primary_hcd(hcd)) 1165 secondary_hcd = hcd; 1166 else 1167 secondary_hcd = xhci->shared_hcd; 1168 1169 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1170 retval = xhci_init(hcd->primary_hcd); 1171 if (retval) 1172 return retval; 1173 comp_timer_running = true; 1174 1175 xhci_dbg(xhci, "Start the primary HCD\n"); 1176 retval = xhci_run(hcd->primary_hcd); 1177 if (!retval) { 1178 xhci_dbg(xhci, "Start the secondary HCD\n"); 1179 retval = xhci_run(secondary_hcd); 1180 } 1181 hcd->state = HC_STATE_SUSPENDED; 1182 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1183 goto done; 1184 } 1185 1186 /* step 4: set Run/Stop bit */ 1187 command = readl(&xhci->op_regs->command); 1188 command |= CMD_RUN; 1189 writel(command, &xhci->op_regs->command); 1190 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1191 0, 250 * 1000); 1192 1193 /* step 5: walk topology and initialize portsc, 1194 * portpmsc and portli 1195 */ 1196 /* this is done in bus_resume */ 1197 1198 /* step 6: restart each of the previously 1199 * Running endpoints by ringing their doorbells 1200 */ 1201 1202 spin_unlock_irq(&xhci->lock); 1203 1204 xhci_dbc_resume(xhci); 1205 1206 done: 1207 if (retval == 0) { 1208 /* Resume root hubs only when have pending events. */ 1209 if (xhci_pending_portevent(xhci)) { 1210 usb_hcd_resume_root_hub(xhci->shared_hcd); 1211 usb_hcd_resume_root_hub(hcd); 1212 } 1213 } 1214 1215 /* 1216 * If system is subject to the Quirk, Compliance Mode Timer needs to 1217 * be re-initialized Always after a system resume. Ports are subject 1218 * to suffer the Compliance Mode issue again. It doesn't matter if 1219 * ports have entered previously to U0 before system's suspension. 1220 */ 1221 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1222 compliance_mode_recovery_timer_init(xhci); 1223 1224 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1225 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1226 1227 /* Re-enable port polling. */ 1228 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1229 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1230 usb_hcd_poll_rh_status(xhci->shared_hcd); 1231 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1232 usb_hcd_poll_rh_status(hcd); 1233 1234 return retval; 1235 } 1236 EXPORT_SYMBOL_GPL(xhci_resume); 1237 #endif /* CONFIG_PM */ 1238 1239 /*-------------------------------------------------------------------------*/ 1240 1241 /** 1242 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1243 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1244 * value to right shift 1 for the bitmask. 1245 * 1246 * Index = (epnum * 2) + direction - 1, 1247 * where direction = 0 for OUT, 1 for IN. 1248 * For control endpoints, the IN index is used (OUT index is unused), so 1249 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1250 */ 1251 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1252 { 1253 unsigned int index; 1254 if (usb_endpoint_xfer_control(desc)) 1255 index = (unsigned int) (usb_endpoint_num(desc)*2); 1256 else 1257 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1258 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1259 return index; 1260 } 1261 1262 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1263 * address from the XHCI endpoint index. 1264 */ 1265 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1266 { 1267 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1268 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1269 return direction | number; 1270 } 1271 1272 /* Find the flag for this endpoint (for use in the control context). Use the 1273 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1274 * bit 1, etc. 1275 */ 1276 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1277 { 1278 return 1 << (xhci_get_endpoint_index(desc) + 1); 1279 } 1280 1281 /* Find the flag for this endpoint (for use in the control context). Use the 1282 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1283 * bit 1, etc. 1284 */ 1285 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1286 { 1287 return 1 << (ep_index + 1); 1288 } 1289 1290 /* Compute the last valid endpoint context index. Basically, this is the 1291 * endpoint index plus one. For slot contexts with more than valid endpoint, 1292 * we find the most significant bit set in the added contexts flags. 1293 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1294 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1295 */ 1296 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1297 { 1298 return fls(added_ctxs) - 1; 1299 } 1300 1301 /* Returns 1 if the arguments are OK; 1302 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1303 */ 1304 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1305 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1306 const char *func) { 1307 struct xhci_hcd *xhci; 1308 struct xhci_virt_device *virt_dev; 1309 1310 if (!hcd || (check_ep && !ep) || !udev) { 1311 pr_debug("xHCI %s called with invalid args\n", func); 1312 return -EINVAL; 1313 } 1314 if (!udev->parent) { 1315 pr_debug("xHCI %s called for root hub\n", func); 1316 return 0; 1317 } 1318 1319 xhci = hcd_to_xhci(hcd); 1320 if (check_virt_dev) { 1321 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1322 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1323 func); 1324 return -EINVAL; 1325 } 1326 1327 virt_dev = xhci->devs[udev->slot_id]; 1328 if (virt_dev->udev != udev) { 1329 xhci_dbg(xhci, "xHCI %s called with udev and " 1330 "virt_dev does not match\n", func); 1331 return -EINVAL; 1332 } 1333 } 1334 1335 if (xhci->xhc_state & XHCI_STATE_HALTED) 1336 return -ENODEV; 1337 1338 return 1; 1339 } 1340 1341 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1342 struct usb_device *udev, struct xhci_command *command, 1343 bool ctx_change, bool must_succeed); 1344 1345 /* 1346 * Full speed devices may have a max packet size greater than 8 bytes, but the 1347 * USB core doesn't know that until it reads the first 8 bytes of the 1348 * descriptor. If the usb_device's max packet size changes after that point, 1349 * we need to issue an evaluate context command and wait on it. 1350 */ 1351 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1352 unsigned int ep_index, struct urb *urb) 1353 { 1354 struct xhci_container_ctx *out_ctx; 1355 struct xhci_input_control_ctx *ctrl_ctx; 1356 struct xhci_ep_ctx *ep_ctx; 1357 struct xhci_command *command; 1358 int max_packet_size; 1359 int hw_max_packet_size; 1360 int ret = 0; 1361 1362 out_ctx = xhci->devs[slot_id]->out_ctx; 1363 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1364 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1365 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1366 if (hw_max_packet_size != max_packet_size) { 1367 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1368 "Max Packet Size for ep 0 changed."); 1369 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1370 "Max packet size in usb_device = %d", 1371 max_packet_size); 1372 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1373 "Max packet size in xHCI HW = %d", 1374 hw_max_packet_size); 1375 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1376 "Issuing evaluate context command."); 1377 1378 /* Set up the input context flags for the command */ 1379 /* FIXME: This won't work if a non-default control endpoint 1380 * changes max packet sizes. 1381 */ 1382 1383 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1384 if (!command) 1385 return -ENOMEM; 1386 1387 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1388 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1389 if (!ctrl_ctx) { 1390 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1391 __func__); 1392 ret = -ENOMEM; 1393 goto command_cleanup; 1394 } 1395 /* Set up the modified control endpoint 0 */ 1396 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1397 xhci->devs[slot_id]->out_ctx, ep_index); 1398 1399 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1400 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1401 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1402 1403 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1404 ctrl_ctx->drop_flags = 0; 1405 1406 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1407 true, false); 1408 1409 /* Clean up the input context for later use by bandwidth 1410 * functions. 1411 */ 1412 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1413 command_cleanup: 1414 kfree(command->completion); 1415 kfree(command); 1416 } 1417 return ret; 1418 } 1419 1420 /* 1421 * non-error returns are a promise to giveback() the urb later 1422 * we drop ownership so next owner (or urb unlink) can get it 1423 */ 1424 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1425 { 1426 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1427 unsigned long flags; 1428 int ret = 0; 1429 unsigned int slot_id, ep_index; 1430 unsigned int *ep_state; 1431 struct urb_priv *urb_priv; 1432 int num_tds; 1433 1434 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1435 true, true, __func__) <= 0) 1436 return -EINVAL; 1437 1438 slot_id = urb->dev->slot_id; 1439 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1440 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1441 1442 if (!HCD_HW_ACCESSIBLE(hcd)) { 1443 if (!in_interrupt()) 1444 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1445 return -ESHUTDOWN; 1446 } 1447 1448 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1449 num_tds = urb->number_of_packets; 1450 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1451 urb->transfer_buffer_length > 0 && 1452 urb->transfer_flags & URB_ZERO_PACKET && 1453 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1454 num_tds = 2; 1455 else 1456 num_tds = 1; 1457 1458 urb_priv = kzalloc(sizeof(struct urb_priv) + 1459 num_tds * sizeof(struct xhci_td), mem_flags); 1460 if (!urb_priv) 1461 return -ENOMEM; 1462 1463 urb_priv->num_tds = num_tds; 1464 urb_priv->num_tds_done = 0; 1465 urb->hcpriv = urb_priv; 1466 1467 trace_xhci_urb_enqueue(urb); 1468 1469 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1470 /* Check to see if the max packet size for the default control 1471 * endpoint changed during FS device enumeration 1472 */ 1473 if (urb->dev->speed == USB_SPEED_FULL) { 1474 ret = xhci_check_maxpacket(xhci, slot_id, 1475 ep_index, urb); 1476 if (ret < 0) { 1477 xhci_urb_free_priv(urb_priv); 1478 urb->hcpriv = NULL; 1479 return ret; 1480 } 1481 } 1482 } 1483 1484 spin_lock_irqsave(&xhci->lock, flags); 1485 1486 if (xhci->xhc_state & XHCI_STATE_DYING) { 1487 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1488 urb->ep->desc.bEndpointAddress, urb); 1489 ret = -ESHUTDOWN; 1490 goto free_priv; 1491 } 1492 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1493 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1494 *ep_state); 1495 ret = -EINVAL; 1496 goto free_priv; 1497 } 1498 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1499 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1500 ret = -EINVAL; 1501 goto free_priv; 1502 } 1503 1504 switch (usb_endpoint_type(&urb->ep->desc)) { 1505 1506 case USB_ENDPOINT_XFER_CONTROL: 1507 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1508 slot_id, ep_index); 1509 break; 1510 case USB_ENDPOINT_XFER_BULK: 1511 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1512 slot_id, ep_index); 1513 break; 1514 case USB_ENDPOINT_XFER_INT: 1515 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1516 slot_id, ep_index); 1517 break; 1518 case USB_ENDPOINT_XFER_ISOC: 1519 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1520 slot_id, ep_index); 1521 } 1522 1523 if (ret) { 1524 free_priv: 1525 xhci_urb_free_priv(urb_priv); 1526 urb->hcpriv = NULL; 1527 } 1528 spin_unlock_irqrestore(&xhci->lock, flags); 1529 return ret; 1530 } 1531 1532 /* 1533 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1534 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1535 * should pick up where it left off in the TD, unless a Set Transfer Ring 1536 * Dequeue Pointer is issued. 1537 * 1538 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1539 * the ring. Since the ring is a contiguous structure, they can't be physically 1540 * removed. Instead, there are two options: 1541 * 1542 * 1) If the HC is in the middle of processing the URB to be canceled, we 1543 * simply move the ring's dequeue pointer past those TRBs using the Set 1544 * Transfer Ring Dequeue Pointer command. This will be the common case, 1545 * when drivers timeout on the last submitted URB and attempt to cancel. 1546 * 1547 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1548 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1549 * HC will need to invalidate the any TRBs it has cached after the stop 1550 * endpoint command, as noted in the xHCI 0.95 errata. 1551 * 1552 * 3) The TD may have completed by the time the Stop Endpoint Command 1553 * completes, so software needs to handle that case too. 1554 * 1555 * This function should protect against the TD enqueueing code ringing the 1556 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1557 * It also needs to account for multiple cancellations on happening at the same 1558 * time for the same endpoint. 1559 * 1560 * Note that this function can be called in any context, or so says 1561 * usb_hcd_unlink_urb() 1562 */ 1563 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1564 { 1565 unsigned long flags; 1566 int ret, i; 1567 u32 temp; 1568 struct xhci_hcd *xhci; 1569 struct urb_priv *urb_priv; 1570 struct xhci_td *td; 1571 unsigned int ep_index; 1572 struct xhci_ring *ep_ring; 1573 struct xhci_virt_ep *ep; 1574 struct xhci_command *command; 1575 struct xhci_virt_device *vdev; 1576 1577 xhci = hcd_to_xhci(hcd); 1578 spin_lock_irqsave(&xhci->lock, flags); 1579 1580 trace_xhci_urb_dequeue(urb); 1581 1582 /* Make sure the URB hasn't completed or been unlinked already */ 1583 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1584 if (ret) 1585 goto done; 1586 1587 /* give back URB now if we can't queue it for cancel */ 1588 vdev = xhci->devs[urb->dev->slot_id]; 1589 urb_priv = urb->hcpriv; 1590 if (!vdev || !urb_priv) 1591 goto err_giveback; 1592 1593 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1594 ep = &vdev->eps[ep_index]; 1595 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1596 if (!ep || !ep_ring) 1597 goto err_giveback; 1598 1599 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1600 temp = readl(&xhci->op_regs->status); 1601 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1602 xhci_hc_died(xhci); 1603 goto done; 1604 } 1605 1606 /* 1607 * check ring is not re-allocated since URB was enqueued. If it is, then 1608 * make sure none of the ring related pointers in this URB private data 1609 * are touched, such as td_list, otherwise we overwrite freed data 1610 */ 1611 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1612 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1613 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1614 td = &urb_priv->td[i]; 1615 if (!list_empty(&td->cancelled_td_list)) 1616 list_del_init(&td->cancelled_td_list); 1617 } 1618 goto err_giveback; 1619 } 1620 1621 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1622 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1623 "HC halted, freeing TD manually."); 1624 for (i = urb_priv->num_tds_done; 1625 i < urb_priv->num_tds; 1626 i++) { 1627 td = &urb_priv->td[i]; 1628 if (!list_empty(&td->td_list)) 1629 list_del_init(&td->td_list); 1630 if (!list_empty(&td->cancelled_td_list)) 1631 list_del_init(&td->cancelled_td_list); 1632 } 1633 goto err_giveback; 1634 } 1635 1636 i = urb_priv->num_tds_done; 1637 if (i < urb_priv->num_tds) 1638 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1639 "Cancel URB %p, dev %s, ep 0x%x, " 1640 "starting at offset 0x%llx", 1641 urb, urb->dev->devpath, 1642 urb->ep->desc.bEndpointAddress, 1643 (unsigned long long) xhci_trb_virt_to_dma( 1644 urb_priv->td[i].start_seg, 1645 urb_priv->td[i].first_trb)); 1646 1647 for (; i < urb_priv->num_tds; i++) { 1648 td = &urb_priv->td[i]; 1649 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1650 } 1651 1652 /* Queue a stop endpoint command, but only if this is 1653 * the first cancellation to be handled. 1654 */ 1655 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1656 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1657 if (!command) { 1658 ret = -ENOMEM; 1659 goto done; 1660 } 1661 ep->ep_state |= EP_STOP_CMD_PENDING; 1662 ep->stop_cmd_timer.expires = jiffies + 1663 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1664 add_timer(&ep->stop_cmd_timer); 1665 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1666 ep_index, 0); 1667 xhci_ring_cmd_db(xhci); 1668 } 1669 done: 1670 spin_unlock_irqrestore(&xhci->lock, flags); 1671 return ret; 1672 1673 err_giveback: 1674 if (urb_priv) 1675 xhci_urb_free_priv(urb_priv); 1676 usb_hcd_unlink_urb_from_ep(hcd, urb); 1677 spin_unlock_irqrestore(&xhci->lock, flags); 1678 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1679 return ret; 1680 } 1681 1682 /* Drop an endpoint from a new bandwidth configuration for this device. 1683 * Only one call to this function is allowed per endpoint before 1684 * check_bandwidth() or reset_bandwidth() must be called. 1685 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1686 * add the endpoint to the schedule with possibly new parameters denoted by a 1687 * different endpoint descriptor in usb_host_endpoint. 1688 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1689 * not allowed. 1690 * 1691 * The USB core will not allow URBs to be queued to an endpoint that is being 1692 * disabled, so there's no need for mutual exclusion to protect 1693 * the xhci->devs[slot_id] structure. 1694 */ 1695 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1696 struct usb_host_endpoint *ep) 1697 { 1698 struct xhci_hcd *xhci; 1699 struct xhci_container_ctx *in_ctx, *out_ctx; 1700 struct xhci_input_control_ctx *ctrl_ctx; 1701 unsigned int ep_index; 1702 struct xhci_ep_ctx *ep_ctx; 1703 u32 drop_flag; 1704 u32 new_add_flags, new_drop_flags; 1705 int ret; 1706 1707 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1708 if (ret <= 0) 1709 return ret; 1710 xhci = hcd_to_xhci(hcd); 1711 if (xhci->xhc_state & XHCI_STATE_DYING) 1712 return -ENODEV; 1713 1714 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1715 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1716 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1717 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1718 __func__, drop_flag); 1719 return 0; 1720 } 1721 1722 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1723 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1724 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1725 if (!ctrl_ctx) { 1726 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1727 __func__); 1728 return 0; 1729 } 1730 1731 ep_index = xhci_get_endpoint_index(&ep->desc); 1732 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1733 /* If the HC already knows the endpoint is disabled, 1734 * or the HCD has noted it is disabled, ignore this request 1735 */ 1736 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1737 le32_to_cpu(ctrl_ctx->drop_flags) & 1738 xhci_get_endpoint_flag(&ep->desc)) { 1739 /* Do not warn when called after a usb_device_reset */ 1740 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1741 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1742 __func__, ep); 1743 return 0; 1744 } 1745 1746 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1747 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1748 1749 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1750 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1751 1752 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1753 1754 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1755 1756 if (xhci->quirks & XHCI_MTK_HOST) 1757 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1758 1759 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1760 (unsigned int) ep->desc.bEndpointAddress, 1761 udev->slot_id, 1762 (unsigned int) new_drop_flags, 1763 (unsigned int) new_add_flags); 1764 return 0; 1765 } 1766 1767 /* Add an endpoint to a new possible bandwidth configuration for this device. 1768 * Only one call to this function is allowed per endpoint before 1769 * check_bandwidth() or reset_bandwidth() must be called. 1770 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1771 * add the endpoint to the schedule with possibly new parameters denoted by a 1772 * different endpoint descriptor in usb_host_endpoint. 1773 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1774 * not allowed. 1775 * 1776 * The USB core will not allow URBs to be queued to an endpoint until the 1777 * configuration or alt setting is installed in the device, so there's no need 1778 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1779 */ 1780 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1781 struct usb_host_endpoint *ep) 1782 { 1783 struct xhci_hcd *xhci; 1784 struct xhci_container_ctx *in_ctx; 1785 unsigned int ep_index; 1786 struct xhci_input_control_ctx *ctrl_ctx; 1787 u32 added_ctxs; 1788 u32 new_add_flags, new_drop_flags; 1789 struct xhci_virt_device *virt_dev; 1790 int ret = 0; 1791 1792 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1793 if (ret <= 0) { 1794 /* So we won't queue a reset ep command for a root hub */ 1795 ep->hcpriv = NULL; 1796 return ret; 1797 } 1798 xhci = hcd_to_xhci(hcd); 1799 if (xhci->xhc_state & XHCI_STATE_DYING) 1800 return -ENODEV; 1801 1802 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1803 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1804 /* FIXME when we have to issue an evaluate endpoint command to 1805 * deal with ep0 max packet size changing once we get the 1806 * descriptors 1807 */ 1808 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1809 __func__, added_ctxs); 1810 return 0; 1811 } 1812 1813 virt_dev = xhci->devs[udev->slot_id]; 1814 in_ctx = virt_dev->in_ctx; 1815 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1816 if (!ctrl_ctx) { 1817 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1818 __func__); 1819 return 0; 1820 } 1821 1822 ep_index = xhci_get_endpoint_index(&ep->desc); 1823 /* If this endpoint is already in use, and the upper layers are trying 1824 * to add it again without dropping it, reject the addition. 1825 */ 1826 if (virt_dev->eps[ep_index].ring && 1827 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1828 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1829 "without dropping it.\n", 1830 (unsigned int) ep->desc.bEndpointAddress); 1831 return -EINVAL; 1832 } 1833 1834 /* If the HCD has already noted the endpoint is enabled, 1835 * ignore this request. 1836 */ 1837 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1838 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1839 __func__, ep); 1840 return 0; 1841 } 1842 1843 /* 1844 * Configuration and alternate setting changes must be done in 1845 * process context, not interrupt context (or so documenation 1846 * for usb_set_interface() and usb_set_configuration() claim). 1847 */ 1848 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1849 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1850 __func__, ep->desc.bEndpointAddress); 1851 return -ENOMEM; 1852 } 1853 1854 if (xhci->quirks & XHCI_MTK_HOST) { 1855 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1856 if (ret < 0) { 1857 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring); 1858 virt_dev->eps[ep_index].new_ring = NULL; 1859 return ret; 1860 } 1861 } 1862 1863 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1864 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1865 1866 /* If xhci_endpoint_disable() was called for this endpoint, but the 1867 * xHC hasn't been notified yet through the check_bandwidth() call, 1868 * this re-adds a new state for the endpoint from the new endpoint 1869 * descriptors. We must drop and re-add this endpoint, so we leave the 1870 * drop flags alone. 1871 */ 1872 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1873 1874 /* Store the usb_device pointer for later use */ 1875 ep->hcpriv = udev; 1876 1877 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index); 1878 1879 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1880 (unsigned int) ep->desc.bEndpointAddress, 1881 udev->slot_id, 1882 (unsigned int) new_drop_flags, 1883 (unsigned int) new_add_flags); 1884 return 0; 1885 } 1886 1887 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1888 { 1889 struct xhci_input_control_ctx *ctrl_ctx; 1890 struct xhci_ep_ctx *ep_ctx; 1891 struct xhci_slot_ctx *slot_ctx; 1892 int i; 1893 1894 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1895 if (!ctrl_ctx) { 1896 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1897 __func__); 1898 return; 1899 } 1900 1901 /* When a device's add flag and drop flag are zero, any subsequent 1902 * configure endpoint command will leave that endpoint's state 1903 * untouched. Make sure we don't leave any old state in the input 1904 * endpoint contexts. 1905 */ 1906 ctrl_ctx->drop_flags = 0; 1907 ctrl_ctx->add_flags = 0; 1908 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1909 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1910 /* Endpoint 0 is always valid */ 1911 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1912 for (i = 1; i < 31; i++) { 1913 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1914 ep_ctx->ep_info = 0; 1915 ep_ctx->ep_info2 = 0; 1916 ep_ctx->deq = 0; 1917 ep_ctx->tx_info = 0; 1918 } 1919 } 1920 1921 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1922 struct usb_device *udev, u32 *cmd_status) 1923 { 1924 int ret; 1925 1926 switch (*cmd_status) { 1927 case COMP_COMMAND_ABORTED: 1928 case COMP_COMMAND_RING_STOPPED: 1929 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1930 ret = -ETIME; 1931 break; 1932 case COMP_RESOURCE_ERROR: 1933 dev_warn(&udev->dev, 1934 "Not enough host controller resources for new device state.\n"); 1935 ret = -ENOMEM; 1936 /* FIXME: can we allocate more resources for the HC? */ 1937 break; 1938 case COMP_BANDWIDTH_ERROR: 1939 case COMP_SECONDARY_BANDWIDTH_ERROR: 1940 dev_warn(&udev->dev, 1941 "Not enough bandwidth for new device state.\n"); 1942 ret = -ENOSPC; 1943 /* FIXME: can we go back to the old state? */ 1944 break; 1945 case COMP_TRB_ERROR: 1946 /* the HCD set up something wrong */ 1947 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1948 "add flag = 1, " 1949 "and endpoint is not disabled.\n"); 1950 ret = -EINVAL; 1951 break; 1952 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1953 dev_warn(&udev->dev, 1954 "ERROR: Incompatible device for endpoint configure command.\n"); 1955 ret = -ENODEV; 1956 break; 1957 case COMP_SUCCESS: 1958 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1959 "Successful Endpoint Configure command"); 1960 ret = 0; 1961 break; 1962 default: 1963 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1964 *cmd_status); 1965 ret = -EINVAL; 1966 break; 1967 } 1968 return ret; 1969 } 1970 1971 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1972 struct usb_device *udev, u32 *cmd_status) 1973 { 1974 int ret; 1975 1976 switch (*cmd_status) { 1977 case COMP_COMMAND_ABORTED: 1978 case COMP_COMMAND_RING_STOPPED: 1979 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1980 ret = -ETIME; 1981 break; 1982 case COMP_PARAMETER_ERROR: 1983 dev_warn(&udev->dev, 1984 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1985 ret = -EINVAL; 1986 break; 1987 case COMP_SLOT_NOT_ENABLED_ERROR: 1988 dev_warn(&udev->dev, 1989 "WARN: slot not enabled for evaluate context command.\n"); 1990 ret = -EINVAL; 1991 break; 1992 case COMP_CONTEXT_STATE_ERROR: 1993 dev_warn(&udev->dev, 1994 "WARN: invalid context state for evaluate context command.\n"); 1995 ret = -EINVAL; 1996 break; 1997 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1998 dev_warn(&udev->dev, 1999 "ERROR: Incompatible device for evaluate context command.\n"); 2000 ret = -ENODEV; 2001 break; 2002 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2003 /* Max Exit Latency too large error */ 2004 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2005 ret = -EINVAL; 2006 break; 2007 case COMP_SUCCESS: 2008 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2009 "Successful evaluate context command"); 2010 ret = 0; 2011 break; 2012 default: 2013 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2014 *cmd_status); 2015 ret = -EINVAL; 2016 break; 2017 } 2018 return ret; 2019 } 2020 2021 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2022 struct xhci_input_control_ctx *ctrl_ctx) 2023 { 2024 u32 valid_add_flags; 2025 u32 valid_drop_flags; 2026 2027 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2028 * (bit 1). The default control endpoint is added during the Address 2029 * Device command and is never removed until the slot is disabled. 2030 */ 2031 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2032 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2033 2034 /* Use hweight32 to count the number of ones in the add flags, or 2035 * number of endpoints added. Don't count endpoints that are changed 2036 * (both added and dropped). 2037 */ 2038 return hweight32(valid_add_flags) - 2039 hweight32(valid_add_flags & valid_drop_flags); 2040 } 2041 2042 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2043 struct xhci_input_control_ctx *ctrl_ctx) 2044 { 2045 u32 valid_add_flags; 2046 u32 valid_drop_flags; 2047 2048 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2049 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2050 2051 return hweight32(valid_drop_flags) - 2052 hweight32(valid_add_flags & valid_drop_flags); 2053 } 2054 2055 /* 2056 * We need to reserve the new number of endpoints before the configure endpoint 2057 * command completes. We can't subtract the dropped endpoints from the number 2058 * of active endpoints until the command completes because we can oversubscribe 2059 * the host in this case: 2060 * 2061 * - the first configure endpoint command drops more endpoints than it adds 2062 * - a second configure endpoint command that adds more endpoints is queued 2063 * - the first configure endpoint command fails, so the config is unchanged 2064 * - the second command may succeed, even though there isn't enough resources 2065 * 2066 * Must be called with xhci->lock held. 2067 */ 2068 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2069 struct xhci_input_control_ctx *ctrl_ctx) 2070 { 2071 u32 added_eps; 2072 2073 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2074 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2075 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2076 "Not enough ep ctxs: " 2077 "%u active, need to add %u, limit is %u.", 2078 xhci->num_active_eps, added_eps, 2079 xhci->limit_active_eps); 2080 return -ENOMEM; 2081 } 2082 xhci->num_active_eps += added_eps; 2083 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2084 "Adding %u ep ctxs, %u now active.", added_eps, 2085 xhci->num_active_eps); 2086 return 0; 2087 } 2088 2089 /* 2090 * The configure endpoint was failed by the xHC for some other reason, so we 2091 * need to revert the resources that failed configuration would have used. 2092 * 2093 * Must be called with xhci->lock held. 2094 */ 2095 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2096 struct xhci_input_control_ctx *ctrl_ctx) 2097 { 2098 u32 num_failed_eps; 2099 2100 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2101 xhci->num_active_eps -= num_failed_eps; 2102 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2103 "Removing %u failed ep ctxs, %u now active.", 2104 num_failed_eps, 2105 xhci->num_active_eps); 2106 } 2107 2108 /* 2109 * Now that the command has completed, clean up the active endpoint count by 2110 * subtracting out the endpoints that were dropped (but not changed). 2111 * 2112 * Must be called with xhci->lock held. 2113 */ 2114 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2115 struct xhci_input_control_ctx *ctrl_ctx) 2116 { 2117 u32 num_dropped_eps; 2118 2119 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2120 xhci->num_active_eps -= num_dropped_eps; 2121 if (num_dropped_eps) 2122 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2123 "Removing %u dropped ep ctxs, %u now active.", 2124 num_dropped_eps, 2125 xhci->num_active_eps); 2126 } 2127 2128 static unsigned int xhci_get_block_size(struct usb_device *udev) 2129 { 2130 switch (udev->speed) { 2131 case USB_SPEED_LOW: 2132 case USB_SPEED_FULL: 2133 return FS_BLOCK; 2134 case USB_SPEED_HIGH: 2135 return HS_BLOCK; 2136 case USB_SPEED_SUPER: 2137 case USB_SPEED_SUPER_PLUS: 2138 return SS_BLOCK; 2139 case USB_SPEED_UNKNOWN: 2140 case USB_SPEED_WIRELESS: 2141 default: 2142 /* Should never happen */ 2143 return 1; 2144 } 2145 } 2146 2147 static unsigned int 2148 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2149 { 2150 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2151 return LS_OVERHEAD; 2152 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2153 return FS_OVERHEAD; 2154 return HS_OVERHEAD; 2155 } 2156 2157 /* If we are changing a LS/FS device under a HS hub, 2158 * make sure (if we are activating a new TT) that the HS bus has enough 2159 * bandwidth for this new TT. 2160 */ 2161 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2162 struct xhci_virt_device *virt_dev, 2163 int old_active_eps) 2164 { 2165 struct xhci_interval_bw_table *bw_table; 2166 struct xhci_tt_bw_info *tt_info; 2167 2168 /* Find the bandwidth table for the root port this TT is attached to. */ 2169 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2170 tt_info = virt_dev->tt_info; 2171 /* If this TT already had active endpoints, the bandwidth for this TT 2172 * has already been added. Removing all periodic endpoints (and thus 2173 * making the TT enactive) will only decrease the bandwidth used. 2174 */ 2175 if (old_active_eps) 2176 return 0; 2177 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2178 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2179 return -ENOMEM; 2180 return 0; 2181 } 2182 /* Not sure why we would have no new active endpoints... 2183 * 2184 * Maybe because of an Evaluate Context change for a hub update or a 2185 * control endpoint 0 max packet size change? 2186 * FIXME: skip the bandwidth calculation in that case. 2187 */ 2188 return 0; 2189 } 2190 2191 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2192 struct xhci_virt_device *virt_dev) 2193 { 2194 unsigned int bw_reserved; 2195 2196 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2197 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2198 return -ENOMEM; 2199 2200 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2201 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2202 return -ENOMEM; 2203 2204 return 0; 2205 } 2206 2207 /* 2208 * This algorithm is a very conservative estimate of the worst-case scheduling 2209 * scenario for any one interval. The hardware dynamically schedules the 2210 * packets, so we can't tell which microframe could be the limiting factor in 2211 * the bandwidth scheduling. This only takes into account periodic endpoints. 2212 * 2213 * Obviously, we can't solve an NP complete problem to find the minimum worst 2214 * case scenario. Instead, we come up with an estimate that is no less than 2215 * the worst case bandwidth used for any one microframe, but may be an 2216 * over-estimate. 2217 * 2218 * We walk the requirements for each endpoint by interval, starting with the 2219 * smallest interval, and place packets in the schedule where there is only one 2220 * possible way to schedule packets for that interval. In order to simplify 2221 * this algorithm, we record the largest max packet size for each interval, and 2222 * assume all packets will be that size. 2223 * 2224 * For interval 0, we obviously must schedule all packets for each interval. 2225 * The bandwidth for interval 0 is just the amount of data to be transmitted 2226 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2227 * the number of packets). 2228 * 2229 * For interval 1, we have two possible microframes to schedule those packets 2230 * in. For this algorithm, if we can schedule the same number of packets for 2231 * each possible scheduling opportunity (each microframe), we will do so. The 2232 * remaining number of packets will be saved to be transmitted in the gaps in 2233 * the next interval's scheduling sequence. 2234 * 2235 * As we move those remaining packets to be scheduled with interval 2 packets, 2236 * we have to double the number of remaining packets to transmit. This is 2237 * because the intervals are actually powers of 2, and we would be transmitting 2238 * the previous interval's packets twice in this interval. We also have to be 2239 * sure that when we look at the largest max packet size for this interval, we 2240 * also look at the largest max packet size for the remaining packets and take 2241 * the greater of the two. 2242 * 2243 * The algorithm continues to evenly distribute packets in each scheduling 2244 * opportunity, and push the remaining packets out, until we get to the last 2245 * interval. Then those packets and their associated overhead are just added 2246 * to the bandwidth used. 2247 */ 2248 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2249 struct xhci_virt_device *virt_dev, 2250 int old_active_eps) 2251 { 2252 unsigned int bw_reserved; 2253 unsigned int max_bandwidth; 2254 unsigned int bw_used; 2255 unsigned int block_size; 2256 struct xhci_interval_bw_table *bw_table; 2257 unsigned int packet_size = 0; 2258 unsigned int overhead = 0; 2259 unsigned int packets_transmitted = 0; 2260 unsigned int packets_remaining = 0; 2261 unsigned int i; 2262 2263 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2264 return xhci_check_ss_bw(xhci, virt_dev); 2265 2266 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2267 max_bandwidth = HS_BW_LIMIT; 2268 /* Convert percent of bus BW reserved to blocks reserved */ 2269 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2270 } else { 2271 max_bandwidth = FS_BW_LIMIT; 2272 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2273 } 2274 2275 bw_table = virt_dev->bw_table; 2276 /* We need to translate the max packet size and max ESIT payloads into 2277 * the units the hardware uses. 2278 */ 2279 block_size = xhci_get_block_size(virt_dev->udev); 2280 2281 /* If we are manipulating a LS/FS device under a HS hub, double check 2282 * that the HS bus has enough bandwidth if we are activing a new TT. 2283 */ 2284 if (virt_dev->tt_info) { 2285 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2286 "Recalculating BW for rootport %u", 2287 virt_dev->real_port); 2288 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2289 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2290 "newly activated TT.\n"); 2291 return -ENOMEM; 2292 } 2293 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2294 "Recalculating BW for TT slot %u port %u", 2295 virt_dev->tt_info->slot_id, 2296 virt_dev->tt_info->ttport); 2297 } else { 2298 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2299 "Recalculating BW for rootport %u", 2300 virt_dev->real_port); 2301 } 2302 2303 /* Add in how much bandwidth will be used for interval zero, or the 2304 * rounded max ESIT payload + number of packets * largest overhead. 2305 */ 2306 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2307 bw_table->interval_bw[0].num_packets * 2308 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2309 2310 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2311 unsigned int bw_added; 2312 unsigned int largest_mps; 2313 unsigned int interval_overhead; 2314 2315 /* 2316 * How many packets could we transmit in this interval? 2317 * If packets didn't fit in the previous interval, we will need 2318 * to transmit that many packets twice within this interval. 2319 */ 2320 packets_remaining = 2 * packets_remaining + 2321 bw_table->interval_bw[i].num_packets; 2322 2323 /* Find the largest max packet size of this or the previous 2324 * interval. 2325 */ 2326 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2327 largest_mps = 0; 2328 else { 2329 struct xhci_virt_ep *virt_ep; 2330 struct list_head *ep_entry; 2331 2332 ep_entry = bw_table->interval_bw[i].endpoints.next; 2333 virt_ep = list_entry(ep_entry, 2334 struct xhci_virt_ep, bw_endpoint_list); 2335 /* Convert to blocks, rounding up */ 2336 largest_mps = DIV_ROUND_UP( 2337 virt_ep->bw_info.max_packet_size, 2338 block_size); 2339 } 2340 if (largest_mps > packet_size) 2341 packet_size = largest_mps; 2342 2343 /* Use the larger overhead of this or the previous interval. */ 2344 interval_overhead = xhci_get_largest_overhead( 2345 &bw_table->interval_bw[i]); 2346 if (interval_overhead > overhead) 2347 overhead = interval_overhead; 2348 2349 /* How many packets can we evenly distribute across 2350 * (1 << (i + 1)) possible scheduling opportunities? 2351 */ 2352 packets_transmitted = packets_remaining >> (i + 1); 2353 2354 /* Add in the bandwidth used for those scheduled packets */ 2355 bw_added = packets_transmitted * (overhead + packet_size); 2356 2357 /* How many packets do we have remaining to transmit? */ 2358 packets_remaining = packets_remaining % (1 << (i + 1)); 2359 2360 /* What largest max packet size should those packets have? */ 2361 /* If we've transmitted all packets, don't carry over the 2362 * largest packet size. 2363 */ 2364 if (packets_remaining == 0) { 2365 packet_size = 0; 2366 overhead = 0; 2367 } else if (packets_transmitted > 0) { 2368 /* Otherwise if we do have remaining packets, and we've 2369 * scheduled some packets in this interval, take the 2370 * largest max packet size from endpoints with this 2371 * interval. 2372 */ 2373 packet_size = largest_mps; 2374 overhead = interval_overhead; 2375 } 2376 /* Otherwise carry over packet_size and overhead from the last 2377 * time we had a remainder. 2378 */ 2379 bw_used += bw_added; 2380 if (bw_used > max_bandwidth) { 2381 xhci_warn(xhci, "Not enough bandwidth. " 2382 "Proposed: %u, Max: %u\n", 2383 bw_used, max_bandwidth); 2384 return -ENOMEM; 2385 } 2386 } 2387 /* 2388 * Ok, we know we have some packets left over after even-handedly 2389 * scheduling interval 15. We don't know which microframes they will 2390 * fit into, so we over-schedule and say they will be scheduled every 2391 * microframe. 2392 */ 2393 if (packets_remaining > 0) 2394 bw_used += overhead + packet_size; 2395 2396 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2397 unsigned int port_index = virt_dev->real_port - 1; 2398 2399 /* OK, we're manipulating a HS device attached to a 2400 * root port bandwidth domain. Include the number of active TTs 2401 * in the bandwidth used. 2402 */ 2403 bw_used += TT_HS_OVERHEAD * 2404 xhci->rh_bw[port_index].num_active_tts; 2405 } 2406 2407 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2408 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2409 "Available: %u " "percent", 2410 bw_used, max_bandwidth, bw_reserved, 2411 (max_bandwidth - bw_used - bw_reserved) * 100 / 2412 max_bandwidth); 2413 2414 bw_used += bw_reserved; 2415 if (bw_used > max_bandwidth) { 2416 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2417 bw_used, max_bandwidth); 2418 return -ENOMEM; 2419 } 2420 2421 bw_table->bw_used = bw_used; 2422 return 0; 2423 } 2424 2425 static bool xhci_is_async_ep(unsigned int ep_type) 2426 { 2427 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2428 ep_type != ISOC_IN_EP && 2429 ep_type != INT_IN_EP); 2430 } 2431 2432 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2433 { 2434 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2435 } 2436 2437 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2438 { 2439 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2440 2441 if (ep_bw->ep_interval == 0) 2442 return SS_OVERHEAD_BURST + 2443 (ep_bw->mult * ep_bw->num_packets * 2444 (SS_OVERHEAD + mps)); 2445 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2446 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2447 1 << ep_bw->ep_interval); 2448 2449 } 2450 2451 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2452 struct xhci_bw_info *ep_bw, 2453 struct xhci_interval_bw_table *bw_table, 2454 struct usb_device *udev, 2455 struct xhci_virt_ep *virt_ep, 2456 struct xhci_tt_bw_info *tt_info) 2457 { 2458 struct xhci_interval_bw *interval_bw; 2459 int normalized_interval; 2460 2461 if (xhci_is_async_ep(ep_bw->type)) 2462 return; 2463 2464 if (udev->speed >= USB_SPEED_SUPER) { 2465 if (xhci_is_sync_in_ep(ep_bw->type)) 2466 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2467 xhci_get_ss_bw_consumed(ep_bw); 2468 else 2469 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2470 xhci_get_ss_bw_consumed(ep_bw); 2471 return; 2472 } 2473 2474 /* SuperSpeed endpoints never get added to intervals in the table, so 2475 * this check is only valid for HS/FS/LS devices. 2476 */ 2477 if (list_empty(&virt_ep->bw_endpoint_list)) 2478 return; 2479 /* For LS/FS devices, we need to translate the interval expressed in 2480 * microframes to frames. 2481 */ 2482 if (udev->speed == USB_SPEED_HIGH) 2483 normalized_interval = ep_bw->ep_interval; 2484 else 2485 normalized_interval = ep_bw->ep_interval - 3; 2486 2487 if (normalized_interval == 0) 2488 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2489 interval_bw = &bw_table->interval_bw[normalized_interval]; 2490 interval_bw->num_packets -= ep_bw->num_packets; 2491 switch (udev->speed) { 2492 case USB_SPEED_LOW: 2493 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2494 break; 2495 case USB_SPEED_FULL: 2496 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2497 break; 2498 case USB_SPEED_HIGH: 2499 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2500 break; 2501 case USB_SPEED_SUPER: 2502 case USB_SPEED_SUPER_PLUS: 2503 case USB_SPEED_UNKNOWN: 2504 case USB_SPEED_WIRELESS: 2505 /* Should never happen because only LS/FS/HS endpoints will get 2506 * added to the endpoint list. 2507 */ 2508 return; 2509 } 2510 if (tt_info) 2511 tt_info->active_eps -= 1; 2512 list_del_init(&virt_ep->bw_endpoint_list); 2513 } 2514 2515 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2516 struct xhci_bw_info *ep_bw, 2517 struct xhci_interval_bw_table *bw_table, 2518 struct usb_device *udev, 2519 struct xhci_virt_ep *virt_ep, 2520 struct xhci_tt_bw_info *tt_info) 2521 { 2522 struct xhci_interval_bw *interval_bw; 2523 struct xhci_virt_ep *smaller_ep; 2524 int normalized_interval; 2525 2526 if (xhci_is_async_ep(ep_bw->type)) 2527 return; 2528 2529 if (udev->speed == USB_SPEED_SUPER) { 2530 if (xhci_is_sync_in_ep(ep_bw->type)) 2531 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2532 xhci_get_ss_bw_consumed(ep_bw); 2533 else 2534 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2535 xhci_get_ss_bw_consumed(ep_bw); 2536 return; 2537 } 2538 2539 /* For LS/FS devices, we need to translate the interval expressed in 2540 * microframes to frames. 2541 */ 2542 if (udev->speed == USB_SPEED_HIGH) 2543 normalized_interval = ep_bw->ep_interval; 2544 else 2545 normalized_interval = ep_bw->ep_interval - 3; 2546 2547 if (normalized_interval == 0) 2548 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2549 interval_bw = &bw_table->interval_bw[normalized_interval]; 2550 interval_bw->num_packets += ep_bw->num_packets; 2551 switch (udev->speed) { 2552 case USB_SPEED_LOW: 2553 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2554 break; 2555 case USB_SPEED_FULL: 2556 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2557 break; 2558 case USB_SPEED_HIGH: 2559 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2560 break; 2561 case USB_SPEED_SUPER: 2562 case USB_SPEED_SUPER_PLUS: 2563 case USB_SPEED_UNKNOWN: 2564 case USB_SPEED_WIRELESS: 2565 /* Should never happen because only LS/FS/HS endpoints will get 2566 * added to the endpoint list. 2567 */ 2568 return; 2569 } 2570 2571 if (tt_info) 2572 tt_info->active_eps += 1; 2573 /* Insert the endpoint into the list, largest max packet size first. */ 2574 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2575 bw_endpoint_list) { 2576 if (ep_bw->max_packet_size >= 2577 smaller_ep->bw_info.max_packet_size) { 2578 /* Add the new ep before the smaller endpoint */ 2579 list_add_tail(&virt_ep->bw_endpoint_list, 2580 &smaller_ep->bw_endpoint_list); 2581 return; 2582 } 2583 } 2584 /* Add the new endpoint at the end of the list. */ 2585 list_add_tail(&virt_ep->bw_endpoint_list, 2586 &interval_bw->endpoints); 2587 } 2588 2589 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2590 struct xhci_virt_device *virt_dev, 2591 int old_active_eps) 2592 { 2593 struct xhci_root_port_bw_info *rh_bw_info; 2594 if (!virt_dev->tt_info) 2595 return; 2596 2597 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2598 if (old_active_eps == 0 && 2599 virt_dev->tt_info->active_eps != 0) { 2600 rh_bw_info->num_active_tts += 1; 2601 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2602 } else if (old_active_eps != 0 && 2603 virt_dev->tt_info->active_eps == 0) { 2604 rh_bw_info->num_active_tts -= 1; 2605 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2606 } 2607 } 2608 2609 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2610 struct xhci_virt_device *virt_dev, 2611 struct xhci_container_ctx *in_ctx) 2612 { 2613 struct xhci_bw_info ep_bw_info[31]; 2614 int i; 2615 struct xhci_input_control_ctx *ctrl_ctx; 2616 int old_active_eps = 0; 2617 2618 if (virt_dev->tt_info) 2619 old_active_eps = virt_dev->tt_info->active_eps; 2620 2621 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2622 if (!ctrl_ctx) { 2623 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2624 __func__); 2625 return -ENOMEM; 2626 } 2627 2628 for (i = 0; i < 31; i++) { 2629 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2630 continue; 2631 2632 /* Make a copy of the BW info in case we need to revert this */ 2633 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2634 sizeof(ep_bw_info[i])); 2635 /* Drop the endpoint from the interval table if the endpoint is 2636 * being dropped or changed. 2637 */ 2638 if (EP_IS_DROPPED(ctrl_ctx, i)) 2639 xhci_drop_ep_from_interval_table(xhci, 2640 &virt_dev->eps[i].bw_info, 2641 virt_dev->bw_table, 2642 virt_dev->udev, 2643 &virt_dev->eps[i], 2644 virt_dev->tt_info); 2645 } 2646 /* Overwrite the information stored in the endpoints' bw_info */ 2647 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2648 for (i = 0; i < 31; i++) { 2649 /* Add any changed or added endpoints to the interval table */ 2650 if (EP_IS_ADDED(ctrl_ctx, i)) 2651 xhci_add_ep_to_interval_table(xhci, 2652 &virt_dev->eps[i].bw_info, 2653 virt_dev->bw_table, 2654 virt_dev->udev, 2655 &virt_dev->eps[i], 2656 virt_dev->tt_info); 2657 } 2658 2659 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2660 /* Ok, this fits in the bandwidth we have. 2661 * Update the number of active TTs. 2662 */ 2663 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2664 return 0; 2665 } 2666 2667 /* We don't have enough bandwidth for this, revert the stored info. */ 2668 for (i = 0; i < 31; i++) { 2669 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2670 continue; 2671 2672 /* Drop the new copies of any added or changed endpoints from 2673 * the interval table. 2674 */ 2675 if (EP_IS_ADDED(ctrl_ctx, i)) { 2676 xhci_drop_ep_from_interval_table(xhci, 2677 &virt_dev->eps[i].bw_info, 2678 virt_dev->bw_table, 2679 virt_dev->udev, 2680 &virt_dev->eps[i], 2681 virt_dev->tt_info); 2682 } 2683 /* Revert the endpoint back to its old information */ 2684 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2685 sizeof(ep_bw_info[i])); 2686 /* Add any changed or dropped endpoints back into the table */ 2687 if (EP_IS_DROPPED(ctrl_ctx, i)) 2688 xhci_add_ep_to_interval_table(xhci, 2689 &virt_dev->eps[i].bw_info, 2690 virt_dev->bw_table, 2691 virt_dev->udev, 2692 &virt_dev->eps[i], 2693 virt_dev->tt_info); 2694 } 2695 return -ENOMEM; 2696 } 2697 2698 2699 /* Issue a configure endpoint command or evaluate context command 2700 * and wait for it to finish. 2701 */ 2702 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2703 struct usb_device *udev, 2704 struct xhci_command *command, 2705 bool ctx_change, bool must_succeed) 2706 { 2707 int ret; 2708 unsigned long flags; 2709 struct xhci_input_control_ctx *ctrl_ctx; 2710 struct xhci_virt_device *virt_dev; 2711 struct xhci_slot_ctx *slot_ctx; 2712 2713 if (!command) 2714 return -EINVAL; 2715 2716 spin_lock_irqsave(&xhci->lock, flags); 2717 2718 if (xhci->xhc_state & XHCI_STATE_DYING) { 2719 spin_unlock_irqrestore(&xhci->lock, flags); 2720 return -ESHUTDOWN; 2721 } 2722 2723 virt_dev = xhci->devs[udev->slot_id]; 2724 2725 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2726 if (!ctrl_ctx) { 2727 spin_unlock_irqrestore(&xhci->lock, flags); 2728 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2729 __func__); 2730 return -ENOMEM; 2731 } 2732 2733 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2734 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2735 spin_unlock_irqrestore(&xhci->lock, flags); 2736 xhci_warn(xhci, "Not enough host resources, " 2737 "active endpoint contexts = %u\n", 2738 xhci->num_active_eps); 2739 return -ENOMEM; 2740 } 2741 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2742 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2743 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2744 xhci_free_host_resources(xhci, ctrl_ctx); 2745 spin_unlock_irqrestore(&xhci->lock, flags); 2746 xhci_warn(xhci, "Not enough bandwidth\n"); 2747 return -ENOMEM; 2748 } 2749 2750 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2751 trace_xhci_configure_endpoint(slot_ctx); 2752 2753 if (!ctx_change) 2754 ret = xhci_queue_configure_endpoint(xhci, command, 2755 command->in_ctx->dma, 2756 udev->slot_id, must_succeed); 2757 else 2758 ret = xhci_queue_evaluate_context(xhci, command, 2759 command->in_ctx->dma, 2760 udev->slot_id, must_succeed); 2761 if (ret < 0) { 2762 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2763 xhci_free_host_resources(xhci, ctrl_ctx); 2764 spin_unlock_irqrestore(&xhci->lock, flags); 2765 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2766 "FIXME allocate a new ring segment"); 2767 return -ENOMEM; 2768 } 2769 xhci_ring_cmd_db(xhci); 2770 spin_unlock_irqrestore(&xhci->lock, flags); 2771 2772 /* Wait for the configure endpoint command to complete */ 2773 wait_for_completion(command->completion); 2774 2775 if (!ctx_change) 2776 ret = xhci_configure_endpoint_result(xhci, udev, 2777 &command->status); 2778 else 2779 ret = xhci_evaluate_context_result(xhci, udev, 2780 &command->status); 2781 2782 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2783 spin_lock_irqsave(&xhci->lock, flags); 2784 /* If the command failed, remove the reserved resources. 2785 * Otherwise, clean up the estimate to include dropped eps. 2786 */ 2787 if (ret) 2788 xhci_free_host_resources(xhci, ctrl_ctx); 2789 else 2790 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2791 spin_unlock_irqrestore(&xhci->lock, flags); 2792 } 2793 return ret; 2794 } 2795 2796 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2797 struct xhci_virt_device *vdev, int i) 2798 { 2799 struct xhci_virt_ep *ep = &vdev->eps[i]; 2800 2801 if (ep->ep_state & EP_HAS_STREAMS) { 2802 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2803 xhci_get_endpoint_address(i)); 2804 xhci_free_stream_info(xhci, ep->stream_info); 2805 ep->stream_info = NULL; 2806 ep->ep_state &= ~EP_HAS_STREAMS; 2807 } 2808 } 2809 2810 /* Called after one or more calls to xhci_add_endpoint() or 2811 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2812 * to call xhci_reset_bandwidth(). 2813 * 2814 * Since we are in the middle of changing either configuration or 2815 * installing a new alt setting, the USB core won't allow URBs to be 2816 * enqueued for any endpoint on the old config or interface. Nothing 2817 * else should be touching the xhci->devs[slot_id] structure, so we 2818 * don't need to take the xhci->lock for manipulating that. 2819 */ 2820 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2821 { 2822 int i; 2823 int ret = 0; 2824 struct xhci_hcd *xhci; 2825 struct xhci_virt_device *virt_dev; 2826 struct xhci_input_control_ctx *ctrl_ctx; 2827 struct xhci_slot_ctx *slot_ctx; 2828 struct xhci_command *command; 2829 2830 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2831 if (ret <= 0) 2832 return ret; 2833 xhci = hcd_to_xhci(hcd); 2834 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2835 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2836 return -ENODEV; 2837 2838 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2839 virt_dev = xhci->devs[udev->slot_id]; 2840 2841 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2842 if (!command) 2843 return -ENOMEM; 2844 2845 command->in_ctx = virt_dev->in_ctx; 2846 2847 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2848 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2849 if (!ctrl_ctx) { 2850 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2851 __func__); 2852 ret = -ENOMEM; 2853 goto command_cleanup; 2854 } 2855 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2856 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2857 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2858 2859 /* Don't issue the command if there's no endpoints to update. */ 2860 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2861 ctrl_ctx->drop_flags == 0) { 2862 ret = 0; 2863 goto command_cleanup; 2864 } 2865 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2866 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2867 for (i = 31; i >= 1; i--) { 2868 __le32 le32 = cpu_to_le32(BIT(i)); 2869 2870 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2871 || (ctrl_ctx->add_flags & le32) || i == 1) { 2872 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2873 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2874 break; 2875 } 2876 } 2877 2878 ret = xhci_configure_endpoint(xhci, udev, command, 2879 false, false); 2880 if (ret) 2881 /* Callee should call reset_bandwidth() */ 2882 goto command_cleanup; 2883 2884 /* Free any rings that were dropped, but not changed. */ 2885 for (i = 1; i < 31; i++) { 2886 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2887 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2888 xhci_free_endpoint_ring(xhci, virt_dev, i); 2889 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2890 } 2891 } 2892 xhci_zero_in_ctx(xhci, virt_dev); 2893 /* 2894 * Install any rings for completely new endpoints or changed endpoints, 2895 * and free any old rings from changed endpoints. 2896 */ 2897 for (i = 1; i < 31; i++) { 2898 if (!virt_dev->eps[i].new_ring) 2899 continue; 2900 /* Only free the old ring if it exists. 2901 * It may not if this is the first add of an endpoint. 2902 */ 2903 if (virt_dev->eps[i].ring) { 2904 xhci_free_endpoint_ring(xhci, virt_dev, i); 2905 } 2906 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2907 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2908 virt_dev->eps[i].new_ring = NULL; 2909 } 2910 command_cleanup: 2911 kfree(command->completion); 2912 kfree(command); 2913 2914 return ret; 2915 } 2916 2917 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2918 { 2919 struct xhci_hcd *xhci; 2920 struct xhci_virt_device *virt_dev; 2921 int i, ret; 2922 2923 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2924 if (ret <= 0) 2925 return; 2926 xhci = hcd_to_xhci(hcd); 2927 2928 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2929 virt_dev = xhci->devs[udev->slot_id]; 2930 /* Free any rings allocated for added endpoints */ 2931 for (i = 0; i < 31; i++) { 2932 if (virt_dev->eps[i].new_ring) { 2933 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2934 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2935 virt_dev->eps[i].new_ring = NULL; 2936 } 2937 } 2938 xhci_zero_in_ctx(xhci, virt_dev); 2939 } 2940 2941 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2942 struct xhci_container_ctx *in_ctx, 2943 struct xhci_container_ctx *out_ctx, 2944 struct xhci_input_control_ctx *ctrl_ctx, 2945 u32 add_flags, u32 drop_flags) 2946 { 2947 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2948 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2949 xhci_slot_copy(xhci, in_ctx, out_ctx); 2950 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2951 } 2952 2953 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2954 unsigned int slot_id, unsigned int ep_index, 2955 struct xhci_dequeue_state *deq_state) 2956 { 2957 struct xhci_input_control_ctx *ctrl_ctx; 2958 struct xhci_container_ctx *in_ctx; 2959 struct xhci_ep_ctx *ep_ctx; 2960 u32 added_ctxs; 2961 dma_addr_t addr; 2962 2963 in_ctx = xhci->devs[slot_id]->in_ctx; 2964 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2965 if (!ctrl_ctx) { 2966 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2967 __func__); 2968 return; 2969 } 2970 2971 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2972 xhci->devs[slot_id]->out_ctx, ep_index); 2973 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2974 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2975 deq_state->new_deq_ptr); 2976 if (addr == 0) { 2977 xhci_warn(xhci, "WARN Cannot submit config ep after " 2978 "reset ep command\n"); 2979 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2980 deq_state->new_deq_seg, 2981 deq_state->new_deq_ptr); 2982 return; 2983 } 2984 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2985 2986 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2987 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2988 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2989 added_ctxs, added_ctxs); 2990 } 2991 2992 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index, 2993 unsigned int stream_id, struct xhci_td *td) 2994 { 2995 struct xhci_dequeue_state deq_state; 2996 struct usb_device *udev = td->urb->dev; 2997 2998 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2999 "Cleaning up stalled endpoint ring"); 3000 /* We need to move the HW's dequeue pointer past this TD, 3001 * or it will attempt to resend it on the next doorbell ring. 3002 */ 3003 xhci_find_new_dequeue_state(xhci, udev->slot_id, 3004 ep_index, stream_id, td, &deq_state); 3005 3006 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 3007 return; 3008 3009 /* HW with the reset endpoint quirk will use the saved dequeue state to 3010 * issue a configure endpoint command later. 3011 */ 3012 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 3013 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 3014 "Queueing new dequeue state"); 3015 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 3016 ep_index, &deq_state); 3017 } else { 3018 /* Better hope no one uses the input context between now and the 3019 * reset endpoint completion! 3020 * XXX: No idea how this hardware will react when stream rings 3021 * are enabled. 3022 */ 3023 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3024 "Setting up input context for " 3025 "configure endpoint command"); 3026 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 3027 ep_index, &deq_state); 3028 } 3029 } 3030 3031 /* 3032 * Called after usb core issues a clear halt control message. 3033 * The host side of the halt should already be cleared by a reset endpoint 3034 * command issued when the STALL event was received. 3035 * 3036 * The reset endpoint command may only be issued to endpoints in the halted 3037 * state. For software that wishes to reset the data toggle or sequence number 3038 * of an endpoint that isn't in the halted state this function will issue a 3039 * configure endpoint command with the Drop and Add bits set for the target 3040 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3041 */ 3042 3043 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3044 struct usb_host_endpoint *host_ep) 3045 { 3046 struct xhci_hcd *xhci; 3047 struct usb_device *udev; 3048 struct xhci_virt_device *vdev; 3049 struct xhci_virt_ep *ep; 3050 struct xhci_input_control_ctx *ctrl_ctx; 3051 struct xhci_command *stop_cmd, *cfg_cmd; 3052 unsigned int ep_index; 3053 unsigned long flags; 3054 u32 ep_flag; 3055 3056 xhci = hcd_to_xhci(hcd); 3057 if (!host_ep->hcpriv) 3058 return; 3059 udev = (struct usb_device *) host_ep->hcpriv; 3060 vdev = xhci->devs[udev->slot_id]; 3061 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3062 ep = &vdev->eps[ep_index]; 3063 3064 /* Bail out if toggle is already being cleared by a endpoint reset */ 3065 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3066 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3067 return; 3068 } 3069 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3070 if (usb_endpoint_xfer_control(&host_ep->desc) || 3071 usb_endpoint_xfer_isoc(&host_ep->desc)) 3072 return; 3073 3074 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3075 3076 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3077 return; 3078 3079 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3080 if (!stop_cmd) 3081 return; 3082 3083 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3084 if (!cfg_cmd) 3085 goto cleanup; 3086 3087 spin_lock_irqsave(&xhci->lock, flags); 3088 3089 /* block queuing new trbs and ringing ep doorbell */ 3090 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3091 3092 /* 3093 * Make sure endpoint ring is empty before resetting the toggle/seq. 3094 * Driver is required to synchronously cancel all transfer request. 3095 * Stop the endpoint to force xHC to update the output context 3096 */ 3097 3098 if (!list_empty(&ep->ring->td_list)) { 3099 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3100 spin_unlock_irqrestore(&xhci->lock, flags); 3101 xhci_free_command(xhci, cfg_cmd); 3102 goto cleanup; 3103 } 3104 xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0); 3105 xhci_ring_cmd_db(xhci); 3106 spin_unlock_irqrestore(&xhci->lock, flags); 3107 3108 wait_for_completion(stop_cmd->completion); 3109 3110 spin_lock_irqsave(&xhci->lock, flags); 3111 3112 /* config ep command clears toggle if add and drop ep flags are set */ 3113 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3114 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3115 ctrl_ctx, ep_flag, ep_flag); 3116 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3117 3118 xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3119 udev->slot_id, false); 3120 xhci_ring_cmd_db(xhci); 3121 spin_unlock_irqrestore(&xhci->lock, flags); 3122 3123 wait_for_completion(cfg_cmd->completion); 3124 3125 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3126 xhci_free_command(xhci, cfg_cmd); 3127 cleanup: 3128 xhci_free_command(xhci, stop_cmd); 3129 } 3130 3131 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3132 struct usb_device *udev, struct usb_host_endpoint *ep, 3133 unsigned int slot_id) 3134 { 3135 int ret; 3136 unsigned int ep_index; 3137 unsigned int ep_state; 3138 3139 if (!ep) 3140 return -EINVAL; 3141 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3142 if (ret <= 0) 3143 return -EINVAL; 3144 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3145 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3146 " descriptor for ep 0x%x does not support streams\n", 3147 ep->desc.bEndpointAddress); 3148 return -EINVAL; 3149 } 3150 3151 ep_index = xhci_get_endpoint_index(&ep->desc); 3152 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3153 if (ep_state & EP_HAS_STREAMS || 3154 ep_state & EP_GETTING_STREAMS) { 3155 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3156 "already has streams set up.\n", 3157 ep->desc.bEndpointAddress); 3158 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3159 "dynamic stream context array reallocation.\n"); 3160 return -EINVAL; 3161 } 3162 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3163 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3164 "endpoint 0x%x; URBs are pending.\n", 3165 ep->desc.bEndpointAddress); 3166 return -EINVAL; 3167 } 3168 return 0; 3169 } 3170 3171 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3172 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3173 { 3174 unsigned int max_streams; 3175 3176 /* The stream context array size must be a power of two */ 3177 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3178 /* 3179 * Find out how many primary stream array entries the host controller 3180 * supports. Later we may use secondary stream arrays (similar to 2nd 3181 * level page entries), but that's an optional feature for xHCI host 3182 * controllers. xHCs must support at least 4 stream IDs. 3183 */ 3184 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3185 if (*num_stream_ctxs > max_streams) { 3186 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3187 max_streams); 3188 *num_stream_ctxs = max_streams; 3189 *num_streams = max_streams; 3190 } 3191 } 3192 3193 /* Returns an error code if one of the endpoint already has streams. 3194 * This does not change any data structures, it only checks and gathers 3195 * information. 3196 */ 3197 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3198 struct usb_device *udev, 3199 struct usb_host_endpoint **eps, unsigned int num_eps, 3200 unsigned int *num_streams, u32 *changed_ep_bitmask) 3201 { 3202 unsigned int max_streams; 3203 unsigned int endpoint_flag; 3204 int i; 3205 int ret; 3206 3207 for (i = 0; i < num_eps; i++) { 3208 ret = xhci_check_streams_endpoint(xhci, udev, 3209 eps[i], udev->slot_id); 3210 if (ret < 0) 3211 return ret; 3212 3213 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3214 if (max_streams < (*num_streams - 1)) { 3215 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3216 eps[i]->desc.bEndpointAddress, 3217 max_streams); 3218 *num_streams = max_streams+1; 3219 } 3220 3221 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3222 if (*changed_ep_bitmask & endpoint_flag) 3223 return -EINVAL; 3224 *changed_ep_bitmask |= endpoint_flag; 3225 } 3226 return 0; 3227 } 3228 3229 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3230 struct usb_device *udev, 3231 struct usb_host_endpoint **eps, unsigned int num_eps) 3232 { 3233 u32 changed_ep_bitmask = 0; 3234 unsigned int slot_id; 3235 unsigned int ep_index; 3236 unsigned int ep_state; 3237 int i; 3238 3239 slot_id = udev->slot_id; 3240 if (!xhci->devs[slot_id]) 3241 return 0; 3242 3243 for (i = 0; i < num_eps; i++) { 3244 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3245 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3246 /* Are streams already being freed for the endpoint? */ 3247 if (ep_state & EP_GETTING_NO_STREAMS) { 3248 xhci_warn(xhci, "WARN Can't disable streams for " 3249 "endpoint 0x%x, " 3250 "streams are being disabled already\n", 3251 eps[i]->desc.bEndpointAddress); 3252 return 0; 3253 } 3254 /* Are there actually any streams to free? */ 3255 if (!(ep_state & EP_HAS_STREAMS) && 3256 !(ep_state & EP_GETTING_STREAMS)) { 3257 xhci_warn(xhci, "WARN Can't disable streams for " 3258 "endpoint 0x%x, " 3259 "streams are already disabled!\n", 3260 eps[i]->desc.bEndpointAddress); 3261 xhci_warn(xhci, "WARN xhci_free_streams() called " 3262 "with non-streams endpoint\n"); 3263 return 0; 3264 } 3265 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3266 } 3267 return changed_ep_bitmask; 3268 } 3269 3270 /* 3271 * The USB device drivers use this function (through the HCD interface in USB 3272 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3273 * coordinate mass storage command queueing across multiple endpoints (basically 3274 * a stream ID == a task ID). 3275 * 3276 * Setting up streams involves allocating the same size stream context array 3277 * for each endpoint and issuing a configure endpoint command for all endpoints. 3278 * 3279 * Don't allow the call to succeed if one endpoint only supports one stream 3280 * (which means it doesn't support streams at all). 3281 * 3282 * Drivers may get less stream IDs than they asked for, if the host controller 3283 * hardware or endpoints claim they can't support the number of requested 3284 * stream IDs. 3285 */ 3286 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3287 struct usb_host_endpoint **eps, unsigned int num_eps, 3288 unsigned int num_streams, gfp_t mem_flags) 3289 { 3290 int i, ret; 3291 struct xhci_hcd *xhci; 3292 struct xhci_virt_device *vdev; 3293 struct xhci_command *config_cmd; 3294 struct xhci_input_control_ctx *ctrl_ctx; 3295 unsigned int ep_index; 3296 unsigned int num_stream_ctxs; 3297 unsigned int max_packet; 3298 unsigned long flags; 3299 u32 changed_ep_bitmask = 0; 3300 3301 if (!eps) 3302 return -EINVAL; 3303 3304 /* Add one to the number of streams requested to account for 3305 * stream 0 that is reserved for xHCI usage. 3306 */ 3307 num_streams += 1; 3308 xhci = hcd_to_xhci(hcd); 3309 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3310 num_streams); 3311 3312 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3313 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3314 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3315 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3316 return -ENOSYS; 3317 } 3318 3319 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3320 if (!config_cmd) 3321 return -ENOMEM; 3322 3323 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3324 if (!ctrl_ctx) { 3325 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3326 __func__); 3327 xhci_free_command(xhci, config_cmd); 3328 return -ENOMEM; 3329 } 3330 3331 /* Check to make sure all endpoints are not already configured for 3332 * streams. While we're at it, find the maximum number of streams that 3333 * all the endpoints will support and check for duplicate endpoints. 3334 */ 3335 spin_lock_irqsave(&xhci->lock, flags); 3336 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3337 num_eps, &num_streams, &changed_ep_bitmask); 3338 if (ret < 0) { 3339 xhci_free_command(xhci, config_cmd); 3340 spin_unlock_irqrestore(&xhci->lock, flags); 3341 return ret; 3342 } 3343 if (num_streams <= 1) { 3344 xhci_warn(xhci, "WARN: endpoints can't handle " 3345 "more than one stream.\n"); 3346 xhci_free_command(xhci, config_cmd); 3347 spin_unlock_irqrestore(&xhci->lock, flags); 3348 return -EINVAL; 3349 } 3350 vdev = xhci->devs[udev->slot_id]; 3351 /* Mark each endpoint as being in transition, so 3352 * xhci_urb_enqueue() will reject all URBs. 3353 */ 3354 for (i = 0; i < num_eps; i++) { 3355 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3356 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3357 } 3358 spin_unlock_irqrestore(&xhci->lock, flags); 3359 3360 /* Setup internal data structures and allocate HW data structures for 3361 * streams (but don't install the HW structures in the input context 3362 * until we're sure all memory allocation succeeded). 3363 */ 3364 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3365 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3366 num_stream_ctxs, num_streams); 3367 3368 for (i = 0; i < num_eps; i++) { 3369 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3370 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3371 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3372 num_stream_ctxs, 3373 num_streams, 3374 max_packet, mem_flags); 3375 if (!vdev->eps[ep_index].stream_info) 3376 goto cleanup; 3377 /* Set maxPstreams in endpoint context and update deq ptr to 3378 * point to stream context array. FIXME 3379 */ 3380 } 3381 3382 /* Set up the input context for a configure endpoint command. */ 3383 for (i = 0; i < num_eps; i++) { 3384 struct xhci_ep_ctx *ep_ctx; 3385 3386 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3387 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3388 3389 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3390 vdev->out_ctx, ep_index); 3391 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3392 vdev->eps[ep_index].stream_info); 3393 } 3394 /* Tell the HW to drop its old copy of the endpoint context info 3395 * and add the updated copy from the input context. 3396 */ 3397 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3398 vdev->out_ctx, ctrl_ctx, 3399 changed_ep_bitmask, changed_ep_bitmask); 3400 3401 /* Issue and wait for the configure endpoint command */ 3402 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3403 false, false); 3404 3405 /* xHC rejected the configure endpoint command for some reason, so we 3406 * leave the old ring intact and free our internal streams data 3407 * structure. 3408 */ 3409 if (ret < 0) 3410 goto cleanup; 3411 3412 spin_lock_irqsave(&xhci->lock, flags); 3413 for (i = 0; i < num_eps; i++) { 3414 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3415 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3416 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3417 udev->slot_id, ep_index); 3418 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3419 } 3420 xhci_free_command(xhci, config_cmd); 3421 spin_unlock_irqrestore(&xhci->lock, flags); 3422 3423 /* Subtract 1 for stream 0, which drivers can't use */ 3424 return num_streams - 1; 3425 3426 cleanup: 3427 /* If it didn't work, free the streams! */ 3428 for (i = 0; i < num_eps; i++) { 3429 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3430 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3431 vdev->eps[ep_index].stream_info = NULL; 3432 /* FIXME Unset maxPstreams in endpoint context and 3433 * update deq ptr to point to normal string ring. 3434 */ 3435 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3436 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3437 xhci_endpoint_zero(xhci, vdev, eps[i]); 3438 } 3439 xhci_free_command(xhci, config_cmd); 3440 return -ENOMEM; 3441 } 3442 3443 /* Transition the endpoint from using streams to being a "normal" endpoint 3444 * without streams. 3445 * 3446 * Modify the endpoint context state, submit a configure endpoint command, 3447 * and free all endpoint rings for streams if that completes successfully. 3448 */ 3449 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3450 struct usb_host_endpoint **eps, unsigned int num_eps, 3451 gfp_t mem_flags) 3452 { 3453 int i, ret; 3454 struct xhci_hcd *xhci; 3455 struct xhci_virt_device *vdev; 3456 struct xhci_command *command; 3457 struct xhci_input_control_ctx *ctrl_ctx; 3458 unsigned int ep_index; 3459 unsigned long flags; 3460 u32 changed_ep_bitmask; 3461 3462 xhci = hcd_to_xhci(hcd); 3463 vdev = xhci->devs[udev->slot_id]; 3464 3465 /* Set up a configure endpoint command to remove the streams rings */ 3466 spin_lock_irqsave(&xhci->lock, flags); 3467 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3468 udev, eps, num_eps); 3469 if (changed_ep_bitmask == 0) { 3470 spin_unlock_irqrestore(&xhci->lock, flags); 3471 return -EINVAL; 3472 } 3473 3474 /* Use the xhci_command structure from the first endpoint. We may have 3475 * allocated too many, but the driver may call xhci_free_streams() for 3476 * each endpoint it grouped into one call to xhci_alloc_streams(). 3477 */ 3478 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3479 command = vdev->eps[ep_index].stream_info->free_streams_command; 3480 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3481 if (!ctrl_ctx) { 3482 spin_unlock_irqrestore(&xhci->lock, flags); 3483 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3484 __func__); 3485 return -EINVAL; 3486 } 3487 3488 for (i = 0; i < num_eps; i++) { 3489 struct xhci_ep_ctx *ep_ctx; 3490 3491 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3492 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3493 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3494 EP_GETTING_NO_STREAMS; 3495 3496 xhci_endpoint_copy(xhci, command->in_ctx, 3497 vdev->out_ctx, ep_index); 3498 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3499 &vdev->eps[ep_index]); 3500 } 3501 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3502 vdev->out_ctx, ctrl_ctx, 3503 changed_ep_bitmask, changed_ep_bitmask); 3504 spin_unlock_irqrestore(&xhci->lock, flags); 3505 3506 /* Issue and wait for the configure endpoint command, 3507 * which must succeed. 3508 */ 3509 ret = xhci_configure_endpoint(xhci, udev, command, 3510 false, true); 3511 3512 /* xHC rejected the configure endpoint command for some reason, so we 3513 * leave the streams rings intact. 3514 */ 3515 if (ret < 0) 3516 return ret; 3517 3518 spin_lock_irqsave(&xhci->lock, flags); 3519 for (i = 0; i < num_eps; i++) { 3520 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3521 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3522 vdev->eps[ep_index].stream_info = NULL; 3523 /* FIXME Unset maxPstreams in endpoint context and 3524 * update deq ptr to point to normal string ring. 3525 */ 3526 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3527 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3528 } 3529 spin_unlock_irqrestore(&xhci->lock, flags); 3530 3531 return 0; 3532 } 3533 3534 /* 3535 * Deletes endpoint resources for endpoints that were active before a Reset 3536 * Device command, or a Disable Slot command. The Reset Device command leaves 3537 * the control endpoint intact, whereas the Disable Slot command deletes it. 3538 * 3539 * Must be called with xhci->lock held. 3540 */ 3541 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3542 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3543 { 3544 int i; 3545 unsigned int num_dropped_eps = 0; 3546 unsigned int drop_flags = 0; 3547 3548 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3549 if (virt_dev->eps[i].ring) { 3550 drop_flags |= 1 << i; 3551 num_dropped_eps++; 3552 } 3553 } 3554 xhci->num_active_eps -= num_dropped_eps; 3555 if (num_dropped_eps) 3556 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3557 "Dropped %u ep ctxs, flags = 0x%x, " 3558 "%u now active.", 3559 num_dropped_eps, drop_flags, 3560 xhci->num_active_eps); 3561 } 3562 3563 /* 3564 * This submits a Reset Device Command, which will set the device state to 0, 3565 * set the device address to 0, and disable all the endpoints except the default 3566 * control endpoint. The USB core should come back and call 3567 * xhci_address_device(), and then re-set up the configuration. If this is 3568 * called because of a usb_reset_and_verify_device(), then the old alternate 3569 * settings will be re-installed through the normal bandwidth allocation 3570 * functions. 3571 * 3572 * Wait for the Reset Device command to finish. Remove all structures 3573 * associated with the endpoints that were disabled. Clear the input device 3574 * structure? Reset the control endpoint 0 max packet size? 3575 * 3576 * If the virt_dev to be reset does not exist or does not match the udev, 3577 * it means the device is lost, possibly due to the xHC restore error and 3578 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3579 * re-allocate the device. 3580 */ 3581 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3582 struct usb_device *udev) 3583 { 3584 int ret, i; 3585 unsigned long flags; 3586 struct xhci_hcd *xhci; 3587 unsigned int slot_id; 3588 struct xhci_virt_device *virt_dev; 3589 struct xhci_command *reset_device_cmd; 3590 struct xhci_slot_ctx *slot_ctx; 3591 int old_active_eps = 0; 3592 3593 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3594 if (ret <= 0) 3595 return ret; 3596 xhci = hcd_to_xhci(hcd); 3597 slot_id = udev->slot_id; 3598 virt_dev = xhci->devs[slot_id]; 3599 if (!virt_dev) { 3600 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3601 "not exist. Re-allocate the device\n", slot_id); 3602 ret = xhci_alloc_dev(hcd, udev); 3603 if (ret == 1) 3604 return 0; 3605 else 3606 return -EINVAL; 3607 } 3608 3609 if (virt_dev->tt_info) 3610 old_active_eps = virt_dev->tt_info->active_eps; 3611 3612 if (virt_dev->udev != udev) { 3613 /* If the virt_dev and the udev does not match, this virt_dev 3614 * may belong to another udev. 3615 * Re-allocate the device. 3616 */ 3617 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3618 "not match the udev. Re-allocate the device\n", 3619 slot_id); 3620 ret = xhci_alloc_dev(hcd, udev); 3621 if (ret == 1) 3622 return 0; 3623 else 3624 return -EINVAL; 3625 } 3626 3627 /* If device is not setup, there is no point in resetting it */ 3628 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3629 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3630 SLOT_STATE_DISABLED) 3631 return 0; 3632 3633 trace_xhci_discover_or_reset_device(slot_ctx); 3634 3635 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3636 /* Allocate the command structure that holds the struct completion. 3637 * Assume we're in process context, since the normal device reset 3638 * process has to wait for the device anyway. Storage devices are 3639 * reset as part of error handling, so use GFP_NOIO instead of 3640 * GFP_KERNEL. 3641 */ 3642 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3643 if (!reset_device_cmd) { 3644 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3645 return -ENOMEM; 3646 } 3647 3648 /* Attempt to submit the Reset Device command to the command ring */ 3649 spin_lock_irqsave(&xhci->lock, flags); 3650 3651 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3652 if (ret) { 3653 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3654 spin_unlock_irqrestore(&xhci->lock, flags); 3655 goto command_cleanup; 3656 } 3657 xhci_ring_cmd_db(xhci); 3658 spin_unlock_irqrestore(&xhci->lock, flags); 3659 3660 /* Wait for the Reset Device command to finish */ 3661 wait_for_completion(reset_device_cmd->completion); 3662 3663 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3664 * unless we tried to reset a slot ID that wasn't enabled, 3665 * or the device wasn't in the addressed or configured state. 3666 */ 3667 ret = reset_device_cmd->status; 3668 switch (ret) { 3669 case COMP_COMMAND_ABORTED: 3670 case COMP_COMMAND_RING_STOPPED: 3671 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3672 ret = -ETIME; 3673 goto command_cleanup; 3674 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3675 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3676 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3677 slot_id, 3678 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3679 xhci_dbg(xhci, "Not freeing device rings.\n"); 3680 /* Don't treat this as an error. May change my mind later. */ 3681 ret = 0; 3682 goto command_cleanup; 3683 case COMP_SUCCESS: 3684 xhci_dbg(xhci, "Successful reset device command.\n"); 3685 break; 3686 default: 3687 if (xhci_is_vendor_info_code(xhci, ret)) 3688 break; 3689 xhci_warn(xhci, "Unknown completion code %u for " 3690 "reset device command.\n", ret); 3691 ret = -EINVAL; 3692 goto command_cleanup; 3693 } 3694 3695 /* Free up host controller endpoint resources */ 3696 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3697 spin_lock_irqsave(&xhci->lock, flags); 3698 /* Don't delete the default control endpoint resources */ 3699 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3700 spin_unlock_irqrestore(&xhci->lock, flags); 3701 } 3702 3703 /* Everything but endpoint 0 is disabled, so free the rings. */ 3704 for (i = 1; i < 31; i++) { 3705 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3706 3707 if (ep->ep_state & EP_HAS_STREAMS) { 3708 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3709 xhci_get_endpoint_address(i)); 3710 xhci_free_stream_info(xhci, ep->stream_info); 3711 ep->stream_info = NULL; 3712 ep->ep_state &= ~EP_HAS_STREAMS; 3713 } 3714 3715 if (ep->ring) { 3716 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3717 xhci_free_endpoint_ring(xhci, virt_dev, i); 3718 } 3719 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3720 xhci_drop_ep_from_interval_table(xhci, 3721 &virt_dev->eps[i].bw_info, 3722 virt_dev->bw_table, 3723 udev, 3724 &virt_dev->eps[i], 3725 virt_dev->tt_info); 3726 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3727 } 3728 /* If necessary, update the number of active TTs on this root port */ 3729 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3730 ret = 0; 3731 3732 command_cleanup: 3733 xhci_free_command(xhci, reset_device_cmd); 3734 return ret; 3735 } 3736 3737 /* 3738 * At this point, the struct usb_device is about to go away, the device has 3739 * disconnected, and all traffic has been stopped and the endpoints have been 3740 * disabled. Free any HC data structures associated with that device. 3741 */ 3742 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3743 { 3744 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3745 struct xhci_virt_device *virt_dev; 3746 struct xhci_slot_ctx *slot_ctx; 3747 int i, ret; 3748 3749 #ifndef CONFIG_USB_DEFAULT_PERSIST 3750 /* 3751 * We called pm_runtime_get_noresume when the device was attached. 3752 * Decrement the counter here to allow controller to runtime suspend 3753 * if no devices remain. 3754 */ 3755 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3756 pm_runtime_put_noidle(hcd->self.controller); 3757 #endif 3758 3759 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3760 /* If the host is halted due to driver unload, we still need to free the 3761 * device. 3762 */ 3763 if (ret <= 0 && ret != -ENODEV) 3764 return; 3765 3766 virt_dev = xhci->devs[udev->slot_id]; 3767 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3768 trace_xhci_free_dev(slot_ctx); 3769 3770 /* Stop any wayward timer functions (which may grab the lock) */ 3771 for (i = 0; i < 31; i++) { 3772 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3773 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3774 } 3775 xhci_debugfs_remove_slot(xhci, udev->slot_id); 3776 virt_dev->udev = NULL; 3777 ret = xhci_disable_slot(xhci, udev->slot_id); 3778 if (ret) 3779 xhci_free_virt_device(xhci, udev->slot_id); 3780 } 3781 3782 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3783 { 3784 struct xhci_command *command; 3785 unsigned long flags; 3786 u32 state; 3787 int ret = 0; 3788 3789 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3790 if (!command) 3791 return -ENOMEM; 3792 3793 spin_lock_irqsave(&xhci->lock, flags); 3794 /* Don't disable the slot if the host controller is dead. */ 3795 state = readl(&xhci->op_regs->status); 3796 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3797 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3798 spin_unlock_irqrestore(&xhci->lock, flags); 3799 kfree(command); 3800 return -ENODEV; 3801 } 3802 3803 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3804 slot_id); 3805 if (ret) { 3806 spin_unlock_irqrestore(&xhci->lock, flags); 3807 kfree(command); 3808 return ret; 3809 } 3810 xhci_ring_cmd_db(xhci); 3811 spin_unlock_irqrestore(&xhci->lock, flags); 3812 return ret; 3813 } 3814 3815 /* 3816 * Checks if we have enough host controller resources for the default control 3817 * endpoint. 3818 * 3819 * Must be called with xhci->lock held. 3820 */ 3821 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3822 { 3823 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3824 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3825 "Not enough ep ctxs: " 3826 "%u active, need to add 1, limit is %u.", 3827 xhci->num_active_eps, xhci->limit_active_eps); 3828 return -ENOMEM; 3829 } 3830 xhci->num_active_eps += 1; 3831 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3832 "Adding 1 ep ctx, %u now active.", 3833 xhci->num_active_eps); 3834 return 0; 3835 } 3836 3837 3838 /* 3839 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3840 * timed out, or allocating memory failed. Returns 1 on success. 3841 */ 3842 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3843 { 3844 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3845 struct xhci_virt_device *vdev; 3846 struct xhci_slot_ctx *slot_ctx; 3847 unsigned long flags; 3848 int ret, slot_id; 3849 struct xhci_command *command; 3850 3851 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3852 if (!command) 3853 return 0; 3854 3855 spin_lock_irqsave(&xhci->lock, flags); 3856 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3857 if (ret) { 3858 spin_unlock_irqrestore(&xhci->lock, flags); 3859 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3860 xhci_free_command(xhci, command); 3861 return 0; 3862 } 3863 xhci_ring_cmd_db(xhci); 3864 spin_unlock_irqrestore(&xhci->lock, flags); 3865 3866 wait_for_completion(command->completion); 3867 slot_id = command->slot_id; 3868 3869 if (!slot_id || command->status != COMP_SUCCESS) { 3870 xhci_err(xhci, "Error while assigning device slot ID\n"); 3871 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3872 HCS_MAX_SLOTS( 3873 readl(&xhci->cap_regs->hcs_params1))); 3874 xhci_free_command(xhci, command); 3875 return 0; 3876 } 3877 3878 xhci_free_command(xhci, command); 3879 3880 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3881 spin_lock_irqsave(&xhci->lock, flags); 3882 ret = xhci_reserve_host_control_ep_resources(xhci); 3883 if (ret) { 3884 spin_unlock_irqrestore(&xhci->lock, flags); 3885 xhci_warn(xhci, "Not enough host resources, " 3886 "active endpoint contexts = %u\n", 3887 xhci->num_active_eps); 3888 goto disable_slot; 3889 } 3890 spin_unlock_irqrestore(&xhci->lock, flags); 3891 } 3892 /* Use GFP_NOIO, since this function can be called from 3893 * xhci_discover_or_reset_device(), which may be called as part of 3894 * mass storage driver error handling. 3895 */ 3896 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3897 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3898 goto disable_slot; 3899 } 3900 vdev = xhci->devs[slot_id]; 3901 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3902 trace_xhci_alloc_dev(slot_ctx); 3903 3904 udev->slot_id = slot_id; 3905 3906 xhci_debugfs_create_slot(xhci, slot_id); 3907 3908 #ifndef CONFIG_USB_DEFAULT_PERSIST 3909 /* 3910 * If resetting upon resume, we can't put the controller into runtime 3911 * suspend if there is a device attached. 3912 */ 3913 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3914 pm_runtime_get_noresume(hcd->self.controller); 3915 #endif 3916 3917 /* Is this a LS or FS device under a HS hub? */ 3918 /* Hub or peripherial? */ 3919 return 1; 3920 3921 disable_slot: 3922 ret = xhci_disable_slot(xhci, udev->slot_id); 3923 if (ret) 3924 xhci_free_virt_device(xhci, udev->slot_id); 3925 3926 return 0; 3927 } 3928 3929 /* 3930 * Issue an Address Device command and optionally send a corresponding 3931 * SetAddress request to the device. 3932 */ 3933 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3934 enum xhci_setup_dev setup) 3935 { 3936 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3937 unsigned long flags; 3938 struct xhci_virt_device *virt_dev; 3939 int ret = 0; 3940 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3941 struct xhci_slot_ctx *slot_ctx; 3942 struct xhci_input_control_ctx *ctrl_ctx; 3943 u64 temp_64; 3944 struct xhci_command *command = NULL; 3945 3946 mutex_lock(&xhci->mutex); 3947 3948 if (xhci->xhc_state) { /* dying, removing or halted */ 3949 ret = -ESHUTDOWN; 3950 goto out; 3951 } 3952 3953 if (!udev->slot_id) { 3954 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3955 "Bad Slot ID %d", udev->slot_id); 3956 ret = -EINVAL; 3957 goto out; 3958 } 3959 3960 virt_dev = xhci->devs[udev->slot_id]; 3961 3962 if (WARN_ON(!virt_dev)) { 3963 /* 3964 * In plug/unplug torture test with an NEC controller, 3965 * a zero-dereference was observed once due to virt_dev = 0. 3966 * Print useful debug rather than crash if it is observed again! 3967 */ 3968 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3969 udev->slot_id); 3970 ret = -EINVAL; 3971 goto out; 3972 } 3973 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3974 trace_xhci_setup_device_slot(slot_ctx); 3975 3976 if (setup == SETUP_CONTEXT_ONLY) { 3977 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3978 SLOT_STATE_DEFAULT) { 3979 xhci_dbg(xhci, "Slot already in default state\n"); 3980 goto out; 3981 } 3982 } 3983 3984 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3985 if (!command) { 3986 ret = -ENOMEM; 3987 goto out; 3988 } 3989 3990 command->in_ctx = virt_dev->in_ctx; 3991 3992 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3993 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3994 if (!ctrl_ctx) { 3995 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3996 __func__); 3997 ret = -EINVAL; 3998 goto out; 3999 } 4000 /* 4001 * If this is the first Set Address since device plug-in or 4002 * virt_device realloaction after a resume with an xHCI power loss, 4003 * then set up the slot context. 4004 */ 4005 if (!slot_ctx->dev_info) 4006 xhci_setup_addressable_virt_dev(xhci, udev); 4007 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4008 else 4009 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4010 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4011 ctrl_ctx->drop_flags = 0; 4012 4013 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4014 le32_to_cpu(slot_ctx->dev_info) >> 27); 4015 4016 spin_lock_irqsave(&xhci->lock, flags); 4017 trace_xhci_setup_device(virt_dev); 4018 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4019 udev->slot_id, setup); 4020 if (ret) { 4021 spin_unlock_irqrestore(&xhci->lock, flags); 4022 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4023 "FIXME: allocate a command ring segment"); 4024 goto out; 4025 } 4026 xhci_ring_cmd_db(xhci); 4027 spin_unlock_irqrestore(&xhci->lock, flags); 4028 4029 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4030 wait_for_completion(command->completion); 4031 4032 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4033 * the SetAddress() "recovery interval" required by USB and aborting the 4034 * command on a timeout. 4035 */ 4036 switch (command->status) { 4037 case COMP_COMMAND_ABORTED: 4038 case COMP_COMMAND_RING_STOPPED: 4039 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4040 ret = -ETIME; 4041 break; 4042 case COMP_CONTEXT_STATE_ERROR: 4043 case COMP_SLOT_NOT_ENABLED_ERROR: 4044 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4045 act, udev->slot_id); 4046 ret = -EINVAL; 4047 break; 4048 case COMP_USB_TRANSACTION_ERROR: 4049 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4050 4051 mutex_unlock(&xhci->mutex); 4052 ret = xhci_disable_slot(xhci, udev->slot_id); 4053 if (!ret) 4054 xhci_alloc_dev(hcd, udev); 4055 kfree(command->completion); 4056 kfree(command); 4057 return -EPROTO; 4058 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4059 dev_warn(&udev->dev, 4060 "ERROR: Incompatible device for setup %s command\n", act); 4061 ret = -ENODEV; 4062 break; 4063 case COMP_SUCCESS: 4064 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4065 "Successful setup %s command", act); 4066 break; 4067 default: 4068 xhci_err(xhci, 4069 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4070 act, command->status); 4071 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4072 ret = -EINVAL; 4073 break; 4074 } 4075 if (ret) 4076 goto out; 4077 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4078 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4079 "Op regs DCBAA ptr = %#016llx", temp_64); 4080 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4081 "Slot ID %d dcbaa entry @%p = %#016llx", 4082 udev->slot_id, 4083 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4084 (unsigned long long) 4085 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4086 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4087 "Output Context DMA address = %#08llx", 4088 (unsigned long long)virt_dev->out_ctx->dma); 4089 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4090 le32_to_cpu(slot_ctx->dev_info) >> 27); 4091 /* 4092 * USB core uses address 1 for the roothubs, so we add one to the 4093 * address given back to us by the HC. 4094 */ 4095 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4096 le32_to_cpu(slot_ctx->dev_info) >> 27); 4097 /* Zero the input context control for later use */ 4098 ctrl_ctx->add_flags = 0; 4099 ctrl_ctx->drop_flags = 0; 4100 4101 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4102 "Internal device address = %d", 4103 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4104 out: 4105 mutex_unlock(&xhci->mutex); 4106 if (command) { 4107 kfree(command->completion); 4108 kfree(command); 4109 } 4110 return ret; 4111 } 4112 4113 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4114 { 4115 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4116 } 4117 4118 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4119 { 4120 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4121 } 4122 4123 /* 4124 * Transfer the port index into real index in the HW port status 4125 * registers. Caculate offset between the port's PORTSC register 4126 * and port status base. Divide the number of per port register 4127 * to get the real index. The raw port number bases 1. 4128 */ 4129 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4130 { 4131 struct xhci_hub *rhub; 4132 4133 rhub = xhci_get_rhub(hcd); 4134 return rhub->ports[port1 - 1]->hw_portnum + 1; 4135 } 4136 4137 /* 4138 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4139 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4140 */ 4141 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4142 struct usb_device *udev, u16 max_exit_latency) 4143 { 4144 struct xhci_virt_device *virt_dev; 4145 struct xhci_command *command; 4146 struct xhci_input_control_ctx *ctrl_ctx; 4147 struct xhci_slot_ctx *slot_ctx; 4148 unsigned long flags; 4149 int ret; 4150 4151 spin_lock_irqsave(&xhci->lock, flags); 4152 4153 virt_dev = xhci->devs[udev->slot_id]; 4154 4155 /* 4156 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4157 * xHC was re-initialized. Exit latency will be set later after 4158 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4159 */ 4160 4161 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4162 spin_unlock_irqrestore(&xhci->lock, flags); 4163 return 0; 4164 } 4165 4166 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4167 command = xhci->lpm_command; 4168 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4169 if (!ctrl_ctx) { 4170 spin_unlock_irqrestore(&xhci->lock, flags); 4171 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4172 __func__); 4173 return -ENOMEM; 4174 } 4175 4176 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4177 spin_unlock_irqrestore(&xhci->lock, flags); 4178 4179 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4180 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4181 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4182 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4183 slot_ctx->dev_state = 0; 4184 4185 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4186 "Set up evaluate context for LPM MEL change."); 4187 4188 /* Issue and wait for the evaluate context command. */ 4189 ret = xhci_configure_endpoint(xhci, udev, command, 4190 true, true); 4191 4192 if (!ret) { 4193 spin_lock_irqsave(&xhci->lock, flags); 4194 virt_dev->current_mel = max_exit_latency; 4195 spin_unlock_irqrestore(&xhci->lock, flags); 4196 } 4197 return ret; 4198 } 4199 4200 #ifdef CONFIG_PM 4201 4202 /* BESL to HIRD Encoding array for USB2 LPM */ 4203 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4204 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4205 4206 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4207 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4208 struct usb_device *udev) 4209 { 4210 int u2del, besl, besl_host; 4211 int besl_device = 0; 4212 u32 field; 4213 4214 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4215 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4216 4217 if (field & USB_BESL_SUPPORT) { 4218 for (besl_host = 0; besl_host < 16; besl_host++) { 4219 if (xhci_besl_encoding[besl_host] >= u2del) 4220 break; 4221 } 4222 /* Use baseline BESL value as default */ 4223 if (field & USB_BESL_BASELINE_VALID) 4224 besl_device = USB_GET_BESL_BASELINE(field); 4225 else if (field & USB_BESL_DEEP_VALID) 4226 besl_device = USB_GET_BESL_DEEP(field); 4227 } else { 4228 if (u2del <= 50) 4229 besl_host = 0; 4230 else 4231 besl_host = (u2del - 51) / 75 + 1; 4232 } 4233 4234 besl = besl_host + besl_device; 4235 if (besl > 15) 4236 besl = 15; 4237 4238 return besl; 4239 } 4240 4241 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4242 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4243 { 4244 u32 field; 4245 int l1; 4246 int besld = 0; 4247 int hirdm = 0; 4248 4249 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4250 4251 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4252 l1 = udev->l1_params.timeout / 256; 4253 4254 /* device has preferred BESLD */ 4255 if (field & USB_BESL_DEEP_VALID) { 4256 besld = USB_GET_BESL_DEEP(field); 4257 hirdm = 1; 4258 } 4259 4260 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4261 } 4262 4263 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4264 struct usb_device *udev, int enable) 4265 { 4266 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4267 struct xhci_port **ports; 4268 __le32 __iomem *pm_addr, *hlpm_addr; 4269 u32 pm_val, hlpm_val, field; 4270 unsigned int port_num; 4271 unsigned long flags; 4272 int hird, exit_latency; 4273 int ret; 4274 4275 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4276 !udev->lpm_capable) 4277 return -EPERM; 4278 4279 if (!udev->parent || udev->parent->parent || 4280 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4281 return -EPERM; 4282 4283 if (udev->usb2_hw_lpm_capable != 1) 4284 return -EPERM; 4285 4286 spin_lock_irqsave(&xhci->lock, flags); 4287 4288 ports = xhci->usb2_rhub.ports; 4289 port_num = udev->portnum - 1; 4290 pm_addr = ports[port_num]->addr + PORTPMSC; 4291 pm_val = readl(pm_addr); 4292 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4293 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4294 4295 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4296 enable ? "enable" : "disable", port_num + 1); 4297 4298 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) { 4299 /* Host supports BESL timeout instead of HIRD */ 4300 if (udev->usb2_hw_lpm_besl_capable) { 4301 /* if device doesn't have a preferred BESL value use a 4302 * default one which works with mixed HIRD and BESL 4303 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4304 */ 4305 if ((field & USB_BESL_SUPPORT) && 4306 (field & USB_BESL_BASELINE_VALID)) 4307 hird = USB_GET_BESL_BASELINE(field); 4308 else 4309 hird = udev->l1_params.besl; 4310 4311 exit_latency = xhci_besl_encoding[hird]; 4312 spin_unlock_irqrestore(&xhci->lock, flags); 4313 4314 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4315 * input context for link powermanagement evaluate 4316 * context commands. It is protected by hcd->bandwidth 4317 * mutex and is shared by all devices. We need to set 4318 * the max ext latency in USB 2 BESL LPM as well, so 4319 * use the same mutex and xhci_change_max_exit_latency() 4320 */ 4321 mutex_lock(hcd->bandwidth_mutex); 4322 ret = xhci_change_max_exit_latency(xhci, udev, 4323 exit_latency); 4324 mutex_unlock(hcd->bandwidth_mutex); 4325 4326 if (ret < 0) 4327 return ret; 4328 spin_lock_irqsave(&xhci->lock, flags); 4329 4330 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4331 writel(hlpm_val, hlpm_addr); 4332 /* flush write */ 4333 readl(hlpm_addr); 4334 } else { 4335 hird = xhci_calculate_hird_besl(xhci, udev); 4336 } 4337 4338 pm_val &= ~PORT_HIRD_MASK; 4339 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4340 writel(pm_val, pm_addr); 4341 pm_val = readl(pm_addr); 4342 pm_val |= PORT_HLE; 4343 writel(pm_val, pm_addr); 4344 /* flush write */ 4345 readl(pm_addr); 4346 } else { 4347 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4348 writel(pm_val, pm_addr); 4349 /* flush write */ 4350 readl(pm_addr); 4351 if (udev->usb2_hw_lpm_besl_capable) { 4352 spin_unlock_irqrestore(&xhci->lock, flags); 4353 mutex_lock(hcd->bandwidth_mutex); 4354 xhci_change_max_exit_latency(xhci, udev, 0); 4355 mutex_unlock(hcd->bandwidth_mutex); 4356 return 0; 4357 } 4358 } 4359 4360 spin_unlock_irqrestore(&xhci->lock, flags); 4361 return 0; 4362 } 4363 4364 /* check if a usb2 port supports a given extened capability protocol 4365 * only USB2 ports extended protocol capability values are cached. 4366 * Return 1 if capability is supported 4367 */ 4368 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4369 unsigned capability) 4370 { 4371 u32 port_offset, port_count; 4372 int i; 4373 4374 for (i = 0; i < xhci->num_ext_caps; i++) { 4375 if (xhci->ext_caps[i] & capability) { 4376 /* port offsets starts at 1 */ 4377 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4378 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4379 if (port >= port_offset && 4380 port < port_offset + port_count) 4381 return 1; 4382 } 4383 } 4384 return 0; 4385 } 4386 4387 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4388 { 4389 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4390 int portnum = udev->portnum - 1; 4391 4392 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4393 return 0; 4394 4395 /* we only support lpm for non-hub device connected to root hub yet */ 4396 if (!udev->parent || udev->parent->parent || 4397 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4398 return 0; 4399 4400 if (xhci->hw_lpm_support == 1 && 4401 xhci_check_usb2_port_capability( 4402 xhci, portnum, XHCI_HLC)) { 4403 udev->usb2_hw_lpm_capable = 1; 4404 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4405 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4406 if (xhci_check_usb2_port_capability(xhci, portnum, 4407 XHCI_BLC)) 4408 udev->usb2_hw_lpm_besl_capable = 1; 4409 } 4410 4411 return 0; 4412 } 4413 4414 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4415 4416 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4417 static unsigned long long xhci_service_interval_to_ns( 4418 struct usb_endpoint_descriptor *desc) 4419 { 4420 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4421 } 4422 4423 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4424 enum usb3_link_state state) 4425 { 4426 unsigned long long sel; 4427 unsigned long long pel; 4428 unsigned int max_sel_pel; 4429 char *state_name; 4430 4431 switch (state) { 4432 case USB3_LPM_U1: 4433 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4434 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4435 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4436 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4437 state_name = "U1"; 4438 break; 4439 case USB3_LPM_U2: 4440 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4441 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4442 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4443 state_name = "U2"; 4444 break; 4445 default: 4446 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4447 __func__); 4448 return USB3_LPM_DISABLED; 4449 } 4450 4451 if (sel <= max_sel_pel && pel <= max_sel_pel) 4452 return USB3_LPM_DEVICE_INITIATED; 4453 4454 if (sel > max_sel_pel) 4455 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4456 "due to long SEL %llu ms\n", 4457 state_name, sel); 4458 else 4459 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4460 "due to long PEL %llu ms\n", 4461 state_name, pel); 4462 return USB3_LPM_DISABLED; 4463 } 4464 4465 /* The U1 timeout should be the maximum of the following values: 4466 * - For control endpoints, U1 system exit latency (SEL) * 3 4467 * - For bulk endpoints, U1 SEL * 5 4468 * - For interrupt endpoints: 4469 * - Notification EPs, U1 SEL * 3 4470 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4471 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4472 */ 4473 static unsigned long long xhci_calculate_intel_u1_timeout( 4474 struct usb_device *udev, 4475 struct usb_endpoint_descriptor *desc) 4476 { 4477 unsigned long long timeout_ns; 4478 int ep_type; 4479 int intr_type; 4480 4481 ep_type = usb_endpoint_type(desc); 4482 switch (ep_type) { 4483 case USB_ENDPOINT_XFER_CONTROL: 4484 timeout_ns = udev->u1_params.sel * 3; 4485 break; 4486 case USB_ENDPOINT_XFER_BULK: 4487 timeout_ns = udev->u1_params.sel * 5; 4488 break; 4489 case USB_ENDPOINT_XFER_INT: 4490 intr_type = usb_endpoint_interrupt_type(desc); 4491 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4492 timeout_ns = udev->u1_params.sel * 3; 4493 break; 4494 } 4495 /* Otherwise the calculation is the same as isoc eps */ 4496 /* fall through */ 4497 case USB_ENDPOINT_XFER_ISOC: 4498 timeout_ns = xhci_service_interval_to_ns(desc); 4499 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4500 if (timeout_ns < udev->u1_params.sel * 2) 4501 timeout_ns = udev->u1_params.sel * 2; 4502 break; 4503 default: 4504 return 0; 4505 } 4506 4507 return timeout_ns; 4508 } 4509 4510 /* Returns the hub-encoded U1 timeout value. */ 4511 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4512 struct usb_device *udev, 4513 struct usb_endpoint_descriptor *desc) 4514 { 4515 unsigned long long timeout_ns; 4516 4517 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4518 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4519 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4520 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4521 return USB3_LPM_DISABLED; 4522 } 4523 } 4524 4525 if (xhci->quirks & XHCI_INTEL_HOST) 4526 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4527 else 4528 timeout_ns = udev->u1_params.sel; 4529 4530 /* The U1 timeout is encoded in 1us intervals. 4531 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4532 */ 4533 if (timeout_ns == USB3_LPM_DISABLED) 4534 timeout_ns = 1; 4535 else 4536 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4537 4538 /* If the necessary timeout value is bigger than what we can set in the 4539 * USB 3.0 hub, we have to disable hub-initiated U1. 4540 */ 4541 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4542 return timeout_ns; 4543 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4544 "due to long timeout %llu ms\n", timeout_ns); 4545 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4546 } 4547 4548 /* The U2 timeout should be the maximum of: 4549 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4550 * - largest bInterval of any active periodic endpoint (to avoid going 4551 * into lower power link states between intervals). 4552 * - the U2 Exit Latency of the device 4553 */ 4554 static unsigned long long xhci_calculate_intel_u2_timeout( 4555 struct usb_device *udev, 4556 struct usb_endpoint_descriptor *desc) 4557 { 4558 unsigned long long timeout_ns; 4559 unsigned long long u2_del_ns; 4560 4561 timeout_ns = 10 * 1000 * 1000; 4562 4563 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4564 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4565 timeout_ns = xhci_service_interval_to_ns(desc); 4566 4567 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4568 if (u2_del_ns > timeout_ns) 4569 timeout_ns = u2_del_ns; 4570 4571 return timeout_ns; 4572 } 4573 4574 /* Returns the hub-encoded U2 timeout value. */ 4575 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4576 struct usb_device *udev, 4577 struct usb_endpoint_descriptor *desc) 4578 { 4579 unsigned long long timeout_ns; 4580 4581 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4582 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4583 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4584 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4585 return USB3_LPM_DISABLED; 4586 } 4587 } 4588 4589 if (xhci->quirks & XHCI_INTEL_HOST) 4590 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4591 else 4592 timeout_ns = udev->u2_params.sel; 4593 4594 /* The U2 timeout is encoded in 256us intervals */ 4595 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4596 /* If the necessary timeout value is bigger than what we can set in the 4597 * USB 3.0 hub, we have to disable hub-initiated U2. 4598 */ 4599 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4600 return timeout_ns; 4601 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4602 "due to long timeout %llu ms\n", timeout_ns); 4603 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4604 } 4605 4606 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4607 struct usb_device *udev, 4608 struct usb_endpoint_descriptor *desc, 4609 enum usb3_link_state state, 4610 u16 *timeout) 4611 { 4612 if (state == USB3_LPM_U1) 4613 return xhci_calculate_u1_timeout(xhci, udev, desc); 4614 else if (state == USB3_LPM_U2) 4615 return xhci_calculate_u2_timeout(xhci, udev, desc); 4616 4617 return USB3_LPM_DISABLED; 4618 } 4619 4620 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4621 struct usb_device *udev, 4622 struct usb_endpoint_descriptor *desc, 4623 enum usb3_link_state state, 4624 u16 *timeout) 4625 { 4626 u16 alt_timeout; 4627 4628 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4629 desc, state, timeout); 4630 4631 /* If we found we can't enable hub-initiated LPM, or 4632 * the U1 or U2 exit latency was too high to allow 4633 * device-initiated LPM as well, just stop searching. 4634 */ 4635 if (alt_timeout == USB3_LPM_DISABLED || 4636 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4637 *timeout = alt_timeout; 4638 return -E2BIG; 4639 } 4640 if (alt_timeout > *timeout) 4641 *timeout = alt_timeout; 4642 return 0; 4643 } 4644 4645 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4646 struct usb_device *udev, 4647 struct usb_host_interface *alt, 4648 enum usb3_link_state state, 4649 u16 *timeout) 4650 { 4651 int j; 4652 4653 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4654 if (xhci_update_timeout_for_endpoint(xhci, udev, 4655 &alt->endpoint[j].desc, state, timeout)) 4656 return -E2BIG; 4657 continue; 4658 } 4659 return 0; 4660 } 4661 4662 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4663 enum usb3_link_state state) 4664 { 4665 struct usb_device *parent; 4666 unsigned int num_hubs; 4667 4668 if (state == USB3_LPM_U2) 4669 return 0; 4670 4671 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4672 for (parent = udev->parent, num_hubs = 0; parent->parent; 4673 parent = parent->parent) 4674 num_hubs++; 4675 4676 if (num_hubs < 2) 4677 return 0; 4678 4679 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4680 " below second-tier hub.\n"); 4681 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4682 "to decrease power consumption.\n"); 4683 return -E2BIG; 4684 } 4685 4686 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4687 struct usb_device *udev, 4688 enum usb3_link_state state) 4689 { 4690 if (xhci->quirks & XHCI_INTEL_HOST) 4691 return xhci_check_intel_tier_policy(udev, state); 4692 else 4693 return 0; 4694 } 4695 4696 /* Returns the U1 or U2 timeout that should be enabled. 4697 * If the tier check or timeout setting functions return with a non-zero exit 4698 * code, that means the timeout value has been finalized and we shouldn't look 4699 * at any more endpoints. 4700 */ 4701 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4702 struct usb_device *udev, enum usb3_link_state state) 4703 { 4704 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4705 struct usb_host_config *config; 4706 char *state_name; 4707 int i; 4708 u16 timeout = USB3_LPM_DISABLED; 4709 4710 if (state == USB3_LPM_U1) 4711 state_name = "U1"; 4712 else if (state == USB3_LPM_U2) 4713 state_name = "U2"; 4714 else { 4715 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4716 state); 4717 return timeout; 4718 } 4719 4720 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4721 return timeout; 4722 4723 /* Gather some information about the currently installed configuration 4724 * and alternate interface settings. 4725 */ 4726 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4727 state, &timeout)) 4728 return timeout; 4729 4730 config = udev->actconfig; 4731 if (!config) 4732 return timeout; 4733 4734 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4735 struct usb_driver *driver; 4736 struct usb_interface *intf = config->interface[i]; 4737 4738 if (!intf) 4739 continue; 4740 4741 /* Check if any currently bound drivers want hub-initiated LPM 4742 * disabled. 4743 */ 4744 if (intf->dev.driver) { 4745 driver = to_usb_driver(intf->dev.driver); 4746 if (driver && driver->disable_hub_initiated_lpm) { 4747 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4748 "at request of driver %s\n", 4749 state_name, driver->name); 4750 return xhci_get_timeout_no_hub_lpm(udev, state); 4751 } 4752 } 4753 4754 /* Not sure how this could happen... */ 4755 if (!intf->cur_altsetting) 4756 continue; 4757 4758 if (xhci_update_timeout_for_interface(xhci, udev, 4759 intf->cur_altsetting, 4760 state, &timeout)) 4761 return timeout; 4762 } 4763 return timeout; 4764 } 4765 4766 static int calculate_max_exit_latency(struct usb_device *udev, 4767 enum usb3_link_state state_changed, 4768 u16 hub_encoded_timeout) 4769 { 4770 unsigned long long u1_mel_us = 0; 4771 unsigned long long u2_mel_us = 0; 4772 unsigned long long mel_us = 0; 4773 bool disabling_u1; 4774 bool disabling_u2; 4775 bool enabling_u1; 4776 bool enabling_u2; 4777 4778 disabling_u1 = (state_changed == USB3_LPM_U1 && 4779 hub_encoded_timeout == USB3_LPM_DISABLED); 4780 disabling_u2 = (state_changed == USB3_LPM_U2 && 4781 hub_encoded_timeout == USB3_LPM_DISABLED); 4782 4783 enabling_u1 = (state_changed == USB3_LPM_U1 && 4784 hub_encoded_timeout != USB3_LPM_DISABLED); 4785 enabling_u2 = (state_changed == USB3_LPM_U2 && 4786 hub_encoded_timeout != USB3_LPM_DISABLED); 4787 4788 /* If U1 was already enabled and we're not disabling it, 4789 * or we're going to enable U1, account for the U1 max exit latency. 4790 */ 4791 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4792 enabling_u1) 4793 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4794 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4795 enabling_u2) 4796 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4797 4798 if (u1_mel_us > u2_mel_us) 4799 mel_us = u1_mel_us; 4800 else 4801 mel_us = u2_mel_us; 4802 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4803 if (mel_us > MAX_EXIT) { 4804 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4805 "is too big.\n", mel_us); 4806 return -E2BIG; 4807 } 4808 return mel_us; 4809 } 4810 4811 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4812 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4813 struct usb_device *udev, enum usb3_link_state state) 4814 { 4815 struct xhci_hcd *xhci; 4816 u16 hub_encoded_timeout; 4817 int mel; 4818 int ret; 4819 4820 xhci = hcd_to_xhci(hcd); 4821 /* The LPM timeout values are pretty host-controller specific, so don't 4822 * enable hub-initiated timeouts unless the vendor has provided 4823 * information about their timeout algorithm. 4824 */ 4825 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4826 !xhci->devs[udev->slot_id]) 4827 return USB3_LPM_DISABLED; 4828 4829 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4830 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4831 if (mel < 0) { 4832 /* Max Exit Latency is too big, disable LPM. */ 4833 hub_encoded_timeout = USB3_LPM_DISABLED; 4834 mel = 0; 4835 } 4836 4837 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4838 if (ret) 4839 return ret; 4840 return hub_encoded_timeout; 4841 } 4842 4843 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4844 struct usb_device *udev, enum usb3_link_state state) 4845 { 4846 struct xhci_hcd *xhci; 4847 u16 mel; 4848 4849 xhci = hcd_to_xhci(hcd); 4850 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4851 !xhci->devs[udev->slot_id]) 4852 return 0; 4853 4854 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4855 return xhci_change_max_exit_latency(xhci, udev, mel); 4856 } 4857 #else /* CONFIG_PM */ 4858 4859 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4860 struct usb_device *udev, int enable) 4861 { 4862 return 0; 4863 } 4864 4865 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4866 { 4867 return 0; 4868 } 4869 4870 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4871 struct usb_device *udev, enum usb3_link_state state) 4872 { 4873 return USB3_LPM_DISABLED; 4874 } 4875 4876 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4877 struct usb_device *udev, enum usb3_link_state state) 4878 { 4879 return 0; 4880 } 4881 #endif /* CONFIG_PM */ 4882 4883 /*-------------------------------------------------------------------------*/ 4884 4885 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4886 * internal data structures for the device. 4887 */ 4888 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4889 struct usb_tt *tt, gfp_t mem_flags) 4890 { 4891 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4892 struct xhci_virt_device *vdev; 4893 struct xhci_command *config_cmd; 4894 struct xhci_input_control_ctx *ctrl_ctx; 4895 struct xhci_slot_ctx *slot_ctx; 4896 unsigned long flags; 4897 unsigned think_time; 4898 int ret; 4899 4900 /* Ignore root hubs */ 4901 if (!hdev->parent) 4902 return 0; 4903 4904 vdev = xhci->devs[hdev->slot_id]; 4905 if (!vdev) { 4906 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4907 return -EINVAL; 4908 } 4909 4910 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 4911 if (!config_cmd) 4912 return -ENOMEM; 4913 4914 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4915 if (!ctrl_ctx) { 4916 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4917 __func__); 4918 xhci_free_command(xhci, config_cmd); 4919 return -ENOMEM; 4920 } 4921 4922 spin_lock_irqsave(&xhci->lock, flags); 4923 if (hdev->speed == USB_SPEED_HIGH && 4924 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4925 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4926 xhci_free_command(xhci, config_cmd); 4927 spin_unlock_irqrestore(&xhci->lock, flags); 4928 return -ENOMEM; 4929 } 4930 4931 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4932 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4933 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4934 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4935 /* 4936 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4937 * but it may be already set to 1 when setup an xHCI virtual 4938 * device, so clear it anyway. 4939 */ 4940 if (tt->multi) 4941 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4942 else if (hdev->speed == USB_SPEED_FULL) 4943 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4944 4945 if (xhci->hci_version > 0x95) { 4946 xhci_dbg(xhci, "xHCI version %x needs hub " 4947 "TT think time and number of ports\n", 4948 (unsigned int) xhci->hci_version); 4949 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4950 /* Set TT think time - convert from ns to FS bit times. 4951 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4952 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4953 * 4954 * xHCI 1.0: this field shall be 0 if the device is not a 4955 * High-spped hub. 4956 */ 4957 think_time = tt->think_time; 4958 if (think_time != 0) 4959 think_time = (think_time / 666) - 1; 4960 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4961 slot_ctx->tt_info |= 4962 cpu_to_le32(TT_THINK_TIME(think_time)); 4963 } else { 4964 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4965 "TT think time or number of ports\n", 4966 (unsigned int) xhci->hci_version); 4967 } 4968 slot_ctx->dev_state = 0; 4969 spin_unlock_irqrestore(&xhci->lock, flags); 4970 4971 xhci_dbg(xhci, "Set up %s for hub device.\n", 4972 (xhci->hci_version > 0x95) ? 4973 "configure endpoint" : "evaluate context"); 4974 4975 /* Issue and wait for the configure endpoint or 4976 * evaluate context command. 4977 */ 4978 if (xhci->hci_version > 0x95) 4979 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4980 false, false); 4981 else 4982 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4983 true, false); 4984 4985 xhci_free_command(xhci, config_cmd); 4986 return ret; 4987 } 4988 4989 static int xhci_get_frame(struct usb_hcd *hcd) 4990 { 4991 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4992 /* EHCI mods by the periodic size. Why? */ 4993 return readl(&xhci->run_regs->microframe_index) >> 3; 4994 } 4995 4996 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4997 { 4998 struct xhci_hcd *xhci; 4999 /* 5000 * TODO: Check with DWC3 clients for sysdev according to 5001 * quirks 5002 */ 5003 struct device *dev = hcd->self.sysdev; 5004 unsigned int minor_rev; 5005 int retval; 5006 5007 /* Accept arbitrarily long scatter-gather lists */ 5008 hcd->self.sg_tablesize = ~0; 5009 5010 /* support to build packet from discontinuous buffers */ 5011 hcd->self.no_sg_constraint = 1; 5012 5013 /* XHCI controllers don't stop the ep queue on short packets :| */ 5014 hcd->self.no_stop_on_short = 1; 5015 5016 xhci = hcd_to_xhci(hcd); 5017 5018 if (usb_hcd_is_primary_hcd(hcd)) { 5019 xhci->main_hcd = hcd; 5020 xhci->usb2_rhub.hcd = hcd; 5021 /* Mark the first roothub as being USB 2.0. 5022 * The xHCI driver will register the USB 3.0 roothub. 5023 */ 5024 hcd->speed = HCD_USB2; 5025 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5026 /* 5027 * USB 2.0 roothub under xHCI has an integrated TT, 5028 * (rate matching hub) as opposed to having an OHCI/UHCI 5029 * companion controller. 5030 */ 5031 hcd->has_tt = 1; 5032 } else { 5033 /* 5034 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol 5035 * minor revision instead of sbrn 5036 */ 5037 minor_rev = xhci->usb3_rhub.min_rev; 5038 if (minor_rev) { 5039 hcd->speed = HCD_USB31; 5040 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5041 } 5042 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n", 5043 minor_rev, 5044 minor_rev ? "Enhanced" : ""); 5045 5046 xhci->usb3_rhub.hcd = hcd; 5047 /* xHCI private pointer was set in xhci_pci_probe for the second 5048 * registered roothub. 5049 */ 5050 return 0; 5051 } 5052 5053 mutex_init(&xhci->mutex); 5054 xhci->cap_regs = hcd->regs; 5055 xhci->op_regs = hcd->regs + 5056 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5057 xhci->run_regs = hcd->regs + 5058 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5059 /* Cache read-only capability registers */ 5060 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5061 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5062 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5063 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 5064 xhci->hci_version = HC_VERSION(xhci->hcc_params); 5065 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5066 if (xhci->hci_version > 0x100) 5067 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5068 5069 xhci->quirks |= quirks; 5070 5071 get_quirks(dev, xhci); 5072 5073 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5074 * success event after a short transfer. This quirk will ignore such 5075 * spurious event. 5076 */ 5077 if (xhci->hci_version > 0x96) 5078 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5079 5080 /* Make sure the HC is halted. */ 5081 retval = xhci_halt(xhci); 5082 if (retval) 5083 return retval; 5084 5085 xhci_zero_64b_regs(xhci); 5086 5087 xhci_dbg(xhci, "Resetting HCD\n"); 5088 /* Reset the internal HC memory state and registers. */ 5089 retval = xhci_reset(xhci); 5090 if (retval) 5091 return retval; 5092 xhci_dbg(xhci, "Reset complete\n"); 5093 5094 /* 5095 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5096 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5097 * address memory pointers actually. So, this driver clears the AC64 5098 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5099 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5100 */ 5101 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5102 xhci->hcc_params &= ~BIT(0); 5103 5104 /* Set dma_mask and coherent_dma_mask to 64-bits, 5105 * if xHC supports 64-bit addressing */ 5106 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5107 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5108 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5109 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5110 } else { 5111 /* 5112 * This is to avoid error in cases where a 32-bit USB 5113 * controller is used on a 64-bit capable system. 5114 */ 5115 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5116 if (retval) 5117 return retval; 5118 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5119 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5120 } 5121 5122 xhci_dbg(xhci, "Calling HCD init\n"); 5123 /* Initialize HCD and host controller data structures. */ 5124 retval = xhci_init(hcd); 5125 if (retval) 5126 return retval; 5127 xhci_dbg(xhci, "Called HCD init\n"); 5128 5129 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5130 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5131 5132 return 0; 5133 } 5134 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5135 5136 static const struct hc_driver xhci_hc_driver = { 5137 .description = "xhci-hcd", 5138 .product_desc = "xHCI Host Controller", 5139 .hcd_priv_size = sizeof(struct xhci_hcd), 5140 5141 /* 5142 * generic hardware linkage 5143 */ 5144 .irq = xhci_irq, 5145 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 5146 5147 /* 5148 * basic lifecycle operations 5149 */ 5150 .reset = NULL, /* set in xhci_init_driver() */ 5151 .start = xhci_run, 5152 .stop = xhci_stop, 5153 .shutdown = xhci_shutdown, 5154 5155 /* 5156 * managing i/o requests and associated device resources 5157 */ 5158 .urb_enqueue = xhci_urb_enqueue, 5159 .urb_dequeue = xhci_urb_dequeue, 5160 .alloc_dev = xhci_alloc_dev, 5161 .free_dev = xhci_free_dev, 5162 .alloc_streams = xhci_alloc_streams, 5163 .free_streams = xhci_free_streams, 5164 .add_endpoint = xhci_add_endpoint, 5165 .drop_endpoint = xhci_drop_endpoint, 5166 .endpoint_reset = xhci_endpoint_reset, 5167 .check_bandwidth = xhci_check_bandwidth, 5168 .reset_bandwidth = xhci_reset_bandwidth, 5169 .address_device = xhci_address_device, 5170 .enable_device = xhci_enable_device, 5171 .update_hub_device = xhci_update_hub_device, 5172 .reset_device = xhci_discover_or_reset_device, 5173 5174 /* 5175 * scheduling support 5176 */ 5177 .get_frame_number = xhci_get_frame, 5178 5179 /* 5180 * root hub support 5181 */ 5182 .hub_control = xhci_hub_control, 5183 .hub_status_data = xhci_hub_status_data, 5184 .bus_suspend = xhci_bus_suspend, 5185 .bus_resume = xhci_bus_resume, 5186 .get_resuming_ports = xhci_get_resuming_ports, 5187 5188 /* 5189 * call back when device connected and addressed 5190 */ 5191 .update_device = xhci_update_device, 5192 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5193 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5194 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5195 .find_raw_port_number = xhci_find_raw_port_number, 5196 }; 5197 5198 void xhci_init_driver(struct hc_driver *drv, 5199 const struct xhci_driver_overrides *over) 5200 { 5201 BUG_ON(!over); 5202 5203 /* Copy the generic table to drv then apply the overrides */ 5204 *drv = xhci_hc_driver; 5205 5206 if (over) { 5207 drv->hcd_priv_size += over->extra_priv_size; 5208 if (over->reset) 5209 drv->reset = over->reset; 5210 if (over->start) 5211 drv->start = over->start; 5212 } 5213 } 5214 EXPORT_SYMBOL_GPL(xhci_init_driver); 5215 5216 MODULE_DESCRIPTION(DRIVER_DESC); 5217 MODULE_AUTHOR(DRIVER_AUTHOR); 5218 MODULE_LICENSE("GPL"); 5219 5220 static int __init xhci_hcd_init(void) 5221 { 5222 /* 5223 * Check the compiler generated sizes of structures that must be laid 5224 * out in specific ways for hardware access. 5225 */ 5226 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5227 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5228 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5229 /* xhci_device_control has eight fields, and also 5230 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5231 */ 5232 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5233 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5234 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5235 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5236 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5237 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5238 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5239 5240 if (usb_disabled()) 5241 return -ENODEV; 5242 5243 xhci_debugfs_create_root(); 5244 5245 return 0; 5246 } 5247 5248 /* 5249 * If an init function is provided, an exit function must also be provided 5250 * to allow module unload. 5251 */ 5252 static void __exit xhci_hcd_fini(void) 5253 { 5254 xhci_debugfs_remove_root(); 5255 } 5256 5257 module_init(xhci_hcd_init); 5258 module_exit(xhci_hcd_fini); 5259