xref: /linux/drivers/usb/host/xhci.c (revision 19f2e267a5d0d26282a64f8f788c482852c95324)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19 
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 	struct xhci_segment *seg = ring->first_seg;
43 
44 	if (!td || !td->start_seg)
45 		return false;
46 	do {
47 		if (seg == td->start_seg)
48 			return true;
49 		seg = seg->next;
50 	} while (seg && seg != ring->first_seg);
51 
52 	return false;
53 }
54 
55 /* TODO: copied from ehci-hcd.c - can this be refactored? */
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71 	u32	result;
72 
73 	do {
74 		result = readl(ptr);
75 		if (result == ~(u32)0)		/* card removed */
76 			return -ENODEV;
77 		result &= mask;
78 		if (result == done)
79 			return 0;
80 		udelay(1);
81 		usec--;
82 	} while (usec > 0);
83 	return -ETIMEDOUT;
84 }
85 
86 /*
87  * Disable interrupts and begin the xHCI halting process.
88  */
89 void xhci_quiesce(struct xhci_hcd *xhci)
90 {
91 	u32 halted;
92 	u32 cmd;
93 	u32 mask;
94 
95 	mask = ~(XHCI_IRQS);
96 	halted = readl(&xhci->op_regs->status) & STS_HALT;
97 	if (!halted)
98 		mask &= ~CMD_RUN;
99 
100 	cmd = readl(&xhci->op_regs->command);
101 	cmd &= mask;
102 	writel(cmd, &xhci->op_regs->command);
103 }
104 
105 /*
106  * Force HC into halt state.
107  *
108  * Disable any IRQs and clear the run/stop bit.
109  * HC will complete any current and actively pipelined transactions, and
110  * should halt within 16 ms of the run/stop bit being cleared.
111  * Read HC Halted bit in the status register to see when the HC is finished.
112  */
113 int xhci_halt(struct xhci_hcd *xhci)
114 {
115 	int ret;
116 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
117 	xhci_quiesce(xhci);
118 
119 	ret = xhci_handshake(&xhci->op_regs->status,
120 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
121 	if (ret) {
122 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
123 		return ret;
124 	}
125 	xhci->xhc_state |= XHCI_STATE_HALTED;
126 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127 	return ret;
128 }
129 
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135 	u32 temp;
136 	int ret;
137 
138 	temp = readl(&xhci->op_regs->command);
139 	temp |= (CMD_RUN);
140 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141 			temp);
142 	writel(temp, &xhci->op_regs->command);
143 
144 	/*
145 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
146 	 * running.
147 	 */
148 	ret = xhci_handshake(&xhci->op_regs->status,
149 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
150 	if (ret == -ETIMEDOUT)
151 		xhci_err(xhci, "Host took too long to start, "
152 				"waited %u microseconds.\n",
153 				XHCI_MAX_HALT_USEC);
154 	if (!ret)
155 		/* clear state flags. Including dying, halted or removing */
156 		xhci->xhc_state = 0;
157 
158 	return ret;
159 }
160 
161 /*
162  * Reset a halted HC.
163  *
164  * This resets pipelines, timers, counters, state machines, etc.
165  * Transactions will be terminated immediately, and operational registers
166  * will be set to their defaults.
167  */
168 int xhci_reset(struct xhci_hcd *xhci)
169 {
170 	u32 command;
171 	u32 state;
172 	int ret;
173 
174 	state = readl(&xhci->op_regs->status);
175 
176 	if (state == ~(u32)0) {
177 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
178 		return -ENODEV;
179 	}
180 
181 	if ((state & STS_HALT) == 0) {
182 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183 		return 0;
184 	}
185 
186 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187 	command = readl(&xhci->op_regs->command);
188 	command |= CMD_RESET;
189 	writel(command, &xhci->op_regs->command);
190 
191 	/* Existing Intel xHCI controllers require a delay of 1 mS,
192 	 * after setting the CMD_RESET bit, and before accessing any
193 	 * HC registers. This allows the HC to complete the
194 	 * reset operation and be ready for HC register access.
195 	 * Without this delay, the subsequent HC register access,
196 	 * may result in a system hang very rarely.
197 	 */
198 	if (xhci->quirks & XHCI_INTEL_HOST)
199 		udelay(1000);
200 
201 	ret = xhci_handshake(&xhci->op_regs->command,
202 			CMD_RESET, 0, 10 * 1000 * 1000);
203 	if (ret)
204 		return ret;
205 
206 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
207 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
208 
209 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
210 			 "Wait for controller to be ready for doorbell rings");
211 	/*
212 	 * xHCI cannot write to any doorbells or operational registers other
213 	 * than status until the "Controller Not Ready" flag is cleared.
214 	 */
215 	ret = xhci_handshake(&xhci->op_regs->status,
216 			STS_CNR, 0, 10 * 1000 * 1000);
217 
218 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
219 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
220 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
221 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
222 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
223 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
224 
225 	return ret;
226 }
227 
228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
229 {
230 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
231 	int err, i;
232 	u64 val;
233 
234 	/*
235 	 * Some Renesas controllers get into a weird state if they are
236 	 * reset while programmed with 64bit addresses (they will preserve
237 	 * the top half of the address in internal, non visible
238 	 * registers). You end up with half the address coming from the
239 	 * kernel, and the other half coming from the firmware. Also,
240 	 * changing the programming leads to extra accesses even if the
241 	 * controller is supposed to be halted. The controller ends up with
242 	 * a fatal fault, and is then ripe for being properly reset.
243 	 *
244 	 * Special care is taken to only apply this if the device is behind
245 	 * an iommu. Doing anything when there is no iommu is definitely
246 	 * unsafe...
247 	 */
248 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
249 		return;
250 
251 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
252 
253 	/* Clear HSEIE so that faults do not get signaled */
254 	val = readl(&xhci->op_regs->command);
255 	val &= ~CMD_HSEIE;
256 	writel(val, &xhci->op_regs->command);
257 
258 	/* Clear HSE (aka FATAL) */
259 	val = readl(&xhci->op_regs->status);
260 	val |= STS_FATAL;
261 	writel(val, &xhci->op_regs->status);
262 
263 	/* Now zero the registers, and brace for impact */
264 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
265 	if (upper_32_bits(val))
266 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
267 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
268 	if (upper_32_bits(val))
269 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
270 
271 	for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
272 		struct xhci_intr_reg __iomem *ir;
273 
274 		ir = &xhci->run_regs->ir_set[i];
275 		val = xhci_read_64(xhci, &ir->erst_base);
276 		if (upper_32_bits(val))
277 			xhci_write_64(xhci, 0, &ir->erst_base);
278 		val= xhci_read_64(xhci, &ir->erst_dequeue);
279 		if (upper_32_bits(val))
280 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
281 	}
282 
283 	/* Wait for the fault to appear. It will be cleared on reset */
284 	err = xhci_handshake(&xhci->op_regs->status,
285 			     STS_FATAL, STS_FATAL,
286 			     XHCI_MAX_HALT_USEC);
287 	if (!err)
288 		xhci_info(xhci, "Fault detected\n");
289 }
290 
291 #ifdef CONFIG_USB_PCI
292 /*
293  * Set up MSI
294  */
295 static int xhci_setup_msi(struct xhci_hcd *xhci)
296 {
297 	int ret;
298 	/*
299 	 * TODO:Check with MSI Soc for sysdev
300 	 */
301 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
302 
303 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
304 	if (ret < 0) {
305 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
306 				"failed to allocate MSI entry");
307 		return ret;
308 	}
309 
310 	ret = request_irq(pdev->irq, xhci_msi_irq,
311 				0, "xhci_hcd", xhci_to_hcd(xhci));
312 	if (ret) {
313 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
314 				"disable MSI interrupt");
315 		pci_free_irq_vectors(pdev);
316 	}
317 
318 	return ret;
319 }
320 
321 /*
322  * Set up MSI-X
323  */
324 static int xhci_setup_msix(struct xhci_hcd *xhci)
325 {
326 	int i, ret = 0;
327 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
328 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
329 
330 	/*
331 	 * calculate number of msi-x vectors supported.
332 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
333 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
334 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
335 	 *   Add additional 1 vector to ensure always available interrupt.
336 	 */
337 	xhci->msix_count = min(num_online_cpus() + 1,
338 				HCS_MAX_INTRS(xhci->hcs_params1));
339 
340 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
341 			PCI_IRQ_MSIX);
342 	if (ret < 0) {
343 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
344 				"Failed to enable MSI-X");
345 		return ret;
346 	}
347 
348 	for (i = 0; i < xhci->msix_count; i++) {
349 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
350 				"xhci_hcd", xhci_to_hcd(xhci));
351 		if (ret)
352 			goto disable_msix;
353 	}
354 
355 	hcd->msix_enabled = 1;
356 	return ret;
357 
358 disable_msix:
359 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
360 	while (--i >= 0)
361 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
362 	pci_free_irq_vectors(pdev);
363 	return ret;
364 }
365 
366 /* Free any IRQs and disable MSI-X */
367 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
368 {
369 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
370 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
371 
372 	if (xhci->quirks & XHCI_PLAT)
373 		return;
374 
375 	/* return if using legacy interrupt */
376 	if (hcd->irq > 0)
377 		return;
378 
379 	if (hcd->msix_enabled) {
380 		int i;
381 
382 		for (i = 0; i < xhci->msix_count; i++)
383 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
384 	} else {
385 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
386 	}
387 
388 	pci_free_irq_vectors(pdev);
389 	hcd->msix_enabled = 0;
390 }
391 
392 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
393 {
394 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
395 
396 	if (hcd->msix_enabled) {
397 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
398 		int i;
399 
400 		for (i = 0; i < xhci->msix_count; i++)
401 			synchronize_irq(pci_irq_vector(pdev, i));
402 	}
403 }
404 
405 static int xhci_try_enable_msi(struct usb_hcd *hcd)
406 {
407 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
408 	struct pci_dev  *pdev;
409 	int ret;
410 
411 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
412 	if (xhci->quirks & XHCI_PLAT)
413 		return 0;
414 
415 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
416 	/*
417 	 * Some Fresco Logic host controllers advertise MSI, but fail to
418 	 * generate interrupts.  Don't even try to enable MSI.
419 	 */
420 	if (xhci->quirks & XHCI_BROKEN_MSI)
421 		goto legacy_irq;
422 
423 	/* unregister the legacy interrupt */
424 	if (hcd->irq)
425 		free_irq(hcd->irq, hcd);
426 	hcd->irq = 0;
427 
428 	ret = xhci_setup_msix(xhci);
429 	if (ret)
430 		/* fall back to msi*/
431 		ret = xhci_setup_msi(xhci);
432 
433 	if (!ret) {
434 		hcd->msi_enabled = 1;
435 		return 0;
436 	}
437 
438 	if (!pdev->irq) {
439 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
440 		return -EINVAL;
441 	}
442 
443  legacy_irq:
444 	if (!strlen(hcd->irq_descr))
445 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
446 			 hcd->driver->description, hcd->self.busnum);
447 
448 	/* fall back to legacy interrupt*/
449 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
450 			hcd->irq_descr, hcd);
451 	if (ret) {
452 		xhci_err(xhci, "request interrupt %d failed\n",
453 				pdev->irq);
454 		return ret;
455 	}
456 	hcd->irq = pdev->irq;
457 	return 0;
458 }
459 
460 #else
461 
462 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
463 {
464 	return 0;
465 }
466 
467 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
468 {
469 }
470 
471 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
472 {
473 }
474 
475 #endif
476 
477 static void compliance_mode_recovery(struct timer_list *t)
478 {
479 	struct xhci_hcd *xhci;
480 	struct usb_hcd *hcd;
481 	struct xhci_hub *rhub;
482 	u32 temp;
483 	int i;
484 
485 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
486 	rhub = &xhci->usb3_rhub;
487 
488 	for (i = 0; i < rhub->num_ports; i++) {
489 		temp = readl(rhub->ports[i]->addr);
490 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
491 			/*
492 			 * Compliance Mode Detected. Letting USB Core
493 			 * handle the Warm Reset
494 			 */
495 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496 					"Compliance mode detected->port %d",
497 					i + 1);
498 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
499 					"Attempting compliance mode recovery");
500 			hcd = xhci->shared_hcd;
501 
502 			if (hcd->state == HC_STATE_SUSPENDED)
503 				usb_hcd_resume_root_hub(hcd);
504 
505 			usb_hcd_poll_rh_status(hcd);
506 		}
507 	}
508 
509 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
510 		mod_timer(&xhci->comp_mode_recovery_timer,
511 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
512 }
513 
514 /*
515  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
516  * that causes ports behind that hardware to enter compliance mode sometimes.
517  * The quirk creates a timer that polls every 2 seconds the link state of
518  * each host controller's port and recovers it by issuing a Warm reset
519  * if Compliance mode is detected, otherwise the port will become "dead" (no
520  * device connections or disconnections will be detected anymore). Becasue no
521  * status event is generated when entering compliance mode (per xhci spec),
522  * this quirk is needed on systems that have the failing hardware installed.
523  */
524 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
525 {
526 	xhci->port_status_u0 = 0;
527 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
528 		    0);
529 	xhci->comp_mode_recovery_timer.expires = jiffies +
530 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
531 
532 	add_timer(&xhci->comp_mode_recovery_timer);
533 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
534 			"Compliance mode recovery timer initialized");
535 }
536 
537 /*
538  * This function identifies the systems that have installed the SN65LVPE502CP
539  * USB3.0 re-driver and that need the Compliance Mode Quirk.
540  * Systems:
541  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
542  */
543 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
544 {
545 	const char *dmi_product_name, *dmi_sys_vendor;
546 
547 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
548 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
549 	if (!dmi_product_name || !dmi_sys_vendor)
550 		return false;
551 
552 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
553 		return false;
554 
555 	if (strstr(dmi_product_name, "Z420") ||
556 			strstr(dmi_product_name, "Z620") ||
557 			strstr(dmi_product_name, "Z820") ||
558 			strstr(dmi_product_name, "Z1 Workstation"))
559 		return true;
560 
561 	return false;
562 }
563 
564 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
565 {
566 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
567 }
568 
569 
570 /*
571  * Initialize memory for HCD and xHC (one-time init).
572  *
573  * Program the PAGESIZE register, initialize the device context array, create
574  * device contexts (?), set up a command ring segment (or two?), create event
575  * ring (one for now).
576  */
577 static int xhci_init(struct usb_hcd *hcd)
578 {
579 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
580 	int retval = 0;
581 
582 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
583 	spin_lock_init(&xhci->lock);
584 	if (xhci->hci_version == 0x95 && link_quirk) {
585 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
586 				"QUIRK: Not clearing Link TRB chain bits.");
587 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
588 	} else {
589 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
590 				"xHCI doesn't need link TRB QUIRK");
591 	}
592 	retval = xhci_mem_init(xhci, GFP_KERNEL);
593 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
594 
595 	/* Initializing Compliance Mode Recovery Data If Needed */
596 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
597 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
598 		compliance_mode_recovery_timer_init(xhci);
599 	}
600 
601 	return retval;
602 }
603 
604 /*-------------------------------------------------------------------------*/
605 
606 
607 static int xhci_run_finished(struct xhci_hcd *xhci)
608 {
609 	if (xhci_start(xhci)) {
610 		xhci_halt(xhci);
611 		return -ENODEV;
612 	}
613 	xhci->shared_hcd->state = HC_STATE_RUNNING;
614 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
615 
616 	if (xhci->quirks & XHCI_NEC_HOST)
617 		xhci_ring_cmd_db(xhci);
618 
619 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
620 			"Finished xhci_run for USB3 roothub");
621 	return 0;
622 }
623 
624 /*
625  * Start the HC after it was halted.
626  *
627  * This function is called by the USB core when the HC driver is added.
628  * Its opposite is xhci_stop().
629  *
630  * xhci_init() must be called once before this function can be called.
631  * Reset the HC, enable device slot contexts, program DCBAAP, and
632  * set command ring pointer and event ring pointer.
633  *
634  * Setup MSI-X vectors and enable interrupts.
635  */
636 int xhci_run(struct usb_hcd *hcd)
637 {
638 	u32 temp;
639 	u64 temp_64;
640 	int ret;
641 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
642 
643 	/* Start the xHCI host controller running only after the USB 2.0 roothub
644 	 * is setup.
645 	 */
646 
647 	hcd->uses_new_polling = 1;
648 	if (!usb_hcd_is_primary_hcd(hcd))
649 		return xhci_run_finished(xhci);
650 
651 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
652 
653 	ret = xhci_try_enable_msi(hcd);
654 	if (ret)
655 		return ret;
656 
657 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
658 	temp_64 &= ~ERST_PTR_MASK;
659 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
660 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
661 
662 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
663 			"// Set the interrupt modulation register");
664 	temp = readl(&xhci->ir_set->irq_control);
665 	temp &= ~ER_IRQ_INTERVAL_MASK;
666 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
667 	writel(temp, &xhci->ir_set->irq_control);
668 
669 	/* Set the HCD state before we enable the irqs */
670 	temp = readl(&xhci->op_regs->command);
671 	temp |= (CMD_EIE);
672 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
673 			"// Enable interrupts, cmd = 0x%x.", temp);
674 	writel(temp, &xhci->op_regs->command);
675 
676 	temp = readl(&xhci->ir_set->irq_pending);
677 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
678 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
679 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
680 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
681 
682 	if (xhci->quirks & XHCI_NEC_HOST) {
683 		struct xhci_command *command;
684 
685 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
686 		if (!command)
687 			return -ENOMEM;
688 
689 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
690 				TRB_TYPE(TRB_NEC_GET_FW));
691 		if (ret)
692 			xhci_free_command(xhci, command);
693 	}
694 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
695 			"Finished xhci_run for USB2 roothub");
696 
697 	xhci_dbc_init(xhci);
698 
699 	xhci_debugfs_init(xhci);
700 
701 	return 0;
702 }
703 EXPORT_SYMBOL_GPL(xhci_run);
704 
705 /*
706  * Stop xHCI driver.
707  *
708  * This function is called by the USB core when the HC driver is removed.
709  * Its opposite is xhci_run().
710  *
711  * Disable device contexts, disable IRQs, and quiesce the HC.
712  * Reset the HC, finish any completed transactions, and cleanup memory.
713  */
714 static void xhci_stop(struct usb_hcd *hcd)
715 {
716 	u32 temp;
717 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
718 
719 	mutex_lock(&xhci->mutex);
720 
721 	/* Only halt host and free memory after both hcds are removed */
722 	if (!usb_hcd_is_primary_hcd(hcd)) {
723 		mutex_unlock(&xhci->mutex);
724 		return;
725 	}
726 
727 	xhci_dbc_exit(xhci);
728 
729 	spin_lock_irq(&xhci->lock);
730 	xhci->xhc_state |= XHCI_STATE_HALTED;
731 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
732 	xhci_halt(xhci);
733 	xhci_reset(xhci);
734 	spin_unlock_irq(&xhci->lock);
735 
736 	xhci_cleanup_msix(xhci);
737 
738 	/* Deleting Compliance Mode Recovery Timer */
739 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
740 			(!(xhci_all_ports_seen_u0(xhci)))) {
741 		del_timer_sync(&xhci->comp_mode_recovery_timer);
742 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
743 				"%s: compliance mode recovery timer deleted",
744 				__func__);
745 	}
746 
747 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
748 		usb_amd_dev_put();
749 
750 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
751 			"// Disabling event ring interrupts");
752 	temp = readl(&xhci->op_regs->status);
753 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
754 	temp = readl(&xhci->ir_set->irq_pending);
755 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
756 
757 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
758 	xhci_mem_cleanup(xhci);
759 	xhci_debugfs_exit(xhci);
760 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
761 			"xhci_stop completed - status = %x",
762 			readl(&xhci->op_regs->status));
763 	mutex_unlock(&xhci->mutex);
764 }
765 
766 /*
767  * Shutdown HC (not bus-specific)
768  *
769  * This is called when the machine is rebooting or halting.  We assume that the
770  * machine will be powered off, and the HC's internal state will be reset.
771  * Don't bother to free memory.
772  *
773  * This will only ever be called with the main usb_hcd (the USB3 roothub).
774  */
775 static void xhci_shutdown(struct usb_hcd *hcd)
776 {
777 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
778 
779 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
780 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
781 
782 	spin_lock_irq(&xhci->lock);
783 	xhci_halt(xhci);
784 	/* Workaround for spurious wakeups at shutdown with HSW */
785 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
786 		xhci_reset(xhci);
787 	spin_unlock_irq(&xhci->lock);
788 
789 	xhci_cleanup_msix(xhci);
790 
791 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
792 			"xhci_shutdown completed - status = %x",
793 			readl(&xhci->op_regs->status));
794 
795 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
796 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
797 		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
798 }
799 
800 #ifdef CONFIG_PM
801 static void xhci_save_registers(struct xhci_hcd *xhci)
802 {
803 	xhci->s3.command = readl(&xhci->op_regs->command);
804 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
805 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
806 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
807 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
808 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
809 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
810 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
811 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
812 }
813 
814 static void xhci_restore_registers(struct xhci_hcd *xhci)
815 {
816 	writel(xhci->s3.command, &xhci->op_regs->command);
817 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
818 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
819 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
820 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
821 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
822 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
823 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
824 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
825 }
826 
827 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
828 {
829 	u64	val_64;
830 
831 	/* step 2: initialize command ring buffer */
832 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
833 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
834 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
835 				      xhci->cmd_ring->dequeue) &
836 		 (u64) ~CMD_RING_RSVD_BITS) |
837 		xhci->cmd_ring->cycle_state;
838 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
839 			"// Setting command ring address to 0x%llx",
840 			(long unsigned long) val_64);
841 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
842 }
843 
844 /*
845  * The whole command ring must be cleared to zero when we suspend the host.
846  *
847  * The host doesn't save the command ring pointer in the suspend well, so we
848  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
849  * aligned, because of the reserved bits in the command ring dequeue pointer
850  * register.  Therefore, we can't just set the dequeue pointer back in the
851  * middle of the ring (TRBs are 16-byte aligned).
852  */
853 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
854 {
855 	struct xhci_ring *ring;
856 	struct xhci_segment *seg;
857 
858 	ring = xhci->cmd_ring;
859 	seg = ring->deq_seg;
860 	do {
861 		memset(seg->trbs, 0,
862 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
863 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
864 			cpu_to_le32(~TRB_CYCLE);
865 		seg = seg->next;
866 	} while (seg != ring->deq_seg);
867 
868 	/* Reset the software enqueue and dequeue pointers */
869 	ring->deq_seg = ring->first_seg;
870 	ring->dequeue = ring->first_seg->trbs;
871 	ring->enq_seg = ring->deq_seg;
872 	ring->enqueue = ring->dequeue;
873 
874 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
875 	/*
876 	 * Ring is now zeroed, so the HW should look for change of ownership
877 	 * when the cycle bit is set to 1.
878 	 */
879 	ring->cycle_state = 1;
880 
881 	/*
882 	 * Reset the hardware dequeue pointer.
883 	 * Yes, this will need to be re-written after resume, but we're paranoid
884 	 * and want to make sure the hardware doesn't access bogus memory
885 	 * because, say, the BIOS or an SMI started the host without changing
886 	 * the command ring pointers.
887 	 */
888 	xhci_set_cmd_ring_deq(xhci);
889 }
890 
891 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
892 {
893 	struct xhci_port **ports;
894 	int port_index;
895 	unsigned long flags;
896 	u32 t1, t2;
897 
898 	spin_lock_irqsave(&xhci->lock, flags);
899 
900 	/* disable usb3 ports Wake bits */
901 	port_index = xhci->usb3_rhub.num_ports;
902 	ports = xhci->usb3_rhub.ports;
903 	while (port_index--) {
904 		t1 = readl(ports[port_index]->addr);
905 		t1 = xhci_port_state_to_neutral(t1);
906 		t2 = t1 & ~PORT_WAKE_BITS;
907 		if (t1 != t2)
908 			writel(t2, ports[port_index]->addr);
909 	}
910 
911 	/* disable usb2 ports Wake bits */
912 	port_index = xhci->usb2_rhub.num_ports;
913 	ports = xhci->usb2_rhub.ports;
914 	while (port_index--) {
915 		t1 = readl(ports[port_index]->addr);
916 		t1 = xhci_port_state_to_neutral(t1);
917 		t2 = t1 & ~PORT_WAKE_BITS;
918 		if (t1 != t2)
919 			writel(t2, ports[port_index]->addr);
920 	}
921 
922 	spin_unlock_irqrestore(&xhci->lock, flags);
923 }
924 
925 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
926 {
927 	struct xhci_port	**ports;
928 	int			port_index;
929 	u32			status;
930 	u32			portsc;
931 
932 	status = readl(&xhci->op_regs->status);
933 	if (status & STS_EINT)
934 		return true;
935 	/*
936 	 * Checking STS_EINT is not enough as there is a lag between a change
937 	 * bit being set and the Port Status Change Event that it generated
938 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
939 	 */
940 
941 	port_index = xhci->usb2_rhub.num_ports;
942 	ports = xhci->usb2_rhub.ports;
943 	while (port_index--) {
944 		portsc = readl(ports[port_index]->addr);
945 		if (portsc & PORT_CHANGE_MASK ||
946 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
947 			return true;
948 	}
949 	port_index = xhci->usb3_rhub.num_ports;
950 	ports = xhci->usb3_rhub.ports;
951 	while (port_index--) {
952 		portsc = readl(ports[port_index]->addr);
953 		if (portsc & PORT_CHANGE_MASK ||
954 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
955 			return true;
956 	}
957 	return false;
958 }
959 
960 /*
961  * Stop HC (not bus-specific)
962  *
963  * This is called when the machine transition into S3/S4 mode.
964  *
965  */
966 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
967 {
968 	int			rc = 0;
969 	unsigned int		delay = XHCI_MAX_HALT_USEC;
970 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
971 	u32			command;
972 	u32			res;
973 
974 	if (!hcd->state)
975 		return 0;
976 
977 	if (hcd->state != HC_STATE_SUSPENDED ||
978 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
979 		return -EINVAL;
980 
981 	xhci_dbc_suspend(xhci);
982 
983 	/* Clear root port wake on bits if wakeup not allowed. */
984 	if (!do_wakeup)
985 		xhci_disable_port_wake_on_bits(xhci);
986 
987 	/* Don't poll the roothubs on bus suspend. */
988 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
989 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
990 	del_timer_sync(&hcd->rh_timer);
991 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
992 	del_timer_sync(&xhci->shared_hcd->rh_timer);
993 
994 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
995 		usleep_range(1000, 1500);
996 
997 	spin_lock_irq(&xhci->lock);
998 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
999 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1000 	/* step 1: stop endpoint */
1001 	/* skipped assuming that port suspend has done */
1002 
1003 	/* step 2: clear Run/Stop bit */
1004 	command = readl(&xhci->op_regs->command);
1005 	command &= ~CMD_RUN;
1006 	writel(command, &xhci->op_regs->command);
1007 
1008 	/* Some chips from Fresco Logic need an extraordinary delay */
1009 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1010 
1011 	if (xhci_handshake(&xhci->op_regs->status,
1012 		      STS_HALT, STS_HALT, delay)) {
1013 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1014 		spin_unlock_irq(&xhci->lock);
1015 		return -ETIMEDOUT;
1016 	}
1017 	xhci_clear_command_ring(xhci);
1018 
1019 	/* step 3: save registers */
1020 	xhci_save_registers(xhci);
1021 
1022 	/* step 4: set CSS flag */
1023 	command = readl(&xhci->op_regs->command);
1024 	command |= CMD_CSS;
1025 	writel(command, &xhci->op_regs->command);
1026 	xhci->broken_suspend = 0;
1027 	if (xhci_handshake(&xhci->op_regs->status,
1028 				STS_SAVE, 0, 10 * 1000)) {
1029 	/*
1030 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1031 	 * SSS bit of USBSTS and when driver tries to poll
1032 	 * to see if the xHC clears BIT(8) which never happens
1033 	 * and driver assumes that controller is not responding
1034 	 * and times out. To workaround this, its good to check
1035 	 * if SRE and HCE bits are not set (as per xhci
1036 	 * Section 5.4.2) and bypass the timeout.
1037 	 */
1038 		res = readl(&xhci->op_regs->status);
1039 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1040 		    (((res & STS_SRE) == 0) &&
1041 				((res & STS_HCE) == 0))) {
1042 			xhci->broken_suspend = 1;
1043 		} else {
1044 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1045 			spin_unlock_irq(&xhci->lock);
1046 			return -ETIMEDOUT;
1047 		}
1048 	}
1049 	spin_unlock_irq(&xhci->lock);
1050 
1051 	/*
1052 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1053 	 * is about to be suspended.
1054 	 */
1055 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1056 			(!(xhci_all_ports_seen_u0(xhci)))) {
1057 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1058 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1059 				"%s: compliance mode recovery timer deleted",
1060 				__func__);
1061 	}
1062 
1063 	/* step 5: remove core well power */
1064 	/* synchronize irq when using MSI-X */
1065 	xhci_msix_sync_irqs(xhci);
1066 
1067 	return rc;
1068 }
1069 EXPORT_SYMBOL_GPL(xhci_suspend);
1070 
1071 /*
1072  * start xHC (not bus-specific)
1073  *
1074  * This is called when the machine transition from S3/S4 mode.
1075  *
1076  */
1077 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1078 {
1079 	u32			command, temp = 0;
1080 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1081 	struct usb_hcd		*secondary_hcd;
1082 	int			retval = 0;
1083 	bool			comp_timer_running = false;
1084 
1085 	if (!hcd->state)
1086 		return 0;
1087 
1088 	/* Wait a bit if either of the roothubs need to settle from the
1089 	 * transition into bus suspend.
1090 	 */
1091 
1092 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1093 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1094 		msleep(100);
1095 
1096 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1097 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1098 
1099 	spin_lock_irq(&xhci->lock);
1100 	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1101 		hibernated = true;
1102 
1103 	if (!hibernated) {
1104 		/* step 1: restore register */
1105 		xhci_restore_registers(xhci);
1106 		/* step 2: initialize command ring buffer */
1107 		xhci_set_cmd_ring_deq(xhci);
1108 		/* step 3: restore state and start state*/
1109 		/* step 3: set CRS flag */
1110 		command = readl(&xhci->op_regs->command);
1111 		command |= CMD_CRS;
1112 		writel(command, &xhci->op_regs->command);
1113 		/*
1114 		 * Some controllers take up to 55+ ms to complete the controller
1115 		 * restore so setting the timeout to 100ms. Xhci specification
1116 		 * doesn't mention any timeout value.
1117 		 */
1118 		if (xhci_handshake(&xhci->op_regs->status,
1119 			      STS_RESTORE, 0, 100 * 1000)) {
1120 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1121 			spin_unlock_irq(&xhci->lock);
1122 			return -ETIMEDOUT;
1123 		}
1124 		temp = readl(&xhci->op_regs->status);
1125 	}
1126 
1127 	/* If restore operation fails, re-initialize the HC during resume */
1128 	if ((temp & STS_SRE) || hibernated) {
1129 
1130 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1131 				!(xhci_all_ports_seen_u0(xhci))) {
1132 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1133 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1134 				"Compliance Mode Recovery Timer deleted!");
1135 		}
1136 
1137 		/* Let the USB core know _both_ roothubs lost power. */
1138 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1139 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1140 
1141 		xhci_dbg(xhci, "Stop HCD\n");
1142 		xhci_halt(xhci);
1143 		xhci_zero_64b_regs(xhci);
1144 		xhci_reset(xhci);
1145 		spin_unlock_irq(&xhci->lock);
1146 		xhci_cleanup_msix(xhci);
1147 
1148 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1149 		temp = readl(&xhci->op_regs->status);
1150 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1151 		temp = readl(&xhci->ir_set->irq_pending);
1152 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1153 
1154 		xhci_dbg(xhci, "cleaning up memory\n");
1155 		xhci_mem_cleanup(xhci);
1156 		xhci_debugfs_exit(xhci);
1157 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1158 			    readl(&xhci->op_regs->status));
1159 
1160 		/* USB core calls the PCI reinit and start functions twice:
1161 		 * first with the primary HCD, and then with the secondary HCD.
1162 		 * If we don't do the same, the host will never be started.
1163 		 */
1164 		if (!usb_hcd_is_primary_hcd(hcd))
1165 			secondary_hcd = hcd;
1166 		else
1167 			secondary_hcd = xhci->shared_hcd;
1168 
1169 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1170 		retval = xhci_init(hcd->primary_hcd);
1171 		if (retval)
1172 			return retval;
1173 		comp_timer_running = true;
1174 
1175 		xhci_dbg(xhci, "Start the primary HCD\n");
1176 		retval = xhci_run(hcd->primary_hcd);
1177 		if (!retval) {
1178 			xhci_dbg(xhci, "Start the secondary HCD\n");
1179 			retval = xhci_run(secondary_hcd);
1180 		}
1181 		hcd->state = HC_STATE_SUSPENDED;
1182 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1183 		goto done;
1184 	}
1185 
1186 	/* step 4: set Run/Stop bit */
1187 	command = readl(&xhci->op_regs->command);
1188 	command |= CMD_RUN;
1189 	writel(command, &xhci->op_regs->command);
1190 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1191 		  0, 250 * 1000);
1192 
1193 	/* step 5: walk topology and initialize portsc,
1194 	 * portpmsc and portli
1195 	 */
1196 	/* this is done in bus_resume */
1197 
1198 	/* step 6: restart each of the previously
1199 	 * Running endpoints by ringing their doorbells
1200 	 */
1201 
1202 	spin_unlock_irq(&xhci->lock);
1203 
1204 	xhci_dbc_resume(xhci);
1205 
1206  done:
1207 	if (retval == 0) {
1208 		/* Resume root hubs only when have pending events. */
1209 		if (xhci_pending_portevent(xhci)) {
1210 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1211 			usb_hcd_resume_root_hub(hcd);
1212 		}
1213 	}
1214 
1215 	/*
1216 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1217 	 * be re-initialized Always after a system resume. Ports are subject
1218 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1219 	 * ports have entered previously to U0 before system's suspension.
1220 	 */
1221 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1222 		compliance_mode_recovery_timer_init(xhci);
1223 
1224 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1225 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1226 
1227 	/* Re-enable port polling. */
1228 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1229 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1230 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1231 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1232 	usb_hcd_poll_rh_status(hcd);
1233 
1234 	return retval;
1235 }
1236 EXPORT_SYMBOL_GPL(xhci_resume);
1237 #endif	/* CONFIG_PM */
1238 
1239 /*-------------------------------------------------------------------------*/
1240 
1241 /**
1242  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1243  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1244  * value to right shift 1 for the bitmask.
1245  *
1246  * Index  = (epnum * 2) + direction - 1,
1247  * where direction = 0 for OUT, 1 for IN.
1248  * For control endpoints, the IN index is used (OUT index is unused), so
1249  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1250  */
1251 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1252 {
1253 	unsigned int index;
1254 	if (usb_endpoint_xfer_control(desc))
1255 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1256 	else
1257 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1258 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1259 	return index;
1260 }
1261 
1262 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1263  * address from the XHCI endpoint index.
1264  */
1265 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1266 {
1267 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1268 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1269 	return direction | number;
1270 }
1271 
1272 /* Find the flag for this endpoint (for use in the control context).  Use the
1273  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1274  * bit 1, etc.
1275  */
1276 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1277 {
1278 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1279 }
1280 
1281 /* Find the flag for this endpoint (for use in the control context).  Use the
1282  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1283  * bit 1, etc.
1284  */
1285 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1286 {
1287 	return 1 << (ep_index + 1);
1288 }
1289 
1290 /* Compute the last valid endpoint context index.  Basically, this is the
1291  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1292  * we find the most significant bit set in the added contexts flags.
1293  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1294  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1295  */
1296 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1297 {
1298 	return fls(added_ctxs) - 1;
1299 }
1300 
1301 /* Returns 1 if the arguments are OK;
1302  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1303  */
1304 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1305 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1306 		const char *func) {
1307 	struct xhci_hcd	*xhci;
1308 	struct xhci_virt_device	*virt_dev;
1309 
1310 	if (!hcd || (check_ep && !ep) || !udev) {
1311 		pr_debug("xHCI %s called with invalid args\n", func);
1312 		return -EINVAL;
1313 	}
1314 	if (!udev->parent) {
1315 		pr_debug("xHCI %s called for root hub\n", func);
1316 		return 0;
1317 	}
1318 
1319 	xhci = hcd_to_xhci(hcd);
1320 	if (check_virt_dev) {
1321 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1322 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1323 					func);
1324 			return -EINVAL;
1325 		}
1326 
1327 		virt_dev = xhci->devs[udev->slot_id];
1328 		if (virt_dev->udev != udev) {
1329 			xhci_dbg(xhci, "xHCI %s called with udev and "
1330 					  "virt_dev does not match\n", func);
1331 			return -EINVAL;
1332 		}
1333 	}
1334 
1335 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1336 		return -ENODEV;
1337 
1338 	return 1;
1339 }
1340 
1341 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1342 		struct usb_device *udev, struct xhci_command *command,
1343 		bool ctx_change, bool must_succeed);
1344 
1345 /*
1346  * Full speed devices may have a max packet size greater than 8 bytes, but the
1347  * USB core doesn't know that until it reads the first 8 bytes of the
1348  * descriptor.  If the usb_device's max packet size changes after that point,
1349  * we need to issue an evaluate context command and wait on it.
1350  */
1351 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1352 		unsigned int ep_index, struct urb *urb)
1353 {
1354 	struct xhci_container_ctx *out_ctx;
1355 	struct xhci_input_control_ctx *ctrl_ctx;
1356 	struct xhci_ep_ctx *ep_ctx;
1357 	struct xhci_command *command;
1358 	int max_packet_size;
1359 	int hw_max_packet_size;
1360 	int ret = 0;
1361 
1362 	out_ctx = xhci->devs[slot_id]->out_ctx;
1363 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1364 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1365 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1366 	if (hw_max_packet_size != max_packet_size) {
1367 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1368 				"Max Packet Size for ep 0 changed.");
1369 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1370 				"Max packet size in usb_device = %d",
1371 				max_packet_size);
1372 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1373 				"Max packet size in xHCI HW = %d",
1374 				hw_max_packet_size);
1375 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1376 				"Issuing evaluate context command.");
1377 
1378 		/* Set up the input context flags for the command */
1379 		/* FIXME: This won't work if a non-default control endpoint
1380 		 * changes max packet sizes.
1381 		 */
1382 
1383 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1384 		if (!command)
1385 			return -ENOMEM;
1386 
1387 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1388 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1389 		if (!ctrl_ctx) {
1390 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1391 					__func__);
1392 			ret = -ENOMEM;
1393 			goto command_cleanup;
1394 		}
1395 		/* Set up the modified control endpoint 0 */
1396 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1397 				xhci->devs[slot_id]->out_ctx, ep_index);
1398 
1399 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1400 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1401 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1402 
1403 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1404 		ctrl_ctx->drop_flags = 0;
1405 
1406 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1407 				true, false);
1408 
1409 		/* Clean up the input context for later use by bandwidth
1410 		 * functions.
1411 		 */
1412 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1413 command_cleanup:
1414 		kfree(command->completion);
1415 		kfree(command);
1416 	}
1417 	return ret;
1418 }
1419 
1420 /*
1421  * non-error returns are a promise to giveback() the urb later
1422  * we drop ownership so next owner (or urb unlink) can get it
1423  */
1424 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1425 {
1426 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1427 	unsigned long flags;
1428 	int ret = 0;
1429 	unsigned int slot_id, ep_index;
1430 	unsigned int *ep_state;
1431 	struct urb_priv	*urb_priv;
1432 	int num_tds;
1433 
1434 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1435 					true, true, __func__) <= 0)
1436 		return -EINVAL;
1437 
1438 	slot_id = urb->dev->slot_id;
1439 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1440 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1441 
1442 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1443 		if (!in_interrupt())
1444 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1445 		return -ESHUTDOWN;
1446 	}
1447 
1448 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1449 		num_tds = urb->number_of_packets;
1450 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1451 	    urb->transfer_buffer_length > 0 &&
1452 	    urb->transfer_flags & URB_ZERO_PACKET &&
1453 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1454 		num_tds = 2;
1455 	else
1456 		num_tds = 1;
1457 
1458 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1459 			   num_tds * sizeof(struct xhci_td), mem_flags);
1460 	if (!urb_priv)
1461 		return -ENOMEM;
1462 
1463 	urb_priv->num_tds = num_tds;
1464 	urb_priv->num_tds_done = 0;
1465 	urb->hcpriv = urb_priv;
1466 
1467 	trace_xhci_urb_enqueue(urb);
1468 
1469 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1470 		/* Check to see if the max packet size for the default control
1471 		 * endpoint changed during FS device enumeration
1472 		 */
1473 		if (urb->dev->speed == USB_SPEED_FULL) {
1474 			ret = xhci_check_maxpacket(xhci, slot_id,
1475 					ep_index, urb);
1476 			if (ret < 0) {
1477 				xhci_urb_free_priv(urb_priv);
1478 				urb->hcpriv = NULL;
1479 				return ret;
1480 			}
1481 		}
1482 	}
1483 
1484 	spin_lock_irqsave(&xhci->lock, flags);
1485 
1486 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1487 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1488 			 urb->ep->desc.bEndpointAddress, urb);
1489 		ret = -ESHUTDOWN;
1490 		goto free_priv;
1491 	}
1492 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1493 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1494 			  *ep_state);
1495 		ret = -EINVAL;
1496 		goto free_priv;
1497 	}
1498 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1499 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1500 		ret = -EINVAL;
1501 		goto free_priv;
1502 	}
1503 
1504 	switch (usb_endpoint_type(&urb->ep->desc)) {
1505 
1506 	case USB_ENDPOINT_XFER_CONTROL:
1507 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1508 					 slot_id, ep_index);
1509 		break;
1510 	case USB_ENDPOINT_XFER_BULK:
1511 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1512 					 slot_id, ep_index);
1513 		break;
1514 	case USB_ENDPOINT_XFER_INT:
1515 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1516 				slot_id, ep_index);
1517 		break;
1518 	case USB_ENDPOINT_XFER_ISOC:
1519 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1520 				slot_id, ep_index);
1521 	}
1522 
1523 	if (ret) {
1524 free_priv:
1525 		xhci_urb_free_priv(urb_priv);
1526 		urb->hcpriv = NULL;
1527 	}
1528 	spin_unlock_irqrestore(&xhci->lock, flags);
1529 	return ret;
1530 }
1531 
1532 /*
1533  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1534  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1535  * should pick up where it left off in the TD, unless a Set Transfer Ring
1536  * Dequeue Pointer is issued.
1537  *
1538  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1539  * the ring.  Since the ring is a contiguous structure, they can't be physically
1540  * removed.  Instead, there are two options:
1541  *
1542  *  1) If the HC is in the middle of processing the URB to be canceled, we
1543  *     simply move the ring's dequeue pointer past those TRBs using the Set
1544  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1545  *     when drivers timeout on the last submitted URB and attempt to cancel.
1546  *
1547  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1548  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1549  *     HC will need to invalidate the any TRBs it has cached after the stop
1550  *     endpoint command, as noted in the xHCI 0.95 errata.
1551  *
1552  *  3) The TD may have completed by the time the Stop Endpoint Command
1553  *     completes, so software needs to handle that case too.
1554  *
1555  * This function should protect against the TD enqueueing code ringing the
1556  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1557  * It also needs to account for multiple cancellations on happening at the same
1558  * time for the same endpoint.
1559  *
1560  * Note that this function can be called in any context, or so says
1561  * usb_hcd_unlink_urb()
1562  */
1563 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1564 {
1565 	unsigned long flags;
1566 	int ret, i;
1567 	u32 temp;
1568 	struct xhci_hcd *xhci;
1569 	struct urb_priv	*urb_priv;
1570 	struct xhci_td *td;
1571 	unsigned int ep_index;
1572 	struct xhci_ring *ep_ring;
1573 	struct xhci_virt_ep *ep;
1574 	struct xhci_command *command;
1575 	struct xhci_virt_device *vdev;
1576 
1577 	xhci = hcd_to_xhci(hcd);
1578 	spin_lock_irqsave(&xhci->lock, flags);
1579 
1580 	trace_xhci_urb_dequeue(urb);
1581 
1582 	/* Make sure the URB hasn't completed or been unlinked already */
1583 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1584 	if (ret)
1585 		goto done;
1586 
1587 	/* give back URB now if we can't queue it for cancel */
1588 	vdev = xhci->devs[urb->dev->slot_id];
1589 	urb_priv = urb->hcpriv;
1590 	if (!vdev || !urb_priv)
1591 		goto err_giveback;
1592 
1593 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1594 	ep = &vdev->eps[ep_index];
1595 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1596 	if (!ep || !ep_ring)
1597 		goto err_giveback;
1598 
1599 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1600 	temp = readl(&xhci->op_regs->status);
1601 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1602 		xhci_hc_died(xhci);
1603 		goto done;
1604 	}
1605 
1606 	/*
1607 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1608 	 * make sure none of the ring related pointers in this URB private data
1609 	 * are touched, such as td_list, otherwise we overwrite freed data
1610 	 */
1611 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1612 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1613 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1614 			td = &urb_priv->td[i];
1615 			if (!list_empty(&td->cancelled_td_list))
1616 				list_del_init(&td->cancelled_td_list);
1617 		}
1618 		goto err_giveback;
1619 	}
1620 
1621 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1622 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1623 				"HC halted, freeing TD manually.");
1624 		for (i = urb_priv->num_tds_done;
1625 		     i < urb_priv->num_tds;
1626 		     i++) {
1627 			td = &urb_priv->td[i];
1628 			if (!list_empty(&td->td_list))
1629 				list_del_init(&td->td_list);
1630 			if (!list_empty(&td->cancelled_td_list))
1631 				list_del_init(&td->cancelled_td_list);
1632 		}
1633 		goto err_giveback;
1634 	}
1635 
1636 	i = urb_priv->num_tds_done;
1637 	if (i < urb_priv->num_tds)
1638 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1639 				"Cancel URB %p, dev %s, ep 0x%x, "
1640 				"starting at offset 0x%llx",
1641 				urb, urb->dev->devpath,
1642 				urb->ep->desc.bEndpointAddress,
1643 				(unsigned long long) xhci_trb_virt_to_dma(
1644 					urb_priv->td[i].start_seg,
1645 					urb_priv->td[i].first_trb));
1646 
1647 	for (; i < urb_priv->num_tds; i++) {
1648 		td = &urb_priv->td[i];
1649 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1650 	}
1651 
1652 	/* Queue a stop endpoint command, but only if this is
1653 	 * the first cancellation to be handled.
1654 	 */
1655 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1656 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1657 		if (!command) {
1658 			ret = -ENOMEM;
1659 			goto done;
1660 		}
1661 		ep->ep_state |= EP_STOP_CMD_PENDING;
1662 		ep->stop_cmd_timer.expires = jiffies +
1663 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1664 		add_timer(&ep->stop_cmd_timer);
1665 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1666 					 ep_index, 0);
1667 		xhci_ring_cmd_db(xhci);
1668 	}
1669 done:
1670 	spin_unlock_irqrestore(&xhci->lock, flags);
1671 	return ret;
1672 
1673 err_giveback:
1674 	if (urb_priv)
1675 		xhci_urb_free_priv(urb_priv);
1676 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1677 	spin_unlock_irqrestore(&xhci->lock, flags);
1678 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1679 	return ret;
1680 }
1681 
1682 /* Drop an endpoint from a new bandwidth configuration for this device.
1683  * Only one call to this function is allowed per endpoint before
1684  * check_bandwidth() or reset_bandwidth() must be called.
1685  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1686  * add the endpoint to the schedule with possibly new parameters denoted by a
1687  * different endpoint descriptor in usb_host_endpoint.
1688  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1689  * not allowed.
1690  *
1691  * The USB core will not allow URBs to be queued to an endpoint that is being
1692  * disabled, so there's no need for mutual exclusion to protect
1693  * the xhci->devs[slot_id] structure.
1694  */
1695 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1696 		struct usb_host_endpoint *ep)
1697 {
1698 	struct xhci_hcd *xhci;
1699 	struct xhci_container_ctx *in_ctx, *out_ctx;
1700 	struct xhci_input_control_ctx *ctrl_ctx;
1701 	unsigned int ep_index;
1702 	struct xhci_ep_ctx *ep_ctx;
1703 	u32 drop_flag;
1704 	u32 new_add_flags, new_drop_flags;
1705 	int ret;
1706 
1707 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1708 	if (ret <= 0)
1709 		return ret;
1710 	xhci = hcd_to_xhci(hcd);
1711 	if (xhci->xhc_state & XHCI_STATE_DYING)
1712 		return -ENODEV;
1713 
1714 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1715 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1716 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1717 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1718 				__func__, drop_flag);
1719 		return 0;
1720 	}
1721 
1722 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1723 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1724 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1725 	if (!ctrl_ctx) {
1726 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1727 				__func__);
1728 		return 0;
1729 	}
1730 
1731 	ep_index = xhci_get_endpoint_index(&ep->desc);
1732 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1733 	/* If the HC already knows the endpoint is disabled,
1734 	 * or the HCD has noted it is disabled, ignore this request
1735 	 */
1736 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1737 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1738 	    xhci_get_endpoint_flag(&ep->desc)) {
1739 		/* Do not warn when called after a usb_device_reset */
1740 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1741 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1742 				  __func__, ep);
1743 		return 0;
1744 	}
1745 
1746 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1747 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1748 
1749 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1750 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1751 
1752 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1753 
1754 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1755 
1756 	if (xhci->quirks & XHCI_MTK_HOST)
1757 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1758 
1759 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1760 			(unsigned int) ep->desc.bEndpointAddress,
1761 			udev->slot_id,
1762 			(unsigned int) new_drop_flags,
1763 			(unsigned int) new_add_flags);
1764 	return 0;
1765 }
1766 
1767 /* Add an endpoint to a new possible bandwidth configuration for this device.
1768  * Only one call to this function is allowed per endpoint before
1769  * check_bandwidth() or reset_bandwidth() must be called.
1770  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1771  * add the endpoint to the schedule with possibly new parameters denoted by a
1772  * different endpoint descriptor in usb_host_endpoint.
1773  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1774  * not allowed.
1775  *
1776  * The USB core will not allow URBs to be queued to an endpoint until the
1777  * configuration or alt setting is installed in the device, so there's no need
1778  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1779  */
1780 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1781 		struct usb_host_endpoint *ep)
1782 {
1783 	struct xhci_hcd *xhci;
1784 	struct xhci_container_ctx *in_ctx;
1785 	unsigned int ep_index;
1786 	struct xhci_input_control_ctx *ctrl_ctx;
1787 	u32 added_ctxs;
1788 	u32 new_add_flags, new_drop_flags;
1789 	struct xhci_virt_device *virt_dev;
1790 	int ret = 0;
1791 
1792 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1793 	if (ret <= 0) {
1794 		/* So we won't queue a reset ep command for a root hub */
1795 		ep->hcpriv = NULL;
1796 		return ret;
1797 	}
1798 	xhci = hcd_to_xhci(hcd);
1799 	if (xhci->xhc_state & XHCI_STATE_DYING)
1800 		return -ENODEV;
1801 
1802 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1803 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1804 		/* FIXME when we have to issue an evaluate endpoint command to
1805 		 * deal with ep0 max packet size changing once we get the
1806 		 * descriptors
1807 		 */
1808 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1809 				__func__, added_ctxs);
1810 		return 0;
1811 	}
1812 
1813 	virt_dev = xhci->devs[udev->slot_id];
1814 	in_ctx = virt_dev->in_ctx;
1815 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1816 	if (!ctrl_ctx) {
1817 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1818 				__func__);
1819 		return 0;
1820 	}
1821 
1822 	ep_index = xhci_get_endpoint_index(&ep->desc);
1823 	/* If this endpoint is already in use, and the upper layers are trying
1824 	 * to add it again without dropping it, reject the addition.
1825 	 */
1826 	if (virt_dev->eps[ep_index].ring &&
1827 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1828 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1829 				"without dropping it.\n",
1830 				(unsigned int) ep->desc.bEndpointAddress);
1831 		return -EINVAL;
1832 	}
1833 
1834 	/* If the HCD has already noted the endpoint is enabled,
1835 	 * ignore this request.
1836 	 */
1837 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1838 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1839 				__func__, ep);
1840 		return 0;
1841 	}
1842 
1843 	/*
1844 	 * Configuration and alternate setting changes must be done in
1845 	 * process context, not interrupt context (or so documenation
1846 	 * for usb_set_interface() and usb_set_configuration() claim).
1847 	 */
1848 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1849 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1850 				__func__, ep->desc.bEndpointAddress);
1851 		return -ENOMEM;
1852 	}
1853 
1854 	if (xhci->quirks & XHCI_MTK_HOST) {
1855 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1856 		if (ret < 0) {
1857 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1858 			virt_dev->eps[ep_index].new_ring = NULL;
1859 			return ret;
1860 		}
1861 	}
1862 
1863 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1864 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1865 
1866 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1867 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1868 	 * this re-adds a new state for the endpoint from the new endpoint
1869 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1870 	 * drop flags alone.
1871 	 */
1872 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1873 
1874 	/* Store the usb_device pointer for later use */
1875 	ep->hcpriv = udev;
1876 
1877 	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1878 
1879 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1880 			(unsigned int) ep->desc.bEndpointAddress,
1881 			udev->slot_id,
1882 			(unsigned int) new_drop_flags,
1883 			(unsigned int) new_add_flags);
1884 	return 0;
1885 }
1886 
1887 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1888 {
1889 	struct xhci_input_control_ctx *ctrl_ctx;
1890 	struct xhci_ep_ctx *ep_ctx;
1891 	struct xhci_slot_ctx *slot_ctx;
1892 	int i;
1893 
1894 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1895 	if (!ctrl_ctx) {
1896 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1897 				__func__);
1898 		return;
1899 	}
1900 
1901 	/* When a device's add flag and drop flag are zero, any subsequent
1902 	 * configure endpoint command will leave that endpoint's state
1903 	 * untouched.  Make sure we don't leave any old state in the input
1904 	 * endpoint contexts.
1905 	 */
1906 	ctrl_ctx->drop_flags = 0;
1907 	ctrl_ctx->add_flags = 0;
1908 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1909 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1910 	/* Endpoint 0 is always valid */
1911 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1912 	for (i = 1; i < 31; i++) {
1913 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1914 		ep_ctx->ep_info = 0;
1915 		ep_ctx->ep_info2 = 0;
1916 		ep_ctx->deq = 0;
1917 		ep_ctx->tx_info = 0;
1918 	}
1919 }
1920 
1921 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1922 		struct usb_device *udev, u32 *cmd_status)
1923 {
1924 	int ret;
1925 
1926 	switch (*cmd_status) {
1927 	case COMP_COMMAND_ABORTED:
1928 	case COMP_COMMAND_RING_STOPPED:
1929 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1930 		ret = -ETIME;
1931 		break;
1932 	case COMP_RESOURCE_ERROR:
1933 		dev_warn(&udev->dev,
1934 			 "Not enough host controller resources for new device state.\n");
1935 		ret = -ENOMEM;
1936 		/* FIXME: can we allocate more resources for the HC? */
1937 		break;
1938 	case COMP_BANDWIDTH_ERROR:
1939 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1940 		dev_warn(&udev->dev,
1941 			 "Not enough bandwidth for new device state.\n");
1942 		ret = -ENOSPC;
1943 		/* FIXME: can we go back to the old state? */
1944 		break;
1945 	case COMP_TRB_ERROR:
1946 		/* the HCD set up something wrong */
1947 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1948 				"add flag = 1, "
1949 				"and endpoint is not disabled.\n");
1950 		ret = -EINVAL;
1951 		break;
1952 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1953 		dev_warn(&udev->dev,
1954 			 "ERROR: Incompatible device for endpoint configure command.\n");
1955 		ret = -ENODEV;
1956 		break;
1957 	case COMP_SUCCESS:
1958 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1959 				"Successful Endpoint Configure command");
1960 		ret = 0;
1961 		break;
1962 	default:
1963 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1964 				*cmd_status);
1965 		ret = -EINVAL;
1966 		break;
1967 	}
1968 	return ret;
1969 }
1970 
1971 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1972 		struct usb_device *udev, u32 *cmd_status)
1973 {
1974 	int ret;
1975 
1976 	switch (*cmd_status) {
1977 	case COMP_COMMAND_ABORTED:
1978 	case COMP_COMMAND_RING_STOPPED:
1979 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1980 		ret = -ETIME;
1981 		break;
1982 	case COMP_PARAMETER_ERROR:
1983 		dev_warn(&udev->dev,
1984 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1985 		ret = -EINVAL;
1986 		break;
1987 	case COMP_SLOT_NOT_ENABLED_ERROR:
1988 		dev_warn(&udev->dev,
1989 			"WARN: slot not enabled for evaluate context command.\n");
1990 		ret = -EINVAL;
1991 		break;
1992 	case COMP_CONTEXT_STATE_ERROR:
1993 		dev_warn(&udev->dev,
1994 			"WARN: invalid context state for evaluate context command.\n");
1995 		ret = -EINVAL;
1996 		break;
1997 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1998 		dev_warn(&udev->dev,
1999 			"ERROR: Incompatible device for evaluate context command.\n");
2000 		ret = -ENODEV;
2001 		break;
2002 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2003 		/* Max Exit Latency too large error */
2004 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2005 		ret = -EINVAL;
2006 		break;
2007 	case COMP_SUCCESS:
2008 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2009 				"Successful evaluate context command");
2010 		ret = 0;
2011 		break;
2012 	default:
2013 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2014 			*cmd_status);
2015 		ret = -EINVAL;
2016 		break;
2017 	}
2018 	return ret;
2019 }
2020 
2021 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2022 		struct xhci_input_control_ctx *ctrl_ctx)
2023 {
2024 	u32 valid_add_flags;
2025 	u32 valid_drop_flags;
2026 
2027 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2028 	 * (bit 1).  The default control endpoint is added during the Address
2029 	 * Device command and is never removed until the slot is disabled.
2030 	 */
2031 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2032 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2033 
2034 	/* Use hweight32 to count the number of ones in the add flags, or
2035 	 * number of endpoints added.  Don't count endpoints that are changed
2036 	 * (both added and dropped).
2037 	 */
2038 	return hweight32(valid_add_flags) -
2039 		hweight32(valid_add_flags & valid_drop_flags);
2040 }
2041 
2042 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2043 		struct xhci_input_control_ctx *ctrl_ctx)
2044 {
2045 	u32 valid_add_flags;
2046 	u32 valid_drop_flags;
2047 
2048 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2049 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2050 
2051 	return hweight32(valid_drop_flags) -
2052 		hweight32(valid_add_flags & valid_drop_flags);
2053 }
2054 
2055 /*
2056  * We need to reserve the new number of endpoints before the configure endpoint
2057  * command completes.  We can't subtract the dropped endpoints from the number
2058  * of active endpoints until the command completes because we can oversubscribe
2059  * the host in this case:
2060  *
2061  *  - the first configure endpoint command drops more endpoints than it adds
2062  *  - a second configure endpoint command that adds more endpoints is queued
2063  *  - the first configure endpoint command fails, so the config is unchanged
2064  *  - the second command may succeed, even though there isn't enough resources
2065  *
2066  * Must be called with xhci->lock held.
2067  */
2068 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2069 		struct xhci_input_control_ctx *ctrl_ctx)
2070 {
2071 	u32 added_eps;
2072 
2073 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2074 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2075 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2076 				"Not enough ep ctxs: "
2077 				"%u active, need to add %u, limit is %u.",
2078 				xhci->num_active_eps, added_eps,
2079 				xhci->limit_active_eps);
2080 		return -ENOMEM;
2081 	}
2082 	xhci->num_active_eps += added_eps;
2083 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2084 			"Adding %u ep ctxs, %u now active.", added_eps,
2085 			xhci->num_active_eps);
2086 	return 0;
2087 }
2088 
2089 /*
2090  * The configure endpoint was failed by the xHC for some other reason, so we
2091  * need to revert the resources that failed configuration would have used.
2092  *
2093  * Must be called with xhci->lock held.
2094  */
2095 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2096 		struct xhci_input_control_ctx *ctrl_ctx)
2097 {
2098 	u32 num_failed_eps;
2099 
2100 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2101 	xhci->num_active_eps -= num_failed_eps;
2102 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2103 			"Removing %u failed ep ctxs, %u now active.",
2104 			num_failed_eps,
2105 			xhci->num_active_eps);
2106 }
2107 
2108 /*
2109  * Now that the command has completed, clean up the active endpoint count by
2110  * subtracting out the endpoints that were dropped (but not changed).
2111  *
2112  * Must be called with xhci->lock held.
2113  */
2114 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2115 		struct xhci_input_control_ctx *ctrl_ctx)
2116 {
2117 	u32 num_dropped_eps;
2118 
2119 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2120 	xhci->num_active_eps -= num_dropped_eps;
2121 	if (num_dropped_eps)
2122 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2123 				"Removing %u dropped ep ctxs, %u now active.",
2124 				num_dropped_eps,
2125 				xhci->num_active_eps);
2126 }
2127 
2128 static unsigned int xhci_get_block_size(struct usb_device *udev)
2129 {
2130 	switch (udev->speed) {
2131 	case USB_SPEED_LOW:
2132 	case USB_SPEED_FULL:
2133 		return FS_BLOCK;
2134 	case USB_SPEED_HIGH:
2135 		return HS_BLOCK;
2136 	case USB_SPEED_SUPER:
2137 	case USB_SPEED_SUPER_PLUS:
2138 		return SS_BLOCK;
2139 	case USB_SPEED_UNKNOWN:
2140 	case USB_SPEED_WIRELESS:
2141 	default:
2142 		/* Should never happen */
2143 		return 1;
2144 	}
2145 }
2146 
2147 static unsigned int
2148 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2149 {
2150 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2151 		return LS_OVERHEAD;
2152 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2153 		return FS_OVERHEAD;
2154 	return HS_OVERHEAD;
2155 }
2156 
2157 /* If we are changing a LS/FS device under a HS hub,
2158  * make sure (if we are activating a new TT) that the HS bus has enough
2159  * bandwidth for this new TT.
2160  */
2161 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2162 		struct xhci_virt_device *virt_dev,
2163 		int old_active_eps)
2164 {
2165 	struct xhci_interval_bw_table *bw_table;
2166 	struct xhci_tt_bw_info *tt_info;
2167 
2168 	/* Find the bandwidth table for the root port this TT is attached to. */
2169 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2170 	tt_info = virt_dev->tt_info;
2171 	/* If this TT already had active endpoints, the bandwidth for this TT
2172 	 * has already been added.  Removing all periodic endpoints (and thus
2173 	 * making the TT enactive) will only decrease the bandwidth used.
2174 	 */
2175 	if (old_active_eps)
2176 		return 0;
2177 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2178 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2179 			return -ENOMEM;
2180 		return 0;
2181 	}
2182 	/* Not sure why we would have no new active endpoints...
2183 	 *
2184 	 * Maybe because of an Evaluate Context change for a hub update or a
2185 	 * control endpoint 0 max packet size change?
2186 	 * FIXME: skip the bandwidth calculation in that case.
2187 	 */
2188 	return 0;
2189 }
2190 
2191 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2192 		struct xhci_virt_device *virt_dev)
2193 {
2194 	unsigned int bw_reserved;
2195 
2196 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2197 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2198 		return -ENOMEM;
2199 
2200 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2201 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2202 		return -ENOMEM;
2203 
2204 	return 0;
2205 }
2206 
2207 /*
2208  * This algorithm is a very conservative estimate of the worst-case scheduling
2209  * scenario for any one interval.  The hardware dynamically schedules the
2210  * packets, so we can't tell which microframe could be the limiting factor in
2211  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2212  *
2213  * Obviously, we can't solve an NP complete problem to find the minimum worst
2214  * case scenario.  Instead, we come up with an estimate that is no less than
2215  * the worst case bandwidth used for any one microframe, but may be an
2216  * over-estimate.
2217  *
2218  * We walk the requirements for each endpoint by interval, starting with the
2219  * smallest interval, and place packets in the schedule where there is only one
2220  * possible way to schedule packets for that interval.  In order to simplify
2221  * this algorithm, we record the largest max packet size for each interval, and
2222  * assume all packets will be that size.
2223  *
2224  * For interval 0, we obviously must schedule all packets for each interval.
2225  * The bandwidth for interval 0 is just the amount of data to be transmitted
2226  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2227  * the number of packets).
2228  *
2229  * For interval 1, we have two possible microframes to schedule those packets
2230  * in.  For this algorithm, if we can schedule the same number of packets for
2231  * each possible scheduling opportunity (each microframe), we will do so.  The
2232  * remaining number of packets will be saved to be transmitted in the gaps in
2233  * the next interval's scheduling sequence.
2234  *
2235  * As we move those remaining packets to be scheduled with interval 2 packets,
2236  * we have to double the number of remaining packets to transmit.  This is
2237  * because the intervals are actually powers of 2, and we would be transmitting
2238  * the previous interval's packets twice in this interval.  We also have to be
2239  * sure that when we look at the largest max packet size for this interval, we
2240  * also look at the largest max packet size for the remaining packets and take
2241  * the greater of the two.
2242  *
2243  * The algorithm continues to evenly distribute packets in each scheduling
2244  * opportunity, and push the remaining packets out, until we get to the last
2245  * interval.  Then those packets and their associated overhead are just added
2246  * to the bandwidth used.
2247  */
2248 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2249 		struct xhci_virt_device *virt_dev,
2250 		int old_active_eps)
2251 {
2252 	unsigned int bw_reserved;
2253 	unsigned int max_bandwidth;
2254 	unsigned int bw_used;
2255 	unsigned int block_size;
2256 	struct xhci_interval_bw_table *bw_table;
2257 	unsigned int packet_size = 0;
2258 	unsigned int overhead = 0;
2259 	unsigned int packets_transmitted = 0;
2260 	unsigned int packets_remaining = 0;
2261 	unsigned int i;
2262 
2263 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2264 		return xhci_check_ss_bw(xhci, virt_dev);
2265 
2266 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2267 		max_bandwidth = HS_BW_LIMIT;
2268 		/* Convert percent of bus BW reserved to blocks reserved */
2269 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2270 	} else {
2271 		max_bandwidth = FS_BW_LIMIT;
2272 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2273 	}
2274 
2275 	bw_table = virt_dev->bw_table;
2276 	/* We need to translate the max packet size and max ESIT payloads into
2277 	 * the units the hardware uses.
2278 	 */
2279 	block_size = xhci_get_block_size(virt_dev->udev);
2280 
2281 	/* If we are manipulating a LS/FS device under a HS hub, double check
2282 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2283 	 */
2284 	if (virt_dev->tt_info) {
2285 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2286 				"Recalculating BW for rootport %u",
2287 				virt_dev->real_port);
2288 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2289 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2290 					"newly activated TT.\n");
2291 			return -ENOMEM;
2292 		}
2293 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2294 				"Recalculating BW for TT slot %u port %u",
2295 				virt_dev->tt_info->slot_id,
2296 				virt_dev->tt_info->ttport);
2297 	} else {
2298 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2299 				"Recalculating BW for rootport %u",
2300 				virt_dev->real_port);
2301 	}
2302 
2303 	/* Add in how much bandwidth will be used for interval zero, or the
2304 	 * rounded max ESIT payload + number of packets * largest overhead.
2305 	 */
2306 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2307 		bw_table->interval_bw[0].num_packets *
2308 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2309 
2310 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2311 		unsigned int bw_added;
2312 		unsigned int largest_mps;
2313 		unsigned int interval_overhead;
2314 
2315 		/*
2316 		 * How many packets could we transmit in this interval?
2317 		 * If packets didn't fit in the previous interval, we will need
2318 		 * to transmit that many packets twice within this interval.
2319 		 */
2320 		packets_remaining = 2 * packets_remaining +
2321 			bw_table->interval_bw[i].num_packets;
2322 
2323 		/* Find the largest max packet size of this or the previous
2324 		 * interval.
2325 		 */
2326 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2327 			largest_mps = 0;
2328 		else {
2329 			struct xhci_virt_ep *virt_ep;
2330 			struct list_head *ep_entry;
2331 
2332 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2333 			virt_ep = list_entry(ep_entry,
2334 					struct xhci_virt_ep, bw_endpoint_list);
2335 			/* Convert to blocks, rounding up */
2336 			largest_mps = DIV_ROUND_UP(
2337 					virt_ep->bw_info.max_packet_size,
2338 					block_size);
2339 		}
2340 		if (largest_mps > packet_size)
2341 			packet_size = largest_mps;
2342 
2343 		/* Use the larger overhead of this or the previous interval. */
2344 		interval_overhead = xhci_get_largest_overhead(
2345 				&bw_table->interval_bw[i]);
2346 		if (interval_overhead > overhead)
2347 			overhead = interval_overhead;
2348 
2349 		/* How many packets can we evenly distribute across
2350 		 * (1 << (i + 1)) possible scheduling opportunities?
2351 		 */
2352 		packets_transmitted = packets_remaining >> (i + 1);
2353 
2354 		/* Add in the bandwidth used for those scheduled packets */
2355 		bw_added = packets_transmitted * (overhead + packet_size);
2356 
2357 		/* How many packets do we have remaining to transmit? */
2358 		packets_remaining = packets_remaining % (1 << (i + 1));
2359 
2360 		/* What largest max packet size should those packets have? */
2361 		/* If we've transmitted all packets, don't carry over the
2362 		 * largest packet size.
2363 		 */
2364 		if (packets_remaining == 0) {
2365 			packet_size = 0;
2366 			overhead = 0;
2367 		} else if (packets_transmitted > 0) {
2368 			/* Otherwise if we do have remaining packets, and we've
2369 			 * scheduled some packets in this interval, take the
2370 			 * largest max packet size from endpoints with this
2371 			 * interval.
2372 			 */
2373 			packet_size = largest_mps;
2374 			overhead = interval_overhead;
2375 		}
2376 		/* Otherwise carry over packet_size and overhead from the last
2377 		 * time we had a remainder.
2378 		 */
2379 		bw_used += bw_added;
2380 		if (bw_used > max_bandwidth) {
2381 			xhci_warn(xhci, "Not enough bandwidth. "
2382 					"Proposed: %u, Max: %u\n",
2383 				bw_used, max_bandwidth);
2384 			return -ENOMEM;
2385 		}
2386 	}
2387 	/*
2388 	 * Ok, we know we have some packets left over after even-handedly
2389 	 * scheduling interval 15.  We don't know which microframes they will
2390 	 * fit into, so we over-schedule and say they will be scheduled every
2391 	 * microframe.
2392 	 */
2393 	if (packets_remaining > 0)
2394 		bw_used += overhead + packet_size;
2395 
2396 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2397 		unsigned int port_index = virt_dev->real_port - 1;
2398 
2399 		/* OK, we're manipulating a HS device attached to a
2400 		 * root port bandwidth domain.  Include the number of active TTs
2401 		 * in the bandwidth used.
2402 		 */
2403 		bw_used += TT_HS_OVERHEAD *
2404 			xhci->rh_bw[port_index].num_active_tts;
2405 	}
2406 
2407 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2408 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2409 		"Available: %u " "percent",
2410 		bw_used, max_bandwidth, bw_reserved,
2411 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2412 		max_bandwidth);
2413 
2414 	bw_used += bw_reserved;
2415 	if (bw_used > max_bandwidth) {
2416 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2417 				bw_used, max_bandwidth);
2418 		return -ENOMEM;
2419 	}
2420 
2421 	bw_table->bw_used = bw_used;
2422 	return 0;
2423 }
2424 
2425 static bool xhci_is_async_ep(unsigned int ep_type)
2426 {
2427 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2428 					ep_type != ISOC_IN_EP &&
2429 					ep_type != INT_IN_EP);
2430 }
2431 
2432 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2433 {
2434 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2435 }
2436 
2437 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2438 {
2439 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2440 
2441 	if (ep_bw->ep_interval == 0)
2442 		return SS_OVERHEAD_BURST +
2443 			(ep_bw->mult * ep_bw->num_packets *
2444 					(SS_OVERHEAD + mps));
2445 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2446 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2447 				1 << ep_bw->ep_interval);
2448 
2449 }
2450 
2451 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2452 		struct xhci_bw_info *ep_bw,
2453 		struct xhci_interval_bw_table *bw_table,
2454 		struct usb_device *udev,
2455 		struct xhci_virt_ep *virt_ep,
2456 		struct xhci_tt_bw_info *tt_info)
2457 {
2458 	struct xhci_interval_bw	*interval_bw;
2459 	int normalized_interval;
2460 
2461 	if (xhci_is_async_ep(ep_bw->type))
2462 		return;
2463 
2464 	if (udev->speed >= USB_SPEED_SUPER) {
2465 		if (xhci_is_sync_in_ep(ep_bw->type))
2466 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2467 				xhci_get_ss_bw_consumed(ep_bw);
2468 		else
2469 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2470 				xhci_get_ss_bw_consumed(ep_bw);
2471 		return;
2472 	}
2473 
2474 	/* SuperSpeed endpoints never get added to intervals in the table, so
2475 	 * this check is only valid for HS/FS/LS devices.
2476 	 */
2477 	if (list_empty(&virt_ep->bw_endpoint_list))
2478 		return;
2479 	/* For LS/FS devices, we need to translate the interval expressed in
2480 	 * microframes to frames.
2481 	 */
2482 	if (udev->speed == USB_SPEED_HIGH)
2483 		normalized_interval = ep_bw->ep_interval;
2484 	else
2485 		normalized_interval = ep_bw->ep_interval - 3;
2486 
2487 	if (normalized_interval == 0)
2488 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2489 	interval_bw = &bw_table->interval_bw[normalized_interval];
2490 	interval_bw->num_packets -= ep_bw->num_packets;
2491 	switch (udev->speed) {
2492 	case USB_SPEED_LOW:
2493 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2494 		break;
2495 	case USB_SPEED_FULL:
2496 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2497 		break;
2498 	case USB_SPEED_HIGH:
2499 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2500 		break;
2501 	case USB_SPEED_SUPER:
2502 	case USB_SPEED_SUPER_PLUS:
2503 	case USB_SPEED_UNKNOWN:
2504 	case USB_SPEED_WIRELESS:
2505 		/* Should never happen because only LS/FS/HS endpoints will get
2506 		 * added to the endpoint list.
2507 		 */
2508 		return;
2509 	}
2510 	if (tt_info)
2511 		tt_info->active_eps -= 1;
2512 	list_del_init(&virt_ep->bw_endpoint_list);
2513 }
2514 
2515 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2516 		struct xhci_bw_info *ep_bw,
2517 		struct xhci_interval_bw_table *bw_table,
2518 		struct usb_device *udev,
2519 		struct xhci_virt_ep *virt_ep,
2520 		struct xhci_tt_bw_info *tt_info)
2521 {
2522 	struct xhci_interval_bw	*interval_bw;
2523 	struct xhci_virt_ep *smaller_ep;
2524 	int normalized_interval;
2525 
2526 	if (xhci_is_async_ep(ep_bw->type))
2527 		return;
2528 
2529 	if (udev->speed == USB_SPEED_SUPER) {
2530 		if (xhci_is_sync_in_ep(ep_bw->type))
2531 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2532 				xhci_get_ss_bw_consumed(ep_bw);
2533 		else
2534 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2535 				xhci_get_ss_bw_consumed(ep_bw);
2536 		return;
2537 	}
2538 
2539 	/* For LS/FS devices, we need to translate the interval expressed in
2540 	 * microframes to frames.
2541 	 */
2542 	if (udev->speed == USB_SPEED_HIGH)
2543 		normalized_interval = ep_bw->ep_interval;
2544 	else
2545 		normalized_interval = ep_bw->ep_interval - 3;
2546 
2547 	if (normalized_interval == 0)
2548 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2549 	interval_bw = &bw_table->interval_bw[normalized_interval];
2550 	interval_bw->num_packets += ep_bw->num_packets;
2551 	switch (udev->speed) {
2552 	case USB_SPEED_LOW:
2553 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2554 		break;
2555 	case USB_SPEED_FULL:
2556 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2557 		break;
2558 	case USB_SPEED_HIGH:
2559 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2560 		break;
2561 	case USB_SPEED_SUPER:
2562 	case USB_SPEED_SUPER_PLUS:
2563 	case USB_SPEED_UNKNOWN:
2564 	case USB_SPEED_WIRELESS:
2565 		/* Should never happen because only LS/FS/HS endpoints will get
2566 		 * added to the endpoint list.
2567 		 */
2568 		return;
2569 	}
2570 
2571 	if (tt_info)
2572 		tt_info->active_eps += 1;
2573 	/* Insert the endpoint into the list, largest max packet size first. */
2574 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2575 			bw_endpoint_list) {
2576 		if (ep_bw->max_packet_size >=
2577 				smaller_ep->bw_info.max_packet_size) {
2578 			/* Add the new ep before the smaller endpoint */
2579 			list_add_tail(&virt_ep->bw_endpoint_list,
2580 					&smaller_ep->bw_endpoint_list);
2581 			return;
2582 		}
2583 	}
2584 	/* Add the new endpoint at the end of the list. */
2585 	list_add_tail(&virt_ep->bw_endpoint_list,
2586 			&interval_bw->endpoints);
2587 }
2588 
2589 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2590 		struct xhci_virt_device *virt_dev,
2591 		int old_active_eps)
2592 {
2593 	struct xhci_root_port_bw_info *rh_bw_info;
2594 	if (!virt_dev->tt_info)
2595 		return;
2596 
2597 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2598 	if (old_active_eps == 0 &&
2599 				virt_dev->tt_info->active_eps != 0) {
2600 		rh_bw_info->num_active_tts += 1;
2601 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2602 	} else if (old_active_eps != 0 &&
2603 				virt_dev->tt_info->active_eps == 0) {
2604 		rh_bw_info->num_active_tts -= 1;
2605 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2606 	}
2607 }
2608 
2609 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2610 		struct xhci_virt_device *virt_dev,
2611 		struct xhci_container_ctx *in_ctx)
2612 {
2613 	struct xhci_bw_info ep_bw_info[31];
2614 	int i;
2615 	struct xhci_input_control_ctx *ctrl_ctx;
2616 	int old_active_eps = 0;
2617 
2618 	if (virt_dev->tt_info)
2619 		old_active_eps = virt_dev->tt_info->active_eps;
2620 
2621 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2622 	if (!ctrl_ctx) {
2623 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2624 				__func__);
2625 		return -ENOMEM;
2626 	}
2627 
2628 	for (i = 0; i < 31; i++) {
2629 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2630 			continue;
2631 
2632 		/* Make a copy of the BW info in case we need to revert this */
2633 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2634 				sizeof(ep_bw_info[i]));
2635 		/* Drop the endpoint from the interval table if the endpoint is
2636 		 * being dropped or changed.
2637 		 */
2638 		if (EP_IS_DROPPED(ctrl_ctx, i))
2639 			xhci_drop_ep_from_interval_table(xhci,
2640 					&virt_dev->eps[i].bw_info,
2641 					virt_dev->bw_table,
2642 					virt_dev->udev,
2643 					&virt_dev->eps[i],
2644 					virt_dev->tt_info);
2645 	}
2646 	/* Overwrite the information stored in the endpoints' bw_info */
2647 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2648 	for (i = 0; i < 31; i++) {
2649 		/* Add any changed or added endpoints to the interval table */
2650 		if (EP_IS_ADDED(ctrl_ctx, i))
2651 			xhci_add_ep_to_interval_table(xhci,
2652 					&virt_dev->eps[i].bw_info,
2653 					virt_dev->bw_table,
2654 					virt_dev->udev,
2655 					&virt_dev->eps[i],
2656 					virt_dev->tt_info);
2657 	}
2658 
2659 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2660 		/* Ok, this fits in the bandwidth we have.
2661 		 * Update the number of active TTs.
2662 		 */
2663 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2664 		return 0;
2665 	}
2666 
2667 	/* We don't have enough bandwidth for this, revert the stored info. */
2668 	for (i = 0; i < 31; i++) {
2669 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2670 			continue;
2671 
2672 		/* Drop the new copies of any added or changed endpoints from
2673 		 * the interval table.
2674 		 */
2675 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2676 			xhci_drop_ep_from_interval_table(xhci,
2677 					&virt_dev->eps[i].bw_info,
2678 					virt_dev->bw_table,
2679 					virt_dev->udev,
2680 					&virt_dev->eps[i],
2681 					virt_dev->tt_info);
2682 		}
2683 		/* Revert the endpoint back to its old information */
2684 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2685 				sizeof(ep_bw_info[i]));
2686 		/* Add any changed or dropped endpoints back into the table */
2687 		if (EP_IS_DROPPED(ctrl_ctx, i))
2688 			xhci_add_ep_to_interval_table(xhci,
2689 					&virt_dev->eps[i].bw_info,
2690 					virt_dev->bw_table,
2691 					virt_dev->udev,
2692 					&virt_dev->eps[i],
2693 					virt_dev->tt_info);
2694 	}
2695 	return -ENOMEM;
2696 }
2697 
2698 
2699 /* Issue a configure endpoint command or evaluate context command
2700  * and wait for it to finish.
2701  */
2702 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2703 		struct usb_device *udev,
2704 		struct xhci_command *command,
2705 		bool ctx_change, bool must_succeed)
2706 {
2707 	int ret;
2708 	unsigned long flags;
2709 	struct xhci_input_control_ctx *ctrl_ctx;
2710 	struct xhci_virt_device *virt_dev;
2711 	struct xhci_slot_ctx *slot_ctx;
2712 
2713 	if (!command)
2714 		return -EINVAL;
2715 
2716 	spin_lock_irqsave(&xhci->lock, flags);
2717 
2718 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2719 		spin_unlock_irqrestore(&xhci->lock, flags);
2720 		return -ESHUTDOWN;
2721 	}
2722 
2723 	virt_dev = xhci->devs[udev->slot_id];
2724 
2725 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2726 	if (!ctrl_ctx) {
2727 		spin_unlock_irqrestore(&xhci->lock, flags);
2728 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2729 				__func__);
2730 		return -ENOMEM;
2731 	}
2732 
2733 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2734 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2735 		spin_unlock_irqrestore(&xhci->lock, flags);
2736 		xhci_warn(xhci, "Not enough host resources, "
2737 				"active endpoint contexts = %u\n",
2738 				xhci->num_active_eps);
2739 		return -ENOMEM;
2740 	}
2741 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2742 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2743 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2744 			xhci_free_host_resources(xhci, ctrl_ctx);
2745 		spin_unlock_irqrestore(&xhci->lock, flags);
2746 		xhci_warn(xhci, "Not enough bandwidth\n");
2747 		return -ENOMEM;
2748 	}
2749 
2750 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2751 	trace_xhci_configure_endpoint(slot_ctx);
2752 
2753 	if (!ctx_change)
2754 		ret = xhci_queue_configure_endpoint(xhci, command,
2755 				command->in_ctx->dma,
2756 				udev->slot_id, must_succeed);
2757 	else
2758 		ret = xhci_queue_evaluate_context(xhci, command,
2759 				command->in_ctx->dma,
2760 				udev->slot_id, must_succeed);
2761 	if (ret < 0) {
2762 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2763 			xhci_free_host_resources(xhci, ctrl_ctx);
2764 		spin_unlock_irqrestore(&xhci->lock, flags);
2765 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2766 				"FIXME allocate a new ring segment");
2767 		return -ENOMEM;
2768 	}
2769 	xhci_ring_cmd_db(xhci);
2770 	spin_unlock_irqrestore(&xhci->lock, flags);
2771 
2772 	/* Wait for the configure endpoint command to complete */
2773 	wait_for_completion(command->completion);
2774 
2775 	if (!ctx_change)
2776 		ret = xhci_configure_endpoint_result(xhci, udev,
2777 						     &command->status);
2778 	else
2779 		ret = xhci_evaluate_context_result(xhci, udev,
2780 						   &command->status);
2781 
2782 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2783 		spin_lock_irqsave(&xhci->lock, flags);
2784 		/* If the command failed, remove the reserved resources.
2785 		 * Otherwise, clean up the estimate to include dropped eps.
2786 		 */
2787 		if (ret)
2788 			xhci_free_host_resources(xhci, ctrl_ctx);
2789 		else
2790 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2791 		spin_unlock_irqrestore(&xhci->lock, flags);
2792 	}
2793 	return ret;
2794 }
2795 
2796 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2797 	struct xhci_virt_device *vdev, int i)
2798 {
2799 	struct xhci_virt_ep *ep = &vdev->eps[i];
2800 
2801 	if (ep->ep_state & EP_HAS_STREAMS) {
2802 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2803 				xhci_get_endpoint_address(i));
2804 		xhci_free_stream_info(xhci, ep->stream_info);
2805 		ep->stream_info = NULL;
2806 		ep->ep_state &= ~EP_HAS_STREAMS;
2807 	}
2808 }
2809 
2810 /* Called after one or more calls to xhci_add_endpoint() or
2811  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2812  * to call xhci_reset_bandwidth().
2813  *
2814  * Since we are in the middle of changing either configuration or
2815  * installing a new alt setting, the USB core won't allow URBs to be
2816  * enqueued for any endpoint on the old config or interface.  Nothing
2817  * else should be touching the xhci->devs[slot_id] structure, so we
2818  * don't need to take the xhci->lock for manipulating that.
2819  */
2820 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2821 {
2822 	int i;
2823 	int ret = 0;
2824 	struct xhci_hcd *xhci;
2825 	struct xhci_virt_device	*virt_dev;
2826 	struct xhci_input_control_ctx *ctrl_ctx;
2827 	struct xhci_slot_ctx *slot_ctx;
2828 	struct xhci_command *command;
2829 
2830 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2831 	if (ret <= 0)
2832 		return ret;
2833 	xhci = hcd_to_xhci(hcd);
2834 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2835 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2836 		return -ENODEV;
2837 
2838 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2839 	virt_dev = xhci->devs[udev->slot_id];
2840 
2841 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2842 	if (!command)
2843 		return -ENOMEM;
2844 
2845 	command->in_ctx = virt_dev->in_ctx;
2846 
2847 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2848 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2849 	if (!ctrl_ctx) {
2850 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2851 				__func__);
2852 		ret = -ENOMEM;
2853 		goto command_cleanup;
2854 	}
2855 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2856 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2857 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2858 
2859 	/* Don't issue the command if there's no endpoints to update. */
2860 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2861 	    ctrl_ctx->drop_flags == 0) {
2862 		ret = 0;
2863 		goto command_cleanup;
2864 	}
2865 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2866 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2867 	for (i = 31; i >= 1; i--) {
2868 		__le32 le32 = cpu_to_le32(BIT(i));
2869 
2870 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2871 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2872 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2873 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2874 			break;
2875 		}
2876 	}
2877 
2878 	ret = xhci_configure_endpoint(xhci, udev, command,
2879 			false, false);
2880 	if (ret)
2881 		/* Callee should call reset_bandwidth() */
2882 		goto command_cleanup;
2883 
2884 	/* Free any rings that were dropped, but not changed. */
2885 	for (i = 1; i < 31; i++) {
2886 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2887 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2888 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2889 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2890 		}
2891 	}
2892 	xhci_zero_in_ctx(xhci, virt_dev);
2893 	/*
2894 	 * Install any rings for completely new endpoints or changed endpoints,
2895 	 * and free any old rings from changed endpoints.
2896 	 */
2897 	for (i = 1; i < 31; i++) {
2898 		if (!virt_dev->eps[i].new_ring)
2899 			continue;
2900 		/* Only free the old ring if it exists.
2901 		 * It may not if this is the first add of an endpoint.
2902 		 */
2903 		if (virt_dev->eps[i].ring) {
2904 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2905 		}
2906 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2907 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2908 		virt_dev->eps[i].new_ring = NULL;
2909 	}
2910 command_cleanup:
2911 	kfree(command->completion);
2912 	kfree(command);
2913 
2914 	return ret;
2915 }
2916 
2917 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2918 {
2919 	struct xhci_hcd *xhci;
2920 	struct xhci_virt_device	*virt_dev;
2921 	int i, ret;
2922 
2923 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2924 	if (ret <= 0)
2925 		return;
2926 	xhci = hcd_to_xhci(hcd);
2927 
2928 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2929 	virt_dev = xhci->devs[udev->slot_id];
2930 	/* Free any rings allocated for added endpoints */
2931 	for (i = 0; i < 31; i++) {
2932 		if (virt_dev->eps[i].new_ring) {
2933 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2934 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2935 			virt_dev->eps[i].new_ring = NULL;
2936 		}
2937 	}
2938 	xhci_zero_in_ctx(xhci, virt_dev);
2939 }
2940 
2941 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2942 		struct xhci_container_ctx *in_ctx,
2943 		struct xhci_container_ctx *out_ctx,
2944 		struct xhci_input_control_ctx *ctrl_ctx,
2945 		u32 add_flags, u32 drop_flags)
2946 {
2947 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2948 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2949 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2950 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2951 }
2952 
2953 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2954 		unsigned int slot_id, unsigned int ep_index,
2955 		struct xhci_dequeue_state *deq_state)
2956 {
2957 	struct xhci_input_control_ctx *ctrl_ctx;
2958 	struct xhci_container_ctx *in_ctx;
2959 	struct xhci_ep_ctx *ep_ctx;
2960 	u32 added_ctxs;
2961 	dma_addr_t addr;
2962 
2963 	in_ctx = xhci->devs[slot_id]->in_ctx;
2964 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2965 	if (!ctrl_ctx) {
2966 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2967 				__func__);
2968 		return;
2969 	}
2970 
2971 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2972 			xhci->devs[slot_id]->out_ctx, ep_index);
2973 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2974 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2975 			deq_state->new_deq_ptr);
2976 	if (addr == 0) {
2977 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2978 				"reset ep command\n");
2979 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2980 				deq_state->new_deq_seg,
2981 				deq_state->new_deq_ptr);
2982 		return;
2983 	}
2984 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2985 
2986 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2987 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2988 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2989 			added_ctxs, added_ctxs);
2990 }
2991 
2992 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2993 			       unsigned int stream_id, struct xhci_td *td)
2994 {
2995 	struct xhci_dequeue_state deq_state;
2996 	struct usb_device *udev = td->urb->dev;
2997 
2998 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2999 			"Cleaning up stalled endpoint ring");
3000 	/* We need to move the HW's dequeue pointer past this TD,
3001 	 * or it will attempt to resend it on the next doorbell ring.
3002 	 */
3003 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
3004 			ep_index, stream_id, td, &deq_state);
3005 
3006 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3007 		return;
3008 
3009 	/* HW with the reset endpoint quirk will use the saved dequeue state to
3010 	 * issue a configure endpoint command later.
3011 	 */
3012 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3013 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3014 				"Queueing new dequeue state");
3015 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3016 				ep_index, &deq_state);
3017 	} else {
3018 		/* Better hope no one uses the input context between now and the
3019 		 * reset endpoint completion!
3020 		 * XXX: No idea how this hardware will react when stream rings
3021 		 * are enabled.
3022 		 */
3023 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3024 				"Setting up input context for "
3025 				"configure endpoint command");
3026 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3027 				ep_index, &deq_state);
3028 	}
3029 }
3030 
3031 /*
3032  * Called after usb core issues a clear halt control message.
3033  * The host side of the halt should already be cleared by a reset endpoint
3034  * command issued when the STALL event was received.
3035  *
3036  * The reset endpoint command may only be issued to endpoints in the halted
3037  * state. For software that wishes to reset the data toggle or sequence number
3038  * of an endpoint that isn't in the halted state this function will issue a
3039  * configure endpoint command with the Drop and Add bits set for the target
3040  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3041  */
3042 
3043 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3044 		struct usb_host_endpoint *host_ep)
3045 {
3046 	struct xhci_hcd *xhci;
3047 	struct usb_device *udev;
3048 	struct xhci_virt_device *vdev;
3049 	struct xhci_virt_ep *ep;
3050 	struct xhci_input_control_ctx *ctrl_ctx;
3051 	struct xhci_command *stop_cmd, *cfg_cmd;
3052 	unsigned int ep_index;
3053 	unsigned long flags;
3054 	u32 ep_flag;
3055 
3056 	xhci = hcd_to_xhci(hcd);
3057 	if (!host_ep->hcpriv)
3058 		return;
3059 	udev = (struct usb_device *) host_ep->hcpriv;
3060 	vdev = xhci->devs[udev->slot_id];
3061 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3062 	ep = &vdev->eps[ep_index];
3063 
3064 	/* Bail out if toggle is already being cleared by a endpoint reset */
3065 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3066 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3067 		return;
3068 	}
3069 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3070 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3071 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3072 		return;
3073 
3074 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3075 
3076 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3077 		return;
3078 
3079 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3080 	if (!stop_cmd)
3081 		return;
3082 
3083 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3084 	if (!cfg_cmd)
3085 		goto cleanup;
3086 
3087 	spin_lock_irqsave(&xhci->lock, flags);
3088 
3089 	/* block queuing new trbs and ringing ep doorbell */
3090 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3091 
3092 	/*
3093 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3094 	 * Driver is required to synchronously cancel all transfer request.
3095 	 * Stop the endpoint to force xHC to update the output context
3096 	 */
3097 
3098 	if (!list_empty(&ep->ring->td_list)) {
3099 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3100 		spin_unlock_irqrestore(&xhci->lock, flags);
3101 		xhci_free_command(xhci, cfg_cmd);
3102 		goto cleanup;
3103 	}
3104 	xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
3105 	xhci_ring_cmd_db(xhci);
3106 	spin_unlock_irqrestore(&xhci->lock, flags);
3107 
3108 	wait_for_completion(stop_cmd->completion);
3109 
3110 	spin_lock_irqsave(&xhci->lock, flags);
3111 
3112 	/* config ep command clears toggle if add and drop ep flags are set */
3113 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3114 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3115 					   ctrl_ctx, ep_flag, ep_flag);
3116 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3117 
3118 	xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3119 				      udev->slot_id, false);
3120 	xhci_ring_cmd_db(xhci);
3121 	spin_unlock_irqrestore(&xhci->lock, flags);
3122 
3123 	wait_for_completion(cfg_cmd->completion);
3124 
3125 	ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3126 	xhci_free_command(xhci, cfg_cmd);
3127 cleanup:
3128 	xhci_free_command(xhci, stop_cmd);
3129 }
3130 
3131 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3132 		struct usb_device *udev, struct usb_host_endpoint *ep,
3133 		unsigned int slot_id)
3134 {
3135 	int ret;
3136 	unsigned int ep_index;
3137 	unsigned int ep_state;
3138 
3139 	if (!ep)
3140 		return -EINVAL;
3141 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3142 	if (ret <= 0)
3143 		return -EINVAL;
3144 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3145 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3146 				" descriptor for ep 0x%x does not support streams\n",
3147 				ep->desc.bEndpointAddress);
3148 		return -EINVAL;
3149 	}
3150 
3151 	ep_index = xhci_get_endpoint_index(&ep->desc);
3152 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3153 	if (ep_state & EP_HAS_STREAMS ||
3154 			ep_state & EP_GETTING_STREAMS) {
3155 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3156 				"already has streams set up.\n",
3157 				ep->desc.bEndpointAddress);
3158 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3159 				"dynamic stream context array reallocation.\n");
3160 		return -EINVAL;
3161 	}
3162 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3163 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3164 				"endpoint 0x%x; URBs are pending.\n",
3165 				ep->desc.bEndpointAddress);
3166 		return -EINVAL;
3167 	}
3168 	return 0;
3169 }
3170 
3171 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3172 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3173 {
3174 	unsigned int max_streams;
3175 
3176 	/* The stream context array size must be a power of two */
3177 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3178 	/*
3179 	 * Find out how many primary stream array entries the host controller
3180 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3181 	 * level page entries), but that's an optional feature for xHCI host
3182 	 * controllers. xHCs must support at least 4 stream IDs.
3183 	 */
3184 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3185 	if (*num_stream_ctxs > max_streams) {
3186 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3187 				max_streams);
3188 		*num_stream_ctxs = max_streams;
3189 		*num_streams = max_streams;
3190 	}
3191 }
3192 
3193 /* Returns an error code if one of the endpoint already has streams.
3194  * This does not change any data structures, it only checks and gathers
3195  * information.
3196  */
3197 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3198 		struct usb_device *udev,
3199 		struct usb_host_endpoint **eps, unsigned int num_eps,
3200 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3201 {
3202 	unsigned int max_streams;
3203 	unsigned int endpoint_flag;
3204 	int i;
3205 	int ret;
3206 
3207 	for (i = 0; i < num_eps; i++) {
3208 		ret = xhci_check_streams_endpoint(xhci, udev,
3209 				eps[i], udev->slot_id);
3210 		if (ret < 0)
3211 			return ret;
3212 
3213 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3214 		if (max_streams < (*num_streams - 1)) {
3215 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3216 					eps[i]->desc.bEndpointAddress,
3217 					max_streams);
3218 			*num_streams = max_streams+1;
3219 		}
3220 
3221 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3222 		if (*changed_ep_bitmask & endpoint_flag)
3223 			return -EINVAL;
3224 		*changed_ep_bitmask |= endpoint_flag;
3225 	}
3226 	return 0;
3227 }
3228 
3229 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3230 		struct usb_device *udev,
3231 		struct usb_host_endpoint **eps, unsigned int num_eps)
3232 {
3233 	u32 changed_ep_bitmask = 0;
3234 	unsigned int slot_id;
3235 	unsigned int ep_index;
3236 	unsigned int ep_state;
3237 	int i;
3238 
3239 	slot_id = udev->slot_id;
3240 	if (!xhci->devs[slot_id])
3241 		return 0;
3242 
3243 	for (i = 0; i < num_eps; i++) {
3244 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3245 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3246 		/* Are streams already being freed for the endpoint? */
3247 		if (ep_state & EP_GETTING_NO_STREAMS) {
3248 			xhci_warn(xhci, "WARN Can't disable streams for "
3249 					"endpoint 0x%x, "
3250 					"streams are being disabled already\n",
3251 					eps[i]->desc.bEndpointAddress);
3252 			return 0;
3253 		}
3254 		/* Are there actually any streams to free? */
3255 		if (!(ep_state & EP_HAS_STREAMS) &&
3256 				!(ep_state & EP_GETTING_STREAMS)) {
3257 			xhci_warn(xhci, "WARN Can't disable streams for "
3258 					"endpoint 0x%x, "
3259 					"streams are already disabled!\n",
3260 					eps[i]->desc.bEndpointAddress);
3261 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3262 					"with non-streams endpoint\n");
3263 			return 0;
3264 		}
3265 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3266 	}
3267 	return changed_ep_bitmask;
3268 }
3269 
3270 /*
3271  * The USB device drivers use this function (through the HCD interface in USB
3272  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3273  * coordinate mass storage command queueing across multiple endpoints (basically
3274  * a stream ID == a task ID).
3275  *
3276  * Setting up streams involves allocating the same size stream context array
3277  * for each endpoint and issuing a configure endpoint command for all endpoints.
3278  *
3279  * Don't allow the call to succeed if one endpoint only supports one stream
3280  * (which means it doesn't support streams at all).
3281  *
3282  * Drivers may get less stream IDs than they asked for, if the host controller
3283  * hardware or endpoints claim they can't support the number of requested
3284  * stream IDs.
3285  */
3286 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3287 		struct usb_host_endpoint **eps, unsigned int num_eps,
3288 		unsigned int num_streams, gfp_t mem_flags)
3289 {
3290 	int i, ret;
3291 	struct xhci_hcd *xhci;
3292 	struct xhci_virt_device *vdev;
3293 	struct xhci_command *config_cmd;
3294 	struct xhci_input_control_ctx *ctrl_ctx;
3295 	unsigned int ep_index;
3296 	unsigned int num_stream_ctxs;
3297 	unsigned int max_packet;
3298 	unsigned long flags;
3299 	u32 changed_ep_bitmask = 0;
3300 
3301 	if (!eps)
3302 		return -EINVAL;
3303 
3304 	/* Add one to the number of streams requested to account for
3305 	 * stream 0 that is reserved for xHCI usage.
3306 	 */
3307 	num_streams += 1;
3308 	xhci = hcd_to_xhci(hcd);
3309 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3310 			num_streams);
3311 
3312 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3313 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3314 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3315 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3316 		return -ENOSYS;
3317 	}
3318 
3319 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3320 	if (!config_cmd)
3321 		return -ENOMEM;
3322 
3323 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3324 	if (!ctrl_ctx) {
3325 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3326 				__func__);
3327 		xhci_free_command(xhci, config_cmd);
3328 		return -ENOMEM;
3329 	}
3330 
3331 	/* Check to make sure all endpoints are not already configured for
3332 	 * streams.  While we're at it, find the maximum number of streams that
3333 	 * all the endpoints will support and check for duplicate endpoints.
3334 	 */
3335 	spin_lock_irqsave(&xhci->lock, flags);
3336 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3337 			num_eps, &num_streams, &changed_ep_bitmask);
3338 	if (ret < 0) {
3339 		xhci_free_command(xhci, config_cmd);
3340 		spin_unlock_irqrestore(&xhci->lock, flags);
3341 		return ret;
3342 	}
3343 	if (num_streams <= 1) {
3344 		xhci_warn(xhci, "WARN: endpoints can't handle "
3345 				"more than one stream.\n");
3346 		xhci_free_command(xhci, config_cmd);
3347 		spin_unlock_irqrestore(&xhci->lock, flags);
3348 		return -EINVAL;
3349 	}
3350 	vdev = xhci->devs[udev->slot_id];
3351 	/* Mark each endpoint as being in transition, so
3352 	 * xhci_urb_enqueue() will reject all URBs.
3353 	 */
3354 	for (i = 0; i < num_eps; i++) {
3355 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3356 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3357 	}
3358 	spin_unlock_irqrestore(&xhci->lock, flags);
3359 
3360 	/* Setup internal data structures and allocate HW data structures for
3361 	 * streams (but don't install the HW structures in the input context
3362 	 * until we're sure all memory allocation succeeded).
3363 	 */
3364 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3365 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3366 			num_stream_ctxs, num_streams);
3367 
3368 	for (i = 0; i < num_eps; i++) {
3369 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3370 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3371 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3372 				num_stream_ctxs,
3373 				num_streams,
3374 				max_packet, mem_flags);
3375 		if (!vdev->eps[ep_index].stream_info)
3376 			goto cleanup;
3377 		/* Set maxPstreams in endpoint context and update deq ptr to
3378 		 * point to stream context array. FIXME
3379 		 */
3380 	}
3381 
3382 	/* Set up the input context for a configure endpoint command. */
3383 	for (i = 0; i < num_eps; i++) {
3384 		struct xhci_ep_ctx *ep_ctx;
3385 
3386 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3387 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3388 
3389 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3390 				vdev->out_ctx, ep_index);
3391 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3392 				vdev->eps[ep_index].stream_info);
3393 	}
3394 	/* Tell the HW to drop its old copy of the endpoint context info
3395 	 * and add the updated copy from the input context.
3396 	 */
3397 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3398 			vdev->out_ctx, ctrl_ctx,
3399 			changed_ep_bitmask, changed_ep_bitmask);
3400 
3401 	/* Issue and wait for the configure endpoint command */
3402 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3403 			false, false);
3404 
3405 	/* xHC rejected the configure endpoint command for some reason, so we
3406 	 * leave the old ring intact and free our internal streams data
3407 	 * structure.
3408 	 */
3409 	if (ret < 0)
3410 		goto cleanup;
3411 
3412 	spin_lock_irqsave(&xhci->lock, flags);
3413 	for (i = 0; i < num_eps; i++) {
3414 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3415 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3416 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3417 			 udev->slot_id, ep_index);
3418 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3419 	}
3420 	xhci_free_command(xhci, config_cmd);
3421 	spin_unlock_irqrestore(&xhci->lock, flags);
3422 
3423 	/* Subtract 1 for stream 0, which drivers can't use */
3424 	return num_streams - 1;
3425 
3426 cleanup:
3427 	/* If it didn't work, free the streams! */
3428 	for (i = 0; i < num_eps; i++) {
3429 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3430 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3431 		vdev->eps[ep_index].stream_info = NULL;
3432 		/* FIXME Unset maxPstreams in endpoint context and
3433 		 * update deq ptr to point to normal string ring.
3434 		 */
3435 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3436 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3437 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3438 	}
3439 	xhci_free_command(xhci, config_cmd);
3440 	return -ENOMEM;
3441 }
3442 
3443 /* Transition the endpoint from using streams to being a "normal" endpoint
3444  * without streams.
3445  *
3446  * Modify the endpoint context state, submit a configure endpoint command,
3447  * and free all endpoint rings for streams if that completes successfully.
3448  */
3449 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3450 		struct usb_host_endpoint **eps, unsigned int num_eps,
3451 		gfp_t mem_flags)
3452 {
3453 	int i, ret;
3454 	struct xhci_hcd *xhci;
3455 	struct xhci_virt_device *vdev;
3456 	struct xhci_command *command;
3457 	struct xhci_input_control_ctx *ctrl_ctx;
3458 	unsigned int ep_index;
3459 	unsigned long flags;
3460 	u32 changed_ep_bitmask;
3461 
3462 	xhci = hcd_to_xhci(hcd);
3463 	vdev = xhci->devs[udev->slot_id];
3464 
3465 	/* Set up a configure endpoint command to remove the streams rings */
3466 	spin_lock_irqsave(&xhci->lock, flags);
3467 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3468 			udev, eps, num_eps);
3469 	if (changed_ep_bitmask == 0) {
3470 		spin_unlock_irqrestore(&xhci->lock, flags);
3471 		return -EINVAL;
3472 	}
3473 
3474 	/* Use the xhci_command structure from the first endpoint.  We may have
3475 	 * allocated too many, but the driver may call xhci_free_streams() for
3476 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3477 	 */
3478 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3479 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3480 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3481 	if (!ctrl_ctx) {
3482 		spin_unlock_irqrestore(&xhci->lock, flags);
3483 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3484 				__func__);
3485 		return -EINVAL;
3486 	}
3487 
3488 	for (i = 0; i < num_eps; i++) {
3489 		struct xhci_ep_ctx *ep_ctx;
3490 
3491 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3492 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3493 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3494 			EP_GETTING_NO_STREAMS;
3495 
3496 		xhci_endpoint_copy(xhci, command->in_ctx,
3497 				vdev->out_ctx, ep_index);
3498 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3499 				&vdev->eps[ep_index]);
3500 	}
3501 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3502 			vdev->out_ctx, ctrl_ctx,
3503 			changed_ep_bitmask, changed_ep_bitmask);
3504 	spin_unlock_irqrestore(&xhci->lock, flags);
3505 
3506 	/* Issue and wait for the configure endpoint command,
3507 	 * which must succeed.
3508 	 */
3509 	ret = xhci_configure_endpoint(xhci, udev, command,
3510 			false, true);
3511 
3512 	/* xHC rejected the configure endpoint command for some reason, so we
3513 	 * leave the streams rings intact.
3514 	 */
3515 	if (ret < 0)
3516 		return ret;
3517 
3518 	spin_lock_irqsave(&xhci->lock, flags);
3519 	for (i = 0; i < num_eps; i++) {
3520 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3521 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3522 		vdev->eps[ep_index].stream_info = NULL;
3523 		/* FIXME Unset maxPstreams in endpoint context and
3524 		 * update deq ptr to point to normal string ring.
3525 		 */
3526 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3527 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3528 	}
3529 	spin_unlock_irqrestore(&xhci->lock, flags);
3530 
3531 	return 0;
3532 }
3533 
3534 /*
3535  * Deletes endpoint resources for endpoints that were active before a Reset
3536  * Device command, or a Disable Slot command.  The Reset Device command leaves
3537  * the control endpoint intact, whereas the Disable Slot command deletes it.
3538  *
3539  * Must be called with xhci->lock held.
3540  */
3541 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3542 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3543 {
3544 	int i;
3545 	unsigned int num_dropped_eps = 0;
3546 	unsigned int drop_flags = 0;
3547 
3548 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3549 		if (virt_dev->eps[i].ring) {
3550 			drop_flags |= 1 << i;
3551 			num_dropped_eps++;
3552 		}
3553 	}
3554 	xhci->num_active_eps -= num_dropped_eps;
3555 	if (num_dropped_eps)
3556 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3557 				"Dropped %u ep ctxs, flags = 0x%x, "
3558 				"%u now active.",
3559 				num_dropped_eps, drop_flags,
3560 				xhci->num_active_eps);
3561 }
3562 
3563 /*
3564  * This submits a Reset Device Command, which will set the device state to 0,
3565  * set the device address to 0, and disable all the endpoints except the default
3566  * control endpoint.  The USB core should come back and call
3567  * xhci_address_device(), and then re-set up the configuration.  If this is
3568  * called because of a usb_reset_and_verify_device(), then the old alternate
3569  * settings will be re-installed through the normal bandwidth allocation
3570  * functions.
3571  *
3572  * Wait for the Reset Device command to finish.  Remove all structures
3573  * associated with the endpoints that were disabled.  Clear the input device
3574  * structure? Reset the control endpoint 0 max packet size?
3575  *
3576  * If the virt_dev to be reset does not exist or does not match the udev,
3577  * it means the device is lost, possibly due to the xHC restore error and
3578  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3579  * re-allocate the device.
3580  */
3581 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3582 		struct usb_device *udev)
3583 {
3584 	int ret, i;
3585 	unsigned long flags;
3586 	struct xhci_hcd *xhci;
3587 	unsigned int slot_id;
3588 	struct xhci_virt_device *virt_dev;
3589 	struct xhci_command *reset_device_cmd;
3590 	struct xhci_slot_ctx *slot_ctx;
3591 	int old_active_eps = 0;
3592 
3593 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3594 	if (ret <= 0)
3595 		return ret;
3596 	xhci = hcd_to_xhci(hcd);
3597 	slot_id = udev->slot_id;
3598 	virt_dev = xhci->devs[slot_id];
3599 	if (!virt_dev) {
3600 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3601 				"not exist. Re-allocate the device\n", slot_id);
3602 		ret = xhci_alloc_dev(hcd, udev);
3603 		if (ret == 1)
3604 			return 0;
3605 		else
3606 			return -EINVAL;
3607 	}
3608 
3609 	if (virt_dev->tt_info)
3610 		old_active_eps = virt_dev->tt_info->active_eps;
3611 
3612 	if (virt_dev->udev != udev) {
3613 		/* If the virt_dev and the udev does not match, this virt_dev
3614 		 * may belong to another udev.
3615 		 * Re-allocate the device.
3616 		 */
3617 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3618 				"not match the udev. Re-allocate the device\n",
3619 				slot_id);
3620 		ret = xhci_alloc_dev(hcd, udev);
3621 		if (ret == 1)
3622 			return 0;
3623 		else
3624 			return -EINVAL;
3625 	}
3626 
3627 	/* If device is not setup, there is no point in resetting it */
3628 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3629 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3630 						SLOT_STATE_DISABLED)
3631 		return 0;
3632 
3633 	trace_xhci_discover_or_reset_device(slot_ctx);
3634 
3635 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3636 	/* Allocate the command structure that holds the struct completion.
3637 	 * Assume we're in process context, since the normal device reset
3638 	 * process has to wait for the device anyway.  Storage devices are
3639 	 * reset as part of error handling, so use GFP_NOIO instead of
3640 	 * GFP_KERNEL.
3641 	 */
3642 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3643 	if (!reset_device_cmd) {
3644 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3645 		return -ENOMEM;
3646 	}
3647 
3648 	/* Attempt to submit the Reset Device command to the command ring */
3649 	spin_lock_irqsave(&xhci->lock, flags);
3650 
3651 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3652 	if (ret) {
3653 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3654 		spin_unlock_irqrestore(&xhci->lock, flags);
3655 		goto command_cleanup;
3656 	}
3657 	xhci_ring_cmd_db(xhci);
3658 	spin_unlock_irqrestore(&xhci->lock, flags);
3659 
3660 	/* Wait for the Reset Device command to finish */
3661 	wait_for_completion(reset_device_cmd->completion);
3662 
3663 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3664 	 * unless we tried to reset a slot ID that wasn't enabled,
3665 	 * or the device wasn't in the addressed or configured state.
3666 	 */
3667 	ret = reset_device_cmd->status;
3668 	switch (ret) {
3669 	case COMP_COMMAND_ABORTED:
3670 	case COMP_COMMAND_RING_STOPPED:
3671 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3672 		ret = -ETIME;
3673 		goto command_cleanup;
3674 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3675 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3676 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3677 				slot_id,
3678 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3679 		xhci_dbg(xhci, "Not freeing device rings.\n");
3680 		/* Don't treat this as an error.  May change my mind later. */
3681 		ret = 0;
3682 		goto command_cleanup;
3683 	case COMP_SUCCESS:
3684 		xhci_dbg(xhci, "Successful reset device command.\n");
3685 		break;
3686 	default:
3687 		if (xhci_is_vendor_info_code(xhci, ret))
3688 			break;
3689 		xhci_warn(xhci, "Unknown completion code %u for "
3690 				"reset device command.\n", ret);
3691 		ret = -EINVAL;
3692 		goto command_cleanup;
3693 	}
3694 
3695 	/* Free up host controller endpoint resources */
3696 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3697 		spin_lock_irqsave(&xhci->lock, flags);
3698 		/* Don't delete the default control endpoint resources */
3699 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3700 		spin_unlock_irqrestore(&xhci->lock, flags);
3701 	}
3702 
3703 	/* Everything but endpoint 0 is disabled, so free the rings. */
3704 	for (i = 1; i < 31; i++) {
3705 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3706 
3707 		if (ep->ep_state & EP_HAS_STREAMS) {
3708 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3709 					xhci_get_endpoint_address(i));
3710 			xhci_free_stream_info(xhci, ep->stream_info);
3711 			ep->stream_info = NULL;
3712 			ep->ep_state &= ~EP_HAS_STREAMS;
3713 		}
3714 
3715 		if (ep->ring) {
3716 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3717 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3718 		}
3719 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3720 			xhci_drop_ep_from_interval_table(xhci,
3721 					&virt_dev->eps[i].bw_info,
3722 					virt_dev->bw_table,
3723 					udev,
3724 					&virt_dev->eps[i],
3725 					virt_dev->tt_info);
3726 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3727 	}
3728 	/* If necessary, update the number of active TTs on this root port */
3729 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3730 	ret = 0;
3731 
3732 command_cleanup:
3733 	xhci_free_command(xhci, reset_device_cmd);
3734 	return ret;
3735 }
3736 
3737 /*
3738  * At this point, the struct usb_device is about to go away, the device has
3739  * disconnected, and all traffic has been stopped and the endpoints have been
3740  * disabled.  Free any HC data structures associated with that device.
3741  */
3742 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3743 {
3744 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3745 	struct xhci_virt_device *virt_dev;
3746 	struct xhci_slot_ctx *slot_ctx;
3747 	int i, ret;
3748 
3749 #ifndef CONFIG_USB_DEFAULT_PERSIST
3750 	/*
3751 	 * We called pm_runtime_get_noresume when the device was attached.
3752 	 * Decrement the counter here to allow controller to runtime suspend
3753 	 * if no devices remain.
3754 	 */
3755 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3756 		pm_runtime_put_noidle(hcd->self.controller);
3757 #endif
3758 
3759 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3760 	/* If the host is halted due to driver unload, we still need to free the
3761 	 * device.
3762 	 */
3763 	if (ret <= 0 && ret != -ENODEV)
3764 		return;
3765 
3766 	virt_dev = xhci->devs[udev->slot_id];
3767 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3768 	trace_xhci_free_dev(slot_ctx);
3769 
3770 	/* Stop any wayward timer functions (which may grab the lock) */
3771 	for (i = 0; i < 31; i++) {
3772 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3773 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3774 	}
3775 	xhci_debugfs_remove_slot(xhci, udev->slot_id);
3776 	virt_dev->udev = NULL;
3777 	ret = xhci_disable_slot(xhci, udev->slot_id);
3778 	if (ret)
3779 		xhci_free_virt_device(xhci, udev->slot_id);
3780 }
3781 
3782 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3783 {
3784 	struct xhci_command *command;
3785 	unsigned long flags;
3786 	u32 state;
3787 	int ret = 0;
3788 
3789 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3790 	if (!command)
3791 		return -ENOMEM;
3792 
3793 	spin_lock_irqsave(&xhci->lock, flags);
3794 	/* Don't disable the slot if the host controller is dead. */
3795 	state = readl(&xhci->op_regs->status);
3796 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3797 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3798 		spin_unlock_irqrestore(&xhci->lock, flags);
3799 		kfree(command);
3800 		return -ENODEV;
3801 	}
3802 
3803 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3804 				slot_id);
3805 	if (ret) {
3806 		spin_unlock_irqrestore(&xhci->lock, flags);
3807 		kfree(command);
3808 		return ret;
3809 	}
3810 	xhci_ring_cmd_db(xhci);
3811 	spin_unlock_irqrestore(&xhci->lock, flags);
3812 	return ret;
3813 }
3814 
3815 /*
3816  * Checks if we have enough host controller resources for the default control
3817  * endpoint.
3818  *
3819  * Must be called with xhci->lock held.
3820  */
3821 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3822 {
3823 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3824 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3825 				"Not enough ep ctxs: "
3826 				"%u active, need to add 1, limit is %u.",
3827 				xhci->num_active_eps, xhci->limit_active_eps);
3828 		return -ENOMEM;
3829 	}
3830 	xhci->num_active_eps += 1;
3831 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3832 			"Adding 1 ep ctx, %u now active.",
3833 			xhci->num_active_eps);
3834 	return 0;
3835 }
3836 
3837 
3838 /*
3839  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3840  * timed out, or allocating memory failed.  Returns 1 on success.
3841  */
3842 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3843 {
3844 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3845 	struct xhci_virt_device *vdev;
3846 	struct xhci_slot_ctx *slot_ctx;
3847 	unsigned long flags;
3848 	int ret, slot_id;
3849 	struct xhci_command *command;
3850 
3851 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3852 	if (!command)
3853 		return 0;
3854 
3855 	spin_lock_irqsave(&xhci->lock, flags);
3856 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3857 	if (ret) {
3858 		spin_unlock_irqrestore(&xhci->lock, flags);
3859 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3860 		xhci_free_command(xhci, command);
3861 		return 0;
3862 	}
3863 	xhci_ring_cmd_db(xhci);
3864 	spin_unlock_irqrestore(&xhci->lock, flags);
3865 
3866 	wait_for_completion(command->completion);
3867 	slot_id = command->slot_id;
3868 
3869 	if (!slot_id || command->status != COMP_SUCCESS) {
3870 		xhci_err(xhci, "Error while assigning device slot ID\n");
3871 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3872 				HCS_MAX_SLOTS(
3873 					readl(&xhci->cap_regs->hcs_params1)));
3874 		xhci_free_command(xhci, command);
3875 		return 0;
3876 	}
3877 
3878 	xhci_free_command(xhci, command);
3879 
3880 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3881 		spin_lock_irqsave(&xhci->lock, flags);
3882 		ret = xhci_reserve_host_control_ep_resources(xhci);
3883 		if (ret) {
3884 			spin_unlock_irqrestore(&xhci->lock, flags);
3885 			xhci_warn(xhci, "Not enough host resources, "
3886 					"active endpoint contexts = %u\n",
3887 					xhci->num_active_eps);
3888 			goto disable_slot;
3889 		}
3890 		spin_unlock_irqrestore(&xhci->lock, flags);
3891 	}
3892 	/* Use GFP_NOIO, since this function can be called from
3893 	 * xhci_discover_or_reset_device(), which may be called as part of
3894 	 * mass storage driver error handling.
3895 	 */
3896 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3897 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3898 		goto disable_slot;
3899 	}
3900 	vdev = xhci->devs[slot_id];
3901 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3902 	trace_xhci_alloc_dev(slot_ctx);
3903 
3904 	udev->slot_id = slot_id;
3905 
3906 	xhci_debugfs_create_slot(xhci, slot_id);
3907 
3908 #ifndef CONFIG_USB_DEFAULT_PERSIST
3909 	/*
3910 	 * If resetting upon resume, we can't put the controller into runtime
3911 	 * suspend if there is a device attached.
3912 	 */
3913 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3914 		pm_runtime_get_noresume(hcd->self.controller);
3915 #endif
3916 
3917 	/* Is this a LS or FS device under a HS hub? */
3918 	/* Hub or peripherial? */
3919 	return 1;
3920 
3921 disable_slot:
3922 	ret = xhci_disable_slot(xhci, udev->slot_id);
3923 	if (ret)
3924 		xhci_free_virt_device(xhci, udev->slot_id);
3925 
3926 	return 0;
3927 }
3928 
3929 /*
3930  * Issue an Address Device command and optionally send a corresponding
3931  * SetAddress request to the device.
3932  */
3933 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3934 			     enum xhci_setup_dev setup)
3935 {
3936 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3937 	unsigned long flags;
3938 	struct xhci_virt_device *virt_dev;
3939 	int ret = 0;
3940 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3941 	struct xhci_slot_ctx *slot_ctx;
3942 	struct xhci_input_control_ctx *ctrl_ctx;
3943 	u64 temp_64;
3944 	struct xhci_command *command = NULL;
3945 
3946 	mutex_lock(&xhci->mutex);
3947 
3948 	if (xhci->xhc_state) {	/* dying, removing or halted */
3949 		ret = -ESHUTDOWN;
3950 		goto out;
3951 	}
3952 
3953 	if (!udev->slot_id) {
3954 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3955 				"Bad Slot ID %d", udev->slot_id);
3956 		ret = -EINVAL;
3957 		goto out;
3958 	}
3959 
3960 	virt_dev = xhci->devs[udev->slot_id];
3961 
3962 	if (WARN_ON(!virt_dev)) {
3963 		/*
3964 		 * In plug/unplug torture test with an NEC controller,
3965 		 * a zero-dereference was observed once due to virt_dev = 0.
3966 		 * Print useful debug rather than crash if it is observed again!
3967 		 */
3968 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3969 			udev->slot_id);
3970 		ret = -EINVAL;
3971 		goto out;
3972 	}
3973 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3974 	trace_xhci_setup_device_slot(slot_ctx);
3975 
3976 	if (setup == SETUP_CONTEXT_ONLY) {
3977 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3978 		    SLOT_STATE_DEFAULT) {
3979 			xhci_dbg(xhci, "Slot already in default state\n");
3980 			goto out;
3981 		}
3982 	}
3983 
3984 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3985 	if (!command) {
3986 		ret = -ENOMEM;
3987 		goto out;
3988 	}
3989 
3990 	command->in_ctx = virt_dev->in_ctx;
3991 
3992 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3993 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3994 	if (!ctrl_ctx) {
3995 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3996 				__func__);
3997 		ret = -EINVAL;
3998 		goto out;
3999 	}
4000 	/*
4001 	 * If this is the first Set Address since device plug-in or
4002 	 * virt_device realloaction after a resume with an xHCI power loss,
4003 	 * then set up the slot context.
4004 	 */
4005 	if (!slot_ctx->dev_info)
4006 		xhci_setup_addressable_virt_dev(xhci, udev);
4007 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4008 	else
4009 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4010 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4011 	ctrl_ctx->drop_flags = 0;
4012 
4013 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4014 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4015 
4016 	spin_lock_irqsave(&xhci->lock, flags);
4017 	trace_xhci_setup_device(virt_dev);
4018 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4019 					udev->slot_id, setup);
4020 	if (ret) {
4021 		spin_unlock_irqrestore(&xhci->lock, flags);
4022 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4023 				"FIXME: allocate a command ring segment");
4024 		goto out;
4025 	}
4026 	xhci_ring_cmd_db(xhci);
4027 	spin_unlock_irqrestore(&xhci->lock, flags);
4028 
4029 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4030 	wait_for_completion(command->completion);
4031 
4032 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4033 	 * the SetAddress() "recovery interval" required by USB and aborting the
4034 	 * command on a timeout.
4035 	 */
4036 	switch (command->status) {
4037 	case COMP_COMMAND_ABORTED:
4038 	case COMP_COMMAND_RING_STOPPED:
4039 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4040 		ret = -ETIME;
4041 		break;
4042 	case COMP_CONTEXT_STATE_ERROR:
4043 	case COMP_SLOT_NOT_ENABLED_ERROR:
4044 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4045 			 act, udev->slot_id);
4046 		ret = -EINVAL;
4047 		break;
4048 	case COMP_USB_TRANSACTION_ERROR:
4049 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4050 
4051 		mutex_unlock(&xhci->mutex);
4052 		ret = xhci_disable_slot(xhci, udev->slot_id);
4053 		if (!ret)
4054 			xhci_alloc_dev(hcd, udev);
4055 		kfree(command->completion);
4056 		kfree(command);
4057 		return -EPROTO;
4058 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4059 		dev_warn(&udev->dev,
4060 			 "ERROR: Incompatible device for setup %s command\n", act);
4061 		ret = -ENODEV;
4062 		break;
4063 	case COMP_SUCCESS:
4064 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4065 			       "Successful setup %s command", act);
4066 		break;
4067 	default:
4068 		xhci_err(xhci,
4069 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4070 			 act, command->status);
4071 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4072 		ret = -EINVAL;
4073 		break;
4074 	}
4075 	if (ret)
4076 		goto out;
4077 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4078 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4079 			"Op regs DCBAA ptr = %#016llx", temp_64);
4080 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4081 		"Slot ID %d dcbaa entry @%p = %#016llx",
4082 		udev->slot_id,
4083 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4084 		(unsigned long long)
4085 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4086 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4087 			"Output Context DMA address = %#08llx",
4088 			(unsigned long long)virt_dev->out_ctx->dma);
4089 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4090 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4091 	/*
4092 	 * USB core uses address 1 for the roothubs, so we add one to the
4093 	 * address given back to us by the HC.
4094 	 */
4095 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4096 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4097 	/* Zero the input context control for later use */
4098 	ctrl_ctx->add_flags = 0;
4099 	ctrl_ctx->drop_flags = 0;
4100 
4101 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4102 		       "Internal device address = %d",
4103 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4104 out:
4105 	mutex_unlock(&xhci->mutex);
4106 	if (command) {
4107 		kfree(command->completion);
4108 		kfree(command);
4109 	}
4110 	return ret;
4111 }
4112 
4113 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4114 {
4115 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4116 }
4117 
4118 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4119 {
4120 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4121 }
4122 
4123 /*
4124  * Transfer the port index into real index in the HW port status
4125  * registers. Caculate offset between the port's PORTSC register
4126  * and port status base. Divide the number of per port register
4127  * to get the real index. The raw port number bases 1.
4128  */
4129 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4130 {
4131 	struct xhci_hub *rhub;
4132 
4133 	rhub = xhci_get_rhub(hcd);
4134 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4135 }
4136 
4137 /*
4138  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4139  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4140  */
4141 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4142 			struct usb_device *udev, u16 max_exit_latency)
4143 {
4144 	struct xhci_virt_device *virt_dev;
4145 	struct xhci_command *command;
4146 	struct xhci_input_control_ctx *ctrl_ctx;
4147 	struct xhci_slot_ctx *slot_ctx;
4148 	unsigned long flags;
4149 	int ret;
4150 
4151 	spin_lock_irqsave(&xhci->lock, flags);
4152 
4153 	virt_dev = xhci->devs[udev->slot_id];
4154 
4155 	/*
4156 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4157 	 * xHC was re-initialized. Exit latency will be set later after
4158 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4159 	 */
4160 
4161 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4162 		spin_unlock_irqrestore(&xhci->lock, flags);
4163 		return 0;
4164 	}
4165 
4166 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4167 	command = xhci->lpm_command;
4168 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4169 	if (!ctrl_ctx) {
4170 		spin_unlock_irqrestore(&xhci->lock, flags);
4171 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4172 				__func__);
4173 		return -ENOMEM;
4174 	}
4175 
4176 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4177 	spin_unlock_irqrestore(&xhci->lock, flags);
4178 
4179 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4180 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4181 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4182 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4183 	slot_ctx->dev_state = 0;
4184 
4185 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4186 			"Set up evaluate context for LPM MEL change.");
4187 
4188 	/* Issue and wait for the evaluate context command. */
4189 	ret = xhci_configure_endpoint(xhci, udev, command,
4190 			true, true);
4191 
4192 	if (!ret) {
4193 		spin_lock_irqsave(&xhci->lock, flags);
4194 		virt_dev->current_mel = max_exit_latency;
4195 		spin_unlock_irqrestore(&xhci->lock, flags);
4196 	}
4197 	return ret;
4198 }
4199 
4200 #ifdef CONFIG_PM
4201 
4202 /* BESL to HIRD Encoding array for USB2 LPM */
4203 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4204 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4205 
4206 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4207 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4208 					struct usb_device *udev)
4209 {
4210 	int u2del, besl, besl_host;
4211 	int besl_device = 0;
4212 	u32 field;
4213 
4214 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4215 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4216 
4217 	if (field & USB_BESL_SUPPORT) {
4218 		for (besl_host = 0; besl_host < 16; besl_host++) {
4219 			if (xhci_besl_encoding[besl_host] >= u2del)
4220 				break;
4221 		}
4222 		/* Use baseline BESL value as default */
4223 		if (field & USB_BESL_BASELINE_VALID)
4224 			besl_device = USB_GET_BESL_BASELINE(field);
4225 		else if (field & USB_BESL_DEEP_VALID)
4226 			besl_device = USB_GET_BESL_DEEP(field);
4227 	} else {
4228 		if (u2del <= 50)
4229 			besl_host = 0;
4230 		else
4231 			besl_host = (u2del - 51) / 75 + 1;
4232 	}
4233 
4234 	besl = besl_host + besl_device;
4235 	if (besl > 15)
4236 		besl = 15;
4237 
4238 	return besl;
4239 }
4240 
4241 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4242 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4243 {
4244 	u32 field;
4245 	int l1;
4246 	int besld = 0;
4247 	int hirdm = 0;
4248 
4249 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4250 
4251 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4252 	l1 = udev->l1_params.timeout / 256;
4253 
4254 	/* device has preferred BESLD */
4255 	if (field & USB_BESL_DEEP_VALID) {
4256 		besld = USB_GET_BESL_DEEP(field);
4257 		hirdm = 1;
4258 	}
4259 
4260 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4261 }
4262 
4263 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4264 			struct usb_device *udev, int enable)
4265 {
4266 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4267 	struct xhci_port **ports;
4268 	__le32 __iomem	*pm_addr, *hlpm_addr;
4269 	u32		pm_val, hlpm_val, field;
4270 	unsigned int	port_num;
4271 	unsigned long	flags;
4272 	int		hird, exit_latency;
4273 	int		ret;
4274 
4275 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4276 			!udev->lpm_capable)
4277 		return -EPERM;
4278 
4279 	if (!udev->parent || udev->parent->parent ||
4280 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4281 		return -EPERM;
4282 
4283 	if (udev->usb2_hw_lpm_capable != 1)
4284 		return -EPERM;
4285 
4286 	spin_lock_irqsave(&xhci->lock, flags);
4287 
4288 	ports = xhci->usb2_rhub.ports;
4289 	port_num = udev->portnum - 1;
4290 	pm_addr = ports[port_num]->addr + PORTPMSC;
4291 	pm_val = readl(pm_addr);
4292 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4293 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4294 
4295 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4296 			enable ? "enable" : "disable", port_num + 1);
4297 
4298 	if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4299 		/* Host supports BESL timeout instead of HIRD */
4300 		if (udev->usb2_hw_lpm_besl_capable) {
4301 			/* if device doesn't have a preferred BESL value use a
4302 			 * default one which works with mixed HIRD and BESL
4303 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4304 			 */
4305 			if ((field & USB_BESL_SUPPORT) &&
4306 			    (field & USB_BESL_BASELINE_VALID))
4307 				hird = USB_GET_BESL_BASELINE(field);
4308 			else
4309 				hird = udev->l1_params.besl;
4310 
4311 			exit_latency = xhci_besl_encoding[hird];
4312 			spin_unlock_irqrestore(&xhci->lock, flags);
4313 
4314 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4315 			 * input context for link powermanagement evaluate
4316 			 * context commands. It is protected by hcd->bandwidth
4317 			 * mutex and is shared by all devices. We need to set
4318 			 * the max ext latency in USB 2 BESL LPM as well, so
4319 			 * use the same mutex and xhci_change_max_exit_latency()
4320 			 */
4321 			mutex_lock(hcd->bandwidth_mutex);
4322 			ret = xhci_change_max_exit_latency(xhci, udev,
4323 							   exit_latency);
4324 			mutex_unlock(hcd->bandwidth_mutex);
4325 
4326 			if (ret < 0)
4327 				return ret;
4328 			spin_lock_irqsave(&xhci->lock, flags);
4329 
4330 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4331 			writel(hlpm_val, hlpm_addr);
4332 			/* flush write */
4333 			readl(hlpm_addr);
4334 		} else {
4335 			hird = xhci_calculate_hird_besl(xhci, udev);
4336 		}
4337 
4338 		pm_val &= ~PORT_HIRD_MASK;
4339 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4340 		writel(pm_val, pm_addr);
4341 		pm_val = readl(pm_addr);
4342 		pm_val |= PORT_HLE;
4343 		writel(pm_val, pm_addr);
4344 		/* flush write */
4345 		readl(pm_addr);
4346 	} else {
4347 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4348 		writel(pm_val, pm_addr);
4349 		/* flush write */
4350 		readl(pm_addr);
4351 		if (udev->usb2_hw_lpm_besl_capable) {
4352 			spin_unlock_irqrestore(&xhci->lock, flags);
4353 			mutex_lock(hcd->bandwidth_mutex);
4354 			xhci_change_max_exit_latency(xhci, udev, 0);
4355 			mutex_unlock(hcd->bandwidth_mutex);
4356 			return 0;
4357 		}
4358 	}
4359 
4360 	spin_unlock_irqrestore(&xhci->lock, flags);
4361 	return 0;
4362 }
4363 
4364 /* check if a usb2 port supports a given extened capability protocol
4365  * only USB2 ports extended protocol capability values are cached.
4366  * Return 1 if capability is supported
4367  */
4368 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4369 					   unsigned capability)
4370 {
4371 	u32 port_offset, port_count;
4372 	int i;
4373 
4374 	for (i = 0; i < xhci->num_ext_caps; i++) {
4375 		if (xhci->ext_caps[i] & capability) {
4376 			/* port offsets starts at 1 */
4377 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4378 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4379 			if (port >= port_offset &&
4380 			    port < port_offset + port_count)
4381 				return 1;
4382 		}
4383 	}
4384 	return 0;
4385 }
4386 
4387 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4388 {
4389 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4390 	int		portnum = udev->portnum - 1;
4391 
4392 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4393 		return 0;
4394 
4395 	/* we only support lpm for non-hub device connected to root hub yet */
4396 	if (!udev->parent || udev->parent->parent ||
4397 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4398 		return 0;
4399 
4400 	if (xhci->hw_lpm_support == 1 &&
4401 			xhci_check_usb2_port_capability(
4402 				xhci, portnum, XHCI_HLC)) {
4403 		udev->usb2_hw_lpm_capable = 1;
4404 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4405 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4406 		if (xhci_check_usb2_port_capability(xhci, portnum,
4407 					XHCI_BLC))
4408 			udev->usb2_hw_lpm_besl_capable = 1;
4409 	}
4410 
4411 	return 0;
4412 }
4413 
4414 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4415 
4416 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4417 static unsigned long long xhci_service_interval_to_ns(
4418 		struct usb_endpoint_descriptor *desc)
4419 {
4420 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4421 }
4422 
4423 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4424 		enum usb3_link_state state)
4425 {
4426 	unsigned long long sel;
4427 	unsigned long long pel;
4428 	unsigned int max_sel_pel;
4429 	char *state_name;
4430 
4431 	switch (state) {
4432 	case USB3_LPM_U1:
4433 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4434 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4435 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4436 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4437 		state_name = "U1";
4438 		break;
4439 	case USB3_LPM_U2:
4440 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4441 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4442 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4443 		state_name = "U2";
4444 		break;
4445 	default:
4446 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4447 				__func__);
4448 		return USB3_LPM_DISABLED;
4449 	}
4450 
4451 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4452 		return USB3_LPM_DEVICE_INITIATED;
4453 
4454 	if (sel > max_sel_pel)
4455 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4456 				"due to long SEL %llu ms\n",
4457 				state_name, sel);
4458 	else
4459 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4460 				"due to long PEL %llu ms\n",
4461 				state_name, pel);
4462 	return USB3_LPM_DISABLED;
4463 }
4464 
4465 /* The U1 timeout should be the maximum of the following values:
4466  *  - For control endpoints, U1 system exit latency (SEL) * 3
4467  *  - For bulk endpoints, U1 SEL * 5
4468  *  - For interrupt endpoints:
4469  *    - Notification EPs, U1 SEL * 3
4470  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4471  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4472  */
4473 static unsigned long long xhci_calculate_intel_u1_timeout(
4474 		struct usb_device *udev,
4475 		struct usb_endpoint_descriptor *desc)
4476 {
4477 	unsigned long long timeout_ns;
4478 	int ep_type;
4479 	int intr_type;
4480 
4481 	ep_type = usb_endpoint_type(desc);
4482 	switch (ep_type) {
4483 	case USB_ENDPOINT_XFER_CONTROL:
4484 		timeout_ns = udev->u1_params.sel * 3;
4485 		break;
4486 	case USB_ENDPOINT_XFER_BULK:
4487 		timeout_ns = udev->u1_params.sel * 5;
4488 		break;
4489 	case USB_ENDPOINT_XFER_INT:
4490 		intr_type = usb_endpoint_interrupt_type(desc);
4491 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4492 			timeout_ns = udev->u1_params.sel * 3;
4493 			break;
4494 		}
4495 		/* Otherwise the calculation is the same as isoc eps */
4496 		/* fall through */
4497 	case USB_ENDPOINT_XFER_ISOC:
4498 		timeout_ns = xhci_service_interval_to_ns(desc);
4499 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4500 		if (timeout_ns < udev->u1_params.sel * 2)
4501 			timeout_ns = udev->u1_params.sel * 2;
4502 		break;
4503 	default:
4504 		return 0;
4505 	}
4506 
4507 	return timeout_ns;
4508 }
4509 
4510 /* Returns the hub-encoded U1 timeout value. */
4511 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4512 		struct usb_device *udev,
4513 		struct usb_endpoint_descriptor *desc)
4514 {
4515 	unsigned long long timeout_ns;
4516 
4517 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4518 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4519 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4520 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4521 			return USB3_LPM_DISABLED;
4522 		}
4523 	}
4524 
4525 	if (xhci->quirks & XHCI_INTEL_HOST)
4526 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4527 	else
4528 		timeout_ns = udev->u1_params.sel;
4529 
4530 	/* The U1 timeout is encoded in 1us intervals.
4531 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4532 	 */
4533 	if (timeout_ns == USB3_LPM_DISABLED)
4534 		timeout_ns = 1;
4535 	else
4536 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4537 
4538 	/* If the necessary timeout value is bigger than what we can set in the
4539 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4540 	 */
4541 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4542 		return timeout_ns;
4543 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4544 			"due to long timeout %llu ms\n", timeout_ns);
4545 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4546 }
4547 
4548 /* The U2 timeout should be the maximum of:
4549  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4550  *  - largest bInterval of any active periodic endpoint (to avoid going
4551  *    into lower power link states between intervals).
4552  *  - the U2 Exit Latency of the device
4553  */
4554 static unsigned long long xhci_calculate_intel_u2_timeout(
4555 		struct usb_device *udev,
4556 		struct usb_endpoint_descriptor *desc)
4557 {
4558 	unsigned long long timeout_ns;
4559 	unsigned long long u2_del_ns;
4560 
4561 	timeout_ns = 10 * 1000 * 1000;
4562 
4563 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4564 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4565 		timeout_ns = xhci_service_interval_to_ns(desc);
4566 
4567 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4568 	if (u2_del_ns > timeout_ns)
4569 		timeout_ns = u2_del_ns;
4570 
4571 	return timeout_ns;
4572 }
4573 
4574 /* Returns the hub-encoded U2 timeout value. */
4575 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4576 		struct usb_device *udev,
4577 		struct usb_endpoint_descriptor *desc)
4578 {
4579 	unsigned long long timeout_ns;
4580 
4581 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4582 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4583 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4584 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4585 			return USB3_LPM_DISABLED;
4586 		}
4587 	}
4588 
4589 	if (xhci->quirks & XHCI_INTEL_HOST)
4590 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4591 	else
4592 		timeout_ns = udev->u2_params.sel;
4593 
4594 	/* The U2 timeout is encoded in 256us intervals */
4595 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4596 	/* If the necessary timeout value is bigger than what we can set in the
4597 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4598 	 */
4599 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4600 		return timeout_ns;
4601 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4602 			"due to long timeout %llu ms\n", timeout_ns);
4603 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4604 }
4605 
4606 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4607 		struct usb_device *udev,
4608 		struct usb_endpoint_descriptor *desc,
4609 		enum usb3_link_state state,
4610 		u16 *timeout)
4611 {
4612 	if (state == USB3_LPM_U1)
4613 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4614 	else if (state == USB3_LPM_U2)
4615 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4616 
4617 	return USB3_LPM_DISABLED;
4618 }
4619 
4620 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4621 		struct usb_device *udev,
4622 		struct usb_endpoint_descriptor *desc,
4623 		enum usb3_link_state state,
4624 		u16 *timeout)
4625 {
4626 	u16 alt_timeout;
4627 
4628 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4629 		desc, state, timeout);
4630 
4631 	/* If we found we can't enable hub-initiated LPM, or
4632 	 * the U1 or U2 exit latency was too high to allow
4633 	 * device-initiated LPM as well, just stop searching.
4634 	 */
4635 	if (alt_timeout == USB3_LPM_DISABLED ||
4636 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4637 		*timeout = alt_timeout;
4638 		return -E2BIG;
4639 	}
4640 	if (alt_timeout > *timeout)
4641 		*timeout = alt_timeout;
4642 	return 0;
4643 }
4644 
4645 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4646 		struct usb_device *udev,
4647 		struct usb_host_interface *alt,
4648 		enum usb3_link_state state,
4649 		u16 *timeout)
4650 {
4651 	int j;
4652 
4653 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4654 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4655 					&alt->endpoint[j].desc, state, timeout))
4656 			return -E2BIG;
4657 		continue;
4658 	}
4659 	return 0;
4660 }
4661 
4662 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4663 		enum usb3_link_state state)
4664 {
4665 	struct usb_device *parent;
4666 	unsigned int num_hubs;
4667 
4668 	if (state == USB3_LPM_U2)
4669 		return 0;
4670 
4671 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4672 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4673 			parent = parent->parent)
4674 		num_hubs++;
4675 
4676 	if (num_hubs < 2)
4677 		return 0;
4678 
4679 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4680 			" below second-tier hub.\n");
4681 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4682 			"to decrease power consumption.\n");
4683 	return -E2BIG;
4684 }
4685 
4686 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4687 		struct usb_device *udev,
4688 		enum usb3_link_state state)
4689 {
4690 	if (xhci->quirks & XHCI_INTEL_HOST)
4691 		return xhci_check_intel_tier_policy(udev, state);
4692 	else
4693 		return 0;
4694 }
4695 
4696 /* Returns the U1 or U2 timeout that should be enabled.
4697  * If the tier check or timeout setting functions return with a non-zero exit
4698  * code, that means the timeout value has been finalized and we shouldn't look
4699  * at any more endpoints.
4700  */
4701 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4702 			struct usb_device *udev, enum usb3_link_state state)
4703 {
4704 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4705 	struct usb_host_config *config;
4706 	char *state_name;
4707 	int i;
4708 	u16 timeout = USB3_LPM_DISABLED;
4709 
4710 	if (state == USB3_LPM_U1)
4711 		state_name = "U1";
4712 	else if (state == USB3_LPM_U2)
4713 		state_name = "U2";
4714 	else {
4715 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4716 				state);
4717 		return timeout;
4718 	}
4719 
4720 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4721 		return timeout;
4722 
4723 	/* Gather some information about the currently installed configuration
4724 	 * and alternate interface settings.
4725 	 */
4726 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4727 			state, &timeout))
4728 		return timeout;
4729 
4730 	config = udev->actconfig;
4731 	if (!config)
4732 		return timeout;
4733 
4734 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4735 		struct usb_driver *driver;
4736 		struct usb_interface *intf = config->interface[i];
4737 
4738 		if (!intf)
4739 			continue;
4740 
4741 		/* Check if any currently bound drivers want hub-initiated LPM
4742 		 * disabled.
4743 		 */
4744 		if (intf->dev.driver) {
4745 			driver = to_usb_driver(intf->dev.driver);
4746 			if (driver && driver->disable_hub_initiated_lpm) {
4747 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4748 						"at request of driver %s\n",
4749 						state_name, driver->name);
4750 				return xhci_get_timeout_no_hub_lpm(udev, state);
4751 			}
4752 		}
4753 
4754 		/* Not sure how this could happen... */
4755 		if (!intf->cur_altsetting)
4756 			continue;
4757 
4758 		if (xhci_update_timeout_for_interface(xhci, udev,
4759 					intf->cur_altsetting,
4760 					state, &timeout))
4761 			return timeout;
4762 	}
4763 	return timeout;
4764 }
4765 
4766 static int calculate_max_exit_latency(struct usb_device *udev,
4767 		enum usb3_link_state state_changed,
4768 		u16 hub_encoded_timeout)
4769 {
4770 	unsigned long long u1_mel_us = 0;
4771 	unsigned long long u2_mel_us = 0;
4772 	unsigned long long mel_us = 0;
4773 	bool disabling_u1;
4774 	bool disabling_u2;
4775 	bool enabling_u1;
4776 	bool enabling_u2;
4777 
4778 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4779 			hub_encoded_timeout == USB3_LPM_DISABLED);
4780 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4781 			hub_encoded_timeout == USB3_LPM_DISABLED);
4782 
4783 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4784 			hub_encoded_timeout != USB3_LPM_DISABLED);
4785 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4786 			hub_encoded_timeout != USB3_LPM_DISABLED);
4787 
4788 	/* If U1 was already enabled and we're not disabling it,
4789 	 * or we're going to enable U1, account for the U1 max exit latency.
4790 	 */
4791 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4792 			enabling_u1)
4793 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4794 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4795 			enabling_u2)
4796 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4797 
4798 	if (u1_mel_us > u2_mel_us)
4799 		mel_us = u1_mel_us;
4800 	else
4801 		mel_us = u2_mel_us;
4802 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4803 	if (mel_us > MAX_EXIT) {
4804 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4805 				"is too big.\n", mel_us);
4806 		return -E2BIG;
4807 	}
4808 	return mel_us;
4809 }
4810 
4811 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4812 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4813 			struct usb_device *udev, enum usb3_link_state state)
4814 {
4815 	struct xhci_hcd	*xhci;
4816 	u16 hub_encoded_timeout;
4817 	int mel;
4818 	int ret;
4819 
4820 	xhci = hcd_to_xhci(hcd);
4821 	/* The LPM timeout values are pretty host-controller specific, so don't
4822 	 * enable hub-initiated timeouts unless the vendor has provided
4823 	 * information about their timeout algorithm.
4824 	 */
4825 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4826 			!xhci->devs[udev->slot_id])
4827 		return USB3_LPM_DISABLED;
4828 
4829 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4830 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4831 	if (mel < 0) {
4832 		/* Max Exit Latency is too big, disable LPM. */
4833 		hub_encoded_timeout = USB3_LPM_DISABLED;
4834 		mel = 0;
4835 	}
4836 
4837 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4838 	if (ret)
4839 		return ret;
4840 	return hub_encoded_timeout;
4841 }
4842 
4843 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4844 			struct usb_device *udev, enum usb3_link_state state)
4845 {
4846 	struct xhci_hcd	*xhci;
4847 	u16 mel;
4848 
4849 	xhci = hcd_to_xhci(hcd);
4850 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4851 			!xhci->devs[udev->slot_id])
4852 		return 0;
4853 
4854 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4855 	return xhci_change_max_exit_latency(xhci, udev, mel);
4856 }
4857 #else /* CONFIG_PM */
4858 
4859 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4860 				struct usb_device *udev, int enable)
4861 {
4862 	return 0;
4863 }
4864 
4865 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4866 {
4867 	return 0;
4868 }
4869 
4870 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4871 			struct usb_device *udev, enum usb3_link_state state)
4872 {
4873 	return USB3_LPM_DISABLED;
4874 }
4875 
4876 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4877 			struct usb_device *udev, enum usb3_link_state state)
4878 {
4879 	return 0;
4880 }
4881 #endif	/* CONFIG_PM */
4882 
4883 /*-------------------------------------------------------------------------*/
4884 
4885 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4886  * internal data structures for the device.
4887  */
4888 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4889 			struct usb_tt *tt, gfp_t mem_flags)
4890 {
4891 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4892 	struct xhci_virt_device *vdev;
4893 	struct xhci_command *config_cmd;
4894 	struct xhci_input_control_ctx *ctrl_ctx;
4895 	struct xhci_slot_ctx *slot_ctx;
4896 	unsigned long flags;
4897 	unsigned think_time;
4898 	int ret;
4899 
4900 	/* Ignore root hubs */
4901 	if (!hdev->parent)
4902 		return 0;
4903 
4904 	vdev = xhci->devs[hdev->slot_id];
4905 	if (!vdev) {
4906 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4907 		return -EINVAL;
4908 	}
4909 
4910 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4911 	if (!config_cmd)
4912 		return -ENOMEM;
4913 
4914 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4915 	if (!ctrl_ctx) {
4916 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4917 				__func__);
4918 		xhci_free_command(xhci, config_cmd);
4919 		return -ENOMEM;
4920 	}
4921 
4922 	spin_lock_irqsave(&xhci->lock, flags);
4923 	if (hdev->speed == USB_SPEED_HIGH &&
4924 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4925 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4926 		xhci_free_command(xhci, config_cmd);
4927 		spin_unlock_irqrestore(&xhci->lock, flags);
4928 		return -ENOMEM;
4929 	}
4930 
4931 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4932 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4933 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4934 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4935 	/*
4936 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4937 	 * but it may be already set to 1 when setup an xHCI virtual
4938 	 * device, so clear it anyway.
4939 	 */
4940 	if (tt->multi)
4941 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4942 	else if (hdev->speed == USB_SPEED_FULL)
4943 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4944 
4945 	if (xhci->hci_version > 0x95) {
4946 		xhci_dbg(xhci, "xHCI version %x needs hub "
4947 				"TT think time and number of ports\n",
4948 				(unsigned int) xhci->hci_version);
4949 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4950 		/* Set TT think time - convert from ns to FS bit times.
4951 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4952 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4953 		 *
4954 		 * xHCI 1.0: this field shall be 0 if the device is not a
4955 		 * High-spped hub.
4956 		 */
4957 		think_time = tt->think_time;
4958 		if (think_time != 0)
4959 			think_time = (think_time / 666) - 1;
4960 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4961 			slot_ctx->tt_info |=
4962 				cpu_to_le32(TT_THINK_TIME(think_time));
4963 	} else {
4964 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4965 				"TT think time or number of ports\n",
4966 				(unsigned int) xhci->hci_version);
4967 	}
4968 	slot_ctx->dev_state = 0;
4969 	spin_unlock_irqrestore(&xhci->lock, flags);
4970 
4971 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4972 			(xhci->hci_version > 0x95) ?
4973 			"configure endpoint" : "evaluate context");
4974 
4975 	/* Issue and wait for the configure endpoint or
4976 	 * evaluate context command.
4977 	 */
4978 	if (xhci->hci_version > 0x95)
4979 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4980 				false, false);
4981 	else
4982 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4983 				true, false);
4984 
4985 	xhci_free_command(xhci, config_cmd);
4986 	return ret;
4987 }
4988 
4989 static int xhci_get_frame(struct usb_hcd *hcd)
4990 {
4991 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4992 	/* EHCI mods by the periodic size.  Why? */
4993 	return readl(&xhci->run_regs->microframe_index) >> 3;
4994 }
4995 
4996 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4997 {
4998 	struct xhci_hcd		*xhci;
4999 	/*
5000 	 * TODO: Check with DWC3 clients for sysdev according to
5001 	 * quirks
5002 	 */
5003 	struct device		*dev = hcd->self.sysdev;
5004 	unsigned int		minor_rev;
5005 	int			retval;
5006 
5007 	/* Accept arbitrarily long scatter-gather lists */
5008 	hcd->self.sg_tablesize = ~0;
5009 
5010 	/* support to build packet from discontinuous buffers */
5011 	hcd->self.no_sg_constraint = 1;
5012 
5013 	/* XHCI controllers don't stop the ep queue on short packets :| */
5014 	hcd->self.no_stop_on_short = 1;
5015 
5016 	xhci = hcd_to_xhci(hcd);
5017 
5018 	if (usb_hcd_is_primary_hcd(hcd)) {
5019 		xhci->main_hcd = hcd;
5020 		xhci->usb2_rhub.hcd = hcd;
5021 		/* Mark the first roothub as being USB 2.0.
5022 		 * The xHCI driver will register the USB 3.0 roothub.
5023 		 */
5024 		hcd->speed = HCD_USB2;
5025 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5026 		/*
5027 		 * USB 2.0 roothub under xHCI has an integrated TT,
5028 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5029 		 * companion controller.
5030 		 */
5031 		hcd->has_tt = 1;
5032 	} else {
5033 		/*
5034 		 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
5035 		 * minor revision instead of sbrn
5036 		 */
5037 		minor_rev = xhci->usb3_rhub.min_rev;
5038 		if (minor_rev) {
5039 			hcd->speed = HCD_USB31;
5040 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5041 		}
5042 		xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
5043 			  minor_rev,
5044 			  minor_rev ? "Enhanced" : "");
5045 
5046 		xhci->usb3_rhub.hcd = hcd;
5047 		/* xHCI private pointer was set in xhci_pci_probe for the second
5048 		 * registered roothub.
5049 		 */
5050 		return 0;
5051 	}
5052 
5053 	mutex_init(&xhci->mutex);
5054 	xhci->cap_regs = hcd->regs;
5055 	xhci->op_regs = hcd->regs +
5056 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5057 	xhci->run_regs = hcd->regs +
5058 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5059 	/* Cache read-only capability registers */
5060 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5061 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5062 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5063 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5064 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5065 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5066 	if (xhci->hci_version > 0x100)
5067 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5068 
5069 	xhci->quirks |= quirks;
5070 
5071 	get_quirks(dev, xhci);
5072 
5073 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5074 	 * success event after a short transfer. This quirk will ignore such
5075 	 * spurious event.
5076 	 */
5077 	if (xhci->hci_version > 0x96)
5078 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5079 
5080 	/* Make sure the HC is halted. */
5081 	retval = xhci_halt(xhci);
5082 	if (retval)
5083 		return retval;
5084 
5085 	xhci_zero_64b_regs(xhci);
5086 
5087 	xhci_dbg(xhci, "Resetting HCD\n");
5088 	/* Reset the internal HC memory state and registers. */
5089 	retval = xhci_reset(xhci);
5090 	if (retval)
5091 		return retval;
5092 	xhci_dbg(xhci, "Reset complete\n");
5093 
5094 	/*
5095 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5096 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5097 	 * address memory pointers actually. So, this driver clears the AC64
5098 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5099 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5100 	 */
5101 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5102 		xhci->hcc_params &= ~BIT(0);
5103 
5104 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5105 	 * if xHC supports 64-bit addressing */
5106 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5107 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5108 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5109 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5110 	} else {
5111 		/*
5112 		 * This is to avoid error in cases where a 32-bit USB
5113 		 * controller is used on a 64-bit capable system.
5114 		 */
5115 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5116 		if (retval)
5117 			return retval;
5118 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5119 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5120 	}
5121 
5122 	xhci_dbg(xhci, "Calling HCD init\n");
5123 	/* Initialize HCD and host controller data structures. */
5124 	retval = xhci_init(hcd);
5125 	if (retval)
5126 		return retval;
5127 	xhci_dbg(xhci, "Called HCD init\n");
5128 
5129 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5130 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5131 
5132 	return 0;
5133 }
5134 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5135 
5136 static const struct hc_driver xhci_hc_driver = {
5137 	.description =		"xhci-hcd",
5138 	.product_desc =		"xHCI Host Controller",
5139 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5140 
5141 	/*
5142 	 * generic hardware linkage
5143 	 */
5144 	.irq =			xhci_irq,
5145 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5146 
5147 	/*
5148 	 * basic lifecycle operations
5149 	 */
5150 	.reset =		NULL, /* set in xhci_init_driver() */
5151 	.start =		xhci_run,
5152 	.stop =			xhci_stop,
5153 	.shutdown =		xhci_shutdown,
5154 
5155 	/*
5156 	 * managing i/o requests and associated device resources
5157 	 */
5158 	.urb_enqueue =		xhci_urb_enqueue,
5159 	.urb_dequeue =		xhci_urb_dequeue,
5160 	.alloc_dev =		xhci_alloc_dev,
5161 	.free_dev =		xhci_free_dev,
5162 	.alloc_streams =	xhci_alloc_streams,
5163 	.free_streams =		xhci_free_streams,
5164 	.add_endpoint =		xhci_add_endpoint,
5165 	.drop_endpoint =	xhci_drop_endpoint,
5166 	.endpoint_reset =	xhci_endpoint_reset,
5167 	.check_bandwidth =	xhci_check_bandwidth,
5168 	.reset_bandwidth =	xhci_reset_bandwidth,
5169 	.address_device =	xhci_address_device,
5170 	.enable_device =	xhci_enable_device,
5171 	.update_hub_device =	xhci_update_hub_device,
5172 	.reset_device =		xhci_discover_or_reset_device,
5173 
5174 	/*
5175 	 * scheduling support
5176 	 */
5177 	.get_frame_number =	xhci_get_frame,
5178 
5179 	/*
5180 	 * root hub support
5181 	 */
5182 	.hub_control =		xhci_hub_control,
5183 	.hub_status_data =	xhci_hub_status_data,
5184 	.bus_suspend =		xhci_bus_suspend,
5185 	.bus_resume =		xhci_bus_resume,
5186 	.get_resuming_ports =	xhci_get_resuming_ports,
5187 
5188 	/*
5189 	 * call back when device connected and addressed
5190 	 */
5191 	.update_device =        xhci_update_device,
5192 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5193 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5194 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5195 	.find_raw_port_number =	xhci_find_raw_port_number,
5196 };
5197 
5198 void xhci_init_driver(struct hc_driver *drv,
5199 		      const struct xhci_driver_overrides *over)
5200 {
5201 	BUG_ON(!over);
5202 
5203 	/* Copy the generic table to drv then apply the overrides */
5204 	*drv = xhci_hc_driver;
5205 
5206 	if (over) {
5207 		drv->hcd_priv_size += over->extra_priv_size;
5208 		if (over->reset)
5209 			drv->reset = over->reset;
5210 		if (over->start)
5211 			drv->start = over->start;
5212 	}
5213 }
5214 EXPORT_SYMBOL_GPL(xhci_init_driver);
5215 
5216 MODULE_DESCRIPTION(DRIVER_DESC);
5217 MODULE_AUTHOR(DRIVER_AUTHOR);
5218 MODULE_LICENSE("GPL");
5219 
5220 static int __init xhci_hcd_init(void)
5221 {
5222 	/*
5223 	 * Check the compiler generated sizes of structures that must be laid
5224 	 * out in specific ways for hardware access.
5225 	 */
5226 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5227 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5228 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5229 	/* xhci_device_control has eight fields, and also
5230 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5231 	 */
5232 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5233 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5234 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5235 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5236 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5237 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5238 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5239 
5240 	if (usb_disabled())
5241 		return -ENODEV;
5242 
5243 	xhci_debugfs_create_root();
5244 
5245 	return 0;
5246 }
5247 
5248 /*
5249  * If an init function is provided, an exit function must also be provided
5250  * to allow module unload.
5251  */
5252 static void __exit xhci_hcd_fini(void)
5253 {
5254 	xhci_debugfs_remove_root();
5255 }
5256 
5257 module_init(xhci_hcd_init);
5258 module_exit(xhci_hcd_fini);
5259