xref: /linux/drivers/usb/host/xhci.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 
30 #include "xhci.h"
31 
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34 
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39 
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 		      u32 mask, u32 done, int usec)
56 {
57 	u32	result;
58 
59 	do {
60 		result = xhci_readl(xhci, ptr);
61 		if (result == ~(u32)0)		/* card removed */
62 			return -ENODEV;
63 		result &= mask;
64 		if (result == done)
65 			return 0;
66 		udelay(1);
67 		usec--;
68 	} while (usec > 0);
69 	return -ETIMEDOUT;
70 }
71 
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77 	u32 halted;
78 	u32 cmd;
79 	u32 mask;
80 
81 	mask = ~(XHCI_IRQS);
82 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 	if (!halted)
84 		mask &= ~CMD_RUN;
85 
86 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 	cmd &= mask;
88 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90 
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101 	int ret;
102 	xhci_dbg(xhci, "// Halt the HC\n");
103 	xhci_quiesce(xhci);
104 
105 	ret = handshake(xhci, &xhci->op_regs->status,
106 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 	if (!ret)
108 		xhci->xhc_state |= XHCI_STATE_HALTED;
109 	return ret;
110 }
111 
112 /*
113  * Set the run bit and wait for the host to be running.
114  */
115 static int xhci_start(struct xhci_hcd *xhci)
116 {
117 	u32 temp;
118 	int ret;
119 
120 	temp = xhci_readl(xhci, &xhci->op_regs->command);
121 	temp |= (CMD_RUN);
122 	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123 			temp);
124 	xhci_writel(xhci, temp, &xhci->op_regs->command);
125 
126 	/*
127 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
128 	 * running.
129 	 */
130 	ret = handshake(xhci, &xhci->op_regs->status,
131 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
132 	if (ret == -ETIMEDOUT)
133 		xhci_err(xhci, "Host took too long to start, "
134 				"waited %u microseconds.\n",
135 				XHCI_MAX_HALT_USEC);
136 	if (!ret)
137 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
138 	return ret;
139 }
140 
141 /*
142  * Reset a halted HC.
143  *
144  * This resets pipelines, timers, counters, state machines, etc.
145  * Transactions will be terminated immediately, and operational registers
146  * will be set to their defaults.
147  */
148 int xhci_reset(struct xhci_hcd *xhci)
149 {
150 	u32 command;
151 	u32 state;
152 	int ret;
153 
154 	state = xhci_readl(xhci, &xhci->op_regs->status);
155 	if ((state & STS_HALT) == 0) {
156 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157 		return 0;
158 	}
159 
160 	xhci_dbg(xhci, "// Reset the HC\n");
161 	command = xhci_readl(xhci, &xhci->op_regs->command);
162 	command |= CMD_RESET;
163 	xhci_writel(xhci, command, &xhci->op_regs->command);
164 
165 	ret = handshake(xhci, &xhci->op_regs->command,
166 			CMD_RESET, 0, 250 * 1000);
167 	if (ret)
168 		return ret;
169 
170 	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
171 	/*
172 	 * xHCI cannot write to any doorbells or operational registers other
173 	 * than status until the "Controller Not Ready" flag is cleared.
174 	 */
175 	return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
176 }
177 
178 /*
179  * Free IRQs
180  * free all IRQs request
181  */
182 static void xhci_free_irq(struct xhci_hcd *xhci)
183 {
184 	int i;
185 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
186 
187 	/* return if using legacy interrupt */
188 	if (xhci_to_hcd(xhci)->irq >= 0)
189 		return;
190 
191 	if (xhci->msix_entries) {
192 		for (i = 0; i < xhci->msix_count; i++)
193 			if (xhci->msix_entries[i].vector)
194 				free_irq(xhci->msix_entries[i].vector,
195 						xhci_to_hcd(xhci));
196 	} else if (pdev->irq >= 0)
197 		free_irq(pdev->irq, xhci_to_hcd(xhci));
198 
199 	return;
200 }
201 
202 /*
203  * Set up MSI
204  */
205 static int xhci_setup_msi(struct xhci_hcd *xhci)
206 {
207 	int ret;
208 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
209 
210 	ret = pci_enable_msi(pdev);
211 	if (ret) {
212 		xhci_err(xhci, "failed to allocate MSI entry\n");
213 		return ret;
214 	}
215 
216 	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
217 				0, "xhci_hcd", xhci_to_hcd(xhci));
218 	if (ret) {
219 		xhci_err(xhci, "disable MSI interrupt\n");
220 		pci_disable_msi(pdev);
221 	}
222 
223 	return ret;
224 }
225 
226 /*
227  * Set up MSI-X
228  */
229 static int xhci_setup_msix(struct xhci_hcd *xhci)
230 {
231 	int i, ret = 0;
232 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
233 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
234 
235 	/*
236 	 * calculate number of msi-x vectors supported.
237 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
238 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
239 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
240 	 *   Add additional 1 vector to ensure always available interrupt.
241 	 */
242 	xhci->msix_count = min(num_online_cpus() + 1,
243 				HCS_MAX_INTRS(xhci->hcs_params1));
244 
245 	xhci->msix_entries =
246 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
247 				GFP_KERNEL);
248 	if (!xhci->msix_entries) {
249 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
250 		return -ENOMEM;
251 	}
252 
253 	for (i = 0; i < xhci->msix_count; i++) {
254 		xhci->msix_entries[i].entry = i;
255 		xhci->msix_entries[i].vector = 0;
256 	}
257 
258 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
259 	if (ret) {
260 		xhci_err(xhci, "Failed to enable MSI-X\n");
261 		goto free_entries;
262 	}
263 
264 	for (i = 0; i < xhci->msix_count; i++) {
265 		ret = request_irq(xhci->msix_entries[i].vector,
266 				(irq_handler_t)xhci_msi_irq,
267 				0, "xhci_hcd", xhci_to_hcd(xhci));
268 		if (ret)
269 			goto disable_msix;
270 	}
271 
272 	hcd->msix_enabled = 1;
273 	return ret;
274 
275 disable_msix:
276 	xhci_err(xhci, "disable MSI-X interrupt\n");
277 	xhci_free_irq(xhci);
278 	pci_disable_msix(pdev);
279 free_entries:
280 	kfree(xhci->msix_entries);
281 	xhci->msix_entries = NULL;
282 	return ret;
283 }
284 
285 /* Free any IRQs and disable MSI-X */
286 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
287 {
288 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
289 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
290 
291 	xhci_free_irq(xhci);
292 
293 	if (xhci->msix_entries) {
294 		pci_disable_msix(pdev);
295 		kfree(xhci->msix_entries);
296 		xhci->msix_entries = NULL;
297 	} else {
298 		pci_disable_msi(pdev);
299 	}
300 
301 	hcd->msix_enabled = 0;
302 	return;
303 }
304 
305 /*
306  * Initialize memory for HCD and xHC (one-time init).
307  *
308  * Program the PAGESIZE register, initialize the device context array, create
309  * device contexts (?), set up a command ring segment (or two?), create event
310  * ring (one for now).
311  */
312 int xhci_init(struct usb_hcd *hcd)
313 {
314 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
315 	int retval = 0;
316 
317 	xhci_dbg(xhci, "xhci_init\n");
318 	spin_lock_init(&xhci->lock);
319 	if (link_quirk) {
320 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
321 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
322 	} else {
323 		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
324 	}
325 	retval = xhci_mem_init(xhci, GFP_KERNEL);
326 	xhci_dbg(xhci, "Finished xhci_init\n");
327 
328 	return retval;
329 }
330 
331 /*-------------------------------------------------------------------------*/
332 
333 
334 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
335 static void xhci_event_ring_work(unsigned long arg)
336 {
337 	unsigned long flags;
338 	int temp;
339 	u64 temp_64;
340 	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
341 	int i, j;
342 
343 	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
344 
345 	spin_lock_irqsave(&xhci->lock, flags);
346 	temp = xhci_readl(xhci, &xhci->op_regs->status);
347 	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
348 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
349 		xhci_dbg(xhci, "HW died, polling stopped.\n");
350 		spin_unlock_irqrestore(&xhci->lock, flags);
351 		return;
352 	}
353 
354 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
355 	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
356 	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
357 	xhci->error_bitmask = 0;
358 	xhci_dbg(xhci, "Event ring:\n");
359 	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
360 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
361 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
362 	temp_64 &= ~ERST_PTR_MASK;
363 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
364 	xhci_dbg(xhci, "Command ring:\n");
365 	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
366 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
367 	xhci_dbg_cmd_ptrs(xhci);
368 	for (i = 0; i < MAX_HC_SLOTS; ++i) {
369 		if (!xhci->devs[i])
370 			continue;
371 		for (j = 0; j < 31; ++j) {
372 			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
373 		}
374 	}
375 	spin_unlock_irqrestore(&xhci->lock, flags);
376 
377 	if (!xhci->zombie)
378 		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
379 	else
380 		xhci_dbg(xhci, "Quit polling the event ring.\n");
381 }
382 #endif
383 
384 static int xhci_run_finished(struct xhci_hcd *xhci)
385 {
386 	if (xhci_start(xhci)) {
387 		xhci_halt(xhci);
388 		return -ENODEV;
389 	}
390 	xhci->shared_hcd->state = HC_STATE_RUNNING;
391 
392 	if (xhci->quirks & XHCI_NEC_HOST)
393 		xhci_ring_cmd_db(xhci);
394 
395 	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
396 	return 0;
397 }
398 
399 /*
400  * Start the HC after it was halted.
401  *
402  * This function is called by the USB core when the HC driver is added.
403  * Its opposite is xhci_stop().
404  *
405  * xhci_init() must be called once before this function can be called.
406  * Reset the HC, enable device slot contexts, program DCBAAP, and
407  * set command ring pointer and event ring pointer.
408  *
409  * Setup MSI-X vectors and enable interrupts.
410  */
411 int xhci_run(struct usb_hcd *hcd)
412 {
413 	u32 temp;
414 	u64 temp_64;
415 	u32 ret;
416 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
417 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
418 
419 	/* Start the xHCI host controller running only after the USB 2.0 roothub
420 	 * is setup.
421 	 */
422 
423 	hcd->uses_new_polling = 1;
424 	if (!usb_hcd_is_primary_hcd(hcd))
425 		return xhci_run_finished(xhci);
426 
427 	xhci_dbg(xhci, "xhci_run\n");
428 	/* unregister the legacy interrupt */
429 	if (hcd->irq)
430 		free_irq(hcd->irq, hcd);
431 	hcd->irq = -1;
432 
433 	ret = xhci_setup_msix(xhci);
434 	if (ret)
435 		/* fall back to msi*/
436 		ret = xhci_setup_msi(xhci);
437 
438 	if (ret) {
439 		/* fall back to legacy interrupt*/
440 		ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
441 					hcd->irq_descr, hcd);
442 		if (ret) {
443 			xhci_err(xhci, "request interrupt %d failed\n",
444 					pdev->irq);
445 			return ret;
446 		}
447 		hcd->irq = pdev->irq;
448 	}
449 
450 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
451 	init_timer(&xhci->event_ring_timer);
452 	xhci->event_ring_timer.data = (unsigned long) xhci;
453 	xhci->event_ring_timer.function = xhci_event_ring_work;
454 	/* Poll the event ring */
455 	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
456 	xhci->zombie = 0;
457 	xhci_dbg(xhci, "Setting event ring polling timer\n");
458 	add_timer(&xhci->event_ring_timer);
459 #endif
460 
461 	xhci_dbg(xhci, "Command ring memory map follows:\n");
462 	xhci_debug_ring(xhci, xhci->cmd_ring);
463 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
464 	xhci_dbg_cmd_ptrs(xhci);
465 
466 	xhci_dbg(xhci, "ERST memory map follows:\n");
467 	xhci_dbg_erst(xhci, &xhci->erst);
468 	xhci_dbg(xhci, "Event ring:\n");
469 	xhci_debug_ring(xhci, xhci->event_ring);
470 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
471 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
472 	temp_64 &= ~ERST_PTR_MASK;
473 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
474 
475 	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
476 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
477 	temp &= ~ER_IRQ_INTERVAL_MASK;
478 	temp |= (u32) 160;
479 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
480 
481 	/* Set the HCD state before we enable the irqs */
482 	temp = xhci_readl(xhci, &xhci->op_regs->command);
483 	temp |= (CMD_EIE);
484 	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
485 			temp);
486 	xhci_writel(xhci, temp, &xhci->op_regs->command);
487 
488 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
489 	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
490 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
491 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
492 			&xhci->ir_set->irq_pending);
493 	xhci_print_ir_set(xhci, 0);
494 
495 	if (xhci->quirks & XHCI_NEC_HOST)
496 		xhci_queue_vendor_command(xhci, 0, 0, 0,
497 				TRB_TYPE(TRB_NEC_GET_FW));
498 
499 	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
500 	return 0;
501 }
502 
503 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
504 {
505 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
506 
507 	spin_lock_irq(&xhci->lock);
508 	xhci_halt(xhci);
509 
510 	/* The shared_hcd is going to be deallocated shortly (the USB core only
511 	 * calls this function when allocation fails in usb_add_hcd(), or
512 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
513 	 */
514 	xhci->shared_hcd = NULL;
515 	spin_unlock_irq(&xhci->lock);
516 }
517 
518 /*
519  * Stop xHCI driver.
520  *
521  * This function is called by the USB core when the HC driver is removed.
522  * Its opposite is xhci_run().
523  *
524  * Disable device contexts, disable IRQs, and quiesce the HC.
525  * Reset the HC, finish any completed transactions, and cleanup memory.
526  */
527 void xhci_stop(struct usb_hcd *hcd)
528 {
529 	u32 temp;
530 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
531 
532 	if (!usb_hcd_is_primary_hcd(hcd)) {
533 		xhci_only_stop_hcd(xhci->shared_hcd);
534 		return;
535 	}
536 
537 	spin_lock_irq(&xhci->lock);
538 	/* Make sure the xHC is halted for a USB3 roothub
539 	 * (xhci_stop() could be called as part of failed init).
540 	 */
541 	xhci_halt(xhci);
542 	xhci_reset(xhci);
543 	spin_unlock_irq(&xhci->lock);
544 
545 	xhci_cleanup_msix(xhci);
546 
547 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
548 	/* Tell the event ring poll function not to reschedule */
549 	xhci->zombie = 1;
550 	del_timer_sync(&xhci->event_ring_timer);
551 #endif
552 
553 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
554 		usb_amd_dev_put();
555 
556 	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
557 	temp = xhci_readl(xhci, &xhci->op_regs->status);
558 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
559 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
560 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
561 			&xhci->ir_set->irq_pending);
562 	xhci_print_ir_set(xhci, 0);
563 
564 	xhci_dbg(xhci, "cleaning up memory\n");
565 	xhci_mem_cleanup(xhci);
566 	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
567 		    xhci_readl(xhci, &xhci->op_regs->status));
568 }
569 
570 /*
571  * Shutdown HC (not bus-specific)
572  *
573  * This is called when the machine is rebooting or halting.  We assume that the
574  * machine will be powered off, and the HC's internal state will be reset.
575  * Don't bother to free memory.
576  *
577  * This will only ever be called with the main usb_hcd (the USB3 roothub).
578  */
579 void xhci_shutdown(struct usb_hcd *hcd)
580 {
581 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
582 
583 	spin_lock_irq(&xhci->lock);
584 	xhci_halt(xhci);
585 	spin_unlock_irq(&xhci->lock);
586 
587 	xhci_cleanup_msix(xhci);
588 
589 	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
590 		    xhci_readl(xhci, &xhci->op_regs->status));
591 }
592 
593 #ifdef CONFIG_PM
594 static void xhci_save_registers(struct xhci_hcd *xhci)
595 {
596 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
597 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
598 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
599 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
600 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
601 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
602 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
603 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
604 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
605 }
606 
607 static void xhci_restore_registers(struct xhci_hcd *xhci)
608 {
609 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
610 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
611 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
612 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
613 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
614 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
615 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
616 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
617 }
618 
619 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
620 {
621 	u64	val_64;
622 
623 	/* step 2: initialize command ring buffer */
624 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
625 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
626 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
627 				      xhci->cmd_ring->dequeue) &
628 		 (u64) ~CMD_RING_RSVD_BITS) |
629 		xhci->cmd_ring->cycle_state;
630 	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
631 			(long unsigned long) val_64);
632 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
633 }
634 
635 /*
636  * The whole command ring must be cleared to zero when we suspend the host.
637  *
638  * The host doesn't save the command ring pointer in the suspend well, so we
639  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
640  * aligned, because of the reserved bits in the command ring dequeue pointer
641  * register.  Therefore, we can't just set the dequeue pointer back in the
642  * middle of the ring (TRBs are 16-byte aligned).
643  */
644 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
645 {
646 	struct xhci_ring *ring;
647 	struct xhci_segment *seg;
648 
649 	ring = xhci->cmd_ring;
650 	seg = ring->deq_seg;
651 	do {
652 		memset(seg->trbs, 0, SEGMENT_SIZE);
653 		seg = seg->next;
654 	} while (seg != ring->deq_seg);
655 
656 	/* Reset the software enqueue and dequeue pointers */
657 	ring->deq_seg = ring->first_seg;
658 	ring->dequeue = ring->first_seg->trbs;
659 	ring->enq_seg = ring->deq_seg;
660 	ring->enqueue = ring->dequeue;
661 
662 	/*
663 	 * Ring is now zeroed, so the HW should look for change of ownership
664 	 * when the cycle bit is set to 1.
665 	 */
666 	ring->cycle_state = 1;
667 
668 	/*
669 	 * Reset the hardware dequeue pointer.
670 	 * Yes, this will need to be re-written after resume, but we're paranoid
671 	 * and want to make sure the hardware doesn't access bogus memory
672 	 * because, say, the BIOS or an SMI started the host without changing
673 	 * the command ring pointers.
674 	 */
675 	xhci_set_cmd_ring_deq(xhci);
676 }
677 
678 /*
679  * Stop HC (not bus-specific)
680  *
681  * This is called when the machine transition into S3/S4 mode.
682  *
683  */
684 int xhci_suspend(struct xhci_hcd *xhci)
685 {
686 	int			rc = 0;
687 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
688 	u32			command;
689 	int			i;
690 
691 	spin_lock_irq(&xhci->lock);
692 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
693 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
694 	/* step 1: stop endpoint */
695 	/* skipped assuming that port suspend has done */
696 
697 	/* step 2: clear Run/Stop bit */
698 	command = xhci_readl(xhci, &xhci->op_regs->command);
699 	command &= ~CMD_RUN;
700 	xhci_writel(xhci, command, &xhci->op_regs->command);
701 	if (handshake(xhci, &xhci->op_regs->status,
702 		      STS_HALT, STS_HALT, 100*100)) {
703 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
704 		spin_unlock_irq(&xhci->lock);
705 		return -ETIMEDOUT;
706 	}
707 	xhci_clear_command_ring(xhci);
708 
709 	/* step 3: save registers */
710 	xhci_save_registers(xhci);
711 
712 	/* step 4: set CSS flag */
713 	command = xhci_readl(xhci, &xhci->op_regs->command);
714 	command |= CMD_CSS;
715 	xhci_writel(xhci, command, &xhci->op_regs->command);
716 	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
717 		xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
718 		spin_unlock_irq(&xhci->lock);
719 		return -ETIMEDOUT;
720 	}
721 	spin_unlock_irq(&xhci->lock);
722 
723 	/* step 5: remove core well power */
724 	/* synchronize irq when using MSI-X */
725 	if (xhci->msix_entries) {
726 		for (i = 0; i < xhci->msix_count; i++)
727 			synchronize_irq(xhci->msix_entries[i].vector);
728 	}
729 
730 	return rc;
731 }
732 
733 /*
734  * start xHC (not bus-specific)
735  *
736  * This is called when the machine transition from S3/S4 mode.
737  *
738  */
739 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
740 {
741 	u32			command, temp = 0;
742 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
743 	struct usb_hcd		*secondary_hcd;
744 	int			retval;
745 
746 	/* Wait a bit if either of the roothubs need to settle from the
747 	 * transition into bus suspend.
748 	 */
749 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
750 			time_before(jiffies,
751 				xhci->bus_state[1].next_statechange))
752 		msleep(100);
753 
754 	spin_lock_irq(&xhci->lock);
755 
756 	if (!hibernated) {
757 		/* step 1: restore register */
758 		xhci_restore_registers(xhci);
759 		/* step 2: initialize command ring buffer */
760 		xhci_set_cmd_ring_deq(xhci);
761 		/* step 3: restore state and start state*/
762 		/* step 3: set CRS flag */
763 		command = xhci_readl(xhci, &xhci->op_regs->command);
764 		command |= CMD_CRS;
765 		xhci_writel(xhci, command, &xhci->op_regs->command);
766 		if (handshake(xhci, &xhci->op_regs->status,
767 			      STS_RESTORE, 0, 10*100)) {
768 			xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
769 			spin_unlock_irq(&xhci->lock);
770 			return -ETIMEDOUT;
771 		}
772 		temp = xhci_readl(xhci, &xhci->op_regs->status);
773 	}
774 
775 	/* If restore operation fails, re-initialize the HC during resume */
776 	if ((temp & STS_SRE) || hibernated) {
777 		/* Let the USB core know _both_ roothubs lost power. */
778 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
779 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
780 
781 		xhci_dbg(xhci, "Stop HCD\n");
782 		xhci_halt(xhci);
783 		xhci_reset(xhci);
784 		spin_unlock_irq(&xhci->lock);
785 		xhci_cleanup_msix(xhci);
786 
787 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
788 		/* Tell the event ring poll function not to reschedule */
789 		xhci->zombie = 1;
790 		del_timer_sync(&xhci->event_ring_timer);
791 #endif
792 
793 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
794 		temp = xhci_readl(xhci, &xhci->op_regs->status);
795 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
796 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
797 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
798 				&xhci->ir_set->irq_pending);
799 		xhci_print_ir_set(xhci, 0);
800 
801 		xhci_dbg(xhci, "cleaning up memory\n");
802 		xhci_mem_cleanup(xhci);
803 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
804 			    xhci_readl(xhci, &xhci->op_regs->status));
805 
806 		/* USB core calls the PCI reinit and start functions twice:
807 		 * first with the primary HCD, and then with the secondary HCD.
808 		 * If we don't do the same, the host will never be started.
809 		 */
810 		if (!usb_hcd_is_primary_hcd(hcd))
811 			secondary_hcd = hcd;
812 		else
813 			secondary_hcd = xhci->shared_hcd;
814 
815 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
816 		retval = xhci_init(hcd->primary_hcd);
817 		if (retval)
818 			return retval;
819 		xhci_dbg(xhci, "Start the primary HCD\n");
820 		retval = xhci_run(hcd->primary_hcd);
821 		if (retval)
822 			goto failed_restart;
823 
824 		xhci_dbg(xhci, "Start the secondary HCD\n");
825 		retval = xhci_run(secondary_hcd);
826 		if (!retval) {
827 			set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
828 			set_bit(HCD_FLAG_HW_ACCESSIBLE,
829 					&xhci->shared_hcd->flags);
830 		}
831 failed_restart:
832 		hcd->state = HC_STATE_SUSPENDED;
833 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
834 		return retval;
835 	}
836 
837 	/* step 4: set Run/Stop bit */
838 	command = xhci_readl(xhci, &xhci->op_regs->command);
839 	command |= CMD_RUN;
840 	xhci_writel(xhci, command, &xhci->op_regs->command);
841 	handshake(xhci, &xhci->op_regs->status, STS_HALT,
842 		  0, 250 * 1000);
843 
844 	/* step 5: walk topology and initialize portsc,
845 	 * portpmsc and portli
846 	 */
847 	/* this is done in bus_resume */
848 
849 	/* step 6: restart each of the previously
850 	 * Running endpoints by ringing their doorbells
851 	 */
852 
853 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
854 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
855 
856 	spin_unlock_irq(&xhci->lock);
857 	return 0;
858 }
859 #endif	/* CONFIG_PM */
860 
861 /*-------------------------------------------------------------------------*/
862 
863 /**
864  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
865  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
866  * value to right shift 1 for the bitmask.
867  *
868  * Index  = (epnum * 2) + direction - 1,
869  * where direction = 0 for OUT, 1 for IN.
870  * For control endpoints, the IN index is used (OUT index is unused), so
871  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
872  */
873 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
874 {
875 	unsigned int index;
876 	if (usb_endpoint_xfer_control(desc))
877 		index = (unsigned int) (usb_endpoint_num(desc)*2);
878 	else
879 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
880 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
881 	return index;
882 }
883 
884 /* Find the flag for this endpoint (for use in the control context).  Use the
885  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
886  * bit 1, etc.
887  */
888 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
889 {
890 	return 1 << (xhci_get_endpoint_index(desc) + 1);
891 }
892 
893 /* Find the flag for this endpoint (for use in the control context).  Use the
894  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
895  * bit 1, etc.
896  */
897 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
898 {
899 	return 1 << (ep_index + 1);
900 }
901 
902 /* Compute the last valid endpoint context index.  Basically, this is the
903  * endpoint index plus one.  For slot contexts with more than valid endpoint,
904  * we find the most significant bit set in the added contexts flags.
905  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
906  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
907  */
908 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
909 {
910 	return fls(added_ctxs) - 1;
911 }
912 
913 /* Returns 1 if the arguments are OK;
914  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
915  */
916 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
917 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
918 		const char *func) {
919 	struct xhci_hcd	*xhci;
920 	struct xhci_virt_device	*virt_dev;
921 
922 	if (!hcd || (check_ep && !ep) || !udev) {
923 		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
924 				func);
925 		return -EINVAL;
926 	}
927 	if (!udev->parent) {
928 		printk(KERN_DEBUG "xHCI %s called for root hub\n",
929 				func);
930 		return 0;
931 	}
932 
933 	if (check_virt_dev) {
934 		xhci = hcd_to_xhci(hcd);
935 		if (!udev->slot_id || !xhci->devs
936 			|| !xhci->devs[udev->slot_id]) {
937 			printk(KERN_DEBUG "xHCI %s called with unaddressed "
938 						"device\n", func);
939 			return -EINVAL;
940 		}
941 
942 		virt_dev = xhci->devs[udev->slot_id];
943 		if (virt_dev->udev != udev) {
944 			printk(KERN_DEBUG "xHCI %s called with udev and "
945 					  "virt_dev does not match\n", func);
946 			return -EINVAL;
947 		}
948 	}
949 
950 	return 1;
951 }
952 
953 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
954 		struct usb_device *udev, struct xhci_command *command,
955 		bool ctx_change, bool must_succeed);
956 
957 /*
958  * Full speed devices may have a max packet size greater than 8 bytes, but the
959  * USB core doesn't know that until it reads the first 8 bytes of the
960  * descriptor.  If the usb_device's max packet size changes after that point,
961  * we need to issue an evaluate context command and wait on it.
962  */
963 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
964 		unsigned int ep_index, struct urb *urb)
965 {
966 	struct xhci_container_ctx *in_ctx;
967 	struct xhci_container_ctx *out_ctx;
968 	struct xhci_input_control_ctx *ctrl_ctx;
969 	struct xhci_ep_ctx *ep_ctx;
970 	int max_packet_size;
971 	int hw_max_packet_size;
972 	int ret = 0;
973 
974 	out_ctx = xhci->devs[slot_id]->out_ctx;
975 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
976 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
977 	max_packet_size = le16_to_cpu(urb->dev->ep0.desc.wMaxPacketSize);
978 	if (hw_max_packet_size != max_packet_size) {
979 		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
980 		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
981 				max_packet_size);
982 		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
983 				hw_max_packet_size);
984 		xhci_dbg(xhci, "Issuing evaluate context command.\n");
985 
986 		/* Set up the modified control endpoint 0 */
987 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
988 				xhci->devs[slot_id]->out_ctx, ep_index);
989 		in_ctx = xhci->devs[slot_id]->in_ctx;
990 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
991 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
992 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
993 
994 		/* Set up the input context flags for the command */
995 		/* FIXME: This won't work if a non-default control endpoint
996 		 * changes max packet sizes.
997 		 */
998 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
999 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1000 		ctrl_ctx->drop_flags = 0;
1001 
1002 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1003 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1004 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1005 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1006 
1007 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1008 				true, false);
1009 
1010 		/* Clean up the input context for later use by bandwidth
1011 		 * functions.
1012 		 */
1013 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1014 	}
1015 	return ret;
1016 }
1017 
1018 /*
1019  * non-error returns are a promise to giveback() the urb later
1020  * we drop ownership so next owner (or urb unlink) can get it
1021  */
1022 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1023 {
1024 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1025 	unsigned long flags;
1026 	int ret = 0;
1027 	unsigned int slot_id, ep_index;
1028 	struct urb_priv	*urb_priv;
1029 	int size, i;
1030 
1031 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1032 					true, true, __func__) <= 0)
1033 		return -EINVAL;
1034 
1035 	slot_id = urb->dev->slot_id;
1036 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1037 
1038 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1039 		if (!in_interrupt())
1040 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1041 		ret = -ESHUTDOWN;
1042 		goto exit;
1043 	}
1044 
1045 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1046 		size = urb->number_of_packets;
1047 	else
1048 		size = 1;
1049 
1050 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1051 				  size * sizeof(struct xhci_td *), mem_flags);
1052 	if (!urb_priv)
1053 		return -ENOMEM;
1054 
1055 	for (i = 0; i < size; i++) {
1056 		urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags);
1057 		if (!urb_priv->td[i]) {
1058 			urb_priv->length = i;
1059 			xhci_urb_free_priv(xhci, urb_priv);
1060 			return -ENOMEM;
1061 		}
1062 	}
1063 
1064 	urb_priv->length = size;
1065 	urb_priv->td_cnt = 0;
1066 	urb->hcpriv = urb_priv;
1067 
1068 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1069 		/* Check to see if the max packet size for the default control
1070 		 * endpoint changed during FS device enumeration
1071 		 */
1072 		if (urb->dev->speed == USB_SPEED_FULL) {
1073 			ret = xhci_check_maxpacket(xhci, slot_id,
1074 					ep_index, urb);
1075 			if (ret < 0)
1076 				return ret;
1077 		}
1078 
1079 		/* We have a spinlock and interrupts disabled, so we must pass
1080 		 * atomic context to this function, which may allocate memory.
1081 		 */
1082 		spin_lock_irqsave(&xhci->lock, flags);
1083 		if (xhci->xhc_state & XHCI_STATE_DYING)
1084 			goto dying;
1085 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1086 				slot_id, ep_index);
1087 		spin_unlock_irqrestore(&xhci->lock, flags);
1088 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1089 		spin_lock_irqsave(&xhci->lock, flags);
1090 		if (xhci->xhc_state & XHCI_STATE_DYING)
1091 			goto dying;
1092 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1093 				EP_GETTING_STREAMS) {
1094 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1095 					"is transitioning to using streams.\n");
1096 			ret = -EINVAL;
1097 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1098 				EP_GETTING_NO_STREAMS) {
1099 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1100 					"is transitioning to "
1101 					"not having streams.\n");
1102 			ret = -EINVAL;
1103 		} else {
1104 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1105 					slot_id, ep_index);
1106 		}
1107 		spin_unlock_irqrestore(&xhci->lock, flags);
1108 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1109 		spin_lock_irqsave(&xhci->lock, flags);
1110 		if (xhci->xhc_state & XHCI_STATE_DYING)
1111 			goto dying;
1112 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1113 				slot_id, ep_index);
1114 		spin_unlock_irqrestore(&xhci->lock, flags);
1115 	} else {
1116 		spin_lock_irqsave(&xhci->lock, flags);
1117 		if (xhci->xhc_state & XHCI_STATE_DYING)
1118 			goto dying;
1119 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1120 				slot_id, ep_index);
1121 		spin_unlock_irqrestore(&xhci->lock, flags);
1122 	}
1123 exit:
1124 	return ret;
1125 dying:
1126 	xhci_urb_free_priv(xhci, urb_priv);
1127 	urb->hcpriv = NULL;
1128 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1129 			"non-responsive xHCI host.\n",
1130 			urb->ep->desc.bEndpointAddress, urb);
1131 	spin_unlock_irqrestore(&xhci->lock, flags);
1132 	return -ESHUTDOWN;
1133 }
1134 
1135 /* Get the right ring for the given URB.
1136  * If the endpoint supports streams, boundary check the URB's stream ID.
1137  * If the endpoint doesn't support streams, return the singular endpoint ring.
1138  */
1139 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1140 		struct urb *urb)
1141 {
1142 	unsigned int slot_id;
1143 	unsigned int ep_index;
1144 	unsigned int stream_id;
1145 	struct xhci_virt_ep *ep;
1146 
1147 	slot_id = urb->dev->slot_id;
1148 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1149 	stream_id = urb->stream_id;
1150 	ep = &xhci->devs[slot_id]->eps[ep_index];
1151 	/* Common case: no streams */
1152 	if (!(ep->ep_state & EP_HAS_STREAMS))
1153 		return ep->ring;
1154 
1155 	if (stream_id == 0) {
1156 		xhci_warn(xhci,
1157 				"WARN: Slot ID %u, ep index %u has streams, "
1158 				"but URB has no stream ID.\n",
1159 				slot_id, ep_index);
1160 		return NULL;
1161 	}
1162 
1163 	if (stream_id < ep->stream_info->num_streams)
1164 		return ep->stream_info->stream_rings[stream_id];
1165 
1166 	xhci_warn(xhci,
1167 			"WARN: Slot ID %u, ep index %u has "
1168 			"stream IDs 1 to %u allocated, "
1169 			"but stream ID %u is requested.\n",
1170 			slot_id, ep_index,
1171 			ep->stream_info->num_streams - 1,
1172 			stream_id);
1173 	return NULL;
1174 }
1175 
1176 /*
1177  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1178  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1179  * should pick up where it left off in the TD, unless a Set Transfer Ring
1180  * Dequeue Pointer is issued.
1181  *
1182  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1183  * the ring.  Since the ring is a contiguous structure, they can't be physically
1184  * removed.  Instead, there are two options:
1185  *
1186  *  1) If the HC is in the middle of processing the URB to be canceled, we
1187  *     simply move the ring's dequeue pointer past those TRBs using the Set
1188  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1189  *     when drivers timeout on the last submitted URB and attempt to cancel.
1190  *
1191  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1192  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1193  *     HC will need to invalidate the any TRBs it has cached after the stop
1194  *     endpoint command, as noted in the xHCI 0.95 errata.
1195  *
1196  *  3) The TD may have completed by the time the Stop Endpoint Command
1197  *     completes, so software needs to handle that case too.
1198  *
1199  * This function should protect against the TD enqueueing code ringing the
1200  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1201  * It also needs to account for multiple cancellations on happening at the same
1202  * time for the same endpoint.
1203  *
1204  * Note that this function can be called in any context, or so says
1205  * usb_hcd_unlink_urb()
1206  */
1207 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1208 {
1209 	unsigned long flags;
1210 	int ret, i;
1211 	u32 temp;
1212 	struct xhci_hcd *xhci;
1213 	struct urb_priv	*urb_priv;
1214 	struct xhci_td *td;
1215 	unsigned int ep_index;
1216 	struct xhci_ring *ep_ring;
1217 	struct xhci_virt_ep *ep;
1218 
1219 	xhci = hcd_to_xhci(hcd);
1220 	spin_lock_irqsave(&xhci->lock, flags);
1221 	/* Make sure the URB hasn't completed or been unlinked already */
1222 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1223 	if (ret || !urb->hcpriv)
1224 		goto done;
1225 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1226 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1227 		xhci_dbg(xhci, "HW died, freeing TD.\n");
1228 		urb_priv = urb->hcpriv;
1229 
1230 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1231 		spin_unlock_irqrestore(&xhci->lock, flags);
1232 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1233 		xhci_urb_free_priv(xhci, urb_priv);
1234 		return ret;
1235 	}
1236 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1237 		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1238 				"non-responsive xHCI host.\n",
1239 				urb->ep->desc.bEndpointAddress, urb);
1240 		/* Let the stop endpoint command watchdog timer (which set this
1241 		 * state) finish cleaning up the endpoint TD lists.  We must
1242 		 * have caught it in the middle of dropping a lock and giving
1243 		 * back an URB.
1244 		 */
1245 		goto done;
1246 	}
1247 
1248 	xhci_dbg(xhci, "Cancel URB %p\n", urb);
1249 	xhci_dbg(xhci, "Event ring:\n");
1250 	xhci_debug_ring(xhci, xhci->event_ring);
1251 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1252 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1253 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1254 	if (!ep_ring) {
1255 		ret = -EINVAL;
1256 		goto done;
1257 	}
1258 
1259 	xhci_dbg(xhci, "Endpoint ring:\n");
1260 	xhci_debug_ring(xhci, ep_ring);
1261 
1262 	urb_priv = urb->hcpriv;
1263 
1264 	for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1265 		td = urb_priv->td[i];
1266 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1267 	}
1268 
1269 	/* Queue a stop endpoint command, but only if this is
1270 	 * the first cancellation to be handled.
1271 	 */
1272 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1273 		ep->ep_state |= EP_HALT_PENDING;
1274 		ep->stop_cmds_pending++;
1275 		ep->stop_cmd_timer.expires = jiffies +
1276 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1277 		add_timer(&ep->stop_cmd_timer);
1278 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1279 		xhci_ring_cmd_db(xhci);
1280 	}
1281 done:
1282 	spin_unlock_irqrestore(&xhci->lock, flags);
1283 	return ret;
1284 }
1285 
1286 /* Drop an endpoint from a new bandwidth configuration for this device.
1287  * Only one call to this function is allowed per endpoint before
1288  * check_bandwidth() or reset_bandwidth() must be called.
1289  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1290  * add the endpoint to the schedule with possibly new parameters denoted by a
1291  * different endpoint descriptor in usb_host_endpoint.
1292  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1293  * not allowed.
1294  *
1295  * The USB core will not allow URBs to be queued to an endpoint that is being
1296  * disabled, so there's no need for mutual exclusion to protect
1297  * the xhci->devs[slot_id] structure.
1298  */
1299 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1300 		struct usb_host_endpoint *ep)
1301 {
1302 	struct xhci_hcd *xhci;
1303 	struct xhci_container_ctx *in_ctx, *out_ctx;
1304 	struct xhci_input_control_ctx *ctrl_ctx;
1305 	struct xhci_slot_ctx *slot_ctx;
1306 	unsigned int last_ctx;
1307 	unsigned int ep_index;
1308 	struct xhci_ep_ctx *ep_ctx;
1309 	u32 drop_flag;
1310 	u32 new_add_flags, new_drop_flags, new_slot_info;
1311 	int ret;
1312 
1313 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1314 	if (ret <= 0)
1315 		return ret;
1316 	xhci = hcd_to_xhci(hcd);
1317 	if (xhci->xhc_state & XHCI_STATE_DYING)
1318 		return -ENODEV;
1319 
1320 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1321 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1322 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1323 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1324 				__func__, drop_flag);
1325 		return 0;
1326 	}
1327 
1328 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1329 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1330 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1331 	ep_index = xhci_get_endpoint_index(&ep->desc);
1332 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1333 	/* If the HC already knows the endpoint is disabled,
1334 	 * or the HCD has noted it is disabled, ignore this request
1335 	 */
1336 	if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
1337 	    EP_STATE_DISABLED ||
1338 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1339 	    xhci_get_endpoint_flag(&ep->desc)) {
1340 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1341 				__func__, ep);
1342 		return 0;
1343 	}
1344 
1345 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1346 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1347 
1348 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1349 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1350 
1351 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1352 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1353 	/* Update the last valid endpoint context, if we deleted the last one */
1354 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1355 	    LAST_CTX(last_ctx)) {
1356 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1357 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1358 	}
1359 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1360 
1361 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1362 
1363 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1364 			(unsigned int) ep->desc.bEndpointAddress,
1365 			udev->slot_id,
1366 			(unsigned int) new_drop_flags,
1367 			(unsigned int) new_add_flags,
1368 			(unsigned int) new_slot_info);
1369 	return 0;
1370 }
1371 
1372 /* Add an endpoint to a new possible bandwidth configuration for this device.
1373  * Only one call to this function is allowed per endpoint before
1374  * check_bandwidth() or reset_bandwidth() must be called.
1375  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1376  * add the endpoint to the schedule with possibly new parameters denoted by a
1377  * different endpoint descriptor in usb_host_endpoint.
1378  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1379  * not allowed.
1380  *
1381  * The USB core will not allow URBs to be queued to an endpoint until the
1382  * configuration or alt setting is installed in the device, so there's no need
1383  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1384  */
1385 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1386 		struct usb_host_endpoint *ep)
1387 {
1388 	struct xhci_hcd *xhci;
1389 	struct xhci_container_ctx *in_ctx, *out_ctx;
1390 	unsigned int ep_index;
1391 	struct xhci_ep_ctx *ep_ctx;
1392 	struct xhci_slot_ctx *slot_ctx;
1393 	struct xhci_input_control_ctx *ctrl_ctx;
1394 	u32 added_ctxs;
1395 	unsigned int last_ctx;
1396 	u32 new_add_flags, new_drop_flags, new_slot_info;
1397 	int ret = 0;
1398 
1399 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1400 	if (ret <= 0) {
1401 		/* So we won't queue a reset ep command for a root hub */
1402 		ep->hcpriv = NULL;
1403 		return ret;
1404 	}
1405 	xhci = hcd_to_xhci(hcd);
1406 	if (xhci->xhc_state & XHCI_STATE_DYING)
1407 		return -ENODEV;
1408 
1409 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1410 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1411 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1412 		/* FIXME when we have to issue an evaluate endpoint command to
1413 		 * deal with ep0 max packet size changing once we get the
1414 		 * descriptors
1415 		 */
1416 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1417 				__func__, added_ctxs);
1418 		return 0;
1419 	}
1420 
1421 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1422 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1423 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1424 	ep_index = xhci_get_endpoint_index(&ep->desc);
1425 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1426 	/* If the HCD has already noted the endpoint is enabled,
1427 	 * ignore this request.
1428 	 */
1429 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1430 	    xhci_get_endpoint_flag(&ep->desc)) {
1431 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1432 				__func__, ep);
1433 		return 0;
1434 	}
1435 
1436 	/*
1437 	 * Configuration and alternate setting changes must be done in
1438 	 * process context, not interrupt context (or so documenation
1439 	 * for usb_set_interface() and usb_set_configuration() claim).
1440 	 */
1441 	if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id],
1442 				udev, ep, GFP_NOIO) < 0) {
1443 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1444 				__func__, ep->desc.bEndpointAddress);
1445 		return -ENOMEM;
1446 	}
1447 
1448 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1449 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1450 
1451 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1452 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1453 	 * this re-adds a new state for the endpoint from the new endpoint
1454 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1455 	 * drop flags alone.
1456 	 */
1457 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1458 
1459 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1460 	/* Update the last valid endpoint context, if we just added one past */
1461 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1462 	    LAST_CTX(last_ctx)) {
1463 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1464 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1465 	}
1466 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1467 
1468 	/* Store the usb_device pointer for later use */
1469 	ep->hcpriv = udev;
1470 
1471 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1472 			(unsigned int) ep->desc.bEndpointAddress,
1473 			udev->slot_id,
1474 			(unsigned int) new_drop_flags,
1475 			(unsigned int) new_add_flags,
1476 			(unsigned int) new_slot_info);
1477 	return 0;
1478 }
1479 
1480 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1481 {
1482 	struct xhci_input_control_ctx *ctrl_ctx;
1483 	struct xhci_ep_ctx *ep_ctx;
1484 	struct xhci_slot_ctx *slot_ctx;
1485 	int i;
1486 
1487 	/* When a device's add flag and drop flag are zero, any subsequent
1488 	 * configure endpoint command will leave that endpoint's state
1489 	 * untouched.  Make sure we don't leave any old state in the input
1490 	 * endpoint contexts.
1491 	 */
1492 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1493 	ctrl_ctx->drop_flags = 0;
1494 	ctrl_ctx->add_flags = 0;
1495 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1496 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1497 	/* Endpoint 0 is always valid */
1498 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1499 	for (i = 1; i < 31; ++i) {
1500 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1501 		ep_ctx->ep_info = 0;
1502 		ep_ctx->ep_info2 = 0;
1503 		ep_ctx->deq = 0;
1504 		ep_ctx->tx_info = 0;
1505 	}
1506 }
1507 
1508 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1509 		struct usb_device *udev, u32 *cmd_status)
1510 {
1511 	int ret;
1512 
1513 	switch (*cmd_status) {
1514 	case COMP_ENOMEM:
1515 		dev_warn(&udev->dev, "Not enough host controller resources "
1516 				"for new device state.\n");
1517 		ret = -ENOMEM;
1518 		/* FIXME: can we allocate more resources for the HC? */
1519 		break;
1520 	case COMP_BW_ERR:
1521 		dev_warn(&udev->dev, "Not enough bandwidth "
1522 				"for new device state.\n");
1523 		ret = -ENOSPC;
1524 		/* FIXME: can we go back to the old state? */
1525 		break;
1526 	case COMP_TRB_ERR:
1527 		/* the HCD set up something wrong */
1528 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1529 				"add flag = 1, "
1530 				"and endpoint is not disabled.\n");
1531 		ret = -EINVAL;
1532 		break;
1533 	case COMP_SUCCESS:
1534 		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1535 		ret = 0;
1536 		break;
1537 	default:
1538 		xhci_err(xhci, "ERROR: unexpected command completion "
1539 				"code 0x%x.\n", *cmd_status);
1540 		ret = -EINVAL;
1541 		break;
1542 	}
1543 	return ret;
1544 }
1545 
1546 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1547 		struct usb_device *udev, u32 *cmd_status)
1548 {
1549 	int ret;
1550 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1551 
1552 	switch (*cmd_status) {
1553 	case COMP_EINVAL:
1554 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1555 				"context command.\n");
1556 		ret = -EINVAL;
1557 		break;
1558 	case COMP_EBADSLT:
1559 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1560 				"evaluate context command.\n");
1561 	case COMP_CTX_STATE:
1562 		dev_warn(&udev->dev, "WARN: invalid context state for "
1563 				"evaluate context command.\n");
1564 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1565 		ret = -EINVAL;
1566 		break;
1567 	case COMP_MEL_ERR:
1568 		/* Max Exit Latency too large error */
1569 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1570 		ret = -EINVAL;
1571 		break;
1572 	case COMP_SUCCESS:
1573 		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1574 		ret = 0;
1575 		break;
1576 	default:
1577 		xhci_err(xhci, "ERROR: unexpected command completion "
1578 				"code 0x%x.\n", *cmd_status);
1579 		ret = -EINVAL;
1580 		break;
1581 	}
1582 	return ret;
1583 }
1584 
1585 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1586 		struct xhci_container_ctx *in_ctx)
1587 {
1588 	struct xhci_input_control_ctx *ctrl_ctx;
1589 	u32 valid_add_flags;
1590 	u32 valid_drop_flags;
1591 
1592 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1593 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1594 	 * (bit 1).  The default control endpoint is added during the Address
1595 	 * Device command and is never removed until the slot is disabled.
1596 	 */
1597 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1598 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1599 
1600 	/* Use hweight32 to count the number of ones in the add flags, or
1601 	 * number of endpoints added.  Don't count endpoints that are changed
1602 	 * (both added and dropped).
1603 	 */
1604 	return hweight32(valid_add_flags) -
1605 		hweight32(valid_add_flags & valid_drop_flags);
1606 }
1607 
1608 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1609 		struct xhci_container_ctx *in_ctx)
1610 {
1611 	struct xhci_input_control_ctx *ctrl_ctx;
1612 	u32 valid_add_flags;
1613 	u32 valid_drop_flags;
1614 
1615 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1616 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1617 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1618 
1619 	return hweight32(valid_drop_flags) -
1620 		hweight32(valid_add_flags & valid_drop_flags);
1621 }
1622 
1623 /*
1624  * We need to reserve the new number of endpoints before the configure endpoint
1625  * command completes.  We can't subtract the dropped endpoints from the number
1626  * of active endpoints until the command completes because we can oversubscribe
1627  * the host in this case:
1628  *
1629  *  - the first configure endpoint command drops more endpoints than it adds
1630  *  - a second configure endpoint command that adds more endpoints is queued
1631  *  - the first configure endpoint command fails, so the config is unchanged
1632  *  - the second command may succeed, even though there isn't enough resources
1633  *
1634  * Must be called with xhci->lock held.
1635  */
1636 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1637 		struct xhci_container_ctx *in_ctx)
1638 {
1639 	u32 added_eps;
1640 
1641 	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1642 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1643 		xhci_dbg(xhci, "Not enough ep ctxs: "
1644 				"%u active, need to add %u, limit is %u.\n",
1645 				xhci->num_active_eps, added_eps,
1646 				xhci->limit_active_eps);
1647 		return -ENOMEM;
1648 	}
1649 	xhci->num_active_eps += added_eps;
1650 	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1651 			xhci->num_active_eps);
1652 	return 0;
1653 }
1654 
1655 /*
1656  * The configure endpoint was failed by the xHC for some other reason, so we
1657  * need to revert the resources that failed configuration would have used.
1658  *
1659  * Must be called with xhci->lock held.
1660  */
1661 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1662 		struct xhci_container_ctx *in_ctx)
1663 {
1664 	u32 num_failed_eps;
1665 
1666 	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1667 	xhci->num_active_eps -= num_failed_eps;
1668 	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1669 			num_failed_eps,
1670 			xhci->num_active_eps);
1671 }
1672 
1673 /*
1674  * Now that the command has completed, clean up the active endpoint count by
1675  * subtracting out the endpoints that were dropped (but not changed).
1676  *
1677  * Must be called with xhci->lock held.
1678  */
1679 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1680 		struct xhci_container_ctx *in_ctx)
1681 {
1682 	u32 num_dropped_eps;
1683 
1684 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1685 	xhci->num_active_eps -= num_dropped_eps;
1686 	if (num_dropped_eps)
1687 		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1688 				num_dropped_eps,
1689 				xhci->num_active_eps);
1690 }
1691 
1692 /* Issue a configure endpoint command or evaluate context command
1693  * and wait for it to finish.
1694  */
1695 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1696 		struct usb_device *udev,
1697 		struct xhci_command *command,
1698 		bool ctx_change, bool must_succeed)
1699 {
1700 	int ret;
1701 	int timeleft;
1702 	unsigned long flags;
1703 	struct xhci_container_ctx *in_ctx;
1704 	struct completion *cmd_completion;
1705 	u32 *cmd_status;
1706 	struct xhci_virt_device *virt_dev;
1707 
1708 	spin_lock_irqsave(&xhci->lock, flags);
1709 	virt_dev = xhci->devs[udev->slot_id];
1710 	if (command) {
1711 		in_ctx = command->in_ctx;
1712 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1713 				xhci_reserve_host_resources(xhci, in_ctx)) {
1714 			spin_unlock_irqrestore(&xhci->lock, flags);
1715 			xhci_warn(xhci, "Not enough host resources, "
1716 					"active endpoint contexts = %u\n",
1717 					xhci->num_active_eps);
1718 			return -ENOMEM;
1719 		}
1720 
1721 		cmd_completion = command->completion;
1722 		cmd_status = &command->status;
1723 		command->command_trb = xhci->cmd_ring->enqueue;
1724 
1725 		/* Enqueue pointer can be left pointing to the link TRB,
1726 		 * we must handle that
1727 		 */
1728 		if ((le32_to_cpu(command->command_trb->link.control)
1729 		     & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK))
1730 			command->command_trb =
1731 				xhci->cmd_ring->enq_seg->next->trbs;
1732 
1733 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1734 	} else {
1735 		in_ctx = virt_dev->in_ctx;
1736 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1737 				xhci_reserve_host_resources(xhci, in_ctx)) {
1738 			spin_unlock_irqrestore(&xhci->lock, flags);
1739 			xhci_warn(xhci, "Not enough host resources, "
1740 					"active endpoint contexts = %u\n",
1741 					xhci->num_active_eps);
1742 			return -ENOMEM;
1743 		}
1744 		cmd_completion = &virt_dev->cmd_completion;
1745 		cmd_status = &virt_dev->cmd_status;
1746 	}
1747 	init_completion(cmd_completion);
1748 
1749 	if (!ctx_change)
1750 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1751 				udev->slot_id, must_succeed);
1752 	else
1753 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1754 				udev->slot_id);
1755 	if (ret < 0) {
1756 		if (command)
1757 			list_del(&command->cmd_list);
1758 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
1759 			xhci_free_host_resources(xhci, in_ctx);
1760 		spin_unlock_irqrestore(&xhci->lock, flags);
1761 		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1762 		return -ENOMEM;
1763 	}
1764 	xhci_ring_cmd_db(xhci);
1765 	spin_unlock_irqrestore(&xhci->lock, flags);
1766 
1767 	/* Wait for the configure endpoint command to complete */
1768 	timeleft = wait_for_completion_interruptible_timeout(
1769 			cmd_completion,
1770 			USB_CTRL_SET_TIMEOUT);
1771 	if (timeleft <= 0) {
1772 		xhci_warn(xhci, "%s while waiting for %s command\n",
1773 				timeleft == 0 ? "Timeout" : "Signal",
1774 				ctx_change == 0 ?
1775 					"configure endpoint" :
1776 					"evaluate context");
1777 		/* FIXME cancel the configure endpoint command */
1778 		return -ETIME;
1779 	}
1780 
1781 	if (!ctx_change)
1782 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
1783 	else
1784 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
1785 
1786 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
1787 		spin_lock_irqsave(&xhci->lock, flags);
1788 		/* If the command failed, remove the reserved resources.
1789 		 * Otherwise, clean up the estimate to include dropped eps.
1790 		 */
1791 		if (ret)
1792 			xhci_free_host_resources(xhci, in_ctx);
1793 		else
1794 			xhci_finish_resource_reservation(xhci, in_ctx);
1795 		spin_unlock_irqrestore(&xhci->lock, flags);
1796 	}
1797 	return ret;
1798 }
1799 
1800 /* Called after one or more calls to xhci_add_endpoint() or
1801  * xhci_drop_endpoint().  If this call fails, the USB core is expected
1802  * to call xhci_reset_bandwidth().
1803  *
1804  * Since we are in the middle of changing either configuration or
1805  * installing a new alt setting, the USB core won't allow URBs to be
1806  * enqueued for any endpoint on the old config or interface.  Nothing
1807  * else should be touching the xhci->devs[slot_id] structure, so we
1808  * don't need to take the xhci->lock for manipulating that.
1809  */
1810 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1811 {
1812 	int i;
1813 	int ret = 0;
1814 	struct xhci_hcd *xhci;
1815 	struct xhci_virt_device	*virt_dev;
1816 	struct xhci_input_control_ctx *ctrl_ctx;
1817 	struct xhci_slot_ctx *slot_ctx;
1818 
1819 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1820 	if (ret <= 0)
1821 		return ret;
1822 	xhci = hcd_to_xhci(hcd);
1823 	if (xhci->xhc_state & XHCI_STATE_DYING)
1824 		return -ENODEV;
1825 
1826 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1827 	virt_dev = xhci->devs[udev->slot_id];
1828 
1829 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1830 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1831 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1832 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
1833 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
1834 	xhci_dbg(xhci, "New Input Control Context:\n");
1835 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1836 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1837 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1838 
1839 	ret = xhci_configure_endpoint(xhci, udev, NULL,
1840 			false, false);
1841 	if (ret) {
1842 		/* Callee should call reset_bandwidth() */
1843 		return ret;
1844 	}
1845 
1846 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1847 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1848 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1849 
1850 	/* Free any rings that were dropped, but not changed. */
1851 	for (i = 1; i < 31; ++i) {
1852 		if ((ctrl_ctx->drop_flags & (1 << (i + 1))) &&
1853 				!(ctrl_ctx->add_flags & (1 << (i + 1))))
1854 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1855 	}
1856 	xhci_zero_in_ctx(xhci, virt_dev);
1857 	/*
1858 	 * Install any rings for completely new endpoints or changed endpoints,
1859 	 * and free or cache any old rings from changed endpoints.
1860 	 */
1861 	for (i = 1; i < 31; ++i) {
1862 		if (!virt_dev->eps[i].new_ring)
1863 			continue;
1864 		/* Only cache or free the old ring if it exists.
1865 		 * It may not if this is the first add of an endpoint.
1866 		 */
1867 		if (virt_dev->eps[i].ring) {
1868 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1869 		}
1870 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1871 		virt_dev->eps[i].new_ring = NULL;
1872 	}
1873 
1874 	return ret;
1875 }
1876 
1877 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1878 {
1879 	struct xhci_hcd *xhci;
1880 	struct xhci_virt_device	*virt_dev;
1881 	int i, ret;
1882 
1883 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1884 	if (ret <= 0)
1885 		return;
1886 	xhci = hcd_to_xhci(hcd);
1887 
1888 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1889 	virt_dev = xhci->devs[udev->slot_id];
1890 	/* Free any rings allocated for added endpoints */
1891 	for (i = 0; i < 31; ++i) {
1892 		if (virt_dev->eps[i].new_ring) {
1893 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1894 			virt_dev->eps[i].new_ring = NULL;
1895 		}
1896 	}
1897 	xhci_zero_in_ctx(xhci, virt_dev);
1898 }
1899 
1900 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1901 		struct xhci_container_ctx *in_ctx,
1902 		struct xhci_container_ctx *out_ctx,
1903 		u32 add_flags, u32 drop_flags)
1904 {
1905 	struct xhci_input_control_ctx *ctrl_ctx;
1906 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1907 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
1908 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
1909 	xhci_slot_copy(xhci, in_ctx, out_ctx);
1910 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1911 
1912 	xhci_dbg(xhci, "Input Context:\n");
1913 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1914 }
1915 
1916 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1917 		unsigned int slot_id, unsigned int ep_index,
1918 		struct xhci_dequeue_state *deq_state)
1919 {
1920 	struct xhci_container_ctx *in_ctx;
1921 	struct xhci_ep_ctx *ep_ctx;
1922 	u32 added_ctxs;
1923 	dma_addr_t addr;
1924 
1925 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1926 			xhci->devs[slot_id]->out_ctx, ep_index);
1927 	in_ctx = xhci->devs[slot_id]->in_ctx;
1928 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1929 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1930 			deq_state->new_deq_ptr);
1931 	if (addr == 0) {
1932 		xhci_warn(xhci, "WARN Cannot submit config ep after "
1933 				"reset ep command\n");
1934 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1935 				deq_state->new_deq_seg,
1936 				deq_state->new_deq_ptr);
1937 		return;
1938 	}
1939 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
1940 
1941 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1942 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
1943 			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
1944 }
1945 
1946 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
1947 		struct usb_device *udev, unsigned int ep_index)
1948 {
1949 	struct xhci_dequeue_state deq_state;
1950 	struct xhci_virt_ep *ep;
1951 
1952 	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
1953 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1954 	/* We need to move the HW's dequeue pointer past this TD,
1955 	 * or it will attempt to resend it on the next doorbell ring.
1956 	 */
1957 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
1958 			ep_index, ep->stopped_stream, ep->stopped_td,
1959 			&deq_state);
1960 
1961 	/* HW with the reset endpoint quirk will use the saved dequeue state to
1962 	 * issue a configure endpoint command later.
1963 	 */
1964 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
1965 		xhci_dbg(xhci, "Queueing new dequeue state\n");
1966 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
1967 				ep_index, ep->stopped_stream, &deq_state);
1968 	} else {
1969 		/* Better hope no one uses the input context between now and the
1970 		 * reset endpoint completion!
1971 		 * XXX: No idea how this hardware will react when stream rings
1972 		 * are enabled.
1973 		 */
1974 		xhci_dbg(xhci, "Setting up input context for "
1975 				"configure endpoint command\n");
1976 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
1977 				ep_index, &deq_state);
1978 	}
1979 }
1980 
1981 /* Deal with stalled endpoints.  The core should have sent the control message
1982  * to clear the halt condition.  However, we need to make the xHCI hardware
1983  * reset its sequence number, since a device will expect a sequence number of
1984  * zero after the halt condition is cleared.
1985  * Context: in_interrupt
1986  */
1987 void xhci_endpoint_reset(struct usb_hcd *hcd,
1988 		struct usb_host_endpoint *ep)
1989 {
1990 	struct xhci_hcd *xhci;
1991 	struct usb_device *udev;
1992 	unsigned int ep_index;
1993 	unsigned long flags;
1994 	int ret;
1995 	struct xhci_virt_ep *virt_ep;
1996 
1997 	xhci = hcd_to_xhci(hcd);
1998 	udev = (struct usb_device *) ep->hcpriv;
1999 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2000 	 * with xhci_add_endpoint()
2001 	 */
2002 	if (!ep->hcpriv)
2003 		return;
2004 	ep_index = xhci_get_endpoint_index(&ep->desc);
2005 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2006 	if (!virt_ep->stopped_td) {
2007 		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2008 				ep->desc.bEndpointAddress);
2009 		return;
2010 	}
2011 	if (usb_endpoint_xfer_control(&ep->desc)) {
2012 		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2013 		return;
2014 	}
2015 
2016 	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2017 	spin_lock_irqsave(&xhci->lock, flags);
2018 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2019 	/*
2020 	 * Can't change the ring dequeue pointer until it's transitioned to the
2021 	 * stopped state, which is only upon a successful reset endpoint
2022 	 * command.  Better hope that last command worked!
2023 	 */
2024 	if (!ret) {
2025 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2026 		kfree(virt_ep->stopped_td);
2027 		xhci_ring_cmd_db(xhci);
2028 	}
2029 	virt_ep->stopped_td = NULL;
2030 	virt_ep->stopped_trb = NULL;
2031 	virt_ep->stopped_stream = 0;
2032 	spin_unlock_irqrestore(&xhci->lock, flags);
2033 
2034 	if (ret)
2035 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2036 }
2037 
2038 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2039 		struct usb_device *udev, struct usb_host_endpoint *ep,
2040 		unsigned int slot_id)
2041 {
2042 	int ret;
2043 	unsigned int ep_index;
2044 	unsigned int ep_state;
2045 
2046 	if (!ep)
2047 		return -EINVAL;
2048 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2049 	if (ret <= 0)
2050 		return -EINVAL;
2051 	if (ep->ss_ep_comp.bmAttributes == 0) {
2052 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2053 				" descriptor for ep 0x%x does not support streams\n",
2054 				ep->desc.bEndpointAddress);
2055 		return -EINVAL;
2056 	}
2057 
2058 	ep_index = xhci_get_endpoint_index(&ep->desc);
2059 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2060 	if (ep_state & EP_HAS_STREAMS ||
2061 			ep_state & EP_GETTING_STREAMS) {
2062 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2063 				"already has streams set up.\n",
2064 				ep->desc.bEndpointAddress);
2065 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2066 				"dynamic stream context array reallocation.\n");
2067 		return -EINVAL;
2068 	}
2069 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2070 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2071 				"endpoint 0x%x; URBs are pending.\n",
2072 				ep->desc.bEndpointAddress);
2073 		return -EINVAL;
2074 	}
2075 	return 0;
2076 }
2077 
2078 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2079 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2080 {
2081 	unsigned int max_streams;
2082 
2083 	/* The stream context array size must be a power of two */
2084 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2085 	/*
2086 	 * Find out how many primary stream array entries the host controller
2087 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2088 	 * level page entries), but that's an optional feature for xHCI host
2089 	 * controllers. xHCs must support at least 4 stream IDs.
2090 	 */
2091 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2092 	if (*num_stream_ctxs > max_streams) {
2093 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2094 				max_streams);
2095 		*num_stream_ctxs = max_streams;
2096 		*num_streams = max_streams;
2097 	}
2098 }
2099 
2100 /* Returns an error code if one of the endpoint already has streams.
2101  * This does not change any data structures, it only checks and gathers
2102  * information.
2103  */
2104 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2105 		struct usb_device *udev,
2106 		struct usb_host_endpoint **eps, unsigned int num_eps,
2107 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2108 {
2109 	unsigned int max_streams;
2110 	unsigned int endpoint_flag;
2111 	int i;
2112 	int ret;
2113 
2114 	for (i = 0; i < num_eps; i++) {
2115 		ret = xhci_check_streams_endpoint(xhci, udev,
2116 				eps[i], udev->slot_id);
2117 		if (ret < 0)
2118 			return ret;
2119 
2120 		max_streams = USB_SS_MAX_STREAMS(
2121 				eps[i]->ss_ep_comp.bmAttributes);
2122 		if (max_streams < (*num_streams - 1)) {
2123 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2124 					eps[i]->desc.bEndpointAddress,
2125 					max_streams);
2126 			*num_streams = max_streams+1;
2127 		}
2128 
2129 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2130 		if (*changed_ep_bitmask & endpoint_flag)
2131 			return -EINVAL;
2132 		*changed_ep_bitmask |= endpoint_flag;
2133 	}
2134 	return 0;
2135 }
2136 
2137 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2138 		struct usb_device *udev,
2139 		struct usb_host_endpoint **eps, unsigned int num_eps)
2140 {
2141 	u32 changed_ep_bitmask = 0;
2142 	unsigned int slot_id;
2143 	unsigned int ep_index;
2144 	unsigned int ep_state;
2145 	int i;
2146 
2147 	slot_id = udev->slot_id;
2148 	if (!xhci->devs[slot_id])
2149 		return 0;
2150 
2151 	for (i = 0; i < num_eps; i++) {
2152 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2153 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2154 		/* Are streams already being freed for the endpoint? */
2155 		if (ep_state & EP_GETTING_NO_STREAMS) {
2156 			xhci_warn(xhci, "WARN Can't disable streams for "
2157 					"endpoint 0x%x\n, "
2158 					"streams are being disabled already.",
2159 					eps[i]->desc.bEndpointAddress);
2160 			return 0;
2161 		}
2162 		/* Are there actually any streams to free? */
2163 		if (!(ep_state & EP_HAS_STREAMS) &&
2164 				!(ep_state & EP_GETTING_STREAMS)) {
2165 			xhci_warn(xhci, "WARN Can't disable streams for "
2166 					"endpoint 0x%x\n, "
2167 					"streams are already disabled!",
2168 					eps[i]->desc.bEndpointAddress);
2169 			xhci_warn(xhci, "WARN xhci_free_streams() called "
2170 					"with non-streams endpoint\n");
2171 			return 0;
2172 		}
2173 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2174 	}
2175 	return changed_ep_bitmask;
2176 }
2177 
2178 /*
2179  * The USB device drivers use this function (though the HCD interface in USB
2180  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2181  * coordinate mass storage command queueing across multiple endpoints (basically
2182  * a stream ID == a task ID).
2183  *
2184  * Setting up streams involves allocating the same size stream context array
2185  * for each endpoint and issuing a configure endpoint command for all endpoints.
2186  *
2187  * Don't allow the call to succeed if one endpoint only supports one stream
2188  * (which means it doesn't support streams at all).
2189  *
2190  * Drivers may get less stream IDs than they asked for, if the host controller
2191  * hardware or endpoints claim they can't support the number of requested
2192  * stream IDs.
2193  */
2194 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2195 		struct usb_host_endpoint **eps, unsigned int num_eps,
2196 		unsigned int num_streams, gfp_t mem_flags)
2197 {
2198 	int i, ret;
2199 	struct xhci_hcd *xhci;
2200 	struct xhci_virt_device *vdev;
2201 	struct xhci_command *config_cmd;
2202 	unsigned int ep_index;
2203 	unsigned int num_stream_ctxs;
2204 	unsigned long flags;
2205 	u32 changed_ep_bitmask = 0;
2206 
2207 	if (!eps)
2208 		return -EINVAL;
2209 
2210 	/* Add one to the number of streams requested to account for
2211 	 * stream 0 that is reserved for xHCI usage.
2212 	 */
2213 	num_streams += 1;
2214 	xhci = hcd_to_xhci(hcd);
2215 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2216 			num_streams);
2217 
2218 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2219 	if (!config_cmd) {
2220 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2221 		return -ENOMEM;
2222 	}
2223 
2224 	/* Check to make sure all endpoints are not already configured for
2225 	 * streams.  While we're at it, find the maximum number of streams that
2226 	 * all the endpoints will support and check for duplicate endpoints.
2227 	 */
2228 	spin_lock_irqsave(&xhci->lock, flags);
2229 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2230 			num_eps, &num_streams, &changed_ep_bitmask);
2231 	if (ret < 0) {
2232 		xhci_free_command(xhci, config_cmd);
2233 		spin_unlock_irqrestore(&xhci->lock, flags);
2234 		return ret;
2235 	}
2236 	if (num_streams <= 1) {
2237 		xhci_warn(xhci, "WARN: endpoints can't handle "
2238 				"more than one stream.\n");
2239 		xhci_free_command(xhci, config_cmd);
2240 		spin_unlock_irqrestore(&xhci->lock, flags);
2241 		return -EINVAL;
2242 	}
2243 	vdev = xhci->devs[udev->slot_id];
2244 	/* Mark each endpoint as being in transition, so
2245 	 * xhci_urb_enqueue() will reject all URBs.
2246 	 */
2247 	for (i = 0; i < num_eps; i++) {
2248 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2249 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2250 	}
2251 	spin_unlock_irqrestore(&xhci->lock, flags);
2252 
2253 	/* Setup internal data structures and allocate HW data structures for
2254 	 * streams (but don't install the HW structures in the input context
2255 	 * until we're sure all memory allocation succeeded).
2256 	 */
2257 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2258 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2259 			num_stream_ctxs, num_streams);
2260 
2261 	for (i = 0; i < num_eps; i++) {
2262 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2263 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2264 				num_stream_ctxs,
2265 				num_streams, mem_flags);
2266 		if (!vdev->eps[ep_index].stream_info)
2267 			goto cleanup;
2268 		/* Set maxPstreams in endpoint context and update deq ptr to
2269 		 * point to stream context array. FIXME
2270 		 */
2271 	}
2272 
2273 	/* Set up the input context for a configure endpoint command. */
2274 	for (i = 0; i < num_eps; i++) {
2275 		struct xhci_ep_ctx *ep_ctx;
2276 
2277 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2278 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2279 
2280 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2281 				vdev->out_ctx, ep_index);
2282 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2283 				vdev->eps[ep_index].stream_info);
2284 	}
2285 	/* Tell the HW to drop its old copy of the endpoint context info
2286 	 * and add the updated copy from the input context.
2287 	 */
2288 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2289 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2290 
2291 	/* Issue and wait for the configure endpoint command */
2292 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2293 			false, false);
2294 
2295 	/* xHC rejected the configure endpoint command for some reason, so we
2296 	 * leave the old ring intact and free our internal streams data
2297 	 * structure.
2298 	 */
2299 	if (ret < 0)
2300 		goto cleanup;
2301 
2302 	spin_lock_irqsave(&xhci->lock, flags);
2303 	for (i = 0; i < num_eps; i++) {
2304 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2305 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2306 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2307 			 udev->slot_id, ep_index);
2308 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2309 	}
2310 	xhci_free_command(xhci, config_cmd);
2311 	spin_unlock_irqrestore(&xhci->lock, flags);
2312 
2313 	/* Subtract 1 for stream 0, which drivers can't use */
2314 	return num_streams - 1;
2315 
2316 cleanup:
2317 	/* If it didn't work, free the streams! */
2318 	for (i = 0; i < num_eps; i++) {
2319 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2320 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2321 		vdev->eps[ep_index].stream_info = NULL;
2322 		/* FIXME Unset maxPstreams in endpoint context and
2323 		 * update deq ptr to point to normal string ring.
2324 		 */
2325 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2326 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2327 		xhci_endpoint_zero(xhci, vdev, eps[i]);
2328 	}
2329 	xhci_free_command(xhci, config_cmd);
2330 	return -ENOMEM;
2331 }
2332 
2333 /* Transition the endpoint from using streams to being a "normal" endpoint
2334  * without streams.
2335  *
2336  * Modify the endpoint context state, submit a configure endpoint command,
2337  * and free all endpoint rings for streams if that completes successfully.
2338  */
2339 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
2340 		struct usb_host_endpoint **eps, unsigned int num_eps,
2341 		gfp_t mem_flags)
2342 {
2343 	int i, ret;
2344 	struct xhci_hcd *xhci;
2345 	struct xhci_virt_device *vdev;
2346 	struct xhci_command *command;
2347 	unsigned int ep_index;
2348 	unsigned long flags;
2349 	u32 changed_ep_bitmask;
2350 
2351 	xhci = hcd_to_xhci(hcd);
2352 	vdev = xhci->devs[udev->slot_id];
2353 
2354 	/* Set up a configure endpoint command to remove the streams rings */
2355 	spin_lock_irqsave(&xhci->lock, flags);
2356 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
2357 			udev, eps, num_eps);
2358 	if (changed_ep_bitmask == 0) {
2359 		spin_unlock_irqrestore(&xhci->lock, flags);
2360 		return -EINVAL;
2361 	}
2362 
2363 	/* Use the xhci_command structure from the first endpoint.  We may have
2364 	 * allocated too many, but the driver may call xhci_free_streams() for
2365 	 * each endpoint it grouped into one call to xhci_alloc_streams().
2366 	 */
2367 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
2368 	command = vdev->eps[ep_index].stream_info->free_streams_command;
2369 	for (i = 0; i < num_eps; i++) {
2370 		struct xhci_ep_ctx *ep_ctx;
2371 
2372 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2373 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
2374 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
2375 			EP_GETTING_NO_STREAMS;
2376 
2377 		xhci_endpoint_copy(xhci, command->in_ctx,
2378 				vdev->out_ctx, ep_index);
2379 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
2380 				&vdev->eps[ep_index]);
2381 	}
2382 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
2383 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2384 	spin_unlock_irqrestore(&xhci->lock, flags);
2385 
2386 	/* Issue and wait for the configure endpoint command,
2387 	 * which must succeed.
2388 	 */
2389 	ret = xhci_configure_endpoint(xhci, udev, command,
2390 			false, true);
2391 
2392 	/* xHC rejected the configure endpoint command for some reason, so we
2393 	 * leave the streams rings intact.
2394 	 */
2395 	if (ret < 0)
2396 		return ret;
2397 
2398 	spin_lock_irqsave(&xhci->lock, flags);
2399 	for (i = 0; i < num_eps; i++) {
2400 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2401 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2402 		vdev->eps[ep_index].stream_info = NULL;
2403 		/* FIXME Unset maxPstreams in endpoint context and
2404 		 * update deq ptr to point to normal string ring.
2405 		 */
2406 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
2407 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2408 	}
2409 	spin_unlock_irqrestore(&xhci->lock, flags);
2410 
2411 	return 0;
2412 }
2413 
2414 /*
2415  * Deletes endpoint resources for endpoints that were active before a Reset
2416  * Device command, or a Disable Slot command.  The Reset Device command leaves
2417  * the control endpoint intact, whereas the Disable Slot command deletes it.
2418  *
2419  * Must be called with xhci->lock held.
2420  */
2421 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
2422 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
2423 {
2424 	int i;
2425 	unsigned int num_dropped_eps = 0;
2426 	unsigned int drop_flags = 0;
2427 
2428 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
2429 		if (virt_dev->eps[i].ring) {
2430 			drop_flags |= 1 << i;
2431 			num_dropped_eps++;
2432 		}
2433 	}
2434 	xhci->num_active_eps -= num_dropped_eps;
2435 	if (num_dropped_eps)
2436 		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
2437 				"%u now active.\n",
2438 				num_dropped_eps, drop_flags,
2439 				xhci->num_active_eps);
2440 }
2441 
2442 /*
2443  * This submits a Reset Device Command, which will set the device state to 0,
2444  * set the device address to 0, and disable all the endpoints except the default
2445  * control endpoint.  The USB core should come back and call
2446  * xhci_address_device(), and then re-set up the configuration.  If this is
2447  * called because of a usb_reset_and_verify_device(), then the old alternate
2448  * settings will be re-installed through the normal bandwidth allocation
2449  * functions.
2450  *
2451  * Wait for the Reset Device command to finish.  Remove all structures
2452  * associated with the endpoints that were disabled.  Clear the input device
2453  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
2454  *
2455  * If the virt_dev to be reset does not exist or does not match the udev,
2456  * it means the device is lost, possibly due to the xHC restore error and
2457  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
2458  * re-allocate the device.
2459  */
2460 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
2461 {
2462 	int ret, i;
2463 	unsigned long flags;
2464 	struct xhci_hcd *xhci;
2465 	unsigned int slot_id;
2466 	struct xhci_virt_device *virt_dev;
2467 	struct xhci_command *reset_device_cmd;
2468 	int timeleft;
2469 	int last_freed_endpoint;
2470 
2471 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
2472 	if (ret <= 0)
2473 		return ret;
2474 	xhci = hcd_to_xhci(hcd);
2475 	slot_id = udev->slot_id;
2476 	virt_dev = xhci->devs[slot_id];
2477 	if (!virt_dev) {
2478 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2479 				"not exist. Re-allocate the device\n", slot_id);
2480 		ret = xhci_alloc_dev(hcd, udev);
2481 		if (ret == 1)
2482 			return 0;
2483 		else
2484 			return -EINVAL;
2485 	}
2486 
2487 	if (virt_dev->udev != udev) {
2488 		/* If the virt_dev and the udev does not match, this virt_dev
2489 		 * may belong to another udev.
2490 		 * Re-allocate the device.
2491 		 */
2492 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2493 				"not match the udev. Re-allocate the device\n",
2494 				slot_id);
2495 		ret = xhci_alloc_dev(hcd, udev);
2496 		if (ret == 1)
2497 			return 0;
2498 		else
2499 			return -EINVAL;
2500 	}
2501 
2502 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
2503 	/* Allocate the command structure that holds the struct completion.
2504 	 * Assume we're in process context, since the normal device reset
2505 	 * process has to wait for the device anyway.  Storage devices are
2506 	 * reset as part of error handling, so use GFP_NOIO instead of
2507 	 * GFP_KERNEL.
2508 	 */
2509 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
2510 	if (!reset_device_cmd) {
2511 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
2512 		return -ENOMEM;
2513 	}
2514 
2515 	/* Attempt to submit the Reset Device command to the command ring */
2516 	spin_lock_irqsave(&xhci->lock, flags);
2517 	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
2518 
2519 	/* Enqueue pointer can be left pointing to the link TRB,
2520 	 * we must handle that
2521 	 */
2522 	if ((le32_to_cpu(reset_device_cmd->command_trb->link.control)
2523 	     & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK))
2524 		reset_device_cmd->command_trb =
2525 			xhci->cmd_ring->enq_seg->next->trbs;
2526 
2527 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
2528 	ret = xhci_queue_reset_device(xhci, slot_id);
2529 	if (ret) {
2530 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2531 		list_del(&reset_device_cmd->cmd_list);
2532 		spin_unlock_irqrestore(&xhci->lock, flags);
2533 		goto command_cleanup;
2534 	}
2535 	xhci_ring_cmd_db(xhci);
2536 	spin_unlock_irqrestore(&xhci->lock, flags);
2537 
2538 	/* Wait for the Reset Device command to finish */
2539 	timeleft = wait_for_completion_interruptible_timeout(
2540 			reset_device_cmd->completion,
2541 			USB_CTRL_SET_TIMEOUT);
2542 	if (timeleft <= 0) {
2543 		xhci_warn(xhci, "%s while waiting for reset device command\n",
2544 				timeleft == 0 ? "Timeout" : "Signal");
2545 		spin_lock_irqsave(&xhci->lock, flags);
2546 		/* The timeout might have raced with the event ring handler, so
2547 		 * only delete from the list if the item isn't poisoned.
2548 		 */
2549 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
2550 			list_del(&reset_device_cmd->cmd_list);
2551 		spin_unlock_irqrestore(&xhci->lock, flags);
2552 		ret = -ETIME;
2553 		goto command_cleanup;
2554 	}
2555 
2556 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
2557 	 * unless we tried to reset a slot ID that wasn't enabled,
2558 	 * or the device wasn't in the addressed or configured state.
2559 	 */
2560 	ret = reset_device_cmd->status;
2561 	switch (ret) {
2562 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
2563 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
2564 		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
2565 				slot_id,
2566 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
2567 		xhci_info(xhci, "Not freeing device rings.\n");
2568 		/* Don't treat this as an error.  May change my mind later. */
2569 		ret = 0;
2570 		goto command_cleanup;
2571 	case COMP_SUCCESS:
2572 		xhci_dbg(xhci, "Successful reset device command.\n");
2573 		break;
2574 	default:
2575 		if (xhci_is_vendor_info_code(xhci, ret))
2576 			break;
2577 		xhci_warn(xhci, "Unknown completion code %u for "
2578 				"reset device command.\n", ret);
2579 		ret = -EINVAL;
2580 		goto command_cleanup;
2581 	}
2582 
2583 	/* Free up host controller endpoint resources */
2584 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2585 		spin_lock_irqsave(&xhci->lock, flags);
2586 		/* Don't delete the default control endpoint resources */
2587 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
2588 		spin_unlock_irqrestore(&xhci->lock, flags);
2589 	}
2590 
2591 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
2592 	last_freed_endpoint = 1;
2593 	for (i = 1; i < 31; ++i) {
2594 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
2595 
2596 		if (ep->ep_state & EP_HAS_STREAMS) {
2597 			xhci_free_stream_info(xhci, ep->stream_info);
2598 			ep->stream_info = NULL;
2599 			ep->ep_state &= ~EP_HAS_STREAMS;
2600 		}
2601 
2602 		if (ep->ring) {
2603 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2604 			last_freed_endpoint = i;
2605 		}
2606 	}
2607 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
2608 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
2609 	ret = 0;
2610 
2611 command_cleanup:
2612 	xhci_free_command(xhci, reset_device_cmd);
2613 	return ret;
2614 }
2615 
2616 /*
2617  * At this point, the struct usb_device is about to go away, the device has
2618  * disconnected, and all traffic has been stopped and the endpoints have been
2619  * disabled.  Free any HC data structures associated with that device.
2620  */
2621 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
2622 {
2623 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2624 	struct xhci_virt_device *virt_dev;
2625 	unsigned long flags;
2626 	u32 state;
2627 	int i, ret;
2628 
2629 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2630 	if (ret <= 0)
2631 		return;
2632 
2633 	virt_dev = xhci->devs[udev->slot_id];
2634 
2635 	/* Stop any wayward timer functions (which may grab the lock) */
2636 	for (i = 0; i < 31; ++i) {
2637 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
2638 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
2639 	}
2640 
2641 	spin_lock_irqsave(&xhci->lock, flags);
2642 	/* Don't disable the slot if the host controller is dead. */
2643 	state = xhci_readl(xhci, &xhci->op_regs->status);
2644 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
2645 		xhci_free_virt_device(xhci, udev->slot_id);
2646 		spin_unlock_irqrestore(&xhci->lock, flags);
2647 		return;
2648 	}
2649 
2650 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
2651 		spin_unlock_irqrestore(&xhci->lock, flags);
2652 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2653 		return;
2654 	}
2655 	xhci_ring_cmd_db(xhci);
2656 	spin_unlock_irqrestore(&xhci->lock, flags);
2657 	/*
2658 	 * Event command completion handler will free any data structures
2659 	 * associated with the slot.  XXX Can free sleep?
2660 	 */
2661 }
2662 
2663 /*
2664  * Checks if we have enough host controller resources for the default control
2665  * endpoint.
2666  *
2667  * Must be called with xhci->lock held.
2668  */
2669 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
2670 {
2671 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
2672 		xhci_dbg(xhci, "Not enough ep ctxs: "
2673 				"%u active, need to add 1, limit is %u.\n",
2674 				xhci->num_active_eps, xhci->limit_active_eps);
2675 		return -ENOMEM;
2676 	}
2677 	xhci->num_active_eps += 1;
2678 	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
2679 			xhci->num_active_eps);
2680 	return 0;
2681 }
2682 
2683 
2684 /*
2685  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
2686  * timed out, or allocating memory failed.  Returns 1 on success.
2687  */
2688 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
2689 {
2690 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2691 	unsigned long flags;
2692 	int timeleft;
2693 	int ret;
2694 
2695 	spin_lock_irqsave(&xhci->lock, flags);
2696 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
2697 	if (ret) {
2698 		spin_unlock_irqrestore(&xhci->lock, flags);
2699 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2700 		return 0;
2701 	}
2702 	xhci_ring_cmd_db(xhci);
2703 	spin_unlock_irqrestore(&xhci->lock, flags);
2704 
2705 	/* XXX: how much time for xHC slot assignment? */
2706 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2707 			USB_CTRL_SET_TIMEOUT);
2708 	if (timeleft <= 0) {
2709 		xhci_warn(xhci, "%s while waiting for a slot\n",
2710 				timeleft == 0 ? "Timeout" : "Signal");
2711 		/* FIXME cancel the enable slot request */
2712 		return 0;
2713 	}
2714 
2715 	if (!xhci->slot_id) {
2716 		xhci_err(xhci, "Error while assigning device slot ID\n");
2717 		return 0;
2718 	}
2719 
2720 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2721 		spin_lock_irqsave(&xhci->lock, flags);
2722 		ret = xhci_reserve_host_control_ep_resources(xhci);
2723 		if (ret) {
2724 			spin_unlock_irqrestore(&xhci->lock, flags);
2725 			xhci_warn(xhci, "Not enough host resources, "
2726 					"active endpoint contexts = %u\n",
2727 					xhci->num_active_eps);
2728 			goto disable_slot;
2729 		}
2730 		spin_unlock_irqrestore(&xhci->lock, flags);
2731 	}
2732 	/* Use GFP_NOIO, since this function can be called from
2733 	 * xhci_discover_or_reset_device(), which may be called as part of
2734 	 * mass storage driver error handling.
2735 	 */
2736 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
2737 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
2738 		goto disable_slot;
2739 	}
2740 	udev->slot_id = xhci->slot_id;
2741 	/* Is this a LS or FS device under a HS hub? */
2742 	/* Hub or peripherial? */
2743 	return 1;
2744 
2745 disable_slot:
2746 	/* Disable slot, if we can do it without mem alloc */
2747 	spin_lock_irqsave(&xhci->lock, flags);
2748 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
2749 		xhci_ring_cmd_db(xhci);
2750 	spin_unlock_irqrestore(&xhci->lock, flags);
2751 	return 0;
2752 }
2753 
2754 /*
2755  * Issue an Address Device command (which will issue a SetAddress request to
2756  * the device).
2757  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
2758  * we should only issue and wait on one address command at the same time.
2759  *
2760  * We add one to the device address issued by the hardware because the USB core
2761  * uses address 1 for the root hubs (even though they're not really devices).
2762  */
2763 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
2764 {
2765 	unsigned long flags;
2766 	int timeleft;
2767 	struct xhci_virt_device *virt_dev;
2768 	int ret = 0;
2769 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2770 	struct xhci_slot_ctx *slot_ctx;
2771 	struct xhci_input_control_ctx *ctrl_ctx;
2772 	u64 temp_64;
2773 
2774 	if (!udev->slot_id) {
2775 		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
2776 		return -EINVAL;
2777 	}
2778 
2779 	virt_dev = xhci->devs[udev->slot_id];
2780 
2781 	if (WARN_ON(!virt_dev)) {
2782 		/*
2783 		 * In plug/unplug torture test with an NEC controller,
2784 		 * a zero-dereference was observed once due to virt_dev = 0.
2785 		 * Print useful debug rather than crash if it is observed again!
2786 		 */
2787 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
2788 			udev->slot_id);
2789 		return -EINVAL;
2790 	}
2791 
2792 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2793 	/*
2794 	 * If this is the first Set Address since device plug-in or
2795 	 * virt_device realloaction after a resume with an xHCI power loss,
2796 	 * then set up the slot context.
2797 	 */
2798 	if (!slot_ctx->dev_info)
2799 		xhci_setup_addressable_virt_dev(xhci, udev);
2800 	/* Otherwise, update the control endpoint ring enqueue pointer. */
2801 	else
2802 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
2803 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2804 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2805 
2806 	spin_lock_irqsave(&xhci->lock, flags);
2807 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
2808 					udev->slot_id);
2809 	if (ret) {
2810 		spin_unlock_irqrestore(&xhci->lock, flags);
2811 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2812 		return ret;
2813 	}
2814 	xhci_ring_cmd_db(xhci);
2815 	spin_unlock_irqrestore(&xhci->lock, flags);
2816 
2817 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
2818 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2819 			USB_CTRL_SET_TIMEOUT);
2820 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
2821 	 * the SetAddress() "recovery interval" required by USB and aborting the
2822 	 * command on a timeout.
2823 	 */
2824 	if (timeleft <= 0) {
2825 		xhci_warn(xhci, "%s while waiting for a slot\n",
2826 				timeleft == 0 ? "Timeout" : "Signal");
2827 		/* FIXME cancel the address device command */
2828 		return -ETIME;
2829 	}
2830 
2831 	switch (virt_dev->cmd_status) {
2832 	case COMP_CTX_STATE:
2833 	case COMP_EBADSLT:
2834 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
2835 				udev->slot_id);
2836 		ret = -EINVAL;
2837 		break;
2838 	case COMP_TX_ERR:
2839 		dev_warn(&udev->dev, "Device not responding to set address.\n");
2840 		ret = -EPROTO;
2841 		break;
2842 	case COMP_SUCCESS:
2843 		xhci_dbg(xhci, "Successful Address Device command\n");
2844 		break;
2845 	default:
2846 		xhci_err(xhci, "ERROR: unexpected command completion "
2847 				"code 0x%x.\n", virt_dev->cmd_status);
2848 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2849 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2850 		ret = -EINVAL;
2851 		break;
2852 	}
2853 	if (ret) {
2854 		return ret;
2855 	}
2856 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
2857 	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
2858 	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
2859 		 udev->slot_id,
2860 		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
2861 		 (unsigned long long)
2862 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
2863 	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
2864 			(unsigned long long)virt_dev->out_ctx->dma);
2865 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2866 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2867 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2868 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2869 	/*
2870 	 * USB core uses address 1 for the roothubs, so we add one to the
2871 	 * address given back to us by the HC.
2872 	 */
2873 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2874 	/* Use kernel assigned address for devices; store xHC assigned
2875 	 * address locally. */
2876 	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
2877 		+ 1;
2878 	/* Zero the input context control for later use */
2879 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2880 	ctrl_ctx->add_flags = 0;
2881 	ctrl_ctx->drop_flags = 0;
2882 
2883 	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
2884 
2885 	return 0;
2886 }
2887 
2888 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
2889  * internal data structures for the device.
2890  */
2891 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
2892 			struct usb_tt *tt, gfp_t mem_flags)
2893 {
2894 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2895 	struct xhci_virt_device *vdev;
2896 	struct xhci_command *config_cmd;
2897 	struct xhci_input_control_ctx *ctrl_ctx;
2898 	struct xhci_slot_ctx *slot_ctx;
2899 	unsigned long flags;
2900 	unsigned think_time;
2901 	int ret;
2902 
2903 	/* Ignore root hubs */
2904 	if (!hdev->parent)
2905 		return 0;
2906 
2907 	vdev = xhci->devs[hdev->slot_id];
2908 	if (!vdev) {
2909 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
2910 		return -EINVAL;
2911 	}
2912 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2913 	if (!config_cmd) {
2914 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2915 		return -ENOMEM;
2916 	}
2917 
2918 	spin_lock_irqsave(&xhci->lock, flags);
2919 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
2920 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
2921 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2922 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
2923 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
2924 	if (tt->multi)
2925 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
2926 	if (xhci->hci_version > 0x95) {
2927 		xhci_dbg(xhci, "xHCI version %x needs hub "
2928 				"TT think time and number of ports\n",
2929 				(unsigned int) xhci->hci_version);
2930 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
2931 		/* Set TT think time - convert from ns to FS bit times.
2932 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
2933 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
2934 		 *
2935 		 * xHCI 1.0: this field shall be 0 if the device is not a
2936 		 * High-spped hub.
2937 		 */
2938 		think_time = tt->think_time;
2939 		if (think_time != 0)
2940 			think_time = (think_time / 666) - 1;
2941 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
2942 			slot_ctx->tt_info |=
2943 				cpu_to_le32(TT_THINK_TIME(think_time));
2944 	} else {
2945 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
2946 				"TT think time or number of ports\n",
2947 				(unsigned int) xhci->hci_version);
2948 	}
2949 	slot_ctx->dev_state = 0;
2950 	spin_unlock_irqrestore(&xhci->lock, flags);
2951 
2952 	xhci_dbg(xhci, "Set up %s for hub device.\n",
2953 			(xhci->hci_version > 0x95) ?
2954 			"configure endpoint" : "evaluate context");
2955 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
2956 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
2957 
2958 	/* Issue and wait for the configure endpoint or
2959 	 * evaluate context command.
2960 	 */
2961 	if (xhci->hci_version > 0x95)
2962 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
2963 				false, false);
2964 	else
2965 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
2966 				true, false);
2967 
2968 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
2969 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
2970 
2971 	xhci_free_command(xhci, config_cmd);
2972 	return ret;
2973 }
2974 
2975 int xhci_get_frame(struct usb_hcd *hcd)
2976 {
2977 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2978 	/* EHCI mods by the periodic size.  Why? */
2979 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
2980 }
2981 
2982 MODULE_DESCRIPTION(DRIVER_DESC);
2983 MODULE_AUTHOR(DRIVER_AUTHOR);
2984 MODULE_LICENSE("GPL");
2985 
2986 static int __init xhci_hcd_init(void)
2987 {
2988 #ifdef CONFIG_PCI
2989 	int retval = 0;
2990 
2991 	retval = xhci_register_pci();
2992 
2993 	if (retval < 0) {
2994 		printk(KERN_DEBUG "Problem registering PCI driver.");
2995 		return retval;
2996 	}
2997 #endif
2998 	/*
2999 	 * Check the compiler generated sizes of structures that must be laid
3000 	 * out in specific ways for hardware access.
3001 	 */
3002 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3003 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
3004 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
3005 	/* xhci_device_control has eight fields, and also
3006 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
3007 	 */
3008 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
3009 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
3010 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
3011 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
3012 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
3013 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
3014 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
3015 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3016 	return 0;
3017 }
3018 module_init(xhci_hcd_init);
3019 
3020 static void __exit xhci_hcd_cleanup(void)
3021 {
3022 #ifdef CONFIG_PCI
3023 	xhci_unregister_pci();
3024 #endif
3025 }
3026 module_exit(xhci_hcd_cleanup);
3027