1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 41 { 42 struct xhci_segment *seg = ring->first_seg; 43 44 if (!td || !td->start_seg) 45 return false; 46 do { 47 if (seg == td->start_seg) 48 return true; 49 seg = seg->next; 50 } while (seg && seg != ring->first_seg); 51 52 return false; 53 } 54 55 /* 56 * xhci_handshake - spin reading hc until handshake completes or fails 57 * @ptr: address of hc register to be read 58 * @mask: bits to look at in result of read 59 * @done: value of those bits when handshake succeeds 60 * @usec: timeout in microseconds 61 * 62 * Returns negative errno, or zero on success 63 * 64 * Success happens when the "mask" bits have the specified value (hardware 65 * handshake done). There are two failure modes: "usec" have passed (major 66 * hardware flakeout), or the register reads as all-ones (hardware removed). 67 */ 68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 69 { 70 u32 result; 71 int ret; 72 73 ret = readl_poll_timeout_atomic(ptr, result, 74 (result & mask) == done || 75 result == U32_MAX, 76 1, timeout_us); 77 if (result == U32_MAX) /* card removed */ 78 return -ENODEV; 79 80 return ret; 81 } 82 83 /* 84 * Disable interrupts and begin the xHCI halting process. 85 */ 86 void xhci_quiesce(struct xhci_hcd *xhci) 87 { 88 u32 halted; 89 u32 cmd; 90 u32 mask; 91 92 mask = ~(XHCI_IRQS); 93 halted = readl(&xhci->op_regs->status) & STS_HALT; 94 if (!halted) 95 mask &= ~CMD_RUN; 96 97 cmd = readl(&xhci->op_regs->command); 98 cmd &= mask; 99 writel(cmd, &xhci->op_regs->command); 100 } 101 102 /* 103 * Force HC into halt state. 104 * 105 * Disable any IRQs and clear the run/stop bit. 106 * HC will complete any current and actively pipelined transactions, and 107 * should halt within 16 ms of the run/stop bit being cleared. 108 * Read HC Halted bit in the status register to see when the HC is finished. 109 */ 110 int xhci_halt(struct xhci_hcd *xhci) 111 { 112 int ret; 113 114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 115 xhci_quiesce(xhci); 116 117 ret = xhci_handshake(&xhci->op_regs->status, 118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 119 if (ret) { 120 xhci_warn(xhci, "Host halt failed, %d\n", ret); 121 return ret; 122 } 123 124 xhci->xhc_state |= XHCI_STATE_HALTED; 125 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 126 127 return ret; 128 } 129 130 /* 131 * Set the run bit and wait for the host to be running. 132 */ 133 int xhci_start(struct xhci_hcd *xhci) 134 { 135 u32 temp; 136 int ret; 137 138 temp = readl(&xhci->op_regs->command); 139 temp |= (CMD_RUN); 140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 141 temp); 142 writel(temp, &xhci->op_regs->command); 143 144 /* 145 * Wait for the HCHalted Status bit to be 0 to indicate the host is 146 * running. 147 */ 148 ret = xhci_handshake(&xhci->op_regs->status, 149 STS_HALT, 0, XHCI_MAX_HALT_USEC); 150 if (ret == -ETIMEDOUT) 151 xhci_err(xhci, "Host took too long to start, " 152 "waited %u microseconds.\n", 153 XHCI_MAX_HALT_USEC); 154 if (!ret) { 155 /* clear state flags. Including dying, halted or removing */ 156 xhci->xhc_state = 0; 157 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 158 } 159 160 return ret; 161 } 162 163 /* 164 * Reset a halted HC. 165 * 166 * This resets pipelines, timers, counters, state machines, etc. 167 * Transactions will be terminated immediately, and operational registers 168 * will be set to their defaults. 169 */ 170 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 171 { 172 u32 command; 173 u32 state; 174 int ret; 175 176 state = readl(&xhci->op_regs->status); 177 178 if (state == ~(u32)0) { 179 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 180 return -ENODEV; 181 } 182 183 if ((state & STS_HALT) == 0) { 184 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 185 return 0; 186 } 187 188 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 189 command = readl(&xhci->op_regs->command); 190 command |= CMD_RESET; 191 writel(command, &xhci->op_regs->command); 192 193 /* Existing Intel xHCI controllers require a delay of 1 mS, 194 * after setting the CMD_RESET bit, and before accessing any 195 * HC registers. This allows the HC to complete the 196 * reset operation and be ready for HC register access. 197 * Without this delay, the subsequent HC register access, 198 * may result in a system hang very rarely. 199 */ 200 if (xhci->quirks & XHCI_INTEL_HOST) 201 udelay(1000); 202 203 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us); 204 if (ret) 205 return ret; 206 207 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 208 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 209 210 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 211 "Wait for controller to be ready for doorbell rings"); 212 /* 213 * xHCI cannot write to any doorbells or operational registers other 214 * than status until the "Controller Not Ready" flag is cleared. 215 */ 216 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 217 218 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 219 xhci->usb2_rhub.bus_state.suspended_ports = 0; 220 xhci->usb2_rhub.bus_state.resuming_ports = 0; 221 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 222 xhci->usb3_rhub.bus_state.suspended_ports = 0; 223 xhci->usb3_rhub.bus_state.resuming_ports = 0; 224 225 return ret; 226 } 227 228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 229 { 230 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 231 int err, i; 232 u64 val; 233 u32 intrs; 234 235 /* 236 * Some Renesas controllers get into a weird state if they are 237 * reset while programmed with 64bit addresses (they will preserve 238 * the top half of the address in internal, non visible 239 * registers). You end up with half the address coming from the 240 * kernel, and the other half coming from the firmware. Also, 241 * changing the programming leads to extra accesses even if the 242 * controller is supposed to be halted. The controller ends up with 243 * a fatal fault, and is then ripe for being properly reset. 244 * 245 * Special care is taken to only apply this if the device is behind 246 * an iommu. Doing anything when there is no iommu is definitely 247 * unsafe... 248 */ 249 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 250 return; 251 252 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 253 254 /* Clear HSEIE so that faults do not get signaled */ 255 val = readl(&xhci->op_regs->command); 256 val &= ~CMD_HSEIE; 257 writel(val, &xhci->op_regs->command); 258 259 /* Clear HSE (aka FATAL) */ 260 val = readl(&xhci->op_regs->status); 261 val |= STS_FATAL; 262 writel(val, &xhci->op_regs->status); 263 264 /* Now zero the registers, and brace for impact */ 265 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 266 if (upper_32_bits(val)) 267 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 268 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 269 if (upper_32_bits(val)) 270 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 271 272 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 273 ARRAY_SIZE(xhci->run_regs->ir_set)); 274 275 for (i = 0; i < intrs; i++) { 276 struct xhci_intr_reg __iomem *ir; 277 278 ir = &xhci->run_regs->ir_set[i]; 279 val = xhci_read_64(xhci, &ir->erst_base); 280 if (upper_32_bits(val)) 281 xhci_write_64(xhci, 0, &ir->erst_base); 282 val= xhci_read_64(xhci, &ir->erst_dequeue); 283 if (upper_32_bits(val)) 284 xhci_write_64(xhci, 0, &ir->erst_dequeue); 285 } 286 287 /* Wait for the fault to appear. It will be cleared on reset */ 288 err = xhci_handshake(&xhci->op_regs->status, 289 STS_FATAL, STS_FATAL, 290 XHCI_MAX_HALT_USEC); 291 if (!err) 292 xhci_info(xhci, "Fault detected\n"); 293 } 294 295 static int xhci_enable_interrupter(struct xhci_interrupter *ir) 296 { 297 u32 iman; 298 299 if (!ir || !ir->ir_set) 300 return -EINVAL; 301 302 iman = readl(&ir->ir_set->irq_pending); 303 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending); 304 305 return 0; 306 } 307 308 static int xhci_disable_interrupter(struct xhci_interrupter *ir) 309 { 310 u32 iman; 311 312 if (!ir || !ir->ir_set) 313 return -EINVAL; 314 315 iman = readl(&ir->ir_set->irq_pending); 316 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending); 317 318 return 0; 319 } 320 321 #ifdef CONFIG_USB_PCI 322 /* 323 * Set up MSI 324 */ 325 static int xhci_setup_msi(struct xhci_hcd *xhci) 326 { 327 int ret; 328 /* 329 * TODO:Check with MSI Soc for sysdev 330 */ 331 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 332 333 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 334 if (ret < 0) { 335 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 336 "failed to allocate MSI entry"); 337 return ret; 338 } 339 340 ret = request_irq(pdev->irq, xhci_msi_irq, 341 0, "xhci_hcd", xhci_to_hcd(xhci)); 342 if (ret) { 343 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 344 "disable MSI interrupt"); 345 pci_free_irq_vectors(pdev); 346 } 347 348 return ret; 349 } 350 351 /* 352 * Set up MSI-X 353 */ 354 static int xhci_setup_msix(struct xhci_hcd *xhci) 355 { 356 int i, ret; 357 struct usb_hcd *hcd = xhci_to_hcd(xhci); 358 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 359 360 /* 361 * calculate number of msi-x vectors supported. 362 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 363 * with max number of interrupters based on the xhci HCSPARAMS1. 364 * - num_online_cpus: maximum msi-x vectors per CPUs core. 365 * Add additional 1 vector to ensure always available interrupt. 366 */ 367 xhci->msix_count = min(num_online_cpus() + 1, 368 HCS_MAX_INTRS(xhci->hcs_params1)); 369 370 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 371 PCI_IRQ_MSIX); 372 if (ret < 0) { 373 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 374 "Failed to enable MSI-X"); 375 return ret; 376 } 377 378 for (i = 0; i < xhci->msix_count; i++) { 379 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 380 "xhci_hcd", xhci_to_hcd(xhci)); 381 if (ret) 382 goto disable_msix; 383 } 384 385 hcd->msix_enabled = 1; 386 return ret; 387 388 disable_msix: 389 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 390 while (--i >= 0) 391 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 392 pci_free_irq_vectors(pdev); 393 return ret; 394 } 395 396 /* Free any IRQs and disable MSI-X */ 397 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 398 { 399 struct usb_hcd *hcd = xhci_to_hcd(xhci); 400 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 401 402 if (xhci->quirks & XHCI_PLAT) 403 return; 404 405 /* return if using legacy interrupt */ 406 if (hcd->irq > 0) 407 return; 408 409 if (hcd->msix_enabled) { 410 int i; 411 412 for (i = 0; i < xhci->msix_count; i++) 413 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 414 } else { 415 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 416 } 417 418 pci_free_irq_vectors(pdev); 419 hcd->msix_enabled = 0; 420 } 421 422 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 423 { 424 struct usb_hcd *hcd = xhci_to_hcd(xhci); 425 426 if (hcd->msix_enabled) { 427 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 428 int i; 429 430 for (i = 0; i < xhci->msix_count; i++) 431 synchronize_irq(pci_irq_vector(pdev, i)); 432 } 433 } 434 435 static int xhci_try_enable_msi(struct usb_hcd *hcd) 436 { 437 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 438 struct pci_dev *pdev; 439 int ret; 440 441 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 442 if (xhci->quirks & XHCI_PLAT) 443 return 0; 444 445 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 446 /* 447 * Some Fresco Logic host controllers advertise MSI, but fail to 448 * generate interrupts. Don't even try to enable MSI. 449 */ 450 if (xhci->quirks & XHCI_BROKEN_MSI) 451 goto legacy_irq; 452 453 /* unregister the legacy interrupt */ 454 if (hcd->irq) 455 free_irq(hcd->irq, hcd); 456 hcd->irq = 0; 457 458 ret = xhci_setup_msix(xhci); 459 if (ret) 460 /* fall back to msi*/ 461 ret = xhci_setup_msi(xhci); 462 463 if (!ret) { 464 hcd->msi_enabled = 1; 465 return 0; 466 } 467 468 if (!pdev->irq) { 469 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 470 return -EINVAL; 471 } 472 473 legacy_irq: 474 if (!strlen(hcd->irq_descr)) 475 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 476 hcd->driver->description, hcd->self.busnum); 477 478 /* fall back to legacy interrupt*/ 479 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 480 hcd->irq_descr, hcd); 481 if (ret) { 482 xhci_err(xhci, "request interrupt %d failed\n", 483 pdev->irq); 484 return ret; 485 } 486 hcd->irq = pdev->irq; 487 return 0; 488 } 489 490 #else 491 492 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 493 { 494 return 0; 495 } 496 497 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 498 { 499 } 500 501 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 502 { 503 } 504 505 #endif 506 507 static void compliance_mode_recovery(struct timer_list *t) 508 { 509 struct xhci_hcd *xhci; 510 struct usb_hcd *hcd; 511 struct xhci_hub *rhub; 512 u32 temp; 513 int i; 514 515 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 516 rhub = &xhci->usb3_rhub; 517 hcd = rhub->hcd; 518 519 if (!hcd) 520 return; 521 522 for (i = 0; i < rhub->num_ports; i++) { 523 temp = readl(rhub->ports[i]->addr); 524 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 525 /* 526 * Compliance Mode Detected. Letting USB Core 527 * handle the Warm Reset 528 */ 529 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 530 "Compliance mode detected->port %d", 531 i + 1); 532 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 533 "Attempting compliance mode recovery"); 534 535 if (hcd->state == HC_STATE_SUSPENDED) 536 usb_hcd_resume_root_hub(hcd); 537 538 usb_hcd_poll_rh_status(hcd); 539 } 540 } 541 542 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 543 mod_timer(&xhci->comp_mode_recovery_timer, 544 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 545 } 546 547 /* 548 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 549 * that causes ports behind that hardware to enter compliance mode sometimes. 550 * The quirk creates a timer that polls every 2 seconds the link state of 551 * each host controller's port and recovers it by issuing a Warm reset 552 * if Compliance mode is detected, otherwise the port will become "dead" (no 553 * device connections or disconnections will be detected anymore). Becasue no 554 * status event is generated when entering compliance mode (per xhci spec), 555 * this quirk is needed on systems that have the failing hardware installed. 556 */ 557 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 558 { 559 xhci->port_status_u0 = 0; 560 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 561 0); 562 xhci->comp_mode_recovery_timer.expires = jiffies + 563 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 564 565 add_timer(&xhci->comp_mode_recovery_timer); 566 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 567 "Compliance mode recovery timer initialized"); 568 } 569 570 /* 571 * This function identifies the systems that have installed the SN65LVPE502CP 572 * USB3.0 re-driver and that need the Compliance Mode Quirk. 573 * Systems: 574 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 575 */ 576 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 577 { 578 const char *dmi_product_name, *dmi_sys_vendor; 579 580 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 581 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 582 if (!dmi_product_name || !dmi_sys_vendor) 583 return false; 584 585 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 586 return false; 587 588 if (strstr(dmi_product_name, "Z420") || 589 strstr(dmi_product_name, "Z620") || 590 strstr(dmi_product_name, "Z820") || 591 strstr(dmi_product_name, "Z1 Workstation")) 592 return true; 593 594 return false; 595 } 596 597 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 598 { 599 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 600 } 601 602 603 /* 604 * Initialize memory for HCD and xHC (one-time init). 605 * 606 * Program the PAGESIZE register, initialize the device context array, create 607 * device contexts (?), set up a command ring segment (or two?), create event 608 * ring (one for now). 609 */ 610 static int xhci_init(struct usb_hcd *hcd) 611 { 612 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 613 int retval; 614 615 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 616 spin_lock_init(&xhci->lock); 617 if (xhci->hci_version == 0x95 && link_quirk) { 618 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 619 "QUIRK: Not clearing Link TRB chain bits."); 620 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 621 } else { 622 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 623 "xHCI doesn't need link TRB QUIRK"); 624 } 625 retval = xhci_mem_init(xhci, GFP_KERNEL); 626 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 627 628 /* Initializing Compliance Mode Recovery Data If Needed */ 629 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 630 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 631 compliance_mode_recovery_timer_init(xhci); 632 } 633 634 return retval; 635 } 636 637 /*-------------------------------------------------------------------------*/ 638 639 static int xhci_run_finished(struct xhci_hcd *xhci) 640 { 641 struct xhci_interrupter *ir = xhci->interrupter; 642 unsigned long flags; 643 u32 temp; 644 645 /* 646 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 647 * Protect the short window before host is running with a lock 648 */ 649 spin_lock_irqsave(&xhci->lock, flags); 650 651 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 652 temp = readl(&xhci->op_regs->command); 653 temp |= (CMD_EIE); 654 writel(temp, &xhci->op_regs->command); 655 656 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 657 xhci_enable_interrupter(ir); 658 659 if (xhci_start(xhci)) { 660 xhci_halt(xhci); 661 spin_unlock_irqrestore(&xhci->lock, flags); 662 return -ENODEV; 663 } 664 665 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 666 667 if (xhci->quirks & XHCI_NEC_HOST) 668 xhci_ring_cmd_db(xhci); 669 670 spin_unlock_irqrestore(&xhci->lock, flags); 671 672 return 0; 673 } 674 675 /* 676 * Start the HC after it was halted. 677 * 678 * This function is called by the USB core when the HC driver is added. 679 * Its opposite is xhci_stop(). 680 * 681 * xhci_init() must be called once before this function can be called. 682 * Reset the HC, enable device slot contexts, program DCBAAP, and 683 * set command ring pointer and event ring pointer. 684 * 685 * Setup MSI-X vectors and enable interrupts. 686 */ 687 int xhci_run(struct usb_hcd *hcd) 688 { 689 u32 temp; 690 u64 temp_64; 691 int ret; 692 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 693 struct xhci_interrupter *ir = xhci->interrupter; 694 /* Start the xHCI host controller running only after the USB 2.0 roothub 695 * is setup. 696 */ 697 698 hcd->uses_new_polling = 1; 699 if (!usb_hcd_is_primary_hcd(hcd)) 700 return xhci_run_finished(xhci); 701 702 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 703 704 ret = xhci_try_enable_msi(hcd); 705 if (ret) 706 return ret; 707 708 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 709 temp_64 &= ~ERST_PTR_MASK; 710 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 711 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 712 713 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 714 "// Set the interrupt modulation register"); 715 temp = readl(&ir->ir_set->irq_control); 716 temp &= ~ER_IRQ_INTERVAL_MASK; 717 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 718 writel(temp, &ir->ir_set->irq_control); 719 720 if (xhci->quirks & XHCI_NEC_HOST) { 721 struct xhci_command *command; 722 723 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 724 if (!command) 725 return -ENOMEM; 726 727 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 728 TRB_TYPE(TRB_NEC_GET_FW)); 729 if (ret) 730 xhci_free_command(xhci, command); 731 } 732 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 733 "Finished %s for main hcd", __func__); 734 735 xhci_create_dbc_dev(xhci); 736 737 xhci_debugfs_init(xhci); 738 739 if (xhci_has_one_roothub(xhci)) 740 return xhci_run_finished(xhci); 741 742 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 743 744 return 0; 745 } 746 EXPORT_SYMBOL_GPL(xhci_run); 747 748 /* 749 * Stop xHCI driver. 750 * 751 * This function is called by the USB core when the HC driver is removed. 752 * Its opposite is xhci_run(). 753 * 754 * Disable device contexts, disable IRQs, and quiesce the HC. 755 * Reset the HC, finish any completed transactions, and cleanup memory. 756 */ 757 static void xhci_stop(struct usb_hcd *hcd) 758 { 759 u32 temp; 760 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 761 struct xhci_interrupter *ir = xhci->interrupter; 762 763 mutex_lock(&xhci->mutex); 764 765 /* Only halt host and free memory after both hcds are removed */ 766 if (!usb_hcd_is_primary_hcd(hcd)) { 767 mutex_unlock(&xhci->mutex); 768 return; 769 } 770 771 xhci_remove_dbc_dev(xhci); 772 773 spin_lock_irq(&xhci->lock); 774 xhci->xhc_state |= XHCI_STATE_HALTED; 775 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 776 xhci_halt(xhci); 777 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 778 spin_unlock_irq(&xhci->lock); 779 780 xhci_cleanup_msix(xhci); 781 782 /* Deleting Compliance Mode Recovery Timer */ 783 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 784 (!(xhci_all_ports_seen_u0(xhci)))) { 785 del_timer_sync(&xhci->comp_mode_recovery_timer); 786 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 787 "%s: compliance mode recovery timer deleted", 788 __func__); 789 } 790 791 if (xhci->quirks & XHCI_AMD_PLL_FIX) 792 usb_amd_dev_put(); 793 794 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 795 "// Disabling event ring interrupts"); 796 temp = readl(&xhci->op_regs->status); 797 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 798 xhci_disable_interrupter(ir); 799 800 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 801 xhci_mem_cleanup(xhci); 802 xhci_debugfs_exit(xhci); 803 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 804 "xhci_stop completed - status = %x", 805 readl(&xhci->op_regs->status)); 806 mutex_unlock(&xhci->mutex); 807 } 808 809 /* 810 * Shutdown HC (not bus-specific) 811 * 812 * This is called when the machine is rebooting or halting. We assume that the 813 * machine will be powered off, and the HC's internal state will be reset. 814 * Don't bother to free memory. 815 * 816 * This will only ever be called with the main usb_hcd (the USB3 roothub). 817 */ 818 void xhci_shutdown(struct usb_hcd *hcd) 819 { 820 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 821 822 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 823 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 824 825 /* Don't poll the roothubs after shutdown. */ 826 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 827 __func__, hcd->self.busnum); 828 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 829 del_timer_sync(&hcd->rh_timer); 830 831 if (xhci->shared_hcd) { 832 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 833 del_timer_sync(&xhci->shared_hcd->rh_timer); 834 } 835 836 spin_lock_irq(&xhci->lock); 837 xhci_halt(xhci); 838 839 /* 840 * Workaround for spurious wakeps at shutdown with HSW, and for boot 841 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 842 */ 843 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 844 xhci->quirks & XHCI_RESET_TO_DEFAULT) 845 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 846 847 spin_unlock_irq(&xhci->lock); 848 849 xhci_cleanup_msix(xhci); 850 851 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 852 "xhci_shutdown completed - status = %x", 853 readl(&xhci->op_regs->status)); 854 } 855 EXPORT_SYMBOL_GPL(xhci_shutdown); 856 857 #ifdef CONFIG_PM 858 static void xhci_save_registers(struct xhci_hcd *xhci) 859 { 860 struct xhci_interrupter *ir = xhci->interrupter; 861 862 xhci->s3.command = readl(&xhci->op_regs->command); 863 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 864 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 865 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 866 867 if (!ir) 868 return; 869 870 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 871 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 872 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 873 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending); 874 ir->s3_irq_control = readl(&ir->ir_set->irq_control); 875 } 876 877 static void xhci_restore_registers(struct xhci_hcd *xhci) 878 { 879 struct xhci_interrupter *ir = xhci->interrupter; 880 881 writel(xhci->s3.command, &xhci->op_regs->command); 882 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 883 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 884 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 885 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 886 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 887 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 888 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending); 889 writel(ir->s3_irq_control, &ir->ir_set->irq_control); 890 } 891 892 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 893 { 894 u64 val_64; 895 896 /* step 2: initialize command ring buffer */ 897 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 898 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 899 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 900 xhci->cmd_ring->dequeue) & 901 (u64) ~CMD_RING_RSVD_BITS) | 902 xhci->cmd_ring->cycle_state; 903 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 904 "// Setting command ring address to 0x%llx", 905 (long unsigned long) val_64); 906 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 907 } 908 909 /* 910 * The whole command ring must be cleared to zero when we suspend the host. 911 * 912 * The host doesn't save the command ring pointer in the suspend well, so we 913 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 914 * aligned, because of the reserved bits in the command ring dequeue pointer 915 * register. Therefore, we can't just set the dequeue pointer back in the 916 * middle of the ring (TRBs are 16-byte aligned). 917 */ 918 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 919 { 920 struct xhci_ring *ring; 921 struct xhci_segment *seg; 922 923 ring = xhci->cmd_ring; 924 seg = ring->deq_seg; 925 do { 926 memset(seg->trbs, 0, 927 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 928 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 929 cpu_to_le32(~TRB_CYCLE); 930 seg = seg->next; 931 } while (seg != ring->deq_seg); 932 933 /* Reset the software enqueue and dequeue pointers */ 934 ring->deq_seg = ring->first_seg; 935 ring->dequeue = ring->first_seg->trbs; 936 ring->enq_seg = ring->deq_seg; 937 ring->enqueue = ring->dequeue; 938 939 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 940 /* 941 * Ring is now zeroed, so the HW should look for change of ownership 942 * when the cycle bit is set to 1. 943 */ 944 ring->cycle_state = 1; 945 946 /* 947 * Reset the hardware dequeue pointer. 948 * Yes, this will need to be re-written after resume, but we're paranoid 949 * and want to make sure the hardware doesn't access bogus memory 950 * because, say, the BIOS or an SMI started the host without changing 951 * the command ring pointers. 952 */ 953 xhci_set_cmd_ring_deq(xhci); 954 } 955 956 /* 957 * Disable port wake bits if do_wakeup is not set. 958 * 959 * Also clear a possible internal port wake state left hanging for ports that 960 * detected termination but never successfully enumerated (trained to 0U). 961 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 962 * at enumeration clears this wake, force one here as well for unconnected ports 963 */ 964 965 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 966 struct xhci_hub *rhub, 967 bool do_wakeup) 968 { 969 unsigned long flags; 970 u32 t1, t2, portsc; 971 int i; 972 973 spin_lock_irqsave(&xhci->lock, flags); 974 975 for (i = 0; i < rhub->num_ports; i++) { 976 portsc = readl(rhub->ports[i]->addr); 977 t1 = xhci_port_state_to_neutral(portsc); 978 t2 = t1; 979 980 /* clear wake bits if do_wake is not set */ 981 if (!do_wakeup) 982 t2 &= ~PORT_WAKE_BITS; 983 984 /* Don't touch csc bit if connected or connect change is set */ 985 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 986 t2 |= PORT_CSC; 987 988 if (t1 != t2) { 989 writel(t2, rhub->ports[i]->addr); 990 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 991 rhub->hcd->self.busnum, i + 1, portsc, t2); 992 } 993 } 994 spin_unlock_irqrestore(&xhci->lock, flags); 995 } 996 997 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 998 { 999 struct xhci_port **ports; 1000 int port_index; 1001 u32 status; 1002 u32 portsc; 1003 1004 status = readl(&xhci->op_regs->status); 1005 if (status & STS_EINT) 1006 return true; 1007 /* 1008 * Checking STS_EINT is not enough as there is a lag between a change 1009 * bit being set and the Port Status Change Event that it generated 1010 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 1011 */ 1012 1013 port_index = xhci->usb2_rhub.num_ports; 1014 ports = xhci->usb2_rhub.ports; 1015 while (port_index--) { 1016 portsc = readl(ports[port_index]->addr); 1017 if (portsc & PORT_CHANGE_MASK || 1018 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 1019 return true; 1020 } 1021 port_index = xhci->usb3_rhub.num_ports; 1022 ports = xhci->usb3_rhub.ports; 1023 while (port_index--) { 1024 portsc = readl(ports[port_index]->addr); 1025 if (portsc & PORT_CHANGE_MASK || 1026 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 1027 return true; 1028 } 1029 return false; 1030 } 1031 1032 /* 1033 * Stop HC (not bus-specific) 1034 * 1035 * This is called when the machine transition into S3/S4 mode. 1036 * 1037 */ 1038 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 1039 { 1040 int rc = 0; 1041 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 1042 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1043 u32 command; 1044 u32 res; 1045 1046 if (!hcd->state) 1047 return 0; 1048 1049 if (hcd->state != HC_STATE_SUSPENDED || 1050 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 1051 return -EINVAL; 1052 1053 /* Clear root port wake on bits if wakeup not allowed. */ 1054 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 1055 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 1056 1057 if (!HCD_HW_ACCESSIBLE(hcd)) 1058 return 0; 1059 1060 xhci_dbc_suspend(xhci); 1061 1062 /* Don't poll the roothubs on bus suspend. */ 1063 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 1064 __func__, hcd->self.busnum); 1065 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1066 del_timer_sync(&hcd->rh_timer); 1067 if (xhci->shared_hcd) { 1068 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1069 del_timer_sync(&xhci->shared_hcd->rh_timer); 1070 } 1071 1072 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1073 usleep_range(1000, 1500); 1074 1075 spin_lock_irq(&xhci->lock); 1076 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1077 if (xhci->shared_hcd) 1078 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1079 /* step 1: stop endpoint */ 1080 /* skipped assuming that port suspend has done */ 1081 1082 /* step 2: clear Run/Stop bit */ 1083 command = readl(&xhci->op_regs->command); 1084 command &= ~CMD_RUN; 1085 writel(command, &xhci->op_regs->command); 1086 1087 /* Some chips from Fresco Logic need an extraordinary delay */ 1088 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1089 1090 if (xhci_handshake(&xhci->op_regs->status, 1091 STS_HALT, STS_HALT, delay)) { 1092 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1093 spin_unlock_irq(&xhci->lock); 1094 return -ETIMEDOUT; 1095 } 1096 xhci_clear_command_ring(xhci); 1097 1098 /* step 3: save registers */ 1099 xhci_save_registers(xhci); 1100 1101 /* step 4: set CSS flag */ 1102 command = readl(&xhci->op_regs->command); 1103 command |= CMD_CSS; 1104 writel(command, &xhci->op_regs->command); 1105 xhci->broken_suspend = 0; 1106 if (xhci_handshake(&xhci->op_regs->status, 1107 STS_SAVE, 0, 20 * 1000)) { 1108 /* 1109 * AMD SNPS xHC 3.0 occasionally does not clear the 1110 * SSS bit of USBSTS and when driver tries to poll 1111 * to see if the xHC clears BIT(8) which never happens 1112 * and driver assumes that controller is not responding 1113 * and times out. To workaround this, its good to check 1114 * if SRE and HCE bits are not set (as per xhci 1115 * Section 5.4.2) and bypass the timeout. 1116 */ 1117 res = readl(&xhci->op_regs->status); 1118 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1119 (((res & STS_SRE) == 0) && 1120 ((res & STS_HCE) == 0))) { 1121 xhci->broken_suspend = 1; 1122 } else { 1123 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1124 spin_unlock_irq(&xhci->lock); 1125 return -ETIMEDOUT; 1126 } 1127 } 1128 spin_unlock_irq(&xhci->lock); 1129 1130 /* 1131 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1132 * is about to be suspended. 1133 */ 1134 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1135 (!(xhci_all_ports_seen_u0(xhci)))) { 1136 del_timer_sync(&xhci->comp_mode_recovery_timer); 1137 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1138 "%s: compliance mode recovery timer deleted", 1139 __func__); 1140 } 1141 1142 /* step 5: remove core well power */ 1143 /* synchronize irq when using MSI-X */ 1144 xhci_msix_sync_irqs(xhci); 1145 1146 return rc; 1147 } 1148 EXPORT_SYMBOL_GPL(xhci_suspend); 1149 1150 /* 1151 * start xHC (not bus-specific) 1152 * 1153 * This is called when the machine transition from S3/S4 mode. 1154 * 1155 */ 1156 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1157 { 1158 u32 command, temp = 0; 1159 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1160 int retval = 0; 1161 bool comp_timer_running = false; 1162 bool pending_portevent = false; 1163 bool reinit_xhc = false; 1164 1165 if (!hcd->state) 1166 return 0; 1167 1168 /* Wait a bit if either of the roothubs need to settle from the 1169 * transition into bus suspend. 1170 */ 1171 1172 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1173 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1174 msleep(100); 1175 1176 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1177 if (xhci->shared_hcd) 1178 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1179 1180 spin_lock_irq(&xhci->lock); 1181 1182 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1183 reinit_xhc = true; 1184 1185 if (!reinit_xhc) { 1186 /* 1187 * Some controllers might lose power during suspend, so wait 1188 * for controller not ready bit to clear, just as in xHC init. 1189 */ 1190 retval = xhci_handshake(&xhci->op_regs->status, 1191 STS_CNR, 0, 10 * 1000 * 1000); 1192 if (retval) { 1193 xhci_warn(xhci, "Controller not ready at resume %d\n", 1194 retval); 1195 spin_unlock_irq(&xhci->lock); 1196 return retval; 1197 } 1198 /* step 1: restore register */ 1199 xhci_restore_registers(xhci); 1200 /* step 2: initialize command ring buffer */ 1201 xhci_set_cmd_ring_deq(xhci); 1202 /* step 3: restore state and start state*/ 1203 /* step 3: set CRS flag */ 1204 command = readl(&xhci->op_regs->command); 1205 command |= CMD_CRS; 1206 writel(command, &xhci->op_regs->command); 1207 /* 1208 * Some controllers take up to 55+ ms to complete the controller 1209 * restore so setting the timeout to 100ms. Xhci specification 1210 * doesn't mention any timeout value. 1211 */ 1212 if (xhci_handshake(&xhci->op_regs->status, 1213 STS_RESTORE, 0, 100 * 1000)) { 1214 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1215 spin_unlock_irq(&xhci->lock); 1216 return -ETIMEDOUT; 1217 } 1218 } 1219 1220 temp = readl(&xhci->op_regs->status); 1221 1222 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1223 if (temp & (STS_SRE | STS_HCE)) { 1224 reinit_xhc = true; 1225 if (!xhci->broken_suspend) 1226 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1227 } 1228 1229 if (reinit_xhc) { 1230 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1231 !(xhci_all_ports_seen_u0(xhci))) { 1232 del_timer_sync(&xhci->comp_mode_recovery_timer); 1233 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1234 "Compliance Mode Recovery Timer deleted!"); 1235 } 1236 1237 /* Let the USB core know _both_ roothubs lost power. */ 1238 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1239 if (xhci->shared_hcd) 1240 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1241 1242 xhci_dbg(xhci, "Stop HCD\n"); 1243 xhci_halt(xhci); 1244 xhci_zero_64b_regs(xhci); 1245 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1246 spin_unlock_irq(&xhci->lock); 1247 if (retval) 1248 return retval; 1249 xhci_cleanup_msix(xhci); 1250 1251 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1252 temp = readl(&xhci->op_regs->status); 1253 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1254 xhci_disable_interrupter(xhci->interrupter); 1255 1256 xhci_dbg(xhci, "cleaning up memory\n"); 1257 xhci_mem_cleanup(xhci); 1258 xhci_debugfs_exit(xhci); 1259 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1260 readl(&xhci->op_regs->status)); 1261 1262 /* USB core calls the PCI reinit and start functions twice: 1263 * first with the primary HCD, and then with the secondary HCD. 1264 * If we don't do the same, the host will never be started. 1265 */ 1266 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1267 retval = xhci_init(hcd); 1268 if (retval) 1269 return retval; 1270 comp_timer_running = true; 1271 1272 xhci_dbg(xhci, "Start the primary HCD\n"); 1273 retval = xhci_run(hcd); 1274 if (!retval && xhci->shared_hcd) { 1275 xhci_dbg(xhci, "Start the secondary HCD\n"); 1276 retval = xhci_run(xhci->shared_hcd); 1277 } 1278 1279 hcd->state = HC_STATE_SUSPENDED; 1280 if (xhci->shared_hcd) 1281 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1282 goto done; 1283 } 1284 1285 /* step 4: set Run/Stop bit */ 1286 command = readl(&xhci->op_regs->command); 1287 command |= CMD_RUN; 1288 writel(command, &xhci->op_regs->command); 1289 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1290 0, 250 * 1000); 1291 1292 /* step 5: walk topology and initialize portsc, 1293 * portpmsc and portli 1294 */ 1295 /* this is done in bus_resume */ 1296 1297 /* step 6: restart each of the previously 1298 * Running endpoints by ringing their doorbells 1299 */ 1300 1301 spin_unlock_irq(&xhci->lock); 1302 1303 xhci_dbc_resume(xhci); 1304 1305 done: 1306 if (retval == 0) { 1307 /* 1308 * Resume roothubs only if there are pending events. 1309 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1310 * the first wake signalling failed, give it that chance. 1311 */ 1312 pending_portevent = xhci_pending_portevent(xhci); 1313 if (!pending_portevent) { 1314 msleep(120); 1315 pending_portevent = xhci_pending_portevent(xhci); 1316 } 1317 1318 if (pending_portevent) { 1319 if (xhci->shared_hcd) 1320 usb_hcd_resume_root_hub(xhci->shared_hcd); 1321 usb_hcd_resume_root_hub(hcd); 1322 } 1323 } 1324 /* 1325 * If system is subject to the Quirk, Compliance Mode Timer needs to 1326 * be re-initialized Always after a system resume. Ports are subject 1327 * to suffer the Compliance Mode issue again. It doesn't matter if 1328 * ports have entered previously to U0 before system's suspension. 1329 */ 1330 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1331 compliance_mode_recovery_timer_init(xhci); 1332 1333 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1334 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1335 1336 /* Re-enable port polling. */ 1337 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1338 __func__, hcd->self.busnum); 1339 if (xhci->shared_hcd) { 1340 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1341 usb_hcd_poll_rh_status(xhci->shared_hcd); 1342 } 1343 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1344 usb_hcd_poll_rh_status(hcd); 1345 1346 return retval; 1347 } 1348 EXPORT_SYMBOL_GPL(xhci_resume); 1349 #endif /* CONFIG_PM */ 1350 1351 /*-------------------------------------------------------------------------*/ 1352 1353 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1354 { 1355 void *temp; 1356 int ret = 0; 1357 unsigned int buf_len; 1358 enum dma_data_direction dir; 1359 1360 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1361 buf_len = urb->transfer_buffer_length; 1362 1363 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1364 dev_to_node(hcd->self.sysdev)); 1365 1366 if (usb_urb_dir_out(urb)) 1367 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1368 temp, buf_len, 0); 1369 1370 urb->transfer_buffer = temp; 1371 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1372 urb->transfer_buffer, 1373 urb->transfer_buffer_length, 1374 dir); 1375 1376 if (dma_mapping_error(hcd->self.sysdev, 1377 urb->transfer_dma)) { 1378 ret = -EAGAIN; 1379 kfree(temp); 1380 } else { 1381 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1382 } 1383 1384 return ret; 1385 } 1386 1387 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1388 struct urb *urb) 1389 { 1390 bool ret = false; 1391 unsigned int i; 1392 unsigned int len = 0; 1393 unsigned int trb_size; 1394 unsigned int max_pkt; 1395 struct scatterlist *sg; 1396 struct scatterlist *tail_sg; 1397 1398 tail_sg = urb->sg; 1399 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1400 1401 if (!urb->num_sgs) 1402 return ret; 1403 1404 if (urb->dev->speed >= USB_SPEED_SUPER) 1405 trb_size = TRB_CACHE_SIZE_SS; 1406 else 1407 trb_size = TRB_CACHE_SIZE_HS; 1408 1409 if (urb->transfer_buffer_length != 0 && 1410 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1411 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1412 len = len + sg->length; 1413 if (i > trb_size - 2) { 1414 len = len - tail_sg->length; 1415 if (len < max_pkt) { 1416 ret = true; 1417 break; 1418 } 1419 1420 tail_sg = sg_next(tail_sg); 1421 } 1422 } 1423 } 1424 return ret; 1425 } 1426 1427 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1428 { 1429 unsigned int len; 1430 unsigned int buf_len; 1431 enum dma_data_direction dir; 1432 1433 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1434 1435 buf_len = urb->transfer_buffer_length; 1436 1437 if (IS_ENABLED(CONFIG_HAS_DMA) && 1438 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1439 dma_unmap_single(hcd->self.sysdev, 1440 urb->transfer_dma, 1441 urb->transfer_buffer_length, 1442 dir); 1443 1444 if (usb_urb_dir_in(urb)) { 1445 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1446 urb->transfer_buffer, 1447 buf_len, 1448 0); 1449 if (len != buf_len) { 1450 xhci_dbg(hcd_to_xhci(hcd), 1451 "Copy from tmp buf to urb sg list failed\n"); 1452 urb->actual_length = len; 1453 } 1454 } 1455 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1456 kfree(urb->transfer_buffer); 1457 urb->transfer_buffer = NULL; 1458 } 1459 1460 /* 1461 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1462 * we'll copy the actual data into the TRB address register. This is limited to 1463 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1464 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1465 */ 1466 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1467 gfp_t mem_flags) 1468 { 1469 struct xhci_hcd *xhci; 1470 1471 xhci = hcd_to_xhci(hcd); 1472 1473 if (xhci_urb_suitable_for_idt(urb)) 1474 return 0; 1475 1476 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1477 if (xhci_urb_temp_buffer_required(hcd, urb)) 1478 return xhci_map_temp_buffer(hcd, urb); 1479 } 1480 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1481 } 1482 1483 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1484 { 1485 struct xhci_hcd *xhci; 1486 bool unmap_temp_buf = false; 1487 1488 xhci = hcd_to_xhci(hcd); 1489 1490 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1491 unmap_temp_buf = true; 1492 1493 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1494 xhci_unmap_temp_buf(hcd, urb); 1495 else 1496 usb_hcd_unmap_urb_for_dma(hcd, urb); 1497 } 1498 1499 /** 1500 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1501 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1502 * value to right shift 1 for the bitmask. 1503 * 1504 * Index = (epnum * 2) + direction - 1, 1505 * where direction = 0 for OUT, 1 for IN. 1506 * For control endpoints, the IN index is used (OUT index is unused), so 1507 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1508 */ 1509 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1510 { 1511 unsigned int index; 1512 if (usb_endpoint_xfer_control(desc)) 1513 index = (unsigned int) (usb_endpoint_num(desc)*2); 1514 else 1515 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1516 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1517 return index; 1518 } 1519 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1520 1521 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1522 * address from the XHCI endpoint index. 1523 */ 1524 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1525 { 1526 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1527 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1528 return direction | number; 1529 } 1530 1531 /* Find the flag for this endpoint (for use in the control context). Use the 1532 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1533 * bit 1, etc. 1534 */ 1535 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1536 { 1537 return 1 << (xhci_get_endpoint_index(desc) + 1); 1538 } 1539 1540 /* Compute the last valid endpoint context index. Basically, this is the 1541 * endpoint index plus one. For slot contexts with more than valid endpoint, 1542 * we find the most significant bit set in the added contexts flags. 1543 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1544 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1545 */ 1546 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1547 { 1548 return fls(added_ctxs) - 1; 1549 } 1550 1551 /* Returns 1 if the arguments are OK; 1552 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1553 */ 1554 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1555 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1556 const char *func) { 1557 struct xhci_hcd *xhci; 1558 struct xhci_virt_device *virt_dev; 1559 1560 if (!hcd || (check_ep && !ep) || !udev) { 1561 pr_debug("xHCI %s called with invalid args\n", func); 1562 return -EINVAL; 1563 } 1564 if (!udev->parent) { 1565 pr_debug("xHCI %s called for root hub\n", func); 1566 return 0; 1567 } 1568 1569 xhci = hcd_to_xhci(hcd); 1570 if (check_virt_dev) { 1571 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1572 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1573 func); 1574 return -EINVAL; 1575 } 1576 1577 virt_dev = xhci->devs[udev->slot_id]; 1578 if (virt_dev->udev != udev) { 1579 xhci_dbg(xhci, "xHCI %s called with udev and " 1580 "virt_dev does not match\n", func); 1581 return -EINVAL; 1582 } 1583 } 1584 1585 if (xhci->xhc_state & XHCI_STATE_HALTED) 1586 return -ENODEV; 1587 1588 return 1; 1589 } 1590 1591 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1592 struct usb_device *udev, struct xhci_command *command, 1593 bool ctx_change, bool must_succeed); 1594 1595 /* 1596 * Full speed devices may have a max packet size greater than 8 bytes, but the 1597 * USB core doesn't know that until it reads the first 8 bytes of the 1598 * descriptor. If the usb_device's max packet size changes after that point, 1599 * we need to issue an evaluate context command and wait on it. 1600 */ 1601 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1602 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1603 { 1604 struct xhci_container_ctx *out_ctx; 1605 struct xhci_input_control_ctx *ctrl_ctx; 1606 struct xhci_ep_ctx *ep_ctx; 1607 struct xhci_command *command; 1608 int max_packet_size; 1609 int hw_max_packet_size; 1610 int ret = 0; 1611 1612 out_ctx = xhci->devs[slot_id]->out_ctx; 1613 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1614 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1615 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1616 if (hw_max_packet_size != max_packet_size) { 1617 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1618 "Max Packet Size for ep 0 changed."); 1619 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1620 "Max packet size in usb_device = %d", 1621 max_packet_size); 1622 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1623 "Max packet size in xHCI HW = %d", 1624 hw_max_packet_size); 1625 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1626 "Issuing evaluate context command."); 1627 1628 /* Set up the input context flags for the command */ 1629 /* FIXME: This won't work if a non-default control endpoint 1630 * changes max packet sizes. 1631 */ 1632 1633 command = xhci_alloc_command(xhci, true, mem_flags); 1634 if (!command) 1635 return -ENOMEM; 1636 1637 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1638 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1639 if (!ctrl_ctx) { 1640 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1641 __func__); 1642 ret = -ENOMEM; 1643 goto command_cleanup; 1644 } 1645 /* Set up the modified control endpoint 0 */ 1646 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1647 xhci->devs[slot_id]->out_ctx, ep_index); 1648 1649 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1650 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1651 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1652 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1653 1654 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1655 ctrl_ctx->drop_flags = 0; 1656 1657 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1658 true, false); 1659 1660 /* Clean up the input context for later use by bandwidth 1661 * functions. 1662 */ 1663 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1664 command_cleanup: 1665 kfree(command->completion); 1666 kfree(command); 1667 } 1668 return ret; 1669 } 1670 1671 /* 1672 * non-error returns are a promise to giveback() the urb later 1673 * we drop ownership so next owner (or urb unlink) can get it 1674 */ 1675 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1676 { 1677 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1678 unsigned long flags; 1679 int ret = 0; 1680 unsigned int slot_id, ep_index; 1681 unsigned int *ep_state; 1682 struct urb_priv *urb_priv; 1683 int num_tds; 1684 1685 if (!urb) 1686 return -EINVAL; 1687 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1688 true, true, __func__); 1689 if (ret <= 0) 1690 return ret ? ret : -EINVAL; 1691 1692 slot_id = urb->dev->slot_id; 1693 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1694 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1695 1696 if (!HCD_HW_ACCESSIBLE(hcd)) 1697 return -ESHUTDOWN; 1698 1699 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1700 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1701 return -ENODEV; 1702 } 1703 1704 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1705 num_tds = urb->number_of_packets; 1706 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1707 urb->transfer_buffer_length > 0 && 1708 urb->transfer_flags & URB_ZERO_PACKET && 1709 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1710 num_tds = 2; 1711 else 1712 num_tds = 1; 1713 1714 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1715 if (!urb_priv) 1716 return -ENOMEM; 1717 1718 urb_priv->num_tds = num_tds; 1719 urb_priv->num_tds_done = 0; 1720 urb->hcpriv = urb_priv; 1721 1722 trace_xhci_urb_enqueue(urb); 1723 1724 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1725 /* Check to see if the max packet size for the default control 1726 * endpoint changed during FS device enumeration 1727 */ 1728 if (urb->dev->speed == USB_SPEED_FULL) { 1729 ret = xhci_check_maxpacket(xhci, slot_id, 1730 ep_index, urb, mem_flags); 1731 if (ret < 0) { 1732 xhci_urb_free_priv(urb_priv); 1733 urb->hcpriv = NULL; 1734 return ret; 1735 } 1736 } 1737 } 1738 1739 spin_lock_irqsave(&xhci->lock, flags); 1740 1741 if (xhci->xhc_state & XHCI_STATE_DYING) { 1742 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1743 urb->ep->desc.bEndpointAddress, urb); 1744 ret = -ESHUTDOWN; 1745 goto free_priv; 1746 } 1747 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1748 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1749 *ep_state); 1750 ret = -EINVAL; 1751 goto free_priv; 1752 } 1753 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1754 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1755 ret = -EINVAL; 1756 goto free_priv; 1757 } 1758 1759 switch (usb_endpoint_type(&urb->ep->desc)) { 1760 1761 case USB_ENDPOINT_XFER_CONTROL: 1762 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1763 slot_id, ep_index); 1764 break; 1765 case USB_ENDPOINT_XFER_BULK: 1766 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1767 slot_id, ep_index); 1768 break; 1769 case USB_ENDPOINT_XFER_INT: 1770 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1771 slot_id, ep_index); 1772 break; 1773 case USB_ENDPOINT_XFER_ISOC: 1774 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1775 slot_id, ep_index); 1776 } 1777 1778 if (ret) { 1779 free_priv: 1780 xhci_urb_free_priv(urb_priv); 1781 urb->hcpriv = NULL; 1782 } 1783 spin_unlock_irqrestore(&xhci->lock, flags); 1784 return ret; 1785 } 1786 1787 /* 1788 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1789 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1790 * should pick up where it left off in the TD, unless a Set Transfer Ring 1791 * Dequeue Pointer is issued. 1792 * 1793 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1794 * the ring. Since the ring is a contiguous structure, they can't be physically 1795 * removed. Instead, there are two options: 1796 * 1797 * 1) If the HC is in the middle of processing the URB to be canceled, we 1798 * simply move the ring's dequeue pointer past those TRBs using the Set 1799 * Transfer Ring Dequeue Pointer command. This will be the common case, 1800 * when drivers timeout on the last submitted URB and attempt to cancel. 1801 * 1802 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1803 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1804 * HC will need to invalidate the any TRBs it has cached after the stop 1805 * endpoint command, as noted in the xHCI 0.95 errata. 1806 * 1807 * 3) The TD may have completed by the time the Stop Endpoint Command 1808 * completes, so software needs to handle that case too. 1809 * 1810 * This function should protect against the TD enqueueing code ringing the 1811 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1812 * It also needs to account for multiple cancellations on happening at the same 1813 * time for the same endpoint. 1814 * 1815 * Note that this function can be called in any context, or so says 1816 * usb_hcd_unlink_urb() 1817 */ 1818 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1819 { 1820 unsigned long flags; 1821 int ret, i; 1822 u32 temp; 1823 struct xhci_hcd *xhci; 1824 struct urb_priv *urb_priv; 1825 struct xhci_td *td; 1826 unsigned int ep_index; 1827 struct xhci_ring *ep_ring; 1828 struct xhci_virt_ep *ep; 1829 struct xhci_command *command; 1830 struct xhci_virt_device *vdev; 1831 1832 xhci = hcd_to_xhci(hcd); 1833 spin_lock_irqsave(&xhci->lock, flags); 1834 1835 trace_xhci_urb_dequeue(urb); 1836 1837 /* Make sure the URB hasn't completed or been unlinked already */ 1838 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1839 if (ret) 1840 goto done; 1841 1842 /* give back URB now if we can't queue it for cancel */ 1843 vdev = xhci->devs[urb->dev->slot_id]; 1844 urb_priv = urb->hcpriv; 1845 if (!vdev || !urb_priv) 1846 goto err_giveback; 1847 1848 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1849 ep = &vdev->eps[ep_index]; 1850 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1851 if (!ep || !ep_ring) 1852 goto err_giveback; 1853 1854 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1855 temp = readl(&xhci->op_regs->status); 1856 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1857 xhci_hc_died(xhci); 1858 goto done; 1859 } 1860 1861 /* 1862 * check ring is not re-allocated since URB was enqueued. If it is, then 1863 * make sure none of the ring related pointers in this URB private data 1864 * are touched, such as td_list, otherwise we overwrite freed data 1865 */ 1866 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1867 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1868 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1869 td = &urb_priv->td[i]; 1870 if (!list_empty(&td->cancelled_td_list)) 1871 list_del_init(&td->cancelled_td_list); 1872 } 1873 goto err_giveback; 1874 } 1875 1876 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1877 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1878 "HC halted, freeing TD manually."); 1879 for (i = urb_priv->num_tds_done; 1880 i < urb_priv->num_tds; 1881 i++) { 1882 td = &urb_priv->td[i]; 1883 if (!list_empty(&td->td_list)) 1884 list_del_init(&td->td_list); 1885 if (!list_empty(&td->cancelled_td_list)) 1886 list_del_init(&td->cancelled_td_list); 1887 } 1888 goto err_giveback; 1889 } 1890 1891 i = urb_priv->num_tds_done; 1892 if (i < urb_priv->num_tds) 1893 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1894 "Cancel URB %p, dev %s, ep 0x%x, " 1895 "starting at offset 0x%llx", 1896 urb, urb->dev->devpath, 1897 urb->ep->desc.bEndpointAddress, 1898 (unsigned long long) xhci_trb_virt_to_dma( 1899 urb_priv->td[i].start_seg, 1900 urb_priv->td[i].first_trb)); 1901 1902 for (; i < urb_priv->num_tds; i++) { 1903 td = &urb_priv->td[i]; 1904 /* TD can already be on cancelled list if ep halted on it */ 1905 if (list_empty(&td->cancelled_td_list)) { 1906 td->cancel_status = TD_DIRTY; 1907 list_add_tail(&td->cancelled_td_list, 1908 &ep->cancelled_td_list); 1909 } 1910 } 1911 1912 /* Queue a stop endpoint command, but only if this is 1913 * the first cancellation to be handled. 1914 */ 1915 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1916 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1917 if (!command) { 1918 ret = -ENOMEM; 1919 goto done; 1920 } 1921 ep->ep_state |= EP_STOP_CMD_PENDING; 1922 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1923 ep_index, 0); 1924 xhci_ring_cmd_db(xhci); 1925 } 1926 done: 1927 spin_unlock_irqrestore(&xhci->lock, flags); 1928 return ret; 1929 1930 err_giveback: 1931 if (urb_priv) 1932 xhci_urb_free_priv(urb_priv); 1933 usb_hcd_unlink_urb_from_ep(hcd, urb); 1934 spin_unlock_irqrestore(&xhci->lock, flags); 1935 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1936 return ret; 1937 } 1938 1939 /* Drop an endpoint from a new bandwidth configuration for this device. 1940 * Only one call to this function is allowed per endpoint before 1941 * check_bandwidth() or reset_bandwidth() must be called. 1942 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1943 * add the endpoint to the schedule with possibly new parameters denoted by a 1944 * different endpoint descriptor in usb_host_endpoint. 1945 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1946 * not allowed. 1947 * 1948 * The USB core will not allow URBs to be queued to an endpoint that is being 1949 * disabled, so there's no need for mutual exclusion to protect 1950 * the xhci->devs[slot_id] structure. 1951 */ 1952 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1953 struct usb_host_endpoint *ep) 1954 { 1955 struct xhci_hcd *xhci; 1956 struct xhci_container_ctx *in_ctx, *out_ctx; 1957 struct xhci_input_control_ctx *ctrl_ctx; 1958 unsigned int ep_index; 1959 struct xhci_ep_ctx *ep_ctx; 1960 u32 drop_flag; 1961 u32 new_add_flags, new_drop_flags; 1962 int ret; 1963 1964 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1965 if (ret <= 0) 1966 return ret; 1967 xhci = hcd_to_xhci(hcd); 1968 if (xhci->xhc_state & XHCI_STATE_DYING) 1969 return -ENODEV; 1970 1971 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1972 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1973 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1974 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1975 __func__, drop_flag); 1976 return 0; 1977 } 1978 1979 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1980 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1981 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1982 if (!ctrl_ctx) { 1983 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1984 __func__); 1985 return 0; 1986 } 1987 1988 ep_index = xhci_get_endpoint_index(&ep->desc); 1989 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1990 /* If the HC already knows the endpoint is disabled, 1991 * or the HCD has noted it is disabled, ignore this request 1992 */ 1993 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1994 le32_to_cpu(ctrl_ctx->drop_flags) & 1995 xhci_get_endpoint_flag(&ep->desc)) { 1996 /* Do not warn when called after a usb_device_reset */ 1997 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1998 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1999 __func__, ep); 2000 return 0; 2001 } 2002 2003 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 2004 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2005 2006 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 2007 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2008 2009 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 2010 2011 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 2012 2013 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2014 (unsigned int) ep->desc.bEndpointAddress, 2015 udev->slot_id, 2016 (unsigned int) new_drop_flags, 2017 (unsigned int) new_add_flags); 2018 return 0; 2019 } 2020 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 2021 2022 /* Add an endpoint to a new possible bandwidth configuration for this device. 2023 * Only one call to this function is allowed per endpoint before 2024 * check_bandwidth() or reset_bandwidth() must be called. 2025 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 2026 * add the endpoint to the schedule with possibly new parameters denoted by a 2027 * different endpoint descriptor in usb_host_endpoint. 2028 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 2029 * not allowed. 2030 * 2031 * The USB core will not allow URBs to be queued to an endpoint until the 2032 * configuration or alt setting is installed in the device, so there's no need 2033 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 2034 */ 2035 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 2036 struct usb_host_endpoint *ep) 2037 { 2038 struct xhci_hcd *xhci; 2039 struct xhci_container_ctx *in_ctx; 2040 unsigned int ep_index; 2041 struct xhci_input_control_ctx *ctrl_ctx; 2042 struct xhci_ep_ctx *ep_ctx; 2043 u32 added_ctxs; 2044 u32 new_add_flags, new_drop_flags; 2045 struct xhci_virt_device *virt_dev; 2046 int ret = 0; 2047 2048 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 2049 if (ret <= 0) { 2050 /* So we won't queue a reset ep command for a root hub */ 2051 ep->hcpriv = NULL; 2052 return ret; 2053 } 2054 xhci = hcd_to_xhci(hcd); 2055 if (xhci->xhc_state & XHCI_STATE_DYING) 2056 return -ENODEV; 2057 2058 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 2059 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 2060 /* FIXME when we have to issue an evaluate endpoint command to 2061 * deal with ep0 max packet size changing once we get the 2062 * descriptors 2063 */ 2064 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 2065 __func__, added_ctxs); 2066 return 0; 2067 } 2068 2069 virt_dev = xhci->devs[udev->slot_id]; 2070 in_ctx = virt_dev->in_ctx; 2071 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2072 if (!ctrl_ctx) { 2073 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2074 __func__); 2075 return 0; 2076 } 2077 2078 ep_index = xhci_get_endpoint_index(&ep->desc); 2079 /* If this endpoint is already in use, and the upper layers are trying 2080 * to add it again without dropping it, reject the addition. 2081 */ 2082 if (virt_dev->eps[ep_index].ring && 2083 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 2084 xhci_warn(xhci, "Trying to add endpoint 0x%x " 2085 "without dropping it.\n", 2086 (unsigned int) ep->desc.bEndpointAddress); 2087 return -EINVAL; 2088 } 2089 2090 /* If the HCD has already noted the endpoint is enabled, 2091 * ignore this request. 2092 */ 2093 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2094 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2095 __func__, ep); 2096 return 0; 2097 } 2098 2099 /* 2100 * Configuration and alternate setting changes must be done in 2101 * process context, not interrupt context (or so documenation 2102 * for usb_set_interface() and usb_set_configuration() claim). 2103 */ 2104 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2105 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2106 __func__, ep->desc.bEndpointAddress); 2107 return -ENOMEM; 2108 } 2109 2110 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2111 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2112 2113 /* If xhci_endpoint_disable() was called for this endpoint, but the 2114 * xHC hasn't been notified yet through the check_bandwidth() call, 2115 * this re-adds a new state for the endpoint from the new endpoint 2116 * descriptors. We must drop and re-add this endpoint, so we leave the 2117 * drop flags alone. 2118 */ 2119 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2120 2121 /* Store the usb_device pointer for later use */ 2122 ep->hcpriv = udev; 2123 2124 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2125 trace_xhci_add_endpoint(ep_ctx); 2126 2127 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2128 (unsigned int) ep->desc.bEndpointAddress, 2129 udev->slot_id, 2130 (unsigned int) new_drop_flags, 2131 (unsigned int) new_add_flags); 2132 return 0; 2133 } 2134 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2135 2136 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2137 { 2138 struct xhci_input_control_ctx *ctrl_ctx; 2139 struct xhci_ep_ctx *ep_ctx; 2140 struct xhci_slot_ctx *slot_ctx; 2141 int i; 2142 2143 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2144 if (!ctrl_ctx) { 2145 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2146 __func__); 2147 return; 2148 } 2149 2150 /* When a device's add flag and drop flag are zero, any subsequent 2151 * configure endpoint command will leave that endpoint's state 2152 * untouched. Make sure we don't leave any old state in the input 2153 * endpoint contexts. 2154 */ 2155 ctrl_ctx->drop_flags = 0; 2156 ctrl_ctx->add_flags = 0; 2157 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2158 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2159 /* Endpoint 0 is always valid */ 2160 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2161 for (i = 1; i < 31; i++) { 2162 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2163 ep_ctx->ep_info = 0; 2164 ep_ctx->ep_info2 = 0; 2165 ep_ctx->deq = 0; 2166 ep_ctx->tx_info = 0; 2167 } 2168 } 2169 2170 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2171 struct usb_device *udev, u32 *cmd_status) 2172 { 2173 int ret; 2174 2175 switch (*cmd_status) { 2176 case COMP_COMMAND_ABORTED: 2177 case COMP_COMMAND_RING_STOPPED: 2178 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2179 ret = -ETIME; 2180 break; 2181 case COMP_RESOURCE_ERROR: 2182 dev_warn(&udev->dev, 2183 "Not enough host controller resources for new device state.\n"); 2184 ret = -ENOMEM; 2185 /* FIXME: can we allocate more resources for the HC? */ 2186 break; 2187 case COMP_BANDWIDTH_ERROR: 2188 case COMP_SECONDARY_BANDWIDTH_ERROR: 2189 dev_warn(&udev->dev, 2190 "Not enough bandwidth for new device state.\n"); 2191 ret = -ENOSPC; 2192 /* FIXME: can we go back to the old state? */ 2193 break; 2194 case COMP_TRB_ERROR: 2195 /* the HCD set up something wrong */ 2196 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2197 "add flag = 1, " 2198 "and endpoint is not disabled.\n"); 2199 ret = -EINVAL; 2200 break; 2201 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2202 dev_warn(&udev->dev, 2203 "ERROR: Incompatible device for endpoint configure command.\n"); 2204 ret = -ENODEV; 2205 break; 2206 case COMP_SUCCESS: 2207 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2208 "Successful Endpoint Configure command"); 2209 ret = 0; 2210 break; 2211 default: 2212 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2213 *cmd_status); 2214 ret = -EINVAL; 2215 break; 2216 } 2217 return ret; 2218 } 2219 2220 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2221 struct usb_device *udev, u32 *cmd_status) 2222 { 2223 int ret; 2224 2225 switch (*cmd_status) { 2226 case COMP_COMMAND_ABORTED: 2227 case COMP_COMMAND_RING_STOPPED: 2228 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2229 ret = -ETIME; 2230 break; 2231 case COMP_PARAMETER_ERROR: 2232 dev_warn(&udev->dev, 2233 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2234 ret = -EINVAL; 2235 break; 2236 case COMP_SLOT_NOT_ENABLED_ERROR: 2237 dev_warn(&udev->dev, 2238 "WARN: slot not enabled for evaluate context command.\n"); 2239 ret = -EINVAL; 2240 break; 2241 case COMP_CONTEXT_STATE_ERROR: 2242 dev_warn(&udev->dev, 2243 "WARN: invalid context state for evaluate context command.\n"); 2244 ret = -EINVAL; 2245 break; 2246 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2247 dev_warn(&udev->dev, 2248 "ERROR: Incompatible device for evaluate context command.\n"); 2249 ret = -ENODEV; 2250 break; 2251 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2252 /* Max Exit Latency too large error */ 2253 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2254 ret = -EINVAL; 2255 break; 2256 case COMP_SUCCESS: 2257 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2258 "Successful evaluate context command"); 2259 ret = 0; 2260 break; 2261 default: 2262 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2263 *cmd_status); 2264 ret = -EINVAL; 2265 break; 2266 } 2267 return ret; 2268 } 2269 2270 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2271 struct xhci_input_control_ctx *ctrl_ctx) 2272 { 2273 u32 valid_add_flags; 2274 u32 valid_drop_flags; 2275 2276 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2277 * (bit 1). The default control endpoint is added during the Address 2278 * Device command and is never removed until the slot is disabled. 2279 */ 2280 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2281 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2282 2283 /* Use hweight32 to count the number of ones in the add flags, or 2284 * number of endpoints added. Don't count endpoints that are changed 2285 * (both added and dropped). 2286 */ 2287 return hweight32(valid_add_flags) - 2288 hweight32(valid_add_flags & valid_drop_flags); 2289 } 2290 2291 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2292 struct xhci_input_control_ctx *ctrl_ctx) 2293 { 2294 u32 valid_add_flags; 2295 u32 valid_drop_flags; 2296 2297 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2298 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2299 2300 return hweight32(valid_drop_flags) - 2301 hweight32(valid_add_flags & valid_drop_flags); 2302 } 2303 2304 /* 2305 * We need to reserve the new number of endpoints before the configure endpoint 2306 * command completes. We can't subtract the dropped endpoints from the number 2307 * of active endpoints until the command completes because we can oversubscribe 2308 * the host in this case: 2309 * 2310 * - the first configure endpoint command drops more endpoints than it adds 2311 * - a second configure endpoint command that adds more endpoints is queued 2312 * - the first configure endpoint command fails, so the config is unchanged 2313 * - the second command may succeed, even though there isn't enough resources 2314 * 2315 * Must be called with xhci->lock held. 2316 */ 2317 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2318 struct xhci_input_control_ctx *ctrl_ctx) 2319 { 2320 u32 added_eps; 2321 2322 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2323 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2324 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2325 "Not enough ep ctxs: " 2326 "%u active, need to add %u, limit is %u.", 2327 xhci->num_active_eps, added_eps, 2328 xhci->limit_active_eps); 2329 return -ENOMEM; 2330 } 2331 xhci->num_active_eps += added_eps; 2332 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2333 "Adding %u ep ctxs, %u now active.", added_eps, 2334 xhci->num_active_eps); 2335 return 0; 2336 } 2337 2338 /* 2339 * The configure endpoint was failed by the xHC for some other reason, so we 2340 * need to revert the resources that failed configuration would have used. 2341 * 2342 * Must be called with xhci->lock held. 2343 */ 2344 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2345 struct xhci_input_control_ctx *ctrl_ctx) 2346 { 2347 u32 num_failed_eps; 2348 2349 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2350 xhci->num_active_eps -= num_failed_eps; 2351 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2352 "Removing %u failed ep ctxs, %u now active.", 2353 num_failed_eps, 2354 xhci->num_active_eps); 2355 } 2356 2357 /* 2358 * Now that the command has completed, clean up the active endpoint count by 2359 * subtracting out the endpoints that were dropped (but not changed). 2360 * 2361 * Must be called with xhci->lock held. 2362 */ 2363 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2364 struct xhci_input_control_ctx *ctrl_ctx) 2365 { 2366 u32 num_dropped_eps; 2367 2368 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2369 xhci->num_active_eps -= num_dropped_eps; 2370 if (num_dropped_eps) 2371 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2372 "Removing %u dropped ep ctxs, %u now active.", 2373 num_dropped_eps, 2374 xhci->num_active_eps); 2375 } 2376 2377 static unsigned int xhci_get_block_size(struct usb_device *udev) 2378 { 2379 switch (udev->speed) { 2380 case USB_SPEED_LOW: 2381 case USB_SPEED_FULL: 2382 return FS_BLOCK; 2383 case USB_SPEED_HIGH: 2384 return HS_BLOCK; 2385 case USB_SPEED_SUPER: 2386 case USB_SPEED_SUPER_PLUS: 2387 return SS_BLOCK; 2388 case USB_SPEED_UNKNOWN: 2389 case USB_SPEED_WIRELESS: 2390 default: 2391 /* Should never happen */ 2392 return 1; 2393 } 2394 } 2395 2396 static unsigned int 2397 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2398 { 2399 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2400 return LS_OVERHEAD; 2401 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2402 return FS_OVERHEAD; 2403 return HS_OVERHEAD; 2404 } 2405 2406 /* If we are changing a LS/FS device under a HS hub, 2407 * make sure (if we are activating a new TT) that the HS bus has enough 2408 * bandwidth for this new TT. 2409 */ 2410 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2411 struct xhci_virt_device *virt_dev, 2412 int old_active_eps) 2413 { 2414 struct xhci_interval_bw_table *bw_table; 2415 struct xhci_tt_bw_info *tt_info; 2416 2417 /* Find the bandwidth table for the root port this TT is attached to. */ 2418 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2419 tt_info = virt_dev->tt_info; 2420 /* If this TT already had active endpoints, the bandwidth for this TT 2421 * has already been added. Removing all periodic endpoints (and thus 2422 * making the TT enactive) will only decrease the bandwidth used. 2423 */ 2424 if (old_active_eps) 2425 return 0; 2426 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2427 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2428 return -ENOMEM; 2429 return 0; 2430 } 2431 /* Not sure why we would have no new active endpoints... 2432 * 2433 * Maybe because of an Evaluate Context change for a hub update or a 2434 * control endpoint 0 max packet size change? 2435 * FIXME: skip the bandwidth calculation in that case. 2436 */ 2437 return 0; 2438 } 2439 2440 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2441 struct xhci_virt_device *virt_dev) 2442 { 2443 unsigned int bw_reserved; 2444 2445 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2446 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2447 return -ENOMEM; 2448 2449 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2450 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2451 return -ENOMEM; 2452 2453 return 0; 2454 } 2455 2456 /* 2457 * This algorithm is a very conservative estimate of the worst-case scheduling 2458 * scenario for any one interval. The hardware dynamically schedules the 2459 * packets, so we can't tell which microframe could be the limiting factor in 2460 * the bandwidth scheduling. This only takes into account periodic endpoints. 2461 * 2462 * Obviously, we can't solve an NP complete problem to find the minimum worst 2463 * case scenario. Instead, we come up with an estimate that is no less than 2464 * the worst case bandwidth used for any one microframe, but may be an 2465 * over-estimate. 2466 * 2467 * We walk the requirements for each endpoint by interval, starting with the 2468 * smallest interval, and place packets in the schedule where there is only one 2469 * possible way to schedule packets for that interval. In order to simplify 2470 * this algorithm, we record the largest max packet size for each interval, and 2471 * assume all packets will be that size. 2472 * 2473 * For interval 0, we obviously must schedule all packets for each interval. 2474 * The bandwidth for interval 0 is just the amount of data to be transmitted 2475 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2476 * the number of packets). 2477 * 2478 * For interval 1, we have two possible microframes to schedule those packets 2479 * in. For this algorithm, if we can schedule the same number of packets for 2480 * each possible scheduling opportunity (each microframe), we will do so. The 2481 * remaining number of packets will be saved to be transmitted in the gaps in 2482 * the next interval's scheduling sequence. 2483 * 2484 * As we move those remaining packets to be scheduled with interval 2 packets, 2485 * we have to double the number of remaining packets to transmit. This is 2486 * because the intervals are actually powers of 2, and we would be transmitting 2487 * the previous interval's packets twice in this interval. We also have to be 2488 * sure that when we look at the largest max packet size for this interval, we 2489 * also look at the largest max packet size for the remaining packets and take 2490 * the greater of the two. 2491 * 2492 * The algorithm continues to evenly distribute packets in each scheduling 2493 * opportunity, and push the remaining packets out, until we get to the last 2494 * interval. Then those packets and their associated overhead are just added 2495 * to the bandwidth used. 2496 */ 2497 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2498 struct xhci_virt_device *virt_dev, 2499 int old_active_eps) 2500 { 2501 unsigned int bw_reserved; 2502 unsigned int max_bandwidth; 2503 unsigned int bw_used; 2504 unsigned int block_size; 2505 struct xhci_interval_bw_table *bw_table; 2506 unsigned int packet_size = 0; 2507 unsigned int overhead = 0; 2508 unsigned int packets_transmitted = 0; 2509 unsigned int packets_remaining = 0; 2510 unsigned int i; 2511 2512 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2513 return xhci_check_ss_bw(xhci, virt_dev); 2514 2515 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2516 max_bandwidth = HS_BW_LIMIT; 2517 /* Convert percent of bus BW reserved to blocks reserved */ 2518 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2519 } else { 2520 max_bandwidth = FS_BW_LIMIT; 2521 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2522 } 2523 2524 bw_table = virt_dev->bw_table; 2525 /* We need to translate the max packet size and max ESIT payloads into 2526 * the units the hardware uses. 2527 */ 2528 block_size = xhci_get_block_size(virt_dev->udev); 2529 2530 /* If we are manipulating a LS/FS device under a HS hub, double check 2531 * that the HS bus has enough bandwidth if we are activing a new TT. 2532 */ 2533 if (virt_dev->tt_info) { 2534 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2535 "Recalculating BW for rootport %u", 2536 virt_dev->real_port); 2537 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2538 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2539 "newly activated TT.\n"); 2540 return -ENOMEM; 2541 } 2542 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2543 "Recalculating BW for TT slot %u port %u", 2544 virt_dev->tt_info->slot_id, 2545 virt_dev->tt_info->ttport); 2546 } else { 2547 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2548 "Recalculating BW for rootport %u", 2549 virt_dev->real_port); 2550 } 2551 2552 /* Add in how much bandwidth will be used for interval zero, or the 2553 * rounded max ESIT payload + number of packets * largest overhead. 2554 */ 2555 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2556 bw_table->interval_bw[0].num_packets * 2557 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2558 2559 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2560 unsigned int bw_added; 2561 unsigned int largest_mps; 2562 unsigned int interval_overhead; 2563 2564 /* 2565 * How many packets could we transmit in this interval? 2566 * If packets didn't fit in the previous interval, we will need 2567 * to transmit that many packets twice within this interval. 2568 */ 2569 packets_remaining = 2 * packets_remaining + 2570 bw_table->interval_bw[i].num_packets; 2571 2572 /* Find the largest max packet size of this or the previous 2573 * interval. 2574 */ 2575 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2576 largest_mps = 0; 2577 else { 2578 struct xhci_virt_ep *virt_ep; 2579 struct list_head *ep_entry; 2580 2581 ep_entry = bw_table->interval_bw[i].endpoints.next; 2582 virt_ep = list_entry(ep_entry, 2583 struct xhci_virt_ep, bw_endpoint_list); 2584 /* Convert to blocks, rounding up */ 2585 largest_mps = DIV_ROUND_UP( 2586 virt_ep->bw_info.max_packet_size, 2587 block_size); 2588 } 2589 if (largest_mps > packet_size) 2590 packet_size = largest_mps; 2591 2592 /* Use the larger overhead of this or the previous interval. */ 2593 interval_overhead = xhci_get_largest_overhead( 2594 &bw_table->interval_bw[i]); 2595 if (interval_overhead > overhead) 2596 overhead = interval_overhead; 2597 2598 /* How many packets can we evenly distribute across 2599 * (1 << (i + 1)) possible scheduling opportunities? 2600 */ 2601 packets_transmitted = packets_remaining >> (i + 1); 2602 2603 /* Add in the bandwidth used for those scheduled packets */ 2604 bw_added = packets_transmitted * (overhead + packet_size); 2605 2606 /* How many packets do we have remaining to transmit? */ 2607 packets_remaining = packets_remaining % (1 << (i + 1)); 2608 2609 /* What largest max packet size should those packets have? */ 2610 /* If we've transmitted all packets, don't carry over the 2611 * largest packet size. 2612 */ 2613 if (packets_remaining == 0) { 2614 packet_size = 0; 2615 overhead = 0; 2616 } else if (packets_transmitted > 0) { 2617 /* Otherwise if we do have remaining packets, and we've 2618 * scheduled some packets in this interval, take the 2619 * largest max packet size from endpoints with this 2620 * interval. 2621 */ 2622 packet_size = largest_mps; 2623 overhead = interval_overhead; 2624 } 2625 /* Otherwise carry over packet_size and overhead from the last 2626 * time we had a remainder. 2627 */ 2628 bw_used += bw_added; 2629 if (bw_used > max_bandwidth) { 2630 xhci_warn(xhci, "Not enough bandwidth. " 2631 "Proposed: %u, Max: %u\n", 2632 bw_used, max_bandwidth); 2633 return -ENOMEM; 2634 } 2635 } 2636 /* 2637 * Ok, we know we have some packets left over after even-handedly 2638 * scheduling interval 15. We don't know which microframes they will 2639 * fit into, so we over-schedule and say they will be scheduled every 2640 * microframe. 2641 */ 2642 if (packets_remaining > 0) 2643 bw_used += overhead + packet_size; 2644 2645 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2646 unsigned int port_index = virt_dev->real_port - 1; 2647 2648 /* OK, we're manipulating a HS device attached to a 2649 * root port bandwidth domain. Include the number of active TTs 2650 * in the bandwidth used. 2651 */ 2652 bw_used += TT_HS_OVERHEAD * 2653 xhci->rh_bw[port_index].num_active_tts; 2654 } 2655 2656 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2657 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2658 "Available: %u " "percent", 2659 bw_used, max_bandwidth, bw_reserved, 2660 (max_bandwidth - bw_used - bw_reserved) * 100 / 2661 max_bandwidth); 2662 2663 bw_used += bw_reserved; 2664 if (bw_used > max_bandwidth) { 2665 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2666 bw_used, max_bandwidth); 2667 return -ENOMEM; 2668 } 2669 2670 bw_table->bw_used = bw_used; 2671 return 0; 2672 } 2673 2674 static bool xhci_is_async_ep(unsigned int ep_type) 2675 { 2676 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2677 ep_type != ISOC_IN_EP && 2678 ep_type != INT_IN_EP); 2679 } 2680 2681 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2682 { 2683 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2684 } 2685 2686 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2687 { 2688 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2689 2690 if (ep_bw->ep_interval == 0) 2691 return SS_OVERHEAD_BURST + 2692 (ep_bw->mult * ep_bw->num_packets * 2693 (SS_OVERHEAD + mps)); 2694 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2695 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2696 1 << ep_bw->ep_interval); 2697 2698 } 2699 2700 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2701 struct xhci_bw_info *ep_bw, 2702 struct xhci_interval_bw_table *bw_table, 2703 struct usb_device *udev, 2704 struct xhci_virt_ep *virt_ep, 2705 struct xhci_tt_bw_info *tt_info) 2706 { 2707 struct xhci_interval_bw *interval_bw; 2708 int normalized_interval; 2709 2710 if (xhci_is_async_ep(ep_bw->type)) 2711 return; 2712 2713 if (udev->speed >= USB_SPEED_SUPER) { 2714 if (xhci_is_sync_in_ep(ep_bw->type)) 2715 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2716 xhci_get_ss_bw_consumed(ep_bw); 2717 else 2718 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2719 xhci_get_ss_bw_consumed(ep_bw); 2720 return; 2721 } 2722 2723 /* SuperSpeed endpoints never get added to intervals in the table, so 2724 * this check is only valid for HS/FS/LS devices. 2725 */ 2726 if (list_empty(&virt_ep->bw_endpoint_list)) 2727 return; 2728 /* For LS/FS devices, we need to translate the interval expressed in 2729 * microframes to frames. 2730 */ 2731 if (udev->speed == USB_SPEED_HIGH) 2732 normalized_interval = ep_bw->ep_interval; 2733 else 2734 normalized_interval = ep_bw->ep_interval - 3; 2735 2736 if (normalized_interval == 0) 2737 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2738 interval_bw = &bw_table->interval_bw[normalized_interval]; 2739 interval_bw->num_packets -= ep_bw->num_packets; 2740 switch (udev->speed) { 2741 case USB_SPEED_LOW: 2742 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2743 break; 2744 case USB_SPEED_FULL: 2745 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2746 break; 2747 case USB_SPEED_HIGH: 2748 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2749 break; 2750 case USB_SPEED_SUPER: 2751 case USB_SPEED_SUPER_PLUS: 2752 case USB_SPEED_UNKNOWN: 2753 case USB_SPEED_WIRELESS: 2754 /* Should never happen because only LS/FS/HS endpoints will get 2755 * added to the endpoint list. 2756 */ 2757 return; 2758 } 2759 if (tt_info) 2760 tt_info->active_eps -= 1; 2761 list_del_init(&virt_ep->bw_endpoint_list); 2762 } 2763 2764 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2765 struct xhci_bw_info *ep_bw, 2766 struct xhci_interval_bw_table *bw_table, 2767 struct usb_device *udev, 2768 struct xhci_virt_ep *virt_ep, 2769 struct xhci_tt_bw_info *tt_info) 2770 { 2771 struct xhci_interval_bw *interval_bw; 2772 struct xhci_virt_ep *smaller_ep; 2773 int normalized_interval; 2774 2775 if (xhci_is_async_ep(ep_bw->type)) 2776 return; 2777 2778 if (udev->speed == USB_SPEED_SUPER) { 2779 if (xhci_is_sync_in_ep(ep_bw->type)) 2780 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2781 xhci_get_ss_bw_consumed(ep_bw); 2782 else 2783 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2784 xhci_get_ss_bw_consumed(ep_bw); 2785 return; 2786 } 2787 2788 /* For LS/FS devices, we need to translate the interval expressed in 2789 * microframes to frames. 2790 */ 2791 if (udev->speed == USB_SPEED_HIGH) 2792 normalized_interval = ep_bw->ep_interval; 2793 else 2794 normalized_interval = ep_bw->ep_interval - 3; 2795 2796 if (normalized_interval == 0) 2797 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2798 interval_bw = &bw_table->interval_bw[normalized_interval]; 2799 interval_bw->num_packets += ep_bw->num_packets; 2800 switch (udev->speed) { 2801 case USB_SPEED_LOW: 2802 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2803 break; 2804 case USB_SPEED_FULL: 2805 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2806 break; 2807 case USB_SPEED_HIGH: 2808 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2809 break; 2810 case USB_SPEED_SUPER: 2811 case USB_SPEED_SUPER_PLUS: 2812 case USB_SPEED_UNKNOWN: 2813 case USB_SPEED_WIRELESS: 2814 /* Should never happen because only LS/FS/HS endpoints will get 2815 * added to the endpoint list. 2816 */ 2817 return; 2818 } 2819 2820 if (tt_info) 2821 tt_info->active_eps += 1; 2822 /* Insert the endpoint into the list, largest max packet size first. */ 2823 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2824 bw_endpoint_list) { 2825 if (ep_bw->max_packet_size >= 2826 smaller_ep->bw_info.max_packet_size) { 2827 /* Add the new ep before the smaller endpoint */ 2828 list_add_tail(&virt_ep->bw_endpoint_list, 2829 &smaller_ep->bw_endpoint_list); 2830 return; 2831 } 2832 } 2833 /* Add the new endpoint at the end of the list. */ 2834 list_add_tail(&virt_ep->bw_endpoint_list, 2835 &interval_bw->endpoints); 2836 } 2837 2838 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2839 struct xhci_virt_device *virt_dev, 2840 int old_active_eps) 2841 { 2842 struct xhci_root_port_bw_info *rh_bw_info; 2843 if (!virt_dev->tt_info) 2844 return; 2845 2846 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2847 if (old_active_eps == 0 && 2848 virt_dev->tt_info->active_eps != 0) { 2849 rh_bw_info->num_active_tts += 1; 2850 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2851 } else if (old_active_eps != 0 && 2852 virt_dev->tt_info->active_eps == 0) { 2853 rh_bw_info->num_active_tts -= 1; 2854 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2855 } 2856 } 2857 2858 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2859 struct xhci_virt_device *virt_dev, 2860 struct xhci_container_ctx *in_ctx) 2861 { 2862 struct xhci_bw_info ep_bw_info[31]; 2863 int i; 2864 struct xhci_input_control_ctx *ctrl_ctx; 2865 int old_active_eps = 0; 2866 2867 if (virt_dev->tt_info) 2868 old_active_eps = virt_dev->tt_info->active_eps; 2869 2870 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2871 if (!ctrl_ctx) { 2872 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2873 __func__); 2874 return -ENOMEM; 2875 } 2876 2877 for (i = 0; i < 31; i++) { 2878 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2879 continue; 2880 2881 /* Make a copy of the BW info in case we need to revert this */ 2882 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2883 sizeof(ep_bw_info[i])); 2884 /* Drop the endpoint from the interval table if the endpoint is 2885 * being dropped or changed. 2886 */ 2887 if (EP_IS_DROPPED(ctrl_ctx, i)) 2888 xhci_drop_ep_from_interval_table(xhci, 2889 &virt_dev->eps[i].bw_info, 2890 virt_dev->bw_table, 2891 virt_dev->udev, 2892 &virt_dev->eps[i], 2893 virt_dev->tt_info); 2894 } 2895 /* Overwrite the information stored in the endpoints' bw_info */ 2896 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2897 for (i = 0; i < 31; i++) { 2898 /* Add any changed or added endpoints to the interval table */ 2899 if (EP_IS_ADDED(ctrl_ctx, i)) 2900 xhci_add_ep_to_interval_table(xhci, 2901 &virt_dev->eps[i].bw_info, 2902 virt_dev->bw_table, 2903 virt_dev->udev, 2904 &virt_dev->eps[i], 2905 virt_dev->tt_info); 2906 } 2907 2908 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2909 /* Ok, this fits in the bandwidth we have. 2910 * Update the number of active TTs. 2911 */ 2912 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2913 return 0; 2914 } 2915 2916 /* We don't have enough bandwidth for this, revert the stored info. */ 2917 for (i = 0; i < 31; i++) { 2918 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2919 continue; 2920 2921 /* Drop the new copies of any added or changed endpoints from 2922 * the interval table. 2923 */ 2924 if (EP_IS_ADDED(ctrl_ctx, i)) { 2925 xhci_drop_ep_from_interval_table(xhci, 2926 &virt_dev->eps[i].bw_info, 2927 virt_dev->bw_table, 2928 virt_dev->udev, 2929 &virt_dev->eps[i], 2930 virt_dev->tt_info); 2931 } 2932 /* Revert the endpoint back to its old information */ 2933 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2934 sizeof(ep_bw_info[i])); 2935 /* Add any changed or dropped endpoints back into the table */ 2936 if (EP_IS_DROPPED(ctrl_ctx, i)) 2937 xhci_add_ep_to_interval_table(xhci, 2938 &virt_dev->eps[i].bw_info, 2939 virt_dev->bw_table, 2940 virt_dev->udev, 2941 &virt_dev->eps[i], 2942 virt_dev->tt_info); 2943 } 2944 return -ENOMEM; 2945 } 2946 2947 2948 /* Issue a configure endpoint command or evaluate context command 2949 * and wait for it to finish. 2950 */ 2951 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2952 struct usb_device *udev, 2953 struct xhci_command *command, 2954 bool ctx_change, bool must_succeed) 2955 { 2956 int ret; 2957 unsigned long flags; 2958 struct xhci_input_control_ctx *ctrl_ctx; 2959 struct xhci_virt_device *virt_dev; 2960 struct xhci_slot_ctx *slot_ctx; 2961 2962 if (!command) 2963 return -EINVAL; 2964 2965 spin_lock_irqsave(&xhci->lock, flags); 2966 2967 if (xhci->xhc_state & XHCI_STATE_DYING) { 2968 spin_unlock_irqrestore(&xhci->lock, flags); 2969 return -ESHUTDOWN; 2970 } 2971 2972 virt_dev = xhci->devs[udev->slot_id]; 2973 2974 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2975 if (!ctrl_ctx) { 2976 spin_unlock_irqrestore(&xhci->lock, flags); 2977 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2978 __func__); 2979 return -ENOMEM; 2980 } 2981 2982 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2983 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2984 spin_unlock_irqrestore(&xhci->lock, flags); 2985 xhci_warn(xhci, "Not enough host resources, " 2986 "active endpoint contexts = %u\n", 2987 xhci->num_active_eps); 2988 return -ENOMEM; 2989 } 2990 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2991 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2992 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2993 xhci_free_host_resources(xhci, ctrl_ctx); 2994 spin_unlock_irqrestore(&xhci->lock, flags); 2995 xhci_warn(xhci, "Not enough bandwidth\n"); 2996 return -ENOMEM; 2997 } 2998 2999 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 3000 3001 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 3002 trace_xhci_configure_endpoint(slot_ctx); 3003 3004 if (!ctx_change) 3005 ret = xhci_queue_configure_endpoint(xhci, command, 3006 command->in_ctx->dma, 3007 udev->slot_id, must_succeed); 3008 else 3009 ret = xhci_queue_evaluate_context(xhci, command, 3010 command->in_ctx->dma, 3011 udev->slot_id, must_succeed); 3012 if (ret < 0) { 3013 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 3014 xhci_free_host_resources(xhci, ctrl_ctx); 3015 spin_unlock_irqrestore(&xhci->lock, flags); 3016 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 3017 "FIXME allocate a new ring segment"); 3018 return -ENOMEM; 3019 } 3020 xhci_ring_cmd_db(xhci); 3021 spin_unlock_irqrestore(&xhci->lock, flags); 3022 3023 /* Wait for the configure endpoint command to complete */ 3024 wait_for_completion(command->completion); 3025 3026 if (!ctx_change) 3027 ret = xhci_configure_endpoint_result(xhci, udev, 3028 &command->status); 3029 else 3030 ret = xhci_evaluate_context_result(xhci, udev, 3031 &command->status); 3032 3033 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3034 spin_lock_irqsave(&xhci->lock, flags); 3035 /* If the command failed, remove the reserved resources. 3036 * Otherwise, clean up the estimate to include dropped eps. 3037 */ 3038 if (ret) 3039 xhci_free_host_resources(xhci, ctrl_ctx); 3040 else 3041 xhci_finish_resource_reservation(xhci, ctrl_ctx); 3042 spin_unlock_irqrestore(&xhci->lock, flags); 3043 } 3044 return ret; 3045 } 3046 3047 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 3048 struct xhci_virt_device *vdev, int i) 3049 { 3050 struct xhci_virt_ep *ep = &vdev->eps[i]; 3051 3052 if (ep->ep_state & EP_HAS_STREAMS) { 3053 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 3054 xhci_get_endpoint_address(i)); 3055 xhci_free_stream_info(xhci, ep->stream_info); 3056 ep->stream_info = NULL; 3057 ep->ep_state &= ~EP_HAS_STREAMS; 3058 } 3059 } 3060 3061 /* Called after one or more calls to xhci_add_endpoint() or 3062 * xhci_drop_endpoint(). If this call fails, the USB core is expected 3063 * to call xhci_reset_bandwidth(). 3064 * 3065 * Since we are in the middle of changing either configuration or 3066 * installing a new alt setting, the USB core won't allow URBs to be 3067 * enqueued for any endpoint on the old config or interface. Nothing 3068 * else should be touching the xhci->devs[slot_id] structure, so we 3069 * don't need to take the xhci->lock for manipulating that. 3070 */ 3071 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3072 { 3073 int i; 3074 int ret = 0; 3075 struct xhci_hcd *xhci; 3076 struct xhci_virt_device *virt_dev; 3077 struct xhci_input_control_ctx *ctrl_ctx; 3078 struct xhci_slot_ctx *slot_ctx; 3079 struct xhci_command *command; 3080 3081 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3082 if (ret <= 0) 3083 return ret; 3084 xhci = hcd_to_xhci(hcd); 3085 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3086 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3087 return -ENODEV; 3088 3089 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3090 virt_dev = xhci->devs[udev->slot_id]; 3091 3092 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3093 if (!command) 3094 return -ENOMEM; 3095 3096 command->in_ctx = virt_dev->in_ctx; 3097 3098 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3099 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3100 if (!ctrl_ctx) { 3101 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3102 __func__); 3103 ret = -ENOMEM; 3104 goto command_cleanup; 3105 } 3106 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3107 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3108 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3109 3110 /* Don't issue the command if there's no endpoints to update. */ 3111 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3112 ctrl_ctx->drop_flags == 0) { 3113 ret = 0; 3114 goto command_cleanup; 3115 } 3116 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3117 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3118 for (i = 31; i >= 1; i--) { 3119 __le32 le32 = cpu_to_le32(BIT(i)); 3120 3121 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3122 || (ctrl_ctx->add_flags & le32) || i == 1) { 3123 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3124 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3125 break; 3126 } 3127 } 3128 3129 ret = xhci_configure_endpoint(xhci, udev, command, 3130 false, false); 3131 if (ret) 3132 /* Callee should call reset_bandwidth() */ 3133 goto command_cleanup; 3134 3135 /* Free any rings that were dropped, but not changed. */ 3136 for (i = 1; i < 31; i++) { 3137 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3138 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3139 xhci_free_endpoint_ring(xhci, virt_dev, i); 3140 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3141 } 3142 } 3143 xhci_zero_in_ctx(xhci, virt_dev); 3144 /* 3145 * Install any rings for completely new endpoints or changed endpoints, 3146 * and free any old rings from changed endpoints. 3147 */ 3148 for (i = 1; i < 31; i++) { 3149 if (!virt_dev->eps[i].new_ring) 3150 continue; 3151 /* Only free the old ring if it exists. 3152 * It may not if this is the first add of an endpoint. 3153 */ 3154 if (virt_dev->eps[i].ring) { 3155 xhci_free_endpoint_ring(xhci, virt_dev, i); 3156 } 3157 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3158 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3159 virt_dev->eps[i].new_ring = NULL; 3160 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3161 } 3162 command_cleanup: 3163 kfree(command->completion); 3164 kfree(command); 3165 3166 return ret; 3167 } 3168 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3169 3170 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3171 { 3172 struct xhci_hcd *xhci; 3173 struct xhci_virt_device *virt_dev; 3174 int i, ret; 3175 3176 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3177 if (ret <= 0) 3178 return; 3179 xhci = hcd_to_xhci(hcd); 3180 3181 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3182 virt_dev = xhci->devs[udev->slot_id]; 3183 /* Free any rings allocated for added endpoints */ 3184 for (i = 0; i < 31; i++) { 3185 if (virt_dev->eps[i].new_ring) { 3186 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3187 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3188 virt_dev->eps[i].new_ring = NULL; 3189 } 3190 } 3191 xhci_zero_in_ctx(xhci, virt_dev); 3192 } 3193 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3194 3195 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3196 struct xhci_container_ctx *in_ctx, 3197 struct xhci_container_ctx *out_ctx, 3198 struct xhci_input_control_ctx *ctrl_ctx, 3199 u32 add_flags, u32 drop_flags) 3200 { 3201 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3202 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3203 xhci_slot_copy(xhci, in_ctx, out_ctx); 3204 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3205 } 3206 3207 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3208 struct usb_host_endpoint *host_ep) 3209 { 3210 struct xhci_hcd *xhci; 3211 struct xhci_virt_device *vdev; 3212 struct xhci_virt_ep *ep; 3213 struct usb_device *udev; 3214 unsigned long flags; 3215 unsigned int ep_index; 3216 3217 xhci = hcd_to_xhci(hcd); 3218 rescan: 3219 spin_lock_irqsave(&xhci->lock, flags); 3220 3221 udev = (struct usb_device *)host_ep->hcpriv; 3222 if (!udev || !udev->slot_id) 3223 goto done; 3224 3225 vdev = xhci->devs[udev->slot_id]; 3226 if (!vdev) 3227 goto done; 3228 3229 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3230 ep = &vdev->eps[ep_index]; 3231 3232 /* wait for hub_tt_work to finish clearing hub TT */ 3233 if (ep->ep_state & EP_CLEARING_TT) { 3234 spin_unlock_irqrestore(&xhci->lock, flags); 3235 schedule_timeout_uninterruptible(1); 3236 goto rescan; 3237 } 3238 3239 if (ep->ep_state) 3240 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3241 ep->ep_state); 3242 done: 3243 host_ep->hcpriv = NULL; 3244 spin_unlock_irqrestore(&xhci->lock, flags); 3245 } 3246 3247 /* 3248 * Called after usb core issues a clear halt control message. 3249 * The host side of the halt should already be cleared by a reset endpoint 3250 * command issued when the STALL event was received. 3251 * 3252 * The reset endpoint command may only be issued to endpoints in the halted 3253 * state. For software that wishes to reset the data toggle or sequence number 3254 * of an endpoint that isn't in the halted state this function will issue a 3255 * configure endpoint command with the Drop and Add bits set for the target 3256 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3257 */ 3258 3259 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3260 struct usb_host_endpoint *host_ep) 3261 { 3262 struct xhci_hcd *xhci; 3263 struct usb_device *udev; 3264 struct xhci_virt_device *vdev; 3265 struct xhci_virt_ep *ep; 3266 struct xhci_input_control_ctx *ctrl_ctx; 3267 struct xhci_command *stop_cmd, *cfg_cmd; 3268 unsigned int ep_index; 3269 unsigned long flags; 3270 u32 ep_flag; 3271 int err; 3272 3273 xhci = hcd_to_xhci(hcd); 3274 if (!host_ep->hcpriv) 3275 return; 3276 udev = (struct usb_device *) host_ep->hcpriv; 3277 vdev = xhci->devs[udev->slot_id]; 3278 3279 /* 3280 * vdev may be lost due to xHC restore error and re-initialization 3281 * during S3/S4 resume. A new vdev will be allocated later by 3282 * xhci_discover_or_reset_device() 3283 */ 3284 if (!udev->slot_id || !vdev) 3285 return; 3286 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3287 ep = &vdev->eps[ep_index]; 3288 3289 /* Bail out if toggle is already being cleared by a endpoint reset */ 3290 spin_lock_irqsave(&xhci->lock, flags); 3291 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3292 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3293 spin_unlock_irqrestore(&xhci->lock, flags); 3294 return; 3295 } 3296 spin_unlock_irqrestore(&xhci->lock, flags); 3297 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3298 if (usb_endpoint_xfer_control(&host_ep->desc) || 3299 usb_endpoint_xfer_isoc(&host_ep->desc)) 3300 return; 3301 3302 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3303 3304 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3305 return; 3306 3307 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3308 if (!stop_cmd) 3309 return; 3310 3311 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3312 if (!cfg_cmd) 3313 goto cleanup; 3314 3315 spin_lock_irqsave(&xhci->lock, flags); 3316 3317 /* block queuing new trbs and ringing ep doorbell */ 3318 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3319 3320 /* 3321 * Make sure endpoint ring is empty before resetting the toggle/seq. 3322 * Driver is required to synchronously cancel all transfer request. 3323 * Stop the endpoint to force xHC to update the output context 3324 */ 3325 3326 if (!list_empty(&ep->ring->td_list)) { 3327 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3328 spin_unlock_irqrestore(&xhci->lock, flags); 3329 xhci_free_command(xhci, cfg_cmd); 3330 goto cleanup; 3331 } 3332 3333 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3334 ep_index, 0); 3335 if (err < 0) { 3336 spin_unlock_irqrestore(&xhci->lock, flags); 3337 xhci_free_command(xhci, cfg_cmd); 3338 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3339 __func__, err); 3340 goto cleanup; 3341 } 3342 3343 xhci_ring_cmd_db(xhci); 3344 spin_unlock_irqrestore(&xhci->lock, flags); 3345 3346 wait_for_completion(stop_cmd->completion); 3347 3348 spin_lock_irqsave(&xhci->lock, flags); 3349 3350 /* config ep command clears toggle if add and drop ep flags are set */ 3351 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3352 if (!ctrl_ctx) { 3353 spin_unlock_irqrestore(&xhci->lock, flags); 3354 xhci_free_command(xhci, cfg_cmd); 3355 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3356 __func__); 3357 goto cleanup; 3358 } 3359 3360 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3361 ctrl_ctx, ep_flag, ep_flag); 3362 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3363 3364 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3365 udev->slot_id, false); 3366 if (err < 0) { 3367 spin_unlock_irqrestore(&xhci->lock, flags); 3368 xhci_free_command(xhci, cfg_cmd); 3369 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3370 __func__, err); 3371 goto cleanup; 3372 } 3373 3374 xhci_ring_cmd_db(xhci); 3375 spin_unlock_irqrestore(&xhci->lock, flags); 3376 3377 wait_for_completion(cfg_cmd->completion); 3378 3379 xhci_free_command(xhci, cfg_cmd); 3380 cleanup: 3381 xhci_free_command(xhci, stop_cmd); 3382 spin_lock_irqsave(&xhci->lock, flags); 3383 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3384 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3385 spin_unlock_irqrestore(&xhci->lock, flags); 3386 } 3387 3388 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3389 struct usb_device *udev, struct usb_host_endpoint *ep, 3390 unsigned int slot_id) 3391 { 3392 int ret; 3393 unsigned int ep_index; 3394 unsigned int ep_state; 3395 3396 if (!ep) 3397 return -EINVAL; 3398 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3399 if (ret <= 0) 3400 return ret ? ret : -EINVAL; 3401 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3402 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3403 " descriptor for ep 0x%x does not support streams\n", 3404 ep->desc.bEndpointAddress); 3405 return -EINVAL; 3406 } 3407 3408 ep_index = xhci_get_endpoint_index(&ep->desc); 3409 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3410 if (ep_state & EP_HAS_STREAMS || 3411 ep_state & EP_GETTING_STREAMS) { 3412 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3413 "already has streams set up.\n", 3414 ep->desc.bEndpointAddress); 3415 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3416 "dynamic stream context array reallocation.\n"); 3417 return -EINVAL; 3418 } 3419 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3420 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3421 "endpoint 0x%x; URBs are pending.\n", 3422 ep->desc.bEndpointAddress); 3423 return -EINVAL; 3424 } 3425 return 0; 3426 } 3427 3428 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3429 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3430 { 3431 unsigned int max_streams; 3432 3433 /* The stream context array size must be a power of two */ 3434 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3435 /* 3436 * Find out how many primary stream array entries the host controller 3437 * supports. Later we may use secondary stream arrays (similar to 2nd 3438 * level page entries), but that's an optional feature for xHCI host 3439 * controllers. xHCs must support at least 4 stream IDs. 3440 */ 3441 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3442 if (*num_stream_ctxs > max_streams) { 3443 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3444 max_streams); 3445 *num_stream_ctxs = max_streams; 3446 *num_streams = max_streams; 3447 } 3448 } 3449 3450 /* Returns an error code if one of the endpoint already has streams. 3451 * This does not change any data structures, it only checks and gathers 3452 * information. 3453 */ 3454 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3455 struct usb_device *udev, 3456 struct usb_host_endpoint **eps, unsigned int num_eps, 3457 unsigned int *num_streams, u32 *changed_ep_bitmask) 3458 { 3459 unsigned int max_streams; 3460 unsigned int endpoint_flag; 3461 int i; 3462 int ret; 3463 3464 for (i = 0; i < num_eps; i++) { 3465 ret = xhci_check_streams_endpoint(xhci, udev, 3466 eps[i], udev->slot_id); 3467 if (ret < 0) 3468 return ret; 3469 3470 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3471 if (max_streams < (*num_streams - 1)) { 3472 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3473 eps[i]->desc.bEndpointAddress, 3474 max_streams); 3475 *num_streams = max_streams+1; 3476 } 3477 3478 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3479 if (*changed_ep_bitmask & endpoint_flag) 3480 return -EINVAL; 3481 *changed_ep_bitmask |= endpoint_flag; 3482 } 3483 return 0; 3484 } 3485 3486 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3487 struct usb_device *udev, 3488 struct usb_host_endpoint **eps, unsigned int num_eps) 3489 { 3490 u32 changed_ep_bitmask = 0; 3491 unsigned int slot_id; 3492 unsigned int ep_index; 3493 unsigned int ep_state; 3494 int i; 3495 3496 slot_id = udev->slot_id; 3497 if (!xhci->devs[slot_id]) 3498 return 0; 3499 3500 for (i = 0; i < num_eps; i++) { 3501 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3502 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3503 /* Are streams already being freed for the endpoint? */ 3504 if (ep_state & EP_GETTING_NO_STREAMS) { 3505 xhci_warn(xhci, "WARN Can't disable streams for " 3506 "endpoint 0x%x, " 3507 "streams are being disabled already\n", 3508 eps[i]->desc.bEndpointAddress); 3509 return 0; 3510 } 3511 /* Are there actually any streams to free? */ 3512 if (!(ep_state & EP_HAS_STREAMS) && 3513 !(ep_state & EP_GETTING_STREAMS)) { 3514 xhci_warn(xhci, "WARN Can't disable streams for " 3515 "endpoint 0x%x, " 3516 "streams are already disabled!\n", 3517 eps[i]->desc.bEndpointAddress); 3518 xhci_warn(xhci, "WARN xhci_free_streams() called " 3519 "with non-streams endpoint\n"); 3520 return 0; 3521 } 3522 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3523 } 3524 return changed_ep_bitmask; 3525 } 3526 3527 /* 3528 * The USB device drivers use this function (through the HCD interface in USB 3529 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3530 * coordinate mass storage command queueing across multiple endpoints (basically 3531 * a stream ID == a task ID). 3532 * 3533 * Setting up streams involves allocating the same size stream context array 3534 * for each endpoint and issuing a configure endpoint command for all endpoints. 3535 * 3536 * Don't allow the call to succeed if one endpoint only supports one stream 3537 * (which means it doesn't support streams at all). 3538 * 3539 * Drivers may get less stream IDs than they asked for, if the host controller 3540 * hardware or endpoints claim they can't support the number of requested 3541 * stream IDs. 3542 */ 3543 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3544 struct usb_host_endpoint **eps, unsigned int num_eps, 3545 unsigned int num_streams, gfp_t mem_flags) 3546 { 3547 int i, ret; 3548 struct xhci_hcd *xhci; 3549 struct xhci_virt_device *vdev; 3550 struct xhci_command *config_cmd; 3551 struct xhci_input_control_ctx *ctrl_ctx; 3552 unsigned int ep_index; 3553 unsigned int num_stream_ctxs; 3554 unsigned int max_packet; 3555 unsigned long flags; 3556 u32 changed_ep_bitmask = 0; 3557 3558 if (!eps) 3559 return -EINVAL; 3560 3561 /* Add one to the number of streams requested to account for 3562 * stream 0 that is reserved for xHCI usage. 3563 */ 3564 num_streams += 1; 3565 xhci = hcd_to_xhci(hcd); 3566 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3567 num_streams); 3568 3569 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3570 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3571 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3572 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3573 return -ENOSYS; 3574 } 3575 3576 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3577 if (!config_cmd) 3578 return -ENOMEM; 3579 3580 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3581 if (!ctrl_ctx) { 3582 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3583 __func__); 3584 xhci_free_command(xhci, config_cmd); 3585 return -ENOMEM; 3586 } 3587 3588 /* Check to make sure all endpoints are not already configured for 3589 * streams. While we're at it, find the maximum number of streams that 3590 * all the endpoints will support and check for duplicate endpoints. 3591 */ 3592 spin_lock_irqsave(&xhci->lock, flags); 3593 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3594 num_eps, &num_streams, &changed_ep_bitmask); 3595 if (ret < 0) { 3596 xhci_free_command(xhci, config_cmd); 3597 spin_unlock_irqrestore(&xhci->lock, flags); 3598 return ret; 3599 } 3600 if (num_streams <= 1) { 3601 xhci_warn(xhci, "WARN: endpoints can't handle " 3602 "more than one stream.\n"); 3603 xhci_free_command(xhci, config_cmd); 3604 spin_unlock_irqrestore(&xhci->lock, flags); 3605 return -EINVAL; 3606 } 3607 vdev = xhci->devs[udev->slot_id]; 3608 /* Mark each endpoint as being in transition, so 3609 * xhci_urb_enqueue() will reject all URBs. 3610 */ 3611 for (i = 0; i < num_eps; i++) { 3612 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3613 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3614 } 3615 spin_unlock_irqrestore(&xhci->lock, flags); 3616 3617 /* Setup internal data structures and allocate HW data structures for 3618 * streams (but don't install the HW structures in the input context 3619 * until we're sure all memory allocation succeeded). 3620 */ 3621 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3622 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3623 num_stream_ctxs, num_streams); 3624 3625 for (i = 0; i < num_eps; i++) { 3626 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3627 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3628 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3629 num_stream_ctxs, 3630 num_streams, 3631 max_packet, mem_flags); 3632 if (!vdev->eps[ep_index].stream_info) 3633 goto cleanup; 3634 /* Set maxPstreams in endpoint context and update deq ptr to 3635 * point to stream context array. FIXME 3636 */ 3637 } 3638 3639 /* Set up the input context for a configure endpoint command. */ 3640 for (i = 0; i < num_eps; i++) { 3641 struct xhci_ep_ctx *ep_ctx; 3642 3643 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3644 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3645 3646 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3647 vdev->out_ctx, ep_index); 3648 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3649 vdev->eps[ep_index].stream_info); 3650 } 3651 /* Tell the HW to drop its old copy of the endpoint context info 3652 * and add the updated copy from the input context. 3653 */ 3654 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3655 vdev->out_ctx, ctrl_ctx, 3656 changed_ep_bitmask, changed_ep_bitmask); 3657 3658 /* Issue and wait for the configure endpoint command */ 3659 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3660 false, false); 3661 3662 /* xHC rejected the configure endpoint command for some reason, so we 3663 * leave the old ring intact and free our internal streams data 3664 * structure. 3665 */ 3666 if (ret < 0) 3667 goto cleanup; 3668 3669 spin_lock_irqsave(&xhci->lock, flags); 3670 for (i = 0; i < num_eps; i++) { 3671 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3672 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3673 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3674 udev->slot_id, ep_index); 3675 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3676 } 3677 xhci_free_command(xhci, config_cmd); 3678 spin_unlock_irqrestore(&xhci->lock, flags); 3679 3680 for (i = 0; i < num_eps; i++) { 3681 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3682 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3683 } 3684 /* Subtract 1 for stream 0, which drivers can't use */ 3685 return num_streams - 1; 3686 3687 cleanup: 3688 /* If it didn't work, free the streams! */ 3689 for (i = 0; i < num_eps; i++) { 3690 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3691 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3692 vdev->eps[ep_index].stream_info = NULL; 3693 /* FIXME Unset maxPstreams in endpoint context and 3694 * update deq ptr to point to normal string ring. 3695 */ 3696 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3697 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3698 xhci_endpoint_zero(xhci, vdev, eps[i]); 3699 } 3700 xhci_free_command(xhci, config_cmd); 3701 return -ENOMEM; 3702 } 3703 3704 /* Transition the endpoint from using streams to being a "normal" endpoint 3705 * without streams. 3706 * 3707 * Modify the endpoint context state, submit a configure endpoint command, 3708 * and free all endpoint rings for streams if that completes successfully. 3709 */ 3710 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3711 struct usb_host_endpoint **eps, unsigned int num_eps, 3712 gfp_t mem_flags) 3713 { 3714 int i, ret; 3715 struct xhci_hcd *xhci; 3716 struct xhci_virt_device *vdev; 3717 struct xhci_command *command; 3718 struct xhci_input_control_ctx *ctrl_ctx; 3719 unsigned int ep_index; 3720 unsigned long flags; 3721 u32 changed_ep_bitmask; 3722 3723 xhci = hcd_to_xhci(hcd); 3724 vdev = xhci->devs[udev->slot_id]; 3725 3726 /* Set up a configure endpoint command to remove the streams rings */ 3727 spin_lock_irqsave(&xhci->lock, flags); 3728 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3729 udev, eps, num_eps); 3730 if (changed_ep_bitmask == 0) { 3731 spin_unlock_irqrestore(&xhci->lock, flags); 3732 return -EINVAL; 3733 } 3734 3735 /* Use the xhci_command structure from the first endpoint. We may have 3736 * allocated too many, but the driver may call xhci_free_streams() for 3737 * each endpoint it grouped into one call to xhci_alloc_streams(). 3738 */ 3739 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3740 command = vdev->eps[ep_index].stream_info->free_streams_command; 3741 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3742 if (!ctrl_ctx) { 3743 spin_unlock_irqrestore(&xhci->lock, flags); 3744 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3745 __func__); 3746 return -EINVAL; 3747 } 3748 3749 for (i = 0; i < num_eps; i++) { 3750 struct xhci_ep_ctx *ep_ctx; 3751 3752 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3753 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3754 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3755 EP_GETTING_NO_STREAMS; 3756 3757 xhci_endpoint_copy(xhci, command->in_ctx, 3758 vdev->out_ctx, ep_index); 3759 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3760 &vdev->eps[ep_index]); 3761 } 3762 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3763 vdev->out_ctx, ctrl_ctx, 3764 changed_ep_bitmask, changed_ep_bitmask); 3765 spin_unlock_irqrestore(&xhci->lock, flags); 3766 3767 /* Issue and wait for the configure endpoint command, 3768 * which must succeed. 3769 */ 3770 ret = xhci_configure_endpoint(xhci, udev, command, 3771 false, true); 3772 3773 /* xHC rejected the configure endpoint command for some reason, so we 3774 * leave the streams rings intact. 3775 */ 3776 if (ret < 0) 3777 return ret; 3778 3779 spin_lock_irqsave(&xhci->lock, flags); 3780 for (i = 0; i < num_eps; i++) { 3781 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3782 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3783 vdev->eps[ep_index].stream_info = NULL; 3784 /* FIXME Unset maxPstreams in endpoint context and 3785 * update deq ptr to point to normal string ring. 3786 */ 3787 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3788 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3789 } 3790 spin_unlock_irqrestore(&xhci->lock, flags); 3791 3792 return 0; 3793 } 3794 3795 /* 3796 * Deletes endpoint resources for endpoints that were active before a Reset 3797 * Device command, or a Disable Slot command. The Reset Device command leaves 3798 * the control endpoint intact, whereas the Disable Slot command deletes it. 3799 * 3800 * Must be called with xhci->lock held. 3801 */ 3802 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3803 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3804 { 3805 int i; 3806 unsigned int num_dropped_eps = 0; 3807 unsigned int drop_flags = 0; 3808 3809 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3810 if (virt_dev->eps[i].ring) { 3811 drop_flags |= 1 << i; 3812 num_dropped_eps++; 3813 } 3814 } 3815 xhci->num_active_eps -= num_dropped_eps; 3816 if (num_dropped_eps) 3817 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3818 "Dropped %u ep ctxs, flags = 0x%x, " 3819 "%u now active.", 3820 num_dropped_eps, drop_flags, 3821 xhci->num_active_eps); 3822 } 3823 3824 /* 3825 * This submits a Reset Device Command, which will set the device state to 0, 3826 * set the device address to 0, and disable all the endpoints except the default 3827 * control endpoint. The USB core should come back and call 3828 * xhci_address_device(), and then re-set up the configuration. If this is 3829 * called because of a usb_reset_and_verify_device(), then the old alternate 3830 * settings will be re-installed through the normal bandwidth allocation 3831 * functions. 3832 * 3833 * Wait for the Reset Device command to finish. Remove all structures 3834 * associated with the endpoints that were disabled. Clear the input device 3835 * structure? Reset the control endpoint 0 max packet size? 3836 * 3837 * If the virt_dev to be reset does not exist or does not match the udev, 3838 * it means the device is lost, possibly due to the xHC restore error and 3839 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3840 * re-allocate the device. 3841 */ 3842 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3843 struct usb_device *udev) 3844 { 3845 int ret, i; 3846 unsigned long flags; 3847 struct xhci_hcd *xhci; 3848 unsigned int slot_id; 3849 struct xhci_virt_device *virt_dev; 3850 struct xhci_command *reset_device_cmd; 3851 struct xhci_slot_ctx *slot_ctx; 3852 int old_active_eps = 0; 3853 3854 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3855 if (ret <= 0) 3856 return ret; 3857 xhci = hcd_to_xhci(hcd); 3858 slot_id = udev->slot_id; 3859 virt_dev = xhci->devs[slot_id]; 3860 if (!virt_dev) { 3861 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3862 "not exist. Re-allocate the device\n", slot_id); 3863 ret = xhci_alloc_dev(hcd, udev); 3864 if (ret == 1) 3865 return 0; 3866 else 3867 return -EINVAL; 3868 } 3869 3870 if (virt_dev->tt_info) 3871 old_active_eps = virt_dev->tt_info->active_eps; 3872 3873 if (virt_dev->udev != udev) { 3874 /* If the virt_dev and the udev does not match, this virt_dev 3875 * may belong to another udev. 3876 * Re-allocate the device. 3877 */ 3878 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3879 "not match the udev. Re-allocate the device\n", 3880 slot_id); 3881 ret = xhci_alloc_dev(hcd, udev); 3882 if (ret == 1) 3883 return 0; 3884 else 3885 return -EINVAL; 3886 } 3887 3888 /* If device is not setup, there is no point in resetting it */ 3889 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3890 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3891 SLOT_STATE_DISABLED) 3892 return 0; 3893 3894 trace_xhci_discover_or_reset_device(slot_ctx); 3895 3896 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3897 /* Allocate the command structure that holds the struct completion. 3898 * Assume we're in process context, since the normal device reset 3899 * process has to wait for the device anyway. Storage devices are 3900 * reset as part of error handling, so use GFP_NOIO instead of 3901 * GFP_KERNEL. 3902 */ 3903 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3904 if (!reset_device_cmd) { 3905 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3906 return -ENOMEM; 3907 } 3908 3909 /* Attempt to submit the Reset Device command to the command ring */ 3910 spin_lock_irqsave(&xhci->lock, flags); 3911 3912 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3913 if (ret) { 3914 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3915 spin_unlock_irqrestore(&xhci->lock, flags); 3916 goto command_cleanup; 3917 } 3918 xhci_ring_cmd_db(xhci); 3919 spin_unlock_irqrestore(&xhci->lock, flags); 3920 3921 /* Wait for the Reset Device command to finish */ 3922 wait_for_completion(reset_device_cmd->completion); 3923 3924 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3925 * unless we tried to reset a slot ID that wasn't enabled, 3926 * or the device wasn't in the addressed or configured state. 3927 */ 3928 ret = reset_device_cmd->status; 3929 switch (ret) { 3930 case COMP_COMMAND_ABORTED: 3931 case COMP_COMMAND_RING_STOPPED: 3932 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3933 ret = -ETIME; 3934 goto command_cleanup; 3935 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3936 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3937 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3938 slot_id, 3939 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3940 xhci_dbg(xhci, "Not freeing device rings.\n"); 3941 /* Don't treat this as an error. May change my mind later. */ 3942 ret = 0; 3943 goto command_cleanup; 3944 case COMP_SUCCESS: 3945 xhci_dbg(xhci, "Successful reset device command.\n"); 3946 break; 3947 default: 3948 if (xhci_is_vendor_info_code(xhci, ret)) 3949 break; 3950 xhci_warn(xhci, "Unknown completion code %u for " 3951 "reset device command.\n", ret); 3952 ret = -EINVAL; 3953 goto command_cleanup; 3954 } 3955 3956 /* Free up host controller endpoint resources */ 3957 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3958 spin_lock_irqsave(&xhci->lock, flags); 3959 /* Don't delete the default control endpoint resources */ 3960 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3961 spin_unlock_irqrestore(&xhci->lock, flags); 3962 } 3963 3964 /* Everything but endpoint 0 is disabled, so free the rings. */ 3965 for (i = 1; i < 31; i++) { 3966 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3967 3968 if (ep->ep_state & EP_HAS_STREAMS) { 3969 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3970 xhci_get_endpoint_address(i)); 3971 xhci_free_stream_info(xhci, ep->stream_info); 3972 ep->stream_info = NULL; 3973 ep->ep_state &= ~EP_HAS_STREAMS; 3974 } 3975 3976 if (ep->ring) { 3977 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3978 xhci_free_endpoint_ring(xhci, virt_dev, i); 3979 } 3980 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3981 xhci_drop_ep_from_interval_table(xhci, 3982 &virt_dev->eps[i].bw_info, 3983 virt_dev->bw_table, 3984 udev, 3985 &virt_dev->eps[i], 3986 virt_dev->tt_info); 3987 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3988 } 3989 /* If necessary, update the number of active TTs on this root port */ 3990 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3991 virt_dev->flags = 0; 3992 ret = 0; 3993 3994 command_cleanup: 3995 xhci_free_command(xhci, reset_device_cmd); 3996 return ret; 3997 } 3998 3999 /* 4000 * At this point, the struct usb_device is about to go away, the device has 4001 * disconnected, and all traffic has been stopped and the endpoints have been 4002 * disabled. Free any HC data structures associated with that device. 4003 */ 4004 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 4005 { 4006 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4007 struct xhci_virt_device *virt_dev; 4008 struct xhci_slot_ctx *slot_ctx; 4009 unsigned long flags; 4010 int i, ret; 4011 4012 /* 4013 * We called pm_runtime_get_noresume when the device was attached. 4014 * Decrement the counter here to allow controller to runtime suspend 4015 * if no devices remain. 4016 */ 4017 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4018 pm_runtime_put_noidle(hcd->self.controller); 4019 4020 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 4021 /* If the host is halted due to driver unload, we still need to free the 4022 * device. 4023 */ 4024 if (ret <= 0 && ret != -ENODEV) 4025 return; 4026 4027 virt_dev = xhci->devs[udev->slot_id]; 4028 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4029 trace_xhci_free_dev(slot_ctx); 4030 4031 /* Stop any wayward timer functions (which may grab the lock) */ 4032 for (i = 0; i < 31; i++) 4033 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 4034 virt_dev->udev = NULL; 4035 xhci_disable_slot(xhci, udev->slot_id); 4036 4037 spin_lock_irqsave(&xhci->lock, flags); 4038 xhci_free_virt_device(xhci, udev->slot_id); 4039 spin_unlock_irqrestore(&xhci->lock, flags); 4040 4041 } 4042 4043 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 4044 { 4045 struct xhci_command *command; 4046 unsigned long flags; 4047 u32 state; 4048 int ret; 4049 4050 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4051 if (!command) 4052 return -ENOMEM; 4053 4054 xhci_debugfs_remove_slot(xhci, slot_id); 4055 4056 spin_lock_irqsave(&xhci->lock, flags); 4057 /* Don't disable the slot if the host controller is dead. */ 4058 state = readl(&xhci->op_regs->status); 4059 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 4060 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4061 spin_unlock_irqrestore(&xhci->lock, flags); 4062 kfree(command); 4063 return -ENODEV; 4064 } 4065 4066 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 4067 slot_id); 4068 if (ret) { 4069 spin_unlock_irqrestore(&xhci->lock, flags); 4070 kfree(command); 4071 return ret; 4072 } 4073 xhci_ring_cmd_db(xhci); 4074 spin_unlock_irqrestore(&xhci->lock, flags); 4075 4076 wait_for_completion(command->completion); 4077 4078 if (command->status != COMP_SUCCESS) 4079 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4080 slot_id, command->status); 4081 4082 xhci_free_command(xhci, command); 4083 4084 return 0; 4085 } 4086 4087 /* 4088 * Checks if we have enough host controller resources for the default control 4089 * endpoint. 4090 * 4091 * Must be called with xhci->lock held. 4092 */ 4093 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4094 { 4095 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4096 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4097 "Not enough ep ctxs: " 4098 "%u active, need to add 1, limit is %u.", 4099 xhci->num_active_eps, xhci->limit_active_eps); 4100 return -ENOMEM; 4101 } 4102 xhci->num_active_eps += 1; 4103 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4104 "Adding 1 ep ctx, %u now active.", 4105 xhci->num_active_eps); 4106 return 0; 4107 } 4108 4109 4110 /* 4111 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4112 * timed out, or allocating memory failed. Returns 1 on success. 4113 */ 4114 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4115 { 4116 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4117 struct xhci_virt_device *vdev; 4118 struct xhci_slot_ctx *slot_ctx; 4119 unsigned long flags; 4120 int ret, slot_id; 4121 struct xhci_command *command; 4122 4123 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4124 if (!command) 4125 return 0; 4126 4127 spin_lock_irqsave(&xhci->lock, flags); 4128 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4129 if (ret) { 4130 spin_unlock_irqrestore(&xhci->lock, flags); 4131 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4132 xhci_free_command(xhci, command); 4133 return 0; 4134 } 4135 xhci_ring_cmd_db(xhci); 4136 spin_unlock_irqrestore(&xhci->lock, flags); 4137 4138 wait_for_completion(command->completion); 4139 slot_id = command->slot_id; 4140 4141 if (!slot_id || command->status != COMP_SUCCESS) { 4142 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 4143 xhci_trb_comp_code_string(command->status)); 4144 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4145 HCS_MAX_SLOTS( 4146 readl(&xhci->cap_regs->hcs_params1))); 4147 xhci_free_command(xhci, command); 4148 return 0; 4149 } 4150 4151 xhci_free_command(xhci, command); 4152 4153 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4154 spin_lock_irqsave(&xhci->lock, flags); 4155 ret = xhci_reserve_host_control_ep_resources(xhci); 4156 if (ret) { 4157 spin_unlock_irqrestore(&xhci->lock, flags); 4158 xhci_warn(xhci, "Not enough host resources, " 4159 "active endpoint contexts = %u\n", 4160 xhci->num_active_eps); 4161 goto disable_slot; 4162 } 4163 spin_unlock_irqrestore(&xhci->lock, flags); 4164 } 4165 /* Use GFP_NOIO, since this function can be called from 4166 * xhci_discover_or_reset_device(), which may be called as part of 4167 * mass storage driver error handling. 4168 */ 4169 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4170 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4171 goto disable_slot; 4172 } 4173 vdev = xhci->devs[slot_id]; 4174 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4175 trace_xhci_alloc_dev(slot_ctx); 4176 4177 udev->slot_id = slot_id; 4178 4179 xhci_debugfs_create_slot(xhci, slot_id); 4180 4181 /* 4182 * If resetting upon resume, we can't put the controller into runtime 4183 * suspend if there is a device attached. 4184 */ 4185 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4186 pm_runtime_get_noresume(hcd->self.controller); 4187 4188 /* Is this a LS or FS device under a HS hub? */ 4189 /* Hub or peripherial? */ 4190 return 1; 4191 4192 disable_slot: 4193 xhci_disable_slot(xhci, udev->slot_id); 4194 xhci_free_virt_device(xhci, udev->slot_id); 4195 4196 return 0; 4197 } 4198 4199 /* 4200 * Issue an Address Device command and optionally send a corresponding 4201 * SetAddress request to the device. 4202 */ 4203 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4204 enum xhci_setup_dev setup) 4205 { 4206 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4207 unsigned long flags; 4208 struct xhci_virt_device *virt_dev; 4209 int ret = 0; 4210 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4211 struct xhci_slot_ctx *slot_ctx; 4212 struct xhci_input_control_ctx *ctrl_ctx; 4213 u64 temp_64; 4214 struct xhci_command *command = NULL; 4215 4216 mutex_lock(&xhci->mutex); 4217 4218 if (xhci->xhc_state) { /* dying, removing or halted */ 4219 ret = -ESHUTDOWN; 4220 goto out; 4221 } 4222 4223 if (!udev->slot_id) { 4224 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4225 "Bad Slot ID %d", udev->slot_id); 4226 ret = -EINVAL; 4227 goto out; 4228 } 4229 4230 virt_dev = xhci->devs[udev->slot_id]; 4231 4232 if (WARN_ON(!virt_dev)) { 4233 /* 4234 * In plug/unplug torture test with an NEC controller, 4235 * a zero-dereference was observed once due to virt_dev = 0. 4236 * Print useful debug rather than crash if it is observed again! 4237 */ 4238 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4239 udev->slot_id); 4240 ret = -EINVAL; 4241 goto out; 4242 } 4243 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4244 trace_xhci_setup_device_slot(slot_ctx); 4245 4246 if (setup == SETUP_CONTEXT_ONLY) { 4247 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4248 SLOT_STATE_DEFAULT) { 4249 xhci_dbg(xhci, "Slot already in default state\n"); 4250 goto out; 4251 } 4252 } 4253 4254 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4255 if (!command) { 4256 ret = -ENOMEM; 4257 goto out; 4258 } 4259 4260 command->in_ctx = virt_dev->in_ctx; 4261 4262 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4263 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4264 if (!ctrl_ctx) { 4265 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4266 __func__); 4267 ret = -EINVAL; 4268 goto out; 4269 } 4270 /* 4271 * If this is the first Set Address since device plug-in or 4272 * virt_device realloaction after a resume with an xHCI power loss, 4273 * then set up the slot context. 4274 */ 4275 if (!slot_ctx->dev_info) 4276 xhci_setup_addressable_virt_dev(xhci, udev); 4277 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4278 else 4279 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4280 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4281 ctrl_ctx->drop_flags = 0; 4282 4283 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4284 le32_to_cpu(slot_ctx->dev_info) >> 27); 4285 4286 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4287 spin_lock_irqsave(&xhci->lock, flags); 4288 trace_xhci_setup_device(virt_dev); 4289 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4290 udev->slot_id, setup); 4291 if (ret) { 4292 spin_unlock_irqrestore(&xhci->lock, flags); 4293 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4294 "FIXME: allocate a command ring segment"); 4295 goto out; 4296 } 4297 xhci_ring_cmd_db(xhci); 4298 spin_unlock_irqrestore(&xhci->lock, flags); 4299 4300 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4301 wait_for_completion(command->completion); 4302 4303 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4304 * the SetAddress() "recovery interval" required by USB and aborting the 4305 * command on a timeout. 4306 */ 4307 switch (command->status) { 4308 case COMP_COMMAND_ABORTED: 4309 case COMP_COMMAND_RING_STOPPED: 4310 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4311 ret = -ETIME; 4312 break; 4313 case COMP_CONTEXT_STATE_ERROR: 4314 case COMP_SLOT_NOT_ENABLED_ERROR: 4315 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4316 act, udev->slot_id); 4317 ret = -EINVAL; 4318 break; 4319 case COMP_USB_TRANSACTION_ERROR: 4320 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4321 4322 mutex_unlock(&xhci->mutex); 4323 ret = xhci_disable_slot(xhci, udev->slot_id); 4324 xhci_free_virt_device(xhci, udev->slot_id); 4325 if (!ret) 4326 xhci_alloc_dev(hcd, udev); 4327 kfree(command->completion); 4328 kfree(command); 4329 return -EPROTO; 4330 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4331 dev_warn(&udev->dev, 4332 "ERROR: Incompatible device for setup %s command\n", act); 4333 ret = -ENODEV; 4334 break; 4335 case COMP_SUCCESS: 4336 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4337 "Successful setup %s command", act); 4338 break; 4339 default: 4340 xhci_err(xhci, 4341 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4342 act, command->status); 4343 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4344 ret = -EINVAL; 4345 break; 4346 } 4347 if (ret) 4348 goto out; 4349 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4350 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4351 "Op regs DCBAA ptr = %#016llx", temp_64); 4352 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4353 "Slot ID %d dcbaa entry @%p = %#016llx", 4354 udev->slot_id, 4355 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4356 (unsigned long long) 4357 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4358 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4359 "Output Context DMA address = %#08llx", 4360 (unsigned long long)virt_dev->out_ctx->dma); 4361 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4362 le32_to_cpu(slot_ctx->dev_info) >> 27); 4363 /* 4364 * USB core uses address 1 for the roothubs, so we add one to the 4365 * address given back to us by the HC. 4366 */ 4367 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4368 le32_to_cpu(slot_ctx->dev_info) >> 27); 4369 /* Zero the input context control for later use */ 4370 ctrl_ctx->add_flags = 0; 4371 ctrl_ctx->drop_flags = 0; 4372 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4373 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4374 4375 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4376 "Internal device address = %d", 4377 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4378 out: 4379 mutex_unlock(&xhci->mutex); 4380 if (command) { 4381 kfree(command->completion); 4382 kfree(command); 4383 } 4384 return ret; 4385 } 4386 4387 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4388 { 4389 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4390 } 4391 4392 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4393 { 4394 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4395 } 4396 4397 /* 4398 * Transfer the port index into real index in the HW port status 4399 * registers. Caculate offset between the port's PORTSC register 4400 * and port status base. Divide the number of per port register 4401 * to get the real index. The raw port number bases 1. 4402 */ 4403 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4404 { 4405 struct xhci_hub *rhub; 4406 4407 rhub = xhci_get_rhub(hcd); 4408 return rhub->ports[port1 - 1]->hw_portnum + 1; 4409 } 4410 4411 /* 4412 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4413 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4414 */ 4415 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4416 struct usb_device *udev, u16 max_exit_latency) 4417 { 4418 struct xhci_virt_device *virt_dev; 4419 struct xhci_command *command; 4420 struct xhci_input_control_ctx *ctrl_ctx; 4421 struct xhci_slot_ctx *slot_ctx; 4422 unsigned long flags; 4423 int ret; 4424 4425 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4426 if (!command) 4427 return -ENOMEM; 4428 4429 spin_lock_irqsave(&xhci->lock, flags); 4430 4431 virt_dev = xhci->devs[udev->slot_id]; 4432 4433 /* 4434 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4435 * xHC was re-initialized. Exit latency will be set later after 4436 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4437 */ 4438 4439 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4440 spin_unlock_irqrestore(&xhci->lock, flags); 4441 return 0; 4442 } 4443 4444 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4445 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4446 if (!ctrl_ctx) { 4447 spin_unlock_irqrestore(&xhci->lock, flags); 4448 xhci_free_command(xhci, command); 4449 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4450 __func__); 4451 return -ENOMEM; 4452 } 4453 4454 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4455 spin_unlock_irqrestore(&xhci->lock, flags); 4456 4457 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4458 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4459 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4460 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4461 slot_ctx->dev_state = 0; 4462 4463 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4464 "Set up evaluate context for LPM MEL change."); 4465 4466 /* Issue and wait for the evaluate context command. */ 4467 ret = xhci_configure_endpoint(xhci, udev, command, 4468 true, true); 4469 4470 if (!ret) { 4471 spin_lock_irqsave(&xhci->lock, flags); 4472 virt_dev->current_mel = max_exit_latency; 4473 spin_unlock_irqrestore(&xhci->lock, flags); 4474 } 4475 4476 xhci_free_command(xhci, command); 4477 4478 return ret; 4479 } 4480 4481 #ifdef CONFIG_PM 4482 4483 /* BESL to HIRD Encoding array for USB2 LPM */ 4484 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4485 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4486 4487 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4488 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4489 struct usb_device *udev) 4490 { 4491 int u2del, besl, besl_host; 4492 int besl_device = 0; 4493 u32 field; 4494 4495 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4496 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4497 4498 if (field & USB_BESL_SUPPORT) { 4499 for (besl_host = 0; besl_host < 16; besl_host++) { 4500 if (xhci_besl_encoding[besl_host] >= u2del) 4501 break; 4502 } 4503 /* Use baseline BESL value as default */ 4504 if (field & USB_BESL_BASELINE_VALID) 4505 besl_device = USB_GET_BESL_BASELINE(field); 4506 else if (field & USB_BESL_DEEP_VALID) 4507 besl_device = USB_GET_BESL_DEEP(field); 4508 } else { 4509 if (u2del <= 50) 4510 besl_host = 0; 4511 else 4512 besl_host = (u2del - 51) / 75 + 1; 4513 } 4514 4515 besl = besl_host + besl_device; 4516 if (besl > 15) 4517 besl = 15; 4518 4519 return besl; 4520 } 4521 4522 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4523 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4524 { 4525 u32 field; 4526 int l1; 4527 int besld = 0; 4528 int hirdm = 0; 4529 4530 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4531 4532 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4533 l1 = udev->l1_params.timeout / 256; 4534 4535 /* device has preferred BESLD */ 4536 if (field & USB_BESL_DEEP_VALID) { 4537 besld = USB_GET_BESL_DEEP(field); 4538 hirdm = 1; 4539 } 4540 4541 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4542 } 4543 4544 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4545 struct usb_device *udev, int enable) 4546 { 4547 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4548 struct xhci_port **ports; 4549 __le32 __iomem *pm_addr, *hlpm_addr; 4550 u32 pm_val, hlpm_val, field; 4551 unsigned int port_num; 4552 unsigned long flags; 4553 int hird, exit_latency; 4554 int ret; 4555 4556 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4557 return -EPERM; 4558 4559 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4560 !udev->lpm_capable) 4561 return -EPERM; 4562 4563 if (!udev->parent || udev->parent->parent || 4564 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4565 return -EPERM; 4566 4567 if (udev->usb2_hw_lpm_capable != 1) 4568 return -EPERM; 4569 4570 spin_lock_irqsave(&xhci->lock, flags); 4571 4572 ports = xhci->usb2_rhub.ports; 4573 port_num = udev->portnum - 1; 4574 pm_addr = ports[port_num]->addr + PORTPMSC; 4575 pm_val = readl(pm_addr); 4576 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4577 4578 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4579 enable ? "enable" : "disable", port_num + 1); 4580 4581 if (enable) { 4582 /* Host supports BESL timeout instead of HIRD */ 4583 if (udev->usb2_hw_lpm_besl_capable) { 4584 /* if device doesn't have a preferred BESL value use a 4585 * default one which works with mixed HIRD and BESL 4586 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4587 */ 4588 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4589 if ((field & USB_BESL_SUPPORT) && 4590 (field & USB_BESL_BASELINE_VALID)) 4591 hird = USB_GET_BESL_BASELINE(field); 4592 else 4593 hird = udev->l1_params.besl; 4594 4595 exit_latency = xhci_besl_encoding[hird]; 4596 spin_unlock_irqrestore(&xhci->lock, flags); 4597 4598 ret = xhci_change_max_exit_latency(xhci, udev, 4599 exit_latency); 4600 if (ret < 0) 4601 return ret; 4602 spin_lock_irqsave(&xhci->lock, flags); 4603 4604 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4605 writel(hlpm_val, hlpm_addr); 4606 /* flush write */ 4607 readl(hlpm_addr); 4608 } else { 4609 hird = xhci_calculate_hird_besl(xhci, udev); 4610 } 4611 4612 pm_val &= ~PORT_HIRD_MASK; 4613 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4614 writel(pm_val, pm_addr); 4615 pm_val = readl(pm_addr); 4616 pm_val |= PORT_HLE; 4617 writel(pm_val, pm_addr); 4618 /* flush write */ 4619 readl(pm_addr); 4620 } else { 4621 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4622 writel(pm_val, pm_addr); 4623 /* flush write */ 4624 readl(pm_addr); 4625 if (udev->usb2_hw_lpm_besl_capable) { 4626 spin_unlock_irqrestore(&xhci->lock, flags); 4627 xhci_change_max_exit_latency(xhci, udev, 0); 4628 readl_poll_timeout(ports[port_num]->addr, pm_val, 4629 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4630 100, 10000); 4631 return 0; 4632 } 4633 } 4634 4635 spin_unlock_irqrestore(&xhci->lock, flags); 4636 return 0; 4637 } 4638 4639 /* check if a usb2 port supports a given extened capability protocol 4640 * only USB2 ports extended protocol capability values are cached. 4641 * Return 1 if capability is supported 4642 */ 4643 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4644 unsigned capability) 4645 { 4646 u32 port_offset, port_count; 4647 int i; 4648 4649 for (i = 0; i < xhci->num_ext_caps; i++) { 4650 if (xhci->ext_caps[i] & capability) { 4651 /* port offsets starts at 1 */ 4652 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4653 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4654 if (port >= port_offset && 4655 port < port_offset + port_count) 4656 return 1; 4657 } 4658 } 4659 return 0; 4660 } 4661 4662 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4663 { 4664 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4665 int portnum = udev->portnum - 1; 4666 4667 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4668 return 0; 4669 4670 /* we only support lpm for non-hub device connected to root hub yet */ 4671 if (!udev->parent || udev->parent->parent || 4672 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4673 return 0; 4674 4675 if (xhci->hw_lpm_support == 1 && 4676 xhci_check_usb2_port_capability( 4677 xhci, portnum, XHCI_HLC)) { 4678 udev->usb2_hw_lpm_capable = 1; 4679 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4680 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4681 if (xhci_check_usb2_port_capability(xhci, portnum, 4682 XHCI_BLC)) 4683 udev->usb2_hw_lpm_besl_capable = 1; 4684 } 4685 4686 return 0; 4687 } 4688 4689 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4690 4691 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4692 static unsigned long long xhci_service_interval_to_ns( 4693 struct usb_endpoint_descriptor *desc) 4694 { 4695 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4696 } 4697 4698 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4699 enum usb3_link_state state) 4700 { 4701 unsigned long long sel; 4702 unsigned long long pel; 4703 unsigned int max_sel_pel; 4704 char *state_name; 4705 4706 switch (state) { 4707 case USB3_LPM_U1: 4708 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4709 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4710 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4711 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4712 state_name = "U1"; 4713 break; 4714 case USB3_LPM_U2: 4715 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4716 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4717 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4718 state_name = "U2"; 4719 break; 4720 default: 4721 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4722 __func__); 4723 return USB3_LPM_DISABLED; 4724 } 4725 4726 if (sel <= max_sel_pel && pel <= max_sel_pel) 4727 return USB3_LPM_DEVICE_INITIATED; 4728 4729 if (sel > max_sel_pel) 4730 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4731 "due to long SEL %llu ms\n", 4732 state_name, sel); 4733 else 4734 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4735 "due to long PEL %llu ms\n", 4736 state_name, pel); 4737 return USB3_LPM_DISABLED; 4738 } 4739 4740 /* The U1 timeout should be the maximum of the following values: 4741 * - For control endpoints, U1 system exit latency (SEL) * 3 4742 * - For bulk endpoints, U1 SEL * 5 4743 * - For interrupt endpoints: 4744 * - Notification EPs, U1 SEL * 3 4745 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4746 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4747 */ 4748 static unsigned long long xhci_calculate_intel_u1_timeout( 4749 struct usb_device *udev, 4750 struct usb_endpoint_descriptor *desc) 4751 { 4752 unsigned long long timeout_ns; 4753 int ep_type; 4754 int intr_type; 4755 4756 ep_type = usb_endpoint_type(desc); 4757 switch (ep_type) { 4758 case USB_ENDPOINT_XFER_CONTROL: 4759 timeout_ns = udev->u1_params.sel * 3; 4760 break; 4761 case USB_ENDPOINT_XFER_BULK: 4762 timeout_ns = udev->u1_params.sel * 5; 4763 break; 4764 case USB_ENDPOINT_XFER_INT: 4765 intr_type = usb_endpoint_interrupt_type(desc); 4766 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4767 timeout_ns = udev->u1_params.sel * 3; 4768 break; 4769 } 4770 /* Otherwise the calculation is the same as isoc eps */ 4771 fallthrough; 4772 case USB_ENDPOINT_XFER_ISOC: 4773 timeout_ns = xhci_service_interval_to_ns(desc); 4774 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4775 if (timeout_ns < udev->u1_params.sel * 2) 4776 timeout_ns = udev->u1_params.sel * 2; 4777 break; 4778 default: 4779 return 0; 4780 } 4781 4782 return timeout_ns; 4783 } 4784 4785 /* Returns the hub-encoded U1 timeout value. */ 4786 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4787 struct usb_device *udev, 4788 struct usb_endpoint_descriptor *desc) 4789 { 4790 unsigned long long timeout_ns; 4791 4792 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4793 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4794 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4795 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4796 return USB3_LPM_DISABLED; 4797 } 4798 } 4799 4800 if (xhci->quirks & XHCI_INTEL_HOST) 4801 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4802 else 4803 timeout_ns = udev->u1_params.sel; 4804 4805 /* The U1 timeout is encoded in 1us intervals. 4806 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4807 */ 4808 if (timeout_ns == USB3_LPM_DISABLED) 4809 timeout_ns = 1; 4810 else 4811 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4812 4813 /* If the necessary timeout value is bigger than what we can set in the 4814 * USB 3.0 hub, we have to disable hub-initiated U1. 4815 */ 4816 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4817 return timeout_ns; 4818 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4819 "due to long timeout %llu ms\n", timeout_ns); 4820 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4821 } 4822 4823 /* The U2 timeout should be the maximum of: 4824 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4825 * - largest bInterval of any active periodic endpoint (to avoid going 4826 * into lower power link states between intervals). 4827 * - the U2 Exit Latency of the device 4828 */ 4829 static unsigned long long xhci_calculate_intel_u2_timeout( 4830 struct usb_device *udev, 4831 struct usb_endpoint_descriptor *desc) 4832 { 4833 unsigned long long timeout_ns; 4834 unsigned long long u2_del_ns; 4835 4836 timeout_ns = 10 * 1000 * 1000; 4837 4838 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4839 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4840 timeout_ns = xhci_service_interval_to_ns(desc); 4841 4842 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4843 if (u2_del_ns > timeout_ns) 4844 timeout_ns = u2_del_ns; 4845 4846 return timeout_ns; 4847 } 4848 4849 /* Returns the hub-encoded U2 timeout value. */ 4850 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4851 struct usb_device *udev, 4852 struct usb_endpoint_descriptor *desc) 4853 { 4854 unsigned long long timeout_ns; 4855 4856 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4857 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4858 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4859 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4860 return USB3_LPM_DISABLED; 4861 } 4862 } 4863 4864 if (xhci->quirks & XHCI_INTEL_HOST) 4865 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4866 else 4867 timeout_ns = udev->u2_params.sel; 4868 4869 /* The U2 timeout is encoded in 256us intervals */ 4870 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4871 /* If the necessary timeout value is bigger than what we can set in the 4872 * USB 3.0 hub, we have to disable hub-initiated U2. 4873 */ 4874 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4875 return timeout_ns; 4876 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4877 "due to long timeout %llu ms\n", timeout_ns); 4878 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4879 } 4880 4881 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4882 struct usb_device *udev, 4883 struct usb_endpoint_descriptor *desc, 4884 enum usb3_link_state state, 4885 u16 *timeout) 4886 { 4887 if (state == USB3_LPM_U1) 4888 return xhci_calculate_u1_timeout(xhci, udev, desc); 4889 else if (state == USB3_LPM_U2) 4890 return xhci_calculate_u2_timeout(xhci, udev, desc); 4891 4892 return USB3_LPM_DISABLED; 4893 } 4894 4895 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4896 struct usb_device *udev, 4897 struct usb_endpoint_descriptor *desc, 4898 enum usb3_link_state state, 4899 u16 *timeout) 4900 { 4901 u16 alt_timeout; 4902 4903 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4904 desc, state, timeout); 4905 4906 /* If we found we can't enable hub-initiated LPM, and 4907 * the U1 or U2 exit latency was too high to allow 4908 * device-initiated LPM as well, then we will disable LPM 4909 * for this device, so stop searching any further. 4910 */ 4911 if (alt_timeout == USB3_LPM_DISABLED) { 4912 *timeout = alt_timeout; 4913 return -E2BIG; 4914 } 4915 if (alt_timeout > *timeout) 4916 *timeout = alt_timeout; 4917 return 0; 4918 } 4919 4920 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4921 struct usb_device *udev, 4922 struct usb_host_interface *alt, 4923 enum usb3_link_state state, 4924 u16 *timeout) 4925 { 4926 int j; 4927 4928 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4929 if (xhci_update_timeout_for_endpoint(xhci, udev, 4930 &alt->endpoint[j].desc, state, timeout)) 4931 return -E2BIG; 4932 } 4933 return 0; 4934 } 4935 4936 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4937 enum usb3_link_state state) 4938 { 4939 struct usb_device *parent; 4940 unsigned int num_hubs; 4941 4942 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4943 for (parent = udev->parent, num_hubs = 0; parent->parent; 4944 parent = parent->parent) 4945 num_hubs++; 4946 4947 if (num_hubs < 2) 4948 return 0; 4949 4950 dev_dbg(&udev->dev, "Disabling U1/U2 link state for device" 4951 " below second-tier hub.\n"); 4952 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4953 "to decrease power consumption.\n"); 4954 return -E2BIG; 4955 } 4956 4957 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4958 struct usb_device *udev, 4959 enum usb3_link_state state) 4960 { 4961 if (xhci->quirks & XHCI_INTEL_HOST) 4962 return xhci_check_intel_tier_policy(udev, state); 4963 else 4964 return 0; 4965 } 4966 4967 /* Returns the U1 or U2 timeout that should be enabled. 4968 * If the tier check or timeout setting functions return with a non-zero exit 4969 * code, that means the timeout value has been finalized and we shouldn't look 4970 * at any more endpoints. 4971 */ 4972 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4973 struct usb_device *udev, enum usb3_link_state state) 4974 { 4975 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4976 struct usb_host_config *config; 4977 char *state_name; 4978 int i; 4979 u16 timeout = USB3_LPM_DISABLED; 4980 4981 if (state == USB3_LPM_U1) 4982 state_name = "U1"; 4983 else if (state == USB3_LPM_U2) 4984 state_name = "U2"; 4985 else { 4986 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4987 state); 4988 return timeout; 4989 } 4990 4991 /* Gather some information about the currently installed configuration 4992 * and alternate interface settings. 4993 */ 4994 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4995 state, &timeout)) 4996 return timeout; 4997 4998 config = udev->actconfig; 4999 if (!config) 5000 return timeout; 5001 5002 for (i = 0; i < config->desc.bNumInterfaces; i++) { 5003 struct usb_driver *driver; 5004 struct usb_interface *intf = config->interface[i]; 5005 5006 if (!intf) 5007 continue; 5008 5009 /* Check if any currently bound drivers want hub-initiated LPM 5010 * disabled. 5011 */ 5012 if (intf->dev.driver) { 5013 driver = to_usb_driver(intf->dev.driver); 5014 if (driver && driver->disable_hub_initiated_lpm) { 5015 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 5016 state_name, driver->name); 5017 timeout = xhci_get_timeout_no_hub_lpm(udev, 5018 state); 5019 if (timeout == USB3_LPM_DISABLED) 5020 return timeout; 5021 } 5022 } 5023 5024 /* Not sure how this could happen... */ 5025 if (!intf->cur_altsetting) 5026 continue; 5027 5028 if (xhci_update_timeout_for_interface(xhci, udev, 5029 intf->cur_altsetting, 5030 state, &timeout)) 5031 return timeout; 5032 } 5033 return timeout; 5034 } 5035 5036 static int calculate_max_exit_latency(struct usb_device *udev, 5037 enum usb3_link_state state_changed, 5038 u16 hub_encoded_timeout) 5039 { 5040 unsigned long long u1_mel_us = 0; 5041 unsigned long long u2_mel_us = 0; 5042 unsigned long long mel_us = 0; 5043 bool disabling_u1; 5044 bool disabling_u2; 5045 bool enabling_u1; 5046 bool enabling_u2; 5047 5048 disabling_u1 = (state_changed == USB3_LPM_U1 && 5049 hub_encoded_timeout == USB3_LPM_DISABLED); 5050 disabling_u2 = (state_changed == USB3_LPM_U2 && 5051 hub_encoded_timeout == USB3_LPM_DISABLED); 5052 5053 enabling_u1 = (state_changed == USB3_LPM_U1 && 5054 hub_encoded_timeout != USB3_LPM_DISABLED); 5055 enabling_u2 = (state_changed == USB3_LPM_U2 && 5056 hub_encoded_timeout != USB3_LPM_DISABLED); 5057 5058 /* If U1 was already enabled and we're not disabling it, 5059 * or we're going to enable U1, account for the U1 max exit latency. 5060 */ 5061 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 5062 enabling_u1) 5063 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 5064 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 5065 enabling_u2) 5066 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5067 5068 mel_us = max(u1_mel_us, u2_mel_us); 5069 5070 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5071 if (mel_us > MAX_EXIT) { 5072 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5073 "is too big.\n", mel_us); 5074 return -E2BIG; 5075 } 5076 return mel_us; 5077 } 5078 5079 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5080 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5081 struct usb_device *udev, enum usb3_link_state state) 5082 { 5083 struct xhci_hcd *xhci; 5084 struct xhci_port *port; 5085 u16 hub_encoded_timeout; 5086 int mel; 5087 int ret; 5088 5089 xhci = hcd_to_xhci(hcd); 5090 /* The LPM timeout values are pretty host-controller specific, so don't 5091 * enable hub-initiated timeouts unless the vendor has provided 5092 * information about their timeout algorithm. 5093 */ 5094 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5095 !xhci->devs[udev->slot_id]) 5096 return USB3_LPM_DISABLED; 5097 5098 if (xhci_check_tier_policy(xhci, udev, state) < 0) 5099 return USB3_LPM_DISABLED; 5100 5101 /* If connected to root port then check port can handle lpm */ 5102 if (udev->parent && !udev->parent->parent) { 5103 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 5104 if (port->lpm_incapable) 5105 return USB3_LPM_DISABLED; 5106 } 5107 5108 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5109 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5110 if (mel < 0) { 5111 /* Max Exit Latency is too big, disable LPM. */ 5112 hub_encoded_timeout = USB3_LPM_DISABLED; 5113 mel = 0; 5114 } 5115 5116 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5117 if (ret) 5118 return ret; 5119 return hub_encoded_timeout; 5120 } 5121 5122 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5123 struct usb_device *udev, enum usb3_link_state state) 5124 { 5125 struct xhci_hcd *xhci; 5126 u16 mel; 5127 5128 xhci = hcd_to_xhci(hcd); 5129 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5130 !xhci->devs[udev->slot_id]) 5131 return 0; 5132 5133 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5134 return xhci_change_max_exit_latency(xhci, udev, mel); 5135 } 5136 #else /* CONFIG_PM */ 5137 5138 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5139 struct usb_device *udev, int enable) 5140 { 5141 return 0; 5142 } 5143 5144 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5145 { 5146 return 0; 5147 } 5148 5149 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5150 struct usb_device *udev, enum usb3_link_state state) 5151 { 5152 return USB3_LPM_DISABLED; 5153 } 5154 5155 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5156 struct usb_device *udev, enum usb3_link_state state) 5157 { 5158 return 0; 5159 } 5160 #endif /* CONFIG_PM */ 5161 5162 /*-------------------------------------------------------------------------*/ 5163 5164 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5165 * internal data structures for the device. 5166 */ 5167 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5168 struct usb_tt *tt, gfp_t mem_flags) 5169 { 5170 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5171 struct xhci_virt_device *vdev; 5172 struct xhci_command *config_cmd; 5173 struct xhci_input_control_ctx *ctrl_ctx; 5174 struct xhci_slot_ctx *slot_ctx; 5175 unsigned long flags; 5176 unsigned think_time; 5177 int ret; 5178 5179 /* Ignore root hubs */ 5180 if (!hdev->parent) 5181 return 0; 5182 5183 vdev = xhci->devs[hdev->slot_id]; 5184 if (!vdev) { 5185 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5186 return -EINVAL; 5187 } 5188 5189 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5190 if (!config_cmd) 5191 return -ENOMEM; 5192 5193 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5194 if (!ctrl_ctx) { 5195 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5196 __func__); 5197 xhci_free_command(xhci, config_cmd); 5198 return -ENOMEM; 5199 } 5200 5201 spin_lock_irqsave(&xhci->lock, flags); 5202 if (hdev->speed == USB_SPEED_HIGH && 5203 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5204 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5205 xhci_free_command(xhci, config_cmd); 5206 spin_unlock_irqrestore(&xhci->lock, flags); 5207 return -ENOMEM; 5208 } 5209 5210 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5211 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5212 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5213 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5214 /* 5215 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5216 * but it may be already set to 1 when setup an xHCI virtual 5217 * device, so clear it anyway. 5218 */ 5219 if (tt->multi) 5220 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5221 else if (hdev->speed == USB_SPEED_FULL) 5222 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5223 5224 if (xhci->hci_version > 0x95) { 5225 xhci_dbg(xhci, "xHCI version %x needs hub " 5226 "TT think time and number of ports\n", 5227 (unsigned int) xhci->hci_version); 5228 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5229 /* Set TT think time - convert from ns to FS bit times. 5230 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5231 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5232 * 5233 * xHCI 1.0: this field shall be 0 if the device is not a 5234 * High-spped hub. 5235 */ 5236 think_time = tt->think_time; 5237 if (think_time != 0) 5238 think_time = (think_time / 666) - 1; 5239 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5240 slot_ctx->tt_info |= 5241 cpu_to_le32(TT_THINK_TIME(think_time)); 5242 } else { 5243 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5244 "TT think time or number of ports\n", 5245 (unsigned int) xhci->hci_version); 5246 } 5247 slot_ctx->dev_state = 0; 5248 spin_unlock_irqrestore(&xhci->lock, flags); 5249 5250 xhci_dbg(xhci, "Set up %s for hub device.\n", 5251 (xhci->hci_version > 0x95) ? 5252 "configure endpoint" : "evaluate context"); 5253 5254 /* Issue and wait for the configure endpoint or 5255 * evaluate context command. 5256 */ 5257 if (xhci->hci_version > 0x95) 5258 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5259 false, false); 5260 else 5261 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5262 true, false); 5263 5264 xhci_free_command(xhci, config_cmd); 5265 return ret; 5266 } 5267 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5268 5269 static int xhci_get_frame(struct usb_hcd *hcd) 5270 { 5271 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5272 /* EHCI mods by the periodic size. Why? */ 5273 return readl(&xhci->run_regs->microframe_index) >> 3; 5274 } 5275 5276 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5277 { 5278 xhci->usb2_rhub.hcd = hcd; 5279 hcd->speed = HCD_USB2; 5280 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5281 /* 5282 * USB 2.0 roothub under xHCI has an integrated TT, 5283 * (rate matching hub) as opposed to having an OHCI/UHCI 5284 * companion controller. 5285 */ 5286 hcd->has_tt = 1; 5287 } 5288 5289 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5290 { 5291 unsigned int minor_rev; 5292 5293 /* 5294 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5295 * should return 0x31 for sbrn, or that the minor revision 5296 * is a two digit BCD containig minor and sub-minor numbers. 5297 * This was later clarified in xHCI 1.2. 5298 * 5299 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5300 * minor revision set to 0x1 instead of 0x10. 5301 */ 5302 if (xhci->usb3_rhub.min_rev == 0x1) 5303 minor_rev = 1; 5304 else 5305 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5306 5307 switch (minor_rev) { 5308 case 2: 5309 hcd->speed = HCD_USB32; 5310 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5311 hcd->self.root_hub->rx_lanes = 2; 5312 hcd->self.root_hub->tx_lanes = 2; 5313 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5314 break; 5315 case 1: 5316 hcd->speed = HCD_USB31; 5317 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5318 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5319 break; 5320 } 5321 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5322 minor_rev, minor_rev ? "Enhanced " : ""); 5323 5324 xhci->usb3_rhub.hcd = hcd; 5325 } 5326 5327 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5328 { 5329 struct xhci_hcd *xhci; 5330 /* 5331 * TODO: Check with DWC3 clients for sysdev according to 5332 * quirks 5333 */ 5334 struct device *dev = hcd->self.sysdev; 5335 int retval; 5336 5337 /* Accept arbitrarily long scatter-gather lists */ 5338 hcd->self.sg_tablesize = ~0; 5339 5340 /* support to build packet from discontinuous buffers */ 5341 hcd->self.no_sg_constraint = 1; 5342 5343 /* XHCI controllers don't stop the ep queue on short packets :| */ 5344 hcd->self.no_stop_on_short = 1; 5345 5346 xhci = hcd_to_xhci(hcd); 5347 5348 if (!usb_hcd_is_primary_hcd(hcd)) { 5349 xhci_hcd_init_usb3_data(xhci, hcd); 5350 return 0; 5351 } 5352 5353 mutex_init(&xhci->mutex); 5354 xhci->main_hcd = hcd; 5355 xhci->cap_regs = hcd->regs; 5356 xhci->op_regs = hcd->regs + 5357 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5358 xhci->run_regs = hcd->regs + 5359 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5360 /* Cache read-only capability registers */ 5361 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5362 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5363 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5364 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5365 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5366 if (xhci->hci_version > 0x100) 5367 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5368 5369 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5370 if ((!xhci->max_interrupters) || 5371 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1)) 5372 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1); 5373 5374 xhci->quirks |= quirks; 5375 5376 get_quirks(dev, xhci); 5377 5378 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5379 * success event after a short transfer. This quirk will ignore such 5380 * spurious event. 5381 */ 5382 if (xhci->hci_version > 0x96) 5383 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5384 5385 /* Make sure the HC is halted. */ 5386 retval = xhci_halt(xhci); 5387 if (retval) 5388 return retval; 5389 5390 xhci_zero_64b_regs(xhci); 5391 5392 xhci_dbg(xhci, "Resetting HCD\n"); 5393 /* Reset the internal HC memory state and registers. */ 5394 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5395 if (retval) 5396 return retval; 5397 xhci_dbg(xhci, "Reset complete\n"); 5398 5399 /* 5400 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5401 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5402 * address memory pointers actually. So, this driver clears the AC64 5403 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5404 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5405 */ 5406 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5407 xhci->hcc_params &= ~BIT(0); 5408 5409 /* Set dma_mask and coherent_dma_mask to 64-bits, 5410 * if xHC supports 64-bit addressing */ 5411 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5412 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5413 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5414 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5415 } else { 5416 /* 5417 * This is to avoid error in cases where a 32-bit USB 5418 * controller is used on a 64-bit capable system. 5419 */ 5420 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5421 if (retval) 5422 return retval; 5423 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5424 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5425 } 5426 5427 xhci_dbg(xhci, "Calling HCD init\n"); 5428 /* Initialize HCD and host controller data structures. */ 5429 retval = xhci_init(hcd); 5430 if (retval) 5431 return retval; 5432 xhci_dbg(xhci, "Called HCD init\n"); 5433 5434 if (xhci_hcd_is_usb3(hcd)) 5435 xhci_hcd_init_usb3_data(xhci, hcd); 5436 else 5437 xhci_hcd_init_usb2_data(xhci, hcd); 5438 5439 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5440 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5441 5442 return 0; 5443 } 5444 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5445 5446 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5447 struct usb_host_endpoint *ep) 5448 { 5449 struct xhci_hcd *xhci; 5450 struct usb_device *udev; 5451 unsigned int slot_id; 5452 unsigned int ep_index; 5453 unsigned long flags; 5454 5455 xhci = hcd_to_xhci(hcd); 5456 5457 spin_lock_irqsave(&xhci->lock, flags); 5458 udev = (struct usb_device *)ep->hcpriv; 5459 slot_id = udev->slot_id; 5460 ep_index = xhci_get_endpoint_index(&ep->desc); 5461 5462 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5463 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5464 spin_unlock_irqrestore(&xhci->lock, flags); 5465 } 5466 5467 static const struct hc_driver xhci_hc_driver = { 5468 .description = "xhci-hcd", 5469 .product_desc = "xHCI Host Controller", 5470 .hcd_priv_size = sizeof(struct xhci_hcd), 5471 5472 /* 5473 * generic hardware linkage 5474 */ 5475 .irq = xhci_irq, 5476 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5477 HCD_BH, 5478 5479 /* 5480 * basic lifecycle operations 5481 */ 5482 .reset = NULL, /* set in xhci_init_driver() */ 5483 .start = xhci_run, 5484 .stop = xhci_stop, 5485 .shutdown = xhci_shutdown, 5486 5487 /* 5488 * managing i/o requests and associated device resources 5489 */ 5490 .map_urb_for_dma = xhci_map_urb_for_dma, 5491 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5492 .urb_enqueue = xhci_urb_enqueue, 5493 .urb_dequeue = xhci_urb_dequeue, 5494 .alloc_dev = xhci_alloc_dev, 5495 .free_dev = xhci_free_dev, 5496 .alloc_streams = xhci_alloc_streams, 5497 .free_streams = xhci_free_streams, 5498 .add_endpoint = xhci_add_endpoint, 5499 .drop_endpoint = xhci_drop_endpoint, 5500 .endpoint_disable = xhci_endpoint_disable, 5501 .endpoint_reset = xhci_endpoint_reset, 5502 .check_bandwidth = xhci_check_bandwidth, 5503 .reset_bandwidth = xhci_reset_bandwidth, 5504 .address_device = xhci_address_device, 5505 .enable_device = xhci_enable_device, 5506 .update_hub_device = xhci_update_hub_device, 5507 .reset_device = xhci_discover_or_reset_device, 5508 5509 /* 5510 * scheduling support 5511 */ 5512 .get_frame_number = xhci_get_frame, 5513 5514 /* 5515 * root hub support 5516 */ 5517 .hub_control = xhci_hub_control, 5518 .hub_status_data = xhci_hub_status_data, 5519 .bus_suspend = xhci_bus_suspend, 5520 .bus_resume = xhci_bus_resume, 5521 .get_resuming_ports = xhci_get_resuming_ports, 5522 5523 /* 5524 * call back when device connected and addressed 5525 */ 5526 .update_device = xhci_update_device, 5527 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5528 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5529 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5530 .find_raw_port_number = xhci_find_raw_port_number, 5531 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5532 }; 5533 5534 void xhci_init_driver(struct hc_driver *drv, 5535 const struct xhci_driver_overrides *over) 5536 { 5537 BUG_ON(!over); 5538 5539 /* Copy the generic table to drv then apply the overrides */ 5540 *drv = xhci_hc_driver; 5541 5542 if (over) { 5543 drv->hcd_priv_size += over->extra_priv_size; 5544 if (over->reset) 5545 drv->reset = over->reset; 5546 if (over->start) 5547 drv->start = over->start; 5548 if (over->add_endpoint) 5549 drv->add_endpoint = over->add_endpoint; 5550 if (over->drop_endpoint) 5551 drv->drop_endpoint = over->drop_endpoint; 5552 if (over->check_bandwidth) 5553 drv->check_bandwidth = over->check_bandwidth; 5554 if (over->reset_bandwidth) 5555 drv->reset_bandwidth = over->reset_bandwidth; 5556 if (over->update_hub_device) 5557 drv->update_hub_device = over->update_hub_device; 5558 if (over->hub_control) 5559 drv->hub_control = over->hub_control; 5560 } 5561 } 5562 EXPORT_SYMBOL_GPL(xhci_init_driver); 5563 5564 MODULE_DESCRIPTION(DRIVER_DESC); 5565 MODULE_AUTHOR(DRIVER_AUTHOR); 5566 MODULE_LICENSE("GPL"); 5567 5568 static int __init xhci_hcd_init(void) 5569 { 5570 /* 5571 * Check the compiler generated sizes of structures that must be laid 5572 * out in specific ways for hardware access. 5573 */ 5574 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5575 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5576 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5577 /* xhci_device_control has eight fields, and also 5578 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5579 */ 5580 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5581 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5582 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5583 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5584 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5585 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5586 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5587 5588 if (usb_disabled()) 5589 return -ENODEV; 5590 5591 xhci_debugfs_create_root(); 5592 xhci_dbc_init(); 5593 5594 return 0; 5595 } 5596 5597 /* 5598 * If an init function is provided, an exit function must also be provided 5599 * to allow module unload. 5600 */ 5601 static void __exit xhci_hcd_fini(void) 5602 { 5603 xhci_debugfs_remove_root(); 5604 xhci_dbc_exit(); 5605 } 5606 5607 module_init(xhci_hcd_init); 5608 module_exit(xhci_hcd_fini); 5609