xref: /linux/drivers/usb/host/xhci.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 
31 #include "xhci.h"
32 
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35 
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40 
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43  * xhci_handshake - spin reading hc until handshake completes or fails
44  * @ptr: address of hc register to be read
45  * @mask: bits to look at in result of read
46  * @done: value of those bits when handshake succeeds
47  * @usec: timeout in microseconds
48  *
49  * Returns negative errno, or zero on success
50  *
51  * Success happens when the "mask" bits have the specified value (hardware
52  * handshake done).  There are two failure modes:  "usec" have passed (major
53  * hardware flakeout), or the register reads as all-ones (hardware removed).
54  */
55 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56 		      u32 mask, u32 done, int usec)
57 {
58 	u32	result;
59 
60 	do {
61 		result = xhci_readl(xhci, ptr);
62 		if (result == ~(u32)0)		/* card removed */
63 			return -ENODEV;
64 		result &= mask;
65 		if (result == done)
66 			return 0;
67 		udelay(1);
68 		usec--;
69 	} while (usec > 0);
70 	return -ETIMEDOUT;
71 }
72 
73 /*
74  * Disable interrupts and begin the xHCI halting process.
75  */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78 	u32 halted;
79 	u32 cmd;
80 	u32 mask;
81 
82 	mask = ~(XHCI_IRQS);
83 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84 	if (!halted)
85 		mask &= ~CMD_RUN;
86 
87 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
88 	cmd &= mask;
89 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91 
92 /*
93  * Force HC into halt state.
94  *
95  * Disable any IRQs and clear the run/stop bit.
96  * HC will complete any current and actively pipelined transactions, and
97  * should halt within 16 ms of the run/stop bit being cleared.
98  * Read HC Halted bit in the status register to see when the HC is finished.
99  */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102 	int ret;
103 	xhci_dbg(xhci, "// Halt the HC\n");
104 	xhci_quiesce(xhci);
105 
106 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
107 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108 	if (!ret) {
109 		xhci->xhc_state |= XHCI_STATE_HALTED;
110 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111 	} else
112 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113 				XHCI_MAX_HALT_USEC);
114 	return ret;
115 }
116 
117 /*
118  * Set the run bit and wait for the host to be running.
119  */
120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122 	u32 temp;
123 	int ret;
124 
125 	temp = xhci_readl(xhci, &xhci->op_regs->command);
126 	temp |= (CMD_RUN);
127 	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128 			temp);
129 	xhci_writel(xhci, temp, &xhci->op_regs->command);
130 
131 	/*
132 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
133 	 * running.
134 	 */
135 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
136 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
137 	if (ret == -ETIMEDOUT)
138 		xhci_err(xhci, "Host took too long to start, "
139 				"waited %u microseconds.\n",
140 				XHCI_MAX_HALT_USEC);
141 	if (!ret)
142 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
143 	return ret;
144 }
145 
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155 	u32 command;
156 	u32 state;
157 	int ret, i;
158 
159 	state = xhci_readl(xhci, &xhci->op_regs->status);
160 	if ((state & STS_HALT) == 0) {
161 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162 		return 0;
163 	}
164 
165 	xhci_dbg(xhci, "// Reset the HC\n");
166 	command = xhci_readl(xhci, &xhci->op_regs->command);
167 	command |= CMD_RESET;
168 	xhci_writel(xhci, command, &xhci->op_regs->command);
169 
170 	ret = xhci_handshake(xhci, &xhci->op_regs->command,
171 			CMD_RESET, 0, 10 * 1000 * 1000);
172 	if (ret)
173 		return ret;
174 
175 	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176 	/*
177 	 * xHCI cannot write to any doorbells or operational registers other
178 	 * than status until the "Controller Not Ready" flag is cleared.
179 	 */
180 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
181 			STS_CNR, 0, 10 * 1000 * 1000);
182 
183 	for (i = 0; i < 2; ++i) {
184 		xhci->bus_state[i].port_c_suspend = 0;
185 		xhci->bus_state[i].suspended_ports = 0;
186 		xhci->bus_state[i].resuming_ports = 0;
187 	}
188 
189 	return ret;
190 }
191 
192 #ifdef CONFIG_PCI
193 static int xhci_free_msi(struct xhci_hcd *xhci)
194 {
195 	int i;
196 
197 	if (!xhci->msix_entries)
198 		return -EINVAL;
199 
200 	for (i = 0; i < xhci->msix_count; i++)
201 		if (xhci->msix_entries[i].vector)
202 			free_irq(xhci->msix_entries[i].vector,
203 					xhci_to_hcd(xhci));
204 	return 0;
205 }
206 
207 /*
208  * Set up MSI
209  */
210 static int xhci_setup_msi(struct xhci_hcd *xhci)
211 {
212 	int ret;
213 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214 
215 	ret = pci_enable_msi(pdev);
216 	if (ret) {
217 		xhci_dbg(xhci, "failed to allocate MSI entry\n");
218 		return ret;
219 	}
220 
221 	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
222 				0, "xhci_hcd", xhci_to_hcd(xhci));
223 	if (ret) {
224 		xhci_dbg(xhci, "disable MSI interrupt\n");
225 		pci_disable_msi(pdev);
226 	}
227 
228 	return ret;
229 }
230 
231 /*
232  * Free IRQs
233  * free all IRQs request
234  */
235 static void xhci_free_irq(struct xhci_hcd *xhci)
236 {
237 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238 	int ret;
239 
240 	/* return if using legacy interrupt */
241 	if (xhci_to_hcd(xhci)->irq > 0)
242 		return;
243 
244 	ret = xhci_free_msi(xhci);
245 	if (!ret)
246 		return;
247 	if (pdev->irq > 0)
248 		free_irq(pdev->irq, xhci_to_hcd(xhci));
249 
250 	return;
251 }
252 
253 /*
254  * Set up MSI-X
255  */
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258 	int i, ret = 0;
259 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
260 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261 
262 	/*
263 	 * calculate number of msi-x vectors supported.
264 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
266 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
267 	 *   Add additional 1 vector to ensure always available interrupt.
268 	 */
269 	xhci->msix_count = min(num_online_cpus() + 1,
270 				HCS_MAX_INTRS(xhci->hcs_params1));
271 
272 	xhci->msix_entries =
273 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274 				GFP_KERNEL);
275 	if (!xhci->msix_entries) {
276 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277 		return -ENOMEM;
278 	}
279 
280 	for (i = 0; i < xhci->msix_count; i++) {
281 		xhci->msix_entries[i].entry = i;
282 		xhci->msix_entries[i].vector = 0;
283 	}
284 
285 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286 	if (ret) {
287 		xhci_dbg(xhci, "Failed to enable MSI-X\n");
288 		goto free_entries;
289 	}
290 
291 	for (i = 0; i < xhci->msix_count; i++) {
292 		ret = request_irq(xhci->msix_entries[i].vector,
293 				(irq_handler_t)xhci_msi_irq,
294 				0, "xhci_hcd", xhci_to_hcd(xhci));
295 		if (ret)
296 			goto disable_msix;
297 	}
298 
299 	hcd->msix_enabled = 1;
300 	return ret;
301 
302 disable_msix:
303 	xhci_dbg(xhci, "disable MSI-X interrupt\n");
304 	xhci_free_irq(xhci);
305 	pci_disable_msix(pdev);
306 free_entries:
307 	kfree(xhci->msix_entries);
308 	xhci->msix_entries = NULL;
309 	return ret;
310 }
311 
312 /* Free any IRQs and disable MSI-X */
313 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314 {
315 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
316 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
317 
318 	xhci_free_irq(xhci);
319 
320 	if (xhci->msix_entries) {
321 		pci_disable_msix(pdev);
322 		kfree(xhci->msix_entries);
323 		xhci->msix_entries = NULL;
324 	} else {
325 		pci_disable_msi(pdev);
326 	}
327 
328 	hcd->msix_enabled = 0;
329 	return;
330 }
331 
332 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
333 {
334 	int i;
335 
336 	if (xhci->msix_entries) {
337 		for (i = 0; i < xhci->msix_count; i++)
338 			synchronize_irq(xhci->msix_entries[i].vector);
339 	}
340 }
341 
342 static int xhci_try_enable_msi(struct usb_hcd *hcd)
343 {
344 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
345 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
346 	int ret;
347 
348 	/*
349 	 * Some Fresco Logic host controllers advertise MSI, but fail to
350 	 * generate interrupts.  Don't even try to enable MSI.
351 	 */
352 	if (xhci->quirks & XHCI_BROKEN_MSI)
353 		return 0;
354 
355 	/* unregister the legacy interrupt */
356 	if (hcd->irq)
357 		free_irq(hcd->irq, hcd);
358 	hcd->irq = 0;
359 
360 	ret = xhci_setup_msix(xhci);
361 	if (ret)
362 		/* fall back to msi*/
363 		ret = xhci_setup_msi(xhci);
364 
365 	if (!ret)
366 		/* hcd->irq is 0, we have MSI */
367 		return 0;
368 
369 	if (!pdev->irq) {
370 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
371 		return -EINVAL;
372 	}
373 
374 	/* fall back to legacy interrupt*/
375 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
376 			hcd->irq_descr, hcd);
377 	if (ret) {
378 		xhci_err(xhci, "request interrupt %d failed\n",
379 				pdev->irq);
380 		return ret;
381 	}
382 	hcd->irq = pdev->irq;
383 	return 0;
384 }
385 
386 #else
387 
388 static int xhci_try_enable_msi(struct usb_hcd *hcd)
389 {
390 	return 0;
391 }
392 
393 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
394 {
395 }
396 
397 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
398 {
399 }
400 
401 #endif
402 
403 static void compliance_mode_recovery(unsigned long arg)
404 {
405 	struct xhci_hcd *xhci;
406 	struct usb_hcd *hcd;
407 	u32 temp;
408 	int i;
409 
410 	xhci = (struct xhci_hcd *)arg;
411 
412 	for (i = 0; i < xhci->num_usb3_ports; i++) {
413 		temp = xhci_readl(xhci, xhci->usb3_ports[i]);
414 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
415 			/*
416 			 * Compliance Mode Detected. Letting USB Core
417 			 * handle the Warm Reset
418 			 */
419 			xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
420 					i + 1);
421 			xhci_dbg(xhci, "Attempting Recovery routine!\n");
422 			hcd = xhci->shared_hcd;
423 
424 			if (hcd->state == HC_STATE_SUSPENDED)
425 				usb_hcd_resume_root_hub(hcd);
426 
427 			usb_hcd_poll_rh_status(hcd);
428 		}
429 	}
430 
431 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
432 		mod_timer(&xhci->comp_mode_recovery_timer,
433 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
434 }
435 
436 /*
437  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
438  * that causes ports behind that hardware to enter compliance mode sometimes.
439  * The quirk creates a timer that polls every 2 seconds the link state of
440  * each host controller's port and recovers it by issuing a Warm reset
441  * if Compliance mode is detected, otherwise the port will become "dead" (no
442  * device connections or disconnections will be detected anymore). Becasue no
443  * status event is generated when entering compliance mode (per xhci spec),
444  * this quirk is needed on systems that have the failing hardware installed.
445  */
446 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
447 {
448 	xhci->port_status_u0 = 0;
449 	init_timer(&xhci->comp_mode_recovery_timer);
450 
451 	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
452 	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
453 	xhci->comp_mode_recovery_timer.expires = jiffies +
454 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
455 
456 	set_timer_slack(&xhci->comp_mode_recovery_timer,
457 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
458 	add_timer(&xhci->comp_mode_recovery_timer);
459 	xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
460 }
461 
462 /*
463  * This function identifies the systems that have installed the SN65LVPE502CP
464  * USB3.0 re-driver and that need the Compliance Mode Quirk.
465  * Systems:
466  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
467  */
468 static bool compliance_mode_recovery_timer_quirk_check(void)
469 {
470 	const char *dmi_product_name, *dmi_sys_vendor;
471 
472 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
473 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
474 	if (!dmi_product_name || !dmi_sys_vendor)
475 		return false;
476 
477 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
478 		return false;
479 
480 	if (strstr(dmi_product_name, "Z420") ||
481 			strstr(dmi_product_name, "Z620") ||
482 			strstr(dmi_product_name, "Z820") ||
483 			strstr(dmi_product_name, "Z1 Workstation"))
484 		return true;
485 
486 	return false;
487 }
488 
489 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
490 {
491 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
492 }
493 
494 
495 /*
496  * Initialize memory for HCD and xHC (one-time init).
497  *
498  * Program the PAGESIZE register, initialize the device context array, create
499  * device contexts (?), set up a command ring segment (or two?), create event
500  * ring (one for now).
501  */
502 int xhci_init(struct usb_hcd *hcd)
503 {
504 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
505 	int retval = 0;
506 
507 	xhci_dbg(xhci, "xhci_init\n");
508 	spin_lock_init(&xhci->lock);
509 	if (xhci->hci_version == 0x95 && link_quirk) {
510 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
511 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
512 	} else {
513 		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
514 	}
515 	retval = xhci_mem_init(xhci, GFP_KERNEL);
516 	xhci_dbg(xhci, "Finished xhci_init\n");
517 
518 	/* Initializing Compliance Mode Recovery Data If Needed */
519 	if (compliance_mode_recovery_timer_quirk_check()) {
520 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
521 		compliance_mode_recovery_timer_init(xhci);
522 	}
523 
524 	return retval;
525 }
526 
527 /*-------------------------------------------------------------------------*/
528 
529 
530 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
531 static void xhci_event_ring_work(unsigned long arg)
532 {
533 	unsigned long flags;
534 	int temp;
535 	u64 temp_64;
536 	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
537 	int i, j;
538 
539 	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
540 
541 	spin_lock_irqsave(&xhci->lock, flags);
542 	temp = xhci_readl(xhci, &xhci->op_regs->status);
543 	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
544 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
545 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
546 		xhci_dbg(xhci, "HW died, polling stopped.\n");
547 		spin_unlock_irqrestore(&xhci->lock, flags);
548 		return;
549 	}
550 
551 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
552 	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
553 	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
554 	xhci->error_bitmask = 0;
555 	xhci_dbg(xhci, "Event ring:\n");
556 	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
557 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
558 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
559 	temp_64 &= ~ERST_PTR_MASK;
560 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
561 	xhci_dbg(xhci, "Command ring:\n");
562 	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
563 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
564 	xhci_dbg_cmd_ptrs(xhci);
565 	for (i = 0; i < MAX_HC_SLOTS; ++i) {
566 		if (!xhci->devs[i])
567 			continue;
568 		for (j = 0; j < 31; ++j) {
569 			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
570 		}
571 	}
572 	spin_unlock_irqrestore(&xhci->lock, flags);
573 
574 	if (!xhci->zombie)
575 		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
576 	else
577 		xhci_dbg(xhci, "Quit polling the event ring.\n");
578 }
579 #endif
580 
581 static int xhci_run_finished(struct xhci_hcd *xhci)
582 {
583 	if (xhci_start(xhci)) {
584 		xhci_halt(xhci);
585 		return -ENODEV;
586 	}
587 	xhci->shared_hcd->state = HC_STATE_RUNNING;
588 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
589 
590 	if (xhci->quirks & XHCI_NEC_HOST)
591 		xhci_ring_cmd_db(xhci);
592 
593 	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
594 	return 0;
595 }
596 
597 /*
598  * Start the HC after it was halted.
599  *
600  * This function is called by the USB core when the HC driver is added.
601  * Its opposite is xhci_stop().
602  *
603  * xhci_init() must be called once before this function can be called.
604  * Reset the HC, enable device slot contexts, program DCBAAP, and
605  * set command ring pointer and event ring pointer.
606  *
607  * Setup MSI-X vectors and enable interrupts.
608  */
609 int xhci_run(struct usb_hcd *hcd)
610 {
611 	u32 temp;
612 	u64 temp_64;
613 	int ret;
614 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
615 
616 	/* Start the xHCI host controller running only after the USB 2.0 roothub
617 	 * is setup.
618 	 */
619 
620 	hcd->uses_new_polling = 1;
621 	if (!usb_hcd_is_primary_hcd(hcd))
622 		return xhci_run_finished(xhci);
623 
624 	xhci_dbg(xhci, "xhci_run\n");
625 
626 	ret = xhci_try_enable_msi(hcd);
627 	if (ret)
628 		return ret;
629 
630 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
631 	init_timer(&xhci->event_ring_timer);
632 	xhci->event_ring_timer.data = (unsigned long) xhci;
633 	xhci->event_ring_timer.function = xhci_event_ring_work;
634 	/* Poll the event ring */
635 	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
636 	xhci->zombie = 0;
637 	xhci_dbg(xhci, "Setting event ring polling timer\n");
638 	add_timer(&xhci->event_ring_timer);
639 #endif
640 
641 	xhci_dbg(xhci, "Command ring memory map follows:\n");
642 	xhci_debug_ring(xhci, xhci->cmd_ring);
643 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
644 	xhci_dbg_cmd_ptrs(xhci);
645 
646 	xhci_dbg(xhci, "ERST memory map follows:\n");
647 	xhci_dbg_erst(xhci, &xhci->erst);
648 	xhci_dbg(xhci, "Event ring:\n");
649 	xhci_debug_ring(xhci, xhci->event_ring);
650 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
651 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
652 	temp_64 &= ~ERST_PTR_MASK;
653 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
654 
655 	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
656 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
657 	temp &= ~ER_IRQ_INTERVAL_MASK;
658 	temp |= (u32) 160;
659 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
660 
661 	/* Set the HCD state before we enable the irqs */
662 	temp = xhci_readl(xhci, &xhci->op_regs->command);
663 	temp |= (CMD_EIE);
664 	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
665 			temp);
666 	xhci_writel(xhci, temp, &xhci->op_regs->command);
667 
668 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
669 	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
670 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
671 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
672 			&xhci->ir_set->irq_pending);
673 	xhci_print_ir_set(xhci, 0);
674 
675 	if (xhci->quirks & XHCI_NEC_HOST)
676 		xhci_queue_vendor_command(xhci, 0, 0, 0,
677 				TRB_TYPE(TRB_NEC_GET_FW));
678 
679 	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
680 	return 0;
681 }
682 
683 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
684 {
685 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
686 
687 	spin_lock_irq(&xhci->lock);
688 	xhci_halt(xhci);
689 
690 	/* The shared_hcd is going to be deallocated shortly (the USB core only
691 	 * calls this function when allocation fails in usb_add_hcd(), or
692 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
693 	 */
694 	xhci->shared_hcd = NULL;
695 	spin_unlock_irq(&xhci->lock);
696 }
697 
698 /*
699  * Stop xHCI driver.
700  *
701  * This function is called by the USB core when the HC driver is removed.
702  * Its opposite is xhci_run().
703  *
704  * Disable device contexts, disable IRQs, and quiesce the HC.
705  * Reset the HC, finish any completed transactions, and cleanup memory.
706  */
707 void xhci_stop(struct usb_hcd *hcd)
708 {
709 	u32 temp;
710 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
711 
712 	if (!usb_hcd_is_primary_hcd(hcd)) {
713 		xhci_only_stop_hcd(xhci->shared_hcd);
714 		return;
715 	}
716 
717 	spin_lock_irq(&xhci->lock);
718 	/* Make sure the xHC is halted for a USB3 roothub
719 	 * (xhci_stop() could be called as part of failed init).
720 	 */
721 	xhci_halt(xhci);
722 	xhci_reset(xhci);
723 	spin_unlock_irq(&xhci->lock);
724 
725 	xhci_cleanup_msix(xhci);
726 
727 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
728 	/* Tell the event ring poll function not to reschedule */
729 	xhci->zombie = 1;
730 	del_timer_sync(&xhci->event_ring_timer);
731 #endif
732 
733 	/* Deleting Compliance Mode Recovery Timer */
734 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
735 			(!(xhci_all_ports_seen_u0(xhci))))
736 		del_timer_sync(&xhci->comp_mode_recovery_timer);
737 
738 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
739 		usb_amd_dev_put();
740 
741 	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
742 	temp = xhci_readl(xhci, &xhci->op_regs->status);
743 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
744 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
745 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
746 			&xhci->ir_set->irq_pending);
747 	xhci_print_ir_set(xhci, 0);
748 
749 	xhci_dbg(xhci, "cleaning up memory\n");
750 	xhci_mem_cleanup(xhci);
751 	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
752 		    xhci_readl(xhci, &xhci->op_regs->status));
753 }
754 
755 /*
756  * Shutdown HC (not bus-specific)
757  *
758  * This is called when the machine is rebooting or halting.  We assume that the
759  * machine will be powered off, and the HC's internal state will be reset.
760  * Don't bother to free memory.
761  *
762  * This will only ever be called with the main usb_hcd (the USB3 roothub).
763  */
764 void xhci_shutdown(struct usb_hcd *hcd)
765 {
766 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
767 
768 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
769 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
770 
771 	spin_lock_irq(&xhci->lock);
772 	xhci_halt(xhci);
773 	spin_unlock_irq(&xhci->lock);
774 
775 	xhci_cleanup_msix(xhci);
776 
777 	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
778 		    xhci_readl(xhci, &xhci->op_regs->status));
779 }
780 
781 #ifdef CONFIG_PM
782 static void xhci_save_registers(struct xhci_hcd *xhci)
783 {
784 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
785 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
786 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
787 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
788 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
789 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
790 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
791 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
792 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
793 }
794 
795 static void xhci_restore_registers(struct xhci_hcd *xhci)
796 {
797 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
798 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
799 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
800 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
801 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
802 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
803 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
804 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
805 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
806 }
807 
808 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
809 {
810 	u64	val_64;
811 
812 	/* step 2: initialize command ring buffer */
813 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
814 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
815 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
816 				      xhci->cmd_ring->dequeue) &
817 		 (u64) ~CMD_RING_RSVD_BITS) |
818 		xhci->cmd_ring->cycle_state;
819 	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
820 			(long unsigned long) val_64);
821 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
822 }
823 
824 /*
825  * The whole command ring must be cleared to zero when we suspend the host.
826  *
827  * The host doesn't save the command ring pointer in the suspend well, so we
828  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
829  * aligned, because of the reserved bits in the command ring dequeue pointer
830  * register.  Therefore, we can't just set the dequeue pointer back in the
831  * middle of the ring (TRBs are 16-byte aligned).
832  */
833 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
834 {
835 	struct xhci_ring *ring;
836 	struct xhci_segment *seg;
837 
838 	ring = xhci->cmd_ring;
839 	seg = ring->deq_seg;
840 	do {
841 		memset(seg->trbs, 0,
842 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
843 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
844 			cpu_to_le32(~TRB_CYCLE);
845 		seg = seg->next;
846 	} while (seg != ring->deq_seg);
847 
848 	/* Reset the software enqueue and dequeue pointers */
849 	ring->deq_seg = ring->first_seg;
850 	ring->dequeue = ring->first_seg->trbs;
851 	ring->enq_seg = ring->deq_seg;
852 	ring->enqueue = ring->dequeue;
853 
854 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
855 	/*
856 	 * Ring is now zeroed, so the HW should look for change of ownership
857 	 * when the cycle bit is set to 1.
858 	 */
859 	ring->cycle_state = 1;
860 
861 	/*
862 	 * Reset the hardware dequeue pointer.
863 	 * Yes, this will need to be re-written after resume, but we're paranoid
864 	 * and want to make sure the hardware doesn't access bogus memory
865 	 * because, say, the BIOS or an SMI started the host without changing
866 	 * the command ring pointers.
867 	 */
868 	xhci_set_cmd_ring_deq(xhci);
869 }
870 
871 /*
872  * Stop HC (not bus-specific)
873  *
874  * This is called when the machine transition into S3/S4 mode.
875  *
876  */
877 int xhci_suspend(struct xhci_hcd *xhci)
878 {
879 	int			rc = 0;
880 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
881 	u32			command;
882 
883 	if (hcd->state != HC_STATE_SUSPENDED ||
884 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
885 		return -EINVAL;
886 
887 	spin_lock_irq(&xhci->lock);
888 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
889 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
890 	/* step 1: stop endpoint */
891 	/* skipped assuming that port suspend has done */
892 
893 	/* step 2: clear Run/Stop bit */
894 	command = xhci_readl(xhci, &xhci->op_regs->command);
895 	command &= ~CMD_RUN;
896 	xhci_writel(xhci, command, &xhci->op_regs->command);
897 	if (xhci_handshake(xhci, &xhci->op_regs->status,
898 		      STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
899 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
900 		spin_unlock_irq(&xhci->lock);
901 		return -ETIMEDOUT;
902 	}
903 	xhci_clear_command_ring(xhci);
904 
905 	/* step 3: save registers */
906 	xhci_save_registers(xhci);
907 
908 	/* step 4: set CSS flag */
909 	command = xhci_readl(xhci, &xhci->op_regs->command);
910 	command |= CMD_CSS;
911 	xhci_writel(xhci, command, &xhci->op_regs->command);
912 	if (xhci_handshake(xhci, &xhci->op_regs->status,
913 				STS_SAVE, 0, 10 * 1000)) {
914 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
915 		spin_unlock_irq(&xhci->lock);
916 		return -ETIMEDOUT;
917 	}
918 	spin_unlock_irq(&xhci->lock);
919 
920 	/*
921 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
922 	 * is about to be suspended.
923 	 */
924 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
925 			(!(xhci_all_ports_seen_u0(xhci)))) {
926 		del_timer_sync(&xhci->comp_mode_recovery_timer);
927 		xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
928 	}
929 
930 	/* step 5: remove core well power */
931 	/* synchronize irq when using MSI-X */
932 	xhci_msix_sync_irqs(xhci);
933 
934 	return rc;
935 }
936 
937 /*
938  * start xHC (not bus-specific)
939  *
940  * This is called when the machine transition from S3/S4 mode.
941  *
942  */
943 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
944 {
945 	u32			command, temp = 0;
946 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
947 	struct usb_hcd		*secondary_hcd;
948 	int			retval = 0;
949 
950 	/* Wait a bit if either of the roothubs need to settle from the
951 	 * transition into bus suspend.
952 	 */
953 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
954 			time_before(jiffies,
955 				xhci->bus_state[1].next_statechange))
956 		msleep(100);
957 
958 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
959 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
960 
961 	spin_lock_irq(&xhci->lock);
962 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
963 		hibernated = true;
964 
965 	if (!hibernated) {
966 		/* step 1: restore register */
967 		xhci_restore_registers(xhci);
968 		/* step 2: initialize command ring buffer */
969 		xhci_set_cmd_ring_deq(xhci);
970 		/* step 3: restore state and start state*/
971 		/* step 3: set CRS flag */
972 		command = xhci_readl(xhci, &xhci->op_regs->command);
973 		command |= CMD_CRS;
974 		xhci_writel(xhci, command, &xhci->op_regs->command);
975 		if (xhci_handshake(xhci, &xhci->op_regs->status,
976 			      STS_RESTORE, 0, 10 * 1000)) {
977 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
978 			spin_unlock_irq(&xhci->lock);
979 			return -ETIMEDOUT;
980 		}
981 		temp = xhci_readl(xhci, &xhci->op_regs->status);
982 	}
983 
984 	/* If restore operation fails, re-initialize the HC during resume */
985 	if ((temp & STS_SRE) || hibernated) {
986 		/* Let the USB core know _both_ roothubs lost power. */
987 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
988 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
989 
990 		xhci_dbg(xhci, "Stop HCD\n");
991 		xhci_halt(xhci);
992 		xhci_reset(xhci);
993 		spin_unlock_irq(&xhci->lock);
994 		xhci_cleanup_msix(xhci);
995 
996 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
997 		/* Tell the event ring poll function not to reschedule */
998 		xhci->zombie = 1;
999 		del_timer_sync(&xhci->event_ring_timer);
1000 #endif
1001 
1002 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1003 		temp = xhci_readl(xhci, &xhci->op_regs->status);
1004 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1005 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1006 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1007 				&xhci->ir_set->irq_pending);
1008 		xhci_print_ir_set(xhci, 0);
1009 
1010 		xhci_dbg(xhci, "cleaning up memory\n");
1011 		xhci_mem_cleanup(xhci);
1012 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1013 			    xhci_readl(xhci, &xhci->op_regs->status));
1014 
1015 		/* USB core calls the PCI reinit and start functions twice:
1016 		 * first with the primary HCD, and then with the secondary HCD.
1017 		 * If we don't do the same, the host will never be started.
1018 		 */
1019 		if (!usb_hcd_is_primary_hcd(hcd))
1020 			secondary_hcd = hcd;
1021 		else
1022 			secondary_hcd = xhci->shared_hcd;
1023 
1024 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1025 		retval = xhci_init(hcd->primary_hcd);
1026 		if (retval)
1027 			return retval;
1028 		xhci_dbg(xhci, "Start the primary HCD\n");
1029 		retval = xhci_run(hcd->primary_hcd);
1030 		if (!retval) {
1031 			xhci_dbg(xhci, "Start the secondary HCD\n");
1032 			retval = xhci_run(secondary_hcd);
1033 		}
1034 		hcd->state = HC_STATE_SUSPENDED;
1035 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1036 		goto done;
1037 	}
1038 
1039 	/* step 4: set Run/Stop bit */
1040 	command = xhci_readl(xhci, &xhci->op_regs->command);
1041 	command |= CMD_RUN;
1042 	xhci_writel(xhci, command, &xhci->op_regs->command);
1043 	xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1044 		  0, 250 * 1000);
1045 
1046 	/* step 5: walk topology and initialize portsc,
1047 	 * portpmsc and portli
1048 	 */
1049 	/* this is done in bus_resume */
1050 
1051 	/* step 6: restart each of the previously
1052 	 * Running endpoints by ringing their doorbells
1053 	 */
1054 
1055 	spin_unlock_irq(&xhci->lock);
1056 
1057  done:
1058 	if (retval == 0) {
1059 		usb_hcd_resume_root_hub(hcd);
1060 		usb_hcd_resume_root_hub(xhci->shared_hcd);
1061 	}
1062 
1063 	/*
1064 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1065 	 * be re-initialized Always after a system resume. Ports are subject
1066 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1067 	 * ports have entered previously to U0 before system's suspension.
1068 	 */
1069 	if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1070 		compliance_mode_recovery_timer_init(xhci);
1071 
1072 	return retval;
1073 }
1074 #endif	/* CONFIG_PM */
1075 
1076 /*-------------------------------------------------------------------------*/
1077 
1078 /**
1079  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1080  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1081  * value to right shift 1 for the bitmask.
1082  *
1083  * Index  = (epnum * 2) + direction - 1,
1084  * where direction = 0 for OUT, 1 for IN.
1085  * For control endpoints, the IN index is used (OUT index is unused), so
1086  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1087  */
1088 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1089 {
1090 	unsigned int index;
1091 	if (usb_endpoint_xfer_control(desc))
1092 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1093 	else
1094 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1095 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1096 	return index;
1097 }
1098 
1099 /* Find the flag for this endpoint (for use in the control context).  Use the
1100  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1101  * bit 1, etc.
1102  */
1103 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1104 {
1105 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1106 }
1107 
1108 /* Find the flag for this endpoint (for use in the control context).  Use the
1109  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1110  * bit 1, etc.
1111  */
1112 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1113 {
1114 	return 1 << (ep_index + 1);
1115 }
1116 
1117 /* Compute the last valid endpoint context index.  Basically, this is the
1118  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1119  * we find the most significant bit set in the added contexts flags.
1120  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1121  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1122  */
1123 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1124 {
1125 	return fls(added_ctxs) - 1;
1126 }
1127 
1128 /* Returns 1 if the arguments are OK;
1129  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1130  */
1131 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1132 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1133 		const char *func) {
1134 	struct xhci_hcd	*xhci;
1135 	struct xhci_virt_device	*virt_dev;
1136 
1137 	if (!hcd || (check_ep && !ep) || !udev) {
1138 		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1139 				func);
1140 		return -EINVAL;
1141 	}
1142 	if (!udev->parent) {
1143 		printk(KERN_DEBUG "xHCI %s called for root hub\n",
1144 				func);
1145 		return 0;
1146 	}
1147 
1148 	xhci = hcd_to_xhci(hcd);
1149 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1150 		return -ENODEV;
1151 
1152 	if (check_virt_dev) {
1153 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1154 			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1155 						"device\n", func);
1156 			return -EINVAL;
1157 		}
1158 
1159 		virt_dev = xhci->devs[udev->slot_id];
1160 		if (virt_dev->udev != udev) {
1161 			printk(KERN_DEBUG "xHCI %s called with udev and "
1162 					  "virt_dev does not match\n", func);
1163 			return -EINVAL;
1164 		}
1165 	}
1166 
1167 	return 1;
1168 }
1169 
1170 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1171 		struct usb_device *udev, struct xhci_command *command,
1172 		bool ctx_change, bool must_succeed);
1173 
1174 /*
1175  * Full speed devices may have a max packet size greater than 8 bytes, but the
1176  * USB core doesn't know that until it reads the first 8 bytes of the
1177  * descriptor.  If the usb_device's max packet size changes after that point,
1178  * we need to issue an evaluate context command and wait on it.
1179  */
1180 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1181 		unsigned int ep_index, struct urb *urb)
1182 {
1183 	struct xhci_container_ctx *in_ctx;
1184 	struct xhci_container_ctx *out_ctx;
1185 	struct xhci_input_control_ctx *ctrl_ctx;
1186 	struct xhci_ep_ctx *ep_ctx;
1187 	int max_packet_size;
1188 	int hw_max_packet_size;
1189 	int ret = 0;
1190 
1191 	out_ctx = xhci->devs[slot_id]->out_ctx;
1192 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1193 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1194 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1195 	if (hw_max_packet_size != max_packet_size) {
1196 		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1197 		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1198 				max_packet_size);
1199 		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1200 				hw_max_packet_size);
1201 		xhci_dbg(xhci, "Issuing evaluate context command.\n");
1202 
1203 		/* Set up the modified control endpoint 0 */
1204 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1205 				xhci->devs[slot_id]->out_ctx, ep_index);
1206 		in_ctx = xhci->devs[slot_id]->in_ctx;
1207 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1208 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1209 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1210 
1211 		/* Set up the input context flags for the command */
1212 		/* FIXME: This won't work if a non-default control endpoint
1213 		 * changes max packet sizes.
1214 		 */
1215 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1216 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1217 		ctrl_ctx->drop_flags = 0;
1218 
1219 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1220 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1221 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1222 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1223 
1224 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1225 				true, false);
1226 
1227 		/* Clean up the input context for later use by bandwidth
1228 		 * functions.
1229 		 */
1230 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1231 	}
1232 	return ret;
1233 }
1234 
1235 /*
1236  * non-error returns are a promise to giveback() the urb later
1237  * we drop ownership so next owner (or urb unlink) can get it
1238  */
1239 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1240 {
1241 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1242 	struct xhci_td *buffer;
1243 	unsigned long flags;
1244 	int ret = 0;
1245 	unsigned int slot_id, ep_index;
1246 	struct urb_priv	*urb_priv;
1247 	int size, i;
1248 
1249 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1250 					true, true, __func__) <= 0)
1251 		return -EINVAL;
1252 
1253 	slot_id = urb->dev->slot_id;
1254 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1255 
1256 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1257 		if (!in_interrupt())
1258 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1259 		ret = -ESHUTDOWN;
1260 		goto exit;
1261 	}
1262 
1263 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1264 		size = urb->number_of_packets;
1265 	else
1266 		size = 1;
1267 
1268 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1269 				  size * sizeof(struct xhci_td *), mem_flags);
1270 	if (!urb_priv)
1271 		return -ENOMEM;
1272 
1273 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1274 	if (!buffer) {
1275 		kfree(urb_priv);
1276 		return -ENOMEM;
1277 	}
1278 
1279 	for (i = 0; i < size; i++) {
1280 		urb_priv->td[i] = buffer;
1281 		buffer++;
1282 	}
1283 
1284 	urb_priv->length = size;
1285 	urb_priv->td_cnt = 0;
1286 	urb->hcpriv = urb_priv;
1287 
1288 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1289 		/* Check to see if the max packet size for the default control
1290 		 * endpoint changed during FS device enumeration
1291 		 */
1292 		if (urb->dev->speed == USB_SPEED_FULL) {
1293 			ret = xhci_check_maxpacket(xhci, slot_id,
1294 					ep_index, urb);
1295 			if (ret < 0) {
1296 				xhci_urb_free_priv(xhci, urb_priv);
1297 				urb->hcpriv = NULL;
1298 				return ret;
1299 			}
1300 		}
1301 
1302 		/* We have a spinlock and interrupts disabled, so we must pass
1303 		 * atomic context to this function, which may allocate memory.
1304 		 */
1305 		spin_lock_irqsave(&xhci->lock, flags);
1306 		if (xhci->xhc_state & XHCI_STATE_DYING)
1307 			goto dying;
1308 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1309 				slot_id, ep_index);
1310 		if (ret)
1311 			goto free_priv;
1312 		spin_unlock_irqrestore(&xhci->lock, flags);
1313 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1314 		spin_lock_irqsave(&xhci->lock, flags);
1315 		if (xhci->xhc_state & XHCI_STATE_DYING)
1316 			goto dying;
1317 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1318 				EP_GETTING_STREAMS) {
1319 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1320 					"is transitioning to using streams.\n");
1321 			ret = -EINVAL;
1322 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1323 				EP_GETTING_NO_STREAMS) {
1324 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1325 					"is transitioning to "
1326 					"not having streams.\n");
1327 			ret = -EINVAL;
1328 		} else {
1329 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1330 					slot_id, ep_index);
1331 		}
1332 		if (ret)
1333 			goto free_priv;
1334 		spin_unlock_irqrestore(&xhci->lock, flags);
1335 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1336 		spin_lock_irqsave(&xhci->lock, flags);
1337 		if (xhci->xhc_state & XHCI_STATE_DYING)
1338 			goto dying;
1339 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1340 				slot_id, ep_index);
1341 		if (ret)
1342 			goto free_priv;
1343 		spin_unlock_irqrestore(&xhci->lock, flags);
1344 	} else {
1345 		spin_lock_irqsave(&xhci->lock, flags);
1346 		if (xhci->xhc_state & XHCI_STATE_DYING)
1347 			goto dying;
1348 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1349 				slot_id, ep_index);
1350 		if (ret)
1351 			goto free_priv;
1352 		spin_unlock_irqrestore(&xhci->lock, flags);
1353 	}
1354 exit:
1355 	return ret;
1356 dying:
1357 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1358 			"non-responsive xHCI host.\n",
1359 			urb->ep->desc.bEndpointAddress, urb);
1360 	ret = -ESHUTDOWN;
1361 free_priv:
1362 	xhci_urb_free_priv(xhci, urb_priv);
1363 	urb->hcpriv = NULL;
1364 	spin_unlock_irqrestore(&xhci->lock, flags);
1365 	return ret;
1366 }
1367 
1368 /* Get the right ring for the given URB.
1369  * If the endpoint supports streams, boundary check the URB's stream ID.
1370  * If the endpoint doesn't support streams, return the singular endpoint ring.
1371  */
1372 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1373 		struct urb *urb)
1374 {
1375 	unsigned int slot_id;
1376 	unsigned int ep_index;
1377 	unsigned int stream_id;
1378 	struct xhci_virt_ep *ep;
1379 
1380 	slot_id = urb->dev->slot_id;
1381 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1382 	stream_id = urb->stream_id;
1383 	ep = &xhci->devs[slot_id]->eps[ep_index];
1384 	/* Common case: no streams */
1385 	if (!(ep->ep_state & EP_HAS_STREAMS))
1386 		return ep->ring;
1387 
1388 	if (stream_id == 0) {
1389 		xhci_warn(xhci,
1390 				"WARN: Slot ID %u, ep index %u has streams, "
1391 				"but URB has no stream ID.\n",
1392 				slot_id, ep_index);
1393 		return NULL;
1394 	}
1395 
1396 	if (stream_id < ep->stream_info->num_streams)
1397 		return ep->stream_info->stream_rings[stream_id];
1398 
1399 	xhci_warn(xhci,
1400 			"WARN: Slot ID %u, ep index %u has "
1401 			"stream IDs 1 to %u allocated, "
1402 			"but stream ID %u is requested.\n",
1403 			slot_id, ep_index,
1404 			ep->stream_info->num_streams - 1,
1405 			stream_id);
1406 	return NULL;
1407 }
1408 
1409 /*
1410  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1411  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1412  * should pick up where it left off in the TD, unless a Set Transfer Ring
1413  * Dequeue Pointer is issued.
1414  *
1415  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1416  * the ring.  Since the ring is a contiguous structure, they can't be physically
1417  * removed.  Instead, there are two options:
1418  *
1419  *  1) If the HC is in the middle of processing the URB to be canceled, we
1420  *     simply move the ring's dequeue pointer past those TRBs using the Set
1421  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1422  *     when drivers timeout on the last submitted URB and attempt to cancel.
1423  *
1424  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1425  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1426  *     HC will need to invalidate the any TRBs it has cached after the stop
1427  *     endpoint command, as noted in the xHCI 0.95 errata.
1428  *
1429  *  3) The TD may have completed by the time the Stop Endpoint Command
1430  *     completes, so software needs to handle that case too.
1431  *
1432  * This function should protect against the TD enqueueing code ringing the
1433  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1434  * It also needs to account for multiple cancellations on happening at the same
1435  * time for the same endpoint.
1436  *
1437  * Note that this function can be called in any context, or so says
1438  * usb_hcd_unlink_urb()
1439  */
1440 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1441 {
1442 	unsigned long flags;
1443 	int ret, i;
1444 	u32 temp;
1445 	struct xhci_hcd *xhci;
1446 	struct urb_priv	*urb_priv;
1447 	struct xhci_td *td;
1448 	unsigned int ep_index;
1449 	struct xhci_ring *ep_ring;
1450 	struct xhci_virt_ep *ep;
1451 
1452 	xhci = hcd_to_xhci(hcd);
1453 	spin_lock_irqsave(&xhci->lock, flags);
1454 	/* Make sure the URB hasn't completed or been unlinked already */
1455 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1456 	if (ret || !urb->hcpriv)
1457 		goto done;
1458 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1459 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1460 		xhci_dbg(xhci, "HW died, freeing TD.\n");
1461 		urb_priv = urb->hcpriv;
1462 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1463 			td = urb_priv->td[i];
1464 			if (!list_empty(&td->td_list))
1465 				list_del_init(&td->td_list);
1466 			if (!list_empty(&td->cancelled_td_list))
1467 				list_del_init(&td->cancelled_td_list);
1468 		}
1469 
1470 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1471 		spin_unlock_irqrestore(&xhci->lock, flags);
1472 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1473 		xhci_urb_free_priv(xhci, urb_priv);
1474 		return ret;
1475 	}
1476 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1477 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1478 		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1479 				"non-responsive xHCI host.\n",
1480 				urb->ep->desc.bEndpointAddress, urb);
1481 		/* Let the stop endpoint command watchdog timer (which set this
1482 		 * state) finish cleaning up the endpoint TD lists.  We must
1483 		 * have caught it in the middle of dropping a lock and giving
1484 		 * back an URB.
1485 		 */
1486 		goto done;
1487 	}
1488 
1489 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1490 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1491 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1492 	if (!ep_ring) {
1493 		ret = -EINVAL;
1494 		goto done;
1495 	}
1496 
1497 	urb_priv = urb->hcpriv;
1498 	i = urb_priv->td_cnt;
1499 	if (i < urb_priv->length)
1500 		xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1501 				"starting at offset 0x%llx\n",
1502 				urb, urb->dev->devpath,
1503 				urb->ep->desc.bEndpointAddress,
1504 				(unsigned long long) xhci_trb_virt_to_dma(
1505 					urb_priv->td[i]->start_seg,
1506 					urb_priv->td[i]->first_trb));
1507 
1508 	for (; i < urb_priv->length; i++) {
1509 		td = urb_priv->td[i];
1510 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1511 	}
1512 
1513 	/* Queue a stop endpoint command, but only if this is
1514 	 * the first cancellation to be handled.
1515 	 */
1516 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1517 		ep->ep_state |= EP_HALT_PENDING;
1518 		ep->stop_cmds_pending++;
1519 		ep->stop_cmd_timer.expires = jiffies +
1520 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1521 		add_timer(&ep->stop_cmd_timer);
1522 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1523 		xhci_ring_cmd_db(xhci);
1524 	}
1525 done:
1526 	spin_unlock_irqrestore(&xhci->lock, flags);
1527 	return ret;
1528 }
1529 
1530 /* Drop an endpoint from a new bandwidth configuration for this device.
1531  * Only one call to this function is allowed per endpoint before
1532  * check_bandwidth() or reset_bandwidth() must be called.
1533  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1534  * add the endpoint to the schedule with possibly new parameters denoted by a
1535  * different endpoint descriptor in usb_host_endpoint.
1536  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1537  * not allowed.
1538  *
1539  * The USB core will not allow URBs to be queued to an endpoint that is being
1540  * disabled, so there's no need for mutual exclusion to protect
1541  * the xhci->devs[slot_id] structure.
1542  */
1543 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1544 		struct usb_host_endpoint *ep)
1545 {
1546 	struct xhci_hcd *xhci;
1547 	struct xhci_container_ctx *in_ctx, *out_ctx;
1548 	struct xhci_input_control_ctx *ctrl_ctx;
1549 	struct xhci_slot_ctx *slot_ctx;
1550 	unsigned int last_ctx;
1551 	unsigned int ep_index;
1552 	struct xhci_ep_ctx *ep_ctx;
1553 	u32 drop_flag;
1554 	u32 new_add_flags, new_drop_flags, new_slot_info;
1555 	int ret;
1556 
1557 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1558 	if (ret <= 0)
1559 		return ret;
1560 	xhci = hcd_to_xhci(hcd);
1561 	if (xhci->xhc_state & XHCI_STATE_DYING)
1562 		return -ENODEV;
1563 
1564 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1565 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1566 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1567 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1568 				__func__, drop_flag);
1569 		return 0;
1570 	}
1571 
1572 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1573 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1574 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1575 	ep_index = xhci_get_endpoint_index(&ep->desc);
1576 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1577 	/* If the HC already knows the endpoint is disabled,
1578 	 * or the HCD has noted it is disabled, ignore this request
1579 	 */
1580 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1581 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1582 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1583 	    xhci_get_endpoint_flag(&ep->desc)) {
1584 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1585 				__func__, ep);
1586 		return 0;
1587 	}
1588 
1589 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1590 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1591 
1592 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1593 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1594 
1595 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1596 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1597 	/* Update the last valid endpoint context, if we deleted the last one */
1598 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1599 	    LAST_CTX(last_ctx)) {
1600 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1601 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1602 	}
1603 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1604 
1605 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1606 
1607 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1608 			(unsigned int) ep->desc.bEndpointAddress,
1609 			udev->slot_id,
1610 			(unsigned int) new_drop_flags,
1611 			(unsigned int) new_add_flags,
1612 			(unsigned int) new_slot_info);
1613 	return 0;
1614 }
1615 
1616 /* Add an endpoint to a new possible bandwidth configuration for this device.
1617  * Only one call to this function is allowed per endpoint before
1618  * check_bandwidth() or reset_bandwidth() must be called.
1619  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1620  * add the endpoint to the schedule with possibly new parameters denoted by a
1621  * different endpoint descriptor in usb_host_endpoint.
1622  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1623  * not allowed.
1624  *
1625  * The USB core will not allow URBs to be queued to an endpoint until the
1626  * configuration or alt setting is installed in the device, so there's no need
1627  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1628  */
1629 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1630 		struct usb_host_endpoint *ep)
1631 {
1632 	struct xhci_hcd *xhci;
1633 	struct xhci_container_ctx *in_ctx, *out_ctx;
1634 	unsigned int ep_index;
1635 	struct xhci_slot_ctx *slot_ctx;
1636 	struct xhci_input_control_ctx *ctrl_ctx;
1637 	u32 added_ctxs;
1638 	unsigned int last_ctx;
1639 	u32 new_add_flags, new_drop_flags, new_slot_info;
1640 	struct xhci_virt_device *virt_dev;
1641 	int ret = 0;
1642 
1643 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1644 	if (ret <= 0) {
1645 		/* So we won't queue a reset ep command for a root hub */
1646 		ep->hcpriv = NULL;
1647 		return ret;
1648 	}
1649 	xhci = hcd_to_xhci(hcd);
1650 	if (xhci->xhc_state & XHCI_STATE_DYING)
1651 		return -ENODEV;
1652 
1653 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1654 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1655 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1656 		/* FIXME when we have to issue an evaluate endpoint command to
1657 		 * deal with ep0 max packet size changing once we get the
1658 		 * descriptors
1659 		 */
1660 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1661 				__func__, added_ctxs);
1662 		return 0;
1663 	}
1664 
1665 	virt_dev = xhci->devs[udev->slot_id];
1666 	in_ctx = virt_dev->in_ctx;
1667 	out_ctx = virt_dev->out_ctx;
1668 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1669 	ep_index = xhci_get_endpoint_index(&ep->desc);
1670 
1671 	/* If this endpoint is already in use, and the upper layers are trying
1672 	 * to add it again without dropping it, reject the addition.
1673 	 */
1674 	if (virt_dev->eps[ep_index].ring &&
1675 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1676 				xhci_get_endpoint_flag(&ep->desc))) {
1677 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1678 				"without dropping it.\n",
1679 				(unsigned int) ep->desc.bEndpointAddress);
1680 		return -EINVAL;
1681 	}
1682 
1683 	/* If the HCD has already noted the endpoint is enabled,
1684 	 * ignore this request.
1685 	 */
1686 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1687 	    xhci_get_endpoint_flag(&ep->desc)) {
1688 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1689 				__func__, ep);
1690 		return 0;
1691 	}
1692 
1693 	/*
1694 	 * Configuration and alternate setting changes must be done in
1695 	 * process context, not interrupt context (or so documenation
1696 	 * for usb_set_interface() and usb_set_configuration() claim).
1697 	 */
1698 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1699 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1700 				__func__, ep->desc.bEndpointAddress);
1701 		return -ENOMEM;
1702 	}
1703 
1704 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1705 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1706 
1707 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1708 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1709 	 * this re-adds a new state for the endpoint from the new endpoint
1710 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1711 	 * drop flags alone.
1712 	 */
1713 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1714 
1715 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1716 	/* Update the last valid endpoint context, if we just added one past */
1717 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1718 	    LAST_CTX(last_ctx)) {
1719 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1720 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1721 	}
1722 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1723 
1724 	/* Store the usb_device pointer for later use */
1725 	ep->hcpriv = udev;
1726 
1727 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1728 			(unsigned int) ep->desc.bEndpointAddress,
1729 			udev->slot_id,
1730 			(unsigned int) new_drop_flags,
1731 			(unsigned int) new_add_flags,
1732 			(unsigned int) new_slot_info);
1733 	return 0;
1734 }
1735 
1736 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1737 {
1738 	struct xhci_input_control_ctx *ctrl_ctx;
1739 	struct xhci_ep_ctx *ep_ctx;
1740 	struct xhci_slot_ctx *slot_ctx;
1741 	int i;
1742 
1743 	/* When a device's add flag and drop flag are zero, any subsequent
1744 	 * configure endpoint command will leave that endpoint's state
1745 	 * untouched.  Make sure we don't leave any old state in the input
1746 	 * endpoint contexts.
1747 	 */
1748 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1749 	ctrl_ctx->drop_flags = 0;
1750 	ctrl_ctx->add_flags = 0;
1751 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1752 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1753 	/* Endpoint 0 is always valid */
1754 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1755 	for (i = 1; i < 31; ++i) {
1756 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1757 		ep_ctx->ep_info = 0;
1758 		ep_ctx->ep_info2 = 0;
1759 		ep_ctx->deq = 0;
1760 		ep_ctx->tx_info = 0;
1761 	}
1762 }
1763 
1764 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1765 		struct usb_device *udev, u32 *cmd_status)
1766 {
1767 	int ret;
1768 
1769 	switch (*cmd_status) {
1770 	case COMP_ENOMEM:
1771 		dev_warn(&udev->dev, "Not enough host controller resources "
1772 				"for new device state.\n");
1773 		ret = -ENOMEM;
1774 		/* FIXME: can we allocate more resources for the HC? */
1775 		break;
1776 	case COMP_BW_ERR:
1777 	case COMP_2ND_BW_ERR:
1778 		dev_warn(&udev->dev, "Not enough bandwidth "
1779 				"for new device state.\n");
1780 		ret = -ENOSPC;
1781 		/* FIXME: can we go back to the old state? */
1782 		break;
1783 	case COMP_TRB_ERR:
1784 		/* the HCD set up something wrong */
1785 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1786 				"add flag = 1, "
1787 				"and endpoint is not disabled.\n");
1788 		ret = -EINVAL;
1789 		break;
1790 	case COMP_DEV_ERR:
1791 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1792 				"configure command.\n");
1793 		ret = -ENODEV;
1794 		break;
1795 	case COMP_SUCCESS:
1796 		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1797 		ret = 0;
1798 		break;
1799 	default:
1800 		xhci_err(xhci, "ERROR: unexpected command completion "
1801 				"code 0x%x.\n", *cmd_status);
1802 		ret = -EINVAL;
1803 		break;
1804 	}
1805 	return ret;
1806 }
1807 
1808 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1809 		struct usb_device *udev, u32 *cmd_status)
1810 {
1811 	int ret;
1812 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1813 
1814 	switch (*cmd_status) {
1815 	case COMP_EINVAL:
1816 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1817 				"context command.\n");
1818 		ret = -EINVAL;
1819 		break;
1820 	case COMP_EBADSLT:
1821 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1822 				"evaluate context command.\n");
1823 		ret = -EINVAL;
1824 		break;
1825 	case COMP_CTX_STATE:
1826 		dev_warn(&udev->dev, "WARN: invalid context state for "
1827 				"evaluate context command.\n");
1828 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1829 		ret = -EINVAL;
1830 		break;
1831 	case COMP_DEV_ERR:
1832 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1833 				"context command.\n");
1834 		ret = -ENODEV;
1835 		break;
1836 	case COMP_MEL_ERR:
1837 		/* Max Exit Latency too large error */
1838 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1839 		ret = -EINVAL;
1840 		break;
1841 	case COMP_SUCCESS:
1842 		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1843 		ret = 0;
1844 		break;
1845 	default:
1846 		xhci_err(xhci, "ERROR: unexpected command completion "
1847 				"code 0x%x.\n", *cmd_status);
1848 		ret = -EINVAL;
1849 		break;
1850 	}
1851 	return ret;
1852 }
1853 
1854 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1855 		struct xhci_container_ctx *in_ctx)
1856 {
1857 	struct xhci_input_control_ctx *ctrl_ctx;
1858 	u32 valid_add_flags;
1859 	u32 valid_drop_flags;
1860 
1861 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1862 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1863 	 * (bit 1).  The default control endpoint is added during the Address
1864 	 * Device command and is never removed until the slot is disabled.
1865 	 */
1866 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1867 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1868 
1869 	/* Use hweight32 to count the number of ones in the add flags, or
1870 	 * number of endpoints added.  Don't count endpoints that are changed
1871 	 * (both added and dropped).
1872 	 */
1873 	return hweight32(valid_add_flags) -
1874 		hweight32(valid_add_flags & valid_drop_flags);
1875 }
1876 
1877 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1878 		struct xhci_container_ctx *in_ctx)
1879 {
1880 	struct xhci_input_control_ctx *ctrl_ctx;
1881 	u32 valid_add_flags;
1882 	u32 valid_drop_flags;
1883 
1884 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1885 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1886 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1887 
1888 	return hweight32(valid_drop_flags) -
1889 		hweight32(valid_add_flags & valid_drop_flags);
1890 }
1891 
1892 /*
1893  * We need to reserve the new number of endpoints before the configure endpoint
1894  * command completes.  We can't subtract the dropped endpoints from the number
1895  * of active endpoints until the command completes because we can oversubscribe
1896  * the host in this case:
1897  *
1898  *  - the first configure endpoint command drops more endpoints than it adds
1899  *  - a second configure endpoint command that adds more endpoints is queued
1900  *  - the first configure endpoint command fails, so the config is unchanged
1901  *  - the second command may succeed, even though there isn't enough resources
1902  *
1903  * Must be called with xhci->lock held.
1904  */
1905 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1906 		struct xhci_container_ctx *in_ctx)
1907 {
1908 	u32 added_eps;
1909 
1910 	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1911 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1912 		xhci_dbg(xhci, "Not enough ep ctxs: "
1913 				"%u active, need to add %u, limit is %u.\n",
1914 				xhci->num_active_eps, added_eps,
1915 				xhci->limit_active_eps);
1916 		return -ENOMEM;
1917 	}
1918 	xhci->num_active_eps += added_eps;
1919 	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1920 			xhci->num_active_eps);
1921 	return 0;
1922 }
1923 
1924 /*
1925  * The configure endpoint was failed by the xHC for some other reason, so we
1926  * need to revert the resources that failed configuration would have used.
1927  *
1928  * Must be called with xhci->lock held.
1929  */
1930 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1931 		struct xhci_container_ctx *in_ctx)
1932 {
1933 	u32 num_failed_eps;
1934 
1935 	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1936 	xhci->num_active_eps -= num_failed_eps;
1937 	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1938 			num_failed_eps,
1939 			xhci->num_active_eps);
1940 }
1941 
1942 /*
1943  * Now that the command has completed, clean up the active endpoint count by
1944  * subtracting out the endpoints that were dropped (but not changed).
1945  *
1946  * Must be called with xhci->lock held.
1947  */
1948 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1949 		struct xhci_container_ctx *in_ctx)
1950 {
1951 	u32 num_dropped_eps;
1952 
1953 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1954 	xhci->num_active_eps -= num_dropped_eps;
1955 	if (num_dropped_eps)
1956 		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1957 				num_dropped_eps,
1958 				xhci->num_active_eps);
1959 }
1960 
1961 static unsigned int xhci_get_block_size(struct usb_device *udev)
1962 {
1963 	switch (udev->speed) {
1964 	case USB_SPEED_LOW:
1965 	case USB_SPEED_FULL:
1966 		return FS_BLOCK;
1967 	case USB_SPEED_HIGH:
1968 		return HS_BLOCK;
1969 	case USB_SPEED_SUPER:
1970 		return SS_BLOCK;
1971 	case USB_SPEED_UNKNOWN:
1972 	case USB_SPEED_WIRELESS:
1973 	default:
1974 		/* Should never happen */
1975 		return 1;
1976 	}
1977 }
1978 
1979 static unsigned int
1980 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1981 {
1982 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1983 		return LS_OVERHEAD;
1984 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1985 		return FS_OVERHEAD;
1986 	return HS_OVERHEAD;
1987 }
1988 
1989 /* If we are changing a LS/FS device under a HS hub,
1990  * make sure (if we are activating a new TT) that the HS bus has enough
1991  * bandwidth for this new TT.
1992  */
1993 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1994 		struct xhci_virt_device *virt_dev,
1995 		int old_active_eps)
1996 {
1997 	struct xhci_interval_bw_table *bw_table;
1998 	struct xhci_tt_bw_info *tt_info;
1999 
2000 	/* Find the bandwidth table for the root port this TT is attached to. */
2001 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2002 	tt_info = virt_dev->tt_info;
2003 	/* If this TT already had active endpoints, the bandwidth for this TT
2004 	 * has already been added.  Removing all periodic endpoints (and thus
2005 	 * making the TT enactive) will only decrease the bandwidth used.
2006 	 */
2007 	if (old_active_eps)
2008 		return 0;
2009 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2010 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2011 			return -ENOMEM;
2012 		return 0;
2013 	}
2014 	/* Not sure why we would have no new active endpoints...
2015 	 *
2016 	 * Maybe because of an Evaluate Context change for a hub update or a
2017 	 * control endpoint 0 max packet size change?
2018 	 * FIXME: skip the bandwidth calculation in that case.
2019 	 */
2020 	return 0;
2021 }
2022 
2023 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2024 		struct xhci_virt_device *virt_dev)
2025 {
2026 	unsigned int bw_reserved;
2027 
2028 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2029 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2030 		return -ENOMEM;
2031 
2032 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2033 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2034 		return -ENOMEM;
2035 
2036 	return 0;
2037 }
2038 
2039 /*
2040  * This algorithm is a very conservative estimate of the worst-case scheduling
2041  * scenario for any one interval.  The hardware dynamically schedules the
2042  * packets, so we can't tell which microframe could be the limiting factor in
2043  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2044  *
2045  * Obviously, we can't solve an NP complete problem to find the minimum worst
2046  * case scenario.  Instead, we come up with an estimate that is no less than
2047  * the worst case bandwidth used for any one microframe, but may be an
2048  * over-estimate.
2049  *
2050  * We walk the requirements for each endpoint by interval, starting with the
2051  * smallest interval, and place packets in the schedule where there is only one
2052  * possible way to schedule packets for that interval.  In order to simplify
2053  * this algorithm, we record the largest max packet size for each interval, and
2054  * assume all packets will be that size.
2055  *
2056  * For interval 0, we obviously must schedule all packets for each interval.
2057  * The bandwidth for interval 0 is just the amount of data to be transmitted
2058  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2059  * the number of packets).
2060  *
2061  * For interval 1, we have two possible microframes to schedule those packets
2062  * in.  For this algorithm, if we can schedule the same number of packets for
2063  * each possible scheduling opportunity (each microframe), we will do so.  The
2064  * remaining number of packets will be saved to be transmitted in the gaps in
2065  * the next interval's scheduling sequence.
2066  *
2067  * As we move those remaining packets to be scheduled with interval 2 packets,
2068  * we have to double the number of remaining packets to transmit.  This is
2069  * because the intervals are actually powers of 2, and we would be transmitting
2070  * the previous interval's packets twice in this interval.  We also have to be
2071  * sure that when we look at the largest max packet size for this interval, we
2072  * also look at the largest max packet size for the remaining packets and take
2073  * the greater of the two.
2074  *
2075  * The algorithm continues to evenly distribute packets in each scheduling
2076  * opportunity, and push the remaining packets out, until we get to the last
2077  * interval.  Then those packets and their associated overhead are just added
2078  * to the bandwidth used.
2079  */
2080 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2081 		struct xhci_virt_device *virt_dev,
2082 		int old_active_eps)
2083 {
2084 	unsigned int bw_reserved;
2085 	unsigned int max_bandwidth;
2086 	unsigned int bw_used;
2087 	unsigned int block_size;
2088 	struct xhci_interval_bw_table *bw_table;
2089 	unsigned int packet_size = 0;
2090 	unsigned int overhead = 0;
2091 	unsigned int packets_transmitted = 0;
2092 	unsigned int packets_remaining = 0;
2093 	unsigned int i;
2094 
2095 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2096 		return xhci_check_ss_bw(xhci, virt_dev);
2097 
2098 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2099 		max_bandwidth = HS_BW_LIMIT;
2100 		/* Convert percent of bus BW reserved to blocks reserved */
2101 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2102 	} else {
2103 		max_bandwidth = FS_BW_LIMIT;
2104 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2105 	}
2106 
2107 	bw_table = virt_dev->bw_table;
2108 	/* We need to translate the max packet size and max ESIT payloads into
2109 	 * the units the hardware uses.
2110 	 */
2111 	block_size = xhci_get_block_size(virt_dev->udev);
2112 
2113 	/* If we are manipulating a LS/FS device under a HS hub, double check
2114 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2115 	 */
2116 	if (virt_dev->tt_info) {
2117 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2118 				virt_dev->real_port);
2119 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2120 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2121 					"newly activated TT.\n");
2122 			return -ENOMEM;
2123 		}
2124 		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2125 				virt_dev->tt_info->slot_id,
2126 				virt_dev->tt_info->ttport);
2127 	} else {
2128 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2129 				virt_dev->real_port);
2130 	}
2131 
2132 	/* Add in how much bandwidth will be used for interval zero, or the
2133 	 * rounded max ESIT payload + number of packets * largest overhead.
2134 	 */
2135 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2136 		bw_table->interval_bw[0].num_packets *
2137 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2138 
2139 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2140 		unsigned int bw_added;
2141 		unsigned int largest_mps;
2142 		unsigned int interval_overhead;
2143 
2144 		/*
2145 		 * How many packets could we transmit in this interval?
2146 		 * If packets didn't fit in the previous interval, we will need
2147 		 * to transmit that many packets twice within this interval.
2148 		 */
2149 		packets_remaining = 2 * packets_remaining +
2150 			bw_table->interval_bw[i].num_packets;
2151 
2152 		/* Find the largest max packet size of this or the previous
2153 		 * interval.
2154 		 */
2155 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2156 			largest_mps = 0;
2157 		else {
2158 			struct xhci_virt_ep *virt_ep;
2159 			struct list_head *ep_entry;
2160 
2161 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2162 			virt_ep = list_entry(ep_entry,
2163 					struct xhci_virt_ep, bw_endpoint_list);
2164 			/* Convert to blocks, rounding up */
2165 			largest_mps = DIV_ROUND_UP(
2166 					virt_ep->bw_info.max_packet_size,
2167 					block_size);
2168 		}
2169 		if (largest_mps > packet_size)
2170 			packet_size = largest_mps;
2171 
2172 		/* Use the larger overhead of this or the previous interval. */
2173 		interval_overhead = xhci_get_largest_overhead(
2174 				&bw_table->interval_bw[i]);
2175 		if (interval_overhead > overhead)
2176 			overhead = interval_overhead;
2177 
2178 		/* How many packets can we evenly distribute across
2179 		 * (1 << (i + 1)) possible scheduling opportunities?
2180 		 */
2181 		packets_transmitted = packets_remaining >> (i + 1);
2182 
2183 		/* Add in the bandwidth used for those scheduled packets */
2184 		bw_added = packets_transmitted * (overhead + packet_size);
2185 
2186 		/* How many packets do we have remaining to transmit? */
2187 		packets_remaining = packets_remaining % (1 << (i + 1));
2188 
2189 		/* What largest max packet size should those packets have? */
2190 		/* If we've transmitted all packets, don't carry over the
2191 		 * largest packet size.
2192 		 */
2193 		if (packets_remaining == 0) {
2194 			packet_size = 0;
2195 			overhead = 0;
2196 		} else if (packets_transmitted > 0) {
2197 			/* Otherwise if we do have remaining packets, and we've
2198 			 * scheduled some packets in this interval, take the
2199 			 * largest max packet size from endpoints with this
2200 			 * interval.
2201 			 */
2202 			packet_size = largest_mps;
2203 			overhead = interval_overhead;
2204 		}
2205 		/* Otherwise carry over packet_size and overhead from the last
2206 		 * time we had a remainder.
2207 		 */
2208 		bw_used += bw_added;
2209 		if (bw_used > max_bandwidth) {
2210 			xhci_warn(xhci, "Not enough bandwidth. "
2211 					"Proposed: %u, Max: %u\n",
2212 				bw_used, max_bandwidth);
2213 			return -ENOMEM;
2214 		}
2215 	}
2216 	/*
2217 	 * Ok, we know we have some packets left over after even-handedly
2218 	 * scheduling interval 15.  We don't know which microframes they will
2219 	 * fit into, so we over-schedule and say they will be scheduled every
2220 	 * microframe.
2221 	 */
2222 	if (packets_remaining > 0)
2223 		bw_used += overhead + packet_size;
2224 
2225 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2226 		unsigned int port_index = virt_dev->real_port - 1;
2227 
2228 		/* OK, we're manipulating a HS device attached to a
2229 		 * root port bandwidth domain.  Include the number of active TTs
2230 		 * in the bandwidth used.
2231 		 */
2232 		bw_used += TT_HS_OVERHEAD *
2233 			xhci->rh_bw[port_index].num_active_tts;
2234 	}
2235 
2236 	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2237 		"Available: %u " "percent\n",
2238 		bw_used, max_bandwidth, bw_reserved,
2239 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2240 		max_bandwidth);
2241 
2242 	bw_used += bw_reserved;
2243 	if (bw_used > max_bandwidth) {
2244 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2245 				bw_used, max_bandwidth);
2246 		return -ENOMEM;
2247 	}
2248 
2249 	bw_table->bw_used = bw_used;
2250 	return 0;
2251 }
2252 
2253 static bool xhci_is_async_ep(unsigned int ep_type)
2254 {
2255 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2256 					ep_type != ISOC_IN_EP &&
2257 					ep_type != INT_IN_EP);
2258 }
2259 
2260 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2261 {
2262 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2263 }
2264 
2265 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2266 {
2267 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2268 
2269 	if (ep_bw->ep_interval == 0)
2270 		return SS_OVERHEAD_BURST +
2271 			(ep_bw->mult * ep_bw->num_packets *
2272 					(SS_OVERHEAD + mps));
2273 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2274 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2275 				1 << ep_bw->ep_interval);
2276 
2277 }
2278 
2279 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2280 		struct xhci_bw_info *ep_bw,
2281 		struct xhci_interval_bw_table *bw_table,
2282 		struct usb_device *udev,
2283 		struct xhci_virt_ep *virt_ep,
2284 		struct xhci_tt_bw_info *tt_info)
2285 {
2286 	struct xhci_interval_bw	*interval_bw;
2287 	int normalized_interval;
2288 
2289 	if (xhci_is_async_ep(ep_bw->type))
2290 		return;
2291 
2292 	if (udev->speed == USB_SPEED_SUPER) {
2293 		if (xhci_is_sync_in_ep(ep_bw->type))
2294 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2295 				xhci_get_ss_bw_consumed(ep_bw);
2296 		else
2297 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2298 				xhci_get_ss_bw_consumed(ep_bw);
2299 		return;
2300 	}
2301 
2302 	/* SuperSpeed endpoints never get added to intervals in the table, so
2303 	 * this check is only valid for HS/FS/LS devices.
2304 	 */
2305 	if (list_empty(&virt_ep->bw_endpoint_list))
2306 		return;
2307 	/* For LS/FS devices, we need to translate the interval expressed in
2308 	 * microframes to frames.
2309 	 */
2310 	if (udev->speed == USB_SPEED_HIGH)
2311 		normalized_interval = ep_bw->ep_interval;
2312 	else
2313 		normalized_interval = ep_bw->ep_interval - 3;
2314 
2315 	if (normalized_interval == 0)
2316 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2317 	interval_bw = &bw_table->interval_bw[normalized_interval];
2318 	interval_bw->num_packets -= ep_bw->num_packets;
2319 	switch (udev->speed) {
2320 	case USB_SPEED_LOW:
2321 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2322 		break;
2323 	case USB_SPEED_FULL:
2324 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2325 		break;
2326 	case USB_SPEED_HIGH:
2327 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2328 		break;
2329 	case USB_SPEED_SUPER:
2330 	case USB_SPEED_UNKNOWN:
2331 	case USB_SPEED_WIRELESS:
2332 		/* Should never happen because only LS/FS/HS endpoints will get
2333 		 * added to the endpoint list.
2334 		 */
2335 		return;
2336 	}
2337 	if (tt_info)
2338 		tt_info->active_eps -= 1;
2339 	list_del_init(&virt_ep->bw_endpoint_list);
2340 }
2341 
2342 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2343 		struct xhci_bw_info *ep_bw,
2344 		struct xhci_interval_bw_table *bw_table,
2345 		struct usb_device *udev,
2346 		struct xhci_virt_ep *virt_ep,
2347 		struct xhci_tt_bw_info *tt_info)
2348 {
2349 	struct xhci_interval_bw	*interval_bw;
2350 	struct xhci_virt_ep *smaller_ep;
2351 	int normalized_interval;
2352 
2353 	if (xhci_is_async_ep(ep_bw->type))
2354 		return;
2355 
2356 	if (udev->speed == USB_SPEED_SUPER) {
2357 		if (xhci_is_sync_in_ep(ep_bw->type))
2358 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2359 				xhci_get_ss_bw_consumed(ep_bw);
2360 		else
2361 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2362 				xhci_get_ss_bw_consumed(ep_bw);
2363 		return;
2364 	}
2365 
2366 	/* For LS/FS devices, we need to translate the interval expressed in
2367 	 * microframes to frames.
2368 	 */
2369 	if (udev->speed == USB_SPEED_HIGH)
2370 		normalized_interval = ep_bw->ep_interval;
2371 	else
2372 		normalized_interval = ep_bw->ep_interval - 3;
2373 
2374 	if (normalized_interval == 0)
2375 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2376 	interval_bw = &bw_table->interval_bw[normalized_interval];
2377 	interval_bw->num_packets += ep_bw->num_packets;
2378 	switch (udev->speed) {
2379 	case USB_SPEED_LOW:
2380 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2381 		break;
2382 	case USB_SPEED_FULL:
2383 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2384 		break;
2385 	case USB_SPEED_HIGH:
2386 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2387 		break;
2388 	case USB_SPEED_SUPER:
2389 	case USB_SPEED_UNKNOWN:
2390 	case USB_SPEED_WIRELESS:
2391 		/* Should never happen because only LS/FS/HS endpoints will get
2392 		 * added to the endpoint list.
2393 		 */
2394 		return;
2395 	}
2396 
2397 	if (tt_info)
2398 		tt_info->active_eps += 1;
2399 	/* Insert the endpoint into the list, largest max packet size first. */
2400 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2401 			bw_endpoint_list) {
2402 		if (ep_bw->max_packet_size >=
2403 				smaller_ep->bw_info.max_packet_size) {
2404 			/* Add the new ep before the smaller endpoint */
2405 			list_add_tail(&virt_ep->bw_endpoint_list,
2406 					&smaller_ep->bw_endpoint_list);
2407 			return;
2408 		}
2409 	}
2410 	/* Add the new endpoint at the end of the list. */
2411 	list_add_tail(&virt_ep->bw_endpoint_list,
2412 			&interval_bw->endpoints);
2413 }
2414 
2415 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2416 		struct xhci_virt_device *virt_dev,
2417 		int old_active_eps)
2418 {
2419 	struct xhci_root_port_bw_info *rh_bw_info;
2420 	if (!virt_dev->tt_info)
2421 		return;
2422 
2423 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2424 	if (old_active_eps == 0 &&
2425 				virt_dev->tt_info->active_eps != 0) {
2426 		rh_bw_info->num_active_tts += 1;
2427 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2428 	} else if (old_active_eps != 0 &&
2429 				virt_dev->tt_info->active_eps == 0) {
2430 		rh_bw_info->num_active_tts -= 1;
2431 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2432 	}
2433 }
2434 
2435 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2436 		struct xhci_virt_device *virt_dev,
2437 		struct xhci_container_ctx *in_ctx)
2438 {
2439 	struct xhci_bw_info ep_bw_info[31];
2440 	int i;
2441 	struct xhci_input_control_ctx *ctrl_ctx;
2442 	int old_active_eps = 0;
2443 
2444 	if (virt_dev->tt_info)
2445 		old_active_eps = virt_dev->tt_info->active_eps;
2446 
2447 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2448 
2449 	for (i = 0; i < 31; i++) {
2450 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2451 			continue;
2452 
2453 		/* Make a copy of the BW info in case we need to revert this */
2454 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2455 				sizeof(ep_bw_info[i]));
2456 		/* Drop the endpoint from the interval table if the endpoint is
2457 		 * being dropped or changed.
2458 		 */
2459 		if (EP_IS_DROPPED(ctrl_ctx, i))
2460 			xhci_drop_ep_from_interval_table(xhci,
2461 					&virt_dev->eps[i].bw_info,
2462 					virt_dev->bw_table,
2463 					virt_dev->udev,
2464 					&virt_dev->eps[i],
2465 					virt_dev->tt_info);
2466 	}
2467 	/* Overwrite the information stored in the endpoints' bw_info */
2468 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2469 	for (i = 0; i < 31; i++) {
2470 		/* Add any changed or added endpoints to the interval table */
2471 		if (EP_IS_ADDED(ctrl_ctx, i))
2472 			xhci_add_ep_to_interval_table(xhci,
2473 					&virt_dev->eps[i].bw_info,
2474 					virt_dev->bw_table,
2475 					virt_dev->udev,
2476 					&virt_dev->eps[i],
2477 					virt_dev->tt_info);
2478 	}
2479 
2480 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2481 		/* Ok, this fits in the bandwidth we have.
2482 		 * Update the number of active TTs.
2483 		 */
2484 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2485 		return 0;
2486 	}
2487 
2488 	/* We don't have enough bandwidth for this, revert the stored info. */
2489 	for (i = 0; i < 31; i++) {
2490 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2491 			continue;
2492 
2493 		/* Drop the new copies of any added or changed endpoints from
2494 		 * the interval table.
2495 		 */
2496 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2497 			xhci_drop_ep_from_interval_table(xhci,
2498 					&virt_dev->eps[i].bw_info,
2499 					virt_dev->bw_table,
2500 					virt_dev->udev,
2501 					&virt_dev->eps[i],
2502 					virt_dev->tt_info);
2503 		}
2504 		/* Revert the endpoint back to its old information */
2505 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2506 				sizeof(ep_bw_info[i]));
2507 		/* Add any changed or dropped endpoints back into the table */
2508 		if (EP_IS_DROPPED(ctrl_ctx, i))
2509 			xhci_add_ep_to_interval_table(xhci,
2510 					&virt_dev->eps[i].bw_info,
2511 					virt_dev->bw_table,
2512 					virt_dev->udev,
2513 					&virt_dev->eps[i],
2514 					virt_dev->tt_info);
2515 	}
2516 	return -ENOMEM;
2517 }
2518 
2519 
2520 /* Issue a configure endpoint command or evaluate context command
2521  * and wait for it to finish.
2522  */
2523 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2524 		struct usb_device *udev,
2525 		struct xhci_command *command,
2526 		bool ctx_change, bool must_succeed)
2527 {
2528 	int ret;
2529 	int timeleft;
2530 	unsigned long flags;
2531 	struct xhci_container_ctx *in_ctx;
2532 	struct completion *cmd_completion;
2533 	u32 *cmd_status;
2534 	struct xhci_virt_device *virt_dev;
2535 	union xhci_trb *cmd_trb;
2536 
2537 	spin_lock_irqsave(&xhci->lock, flags);
2538 	virt_dev = xhci->devs[udev->slot_id];
2539 
2540 	if (command)
2541 		in_ctx = command->in_ctx;
2542 	else
2543 		in_ctx = virt_dev->in_ctx;
2544 
2545 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2546 			xhci_reserve_host_resources(xhci, in_ctx)) {
2547 		spin_unlock_irqrestore(&xhci->lock, flags);
2548 		xhci_warn(xhci, "Not enough host resources, "
2549 				"active endpoint contexts = %u\n",
2550 				xhci->num_active_eps);
2551 		return -ENOMEM;
2552 	}
2553 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2554 			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2555 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2556 			xhci_free_host_resources(xhci, in_ctx);
2557 		spin_unlock_irqrestore(&xhci->lock, flags);
2558 		xhci_warn(xhci, "Not enough bandwidth\n");
2559 		return -ENOMEM;
2560 	}
2561 
2562 	if (command) {
2563 		cmd_completion = command->completion;
2564 		cmd_status = &command->status;
2565 		command->command_trb = xhci->cmd_ring->enqueue;
2566 
2567 		/* Enqueue pointer can be left pointing to the link TRB,
2568 		 * we must handle that
2569 		 */
2570 		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2571 			command->command_trb =
2572 				xhci->cmd_ring->enq_seg->next->trbs;
2573 
2574 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2575 	} else {
2576 		cmd_completion = &virt_dev->cmd_completion;
2577 		cmd_status = &virt_dev->cmd_status;
2578 	}
2579 	init_completion(cmd_completion);
2580 
2581 	cmd_trb = xhci->cmd_ring->dequeue;
2582 	if (!ctx_change)
2583 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2584 				udev->slot_id, must_succeed);
2585 	else
2586 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2587 				udev->slot_id, must_succeed);
2588 	if (ret < 0) {
2589 		if (command)
2590 			list_del(&command->cmd_list);
2591 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2592 			xhci_free_host_resources(xhci, in_ctx);
2593 		spin_unlock_irqrestore(&xhci->lock, flags);
2594 		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2595 		return -ENOMEM;
2596 	}
2597 	xhci_ring_cmd_db(xhci);
2598 	spin_unlock_irqrestore(&xhci->lock, flags);
2599 
2600 	/* Wait for the configure endpoint command to complete */
2601 	timeleft = wait_for_completion_interruptible_timeout(
2602 			cmd_completion,
2603 			XHCI_CMD_DEFAULT_TIMEOUT);
2604 	if (timeleft <= 0) {
2605 		xhci_warn(xhci, "%s while waiting for %s command\n",
2606 				timeleft == 0 ? "Timeout" : "Signal",
2607 				ctx_change == 0 ?
2608 					"configure endpoint" :
2609 					"evaluate context");
2610 		/* cancel the configure endpoint command */
2611 		ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2612 		if (ret < 0)
2613 			return ret;
2614 		return -ETIME;
2615 	}
2616 
2617 	if (!ctx_change)
2618 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2619 	else
2620 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2621 
2622 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2623 		spin_lock_irqsave(&xhci->lock, flags);
2624 		/* If the command failed, remove the reserved resources.
2625 		 * Otherwise, clean up the estimate to include dropped eps.
2626 		 */
2627 		if (ret)
2628 			xhci_free_host_resources(xhci, in_ctx);
2629 		else
2630 			xhci_finish_resource_reservation(xhci, in_ctx);
2631 		spin_unlock_irqrestore(&xhci->lock, flags);
2632 	}
2633 	return ret;
2634 }
2635 
2636 /* Called after one or more calls to xhci_add_endpoint() or
2637  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2638  * to call xhci_reset_bandwidth().
2639  *
2640  * Since we are in the middle of changing either configuration or
2641  * installing a new alt setting, the USB core won't allow URBs to be
2642  * enqueued for any endpoint on the old config or interface.  Nothing
2643  * else should be touching the xhci->devs[slot_id] structure, so we
2644  * don't need to take the xhci->lock for manipulating that.
2645  */
2646 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2647 {
2648 	int i;
2649 	int ret = 0;
2650 	struct xhci_hcd *xhci;
2651 	struct xhci_virt_device	*virt_dev;
2652 	struct xhci_input_control_ctx *ctrl_ctx;
2653 	struct xhci_slot_ctx *slot_ctx;
2654 
2655 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2656 	if (ret <= 0)
2657 		return ret;
2658 	xhci = hcd_to_xhci(hcd);
2659 	if (xhci->xhc_state & XHCI_STATE_DYING)
2660 		return -ENODEV;
2661 
2662 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2663 	virt_dev = xhci->devs[udev->slot_id];
2664 
2665 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2666 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2667 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2668 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2669 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2670 
2671 	/* Don't issue the command if there's no endpoints to update. */
2672 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2673 			ctrl_ctx->drop_flags == 0)
2674 		return 0;
2675 
2676 	xhci_dbg(xhci, "New Input Control Context:\n");
2677 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2678 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2679 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2680 
2681 	ret = xhci_configure_endpoint(xhci, udev, NULL,
2682 			false, false);
2683 	if (ret) {
2684 		/* Callee should call reset_bandwidth() */
2685 		return ret;
2686 	}
2687 
2688 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2689 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2690 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2691 
2692 	/* Free any rings that were dropped, but not changed. */
2693 	for (i = 1; i < 31; ++i) {
2694 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2695 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2696 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2697 	}
2698 	xhci_zero_in_ctx(xhci, virt_dev);
2699 	/*
2700 	 * Install any rings for completely new endpoints or changed endpoints,
2701 	 * and free or cache any old rings from changed endpoints.
2702 	 */
2703 	for (i = 1; i < 31; ++i) {
2704 		if (!virt_dev->eps[i].new_ring)
2705 			continue;
2706 		/* Only cache or free the old ring if it exists.
2707 		 * It may not if this is the first add of an endpoint.
2708 		 */
2709 		if (virt_dev->eps[i].ring) {
2710 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2711 		}
2712 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2713 		virt_dev->eps[i].new_ring = NULL;
2714 	}
2715 
2716 	return ret;
2717 }
2718 
2719 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2720 {
2721 	struct xhci_hcd *xhci;
2722 	struct xhci_virt_device	*virt_dev;
2723 	int i, ret;
2724 
2725 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2726 	if (ret <= 0)
2727 		return;
2728 	xhci = hcd_to_xhci(hcd);
2729 
2730 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2731 	virt_dev = xhci->devs[udev->slot_id];
2732 	/* Free any rings allocated for added endpoints */
2733 	for (i = 0; i < 31; ++i) {
2734 		if (virt_dev->eps[i].new_ring) {
2735 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2736 			virt_dev->eps[i].new_ring = NULL;
2737 		}
2738 	}
2739 	xhci_zero_in_ctx(xhci, virt_dev);
2740 }
2741 
2742 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2743 		struct xhci_container_ctx *in_ctx,
2744 		struct xhci_container_ctx *out_ctx,
2745 		u32 add_flags, u32 drop_flags)
2746 {
2747 	struct xhci_input_control_ctx *ctrl_ctx;
2748 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2749 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2750 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2751 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2752 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2753 
2754 	xhci_dbg(xhci, "Input Context:\n");
2755 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2756 }
2757 
2758 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2759 		unsigned int slot_id, unsigned int ep_index,
2760 		struct xhci_dequeue_state *deq_state)
2761 {
2762 	struct xhci_container_ctx *in_ctx;
2763 	struct xhci_ep_ctx *ep_ctx;
2764 	u32 added_ctxs;
2765 	dma_addr_t addr;
2766 
2767 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2768 			xhci->devs[slot_id]->out_ctx, ep_index);
2769 	in_ctx = xhci->devs[slot_id]->in_ctx;
2770 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2771 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2772 			deq_state->new_deq_ptr);
2773 	if (addr == 0) {
2774 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2775 				"reset ep command\n");
2776 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2777 				deq_state->new_deq_seg,
2778 				deq_state->new_deq_ptr);
2779 		return;
2780 	}
2781 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2782 
2783 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2784 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2785 			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2786 }
2787 
2788 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2789 		struct usb_device *udev, unsigned int ep_index)
2790 {
2791 	struct xhci_dequeue_state deq_state;
2792 	struct xhci_virt_ep *ep;
2793 
2794 	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2795 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2796 	/* We need to move the HW's dequeue pointer past this TD,
2797 	 * or it will attempt to resend it on the next doorbell ring.
2798 	 */
2799 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2800 			ep_index, ep->stopped_stream, ep->stopped_td,
2801 			&deq_state);
2802 
2803 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2804 	 * issue a configure endpoint command later.
2805 	 */
2806 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2807 		xhci_dbg(xhci, "Queueing new dequeue state\n");
2808 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2809 				ep_index, ep->stopped_stream, &deq_state);
2810 	} else {
2811 		/* Better hope no one uses the input context between now and the
2812 		 * reset endpoint completion!
2813 		 * XXX: No idea how this hardware will react when stream rings
2814 		 * are enabled.
2815 		 */
2816 		xhci_dbg(xhci, "Setting up input context for "
2817 				"configure endpoint command\n");
2818 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2819 				ep_index, &deq_state);
2820 	}
2821 }
2822 
2823 /* Deal with stalled endpoints.  The core should have sent the control message
2824  * to clear the halt condition.  However, we need to make the xHCI hardware
2825  * reset its sequence number, since a device will expect a sequence number of
2826  * zero after the halt condition is cleared.
2827  * Context: in_interrupt
2828  */
2829 void xhci_endpoint_reset(struct usb_hcd *hcd,
2830 		struct usb_host_endpoint *ep)
2831 {
2832 	struct xhci_hcd *xhci;
2833 	struct usb_device *udev;
2834 	unsigned int ep_index;
2835 	unsigned long flags;
2836 	int ret;
2837 	struct xhci_virt_ep *virt_ep;
2838 
2839 	xhci = hcd_to_xhci(hcd);
2840 	udev = (struct usb_device *) ep->hcpriv;
2841 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2842 	 * with xhci_add_endpoint()
2843 	 */
2844 	if (!ep->hcpriv)
2845 		return;
2846 	ep_index = xhci_get_endpoint_index(&ep->desc);
2847 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2848 	if (!virt_ep->stopped_td) {
2849 		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2850 				ep->desc.bEndpointAddress);
2851 		return;
2852 	}
2853 	if (usb_endpoint_xfer_control(&ep->desc)) {
2854 		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2855 		return;
2856 	}
2857 
2858 	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2859 	spin_lock_irqsave(&xhci->lock, flags);
2860 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2861 	/*
2862 	 * Can't change the ring dequeue pointer until it's transitioned to the
2863 	 * stopped state, which is only upon a successful reset endpoint
2864 	 * command.  Better hope that last command worked!
2865 	 */
2866 	if (!ret) {
2867 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2868 		kfree(virt_ep->stopped_td);
2869 		xhci_ring_cmd_db(xhci);
2870 	}
2871 	virt_ep->stopped_td = NULL;
2872 	virt_ep->stopped_trb = NULL;
2873 	virt_ep->stopped_stream = 0;
2874 	spin_unlock_irqrestore(&xhci->lock, flags);
2875 
2876 	if (ret)
2877 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2878 }
2879 
2880 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2881 		struct usb_device *udev, struct usb_host_endpoint *ep,
2882 		unsigned int slot_id)
2883 {
2884 	int ret;
2885 	unsigned int ep_index;
2886 	unsigned int ep_state;
2887 
2888 	if (!ep)
2889 		return -EINVAL;
2890 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2891 	if (ret <= 0)
2892 		return -EINVAL;
2893 	if (ep->ss_ep_comp.bmAttributes == 0) {
2894 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2895 				" descriptor for ep 0x%x does not support streams\n",
2896 				ep->desc.bEndpointAddress);
2897 		return -EINVAL;
2898 	}
2899 
2900 	ep_index = xhci_get_endpoint_index(&ep->desc);
2901 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2902 	if (ep_state & EP_HAS_STREAMS ||
2903 			ep_state & EP_GETTING_STREAMS) {
2904 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2905 				"already has streams set up.\n",
2906 				ep->desc.bEndpointAddress);
2907 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2908 				"dynamic stream context array reallocation.\n");
2909 		return -EINVAL;
2910 	}
2911 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2912 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2913 				"endpoint 0x%x; URBs are pending.\n",
2914 				ep->desc.bEndpointAddress);
2915 		return -EINVAL;
2916 	}
2917 	return 0;
2918 }
2919 
2920 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2921 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2922 {
2923 	unsigned int max_streams;
2924 
2925 	/* The stream context array size must be a power of two */
2926 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2927 	/*
2928 	 * Find out how many primary stream array entries the host controller
2929 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2930 	 * level page entries), but that's an optional feature for xHCI host
2931 	 * controllers. xHCs must support at least 4 stream IDs.
2932 	 */
2933 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2934 	if (*num_stream_ctxs > max_streams) {
2935 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2936 				max_streams);
2937 		*num_stream_ctxs = max_streams;
2938 		*num_streams = max_streams;
2939 	}
2940 }
2941 
2942 /* Returns an error code if one of the endpoint already has streams.
2943  * This does not change any data structures, it only checks and gathers
2944  * information.
2945  */
2946 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2947 		struct usb_device *udev,
2948 		struct usb_host_endpoint **eps, unsigned int num_eps,
2949 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2950 {
2951 	unsigned int max_streams;
2952 	unsigned int endpoint_flag;
2953 	int i;
2954 	int ret;
2955 
2956 	for (i = 0; i < num_eps; i++) {
2957 		ret = xhci_check_streams_endpoint(xhci, udev,
2958 				eps[i], udev->slot_id);
2959 		if (ret < 0)
2960 			return ret;
2961 
2962 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2963 		if (max_streams < (*num_streams - 1)) {
2964 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2965 					eps[i]->desc.bEndpointAddress,
2966 					max_streams);
2967 			*num_streams = max_streams+1;
2968 		}
2969 
2970 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2971 		if (*changed_ep_bitmask & endpoint_flag)
2972 			return -EINVAL;
2973 		*changed_ep_bitmask |= endpoint_flag;
2974 	}
2975 	return 0;
2976 }
2977 
2978 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2979 		struct usb_device *udev,
2980 		struct usb_host_endpoint **eps, unsigned int num_eps)
2981 {
2982 	u32 changed_ep_bitmask = 0;
2983 	unsigned int slot_id;
2984 	unsigned int ep_index;
2985 	unsigned int ep_state;
2986 	int i;
2987 
2988 	slot_id = udev->slot_id;
2989 	if (!xhci->devs[slot_id])
2990 		return 0;
2991 
2992 	for (i = 0; i < num_eps; i++) {
2993 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2994 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2995 		/* Are streams already being freed for the endpoint? */
2996 		if (ep_state & EP_GETTING_NO_STREAMS) {
2997 			xhci_warn(xhci, "WARN Can't disable streams for "
2998 					"endpoint 0x%x\n, "
2999 					"streams are being disabled already.",
3000 					eps[i]->desc.bEndpointAddress);
3001 			return 0;
3002 		}
3003 		/* Are there actually any streams to free? */
3004 		if (!(ep_state & EP_HAS_STREAMS) &&
3005 				!(ep_state & EP_GETTING_STREAMS)) {
3006 			xhci_warn(xhci, "WARN Can't disable streams for "
3007 					"endpoint 0x%x\n, "
3008 					"streams are already disabled!",
3009 					eps[i]->desc.bEndpointAddress);
3010 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3011 					"with non-streams endpoint\n");
3012 			return 0;
3013 		}
3014 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3015 	}
3016 	return changed_ep_bitmask;
3017 }
3018 
3019 /*
3020  * The USB device drivers use this function (though the HCD interface in USB
3021  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3022  * coordinate mass storage command queueing across multiple endpoints (basically
3023  * a stream ID == a task ID).
3024  *
3025  * Setting up streams involves allocating the same size stream context array
3026  * for each endpoint and issuing a configure endpoint command for all endpoints.
3027  *
3028  * Don't allow the call to succeed if one endpoint only supports one stream
3029  * (which means it doesn't support streams at all).
3030  *
3031  * Drivers may get less stream IDs than they asked for, if the host controller
3032  * hardware or endpoints claim they can't support the number of requested
3033  * stream IDs.
3034  */
3035 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3036 		struct usb_host_endpoint **eps, unsigned int num_eps,
3037 		unsigned int num_streams, gfp_t mem_flags)
3038 {
3039 	int i, ret;
3040 	struct xhci_hcd *xhci;
3041 	struct xhci_virt_device *vdev;
3042 	struct xhci_command *config_cmd;
3043 	unsigned int ep_index;
3044 	unsigned int num_stream_ctxs;
3045 	unsigned long flags;
3046 	u32 changed_ep_bitmask = 0;
3047 
3048 	if (!eps)
3049 		return -EINVAL;
3050 
3051 	/* Add one to the number of streams requested to account for
3052 	 * stream 0 that is reserved for xHCI usage.
3053 	 */
3054 	num_streams += 1;
3055 	xhci = hcd_to_xhci(hcd);
3056 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3057 			num_streams);
3058 
3059 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3060 	if (!config_cmd) {
3061 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3062 		return -ENOMEM;
3063 	}
3064 
3065 	/* Check to make sure all endpoints are not already configured for
3066 	 * streams.  While we're at it, find the maximum number of streams that
3067 	 * all the endpoints will support and check for duplicate endpoints.
3068 	 */
3069 	spin_lock_irqsave(&xhci->lock, flags);
3070 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3071 			num_eps, &num_streams, &changed_ep_bitmask);
3072 	if (ret < 0) {
3073 		xhci_free_command(xhci, config_cmd);
3074 		spin_unlock_irqrestore(&xhci->lock, flags);
3075 		return ret;
3076 	}
3077 	if (num_streams <= 1) {
3078 		xhci_warn(xhci, "WARN: endpoints can't handle "
3079 				"more than one stream.\n");
3080 		xhci_free_command(xhci, config_cmd);
3081 		spin_unlock_irqrestore(&xhci->lock, flags);
3082 		return -EINVAL;
3083 	}
3084 	vdev = xhci->devs[udev->slot_id];
3085 	/* Mark each endpoint as being in transition, so
3086 	 * xhci_urb_enqueue() will reject all URBs.
3087 	 */
3088 	for (i = 0; i < num_eps; i++) {
3089 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3090 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3091 	}
3092 	spin_unlock_irqrestore(&xhci->lock, flags);
3093 
3094 	/* Setup internal data structures and allocate HW data structures for
3095 	 * streams (but don't install the HW structures in the input context
3096 	 * until we're sure all memory allocation succeeded).
3097 	 */
3098 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3099 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3100 			num_stream_ctxs, num_streams);
3101 
3102 	for (i = 0; i < num_eps; i++) {
3103 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3104 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3105 				num_stream_ctxs,
3106 				num_streams, mem_flags);
3107 		if (!vdev->eps[ep_index].stream_info)
3108 			goto cleanup;
3109 		/* Set maxPstreams in endpoint context and update deq ptr to
3110 		 * point to stream context array. FIXME
3111 		 */
3112 	}
3113 
3114 	/* Set up the input context for a configure endpoint command. */
3115 	for (i = 0; i < num_eps; i++) {
3116 		struct xhci_ep_ctx *ep_ctx;
3117 
3118 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3119 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3120 
3121 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3122 				vdev->out_ctx, ep_index);
3123 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3124 				vdev->eps[ep_index].stream_info);
3125 	}
3126 	/* Tell the HW to drop its old copy of the endpoint context info
3127 	 * and add the updated copy from the input context.
3128 	 */
3129 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3130 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3131 
3132 	/* Issue and wait for the configure endpoint command */
3133 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3134 			false, false);
3135 
3136 	/* xHC rejected the configure endpoint command for some reason, so we
3137 	 * leave the old ring intact and free our internal streams data
3138 	 * structure.
3139 	 */
3140 	if (ret < 0)
3141 		goto cleanup;
3142 
3143 	spin_lock_irqsave(&xhci->lock, flags);
3144 	for (i = 0; i < num_eps; i++) {
3145 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3146 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3147 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3148 			 udev->slot_id, ep_index);
3149 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3150 	}
3151 	xhci_free_command(xhci, config_cmd);
3152 	spin_unlock_irqrestore(&xhci->lock, flags);
3153 
3154 	/* Subtract 1 for stream 0, which drivers can't use */
3155 	return num_streams - 1;
3156 
3157 cleanup:
3158 	/* If it didn't work, free the streams! */
3159 	for (i = 0; i < num_eps; i++) {
3160 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3161 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3162 		vdev->eps[ep_index].stream_info = NULL;
3163 		/* FIXME Unset maxPstreams in endpoint context and
3164 		 * update deq ptr to point to normal string ring.
3165 		 */
3166 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3167 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3168 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3169 	}
3170 	xhci_free_command(xhci, config_cmd);
3171 	return -ENOMEM;
3172 }
3173 
3174 /* Transition the endpoint from using streams to being a "normal" endpoint
3175  * without streams.
3176  *
3177  * Modify the endpoint context state, submit a configure endpoint command,
3178  * and free all endpoint rings for streams if that completes successfully.
3179  */
3180 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3181 		struct usb_host_endpoint **eps, unsigned int num_eps,
3182 		gfp_t mem_flags)
3183 {
3184 	int i, ret;
3185 	struct xhci_hcd *xhci;
3186 	struct xhci_virt_device *vdev;
3187 	struct xhci_command *command;
3188 	unsigned int ep_index;
3189 	unsigned long flags;
3190 	u32 changed_ep_bitmask;
3191 
3192 	xhci = hcd_to_xhci(hcd);
3193 	vdev = xhci->devs[udev->slot_id];
3194 
3195 	/* Set up a configure endpoint command to remove the streams rings */
3196 	spin_lock_irqsave(&xhci->lock, flags);
3197 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3198 			udev, eps, num_eps);
3199 	if (changed_ep_bitmask == 0) {
3200 		spin_unlock_irqrestore(&xhci->lock, flags);
3201 		return -EINVAL;
3202 	}
3203 
3204 	/* Use the xhci_command structure from the first endpoint.  We may have
3205 	 * allocated too many, but the driver may call xhci_free_streams() for
3206 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3207 	 */
3208 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3209 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3210 	for (i = 0; i < num_eps; i++) {
3211 		struct xhci_ep_ctx *ep_ctx;
3212 
3213 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3214 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3215 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3216 			EP_GETTING_NO_STREAMS;
3217 
3218 		xhci_endpoint_copy(xhci, command->in_ctx,
3219 				vdev->out_ctx, ep_index);
3220 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3221 				&vdev->eps[ep_index]);
3222 	}
3223 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3224 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3225 	spin_unlock_irqrestore(&xhci->lock, flags);
3226 
3227 	/* Issue and wait for the configure endpoint command,
3228 	 * which must succeed.
3229 	 */
3230 	ret = xhci_configure_endpoint(xhci, udev, command,
3231 			false, true);
3232 
3233 	/* xHC rejected the configure endpoint command for some reason, so we
3234 	 * leave the streams rings intact.
3235 	 */
3236 	if (ret < 0)
3237 		return ret;
3238 
3239 	spin_lock_irqsave(&xhci->lock, flags);
3240 	for (i = 0; i < num_eps; i++) {
3241 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3242 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3243 		vdev->eps[ep_index].stream_info = NULL;
3244 		/* FIXME Unset maxPstreams in endpoint context and
3245 		 * update deq ptr to point to normal string ring.
3246 		 */
3247 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3248 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3249 	}
3250 	spin_unlock_irqrestore(&xhci->lock, flags);
3251 
3252 	return 0;
3253 }
3254 
3255 /*
3256  * Deletes endpoint resources for endpoints that were active before a Reset
3257  * Device command, or a Disable Slot command.  The Reset Device command leaves
3258  * the control endpoint intact, whereas the Disable Slot command deletes it.
3259  *
3260  * Must be called with xhci->lock held.
3261  */
3262 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3263 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3264 {
3265 	int i;
3266 	unsigned int num_dropped_eps = 0;
3267 	unsigned int drop_flags = 0;
3268 
3269 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3270 		if (virt_dev->eps[i].ring) {
3271 			drop_flags |= 1 << i;
3272 			num_dropped_eps++;
3273 		}
3274 	}
3275 	xhci->num_active_eps -= num_dropped_eps;
3276 	if (num_dropped_eps)
3277 		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3278 				"%u now active.\n",
3279 				num_dropped_eps, drop_flags,
3280 				xhci->num_active_eps);
3281 }
3282 
3283 /*
3284  * This submits a Reset Device Command, which will set the device state to 0,
3285  * set the device address to 0, and disable all the endpoints except the default
3286  * control endpoint.  The USB core should come back and call
3287  * xhci_address_device(), and then re-set up the configuration.  If this is
3288  * called because of a usb_reset_and_verify_device(), then the old alternate
3289  * settings will be re-installed through the normal bandwidth allocation
3290  * functions.
3291  *
3292  * Wait for the Reset Device command to finish.  Remove all structures
3293  * associated with the endpoints that were disabled.  Clear the input device
3294  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3295  *
3296  * If the virt_dev to be reset does not exist or does not match the udev,
3297  * it means the device is lost, possibly due to the xHC restore error and
3298  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3299  * re-allocate the device.
3300  */
3301 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3302 {
3303 	int ret, i;
3304 	unsigned long flags;
3305 	struct xhci_hcd *xhci;
3306 	unsigned int slot_id;
3307 	struct xhci_virt_device *virt_dev;
3308 	struct xhci_command *reset_device_cmd;
3309 	int timeleft;
3310 	int last_freed_endpoint;
3311 	struct xhci_slot_ctx *slot_ctx;
3312 	int old_active_eps = 0;
3313 
3314 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3315 	if (ret <= 0)
3316 		return ret;
3317 	xhci = hcd_to_xhci(hcd);
3318 	slot_id = udev->slot_id;
3319 	virt_dev = xhci->devs[slot_id];
3320 	if (!virt_dev) {
3321 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3322 				"not exist. Re-allocate the device\n", slot_id);
3323 		ret = xhci_alloc_dev(hcd, udev);
3324 		if (ret == 1)
3325 			return 0;
3326 		else
3327 			return -EINVAL;
3328 	}
3329 
3330 	if (virt_dev->udev != udev) {
3331 		/* If the virt_dev and the udev does not match, this virt_dev
3332 		 * may belong to another udev.
3333 		 * Re-allocate the device.
3334 		 */
3335 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3336 				"not match the udev. Re-allocate the device\n",
3337 				slot_id);
3338 		ret = xhci_alloc_dev(hcd, udev);
3339 		if (ret == 1)
3340 			return 0;
3341 		else
3342 			return -EINVAL;
3343 	}
3344 
3345 	/* If device is not setup, there is no point in resetting it */
3346 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3347 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3348 						SLOT_STATE_DISABLED)
3349 		return 0;
3350 
3351 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3352 	/* Allocate the command structure that holds the struct completion.
3353 	 * Assume we're in process context, since the normal device reset
3354 	 * process has to wait for the device anyway.  Storage devices are
3355 	 * reset as part of error handling, so use GFP_NOIO instead of
3356 	 * GFP_KERNEL.
3357 	 */
3358 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3359 	if (!reset_device_cmd) {
3360 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3361 		return -ENOMEM;
3362 	}
3363 
3364 	/* Attempt to submit the Reset Device command to the command ring */
3365 	spin_lock_irqsave(&xhci->lock, flags);
3366 	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3367 
3368 	/* Enqueue pointer can be left pointing to the link TRB,
3369 	 * we must handle that
3370 	 */
3371 	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3372 		reset_device_cmd->command_trb =
3373 			xhci->cmd_ring->enq_seg->next->trbs;
3374 
3375 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3376 	ret = xhci_queue_reset_device(xhci, slot_id);
3377 	if (ret) {
3378 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3379 		list_del(&reset_device_cmd->cmd_list);
3380 		spin_unlock_irqrestore(&xhci->lock, flags);
3381 		goto command_cleanup;
3382 	}
3383 	xhci_ring_cmd_db(xhci);
3384 	spin_unlock_irqrestore(&xhci->lock, flags);
3385 
3386 	/* Wait for the Reset Device command to finish */
3387 	timeleft = wait_for_completion_interruptible_timeout(
3388 			reset_device_cmd->completion,
3389 			USB_CTRL_SET_TIMEOUT);
3390 	if (timeleft <= 0) {
3391 		xhci_warn(xhci, "%s while waiting for reset device command\n",
3392 				timeleft == 0 ? "Timeout" : "Signal");
3393 		spin_lock_irqsave(&xhci->lock, flags);
3394 		/* The timeout might have raced with the event ring handler, so
3395 		 * only delete from the list if the item isn't poisoned.
3396 		 */
3397 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3398 			list_del(&reset_device_cmd->cmd_list);
3399 		spin_unlock_irqrestore(&xhci->lock, flags);
3400 		ret = -ETIME;
3401 		goto command_cleanup;
3402 	}
3403 
3404 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3405 	 * unless we tried to reset a slot ID that wasn't enabled,
3406 	 * or the device wasn't in the addressed or configured state.
3407 	 */
3408 	ret = reset_device_cmd->status;
3409 	switch (ret) {
3410 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3411 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3412 		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3413 				slot_id,
3414 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3415 		xhci_info(xhci, "Not freeing device rings.\n");
3416 		/* Don't treat this as an error.  May change my mind later. */
3417 		ret = 0;
3418 		goto command_cleanup;
3419 	case COMP_SUCCESS:
3420 		xhci_dbg(xhci, "Successful reset device command.\n");
3421 		break;
3422 	default:
3423 		if (xhci_is_vendor_info_code(xhci, ret))
3424 			break;
3425 		xhci_warn(xhci, "Unknown completion code %u for "
3426 				"reset device command.\n", ret);
3427 		ret = -EINVAL;
3428 		goto command_cleanup;
3429 	}
3430 
3431 	/* Free up host controller endpoint resources */
3432 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3433 		spin_lock_irqsave(&xhci->lock, flags);
3434 		/* Don't delete the default control endpoint resources */
3435 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3436 		spin_unlock_irqrestore(&xhci->lock, flags);
3437 	}
3438 
3439 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3440 	last_freed_endpoint = 1;
3441 	for (i = 1; i < 31; ++i) {
3442 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3443 
3444 		if (ep->ep_state & EP_HAS_STREAMS) {
3445 			xhci_free_stream_info(xhci, ep->stream_info);
3446 			ep->stream_info = NULL;
3447 			ep->ep_state &= ~EP_HAS_STREAMS;
3448 		}
3449 
3450 		if (ep->ring) {
3451 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3452 			last_freed_endpoint = i;
3453 		}
3454 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3455 			xhci_drop_ep_from_interval_table(xhci,
3456 					&virt_dev->eps[i].bw_info,
3457 					virt_dev->bw_table,
3458 					udev,
3459 					&virt_dev->eps[i],
3460 					virt_dev->tt_info);
3461 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3462 	}
3463 	/* If necessary, update the number of active TTs on this root port */
3464 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3465 
3466 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3467 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3468 	ret = 0;
3469 
3470 command_cleanup:
3471 	xhci_free_command(xhci, reset_device_cmd);
3472 	return ret;
3473 }
3474 
3475 /*
3476  * At this point, the struct usb_device is about to go away, the device has
3477  * disconnected, and all traffic has been stopped and the endpoints have been
3478  * disabled.  Free any HC data structures associated with that device.
3479  */
3480 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3481 {
3482 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3483 	struct xhci_virt_device *virt_dev;
3484 	unsigned long flags;
3485 	u32 state;
3486 	int i, ret;
3487 
3488 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3489 	/* If the host is halted due to driver unload, we still need to free the
3490 	 * device.
3491 	 */
3492 	if (ret <= 0 && ret != -ENODEV)
3493 		return;
3494 
3495 	virt_dev = xhci->devs[udev->slot_id];
3496 
3497 	/* Stop any wayward timer functions (which may grab the lock) */
3498 	for (i = 0; i < 31; ++i) {
3499 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3500 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3501 	}
3502 
3503 	if (udev->usb2_hw_lpm_enabled) {
3504 		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3505 		udev->usb2_hw_lpm_enabled = 0;
3506 	}
3507 
3508 	spin_lock_irqsave(&xhci->lock, flags);
3509 	/* Don't disable the slot if the host controller is dead. */
3510 	state = xhci_readl(xhci, &xhci->op_regs->status);
3511 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3512 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3513 		xhci_free_virt_device(xhci, udev->slot_id);
3514 		spin_unlock_irqrestore(&xhci->lock, flags);
3515 		return;
3516 	}
3517 
3518 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3519 		spin_unlock_irqrestore(&xhci->lock, flags);
3520 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3521 		return;
3522 	}
3523 	xhci_ring_cmd_db(xhci);
3524 	spin_unlock_irqrestore(&xhci->lock, flags);
3525 	/*
3526 	 * Event command completion handler will free any data structures
3527 	 * associated with the slot.  XXX Can free sleep?
3528 	 */
3529 }
3530 
3531 /*
3532  * Checks if we have enough host controller resources for the default control
3533  * endpoint.
3534  *
3535  * Must be called with xhci->lock held.
3536  */
3537 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3538 {
3539 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3540 		xhci_dbg(xhci, "Not enough ep ctxs: "
3541 				"%u active, need to add 1, limit is %u.\n",
3542 				xhci->num_active_eps, xhci->limit_active_eps);
3543 		return -ENOMEM;
3544 	}
3545 	xhci->num_active_eps += 1;
3546 	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3547 			xhci->num_active_eps);
3548 	return 0;
3549 }
3550 
3551 
3552 /*
3553  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3554  * timed out, or allocating memory failed.  Returns 1 on success.
3555  */
3556 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3557 {
3558 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3559 	unsigned long flags;
3560 	int timeleft;
3561 	int ret;
3562 	union xhci_trb *cmd_trb;
3563 
3564 	spin_lock_irqsave(&xhci->lock, flags);
3565 	cmd_trb = xhci->cmd_ring->dequeue;
3566 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3567 	if (ret) {
3568 		spin_unlock_irqrestore(&xhci->lock, flags);
3569 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3570 		return 0;
3571 	}
3572 	xhci_ring_cmd_db(xhci);
3573 	spin_unlock_irqrestore(&xhci->lock, flags);
3574 
3575 	/* XXX: how much time for xHC slot assignment? */
3576 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3577 			XHCI_CMD_DEFAULT_TIMEOUT);
3578 	if (timeleft <= 0) {
3579 		xhci_warn(xhci, "%s while waiting for a slot\n",
3580 				timeleft == 0 ? "Timeout" : "Signal");
3581 		/* cancel the enable slot request */
3582 		return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3583 	}
3584 
3585 	if (!xhci->slot_id) {
3586 		xhci_err(xhci, "Error while assigning device slot ID\n");
3587 		return 0;
3588 	}
3589 
3590 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3591 		spin_lock_irqsave(&xhci->lock, flags);
3592 		ret = xhci_reserve_host_control_ep_resources(xhci);
3593 		if (ret) {
3594 			spin_unlock_irqrestore(&xhci->lock, flags);
3595 			xhci_warn(xhci, "Not enough host resources, "
3596 					"active endpoint contexts = %u\n",
3597 					xhci->num_active_eps);
3598 			goto disable_slot;
3599 		}
3600 		spin_unlock_irqrestore(&xhci->lock, flags);
3601 	}
3602 	/* Use GFP_NOIO, since this function can be called from
3603 	 * xhci_discover_or_reset_device(), which may be called as part of
3604 	 * mass storage driver error handling.
3605 	 */
3606 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3607 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3608 		goto disable_slot;
3609 	}
3610 	udev->slot_id = xhci->slot_id;
3611 	/* Is this a LS or FS device under a HS hub? */
3612 	/* Hub or peripherial? */
3613 	return 1;
3614 
3615 disable_slot:
3616 	/* Disable slot, if we can do it without mem alloc */
3617 	spin_lock_irqsave(&xhci->lock, flags);
3618 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3619 		xhci_ring_cmd_db(xhci);
3620 	spin_unlock_irqrestore(&xhci->lock, flags);
3621 	return 0;
3622 }
3623 
3624 /*
3625  * Issue an Address Device command (which will issue a SetAddress request to
3626  * the device).
3627  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3628  * we should only issue and wait on one address command at the same time.
3629  *
3630  * We add one to the device address issued by the hardware because the USB core
3631  * uses address 1 for the root hubs (even though they're not really devices).
3632  */
3633 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3634 {
3635 	unsigned long flags;
3636 	int timeleft;
3637 	struct xhci_virt_device *virt_dev;
3638 	int ret = 0;
3639 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3640 	struct xhci_slot_ctx *slot_ctx;
3641 	struct xhci_input_control_ctx *ctrl_ctx;
3642 	u64 temp_64;
3643 	union xhci_trb *cmd_trb;
3644 
3645 	if (!udev->slot_id) {
3646 		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3647 		return -EINVAL;
3648 	}
3649 
3650 	virt_dev = xhci->devs[udev->slot_id];
3651 
3652 	if (WARN_ON(!virt_dev)) {
3653 		/*
3654 		 * In plug/unplug torture test with an NEC controller,
3655 		 * a zero-dereference was observed once due to virt_dev = 0.
3656 		 * Print useful debug rather than crash if it is observed again!
3657 		 */
3658 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3659 			udev->slot_id);
3660 		return -EINVAL;
3661 	}
3662 
3663 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3664 	/*
3665 	 * If this is the first Set Address since device plug-in or
3666 	 * virt_device realloaction after a resume with an xHCI power loss,
3667 	 * then set up the slot context.
3668 	 */
3669 	if (!slot_ctx->dev_info)
3670 		xhci_setup_addressable_virt_dev(xhci, udev);
3671 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3672 	else
3673 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3674 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3675 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3676 	ctrl_ctx->drop_flags = 0;
3677 
3678 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3679 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3680 
3681 	spin_lock_irqsave(&xhci->lock, flags);
3682 	cmd_trb = xhci->cmd_ring->dequeue;
3683 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3684 					udev->slot_id);
3685 	if (ret) {
3686 		spin_unlock_irqrestore(&xhci->lock, flags);
3687 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3688 		return ret;
3689 	}
3690 	xhci_ring_cmd_db(xhci);
3691 	spin_unlock_irqrestore(&xhci->lock, flags);
3692 
3693 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3694 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3695 			XHCI_CMD_DEFAULT_TIMEOUT);
3696 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3697 	 * the SetAddress() "recovery interval" required by USB and aborting the
3698 	 * command on a timeout.
3699 	 */
3700 	if (timeleft <= 0) {
3701 		xhci_warn(xhci, "%s while waiting for address device command\n",
3702 				timeleft == 0 ? "Timeout" : "Signal");
3703 		/* cancel the address device command */
3704 		ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3705 		if (ret < 0)
3706 			return ret;
3707 		return -ETIME;
3708 	}
3709 
3710 	switch (virt_dev->cmd_status) {
3711 	case COMP_CTX_STATE:
3712 	case COMP_EBADSLT:
3713 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3714 				udev->slot_id);
3715 		ret = -EINVAL;
3716 		break;
3717 	case COMP_TX_ERR:
3718 		dev_warn(&udev->dev, "Device not responding to set address.\n");
3719 		ret = -EPROTO;
3720 		break;
3721 	case COMP_DEV_ERR:
3722 		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3723 				"device command.\n");
3724 		ret = -ENODEV;
3725 		break;
3726 	case COMP_SUCCESS:
3727 		xhci_dbg(xhci, "Successful Address Device command\n");
3728 		break;
3729 	default:
3730 		xhci_err(xhci, "ERROR: unexpected command completion "
3731 				"code 0x%x.\n", virt_dev->cmd_status);
3732 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3733 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3734 		ret = -EINVAL;
3735 		break;
3736 	}
3737 	if (ret) {
3738 		return ret;
3739 	}
3740 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3741 	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3742 	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3743 		 udev->slot_id,
3744 		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3745 		 (unsigned long long)
3746 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3747 	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3748 			(unsigned long long)virt_dev->out_ctx->dma);
3749 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3750 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3751 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3752 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3753 	/*
3754 	 * USB core uses address 1 for the roothubs, so we add one to the
3755 	 * address given back to us by the HC.
3756 	 */
3757 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3758 	/* Use kernel assigned address for devices; store xHC assigned
3759 	 * address locally. */
3760 	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3761 		+ 1;
3762 	/* Zero the input context control for later use */
3763 	ctrl_ctx->add_flags = 0;
3764 	ctrl_ctx->drop_flags = 0;
3765 
3766 	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3767 
3768 	return 0;
3769 }
3770 
3771 #ifdef CONFIG_USB_SUSPEND
3772 
3773 /* BESL to HIRD Encoding array for USB2 LPM */
3774 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3775 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3776 
3777 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3778 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3779 					struct usb_device *udev)
3780 {
3781 	int u2del, besl, besl_host;
3782 	int besl_device = 0;
3783 	u32 field;
3784 
3785 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3786 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3787 
3788 	if (field & USB_BESL_SUPPORT) {
3789 		for (besl_host = 0; besl_host < 16; besl_host++) {
3790 			if (xhci_besl_encoding[besl_host] >= u2del)
3791 				break;
3792 		}
3793 		/* Use baseline BESL value as default */
3794 		if (field & USB_BESL_BASELINE_VALID)
3795 			besl_device = USB_GET_BESL_BASELINE(field);
3796 		else if (field & USB_BESL_DEEP_VALID)
3797 			besl_device = USB_GET_BESL_DEEP(field);
3798 	} else {
3799 		if (u2del <= 50)
3800 			besl_host = 0;
3801 		else
3802 			besl_host = (u2del - 51) / 75 + 1;
3803 	}
3804 
3805 	besl = besl_host + besl_device;
3806 	if (besl > 15)
3807 		besl = 15;
3808 
3809 	return besl;
3810 }
3811 
3812 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3813 					struct usb_device *udev)
3814 {
3815 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3816 	struct dev_info	*dev_info;
3817 	__le32 __iomem	**port_array;
3818 	__le32 __iomem	*addr, *pm_addr;
3819 	u32		temp, dev_id;
3820 	unsigned int	port_num;
3821 	unsigned long	flags;
3822 	int		hird;
3823 	int		ret;
3824 
3825 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3826 			!udev->lpm_capable)
3827 		return -EINVAL;
3828 
3829 	/* we only support lpm for non-hub device connected to root hub yet */
3830 	if (!udev->parent || udev->parent->parent ||
3831 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3832 		return -EINVAL;
3833 
3834 	spin_lock_irqsave(&xhci->lock, flags);
3835 
3836 	/* Look for devices in lpm_failed_devs list */
3837 	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3838 			le16_to_cpu(udev->descriptor.idProduct);
3839 	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3840 		if (dev_info->dev_id == dev_id) {
3841 			ret = -EINVAL;
3842 			goto finish;
3843 		}
3844 	}
3845 
3846 	port_array = xhci->usb2_ports;
3847 	port_num = udev->portnum - 1;
3848 
3849 	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3850 		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3851 		ret = -EINVAL;
3852 		goto finish;
3853 	}
3854 
3855 	/*
3856 	 * Test USB 2.0 software LPM.
3857 	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3858 	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3859 	 * in the June 2011 errata release.
3860 	 */
3861 	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3862 	/*
3863 	 * Set L1 Device Slot and HIRD/BESL.
3864 	 * Check device's USB 2.0 extension descriptor to determine whether
3865 	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3866 	 */
3867 	pm_addr = port_array[port_num] + 1;
3868 	hird = xhci_calculate_hird_besl(xhci, udev);
3869 	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3870 	xhci_writel(xhci, temp, pm_addr);
3871 
3872 	/* Set port link state to U2(L1) */
3873 	addr = port_array[port_num];
3874 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3875 
3876 	/* wait for ACK */
3877 	spin_unlock_irqrestore(&xhci->lock, flags);
3878 	msleep(10);
3879 	spin_lock_irqsave(&xhci->lock, flags);
3880 
3881 	/* Check L1 Status */
3882 	ret = xhci_handshake(xhci, pm_addr,
3883 			PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3884 	if (ret != -ETIMEDOUT) {
3885 		/* enter L1 successfully */
3886 		temp = xhci_readl(xhci, addr);
3887 		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3888 				port_num, temp);
3889 		ret = 0;
3890 	} else {
3891 		temp = xhci_readl(xhci, pm_addr);
3892 		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3893 				port_num, temp & PORT_L1S_MASK);
3894 		ret = -EINVAL;
3895 	}
3896 
3897 	/* Resume the port */
3898 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3899 
3900 	spin_unlock_irqrestore(&xhci->lock, flags);
3901 	msleep(10);
3902 	spin_lock_irqsave(&xhci->lock, flags);
3903 
3904 	/* Clear PLC */
3905 	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3906 
3907 	/* Check PORTSC to make sure the device is in the right state */
3908 	if (!ret) {
3909 		temp = xhci_readl(xhci, addr);
3910 		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
3911 		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3912 				(temp & PORT_PLS_MASK) != XDEV_U0) {
3913 			xhci_dbg(xhci, "port L1 resume fail\n");
3914 			ret = -EINVAL;
3915 		}
3916 	}
3917 
3918 	if (ret) {
3919 		/* Insert dev to lpm_failed_devs list */
3920 		xhci_warn(xhci, "device LPM test failed, may disconnect and "
3921 				"re-enumerate\n");
3922 		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3923 		if (!dev_info) {
3924 			ret = -ENOMEM;
3925 			goto finish;
3926 		}
3927 		dev_info->dev_id = dev_id;
3928 		INIT_LIST_HEAD(&dev_info->list);
3929 		list_add(&dev_info->list, &xhci->lpm_failed_devs);
3930 	} else {
3931 		xhci_ring_device(xhci, udev->slot_id);
3932 	}
3933 
3934 finish:
3935 	spin_unlock_irqrestore(&xhci->lock, flags);
3936 	return ret;
3937 }
3938 
3939 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3940 			struct usb_device *udev, int enable)
3941 {
3942 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3943 	__le32 __iomem	**port_array;
3944 	__le32 __iomem	*pm_addr;
3945 	u32		temp;
3946 	unsigned int	port_num;
3947 	unsigned long	flags;
3948 	int		hird;
3949 
3950 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3951 			!udev->lpm_capable)
3952 		return -EPERM;
3953 
3954 	if (!udev->parent || udev->parent->parent ||
3955 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3956 		return -EPERM;
3957 
3958 	if (udev->usb2_hw_lpm_capable != 1)
3959 		return -EPERM;
3960 
3961 	spin_lock_irqsave(&xhci->lock, flags);
3962 
3963 	port_array = xhci->usb2_ports;
3964 	port_num = udev->portnum - 1;
3965 	pm_addr = port_array[port_num] + 1;
3966 	temp = xhci_readl(xhci, pm_addr);
3967 
3968 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3969 			enable ? "enable" : "disable", port_num);
3970 
3971 	hird = xhci_calculate_hird_besl(xhci, udev);
3972 
3973 	if (enable) {
3974 		temp &= ~PORT_HIRD_MASK;
3975 		temp |= PORT_HIRD(hird) | PORT_RWE;
3976 		xhci_writel(xhci, temp, pm_addr);
3977 		temp = xhci_readl(xhci, pm_addr);
3978 		temp |= PORT_HLE;
3979 		xhci_writel(xhci, temp, pm_addr);
3980 	} else {
3981 		temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3982 		xhci_writel(xhci, temp, pm_addr);
3983 	}
3984 
3985 	spin_unlock_irqrestore(&xhci->lock, flags);
3986 	return 0;
3987 }
3988 
3989 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3990 {
3991 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3992 	int		ret;
3993 
3994 	ret = xhci_usb2_software_lpm_test(hcd, udev);
3995 	if (!ret) {
3996 		xhci_dbg(xhci, "software LPM test succeed\n");
3997 		if (xhci->hw_lpm_support == 1) {
3998 			udev->usb2_hw_lpm_capable = 1;
3999 			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4000 			if (!ret)
4001 				udev->usb2_hw_lpm_enabled = 1;
4002 		}
4003 	}
4004 
4005 	return 0;
4006 }
4007 
4008 #else
4009 
4010 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4011 				struct usb_device *udev, int enable)
4012 {
4013 	return 0;
4014 }
4015 
4016 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4017 {
4018 	return 0;
4019 }
4020 
4021 #endif /* CONFIG_USB_SUSPEND */
4022 
4023 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4024 
4025 #ifdef CONFIG_PM
4026 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4027 static unsigned long long xhci_service_interval_to_ns(
4028 		struct usb_endpoint_descriptor *desc)
4029 {
4030 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4031 }
4032 
4033 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4034 		enum usb3_link_state state)
4035 {
4036 	unsigned long long sel;
4037 	unsigned long long pel;
4038 	unsigned int max_sel_pel;
4039 	char *state_name;
4040 
4041 	switch (state) {
4042 	case USB3_LPM_U1:
4043 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4044 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4045 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4046 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4047 		state_name = "U1";
4048 		break;
4049 	case USB3_LPM_U2:
4050 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4051 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4052 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4053 		state_name = "U2";
4054 		break;
4055 	default:
4056 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4057 				__func__);
4058 		return USB3_LPM_DISABLED;
4059 	}
4060 
4061 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4062 		return USB3_LPM_DEVICE_INITIATED;
4063 
4064 	if (sel > max_sel_pel)
4065 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4066 				"due to long SEL %llu ms\n",
4067 				state_name, sel);
4068 	else
4069 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4070 				"due to long PEL %llu\n ms",
4071 				state_name, pel);
4072 	return USB3_LPM_DISABLED;
4073 }
4074 
4075 /* Returns the hub-encoded U1 timeout value.
4076  * The U1 timeout should be the maximum of the following values:
4077  *  - For control endpoints, U1 system exit latency (SEL) * 3
4078  *  - For bulk endpoints, U1 SEL * 5
4079  *  - For interrupt endpoints:
4080  *    - Notification EPs, U1 SEL * 3
4081  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4082  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4083  */
4084 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4085 		struct usb_endpoint_descriptor *desc)
4086 {
4087 	unsigned long long timeout_ns;
4088 	int ep_type;
4089 	int intr_type;
4090 
4091 	ep_type = usb_endpoint_type(desc);
4092 	switch (ep_type) {
4093 	case USB_ENDPOINT_XFER_CONTROL:
4094 		timeout_ns = udev->u1_params.sel * 3;
4095 		break;
4096 	case USB_ENDPOINT_XFER_BULK:
4097 		timeout_ns = udev->u1_params.sel * 5;
4098 		break;
4099 	case USB_ENDPOINT_XFER_INT:
4100 		intr_type = usb_endpoint_interrupt_type(desc);
4101 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4102 			timeout_ns = udev->u1_params.sel * 3;
4103 			break;
4104 		}
4105 		/* Otherwise the calculation is the same as isoc eps */
4106 	case USB_ENDPOINT_XFER_ISOC:
4107 		timeout_ns = xhci_service_interval_to_ns(desc);
4108 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4109 		if (timeout_ns < udev->u1_params.sel * 2)
4110 			timeout_ns = udev->u1_params.sel * 2;
4111 		break;
4112 	default:
4113 		return 0;
4114 	}
4115 
4116 	/* The U1 timeout is encoded in 1us intervals. */
4117 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4118 	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4119 	if (timeout_ns == USB3_LPM_DISABLED)
4120 		timeout_ns++;
4121 
4122 	/* If the necessary timeout value is bigger than what we can set in the
4123 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4124 	 */
4125 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4126 		return timeout_ns;
4127 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4128 			"due to long timeout %llu ms\n", timeout_ns);
4129 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4130 }
4131 
4132 /* Returns the hub-encoded U2 timeout value.
4133  * The U2 timeout should be the maximum of:
4134  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4135  *  - largest bInterval of any active periodic endpoint (to avoid going
4136  *    into lower power link states between intervals).
4137  *  - the U2 Exit Latency of the device
4138  */
4139 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4140 		struct usb_endpoint_descriptor *desc)
4141 {
4142 	unsigned long long timeout_ns;
4143 	unsigned long long u2_del_ns;
4144 
4145 	timeout_ns = 10 * 1000 * 1000;
4146 
4147 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4148 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4149 		timeout_ns = xhci_service_interval_to_ns(desc);
4150 
4151 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4152 	if (u2_del_ns > timeout_ns)
4153 		timeout_ns = u2_del_ns;
4154 
4155 	/* The U2 timeout is encoded in 256us intervals */
4156 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4157 	/* If the necessary timeout value is bigger than what we can set in the
4158 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4159 	 */
4160 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4161 		return timeout_ns;
4162 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4163 			"due to long timeout %llu ms\n", timeout_ns);
4164 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4165 }
4166 
4167 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4168 		struct usb_device *udev,
4169 		struct usb_endpoint_descriptor *desc,
4170 		enum usb3_link_state state,
4171 		u16 *timeout)
4172 {
4173 	if (state == USB3_LPM_U1) {
4174 		if (xhci->quirks & XHCI_INTEL_HOST)
4175 			return xhci_calculate_intel_u1_timeout(udev, desc);
4176 	} else {
4177 		if (xhci->quirks & XHCI_INTEL_HOST)
4178 			return xhci_calculate_intel_u2_timeout(udev, desc);
4179 	}
4180 
4181 	return USB3_LPM_DISABLED;
4182 }
4183 
4184 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4185 		struct usb_device *udev,
4186 		struct usb_endpoint_descriptor *desc,
4187 		enum usb3_link_state state,
4188 		u16 *timeout)
4189 {
4190 	u16 alt_timeout;
4191 
4192 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4193 		desc, state, timeout);
4194 
4195 	/* If we found we can't enable hub-initiated LPM, or
4196 	 * the U1 or U2 exit latency was too high to allow
4197 	 * device-initiated LPM as well, just stop searching.
4198 	 */
4199 	if (alt_timeout == USB3_LPM_DISABLED ||
4200 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4201 		*timeout = alt_timeout;
4202 		return -E2BIG;
4203 	}
4204 	if (alt_timeout > *timeout)
4205 		*timeout = alt_timeout;
4206 	return 0;
4207 }
4208 
4209 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4210 		struct usb_device *udev,
4211 		struct usb_host_interface *alt,
4212 		enum usb3_link_state state,
4213 		u16 *timeout)
4214 {
4215 	int j;
4216 
4217 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4218 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4219 					&alt->endpoint[j].desc, state, timeout))
4220 			return -E2BIG;
4221 		continue;
4222 	}
4223 	return 0;
4224 }
4225 
4226 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4227 		enum usb3_link_state state)
4228 {
4229 	struct usb_device *parent;
4230 	unsigned int num_hubs;
4231 
4232 	if (state == USB3_LPM_U2)
4233 		return 0;
4234 
4235 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4236 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4237 			parent = parent->parent)
4238 		num_hubs++;
4239 
4240 	if (num_hubs < 2)
4241 		return 0;
4242 
4243 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4244 			" below second-tier hub.\n");
4245 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4246 			"to decrease power consumption.\n");
4247 	return -E2BIG;
4248 }
4249 
4250 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4251 		struct usb_device *udev,
4252 		enum usb3_link_state state)
4253 {
4254 	if (xhci->quirks & XHCI_INTEL_HOST)
4255 		return xhci_check_intel_tier_policy(udev, state);
4256 	return -EINVAL;
4257 }
4258 
4259 /* Returns the U1 or U2 timeout that should be enabled.
4260  * If the tier check or timeout setting functions return with a non-zero exit
4261  * code, that means the timeout value has been finalized and we shouldn't look
4262  * at any more endpoints.
4263  */
4264 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4265 			struct usb_device *udev, enum usb3_link_state state)
4266 {
4267 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4268 	struct usb_host_config *config;
4269 	char *state_name;
4270 	int i;
4271 	u16 timeout = USB3_LPM_DISABLED;
4272 
4273 	if (state == USB3_LPM_U1)
4274 		state_name = "U1";
4275 	else if (state == USB3_LPM_U2)
4276 		state_name = "U2";
4277 	else {
4278 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4279 				state);
4280 		return timeout;
4281 	}
4282 
4283 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4284 		return timeout;
4285 
4286 	/* Gather some information about the currently installed configuration
4287 	 * and alternate interface settings.
4288 	 */
4289 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4290 			state, &timeout))
4291 		return timeout;
4292 
4293 	config = udev->actconfig;
4294 	if (!config)
4295 		return timeout;
4296 
4297 	for (i = 0; i < USB_MAXINTERFACES; i++) {
4298 		struct usb_driver *driver;
4299 		struct usb_interface *intf = config->interface[i];
4300 
4301 		if (!intf)
4302 			continue;
4303 
4304 		/* Check if any currently bound drivers want hub-initiated LPM
4305 		 * disabled.
4306 		 */
4307 		if (intf->dev.driver) {
4308 			driver = to_usb_driver(intf->dev.driver);
4309 			if (driver && driver->disable_hub_initiated_lpm) {
4310 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4311 						"at request of driver %s\n",
4312 						state_name, driver->name);
4313 				return xhci_get_timeout_no_hub_lpm(udev, state);
4314 			}
4315 		}
4316 
4317 		/* Not sure how this could happen... */
4318 		if (!intf->cur_altsetting)
4319 			continue;
4320 
4321 		if (xhci_update_timeout_for_interface(xhci, udev,
4322 					intf->cur_altsetting,
4323 					state, &timeout))
4324 			return timeout;
4325 	}
4326 	return timeout;
4327 }
4328 
4329 /*
4330  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4331  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4332  */
4333 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4334 			struct usb_device *udev, u16 max_exit_latency)
4335 {
4336 	struct xhci_virt_device *virt_dev;
4337 	struct xhci_command *command;
4338 	struct xhci_input_control_ctx *ctrl_ctx;
4339 	struct xhci_slot_ctx *slot_ctx;
4340 	unsigned long flags;
4341 	int ret;
4342 
4343 	spin_lock_irqsave(&xhci->lock, flags);
4344 	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4345 		spin_unlock_irqrestore(&xhci->lock, flags);
4346 		return 0;
4347 	}
4348 
4349 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4350 	virt_dev = xhci->devs[udev->slot_id];
4351 	command = xhci->lpm_command;
4352 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4353 	spin_unlock_irqrestore(&xhci->lock, flags);
4354 
4355 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4356 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4357 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4358 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4359 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4360 
4361 	xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4362 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4363 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4364 
4365 	/* Issue and wait for the evaluate context command. */
4366 	ret = xhci_configure_endpoint(xhci, udev, command,
4367 			true, true);
4368 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4369 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4370 
4371 	if (!ret) {
4372 		spin_lock_irqsave(&xhci->lock, flags);
4373 		virt_dev->current_mel = max_exit_latency;
4374 		spin_unlock_irqrestore(&xhci->lock, flags);
4375 	}
4376 	return ret;
4377 }
4378 
4379 static int calculate_max_exit_latency(struct usb_device *udev,
4380 		enum usb3_link_state state_changed,
4381 		u16 hub_encoded_timeout)
4382 {
4383 	unsigned long long u1_mel_us = 0;
4384 	unsigned long long u2_mel_us = 0;
4385 	unsigned long long mel_us = 0;
4386 	bool disabling_u1;
4387 	bool disabling_u2;
4388 	bool enabling_u1;
4389 	bool enabling_u2;
4390 
4391 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4392 			hub_encoded_timeout == USB3_LPM_DISABLED);
4393 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4394 			hub_encoded_timeout == USB3_LPM_DISABLED);
4395 
4396 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4397 			hub_encoded_timeout != USB3_LPM_DISABLED);
4398 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4399 			hub_encoded_timeout != USB3_LPM_DISABLED);
4400 
4401 	/* If U1 was already enabled and we're not disabling it,
4402 	 * or we're going to enable U1, account for the U1 max exit latency.
4403 	 */
4404 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4405 			enabling_u1)
4406 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4407 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4408 			enabling_u2)
4409 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4410 
4411 	if (u1_mel_us > u2_mel_us)
4412 		mel_us = u1_mel_us;
4413 	else
4414 		mel_us = u2_mel_us;
4415 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4416 	if (mel_us > MAX_EXIT) {
4417 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4418 				"is too big.\n", mel_us);
4419 		return -E2BIG;
4420 	}
4421 	return mel_us;
4422 }
4423 
4424 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4425 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4426 			struct usb_device *udev, enum usb3_link_state state)
4427 {
4428 	struct xhci_hcd	*xhci;
4429 	u16 hub_encoded_timeout;
4430 	int mel;
4431 	int ret;
4432 
4433 	xhci = hcd_to_xhci(hcd);
4434 	/* The LPM timeout values are pretty host-controller specific, so don't
4435 	 * enable hub-initiated timeouts unless the vendor has provided
4436 	 * information about their timeout algorithm.
4437 	 */
4438 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4439 			!xhci->devs[udev->slot_id])
4440 		return USB3_LPM_DISABLED;
4441 
4442 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4443 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4444 	if (mel < 0) {
4445 		/* Max Exit Latency is too big, disable LPM. */
4446 		hub_encoded_timeout = USB3_LPM_DISABLED;
4447 		mel = 0;
4448 	}
4449 
4450 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4451 	if (ret)
4452 		return ret;
4453 	return hub_encoded_timeout;
4454 }
4455 
4456 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4457 			struct usb_device *udev, enum usb3_link_state state)
4458 {
4459 	struct xhci_hcd	*xhci;
4460 	u16 mel;
4461 	int ret;
4462 
4463 	xhci = hcd_to_xhci(hcd);
4464 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4465 			!xhci->devs[udev->slot_id])
4466 		return 0;
4467 
4468 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4469 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4470 	if (ret)
4471 		return ret;
4472 	return 0;
4473 }
4474 #else /* CONFIG_PM */
4475 
4476 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4477 			struct usb_device *udev, enum usb3_link_state state)
4478 {
4479 	return USB3_LPM_DISABLED;
4480 }
4481 
4482 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4483 			struct usb_device *udev, enum usb3_link_state state)
4484 {
4485 	return 0;
4486 }
4487 #endif	/* CONFIG_PM */
4488 
4489 /*-------------------------------------------------------------------------*/
4490 
4491 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4492  * internal data structures for the device.
4493  */
4494 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4495 			struct usb_tt *tt, gfp_t mem_flags)
4496 {
4497 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4498 	struct xhci_virt_device *vdev;
4499 	struct xhci_command *config_cmd;
4500 	struct xhci_input_control_ctx *ctrl_ctx;
4501 	struct xhci_slot_ctx *slot_ctx;
4502 	unsigned long flags;
4503 	unsigned think_time;
4504 	int ret;
4505 
4506 	/* Ignore root hubs */
4507 	if (!hdev->parent)
4508 		return 0;
4509 
4510 	vdev = xhci->devs[hdev->slot_id];
4511 	if (!vdev) {
4512 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4513 		return -EINVAL;
4514 	}
4515 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4516 	if (!config_cmd) {
4517 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4518 		return -ENOMEM;
4519 	}
4520 
4521 	spin_lock_irqsave(&xhci->lock, flags);
4522 	if (hdev->speed == USB_SPEED_HIGH &&
4523 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4524 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4525 		xhci_free_command(xhci, config_cmd);
4526 		spin_unlock_irqrestore(&xhci->lock, flags);
4527 		return -ENOMEM;
4528 	}
4529 
4530 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4531 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4532 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4533 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4534 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4535 	if (tt->multi)
4536 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4537 	if (xhci->hci_version > 0x95) {
4538 		xhci_dbg(xhci, "xHCI version %x needs hub "
4539 				"TT think time and number of ports\n",
4540 				(unsigned int) xhci->hci_version);
4541 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4542 		/* Set TT think time - convert from ns to FS bit times.
4543 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4544 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4545 		 *
4546 		 * xHCI 1.0: this field shall be 0 if the device is not a
4547 		 * High-spped hub.
4548 		 */
4549 		think_time = tt->think_time;
4550 		if (think_time != 0)
4551 			think_time = (think_time / 666) - 1;
4552 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4553 			slot_ctx->tt_info |=
4554 				cpu_to_le32(TT_THINK_TIME(think_time));
4555 	} else {
4556 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4557 				"TT think time or number of ports\n",
4558 				(unsigned int) xhci->hci_version);
4559 	}
4560 	slot_ctx->dev_state = 0;
4561 	spin_unlock_irqrestore(&xhci->lock, flags);
4562 
4563 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4564 			(xhci->hci_version > 0x95) ?
4565 			"configure endpoint" : "evaluate context");
4566 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4567 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4568 
4569 	/* Issue and wait for the configure endpoint or
4570 	 * evaluate context command.
4571 	 */
4572 	if (xhci->hci_version > 0x95)
4573 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4574 				false, false);
4575 	else
4576 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4577 				true, false);
4578 
4579 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4580 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4581 
4582 	xhci_free_command(xhci, config_cmd);
4583 	return ret;
4584 }
4585 
4586 int xhci_get_frame(struct usb_hcd *hcd)
4587 {
4588 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4589 	/* EHCI mods by the periodic size.  Why? */
4590 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4591 }
4592 
4593 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4594 {
4595 	struct xhci_hcd		*xhci;
4596 	struct device		*dev = hcd->self.controller;
4597 	int			retval;
4598 	u32			temp;
4599 
4600 	/* Accept arbitrarily long scatter-gather lists */
4601 	hcd->self.sg_tablesize = ~0;
4602 	/* XHCI controllers don't stop the ep queue on short packets :| */
4603 	hcd->self.no_stop_on_short = 1;
4604 
4605 	if (usb_hcd_is_primary_hcd(hcd)) {
4606 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4607 		if (!xhci)
4608 			return -ENOMEM;
4609 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4610 		xhci->main_hcd = hcd;
4611 		/* Mark the first roothub as being USB 2.0.
4612 		 * The xHCI driver will register the USB 3.0 roothub.
4613 		 */
4614 		hcd->speed = HCD_USB2;
4615 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4616 		/*
4617 		 * USB 2.0 roothub under xHCI has an integrated TT,
4618 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4619 		 * companion controller.
4620 		 */
4621 		hcd->has_tt = 1;
4622 	} else {
4623 		/* xHCI private pointer was set in xhci_pci_probe for the second
4624 		 * registered roothub.
4625 		 */
4626 		xhci = hcd_to_xhci(hcd);
4627 		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4628 		if (HCC_64BIT_ADDR(temp)) {
4629 			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4630 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4631 		} else {
4632 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4633 		}
4634 		return 0;
4635 	}
4636 
4637 	xhci->cap_regs = hcd->regs;
4638 	xhci->op_regs = hcd->regs +
4639 		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4640 	xhci->run_regs = hcd->regs +
4641 		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4642 	/* Cache read-only capability registers */
4643 	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4644 	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4645 	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4646 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4647 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4648 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4649 	xhci_print_registers(xhci);
4650 
4651 	get_quirks(dev, xhci);
4652 
4653 	/* Make sure the HC is halted. */
4654 	retval = xhci_halt(xhci);
4655 	if (retval)
4656 		goto error;
4657 
4658 	xhci_dbg(xhci, "Resetting HCD\n");
4659 	/* Reset the internal HC memory state and registers. */
4660 	retval = xhci_reset(xhci);
4661 	if (retval)
4662 		goto error;
4663 	xhci_dbg(xhci, "Reset complete\n");
4664 
4665 	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4666 	if (HCC_64BIT_ADDR(temp)) {
4667 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4668 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4669 	} else {
4670 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4671 	}
4672 
4673 	xhci_dbg(xhci, "Calling HCD init\n");
4674 	/* Initialize HCD and host controller data structures. */
4675 	retval = xhci_init(hcd);
4676 	if (retval)
4677 		goto error;
4678 	xhci_dbg(xhci, "Called HCD init\n");
4679 	return 0;
4680 error:
4681 	kfree(xhci);
4682 	return retval;
4683 }
4684 
4685 MODULE_DESCRIPTION(DRIVER_DESC);
4686 MODULE_AUTHOR(DRIVER_AUTHOR);
4687 MODULE_LICENSE("GPL");
4688 
4689 static int __init xhci_hcd_init(void)
4690 {
4691 	int retval;
4692 
4693 	retval = xhci_register_pci();
4694 	if (retval < 0) {
4695 		printk(KERN_DEBUG "Problem registering PCI driver.");
4696 		return retval;
4697 	}
4698 	retval = xhci_register_plat();
4699 	if (retval < 0) {
4700 		printk(KERN_DEBUG "Problem registering platform driver.");
4701 		goto unreg_pci;
4702 	}
4703 	/*
4704 	 * Check the compiler generated sizes of structures that must be laid
4705 	 * out in specific ways for hardware access.
4706 	 */
4707 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4708 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4709 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4710 	/* xhci_device_control has eight fields, and also
4711 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4712 	 */
4713 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4714 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4715 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4716 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4717 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4718 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4719 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4720 	return 0;
4721 unreg_pci:
4722 	xhci_unregister_pci();
4723 	return retval;
4724 }
4725 module_init(xhci_hcd_init);
4726 
4727 static void __exit xhci_hcd_cleanup(void)
4728 {
4729 	xhci_unregister_pci();
4730 	xhci_unregister_plat();
4731 }
4732 module_exit(xhci_hcd_cleanup);
4733