1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 31 #include "xhci.h" 32 33 #define DRIVER_AUTHOR "Sarah Sharp" 34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 35 36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 37 static int link_quirk; 38 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 40 41 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 42 /* 43 * xhci_handshake - spin reading hc until handshake completes or fails 44 * @ptr: address of hc register to be read 45 * @mask: bits to look at in result of read 46 * @done: value of those bits when handshake succeeds 47 * @usec: timeout in microseconds 48 * 49 * Returns negative errno, or zero on success 50 * 51 * Success happens when the "mask" bits have the specified value (hardware 52 * handshake done). There are two failure modes: "usec" have passed (major 53 * hardware flakeout), or the register reads as all-ones (hardware removed). 54 */ 55 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr, 56 u32 mask, u32 done, int usec) 57 { 58 u32 result; 59 60 do { 61 result = xhci_readl(xhci, ptr); 62 if (result == ~(u32)0) /* card removed */ 63 return -ENODEV; 64 result &= mask; 65 if (result == done) 66 return 0; 67 udelay(1); 68 usec--; 69 } while (usec > 0); 70 return -ETIMEDOUT; 71 } 72 73 /* 74 * Disable interrupts and begin the xHCI halting process. 75 */ 76 void xhci_quiesce(struct xhci_hcd *xhci) 77 { 78 u32 halted; 79 u32 cmd; 80 u32 mask; 81 82 mask = ~(XHCI_IRQS); 83 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; 84 if (!halted) 85 mask &= ~CMD_RUN; 86 87 cmd = xhci_readl(xhci, &xhci->op_regs->command); 88 cmd &= mask; 89 xhci_writel(xhci, cmd, &xhci->op_regs->command); 90 } 91 92 /* 93 * Force HC into halt state. 94 * 95 * Disable any IRQs and clear the run/stop bit. 96 * HC will complete any current and actively pipelined transactions, and 97 * should halt within 16 ms of the run/stop bit being cleared. 98 * Read HC Halted bit in the status register to see when the HC is finished. 99 */ 100 int xhci_halt(struct xhci_hcd *xhci) 101 { 102 int ret; 103 xhci_dbg(xhci, "// Halt the HC\n"); 104 xhci_quiesce(xhci); 105 106 ret = xhci_handshake(xhci, &xhci->op_regs->status, 107 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 108 if (!ret) { 109 xhci->xhc_state |= XHCI_STATE_HALTED; 110 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 111 } else 112 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 113 XHCI_MAX_HALT_USEC); 114 return ret; 115 } 116 117 /* 118 * Set the run bit and wait for the host to be running. 119 */ 120 static int xhci_start(struct xhci_hcd *xhci) 121 { 122 u32 temp; 123 int ret; 124 125 temp = xhci_readl(xhci, &xhci->op_regs->command); 126 temp |= (CMD_RUN); 127 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n", 128 temp); 129 xhci_writel(xhci, temp, &xhci->op_regs->command); 130 131 /* 132 * Wait for the HCHalted Status bit to be 0 to indicate the host is 133 * running. 134 */ 135 ret = xhci_handshake(xhci, &xhci->op_regs->status, 136 STS_HALT, 0, XHCI_MAX_HALT_USEC); 137 if (ret == -ETIMEDOUT) 138 xhci_err(xhci, "Host took too long to start, " 139 "waited %u microseconds.\n", 140 XHCI_MAX_HALT_USEC); 141 if (!ret) 142 xhci->xhc_state &= ~XHCI_STATE_HALTED; 143 return ret; 144 } 145 146 /* 147 * Reset a halted HC. 148 * 149 * This resets pipelines, timers, counters, state machines, etc. 150 * Transactions will be terminated immediately, and operational registers 151 * will be set to their defaults. 152 */ 153 int xhci_reset(struct xhci_hcd *xhci) 154 { 155 u32 command; 156 u32 state; 157 int ret, i; 158 159 state = xhci_readl(xhci, &xhci->op_regs->status); 160 if ((state & STS_HALT) == 0) { 161 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 162 return 0; 163 } 164 165 xhci_dbg(xhci, "// Reset the HC\n"); 166 command = xhci_readl(xhci, &xhci->op_regs->command); 167 command |= CMD_RESET; 168 xhci_writel(xhci, command, &xhci->op_regs->command); 169 170 ret = xhci_handshake(xhci, &xhci->op_regs->command, 171 CMD_RESET, 0, 10 * 1000 * 1000); 172 if (ret) 173 return ret; 174 175 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n"); 176 /* 177 * xHCI cannot write to any doorbells or operational registers other 178 * than status until the "Controller Not Ready" flag is cleared. 179 */ 180 ret = xhci_handshake(xhci, &xhci->op_regs->status, 181 STS_CNR, 0, 10 * 1000 * 1000); 182 183 for (i = 0; i < 2; ++i) { 184 xhci->bus_state[i].port_c_suspend = 0; 185 xhci->bus_state[i].suspended_ports = 0; 186 xhci->bus_state[i].resuming_ports = 0; 187 } 188 189 return ret; 190 } 191 192 #ifdef CONFIG_PCI 193 static int xhci_free_msi(struct xhci_hcd *xhci) 194 { 195 int i; 196 197 if (!xhci->msix_entries) 198 return -EINVAL; 199 200 for (i = 0; i < xhci->msix_count; i++) 201 if (xhci->msix_entries[i].vector) 202 free_irq(xhci->msix_entries[i].vector, 203 xhci_to_hcd(xhci)); 204 return 0; 205 } 206 207 /* 208 * Set up MSI 209 */ 210 static int xhci_setup_msi(struct xhci_hcd *xhci) 211 { 212 int ret; 213 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 214 215 ret = pci_enable_msi(pdev); 216 if (ret) { 217 xhci_dbg(xhci, "failed to allocate MSI entry\n"); 218 return ret; 219 } 220 221 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq, 222 0, "xhci_hcd", xhci_to_hcd(xhci)); 223 if (ret) { 224 xhci_dbg(xhci, "disable MSI interrupt\n"); 225 pci_disable_msi(pdev); 226 } 227 228 return ret; 229 } 230 231 /* 232 * Free IRQs 233 * free all IRQs request 234 */ 235 static void xhci_free_irq(struct xhci_hcd *xhci) 236 { 237 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 238 int ret; 239 240 /* return if using legacy interrupt */ 241 if (xhci_to_hcd(xhci)->irq > 0) 242 return; 243 244 ret = xhci_free_msi(xhci); 245 if (!ret) 246 return; 247 if (pdev->irq > 0) 248 free_irq(pdev->irq, xhci_to_hcd(xhci)); 249 250 return; 251 } 252 253 /* 254 * Set up MSI-X 255 */ 256 static int xhci_setup_msix(struct xhci_hcd *xhci) 257 { 258 int i, ret = 0; 259 struct usb_hcd *hcd = xhci_to_hcd(xhci); 260 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 261 262 /* 263 * calculate number of msi-x vectors supported. 264 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 265 * with max number of interrupters based on the xhci HCSPARAMS1. 266 * - num_online_cpus: maximum msi-x vectors per CPUs core. 267 * Add additional 1 vector to ensure always available interrupt. 268 */ 269 xhci->msix_count = min(num_online_cpus() + 1, 270 HCS_MAX_INTRS(xhci->hcs_params1)); 271 272 xhci->msix_entries = 273 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 274 GFP_KERNEL); 275 if (!xhci->msix_entries) { 276 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 277 return -ENOMEM; 278 } 279 280 for (i = 0; i < xhci->msix_count; i++) { 281 xhci->msix_entries[i].entry = i; 282 xhci->msix_entries[i].vector = 0; 283 } 284 285 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); 286 if (ret) { 287 xhci_dbg(xhci, "Failed to enable MSI-X\n"); 288 goto free_entries; 289 } 290 291 for (i = 0; i < xhci->msix_count; i++) { 292 ret = request_irq(xhci->msix_entries[i].vector, 293 (irq_handler_t)xhci_msi_irq, 294 0, "xhci_hcd", xhci_to_hcd(xhci)); 295 if (ret) 296 goto disable_msix; 297 } 298 299 hcd->msix_enabled = 1; 300 return ret; 301 302 disable_msix: 303 xhci_dbg(xhci, "disable MSI-X interrupt\n"); 304 xhci_free_irq(xhci); 305 pci_disable_msix(pdev); 306 free_entries: 307 kfree(xhci->msix_entries); 308 xhci->msix_entries = NULL; 309 return ret; 310 } 311 312 /* Free any IRQs and disable MSI-X */ 313 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 314 { 315 struct usb_hcd *hcd = xhci_to_hcd(xhci); 316 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 317 318 xhci_free_irq(xhci); 319 320 if (xhci->msix_entries) { 321 pci_disable_msix(pdev); 322 kfree(xhci->msix_entries); 323 xhci->msix_entries = NULL; 324 } else { 325 pci_disable_msi(pdev); 326 } 327 328 hcd->msix_enabled = 0; 329 return; 330 } 331 332 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 333 { 334 int i; 335 336 if (xhci->msix_entries) { 337 for (i = 0; i < xhci->msix_count; i++) 338 synchronize_irq(xhci->msix_entries[i].vector); 339 } 340 } 341 342 static int xhci_try_enable_msi(struct usb_hcd *hcd) 343 { 344 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 345 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 346 int ret; 347 348 /* 349 * Some Fresco Logic host controllers advertise MSI, but fail to 350 * generate interrupts. Don't even try to enable MSI. 351 */ 352 if (xhci->quirks & XHCI_BROKEN_MSI) 353 return 0; 354 355 /* unregister the legacy interrupt */ 356 if (hcd->irq) 357 free_irq(hcd->irq, hcd); 358 hcd->irq = 0; 359 360 ret = xhci_setup_msix(xhci); 361 if (ret) 362 /* fall back to msi*/ 363 ret = xhci_setup_msi(xhci); 364 365 if (!ret) 366 /* hcd->irq is 0, we have MSI */ 367 return 0; 368 369 if (!pdev->irq) { 370 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 371 return -EINVAL; 372 } 373 374 /* fall back to legacy interrupt*/ 375 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 376 hcd->irq_descr, hcd); 377 if (ret) { 378 xhci_err(xhci, "request interrupt %d failed\n", 379 pdev->irq); 380 return ret; 381 } 382 hcd->irq = pdev->irq; 383 return 0; 384 } 385 386 #else 387 388 static int xhci_try_enable_msi(struct usb_hcd *hcd) 389 { 390 return 0; 391 } 392 393 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 394 { 395 } 396 397 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 398 { 399 } 400 401 #endif 402 403 static void compliance_mode_recovery(unsigned long arg) 404 { 405 struct xhci_hcd *xhci; 406 struct usb_hcd *hcd; 407 u32 temp; 408 int i; 409 410 xhci = (struct xhci_hcd *)arg; 411 412 for (i = 0; i < xhci->num_usb3_ports; i++) { 413 temp = xhci_readl(xhci, xhci->usb3_ports[i]); 414 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 415 /* 416 * Compliance Mode Detected. Letting USB Core 417 * handle the Warm Reset 418 */ 419 xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n", 420 i + 1); 421 xhci_dbg(xhci, "Attempting Recovery routine!\n"); 422 hcd = xhci->shared_hcd; 423 424 if (hcd->state == HC_STATE_SUSPENDED) 425 usb_hcd_resume_root_hub(hcd); 426 427 usb_hcd_poll_rh_status(hcd); 428 } 429 } 430 431 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 432 mod_timer(&xhci->comp_mode_recovery_timer, 433 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 434 } 435 436 /* 437 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 438 * that causes ports behind that hardware to enter compliance mode sometimes. 439 * The quirk creates a timer that polls every 2 seconds the link state of 440 * each host controller's port and recovers it by issuing a Warm reset 441 * if Compliance mode is detected, otherwise the port will become "dead" (no 442 * device connections or disconnections will be detected anymore). Becasue no 443 * status event is generated when entering compliance mode (per xhci spec), 444 * this quirk is needed on systems that have the failing hardware installed. 445 */ 446 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 447 { 448 xhci->port_status_u0 = 0; 449 init_timer(&xhci->comp_mode_recovery_timer); 450 451 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci; 452 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery; 453 xhci->comp_mode_recovery_timer.expires = jiffies + 454 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 455 456 set_timer_slack(&xhci->comp_mode_recovery_timer, 457 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 458 add_timer(&xhci->comp_mode_recovery_timer); 459 xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n"); 460 } 461 462 /* 463 * This function identifies the systems that have installed the SN65LVPE502CP 464 * USB3.0 re-driver and that need the Compliance Mode Quirk. 465 * Systems: 466 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 467 */ 468 static bool compliance_mode_recovery_timer_quirk_check(void) 469 { 470 const char *dmi_product_name, *dmi_sys_vendor; 471 472 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 473 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 474 if (!dmi_product_name || !dmi_sys_vendor) 475 return false; 476 477 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 478 return false; 479 480 if (strstr(dmi_product_name, "Z420") || 481 strstr(dmi_product_name, "Z620") || 482 strstr(dmi_product_name, "Z820") || 483 strstr(dmi_product_name, "Z1 Workstation")) 484 return true; 485 486 return false; 487 } 488 489 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 490 { 491 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 492 } 493 494 495 /* 496 * Initialize memory for HCD and xHC (one-time init). 497 * 498 * Program the PAGESIZE register, initialize the device context array, create 499 * device contexts (?), set up a command ring segment (or two?), create event 500 * ring (one for now). 501 */ 502 int xhci_init(struct usb_hcd *hcd) 503 { 504 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 505 int retval = 0; 506 507 xhci_dbg(xhci, "xhci_init\n"); 508 spin_lock_init(&xhci->lock); 509 if (xhci->hci_version == 0x95 && link_quirk) { 510 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n"); 511 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 512 } else { 513 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n"); 514 } 515 retval = xhci_mem_init(xhci, GFP_KERNEL); 516 xhci_dbg(xhci, "Finished xhci_init\n"); 517 518 /* Initializing Compliance Mode Recovery Data If Needed */ 519 if (compliance_mode_recovery_timer_quirk_check()) { 520 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 521 compliance_mode_recovery_timer_init(xhci); 522 } 523 524 return retval; 525 } 526 527 /*-------------------------------------------------------------------------*/ 528 529 530 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 531 static void xhci_event_ring_work(unsigned long arg) 532 { 533 unsigned long flags; 534 int temp; 535 u64 temp_64; 536 struct xhci_hcd *xhci = (struct xhci_hcd *) arg; 537 int i, j; 538 539 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies); 540 541 spin_lock_irqsave(&xhci->lock, flags); 542 temp = xhci_readl(xhci, &xhci->op_regs->status); 543 xhci_dbg(xhci, "op reg status = 0x%x\n", temp); 544 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 545 (xhci->xhc_state & XHCI_STATE_HALTED)) { 546 xhci_dbg(xhci, "HW died, polling stopped.\n"); 547 spin_unlock_irqrestore(&xhci->lock, flags); 548 return; 549 } 550 551 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 552 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp); 553 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask); 554 xhci->error_bitmask = 0; 555 xhci_dbg(xhci, "Event ring:\n"); 556 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 557 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 558 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 559 temp_64 &= ~ERST_PTR_MASK; 560 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 561 xhci_dbg(xhci, "Command ring:\n"); 562 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg); 563 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 564 xhci_dbg_cmd_ptrs(xhci); 565 for (i = 0; i < MAX_HC_SLOTS; ++i) { 566 if (!xhci->devs[i]) 567 continue; 568 for (j = 0; j < 31; ++j) { 569 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]); 570 } 571 } 572 spin_unlock_irqrestore(&xhci->lock, flags); 573 574 if (!xhci->zombie) 575 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ); 576 else 577 xhci_dbg(xhci, "Quit polling the event ring.\n"); 578 } 579 #endif 580 581 static int xhci_run_finished(struct xhci_hcd *xhci) 582 { 583 if (xhci_start(xhci)) { 584 xhci_halt(xhci); 585 return -ENODEV; 586 } 587 xhci->shared_hcd->state = HC_STATE_RUNNING; 588 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 589 590 if (xhci->quirks & XHCI_NEC_HOST) 591 xhci_ring_cmd_db(xhci); 592 593 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n"); 594 return 0; 595 } 596 597 /* 598 * Start the HC after it was halted. 599 * 600 * This function is called by the USB core when the HC driver is added. 601 * Its opposite is xhci_stop(). 602 * 603 * xhci_init() must be called once before this function can be called. 604 * Reset the HC, enable device slot contexts, program DCBAAP, and 605 * set command ring pointer and event ring pointer. 606 * 607 * Setup MSI-X vectors and enable interrupts. 608 */ 609 int xhci_run(struct usb_hcd *hcd) 610 { 611 u32 temp; 612 u64 temp_64; 613 int ret; 614 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 615 616 /* Start the xHCI host controller running only after the USB 2.0 roothub 617 * is setup. 618 */ 619 620 hcd->uses_new_polling = 1; 621 if (!usb_hcd_is_primary_hcd(hcd)) 622 return xhci_run_finished(xhci); 623 624 xhci_dbg(xhci, "xhci_run\n"); 625 626 ret = xhci_try_enable_msi(hcd); 627 if (ret) 628 return ret; 629 630 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 631 init_timer(&xhci->event_ring_timer); 632 xhci->event_ring_timer.data = (unsigned long) xhci; 633 xhci->event_ring_timer.function = xhci_event_ring_work; 634 /* Poll the event ring */ 635 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ; 636 xhci->zombie = 0; 637 xhci_dbg(xhci, "Setting event ring polling timer\n"); 638 add_timer(&xhci->event_ring_timer); 639 #endif 640 641 xhci_dbg(xhci, "Command ring memory map follows:\n"); 642 xhci_debug_ring(xhci, xhci->cmd_ring); 643 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 644 xhci_dbg_cmd_ptrs(xhci); 645 646 xhci_dbg(xhci, "ERST memory map follows:\n"); 647 xhci_dbg_erst(xhci, &xhci->erst); 648 xhci_dbg(xhci, "Event ring:\n"); 649 xhci_debug_ring(xhci, xhci->event_ring); 650 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 651 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 652 temp_64 &= ~ERST_PTR_MASK; 653 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 654 655 xhci_dbg(xhci, "// Set the interrupt modulation register\n"); 656 temp = xhci_readl(xhci, &xhci->ir_set->irq_control); 657 temp &= ~ER_IRQ_INTERVAL_MASK; 658 temp |= (u32) 160; 659 xhci_writel(xhci, temp, &xhci->ir_set->irq_control); 660 661 /* Set the HCD state before we enable the irqs */ 662 temp = xhci_readl(xhci, &xhci->op_regs->command); 663 temp |= (CMD_EIE); 664 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n", 665 temp); 666 xhci_writel(xhci, temp, &xhci->op_regs->command); 667 668 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 669 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n", 670 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 671 xhci_writel(xhci, ER_IRQ_ENABLE(temp), 672 &xhci->ir_set->irq_pending); 673 xhci_print_ir_set(xhci, 0); 674 675 if (xhci->quirks & XHCI_NEC_HOST) 676 xhci_queue_vendor_command(xhci, 0, 0, 0, 677 TRB_TYPE(TRB_NEC_GET_FW)); 678 679 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n"); 680 return 0; 681 } 682 683 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 684 { 685 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 686 687 spin_lock_irq(&xhci->lock); 688 xhci_halt(xhci); 689 690 /* The shared_hcd is going to be deallocated shortly (the USB core only 691 * calls this function when allocation fails in usb_add_hcd(), or 692 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 693 */ 694 xhci->shared_hcd = NULL; 695 spin_unlock_irq(&xhci->lock); 696 } 697 698 /* 699 * Stop xHCI driver. 700 * 701 * This function is called by the USB core when the HC driver is removed. 702 * Its opposite is xhci_run(). 703 * 704 * Disable device contexts, disable IRQs, and quiesce the HC. 705 * Reset the HC, finish any completed transactions, and cleanup memory. 706 */ 707 void xhci_stop(struct usb_hcd *hcd) 708 { 709 u32 temp; 710 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 711 712 if (!usb_hcd_is_primary_hcd(hcd)) { 713 xhci_only_stop_hcd(xhci->shared_hcd); 714 return; 715 } 716 717 spin_lock_irq(&xhci->lock); 718 /* Make sure the xHC is halted for a USB3 roothub 719 * (xhci_stop() could be called as part of failed init). 720 */ 721 xhci_halt(xhci); 722 xhci_reset(xhci); 723 spin_unlock_irq(&xhci->lock); 724 725 xhci_cleanup_msix(xhci); 726 727 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 728 /* Tell the event ring poll function not to reschedule */ 729 xhci->zombie = 1; 730 del_timer_sync(&xhci->event_ring_timer); 731 #endif 732 733 /* Deleting Compliance Mode Recovery Timer */ 734 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 735 (!(xhci_all_ports_seen_u0(xhci)))) 736 del_timer_sync(&xhci->comp_mode_recovery_timer); 737 738 if (xhci->quirks & XHCI_AMD_PLL_FIX) 739 usb_amd_dev_put(); 740 741 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 742 temp = xhci_readl(xhci, &xhci->op_regs->status); 743 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 744 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 745 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 746 &xhci->ir_set->irq_pending); 747 xhci_print_ir_set(xhci, 0); 748 749 xhci_dbg(xhci, "cleaning up memory\n"); 750 xhci_mem_cleanup(xhci); 751 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 752 xhci_readl(xhci, &xhci->op_regs->status)); 753 } 754 755 /* 756 * Shutdown HC (not bus-specific) 757 * 758 * This is called when the machine is rebooting or halting. We assume that the 759 * machine will be powered off, and the HC's internal state will be reset. 760 * Don't bother to free memory. 761 * 762 * This will only ever be called with the main usb_hcd (the USB3 roothub). 763 */ 764 void xhci_shutdown(struct usb_hcd *hcd) 765 { 766 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 767 768 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 769 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 770 771 spin_lock_irq(&xhci->lock); 772 xhci_halt(xhci); 773 spin_unlock_irq(&xhci->lock); 774 775 xhci_cleanup_msix(xhci); 776 777 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n", 778 xhci_readl(xhci, &xhci->op_regs->status)); 779 } 780 781 #ifdef CONFIG_PM 782 static void xhci_save_registers(struct xhci_hcd *xhci) 783 { 784 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command); 785 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification); 786 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 787 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg); 788 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size); 789 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 790 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 791 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 792 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control); 793 } 794 795 static void xhci_restore_registers(struct xhci_hcd *xhci) 796 { 797 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command); 798 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 799 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 800 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg); 801 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size); 802 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 803 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 804 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 805 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control); 806 } 807 808 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 809 { 810 u64 val_64; 811 812 /* step 2: initialize command ring buffer */ 813 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 814 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 815 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 816 xhci->cmd_ring->dequeue) & 817 (u64) ~CMD_RING_RSVD_BITS) | 818 xhci->cmd_ring->cycle_state; 819 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n", 820 (long unsigned long) val_64); 821 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 822 } 823 824 /* 825 * The whole command ring must be cleared to zero when we suspend the host. 826 * 827 * The host doesn't save the command ring pointer in the suspend well, so we 828 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 829 * aligned, because of the reserved bits in the command ring dequeue pointer 830 * register. Therefore, we can't just set the dequeue pointer back in the 831 * middle of the ring (TRBs are 16-byte aligned). 832 */ 833 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 834 { 835 struct xhci_ring *ring; 836 struct xhci_segment *seg; 837 838 ring = xhci->cmd_ring; 839 seg = ring->deq_seg; 840 do { 841 memset(seg->trbs, 0, 842 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 843 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 844 cpu_to_le32(~TRB_CYCLE); 845 seg = seg->next; 846 } while (seg != ring->deq_seg); 847 848 /* Reset the software enqueue and dequeue pointers */ 849 ring->deq_seg = ring->first_seg; 850 ring->dequeue = ring->first_seg->trbs; 851 ring->enq_seg = ring->deq_seg; 852 ring->enqueue = ring->dequeue; 853 854 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 855 /* 856 * Ring is now zeroed, so the HW should look for change of ownership 857 * when the cycle bit is set to 1. 858 */ 859 ring->cycle_state = 1; 860 861 /* 862 * Reset the hardware dequeue pointer. 863 * Yes, this will need to be re-written after resume, but we're paranoid 864 * and want to make sure the hardware doesn't access bogus memory 865 * because, say, the BIOS or an SMI started the host without changing 866 * the command ring pointers. 867 */ 868 xhci_set_cmd_ring_deq(xhci); 869 } 870 871 /* 872 * Stop HC (not bus-specific) 873 * 874 * This is called when the machine transition into S3/S4 mode. 875 * 876 */ 877 int xhci_suspend(struct xhci_hcd *xhci) 878 { 879 int rc = 0; 880 struct usb_hcd *hcd = xhci_to_hcd(xhci); 881 u32 command; 882 883 if (hcd->state != HC_STATE_SUSPENDED || 884 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 885 return -EINVAL; 886 887 spin_lock_irq(&xhci->lock); 888 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 889 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 890 /* step 1: stop endpoint */ 891 /* skipped assuming that port suspend has done */ 892 893 /* step 2: clear Run/Stop bit */ 894 command = xhci_readl(xhci, &xhci->op_regs->command); 895 command &= ~CMD_RUN; 896 xhci_writel(xhci, command, &xhci->op_regs->command); 897 if (xhci_handshake(xhci, &xhci->op_regs->status, 898 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) { 899 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 900 spin_unlock_irq(&xhci->lock); 901 return -ETIMEDOUT; 902 } 903 xhci_clear_command_ring(xhci); 904 905 /* step 3: save registers */ 906 xhci_save_registers(xhci); 907 908 /* step 4: set CSS flag */ 909 command = xhci_readl(xhci, &xhci->op_regs->command); 910 command |= CMD_CSS; 911 xhci_writel(xhci, command, &xhci->op_regs->command); 912 if (xhci_handshake(xhci, &xhci->op_regs->status, 913 STS_SAVE, 0, 10 * 1000)) { 914 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 915 spin_unlock_irq(&xhci->lock); 916 return -ETIMEDOUT; 917 } 918 spin_unlock_irq(&xhci->lock); 919 920 /* 921 * Deleting Compliance Mode Recovery Timer because the xHCI Host 922 * is about to be suspended. 923 */ 924 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 925 (!(xhci_all_ports_seen_u0(xhci)))) { 926 del_timer_sync(&xhci->comp_mode_recovery_timer); 927 xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n"); 928 } 929 930 /* step 5: remove core well power */ 931 /* synchronize irq when using MSI-X */ 932 xhci_msix_sync_irqs(xhci); 933 934 return rc; 935 } 936 937 /* 938 * start xHC (not bus-specific) 939 * 940 * This is called when the machine transition from S3/S4 mode. 941 * 942 */ 943 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 944 { 945 u32 command, temp = 0; 946 struct usb_hcd *hcd = xhci_to_hcd(xhci); 947 struct usb_hcd *secondary_hcd; 948 int retval = 0; 949 950 /* Wait a bit if either of the roothubs need to settle from the 951 * transition into bus suspend. 952 */ 953 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 954 time_before(jiffies, 955 xhci->bus_state[1].next_statechange)) 956 msleep(100); 957 958 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 959 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 960 961 spin_lock_irq(&xhci->lock); 962 if (xhci->quirks & XHCI_RESET_ON_RESUME) 963 hibernated = true; 964 965 if (!hibernated) { 966 /* step 1: restore register */ 967 xhci_restore_registers(xhci); 968 /* step 2: initialize command ring buffer */ 969 xhci_set_cmd_ring_deq(xhci); 970 /* step 3: restore state and start state*/ 971 /* step 3: set CRS flag */ 972 command = xhci_readl(xhci, &xhci->op_regs->command); 973 command |= CMD_CRS; 974 xhci_writel(xhci, command, &xhci->op_regs->command); 975 if (xhci_handshake(xhci, &xhci->op_regs->status, 976 STS_RESTORE, 0, 10 * 1000)) { 977 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 978 spin_unlock_irq(&xhci->lock); 979 return -ETIMEDOUT; 980 } 981 temp = xhci_readl(xhci, &xhci->op_regs->status); 982 } 983 984 /* If restore operation fails, re-initialize the HC during resume */ 985 if ((temp & STS_SRE) || hibernated) { 986 /* Let the USB core know _both_ roothubs lost power. */ 987 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 988 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 989 990 xhci_dbg(xhci, "Stop HCD\n"); 991 xhci_halt(xhci); 992 xhci_reset(xhci); 993 spin_unlock_irq(&xhci->lock); 994 xhci_cleanup_msix(xhci); 995 996 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 997 /* Tell the event ring poll function not to reschedule */ 998 xhci->zombie = 1; 999 del_timer_sync(&xhci->event_ring_timer); 1000 #endif 1001 1002 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1003 temp = xhci_readl(xhci, &xhci->op_regs->status); 1004 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 1005 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 1006 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 1007 &xhci->ir_set->irq_pending); 1008 xhci_print_ir_set(xhci, 0); 1009 1010 xhci_dbg(xhci, "cleaning up memory\n"); 1011 xhci_mem_cleanup(xhci); 1012 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1013 xhci_readl(xhci, &xhci->op_regs->status)); 1014 1015 /* USB core calls the PCI reinit and start functions twice: 1016 * first with the primary HCD, and then with the secondary HCD. 1017 * If we don't do the same, the host will never be started. 1018 */ 1019 if (!usb_hcd_is_primary_hcd(hcd)) 1020 secondary_hcd = hcd; 1021 else 1022 secondary_hcd = xhci->shared_hcd; 1023 1024 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1025 retval = xhci_init(hcd->primary_hcd); 1026 if (retval) 1027 return retval; 1028 xhci_dbg(xhci, "Start the primary HCD\n"); 1029 retval = xhci_run(hcd->primary_hcd); 1030 if (!retval) { 1031 xhci_dbg(xhci, "Start the secondary HCD\n"); 1032 retval = xhci_run(secondary_hcd); 1033 } 1034 hcd->state = HC_STATE_SUSPENDED; 1035 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1036 goto done; 1037 } 1038 1039 /* step 4: set Run/Stop bit */ 1040 command = xhci_readl(xhci, &xhci->op_regs->command); 1041 command |= CMD_RUN; 1042 xhci_writel(xhci, command, &xhci->op_regs->command); 1043 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT, 1044 0, 250 * 1000); 1045 1046 /* step 5: walk topology and initialize portsc, 1047 * portpmsc and portli 1048 */ 1049 /* this is done in bus_resume */ 1050 1051 /* step 6: restart each of the previously 1052 * Running endpoints by ringing their doorbells 1053 */ 1054 1055 spin_unlock_irq(&xhci->lock); 1056 1057 done: 1058 if (retval == 0) { 1059 usb_hcd_resume_root_hub(hcd); 1060 usb_hcd_resume_root_hub(xhci->shared_hcd); 1061 } 1062 1063 /* 1064 * If system is subject to the Quirk, Compliance Mode Timer needs to 1065 * be re-initialized Always after a system resume. Ports are subject 1066 * to suffer the Compliance Mode issue again. It doesn't matter if 1067 * ports have entered previously to U0 before system's suspension. 1068 */ 1069 if (xhci->quirks & XHCI_COMP_MODE_QUIRK) 1070 compliance_mode_recovery_timer_init(xhci); 1071 1072 return retval; 1073 } 1074 #endif /* CONFIG_PM */ 1075 1076 /*-------------------------------------------------------------------------*/ 1077 1078 /** 1079 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1080 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1081 * value to right shift 1 for the bitmask. 1082 * 1083 * Index = (epnum * 2) + direction - 1, 1084 * where direction = 0 for OUT, 1 for IN. 1085 * For control endpoints, the IN index is used (OUT index is unused), so 1086 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1087 */ 1088 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1089 { 1090 unsigned int index; 1091 if (usb_endpoint_xfer_control(desc)) 1092 index = (unsigned int) (usb_endpoint_num(desc)*2); 1093 else 1094 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1095 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1096 return index; 1097 } 1098 1099 /* Find the flag for this endpoint (for use in the control context). Use the 1100 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1101 * bit 1, etc. 1102 */ 1103 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1104 { 1105 return 1 << (xhci_get_endpoint_index(desc) + 1); 1106 } 1107 1108 /* Find the flag for this endpoint (for use in the control context). Use the 1109 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1110 * bit 1, etc. 1111 */ 1112 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1113 { 1114 return 1 << (ep_index + 1); 1115 } 1116 1117 /* Compute the last valid endpoint context index. Basically, this is the 1118 * endpoint index plus one. For slot contexts with more than valid endpoint, 1119 * we find the most significant bit set in the added contexts flags. 1120 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1121 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1122 */ 1123 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1124 { 1125 return fls(added_ctxs) - 1; 1126 } 1127 1128 /* Returns 1 if the arguments are OK; 1129 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1130 */ 1131 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1132 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1133 const char *func) { 1134 struct xhci_hcd *xhci; 1135 struct xhci_virt_device *virt_dev; 1136 1137 if (!hcd || (check_ep && !ep) || !udev) { 1138 printk(KERN_DEBUG "xHCI %s called with invalid args\n", 1139 func); 1140 return -EINVAL; 1141 } 1142 if (!udev->parent) { 1143 printk(KERN_DEBUG "xHCI %s called for root hub\n", 1144 func); 1145 return 0; 1146 } 1147 1148 xhci = hcd_to_xhci(hcd); 1149 if (xhci->xhc_state & XHCI_STATE_HALTED) 1150 return -ENODEV; 1151 1152 if (check_virt_dev) { 1153 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1154 printk(KERN_DEBUG "xHCI %s called with unaddressed " 1155 "device\n", func); 1156 return -EINVAL; 1157 } 1158 1159 virt_dev = xhci->devs[udev->slot_id]; 1160 if (virt_dev->udev != udev) { 1161 printk(KERN_DEBUG "xHCI %s called with udev and " 1162 "virt_dev does not match\n", func); 1163 return -EINVAL; 1164 } 1165 } 1166 1167 return 1; 1168 } 1169 1170 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1171 struct usb_device *udev, struct xhci_command *command, 1172 bool ctx_change, bool must_succeed); 1173 1174 /* 1175 * Full speed devices may have a max packet size greater than 8 bytes, but the 1176 * USB core doesn't know that until it reads the first 8 bytes of the 1177 * descriptor. If the usb_device's max packet size changes after that point, 1178 * we need to issue an evaluate context command and wait on it. 1179 */ 1180 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1181 unsigned int ep_index, struct urb *urb) 1182 { 1183 struct xhci_container_ctx *in_ctx; 1184 struct xhci_container_ctx *out_ctx; 1185 struct xhci_input_control_ctx *ctrl_ctx; 1186 struct xhci_ep_ctx *ep_ctx; 1187 int max_packet_size; 1188 int hw_max_packet_size; 1189 int ret = 0; 1190 1191 out_ctx = xhci->devs[slot_id]->out_ctx; 1192 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1193 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1194 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1195 if (hw_max_packet_size != max_packet_size) { 1196 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n"); 1197 xhci_dbg(xhci, "Max packet size in usb_device = %d\n", 1198 max_packet_size); 1199 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n", 1200 hw_max_packet_size); 1201 xhci_dbg(xhci, "Issuing evaluate context command.\n"); 1202 1203 /* Set up the modified control endpoint 0 */ 1204 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1205 xhci->devs[slot_id]->out_ctx, ep_index); 1206 in_ctx = xhci->devs[slot_id]->in_ctx; 1207 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1208 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1209 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1210 1211 /* Set up the input context flags for the command */ 1212 /* FIXME: This won't work if a non-default control endpoint 1213 * changes max packet sizes. 1214 */ 1215 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1216 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1217 ctrl_ctx->drop_flags = 0; 1218 1219 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1220 xhci_dbg_ctx(xhci, in_ctx, ep_index); 1221 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1222 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1223 1224 ret = xhci_configure_endpoint(xhci, urb->dev, NULL, 1225 true, false); 1226 1227 /* Clean up the input context for later use by bandwidth 1228 * functions. 1229 */ 1230 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1231 } 1232 return ret; 1233 } 1234 1235 /* 1236 * non-error returns are a promise to giveback() the urb later 1237 * we drop ownership so next owner (or urb unlink) can get it 1238 */ 1239 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1240 { 1241 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1242 struct xhci_td *buffer; 1243 unsigned long flags; 1244 int ret = 0; 1245 unsigned int slot_id, ep_index; 1246 struct urb_priv *urb_priv; 1247 int size, i; 1248 1249 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1250 true, true, __func__) <= 0) 1251 return -EINVAL; 1252 1253 slot_id = urb->dev->slot_id; 1254 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1255 1256 if (!HCD_HW_ACCESSIBLE(hcd)) { 1257 if (!in_interrupt()) 1258 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1259 ret = -ESHUTDOWN; 1260 goto exit; 1261 } 1262 1263 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1264 size = urb->number_of_packets; 1265 else 1266 size = 1; 1267 1268 urb_priv = kzalloc(sizeof(struct urb_priv) + 1269 size * sizeof(struct xhci_td *), mem_flags); 1270 if (!urb_priv) 1271 return -ENOMEM; 1272 1273 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1274 if (!buffer) { 1275 kfree(urb_priv); 1276 return -ENOMEM; 1277 } 1278 1279 for (i = 0; i < size; i++) { 1280 urb_priv->td[i] = buffer; 1281 buffer++; 1282 } 1283 1284 urb_priv->length = size; 1285 urb_priv->td_cnt = 0; 1286 urb->hcpriv = urb_priv; 1287 1288 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1289 /* Check to see if the max packet size for the default control 1290 * endpoint changed during FS device enumeration 1291 */ 1292 if (urb->dev->speed == USB_SPEED_FULL) { 1293 ret = xhci_check_maxpacket(xhci, slot_id, 1294 ep_index, urb); 1295 if (ret < 0) { 1296 xhci_urb_free_priv(xhci, urb_priv); 1297 urb->hcpriv = NULL; 1298 return ret; 1299 } 1300 } 1301 1302 /* We have a spinlock and interrupts disabled, so we must pass 1303 * atomic context to this function, which may allocate memory. 1304 */ 1305 spin_lock_irqsave(&xhci->lock, flags); 1306 if (xhci->xhc_state & XHCI_STATE_DYING) 1307 goto dying; 1308 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1309 slot_id, ep_index); 1310 if (ret) 1311 goto free_priv; 1312 spin_unlock_irqrestore(&xhci->lock, flags); 1313 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1314 spin_lock_irqsave(&xhci->lock, flags); 1315 if (xhci->xhc_state & XHCI_STATE_DYING) 1316 goto dying; 1317 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1318 EP_GETTING_STREAMS) { 1319 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1320 "is transitioning to using streams.\n"); 1321 ret = -EINVAL; 1322 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1323 EP_GETTING_NO_STREAMS) { 1324 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1325 "is transitioning to " 1326 "not having streams.\n"); 1327 ret = -EINVAL; 1328 } else { 1329 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1330 slot_id, ep_index); 1331 } 1332 if (ret) 1333 goto free_priv; 1334 spin_unlock_irqrestore(&xhci->lock, flags); 1335 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1336 spin_lock_irqsave(&xhci->lock, flags); 1337 if (xhci->xhc_state & XHCI_STATE_DYING) 1338 goto dying; 1339 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1340 slot_id, ep_index); 1341 if (ret) 1342 goto free_priv; 1343 spin_unlock_irqrestore(&xhci->lock, flags); 1344 } else { 1345 spin_lock_irqsave(&xhci->lock, flags); 1346 if (xhci->xhc_state & XHCI_STATE_DYING) 1347 goto dying; 1348 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1349 slot_id, ep_index); 1350 if (ret) 1351 goto free_priv; 1352 spin_unlock_irqrestore(&xhci->lock, flags); 1353 } 1354 exit: 1355 return ret; 1356 dying: 1357 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1358 "non-responsive xHCI host.\n", 1359 urb->ep->desc.bEndpointAddress, urb); 1360 ret = -ESHUTDOWN; 1361 free_priv: 1362 xhci_urb_free_priv(xhci, urb_priv); 1363 urb->hcpriv = NULL; 1364 spin_unlock_irqrestore(&xhci->lock, flags); 1365 return ret; 1366 } 1367 1368 /* Get the right ring for the given URB. 1369 * If the endpoint supports streams, boundary check the URB's stream ID. 1370 * If the endpoint doesn't support streams, return the singular endpoint ring. 1371 */ 1372 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1373 struct urb *urb) 1374 { 1375 unsigned int slot_id; 1376 unsigned int ep_index; 1377 unsigned int stream_id; 1378 struct xhci_virt_ep *ep; 1379 1380 slot_id = urb->dev->slot_id; 1381 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1382 stream_id = urb->stream_id; 1383 ep = &xhci->devs[slot_id]->eps[ep_index]; 1384 /* Common case: no streams */ 1385 if (!(ep->ep_state & EP_HAS_STREAMS)) 1386 return ep->ring; 1387 1388 if (stream_id == 0) { 1389 xhci_warn(xhci, 1390 "WARN: Slot ID %u, ep index %u has streams, " 1391 "but URB has no stream ID.\n", 1392 slot_id, ep_index); 1393 return NULL; 1394 } 1395 1396 if (stream_id < ep->stream_info->num_streams) 1397 return ep->stream_info->stream_rings[stream_id]; 1398 1399 xhci_warn(xhci, 1400 "WARN: Slot ID %u, ep index %u has " 1401 "stream IDs 1 to %u allocated, " 1402 "but stream ID %u is requested.\n", 1403 slot_id, ep_index, 1404 ep->stream_info->num_streams - 1, 1405 stream_id); 1406 return NULL; 1407 } 1408 1409 /* 1410 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1411 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1412 * should pick up where it left off in the TD, unless a Set Transfer Ring 1413 * Dequeue Pointer is issued. 1414 * 1415 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1416 * the ring. Since the ring is a contiguous structure, they can't be physically 1417 * removed. Instead, there are two options: 1418 * 1419 * 1) If the HC is in the middle of processing the URB to be canceled, we 1420 * simply move the ring's dequeue pointer past those TRBs using the Set 1421 * Transfer Ring Dequeue Pointer command. This will be the common case, 1422 * when drivers timeout on the last submitted URB and attempt to cancel. 1423 * 1424 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1425 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1426 * HC will need to invalidate the any TRBs it has cached after the stop 1427 * endpoint command, as noted in the xHCI 0.95 errata. 1428 * 1429 * 3) The TD may have completed by the time the Stop Endpoint Command 1430 * completes, so software needs to handle that case too. 1431 * 1432 * This function should protect against the TD enqueueing code ringing the 1433 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1434 * It also needs to account for multiple cancellations on happening at the same 1435 * time for the same endpoint. 1436 * 1437 * Note that this function can be called in any context, or so says 1438 * usb_hcd_unlink_urb() 1439 */ 1440 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1441 { 1442 unsigned long flags; 1443 int ret, i; 1444 u32 temp; 1445 struct xhci_hcd *xhci; 1446 struct urb_priv *urb_priv; 1447 struct xhci_td *td; 1448 unsigned int ep_index; 1449 struct xhci_ring *ep_ring; 1450 struct xhci_virt_ep *ep; 1451 1452 xhci = hcd_to_xhci(hcd); 1453 spin_lock_irqsave(&xhci->lock, flags); 1454 /* Make sure the URB hasn't completed or been unlinked already */ 1455 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1456 if (ret || !urb->hcpriv) 1457 goto done; 1458 temp = xhci_readl(xhci, &xhci->op_regs->status); 1459 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1460 xhci_dbg(xhci, "HW died, freeing TD.\n"); 1461 urb_priv = urb->hcpriv; 1462 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1463 td = urb_priv->td[i]; 1464 if (!list_empty(&td->td_list)) 1465 list_del_init(&td->td_list); 1466 if (!list_empty(&td->cancelled_td_list)) 1467 list_del_init(&td->cancelled_td_list); 1468 } 1469 1470 usb_hcd_unlink_urb_from_ep(hcd, urb); 1471 spin_unlock_irqrestore(&xhci->lock, flags); 1472 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1473 xhci_urb_free_priv(xhci, urb_priv); 1474 return ret; 1475 } 1476 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1477 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1478 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on " 1479 "non-responsive xHCI host.\n", 1480 urb->ep->desc.bEndpointAddress, urb); 1481 /* Let the stop endpoint command watchdog timer (which set this 1482 * state) finish cleaning up the endpoint TD lists. We must 1483 * have caught it in the middle of dropping a lock and giving 1484 * back an URB. 1485 */ 1486 goto done; 1487 } 1488 1489 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1490 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1491 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1492 if (!ep_ring) { 1493 ret = -EINVAL; 1494 goto done; 1495 } 1496 1497 urb_priv = urb->hcpriv; 1498 i = urb_priv->td_cnt; 1499 if (i < urb_priv->length) 1500 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, " 1501 "starting at offset 0x%llx\n", 1502 urb, urb->dev->devpath, 1503 urb->ep->desc.bEndpointAddress, 1504 (unsigned long long) xhci_trb_virt_to_dma( 1505 urb_priv->td[i]->start_seg, 1506 urb_priv->td[i]->first_trb)); 1507 1508 for (; i < urb_priv->length; i++) { 1509 td = urb_priv->td[i]; 1510 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1511 } 1512 1513 /* Queue a stop endpoint command, but only if this is 1514 * the first cancellation to be handled. 1515 */ 1516 if (!(ep->ep_state & EP_HALT_PENDING)) { 1517 ep->ep_state |= EP_HALT_PENDING; 1518 ep->stop_cmds_pending++; 1519 ep->stop_cmd_timer.expires = jiffies + 1520 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1521 add_timer(&ep->stop_cmd_timer); 1522 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0); 1523 xhci_ring_cmd_db(xhci); 1524 } 1525 done: 1526 spin_unlock_irqrestore(&xhci->lock, flags); 1527 return ret; 1528 } 1529 1530 /* Drop an endpoint from a new bandwidth configuration for this device. 1531 * Only one call to this function is allowed per endpoint before 1532 * check_bandwidth() or reset_bandwidth() must be called. 1533 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1534 * add the endpoint to the schedule with possibly new parameters denoted by a 1535 * different endpoint descriptor in usb_host_endpoint. 1536 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1537 * not allowed. 1538 * 1539 * The USB core will not allow URBs to be queued to an endpoint that is being 1540 * disabled, so there's no need for mutual exclusion to protect 1541 * the xhci->devs[slot_id] structure. 1542 */ 1543 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1544 struct usb_host_endpoint *ep) 1545 { 1546 struct xhci_hcd *xhci; 1547 struct xhci_container_ctx *in_ctx, *out_ctx; 1548 struct xhci_input_control_ctx *ctrl_ctx; 1549 struct xhci_slot_ctx *slot_ctx; 1550 unsigned int last_ctx; 1551 unsigned int ep_index; 1552 struct xhci_ep_ctx *ep_ctx; 1553 u32 drop_flag; 1554 u32 new_add_flags, new_drop_flags, new_slot_info; 1555 int ret; 1556 1557 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1558 if (ret <= 0) 1559 return ret; 1560 xhci = hcd_to_xhci(hcd); 1561 if (xhci->xhc_state & XHCI_STATE_DYING) 1562 return -ENODEV; 1563 1564 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1565 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1566 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1567 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1568 __func__, drop_flag); 1569 return 0; 1570 } 1571 1572 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1573 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1574 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1575 ep_index = xhci_get_endpoint_index(&ep->desc); 1576 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1577 /* If the HC already knows the endpoint is disabled, 1578 * or the HCD has noted it is disabled, ignore this request 1579 */ 1580 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1581 cpu_to_le32(EP_STATE_DISABLED)) || 1582 le32_to_cpu(ctrl_ctx->drop_flags) & 1583 xhci_get_endpoint_flag(&ep->desc)) { 1584 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1585 __func__, ep); 1586 return 0; 1587 } 1588 1589 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1590 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1591 1592 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1593 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1594 1595 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)); 1596 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1597 /* Update the last valid endpoint context, if we deleted the last one */ 1598 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) > 1599 LAST_CTX(last_ctx)) { 1600 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1601 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1602 } 1603 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1604 1605 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1606 1607 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1608 (unsigned int) ep->desc.bEndpointAddress, 1609 udev->slot_id, 1610 (unsigned int) new_drop_flags, 1611 (unsigned int) new_add_flags, 1612 (unsigned int) new_slot_info); 1613 return 0; 1614 } 1615 1616 /* Add an endpoint to a new possible bandwidth configuration for this device. 1617 * Only one call to this function is allowed per endpoint before 1618 * check_bandwidth() or reset_bandwidth() must be called. 1619 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1620 * add the endpoint to the schedule with possibly new parameters denoted by a 1621 * different endpoint descriptor in usb_host_endpoint. 1622 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1623 * not allowed. 1624 * 1625 * The USB core will not allow URBs to be queued to an endpoint until the 1626 * configuration or alt setting is installed in the device, so there's no need 1627 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1628 */ 1629 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1630 struct usb_host_endpoint *ep) 1631 { 1632 struct xhci_hcd *xhci; 1633 struct xhci_container_ctx *in_ctx, *out_ctx; 1634 unsigned int ep_index; 1635 struct xhci_slot_ctx *slot_ctx; 1636 struct xhci_input_control_ctx *ctrl_ctx; 1637 u32 added_ctxs; 1638 unsigned int last_ctx; 1639 u32 new_add_flags, new_drop_flags, new_slot_info; 1640 struct xhci_virt_device *virt_dev; 1641 int ret = 0; 1642 1643 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1644 if (ret <= 0) { 1645 /* So we won't queue a reset ep command for a root hub */ 1646 ep->hcpriv = NULL; 1647 return ret; 1648 } 1649 xhci = hcd_to_xhci(hcd); 1650 if (xhci->xhc_state & XHCI_STATE_DYING) 1651 return -ENODEV; 1652 1653 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1654 last_ctx = xhci_last_valid_endpoint(added_ctxs); 1655 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1656 /* FIXME when we have to issue an evaluate endpoint command to 1657 * deal with ep0 max packet size changing once we get the 1658 * descriptors 1659 */ 1660 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1661 __func__, added_ctxs); 1662 return 0; 1663 } 1664 1665 virt_dev = xhci->devs[udev->slot_id]; 1666 in_ctx = virt_dev->in_ctx; 1667 out_ctx = virt_dev->out_ctx; 1668 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1669 ep_index = xhci_get_endpoint_index(&ep->desc); 1670 1671 /* If this endpoint is already in use, and the upper layers are trying 1672 * to add it again without dropping it, reject the addition. 1673 */ 1674 if (virt_dev->eps[ep_index].ring && 1675 !(le32_to_cpu(ctrl_ctx->drop_flags) & 1676 xhci_get_endpoint_flag(&ep->desc))) { 1677 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1678 "without dropping it.\n", 1679 (unsigned int) ep->desc.bEndpointAddress); 1680 return -EINVAL; 1681 } 1682 1683 /* If the HCD has already noted the endpoint is enabled, 1684 * ignore this request. 1685 */ 1686 if (le32_to_cpu(ctrl_ctx->add_flags) & 1687 xhci_get_endpoint_flag(&ep->desc)) { 1688 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1689 __func__, ep); 1690 return 0; 1691 } 1692 1693 /* 1694 * Configuration and alternate setting changes must be done in 1695 * process context, not interrupt context (or so documenation 1696 * for usb_set_interface() and usb_set_configuration() claim). 1697 */ 1698 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1699 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1700 __func__, ep->desc.bEndpointAddress); 1701 return -ENOMEM; 1702 } 1703 1704 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1705 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1706 1707 /* If xhci_endpoint_disable() was called for this endpoint, but the 1708 * xHC hasn't been notified yet through the check_bandwidth() call, 1709 * this re-adds a new state for the endpoint from the new endpoint 1710 * descriptors. We must drop and re-add this endpoint, so we leave the 1711 * drop flags alone. 1712 */ 1713 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1714 1715 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1716 /* Update the last valid endpoint context, if we just added one past */ 1717 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) < 1718 LAST_CTX(last_ctx)) { 1719 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1720 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1721 } 1722 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1723 1724 /* Store the usb_device pointer for later use */ 1725 ep->hcpriv = udev; 1726 1727 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1728 (unsigned int) ep->desc.bEndpointAddress, 1729 udev->slot_id, 1730 (unsigned int) new_drop_flags, 1731 (unsigned int) new_add_flags, 1732 (unsigned int) new_slot_info); 1733 return 0; 1734 } 1735 1736 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1737 { 1738 struct xhci_input_control_ctx *ctrl_ctx; 1739 struct xhci_ep_ctx *ep_ctx; 1740 struct xhci_slot_ctx *slot_ctx; 1741 int i; 1742 1743 /* When a device's add flag and drop flag are zero, any subsequent 1744 * configure endpoint command will leave that endpoint's state 1745 * untouched. Make sure we don't leave any old state in the input 1746 * endpoint contexts. 1747 */ 1748 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1749 ctrl_ctx->drop_flags = 0; 1750 ctrl_ctx->add_flags = 0; 1751 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1752 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1753 /* Endpoint 0 is always valid */ 1754 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1755 for (i = 1; i < 31; ++i) { 1756 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1757 ep_ctx->ep_info = 0; 1758 ep_ctx->ep_info2 = 0; 1759 ep_ctx->deq = 0; 1760 ep_ctx->tx_info = 0; 1761 } 1762 } 1763 1764 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1765 struct usb_device *udev, u32 *cmd_status) 1766 { 1767 int ret; 1768 1769 switch (*cmd_status) { 1770 case COMP_ENOMEM: 1771 dev_warn(&udev->dev, "Not enough host controller resources " 1772 "for new device state.\n"); 1773 ret = -ENOMEM; 1774 /* FIXME: can we allocate more resources for the HC? */ 1775 break; 1776 case COMP_BW_ERR: 1777 case COMP_2ND_BW_ERR: 1778 dev_warn(&udev->dev, "Not enough bandwidth " 1779 "for new device state.\n"); 1780 ret = -ENOSPC; 1781 /* FIXME: can we go back to the old state? */ 1782 break; 1783 case COMP_TRB_ERR: 1784 /* the HCD set up something wrong */ 1785 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1786 "add flag = 1, " 1787 "and endpoint is not disabled.\n"); 1788 ret = -EINVAL; 1789 break; 1790 case COMP_DEV_ERR: 1791 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint " 1792 "configure command.\n"); 1793 ret = -ENODEV; 1794 break; 1795 case COMP_SUCCESS: 1796 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n"); 1797 ret = 0; 1798 break; 1799 default: 1800 xhci_err(xhci, "ERROR: unexpected command completion " 1801 "code 0x%x.\n", *cmd_status); 1802 ret = -EINVAL; 1803 break; 1804 } 1805 return ret; 1806 } 1807 1808 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1809 struct usb_device *udev, u32 *cmd_status) 1810 { 1811 int ret; 1812 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1813 1814 switch (*cmd_status) { 1815 case COMP_EINVAL: 1816 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " 1817 "context command.\n"); 1818 ret = -EINVAL; 1819 break; 1820 case COMP_EBADSLT: 1821 dev_warn(&udev->dev, "WARN: slot not enabled for" 1822 "evaluate context command.\n"); 1823 ret = -EINVAL; 1824 break; 1825 case COMP_CTX_STATE: 1826 dev_warn(&udev->dev, "WARN: invalid context state for " 1827 "evaluate context command.\n"); 1828 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1829 ret = -EINVAL; 1830 break; 1831 case COMP_DEV_ERR: 1832 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate " 1833 "context command.\n"); 1834 ret = -ENODEV; 1835 break; 1836 case COMP_MEL_ERR: 1837 /* Max Exit Latency too large error */ 1838 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1839 ret = -EINVAL; 1840 break; 1841 case COMP_SUCCESS: 1842 dev_dbg(&udev->dev, "Successful evaluate context command\n"); 1843 ret = 0; 1844 break; 1845 default: 1846 xhci_err(xhci, "ERROR: unexpected command completion " 1847 "code 0x%x.\n", *cmd_status); 1848 ret = -EINVAL; 1849 break; 1850 } 1851 return ret; 1852 } 1853 1854 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1855 struct xhci_container_ctx *in_ctx) 1856 { 1857 struct xhci_input_control_ctx *ctrl_ctx; 1858 u32 valid_add_flags; 1859 u32 valid_drop_flags; 1860 1861 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1862 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1863 * (bit 1). The default control endpoint is added during the Address 1864 * Device command and is never removed until the slot is disabled. 1865 */ 1866 valid_add_flags = ctrl_ctx->add_flags >> 2; 1867 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1868 1869 /* Use hweight32 to count the number of ones in the add flags, or 1870 * number of endpoints added. Don't count endpoints that are changed 1871 * (both added and dropped). 1872 */ 1873 return hweight32(valid_add_flags) - 1874 hweight32(valid_add_flags & valid_drop_flags); 1875 } 1876 1877 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1878 struct xhci_container_ctx *in_ctx) 1879 { 1880 struct xhci_input_control_ctx *ctrl_ctx; 1881 u32 valid_add_flags; 1882 u32 valid_drop_flags; 1883 1884 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1885 valid_add_flags = ctrl_ctx->add_flags >> 2; 1886 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1887 1888 return hweight32(valid_drop_flags) - 1889 hweight32(valid_add_flags & valid_drop_flags); 1890 } 1891 1892 /* 1893 * We need to reserve the new number of endpoints before the configure endpoint 1894 * command completes. We can't subtract the dropped endpoints from the number 1895 * of active endpoints until the command completes because we can oversubscribe 1896 * the host in this case: 1897 * 1898 * - the first configure endpoint command drops more endpoints than it adds 1899 * - a second configure endpoint command that adds more endpoints is queued 1900 * - the first configure endpoint command fails, so the config is unchanged 1901 * - the second command may succeed, even though there isn't enough resources 1902 * 1903 * Must be called with xhci->lock held. 1904 */ 1905 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1906 struct xhci_container_ctx *in_ctx) 1907 { 1908 u32 added_eps; 1909 1910 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx); 1911 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1912 xhci_dbg(xhci, "Not enough ep ctxs: " 1913 "%u active, need to add %u, limit is %u.\n", 1914 xhci->num_active_eps, added_eps, 1915 xhci->limit_active_eps); 1916 return -ENOMEM; 1917 } 1918 xhci->num_active_eps += added_eps; 1919 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps, 1920 xhci->num_active_eps); 1921 return 0; 1922 } 1923 1924 /* 1925 * The configure endpoint was failed by the xHC for some other reason, so we 1926 * need to revert the resources that failed configuration would have used. 1927 * 1928 * Must be called with xhci->lock held. 1929 */ 1930 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1931 struct xhci_container_ctx *in_ctx) 1932 { 1933 u32 num_failed_eps; 1934 1935 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx); 1936 xhci->num_active_eps -= num_failed_eps; 1937 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n", 1938 num_failed_eps, 1939 xhci->num_active_eps); 1940 } 1941 1942 /* 1943 * Now that the command has completed, clean up the active endpoint count by 1944 * subtracting out the endpoints that were dropped (but not changed). 1945 * 1946 * Must be called with xhci->lock held. 1947 */ 1948 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1949 struct xhci_container_ctx *in_ctx) 1950 { 1951 u32 num_dropped_eps; 1952 1953 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx); 1954 xhci->num_active_eps -= num_dropped_eps; 1955 if (num_dropped_eps) 1956 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n", 1957 num_dropped_eps, 1958 xhci->num_active_eps); 1959 } 1960 1961 static unsigned int xhci_get_block_size(struct usb_device *udev) 1962 { 1963 switch (udev->speed) { 1964 case USB_SPEED_LOW: 1965 case USB_SPEED_FULL: 1966 return FS_BLOCK; 1967 case USB_SPEED_HIGH: 1968 return HS_BLOCK; 1969 case USB_SPEED_SUPER: 1970 return SS_BLOCK; 1971 case USB_SPEED_UNKNOWN: 1972 case USB_SPEED_WIRELESS: 1973 default: 1974 /* Should never happen */ 1975 return 1; 1976 } 1977 } 1978 1979 static unsigned int 1980 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 1981 { 1982 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 1983 return LS_OVERHEAD; 1984 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 1985 return FS_OVERHEAD; 1986 return HS_OVERHEAD; 1987 } 1988 1989 /* If we are changing a LS/FS device under a HS hub, 1990 * make sure (if we are activating a new TT) that the HS bus has enough 1991 * bandwidth for this new TT. 1992 */ 1993 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 1994 struct xhci_virt_device *virt_dev, 1995 int old_active_eps) 1996 { 1997 struct xhci_interval_bw_table *bw_table; 1998 struct xhci_tt_bw_info *tt_info; 1999 2000 /* Find the bandwidth table for the root port this TT is attached to. */ 2001 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2002 tt_info = virt_dev->tt_info; 2003 /* If this TT already had active endpoints, the bandwidth for this TT 2004 * has already been added. Removing all periodic endpoints (and thus 2005 * making the TT enactive) will only decrease the bandwidth used. 2006 */ 2007 if (old_active_eps) 2008 return 0; 2009 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2010 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2011 return -ENOMEM; 2012 return 0; 2013 } 2014 /* Not sure why we would have no new active endpoints... 2015 * 2016 * Maybe because of an Evaluate Context change for a hub update or a 2017 * control endpoint 0 max packet size change? 2018 * FIXME: skip the bandwidth calculation in that case. 2019 */ 2020 return 0; 2021 } 2022 2023 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2024 struct xhci_virt_device *virt_dev) 2025 { 2026 unsigned int bw_reserved; 2027 2028 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2029 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2030 return -ENOMEM; 2031 2032 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2033 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2034 return -ENOMEM; 2035 2036 return 0; 2037 } 2038 2039 /* 2040 * This algorithm is a very conservative estimate of the worst-case scheduling 2041 * scenario for any one interval. The hardware dynamically schedules the 2042 * packets, so we can't tell which microframe could be the limiting factor in 2043 * the bandwidth scheduling. This only takes into account periodic endpoints. 2044 * 2045 * Obviously, we can't solve an NP complete problem to find the minimum worst 2046 * case scenario. Instead, we come up with an estimate that is no less than 2047 * the worst case bandwidth used for any one microframe, but may be an 2048 * over-estimate. 2049 * 2050 * We walk the requirements for each endpoint by interval, starting with the 2051 * smallest interval, and place packets in the schedule where there is only one 2052 * possible way to schedule packets for that interval. In order to simplify 2053 * this algorithm, we record the largest max packet size for each interval, and 2054 * assume all packets will be that size. 2055 * 2056 * For interval 0, we obviously must schedule all packets for each interval. 2057 * The bandwidth for interval 0 is just the amount of data to be transmitted 2058 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2059 * the number of packets). 2060 * 2061 * For interval 1, we have two possible microframes to schedule those packets 2062 * in. For this algorithm, if we can schedule the same number of packets for 2063 * each possible scheduling opportunity (each microframe), we will do so. The 2064 * remaining number of packets will be saved to be transmitted in the gaps in 2065 * the next interval's scheduling sequence. 2066 * 2067 * As we move those remaining packets to be scheduled with interval 2 packets, 2068 * we have to double the number of remaining packets to transmit. This is 2069 * because the intervals are actually powers of 2, and we would be transmitting 2070 * the previous interval's packets twice in this interval. We also have to be 2071 * sure that when we look at the largest max packet size for this interval, we 2072 * also look at the largest max packet size for the remaining packets and take 2073 * the greater of the two. 2074 * 2075 * The algorithm continues to evenly distribute packets in each scheduling 2076 * opportunity, and push the remaining packets out, until we get to the last 2077 * interval. Then those packets and their associated overhead are just added 2078 * to the bandwidth used. 2079 */ 2080 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2081 struct xhci_virt_device *virt_dev, 2082 int old_active_eps) 2083 { 2084 unsigned int bw_reserved; 2085 unsigned int max_bandwidth; 2086 unsigned int bw_used; 2087 unsigned int block_size; 2088 struct xhci_interval_bw_table *bw_table; 2089 unsigned int packet_size = 0; 2090 unsigned int overhead = 0; 2091 unsigned int packets_transmitted = 0; 2092 unsigned int packets_remaining = 0; 2093 unsigned int i; 2094 2095 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2096 return xhci_check_ss_bw(xhci, virt_dev); 2097 2098 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2099 max_bandwidth = HS_BW_LIMIT; 2100 /* Convert percent of bus BW reserved to blocks reserved */ 2101 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2102 } else { 2103 max_bandwidth = FS_BW_LIMIT; 2104 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2105 } 2106 2107 bw_table = virt_dev->bw_table; 2108 /* We need to translate the max packet size and max ESIT payloads into 2109 * the units the hardware uses. 2110 */ 2111 block_size = xhci_get_block_size(virt_dev->udev); 2112 2113 /* If we are manipulating a LS/FS device under a HS hub, double check 2114 * that the HS bus has enough bandwidth if we are activing a new TT. 2115 */ 2116 if (virt_dev->tt_info) { 2117 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 2118 virt_dev->real_port); 2119 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2120 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2121 "newly activated TT.\n"); 2122 return -ENOMEM; 2123 } 2124 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n", 2125 virt_dev->tt_info->slot_id, 2126 virt_dev->tt_info->ttport); 2127 } else { 2128 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 2129 virt_dev->real_port); 2130 } 2131 2132 /* Add in how much bandwidth will be used for interval zero, or the 2133 * rounded max ESIT payload + number of packets * largest overhead. 2134 */ 2135 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2136 bw_table->interval_bw[0].num_packets * 2137 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2138 2139 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2140 unsigned int bw_added; 2141 unsigned int largest_mps; 2142 unsigned int interval_overhead; 2143 2144 /* 2145 * How many packets could we transmit in this interval? 2146 * If packets didn't fit in the previous interval, we will need 2147 * to transmit that many packets twice within this interval. 2148 */ 2149 packets_remaining = 2 * packets_remaining + 2150 bw_table->interval_bw[i].num_packets; 2151 2152 /* Find the largest max packet size of this or the previous 2153 * interval. 2154 */ 2155 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2156 largest_mps = 0; 2157 else { 2158 struct xhci_virt_ep *virt_ep; 2159 struct list_head *ep_entry; 2160 2161 ep_entry = bw_table->interval_bw[i].endpoints.next; 2162 virt_ep = list_entry(ep_entry, 2163 struct xhci_virt_ep, bw_endpoint_list); 2164 /* Convert to blocks, rounding up */ 2165 largest_mps = DIV_ROUND_UP( 2166 virt_ep->bw_info.max_packet_size, 2167 block_size); 2168 } 2169 if (largest_mps > packet_size) 2170 packet_size = largest_mps; 2171 2172 /* Use the larger overhead of this or the previous interval. */ 2173 interval_overhead = xhci_get_largest_overhead( 2174 &bw_table->interval_bw[i]); 2175 if (interval_overhead > overhead) 2176 overhead = interval_overhead; 2177 2178 /* How many packets can we evenly distribute across 2179 * (1 << (i + 1)) possible scheduling opportunities? 2180 */ 2181 packets_transmitted = packets_remaining >> (i + 1); 2182 2183 /* Add in the bandwidth used for those scheduled packets */ 2184 bw_added = packets_transmitted * (overhead + packet_size); 2185 2186 /* How many packets do we have remaining to transmit? */ 2187 packets_remaining = packets_remaining % (1 << (i + 1)); 2188 2189 /* What largest max packet size should those packets have? */ 2190 /* If we've transmitted all packets, don't carry over the 2191 * largest packet size. 2192 */ 2193 if (packets_remaining == 0) { 2194 packet_size = 0; 2195 overhead = 0; 2196 } else if (packets_transmitted > 0) { 2197 /* Otherwise if we do have remaining packets, and we've 2198 * scheduled some packets in this interval, take the 2199 * largest max packet size from endpoints with this 2200 * interval. 2201 */ 2202 packet_size = largest_mps; 2203 overhead = interval_overhead; 2204 } 2205 /* Otherwise carry over packet_size and overhead from the last 2206 * time we had a remainder. 2207 */ 2208 bw_used += bw_added; 2209 if (bw_used > max_bandwidth) { 2210 xhci_warn(xhci, "Not enough bandwidth. " 2211 "Proposed: %u, Max: %u\n", 2212 bw_used, max_bandwidth); 2213 return -ENOMEM; 2214 } 2215 } 2216 /* 2217 * Ok, we know we have some packets left over after even-handedly 2218 * scheduling interval 15. We don't know which microframes they will 2219 * fit into, so we over-schedule and say they will be scheduled every 2220 * microframe. 2221 */ 2222 if (packets_remaining > 0) 2223 bw_used += overhead + packet_size; 2224 2225 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2226 unsigned int port_index = virt_dev->real_port - 1; 2227 2228 /* OK, we're manipulating a HS device attached to a 2229 * root port bandwidth domain. Include the number of active TTs 2230 * in the bandwidth used. 2231 */ 2232 bw_used += TT_HS_OVERHEAD * 2233 xhci->rh_bw[port_index].num_active_tts; 2234 } 2235 2236 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2237 "Available: %u " "percent\n", 2238 bw_used, max_bandwidth, bw_reserved, 2239 (max_bandwidth - bw_used - bw_reserved) * 100 / 2240 max_bandwidth); 2241 2242 bw_used += bw_reserved; 2243 if (bw_used > max_bandwidth) { 2244 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2245 bw_used, max_bandwidth); 2246 return -ENOMEM; 2247 } 2248 2249 bw_table->bw_used = bw_used; 2250 return 0; 2251 } 2252 2253 static bool xhci_is_async_ep(unsigned int ep_type) 2254 { 2255 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2256 ep_type != ISOC_IN_EP && 2257 ep_type != INT_IN_EP); 2258 } 2259 2260 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2261 { 2262 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2263 } 2264 2265 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2266 { 2267 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2268 2269 if (ep_bw->ep_interval == 0) 2270 return SS_OVERHEAD_BURST + 2271 (ep_bw->mult * ep_bw->num_packets * 2272 (SS_OVERHEAD + mps)); 2273 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2274 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2275 1 << ep_bw->ep_interval); 2276 2277 } 2278 2279 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2280 struct xhci_bw_info *ep_bw, 2281 struct xhci_interval_bw_table *bw_table, 2282 struct usb_device *udev, 2283 struct xhci_virt_ep *virt_ep, 2284 struct xhci_tt_bw_info *tt_info) 2285 { 2286 struct xhci_interval_bw *interval_bw; 2287 int normalized_interval; 2288 2289 if (xhci_is_async_ep(ep_bw->type)) 2290 return; 2291 2292 if (udev->speed == USB_SPEED_SUPER) { 2293 if (xhci_is_sync_in_ep(ep_bw->type)) 2294 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2295 xhci_get_ss_bw_consumed(ep_bw); 2296 else 2297 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2298 xhci_get_ss_bw_consumed(ep_bw); 2299 return; 2300 } 2301 2302 /* SuperSpeed endpoints never get added to intervals in the table, so 2303 * this check is only valid for HS/FS/LS devices. 2304 */ 2305 if (list_empty(&virt_ep->bw_endpoint_list)) 2306 return; 2307 /* For LS/FS devices, we need to translate the interval expressed in 2308 * microframes to frames. 2309 */ 2310 if (udev->speed == USB_SPEED_HIGH) 2311 normalized_interval = ep_bw->ep_interval; 2312 else 2313 normalized_interval = ep_bw->ep_interval - 3; 2314 2315 if (normalized_interval == 0) 2316 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2317 interval_bw = &bw_table->interval_bw[normalized_interval]; 2318 interval_bw->num_packets -= ep_bw->num_packets; 2319 switch (udev->speed) { 2320 case USB_SPEED_LOW: 2321 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2322 break; 2323 case USB_SPEED_FULL: 2324 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2325 break; 2326 case USB_SPEED_HIGH: 2327 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2328 break; 2329 case USB_SPEED_SUPER: 2330 case USB_SPEED_UNKNOWN: 2331 case USB_SPEED_WIRELESS: 2332 /* Should never happen because only LS/FS/HS endpoints will get 2333 * added to the endpoint list. 2334 */ 2335 return; 2336 } 2337 if (tt_info) 2338 tt_info->active_eps -= 1; 2339 list_del_init(&virt_ep->bw_endpoint_list); 2340 } 2341 2342 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2343 struct xhci_bw_info *ep_bw, 2344 struct xhci_interval_bw_table *bw_table, 2345 struct usb_device *udev, 2346 struct xhci_virt_ep *virt_ep, 2347 struct xhci_tt_bw_info *tt_info) 2348 { 2349 struct xhci_interval_bw *interval_bw; 2350 struct xhci_virt_ep *smaller_ep; 2351 int normalized_interval; 2352 2353 if (xhci_is_async_ep(ep_bw->type)) 2354 return; 2355 2356 if (udev->speed == USB_SPEED_SUPER) { 2357 if (xhci_is_sync_in_ep(ep_bw->type)) 2358 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2359 xhci_get_ss_bw_consumed(ep_bw); 2360 else 2361 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2362 xhci_get_ss_bw_consumed(ep_bw); 2363 return; 2364 } 2365 2366 /* For LS/FS devices, we need to translate the interval expressed in 2367 * microframes to frames. 2368 */ 2369 if (udev->speed == USB_SPEED_HIGH) 2370 normalized_interval = ep_bw->ep_interval; 2371 else 2372 normalized_interval = ep_bw->ep_interval - 3; 2373 2374 if (normalized_interval == 0) 2375 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2376 interval_bw = &bw_table->interval_bw[normalized_interval]; 2377 interval_bw->num_packets += ep_bw->num_packets; 2378 switch (udev->speed) { 2379 case USB_SPEED_LOW: 2380 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2381 break; 2382 case USB_SPEED_FULL: 2383 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2384 break; 2385 case USB_SPEED_HIGH: 2386 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2387 break; 2388 case USB_SPEED_SUPER: 2389 case USB_SPEED_UNKNOWN: 2390 case USB_SPEED_WIRELESS: 2391 /* Should never happen because only LS/FS/HS endpoints will get 2392 * added to the endpoint list. 2393 */ 2394 return; 2395 } 2396 2397 if (tt_info) 2398 tt_info->active_eps += 1; 2399 /* Insert the endpoint into the list, largest max packet size first. */ 2400 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2401 bw_endpoint_list) { 2402 if (ep_bw->max_packet_size >= 2403 smaller_ep->bw_info.max_packet_size) { 2404 /* Add the new ep before the smaller endpoint */ 2405 list_add_tail(&virt_ep->bw_endpoint_list, 2406 &smaller_ep->bw_endpoint_list); 2407 return; 2408 } 2409 } 2410 /* Add the new endpoint at the end of the list. */ 2411 list_add_tail(&virt_ep->bw_endpoint_list, 2412 &interval_bw->endpoints); 2413 } 2414 2415 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2416 struct xhci_virt_device *virt_dev, 2417 int old_active_eps) 2418 { 2419 struct xhci_root_port_bw_info *rh_bw_info; 2420 if (!virt_dev->tt_info) 2421 return; 2422 2423 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2424 if (old_active_eps == 0 && 2425 virt_dev->tt_info->active_eps != 0) { 2426 rh_bw_info->num_active_tts += 1; 2427 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2428 } else if (old_active_eps != 0 && 2429 virt_dev->tt_info->active_eps == 0) { 2430 rh_bw_info->num_active_tts -= 1; 2431 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2432 } 2433 } 2434 2435 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2436 struct xhci_virt_device *virt_dev, 2437 struct xhci_container_ctx *in_ctx) 2438 { 2439 struct xhci_bw_info ep_bw_info[31]; 2440 int i; 2441 struct xhci_input_control_ctx *ctrl_ctx; 2442 int old_active_eps = 0; 2443 2444 if (virt_dev->tt_info) 2445 old_active_eps = virt_dev->tt_info->active_eps; 2446 2447 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2448 2449 for (i = 0; i < 31; i++) { 2450 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2451 continue; 2452 2453 /* Make a copy of the BW info in case we need to revert this */ 2454 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2455 sizeof(ep_bw_info[i])); 2456 /* Drop the endpoint from the interval table if the endpoint is 2457 * being dropped or changed. 2458 */ 2459 if (EP_IS_DROPPED(ctrl_ctx, i)) 2460 xhci_drop_ep_from_interval_table(xhci, 2461 &virt_dev->eps[i].bw_info, 2462 virt_dev->bw_table, 2463 virt_dev->udev, 2464 &virt_dev->eps[i], 2465 virt_dev->tt_info); 2466 } 2467 /* Overwrite the information stored in the endpoints' bw_info */ 2468 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2469 for (i = 0; i < 31; i++) { 2470 /* Add any changed or added endpoints to the interval table */ 2471 if (EP_IS_ADDED(ctrl_ctx, i)) 2472 xhci_add_ep_to_interval_table(xhci, 2473 &virt_dev->eps[i].bw_info, 2474 virt_dev->bw_table, 2475 virt_dev->udev, 2476 &virt_dev->eps[i], 2477 virt_dev->tt_info); 2478 } 2479 2480 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2481 /* Ok, this fits in the bandwidth we have. 2482 * Update the number of active TTs. 2483 */ 2484 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2485 return 0; 2486 } 2487 2488 /* We don't have enough bandwidth for this, revert the stored info. */ 2489 for (i = 0; i < 31; i++) { 2490 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2491 continue; 2492 2493 /* Drop the new copies of any added or changed endpoints from 2494 * the interval table. 2495 */ 2496 if (EP_IS_ADDED(ctrl_ctx, i)) { 2497 xhci_drop_ep_from_interval_table(xhci, 2498 &virt_dev->eps[i].bw_info, 2499 virt_dev->bw_table, 2500 virt_dev->udev, 2501 &virt_dev->eps[i], 2502 virt_dev->tt_info); 2503 } 2504 /* Revert the endpoint back to its old information */ 2505 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2506 sizeof(ep_bw_info[i])); 2507 /* Add any changed or dropped endpoints back into the table */ 2508 if (EP_IS_DROPPED(ctrl_ctx, i)) 2509 xhci_add_ep_to_interval_table(xhci, 2510 &virt_dev->eps[i].bw_info, 2511 virt_dev->bw_table, 2512 virt_dev->udev, 2513 &virt_dev->eps[i], 2514 virt_dev->tt_info); 2515 } 2516 return -ENOMEM; 2517 } 2518 2519 2520 /* Issue a configure endpoint command or evaluate context command 2521 * and wait for it to finish. 2522 */ 2523 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2524 struct usb_device *udev, 2525 struct xhci_command *command, 2526 bool ctx_change, bool must_succeed) 2527 { 2528 int ret; 2529 int timeleft; 2530 unsigned long flags; 2531 struct xhci_container_ctx *in_ctx; 2532 struct completion *cmd_completion; 2533 u32 *cmd_status; 2534 struct xhci_virt_device *virt_dev; 2535 union xhci_trb *cmd_trb; 2536 2537 spin_lock_irqsave(&xhci->lock, flags); 2538 virt_dev = xhci->devs[udev->slot_id]; 2539 2540 if (command) 2541 in_ctx = command->in_ctx; 2542 else 2543 in_ctx = virt_dev->in_ctx; 2544 2545 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2546 xhci_reserve_host_resources(xhci, in_ctx)) { 2547 spin_unlock_irqrestore(&xhci->lock, flags); 2548 xhci_warn(xhci, "Not enough host resources, " 2549 "active endpoint contexts = %u\n", 2550 xhci->num_active_eps); 2551 return -ENOMEM; 2552 } 2553 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2554 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) { 2555 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2556 xhci_free_host_resources(xhci, in_ctx); 2557 spin_unlock_irqrestore(&xhci->lock, flags); 2558 xhci_warn(xhci, "Not enough bandwidth\n"); 2559 return -ENOMEM; 2560 } 2561 2562 if (command) { 2563 cmd_completion = command->completion; 2564 cmd_status = &command->status; 2565 command->command_trb = xhci->cmd_ring->enqueue; 2566 2567 /* Enqueue pointer can be left pointing to the link TRB, 2568 * we must handle that 2569 */ 2570 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control)) 2571 command->command_trb = 2572 xhci->cmd_ring->enq_seg->next->trbs; 2573 2574 list_add_tail(&command->cmd_list, &virt_dev->cmd_list); 2575 } else { 2576 cmd_completion = &virt_dev->cmd_completion; 2577 cmd_status = &virt_dev->cmd_status; 2578 } 2579 init_completion(cmd_completion); 2580 2581 cmd_trb = xhci->cmd_ring->dequeue; 2582 if (!ctx_change) 2583 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, 2584 udev->slot_id, must_succeed); 2585 else 2586 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, 2587 udev->slot_id, must_succeed); 2588 if (ret < 0) { 2589 if (command) 2590 list_del(&command->cmd_list); 2591 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2592 xhci_free_host_resources(xhci, in_ctx); 2593 spin_unlock_irqrestore(&xhci->lock, flags); 2594 xhci_dbg(xhci, "FIXME allocate a new ring segment\n"); 2595 return -ENOMEM; 2596 } 2597 xhci_ring_cmd_db(xhci); 2598 spin_unlock_irqrestore(&xhci->lock, flags); 2599 2600 /* Wait for the configure endpoint command to complete */ 2601 timeleft = wait_for_completion_interruptible_timeout( 2602 cmd_completion, 2603 XHCI_CMD_DEFAULT_TIMEOUT); 2604 if (timeleft <= 0) { 2605 xhci_warn(xhci, "%s while waiting for %s command\n", 2606 timeleft == 0 ? "Timeout" : "Signal", 2607 ctx_change == 0 ? 2608 "configure endpoint" : 2609 "evaluate context"); 2610 /* cancel the configure endpoint command */ 2611 ret = xhci_cancel_cmd(xhci, command, cmd_trb); 2612 if (ret < 0) 2613 return ret; 2614 return -ETIME; 2615 } 2616 2617 if (!ctx_change) 2618 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status); 2619 else 2620 ret = xhci_evaluate_context_result(xhci, udev, cmd_status); 2621 2622 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2623 spin_lock_irqsave(&xhci->lock, flags); 2624 /* If the command failed, remove the reserved resources. 2625 * Otherwise, clean up the estimate to include dropped eps. 2626 */ 2627 if (ret) 2628 xhci_free_host_resources(xhci, in_ctx); 2629 else 2630 xhci_finish_resource_reservation(xhci, in_ctx); 2631 spin_unlock_irqrestore(&xhci->lock, flags); 2632 } 2633 return ret; 2634 } 2635 2636 /* Called after one or more calls to xhci_add_endpoint() or 2637 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2638 * to call xhci_reset_bandwidth(). 2639 * 2640 * Since we are in the middle of changing either configuration or 2641 * installing a new alt setting, the USB core won't allow URBs to be 2642 * enqueued for any endpoint on the old config or interface. Nothing 2643 * else should be touching the xhci->devs[slot_id] structure, so we 2644 * don't need to take the xhci->lock for manipulating that. 2645 */ 2646 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2647 { 2648 int i; 2649 int ret = 0; 2650 struct xhci_hcd *xhci; 2651 struct xhci_virt_device *virt_dev; 2652 struct xhci_input_control_ctx *ctrl_ctx; 2653 struct xhci_slot_ctx *slot_ctx; 2654 2655 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2656 if (ret <= 0) 2657 return ret; 2658 xhci = hcd_to_xhci(hcd); 2659 if (xhci->xhc_state & XHCI_STATE_DYING) 2660 return -ENODEV; 2661 2662 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2663 virt_dev = xhci->devs[udev->slot_id]; 2664 2665 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2666 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 2667 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2668 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2669 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2670 2671 /* Don't issue the command if there's no endpoints to update. */ 2672 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2673 ctrl_ctx->drop_flags == 0) 2674 return 0; 2675 2676 xhci_dbg(xhci, "New Input Control Context:\n"); 2677 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2678 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2679 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2680 2681 ret = xhci_configure_endpoint(xhci, udev, NULL, 2682 false, false); 2683 if (ret) { 2684 /* Callee should call reset_bandwidth() */ 2685 return ret; 2686 } 2687 2688 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2689 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2690 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2691 2692 /* Free any rings that were dropped, but not changed. */ 2693 for (i = 1; i < 31; ++i) { 2694 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2695 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) 2696 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2697 } 2698 xhci_zero_in_ctx(xhci, virt_dev); 2699 /* 2700 * Install any rings for completely new endpoints or changed endpoints, 2701 * and free or cache any old rings from changed endpoints. 2702 */ 2703 for (i = 1; i < 31; ++i) { 2704 if (!virt_dev->eps[i].new_ring) 2705 continue; 2706 /* Only cache or free the old ring if it exists. 2707 * It may not if this is the first add of an endpoint. 2708 */ 2709 if (virt_dev->eps[i].ring) { 2710 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2711 } 2712 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2713 virt_dev->eps[i].new_ring = NULL; 2714 } 2715 2716 return ret; 2717 } 2718 2719 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2720 { 2721 struct xhci_hcd *xhci; 2722 struct xhci_virt_device *virt_dev; 2723 int i, ret; 2724 2725 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2726 if (ret <= 0) 2727 return; 2728 xhci = hcd_to_xhci(hcd); 2729 2730 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2731 virt_dev = xhci->devs[udev->slot_id]; 2732 /* Free any rings allocated for added endpoints */ 2733 for (i = 0; i < 31; ++i) { 2734 if (virt_dev->eps[i].new_ring) { 2735 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2736 virt_dev->eps[i].new_ring = NULL; 2737 } 2738 } 2739 xhci_zero_in_ctx(xhci, virt_dev); 2740 } 2741 2742 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2743 struct xhci_container_ctx *in_ctx, 2744 struct xhci_container_ctx *out_ctx, 2745 u32 add_flags, u32 drop_flags) 2746 { 2747 struct xhci_input_control_ctx *ctrl_ctx; 2748 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2749 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2750 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2751 xhci_slot_copy(xhci, in_ctx, out_ctx); 2752 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2753 2754 xhci_dbg(xhci, "Input Context:\n"); 2755 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2756 } 2757 2758 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2759 unsigned int slot_id, unsigned int ep_index, 2760 struct xhci_dequeue_state *deq_state) 2761 { 2762 struct xhci_container_ctx *in_ctx; 2763 struct xhci_ep_ctx *ep_ctx; 2764 u32 added_ctxs; 2765 dma_addr_t addr; 2766 2767 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2768 xhci->devs[slot_id]->out_ctx, ep_index); 2769 in_ctx = xhci->devs[slot_id]->in_ctx; 2770 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2771 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2772 deq_state->new_deq_ptr); 2773 if (addr == 0) { 2774 xhci_warn(xhci, "WARN Cannot submit config ep after " 2775 "reset ep command\n"); 2776 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2777 deq_state->new_deq_seg, 2778 deq_state->new_deq_ptr); 2779 return; 2780 } 2781 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2782 2783 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2784 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2785 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs); 2786 } 2787 2788 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2789 struct usb_device *udev, unsigned int ep_index) 2790 { 2791 struct xhci_dequeue_state deq_state; 2792 struct xhci_virt_ep *ep; 2793 2794 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n"); 2795 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2796 /* We need to move the HW's dequeue pointer past this TD, 2797 * or it will attempt to resend it on the next doorbell ring. 2798 */ 2799 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2800 ep_index, ep->stopped_stream, ep->stopped_td, 2801 &deq_state); 2802 2803 /* HW with the reset endpoint quirk will use the saved dequeue state to 2804 * issue a configure endpoint command later. 2805 */ 2806 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2807 xhci_dbg(xhci, "Queueing new dequeue state\n"); 2808 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2809 ep_index, ep->stopped_stream, &deq_state); 2810 } else { 2811 /* Better hope no one uses the input context between now and the 2812 * reset endpoint completion! 2813 * XXX: No idea how this hardware will react when stream rings 2814 * are enabled. 2815 */ 2816 xhci_dbg(xhci, "Setting up input context for " 2817 "configure endpoint command\n"); 2818 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2819 ep_index, &deq_state); 2820 } 2821 } 2822 2823 /* Deal with stalled endpoints. The core should have sent the control message 2824 * to clear the halt condition. However, we need to make the xHCI hardware 2825 * reset its sequence number, since a device will expect a sequence number of 2826 * zero after the halt condition is cleared. 2827 * Context: in_interrupt 2828 */ 2829 void xhci_endpoint_reset(struct usb_hcd *hcd, 2830 struct usb_host_endpoint *ep) 2831 { 2832 struct xhci_hcd *xhci; 2833 struct usb_device *udev; 2834 unsigned int ep_index; 2835 unsigned long flags; 2836 int ret; 2837 struct xhci_virt_ep *virt_ep; 2838 2839 xhci = hcd_to_xhci(hcd); 2840 udev = (struct usb_device *) ep->hcpriv; 2841 /* Called with a root hub endpoint (or an endpoint that wasn't added 2842 * with xhci_add_endpoint() 2843 */ 2844 if (!ep->hcpriv) 2845 return; 2846 ep_index = xhci_get_endpoint_index(&ep->desc); 2847 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2848 if (!virt_ep->stopped_td) { 2849 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n", 2850 ep->desc.bEndpointAddress); 2851 return; 2852 } 2853 if (usb_endpoint_xfer_control(&ep->desc)) { 2854 xhci_dbg(xhci, "Control endpoint stall already handled.\n"); 2855 return; 2856 } 2857 2858 xhci_dbg(xhci, "Queueing reset endpoint command\n"); 2859 spin_lock_irqsave(&xhci->lock, flags); 2860 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); 2861 /* 2862 * Can't change the ring dequeue pointer until it's transitioned to the 2863 * stopped state, which is only upon a successful reset endpoint 2864 * command. Better hope that last command worked! 2865 */ 2866 if (!ret) { 2867 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 2868 kfree(virt_ep->stopped_td); 2869 xhci_ring_cmd_db(xhci); 2870 } 2871 virt_ep->stopped_td = NULL; 2872 virt_ep->stopped_trb = NULL; 2873 virt_ep->stopped_stream = 0; 2874 spin_unlock_irqrestore(&xhci->lock, flags); 2875 2876 if (ret) 2877 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 2878 } 2879 2880 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2881 struct usb_device *udev, struct usb_host_endpoint *ep, 2882 unsigned int slot_id) 2883 { 2884 int ret; 2885 unsigned int ep_index; 2886 unsigned int ep_state; 2887 2888 if (!ep) 2889 return -EINVAL; 2890 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2891 if (ret <= 0) 2892 return -EINVAL; 2893 if (ep->ss_ep_comp.bmAttributes == 0) { 2894 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2895 " descriptor for ep 0x%x does not support streams\n", 2896 ep->desc.bEndpointAddress); 2897 return -EINVAL; 2898 } 2899 2900 ep_index = xhci_get_endpoint_index(&ep->desc); 2901 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2902 if (ep_state & EP_HAS_STREAMS || 2903 ep_state & EP_GETTING_STREAMS) { 2904 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2905 "already has streams set up.\n", 2906 ep->desc.bEndpointAddress); 2907 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2908 "dynamic stream context array reallocation.\n"); 2909 return -EINVAL; 2910 } 2911 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2912 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2913 "endpoint 0x%x; URBs are pending.\n", 2914 ep->desc.bEndpointAddress); 2915 return -EINVAL; 2916 } 2917 return 0; 2918 } 2919 2920 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2921 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2922 { 2923 unsigned int max_streams; 2924 2925 /* The stream context array size must be a power of two */ 2926 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2927 /* 2928 * Find out how many primary stream array entries the host controller 2929 * supports. Later we may use secondary stream arrays (similar to 2nd 2930 * level page entries), but that's an optional feature for xHCI host 2931 * controllers. xHCs must support at least 4 stream IDs. 2932 */ 2933 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2934 if (*num_stream_ctxs > max_streams) { 2935 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2936 max_streams); 2937 *num_stream_ctxs = max_streams; 2938 *num_streams = max_streams; 2939 } 2940 } 2941 2942 /* Returns an error code if one of the endpoint already has streams. 2943 * This does not change any data structures, it only checks and gathers 2944 * information. 2945 */ 2946 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 2947 struct usb_device *udev, 2948 struct usb_host_endpoint **eps, unsigned int num_eps, 2949 unsigned int *num_streams, u32 *changed_ep_bitmask) 2950 { 2951 unsigned int max_streams; 2952 unsigned int endpoint_flag; 2953 int i; 2954 int ret; 2955 2956 for (i = 0; i < num_eps; i++) { 2957 ret = xhci_check_streams_endpoint(xhci, udev, 2958 eps[i], udev->slot_id); 2959 if (ret < 0) 2960 return ret; 2961 2962 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 2963 if (max_streams < (*num_streams - 1)) { 2964 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 2965 eps[i]->desc.bEndpointAddress, 2966 max_streams); 2967 *num_streams = max_streams+1; 2968 } 2969 2970 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 2971 if (*changed_ep_bitmask & endpoint_flag) 2972 return -EINVAL; 2973 *changed_ep_bitmask |= endpoint_flag; 2974 } 2975 return 0; 2976 } 2977 2978 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 2979 struct usb_device *udev, 2980 struct usb_host_endpoint **eps, unsigned int num_eps) 2981 { 2982 u32 changed_ep_bitmask = 0; 2983 unsigned int slot_id; 2984 unsigned int ep_index; 2985 unsigned int ep_state; 2986 int i; 2987 2988 slot_id = udev->slot_id; 2989 if (!xhci->devs[slot_id]) 2990 return 0; 2991 2992 for (i = 0; i < num_eps; i++) { 2993 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2994 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2995 /* Are streams already being freed for the endpoint? */ 2996 if (ep_state & EP_GETTING_NO_STREAMS) { 2997 xhci_warn(xhci, "WARN Can't disable streams for " 2998 "endpoint 0x%x\n, " 2999 "streams are being disabled already.", 3000 eps[i]->desc.bEndpointAddress); 3001 return 0; 3002 } 3003 /* Are there actually any streams to free? */ 3004 if (!(ep_state & EP_HAS_STREAMS) && 3005 !(ep_state & EP_GETTING_STREAMS)) { 3006 xhci_warn(xhci, "WARN Can't disable streams for " 3007 "endpoint 0x%x\n, " 3008 "streams are already disabled!", 3009 eps[i]->desc.bEndpointAddress); 3010 xhci_warn(xhci, "WARN xhci_free_streams() called " 3011 "with non-streams endpoint\n"); 3012 return 0; 3013 } 3014 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3015 } 3016 return changed_ep_bitmask; 3017 } 3018 3019 /* 3020 * The USB device drivers use this function (though the HCD interface in USB 3021 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3022 * coordinate mass storage command queueing across multiple endpoints (basically 3023 * a stream ID == a task ID). 3024 * 3025 * Setting up streams involves allocating the same size stream context array 3026 * for each endpoint and issuing a configure endpoint command for all endpoints. 3027 * 3028 * Don't allow the call to succeed if one endpoint only supports one stream 3029 * (which means it doesn't support streams at all). 3030 * 3031 * Drivers may get less stream IDs than they asked for, if the host controller 3032 * hardware or endpoints claim they can't support the number of requested 3033 * stream IDs. 3034 */ 3035 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3036 struct usb_host_endpoint **eps, unsigned int num_eps, 3037 unsigned int num_streams, gfp_t mem_flags) 3038 { 3039 int i, ret; 3040 struct xhci_hcd *xhci; 3041 struct xhci_virt_device *vdev; 3042 struct xhci_command *config_cmd; 3043 unsigned int ep_index; 3044 unsigned int num_stream_ctxs; 3045 unsigned long flags; 3046 u32 changed_ep_bitmask = 0; 3047 3048 if (!eps) 3049 return -EINVAL; 3050 3051 /* Add one to the number of streams requested to account for 3052 * stream 0 that is reserved for xHCI usage. 3053 */ 3054 num_streams += 1; 3055 xhci = hcd_to_xhci(hcd); 3056 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3057 num_streams); 3058 3059 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3060 if (!config_cmd) { 3061 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3062 return -ENOMEM; 3063 } 3064 3065 /* Check to make sure all endpoints are not already configured for 3066 * streams. While we're at it, find the maximum number of streams that 3067 * all the endpoints will support and check for duplicate endpoints. 3068 */ 3069 spin_lock_irqsave(&xhci->lock, flags); 3070 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3071 num_eps, &num_streams, &changed_ep_bitmask); 3072 if (ret < 0) { 3073 xhci_free_command(xhci, config_cmd); 3074 spin_unlock_irqrestore(&xhci->lock, flags); 3075 return ret; 3076 } 3077 if (num_streams <= 1) { 3078 xhci_warn(xhci, "WARN: endpoints can't handle " 3079 "more than one stream.\n"); 3080 xhci_free_command(xhci, config_cmd); 3081 spin_unlock_irqrestore(&xhci->lock, flags); 3082 return -EINVAL; 3083 } 3084 vdev = xhci->devs[udev->slot_id]; 3085 /* Mark each endpoint as being in transition, so 3086 * xhci_urb_enqueue() will reject all URBs. 3087 */ 3088 for (i = 0; i < num_eps; i++) { 3089 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3090 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3091 } 3092 spin_unlock_irqrestore(&xhci->lock, flags); 3093 3094 /* Setup internal data structures and allocate HW data structures for 3095 * streams (but don't install the HW structures in the input context 3096 * until we're sure all memory allocation succeeded). 3097 */ 3098 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3099 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3100 num_stream_ctxs, num_streams); 3101 3102 for (i = 0; i < num_eps; i++) { 3103 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3104 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3105 num_stream_ctxs, 3106 num_streams, mem_flags); 3107 if (!vdev->eps[ep_index].stream_info) 3108 goto cleanup; 3109 /* Set maxPstreams in endpoint context and update deq ptr to 3110 * point to stream context array. FIXME 3111 */ 3112 } 3113 3114 /* Set up the input context for a configure endpoint command. */ 3115 for (i = 0; i < num_eps; i++) { 3116 struct xhci_ep_ctx *ep_ctx; 3117 3118 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3119 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3120 3121 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3122 vdev->out_ctx, ep_index); 3123 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3124 vdev->eps[ep_index].stream_info); 3125 } 3126 /* Tell the HW to drop its old copy of the endpoint context info 3127 * and add the updated copy from the input context. 3128 */ 3129 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3130 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 3131 3132 /* Issue and wait for the configure endpoint command */ 3133 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3134 false, false); 3135 3136 /* xHC rejected the configure endpoint command for some reason, so we 3137 * leave the old ring intact and free our internal streams data 3138 * structure. 3139 */ 3140 if (ret < 0) 3141 goto cleanup; 3142 3143 spin_lock_irqsave(&xhci->lock, flags); 3144 for (i = 0; i < num_eps; i++) { 3145 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3146 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3147 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3148 udev->slot_id, ep_index); 3149 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3150 } 3151 xhci_free_command(xhci, config_cmd); 3152 spin_unlock_irqrestore(&xhci->lock, flags); 3153 3154 /* Subtract 1 for stream 0, which drivers can't use */ 3155 return num_streams - 1; 3156 3157 cleanup: 3158 /* If it didn't work, free the streams! */ 3159 for (i = 0; i < num_eps; i++) { 3160 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3161 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3162 vdev->eps[ep_index].stream_info = NULL; 3163 /* FIXME Unset maxPstreams in endpoint context and 3164 * update deq ptr to point to normal string ring. 3165 */ 3166 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3167 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3168 xhci_endpoint_zero(xhci, vdev, eps[i]); 3169 } 3170 xhci_free_command(xhci, config_cmd); 3171 return -ENOMEM; 3172 } 3173 3174 /* Transition the endpoint from using streams to being a "normal" endpoint 3175 * without streams. 3176 * 3177 * Modify the endpoint context state, submit a configure endpoint command, 3178 * and free all endpoint rings for streams if that completes successfully. 3179 */ 3180 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3181 struct usb_host_endpoint **eps, unsigned int num_eps, 3182 gfp_t mem_flags) 3183 { 3184 int i, ret; 3185 struct xhci_hcd *xhci; 3186 struct xhci_virt_device *vdev; 3187 struct xhci_command *command; 3188 unsigned int ep_index; 3189 unsigned long flags; 3190 u32 changed_ep_bitmask; 3191 3192 xhci = hcd_to_xhci(hcd); 3193 vdev = xhci->devs[udev->slot_id]; 3194 3195 /* Set up a configure endpoint command to remove the streams rings */ 3196 spin_lock_irqsave(&xhci->lock, flags); 3197 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3198 udev, eps, num_eps); 3199 if (changed_ep_bitmask == 0) { 3200 spin_unlock_irqrestore(&xhci->lock, flags); 3201 return -EINVAL; 3202 } 3203 3204 /* Use the xhci_command structure from the first endpoint. We may have 3205 * allocated too many, but the driver may call xhci_free_streams() for 3206 * each endpoint it grouped into one call to xhci_alloc_streams(). 3207 */ 3208 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3209 command = vdev->eps[ep_index].stream_info->free_streams_command; 3210 for (i = 0; i < num_eps; i++) { 3211 struct xhci_ep_ctx *ep_ctx; 3212 3213 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3214 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3215 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3216 EP_GETTING_NO_STREAMS; 3217 3218 xhci_endpoint_copy(xhci, command->in_ctx, 3219 vdev->out_ctx, ep_index); 3220 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 3221 &vdev->eps[ep_index]); 3222 } 3223 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3224 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 3225 spin_unlock_irqrestore(&xhci->lock, flags); 3226 3227 /* Issue and wait for the configure endpoint command, 3228 * which must succeed. 3229 */ 3230 ret = xhci_configure_endpoint(xhci, udev, command, 3231 false, true); 3232 3233 /* xHC rejected the configure endpoint command for some reason, so we 3234 * leave the streams rings intact. 3235 */ 3236 if (ret < 0) 3237 return ret; 3238 3239 spin_lock_irqsave(&xhci->lock, flags); 3240 for (i = 0; i < num_eps; i++) { 3241 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3242 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3243 vdev->eps[ep_index].stream_info = NULL; 3244 /* FIXME Unset maxPstreams in endpoint context and 3245 * update deq ptr to point to normal string ring. 3246 */ 3247 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3248 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3249 } 3250 spin_unlock_irqrestore(&xhci->lock, flags); 3251 3252 return 0; 3253 } 3254 3255 /* 3256 * Deletes endpoint resources for endpoints that were active before a Reset 3257 * Device command, or a Disable Slot command. The Reset Device command leaves 3258 * the control endpoint intact, whereas the Disable Slot command deletes it. 3259 * 3260 * Must be called with xhci->lock held. 3261 */ 3262 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3263 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3264 { 3265 int i; 3266 unsigned int num_dropped_eps = 0; 3267 unsigned int drop_flags = 0; 3268 3269 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3270 if (virt_dev->eps[i].ring) { 3271 drop_flags |= 1 << i; 3272 num_dropped_eps++; 3273 } 3274 } 3275 xhci->num_active_eps -= num_dropped_eps; 3276 if (num_dropped_eps) 3277 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, " 3278 "%u now active.\n", 3279 num_dropped_eps, drop_flags, 3280 xhci->num_active_eps); 3281 } 3282 3283 /* 3284 * This submits a Reset Device Command, which will set the device state to 0, 3285 * set the device address to 0, and disable all the endpoints except the default 3286 * control endpoint. The USB core should come back and call 3287 * xhci_address_device(), and then re-set up the configuration. If this is 3288 * called because of a usb_reset_and_verify_device(), then the old alternate 3289 * settings will be re-installed through the normal bandwidth allocation 3290 * functions. 3291 * 3292 * Wait for the Reset Device command to finish. Remove all structures 3293 * associated with the endpoints that were disabled. Clear the input device 3294 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3295 * 3296 * If the virt_dev to be reset does not exist or does not match the udev, 3297 * it means the device is lost, possibly due to the xHC restore error and 3298 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3299 * re-allocate the device. 3300 */ 3301 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3302 { 3303 int ret, i; 3304 unsigned long flags; 3305 struct xhci_hcd *xhci; 3306 unsigned int slot_id; 3307 struct xhci_virt_device *virt_dev; 3308 struct xhci_command *reset_device_cmd; 3309 int timeleft; 3310 int last_freed_endpoint; 3311 struct xhci_slot_ctx *slot_ctx; 3312 int old_active_eps = 0; 3313 3314 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3315 if (ret <= 0) 3316 return ret; 3317 xhci = hcd_to_xhci(hcd); 3318 slot_id = udev->slot_id; 3319 virt_dev = xhci->devs[slot_id]; 3320 if (!virt_dev) { 3321 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3322 "not exist. Re-allocate the device\n", slot_id); 3323 ret = xhci_alloc_dev(hcd, udev); 3324 if (ret == 1) 3325 return 0; 3326 else 3327 return -EINVAL; 3328 } 3329 3330 if (virt_dev->udev != udev) { 3331 /* If the virt_dev and the udev does not match, this virt_dev 3332 * may belong to another udev. 3333 * Re-allocate the device. 3334 */ 3335 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3336 "not match the udev. Re-allocate the device\n", 3337 slot_id); 3338 ret = xhci_alloc_dev(hcd, udev); 3339 if (ret == 1) 3340 return 0; 3341 else 3342 return -EINVAL; 3343 } 3344 3345 /* If device is not setup, there is no point in resetting it */ 3346 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3347 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3348 SLOT_STATE_DISABLED) 3349 return 0; 3350 3351 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3352 /* Allocate the command structure that holds the struct completion. 3353 * Assume we're in process context, since the normal device reset 3354 * process has to wait for the device anyway. Storage devices are 3355 * reset as part of error handling, so use GFP_NOIO instead of 3356 * GFP_KERNEL. 3357 */ 3358 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3359 if (!reset_device_cmd) { 3360 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3361 return -ENOMEM; 3362 } 3363 3364 /* Attempt to submit the Reset Device command to the command ring */ 3365 spin_lock_irqsave(&xhci->lock, flags); 3366 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue; 3367 3368 /* Enqueue pointer can be left pointing to the link TRB, 3369 * we must handle that 3370 */ 3371 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control)) 3372 reset_device_cmd->command_trb = 3373 xhci->cmd_ring->enq_seg->next->trbs; 3374 3375 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); 3376 ret = xhci_queue_reset_device(xhci, slot_id); 3377 if (ret) { 3378 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3379 list_del(&reset_device_cmd->cmd_list); 3380 spin_unlock_irqrestore(&xhci->lock, flags); 3381 goto command_cleanup; 3382 } 3383 xhci_ring_cmd_db(xhci); 3384 spin_unlock_irqrestore(&xhci->lock, flags); 3385 3386 /* Wait for the Reset Device command to finish */ 3387 timeleft = wait_for_completion_interruptible_timeout( 3388 reset_device_cmd->completion, 3389 USB_CTRL_SET_TIMEOUT); 3390 if (timeleft <= 0) { 3391 xhci_warn(xhci, "%s while waiting for reset device command\n", 3392 timeleft == 0 ? "Timeout" : "Signal"); 3393 spin_lock_irqsave(&xhci->lock, flags); 3394 /* The timeout might have raced with the event ring handler, so 3395 * only delete from the list if the item isn't poisoned. 3396 */ 3397 if (reset_device_cmd->cmd_list.next != LIST_POISON1) 3398 list_del(&reset_device_cmd->cmd_list); 3399 spin_unlock_irqrestore(&xhci->lock, flags); 3400 ret = -ETIME; 3401 goto command_cleanup; 3402 } 3403 3404 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3405 * unless we tried to reset a slot ID that wasn't enabled, 3406 * or the device wasn't in the addressed or configured state. 3407 */ 3408 ret = reset_device_cmd->status; 3409 switch (ret) { 3410 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3411 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3412 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n", 3413 slot_id, 3414 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3415 xhci_info(xhci, "Not freeing device rings.\n"); 3416 /* Don't treat this as an error. May change my mind later. */ 3417 ret = 0; 3418 goto command_cleanup; 3419 case COMP_SUCCESS: 3420 xhci_dbg(xhci, "Successful reset device command.\n"); 3421 break; 3422 default: 3423 if (xhci_is_vendor_info_code(xhci, ret)) 3424 break; 3425 xhci_warn(xhci, "Unknown completion code %u for " 3426 "reset device command.\n", ret); 3427 ret = -EINVAL; 3428 goto command_cleanup; 3429 } 3430 3431 /* Free up host controller endpoint resources */ 3432 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3433 spin_lock_irqsave(&xhci->lock, flags); 3434 /* Don't delete the default control endpoint resources */ 3435 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3436 spin_unlock_irqrestore(&xhci->lock, flags); 3437 } 3438 3439 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3440 last_freed_endpoint = 1; 3441 for (i = 1; i < 31; ++i) { 3442 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3443 3444 if (ep->ep_state & EP_HAS_STREAMS) { 3445 xhci_free_stream_info(xhci, ep->stream_info); 3446 ep->stream_info = NULL; 3447 ep->ep_state &= ~EP_HAS_STREAMS; 3448 } 3449 3450 if (ep->ring) { 3451 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3452 last_freed_endpoint = i; 3453 } 3454 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3455 xhci_drop_ep_from_interval_table(xhci, 3456 &virt_dev->eps[i].bw_info, 3457 virt_dev->bw_table, 3458 udev, 3459 &virt_dev->eps[i], 3460 virt_dev->tt_info); 3461 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3462 } 3463 /* If necessary, update the number of active TTs on this root port */ 3464 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3465 3466 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3467 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3468 ret = 0; 3469 3470 command_cleanup: 3471 xhci_free_command(xhci, reset_device_cmd); 3472 return ret; 3473 } 3474 3475 /* 3476 * At this point, the struct usb_device is about to go away, the device has 3477 * disconnected, and all traffic has been stopped and the endpoints have been 3478 * disabled. Free any HC data structures associated with that device. 3479 */ 3480 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3481 { 3482 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3483 struct xhci_virt_device *virt_dev; 3484 unsigned long flags; 3485 u32 state; 3486 int i, ret; 3487 3488 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3489 /* If the host is halted due to driver unload, we still need to free the 3490 * device. 3491 */ 3492 if (ret <= 0 && ret != -ENODEV) 3493 return; 3494 3495 virt_dev = xhci->devs[udev->slot_id]; 3496 3497 /* Stop any wayward timer functions (which may grab the lock) */ 3498 for (i = 0; i < 31; ++i) { 3499 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3500 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3501 } 3502 3503 if (udev->usb2_hw_lpm_enabled) { 3504 xhci_set_usb2_hardware_lpm(hcd, udev, 0); 3505 udev->usb2_hw_lpm_enabled = 0; 3506 } 3507 3508 spin_lock_irqsave(&xhci->lock, flags); 3509 /* Don't disable the slot if the host controller is dead. */ 3510 state = xhci_readl(xhci, &xhci->op_regs->status); 3511 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3512 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3513 xhci_free_virt_device(xhci, udev->slot_id); 3514 spin_unlock_irqrestore(&xhci->lock, flags); 3515 return; 3516 } 3517 3518 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { 3519 spin_unlock_irqrestore(&xhci->lock, flags); 3520 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3521 return; 3522 } 3523 xhci_ring_cmd_db(xhci); 3524 spin_unlock_irqrestore(&xhci->lock, flags); 3525 /* 3526 * Event command completion handler will free any data structures 3527 * associated with the slot. XXX Can free sleep? 3528 */ 3529 } 3530 3531 /* 3532 * Checks if we have enough host controller resources for the default control 3533 * endpoint. 3534 * 3535 * Must be called with xhci->lock held. 3536 */ 3537 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3538 { 3539 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3540 xhci_dbg(xhci, "Not enough ep ctxs: " 3541 "%u active, need to add 1, limit is %u.\n", 3542 xhci->num_active_eps, xhci->limit_active_eps); 3543 return -ENOMEM; 3544 } 3545 xhci->num_active_eps += 1; 3546 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n", 3547 xhci->num_active_eps); 3548 return 0; 3549 } 3550 3551 3552 /* 3553 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3554 * timed out, or allocating memory failed. Returns 1 on success. 3555 */ 3556 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3557 { 3558 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3559 unsigned long flags; 3560 int timeleft; 3561 int ret; 3562 union xhci_trb *cmd_trb; 3563 3564 spin_lock_irqsave(&xhci->lock, flags); 3565 cmd_trb = xhci->cmd_ring->dequeue; 3566 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); 3567 if (ret) { 3568 spin_unlock_irqrestore(&xhci->lock, flags); 3569 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3570 return 0; 3571 } 3572 xhci_ring_cmd_db(xhci); 3573 spin_unlock_irqrestore(&xhci->lock, flags); 3574 3575 /* XXX: how much time for xHC slot assignment? */ 3576 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3577 XHCI_CMD_DEFAULT_TIMEOUT); 3578 if (timeleft <= 0) { 3579 xhci_warn(xhci, "%s while waiting for a slot\n", 3580 timeleft == 0 ? "Timeout" : "Signal"); 3581 /* cancel the enable slot request */ 3582 return xhci_cancel_cmd(xhci, NULL, cmd_trb); 3583 } 3584 3585 if (!xhci->slot_id) { 3586 xhci_err(xhci, "Error while assigning device slot ID\n"); 3587 return 0; 3588 } 3589 3590 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3591 spin_lock_irqsave(&xhci->lock, flags); 3592 ret = xhci_reserve_host_control_ep_resources(xhci); 3593 if (ret) { 3594 spin_unlock_irqrestore(&xhci->lock, flags); 3595 xhci_warn(xhci, "Not enough host resources, " 3596 "active endpoint contexts = %u\n", 3597 xhci->num_active_eps); 3598 goto disable_slot; 3599 } 3600 spin_unlock_irqrestore(&xhci->lock, flags); 3601 } 3602 /* Use GFP_NOIO, since this function can be called from 3603 * xhci_discover_or_reset_device(), which may be called as part of 3604 * mass storage driver error handling. 3605 */ 3606 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3607 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3608 goto disable_slot; 3609 } 3610 udev->slot_id = xhci->slot_id; 3611 /* Is this a LS or FS device under a HS hub? */ 3612 /* Hub or peripherial? */ 3613 return 1; 3614 3615 disable_slot: 3616 /* Disable slot, if we can do it without mem alloc */ 3617 spin_lock_irqsave(&xhci->lock, flags); 3618 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) 3619 xhci_ring_cmd_db(xhci); 3620 spin_unlock_irqrestore(&xhci->lock, flags); 3621 return 0; 3622 } 3623 3624 /* 3625 * Issue an Address Device command (which will issue a SetAddress request to 3626 * the device). 3627 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so 3628 * we should only issue and wait on one address command at the same time. 3629 * 3630 * We add one to the device address issued by the hardware because the USB core 3631 * uses address 1 for the root hubs (even though they're not really devices). 3632 */ 3633 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3634 { 3635 unsigned long flags; 3636 int timeleft; 3637 struct xhci_virt_device *virt_dev; 3638 int ret = 0; 3639 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3640 struct xhci_slot_ctx *slot_ctx; 3641 struct xhci_input_control_ctx *ctrl_ctx; 3642 u64 temp_64; 3643 union xhci_trb *cmd_trb; 3644 3645 if (!udev->slot_id) { 3646 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id); 3647 return -EINVAL; 3648 } 3649 3650 virt_dev = xhci->devs[udev->slot_id]; 3651 3652 if (WARN_ON(!virt_dev)) { 3653 /* 3654 * In plug/unplug torture test with an NEC controller, 3655 * a zero-dereference was observed once due to virt_dev = 0. 3656 * Print useful debug rather than crash if it is observed again! 3657 */ 3658 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3659 udev->slot_id); 3660 return -EINVAL; 3661 } 3662 3663 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3664 /* 3665 * If this is the first Set Address since device plug-in or 3666 * virt_device realloaction after a resume with an xHCI power loss, 3667 * then set up the slot context. 3668 */ 3669 if (!slot_ctx->dev_info) 3670 xhci_setup_addressable_virt_dev(xhci, udev); 3671 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3672 else 3673 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3674 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 3675 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3676 ctrl_ctx->drop_flags = 0; 3677 3678 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3679 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3680 3681 spin_lock_irqsave(&xhci->lock, flags); 3682 cmd_trb = xhci->cmd_ring->dequeue; 3683 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, 3684 udev->slot_id); 3685 if (ret) { 3686 spin_unlock_irqrestore(&xhci->lock, flags); 3687 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3688 return ret; 3689 } 3690 xhci_ring_cmd_db(xhci); 3691 spin_unlock_irqrestore(&xhci->lock, flags); 3692 3693 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3694 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3695 XHCI_CMD_DEFAULT_TIMEOUT); 3696 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3697 * the SetAddress() "recovery interval" required by USB and aborting the 3698 * command on a timeout. 3699 */ 3700 if (timeleft <= 0) { 3701 xhci_warn(xhci, "%s while waiting for address device command\n", 3702 timeleft == 0 ? "Timeout" : "Signal"); 3703 /* cancel the address device command */ 3704 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb); 3705 if (ret < 0) 3706 return ret; 3707 return -ETIME; 3708 } 3709 3710 switch (virt_dev->cmd_status) { 3711 case COMP_CTX_STATE: 3712 case COMP_EBADSLT: 3713 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", 3714 udev->slot_id); 3715 ret = -EINVAL; 3716 break; 3717 case COMP_TX_ERR: 3718 dev_warn(&udev->dev, "Device not responding to set address.\n"); 3719 ret = -EPROTO; 3720 break; 3721 case COMP_DEV_ERR: 3722 dev_warn(&udev->dev, "ERROR: Incompatible device for address " 3723 "device command.\n"); 3724 ret = -ENODEV; 3725 break; 3726 case COMP_SUCCESS: 3727 xhci_dbg(xhci, "Successful Address Device command\n"); 3728 break; 3729 default: 3730 xhci_err(xhci, "ERROR: unexpected command completion " 3731 "code 0x%x.\n", virt_dev->cmd_status); 3732 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3733 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3734 ret = -EINVAL; 3735 break; 3736 } 3737 if (ret) { 3738 return ret; 3739 } 3740 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3741 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64); 3742 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n", 3743 udev->slot_id, 3744 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3745 (unsigned long long) 3746 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3747 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n", 3748 (unsigned long long)virt_dev->out_ctx->dma); 3749 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3750 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3751 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3752 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3753 /* 3754 * USB core uses address 1 for the roothubs, so we add one to the 3755 * address given back to us by the HC. 3756 */ 3757 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3758 /* Use kernel assigned address for devices; store xHC assigned 3759 * address locally. */ 3760 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK) 3761 + 1; 3762 /* Zero the input context control for later use */ 3763 ctrl_ctx->add_flags = 0; 3764 ctrl_ctx->drop_flags = 0; 3765 3766 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address); 3767 3768 return 0; 3769 } 3770 3771 #ifdef CONFIG_USB_SUSPEND 3772 3773 /* BESL to HIRD Encoding array for USB2 LPM */ 3774 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3775 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3776 3777 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3778 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 3779 struct usb_device *udev) 3780 { 3781 int u2del, besl, besl_host; 3782 int besl_device = 0; 3783 u32 field; 3784 3785 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 3786 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 3787 3788 if (field & USB_BESL_SUPPORT) { 3789 for (besl_host = 0; besl_host < 16; besl_host++) { 3790 if (xhci_besl_encoding[besl_host] >= u2del) 3791 break; 3792 } 3793 /* Use baseline BESL value as default */ 3794 if (field & USB_BESL_BASELINE_VALID) 3795 besl_device = USB_GET_BESL_BASELINE(field); 3796 else if (field & USB_BESL_DEEP_VALID) 3797 besl_device = USB_GET_BESL_DEEP(field); 3798 } else { 3799 if (u2del <= 50) 3800 besl_host = 0; 3801 else 3802 besl_host = (u2del - 51) / 75 + 1; 3803 } 3804 3805 besl = besl_host + besl_device; 3806 if (besl > 15) 3807 besl = 15; 3808 3809 return besl; 3810 } 3811 3812 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd, 3813 struct usb_device *udev) 3814 { 3815 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3816 struct dev_info *dev_info; 3817 __le32 __iomem **port_array; 3818 __le32 __iomem *addr, *pm_addr; 3819 u32 temp, dev_id; 3820 unsigned int port_num; 3821 unsigned long flags; 3822 int hird; 3823 int ret; 3824 3825 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 3826 !udev->lpm_capable) 3827 return -EINVAL; 3828 3829 /* we only support lpm for non-hub device connected to root hub yet */ 3830 if (!udev->parent || udev->parent->parent || 3831 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 3832 return -EINVAL; 3833 3834 spin_lock_irqsave(&xhci->lock, flags); 3835 3836 /* Look for devices in lpm_failed_devs list */ 3837 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 | 3838 le16_to_cpu(udev->descriptor.idProduct); 3839 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) { 3840 if (dev_info->dev_id == dev_id) { 3841 ret = -EINVAL; 3842 goto finish; 3843 } 3844 } 3845 3846 port_array = xhci->usb2_ports; 3847 port_num = udev->portnum - 1; 3848 3849 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) { 3850 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum); 3851 ret = -EINVAL; 3852 goto finish; 3853 } 3854 3855 /* 3856 * Test USB 2.0 software LPM. 3857 * FIXME: some xHCI 1.0 hosts may implement a new register to set up 3858 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1 3859 * in the June 2011 errata release. 3860 */ 3861 xhci_dbg(xhci, "test port %d software LPM\n", port_num); 3862 /* 3863 * Set L1 Device Slot and HIRD/BESL. 3864 * Check device's USB 2.0 extension descriptor to determine whether 3865 * HIRD or BESL shoule be used. See USB2.0 LPM errata. 3866 */ 3867 pm_addr = port_array[port_num] + 1; 3868 hird = xhci_calculate_hird_besl(xhci, udev); 3869 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird); 3870 xhci_writel(xhci, temp, pm_addr); 3871 3872 /* Set port link state to U2(L1) */ 3873 addr = port_array[port_num]; 3874 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2); 3875 3876 /* wait for ACK */ 3877 spin_unlock_irqrestore(&xhci->lock, flags); 3878 msleep(10); 3879 spin_lock_irqsave(&xhci->lock, flags); 3880 3881 /* Check L1 Status */ 3882 ret = xhci_handshake(xhci, pm_addr, 3883 PORT_L1S_MASK, PORT_L1S_SUCCESS, 125); 3884 if (ret != -ETIMEDOUT) { 3885 /* enter L1 successfully */ 3886 temp = xhci_readl(xhci, addr); 3887 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n", 3888 port_num, temp); 3889 ret = 0; 3890 } else { 3891 temp = xhci_readl(xhci, pm_addr); 3892 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n", 3893 port_num, temp & PORT_L1S_MASK); 3894 ret = -EINVAL; 3895 } 3896 3897 /* Resume the port */ 3898 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0); 3899 3900 spin_unlock_irqrestore(&xhci->lock, flags); 3901 msleep(10); 3902 spin_lock_irqsave(&xhci->lock, flags); 3903 3904 /* Clear PLC */ 3905 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC); 3906 3907 /* Check PORTSC to make sure the device is in the right state */ 3908 if (!ret) { 3909 temp = xhci_readl(xhci, addr); 3910 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp); 3911 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) || 3912 (temp & PORT_PLS_MASK) != XDEV_U0) { 3913 xhci_dbg(xhci, "port L1 resume fail\n"); 3914 ret = -EINVAL; 3915 } 3916 } 3917 3918 if (ret) { 3919 /* Insert dev to lpm_failed_devs list */ 3920 xhci_warn(xhci, "device LPM test failed, may disconnect and " 3921 "re-enumerate\n"); 3922 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC); 3923 if (!dev_info) { 3924 ret = -ENOMEM; 3925 goto finish; 3926 } 3927 dev_info->dev_id = dev_id; 3928 INIT_LIST_HEAD(&dev_info->list); 3929 list_add(&dev_info->list, &xhci->lpm_failed_devs); 3930 } else { 3931 xhci_ring_device(xhci, udev->slot_id); 3932 } 3933 3934 finish: 3935 spin_unlock_irqrestore(&xhci->lock, flags); 3936 return ret; 3937 } 3938 3939 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 3940 struct usb_device *udev, int enable) 3941 { 3942 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3943 __le32 __iomem **port_array; 3944 __le32 __iomem *pm_addr; 3945 u32 temp; 3946 unsigned int port_num; 3947 unsigned long flags; 3948 int hird; 3949 3950 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 3951 !udev->lpm_capable) 3952 return -EPERM; 3953 3954 if (!udev->parent || udev->parent->parent || 3955 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 3956 return -EPERM; 3957 3958 if (udev->usb2_hw_lpm_capable != 1) 3959 return -EPERM; 3960 3961 spin_lock_irqsave(&xhci->lock, flags); 3962 3963 port_array = xhci->usb2_ports; 3964 port_num = udev->portnum - 1; 3965 pm_addr = port_array[port_num] + 1; 3966 temp = xhci_readl(xhci, pm_addr); 3967 3968 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 3969 enable ? "enable" : "disable", port_num); 3970 3971 hird = xhci_calculate_hird_besl(xhci, udev); 3972 3973 if (enable) { 3974 temp &= ~PORT_HIRD_MASK; 3975 temp |= PORT_HIRD(hird) | PORT_RWE; 3976 xhci_writel(xhci, temp, pm_addr); 3977 temp = xhci_readl(xhci, pm_addr); 3978 temp |= PORT_HLE; 3979 xhci_writel(xhci, temp, pm_addr); 3980 } else { 3981 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK); 3982 xhci_writel(xhci, temp, pm_addr); 3983 } 3984 3985 spin_unlock_irqrestore(&xhci->lock, flags); 3986 return 0; 3987 } 3988 3989 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 3990 { 3991 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3992 int ret; 3993 3994 ret = xhci_usb2_software_lpm_test(hcd, udev); 3995 if (!ret) { 3996 xhci_dbg(xhci, "software LPM test succeed\n"); 3997 if (xhci->hw_lpm_support == 1) { 3998 udev->usb2_hw_lpm_capable = 1; 3999 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1); 4000 if (!ret) 4001 udev->usb2_hw_lpm_enabled = 1; 4002 } 4003 } 4004 4005 return 0; 4006 } 4007 4008 #else 4009 4010 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4011 struct usb_device *udev, int enable) 4012 { 4013 return 0; 4014 } 4015 4016 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4017 { 4018 return 0; 4019 } 4020 4021 #endif /* CONFIG_USB_SUSPEND */ 4022 4023 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4024 4025 #ifdef CONFIG_PM 4026 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4027 static unsigned long long xhci_service_interval_to_ns( 4028 struct usb_endpoint_descriptor *desc) 4029 { 4030 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4031 } 4032 4033 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4034 enum usb3_link_state state) 4035 { 4036 unsigned long long sel; 4037 unsigned long long pel; 4038 unsigned int max_sel_pel; 4039 char *state_name; 4040 4041 switch (state) { 4042 case USB3_LPM_U1: 4043 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4044 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4045 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4046 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4047 state_name = "U1"; 4048 break; 4049 case USB3_LPM_U2: 4050 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4051 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4052 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4053 state_name = "U2"; 4054 break; 4055 default: 4056 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4057 __func__); 4058 return USB3_LPM_DISABLED; 4059 } 4060 4061 if (sel <= max_sel_pel && pel <= max_sel_pel) 4062 return USB3_LPM_DEVICE_INITIATED; 4063 4064 if (sel > max_sel_pel) 4065 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4066 "due to long SEL %llu ms\n", 4067 state_name, sel); 4068 else 4069 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4070 "due to long PEL %llu\n ms", 4071 state_name, pel); 4072 return USB3_LPM_DISABLED; 4073 } 4074 4075 /* Returns the hub-encoded U1 timeout value. 4076 * The U1 timeout should be the maximum of the following values: 4077 * - For control endpoints, U1 system exit latency (SEL) * 3 4078 * - For bulk endpoints, U1 SEL * 5 4079 * - For interrupt endpoints: 4080 * - Notification EPs, U1 SEL * 3 4081 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4082 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4083 */ 4084 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev, 4085 struct usb_endpoint_descriptor *desc) 4086 { 4087 unsigned long long timeout_ns; 4088 int ep_type; 4089 int intr_type; 4090 4091 ep_type = usb_endpoint_type(desc); 4092 switch (ep_type) { 4093 case USB_ENDPOINT_XFER_CONTROL: 4094 timeout_ns = udev->u1_params.sel * 3; 4095 break; 4096 case USB_ENDPOINT_XFER_BULK: 4097 timeout_ns = udev->u1_params.sel * 5; 4098 break; 4099 case USB_ENDPOINT_XFER_INT: 4100 intr_type = usb_endpoint_interrupt_type(desc); 4101 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4102 timeout_ns = udev->u1_params.sel * 3; 4103 break; 4104 } 4105 /* Otherwise the calculation is the same as isoc eps */ 4106 case USB_ENDPOINT_XFER_ISOC: 4107 timeout_ns = xhci_service_interval_to_ns(desc); 4108 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4109 if (timeout_ns < udev->u1_params.sel * 2) 4110 timeout_ns = udev->u1_params.sel * 2; 4111 break; 4112 default: 4113 return 0; 4114 } 4115 4116 /* The U1 timeout is encoded in 1us intervals. */ 4117 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4118 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */ 4119 if (timeout_ns == USB3_LPM_DISABLED) 4120 timeout_ns++; 4121 4122 /* If the necessary timeout value is bigger than what we can set in the 4123 * USB 3.0 hub, we have to disable hub-initiated U1. 4124 */ 4125 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4126 return timeout_ns; 4127 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4128 "due to long timeout %llu ms\n", timeout_ns); 4129 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4130 } 4131 4132 /* Returns the hub-encoded U2 timeout value. 4133 * The U2 timeout should be the maximum of: 4134 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4135 * - largest bInterval of any active periodic endpoint (to avoid going 4136 * into lower power link states between intervals). 4137 * - the U2 Exit Latency of the device 4138 */ 4139 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev, 4140 struct usb_endpoint_descriptor *desc) 4141 { 4142 unsigned long long timeout_ns; 4143 unsigned long long u2_del_ns; 4144 4145 timeout_ns = 10 * 1000 * 1000; 4146 4147 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4148 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4149 timeout_ns = xhci_service_interval_to_ns(desc); 4150 4151 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4152 if (u2_del_ns > timeout_ns) 4153 timeout_ns = u2_del_ns; 4154 4155 /* The U2 timeout is encoded in 256us intervals */ 4156 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4157 /* If the necessary timeout value is bigger than what we can set in the 4158 * USB 3.0 hub, we have to disable hub-initiated U2. 4159 */ 4160 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4161 return timeout_ns; 4162 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4163 "due to long timeout %llu ms\n", timeout_ns); 4164 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4165 } 4166 4167 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4168 struct usb_device *udev, 4169 struct usb_endpoint_descriptor *desc, 4170 enum usb3_link_state state, 4171 u16 *timeout) 4172 { 4173 if (state == USB3_LPM_U1) { 4174 if (xhci->quirks & XHCI_INTEL_HOST) 4175 return xhci_calculate_intel_u1_timeout(udev, desc); 4176 } else { 4177 if (xhci->quirks & XHCI_INTEL_HOST) 4178 return xhci_calculate_intel_u2_timeout(udev, desc); 4179 } 4180 4181 return USB3_LPM_DISABLED; 4182 } 4183 4184 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4185 struct usb_device *udev, 4186 struct usb_endpoint_descriptor *desc, 4187 enum usb3_link_state state, 4188 u16 *timeout) 4189 { 4190 u16 alt_timeout; 4191 4192 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4193 desc, state, timeout); 4194 4195 /* If we found we can't enable hub-initiated LPM, or 4196 * the U1 or U2 exit latency was too high to allow 4197 * device-initiated LPM as well, just stop searching. 4198 */ 4199 if (alt_timeout == USB3_LPM_DISABLED || 4200 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4201 *timeout = alt_timeout; 4202 return -E2BIG; 4203 } 4204 if (alt_timeout > *timeout) 4205 *timeout = alt_timeout; 4206 return 0; 4207 } 4208 4209 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4210 struct usb_device *udev, 4211 struct usb_host_interface *alt, 4212 enum usb3_link_state state, 4213 u16 *timeout) 4214 { 4215 int j; 4216 4217 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4218 if (xhci_update_timeout_for_endpoint(xhci, udev, 4219 &alt->endpoint[j].desc, state, timeout)) 4220 return -E2BIG; 4221 continue; 4222 } 4223 return 0; 4224 } 4225 4226 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4227 enum usb3_link_state state) 4228 { 4229 struct usb_device *parent; 4230 unsigned int num_hubs; 4231 4232 if (state == USB3_LPM_U2) 4233 return 0; 4234 4235 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4236 for (parent = udev->parent, num_hubs = 0; parent->parent; 4237 parent = parent->parent) 4238 num_hubs++; 4239 4240 if (num_hubs < 2) 4241 return 0; 4242 4243 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4244 " below second-tier hub.\n"); 4245 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4246 "to decrease power consumption.\n"); 4247 return -E2BIG; 4248 } 4249 4250 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4251 struct usb_device *udev, 4252 enum usb3_link_state state) 4253 { 4254 if (xhci->quirks & XHCI_INTEL_HOST) 4255 return xhci_check_intel_tier_policy(udev, state); 4256 return -EINVAL; 4257 } 4258 4259 /* Returns the U1 or U2 timeout that should be enabled. 4260 * If the tier check or timeout setting functions return with a non-zero exit 4261 * code, that means the timeout value has been finalized and we shouldn't look 4262 * at any more endpoints. 4263 */ 4264 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4265 struct usb_device *udev, enum usb3_link_state state) 4266 { 4267 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4268 struct usb_host_config *config; 4269 char *state_name; 4270 int i; 4271 u16 timeout = USB3_LPM_DISABLED; 4272 4273 if (state == USB3_LPM_U1) 4274 state_name = "U1"; 4275 else if (state == USB3_LPM_U2) 4276 state_name = "U2"; 4277 else { 4278 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4279 state); 4280 return timeout; 4281 } 4282 4283 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4284 return timeout; 4285 4286 /* Gather some information about the currently installed configuration 4287 * and alternate interface settings. 4288 */ 4289 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4290 state, &timeout)) 4291 return timeout; 4292 4293 config = udev->actconfig; 4294 if (!config) 4295 return timeout; 4296 4297 for (i = 0; i < USB_MAXINTERFACES; i++) { 4298 struct usb_driver *driver; 4299 struct usb_interface *intf = config->interface[i]; 4300 4301 if (!intf) 4302 continue; 4303 4304 /* Check if any currently bound drivers want hub-initiated LPM 4305 * disabled. 4306 */ 4307 if (intf->dev.driver) { 4308 driver = to_usb_driver(intf->dev.driver); 4309 if (driver && driver->disable_hub_initiated_lpm) { 4310 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4311 "at request of driver %s\n", 4312 state_name, driver->name); 4313 return xhci_get_timeout_no_hub_lpm(udev, state); 4314 } 4315 } 4316 4317 /* Not sure how this could happen... */ 4318 if (!intf->cur_altsetting) 4319 continue; 4320 4321 if (xhci_update_timeout_for_interface(xhci, udev, 4322 intf->cur_altsetting, 4323 state, &timeout)) 4324 return timeout; 4325 } 4326 return timeout; 4327 } 4328 4329 /* 4330 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4331 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4332 */ 4333 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4334 struct usb_device *udev, u16 max_exit_latency) 4335 { 4336 struct xhci_virt_device *virt_dev; 4337 struct xhci_command *command; 4338 struct xhci_input_control_ctx *ctrl_ctx; 4339 struct xhci_slot_ctx *slot_ctx; 4340 unsigned long flags; 4341 int ret; 4342 4343 spin_lock_irqsave(&xhci->lock, flags); 4344 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) { 4345 spin_unlock_irqrestore(&xhci->lock, flags); 4346 return 0; 4347 } 4348 4349 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4350 virt_dev = xhci->devs[udev->slot_id]; 4351 command = xhci->lpm_command; 4352 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4353 spin_unlock_irqrestore(&xhci->lock, flags); 4354 4355 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 4356 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4357 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4358 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4359 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4360 4361 xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n"); 4362 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4363 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4364 4365 /* Issue and wait for the evaluate context command. */ 4366 ret = xhci_configure_endpoint(xhci, udev, command, 4367 true, true); 4368 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4369 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4370 4371 if (!ret) { 4372 spin_lock_irqsave(&xhci->lock, flags); 4373 virt_dev->current_mel = max_exit_latency; 4374 spin_unlock_irqrestore(&xhci->lock, flags); 4375 } 4376 return ret; 4377 } 4378 4379 static int calculate_max_exit_latency(struct usb_device *udev, 4380 enum usb3_link_state state_changed, 4381 u16 hub_encoded_timeout) 4382 { 4383 unsigned long long u1_mel_us = 0; 4384 unsigned long long u2_mel_us = 0; 4385 unsigned long long mel_us = 0; 4386 bool disabling_u1; 4387 bool disabling_u2; 4388 bool enabling_u1; 4389 bool enabling_u2; 4390 4391 disabling_u1 = (state_changed == USB3_LPM_U1 && 4392 hub_encoded_timeout == USB3_LPM_DISABLED); 4393 disabling_u2 = (state_changed == USB3_LPM_U2 && 4394 hub_encoded_timeout == USB3_LPM_DISABLED); 4395 4396 enabling_u1 = (state_changed == USB3_LPM_U1 && 4397 hub_encoded_timeout != USB3_LPM_DISABLED); 4398 enabling_u2 = (state_changed == USB3_LPM_U2 && 4399 hub_encoded_timeout != USB3_LPM_DISABLED); 4400 4401 /* If U1 was already enabled and we're not disabling it, 4402 * or we're going to enable U1, account for the U1 max exit latency. 4403 */ 4404 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4405 enabling_u1) 4406 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4407 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4408 enabling_u2) 4409 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4410 4411 if (u1_mel_us > u2_mel_us) 4412 mel_us = u1_mel_us; 4413 else 4414 mel_us = u2_mel_us; 4415 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4416 if (mel_us > MAX_EXIT) { 4417 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4418 "is too big.\n", mel_us); 4419 return -E2BIG; 4420 } 4421 return mel_us; 4422 } 4423 4424 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4425 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4426 struct usb_device *udev, enum usb3_link_state state) 4427 { 4428 struct xhci_hcd *xhci; 4429 u16 hub_encoded_timeout; 4430 int mel; 4431 int ret; 4432 4433 xhci = hcd_to_xhci(hcd); 4434 /* The LPM timeout values are pretty host-controller specific, so don't 4435 * enable hub-initiated timeouts unless the vendor has provided 4436 * information about their timeout algorithm. 4437 */ 4438 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4439 !xhci->devs[udev->slot_id]) 4440 return USB3_LPM_DISABLED; 4441 4442 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4443 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4444 if (mel < 0) { 4445 /* Max Exit Latency is too big, disable LPM. */ 4446 hub_encoded_timeout = USB3_LPM_DISABLED; 4447 mel = 0; 4448 } 4449 4450 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4451 if (ret) 4452 return ret; 4453 return hub_encoded_timeout; 4454 } 4455 4456 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4457 struct usb_device *udev, enum usb3_link_state state) 4458 { 4459 struct xhci_hcd *xhci; 4460 u16 mel; 4461 int ret; 4462 4463 xhci = hcd_to_xhci(hcd); 4464 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4465 !xhci->devs[udev->slot_id]) 4466 return 0; 4467 4468 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4469 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4470 if (ret) 4471 return ret; 4472 return 0; 4473 } 4474 #else /* CONFIG_PM */ 4475 4476 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4477 struct usb_device *udev, enum usb3_link_state state) 4478 { 4479 return USB3_LPM_DISABLED; 4480 } 4481 4482 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4483 struct usb_device *udev, enum usb3_link_state state) 4484 { 4485 return 0; 4486 } 4487 #endif /* CONFIG_PM */ 4488 4489 /*-------------------------------------------------------------------------*/ 4490 4491 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4492 * internal data structures for the device. 4493 */ 4494 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4495 struct usb_tt *tt, gfp_t mem_flags) 4496 { 4497 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4498 struct xhci_virt_device *vdev; 4499 struct xhci_command *config_cmd; 4500 struct xhci_input_control_ctx *ctrl_ctx; 4501 struct xhci_slot_ctx *slot_ctx; 4502 unsigned long flags; 4503 unsigned think_time; 4504 int ret; 4505 4506 /* Ignore root hubs */ 4507 if (!hdev->parent) 4508 return 0; 4509 4510 vdev = xhci->devs[hdev->slot_id]; 4511 if (!vdev) { 4512 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4513 return -EINVAL; 4514 } 4515 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4516 if (!config_cmd) { 4517 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4518 return -ENOMEM; 4519 } 4520 4521 spin_lock_irqsave(&xhci->lock, flags); 4522 if (hdev->speed == USB_SPEED_HIGH && 4523 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4524 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4525 xhci_free_command(xhci, config_cmd); 4526 spin_unlock_irqrestore(&xhci->lock, flags); 4527 return -ENOMEM; 4528 } 4529 4530 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4531 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 4532 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4533 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4534 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4535 if (tt->multi) 4536 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4537 if (xhci->hci_version > 0x95) { 4538 xhci_dbg(xhci, "xHCI version %x needs hub " 4539 "TT think time and number of ports\n", 4540 (unsigned int) xhci->hci_version); 4541 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4542 /* Set TT think time - convert from ns to FS bit times. 4543 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4544 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4545 * 4546 * xHCI 1.0: this field shall be 0 if the device is not a 4547 * High-spped hub. 4548 */ 4549 think_time = tt->think_time; 4550 if (think_time != 0) 4551 think_time = (think_time / 666) - 1; 4552 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4553 slot_ctx->tt_info |= 4554 cpu_to_le32(TT_THINK_TIME(think_time)); 4555 } else { 4556 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4557 "TT think time or number of ports\n", 4558 (unsigned int) xhci->hci_version); 4559 } 4560 slot_ctx->dev_state = 0; 4561 spin_unlock_irqrestore(&xhci->lock, flags); 4562 4563 xhci_dbg(xhci, "Set up %s for hub device.\n", 4564 (xhci->hci_version > 0x95) ? 4565 "configure endpoint" : "evaluate context"); 4566 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4567 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4568 4569 /* Issue and wait for the configure endpoint or 4570 * evaluate context command. 4571 */ 4572 if (xhci->hci_version > 0x95) 4573 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4574 false, false); 4575 else 4576 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4577 true, false); 4578 4579 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4580 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4581 4582 xhci_free_command(xhci, config_cmd); 4583 return ret; 4584 } 4585 4586 int xhci_get_frame(struct usb_hcd *hcd) 4587 { 4588 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4589 /* EHCI mods by the periodic size. Why? */ 4590 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; 4591 } 4592 4593 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4594 { 4595 struct xhci_hcd *xhci; 4596 struct device *dev = hcd->self.controller; 4597 int retval; 4598 u32 temp; 4599 4600 /* Accept arbitrarily long scatter-gather lists */ 4601 hcd->self.sg_tablesize = ~0; 4602 /* XHCI controllers don't stop the ep queue on short packets :| */ 4603 hcd->self.no_stop_on_short = 1; 4604 4605 if (usb_hcd_is_primary_hcd(hcd)) { 4606 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 4607 if (!xhci) 4608 return -ENOMEM; 4609 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 4610 xhci->main_hcd = hcd; 4611 /* Mark the first roothub as being USB 2.0. 4612 * The xHCI driver will register the USB 3.0 roothub. 4613 */ 4614 hcd->speed = HCD_USB2; 4615 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4616 /* 4617 * USB 2.0 roothub under xHCI has an integrated TT, 4618 * (rate matching hub) as opposed to having an OHCI/UHCI 4619 * companion controller. 4620 */ 4621 hcd->has_tt = 1; 4622 } else { 4623 /* xHCI private pointer was set in xhci_pci_probe for the second 4624 * registered roothub. 4625 */ 4626 xhci = hcd_to_xhci(hcd); 4627 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4628 if (HCC_64BIT_ADDR(temp)) { 4629 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4630 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4631 } else { 4632 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4633 } 4634 return 0; 4635 } 4636 4637 xhci->cap_regs = hcd->regs; 4638 xhci->op_regs = hcd->regs + 4639 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase)); 4640 xhci->run_regs = hcd->regs + 4641 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4642 /* Cache read-only capability registers */ 4643 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1); 4644 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2); 4645 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3); 4646 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); 4647 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4648 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4649 xhci_print_registers(xhci); 4650 4651 get_quirks(dev, xhci); 4652 4653 /* Make sure the HC is halted. */ 4654 retval = xhci_halt(xhci); 4655 if (retval) 4656 goto error; 4657 4658 xhci_dbg(xhci, "Resetting HCD\n"); 4659 /* Reset the internal HC memory state and registers. */ 4660 retval = xhci_reset(xhci); 4661 if (retval) 4662 goto error; 4663 xhci_dbg(xhci, "Reset complete\n"); 4664 4665 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4666 if (HCC_64BIT_ADDR(temp)) { 4667 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4668 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4669 } else { 4670 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4671 } 4672 4673 xhci_dbg(xhci, "Calling HCD init\n"); 4674 /* Initialize HCD and host controller data structures. */ 4675 retval = xhci_init(hcd); 4676 if (retval) 4677 goto error; 4678 xhci_dbg(xhci, "Called HCD init\n"); 4679 return 0; 4680 error: 4681 kfree(xhci); 4682 return retval; 4683 } 4684 4685 MODULE_DESCRIPTION(DRIVER_DESC); 4686 MODULE_AUTHOR(DRIVER_AUTHOR); 4687 MODULE_LICENSE("GPL"); 4688 4689 static int __init xhci_hcd_init(void) 4690 { 4691 int retval; 4692 4693 retval = xhci_register_pci(); 4694 if (retval < 0) { 4695 printk(KERN_DEBUG "Problem registering PCI driver."); 4696 return retval; 4697 } 4698 retval = xhci_register_plat(); 4699 if (retval < 0) { 4700 printk(KERN_DEBUG "Problem registering platform driver."); 4701 goto unreg_pci; 4702 } 4703 /* 4704 * Check the compiler generated sizes of structures that must be laid 4705 * out in specific ways for hardware access. 4706 */ 4707 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4708 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4709 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4710 /* xhci_device_control has eight fields, and also 4711 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4712 */ 4713 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4714 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4715 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4716 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 4717 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4718 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4719 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4720 return 0; 4721 unreg_pci: 4722 xhci_unregister_pci(); 4723 return retval; 4724 } 4725 module_init(xhci_hcd_init); 4726 4727 static void __exit xhci_hcd_cleanup(void) 4728 { 4729 xhci_unregister_pci(); 4730 xhci_unregister_plat(); 4731 } 4732 module_exit(xhci_hcd_cleanup); 4733