xref: /linux/drivers/usb/host/xhci.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35 
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 
39 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40 
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45 
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49 
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 	u32	result;
67 
68 	do {
69 		result = readl(ptr);
70 		if (result == ~(u32)0)		/* card removed */
71 			return -ENODEV;
72 		result &= mask;
73 		if (result == done)
74 			return 0;
75 		udelay(1);
76 		usec--;
77 	} while (usec > 0);
78 	return -ETIMEDOUT;
79 }
80 
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 	u32 halted;
87 	u32 cmd;
88 	u32 mask;
89 
90 	mask = ~(XHCI_IRQS);
91 	halted = readl(&xhci->op_regs->status) & STS_HALT;
92 	if (!halted)
93 		mask &= ~CMD_RUN;
94 
95 	cmd = readl(&xhci->op_regs->command);
96 	cmd &= mask;
97 	writel(cmd, &xhci->op_regs->command);
98 }
99 
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 	int ret;
111 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 	xhci_quiesce(xhci);
113 
114 	ret = xhci_handshake(&xhci->op_regs->status,
115 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 	if (!ret) {
117 		xhci->xhc_state |= XHCI_STATE_HALTED;
118 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119 	} else
120 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121 				XHCI_MAX_HALT_USEC);
122 	return ret;
123 }
124 
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130 	u32 temp;
131 	int ret;
132 
133 	temp = readl(&xhci->op_regs->command);
134 	temp |= (CMD_RUN);
135 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 			temp);
137 	writel(temp, &xhci->op_regs->command);
138 
139 	/*
140 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 	 * running.
142 	 */
143 	ret = xhci_handshake(&xhci->op_regs->status,
144 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 	if (ret == -ETIMEDOUT)
146 		xhci_err(xhci, "Host took too long to start, "
147 				"waited %u microseconds.\n",
148 				XHCI_MAX_HALT_USEC);
149 	if (!ret)
150 		/* clear state flags. Including dying, halted or removing */
151 		xhci->xhc_state = 0;
152 
153 	return ret;
154 }
155 
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165 	u32 command;
166 	u32 state;
167 	int ret, i;
168 
169 	state = readl(&xhci->op_regs->status);
170 	if ((state & STS_HALT) == 0) {
171 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
172 		return 0;
173 	}
174 
175 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
176 	command = readl(&xhci->op_regs->command);
177 	command |= CMD_RESET;
178 	writel(command, &xhci->op_regs->command);
179 
180 	/* Existing Intel xHCI controllers require a delay of 1 mS,
181 	 * after setting the CMD_RESET bit, and before accessing any
182 	 * HC registers. This allows the HC to complete the
183 	 * reset operation and be ready for HC register access.
184 	 * Without this delay, the subsequent HC register access,
185 	 * may result in a system hang very rarely.
186 	 */
187 	if (xhci->quirks & XHCI_INTEL_HOST)
188 		udelay(1000);
189 
190 	ret = xhci_handshake(&xhci->op_regs->command,
191 			CMD_RESET, 0, 10 * 1000 * 1000);
192 	if (ret)
193 		return ret;
194 
195 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
196 			 "Wait for controller to be ready for doorbell rings");
197 	/*
198 	 * xHCI cannot write to any doorbells or operational registers other
199 	 * than status until the "Controller Not Ready" flag is cleared.
200 	 */
201 	ret = xhci_handshake(&xhci->op_regs->status,
202 			STS_CNR, 0, 10 * 1000 * 1000);
203 
204 	for (i = 0; i < 2; ++i) {
205 		xhci->bus_state[i].port_c_suspend = 0;
206 		xhci->bus_state[i].suspended_ports = 0;
207 		xhci->bus_state[i].resuming_ports = 0;
208 	}
209 
210 	return ret;
211 }
212 
213 #ifdef CONFIG_PCI
214 static int xhci_free_msi(struct xhci_hcd *xhci)
215 {
216 	int i;
217 
218 	if (!xhci->msix_entries)
219 		return -EINVAL;
220 
221 	for (i = 0; i < xhci->msix_count; i++)
222 		if (xhci->msix_entries[i].vector)
223 			free_irq(xhci->msix_entries[i].vector,
224 					xhci_to_hcd(xhci));
225 	return 0;
226 }
227 
228 /*
229  * Set up MSI
230  */
231 static int xhci_setup_msi(struct xhci_hcd *xhci)
232 {
233 	int ret;
234 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
235 
236 	ret = pci_enable_msi(pdev);
237 	if (ret) {
238 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
239 				"failed to allocate MSI entry");
240 		return ret;
241 	}
242 
243 	ret = request_irq(pdev->irq, xhci_msi_irq,
244 				0, "xhci_hcd", xhci_to_hcd(xhci));
245 	if (ret) {
246 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
247 				"disable MSI interrupt");
248 		pci_disable_msi(pdev);
249 	}
250 
251 	return ret;
252 }
253 
254 /*
255  * Free IRQs
256  * free all IRQs request
257  */
258 static void xhci_free_irq(struct xhci_hcd *xhci)
259 {
260 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
261 	int ret;
262 
263 	/* return if using legacy interrupt */
264 	if (xhci_to_hcd(xhci)->irq > 0)
265 		return;
266 
267 	ret = xhci_free_msi(xhci);
268 	if (!ret)
269 		return;
270 	if (pdev->irq > 0)
271 		free_irq(pdev->irq, xhci_to_hcd(xhci));
272 
273 	return;
274 }
275 
276 /*
277  * Set up MSI-X
278  */
279 static int xhci_setup_msix(struct xhci_hcd *xhci)
280 {
281 	int i, ret = 0;
282 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
283 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
284 
285 	/*
286 	 * calculate number of msi-x vectors supported.
287 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
288 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
289 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
290 	 *   Add additional 1 vector to ensure always available interrupt.
291 	 */
292 	xhci->msix_count = min(num_online_cpus() + 1,
293 				HCS_MAX_INTRS(xhci->hcs_params1));
294 
295 	xhci->msix_entries =
296 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
297 				GFP_KERNEL);
298 	if (!xhci->msix_entries) {
299 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
300 		return -ENOMEM;
301 	}
302 
303 	for (i = 0; i < xhci->msix_count; i++) {
304 		xhci->msix_entries[i].entry = i;
305 		xhci->msix_entries[i].vector = 0;
306 	}
307 
308 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
309 	if (ret) {
310 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
311 				"Failed to enable MSI-X");
312 		goto free_entries;
313 	}
314 
315 	for (i = 0; i < xhci->msix_count; i++) {
316 		ret = request_irq(xhci->msix_entries[i].vector,
317 				xhci_msi_irq,
318 				0, "xhci_hcd", xhci_to_hcd(xhci));
319 		if (ret)
320 			goto disable_msix;
321 	}
322 
323 	hcd->msix_enabled = 1;
324 	return ret;
325 
326 disable_msix:
327 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
328 	xhci_free_irq(xhci);
329 	pci_disable_msix(pdev);
330 free_entries:
331 	kfree(xhci->msix_entries);
332 	xhci->msix_entries = NULL;
333 	return ret;
334 }
335 
336 /* Free any IRQs and disable MSI-X */
337 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
338 {
339 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
340 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
341 
342 	if (xhci->quirks & XHCI_PLAT)
343 		return;
344 
345 	xhci_free_irq(xhci);
346 
347 	if (xhci->msix_entries) {
348 		pci_disable_msix(pdev);
349 		kfree(xhci->msix_entries);
350 		xhci->msix_entries = NULL;
351 	} else {
352 		pci_disable_msi(pdev);
353 	}
354 
355 	hcd->msix_enabled = 0;
356 	return;
357 }
358 
359 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
360 {
361 	int i;
362 
363 	if (xhci->msix_entries) {
364 		for (i = 0; i < xhci->msix_count; i++)
365 			synchronize_irq(xhci->msix_entries[i].vector);
366 	}
367 }
368 
369 static int xhci_try_enable_msi(struct usb_hcd *hcd)
370 {
371 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
372 	struct pci_dev  *pdev;
373 	int ret;
374 
375 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
376 	if (xhci->quirks & XHCI_PLAT)
377 		return 0;
378 
379 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
380 	/*
381 	 * Some Fresco Logic host controllers advertise MSI, but fail to
382 	 * generate interrupts.  Don't even try to enable MSI.
383 	 */
384 	if (xhci->quirks & XHCI_BROKEN_MSI)
385 		goto legacy_irq;
386 
387 	/* unregister the legacy interrupt */
388 	if (hcd->irq)
389 		free_irq(hcd->irq, hcd);
390 	hcd->irq = 0;
391 
392 	ret = xhci_setup_msix(xhci);
393 	if (ret)
394 		/* fall back to msi*/
395 		ret = xhci_setup_msi(xhci);
396 
397 	if (!ret)
398 		/* hcd->irq is 0, we have MSI */
399 		return 0;
400 
401 	if (!pdev->irq) {
402 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
403 		return -EINVAL;
404 	}
405 
406  legacy_irq:
407 	if (!strlen(hcd->irq_descr))
408 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
409 			 hcd->driver->description, hcd->self.busnum);
410 
411 	/* fall back to legacy interrupt*/
412 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
413 			hcd->irq_descr, hcd);
414 	if (ret) {
415 		xhci_err(xhci, "request interrupt %d failed\n",
416 				pdev->irq);
417 		return ret;
418 	}
419 	hcd->irq = pdev->irq;
420 	return 0;
421 }
422 
423 #else
424 
425 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
426 {
427 	return 0;
428 }
429 
430 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
431 {
432 }
433 
434 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
435 {
436 }
437 
438 #endif
439 
440 static void compliance_mode_recovery(unsigned long arg)
441 {
442 	struct xhci_hcd *xhci;
443 	struct usb_hcd *hcd;
444 	u32 temp;
445 	int i;
446 
447 	xhci = (struct xhci_hcd *)arg;
448 
449 	for (i = 0; i < xhci->num_usb3_ports; i++) {
450 		temp = readl(xhci->usb3_ports[i]);
451 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
452 			/*
453 			 * Compliance Mode Detected. Letting USB Core
454 			 * handle the Warm Reset
455 			 */
456 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
457 					"Compliance mode detected->port %d",
458 					i + 1);
459 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
460 					"Attempting compliance mode recovery");
461 			hcd = xhci->shared_hcd;
462 
463 			if (hcd->state == HC_STATE_SUSPENDED)
464 				usb_hcd_resume_root_hub(hcd);
465 
466 			usb_hcd_poll_rh_status(hcd);
467 		}
468 	}
469 
470 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
471 		mod_timer(&xhci->comp_mode_recovery_timer,
472 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
473 }
474 
475 /*
476  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
477  * that causes ports behind that hardware to enter compliance mode sometimes.
478  * The quirk creates a timer that polls every 2 seconds the link state of
479  * each host controller's port and recovers it by issuing a Warm reset
480  * if Compliance mode is detected, otherwise the port will become "dead" (no
481  * device connections or disconnections will be detected anymore). Becasue no
482  * status event is generated when entering compliance mode (per xhci spec),
483  * this quirk is needed on systems that have the failing hardware installed.
484  */
485 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
486 {
487 	xhci->port_status_u0 = 0;
488 	setup_timer(&xhci->comp_mode_recovery_timer,
489 		    compliance_mode_recovery, (unsigned long)xhci);
490 	xhci->comp_mode_recovery_timer.expires = jiffies +
491 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
492 
493 	set_timer_slack(&xhci->comp_mode_recovery_timer,
494 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
495 	add_timer(&xhci->comp_mode_recovery_timer);
496 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 			"Compliance mode recovery timer initialized");
498 }
499 
500 /*
501  * This function identifies the systems that have installed the SN65LVPE502CP
502  * USB3.0 re-driver and that need the Compliance Mode Quirk.
503  * Systems:
504  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
505  */
506 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
507 {
508 	const char *dmi_product_name, *dmi_sys_vendor;
509 
510 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
511 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
512 	if (!dmi_product_name || !dmi_sys_vendor)
513 		return false;
514 
515 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
516 		return false;
517 
518 	if (strstr(dmi_product_name, "Z420") ||
519 			strstr(dmi_product_name, "Z620") ||
520 			strstr(dmi_product_name, "Z820") ||
521 			strstr(dmi_product_name, "Z1 Workstation"))
522 		return true;
523 
524 	return false;
525 }
526 
527 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
528 {
529 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
530 }
531 
532 
533 /*
534  * Initialize memory for HCD and xHC (one-time init).
535  *
536  * Program the PAGESIZE register, initialize the device context array, create
537  * device contexts (?), set up a command ring segment (or two?), create event
538  * ring (one for now).
539  */
540 int xhci_init(struct usb_hcd *hcd)
541 {
542 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
543 	int retval = 0;
544 
545 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
546 	spin_lock_init(&xhci->lock);
547 	if (xhci->hci_version == 0x95 && link_quirk) {
548 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
549 				"QUIRK: Not clearing Link TRB chain bits.");
550 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
551 	} else {
552 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
553 				"xHCI doesn't need link TRB QUIRK");
554 	}
555 	retval = xhci_mem_init(xhci, GFP_KERNEL);
556 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
557 
558 	/* Initializing Compliance Mode Recovery Data If Needed */
559 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
560 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
561 		compliance_mode_recovery_timer_init(xhci);
562 	}
563 
564 	return retval;
565 }
566 
567 /*-------------------------------------------------------------------------*/
568 
569 
570 static int xhci_run_finished(struct xhci_hcd *xhci)
571 {
572 	if (xhci_start(xhci)) {
573 		xhci_halt(xhci);
574 		return -ENODEV;
575 	}
576 	xhci->shared_hcd->state = HC_STATE_RUNNING;
577 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
578 
579 	if (xhci->quirks & XHCI_NEC_HOST)
580 		xhci_ring_cmd_db(xhci);
581 
582 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
583 			"Finished xhci_run for USB3 roothub");
584 	return 0;
585 }
586 
587 /*
588  * Start the HC after it was halted.
589  *
590  * This function is called by the USB core when the HC driver is added.
591  * Its opposite is xhci_stop().
592  *
593  * xhci_init() must be called once before this function can be called.
594  * Reset the HC, enable device slot contexts, program DCBAAP, and
595  * set command ring pointer and event ring pointer.
596  *
597  * Setup MSI-X vectors and enable interrupts.
598  */
599 int xhci_run(struct usb_hcd *hcd)
600 {
601 	u32 temp;
602 	u64 temp_64;
603 	int ret;
604 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
605 
606 	/* Start the xHCI host controller running only after the USB 2.0 roothub
607 	 * is setup.
608 	 */
609 
610 	hcd->uses_new_polling = 1;
611 	if (!usb_hcd_is_primary_hcd(hcd))
612 		return xhci_run_finished(xhci);
613 
614 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
615 
616 	ret = xhci_try_enable_msi(hcd);
617 	if (ret)
618 		return ret;
619 
620 	xhci_dbg(xhci, "Command ring memory map follows:\n");
621 	xhci_debug_ring(xhci, xhci->cmd_ring);
622 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
623 	xhci_dbg_cmd_ptrs(xhci);
624 
625 	xhci_dbg(xhci, "ERST memory map follows:\n");
626 	xhci_dbg_erst(xhci, &xhci->erst);
627 	xhci_dbg(xhci, "Event ring:\n");
628 	xhci_debug_ring(xhci, xhci->event_ring);
629 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
630 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
631 	temp_64 &= ~ERST_PTR_MASK;
632 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
633 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
634 
635 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
636 			"// Set the interrupt modulation register");
637 	temp = readl(&xhci->ir_set->irq_control);
638 	temp &= ~ER_IRQ_INTERVAL_MASK;
639 	/*
640 	 * the increment interval is 8 times as much as that defined
641 	 * in xHCI spec on MTK's controller
642 	 */
643 	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
644 	writel(temp, &xhci->ir_set->irq_control);
645 
646 	/* Set the HCD state before we enable the irqs */
647 	temp = readl(&xhci->op_regs->command);
648 	temp |= (CMD_EIE);
649 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
650 			"// Enable interrupts, cmd = 0x%x.", temp);
651 	writel(temp, &xhci->op_regs->command);
652 
653 	temp = readl(&xhci->ir_set->irq_pending);
654 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
655 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
656 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
657 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
658 	xhci_print_ir_set(xhci, 0);
659 
660 	if (xhci->quirks & XHCI_NEC_HOST) {
661 		struct xhci_command *command;
662 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
663 		if (!command)
664 			return -ENOMEM;
665 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
666 				TRB_TYPE(TRB_NEC_GET_FW));
667 	}
668 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
669 			"Finished xhci_run for USB2 roothub");
670 	return 0;
671 }
672 EXPORT_SYMBOL_GPL(xhci_run);
673 
674 /*
675  * Stop xHCI driver.
676  *
677  * This function is called by the USB core when the HC driver is removed.
678  * Its opposite is xhci_run().
679  *
680  * Disable device contexts, disable IRQs, and quiesce the HC.
681  * Reset the HC, finish any completed transactions, and cleanup memory.
682  */
683 void xhci_stop(struct usb_hcd *hcd)
684 {
685 	u32 temp;
686 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
687 
688 	if (xhci->xhc_state & XHCI_STATE_HALTED)
689 		return;
690 
691 	mutex_lock(&xhci->mutex);
692 	spin_lock_irq(&xhci->lock);
693 	xhci->xhc_state |= XHCI_STATE_HALTED;
694 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
695 
696 	/* Make sure the xHC is halted for a USB3 roothub
697 	 * (xhci_stop() could be called as part of failed init).
698 	 */
699 	xhci_halt(xhci);
700 	xhci_reset(xhci);
701 	spin_unlock_irq(&xhci->lock);
702 
703 	xhci_cleanup_msix(xhci);
704 
705 	/* Deleting Compliance Mode Recovery Timer */
706 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
707 			(!(xhci_all_ports_seen_u0(xhci)))) {
708 		del_timer_sync(&xhci->comp_mode_recovery_timer);
709 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
710 				"%s: compliance mode recovery timer deleted",
711 				__func__);
712 	}
713 
714 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
715 		usb_amd_dev_put();
716 
717 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
718 			"// Disabling event ring interrupts");
719 	temp = readl(&xhci->op_regs->status);
720 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
721 	temp = readl(&xhci->ir_set->irq_pending);
722 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
723 	xhci_print_ir_set(xhci, 0);
724 
725 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
726 	xhci_mem_cleanup(xhci);
727 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
728 			"xhci_stop completed - status = %x",
729 			readl(&xhci->op_regs->status));
730 	mutex_unlock(&xhci->mutex);
731 }
732 
733 /*
734  * Shutdown HC (not bus-specific)
735  *
736  * This is called when the machine is rebooting or halting.  We assume that the
737  * machine will be powered off, and the HC's internal state will be reset.
738  * Don't bother to free memory.
739  *
740  * This will only ever be called with the main usb_hcd (the USB3 roothub).
741  */
742 void xhci_shutdown(struct usb_hcd *hcd)
743 {
744 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
745 
746 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
747 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
748 
749 	spin_lock_irq(&xhci->lock);
750 	xhci_halt(xhci);
751 	/* Workaround for spurious wakeups at shutdown with HSW */
752 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
753 		xhci_reset(xhci);
754 	spin_unlock_irq(&xhci->lock);
755 
756 	xhci_cleanup_msix(xhci);
757 
758 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759 			"xhci_shutdown completed - status = %x",
760 			readl(&xhci->op_regs->status));
761 
762 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
763 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
764 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
765 }
766 
767 #ifdef CONFIG_PM
768 static void xhci_save_registers(struct xhci_hcd *xhci)
769 {
770 	xhci->s3.command = readl(&xhci->op_regs->command);
771 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
772 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
773 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
774 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
775 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
776 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
777 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
778 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
779 }
780 
781 static void xhci_restore_registers(struct xhci_hcd *xhci)
782 {
783 	writel(xhci->s3.command, &xhci->op_regs->command);
784 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
785 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
786 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
787 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
788 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
789 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
790 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
791 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
792 }
793 
794 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
795 {
796 	u64	val_64;
797 
798 	/* step 2: initialize command ring buffer */
799 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
800 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
801 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
802 				      xhci->cmd_ring->dequeue) &
803 		 (u64) ~CMD_RING_RSVD_BITS) |
804 		xhci->cmd_ring->cycle_state;
805 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
806 			"// Setting command ring address to 0x%llx",
807 			(long unsigned long) val_64);
808 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
809 }
810 
811 /*
812  * The whole command ring must be cleared to zero when we suspend the host.
813  *
814  * The host doesn't save the command ring pointer in the suspend well, so we
815  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
816  * aligned, because of the reserved bits in the command ring dequeue pointer
817  * register.  Therefore, we can't just set the dequeue pointer back in the
818  * middle of the ring (TRBs are 16-byte aligned).
819  */
820 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
821 {
822 	struct xhci_ring *ring;
823 	struct xhci_segment *seg;
824 
825 	ring = xhci->cmd_ring;
826 	seg = ring->deq_seg;
827 	do {
828 		memset(seg->trbs, 0,
829 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
830 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
831 			cpu_to_le32(~TRB_CYCLE);
832 		seg = seg->next;
833 	} while (seg != ring->deq_seg);
834 
835 	/* Reset the software enqueue and dequeue pointers */
836 	ring->deq_seg = ring->first_seg;
837 	ring->dequeue = ring->first_seg->trbs;
838 	ring->enq_seg = ring->deq_seg;
839 	ring->enqueue = ring->dequeue;
840 
841 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
842 	/*
843 	 * Ring is now zeroed, so the HW should look for change of ownership
844 	 * when the cycle bit is set to 1.
845 	 */
846 	ring->cycle_state = 1;
847 
848 	/*
849 	 * Reset the hardware dequeue pointer.
850 	 * Yes, this will need to be re-written after resume, but we're paranoid
851 	 * and want to make sure the hardware doesn't access bogus memory
852 	 * because, say, the BIOS or an SMI started the host without changing
853 	 * the command ring pointers.
854 	 */
855 	xhci_set_cmd_ring_deq(xhci);
856 }
857 
858 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
859 {
860 	int port_index;
861 	__le32 __iomem **port_array;
862 	unsigned long flags;
863 	u32 t1, t2;
864 
865 	spin_lock_irqsave(&xhci->lock, flags);
866 
867 	/* disble usb3 ports Wake bits*/
868 	port_index = xhci->num_usb3_ports;
869 	port_array = xhci->usb3_ports;
870 	while (port_index--) {
871 		t1 = readl(port_array[port_index]);
872 		t1 = xhci_port_state_to_neutral(t1);
873 		t2 = t1 & ~PORT_WAKE_BITS;
874 		if (t1 != t2)
875 			writel(t2, port_array[port_index]);
876 	}
877 
878 	/* disble usb2 ports Wake bits*/
879 	port_index = xhci->num_usb2_ports;
880 	port_array = xhci->usb2_ports;
881 	while (port_index--) {
882 		t1 = readl(port_array[port_index]);
883 		t1 = xhci_port_state_to_neutral(t1);
884 		t2 = t1 & ~PORT_WAKE_BITS;
885 		if (t1 != t2)
886 			writel(t2, port_array[port_index]);
887 	}
888 
889 	spin_unlock_irqrestore(&xhci->lock, flags);
890 }
891 
892 /*
893  * Stop HC (not bus-specific)
894  *
895  * This is called when the machine transition into S3/S4 mode.
896  *
897  */
898 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
899 {
900 	int			rc = 0;
901 	unsigned int		delay = XHCI_MAX_HALT_USEC;
902 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
903 	u32			command;
904 
905 	if (!hcd->state)
906 		return 0;
907 
908 	if (hcd->state != HC_STATE_SUSPENDED ||
909 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
910 		return -EINVAL;
911 
912 	/* Clear root port wake on bits if wakeup not allowed. */
913 	if (!do_wakeup)
914 		xhci_disable_port_wake_on_bits(xhci);
915 
916 	/* Don't poll the roothubs on bus suspend. */
917 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
918 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
919 	del_timer_sync(&hcd->rh_timer);
920 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
921 	del_timer_sync(&xhci->shared_hcd->rh_timer);
922 
923 	spin_lock_irq(&xhci->lock);
924 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
925 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
926 	/* step 1: stop endpoint */
927 	/* skipped assuming that port suspend has done */
928 
929 	/* step 2: clear Run/Stop bit */
930 	command = readl(&xhci->op_regs->command);
931 	command &= ~CMD_RUN;
932 	writel(command, &xhci->op_regs->command);
933 
934 	/* Some chips from Fresco Logic need an extraordinary delay */
935 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
936 
937 	if (xhci_handshake(&xhci->op_regs->status,
938 		      STS_HALT, STS_HALT, delay)) {
939 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
940 		spin_unlock_irq(&xhci->lock);
941 		return -ETIMEDOUT;
942 	}
943 	xhci_clear_command_ring(xhci);
944 
945 	/* step 3: save registers */
946 	xhci_save_registers(xhci);
947 
948 	/* step 4: set CSS flag */
949 	command = readl(&xhci->op_regs->command);
950 	command |= CMD_CSS;
951 	writel(command, &xhci->op_regs->command);
952 	if (xhci_handshake(&xhci->op_regs->status,
953 				STS_SAVE, 0, 10 * 1000)) {
954 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
955 		spin_unlock_irq(&xhci->lock);
956 		return -ETIMEDOUT;
957 	}
958 	spin_unlock_irq(&xhci->lock);
959 
960 	/*
961 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
962 	 * is about to be suspended.
963 	 */
964 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
965 			(!(xhci_all_ports_seen_u0(xhci)))) {
966 		del_timer_sync(&xhci->comp_mode_recovery_timer);
967 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
968 				"%s: compliance mode recovery timer deleted",
969 				__func__);
970 	}
971 
972 	/* step 5: remove core well power */
973 	/* synchronize irq when using MSI-X */
974 	xhci_msix_sync_irqs(xhci);
975 
976 	return rc;
977 }
978 EXPORT_SYMBOL_GPL(xhci_suspend);
979 
980 /*
981  * start xHC (not bus-specific)
982  *
983  * This is called when the machine transition from S3/S4 mode.
984  *
985  */
986 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
987 {
988 	u32			command, temp = 0, status;
989 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
990 	struct usb_hcd		*secondary_hcd;
991 	int			retval = 0;
992 	bool			comp_timer_running = false;
993 
994 	if (!hcd->state)
995 		return 0;
996 
997 	/* Wait a bit if either of the roothubs need to settle from the
998 	 * transition into bus suspend.
999 	 */
1000 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1001 			time_before(jiffies,
1002 				xhci->bus_state[1].next_statechange))
1003 		msleep(100);
1004 
1005 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007 
1008 	spin_lock_irq(&xhci->lock);
1009 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1010 		hibernated = true;
1011 
1012 	if (!hibernated) {
1013 		/* step 1: restore register */
1014 		xhci_restore_registers(xhci);
1015 		/* step 2: initialize command ring buffer */
1016 		xhci_set_cmd_ring_deq(xhci);
1017 		/* step 3: restore state and start state*/
1018 		/* step 3: set CRS flag */
1019 		command = readl(&xhci->op_regs->command);
1020 		command |= CMD_CRS;
1021 		writel(command, &xhci->op_regs->command);
1022 		if (xhci_handshake(&xhci->op_regs->status,
1023 			      STS_RESTORE, 0, 10 * 1000)) {
1024 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1025 			spin_unlock_irq(&xhci->lock);
1026 			return -ETIMEDOUT;
1027 		}
1028 		temp = readl(&xhci->op_regs->status);
1029 	}
1030 
1031 	/* If restore operation fails, re-initialize the HC during resume */
1032 	if ((temp & STS_SRE) || hibernated) {
1033 
1034 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1035 				!(xhci_all_ports_seen_u0(xhci))) {
1036 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1037 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1038 				"Compliance Mode Recovery Timer deleted!");
1039 		}
1040 
1041 		/* Let the USB core know _both_ roothubs lost power. */
1042 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1043 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1044 
1045 		xhci_dbg(xhci, "Stop HCD\n");
1046 		xhci_halt(xhci);
1047 		xhci_reset(xhci);
1048 		spin_unlock_irq(&xhci->lock);
1049 		xhci_cleanup_msix(xhci);
1050 
1051 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1052 		temp = readl(&xhci->op_regs->status);
1053 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1054 		temp = readl(&xhci->ir_set->irq_pending);
1055 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1056 		xhci_print_ir_set(xhci, 0);
1057 
1058 		xhci_dbg(xhci, "cleaning up memory\n");
1059 		xhci_mem_cleanup(xhci);
1060 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1061 			    readl(&xhci->op_regs->status));
1062 
1063 		/* USB core calls the PCI reinit and start functions twice:
1064 		 * first with the primary HCD, and then with the secondary HCD.
1065 		 * If we don't do the same, the host will never be started.
1066 		 */
1067 		if (!usb_hcd_is_primary_hcd(hcd))
1068 			secondary_hcd = hcd;
1069 		else
1070 			secondary_hcd = xhci->shared_hcd;
1071 
1072 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1073 		retval = xhci_init(hcd->primary_hcd);
1074 		if (retval)
1075 			return retval;
1076 		comp_timer_running = true;
1077 
1078 		xhci_dbg(xhci, "Start the primary HCD\n");
1079 		retval = xhci_run(hcd->primary_hcd);
1080 		if (!retval) {
1081 			xhci_dbg(xhci, "Start the secondary HCD\n");
1082 			retval = xhci_run(secondary_hcd);
1083 		}
1084 		hcd->state = HC_STATE_SUSPENDED;
1085 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1086 		goto done;
1087 	}
1088 
1089 	/* step 4: set Run/Stop bit */
1090 	command = readl(&xhci->op_regs->command);
1091 	command |= CMD_RUN;
1092 	writel(command, &xhci->op_regs->command);
1093 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1094 		  0, 250 * 1000);
1095 
1096 	/* step 5: walk topology and initialize portsc,
1097 	 * portpmsc and portli
1098 	 */
1099 	/* this is done in bus_resume */
1100 
1101 	/* step 6: restart each of the previously
1102 	 * Running endpoints by ringing their doorbells
1103 	 */
1104 
1105 	spin_unlock_irq(&xhci->lock);
1106 
1107  done:
1108 	if (retval == 0) {
1109 		/* Resume root hubs only when have pending events. */
1110 		status = readl(&xhci->op_regs->status);
1111 		if (status & STS_EINT) {
1112 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1113 			usb_hcd_resume_root_hub(hcd);
1114 		}
1115 	}
1116 
1117 	/*
1118 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1119 	 * be re-initialized Always after a system resume. Ports are subject
1120 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1121 	 * ports have entered previously to U0 before system's suspension.
1122 	 */
1123 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1124 		compliance_mode_recovery_timer_init(xhci);
1125 
1126 	/* Re-enable port polling. */
1127 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1128 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1129 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1130 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1131 	usb_hcd_poll_rh_status(hcd);
1132 
1133 	return retval;
1134 }
1135 EXPORT_SYMBOL_GPL(xhci_resume);
1136 #endif	/* CONFIG_PM */
1137 
1138 /*-------------------------------------------------------------------------*/
1139 
1140 /**
1141  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1142  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1143  * value to right shift 1 for the bitmask.
1144  *
1145  * Index  = (epnum * 2) + direction - 1,
1146  * where direction = 0 for OUT, 1 for IN.
1147  * For control endpoints, the IN index is used (OUT index is unused), so
1148  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1149  */
1150 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1151 {
1152 	unsigned int index;
1153 	if (usb_endpoint_xfer_control(desc))
1154 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1155 	else
1156 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1157 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1158 	return index;
1159 }
1160 
1161 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1162  * address from the XHCI endpoint index.
1163  */
1164 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1165 {
1166 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1167 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1168 	return direction | number;
1169 }
1170 
1171 /* Find the flag for this endpoint (for use in the control context).  Use the
1172  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1173  * bit 1, etc.
1174  */
1175 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1176 {
1177 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1178 }
1179 
1180 /* Find the flag for this endpoint (for use in the control context).  Use the
1181  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1182  * bit 1, etc.
1183  */
1184 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1185 {
1186 	return 1 << (ep_index + 1);
1187 }
1188 
1189 /* Compute the last valid endpoint context index.  Basically, this is the
1190  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1191  * we find the most significant bit set in the added contexts flags.
1192  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1193  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1194  */
1195 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1196 {
1197 	return fls(added_ctxs) - 1;
1198 }
1199 
1200 /* Returns 1 if the arguments are OK;
1201  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1202  */
1203 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1204 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1205 		const char *func) {
1206 	struct xhci_hcd	*xhci;
1207 	struct xhci_virt_device	*virt_dev;
1208 
1209 	if (!hcd || (check_ep && !ep) || !udev) {
1210 		pr_debug("xHCI %s called with invalid args\n", func);
1211 		return -EINVAL;
1212 	}
1213 	if (!udev->parent) {
1214 		pr_debug("xHCI %s called for root hub\n", func);
1215 		return 0;
1216 	}
1217 
1218 	xhci = hcd_to_xhci(hcd);
1219 	if (check_virt_dev) {
1220 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1221 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1222 					func);
1223 			return -EINVAL;
1224 		}
1225 
1226 		virt_dev = xhci->devs[udev->slot_id];
1227 		if (virt_dev->udev != udev) {
1228 			xhci_dbg(xhci, "xHCI %s called with udev and "
1229 					  "virt_dev does not match\n", func);
1230 			return -EINVAL;
1231 		}
1232 	}
1233 
1234 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1235 		return -ENODEV;
1236 
1237 	return 1;
1238 }
1239 
1240 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1241 		struct usb_device *udev, struct xhci_command *command,
1242 		bool ctx_change, bool must_succeed);
1243 
1244 /*
1245  * Full speed devices may have a max packet size greater than 8 bytes, but the
1246  * USB core doesn't know that until it reads the first 8 bytes of the
1247  * descriptor.  If the usb_device's max packet size changes after that point,
1248  * we need to issue an evaluate context command and wait on it.
1249  */
1250 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1251 		unsigned int ep_index, struct urb *urb)
1252 {
1253 	struct xhci_container_ctx *out_ctx;
1254 	struct xhci_input_control_ctx *ctrl_ctx;
1255 	struct xhci_ep_ctx *ep_ctx;
1256 	struct xhci_command *command;
1257 	int max_packet_size;
1258 	int hw_max_packet_size;
1259 	int ret = 0;
1260 
1261 	out_ctx = xhci->devs[slot_id]->out_ctx;
1262 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1263 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1264 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1265 	if (hw_max_packet_size != max_packet_size) {
1266 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1267 				"Max Packet Size for ep 0 changed.");
1268 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1269 				"Max packet size in usb_device = %d",
1270 				max_packet_size);
1271 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1272 				"Max packet size in xHCI HW = %d",
1273 				hw_max_packet_size);
1274 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1275 				"Issuing evaluate context command.");
1276 
1277 		/* Set up the input context flags for the command */
1278 		/* FIXME: This won't work if a non-default control endpoint
1279 		 * changes max packet sizes.
1280 		 */
1281 
1282 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1283 		if (!command)
1284 			return -ENOMEM;
1285 
1286 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1287 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1288 		if (!ctrl_ctx) {
1289 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1290 					__func__);
1291 			ret = -ENOMEM;
1292 			goto command_cleanup;
1293 		}
1294 		/* Set up the modified control endpoint 0 */
1295 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1296 				xhci->devs[slot_id]->out_ctx, ep_index);
1297 
1298 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1299 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1300 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1301 
1302 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1303 		ctrl_ctx->drop_flags = 0;
1304 
1305 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1306 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1307 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1308 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1309 
1310 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1311 				true, false);
1312 
1313 		/* Clean up the input context for later use by bandwidth
1314 		 * functions.
1315 		 */
1316 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1317 command_cleanup:
1318 		kfree(command->completion);
1319 		kfree(command);
1320 	}
1321 	return ret;
1322 }
1323 
1324 /*
1325  * non-error returns are a promise to giveback() the urb later
1326  * we drop ownership so next owner (or urb unlink) can get it
1327  */
1328 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1329 {
1330 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1331 	struct xhci_td *buffer;
1332 	unsigned long flags;
1333 	int ret = 0;
1334 	unsigned int slot_id, ep_index;
1335 	struct urb_priv	*urb_priv;
1336 	int size, i;
1337 
1338 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1339 					true, true, __func__) <= 0)
1340 		return -EINVAL;
1341 
1342 	slot_id = urb->dev->slot_id;
1343 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1344 
1345 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1346 		if (!in_interrupt())
1347 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1348 		ret = -ESHUTDOWN;
1349 		goto exit;
1350 	}
1351 
1352 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1353 		size = urb->number_of_packets;
1354 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1355 	    urb->transfer_buffer_length > 0 &&
1356 	    urb->transfer_flags & URB_ZERO_PACKET &&
1357 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1358 		size = 2;
1359 	else
1360 		size = 1;
1361 
1362 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1363 				  size * sizeof(struct xhci_td *), mem_flags);
1364 	if (!urb_priv)
1365 		return -ENOMEM;
1366 
1367 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1368 	if (!buffer) {
1369 		kfree(urb_priv);
1370 		return -ENOMEM;
1371 	}
1372 
1373 	for (i = 0; i < size; i++) {
1374 		urb_priv->td[i] = buffer;
1375 		buffer++;
1376 	}
1377 
1378 	urb_priv->length = size;
1379 	urb_priv->td_cnt = 0;
1380 	urb->hcpriv = urb_priv;
1381 
1382 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1383 		/* Check to see if the max packet size for the default control
1384 		 * endpoint changed during FS device enumeration
1385 		 */
1386 		if (urb->dev->speed == USB_SPEED_FULL) {
1387 			ret = xhci_check_maxpacket(xhci, slot_id,
1388 					ep_index, urb);
1389 			if (ret < 0) {
1390 				xhci_urb_free_priv(urb_priv);
1391 				urb->hcpriv = NULL;
1392 				return ret;
1393 			}
1394 		}
1395 
1396 		/* We have a spinlock and interrupts disabled, so we must pass
1397 		 * atomic context to this function, which may allocate memory.
1398 		 */
1399 		spin_lock_irqsave(&xhci->lock, flags);
1400 		if (xhci->xhc_state & XHCI_STATE_DYING)
1401 			goto dying;
1402 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1403 				slot_id, ep_index);
1404 		if (ret)
1405 			goto free_priv;
1406 		spin_unlock_irqrestore(&xhci->lock, flags);
1407 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1408 		spin_lock_irqsave(&xhci->lock, flags);
1409 		if (xhci->xhc_state & XHCI_STATE_DYING)
1410 			goto dying;
1411 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1412 				EP_GETTING_STREAMS) {
1413 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1414 					"is transitioning to using streams.\n");
1415 			ret = -EINVAL;
1416 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1417 				EP_GETTING_NO_STREAMS) {
1418 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1419 					"is transitioning to "
1420 					"not having streams.\n");
1421 			ret = -EINVAL;
1422 		} else {
1423 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1424 					slot_id, ep_index);
1425 		}
1426 		if (ret)
1427 			goto free_priv;
1428 		spin_unlock_irqrestore(&xhci->lock, flags);
1429 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1430 		spin_lock_irqsave(&xhci->lock, flags);
1431 		if (xhci->xhc_state & XHCI_STATE_DYING)
1432 			goto dying;
1433 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1434 				slot_id, ep_index);
1435 		if (ret)
1436 			goto free_priv;
1437 		spin_unlock_irqrestore(&xhci->lock, flags);
1438 	} else {
1439 		spin_lock_irqsave(&xhci->lock, flags);
1440 		if (xhci->xhc_state & XHCI_STATE_DYING)
1441 			goto dying;
1442 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1443 				slot_id, ep_index);
1444 		if (ret)
1445 			goto free_priv;
1446 		spin_unlock_irqrestore(&xhci->lock, flags);
1447 	}
1448 exit:
1449 	return ret;
1450 dying:
1451 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1452 			"non-responsive xHCI host.\n",
1453 			urb->ep->desc.bEndpointAddress, urb);
1454 	ret = -ESHUTDOWN;
1455 free_priv:
1456 	xhci_urb_free_priv(urb_priv);
1457 	urb->hcpriv = NULL;
1458 	spin_unlock_irqrestore(&xhci->lock, flags);
1459 	return ret;
1460 }
1461 
1462 /*
1463  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1464  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1465  * should pick up where it left off in the TD, unless a Set Transfer Ring
1466  * Dequeue Pointer is issued.
1467  *
1468  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1469  * the ring.  Since the ring is a contiguous structure, they can't be physically
1470  * removed.  Instead, there are two options:
1471  *
1472  *  1) If the HC is in the middle of processing the URB to be canceled, we
1473  *     simply move the ring's dequeue pointer past those TRBs using the Set
1474  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1475  *     when drivers timeout on the last submitted URB and attempt to cancel.
1476  *
1477  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1478  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1479  *     HC will need to invalidate the any TRBs it has cached after the stop
1480  *     endpoint command, as noted in the xHCI 0.95 errata.
1481  *
1482  *  3) The TD may have completed by the time the Stop Endpoint Command
1483  *     completes, so software needs to handle that case too.
1484  *
1485  * This function should protect against the TD enqueueing code ringing the
1486  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1487  * It also needs to account for multiple cancellations on happening at the same
1488  * time for the same endpoint.
1489  *
1490  * Note that this function can be called in any context, or so says
1491  * usb_hcd_unlink_urb()
1492  */
1493 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1494 {
1495 	unsigned long flags;
1496 	int ret, i;
1497 	u32 temp;
1498 	struct xhci_hcd *xhci;
1499 	struct urb_priv	*urb_priv;
1500 	struct xhci_td *td;
1501 	unsigned int ep_index;
1502 	struct xhci_ring *ep_ring;
1503 	struct xhci_virt_ep *ep;
1504 	struct xhci_command *command;
1505 
1506 	xhci = hcd_to_xhci(hcd);
1507 	spin_lock_irqsave(&xhci->lock, flags);
1508 	/* Make sure the URB hasn't completed or been unlinked already */
1509 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1510 	if (ret || !urb->hcpriv)
1511 		goto done;
1512 	temp = readl(&xhci->op_regs->status);
1513 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1514 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1515 				"HW died, freeing TD.");
1516 		urb_priv = urb->hcpriv;
1517 		for (i = urb_priv->td_cnt;
1518 		     i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1519 		     i++) {
1520 			td = urb_priv->td[i];
1521 			if (!list_empty(&td->td_list))
1522 				list_del_init(&td->td_list);
1523 			if (!list_empty(&td->cancelled_td_list))
1524 				list_del_init(&td->cancelled_td_list);
1525 		}
1526 
1527 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1528 		spin_unlock_irqrestore(&xhci->lock, flags);
1529 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1530 		xhci_urb_free_priv(urb_priv);
1531 		return ret;
1532 	}
1533 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1534 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1535 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1536 				"Ep 0x%x: URB %p to be canceled on "
1537 				"non-responsive xHCI host.",
1538 				urb->ep->desc.bEndpointAddress, urb);
1539 		/* Let the stop endpoint command watchdog timer (which set this
1540 		 * state) finish cleaning up the endpoint TD lists.  We must
1541 		 * have caught it in the middle of dropping a lock and giving
1542 		 * back an URB.
1543 		 */
1544 		goto done;
1545 	}
1546 
1547 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1548 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1549 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1550 	if (!ep_ring) {
1551 		ret = -EINVAL;
1552 		goto done;
1553 	}
1554 
1555 	urb_priv = urb->hcpriv;
1556 	i = urb_priv->td_cnt;
1557 	if (i < urb_priv->length)
1558 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1559 				"Cancel URB %p, dev %s, ep 0x%x, "
1560 				"starting at offset 0x%llx",
1561 				urb, urb->dev->devpath,
1562 				urb->ep->desc.bEndpointAddress,
1563 				(unsigned long long) xhci_trb_virt_to_dma(
1564 					urb_priv->td[i]->start_seg,
1565 					urb_priv->td[i]->first_trb));
1566 
1567 	for (; i < urb_priv->length; i++) {
1568 		td = urb_priv->td[i];
1569 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1570 	}
1571 
1572 	/* Queue a stop endpoint command, but only if this is
1573 	 * the first cancellation to be handled.
1574 	 */
1575 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1576 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1577 		if (!command) {
1578 			ret = -ENOMEM;
1579 			goto done;
1580 		}
1581 		ep->ep_state |= EP_HALT_PENDING;
1582 		ep->stop_cmds_pending++;
1583 		ep->stop_cmd_timer.expires = jiffies +
1584 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1585 		add_timer(&ep->stop_cmd_timer);
1586 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1587 					 ep_index, 0);
1588 		xhci_ring_cmd_db(xhci);
1589 	}
1590 done:
1591 	spin_unlock_irqrestore(&xhci->lock, flags);
1592 	return ret;
1593 }
1594 
1595 /* Drop an endpoint from a new bandwidth configuration for this device.
1596  * Only one call to this function is allowed per endpoint before
1597  * check_bandwidth() or reset_bandwidth() must be called.
1598  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1599  * add the endpoint to the schedule with possibly new parameters denoted by a
1600  * different endpoint descriptor in usb_host_endpoint.
1601  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1602  * not allowed.
1603  *
1604  * The USB core will not allow URBs to be queued to an endpoint that is being
1605  * disabled, so there's no need for mutual exclusion to protect
1606  * the xhci->devs[slot_id] structure.
1607  */
1608 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1609 		struct usb_host_endpoint *ep)
1610 {
1611 	struct xhci_hcd *xhci;
1612 	struct xhci_container_ctx *in_ctx, *out_ctx;
1613 	struct xhci_input_control_ctx *ctrl_ctx;
1614 	unsigned int ep_index;
1615 	struct xhci_ep_ctx *ep_ctx;
1616 	u32 drop_flag;
1617 	u32 new_add_flags, new_drop_flags;
1618 	int ret;
1619 
1620 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1621 	if (ret <= 0)
1622 		return ret;
1623 	xhci = hcd_to_xhci(hcd);
1624 	if (xhci->xhc_state & XHCI_STATE_DYING)
1625 		return -ENODEV;
1626 
1627 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1628 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1629 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1630 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1631 				__func__, drop_flag);
1632 		return 0;
1633 	}
1634 
1635 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1636 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1637 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1638 	if (!ctrl_ctx) {
1639 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1640 				__func__);
1641 		return 0;
1642 	}
1643 
1644 	ep_index = xhci_get_endpoint_index(&ep->desc);
1645 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1646 	/* If the HC already knows the endpoint is disabled,
1647 	 * or the HCD has noted it is disabled, ignore this request
1648 	 */
1649 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1650 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1651 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1652 	    xhci_get_endpoint_flag(&ep->desc)) {
1653 		/* Do not warn when called after a usb_device_reset */
1654 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1655 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1656 				  __func__, ep);
1657 		return 0;
1658 	}
1659 
1660 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1661 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1662 
1663 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1664 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1665 
1666 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1667 
1668 	if (xhci->quirks & XHCI_MTK_HOST)
1669 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1670 
1671 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1672 			(unsigned int) ep->desc.bEndpointAddress,
1673 			udev->slot_id,
1674 			(unsigned int) new_drop_flags,
1675 			(unsigned int) new_add_flags);
1676 	return 0;
1677 }
1678 
1679 /* Add an endpoint to a new possible bandwidth configuration for this device.
1680  * Only one call to this function is allowed per endpoint before
1681  * check_bandwidth() or reset_bandwidth() must be called.
1682  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1683  * add the endpoint to the schedule with possibly new parameters denoted by a
1684  * different endpoint descriptor in usb_host_endpoint.
1685  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1686  * not allowed.
1687  *
1688  * The USB core will not allow URBs to be queued to an endpoint until the
1689  * configuration or alt setting is installed in the device, so there's no need
1690  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1691  */
1692 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1693 		struct usb_host_endpoint *ep)
1694 {
1695 	struct xhci_hcd *xhci;
1696 	struct xhci_container_ctx *in_ctx;
1697 	unsigned int ep_index;
1698 	struct xhci_input_control_ctx *ctrl_ctx;
1699 	u32 added_ctxs;
1700 	u32 new_add_flags, new_drop_flags;
1701 	struct xhci_virt_device *virt_dev;
1702 	int ret = 0;
1703 
1704 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1705 	if (ret <= 0) {
1706 		/* So we won't queue a reset ep command for a root hub */
1707 		ep->hcpriv = NULL;
1708 		return ret;
1709 	}
1710 	xhci = hcd_to_xhci(hcd);
1711 	if (xhci->xhc_state & XHCI_STATE_DYING)
1712 		return -ENODEV;
1713 
1714 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1715 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1716 		/* FIXME when we have to issue an evaluate endpoint command to
1717 		 * deal with ep0 max packet size changing once we get the
1718 		 * descriptors
1719 		 */
1720 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1721 				__func__, added_ctxs);
1722 		return 0;
1723 	}
1724 
1725 	virt_dev = xhci->devs[udev->slot_id];
1726 	in_ctx = virt_dev->in_ctx;
1727 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1728 	if (!ctrl_ctx) {
1729 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1730 				__func__);
1731 		return 0;
1732 	}
1733 
1734 	ep_index = xhci_get_endpoint_index(&ep->desc);
1735 	/* If this endpoint is already in use, and the upper layers are trying
1736 	 * to add it again without dropping it, reject the addition.
1737 	 */
1738 	if (virt_dev->eps[ep_index].ring &&
1739 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1740 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1741 				"without dropping it.\n",
1742 				(unsigned int) ep->desc.bEndpointAddress);
1743 		return -EINVAL;
1744 	}
1745 
1746 	/* If the HCD has already noted the endpoint is enabled,
1747 	 * ignore this request.
1748 	 */
1749 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1750 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1751 				__func__, ep);
1752 		return 0;
1753 	}
1754 
1755 	/*
1756 	 * Configuration and alternate setting changes must be done in
1757 	 * process context, not interrupt context (or so documenation
1758 	 * for usb_set_interface() and usb_set_configuration() claim).
1759 	 */
1760 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1761 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1762 				__func__, ep->desc.bEndpointAddress);
1763 		return -ENOMEM;
1764 	}
1765 
1766 	if (xhci->quirks & XHCI_MTK_HOST) {
1767 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1768 		if (ret < 0) {
1769 			xhci_free_or_cache_endpoint_ring(xhci,
1770 				virt_dev, ep_index);
1771 			return ret;
1772 		}
1773 	}
1774 
1775 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1776 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1777 
1778 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1779 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1780 	 * this re-adds a new state for the endpoint from the new endpoint
1781 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1782 	 * drop flags alone.
1783 	 */
1784 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1785 
1786 	/* Store the usb_device pointer for later use */
1787 	ep->hcpriv = udev;
1788 
1789 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1790 			(unsigned int) ep->desc.bEndpointAddress,
1791 			udev->slot_id,
1792 			(unsigned int) new_drop_flags,
1793 			(unsigned int) new_add_flags);
1794 	return 0;
1795 }
1796 
1797 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1798 {
1799 	struct xhci_input_control_ctx *ctrl_ctx;
1800 	struct xhci_ep_ctx *ep_ctx;
1801 	struct xhci_slot_ctx *slot_ctx;
1802 	int i;
1803 
1804 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1805 	if (!ctrl_ctx) {
1806 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1807 				__func__);
1808 		return;
1809 	}
1810 
1811 	/* When a device's add flag and drop flag are zero, any subsequent
1812 	 * configure endpoint command will leave that endpoint's state
1813 	 * untouched.  Make sure we don't leave any old state in the input
1814 	 * endpoint contexts.
1815 	 */
1816 	ctrl_ctx->drop_flags = 0;
1817 	ctrl_ctx->add_flags = 0;
1818 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1819 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1820 	/* Endpoint 0 is always valid */
1821 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1822 	for (i = 1; i < 31; ++i) {
1823 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1824 		ep_ctx->ep_info = 0;
1825 		ep_ctx->ep_info2 = 0;
1826 		ep_ctx->deq = 0;
1827 		ep_ctx->tx_info = 0;
1828 	}
1829 }
1830 
1831 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1832 		struct usb_device *udev, u32 *cmd_status)
1833 {
1834 	int ret;
1835 
1836 	switch (*cmd_status) {
1837 	case COMP_CMD_ABORT:
1838 	case COMP_CMD_STOP:
1839 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1840 		ret = -ETIME;
1841 		break;
1842 	case COMP_ENOMEM:
1843 		dev_warn(&udev->dev,
1844 			 "Not enough host controller resources for new device state.\n");
1845 		ret = -ENOMEM;
1846 		/* FIXME: can we allocate more resources for the HC? */
1847 		break;
1848 	case COMP_BW_ERR:
1849 	case COMP_2ND_BW_ERR:
1850 		dev_warn(&udev->dev,
1851 			 "Not enough bandwidth for new device state.\n");
1852 		ret = -ENOSPC;
1853 		/* FIXME: can we go back to the old state? */
1854 		break;
1855 	case COMP_TRB_ERR:
1856 		/* the HCD set up something wrong */
1857 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1858 				"add flag = 1, "
1859 				"and endpoint is not disabled.\n");
1860 		ret = -EINVAL;
1861 		break;
1862 	case COMP_DEV_ERR:
1863 		dev_warn(&udev->dev,
1864 			 "ERROR: Incompatible device for endpoint configure command.\n");
1865 		ret = -ENODEV;
1866 		break;
1867 	case COMP_SUCCESS:
1868 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1869 				"Successful Endpoint Configure command");
1870 		ret = 0;
1871 		break;
1872 	default:
1873 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1874 				*cmd_status);
1875 		ret = -EINVAL;
1876 		break;
1877 	}
1878 	return ret;
1879 }
1880 
1881 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1882 		struct usb_device *udev, u32 *cmd_status)
1883 {
1884 	int ret;
1885 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1886 
1887 	switch (*cmd_status) {
1888 	case COMP_CMD_ABORT:
1889 	case COMP_CMD_STOP:
1890 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1891 		ret = -ETIME;
1892 		break;
1893 	case COMP_EINVAL:
1894 		dev_warn(&udev->dev,
1895 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1896 		ret = -EINVAL;
1897 		break;
1898 	case COMP_EBADSLT:
1899 		dev_warn(&udev->dev,
1900 			"WARN: slot not enabled for evaluate context command.\n");
1901 		ret = -EINVAL;
1902 		break;
1903 	case COMP_CTX_STATE:
1904 		dev_warn(&udev->dev,
1905 			"WARN: invalid context state for evaluate context command.\n");
1906 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1907 		ret = -EINVAL;
1908 		break;
1909 	case COMP_DEV_ERR:
1910 		dev_warn(&udev->dev,
1911 			"ERROR: Incompatible device for evaluate context command.\n");
1912 		ret = -ENODEV;
1913 		break;
1914 	case COMP_MEL_ERR:
1915 		/* Max Exit Latency too large error */
1916 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1917 		ret = -EINVAL;
1918 		break;
1919 	case COMP_SUCCESS:
1920 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1921 				"Successful evaluate context command");
1922 		ret = 0;
1923 		break;
1924 	default:
1925 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1926 			*cmd_status);
1927 		ret = -EINVAL;
1928 		break;
1929 	}
1930 	return ret;
1931 }
1932 
1933 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1934 		struct xhci_input_control_ctx *ctrl_ctx)
1935 {
1936 	u32 valid_add_flags;
1937 	u32 valid_drop_flags;
1938 
1939 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1940 	 * (bit 1).  The default control endpoint is added during the Address
1941 	 * Device command and is never removed until the slot is disabled.
1942 	 */
1943 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1944 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1945 
1946 	/* Use hweight32 to count the number of ones in the add flags, or
1947 	 * number of endpoints added.  Don't count endpoints that are changed
1948 	 * (both added and dropped).
1949 	 */
1950 	return hweight32(valid_add_flags) -
1951 		hweight32(valid_add_flags & valid_drop_flags);
1952 }
1953 
1954 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1955 		struct xhci_input_control_ctx *ctrl_ctx)
1956 {
1957 	u32 valid_add_flags;
1958 	u32 valid_drop_flags;
1959 
1960 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1961 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1962 
1963 	return hweight32(valid_drop_flags) -
1964 		hweight32(valid_add_flags & valid_drop_flags);
1965 }
1966 
1967 /*
1968  * We need to reserve the new number of endpoints before the configure endpoint
1969  * command completes.  We can't subtract the dropped endpoints from the number
1970  * of active endpoints until the command completes because we can oversubscribe
1971  * the host in this case:
1972  *
1973  *  - the first configure endpoint command drops more endpoints than it adds
1974  *  - a second configure endpoint command that adds more endpoints is queued
1975  *  - the first configure endpoint command fails, so the config is unchanged
1976  *  - the second command may succeed, even though there isn't enough resources
1977  *
1978  * Must be called with xhci->lock held.
1979  */
1980 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1981 		struct xhci_input_control_ctx *ctrl_ctx)
1982 {
1983 	u32 added_eps;
1984 
1985 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1986 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1987 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1988 				"Not enough ep ctxs: "
1989 				"%u active, need to add %u, limit is %u.",
1990 				xhci->num_active_eps, added_eps,
1991 				xhci->limit_active_eps);
1992 		return -ENOMEM;
1993 	}
1994 	xhci->num_active_eps += added_eps;
1995 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1996 			"Adding %u ep ctxs, %u now active.", added_eps,
1997 			xhci->num_active_eps);
1998 	return 0;
1999 }
2000 
2001 /*
2002  * The configure endpoint was failed by the xHC for some other reason, so we
2003  * need to revert the resources that failed configuration would have used.
2004  *
2005  * Must be called with xhci->lock held.
2006  */
2007 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2008 		struct xhci_input_control_ctx *ctrl_ctx)
2009 {
2010 	u32 num_failed_eps;
2011 
2012 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2013 	xhci->num_active_eps -= num_failed_eps;
2014 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2015 			"Removing %u failed ep ctxs, %u now active.",
2016 			num_failed_eps,
2017 			xhci->num_active_eps);
2018 }
2019 
2020 /*
2021  * Now that the command has completed, clean up the active endpoint count by
2022  * subtracting out the endpoints that were dropped (but not changed).
2023  *
2024  * Must be called with xhci->lock held.
2025  */
2026 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2027 		struct xhci_input_control_ctx *ctrl_ctx)
2028 {
2029 	u32 num_dropped_eps;
2030 
2031 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2032 	xhci->num_active_eps -= num_dropped_eps;
2033 	if (num_dropped_eps)
2034 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2035 				"Removing %u dropped ep ctxs, %u now active.",
2036 				num_dropped_eps,
2037 				xhci->num_active_eps);
2038 }
2039 
2040 static unsigned int xhci_get_block_size(struct usb_device *udev)
2041 {
2042 	switch (udev->speed) {
2043 	case USB_SPEED_LOW:
2044 	case USB_SPEED_FULL:
2045 		return FS_BLOCK;
2046 	case USB_SPEED_HIGH:
2047 		return HS_BLOCK;
2048 	case USB_SPEED_SUPER:
2049 	case USB_SPEED_SUPER_PLUS:
2050 		return SS_BLOCK;
2051 	case USB_SPEED_UNKNOWN:
2052 	case USB_SPEED_WIRELESS:
2053 	default:
2054 		/* Should never happen */
2055 		return 1;
2056 	}
2057 }
2058 
2059 static unsigned int
2060 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2061 {
2062 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2063 		return LS_OVERHEAD;
2064 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2065 		return FS_OVERHEAD;
2066 	return HS_OVERHEAD;
2067 }
2068 
2069 /* If we are changing a LS/FS device under a HS hub,
2070  * make sure (if we are activating a new TT) that the HS bus has enough
2071  * bandwidth for this new TT.
2072  */
2073 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2074 		struct xhci_virt_device *virt_dev,
2075 		int old_active_eps)
2076 {
2077 	struct xhci_interval_bw_table *bw_table;
2078 	struct xhci_tt_bw_info *tt_info;
2079 
2080 	/* Find the bandwidth table for the root port this TT is attached to. */
2081 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2082 	tt_info = virt_dev->tt_info;
2083 	/* If this TT already had active endpoints, the bandwidth for this TT
2084 	 * has already been added.  Removing all periodic endpoints (and thus
2085 	 * making the TT enactive) will only decrease the bandwidth used.
2086 	 */
2087 	if (old_active_eps)
2088 		return 0;
2089 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2090 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2091 			return -ENOMEM;
2092 		return 0;
2093 	}
2094 	/* Not sure why we would have no new active endpoints...
2095 	 *
2096 	 * Maybe because of an Evaluate Context change for a hub update or a
2097 	 * control endpoint 0 max packet size change?
2098 	 * FIXME: skip the bandwidth calculation in that case.
2099 	 */
2100 	return 0;
2101 }
2102 
2103 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2104 		struct xhci_virt_device *virt_dev)
2105 {
2106 	unsigned int bw_reserved;
2107 
2108 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2109 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2110 		return -ENOMEM;
2111 
2112 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2113 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2114 		return -ENOMEM;
2115 
2116 	return 0;
2117 }
2118 
2119 /*
2120  * This algorithm is a very conservative estimate of the worst-case scheduling
2121  * scenario for any one interval.  The hardware dynamically schedules the
2122  * packets, so we can't tell which microframe could be the limiting factor in
2123  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2124  *
2125  * Obviously, we can't solve an NP complete problem to find the minimum worst
2126  * case scenario.  Instead, we come up with an estimate that is no less than
2127  * the worst case bandwidth used for any one microframe, but may be an
2128  * over-estimate.
2129  *
2130  * We walk the requirements for each endpoint by interval, starting with the
2131  * smallest interval, and place packets in the schedule where there is only one
2132  * possible way to schedule packets for that interval.  In order to simplify
2133  * this algorithm, we record the largest max packet size for each interval, and
2134  * assume all packets will be that size.
2135  *
2136  * For interval 0, we obviously must schedule all packets for each interval.
2137  * The bandwidth for interval 0 is just the amount of data to be transmitted
2138  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2139  * the number of packets).
2140  *
2141  * For interval 1, we have two possible microframes to schedule those packets
2142  * in.  For this algorithm, if we can schedule the same number of packets for
2143  * each possible scheduling opportunity (each microframe), we will do so.  The
2144  * remaining number of packets will be saved to be transmitted in the gaps in
2145  * the next interval's scheduling sequence.
2146  *
2147  * As we move those remaining packets to be scheduled with interval 2 packets,
2148  * we have to double the number of remaining packets to transmit.  This is
2149  * because the intervals are actually powers of 2, and we would be transmitting
2150  * the previous interval's packets twice in this interval.  We also have to be
2151  * sure that when we look at the largest max packet size for this interval, we
2152  * also look at the largest max packet size for the remaining packets and take
2153  * the greater of the two.
2154  *
2155  * The algorithm continues to evenly distribute packets in each scheduling
2156  * opportunity, and push the remaining packets out, until we get to the last
2157  * interval.  Then those packets and their associated overhead are just added
2158  * to the bandwidth used.
2159  */
2160 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2161 		struct xhci_virt_device *virt_dev,
2162 		int old_active_eps)
2163 {
2164 	unsigned int bw_reserved;
2165 	unsigned int max_bandwidth;
2166 	unsigned int bw_used;
2167 	unsigned int block_size;
2168 	struct xhci_interval_bw_table *bw_table;
2169 	unsigned int packet_size = 0;
2170 	unsigned int overhead = 0;
2171 	unsigned int packets_transmitted = 0;
2172 	unsigned int packets_remaining = 0;
2173 	unsigned int i;
2174 
2175 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2176 		return xhci_check_ss_bw(xhci, virt_dev);
2177 
2178 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2179 		max_bandwidth = HS_BW_LIMIT;
2180 		/* Convert percent of bus BW reserved to blocks reserved */
2181 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2182 	} else {
2183 		max_bandwidth = FS_BW_LIMIT;
2184 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2185 	}
2186 
2187 	bw_table = virt_dev->bw_table;
2188 	/* We need to translate the max packet size and max ESIT payloads into
2189 	 * the units the hardware uses.
2190 	 */
2191 	block_size = xhci_get_block_size(virt_dev->udev);
2192 
2193 	/* If we are manipulating a LS/FS device under a HS hub, double check
2194 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2195 	 */
2196 	if (virt_dev->tt_info) {
2197 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2198 				"Recalculating BW for rootport %u",
2199 				virt_dev->real_port);
2200 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2201 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2202 					"newly activated TT.\n");
2203 			return -ENOMEM;
2204 		}
2205 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2206 				"Recalculating BW for TT slot %u port %u",
2207 				virt_dev->tt_info->slot_id,
2208 				virt_dev->tt_info->ttport);
2209 	} else {
2210 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2211 				"Recalculating BW for rootport %u",
2212 				virt_dev->real_port);
2213 	}
2214 
2215 	/* Add in how much bandwidth will be used for interval zero, or the
2216 	 * rounded max ESIT payload + number of packets * largest overhead.
2217 	 */
2218 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2219 		bw_table->interval_bw[0].num_packets *
2220 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2221 
2222 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2223 		unsigned int bw_added;
2224 		unsigned int largest_mps;
2225 		unsigned int interval_overhead;
2226 
2227 		/*
2228 		 * How many packets could we transmit in this interval?
2229 		 * If packets didn't fit in the previous interval, we will need
2230 		 * to transmit that many packets twice within this interval.
2231 		 */
2232 		packets_remaining = 2 * packets_remaining +
2233 			bw_table->interval_bw[i].num_packets;
2234 
2235 		/* Find the largest max packet size of this or the previous
2236 		 * interval.
2237 		 */
2238 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2239 			largest_mps = 0;
2240 		else {
2241 			struct xhci_virt_ep *virt_ep;
2242 			struct list_head *ep_entry;
2243 
2244 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2245 			virt_ep = list_entry(ep_entry,
2246 					struct xhci_virt_ep, bw_endpoint_list);
2247 			/* Convert to blocks, rounding up */
2248 			largest_mps = DIV_ROUND_UP(
2249 					virt_ep->bw_info.max_packet_size,
2250 					block_size);
2251 		}
2252 		if (largest_mps > packet_size)
2253 			packet_size = largest_mps;
2254 
2255 		/* Use the larger overhead of this or the previous interval. */
2256 		interval_overhead = xhci_get_largest_overhead(
2257 				&bw_table->interval_bw[i]);
2258 		if (interval_overhead > overhead)
2259 			overhead = interval_overhead;
2260 
2261 		/* How many packets can we evenly distribute across
2262 		 * (1 << (i + 1)) possible scheduling opportunities?
2263 		 */
2264 		packets_transmitted = packets_remaining >> (i + 1);
2265 
2266 		/* Add in the bandwidth used for those scheduled packets */
2267 		bw_added = packets_transmitted * (overhead + packet_size);
2268 
2269 		/* How many packets do we have remaining to transmit? */
2270 		packets_remaining = packets_remaining % (1 << (i + 1));
2271 
2272 		/* What largest max packet size should those packets have? */
2273 		/* If we've transmitted all packets, don't carry over the
2274 		 * largest packet size.
2275 		 */
2276 		if (packets_remaining == 0) {
2277 			packet_size = 0;
2278 			overhead = 0;
2279 		} else if (packets_transmitted > 0) {
2280 			/* Otherwise if we do have remaining packets, and we've
2281 			 * scheduled some packets in this interval, take the
2282 			 * largest max packet size from endpoints with this
2283 			 * interval.
2284 			 */
2285 			packet_size = largest_mps;
2286 			overhead = interval_overhead;
2287 		}
2288 		/* Otherwise carry over packet_size and overhead from the last
2289 		 * time we had a remainder.
2290 		 */
2291 		bw_used += bw_added;
2292 		if (bw_used > max_bandwidth) {
2293 			xhci_warn(xhci, "Not enough bandwidth. "
2294 					"Proposed: %u, Max: %u\n",
2295 				bw_used, max_bandwidth);
2296 			return -ENOMEM;
2297 		}
2298 	}
2299 	/*
2300 	 * Ok, we know we have some packets left over after even-handedly
2301 	 * scheduling interval 15.  We don't know which microframes they will
2302 	 * fit into, so we over-schedule and say they will be scheduled every
2303 	 * microframe.
2304 	 */
2305 	if (packets_remaining > 0)
2306 		bw_used += overhead + packet_size;
2307 
2308 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2309 		unsigned int port_index = virt_dev->real_port - 1;
2310 
2311 		/* OK, we're manipulating a HS device attached to a
2312 		 * root port bandwidth domain.  Include the number of active TTs
2313 		 * in the bandwidth used.
2314 		 */
2315 		bw_used += TT_HS_OVERHEAD *
2316 			xhci->rh_bw[port_index].num_active_tts;
2317 	}
2318 
2319 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2320 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2321 		"Available: %u " "percent",
2322 		bw_used, max_bandwidth, bw_reserved,
2323 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2324 		max_bandwidth);
2325 
2326 	bw_used += bw_reserved;
2327 	if (bw_used > max_bandwidth) {
2328 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2329 				bw_used, max_bandwidth);
2330 		return -ENOMEM;
2331 	}
2332 
2333 	bw_table->bw_used = bw_used;
2334 	return 0;
2335 }
2336 
2337 static bool xhci_is_async_ep(unsigned int ep_type)
2338 {
2339 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2340 					ep_type != ISOC_IN_EP &&
2341 					ep_type != INT_IN_EP);
2342 }
2343 
2344 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2345 {
2346 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2347 }
2348 
2349 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2350 {
2351 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2352 
2353 	if (ep_bw->ep_interval == 0)
2354 		return SS_OVERHEAD_BURST +
2355 			(ep_bw->mult * ep_bw->num_packets *
2356 					(SS_OVERHEAD + mps));
2357 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2358 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2359 				1 << ep_bw->ep_interval);
2360 
2361 }
2362 
2363 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2364 		struct xhci_bw_info *ep_bw,
2365 		struct xhci_interval_bw_table *bw_table,
2366 		struct usb_device *udev,
2367 		struct xhci_virt_ep *virt_ep,
2368 		struct xhci_tt_bw_info *tt_info)
2369 {
2370 	struct xhci_interval_bw	*interval_bw;
2371 	int normalized_interval;
2372 
2373 	if (xhci_is_async_ep(ep_bw->type))
2374 		return;
2375 
2376 	if (udev->speed >= USB_SPEED_SUPER) {
2377 		if (xhci_is_sync_in_ep(ep_bw->type))
2378 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2379 				xhci_get_ss_bw_consumed(ep_bw);
2380 		else
2381 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2382 				xhci_get_ss_bw_consumed(ep_bw);
2383 		return;
2384 	}
2385 
2386 	/* SuperSpeed endpoints never get added to intervals in the table, so
2387 	 * this check is only valid for HS/FS/LS devices.
2388 	 */
2389 	if (list_empty(&virt_ep->bw_endpoint_list))
2390 		return;
2391 	/* For LS/FS devices, we need to translate the interval expressed in
2392 	 * microframes to frames.
2393 	 */
2394 	if (udev->speed == USB_SPEED_HIGH)
2395 		normalized_interval = ep_bw->ep_interval;
2396 	else
2397 		normalized_interval = ep_bw->ep_interval - 3;
2398 
2399 	if (normalized_interval == 0)
2400 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2401 	interval_bw = &bw_table->interval_bw[normalized_interval];
2402 	interval_bw->num_packets -= ep_bw->num_packets;
2403 	switch (udev->speed) {
2404 	case USB_SPEED_LOW:
2405 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2406 		break;
2407 	case USB_SPEED_FULL:
2408 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2409 		break;
2410 	case USB_SPEED_HIGH:
2411 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2412 		break;
2413 	case USB_SPEED_SUPER:
2414 	case USB_SPEED_SUPER_PLUS:
2415 	case USB_SPEED_UNKNOWN:
2416 	case USB_SPEED_WIRELESS:
2417 		/* Should never happen because only LS/FS/HS endpoints will get
2418 		 * added to the endpoint list.
2419 		 */
2420 		return;
2421 	}
2422 	if (tt_info)
2423 		tt_info->active_eps -= 1;
2424 	list_del_init(&virt_ep->bw_endpoint_list);
2425 }
2426 
2427 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2428 		struct xhci_bw_info *ep_bw,
2429 		struct xhci_interval_bw_table *bw_table,
2430 		struct usb_device *udev,
2431 		struct xhci_virt_ep *virt_ep,
2432 		struct xhci_tt_bw_info *tt_info)
2433 {
2434 	struct xhci_interval_bw	*interval_bw;
2435 	struct xhci_virt_ep *smaller_ep;
2436 	int normalized_interval;
2437 
2438 	if (xhci_is_async_ep(ep_bw->type))
2439 		return;
2440 
2441 	if (udev->speed == USB_SPEED_SUPER) {
2442 		if (xhci_is_sync_in_ep(ep_bw->type))
2443 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2444 				xhci_get_ss_bw_consumed(ep_bw);
2445 		else
2446 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2447 				xhci_get_ss_bw_consumed(ep_bw);
2448 		return;
2449 	}
2450 
2451 	/* For LS/FS devices, we need to translate the interval expressed in
2452 	 * microframes to frames.
2453 	 */
2454 	if (udev->speed == USB_SPEED_HIGH)
2455 		normalized_interval = ep_bw->ep_interval;
2456 	else
2457 		normalized_interval = ep_bw->ep_interval - 3;
2458 
2459 	if (normalized_interval == 0)
2460 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2461 	interval_bw = &bw_table->interval_bw[normalized_interval];
2462 	interval_bw->num_packets += ep_bw->num_packets;
2463 	switch (udev->speed) {
2464 	case USB_SPEED_LOW:
2465 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2466 		break;
2467 	case USB_SPEED_FULL:
2468 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2469 		break;
2470 	case USB_SPEED_HIGH:
2471 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2472 		break;
2473 	case USB_SPEED_SUPER:
2474 	case USB_SPEED_SUPER_PLUS:
2475 	case USB_SPEED_UNKNOWN:
2476 	case USB_SPEED_WIRELESS:
2477 		/* Should never happen because only LS/FS/HS endpoints will get
2478 		 * added to the endpoint list.
2479 		 */
2480 		return;
2481 	}
2482 
2483 	if (tt_info)
2484 		tt_info->active_eps += 1;
2485 	/* Insert the endpoint into the list, largest max packet size first. */
2486 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2487 			bw_endpoint_list) {
2488 		if (ep_bw->max_packet_size >=
2489 				smaller_ep->bw_info.max_packet_size) {
2490 			/* Add the new ep before the smaller endpoint */
2491 			list_add_tail(&virt_ep->bw_endpoint_list,
2492 					&smaller_ep->bw_endpoint_list);
2493 			return;
2494 		}
2495 	}
2496 	/* Add the new endpoint at the end of the list. */
2497 	list_add_tail(&virt_ep->bw_endpoint_list,
2498 			&interval_bw->endpoints);
2499 }
2500 
2501 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2502 		struct xhci_virt_device *virt_dev,
2503 		int old_active_eps)
2504 {
2505 	struct xhci_root_port_bw_info *rh_bw_info;
2506 	if (!virt_dev->tt_info)
2507 		return;
2508 
2509 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2510 	if (old_active_eps == 0 &&
2511 				virt_dev->tt_info->active_eps != 0) {
2512 		rh_bw_info->num_active_tts += 1;
2513 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2514 	} else if (old_active_eps != 0 &&
2515 				virt_dev->tt_info->active_eps == 0) {
2516 		rh_bw_info->num_active_tts -= 1;
2517 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2518 	}
2519 }
2520 
2521 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2522 		struct xhci_virt_device *virt_dev,
2523 		struct xhci_container_ctx *in_ctx)
2524 {
2525 	struct xhci_bw_info ep_bw_info[31];
2526 	int i;
2527 	struct xhci_input_control_ctx *ctrl_ctx;
2528 	int old_active_eps = 0;
2529 
2530 	if (virt_dev->tt_info)
2531 		old_active_eps = virt_dev->tt_info->active_eps;
2532 
2533 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2534 	if (!ctrl_ctx) {
2535 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2536 				__func__);
2537 		return -ENOMEM;
2538 	}
2539 
2540 	for (i = 0; i < 31; i++) {
2541 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2542 			continue;
2543 
2544 		/* Make a copy of the BW info in case we need to revert this */
2545 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2546 				sizeof(ep_bw_info[i]));
2547 		/* Drop the endpoint from the interval table if the endpoint is
2548 		 * being dropped or changed.
2549 		 */
2550 		if (EP_IS_DROPPED(ctrl_ctx, i))
2551 			xhci_drop_ep_from_interval_table(xhci,
2552 					&virt_dev->eps[i].bw_info,
2553 					virt_dev->bw_table,
2554 					virt_dev->udev,
2555 					&virt_dev->eps[i],
2556 					virt_dev->tt_info);
2557 	}
2558 	/* Overwrite the information stored in the endpoints' bw_info */
2559 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2560 	for (i = 0; i < 31; i++) {
2561 		/* Add any changed or added endpoints to the interval table */
2562 		if (EP_IS_ADDED(ctrl_ctx, i))
2563 			xhci_add_ep_to_interval_table(xhci,
2564 					&virt_dev->eps[i].bw_info,
2565 					virt_dev->bw_table,
2566 					virt_dev->udev,
2567 					&virt_dev->eps[i],
2568 					virt_dev->tt_info);
2569 	}
2570 
2571 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2572 		/* Ok, this fits in the bandwidth we have.
2573 		 * Update the number of active TTs.
2574 		 */
2575 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2576 		return 0;
2577 	}
2578 
2579 	/* We don't have enough bandwidth for this, revert the stored info. */
2580 	for (i = 0; i < 31; i++) {
2581 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2582 			continue;
2583 
2584 		/* Drop the new copies of any added or changed endpoints from
2585 		 * the interval table.
2586 		 */
2587 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2588 			xhci_drop_ep_from_interval_table(xhci,
2589 					&virt_dev->eps[i].bw_info,
2590 					virt_dev->bw_table,
2591 					virt_dev->udev,
2592 					&virt_dev->eps[i],
2593 					virt_dev->tt_info);
2594 		}
2595 		/* Revert the endpoint back to its old information */
2596 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2597 				sizeof(ep_bw_info[i]));
2598 		/* Add any changed or dropped endpoints back into the table */
2599 		if (EP_IS_DROPPED(ctrl_ctx, i))
2600 			xhci_add_ep_to_interval_table(xhci,
2601 					&virt_dev->eps[i].bw_info,
2602 					virt_dev->bw_table,
2603 					virt_dev->udev,
2604 					&virt_dev->eps[i],
2605 					virt_dev->tt_info);
2606 	}
2607 	return -ENOMEM;
2608 }
2609 
2610 
2611 /* Issue a configure endpoint command or evaluate context command
2612  * and wait for it to finish.
2613  */
2614 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2615 		struct usb_device *udev,
2616 		struct xhci_command *command,
2617 		bool ctx_change, bool must_succeed)
2618 {
2619 	int ret;
2620 	unsigned long flags;
2621 	struct xhci_input_control_ctx *ctrl_ctx;
2622 	struct xhci_virt_device *virt_dev;
2623 
2624 	if (!command)
2625 		return -EINVAL;
2626 
2627 	spin_lock_irqsave(&xhci->lock, flags);
2628 	virt_dev = xhci->devs[udev->slot_id];
2629 
2630 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2631 	if (!ctrl_ctx) {
2632 		spin_unlock_irqrestore(&xhci->lock, flags);
2633 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2634 				__func__);
2635 		return -ENOMEM;
2636 	}
2637 
2638 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2639 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2640 		spin_unlock_irqrestore(&xhci->lock, flags);
2641 		xhci_warn(xhci, "Not enough host resources, "
2642 				"active endpoint contexts = %u\n",
2643 				xhci->num_active_eps);
2644 		return -ENOMEM;
2645 	}
2646 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2647 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2648 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2649 			xhci_free_host_resources(xhci, ctrl_ctx);
2650 		spin_unlock_irqrestore(&xhci->lock, flags);
2651 		xhci_warn(xhci, "Not enough bandwidth\n");
2652 		return -ENOMEM;
2653 	}
2654 
2655 	if (!ctx_change)
2656 		ret = xhci_queue_configure_endpoint(xhci, command,
2657 				command->in_ctx->dma,
2658 				udev->slot_id, must_succeed);
2659 	else
2660 		ret = xhci_queue_evaluate_context(xhci, command,
2661 				command->in_ctx->dma,
2662 				udev->slot_id, must_succeed);
2663 	if (ret < 0) {
2664 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2665 			xhci_free_host_resources(xhci, ctrl_ctx);
2666 		spin_unlock_irqrestore(&xhci->lock, flags);
2667 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2668 				"FIXME allocate a new ring segment");
2669 		return -ENOMEM;
2670 	}
2671 	xhci_ring_cmd_db(xhci);
2672 	spin_unlock_irqrestore(&xhci->lock, flags);
2673 
2674 	/* Wait for the configure endpoint command to complete */
2675 	wait_for_completion(command->completion);
2676 
2677 	if (!ctx_change)
2678 		ret = xhci_configure_endpoint_result(xhci, udev,
2679 						     &command->status);
2680 	else
2681 		ret = xhci_evaluate_context_result(xhci, udev,
2682 						   &command->status);
2683 
2684 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2685 		spin_lock_irqsave(&xhci->lock, flags);
2686 		/* If the command failed, remove the reserved resources.
2687 		 * Otherwise, clean up the estimate to include dropped eps.
2688 		 */
2689 		if (ret)
2690 			xhci_free_host_resources(xhci, ctrl_ctx);
2691 		else
2692 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2693 		spin_unlock_irqrestore(&xhci->lock, flags);
2694 	}
2695 	return ret;
2696 }
2697 
2698 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2699 	struct xhci_virt_device *vdev, int i)
2700 {
2701 	struct xhci_virt_ep *ep = &vdev->eps[i];
2702 
2703 	if (ep->ep_state & EP_HAS_STREAMS) {
2704 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2705 				xhci_get_endpoint_address(i));
2706 		xhci_free_stream_info(xhci, ep->stream_info);
2707 		ep->stream_info = NULL;
2708 		ep->ep_state &= ~EP_HAS_STREAMS;
2709 	}
2710 }
2711 
2712 /* Called after one or more calls to xhci_add_endpoint() or
2713  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2714  * to call xhci_reset_bandwidth().
2715  *
2716  * Since we are in the middle of changing either configuration or
2717  * installing a new alt setting, the USB core won't allow URBs to be
2718  * enqueued for any endpoint on the old config or interface.  Nothing
2719  * else should be touching the xhci->devs[slot_id] structure, so we
2720  * don't need to take the xhci->lock for manipulating that.
2721  */
2722 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2723 {
2724 	int i;
2725 	int ret = 0;
2726 	struct xhci_hcd *xhci;
2727 	struct xhci_virt_device	*virt_dev;
2728 	struct xhci_input_control_ctx *ctrl_ctx;
2729 	struct xhci_slot_ctx *slot_ctx;
2730 	struct xhci_command *command;
2731 
2732 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2733 	if (ret <= 0)
2734 		return ret;
2735 	xhci = hcd_to_xhci(hcd);
2736 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2737 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2738 		return -ENODEV;
2739 
2740 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2741 	virt_dev = xhci->devs[udev->slot_id];
2742 
2743 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2744 	if (!command)
2745 		return -ENOMEM;
2746 
2747 	command->in_ctx = virt_dev->in_ctx;
2748 
2749 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2750 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2751 	if (!ctrl_ctx) {
2752 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2753 				__func__);
2754 		ret = -ENOMEM;
2755 		goto command_cleanup;
2756 	}
2757 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2758 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2759 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2760 
2761 	/* Don't issue the command if there's no endpoints to update. */
2762 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2763 	    ctrl_ctx->drop_flags == 0) {
2764 		ret = 0;
2765 		goto command_cleanup;
2766 	}
2767 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2768 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2769 	for (i = 31; i >= 1; i--) {
2770 		__le32 le32 = cpu_to_le32(BIT(i));
2771 
2772 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2773 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2774 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2775 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2776 			break;
2777 		}
2778 	}
2779 	xhci_dbg(xhci, "New Input Control Context:\n");
2780 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2781 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2782 
2783 	ret = xhci_configure_endpoint(xhci, udev, command,
2784 			false, false);
2785 	if (ret)
2786 		/* Callee should call reset_bandwidth() */
2787 		goto command_cleanup;
2788 
2789 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2790 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2791 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2792 
2793 	/* Free any rings that were dropped, but not changed. */
2794 	for (i = 1; i < 31; ++i) {
2795 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2796 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2797 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2798 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2799 		}
2800 	}
2801 	xhci_zero_in_ctx(xhci, virt_dev);
2802 	/*
2803 	 * Install any rings for completely new endpoints or changed endpoints,
2804 	 * and free or cache any old rings from changed endpoints.
2805 	 */
2806 	for (i = 1; i < 31; ++i) {
2807 		if (!virt_dev->eps[i].new_ring)
2808 			continue;
2809 		/* Only cache or free the old ring if it exists.
2810 		 * It may not if this is the first add of an endpoint.
2811 		 */
2812 		if (virt_dev->eps[i].ring) {
2813 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2814 		}
2815 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2816 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2817 		virt_dev->eps[i].new_ring = NULL;
2818 	}
2819 command_cleanup:
2820 	kfree(command->completion);
2821 	kfree(command);
2822 
2823 	return ret;
2824 }
2825 
2826 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2827 {
2828 	struct xhci_hcd *xhci;
2829 	struct xhci_virt_device	*virt_dev;
2830 	int i, ret;
2831 
2832 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2833 	if (ret <= 0)
2834 		return;
2835 	xhci = hcd_to_xhci(hcd);
2836 
2837 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2838 	virt_dev = xhci->devs[udev->slot_id];
2839 	/* Free any rings allocated for added endpoints */
2840 	for (i = 0; i < 31; ++i) {
2841 		if (virt_dev->eps[i].new_ring) {
2842 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2843 			virt_dev->eps[i].new_ring = NULL;
2844 		}
2845 	}
2846 	xhci_zero_in_ctx(xhci, virt_dev);
2847 }
2848 
2849 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2850 		struct xhci_container_ctx *in_ctx,
2851 		struct xhci_container_ctx *out_ctx,
2852 		struct xhci_input_control_ctx *ctrl_ctx,
2853 		u32 add_flags, u32 drop_flags)
2854 {
2855 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2856 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2857 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2858 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2859 
2860 	xhci_dbg(xhci, "Input Context:\n");
2861 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2862 }
2863 
2864 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2865 		unsigned int slot_id, unsigned int ep_index,
2866 		struct xhci_dequeue_state *deq_state)
2867 {
2868 	struct xhci_input_control_ctx *ctrl_ctx;
2869 	struct xhci_container_ctx *in_ctx;
2870 	struct xhci_ep_ctx *ep_ctx;
2871 	u32 added_ctxs;
2872 	dma_addr_t addr;
2873 
2874 	in_ctx = xhci->devs[slot_id]->in_ctx;
2875 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2876 	if (!ctrl_ctx) {
2877 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2878 				__func__);
2879 		return;
2880 	}
2881 
2882 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2883 			xhci->devs[slot_id]->out_ctx, ep_index);
2884 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2885 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2886 			deq_state->new_deq_ptr);
2887 	if (addr == 0) {
2888 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2889 				"reset ep command\n");
2890 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2891 				deq_state->new_deq_seg,
2892 				deq_state->new_deq_ptr);
2893 		return;
2894 	}
2895 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2896 
2897 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2898 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2899 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2900 			added_ctxs, added_ctxs);
2901 }
2902 
2903 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2904 			unsigned int ep_index, struct xhci_td *td)
2905 {
2906 	struct xhci_dequeue_state deq_state;
2907 	struct xhci_virt_ep *ep;
2908 	struct usb_device *udev = td->urb->dev;
2909 
2910 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2911 			"Cleaning up stalled endpoint ring");
2912 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2913 	/* We need to move the HW's dequeue pointer past this TD,
2914 	 * or it will attempt to resend it on the next doorbell ring.
2915 	 */
2916 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2917 			ep_index, ep->stopped_stream, td, &deq_state);
2918 
2919 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2920 		return;
2921 
2922 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2923 	 * issue a configure endpoint command later.
2924 	 */
2925 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2926 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2927 				"Queueing new dequeue state");
2928 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2929 				ep_index, ep->stopped_stream, &deq_state);
2930 	} else {
2931 		/* Better hope no one uses the input context between now and the
2932 		 * reset endpoint completion!
2933 		 * XXX: No idea how this hardware will react when stream rings
2934 		 * are enabled.
2935 		 */
2936 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2937 				"Setting up input context for "
2938 				"configure endpoint command");
2939 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2940 				ep_index, &deq_state);
2941 	}
2942 }
2943 
2944 /* Called when clearing halted device. The core should have sent the control
2945  * message to clear the device halt condition. The host side of the halt should
2946  * already be cleared with a reset endpoint command issued when the STALL tx
2947  * event was received.
2948  *
2949  * Context: in_interrupt
2950  */
2951 
2952 void xhci_endpoint_reset(struct usb_hcd *hcd,
2953 		struct usb_host_endpoint *ep)
2954 {
2955 	struct xhci_hcd *xhci;
2956 
2957 	xhci = hcd_to_xhci(hcd);
2958 
2959 	/*
2960 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2961 	 * The Reset Endpoint Command may only be issued to endpoints in the
2962 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2963 	 * Number of an endpoint that isn't in the Halted state, then software
2964 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2965 	 * for the target endpoint. that is in the Stopped state.
2966 	 */
2967 
2968 	/* For now just print debug to follow the situation */
2969 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2970 		 ep->desc.bEndpointAddress);
2971 }
2972 
2973 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2974 		struct usb_device *udev, struct usb_host_endpoint *ep,
2975 		unsigned int slot_id)
2976 {
2977 	int ret;
2978 	unsigned int ep_index;
2979 	unsigned int ep_state;
2980 
2981 	if (!ep)
2982 		return -EINVAL;
2983 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2984 	if (ret <= 0)
2985 		return -EINVAL;
2986 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2987 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2988 				" descriptor for ep 0x%x does not support streams\n",
2989 				ep->desc.bEndpointAddress);
2990 		return -EINVAL;
2991 	}
2992 
2993 	ep_index = xhci_get_endpoint_index(&ep->desc);
2994 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2995 	if (ep_state & EP_HAS_STREAMS ||
2996 			ep_state & EP_GETTING_STREAMS) {
2997 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2998 				"already has streams set up.\n",
2999 				ep->desc.bEndpointAddress);
3000 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3001 				"dynamic stream context array reallocation.\n");
3002 		return -EINVAL;
3003 	}
3004 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3005 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3006 				"endpoint 0x%x; URBs are pending.\n",
3007 				ep->desc.bEndpointAddress);
3008 		return -EINVAL;
3009 	}
3010 	return 0;
3011 }
3012 
3013 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3014 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3015 {
3016 	unsigned int max_streams;
3017 
3018 	/* The stream context array size must be a power of two */
3019 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3020 	/*
3021 	 * Find out how many primary stream array entries the host controller
3022 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3023 	 * level page entries), but that's an optional feature for xHCI host
3024 	 * controllers. xHCs must support at least 4 stream IDs.
3025 	 */
3026 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3027 	if (*num_stream_ctxs > max_streams) {
3028 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3029 				max_streams);
3030 		*num_stream_ctxs = max_streams;
3031 		*num_streams = max_streams;
3032 	}
3033 }
3034 
3035 /* Returns an error code if one of the endpoint already has streams.
3036  * This does not change any data structures, it only checks and gathers
3037  * information.
3038  */
3039 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3040 		struct usb_device *udev,
3041 		struct usb_host_endpoint **eps, unsigned int num_eps,
3042 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3043 {
3044 	unsigned int max_streams;
3045 	unsigned int endpoint_flag;
3046 	int i;
3047 	int ret;
3048 
3049 	for (i = 0; i < num_eps; i++) {
3050 		ret = xhci_check_streams_endpoint(xhci, udev,
3051 				eps[i], udev->slot_id);
3052 		if (ret < 0)
3053 			return ret;
3054 
3055 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3056 		if (max_streams < (*num_streams - 1)) {
3057 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3058 					eps[i]->desc.bEndpointAddress,
3059 					max_streams);
3060 			*num_streams = max_streams+1;
3061 		}
3062 
3063 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3064 		if (*changed_ep_bitmask & endpoint_flag)
3065 			return -EINVAL;
3066 		*changed_ep_bitmask |= endpoint_flag;
3067 	}
3068 	return 0;
3069 }
3070 
3071 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3072 		struct usb_device *udev,
3073 		struct usb_host_endpoint **eps, unsigned int num_eps)
3074 {
3075 	u32 changed_ep_bitmask = 0;
3076 	unsigned int slot_id;
3077 	unsigned int ep_index;
3078 	unsigned int ep_state;
3079 	int i;
3080 
3081 	slot_id = udev->slot_id;
3082 	if (!xhci->devs[slot_id])
3083 		return 0;
3084 
3085 	for (i = 0; i < num_eps; i++) {
3086 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3087 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3088 		/* Are streams already being freed for the endpoint? */
3089 		if (ep_state & EP_GETTING_NO_STREAMS) {
3090 			xhci_warn(xhci, "WARN Can't disable streams for "
3091 					"endpoint 0x%x, "
3092 					"streams are being disabled already\n",
3093 					eps[i]->desc.bEndpointAddress);
3094 			return 0;
3095 		}
3096 		/* Are there actually any streams to free? */
3097 		if (!(ep_state & EP_HAS_STREAMS) &&
3098 				!(ep_state & EP_GETTING_STREAMS)) {
3099 			xhci_warn(xhci, "WARN Can't disable streams for "
3100 					"endpoint 0x%x, "
3101 					"streams are already disabled!\n",
3102 					eps[i]->desc.bEndpointAddress);
3103 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3104 					"with non-streams endpoint\n");
3105 			return 0;
3106 		}
3107 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3108 	}
3109 	return changed_ep_bitmask;
3110 }
3111 
3112 /*
3113  * The USB device drivers use this function (through the HCD interface in USB
3114  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3115  * coordinate mass storage command queueing across multiple endpoints (basically
3116  * a stream ID == a task ID).
3117  *
3118  * Setting up streams involves allocating the same size stream context array
3119  * for each endpoint and issuing a configure endpoint command for all endpoints.
3120  *
3121  * Don't allow the call to succeed if one endpoint only supports one stream
3122  * (which means it doesn't support streams at all).
3123  *
3124  * Drivers may get less stream IDs than they asked for, if the host controller
3125  * hardware or endpoints claim they can't support the number of requested
3126  * stream IDs.
3127  */
3128 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3129 		struct usb_host_endpoint **eps, unsigned int num_eps,
3130 		unsigned int num_streams, gfp_t mem_flags)
3131 {
3132 	int i, ret;
3133 	struct xhci_hcd *xhci;
3134 	struct xhci_virt_device *vdev;
3135 	struct xhci_command *config_cmd;
3136 	struct xhci_input_control_ctx *ctrl_ctx;
3137 	unsigned int ep_index;
3138 	unsigned int num_stream_ctxs;
3139 	unsigned long flags;
3140 	u32 changed_ep_bitmask = 0;
3141 
3142 	if (!eps)
3143 		return -EINVAL;
3144 
3145 	/* Add one to the number of streams requested to account for
3146 	 * stream 0 that is reserved for xHCI usage.
3147 	 */
3148 	num_streams += 1;
3149 	xhci = hcd_to_xhci(hcd);
3150 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3151 			num_streams);
3152 
3153 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3154 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3155 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3156 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3157 		return -ENOSYS;
3158 	}
3159 
3160 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3161 	if (!config_cmd) {
3162 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3163 		return -ENOMEM;
3164 	}
3165 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3166 	if (!ctrl_ctx) {
3167 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3168 				__func__);
3169 		xhci_free_command(xhci, config_cmd);
3170 		return -ENOMEM;
3171 	}
3172 
3173 	/* Check to make sure all endpoints are not already configured for
3174 	 * streams.  While we're at it, find the maximum number of streams that
3175 	 * all the endpoints will support and check for duplicate endpoints.
3176 	 */
3177 	spin_lock_irqsave(&xhci->lock, flags);
3178 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3179 			num_eps, &num_streams, &changed_ep_bitmask);
3180 	if (ret < 0) {
3181 		xhci_free_command(xhci, config_cmd);
3182 		spin_unlock_irqrestore(&xhci->lock, flags);
3183 		return ret;
3184 	}
3185 	if (num_streams <= 1) {
3186 		xhci_warn(xhci, "WARN: endpoints can't handle "
3187 				"more than one stream.\n");
3188 		xhci_free_command(xhci, config_cmd);
3189 		spin_unlock_irqrestore(&xhci->lock, flags);
3190 		return -EINVAL;
3191 	}
3192 	vdev = xhci->devs[udev->slot_id];
3193 	/* Mark each endpoint as being in transition, so
3194 	 * xhci_urb_enqueue() will reject all URBs.
3195 	 */
3196 	for (i = 0; i < num_eps; i++) {
3197 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3198 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3199 	}
3200 	spin_unlock_irqrestore(&xhci->lock, flags);
3201 
3202 	/* Setup internal data structures and allocate HW data structures for
3203 	 * streams (but don't install the HW structures in the input context
3204 	 * until we're sure all memory allocation succeeded).
3205 	 */
3206 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3207 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3208 			num_stream_ctxs, num_streams);
3209 
3210 	for (i = 0; i < num_eps; i++) {
3211 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3212 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3213 				num_stream_ctxs,
3214 				num_streams, mem_flags);
3215 		if (!vdev->eps[ep_index].stream_info)
3216 			goto cleanup;
3217 		/* Set maxPstreams in endpoint context and update deq ptr to
3218 		 * point to stream context array. FIXME
3219 		 */
3220 	}
3221 
3222 	/* Set up the input context for a configure endpoint command. */
3223 	for (i = 0; i < num_eps; i++) {
3224 		struct xhci_ep_ctx *ep_ctx;
3225 
3226 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3227 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3228 
3229 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3230 				vdev->out_ctx, ep_index);
3231 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3232 				vdev->eps[ep_index].stream_info);
3233 	}
3234 	/* Tell the HW to drop its old copy of the endpoint context info
3235 	 * and add the updated copy from the input context.
3236 	 */
3237 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3238 			vdev->out_ctx, ctrl_ctx,
3239 			changed_ep_bitmask, changed_ep_bitmask);
3240 
3241 	/* Issue and wait for the configure endpoint command */
3242 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3243 			false, false);
3244 
3245 	/* xHC rejected the configure endpoint command for some reason, so we
3246 	 * leave the old ring intact and free our internal streams data
3247 	 * structure.
3248 	 */
3249 	if (ret < 0)
3250 		goto cleanup;
3251 
3252 	spin_lock_irqsave(&xhci->lock, flags);
3253 	for (i = 0; i < num_eps; i++) {
3254 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3255 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3256 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3257 			 udev->slot_id, ep_index);
3258 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3259 	}
3260 	xhci_free_command(xhci, config_cmd);
3261 	spin_unlock_irqrestore(&xhci->lock, flags);
3262 
3263 	/* Subtract 1 for stream 0, which drivers can't use */
3264 	return num_streams - 1;
3265 
3266 cleanup:
3267 	/* If it didn't work, free the streams! */
3268 	for (i = 0; i < num_eps; i++) {
3269 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3270 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3271 		vdev->eps[ep_index].stream_info = NULL;
3272 		/* FIXME Unset maxPstreams in endpoint context and
3273 		 * update deq ptr to point to normal string ring.
3274 		 */
3275 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3276 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3277 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3278 	}
3279 	xhci_free_command(xhci, config_cmd);
3280 	return -ENOMEM;
3281 }
3282 
3283 /* Transition the endpoint from using streams to being a "normal" endpoint
3284  * without streams.
3285  *
3286  * Modify the endpoint context state, submit a configure endpoint command,
3287  * and free all endpoint rings for streams if that completes successfully.
3288  */
3289 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3290 		struct usb_host_endpoint **eps, unsigned int num_eps,
3291 		gfp_t mem_flags)
3292 {
3293 	int i, ret;
3294 	struct xhci_hcd *xhci;
3295 	struct xhci_virt_device *vdev;
3296 	struct xhci_command *command;
3297 	struct xhci_input_control_ctx *ctrl_ctx;
3298 	unsigned int ep_index;
3299 	unsigned long flags;
3300 	u32 changed_ep_bitmask;
3301 
3302 	xhci = hcd_to_xhci(hcd);
3303 	vdev = xhci->devs[udev->slot_id];
3304 
3305 	/* Set up a configure endpoint command to remove the streams rings */
3306 	spin_lock_irqsave(&xhci->lock, flags);
3307 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3308 			udev, eps, num_eps);
3309 	if (changed_ep_bitmask == 0) {
3310 		spin_unlock_irqrestore(&xhci->lock, flags);
3311 		return -EINVAL;
3312 	}
3313 
3314 	/* Use the xhci_command structure from the first endpoint.  We may have
3315 	 * allocated too many, but the driver may call xhci_free_streams() for
3316 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3317 	 */
3318 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3319 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3320 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3321 	if (!ctrl_ctx) {
3322 		spin_unlock_irqrestore(&xhci->lock, flags);
3323 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3324 				__func__);
3325 		return -EINVAL;
3326 	}
3327 
3328 	for (i = 0; i < num_eps; i++) {
3329 		struct xhci_ep_ctx *ep_ctx;
3330 
3331 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3332 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3333 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3334 			EP_GETTING_NO_STREAMS;
3335 
3336 		xhci_endpoint_copy(xhci, command->in_ctx,
3337 				vdev->out_ctx, ep_index);
3338 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3339 				&vdev->eps[ep_index]);
3340 	}
3341 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3342 			vdev->out_ctx, ctrl_ctx,
3343 			changed_ep_bitmask, changed_ep_bitmask);
3344 	spin_unlock_irqrestore(&xhci->lock, flags);
3345 
3346 	/* Issue and wait for the configure endpoint command,
3347 	 * which must succeed.
3348 	 */
3349 	ret = xhci_configure_endpoint(xhci, udev, command,
3350 			false, true);
3351 
3352 	/* xHC rejected the configure endpoint command for some reason, so we
3353 	 * leave the streams rings intact.
3354 	 */
3355 	if (ret < 0)
3356 		return ret;
3357 
3358 	spin_lock_irqsave(&xhci->lock, flags);
3359 	for (i = 0; i < num_eps; i++) {
3360 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3361 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3362 		vdev->eps[ep_index].stream_info = NULL;
3363 		/* FIXME Unset maxPstreams in endpoint context and
3364 		 * update deq ptr to point to normal string ring.
3365 		 */
3366 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3367 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3368 	}
3369 	spin_unlock_irqrestore(&xhci->lock, flags);
3370 
3371 	return 0;
3372 }
3373 
3374 /*
3375  * Deletes endpoint resources for endpoints that were active before a Reset
3376  * Device command, or a Disable Slot command.  The Reset Device command leaves
3377  * the control endpoint intact, whereas the Disable Slot command deletes it.
3378  *
3379  * Must be called with xhci->lock held.
3380  */
3381 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3382 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3383 {
3384 	int i;
3385 	unsigned int num_dropped_eps = 0;
3386 	unsigned int drop_flags = 0;
3387 
3388 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3389 		if (virt_dev->eps[i].ring) {
3390 			drop_flags |= 1 << i;
3391 			num_dropped_eps++;
3392 		}
3393 	}
3394 	xhci->num_active_eps -= num_dropped_eps;
3395 	if (num_dropped_eps)
3396 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3397 				"Dropped %u ep ctxs, flags = 0x%x, "
3398 				"%u now active.",
3399 				num_dropped_eps, drop_flags,
3400 				xhci->num_active_eps);
3401 }
3402 
3403 /*
3404  * This submits a Reset Device Command, which will set the device state to 0,
3405  * set the device address to 0, and disable all the endpoints except the default
3406  * control endpoint.  The USB core should come back and call
3407  * xhci_address_device(), and then re-set up the configuration.  If this is
3408  * called because of a usb_reset_and_verify_device(), then the old alternate
3409  * settings will be re-installed through the normal bandwidth allocation
3410  * functions.
3411  *
3412  * Wait for the Reset Device command to finish.  Remove all structures
3413  * associated with the endpoints that were disabled.  Clear the input device
3414  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3415  *
3416  * If the virt_dev to be reset does not exist or does not match the udev,
3417  * it means the device is lost, possibly due to the xHC restore error and
3418  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3419  * re-allocate the device.
3420  */
3421 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3422 {
3423 	int ret, i;
3424 	unsigned long flags;
3425 	struct xhci_hcd *xhci;
3426 	unsigned int slot_id;
3427 	struct xhci_virt_device *virt_dev;
3428 	struct xhci_command *reset_device_cmd;
3429 	int last_freed_endpoint;
3430 	struct xhci_slot_ctx *slot_ctx;
3431 	int old_active_eps = 0;
3432 
3433 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3434 	if (ret <= 0)
3435 		return ret;
3436 	xhci = hcd_to_xhci(hcd);
3437 	slot_id = udev->slot_id;
3438 	virt_dev = xhci->devs[slot_id];
3439 	if (!virt_dev) {
3440 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3441 				"not exist. Re-allocate the device\n", slot_id);
3442 		ret = xhci_alloc_dev(hcd, udev);
3443 		if (ret == 1)
3444 			return 0;
3445 		else
3446 			return -EINVAL;
3447 	}
3448 
3449 	if (virt_dev->tt_info)
3450 		old_active_eps = virt_dev->tt_info->active_eps;
3451 
3452 	if (virt_dev->udev != udev) {
3453 		/* If the virt_dev and the udev does not match, this virt_dev
3454 		 * may belong to another udev.
3455 		 * Re-allocate the device.
3456 		 */
3457 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3458 				"not match the udev. Re-allocate the device\n",
3459 				slot_id);
3460 		ret = xhci_alloc_dev(hcd, udev);
3461 		if (ret == 1)
3462 			return 0;
3463 		else
3464 			return -EINVAL;
3465 	}
3466 
3467 	/* If device is not setup, there is no point in resetting it */
3468 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3469 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3470 						SLOT_STATE_DISABLED)
3471 		return 0;
3472 
3473 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3474 	/* Allocate the command structure that holds the struct completion.
3475 	 * Assume we're in process context, since the normal device reset
3476 	 * process has to wait for the device anyway.  Storage devices are
3477 	 * reset as part of error handling, so use GFP_NOIO instead of
3478 	 * GFP_KERNEL.
3479 	 */
3480 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3481 	if (!reset_device_cmd) {
3482 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3483 		return -ENOMEM;
3484 	}
3485 
3486 	/* Attempt to submit the Reset Device command to the command ring */
3487 	spin_lock_irqsave(&xhci->lock, flags);
3488 
3489 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3490 	if (ret) {
3491 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3492 		spin_unlock_irqrestore(&xhci->lock, flags);
3493 		goto command_cleanup;
3494 	}
3495 	xhci_ring_cmd_db(xhci);
3496 	spin_unlock_irqrestore(&xhci->lock, flags);
3497 
3498 	/* Wait for the Reset Device command to finish */
3499 	wait_for_completion(reset_device_cmd->completion);
3500 
3501 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3502 	 * unless we tried to reset a slot ID that wasn't enabled,
3503 	 * or the device wasn't in the addressed or configured state.
3504 	 */
3505 	ret = reset_device_cmd->status;
3506 	switch (ret) {
3507 	case COMP_CMD_ABORT:
3508 	case COMP_CMD_STOP:
3509 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3510 		ret = -ETIME;
3511 		goto command_cleanup;
3512 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3513 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3514 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3515 				slot_id,
3516 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3517 		xhci_dbg(xhci, "Not freeing device rings.\n");
3518 		/* Don't treat this as an error.  May change my mind later. */
3519 		ret = 0;
3520 		goto command_cleanup;
3521 	case COMP_SUCCESS:
3522 		xhci_dbg(xhci, "Successful reset device command.\n");
3523 		break;
3524 	default:
3525 		if (xhci_is_vendor_info_code(xhci, ret))
3526 			break;
3527 		xhci_warn(xhci, "Unknown completion code %u for "
3528 				"reset device command.\n", ret);
3529 		ret = -EINVAL;
3530 		goto command_cleanup;
3531 	}
3532 
3533 	/* Free up host controller endpoint resources */
3534 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3535 		spin_lock_irqsave(&xhci->lock, flags);
3536 		/* Don't delete the default control endpoint resources */
3537 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3538 		spin_unlock_irqrestore(&xhci->lock, flags);
3539 	}
3540 
3541 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3542 	last_freed_endpoint = 1;
3543 	for (i = 1; i < 31; ++i) {
3544 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3545 
3546 		if (ep->ep_state & EP_HAS_STREAMS) {
3547 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3548 					xhci_get_endpoint_address(i));
3549 			xhci_free_stream_info(xhci, ep->stream_info);
3550 			ep->stream_info = NULL;
3551 			ep->ep_state &= ~EP_HAS_STREAMS;
3552 		}
3553 
3554 		if (ep->ring) {
3555 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3556 			last_freed_endpoint = i;
3557 		}
3558 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3559 			xhci_drop_ep_from_interval_table(xhci,
3560 					&virt_dev->eps[i].bw_info,
3561 					virt_dev->bw_table,
3562 					udev,
3563 					&virt_dev->eps[i],
3564 					virt_dev->tt_info);
3565 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3566 	}
3567 	/* If necessary, update the number of active TTs on this root port */
3568 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3569 
3570 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3571 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3572 	ret = 0;
3573 
3574 command_cleanup:
3575 	xhci_free_command(xhci, reset_device_cmd);
3576 	return ret;
3577 }
3578 
3579 /*
3580  * At this point, the struct usb_device is about to go away, the device has
3581  * disconnected, and all traffic has been stopped and the endpoints have been
3582  * disabled.  Free any HC data structures associated with that device.
3583  */
3584 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3585 {
3586 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3587 	struct xhci_virt_device *virt_dev;
3588 	unsigned long flags;
3589 	u32 state;
3590 	int i, ret;
3591 	struct xhci_command *command;
3592 
3593 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3594 	if (!command)
3595 		return;
3596 
3597 #ifndef CONFIG_USB_DEFAULT_PERSIST
3598 	/*
3599 	 * We called pm_runtime_get_noresume when the device was attached.
3600 	 * Decrement the counter here to allow controller to runtime suspend
3601 	 * if no devices remain.
3602 	 */
3603 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3604 		pm_runtime_put_noidle(hcd->self.controller);
3605 #endif
3606 
3607 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3608 	/* If the host is halted due to driver unload, we still need to free the
3609 	 * device.
3610 	 */
3611 	if (ret <= 0 && ret != -ENODEV) {
3612 		kfree(command);
3613 		return;
3614 	}
3615 
3616 	virt_dev = xhci->devs[udev->slot_id];
3617 
3618 	/* Stop any wayward timer functions (which may grab the lock) */
3619 	for (i = 0; i < 31; ++i) {
3620 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3621 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3622 	}
3623 
3624 	spin_lock_irqsave(&xhci->lock, flags);
3625 	/* Don't disable the slot if the host controller is dead. */
3626 	state = readl(&xhci->op_regs->status);
3627 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3628 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3629 		xhci_free_virt_device(xhci, udev->slot_id);
3630 		spin_unlock_irqrestore(&xhci->lock, flags);
3631 		kfree(command);
3632 		return;
3633 	}
3634 
3635 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3636 				    udev->slot_id)) {
3637 		spin_unlock_irqrestore(&xhci->lock, flags);
3638 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3639 		return;
3640 	}
3641 	xhci_ring_cmd_db(xhci);
3642 	spin_unlock_irqrestore(&xhci->lock, flags);
3643 
3644 	/*
3645 	 * Event command completion handler will free any data structures
3646 	 * associated with the slot.  XXX Can free sleep?
3647 	 */
3648 }
3649 
3650 /*
3651  * Checks if we have enough host controller resources for the default control
3652  * endpoint.
3653  *
3654  * Must be called with xhci->lock held.
3655  */
3656 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3657 {
3658 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3659 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3660 				"Not enough ep ctxs: "
3661 				"%u active, need to add 1, limit is %u.",
3662 				xhci->num_active_eps, xhci->limit_active_eps);
3663 		return -ENOMEM;
3664 	}
3665 	xhci->num_active_eps += 1;
3666 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3667 			"Adding 1 ep ctx, %u now active.",
3668 			xhci->num_active_eps);
3669 	return 0;
3670 }
3671 
3672 
3673 /*
3674  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3675  * timed out, or allocating memory failed.  Returns 1 on success.
3676  */
3677 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3678 {
3679 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3680 	unsigned long flags;
3681 	int ret, slot_id;
3682 	struct xhci_command *command;
3683 
3684 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3685 	if (!command)
3686 		return 0;
3687 
3688 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3689 	mutex_lock(&xhci->mutex);
3690 	spin_lock_irqsave(&xhci->lock, flags);
3691 	command->completion = &xhci->addr_dev;
3692 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3693 	if (ret) {
3694 		spin_unlock_irqrestore(&xhci->lock, flags);
3695 		mutex_unlock(&xhci->mutex);
3696 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3697 		kfree(command);
3698 		return 0;
3699 	}
3700 	xhci_ring_cmd_db(xhci);
3701 	spin_unlock_irqrestore(&xhci->lock, flags);
3702 
3703 	wait_for_completion(command->completion);
3704 	slot_id = xhci->slot_id;
3705 	mutex_unlock(&xhci->mutex);
3706 
3707 	if (!slot_id || command->status != COMP_SUCCESS) {
3708 		xhci_err(xhci, "Error while assigning device slot ID\n");
3709 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3710 				HCS_MAX_SLOTS(
3711 					readl(&xhci->cap_regs->hcs_params1)));
3712 		kfree(command);
3713 		return 0;
3714 	}
3715 
3716 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3717 		spin_lock_irqsave(&xhci->lock, flags);
3718 		ret = xhci_reserve_host_control_ep_resources(xhci);
3719 		if (ret) {
3720 			spin_unlock_irqrestore(&xhci->lock, flags);
3721 			xhci_warn(xhci, "Not enough host resources, "
3722 					"active endpoint contexts = %u\n",
3723 					xhci->num_active_eps);
3724 			goto disable_slot;
3725 		}
3726 		spin_unlock_irqrestore(&xhci->lock, flags);
3727 	}
3728 	/* Use GFP_NOIO, since this function can be called from
3729 	 * xhci_discover_or_reset_device(), which may be called as part of
3730 	 * mass storage driver error handling.
3731 	 */
3732 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3733 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3734 		goto disable_slot;
3735 	}
3736 	udev->slot_id = slot_id;
3737 
3738 #ifndef CONFIG_USB_DEFAULT_PERSIST
3739 	/*
3740 	 * If resetting upon resume, we can't put the controller into runtime
3741 	 * suspend if there is a device attached.
3742 	 */
3743 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3744 		pm_runtime_get_noresume(hcd->self.controller);
3745 #endif
3746 
3747 
3748 	kfree(command);
3749 	/* Is this a LS or FS device under a HS hub? */
3750 	/* Hub or peripherial? */
3751 	return 1;
3752 
3753 disable_slot:
3754 	/* Disable slot, if we can do it without mem alloc */
3755 	spin_lock_irqsave(&xhci->lock, flags);
3756 	command->completion = NULL;
3757 	command->status = 0;
3758 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3759 				     udev->slot_id))
3760 		xhci_ring_cmd_db(xhci);
3761 	spin_unlock_irqrestore(&xhci->lock, flags);
3762 	return 0;
3763 }
3764 
3765 /*
3766  * Issue an Address Device command and optionally send a corresponding
3767  * SetAddress request to the device.
3768  */
3769 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3770 			     enum xhci_setup_dev setup)
3771 {
3772 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3773 	unsigned long flags;
3774 	struct xhci_virt_device *virt_dev;
3775 	int ret = 0;
3776 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3777 	struct xhci_slot_ctx *slot_ctx;
3778 	struct xhci_input_control_ctx *ctrl_ctx;
3779 	u64 temp_64;
3780 	struct xhci_command *command = NULL;
3781 
3782 	mutex_lock(&xhci->mutex);
3783 
3784 	if (xhci->xhc_state)	/* dying, removing or halted */
3785 		goto out;
3786 
3787 	if (!udev->slot_id) {
3788 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3789 				"Bad Slot ID %d", udev->slot_id);
3790 		ret = -EINVAL;
3791 		goto out;
3792 	}
3793 
3794 	virt_dev = xhci->devs[udev->slot_id];
3795 
3796 	if (WARN_ON(!virt_dev)) {
3797 		/*
3798 		 * In plug/unplug torture test with an NEC controller,
3799 		 * a zero-dereference was observed once due to virt_dev = 0.
3800 		 * Print useful debug rather than crash if it is observed again!
3801 		 */
3802 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3803 			udev->slot_id);
3804 		ret = -EINVAL;
3805 		goto out;
3806 	}
3807 
3808 	if (setup == SETUP_CONTEXT_ONLY) {
3809 		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3810 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3811 		    SLOT_STATE_DEFAULT) {
3812 			xhci_dbg(xhci, "Slot already in default state\n");
3813 			goto out;
3814 		}
3815 	}
3816 
3817 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3818 	if (!command) {
3819 		ret = -ENOMEM;
3820 		goto out;
3821 	}
3822 
3823 	command->in_ctx = virt_dev->in_ctx;
3824 	command->completion = &xhci->addr_dev;
3825 
3826 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3827 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3828 	if (!ctrl_ctx) {
3829 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3830 				__func__);
3831 		ret = -EINVAL;
3832 		goto out;
3833 	}
3834 	/*
3835 	 * If this is the first Set Address since device plug-in or
3836 	 * virt_device realloaction after a resume with an xHCI power loss,
3837 	 * then set up the slot context.
3838 	 */
3839 	if (!slot_ctx->dev_info)
3840 		xhci_setup_addressable_virt_dev(xhci, udev);
3841 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3842 	else
3843 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3844 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3845 	ctrl_ctx->drop_flags = 0;
3846 
3847 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3848 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3849 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3850 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3851 
3852 	spin_lock_irqsave(&xhci->lock, flags);
3853 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3854 					udev->slot_id, setup);
3855 	if (ret) {
3856 		spin_unlock_irqrestore(&xhci->lock, flags);
3857 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3858 				"FIXME: allocate a command ring segment");
3859 		goto out;
3860 	}
3861 	xhci_ring_cmd_db(xhci);
3862 	spin_unlock_irqrestore(&xhci->lock, flags);
3863 
3864 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3865 	wait_for_completion(command->completion);
3866 
3867 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3868 	 * the SetAddress() "recovery interval" required by USB and aborting the
3869 	 * command on a timeout.
3870 	 */
3871 	switch (command->status) {
3872 	case COMP_CMD_ABORT:
3873 	case COMP_CMD_STOP:
3874 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3875 		ret = -ETIME;
3876 		break;
3877 	case COMP_CTX_STATE:
3878 	case COMP_EBADSLT:
3879 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3880 			 act, udev->slot_id);
3881 		ret = -EINVAL;
3882 		break;
3883 	case COMP_TX_ERR:
3884 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3885 		ret = -EPROTO;
3886 		break;
3887 	case COMP_DEV_ERR:
3888 		dev_warn(&udev->dev,
3889 			 "ERROR: Incompatible device for setup %s command\n", act);
3890 		ret = -ENODEV;
3891 		break;
3892 	case COMP_SUCCESS:
3893 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3894 			       "Successful setup %s command", act);
3895 		break;
3896 	default:
3897 		xhci_err(xhci,
3898 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3899 			 act, command->status);
3900 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3901 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3902 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3903 		ret = -EINVAL;
3904 		break;
3905 	}
3906 	if (ret)
3907 		goto out;
3908 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3909 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3910 			"Op regs DCBAA ptr = %#016llx", temp_64);
3911 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3912 		"Slot ID %d dcbaa entry @%p = %#016llx",
3913 		udev->slot_id,
3914 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3915 		(unsigned long long)
3916 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3917 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3918 			"Output Context DMA address = %#08llx",
3919 			(unsigned long long)virt_dev->out_ctx->dma);
3920 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3921 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3922 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3923 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3924 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3925 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3926 	/*
3927 	 * USB core uses address 1 for the roothubs, so we add one to the
3928 	 * address given back to us by the HC.
3929 	 */
3930 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3931 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3932 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3933 	/* Zero the input context control for later use */
3934 	ctrl_ctx->add_flags = 0;
3935 	ctrl_ctx->drop_flags = 0;
3936 
3937 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3938 		       "Internal device address = %d",
3939 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3940 out:
3941 	mutex_unlock(&xhci->mutex);
3942 	kfree(command);
3943 	return ret;
3944 }
3945 
3946 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3947 {
3948 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3949 }
3950 
3951 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3952 {
3953 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3954 }
3955 
3956 /*
3957  * Transfer the port index into real index in the HW port status
3958  * registers. Caculate offset between the port's PORTSC register
3959  * and port status base. Divide the number of per port register
3960  * to get the real index. The raw port number bases 1.
3961  */
3962 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3963 {
3964 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3965 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3966 	__le32 __iomem *addr;
3967 	int raw_port;
3968 
3969 	if (hcd->speed < HCD_USB3)
3970 		addr = xhci->usb2_ports[port1 - 1];
3971 	else
3972 		addr = xhci->usb3_ports[port1 - 1];
3973 
3974 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3975 	return raw_port;
3976 }
3977 
3978 /*
3979  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3980  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3981  */
3982 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3983 			struct usb_device *udev, u16 max_exit_latency)
3984 {
3985 	struct xhci_virt_device *virt_dev;
3986 	struct xhci_command *command;
3987 	struct xhci_input_control_ctx *ctrl_ctx;
3988 	struct xhci_slot_ctx *slot_ctx;
3989 	unsigned long flags;
3990 	int ret;
3991 
3992 	spin_lock_irqsave(&xhci->lock, flags);
3993 
3994 	virt_dev = xhci->devs[udev->slot_id];
3995 
3996 	/*
3997 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3998 	 * xHC was re-initialized. Exit latency will be set later after
3999 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4000 	 */
4001 
4002 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4003 		spin_unlock_irqrestore(&xhci->lock, flags);
4004 		return 0;
4005 	}
4006 
4007 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4008 	command = xhci->lpm_command;
4009 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4010 	if (!ctrl_ctx) {
4011 		spin_unlock_irqrestore(&xhci->lock, flags);
4012 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4013 				__func__);
4014 		return -ENOMEM;
4015 	}
4016 
4017 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4018 	spin_unlock_irqrestore(&xhci->lock, flags);
4019 
4020 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4021 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4022 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4023 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4024 	slot_ctx->dev_state = 0;
4025 
4026 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4027 			"Set up evaluate context for LPM MEL change.");
4028 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4029 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4030 
4031 	/* Issue and wait for the evaluate context command. */
4032 	ret = xhci_configure_endpoint(xhci, udev, command,
4033 			true, true);
4034 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4035 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4036 
4037 	if (!ret) {
4038 		spin_lock_irqsave(&xhci->lock, flags);
4039 		virt_dev->current_mel = max_exit_latency;
4040 		spin_unlock_irqrestore(&xhci->lock, flags);
4041 	}
4042 	return ret;
4043 }
4044 
4045 #ifdef CONFIG_PM
4046 
4047 /* BESL to HIRD Encoding array for USB2 LPM */
4048 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4049 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4050 
4051 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4052 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4053 					struct usb_device *udev)
4054 {
4055 	int u2del, besl, besl_host;
4056 	int besl_device = 0;
4057 	u32 field;
4058 
4059 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4060 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4061 
4062 	if (field & USB_BESL_SUPPORT) {
4063 		for (besl_host = 0; besl_host < 16; besl_host++) {
4064 			if (xhci_besl_encoding[besl_host] >= u2del)
4065 				break;
4066 		}
4067 		/* Use baseline BESL value as default */
4068 		if (field & USB_BESL_BASELINE_VALID)
4069 			besl_device = USB_GET_BESL_BASELINE(field);
4070 		else if (field & USB_BESL_DEEP_VALID)
4071 			besl_device = USB_GET_BESL_DEEP(field);
4072 	} else {
4073 		if (u2del <= 50)
4074 			besl_host = 0;
4075 		else
4076 			besl_host = (u2del - 51) / 75 + 1;
4077 	}
4078 
4079 	besl = besl_host + besl_device;
4080 	if (besl > 15)
4081 		besl = 15;
4082 
4083 	return besl;
4084 }
4085 
4086 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4087 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4088 {
4089 	u32 field;
4090 	int l1;
4091 	int besld = 0;
4092 	int hirdm = 0;
4093 
4094 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4095 
4096 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4097 	l1 = udev->l1_params.timeout / 256;
4098 
4099 	/* device has preferred BESLD */
4100 	if (field & USB_BESL_DEEP_VALID) {
4101 		besld = USB_GET_BESL_DEEP(field);
4102 		hirdm = 1;
4103 	}
4104 
4105 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4106 }
4107 
4108 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4109 			struct usb_device *udev, int enable)
4110 {
4111 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4112 	__le32 __iomem	**port_array;
4113 	__le32 __iomem	*pm_addr, *hlpm_addr;
4114 	u32		pm_val, hlpm_val, field;
4115 	unsigned int	port_num;
4116 	unsigned long	flags;
4117 	int		hird, exit_latency;
4118 	int		ret;
4119 
4120 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4121 			!udev->lpm_capable)
4122 		return -EPERM;
4123 
4124 	if (!udev->parent || udev->parent->parent ||
4125 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4126 		return -EPERM;
4127 
4128 	if (udev->usb2_hw_lpm_capable != 1)
4129 		return -EPERM;
4130 
4131 	spin_lock_irqsave(&xhci->lock, flags);
4132 
4133 	port_array = xhci->usb2_ports;
4134 	port_num = udev->portnum - 1;
4135 	pm_addr = port_array[port_num] + PORTPMSC;
4136 	pm_val = readl(pm_addr);
4137 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4138 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4139 
4140 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4141 			enable ? "enable" : "disable", port_num + 1);
4142 
4143 	if (enable) {
4144 		/* Host supports BESL timeout instead of HIRD */
4145 		if (udev->usb2_hw_lpm_besl_capable) {
4146 			/* if device doesn't have a preferred BESL value use a
4147 			 * default one which works with mixed HIRD and BESL
4148 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4149 			 */
4150 			if ((field & USB_BESL_SUPPORT) &&
4151 			    (field & USB_BESL_BASELINE_VALID))
4152 				hird = USB_GET_BESL_BASELINE(field);
4153 			else
4154 				hird = udev->l1_params.besl;
4155 
4156 			exit_latency = xhci_besl_encoding[hird];
4157 			spin_unlock_irqrestore(&xhci->lock, flags);
4158 
4159 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4160 			 * input context for link powermanagement evaluate
4161 			 * context commands. It is protected by hcd->bandwidth
4162 			 * mutex and is shared by all devices. We need to set
4163 			 * the max ext latency in USB 2 BESL LPM as well, so
4164 			 * use the same mutex and xhci_change_max_exit_latency()
4165 			 */
4166 			mutex_lock(hcd->bandwidth_mutex);
4167 			ret = xhci_change_max_exit_latency(xhci, udev,
4168 							   exit_latency);
4169 			mutex_unlock(hcd->bandwidth_mutex);
4170 
4171 			if (ret < 0)
4172 				return ret;
4173 			spin_lock_irqsave(&xhci->lock, flags);
4174 
4175 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4176 			writel(hlpm_val, hlpm_addr);
4177 			/* flush write */
4178 			readl(hlpm_addr);
4179 		} else {
4180 			hird = xhci_calculate_hird_besl(xhci, udev);
4181 		}
4182 
4183 		pm_val &= ~PORT_HIRD_MASK;
4184 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4185 		writel(pm_val, pm_addr);
4186 		pm_val = readl(pm_addr);
4187 		pm_val |= PORT_HLE;
4188 		writel(pm_val, pm_addr);
4189 		/* flush write */
4190 		readl(pm_addr);
4191 	} else {
4192 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4193 		writel(pm_val, pm_addr);
4194 		/* flush write */
4195 		readl(pm_addr);
4196 		if (udev->usb2_hw_lpm_besl_capable) {
4197 			spin_unlock_irqrestore(&xhci->lock, flags);
4198 			mutex_lock(hcd->bandwidth_mutex);
4199 			xhci_change_max_exit_latency(xhci, udev, 0);
4200 			mutex_unlock(hcd->bandwidth_mutex);
4201 			return 0;
4202 		}
4203 	}
4204 
4205 	spin_unlock_irqrestore(&xhci->lock, flags);
4206 	return 0;
4207 }
4208 
4209 /* check if a usb2 port supports a given extened capability protocol
4210  * only USB2 ports extended protocol capability values are cached.
4211  * Return 1 if capability is supported
4212  */
4213 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4214 					   unsigned capability)
4215 {
4216 	u32 port_offset, port_count;
4217 	int i;
4218 
4219 	for (i = 0; i < xhci->num_ext_caps; i++) {
4220 		if (xhci->ext_caps[i] & capability) {
4221 			/* port offsets starts at 1 */
4222 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4223 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4224 			if (port >= port_offset &&
4225 			    port < port_offset + port_count)
4226 				return 1;
4227 		}
4228 	}
4229 	return 0;
4230 }
4231 
4232 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4233 {
4234 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4235 	int		portnum = udev->portnum - 1;
4236 
4237 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4238 			!udev->lpm_capable)
4239 		return 0;
4240 
4241 	/* we only support lpm for non-hub device connected to root hub yet */
4242 	if (!udev->parent || udev->parent->parent ||
4243 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4244 		return 0;
4245 
4246 	if (xhci->hw_lpm_support == 1 &&
4247 			xhci_check_usb2_port_capability(
4248 				xhci, portnum, XHCI_HLC)) {
4249 		udev->usb2_hw_lpm_capable = 1;
4250 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4251 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4252 		if (xhci_check_usb2_port_capability(xhci, portnum,
4253 					XHCI_BLC))
4254 			udev->usb2_hw_lpm_besl_capable = 1;
4255 	}
4256 
4257 	return 0;
4258 }
4259 
4260 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4261 
4262 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4263 static unsigned long long xhci_service_interval_to_ns(
4264 		struct usb_endpoint_descriptor *desc)
4265 {
4266 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4267 }
4268 
4269 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4270 		enum usb3_link_state state)
4271 {
4272 	unsigned long long sel;
4273 	unsigned long long pel;
4274 	unsigned int max_sel_pel;
4275 	char *state_name;
4276 
4277 	switch (state) {
4278 	case USB3_LPM_U1:
4279 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4280 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4281 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4282 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4283 		state_name = "U1";
4284 		break;
4285 	case USB3_LPM_U2:
4286 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4287 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4288 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4289 		state_name = "U2";
4290 		break;
4291 	default:
4292 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4293 				__func__);
4294 		return USB3_LPM_DISABLED;
4295 	}
4296 
4297 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4298 		return USB3_LPM_DEVICE_INITIATED;
4299 
4300 	if (sel > max_sel_pel)
4301 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4302 				"due to long SEL %llu ms\n",
4303 				state_name, sel);
4304 	else
4305 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4306 				"due to long PEL %llu ms\n",
4307 				state_name, pel);
4308 	return USB3_LPM_DISABLED;
4309 }
4310 
4311 /* The U1 timeout should be the maximum of the following values:
4312  *  - For control endpoints, U1 system exit latency (SEL) * 3
4313  *  - For bulk endpoints, U1 SEL * 5
4314  *  - For interrupt endpoints:
4315  *    - Notification EPs, U1 SEL * 3
4316  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4317  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4318  */
4319 static unsigned long long xhci_calculate_intel_u1_timeout(
4320 		struct usb_device *udev,
4321 		struct usb_endpoint_descriptor *desc)
4322 {
4323 	unsigned long long timeout_ns;
4324 	int ep_type;
4325 	int intr_type;
4326 
4327 	ep_type = usb_endpoint_type(desc);
4328 	switch (ep_type) {
4329 	case USB_ENDPOINT_XFER_CONTROL:
4330 		timeout_ns = udev->u1_params.sel * 3;
4331 		break;
4332 	case USB_ENDPOINT_XFER_BULK:
4333 		timeout_ns = udev->u1_params.sel * 5;
4334 		break;
4335 	case USB_ENDPOINT_XFER_INT:
4336 		intr_type = usb_endpoint_interrupt_type(desc);
4337 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4338 			timeout_ns = udev->u1_params.sel * 3;
4339 			break;
4340 		}
4341 		/* Otherwise the calculation is the same as isoc eps */
4342 	case USB_ENDPOINT_XFER_ISOC:
4343 		timeout_ns = xhci_service_interval_to_ns(desc);
4344 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4345 		if (timeout_ns < udev->u1_params.sel * 2)
4346 			timeout_ns = udev->u1_params.sel * 2;
4347 		break;
4348 	default:
4349 		return 0;
4350 	}
4351 
4352 	return timeout_ns;
4353 }
4354 
4355 /* Returns the hub-encoded U1 timeout value. */
4356 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4357 		struct usb_device *udev,
4358 		struct usb_endpoint_descriptor *desc)
4359 {
4360 	unsigned long long timeout_ns;
4361 
4362 	if (xhci->quirks & XHCI_INTEL_HOST)
4363 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4364 	else
4365 		timeout_ns = udev->u1_params.sel;
4366 
4367 	/* The U1 timeout is encoded in 1us intervals.
4368 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4369 	 */
4370 	if (timeout_ns == USB3_LPM_DISABLED)
4371 		timeout_ns = 1;
4372 	else
4373 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4374 
4375 	/* If the necessary timeout value is bigger than what we can set in the
4376 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4377 	 */
4378 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4379 		return timeout_ns;
4380 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4381 			"due to long timeout %llu ms\n", timeout_ns);
4382 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4383 }
4384 
4385 /* The U2 timeout should be the maximum of:
4386  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4387  *  - largest bInterval of any active periodic endpoint (to avoid going
4388  *    into lower power link states between intervals).
4389  *  - the U2 Exit Latency of the device
4390  */
4391 static unsigned long long xhci_calculate_intel_u2_timeout(
4392 		struct usb_device *udev,
4393 		struct usb_endpoint_descriptor *desc)
4394 {
4395 	unsigned long long timeout_ns;
4396 	unsigned long long u2_del_ns;
4397 
4398 	timeout_ns = 10 * 1000 * 1000;
4399 
4400 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4401 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4402 		timeout_ns = xhci_service_interval_to_ns(desc);
4403 
4404 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4405 	if (u2_del_ns > timeout_ns)
4406 		timeout_ns = u2_del_ns;
4407 
4408 	return timeout_ns;
4409 }
4410 
4411 /* Returns the hub-encoded U2 timeout value. */
4412 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4413 		struct usb_device *udev,
4414 		struct usb_endpoint_descriptor *desc)
4415 {
4416 	unsigned long long timeout_ns;
4417 
4418 	if (xhci->quirks & XHCI_INTEL_HOST)
4419 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4420 	else
4421 		timeout_ns = udev->u2_params.sel;
4422 
4423 	/* The U2 timeout is encoded in 256us intervals */
4424 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4425 	/* If the necessary timeout value is bigger than what we can set in the
4426 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4427 	 */
4428 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4429 		return timeout_ns;
4430 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4431 			"due to long timeout %llu ms\n", timeout_ns);
4432 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4433 }
4434 
4435 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4436 		struct usb_device *udev,
4437 		struct usb_endpoint_descriptor *desc,
4438 		enum usb3_link_state state,
4439 		u16 *timeout)
4440 {
4441 	if (state == USB3_LPM_U1)
4442 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4443 	else if (state == USB3_LPM_U2)
4444 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4445 
4446 	return USB3_LPM_DISABLED;
4447 }
4448 
4449 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4450 		struct usb_device *udev,
4451 		struct usb_endpoint_descriptor *desc,
4452 		enum usb3_link_state state,
4453 		u16 *timeout)
4454 {
4455 	u16 alt_timeout;
4456 
4457 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4458 		desc, state, timeout);
4459 
4460 	/* If we found we can't enable hub-initiated LPM, or
4461 	 * the U1 or U2 exit latency was too high to allow
4462 	 * device-initiated LPM as well, just stop searching.
4463 	 */
4464 	if (alt_timeout == USB3_LPM_DISABLED ||
4465 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4466 		*timeout = alt_timeout;
4467 		return -E2BIG;
4468 	}
4469 	if (alt_timeout > *timeout)
4470 		*timeout = alt_timeout;
4471 	return 0;
4472 }
4473 
4474 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4475 		struct usb_device *udev,
4476 		struct usb_host_interface *alt,
4477 		enum usb3_link_state state,
4478 		u16 *timeout)
4479 {
4480 	int j;
4481 
4482 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4483 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4484 					&alt->endpoint[j].desc, state, timeout))
4485 			return -E2BIG;
4486 		continue;
4487 	}
4488 	return 0;
4489 }
4490 
4491 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4492 		enum usb3_link_state state)
4493 {
4494 	struct usb_device *parent;
4495 	unsigned int num_hubs;
4496 
4497 	if (state == USB3_LPM_U2)
4498 		return 0;
4499 
4500 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4501 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4502 			parent = parent->parent)
4503 		num_hubs++;
4504 
4505 	if (num_hubs < 2)
4506 		return 0;
4507 
4508 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4509 			" below second-tier hub.\n");
4510 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4511 			"to decrease power consumption.\n");
4512 	return -E2BIG;
4513 }
4514 
4515 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4516 		struct usb_device *udev,
4517 		enum usb3_link_state state)
4518 {
4519 	if (xhci->quirks & XHCI_INTEL_HOST)
4520 		return xhci_check_intel_tier_policy(udev, state);
4521 	else
4522 		return 0;
4523 }
4524 
4525 /* Returns the U1 or U2 timeout that should be enabled.
4526  * If the tier check or timeout setting functions return with a non-zero exit
4527  * code, that means the timeout value has been finalized and we shouldn't look
4528  * at any more endpoints.
4529  */
4530 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4531 			struct usb_device *udev, enum usb3_link_state state)
4532 {
4533 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4534 	struct usb_host_config *config;
4535 	char *state_name;
4536 	int i;
4537 	u16 timeout = USB3_LPM_DISABLED;
4538 
4539 	if (state == USB3_LPM_U1)
4540 		state_name = "U1";
4541 	else if (state == USB3_LPM_U2)
4542 		state_name = "U2";
4543 	else {
4544 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4545 				state);
4546 		return timeout;
4547 	}
4548 
4549 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4550 		return timeout;
4551 
4552 	/* Gather some information about the currently installed configuration
4553 	 * and alternate interface settings.
4554 	 */
4555 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4556 			state, &timeout))
4557 		return timeout;
4558 
4559 	config = udev->actconfig;
4560 	if (!config)
4561 		return timeout;
4562 
4563 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4564 		struct usb_driver *driver;
4565 		struct usb_interface *intf = config->interface[i];
4566 
4567 		if (!intf)
4568 			continue;
4569 
4570 		/* Check if any currently bound drivers want hub-initiated LPM
4571 		 * disabled.
4572 		 */
4573 		if (intf->dev.driver) {
4574 			driver = to_usb_driver(intf->dev.driver);
4575 			if (driver && driver->disable_hub_initiated_lpm) {
4576 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4577 						"at request of driver %s\n",
4578 						state_name, driver->name);
4579 				return xhci_get_timeout_no_hub_lpm(udev, state);
4580 			}
4581 		}
4582 
4583 		/* Not sure how this could happen... */
4584 		if (!intf->cur_altsetting)
4585 			continue;
4586 
4587 		if (xhci_update_timeout_for_interface(xhci, udev,
4588 					intf->cur_altsetting,
4589 					state, &timeout))
4590 			return timeout;
4591 	}
4592 	return timeout;
4593 }
4594 
4595 static int calculate_max_exit_latency(struct usb_device *udev,
4596 		enum usb3_link_state state_changed,
4597 		u16 hub_encoded_timeout)
4598 {
4599 	unsigned long long u1_mel_us = 0;
4600 	unsigned long long u2_mel_us = 0;
4601 	unsigned long long mel_us = 0;
4602 	bool disabling_u1;
4603 	bool disabling_u2;
4604 	bool enabling_u1;
4605 	bool enabling_u2;
4606 
4607 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4608 			hub_encoded_timeout == USB3_LPM_DISABLED);
4609 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4610 			hub_encoded_timeout == USB3_LPM_DISABLED);
4611 
4612 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4613 			hub_encoded_timeout != USB3_LPM_DISABLED);
4614 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4615 			hub_encoded_timeout != USB3_LPM_DISABLED);
4616 
4617 	/* If U1 was already enabled and we're not disabling it,
4618 	 * or we're going to enable U1, account for the U1 max exit latency.
4619 	 */
4620 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4621 			enabling_u1)
4622 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4623 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4624 			enabling_u2)
4625 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4626 
4627 	if (u1_mel_us > u2_mel_us)
4628 		mel_us = u1_mel_us;
4629 	else
4630 		mel_us = u2_mel_us;
4631 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4632 	if (mel_us > MAX_EXIT) {
4633 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4634 				"is too big.\n", mel_us);
4635 		return -E2BIG;
4636 	}
4637 	return mel_us;
4638 }
4639 
4640 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4641 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4642 			struct usb_device *udev, enum usb3_link_state state)
4643 {
4644 	struct xhci_hcd	*xhci;
4645 	u16 hub_encoded_timeout;
4646 	int mel;
4647 	int ret;
4648 
4649 	xhci = hcd_to_xhci(hcd);
4650 	/* The LPM timeout values are pretty host-controller specific, so don't
4651 	 * enable hub-initiated timeouts unless the vendor has provided
4652 	 * information about their timeout algorithm.
4653 	 */
4654 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4655 			!xhci->devs[udev->slot_id])
4656 		return USB3_LPM_DISABLED;
4657 
4658 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4659 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4660 	if (mel < 0) {
4661 		/* Max Exit Latency is too big, disable LPM. */
4662 		hub_encoded_timeout = USB3_LPM_DISABLED;
4663 		mel = 0;
4664 	}
4665 
4666 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4667 	if (ret)
4668 		return ret;
4669 	return hub_encoded_timeout;
4670 }
4671 
4672 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4673 			struct usb_device *udev, enum usb3_link_state state)
4674 {
4675 	struct xhci_hcd	*xhci;
4676 	u16 mel;
4677 
4678 	xhci = hcd_to_xhci(hcd);
4679 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4680 			!xhci->devs[udev->slot_id])
4681 		return 0;
4682 
4683 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4684 	return xhci_change_max_exit_latency(xhci, udev, mel);
4685 }
4686 #else /* CONFIG_PM */
4687 
4688 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4689 				struct usb_device *udev, int enable)
4690 {
4691 	return 0;
4692 }
4693 
4694 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4695 {
4696 	return 0;
4697 }
4698 
4699 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4700 			struct usb_device *udev, enum usb3_link_state state)
4701 {
4702 	return USB3_LPM_DISABLED;
4703 }
4704 
4705 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4706 			struct usb_device *udev, enum usb3_link_state state)
4707 {
4708 	return 0;
4709 }
4710 #endif	/* CONFIG_PM */
4711 
4712 /*-------------------------------------------------------------------------*/
4713 
4714 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4715  * internal data structures for the device.
4716  */
4717 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4718 			struct usb_tt *tt, gfp_t mem_flags)
4719 {
4720 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4721 	struct xhci_virt_device *vdev;
4722 	struct xhci_command *config_cmd;
4723 	struct xhci_input_control_ctx *ctrl_ctx;
4724 	struct xhci_slot_ctx *slot_ctx;
4725 	unsigned long flags;
4726 	unsigned think_time;
4727 	int ret;
4728 
4729 	/* Ignore root hubs */
4730 	if (!hdev->parent)
4731 		return 0;
4732 
4733 	vdev = xhci->devs[hdev->slot_id];
4734 	if (!vdev) {
4735 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4736 		return -EINVAL;
4737 	}
4738 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4739 	if (!config_cmd) {
4740 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4741 		return -ENOMEM;
4742 	}
4743 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4744 	if (!ctrl_ctx) {
4745 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4746 				__func__);
4747 		xhci_free_command(xhci, config_cmd);
4748 		return -ENOMEM;
4749 	}
4750 
4751 	spin_lock_irqsave(&xhci->lock, flags);
4752 	if (hdev->speed == USB_SPEED_HIGH &&
4753 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4754 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4755 		xhci_free_command(xhci, config_cmd);
4756 		spin_unlock_irqrestore(&xhci->lock, flags);
4757 		return -ENOMEM;
4758 	}
4759 
4760 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4761 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4762 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4763 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4764 	/*
4765 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4766 	 * but it may be already set to 1 when setup an xHCI virtual
4767 	 * device, so clear it anyway.
4768 	 */
4769 	if (tt->multi)
4770 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4771 	else if (hdev->speed == USB_SPEED_FULL)
4772 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4773 
4774 	if (xhci->hci_version > 0x95) {
4775 		xhci_dbg(xhci, "xHCI version %x needs hub "
4776 				"TT think time and number of ports\n",
4777 				(unsigned int) xhci->hci_version);
4778 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4779 		/* Set TT think time - convert from ns to FS bit times.
4780 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4781 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4782 		 *
4783 		 * xHCI 1.0: this field shall be 0 if the device is not a
4784 		 * High-spped hub.
4785 		 */
4786 		think_time = tt->think_time;
4787 		if (think_time != 0)
4788 			think_time = (think_time / 666) - 1;
4789 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4790 			slot_ctx->tt_info |=
4791 				cpu_to_le32(TT_THINK_TIME(think_time));
4792 	} else {
4793 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4794 				"TT think time or number of ports\n",
4795 				(unsigned int) xhci->hci_version);
4796 	}
4797 	slot_ctx->dev_state = 0;
4798 	spin_unlock_irqrestore(&xhci->lock, flags);
4799 
4800 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4801 			(xhci->hci_version > 0x95) ?
4802 			"configure endpoint" : "evaluate context");
4803 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4804 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4805 
4806 	/* Issue and wait for the configure endpoint or
4807 	 * evaluate context command.
4808 	 */
4809 	if (xhci->hci_version > 0x95)
4810 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4811 				false, false);
4812 	else
4813 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4814 				true, false);
4815 
4816 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4817 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4818 
4819 	xhci_free_command(xhci, config_cmd);
4820 	return ret;
4821 }
4822 
4823 int xhci_get_frame(struct usb_hcd *hcd)
4824 {
4825 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4826 	/* EHCI mods by the periodic size.  Why? */
4827 	return readl(&xhci->run_regs->microframe_index) >> 3;
4828 }
4829 
4830 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4831 {
4832 	struct xhci_hcd		*xhci;
4833 	struct device		*dev = hcd->self.controller;
4834 	int			retval;
4835 
4836 	/* Accept arbitrarily long scatter-gather lists */
4837 	hcd->self.sg_tablesize = ~0;
4838 
4839 	/* support to build packet from discontinuous buffers */
4840 	hcd->self.no_sg_constraint = 1;
4841 
4842 	/* XHCI controllers don't stop the ep queue on short packets :| */
4843 	hcd->self.no_stop_on_short = 1;
4844 
4845 	xhci = hcd_to_xhci(hcd);
4846 
4847 	if (usb_hcd_is_primary_hcd(hcd)) {
4848 		xhci->main_hcd = hcd;
4849 		/* Mark the first roothub as being USB 2.0.
4850 		 * The xHCI driver will register the USB 3.0 roothub.
4851 		 */
4852 		hcd->speed = HCD_USB2;
4853 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4854 		/*
4855 		 * USB 2.0 roothub under xHCI has an integrated TT,
4856 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4857 		 * companion controller.
4858 		 */
4859 		hcd->has_tt = 1;
4860 	} else {
4861 		if (xhci->sbrn == 0x31) {
4862 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4863 			hcd->speed = HCD_USB31;
4864 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4865 		}
4866 		/* xHCI private pointer was set in xhci_pci_probe for the second
4867 		 * registered roothub.
4868 		 */
4869 		return 0;
4870 	}
4871 
4872 	mutex_init(&xhci->mutex);
4873 	xhci->cap_regs = hcd->regs;
4874 	xhci->op_regs = hcd->regs +
4875 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4876 	xhci->run_regs = hcd->regs +
4877 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4878 	/* Cache read-only capability registers */
4879 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4880 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4881 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4882 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4883 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4884 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4885 	if (xhci->hci_version > 0x100)
4886 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4887 	xhci_print_registers(xhci);
4888 
4889 	xhci->quirks = quirks;
4890 
4891 	get_quirks(dev, xhci);
4892 
4893 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4894 	 * success event after a short transfer. This quirk will ignore such
4895 	 * spurious event.
4896 	 */
4897 	if (xhci->hci_version > 0x96)
4898 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4899 
4900 	/* Make sure the HC is halted. */
4901 	retval = xhci_halt(xhci);
4902 	if (retval)
4903 		return retval;
4904 
4905 	xhci_dbg(xhci, "Resetting HCD\n");
4906 	/* Reset the internal HC memory state and registers. */
4907 	retval = xhci_reset(xhci);
4908 	if (retval)
4909 		return retval;
4910 	xhci_dbg(xhci, "Reset complete\n");
4911 
4912 	/*
4913 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4914 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4915 	 * address memory pointers actually. So, this driver clears the AC64
4916 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4917 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4918 	 */
4919 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4920 		xhci->hcc_params &= ~BIT(0);
4921 
4922 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4923 	 * if xHC supports 64-bit addressing */
4924 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4925 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4926 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4927 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4928 	} else {
4929 		/*
4930 		 * This is to avoid error in cases where a 32-bit USB
4931 		 * controller is used on a 64-bit capable system.
4932 		 */
4933 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4934 		if (retval)
4935 			return retval;
4936 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4937 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4938 	}
4939 
4940 	xhci_dbg(xhci, "Calling HCD init\n");
4941 	/* Initialize HCD and host controller data structures. */
4942 	retval = xhci_init(hcd);
4943 	if (retval)
4944 		return retval;
4945 	xhci_dbg(xhci, "Called HCD init\n");
4946 
4947 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4948 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4949 
4950 	return 0;
4951 }
4952 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4953 
4954 static const struct hc_driver xhci_hc_driver = {
4955 	.description =		"xhci-hcd",
4956 	.product_desc =		"xHCI Host Controller",
4957 	.hcd_priv_size =	sizeof(struct xhci_hcd),
4958 
4959 	/*
4960 	 * generic hardware linkage
4961 	 */
4962 	.irq =			xhci_irq,
4963 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4964 
4965 	/*
4966 	 * basic lifecycle operations
4967 	 */
4968 	.reset =		NULL, /* set in xhci_init_driver() */
4969 	.start =		xhci_run,
4970 	.stop =			xhci_stop,
4971 	.shutdown =		xhci_shutdown,
4972 
4973 	/*
4974 	 * managing i/o requests and associated device resources
4975 	 */
4976 	.urb_enqueue =		xhci_urb_enqueue,
4977 	.urb_dequeue =		xhci_urb_dequeue,
4978 	.alloc_dev =		xhci_alloc_dev,
4979 	.free_dev =		xhci_free_dev,
4980 	.alloc_streams =	xhci_alloc_streams,
4981 	.free_streams =		xhci_free_streams,
4982 	.add_endpoint =		xhci_add_endpoint,
4983 	.drop_endpoint =	xhci_drop_endpoint,
4984 	.endpoint_reset =	xhci_endpoint_reset,
4985 	.check_bandwidth =	xhci_check_bandwidth,
4986 	.reset_bandwidth =	xhci_reset_bandwidth,
4987 	.address_device =	xhci_address_device,
4988 	.enable_device =	xhci_enable_device,
4989 	.update_hub_device =	xhci_update_hub_device,
4990 	.reset_device =		xhci_discover_or_reset_device,
4991 
4992 	/*
4993 	 * scheduling support
4994 	 */
4995 	.get_frame_number =	xhci_get_frame,
4996 
4997 	/*
4998 	 * root hub support
4999 	 */
5000 	.hub_control =		xhci_hub_control,
5001 	.hub_status_data =	xhci_hub_status_data,
5002 	.bus_suspend =		xhci_bus_suspend,
5003 	.bus_resume =		xhci_bus_resume,
5004 
5005 	/*
5006 	 * call back when device connected and addressed
5007 	 */
5008 	.update_device =        xhci_update_device,
5009 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5010 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5011 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5012 	.find_raw_port_number =	xhci_find_raw_port_number,
5013 };
5014 
5015 void xhci_init_driver(struct hc_driver *drv,
5016 		      const struct xhci_driver_overrides *over)
5017 {
5018 	BUG_ON(!over);
5019 
5020 	/* Copy the generic table to drv then apply the overrides */
5021 	*drv = xhci_hc_driver;
5022 
5023 	if (over) {
5024 		drv->hcd_priv_size += over->extra_priv_size;
5025 		if (over->reset)
5026 			drv->reset = over->reset;
5027 		if (over->start)
5028 			drv->start = over->start;
5029 	}
5030 }
5031 EXPORT_SYMBOL_GPL(xhci_init_driver);
5032 
5033 MODULE_DESCRIPTION(DRIVER_DESC);
5034 MODULE_AUTHOR(DRIVER_AUTHOR);
5035 MODULE_LICENSE("GPL");
5036 
5037 static int __init xhci_hcd_init(void)
5038 {
5039 	/*
5040 	 * Check the compiler generated sizes of structures that must be laid
5041 	 * out in specific ways for hardware access.
5042 	 */
5043 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5044 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5045 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5046 	/* xhci_device_control has eight fields, and also
5047 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5048 	 */
5049 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5050 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5051 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5052 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5053 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5054 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5055 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5056 
5057 	if (usb_disabled())
5058 		return -ENODEV;
5059 
5060 	return 0;
5061 }
5062 
5063 /*
5064  * If an init function is provided, an exit function must also be provided
5065  * to allow module unload.
5066  */
5067 static void __exit xhci_hcd_fini(void) { }
5068 
5069 module_init(xhci_hcd_init);
5070 module_exit(xhci_hcd_fini);
5071