1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 35 #define DRIVER_AUTHOR "Sarah Sharp" 36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 37 38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 39 static int link_quirk; 40 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 42 43 static unsigned int quirks; 44 module_param(quirks, uint, S_IRUGO); 45 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 46 47 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 48 /* 49 * xhci_handshake - spin reading hc until handshake completes or fails 50 * @ptr: address of hc register to be read 51 * @mask: bits to look at in result of read 52 * @done: value of those bits when handshake succeeds 53 * @usec: timeout in microseconds 54 * 55 * Returns negative errno, or zero on success 56 * 57 * Success happens when the "mask" bits have the specified value (hardware 58 * handshake done). There are two failure modes: "usec" have passed (major 59 * hardware flakeout), or the register reads as all-ones (hardware removed). 60 */ 61 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr, 62 u32 mask, u32 done, int usec) 63 { 64 u32 result; 65 66 do { 67 result = readl(ptr); 68 if (result == ~(u32)0) /* card removed */ 69 return -ENODEV; 70 result &= mask; 71 if (result == done) 72 return 0; 73 udelay(1); 74 usec--; 75 } while (usec > 0); 76 return -ETIMEDOUT; 77 } 78 79 /* 80 * Disable interrupts and begin the xHCI halting process. 81 */ 82 void xhci_quiesce(struct xhci_hcd *xhci) 83 { 84 u32 halted; 85 u32 cmd; 86 u32 mask; 87 88 mask = ~(XHCI_IRQS); 89 halted = readl(&xhci->op_regs->status) & STS_HALT; 90 if (!halted) 91 mask &= ~CMD_RUN; 92 93 cmd = readl(&xhci->op_regs->command); 94 cmd &= mask; 95 writel(cmd, &xhci->op_regs->command); 96 } 97 98 /* 99 * Force HC into halt state. 100 * 101 * Disable any IRQs and clear the run/stop bit. 102 * HC will complete any current and actively pipelined transactions, and 103 * should halt within 16 ms of the run/stop bit being cleared. 104 * Read HC Halted bit in the status register to see when the HC is finished. 105 */ 106 int xhci_halt(struct xhci_hcd *xhci) 107 { 108 int ret; 109 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 110 xhci_quiesce(xhci); 111 112 ret = xhci_handshake(xhci, &xhci->op_regs->status, 113 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 114 if (!ret) { 115 xhci->xhc_state |= XHCI_STATE_HALTED; 116 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 117 } else 118 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 119 XHCI_MAX_HALT_USEC); 120 return ret; 121 } 122 123 /* 124 * Set the run bit and wait for the host to be running. 125 */ 126 static int xhci_start(struct xhci_hcd *xhci) 127 { 128 u32 temp; 129 int ret; 130 131 temp = readl(&xhci->op_regs->command); 132 temp |= (CMD_RUN); 133 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 134 temp); 135 writel(temp, &xhci->op_regs->command); 136 137 /* 138 * Wait for the HCHalted Status bit to be 0 to indicate the host is 139 * running. 140 */ 141 ret = xhci_handshake(xhci, &xhci->op_regs->status, 142 STS_HALT, 0, XHCI_MAX_HALT_USEC); 143 if (ret == -ETIMEDOUT) 144 xhci_err(xhci, "Host took too long to start, " 145 "waited %u microseconds.\n", 146 XHCI_MAX_HALT_USEC); 147 if (!ret) 148 xhci->xhc_state &= ~XHCI_STATE_HALTED; 149 return ret; 150 } 151 152 /* 153 * Reset a halted HC. 154 * 155 * This resets pipelines, timers, counters, state machines, etc. 156 * Transactions will be terminated immediately, and operational registers 157 * will be set to their defaults. 158 */ 159 int xhci_reset(struct xhci_hcd *xhci) 160 { 161 u32 command; 162 u32 state; 163 int ret, i; 164 165 state = readl(&xhci->op_regs->status); 166 if ((state & STS_HALT) == 0) { 167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 168 return 0; 169 } 170 171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 172 command = readl(&xhci->op_regs->command); 173 command |= CMD_RESET; 174 writel(command, &xhci->op_regs->command); 175 176 ret = xhci_handshake(xhci, &xhci->op_regs->command, 177 CMD_RESET, 0, 10 * 1000 * 1000); 178 if (ret) 179 return ret; 180 181 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 182 "Wait for controller to be ready for doorbell rings"); 183 /* 184 * xHCI cannot write to any doorbells or operational registers other 185 * than status until the "Controller Not Ready" flag is cleared. 186 */ 187 ret = xhci_handshake(xhci, &xhci->op_regs->status, 188 STS_CNR, 0, 10 * 1000 * 1000); 189 190 for (i = 0; i < 2; ++i) { 191 xhci->bus_state[i].port_c_suspend = 0; 192 xhci->bus_state[i].suspended_ports = 0; 193 xhci->bus_state[i].resuming_ports = 0; 194 } 195 196 return ret; 197 } 198 199 #ifdef CONFIG_PCI 200 static int xhci_free_msi(struct xhci_hcd *xhci) 201 { 202 int i; 203 204 if (!xhci->msix_entries) 205 return -EINVAL; 206 207 for (i = 0; i < xhci->msix_count; i++) 208 if (xhci->msix_entries[i].vector) 209 free_irq(xhci->msix_entries[i].vector, 210 xhci_to_hcd(xhci)); 211 return 0; 212 } 213 214 /* 215 * Set up MSI 216 */ 217 static int xhci_setup_msi(struct xhci_hcd *xhci) 218 { 219 int ret; 220 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 221 222 ret = pci_enable_msi(pdev); 223 if (ret) { 224 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 225 "failed to allocate MSI entry"); 226 return ret; 227 } 228 229 ret = request_irq(pdev->irq, xhci_msi_irq, 230 0, "xhci_hcd", xhci_to_hcd(xhci)); 231 if (ret) { 232 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 233 "disable MSI interrupt"); 234 pci_disable_msi(pdev); 235 } 236 237 return ret; 238 } 239 240 /* 241 * Free IRQs 242 * free all IRQs request 243 */ 244 static void xhci_free_irq(struct xhci_hcd *xhci) 245 { 246 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 247 int ret; 248 249 /* return if using legacy interrupt */ 250 if (xhci_to_hcd(xhci)->irq > 0) 251 return; 252 253 ret = xhci_free_msi(xhci); 254 if (!ret) 255 return; 256 if (pdev->irq > 0) 257 free_irq(pdev->irq, xhci_to_hcd(xhci)); 258 259 return; 260 } 261 262 /* 263 * Set up MSI-X 264 */ 265 static int xhci_setup_msix(struct xhci_hcd *xhci) 266 { 267 int i, ret = 0; 268 struct usb_hcd *hcd = xhci_to_hcd(xhci); 269 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 270 271 /* 272 * calculate number of msi-x vectors supported. 273 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 274 * with max number of interrupters based on the xhci HCSPARAMS1. 275 * - num_online_cpus: maximum msi-x vectors per CPUs core. 276 * Add additional 1 vector to ensure always available interrupt. 277 */ 278 xhci->msix_count = min(num_online_cpus() + 1, 279 HCS_MAX_INTRS(xhci->hcs_params1)); 280 281 xhci->msix_entries = 282 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 283 GFP_KERNEL); 284 if (!xhci->msix_entries) { 285 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 286 return -ENOMEM; 287 } 288 289 for (i = 0; i < xhci->msix_count; i++) { 290 xhci->msix_entries[i].entry = i; 291 xhci->msix_entries[i].vector = 0; 292 } 293 294 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); 295 if (ret) { 296 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 297 "Failed to enable MSI-X"); 298 goto free_entries; 299 } 300 301 for (i = 0; i < xhci->msix_count; i++) { 302 ret = request_irq(xhci->msix_entries[i].vector, 303 xhci_msi_irq, 304 0, "xhci_hcd", xhci_to_hcd(xhci)); 305 if (ret) 306 goto disable_msix; 307 } 308 309 hcd->msix_enabled = 1; 310 return ret; 311 312 disable_msix: 313 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 314 xhci_free_irq(xhci); 315 pci_disable_msix(pdev); 316 free_entries: 317 kfree(xhci->msix_entries); 318 xhci->msix_entries = NULL; 319 return ret; 320 } 321 322 /* Free any IRQs and disable MSI-X */ 323 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 324 { 325 struct usb_hcd *hcd = xhci_to_hcd(xhci); 326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 327 328 if (xhci->quirks & XHCI_PLAT) 329 return; 330 331 xhci_free_irq(xhci); 332 333 if (xhci->msix_entries) { 334 pci_disable_msix(pdev); 335 kfree(xhci->msix_entries); 336 xhci->msix_entries = NULL; 337 } else { 338 pci_disable_msi(pdev); 339 } 340 341 hcd->msix_enabled = 0; 342 return; 343 } 344 345 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 346 { 347 int i; 348 349 if (xhci->msix_entries) { 350 for (i = 0; i < xhci->msix_count; i++) 351 synchronize_irq(xhci->msix_entries[i].vector); 352 } 353 } 354 355 static int xhci_try_enable_msi(struct usb_hcd *hcd) 356 { 357 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 358 struct pci_dev *pdev; 359 int ret; 360 361 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 362 if (xhci->quirks & XHCI_PLAT) 363 return 0; 364 365 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 366 /* 367 * Some Fresco Logic host controllers advertise MSI, but fail to 368 * generate interrupts. Don't even try to enable MSI. 369 */ 370 if (xhci->quirks & XHCI_BROKEN_MSI) 371 goto legacy_irq; 372 373 /* unregister the legacy interrupt */ 374 if (hcd->irq) 375 free_irq(hcd->irq, hcd); 376 hcd->irq = 0; 377 378 ret = xhci_setup_msix(xhci); 379 if (ret) 380 /* fall back to msi*/ 381 ret = xhci_setup_msi(xhci); 382 383 if (!ret) 384 /* hcd->irq is 0, we have MSI */ 385 return 0; 386 387 if (!pdev->irq) { 388 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 389 return -EINVAL; 390 } 391 392 legacy_irq: 393 if (!strlen(hcd->irq_descr)) 394 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 395 hcd->driver->description, hcd->self.busnum); 396 397 /* fall back to legacy interrupt*/ 398 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 399 hcd->irq_descr, hcd); 400 if (ret) { 401 xhci_err(xhci, "request interrupt %d failed\n", 402 pdev->irq); 403 return ret; 404 } 405 hcd->irq = pdev->irq; 406 return 0; 407 } 408 409 #else 410 411 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 412 { 413 return 0; 414 } 415 416 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 417 { 418 } 419 420 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 421 { 422 } 423 424 #endif 425 426 static void compliance_mode_recovery(unsigned long arg) 427 { 428 struct xhci_hcd *xhci; 429 struct usb_hcd *hcd; 430 u32 temp; 431 int i; 432 433 xhci = (struct xhci_hcd *)arg; 434 435 for (i = 0; i < xhci->num_usb3_ports; i++) { 436 temp = readl(xhci->usb3_ports[i]); 437 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 438 /* 439 * Compliance Mode Detected. Letting USB Core 440 * handle the Warm Reset 441 */ 442 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 443 "Compliance mode detected->port %d", 444 i + 1); 445 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 446 "Attempting compliance mode recovery"); 447 hcd = xhci->shared_hcd; 448 449 if (hcd->state == HC_STATE_SUSPENDED) 450 usb_hcd_resume_root_hub(hcd); 451 452 usb_hcd_poll_rh_status(hcd); 453 } 454 } 455 456 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 457 mod_timer(&xhci->comp_mode_recovery_timer, 458 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 459 } 460 461 /* 462 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 463 * that causes ports behind that hardware to enter compliance mode sometimes. 464 * The quirk creates a timer that polls every 2 seconds the link state of 465 * each host controller's port and recovers it by issuing a Warm reset 466 * if Compliance mode is detected, otherwise the port will become "dead" (no 467 * device connections or disconnections will be detected anymore). Becasue no 468 * status event is generated when entering compliance mode (per xhci spec), 469 * this quirk is needed on systems that have the failing hardware installed. 470 */ 471 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 472 { 473 xhci->port_status_u0 = 0; 474 init_timer(&xhci->comp_mode_recovery_timer); 475 476 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci; 477 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery; 478 xhci->comp_mode_recovery_timer.expires = jiffies + 479 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 480 481 set_timer_slack(&xhci->comp_mode_recovery_timer, 482 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 483 add_timer(&xhci->comp_mode_recovery_timer); 484 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 485 "Compliance mode recovery timer initialized"); 486 } 487 488 /* 489 * This function identifies the systems that have installed the SN65LVPE502CP 490 * USB3.0 re-driver and that need the Compliance Mode Quirk. 491 * Systems: 492 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 493 */ 494 bool xhci_compliance_mode_recovery_timer_quirk_check(void) 495 { 496 const char *dmi_product_name, *dmi_sys_vendor; 497 498 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 499 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 500 if (!dmi_product_name || !dmi_sys_vendor) 501 return false; 502 503 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 504 return false; 505 506 if (strstr(dmi_product_name, "Z420") || 507 strstr(dmi_product_name, "Z620") || 508 strstr(dmi_product_name, "Z820") || 509 strstr(dmi_product_name, "Z1 Workstation")) 510 return true; 511 512 return false; 513 } 514 515 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 516 { 517 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 518 } 519 520 521 /* 522 * Initialize memory for HCD and xHC (one-time init). 523 * 524 * Program the PAGESIZE register, initialize the device context array, create 525 * device contexts (?), set up a command ring segment (or two?), create event 526 * ring (one for now). 527 */ 528 int xhci_init(struct usb_hcd *hcd) 529 { 530 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 531 int retval = 0; 532 533 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 534 spin_lock_init(&xhci->lock); 535 if (xhci->hci_version == 0x95 && link_quirk) { 536 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 537 "QUIRK: Not clearing Link TRB chain bits."); 538 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 539 } else { 540 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 541 "xHCI doesn't need link TRB QUIRK"); 542 } 543 retval = xhci_mem_init(xhci, GFP_KERNEL); 544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 545 546 /* Initializing Compliance Mode Recovery Data If Needed */ 547 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 548 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 549 compliance_mode_recovery_timer_init(xhci); 550 } 551 552 return retval; 553 } 554 555 /*-------------------------------------------------------------------------*/ 556 557 558 static int xhci_run_finished(struct xhci_hcd *xhci) 559 { 560 if (xhci_start(xhci)) { 561 xhci_halt(xhci); 562 return -ENODEV; 563 } 564 xhci->shared_hcd->state = HC_STATE_RUNNING; 565 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 566 567 if (xhci->quirks & XHCI_NEC_HOST) 568 xhci_ring_cmd_db(xhci); 569 570 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 571 "Finished xhci_run for USB3 roothub"); 572 return 0; 573 } 574 575 /* 576 * Start the HC after it was halted. 577 * 578 * This function is called by the USB core when the HC driver is added. 579 * Its opposite is xhci_stop(). 580 * 581 * xhci_init() must be called once before this function can be called. 582 * Reset the HC, enable device slot contexts, program DCBAAP, and 583 * set command ring pointer and event ring pointer. 584 * 585 * Setup MSI-X vectors and enable interrupts. 586 */ 587 int xhci_run(struct usb_hcd *hcd) 588 { 589 u32 temp; 590 u64 temp_64; 591 int ret; 592 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 593 594 /* Start the xHCI host controller running only after the USB 2.0 roothub 595 * is setup. 596 */ 597 598 hcd->uses_new_polling = 1; 599 if (!usb_hcd_is_primary_hcd(hcd)) 600 return xhci_run_finished(xhci); 601 602 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 603 604 ret = xhci_try_enable_msi(hcd); 605 if (ret) 606 return ret; 607 608 xhci_dbg(xhci, "Command ring memory map follows:\n"); 609 xhci_debug_ring(xhci, xhci->cmd_ring); 610 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 611 xhci_dbg_cmd_ptrs(xhci); 612 613 xhci_dbg(xhci, "ERST memory map follows:\n"); 614 xhci_dbg_erst(xhci, &xhci->erst); 615 xhci_dbg(xhci, "Event ring:\n"); 616 xhci_debug_ring(xhci, xhci->event_ring); 617 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 618 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 619 temp_64 &= ~ERST_PTR_MASK; 620 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 621 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 622 623 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 624 "// Set the interrupt modulation register"); 625 temp = readl(&xhci->ir_set->irq_control); 626 temp &= ~ER_IRQ_INTERVAL_MASK; 627 temp |= (u32) 160; 628 writel(temp, &xhci->ir_set->irq_control); 629 630 /* Set the HCD state before we enable the irqs */ 631 temp = readl(&xhci->op_regs->command); 632 temp |= (CMD_EIE); 633 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 634 "// Enable interrupts, cmd = 0x%x.", temp); 635 writel(temp, &xhci->op_regs->command); 636 637 temp = readl(&xhci->ir_set->irq_pending); 638 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 639 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 640 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 641 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 642 xhci_print_ir_set(xhci, 0); 643 644 if (xhci->quirks & XHCI_NEC_HOST) 645 xhci_queue_vendor_command(xhci, 0, 0, 0, 646 TRB_TYPE(TRB_NEC_GET_FW)); 647 648 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 649 "Finished xhci_run for USB2 roothub"); 650 return 0; 651 } 652 653 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 654 { 655 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 656 657 spin_lock_irq(&xhci->lock); 658 xhci_halt(xhci); 659 660 /* The shared_hcd is going to be deallocated shortly (the USB core only 661 * calls this function when allocation fails in usb_add_hcd(), or 662 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 663 */ 664 xhci->shared_hcd = NULL; 665 spin_unlock_irq(&xhci->lock); 666 } 667 668 /* 669 * Stop xHCI driver. 670 * 671 * This function is called by the USB core when the HC driver is removed. 672 * Its opposite is xhci_run(). 673 * 674 * Disable device contexts, disable IRQs, and quiesce the HC. 675 * Reset the HC, finish any completed transactions, and cleanup memory. 676 */ 677 void xhci_stop(struct usb_hcd *hcd) 678 { 679 u32 temp; 680 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 681 682 if (!usb_hcd_is_primary_hcd(hcd)) { 683 xhci_only_stop_hcd(xhci->shared_hcd); 684 return; 685 } 686 687 spin_lock_irq(&xhci->lock); 688 /* Make sure the xHC is halted for a USB3 roothub 689 * (xhci_stop() could be called as part of failed init). 690 */ 691 xhci_halt(xhci); 692 xhci_reset(xhci); 693 spin_unlock_irq(&xhci->lock); 694 695 xhci_cleanup_msix(xhci); 696 697 /* Deleting Compliance Mode Recovery Timer */ 698 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 699 (!(xhci_all_ports_seen_u0(xhci)))) { 700 del_timer_sync(&xhci->comp_mode_recovery_timer); 701 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 702 "%s: compliance mode recovery timer deleted", 703 __func__); 704 } 705 706 if (xhci->quirks & XHCI_AMD_PLL_FIX) 707 usb_amd_dev_put(); 708 709 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 710 "// Disabling event ring interrupts"); 711 temp = readl(&xhci->op_regs->status); 712 writel(temp & ~STS_EINT, &xhci->op_regs->status); 713 temp = readl(&xhci->ir_set->irq_pending); 714 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 715 xhci_print_ir_set(xhci, 0); 716 717 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 718 xhci_mem_cleanup(xhci); 719 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 720 "xhci_stop completed - status = %x", 721 readl(&xhci->op_regs->status)); 722 } 723 724 /* 725 * Shutdown HC (not bus-specific) 726 * 727 * This is called when the machine is rebooting or halting. We assume that the 728 * machine will be powered off, and the HC's internal state will be reset. 729 * Don't bother to free memory. 730 * 731 * This will only ever be called with the main usb_hcd (the USB3 roothub). 732 */ 733 void xhci_shutdown(struct usb_hcd *hcd) 734 { 735 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 736 737 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 738 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 739 740 spin_lock_irq(&xhci->lock); 741 xhci_halt(xhci); 742 /* Workaround for spurious wakeups at shutdown with HSW */ 743 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 744 xhci_reset(xhci); 745 spin_unlock_irq(&xhci->lock); 746 747 xhci_cleanup_msix(xhci); 748 749 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 750 "xhci_shutdown completed - status = %x", 751 readl(&xhci->op_regs->status)); 752 753 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 754 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 755 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 756 } 757 758 #ifdef CONFIG_PM 759 static void xhci_save_registers(struct xhci_hcd *xhci) 760 { 761 xhci->s3.command = readl(&xhci->op_regs->command); 762 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 763 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 764 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 765 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 766 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 767 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 768 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 769 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 770 } 771 772 static void xhci_restore_registers(struct xhci_hcd *xhci) 773 { 774 writel(xhci->s3.command, &xhci->op_regs->command); 775 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 776 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 777 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 778 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 779 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 780 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 781 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 782 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 783 } 784 785 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 786 { 787 u64 val_64; 788 789 /* step 2: initialize command ring buffer */ 790 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 791 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 792 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 793 xhci->cmd_ring->dequeue) & 794 (u64) ~CMD_RING_RSVD_BITS) | 795 xhci->cmd_ring->cycle_state; 796 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 797 "// Setting command ring address to 0x%llx", 798 (long unsigned long) val_64); 799 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 800 } 801 802 /* 803 * The whole command ring must be cleared to zero when we suspend the host. 804 * 805 * The host doesn't save the command ring pointer in the suspend well, so we 806 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 807 * aligned, because of the reserved bits in the command ring dequeue pointer 808 * register. Therefore, we can't just set the dequeue pointer back in the 809 * middle of the ring (TRBs are 16-byte aligned). 810 */ 811 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 812 { 813 struct xhci_ring *ring; 814 struct xhci_segment *seg; 815 816 ring = xhci->cmd_ring; 817 seg = ring->deq_seg; 818 do { 819 memset(seg->trbs, 0, 820 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 821 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 822 cpu_to_le32(~TRB_CYCLE); 823 seg = seg->next; 824 } while (seg != ring->deq_seg); 825 826 /* Reset the software enqueue and dequeue pointers */ 827 ring->deq_seg = ring->first_seg; 828 ring->dequeue = ring->first_seg->trbs; 829 ring->enq_seg = ring->deq_seg; 830 ring->enqueue = ring->dequeue; 831 832 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 833 /* 834 * Ring is now zeroed, so the HW should look for change of ownership 835 * when the cycle bit is set to 1. 836 */ 837 ring->cycle_state = 1; 838 839 /* 840 * Reset the hardware dequeue pointer. 841 * Yes, this will need to be re-written after resume, but we're paranoid 842 * and want to make sure the hardware doesn't access bogus memory 843 * because, say, the BIOS or an SMI started the host without changing 844 * the command ring pointers. 845 */ 846 xhci_set_cmd_ring_deq(xhci); 847 } 848 849 /* 850 * Stop HC (not bus-specific) 851 * 852 * This is called when the machine transition into S3/S4 mode. 853 * 854 */ 855 int xhci_suspend(struct xhci_hcd *xhci) 856 { 857 int rc = 0; 858 unsigned int delay = XHCI_MAX_HALT_USEC; 859 struct usb_hcd *hcd = xhci_to_hcd(xhci); 860 u32 command; 861 862 if (hcd->state != HC_STATE_SUSPENDED || 863 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 864 return -EINVAL; 865 866 /* Don't poll the roothubs on bus suspend. */ 867 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 868 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 869 del_timer_sync(&hcd->rh_timer); 870 871 spin_lock_irq(&xhci->lock); 872 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 873 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 874 /* step 1: stop endpoint */ 875 /* skipped assuming that port suspend has done */ 876 877 /* step 2: clear Run/Stop bit */ 878 command = readl(&xhci->op_regs->command); 879 command &= ~CMD_RUN; 880 writel(command, &xhci->op_regs->command); 881 882 /* Some chips from Fresco Logic need an extraordinary delay */ 883 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 884 885 if (xhci_handshake(xhci, &xhci->op_regs->status, 886 STS_HALT, STS_HALT, delay)) { 887 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 888 spin_unlock_irq(&xhci->lock); 889 return -ETIMEDOUT; 890 } 891 xhci_clear_command_ring(xhci); 892 893 /* step 3: save registers */ 894 xhci_save_registers(xhci); 895 896 /* step 4: set CSS flag */ 897 command = readl(&xhci->op_regs->command); 898 command |= CMD_CSS; 899 writel(command, &xhci->op_regs->command); 900 if (xhci_handshake(xhci, &xhci->op_regs->status, 901 STS_SAVE, 0, 10 * 1000)) { 902 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 903 spin_unlock_irq(&xhci->lock); 904 return -ETIMEDOUT; 905 } 906 spin_unlock_irq(&xhci->lock); 907 908 /* 909 * Deleting Compliance Mode Recovery Timer because the xHCI Host 910 * is about to be suspended. 911 */ 912 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 913 (!(xhci_all_ports_seen_u0(xhci)))) { 914 del_timer_sync(&xhci->comp_mode_recovery_timer); 915 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 916 "%s: compliance mode recovery timer deleted", 917 __func__); 918 } 919 920 /* step 5: remove core well power */ 921 /* synchronize irq when using MSI-X */ 922 xhci_msix_sync_irqs(xhci); 923 924 return rc; 925 } 926 927 /* 928 * start xHC (not bus-specific) 929 * 930 * This is called when the machine transition from S3/S4 mode. 931 * 932 */ 933 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 934 { 935 u32 command, temp = 0; 936 struct usb_hcd *hcd = xhci_to_hcd(xhci); 937 struct usb_hcd *secondary_hcd; 938 int retval = 0; 939 bool comp_timer_running = false; 940 941 /* Wait a bit if either of the roothubs need to settle from the 942 * transition into bus suspend. 943 */ 944 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 945 time_before(jiffies, 946 xhci->bus_state[1].next_statechange)) 947 msleep(100); 948 949 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 950 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 951 952 spin_lock_irq(&xhci->lock); 953 if (xhci->quirks & XHCI_RESET_ON_RESUME) 954 hibernated = true; 955 956 if (!hibernated) { 957 /* step 1: restore register */ 958 xhci_restore_registers(xhci); 959 /* step 2: initialize command ring buffer */ 960 xhci_set_cmd_ring_deq(xhci); 961 /* step 3: restore state and start state*/ 962 /* step 3: set CRS flag */ 963 command = readl(&xhci->op_regs->command); 964 command |= CMD_CRS; 965 writel(command, &xhci->op_regs->command); 966 if (xhci_handshake(xhci, &xhci->op_regs->status, 967 STS_RESTORE, 0, 10 * 1000)) { 968 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 969 spin_unlock_irq(&xhci->lock); 970 return -ETIMEDOUT; 971 } 972 temp = readl(&xhci->op_regs->status); 973 } 974 975 /* If restore operation fails, re-initialize the HC during resume */ 976 if ((temp & STS_SRE) || hibernated) { 977 978 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 979 !(xhci_all_ports_seen_u0(xhci))) { 980 del_timer_sync(&xhci->comp_mode_recovery_timer); 981 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 982 "Compliance Mode Recovery Timer deleted!"); 983 } 984 985 /* Let the USB core know _both_ roothubs lost power. */ 986 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 987 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 988 989 xhci_dbg(xhci, "Stop HCD\n"); 990 xhci_halt(xhci); 991 xhci_reset(xhci); 992 spin_unlock_irq(&xhci->lock); 993 xhci_cleanup_msix(xhci); 994 995 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 996 temp = readl(&xhci->op_regs->status); 997 writel(temp & ~STS_EINT, &xhci->op_regs->status); 998 temp = readl(&xhci->ir_set->irq_pending); 999 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1000 xhci_print_ir_set(xhci, 0); 1001 1002 xhci_dbg(xhci, "cleaning up memory\n"); 1003 xhci_mem_cleanup(xhci); 1004 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1005 readl(&xhci->op_regs->status)); 1006 1007 /* USB core calls the PCI reinit and start functions twice: 1008 * first with the primary HCD, and then with the secondary HCD. 1009 * If we don't do the same, the host will never be started. 1010 */ 1011 if (!usb_hcd_is_primary_hcd(hcd)) 1012 secondary_hcd = hcd; 1013 else 1014 secondary_hcd = xhci->shared_hcd; 1015 1016 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1017 retval = xhci_init(hcd->primary_hcd); 1018 if (retval) 1019 return retval; 1020 comp_timer_running = true; 1021 1022 xhci_dbg(xhci, "Start the primary HCD\n"); 1023 retval = xhci_run(hcd->primary_hcd); 1024 if (!retval) { 1025 xhci_dbg(xhci, "Start the secondary HCD\n"); 1026 retval = xhci_run(secondary_hcd); 1027 } 1028 hcd->state = HC_STATE_SUSPENDED; 1029 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1030 goto done; 1031 } 1032 1033 /* step 4: set Run/Stop bit */ 1034 command = readl(&xhci->op_regs->command); 1035 command |= CMD_RUN; 1036 writel(command, &xhci->op_regs->command); 1037 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT, 1038 0, 250 * 1000); 1039 1040 /* step 5: walk topology and initialize portsc, 1041 * portpmsc and portli 1042 */ 1043 /* this is done in bus_resume */ 1044 1045 /* step 6: restart each of the previously 1046 * Running endpoints by ringing their doorbells 1047 */ 1048 1049 spin_unlock_irq(&xhci->lock); 1050 1051 done: 1052 if (retval == 0) { 1053 usb_hcd_resume_root_hub(hcd); 1054 usb_hcd_resume_root_hub(xhci->shared_hcd); 1055 } 1056 1057 /* 1058 * If system is subject to the Quirk, Compliance Mode Timer needs to 1059 * be re-initialized Always after a system resume. Ports are subject 1060 * to suffer the Compliance Mode issue again. It doesn't matter if 1061 * ports have entered previously to U0 before system's suspension. 1062 */ 1063 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1064 compliance_mode_recovery_timer_init(xhci); 1065 1066 /* Re-enable port polling. */ 1067 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1068 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1069 usb_hcd_poll_rh_status(hcd); 1070 1071 return retval; 1072 } 1073 #endif /* CONFIG_PM */ 1074 1075 /*-------------------------------------------------------------------------*/ 1076 1077 /** 1078 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1079 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1080 * value to right shift 1 for the bitmask. 1081 * 1082 * Index = (epnum * 2) + direction - 1, 1083 * where direction = 0 for OUT, 1 for IN. 1084 * For control endpoints, the IN index is used (OUT index is unused), so 1085 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1086 */ 1087 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1088 { 1089 unsigned int index; 1090 if (usb_endpoint_xfer_control(desc)) 1091 index = (unsigned int) (usb_endpoint_num(desc)*2); 1092 else 1093 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1094 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1095 return index; 1096 } 1097 1098 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1099 * address from the XHCI endpoint index. 1100 */ 1101 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1102 { 1103 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1104 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1105 return direction | number; 1106 } 1107 1108 /* Find the flag for this endpoint (for use in the control context). Use the 1109 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1110 * bit 1, etc. 1111 */ 1112 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1113 { 1114 return 1 << (xhci_get_endpoint_index(desc) + 1); 1115 } 1116 1117 /* Find the flag for this endpoint (for use in the control context). Use the 1118 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1119 * bit 1, etc. 1120 */ 1121 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1122 { 1123 return 1 << (ep_index + 1); 1124 } 1125 1126 /* Compute the last valid endpoint context index. Basically, this is the 1127 * endpoint index plus one. For slot contexts with more than valid endpoint, 1128 * we find the most significant bit set in the added contexts flags. 1129 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1130 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1131 */ 1132 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1133 { 1134 return fls(added_ctxs) - 1; 1135 } 1136 1137 /* Returns 1 if the arguments are OK; 1138 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1139 */ 1140 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1141 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1142 const char *func) { 1143 struct xhci_hcd *xhci; 1144 struct xhci_virt_device *virt_dev; 1145 1146 if (!hcd || (check_ep && !ep) || !udev) { 1147 pr_debug("xHCI %s called with invalid args\n", func); 1148 return -EINVAL; 1149 } 1150 if (!udev->parent) { 1151 pr_debug("xHCI %s called for root hub\n", func); 1152 return 0; 1153 } 1154 1155 xhci = hcd_to_xhci(hcd); 1156 if (check_virt_dev) { 1157 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1158 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1159 func); 1160 return -EINVAL; 1161 } 1162 1163 virt_dev = xhci->devs[udev->slot_id]; 1164 if (virt_dev->udev != udev) { 1165 xhci_dbg(xhci, "xHCI %s called with udev and " 1166 "virt_dev does not match\n", func); 1167 return -EINVAL; 1168 } 1169 } 1170 1171 if (xhci->xhc_state & XHCI_STATE_HALTED) 1172 return -ENODEV; 1173 1174 return 1; 1175 } 1176 1177 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1178 struct usb_device *udev, struct xhci_command *command, 1179 bool ctx_change, bool must_succeed); 1180 1181 /* 1182 * Full speed devices may have a max packet size greater than 8 bytes, but the 1183 * USB core doesn't know that until it reads the first 8 bytes of the 1184 * descriptor. If the usb_device's max packet size changes after that point, 1185 * we need to issue an evaluate context command and wait on it. 1186 */ 1187 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1188 unsigned int ep_index, struct urb *urb) 1189 { 1190 struct xhci_container_ctx *in_ctx; 1191 struct xhci_container_ctx *out_ctx; 1192 struct xhci_input_control_ctx *ctrl_ctx; 1193 struct xhci_ep_ctx *ep_ctx; 1194 int max_packet_size; 1195 int hw_max_packet_size; 1196 int ret = 0; 1197 1198 out_ctx = xhci->devs[slot_id]->out_ctx; 1199 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1200 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1201 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1202 if (hw_max_packet_size != max_packet_size) { 1203 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1204 "Max Packet Size for ep 0 changed."); 1205 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1206 "Max packet size in usb_device = %d", 1207 max_packet_size); 1208 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1209 "Max packet size in xHCI HW = %d", 1210 hw_max_packet_size); 1211 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1212 "Issuing evaluate context command."); 1213 1214 /* Set up the input context flags for the command */ 1215 /* FIXME: This won't work if a non-default control endpoint 1216 * changes max packet sizes. 1217 */ 1218 in_ctx = xhci->devs[slot_id]->in_ctx; 1219 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1220 if (!ctrl_ctx) { 1221 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1222 __func__); 1223 return -ENOMEM; 1224 } 1225 /* Set up the modified control endpoint 0 */ 1226 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1227 xhci->devs[slot_id]->out_ctx, ep_index); 1228 1229 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1230 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1231 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1232 1233 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1234 ctrl_ctx->drop_flags = 0; 1235 1236 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1237 xhci_dbg_ctx(xhci, in_ctx, ep_index); 1238 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1239 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1240 1241 ret = xhci_configure_endpoint(xhci, urb->dev, NULL, 1242 true, false); 1243 1244 /* Clean up the input context for later use by bandwidth 1245 * functions. 1246 */ 1247 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1248 } 1249 return ret; 1250 } 1251 1252 /* 1253 * non-error returns are a promise to giveback() the urb later 1254 * we drop ownership so next owner (or urb unlink) can get it 1255 */ 1256 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1257 { 1258 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1259 struct xhci_td *buffer; 1260 unsigned long flags; 1261 int ret = 0; 1262 unsigned int slot_id, ep_index; 1263 struct urb_priv *urb_priv; 1264 int size, i; 1265 1266 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1267 true, true, __func__) <= 0) 1268 return -EINVAL; 1269 1270 slot_id = urb->dev->slot_id; 1271 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1272 1273 if (!HCD_HW_ACCESSIBLE(hcd)) { 1274 if (!in_interrupt()) 1275 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1276 ret = -ESHUTDOWN; 1277 goto exit; 1278 } 1279 1280 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1281 size = urb->number_of_packets; 1282 else 1283 size = 1; 1284 1285 urb_priv = kzalloc(sizeof(struct urb_priv) + 1286 size * sizeof(struct xhci_td *), mem_flags); 1287 if (!urb_priv) 1288 return -ENOMEM; 1289 1290 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1291 if (!buffer) { 1292 kfree(urb_priv); 1293 return -ENOMEM; 1294 } 1295 1296 for (i = 0; i < size; i++) { 1297 urb_priv->td[i] = buffer; 1298 buffer++; 1299 } 1300 1301 urb_priv->length = size; 1302 urb_priv->td_cnt = 0; 1303 urb->hcpriv = urb_priv; 1304 1305 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1306 /* Check to see if the max packet size for the default control 1307 * endpoint changed during FS device enumeration 1308 */ 1309 if (urb->dev->speed == USB_SPEED_FULL) { 1310 ret = xhci_check_maxpacket(xhci, slot_id, 1311 ep_index, urb); 1312 if (ret < 0) { 1313 xhci_urb_free_priv(xhci, urb_priv); 1314 urb->hcpriv = NULL; 1315 return ret; 1316 } 1317 } 1318 1319 /* We have a spinlock and interrupts disabled, so we must pass 1320 * atomic context to this function, which may allocate memory. 1321 */ 1322 spin_lock_irqsave(&xhci->lock, flags); 1323 if (xhci->xhc_state & XHCI_STATE_DYING) 1324 goto dying; 1325 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1326 slot_id, ep_index); 1327 if (ret) 1328 goto free_priv; 1329 spin_unlock_irqrestore(&xhci->lock, flags); 1330 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1331 spin_lock_irqsave(&xhci->lock, flags); 1332 if (xhci->xhc_state & XHCI_STATE_DYING) 1333 goto dying; 1334 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1335 EP_GETTING_STREAMS) { 1336 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1337 "is transitioning to using streams.\n"); 1338 ret = -EINVAL; 1339 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1340 EP_GETTING_NO_STREAMS) { 1341 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1342 "is transitioning to " 1343 "not having streams.\n"); 1344 ret = -EINVAL; 1345 } else { 1346 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1347 slot_id, ep_index); 1348 } 1349 if (ret) 1350 goto free_priv; 1351 spin_unlock_irqrestore(&xhci->lock, flags); 1352 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1353 spin_lock_irqsave(&xhci->lock, flags); 1354 if (xhci->xhc_state & XHCI_STATE_DYING) 1355 goto dying; 1356 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1357 slot_id, ep_index); 1358 if (ret) 1359 goto free_priv; 1360 spin_unlock_irqrestore(&xhci->lock, flags); 1361 } else { 1362 spin_lock_irqsave(&xhci->lock, flags); 1363 if (xhci->xhc_state & XHCI_STATE_DYING) 1364 goto dying; 1365 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1366 slot_id, ep_index); 1367 if (ret) 1368 goto free_priv; 1369 spin_unlock_irqrestore(&xhci->lock, flags); 1370 } 1371 exit: 1372 return ret; 1373 dying: 1374 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1375 "non-responsive xHCI host.\n", 1376 urb->ep->desc.bEndpointAddress, urb); 1377 ret = -ESHUTDOWN; 1378 free_priv: 1379 xhci_urb_free_priv(xhci, urb_priv); 1380 urb->hcpriv = NULL; 1381 spin_unlock_irqrestore(&xhci->lock, flags); 1382 return ret; 1383 } 1384 1385 /* Get the right ring for the given URB. 1386 * If the endpoint supports streams, boundary check the URB's stream ID. 1387 * If the endpoint doesn't support streams, return the singular endpoint ring. 1388 */ 1389 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1390 struct urb *urb) 1391 { 1392 unsigned int slot_id; 1393 unsigned int ep_index; 1394 unsigned int stream_id; 1395 struct xhci_virt_ep *ep; 1396 1397 slot_id = urb->dev->slot_id; 1398 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1399 stream_id = urb->stream_id; 1400 ep = &xhci->devs[slot_id]->eps[ep_index]; 1401 /* Common case: no streams */ 1402 if (!(ep->ep_state & EP_HAS_STREAMS)) 1403 return ep->ring; 1404 1405 if (stream_id == 0) { 1406 xhci_warn(xhci, 1407 "WARN: Slot ID %u, ep index %u has streams, " 1408 "but URB has no stream ID.\n", 1409 slot_id, ep_index); 1410 return NULL; 1411 } 1412 1413 if (stream_id < ep->stream_info->num_streams) 1414 return ep->stream_info->stream_rings[stream_id]; 1415 1416 xhci_warn(xhci, 1417 "WARN: Slot ID %u, ep index %u has " 1418 "stream IDs 1 to %u allocated, " 1419 "but stream ID %u is requested.\n", 1420 slot_id, ep_index, 1421 ep->stream_info->num_streams - 1, 1422 stream_id); 1423 return NULL; 1424 } 1425 1426 /* 1427 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1428 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1429 * should pick up where it left off in the TD, unless a Set Transfer Ring 1430 * Dequeue Pointer is issued. 1431 * 1432 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1433 * the ring. Since the ring is a contiguous structure, they can't be physically 1434 * removed. Instead, there are two options: 1435 * 1436 * 1) If the HC is in the middle of processing the URB to be canceled, we 1437 * simply move the ring's dequeue pointer past those TRBs using the Set 1438 * Transfer Ring Dequeue Pointer command. This will be the common case, 1439 * when drivers timeout on the last submitted URB and attempt to cancel. 1440 * 1441 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1442 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1443 * HC will need to invalidate the any TRBs it has cached after the stop 1444 * endpoint command, as noted in the xHCI 0.95 errata. 1445 * 1446 * 3) The TD may have completed by the time the Stop Endpoint Command 1447 * completes, so software needs to handle that case too. 1448 * 1449 * This function should protect against the TD enqueueing code ringing the 1450 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1451 * It also needs to account for multiple cancellations on happening at the same 1452 * time for the same endpoint. 1453 * 1454 * Note that this function can be called in any context, or so says 1455 * usb_hcd_unlink_urb() 1456 */ 1457 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1458 { 1459 unsigned long flags; 1460 int ret, i; 1461 u32 temp; 1462 struct xhci_hcd *xhci; 1463 struct urb_priv *urb_priv; 1464 struct xhci_td *td; 1465 unsigned int ep_index; 1466 struct xhci_ring *ep_ring; 1467 struct xhci_virt_ep *ep; 1468 1469 xhci = hcd_to_xhci(hcd); 1470 spin_lock_irqsave(&xhci->lock, flags); 1471 /* Make sure the URB hasn't completed or been unlinked already */ 1472 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1473 if (ret || !urb->hcpriv) 1474 goto done; 1475 temp = readl(&xhci->op_regs->status); 1476 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1477 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1478 "HW died, freeing TD."); 1479 urb_priv = urb->hcpriv; 1480 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1481 td = urb_priv->td[i]; 1482 if (!list_empty(&td->td_list)) 1483 list_del_init(&td->td_list); 1484 if (!list_empty(&td->cancelled_td_list)) 1485 list_del_init(&td->cancelled_td_list); 1486 } 1487 1488 usb_hcd_unlink_urb_from_ep(hcd, urb); 1489 spin_unlock_irqrestore(&xhci->lock, flags); 1490 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1491 xhci_urb_free_priv(xhci, urb_priv); 1492 return ret; 1493 } 1494 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1495 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1496 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1497 "Ep 0x%x: URB %p to be canceled on " 1498 "non-responsive xHCI host.", 1499 urb->ep->desc.bEndpointAddress, urb); 1500 /* Let the stop endpoint command watchdog timer (which set this 1501 * state) finish cleaning up the endpoint TD lists. We must 1502 * have caught it in the middle of dropping a lock and giving 1503 * back an URB. 1504 */ 1505 goto done; 1506 } 1507 1508 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1509 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1510 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1511 if (!ep_ring) { 1512 ret = -EINVAL; 1513 goto done; 1514 } 1515 1516 urb_priv = urb->hcpriv; 1517 i = urb_priv->td_cnt; 1518 if (i < urb_priv->length) 1519 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1520 "Cancel URB %p, dev %s, ep 0x%x, " 1521 "starting at offset 0x%llx", 1522 urb, urb->dev->devpath, 1523 urb->ep->desc.bEndpointAddress, 1524 (unsigned long long) xhci_trb_virt_to_dma( 1525 urb_priv->td[i]->start_seg, 1526 urb_priv->td[i]->first_trb)); 1527 1528 for (; i < urb_priv->length; i++) { 1529 td = urb_priv->td[i]; 1530 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1531 } 1532 1533 /* Queue a stop endpoint command, but only if this is 1534 * the first cancellation to be handled. 1535 */ 1536 if (!(ep->ep_state & EP_HALT_PENDING)) { 1537 ep->ep_state |= EP_HALT_PENDING; 1538 ep->stop_cmds_pending++; 1539 ep->stop_cmd_timer.expires = jiffies + 1540 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1541 add_timer(&ep->stop_cmd_timer); 1542 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0); 1543 xhci_ring_cmd_db(xhci); 1544 } 1545 done: 1546 spin_unlock_irqrestore(&xhci->lock, flags); 1547 return ret; 1548 } 1549 1550 /* Drop an endpoint from a new bandwidth configuration for this device. 1551 * Only one call to this function is allowed per endpoint before 1552 * check_bandwidth() or reset_bandwidth() must be called. 1553 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1554 * add the endpoint to the schedule with possibly new parameters denoted by a 1555 * different endpoint descriptor in usb_host_endpoint. 1556 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1557 * not allowed. 1558 * 1559 * The USB core will not allow URBs to be queued to an endpoint that is being 1560 * disabled, so there's no need for mutual exclusion to protect 1561 * the xhci->devs[slot_id] structure. 1562 */ 1563 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1564 struct usb_host_endpoint *ep) 1565 { 1566 struct xhci_hcd *xhci; 1567 struct xhci_container_ctx *in_ctx, *out_ctx; 1568 struct xhci_input_control_ctx *ctrl_ctx; 1569 struct xhci_slot_ctx *slot_ctx; 1570 unsigned int last_ctx; 1571 unsigned int ep_index; 1572 struct xhci_ep_ctx *ep_ctx; 1573 u32 drop_flag; 1574 u32 new_add_flags, new_drop_flags, new_slot_info; 1575 int ret; 1576 1577 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1578 if (ret <= 0) 1579 return ret; 1580 xhci = hcd_to_xhci(hcd); 1581 if (xhci->xhc_state & XHCI_STATE_DYING) 1582 return -ENODEV; 1583 1584 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1585 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1586 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1587 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1588 __func__, drop_flag); 1589 return 0; 1590 } 1591 1592 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1593 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1594 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1595 if (!ctrl_ctx) { 1596 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1597 __func__); 1598 return 0; 1599 } 1600 1601 ep_index = xhci_get_endpoint_index(&ep->desc); 1602 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1603 /* If the HC already knows the endpoint is disabled, 1604 * or the HCD has noted it is disabled, ignore this request 1605 */ 1606 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1607 cpu_to_le32(EP_STATE_DISABLED)) || 1608 le32_to_cpu(ctrl_ctx->drop_flags) & 1609 xhci_get_endpoint_flag(&ep->desc)) { 1610 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1611 __func__, ep); 1612 return 0; 1613 } 1614 1615 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1616 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1617 1618 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1619 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1620 1621 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)); 1622 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1623 /* Update the last valid endpoint context, if we deleted the last one */ 1624 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) > 1625 LAST_CTX(last_ctx)) { 1626 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1627 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1628 } 1629 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1630 1631 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1632 1633 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1634 (unsigned int) ep->desc.bEndpointAddress, 1635 udev->slot_id, 1636 (unsigned int) new_drop_flags, 1637 (unsigned int) new_add_flags, 1638 (unsigned int) new_slot_info); 1639 return 0; 1640 } 1641 1642 /* Add an endpoint to a new possible bandwidth configuration for this device. 1643 * Only one call to this function is allowed per endpoint before 1644 * check_bandwidth() or reset_bandwidth() must be called. 1645 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1646 * add the endpoint to the schedule with possibly new parameters denoted by a 1647 * different endpoint descriptor in usb_host_endpoint. 1648 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1649 * not allowed. 1650 * 1651 * The USB core will not allow URBs to be queued to an endpoint until the 1652 * configuration or alt setting is installed in the device, so there's no need 1653 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1654 */ 1655 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1656 struct usb_host_endpoint *ep) 1657 { 1658 struct xhci_hcd *xhci; 1659 struct xhci_container_ctx *in_ctx, *out_ctx; 1660 unsigned int ep_index; 1661 struct xhci_slot_ctx *slot_ctx; 1662 struct xhci_input_control_ctx *ctrl_ctx; 1663 u32 added_ctxs; 1664 unsigned int last_ctx; 1665 u32 new_add_flags, new_drop_flags, new_slot_info; 1666 struct xhci_virt_device *virt_dev; 1667 int ret = 0; 1668 1669 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1670 if (ret <= 0) { 1671 /* So we won't queue a reset ep command for a root hub */ 1672 ep->hcpriv = NULL; 1673 return ret; 1674 } 1675 xhci = hcd_to_xhci(hcd); 1676 if (xhci->xhc_state & XHCI_STATE_DYING) 1677 return -ENODEV; 1678 1679 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1680 last_ctx = xhci_last_valid_endpoint(added_ctxs); 1681 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1682 /* FIXME when we have to issue an evaluate endpoint command to 1683 * deal with ep0 max packet size changing once we get the 1684 * descriptors 1685 */ 1686 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1687 __func__, added_ctxs); 1688 return 0; 1689 } 1690 1691 virt_dev = xhci->devs[udev->slot_id]; 1692 in_ctx = virt_dev->in_ctx; 1693 out_ctx = virt_dev->out_ctx; 1694 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1695 if (!ctrl_ctx) { 1696 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1697 __func__); 1698 return 0; 1699 } 1700 1701 ep_index = xhci_get_endpoint_index(&ep->desc); 1702 /* If this endpoint is already in use, and the upper layers are trying 1703 * to add it again without dropping it, reject the addition. 1704 */ 1705 if (virt_dev->eps[ep_index].ring && 1706 !(le32_to_cpu(ctrl_ctx->drop_flags) & 1707 xhci_get_endpoint_flag(&ep->desc))) { 1708 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1709 "without dropping it.\n", 1710 (unsigned int) ep->desc.bEndpointAddress); 1711 return -EINVAL; 1712 } 1713 1714 /* If the HCD has already noted the endpoint is enabled, 1715 * ignore this request. 1716 */ 1717 if (le32_to_cpu(ctrl_ctx->add_flags) & 1718 xhci_get_endpoint_flag(&ep->desc)) { 1719 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1720 __func__, ep); 1721 return 0; 1722 } 1723 1724 /* 1725 * Configuration and alternate setting changes must be done in 1726 * process context, not interrupt context (or so documenation 1727 * for usb_set_interface() and usb_set_configuration() claim). 1728 */ 1729 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1730 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1731 __func__, ep->desc.bEndpointAddress); 1732 return -ENOMEM; 1733 } 1734 1735 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1736 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1737 1738 /* If xhci_endpoint_disable() was called for this endpoint, but the 1739 * xHC hasn't been notified yet through the check_bandwidth() call, 1740 * this re-adds a new state for the endpoint from the new endpoint 1741 * descriptors. We must drop and re-add this endpoint, so we leave the 1742 * drop flags alone. 1743 */ 1744 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1745 1746 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1747 /* Update the last valid endpoint context, if we just added one past */ 1748 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) < 1749 LAST_CTX(last_ctx)) { 1750 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1751 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1752 } 1753 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1754 1755 /* Store the usb_device pointer for later use */ 1756 ep->hcpriv = udev; 1757 1758 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1759 (unsigned int) ep->desc.bEndpointAddress, 1760 udev->slot_id, 1761 (unsigned int) new_drop_flags, 1762 (unsigned int) new_add_flags, 1763 (unsigned int) new_slot_info); 1764 return 0; 1765 } 1766 1767 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1768 { 1769 struct xhci_input_control_ctx *ctrl_ctx; 1770 struct xhci_ep_ctx *ep_ctx; 1771 struct xhci_slot_ctx *slot_ctx; 1772 int i; 1773 1774 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1775 if (!ctrl_ctx) { 1776 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1777 __func__); 1778 return; 1779 } 1780 1781 /* When a device's add flag and drop flag are zero, any subsequent 1782 * configure endpoint command will leave that endpoint's state 1783 * untouched. Make sure we don't leave any old state in the input 1784 * endpoint contexts. 1785 */ 1786 ctrl_ctx->drop_flags = 0; 1787 ctrl_ctx->add_flags = 0; 1788 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1789 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1790 /* Endpoint 0 is always valid */ 1791 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1792 for (i = 1; i < 31; ++i) { 1793 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1794 ep_ctx->ep_info = 0; 1795 ep_ctx->ep_info2 = 0; 1796 ep_ctx->deq = 0; 1797 ep_ctx->tx_info = 0; 1798 } 1799 } 1800 1801 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1802 struct usb_device *udev, u32 *cmd_status) 1803 { 1804 int ret; 1805 1806 switch (*cmd_status) { 1807 case COMP_ENOMEM: 1808 dev_warn(&udev->dev, "Not enough host controller resources " 1809 "for new device state.\n"); 1810 ret = -ENOMEM; 1811 /* FIXME: can we allocate more resources for the HC? */ 1812 break; 1813 case COMP_BW_ERR: 1814 case COMP_2ND_BW_ERR: 1815 dev_warn(&udev->dev, "Not enough bandwidth " 1816 "for new device state.\n"); 1817 ret = -ENOSPC; 1818 /* FIXME: can we go back to the old state? */ 1819 break; 1820 case COMP_TRB_ERR: 1821 /* the HCD set up something wrong */ 1822 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1823 "add flag = 1, " 1824 "and endpoint is not disabled.\n"); 1825 ret = -EINVAL; 1826 break; 1827 case COMP_DEV_ERR: 1828 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint " 1829 "configure command.\n"); 1830 ret = -ENODEV; 1831 break; 1832 case COMP_SUCCESS: 1833 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1834 "Successful Endpoint Configure command"); 1835 ret = 0; 1836 break; 1837 default: 1838 xhci_err(xhci, "ERROR: unexpected command completion " 1839 "code 0x%x.\n", *cmd_status); 1840 ret = -EINVAL; 1841 break; 1842 } 1843 return ret; 1844 } 1845 1846 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1847 struct usb_device *udev, u32 *cmd_status) 1848 { 1849 int ret; 1850 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1851 1852 switch (*cmd_status) { 1853 case COMP_EINVAL: 1854 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " 1855 "context command.\n"); 1856 ret = -EINVAL; 1857 break; 1858 case COMP_EBADSLT: 1859 dev_warn(&udev->dev, "WARN: slot not enabled for" 1860 "evaluate context command.\n"); 1861 ret = -EINVAL; 1862 break; 1863 case COMP_CTX_STATE: 1864 dev_warn(&udev->dev, "WARN: invalid context state for " 1865 "evaluate context command.\n"); 1866 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1867 ret = -EINVAL; 1868 break; 1869 case COMP_DEV_ERR: 1870 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate " 1871 "context command.\n"); 1872 ret = -ENODEV; 1873 break; 1874 case COMP_MEL_ERR: 1875 /* Max Exit Latency too large error */ 1876 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1877 ret = -EINVAL; 1878 break; 1879 case COMP_SUCCESS: 1880 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1881 "Successful evaluate context command"); 1882 ret = 0; 1883 break; 1884 default: 1885 xhci_err(xhci, "ERROR: unexpected command completion " 1886 "code 0x%x.\n", *cmd_status); 1887 ret = -EINVAL; 1888 break; 1889 } 1890 return ret; 1891 } 1892 1893 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1894 struct xhci_input_control_ctx *ctrl_ctx) 1895 { 1896 u32 valid_add_flags; 1897 u32 valid_drop_flags; 1898 1899 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1900 * (bit 1). The default control endpoint is added during the Address 1901 * Device command and is never removed until the slot is disabled. 1902 */ 1903 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1904 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1905 1906 /* Use hweight32 to count the number of ones in the add flags, or 1907 * number of endpoints added. Don't count endpoints that are changed 1908 * (both added and dropped). 1909 */ 1910 return hweight32(valid_add_flags) - 1911 hweight32(valid_add_flags & valid_drop_flags); 1912 } 1913 1914 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1915 struct xhci_input_control_ctx *ctrl_ctx) 1916 { 1917 u32 valid_add_flags; 1918 u32 valid_drop_flags; 1919 1920 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1921 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1922 1923 return hweight32(valid_drop_flags) - 1924 hweight32(valid_add_flags & valid_drop_flags); 1925 } 1926 1927 /* 1928 * We need to reserve the new number of endpoints before the configure endpoint 1929 * command completes. We can't subtract the dropped endpoints from the number 1930 * of active endpoints until the command completes because we can oversubscribe 1931 * the host in this case: 1932 * 1933 * - the first configure endpoint command drops more endpoints than it adds 1934 * - a second configure endpoint command that adds more endpoints is queued 1935 * - the first configure endpoint command fails, so the config is unchanged 1936 * - the second command may succeed, even though there isn't enough resources 1937 * 1938 * Must be called with xhci->lock held. 1939 */ 1940 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1941 struct xhci_input_control_ctx *ctrl_ctx) 1942 { 1943 u32 added_eps; 1944 1945 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1946 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1947 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1948 "Not enough ep ctxs: " 1949 "%u active, need to add %u, limit is %u.", 1950 xhci->num_active_eps, added_eps, 1951 xhci->limit_active_eps); 1952 return -ENOMEM; 1953 } 1954 xhci->num_active_eps += added_eps; 1955 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1956 "Adding %u ep ctxs, %u now active.", added_eps, 1957 xhci->num_active_eps); 1958 return 0; 1959 } 1960 1961 /* 1962 * The configure endpoint was failed by the xHC for some other reason, so we 1963 * need to revert the resources that failed configuration would have used. 1964 * 1965 * Must be called with xhci->lock held. 1966 */ 1967 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1968 struct xhci_input_control_ctx *ctrl_ctx) 1969 { 1970 u32 num_failed_eps; 1971 1972 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1973 xhci->num_active_eps -= num_failed_eps; 1974 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1975 "Removing %u failed ep ctxs, %u now active.", 1976 num_failed_eps, 1977 xhci->num_active_eps); 1978 } 1979 1980 /* 1981 * Now that the command has completed, clean up the active endpoint count by 1982 * subtracting out the endpoints that were dropped (but not changed). 1983 * 1984 * Must be called with xhci->lock held. 1985 */ 1986 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1987 struct xhci_input_control_ctx *ctrl_ctx) 1988 { 1989 u32 num_dropped_eps; 1990 1991 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 1992 xhci->num_active_eps -= num_dropped_eps; 1993 if (num_dropped_eps) 1994 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1995 "Removing %u dropped ep ctxs, %u now active.", 1996 num_dropped_eps, 1997 xhci->num_active_eps); 1998 } 1999 2000 static unsigned int xhci_get_block_size(struct usb_device *udev) 2001 { 2002 switch (udev->speed) { 2003 case USB_SPEED_LOW: 2004 case USB_SPEED_FULL: 2005 return FS_BLOCK; 2006 case USB_SPEED_HIGH: 2007 return HS_BLOCK; 2008 case USB_SPEED_SUPER: 2009 return SS_BLOCK; 2010 case USB_SPEED_UNKNOWN: 2011 case USB_SPEED_WIRELESS: 2012 default: 2013 /* Should never happen */ 2014 return 1; 2015 } 2016 } 2017 2018 static unsigned int 2019 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2020 { 2021 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2022 return LS_OVERHEAD; 2023 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2024 return FS_OVERHEAD; 2025 return HS_OVERHEAD; 2026 } 2027 2028 /* If we are changing a LS/FS device under a HS hub, 2029 * make sure (if we are activating a new TT) that the HS bus has enough 2030 * bandwidth for this new TT. 2031 */ 2032 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2033 struct xhci_virt_device *virt_dev, 2034 int old_active_eps) 2035 { 2036 struct xhci_interval_bw_table *bw_table; 2037 struct xhci_tt_bw_info *tt_info; 2038 2039 /* Find the bandwidth table for the root port this TT is attached to. */ 2040 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2041 tt_info = virt_dev->tt_info; 2042 /* If this TT already had active endpoints, the bandwidth for this TT 2043 * has already been added. Removing all periodic endpoints (and thus 2044 * making the TT enactive) will only decrease the bandwidth used. 2045 */ 2046 if (old_active_eps) 2047 return 0; 2048 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2049 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2050 return -ENOMEM; 2051 return 0; 2052 } 2053 /* Not sure why we would have no new active endpoints... 2054 * 2055 * Maybe because of an Evaluate Context change for a hub update or a 2056 * control endpoint 0 max packet size change? 2057 * FIXME: skip the bandwidth calculation in that case. 2058 */ 2059 return 0; 2060 } 2061 2062 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2063 struct xhci_virt_device *virt_dev) 2064 { 2065 unsigned int bw_reserved; 2066 2067 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2068 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2069 return -ENOMEM; 2070 2071 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2072 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2073 return -ENOMEM; 2074 2075 return 0; 2076 } 2077 2078 /* 2079 * This algorithm is a very conservative estimate of the worst-case scheduling 2080 * scenario for any one interval. The hardware dynamically schedules the 2081 * packets, so we can't tell which microframe could be the limiting factor in 2082 * the bandwidth scheduling. This only takes into account periodic endpoints. 2083 * 2084 * Obviously, we can't solve an NP complete problem to find the minimum worst 2085 * case scenario. Instead, we come up with an estimate that is no less than 2086 * the worst case bandwidth used for any one microframe, but may be an 2087 * over-estimate. 2088 * 2089 * We walk the requirements for each endpoint by interval, starting with the 2090 * smallest interval, and place packets in the schedule where there is only one 2091 * possible way to schedule packets for that interval. In order to simplify 2092 * this algorithm, we record the largest max packet size for each interval, and 2093 * assume all packets will be that size. 2094 * 2095 * For interval 0, we obviously must schedule all packets for each interval. 2096 * The bandwidth for interval 0 is just the amount of data to be transmitted 2097 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2098 * the number of packets). 2099 * 2100 * For interval 1, we have two possible microframes to schedule those packets 2101 * in. For this algorithm, if we can schedule the same number of packets for 2102 * each possible scheduling opportunity (each microframe), we will do so. The 2103 * remaining number of packets will be saved to be transmitted in the gaps in 2104 * the next interval's scheduling sequence. 2105 * 2106 * As we move those remaining packets to be scheduled with interval 2 packets, 2107 * we have to double the number of remaining packets to transmit. This is 2108 * because the intervals are actually powers of 2, and we would be transmitting 2109 * the previous interval's packets twice in this interval. We also have to be 2110 * sure that when we look at the largest max packet size for this interval, we 2111 * also look at the largest max packet size for the remaining packets and take 2112 * the greater of the two. 2113 * 2114 * The algorithm continues to evenly distribute packets in each scheduling 2115 * opportunity, and push the remaining packets out, until we get to the last 2116 * interval. Then those packets and their associated overhead are just added 2117 * to the bandwidth used. 2118 */ 2119 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2120 struct xhci_virt_device *virt_dev, 2121 int old_active_eps) 2122 { 2123 unsigned int bw_reserved; 2124 unsigned int max_bandwidth; 2125 unsigned int bw_used; 2126 unsigned int block_size; 2127 struct xhci_interval_bw_table *bw_table; 2128 unsigned int packet_size = 0; 2129 unsigned int overhead = 0; 2130 unsigned int packets_transmitted = 0; 2131 unsigned int packets_remaining = 0; 2132 unsigned int i; 2133 2134 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2135 return xhci_check_ss_bw(xhci, virt_dev); 2136 2137 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2138 max_bandwidth = HS_BW_LIMIT; 2139 /* Convert percent of bus BW reserved to blocks reserved */ 2140 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2141 } else { 2142 max_bandwidth = FS_BW_LIMIT; 2143 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2144 } 2145 2146 bw_table = virt_dev->bw_table; 2147 /* We need to translate the max packet size and max ESIT payloads into 2148 * the units the hardware uses. 2149 */ 2150 block_size = xhci_get_block_size(virt_dev->udev); 2151 2152 /* If we are manipulating a LS/FS device under a HS hub, double check 2153 * that the HS bus has enough bandwidth if we are activing a new TT. 2154 */ 2155 if (virt_dev->tt_info) { 2156 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2157 "Recalculating BW for rootport %u", 2158 virt_dev->real_port); 2159 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2160 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2161 "newly activated TT.\n"); 2162 return -ENOMEM; 2163 } 2164 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2165 "Recalculating BW for TT slot %u port %u", 2166 virt_dev->tt_info->slot_id, 2167 virt_dev->tt_info->ttport); 2168 } else { 2169 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2170 "Recalculating BW for rootport %u", 2171 virt_dev->real_port); 2172 } 2173 2174 /* Add in how much bandwidth will be used for interval zero, or the 2175 * rounded max ESIT payload + number of packets * largest overhead. 2176 */ 2177 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2178 bw_table->interval_bw[0].num_packets * 2179 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2180 2181 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2182 unsigned int bw_added; 2183 unsigned int largest_mps; 2184 unsigned int interval_overhead; 2185 2186 /* 2187 * How many packets could we transmit in this interval? 2188 * If packets didn't fit in the previous interval, we will need 2189 * to transmit that many packets twice within this interval. 2190 */ 2191 packets_remaining = 2 * packets_remaining + 2192 bw_table->interval_bw[i].num_packets; 2193 2194 /* Find the largest max packet size of this or the previous 2195 * interval. 2196 */ 2197 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2198 largest_mps = 0; 2199 else { 2200 struct xhci_virt_ep *virt_ep; 2201 struct list_head *ep_entry; 2202 2203 ep_entry = bw_table->interval_bw[i].endpoints.next; 2204 virt_ep = list_entry(ep_entry, 2205 struct xhci_virt_ep, bw_endpoint_list); 2206 /* Convert to blocks, rounding up */ 2207 largest_mps = DIV_ROUND_UP( 2208 virt_ep->bw_info.max_packet_size, 2209 block_size); 2210 } 2211 if (largest_mps > packet_size) 2212 packet_size = largest_mps; 2213 2214 /* Use the larger overhead of this or the previous interval. */ 2215 interval_overhead = xhci_get_largest_overhead( 2216 &bw_table->interval_bw[i]); 2217 if (interval_overhead > overhead) 2218 overhead = interval_overhead; 2219 2220 /* How many packets can we evenly distribute across 2221 * (1 << (i + 1)) possible scheduling opportunities? 2222 */ 2223 packets_transmitted = packets_remaining >> (i + 1); 2224 2225 /* Add in the bandwidth used for those scheduled packets */ 2226 bw_added = packets_transmitted * (overhead + packet_size); 2227 2228 /* How many packets do we have remaining to transmit? */ 2229 packets_remaining = packets_remaining % (1 << (i + 1)); 2230 2231 /* What largest max packet size should those packets have? */ 2232 /* If we've transmitted all packets, don't carry over the 2233 * largest packet size. 2234 */ 2235 if (packets_remaining == 0) { 2236 packet_size = 0; 2237 overhead = 0; 2238 } else if (packets_transmitted > 0) { 2239 /* Otherwise if we do have remaining packets, and we've 2240 * scheduled some packets in this interval, take the 2241 * largest max packet size from endpoints with this 2242 * interval. 2243 */ 2244 packet_size = largest_mps; 2245 overhead = interval_overhead; 2246 } 2247 /* Otherwise carry over packet_size and overhead from the last 2248 * time we had a remainder. 2249 */ 2250 bw_used += bw_added; 2251 if (bw_used > max_bandwidth) { 2252 xhci_warn(xhci, "Not enough bandwidth. " 2253 "Proposed: %u, Max: %u\n", 2254 bw_used, max_bandwidth); 2255 return -ENOMEM; 2256 } 2257 } 2258 /* 2259 * Ok, we know we have some packets left over after even-handedly 2260 * scheduling interval 15. We don't know which microframes they will 2261 * fit into, so we over-schedule and say they will be scheduled every 2262 * microframe. 2263 */ 2264 if (packets_remaining > 0) 2265 bw_used += overhead + packet_size; 2266 2267 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2268 unsigned int port_index = virt_dev->real_port - 1; 2269 2270 /* OK, we're manipulating a HS device attached to a 2271 * root port bandwidth domain. Include the number of active TTs 2272 * in the bandwidth used. 2273 */ 2274 bw_used += TT_HS_OVERHEAD * 2275 xhci->rh_bw[port_index].num_active_tts; 2276 } 2277 2278 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2279 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2280 "Available: %u " "percent", 2281 bw_used, max_bandwidth, bw_reserved, 2282 (max_bandwidth - bw_used - bw_reserved) * 100 / 2283 max_bandwidth); 2284 2285 bw_used += bw_reserved; 2286 if (bw_used > max_bandwidth) { 2287 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2288 bw_used, max_bandwidth); 2289 return -ENOMEM; 2290 } 2291 2292 bw_table->bw_used = bw_used; 2293 return 0; 2294 } 2295 2296 static bool xhci_is_async_ep(unsigned int ep_type) 2297 { 2298 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2299 ep_type != ISOC_IN_EP && 2300 ep_type != INT_IN_EP); 2301 } 2302 2303 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2304 { 2305 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2306 } 2307 2308 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2309 { 2310 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2311 2312 if (ep_bw->ep_interval == 0) 2313 return SS_OVERHEAD_BURST + 2314 (ep_bw->mult * ep_bw->num_packets * 2315 (SS_OVERHEAD + mps)); 2316 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2317 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2318 1 << ep_bw->ep_interval); 2319 2320 } 2321 2322 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2323 struct xhci_bw_info *ep_bw, 2324 struct xhci_interval_bw_table *bw_table, 2325 struct usb_device *udev, 2326 struct xhci_virt_ep *virt_ep, 2327 struct xhci_tt_bw_info *tt_info) 2328 { 2329 struct xhci_interval_bw *interval_bw; 2330 int normalized_interval; 2331 2332 if (xhci_is_async_ep(ep_bw->type)) 2333 return; 2334 2335 if (udev->speed == USB_SPEED_SUPER) { 2336 if (xhci_is_sync_in_ep(ep_bw->type)) 2337 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2338 xhci_get_ss_bw_consumed(ep_bw); 2339 else 2340 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2341 xhci_get_ss_bw_consumed(ep_bw); 2342 return; 2343 } 2344 2345 /* SuperSpeed endpoints never get added to intervals in the table, so 2346 * this check is only valid for HS/FS/LS devices. 2347 */ 2348 if (list_empty(&virt_ep->bw_endpoint_list)) 2349 return; 2350 /* For LS/FS devices, we need to translate the interval expressed in 2351 * microframes to frames. 2352 */ 2353 if (udev->speed == USB_SPEED_HIGH) 2354 normalized_interval = ep_bw->ep_interval; 2355 else 2356 normalized_interval = ep_bw->ep_interval - 3; 2357 2358 if (normalized_interval == 0) 2359 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2360 interval_bw = &bw_table->interval_bw[normalized_interval]; 2361 interval_bw->num_packets -= ep_bw->num_packets; 2362 switch (udev->speed) { 2363 case USB_SPEED_LOW: 2364 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2365 break; 2366 case USB_SPEED_FULL: 2367 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2368 break; 2369 case USB_SPEED_HIGH: 2370 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2371 break; 2372 case USB_SPEED_SUPER: 2373 case USB_SPEED_UNKNOWN: 2374 case USB_SPEED_WIRELESS: 2375 /* Should never happen because only LS/FS/HS endpoints will get 2376 * added to the endpoint list. 2377 */ 2378 return; 2379 } 2380 if (tt_info) 2381 tt_info->active_eps -= 1; 2382 list_del_init(&virt_ep->bw_endpoint_list); 2383 } 2384 2385 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2386 struct xhci_bw_info *ep_bw, 2387 struct xhci_interval_bw_table *bw_table, 2388 struct usb_device *udev, 2389 struct xhci_virt_ep *virt_ep, 2390 struct xhci_tt_bw_info *tt_info) 2391 { 2392 struct xhci_interval_bw *interval_bw; 2393 struct xhci_virt_ep *smaller_ep; 2394 int normalized_interval; 2395 2396 if (xhci_is_async_ep(ep_bw->type)) 2397 return; 2398 2399 if (udev->speed == USB_SPEED_SUPER) { 2400 if (xhci_is_sync_in_ep(ep_bw->type)) 2401 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2402 xhci_get_ss_bw_consumed(ep_bw); 2403 else 2404 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2405 xhci_get_ss_bw_consumed(ep_bw); 2406 return; 2407 } 2408 2409 /* For LS/FS devices, we need to translate the interval expressed in 2410 * microframes to frames. 2411 */ 2412 if (udev->speed == USB_SPEED_HIGH) 2413 normalized_interval = ep_bw->ep_interval; 2414 else 2415 normalized_interval = ep_bw->ep_interval - 3; 2416 2417 if (normalized_interval == 0) 2418 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2419 interval_bw = &bw_table->interval_bw[normalized_interval]; 2420 interval_bw->num_packets += ep_bw->num_packets; 2421 switch (udev->speed) { 2422 case USB_SPEED_LOW: 2423 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2424 break; 2425 case USB_SPEED_FULL: 2426 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2427 break; 2428 case USB_SPEED_HIGH: 2429 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2430 break; 2431 case USB_SPEED_SUPER: 2432 case USB_SPEED_UNKNOWN: 2433 case USB_SPEED_WIRELESS: 2434 /* Should never happen because only LS/FS/HS endpoints will get 2435 * added to the endpoint list. 2436 */ 2437 return; 2438 } 2439 2440 if (tt_info) 2441 tt_info->active_eps += 1; 2442 /* Insert the endpoint into the list, largest max packet size first. */ 2443 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2444 bw_endpoint_list) { 2445 if (ep_bw->max_packet_size >= 2446 smaller_ep->bw_info.max_packet_size) { 2447 /* Add the new ep before the smaller endpoint */ 2448 list_add_tail(&virt_ep->bw_endpoint_list, 2449 &smaller_ep->bw_endpoint_list); 2450 return; 2451 } 2452 } 2453 /* Add the new endpoint at the end of the list. */ 2454 list_add_tail(&virt_ep->bw_endpoint_list, 2455 &interval_bw->endpoints); 2456 } 2457 2458 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2459 struct xhci_virt_device *virt_dev, 2460 int old_active_eps) 2461 { 2462 struct xhci_root_port_bw_info *rh_bw_info; 2463 if (!virt_dev->tt_info) 2464 return; 2465 2466 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2467 if (old_active_eps == 0 && 2468 virt_dev->tt_info->active_eps != 0) { 2469 rh_bw_info->num_active_tts += 1; 2470 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2471 } else if (old_active_eps != 0 && 2472 virt_dev->tt_info->active_eps == 0) { 2473 rh_bw_info->num_active_tts -= 1; 2474 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2475 } 2476 } 2477 2478 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2479 struct xhci_virt_device *virt_dev, 2480 struct xhci_container_ctx *in_ctx) 2481 { 2482 struct xhci_bw_info ep_bw_info[31]; 2483 int i; 2484 struct xhci_input_control_ctx *ctrl_ctx; 2485 int old_active_eps = 0; 2486 2487 if (virt_dev->tt_info) 2488 old_active_eps = virt_dev->tt_info->active_eps; 2489 2490 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2491 if (!ctrl_ctx) { 2492 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2493 __func__); 2494 return -ENOMEM; 2495 } 2496 2497 for (i = 0; i < 31; i++) { 2498 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2499 continue; 2500 2501 /* Make a copy of the BW info in case we need to revert this */ 2502 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2503 sizeof(ep_bw_info[i])); 2504 /* Drop the endpoint from the interval table if the endpoint is 2505 * being dropped or changed. 2506 */ 2507 if (EP_IS_DROPPED(ctrl_ctx, i)) 2508 xhci_drop_ep_from_interval_table(xhci, 2509 &virt_dev->eps[i].bw_info, 2510 virt_dev->bw_table, 2511 virt_dev->udev, 2512 &virt_dev->eps[i], 2513 virt_dev->tt_info); 2514 } 2515 /* Overwrite the information stored in the endpoints' bw_info */ 2516 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2517 for (i = 0; i < 31; i++) { 2518 /* Add any changed or added endpoints to the interval table */ 2519 if (EP_IS_ADDED(ctrl_ctx, i)) 2520 xhci_add_ep_to_interval_table(xhci, 2521 &virt_dev->eps[i].bw_info, 2522 virt_dev->bw_table, 2523 virt_dev->udev, 2524 &virt_dev->eps[i], 2525 virt_dev->tt_info); 2526 } 2527 2528 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2529 /* Ok, this fits in the bandwidth we have. 2530 * Update the number of active TTs. 2531 */ 2532 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2533 return 0; 2534 } 2535 2536 /* We don't have enough bandwidth for this, revert the stored info. */ 2537 for (i = 0; i < 31; i++) { 2538 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2539 continue; 2540 2541 /* Drop the new copies of any added or changed endpoints from 2542 * the interval table. 2543 */ 2544 if (EP_IS_ADDED(ctrl_ctx, i)) { 2545 xhci_drop_ep_from_interval_table(xhci, 2546 &virt_dev->eps[i].bw_info, 2547 virt_dev->bw_table, 2548 virt_dev->udev, 2549 &virt_dev->eps[i], 2550 virt_dev->tt_info); 2551 } 2552 /* Revert the endpoint back to its old information */ 2553 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2554 sizeof(ep_bw_info[i])); 2555 /* Add any changed or dropped endpoints back into the table */ 2556 if (EP_IS_DROPPED(ctrl_ctx, i)) 2557 xhci_add_ep_to_interval_table(xhci, 2558 &virt_dev->eps[i].bw_info, 2559 virt_dev->bw_table, 2560 virt_dev->udev, 2561 &virt_dev->eps[i], 2562 virt_dev->tt_info); 2563 } 2564 return -ENOMEM; 2565 } 2566 2567 2568 /* Issue a configure endpoint command or evaluate context command 2569 * and wait for it to finish. 2570 */ 2571 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2572 struct usb_device *udev, 2573 struct xhci_command *command, 2574 bool ctx_change, bool must_succeed) 2575 { 2576 int ret; 2577 int timeleft; 2578 unsigned long flags; 2579 struct xhci_container_ctx *in_ctx; 2580 struct xhci_input_control_ctx *ctrl_ctx; 2581 struct completion *cmd_completion; 2582 u32 *cmd_status; 2583 struct xhci_virt_device *virt_dev; 2584 union xhci_trb *cmd_trb; 2585 2586 spin_lock_irqsave(&xhci->lock, flags); 2587 virt_dev = xhci->devs[udev->slot_id]; 2588 2589 if (command) 2590 in_ctx = command->in_ctx; 2591 else 2592 in_ctx = virt_dev->in_ctx; 2593 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2594 if (!ctrl_ctx) { 2595 spin_unlock_irqrestore(&xhci->lock, flags); 2596 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2597 __func__); 2598 return -ENOMEM; 2599 } 2600 2601 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2602 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2603 spin_unlock_irqrestore(&xhci->lock, flags); 2604 xhci_warn(xhci, "Not enough host resources, " 2605 "active endpoint contexts = %u\n", 2606 xhci->num_active_eps); 2607 return -ENOMEM; 2608 } 2609 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2610 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) { 2611 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2612 xhci_free_host_resources(xhci, ctrl_ctx); 2613 spin_unlock_irqrestore(&xhci->lock, flags); 2614 xhci_warn(xhci, "Not enough bandwidth\n"); 2615 return -ENOMEM; 2616 } 2617 2618 if (command) { 2619 cmd_completion = command->completion; 2620 cmd_status = &command->status; 2621 command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring); 2622 list_add_tail(&command->cmd_list, &virt_dev->cmd_list); 2623 } else { 2624 cmd_completion = &virt_dev->cmd_completion; 2625 cmd_status = &virt_dev->cmd_status; 2626 } 2627 init_completion(cmd_completion); 2628 2629 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring); 2630 if (!ctx_change) 2631 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, 2632 udev->slot_id, must_succeed); 2633 else 2634 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, 2635 udev->slot_id, must_succeed); 2636 if (ret < 0) { 2637 if (command) 2638 list_del(&command->cmd_list); 2639 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2640 xhci_free_host_resources(xhci, ctrl_ctx); 2641 spin_unlock_irqrestore(&xhci->lock, flags); 2642 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2643 "FIXME allocate a new ring segment"); 2644 return -ENOMEM; 2645 } 2646 xhci_ring_cmd_db(xhci); 2647 spin_unlock_irqrestore(&xhci->lock, flags); 2648 2649 /* Wait for the configure endpoint command to complete */ 2650 timeleft = wait_for_completion_interruptible_timeout( 2651 cmd_completion, 2652 XHCI_CMD_DEFAULT_TIMEOUT); 2653 if (timeleft <= 0) { 2654 xhci_warn(xhci, "%s while waiting for %s command\n", 2655 timeleft == 0 ? "Timeout" : "Signal", 2656 ctx_change == 0 ? 2657 "configure endpoint" : 2658 "evaluate context"); 2659 /* cancel the configure endpoint command */ 2660 ret = xhci_cancel_cmd(xhci, command, cmd_trb); 2661 if (ret < 0) 2662 return ret; 2663 return -ETIME; 2664 } 2665 2666 if (!ctx_change) 2667 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status); 2668 else 2669 ret = xhci_evaluate_context_result(xhci, udev, cmd_status); 2670 2671 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2672 spin_lock_irqsave(&xhci->lock, flags); 2673 /* If the command failed, remove the reserved resources. 2674 * Otherwise, clean up the estimate to include dropped eps. 2675 */ 2676 if (ret) 2677 xhci_free_host_resources(xhci, ctrl_ctx); 2678 else 2679 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2680 spin_unlock_irqrestore(&xhci->lock, flags); 2681 } 2682 return ret; 2683 } 2684 2685 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2686 struct xhci_virt_device *vdev, int i) 2687 { 2688 struct xhci_virt_ep *ep = &vdev->eps[i]; 2689 2690 if (ep->ep_state & EP_HAS_STREAMS) { 2691 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2692 xhci_get_endpoint_address(i)); 2693 xhci_free_stream_info(xhci, ep->stream_info); 2694 ep->stream_info = NULL; 2695 ep->ep_state &= ~EP_HAS_STREAMS; 2696 } 2697 } 2698 2699 /* Called after one or more calls to xhci_add_endpoint() or 2700 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2701 * to call xhci_reset_bandwidth(). 2702 * 2703 * Since we are in the middle of changing either configuration or 2704 * installing a new alt setting, the USB core won't allow URBs to be 2705 * enqueued for any endpoint on the old config or interface. Nothing 2706 * else should be touching the xhci->devs[slot_id] structure, so we 2707 * don't need to take the xhci->lock for manipulating that. 2708 */ 2709 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2710 { 2711 int i; 2712 int ret = 0; 2713 struct xhci_hcd *xhci; 2714 struct xhci_virt_device *virt_dev; 2715 struct xhci_input_control_ctx *ctrl_ctx; 2716 struct xhci_slot_ctx *slot_ctx; 2717 2718 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2719 if (ret <= 0) 2720 return ret; 2721 xhci = hcd_to_xhci(hcd); 2722 if (xhci->xhc_state & XHCI_STATE_DYING) 2723 return -ENODEV; 2724 2725 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2726 virt_dev = xhci->devs[udev->slot_id]; 2727 2728 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2729 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 2730 if (!ctrl_ctx) { 2731 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2732 __func__); 2733 return -ENOMEM; 2734 } 2735 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2736 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2737 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2738 2739 /* Don't issue the command if there's no endpoints to update. */ 2740 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2741 ctrl_ctx->drop_flags == 0) 2742 return 0; 2743 2744 xhci_dbg(xhci, "New Input Control Context:\n"); 2745 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2746 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2747 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2748 2749 ret = xhci_configure_endpoint(xhci, udev, NULL, 2750 false, false); 2751 if (ret) { 2752 /* Callee should call reset_bandwidth() */ 2753 return ret; 2754 } 2755 2756 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2757 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2758 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2759 2760 /* Free any rings that were dropped, but not changed. */ 2761 for (i = 1; i < 31; ++i) { 2762 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2763 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2764 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2765 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2766 } 2767 } 2768 xhci_zero_in_ctx(xhci, virt_dev); 2769 /* 2770 * Install any rings for completely new endpoints or changed endpoints, 2771 * and free or cache any old rings from changed endpoints. 2772 */ 2773 for (i = 1; i < 31; ++i) { 2774 if (!virt_dev->eps[i].new_ring) 2775 continue; 2776 /* Only cache or free the old ring if it exists. 2777 * It may not if this is the first add of an endpoint. 2778 */ 2779 if (virt_dev->eps[i].ring) { 2780 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2781 } 2782 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2783 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2784 virt_dev->eps[i].new_ring = NULL; 2785 } 2786 2787 return ret; 2788 } 2789 2790 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2791 { 2792 struct xhci_hcd *xhci; 2793 struct xhci_virt_device *virt_dev; 2794 int i, ret; 2795 2796 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2797 if (ret <= 0) 2798 return; 2799 xhci = hcd_to_xhci(hcd); 2800 2801 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2802 virt_dev = xhci->devs[udev->slot_id]; 2803 /* Free any rings allocated for added endpoints */ 2804 for (i = 0; i < 31; ++i) { 2805 if (virt_dev->eps[i].new_ring) { 2806 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2807 virt_dev->eps[i].new_ring = NULL; 2808 } 2809 } 2810 xhci_zero_in_ctx(xhci, virt_dev); 2811 } 2812 2813 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2814 struct xhci_container_ctx *in_ctx, 2815 struct xhci_container_ctx *out_ctx, 2816 struct xhci_input_control_ctx *ctrl_ctx, 2817 u32 add_flags, u32 drop_flags) 2818 { 2819 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2820 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2821 xhci_slot_copy(xhci, in_ctx, out_ctx); 2822 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2823 2824 xhci_dbg(xhci, "Input Context:\n"); 2825 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2826 } 2827 2828 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2829 unsigned int slot_id, unsigned int ep_index, 2830 struct xhci_dequeue_state *deq_state) 2831 { 2832 struct xhci_input_control_ctx *ctrl_ctx; 2833 struct xhci_container_ctx *in_ctx; 2834 struct xhci_ep_ctx *ep_ctx; 2835 u32 added_ctxs; 2836 dma_addr_t addr; 2837 2838 in_ctx = xhci->devs[slot_id]->in_ctx; 2839 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2840 if (!ctrl_ctx) { 2841 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2842 __func__); 2843 return; 2844 } 2845 2846 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2847 xhci->devs[slot_id]->out_ctx, ep_index); 2848 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2849 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2850 deq_state->new_deq_ptr); 2851 if (addr == 0) { 2852 xhci_warn(xhci, "WARN Cannot submit config ep after " 2853 "reset ep command\n"); 2854 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2855 deq_state->new_deq_seg, 2856 deq_state->new_deq_ptr); 2857 return; 2858 } 2859 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2860 2861 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2862 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2863 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2864 added_ctxs, added_ctxs); 2865 } 2866 2867 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2868 struct usb_device *udev, unsigned int ep_index) 2869 { 2870 struct xhci_dequeue_state deq_state; 2871 struct xhci_virt_ep *ep; 2872 2873 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2874 "Cleaning up stalled endpoint ring"); 2875 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2876 /* We need to move the HW's dequeue pointer past this TD, 2877 * or it will attempt to resend it on the next doorbell ring. 2878 */ 2879 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2880 ep_index, ep->stopped_stream, ep->stopped_td, 2881 &deq_state); 2882 2883 /* HW with the reset endpoint quirk will use the saved dequeue state to 2884 * issue a configure endpoint command later. 2885 */ 2886 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2887 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2888 "Queueing new dequeue state"); 2889 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2890 ep_index, ep->stopped_stream, &deq_state); 2891 } else { 2892 /* Better hope no one uses the input context between now and the 2893 * reset endpoint completion! 2894 * XXX: No idea how this hardware will react when stream rings 2895 * are enabled. 2896 */ 2897 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2898 "Setting up input context for " 2899 "configure endpoint command"); 2900 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2901 ep_index, &deq_state); 2902 } 2903 } 2904 2905 /* Deal with stalled endpoints. The core should have sent the control message 2906 * to clear the halt condition. However, we need to make the xHCI hardware 2907 * reset its sequence number, since a device will expect a sequence number of 2908 * zero after the halt condition is cleared. 2909 * Context: in_interrupt 2910 */ 2911 void xhci_endpoint_reset(struct usb_hcd *hcd, 2912 struct usb_host_endpoint *ep) 2913 { 2914 struct xhci_hcd *xhci; 2915 struct usb_device *udev; 2916 unsigned int ep_index; 2917 unsigned long flags; 2918 int ret; 2919 struct xhci_virt_ep *virt_ep; 2920 2921 xhci = hcd_to_xhci(hcd); 2922 udev = (struct usb_device *) ep->hcpriv; 2923 /* Called with a root hub endpoint (or an endpoint that wasn't added 2924 * with xhci_add_endpoint() 2925 */ 2926 if (!ep->hcpriv) 2927 return; 2928 ep_index = xhci_get_endpoint_index(&ep->desc); 2929 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2930 if (!virt_ep->stopped_td) { 2931 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2932 "Endpoint 0x%x not halted, refusing to reset.", 2933 ep->desc.bEndpointAddress); 2934 return; 2935 } 2936 if (usb_endpoint_xfer_control(&ep->desc)) { 2937 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2938 "Control endpoint stall already handled."); 2939 return; 2940 } 2941 2942 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2943 "Queueing reset endpoint command"); 2944 spin_lock_irqsave(&xhci->lock, flags); 2945 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); 2946 /* 2947 * Can't change the ring dequeue pointer until it's transitioned to the 2948 * stopped state, which is only upon a successful reset endpoint 2949 * command. Better hope that last command worked! 2950 */ 2951 if (!ret) { 2952 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 2953 kfree(virt_ep->stopped_td); 2954 xhci_ring_cmd_db(xhci); 2955 } 2956 virt_ep->stopped_td = NULL; 2957 virt_ep->stopped_stream = 0; 2958 spin_unlock_irqrestore(&xhci->lock, flags); 2959 2960 if (ret) 2961 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 2962 } 2963 2964 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2965 struct usb_device *udev, struct usb_host_endpoint *ep, 2966 unsigned int slot_id) 2967 { 2968 int ret; 2969 unsigned int ep_index; 2970 unsigned int ep_state; 2971 2972 if (!ep) 2973 return -EINVAL; 2974 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2975 if (ret <= 0) 2976 return -EINVAL; 2977 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2978 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2979 " descriptor for ep 0x%x does not support streams\n", 2980 ep->desc.bEndpointAddress); 2981 return -EINVAL; 2982 } 2983 2984 ep_index = xhci_get_endpoint_index(&ep->desc); 2985 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2986 if (ep_state & EP_HAS_STREAMS || 2987 ep_state & EP_GETTING_STREAMS) { 2988 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2989 "already has streams set up.\n", 2990 ep->desc.bEndpointAddress); 2991 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2992 "dynamic stream context array reallocation.\n"); 2993 return -EINVAL; 2994 } 2995 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2996 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2997 "endpoint 0x%x; URBs are pending.\n", 2998 ep->desc.bEndpointAddress); 2999 return -EINVAL; 3000 } 3001 return 0; 3002 } 3003 3004 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3005 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3006 { 3007 unsigned int max_streams; 3008 3009 /* The stream context array size must be a power of two */ 3010 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3011 /* 3012 * Find out how many primary stream array entries the host controller 3013 * supports. Later we may use secondary stream arrays (similar to 2nd 3014 * level page entries), but that's an optional feature for xHCI host 3015 * controllers. xHCs must support at least 4 stream IDs. 3016 */ 3017 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3018 if (*num_stream_ctxs > max_streams) { 3019 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3020 max_streams); 3021 *num_stream_ctxs = max_streams; 3022 *num_streams = max_streams; 3023 } 3024 } 3025 3026 /* Returns an error code if one of the endpoint already has streams. 3027 * This does not change any data structures, it only checks and gathers 3028 * information. 3029 */ 3030 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3031 struct usb_device *udev, 3032 struct usb_host_endpoint **eps, unsigned int num_eps, 3033 unsigned int *num_streams, u32 *changed_ep_bitmask) 3034 { 3035 unsigned int max_streams; 3036 unsigned int endpoint_flag; 3037 int i; 3038 int ret; 3039 3040 for (i = 0; i < num_eps; i++) { 3041 ret = xhci_check_streams_endpoint(xhci, udev, 3042 eps[i], udev->slot_id); 3043 if (ret < 0) 3044 return ret; 3045 3046 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3047 if (max_streams < (*num_streams - 1)) { 3048 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3049 eps[i]->desc.bEndpointAddress, 3050 max_streams); 3051 *num_streams = max_streams+1; 3052 } 3053 3054 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3055 if (*changed_ep_bitmask & endpoint_flag) 3056 return -EINVAL; 3057 *changed_ep_bitmask |= endpoint_flag; 3058 } 3059 return 0; 3060 } 3061 3062 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3063 struct usb_device *udev, 3064 struct usb_host_endpoint **eps, unsigned int num_eps) 3065 { 3066 u32 changed_ep_bitmask = 0; 3067 unsigned int slot_id; 3068 unsigned int ep_index; 3069 unsigned int ep_state; 3070 int i; 3071 3072 slot_id = udev->slot_id; 3073 if (!xhci->devs[slot_id]) 3074 return 0; 3075 3076 for (i = 0; i < num_eps; i++) { 3077 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3078 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3079 /* Are streams already being freed for the endpoint? */ 3080 if (ep_state & EP_GETTING_NO_STREAMS) { 3081 xhci_warn(xhci, "WARN Can't disable streams for " 3082 "endpoint 0x%x, " 3083 "streams are being disabled already\n", 3084 eps[i]->desc.bEndpointAddress); 3085 return 0; 3086 } 3087 /* Are there actually any streams to free? */ 3088 if (!(ep_state & EP_HAS_STREAMS) && 3089 !(ep_state & EP_GETTING_STREAMS)) { 3090 xhci_warn(xhci, "WARN Can't disable streams for " 3091 "endpoint 0x%x, " 3092 "streams are already disabled!\n", 3093 eps[i]->desc.bEndpointAddress); 3094 xhci_warn(xhci, "WARN xhci_free_streams() called " 3095 "with non-streams endpoint\n"); 3096 return 0; 3097 } 3098 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3099 } 3100 return changed_ep_bitmask; 3101 } 3102 3103 /* 3104 * The USB device drivers use this function (though the HCD interface in USB 3105 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3106 * coordinate mass storage command queueing across multiple endpoints (basically 3107 * a stream ID == a task ID). 3108 * 3109 * Setting up streams involves allocating the same size stream context array 3110 * for each endpoint and issuing a configure endpoint command for all endpoints. 3111 * 3112 * Don't allow the call to succeed if one endpoint only supports one stream 3113 * (which means it doesn't support streams at all). 3114 * 3115 * Drivers may get less stream IDs than they asked for, if the host controller 3116 * hardware or endpoints claim they can't support the number of requested 3117 * stream IDs. 3118 */ 3119 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3120 struct usb_host_endpoint **eps, unsigned int num_eps, 3121 unsigned int num_streams, gfp_t mem_flags) 3122 { 3123 int i, ret; 3124 struct xhci_hcd *xhci; 3125 struct xhci_virt_device *vdev; 3126 struct xhci_command *config_cmd; 3127 struct xhci_input_control_ctx *ctrl_ctx; 3128 unsigned int ep_index; 3129 unsigned int num_stream_ctxs; 3130 unsigned long flags; 3131 u32 changed_ep_bitmask = 0; 3132 3133 if (!eps) 3134 return -EINVAL; 3135 3136 /* Add one to the number of streams requested to account for 3137 * stream 0 that is reserved for xHCI usage. 3138 */ 3139 num_streams += 1; 3140 xhci = hcd_to_xhci(hcd); 3141 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3142 num_streams); 3143 3144 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3145 if (HCC_MAX_PSA(xhci->hcc_params) < 4) { 3146 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3147 return -ENOSYS; 3148 } 3149 3150 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3151 if (!config_cmd) { 3152 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3153 return -ENOMEM; 3154 } 3155 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 3156 if (!ctrl_ctx) { 3157 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3158 __func__); 3159 xhci_free_command(xhci, config_cmd); 3160 return -ENOMEM; 3161 } 3162 3163 /* Check to make sure all endpoints are not already configured for 3164 * streams. While we're at it, find the maximum number of streams that 3165 * all the endpoints will support and check for duplicate endpoints. 3166 */ 3167 spin_lock_irqsave(&xhci->lock, flags); 3168 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3169 num_eps, &num_streams, &changed_ep_bitmask); 3170 if (ret < 0) { 3171 xhci_free_command(xhci, config_cmd); 3172 spin_unlock_irqrestore(&xhci->lock, flags); 3173 return ret; 3174 } 3175 if (num_streams <= 1) { 3176 xhci_warn(xhci, "WARN: endpoints can't handle " 3177 "more than one stream.\n"); 3178 xhci_free_command(xhci, config_cmd); 3179 spin_unlock_irqrestore(&xhci->lock, flags); 3180 return -EINVAL; 3181 } 3182 vdev = xhci->devs[udev->slot_id]; 3183 /* Mark each endpoint as being in transition, so 3184 * xhci_urb_enqueue() will reject all URBs. 3185 */ 3186 for (i = 0; i < num_eps; i++) { 3187 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3188 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3189 } 3190 spin_unlock_irqrestore(&xhci->lock, flags); 3191 3192 /* Setup internal data structures and allocate HW data structures for 3193 * streams (but don't install the HW structures in the input context 3194 * until we're sure all memory allocation succeeded). 3195 */ 3196 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3197 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3198 num_stream_ctxs, num_streams); 3199 3200 for (i = 0; i < num_eps; i++) { 3201 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3202 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3203 num_stream_ctxs, 3204 num_streams, mem_flags); 3205 if (!vdev->eps[ep_index].stream_info) 3206 goto cleanup; 3207 /* Set maxPstreams in endpoint context and update deq ptr to 3208 * point to stream context array. FIXME 3209 */ 3210 } 3211 3212 /* Set up the input context for a configure endpoint command. */ 3213 for (i = 0; i < num_eps; i++) { 3214 struct xhci_ep_ctx *ep_ctx; 3215 3216 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3217 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3218 3219 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3220 vdev->out_ctx, ep_index); 3221 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3222 vdev->eps[ep_index].stream_info); 3223 } 3224 /* Tell the HW to drop its old copy of the endpoint context info 3225 * and add the updated copy from the input context. 3226 */ 3227 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3228 vdev->out_ctx, ctrl_ctx, 3229 changed_ep_bitmask, changed_ep_bitmask); 3230 3231 /* Issue and wait for the configure endpoint command */ 3232 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3233 false, false); 3234 3235 /* xHC rejected the configure endpoint command for some reason, so we 3236 * leave the old ring intact and free our internal streams data 3237 * structure. 3238 */ 3239 if (ret < 0) 3240 goto cleanup; 3241 3242 spin_lock_irqsave(&xhci->lock, flags); 3243 for (i = 0; i < num_eps; i++) { 3244 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3245 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3246 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3247 udev->slot_id, ep_index); 3248 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3249 } 3250 xhci_free_command(xhci, config_cmd); 3251 spin_unlock_irqrestore(&xhci->lock, flags); 3252 3253 /* Subtract 1 for stream 0, which drivers can't use */ 3254 return num_streams - 1; 3255 3256 cleanup: 3257 /* If it didn't work, free the streams! */ 3258 for (i = 0; i < num_eps; i++) { 3259 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3260 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3261 vdev->eps[ep_index].stream_info = NULL; 3262 /* FIXME Unset maxPstreams in endpoint context and 3263 * update deq ptr to point to normal string ring. 3264 */ 3265 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3266 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3267 xhci_endpoint_zero(xhci, vdev, eps[i]); 3268 } 3269 xhci_free_command(xhci, config_cmd); 3270 return -ENOMEM; 3271 } 3272 3273 /* Transition the endpoint from using streams to being a "normal" endpoint 3274 * without streams. 3275 * 3276 * Modify the endpoint context state, submit a configure endpoint command, 3277 * and free all endpoint rings for streams if that completes successfully. 3278 */ 3279 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3280 struct usb_host_endpoint **eps, unsigned int num_eps, 3281 gfp_t mem_flags) 3282 { 3283 int i, ret; 3284 struct xhci_hcd *xhci; 3285 struct xhci_virt_device *vdev; 3286 struct xhci_command *command; 3287 struct xhci_input_control_ctx *ctrl_ctx; 3288 unsigned int ep_index; 3289 unsigned long flags; 3290 u32 changed_ep_bitmask; 3291 3292 xhci = hcd_to_xhci(hcd); 3293 vdev = xhci->devs[udev->slot_id]; 3294 3295 /* Set up a configure endpoint command to remove the streams rings */ 3296 spin_lock_irqsave(&xhci->lock, flags); 3297 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3298 udev, eps, num_eps); 3299 if (changed_ep_bitmask == 0) { 3300 spin_unlock_irqrestore(&xhci->lock, flags); 3301 return -EINVAL; 3302 } 3303 3304 /* Use the xhci_command structure from the first endpoint. We may have 3305 * allocated too many, but the driver may call xhci_free_streams() for 3306 * each endpoint it grouped into one call to xhci_alloc_streams(). 3307 */ 3308 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3309 command = vdev->eps[ep_index].stream_info->free_streams_command; 3310 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 3311 if (!ctrl_ctx) { 3312 spin_unlock_irqrestore(&xhci->lock, flags); 3313 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3314 __func__); 3315 return -EINVAL; 3316 } 3317 3318 for (i = 0; i < num_eps; i++) { 3319 struct xhci_ep_ctx *ep_ctx; 3320 3321 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3322 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3323 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3324 EP_GETTING_NO_STREAMS; 3325 3326 xhci_endpoint_copy(xhci, command->in_ctx, 3327 vdev->out_ctx, ep_index); 3328 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 3329 &vdev->eps[ep_index]); 3330 } 3331 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3332 vdev->out_ctx, ctrl_ctx, 3333 changed_ep_bitmask, changed_ep_bitmask); 3334 spin_unlock_irqrestore(&xhci->lock, flags); 3335 3336 /* Issue and wait for the configure endpoint command, 3337 * which must succeed. 3338 */ 3339 ret = xhci_configure_endpoint(xhci, udev, command, 3340 false, true); 3341 3342 /* xHC rejected the configure endpoint command for some reason, so we 3343 * leave the streams rings intact. 3344 */ 3345 if (ret < 0) 3346 return ret; 3347 3348 spin_lock_irqsave(&xhci->lock, flags); 3349 for (i = 0; i < num_eps; i++) { 3350 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3351 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3352 vdev->eps[ep_index].stream_info = NULL; 3353 /* FIXME Unset maxPstreams in endpoint context and 3354 * update deq ptr to point to normal string ring. 3355 */ 3356 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3357 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3358 } 3359 spin_unlock_irqrestore(&xhci->lock, flags); 3360 3361 return 0; 3362 } 3363 3364 /* 3365 * Deletes endpoint resources for endpoints that were active before a Reset 3366 * Device command, or a Disable Slot command. The Reset Device command leaves 3367 * the control endpoint intact, whereas the Disable Slot command deletes it. 3368 * 3369 * Must be called with xhci->lock held. 3370 */ 3371 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3372 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3373 { 3374 int i; 3375 unsigned int num_dropped_eps = 0; 3376 unsigned int drop_flags = 0; 3377 3378 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3379 if (virt_dev->eps[i].ring) { 3380 drop_flags |= 1 << i; 3381 num_dropped_eps++; 3382 } 3383 } 3384 xhci->num_active_eps -= num_dropped_eps; 3385 if (num_dropped_eps) 3386 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3387 "Dropped %u ep ctxs, flags = 0x%x, " 3388 "%u now active.", 3389 num_dropped_eps, drop_flags, 3390 xhci->num_active_eps); 3391 } 3392 3393 /* 3394 * This submits a Reset Device Command, which will set the device state to 0, 3395 * set the device address to 0, and disable all the endpoints except the default 3396 * control endpoint. The USB core should come back and call 3397 * xhci_address_device(), and then re-set up the configuration. If this is 3398 * called because of a usb_reset_and_verify_device(), then the old alternate 3399 * settings will be re-installed through the normal bandwidth allocation 3400 * functions. 3401 * 3402 * Wait for the Reset Device command to finish. Remove all structures 3403 * associated with the endpoints that were disabled. Clear the input device 3404 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3405 * 3406 * If the virt_dev to be reset does not exist or does not match the udev, 3407 * it means the device is lost, possibly due to the xHC restore error and 3408 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3409 * re-allocate the device. 3410 */ 3411 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3412 { 3413 int ret, i; 3414 unsigned long flags; 3415 struct xhci_hcd *xhci; 3416 unsigned int slot_id; 3417 struct xhci_virt_device *virt_dev; 3418 struct xhci_command *reset_device_cmd; 3419 int timeleft; 3420 int last_freed_endpoint; 3421 struct xhci_slot_ctx *slot_ctx; 3422 int old_active_eps = 0; 3423 3424 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3425 if (ret <= 0) 3426 return ret; 3427 xhci = hcd_to_xhci(hcd); 3428 slot_id = udev->slot_id; 3429 virt_dev = xhci->devs[slot_id]; 3430 if (!virt_dev) { 3431 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3432 "not exist. Re-allocate the device\n", slot_id); 3433 ret = xhci_alloc_dev(hcd, udev); 3434 if (ret == 1) 3435 return 0; 3436 else 3437 return -EINVAL; 3438 } 3439 3440 if (virt_dev->udev != udev) { 3441 /* If the virt_dev and the udev does not match, this virt_dev 3442 * may belong to another udev. 3443 * Re-allocate the device. 3444 */ 3445 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3446 "not match the udev. Re-allocate the device\n", 3447 slot_id); 3448 ret = xhci_alloc_dev(hcd, udev); 3449 if (ret == 1) 3450 return 0; 3451 else 3452 return -EINVAL; 3453 } 3454 3455 /* If device is not setup, there is no point in resetting it */ 3456 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3457 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3458 SLOT_STATE_DISABLED) 3459 return 0; 3460 3461 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3462 /* Allocate the command structure that holds the struct completion. 3463 * Assume we're in process context, since the normal device reset 3464 * process has to wait for the device anyway. Storage devices are 3465 * reset as part of error handling, so use GFP_NOIO instead of 3466 * GFP_KERNEL. 3467 */ 3468 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3469 if (!reset_device_cmd) { 3470 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3471 return -ENOMEM; 3472 } 3473 3474 /* Attempt to submit the Reset Device command to the command ring */ 3475 spin_lock_irqsave(&xhci->lock, flags); 3476 reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring); 3477 3478 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); 3479 ret = xhci_queue_reset_device(xhci, slot_id); 3480 if (ret) { 3481 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3482 list_del(&reset_device_cmd->cmd_list); 3483 spin_unlock_irqrestore(&xhci->lock, flags); 3484 goto command_cleanup; 3485 } 3486 xhci_ring_cmd_db(xhci); 3487 spin_unlock_irqrestore(&xhci->lock, flags); 3488 3489 /* Wait for the Reset Device command to finish */ 3490 timeleft = wait_for_completion_interruptible_timeout( 3491 reset_device_cmd->completion, 3492 XHCI_CMD_DEFAULT_TIMEOUT); 3493 if (timeleft <= 0) { 3494 xhci_warn(xhci, "%s while waiting for reset device command\n", 3495 timeleft == 0 ? "Timeout" : "Signal"); 3496 spin_lock_irqsave(&xhci->lock, flags); 3497 /* The timeout might have raced with the event ring handler, so 3498 * only delete from the list if the item isn't poisoned. 3499 */ 3500 if (reset_device_cmd->cmd_list.next != LIST_POISON1) 3501 list_del(&reset_device_cmd->cmd_list); 3502 spin_unlock_irqrestore(&xhci->lock, flags); 3503 ret = -ETIME; 3504 goto command_cleanup; 3505 } 3506 3507 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3508 * unless we tried to reset a slot ID that wasn't enabled, 3509 * or the device wasn't in the addressed or configured state. 3510 */ 3511 ret = reset_device_cmd->status; 3512 switch (ret) { 3513 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3514 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3515 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3516 slot_id, 3517 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3518 xhci_dbg(xhci, "Not freeing device rings.\n"); 3519 /* Don't treat this as an error. May change my mind later. */ 3520 ret = 0; 3521 goto command_cleanup; 3522 case COMP_SUCCESS: 3523 xhci_dbg(xhci, "Successful reset device command.\n"); 3524 break; 3525 default: 3526 if (xhci_is_vendor_info_code(xhci, ret)) 3527 break; 3528 xhci_warn(xhci, "Unknown completion code %u for " 3529 "reset device command.\n", ret); 3530 ret = -EINVAL; 3531 goto command_cleanup; 3532 } 3533 3534 /* Free up host controller endpoint resources */ 3535 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3536 spin_lock_irqsave(&xhci->lock, flags); 3537 /* Don't delete the default control endpoint resources */ 3538 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3539 spin_unlock_irqrestore(&xhci->lock, flags); 3540 } 3541 3542 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3543 last_freed_endpoint = 1; 3544 for (i = 1; i < 31; ++i) { 3545 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3546 3547 if (ep->ep_state & EP_HAS_STREAMS) { 3548 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3549 xhci_get_endpoint_address(i)); 3550 xhci_free_stream_info(xhci, ep->stream_info); 3551 ep->stream_info = NULL; 3552 ep->ep_state &= ~EP_HAS_STREAMS; 3553 } 3554 3555 if (ep->ring) { 3556 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3557 last_freed_endpoint = i; 3558 } 3559 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3560 xhci_drop_ep_from_interval_table(xhci, 3561 &virt_dev->eps[i].bw_info, 3562 virt_dev->bw_table, 3563 udev, 3564 &virt_dev->eps[i], 3565 virt_dev->tt_info); 3566 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3567 } 3568 /* If necessary, update the number of active TTs on this root port */ 3569 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3570 3571 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3572 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3573 ret = 0; 3574 3575 command_cleanup: 3576 xhci_free_command(xhci, reset_device_cmd); 3577 return ret; 3578 } 3579 3580 /* 3581 * At this point, the struct usb_device is about to go away, the device has 3582 * disconnected, and all traffic has been stopped and the endpoints have been 3583 * disabled. Free any HC data structures associated with that device. 3584 */ 3585 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3586 { 3587 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3588 struct xhci_virt_device *virt_dev; 3589 unsigned long flags; 3590 u32 state; 3591 int i, ret; 3592 3593 #ifndef CONFIG_USB_DEFAULT_PERSIST 3594 /* 3595 * We called pm_runtime_get_noresume when the device was attached. 3596 * Decrement the counter here to allow controller to runtime suspend 3597 * if no devices remain. 3598 */ 3599 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3600 pm_runtime_put_noidle(hcd->self.controller); 3601 #endif 3602 3603 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3604 /* If the host is halted due to driver unload, we still need to free the 3605 * device. 3606 */ 3607 if (ret <= 0 && ret != -ENODEV) 3608 return; 3609 3610 virt_dev = xhci->devs[udev->slot_id]; 3611 3612 /* Stop any wayward timer functions (which may grab the lock) */ 3613 for (i = 0; i < 31; ++i) { 3614 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3615 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3616 } 3617 3618 spin_lock_irqsave(&xhci->lock, flags); 3619 /* Don't disable the slot if the host controller is dead. */ 3620 state = readl(&xhci->op_regs->status); 3621 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3622 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3623 xhci_free_virt_device(xhci, udev->slot_id); 3624 spin_unlock_irqrestore(&xhci->lock, flags); 3625 return; 3626 } 3627 3628 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { 3629 spin_unlock_irqrestore(&xhci->lock, flags); 3630 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3631 return; 3632 } 3633 xhci_ring_cmd_db(xhci); 3634 spin_unlock_irqrestore(&xhci->lock, flags); 3635 /* 3636 * Event command completion handler will free any data structures 3637 * associated with the slot. XXX Can free sleep? 3638 */ 3639 } 3640 3641 /* 3642 * Checks if we have enough host controller resources for the default control 3643 * endpoint. 3644 * 3645 * Must be called with xhci->lock held. 3646 */ 3647 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3648 { 3649 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3650 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3651 "Not enough ep ctxs: " 3652 "%u active, need to add 1, limit is %u.", 3653 xhci->num_active_eps, xhci->limit_active_eps); 3654 return -ENOMEM; 3655 } 3656 xhci->num_active_eps += 1; 3657 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3658 "Adding 1 ep ctx, %u now active.", 3659 xhci->num_active_eps); 3660 return 0; 3661 } 3662 3663 3664 /* 3665 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3666 * timed out, or allocating memory failed. Returns 1 on success. 3667 */ 3668 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3669 { 3670 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3671 unsigned long flags; 3672 int timeleft; 3673 int ret; 3674 union xhci_trb *cmd_trb; 3675 3676 spin_lock_irqsave(&xhci->lock, flags); 3677 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring); 3678 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); 3679 if (ret) { 3680 spin_unlock_irqrestore(&xhci->lock, flags); 3681 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3682 return 0; 3683 } 3684 xhci_ring_cmd_db(xhci); 3685 spin_unlock_irqrestore(&xhci->lock, flags); 3686 3687 /* XXX: how much time for xHC slot assignment? */ 3688 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3689 XHCI_CMD_DEFAULT_TIMEOUT); 3690 if (timeleft <= 0) { 3691 xhci_warn(xhci, "%s while waiting for a slot\n", 3692 timeleft == 0 ? "Timeout" : "Signal"); 3693 /* cancel the enable slot request */ 3694 return xhci_cancel_cmd(xhci, NULL, cmd_trb); 3695 } 3696 3697 if (!xhci->slot_id) { 3698 xhci_err(xhci, "Error while assigning device slot ID\n"); 3699 return 0; 3700 } 3701 3702 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3703 spin_lock_irqsave(&xhci->lock, flags); 3704 ret = xhci_reserve_host_control_ep_resources(xhci); 3705 if (ret) { 3706 spin_unlock_irqrestore(&xhci->lock, flags); 3707 xhci_warn(xhci, "Not enough host resources, " 3708 "active endpoint contexts = %u\n", 3709 xhci->num_active_eps); 3710 goto disable_slot; 3711 } 3712 spin_unlock_irqrestore(&xhci->lock, flags); 3713 } 3714 /* Use GFP_NOIO, since this function can be called from 3715 * xhci_discover_or_reset_device(), which may be called as part of 3716 * mass storage driver error handling. 3717 */ 3718 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3719 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3720 goto disable_slot; 3721 } 3722 udev->slot_id = xhci->slot_id; 3723 3724 #ifndef CONFIG_USB_DEFAULT_PERSIST 3725 /* 3726 * If resetting upon resume, we can't put the controller into runtime 3727 * suspend if there is a device attached. 3728 */ 3729 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3730 pm_runtime_get_noresume(hcd->self.controller); 3731 #endif 3732 3733 /* Is this a LS or FS device under a HS hub? */ 3734 /* Hub or peripherial? */ 3735 return 1; 3736 3737 disable_slot: 3738 /* Disable slot, if we can do it without mem alloc */ 3739 spin_lock_irqsave(&xhci->lock, flags); 3740 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) 3741 xhci_ring_cmd_db(xhci); 3742 spin_unlock_irqrestore(&xhci->lock, flags); 3743 return 0; 3744 } 3745 3746 /* 3747 * Issue an Address Device command and optionally send a corresponding 3748 * SetAddress request to the device. 3749 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so 3750 * we should only issue and wait on one address command at the same time. 3751 */ 3752 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3753 enum xhci_setup_dev setup) 3754 { 3755 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3756 unsigned long flags; 3757 int timeleft; 3758 struct xhci_virt_device *virt_dev; 3759 int ret = 0; 3760 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3761 struct xhci_slot_ctx *slot_ctx; 3762 struct xhci_input_control_ctx *ctrl_ctx; 3763 u64 temp_64; 3764 union xhci_trb *cmd_trb; 3765 3766 if (!udev->slot_id) { 3767 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3768 "Bad Slot ID %d", udev->slot_id); 3769 return -EINVAL; 3770 } 3771 3772 virt_dev = xhci->devs[udev->slot_id]; 3773 3774 if (WARN_ON(!virt_dev)) { 3775 /* 3776 * In plug/unplug torture test with an NEC controller, 3777 * a zero-dereference was observed once due to virt_dev = 0. 3778 * Print useful debug rather than crash if it is observed again! 3779 */ 3780 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3781 udev->slot_id); 3782 return -EINVAL; 3783 } 3784 3785 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3786 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 3787 if (!ctrl_ctx) { 3788 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3789 __func__); 3790 return -EINVAL; 3791 } 3792 /* 3793 * If this is the first Set Address since device plug-in or 3794 * virt_device realloaction after a resume with an xHCI power loss, 3795 * then set up the slot context. 3796 */ 3797 if (!slot_ctx->dev_info) 3798 xhci_setup_addressable_virt_dev(xhci, udev); 3799 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3800 else 3801 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3802 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3803 ctrl_ctx->drop_flags = 0; 3804 3805 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3806 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3807 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3808 le32_to_cpu(slot_ctx->dev_info) >> 27); 3809 3810 spin_lock_irqsave(&xhci->lock, flags); 3811 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring); 3812 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, 3813 udev->slot_id, setup); 3814 if (ret) { 3815 spin_unlock_irqrestore(&xhci->lock, flags); 3816 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3817 "FIXME: allocate a command ring segment"); 3818 return ret; 3819 } 3820 xhci_ring_cmd_db(xhci); 3821 spin_unlock_irqrestore(&xhci->lock, flags); 3822 3823 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3824 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3825 XHCI_CMD_DEFAULT_TIMEOUT); 3826 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3827 * the SetAddress() "recovery interval" required by USB and aborting the 3828 * command on a timeout. 3829 */ 3830 if (timeleft <= 0) { 3831 xhci_warn(xhci, "%s while waiting for setup %s command\n", 3832 timeleft == 0 ? "Timeout" : "Signal", act); 3833 /* cancel the address device command */ 3834 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb); 3835 if (ret < 0) 3836 return ret; 3837 return -ETIME; 3838 } 3839 3840 switch (virt_dev->cmd_status) { 3841 case COMP_CTX_STATE: 3842 case COMP_EBADSLT: 3843 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3844 act, udev->slot_id); 3845 ret = -EINVAL; 3846 break; 3847 case COMP_TX_ERR: 3848 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3849 ret = -EPROTO; 3850 break; 3851 case COMP_DEV_ERR: 3852 dev_warn(&udev->dev, 3853 "ERROR: Incompatible device for setup %s command\n", act); 3854 ret = -ENODEV; 3855 break; 3856 case COMP_SUCCESS: 3857 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3858 "Successful setup %s command", act); 3859 break; 3860 default: 3861 xhci_err(xhci, 3862 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3863 act, virt_dev->cmd_status); 3864 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3865 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3866 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3867 ret = -EINVAL; 3868 break; 3869 } 3870 if (ret) { 3871 return ret; 3872 } 3873 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3874 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3875 "Op regs DCBAA ptr = %#016llx", temp_64); 3876 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3877 "Slot ID %d dcbaa entry @%p = %#016llx", 3878 udev->slot_id, 3879 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3880 (unsigned long long) 3881 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3882 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3883 "Output Context DMA address = %#08llx", 3884 (unsigned long long)virt_dev->out_ctx->dma); 3885 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3886 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3887 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3888 le32_to_cpu(slot_ctx->dev_info) >> 27); 3889 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3890 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3891 /* 3892 * USB core uses address 1 for the roothubs, so we add one to the 3893 * address given back to us by the HC. 3894 */ 3895 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3896 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3897 le32_to_cpu(slot_ctx->dev_info) >> 27); 3898 /* Zero the input context control for later use */ 3899 ctrl_ctx->add_flags = 0; 3900 ctrl_ctx->drop_flags = 0; 3901 3902 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3903 "Internal device address = %d", 3904 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3905 3906 return 0; 3907 } 3908 3909 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3910 { 3911 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3912 } 3913 3914 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3915 { 3916 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3917 } 3918 3919 /* 3920 * Transfer the port index into real index in the HW port status 3921 * registers. Caculate offset between the port's PORTSC register 3922 * and port status base. Divide the number of per port register 3923 * to get the real index. The raw port number bases 1. 3924 */ 3925 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3926 { 3927 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3928 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3929 __le32 __iomem *addr; 3930 int raw_port; 3931 3932 if (hcd->speed != HCD_USB3) 3933 addr = xhci->usb2_ports[port1 - 1]; 3934 else 3935 addr = xhci->usb3_ports[port1 - 1]; 3936 3937 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3938 return raw_port; 3939 } 3940 3941 /* 3942 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3943 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3944 */ 3945 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3946 struct usb_device *udev, u16 max_exit_latency) 3947 { 3948 struct xhci_virt_device *virt_dev; 3949 struct xhci_command *command; 3950 struct xhci_input_control_ctx *ctrl_ctx; 3951 struct xhci_slot_ctx *slot_ctx; 3952 unsigned long flags; 3953 int ret; 3954 3955 spin_lock_irqsave(&xhci->lock, flags); 3956 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) { 3957 spin_unlock_irqrestore(&xhci->lock, flags); 3958 return 0; 3959 } 3960 3961 /* Attempt to issue an Evaluate Context command to change the MEL. */ 3962 virt_dev = xhci->devs[udev->slot_id]; 3963 command = xhci->lpm_command; 3964 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 3965 if (!ctrl_ctx) { 3966 spin_unlock_irqrestore(&xhci->lock, flags); 3967 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3968 __func__); 3969 return -ENOMEM; 3970 } 3971 3972 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 3973 spin_unlock_irqrestore(&xhci->lock, flags); 3974 3975 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3976 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 3977 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 3978 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 3979 3980 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 3981 "Set up evaluate context for LPM MEL change."); 3982 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 3983 xhci_dbg_ctx(xhci, command->in_ctx, 0); 3984 3985 /* Issue and wait for the evaluate context command. */ 3986 ret = xhci_configure_endpoint(xhci, udev, command, 3987 true, true); 3988 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 3989 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 3990 3991 if (!ret) { 3992 spin_lock_irqsave(&xhci->lock, flags); 3993 virt_dev->current_mel = max_exit_latency; 3994 spin_unlock_irqrestore(&xhci->lock, flags); 3995 } 3996 return ret; 3997 } 3998 3999 #ifdef CONFIG_PM_RUNTIME 4000 4001 /* BESL to HIRD Encoding array for USB2 LPM */ 4002 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4003 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4004 4005 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4006 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4007 struct usb_device *udev) 4008 { 4009 int u2del, besl, besl_host; 4010 int besl_device = 0; 4011 u32 field; 4012 4013 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4014 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4015 4016 if (field & USB_BESL_SUPPORT) { 4017 for (besl_host = 0; besl_host < 16; besl_host++) { 4018 if (xhci_besl_encoding[besl_host] >= u2del) 4019 break; 4020 } 4021 /* Use baseline BESL value as default */ 4022 if (field & USB_BESL_BASELINE_VALID) 4023 besl_device = USB_GET_BESL_BASELINE(field); 4024 else if (field & USB_BESL_DEEP_VALID) 4025 besl_device = USB_GET_BESL_DEEP(field); 4026 } else { 4027 if (u2del <= 50) 4028 besl_host = 0; 4029 else 4030 besl_host = (u2del - 51) / 75 + 1; 4031 } 4032 4033 besl = besl_host + besl_device; 4034 if (besl > 15) 4035 besl = 15; 4036 4037 return besl; 4038 } 4039 4040 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4041 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4042 { 4043 u32 field; 4044 int l1; 4045 int besld = 0; 4046 int hirdm = 0; 4047 4048 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4049 4050 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4051 l1 = udev->l1_params.timeout / 256; 4052 4053 /* device has preferred BESLD */ 4054 if (field & USB_BESL_DEEP_VALID) { 4055 besld = USB_GET_BESL_DEEP(field); 4056 hirdm = 1; 4057 } 4058 4059 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4060 } 4061 4062 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4063 struct usb_device *udev, int enable) 4064 { 4065 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4066 __le32 __iomem **port_array; 4067 __le32 __iomem *pm_addr, *hlpm_addr; 4068 u32 pm_val, hlpm_val, field; 4069 unsigned int port_num; 4070 unsigned long flags; 4071 int hird, exit_latency; 4072 int ret; 4073 4074 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 4075 !udev->lpm_capable) 4076 return -EPERM; 4077 4078 if (!udev->parent || udev->parent->parent || 4079 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4080 return -EPERM; 4081 4082 if (udev->usb2_hw_lpm_capable != 1) 4083 return -EPERM; 4084 4085 spin_lock_irqsave(&xhci->lock, flags); 4086 4087 port_array = xhci->usb2_ports; 4088 port_num = udev->portnum - 1; 4089 pm_addr = port_array[port_num] + PORTPMSC; 4090 pm_val = readl(pm_addr); 4091 hlpm_addr = port_array[port_num] + PORTHLPMC; 4092 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4093 4094 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4095 enable ? "enable" : "disable", port_num); 4096 4097 if (enable) { 4098 /* Host supports BESL timeout instead of HIRD */ 4099 if (udev->usb2_hw_lpm_besl_capable) { 4100 /* if device doesn't have a preferred BESL value use a 4101 * default one which works with mixed HIRD and BESL 4102 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4103 */ 4104 if ((field & USB_BESL_SUPPORT) && 4105 (field & USB_BESL_BASELINE_VALID)) 4106 hird = USB_GET_BESL_BASELINE(field); 4107 else 4108 hird = udev->l1_params.besl; 4109 4110 exit_latency = xhci_besl_encoding[hird]; 4111 spin_unlock_irqrestore(&xhci->lock, flags); 4112 4113 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4114 * input context for link powermanagement evaluate 4115 * context commands. It is protected by hcd->bandwidth 4116 * mutex and is shared by all devices. We need to set 4117 * the max ext latency in USB 2 BESL LPM as well, so 4118 * use the same mutex and xhci_change_max_exit_latency() 4119 */ 4120 mutex_lock(hcd->bandwidth_mutex); 4121 ret = xhci_change_max_exit_latency(xhci, udev, 4122 exit_latency); 4123 mutex_unlock(hcd->bandwidth_mutex); 4124 4125 if (ret < 0) 4126 return ret; 4127 spin_lock_irqsave(&xhci->lock, flags); 4128 4129 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4130 writel(hlpm_val, hlpm_addr); 4131 /* flush write */ 4132 readl(hlpm_addr); 4133 } else { 4134 hird = xhci_calculate_hird_besl(xhci, udev); 4135 } 4136 4137 pm_val &= ~PORT_HIRD_MASK; 4138 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4139 writel(pm_val, pm_addr); 4140 pm_val = readl(pm_addr); 4141 pm_val |= PORT_HLE; 4142 writel(pm_val, pm_addr); 4143 /* flush write */ 4144 readl(pm_addr); 4145 } else { 4146 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4147 writel(pm_val, pm_addr); 4148 /* flush write */ 4149 readl(pm_addr); 4150 if (udev->usb2_hw_lpm_besl_capable) { 4151 spin_unlock_irqrestore(&xhci->lock, flags); 4152 mutex_lock(hcd->bandwidth_mutex); 4153 xhci_change_max_exit_latency(xhci, udev, 0); 4154 mutex_unlock(hcd->bandwidth_mutex); 4155 return 0; 4156 } 4157 } 4158 4159 spin_unlock_irqrestore(&xhci->lock, flags); 4160 return 0; 4161 } 4162 4163 /* check if a usb2 port supports a given extened capability protocol 4164 * only USB2 ports extended protocol capability values are cached. 4165 * Return 1 if capability is supported 4166 */ 4167 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4168 unsigned capability) 4169 { 4170 u32 port_offset, port_count; 4171 int i; 4172 4173 for (i = 0; i < xhci->num_ext_caps; i++) { 4174 if (xhci->ext_caps[i] & capability) { 4175 /* port offsets starts at 1 */ 4176 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4177 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4178 if (port >= port_offset && 4179 port < port_offset + port_count) 4180 return 1; 4181 } 4182 } 4183 return 0; 4184 } 4185 4186 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4187 { 4188 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4189 int portnum = udev->portnum - 1; 4190 4191 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 4192 !udev->lpm_capable) 4193 return 0; 4194 4195 /* we only support lpm for non-hub device connected to root hub yet */ 4196 if (!udev->parent || udev->parent->parent || 4197 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4198 return 0; 4199 4200 if (xhci->hw_lpm_support == 1 && 4201 xhci_check_usb2_port_capability( 4202 xhci, portnum, XHCI_HLC)) { 4203 udev->usb2_hw_lpm_capable = 1; 4204 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4205 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4206 if (xhci_check_usb2_port_capability(xhci, portnum, 4207 XHCI_BLC)) 4208 udev->usb2_hw_lpm_besl_capable = 1; 4209 } 4210 4211 return 0; 4212 } 4213 4214 #else 4215 4216 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4217 struct usb_device *udev, int enable) 4218 { 4219 return 0; 4220 } 4221 4222 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4223 { 4224 return 0; 4225 } 4226 4227 #endif /* CONFIG_PM_RUNTIME */ 4228 4229 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4230 4231 #ifdef CONFIG_PM 4232 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4233 static unsigned long long xhci_service_interval_to_ns( 4234 struct usb_endpoint_descriptor *desc) 4235 { 4236 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4237 } 4238 4239 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4240 enum usb3_link_state state) 4241 { 4242 unsigned long long sel; 4243 unsigned long long pel; 4244 unsigned int max_sel_pel; 4245 char *state_name; 4246 4247 switch (state) { 4248 case USB3_LPM_U1: 4249 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4250 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4251 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4252 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4253 state_name = "U1"; 4254 break; 4255 case USB3_LPM_U2: 4256 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4257 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4258 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4259 state_name = "U2"; 4260 break; 4261 default: 4262 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4263 __func__); 4264 return USB3_LPM_DISABLED; 4265 } 4266 4267 if (sel <= max_sel_pel && pel <= max_sel_pel) 4268 return USB3_LPM_DEVICE_INITIATED; 4269 4270 if (sel > max_sel_pel) 4271 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4272 "due to long SEL %llu ms\n", 4273 state_name, sel); 4274 else 4275 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4276 "due to long PEL %llu ms\n", 4277 state_name, pel); 4278 return USB3_LPM_DISABLED; 4279 } 4280 4281 /* Returns the hub-encoded U1 timeout value. 4282 * The U1 timeout should be the maximum of the following values: 4283 * - For control endpoints, U1 system exit latency (SEL) * 3 4284 * - For bulk endpoints, U1 SEL * 5 4285 * - For interrupt endpoints: 4286 * - Notification EPs, U1 SEL * 3 4287 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4288 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4289 */ 4290 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev, 4291 struct usb_endpoint_descriptor *desc) 4292 { 4293 unsigned long long timeout_ns; 4294 int ep_type; 4295 int intr_type; 4296 4297 ep_type = usb_endpoint_type(desc); 4298 switch (ep_type) { 4299 case USB_ENDPOINT_XFER_CONTROL: 4300 timeout_ns = udev->u1_params.sel * 3; 4301 break; 4302 case USB_ENDPOINT_XFER_BULK: 4303 timeout_ns = udev->u1_params.sel * 5; 4304 break; 4305 case USB_ENDPOINT_XFER_INT: 4306 intr_type = usb_endpoint_interrupt_type(desc); 4307 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4308 timeout_ns = udev->u1_params.sel * 3; 4309 break; 4310 } 4311 /* Otherwise the calculation is the same as isoc eps */ 4312 case USB_ENDPOINT_XFER_ISOC: 4313 timeout_ns = xhci_service_interval_to_ns(desc); 4314 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4315 if (timeout_ns < udev->u1_params.sel * 2) 4316 timeout_ns = udev->u1_params.sel * 2; 4317 break; 4318 default: 4319 return 0; 4320 } 4321 4322 /* The U1 timeout is encoded in 1us intervals. */ 4323 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4324 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */ 4325 if (timeout_ns == USB3_LPM_DISABLED) 4326 timeout_ns++; 4327 4328 /* If the necessary timeout value is bigger than what we can set in the 4329 * USB 3.0 hub, we have to disable hub-initiated U1. 4330 */ 4331 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4332 return timeout_ns; 4333 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4334 "due to long timeout %llu ms\n", timeout_ns); 4335 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4336 } 4337 4338 /* Returns the hub-encoded U2 timeout value. 4339 * The U2 timeout should be the maximum of: 4340 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4341 * - largest bInterval of any active periodic endpoint (to avoid going 4342 * into lower power link states between intervals). 4343 * - the U2 Exit Latency of the device 4344 */ 4345 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev, 4346 struct usb_endpoint_descriptor *desc) 4347 { 4348 unsigned long long timeout_ns; 4349 unsigned long long u2_del_ns; 4350 4351 timeout_ns = 10 * 1000 * 1000; 4352 4353 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4354 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4355 timeout_ns = xhci_service_interval_to_ns(desc); 4356 4357 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4358 if (u2_del_ns > timeout_ns) 4359 timeout_ns = u2_del_ns; 4360 4361 /* The U2 timeout is encoded in 256us intervals */ 4362 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4363 /* If the necessary timeout value is bigger than what we can set in the 4364 * USB 3.0 hub, we have to disable hub-initiated U2. 4365 */ 4366 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4367 return timeout_ns; 4368 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4369 "due to long timeout %llu ms\n", timeout_ns); 4370 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4371 } 4372 4373 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4374 struct usb_device *udev, 4375 struct usb_endpoint_descriptor *desc, 4376 enum usb3_link_state state, 4377 u16 *timeout) 4378 { 4379 if (state == USB3_LPM_U1) { 4380 if (xhci->quirks & XHCI_INTEL_HOST) 4381 return xhci_calculate_intel_u1_timeout(udev, desc); 4382 } else { 4383 if (xhci->quirks & XHCI_INTEL_HOST) 4384 return xhci_calculate_intel_u2_timeout(udev, desc); 4385 } 4386 4387 return USB3_LPM_DISABLED; 4388 } 4389 4390 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4391 struct usb_device *udev, 4392 struct usb_endpoint_descriptor *desc, 4393 enum usb3_link_state state, 4394 u16 *timeout) 4395 { 4396 u16 alt_timeout; 4397 4398 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4399 desc, state, timeout); 4400 4401 /* If we found we can't enable hub-initiated LPM, or 4402 * the U1 or U2 exit latency was too high to allow 4403 * device-initiated LPM as well, just stop searching. 4404 */ 4405 if (alt_timeout == USB3_LPM_DISABLED || 4406 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4407 *timeout = alt_timeout; 4408 return -E2BIG; 4409 } 4410 if (alt_timeout > *timeout) 4411 *timeout = alt_timeout; 4412 return 0; 4413 } 4414 4415 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4416 struct usb_device *udev, 4417 struct usb_host_interface *alt, 4418 enum usb3_link_state state, 4419 u16 *timeout) 4420 { 4421 int j; 4422 4423 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4424 if (xhci_update_timeout_for_endpoint(xhci, udev, 4425 &alt->endpoint[j].desc, state, timeout)) 4426 return -E2BIG; 4427 continue; 4428 } 4429 return 0; 4430 } 4431 4432 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4433 enum usb3_link_state state) 4434 { 4435 struct usb_device *parent; 4436 unsigned int num_hubs; 4437 4438 if (state == USB3_LPM_U2) 4439 return 0; 4440 4441 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4442 for (parent = udev->parent, num_hubs = 0; parent->parent; 4443 parent = parent->parent) 4444 num_hubs++; 4445 4446 if (num_hubs < 2) 4447 return 0; 4448 4449 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4450 " below second-tier hub.\n"); 4451 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4452 "to decrease power consumption.\n"); 4453 return -E2BIG; 4454 } 4455 4456 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4457 struct usb_device *udev, 4458 enum usb3_link_state state) 4459 { 4460 if (xhci->quirks & XHCI_INTEL_HOST) 4461 return xhci_check_intel_tier_policy(udev, state); 4462 return -EINVAL; 4463 } 4464 4465 /* Returns the U1 or U2 timeout that should be enabled. 4466 * If the tier check or timeout setting functions return with a non-zero exit 4467 * code, that means the timeout value has been finalized and we shouldn't look 4468 * at any more endpoints. 4469 */ 4470 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4471 struct usb_device *udev, enum usb3_link_state state) 4472 { 4473 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4474 struct usb_host_config *config; 4475 char *state_name; 4476 int i; 4477 u16 timeout = USB3_LPM_DISABLED; 4478 4479 if (state == USB3_LPM_U1) 4480 state_name = "U1"; 4481 else if (state == USB3_LPM_U2) 4482 state_name = "U2"; 4483 else { 4484 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4485 state); 4486 return timeout; 4487 } 4488 4489 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4490 return timeout; 4491 4492 /* Gather some information about the currently installed configuration 4493 * and alternate interface settings. 4494 */ 4495 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4496 state, &timeout)) 4497 return timeout; 4498 4499 config = udev->actconfig; 4500 if (!config) 4501 return timeout; 4502 4503 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4504 struct usb_driver *driver; 4505 struct usb_interface *intf = config->interface[i]; 4506 4507 if (!intf) 4508 continue; 4509 4510 /* Check if any currently bound drivers want hub-initiated LPM 4511 * disabled. 4512 */ 4513 if (intf->dev.driver) { 4514 driver = to_usb_driver(intf->dev.driver); 4515 if (driver && driver->disable_hub_initiated_lpm) { 4516 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4517 "at request of driver %s\n", 4518 state_name, driver->name); 4519 return xhci_get_timeout_no_hub_lpm(udev, state); 4520 } 4521 } 4522 4523 /* Not sure how this could happen... */ 4524 if (!intf->cur_altsetting) 4525 continue; 4526 4527 if (xhci_update_timeout_for_interface(xhci, udev, 4528 intf->cur_altsetting, 4529 state, &timeout)) 4530 return timeout; 4531 } 4532 return timeout; 4533 } 4534 4535 static int calculate_max_exit_latency(struct usb_device *udev, 4536 enum usb3_link_state state_changed, 4537 u16 hub_encoded_timeout) 4538 { 4539 unsigned long long u1_mel_us = 0; 4540 unsigned long long u2_mel_us = 0; 4541 unsigned long long mel_us = 0; 4542 bool disabling_u1; 4543 bool disabling_u2; 4544 bool enabling_u1; 4545 bool enabling_u2; 4546 4547 disabling_u1 = (state_changed == USB3_LPM_U1 && 4548 hub_encoded_timeout == USB3_LPM_DISABLED); 4549 disabling_u2 = (state_changed == USB3_LPM_U2 && 4550 hub_encoded_timeout == USB3_LPM_DISABLED); 4551 4552 enabling_u1 = (state_changed == USB3_LPM_U1 && 4553 hub_encoded_timeout != USB3_LPM_DISABLED); 4554 enabling_u2 = (state_changed == USB3_LPM_U2 && 4555 hub_encoded_timeout != USB3_LPM_DISABLED); 4556 4557 /* If U1 was already enabled and we're not disabling it, 4558 * or we're going to enable U1, account for the U1 max exit latency. 4559 */ 4560 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4561 enabling_u1) 4562 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4563 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4564 enabling_u2) 4565 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4566 4567 if (u1_mel_us > u2_mel_us) 4568 mel_us = u1_mel_us; 4569 else 4570 mel_us = u2_mel_us; 4571 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4572 if (mel_us > MAX_EXIT) { 4573 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4574 "is too big.\n", mel_us); 4575 return -E2BIG; 4576 } 4577 return mel_us; 4578 } 4579 4580 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4581 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4582 struct usb_device *udev, enum usb3_link_state state) 4583 { 4584 struct xhci_hcd *xhci; 4585 u16 hub_encoded_timeout; 4586 int mel; 4587 int ret; 4588 4589 xhci = hcd_to_xhci(hcd); 4590 /* The LPM timeout values are pretty host-controller specific, so don't 4591 * enable hub-initiated timeouts unless the vendor has provided 4592 * information about their timeout algorithm. 4593 */ 4594 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4595 !xhci->devs[udev->slot_id]) 4596 return USB3_LPM_DISABLED; 4597 4598 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4599 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4600 if (mel < 0) { 4601 /* Max Exit Latency is too big, disable LPM. */ 4602 hub_encoded_timeout = USB3_LPM_DISABLED; 4603 mel = 0; 4604 } 4605 4606 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4607 if (ret) 4608 return ret; 4609 return hub_encoded_timeout; 4610 } 4611 4612 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4613 struct usb_device *udev, enum usb3_link_state state) 4614 { 4615 struct xhci_hcd *xhci; 4616 u16 mel; 4617 int ret; 4618 4619 xhci = hcd_to_xhci(hcd); 4620 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4621 !xhci->devs[udev->slot_id]) 4622 return 0; 4623 4624 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4625 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4626 if (ret) 4627 return ret; 4628 return 0; 4629 } 4630 #else /* CONFIG_PM */ 4631 4632 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4633 struct usb_device *udev, enum usb3_link_state state) 4634 { 4635 return USB3_LPM_DISABLED; 4636 } 4637 4638 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4639 struct usb_device *udev, enum usb3_link_state state) 4640 { 4641 return 0; 4642 } 4643 #endif /* CONFIG_PM */ 4644 4645 /*-------------------------------------------------------------------------*/ 4646 4647 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4648 * internal data structures for the device. 4649 */ 4650 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4651 struct usb_tt *tt, gfp_t mem_flags) 4652 { 4653 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4654 struct xhci_virt_device *vdev; 4655 struct xhci_command *config_cmd; 4656 struct xhci_input_control_ctx *ctrl_ctx; 4657 struct xhci_slot_ctx *slot_ctx; 4658 unsigned long flags; 4659 unsigned think_time; 4660 int ret; 4661 4662 /* Ignore root hubs */ 4663 if (!hdev->parent) 4664 return 0; 4665 4666 vdev = xhci->devs[hdev->slot_id]; 4667 if (!vdev) { 4668 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4669 return -EINVAL; 4670 } 4671 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4672 if (!config_cmd) { 4673 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4674 return -ENOMEM; 4675 } 4676 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 4677 if (!ctrl_ctx) { 4678 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4679 __func__); 4680 xhci_free_command(xhci, config_cmd); 4681 return -ENOMEM; 4682 } 4683 4684 spin_lock_irqsave(&xhci->lock, flags); 4685 if (hdev->speed == USB_SPEED_HIGH && 4686 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4687 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4688 xhci_free_command(xhci, config_cmd); 4689 spin_unlock_irqrestore(&xhci->lock, flags); 4690 return -ENOMEM; 4691 } 4692 4693 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4694 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4695 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4696 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4697 if (tt->multi) 4698 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4699 if (xhci->hci_version > 0x95) { 4700 xhci_dbg(xhci, "xHCI version %x needs hub " 4701 "TT think time and number of ports\n", 4702 (unsigned int) xhci->hci_version); 4703 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4704 /* Set TT think time - convert from ns to FS bit times. 4705 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4706 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4707 * 4708 * xHCI 1.0: this field shall be 0 if the device is not a 4709 * High-spped hub. 4710 */ 4711 think_time = tt->think_time; 4712 if (think_time != 0) 4713 think_time = (think_time / 666) - 1; 4714 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4715 slot_ctx->tt_info |= 4716 cpu_to_le32(TT_THINK_TIME(think_time)); 4717 } else { 4718 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4719 "TT think time or number of ports\n", 4720 (unsigned int) xhci->hci_version); 4721 } 4722 slot_ctx->dev_state = 0; 4723 spin_unlock_irqrestore(&xhci->lock, flags); 4724 4725 xhci_dbg(xhci, "Set up %s for hub device.\n", 4726 (xhci->hci_version > 0x95) ? 4727 "configure endpoint" : "evaluate context"); 4728 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4729 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4730 4731 /* Issue and wait for the configure endpoint or 4732 * evaluate context command. 4733 */ 4734 if (xhci->hci_version > 0x95) 4735 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4736 false, false); 4737 else 4738 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4739 true, false); 4740 4741 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4742 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4743 4744 xhci_free_command(xhci, config_cmd); 4745 return ret; 4746 } 4747 4748 int xhci_get_frame(struct usb_hcd *hcd) 4749 { 4750 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4751 /* EHCI mods by the periodic size. Why? */ 4752 return readl(&xhci->run_regs->microframe_index) >> 3; 4753 } 4754 4755 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4756 { 4757 struct xhci_hcd *xhci; 4758 struct device *dev = hcd->self.controller; 4759 int retval; 4760 4761 /* Accept arbitrarily long scatter-gather lists */ 4762 hcd->self.sg_tablesize = ~0; 4763 4764 /* support to build packet from discontinuous buffers */ 4765 hcd->self.no_sg_constraint = 1; 4766 4767 /* XHCI controllers don't stop the ep queue on short packets :| */ 4768 hcd->self.no_stop_on_short = 1; 4769 4770 if (usb_hcd_is_primary_hcd(hcd)) { 4771 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 4772 if (!xhci) 4773 return -ENOMEM; 4774 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 4775 xhci->main_hcd = hcd; 4776 /* Mark the first roothub as being USB 2.0. 4777 * The xHCI driver will register the USB 3.0 roothub. 4778 */ 4779 hcd->speed = HCD_USB2; 4780 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4781 /* 4782 * USB 2.0 roothub under xHCI has an integrated TT, 4783 * (rate matching hub) as opposed to having an OHCI/UHCI 4784 * companion controller. 4785 */ 4786 hcd->has_tt = 1; 4787 } else { 4788 /* xHCI private pointer was set in xhci_pci_probe for the second 4789 * registered roothub. 4790 */ 4791 return 0; 4792 } 4793 4794 xhci->cap_regs = hcd->regs; 4795 xhci->op_regs = hcd->regs + 4796 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4797 xhci->run_regs = hcd->regs + 4798 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4799 /* Cache read-only capability registers */ 4800 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4801 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4802 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4803 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4804 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4805 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4806 xhci_print_registers(xhci); 4807 4808 xhci->quirks = quirks; 4809 4810 get_quirks(dev, xhci); 4811 4812 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4813 * success event after a short transfer. This quirk will ignore such 4814 * spurious event. 4815 */ 4816 if (xhci->hci_version > 0x96) 4817 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4818 4819 /* Make sure the HC is halted. */ 4820 retval = xhci_halt(xhci); 4821 if (retval) 4822 goto error; 4823 4824 xhci_dbg(xhci, "Resetting HCD\n"); 4825 /* Reset the internal HC memory state and registers. */ 4826 retval = xhci_reset(xhci); 4827 if (retval) 4828 goto error; 4829 xhci_dbg(xhci, "Reset complete\n"); 4830 4831 /* Set dma_mask and coherent_dma_mask to 64-bits, 4832 * if xHC supports 64-bit addressing */ 4833 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4834 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4835 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4836 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4837 } 4838 4839 xhci_dbg(xhci, "Calling HCD init\n"); 4840 /* Initialize HCD and host controller data structures. */ 4841 retval = xhci_init(hcd); 4842 if (retval) 4843 goto error; 4844 xhci_dbg(xhci, "Called HCD init\n"); 4845 return 0; 4846 error: 4847 kfree(xhci); 4848 return retval; 4849 } 4850 4851 MODULE_DESCRIPTION(DRIVER_DESC); 4852 MODULE_AUTHOR(DRIVER_AUTHOR); 4853 MODULE_LICENSE("GPL"); 4854 4855 static int __init xhci_hcd_init(void) 4856 { 4857 int retval; 4858 4859 retval = xhci_register_pci(); 4860 if (retval < 0) { 4861 pr_debug("Problem registering PCI driver.\n"); 4862 return retval; 4863 } 4864 retval = xhci_register_plat(); 4865 if (retval < 0) { 4866 pr_debug("Problem registering platform driver.\n"); 4867 goto unreg_pci; 4868 } 4869 /* 4870 * Check the compiler generated sizes of structures that must be laid 4871 * out in specific ways for hardware access. 4872 */ 4873 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4874 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4875 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4876 /* xhci_device_control has eight fields, and also 4877 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4878 */ 4879 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4880 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4881 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4882 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 4883 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4884 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4885 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4886 return 0; 4887 unreg_pci: 4888 xhci_unregister_pci(); 4889 return retval; 4890 } 4891 module_init(xhci_hcd_init); 4892 4893 static void __exit xhci_hcd_cleanup(void) 4894 { 4895 xhci_unregister_pci(); 4896 xhci_unregister_plat(); 4897 } 4898 module_exit(xhci_hcd_cleanup); 4899