1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/jiffies.h> 12 #include <linux/pci.h> 13 #include <linux/iommu.h> 14 #include <linux/iopoll.h> 15 #include <linux/irq.h> 16 #include <linux/log2.h> 17 #include <linux/module.h> 18 #include <linux/moduleparam.h> 19 #include <linux/slab.h> 20 #include <linux/string_choices.h> 21 #include <linux/dmi.h> 22 #include <linux/dma-mapping.h> 23 24 #include "xhci.h" 25 #include "xhci-trace.h" 26 #include "xhci-debugfs.h" 27 #include "xhci-dbgcap.h" 28 29 #define DRIVER_AUTHOR "Sarah Sharp" 30 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 31 32 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 33 34 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 35 static int link_quirk; 36 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 37 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 38 39 static unsigned long long quirks; 40 module_param(quirks, ullong, S_IRUGO); 41 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 42 43 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 44 { 45 struct xhci_segment *seg; 46 47 if (!td || !td->start_seg) 48 return false; 49 50 xhci_for_each_ring_seg(ring->first_seg, seg) { 51 if (seg == td->start_seg) 52 return true; 53 } 54 55 return false; 56 } 57 58 /* 59 * xhci_handshake - spin reading hc until handshake completes or fails 60 * @ptr: address of hc register to be read 61 * @mask: bits to look at in result of read 62 * @done: value of those bits when handshake succeeds 63 * @usec: timeout in microseconds 64 * 65 * Returns negative errno, or zero on success 66 * 67 * Success happens when the "mask" bits have the specified value (hardware 68 * handshake done). There are two failure modes: "usec" have passed (major 69 * hardware flakeout), or the register reads as all-ones (hardware removed). 70 */ 71 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 72 { 73 u32 result; 74 int ret; 75 76 ret = readl_poll_timeout_atomic(ptr, result, 77 (result & mask) == done || 78 result == U32_MAX, 79 1, timeout_us); 80 if (result == U32_MAX) /* card removed */ 81 return -ENODEV; 82 83 return ret; 84 } 85 86 /* 87 * xhci_handshake_check_state - same as xhci_handshake but takes an additional 88 * exit_state parameter, and bails out with an error immediately when xhc_state 89 * has exit_state flag set. 90 */ 91 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr, 92 u32 mask, u32 done, int usec, unsigned int exit_state) 93 { 94 u32 result; 95 int ret; 96 97 ret = readl_poll_timeout_atomic(ptr, result, 98 (result & mask) == done || 99 result == U32_MAX || 100 xhci->xhc_state & exit_state, 101 1, usec); 102 103 if (result == U32_MAX || xhci->xhc_state & exit_state) 104 return -ENODEV; 105 106 return ret; 107 } 108 109 /* 110 * Disable interrupts and begin the xHCI halting process. 111 */ 112 void xhci_quiesce(struct xhci_hcd *xhci) 113 { 114 u32 halted; 115 u32 cmd; 116 u32 mask; 117 118 mask = ~(XHCI_IRQS); 119 halted = readl(&xhci->op_regs->status) & STS_HALT; 120 if (!halted) 121 mask &= ~CMD_RUN; 122 123 cmd = readl(&xhci->op_regs->command); 124 cmd &= mask; 125 writel(cmd, &xhci->op_regs->command); 126 } 127 128 /* 129 * Force HC into halt state. 130 * 131 * Disable any IRQs and clear the run/stop bit. 132 * HC will complete any current and actively pipelined transactions, and 133 * should halt within 16 ms of the run/stop bit being cleared. 134 * Read HC Halted bit in the status register to see when the HC is finished. 135 */ 136 int xhci_halt(struct xhci_hcd *xhci) 137 { 138 int ret; 139 140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 141 xhci_quiesce(xhci); 142 143 ret = xhci_handshake(&xhci->op_regs->status, 144 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 145 if (ret) { 146 xhci_warn(xhci, "Host halt failed, %d\n", ret); 147 return ret; 148 } 149 150 xhci->xhc_state |= XHCI_STATE_HALTED; 151 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 152 153 return ret; 154 } 155 156 /* 157 * Set the run bit and wait for the host to be running. 158 */ 159 int xhci_start(struct xhci_hcd *xhci) 160 { 161 u32 temp; 162 int ret; 163 164 temp = readl(&xhci->op_regs->command); 165 temp |= (CMD_RUN); 166 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 167 temp); 168 writel(temp, &xhci->op_regs->command); 169 170 /* 171 * Wait for the HCHalted Status bit to be 0 to indicate the host is 172 * running. 173 */ 174 ret = xhci_handshake(&xhci->op_regs->status, 175 STS_HALT, 0, XHCI_MAX_HALT_USEC); 176 if (ret == -ETIMEDOUT) 177 xhci_err(xhci, "Host took too long to start, " 178 "waited %u microseconds.\n", 179 XHCI_MAX_HALT_USEC); 180 if (!ret) { 181 /* clear state flags. Including dying, halted or removing */ 182 xhci->xhc_state = 0; 183 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 184 } 185 186 return ret; 187 } 188 189 /* 190 * Reset a halted HC. 191 * 192 * This resets pipelines, timers, counters, state machines, etc. 193 * Transactions will be terminated immediately, and operational registers 194 * will be set to their defaults. 195 */ 196 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 197 { 198 u32 command; 199 u32 state; 200 int ret; 201 202 state = readl(&xhci->op_regs->status); 203 204 if (state == ~(u32)0) { 205 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 206 return -ENODEV; 207 } 208 209 if ((state & STS_HALT) == 0) { 210 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 211 return 0; 212 } 213 214 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 215 command = readl(&xhci->op_regs->command); 216 command |= CMD_RESET; 217 writel(command, &xhci->op_regs->command); 218 219 /* Existing Intel xHCI controllers require a delay of 1 mS, 220 * after setting the CMD_RESET bit, and before accessing any 221 * HC registers. This allows the HC to complete the 222 * reset operation and be ready for HC register access. 223 * Without this delay, the subsequent HC register access, 224 * may result in a system hang very rarely. 225 */ 226 if (xhci->quirks & XHCI_INTEL_HOST) 227 udelay(1000); 228 229 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command, 230 CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING); 231 if (ret) 232 return ret; 233 234 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 235 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 236 237 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 238 "Wait for controller to be ready for doorbell rings"); 239 /* 240 * xHCI cannot write to any doorbells or operational registers other 241 * than status until the "Controller Not Ready" flag is cleared. 242 */ 243 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 244 245 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 246 xhci->usb2_rhub.bus_state.suspended_ports = 0; 247 xhci->usb2_rhub.bus_state.resuming_ports = 0; 248 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 249 xhci->usb3_rhub.bus_state.suspended_ports = 0; 250 xhci->usb3_rhub.bus_state.resuming_ports = 0; 251 252 return ret; 253 } 254 255 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 256 { 257 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 258 struct iommu_domain *domain; 259 int err, i; 260 u64 val; 261 u32 intrs; 262 263 /* 264 * Some Renesas controllers get into a weird state if they are 265 * reset while programmed with 64bit addresses (they will preserve 266 * the top half of the address in internal, non visible 267 * registers). You end up with half the address coming from the 268 * kernel, and the other half coming from the firmware. Also, 269 * changing the programming leads to extra accesses even if the 270 * controller is supposed to be halted. The controller ends up with 271 * a fatal fault, and is then ripe for being properly reset. 272 * 273 * Special care is taken to only apply this if the device is behind 274 * an iommu. Doing anything when there is no iommu is definitely 275 * unsafe... 276 */ 277 domain = iommu_get_domain_for_dev(dev); 278 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || 279 domain->type == IOMMU_DOMAIN_IDENTITY) 280 return; 281 282 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 283 284 /* Clear HSEIE so that faults do not get signaled */ 285 val = readl(&xhci->op_regs->command); 286 val &= ~CMD_HSEIE; 287 writel(val, &xhci->op_regs->command); 288 289 /* Clear HSE (aka FATAL) */ 290 val = readl(&xhci->op_regs->status); 291 val |= STS_FATAL; 292 writel(val, &xhci->op_regs->status); 293 294 /* Now zero the registers, and brace for impact */ 295 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 296 if (upper_32_bits(val)) 297 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 298 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 299 if (upper_32_bits(val)) 300 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 301 302 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 303 ARRAY_SIZE(xhci->run_regs->ir_set)); 304 305 for (i = 0; i < intrs; i++) { 306 struct xhci_intr_reg __iomem *ir; 307 308 ir = &xhci->run_regs->ir_set[i]; 309 val = xhci_read_64(xhci, &ir->erst_base); 310 if (upper_32_bits(val)) 311 xhci_write_64(xhci, 0, &ir->erst_base); 312 val= xhci_read_64(xhci, &ir->erst_dequeue); 313 if (upper_32_bits(val)) 314 xhci_write_64(xhci, 0, &ir->erst_dequeue); 315 } 316 317 /* Wait for the fault to appear. It will be cleared on reset */ 318 err = xhci_handshake(&xhci->op_regs->status, 319 STS_FATAL, STS_FATAL, 320 XHCI_MAX_HALT_USEC); 321 if (!err) 322 xhci_info(xhci, "Fault detected\n"); 323 } 324 325 static int xhci_enable_interrupter(struct xhci_interrupter *ir) 326 { 327 u32 iman; 328 329 if (!ir || !ir->ir_set) 330 return -EINVAL; 331 332 iman = readl(&ir->ir_set->irq_pending); 333 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending); 334 335 return 0; 336 } 337 338 static int xhci_disable_interrupter(struct xhci_interrupter *ir) 339 { 340 u32 iman; 341 342 if (!ir || !ir->ir_set) 343 return -EINVAL; 344 345 iman = readl(&ir->ir_set->irq_pending); 346 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending); 347 348 return 0; 349 } 350 351 /* interrupt moderation interval imod_interval in nanoseconds */ 352 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir, 353 u32 imod_interval) 354 { 355 u32 imod; 356 357 if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250) 358 return -EINVAL; 359 360 imod = readl(&ir->ir_set->irq_control); 361 imod &= ~ER_IRQ_INTERVAL_MASK; 362 imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 363 writel(imod, &ir->ir_set->irq_control); 364 365 return 0; 366 } 367 368 static void compliance_mode_recovery(struct timer_list *t) 369 { 370 struct xhci_hcd *xhci; 371 struct usb_hcd *hcd; 372 struct xhci_hub *rhub; 373 u32 temp; 374 int i; 375 376 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 377 rhub = &xhci->usb3_rhub; 378 hcd = rhub->hcd; 379 380 if (!hcd) 381 return; 382 383 for (i = 0; i < rhub->num_ports; i++) { 384 temp = readl(rhub->ports[i]->addr); 385 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 386 /* 387 * Compliance Mode Detected. Letting USB Core 388 * handle the Warm Reset 389 */ 390 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 391 "Compliance mode detected->port %d", 392 i + 1); 393 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 394 "Attempting compliance mode recovery"); 395 396 if (hcd->state == HC_STATE_SUSPENDED) 397 usb_hcd_resume_root_hub(hcd); 398 399 usb_hcd_poll_rh_status(hcd); 400 } 401 } 402 403 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 404 mod_timer(&xhci->comp_mode_recovery_timer, 405 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 406 } 407 408 /* 409 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 410 * that causes ports behind that hardware to enter compliance mode sometimes. 411 * The quirk creates a timer that polls every 2 seconds the link state of 412 * each host controller's port and recovers it by issuing a Warm reset 413 * if Compliance mode is detected, otherwise the port will become "dead" (no 414 * device connections or disconnections will be detected anymore). Becasue no 415 * status event is generated when entering compliance mode (per xhci spec), 416 * this quirk is needed on systems that have the failing hardware installed. 417 */ 418 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 419 { 420 xhci->port_status_u0 = 0; 421 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 422 0); 423 xhci->comp_mode_recovery_timer.expires = jiffies + 424 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 425 426 add_timer(&xhci->comp_mode_recovery_timer); 427 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 428 "Compliance mode recovery timer initialized"); 429 } 430 431 /* 432 * This function identifies the systems that have installed the SN65LVPE502CP 433 * USB3.0 re-driver and that need the Compliance Mode Quirk. 434 * Systems: 435 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 436 */ 437 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 438 { 439 const char *dmi_product_name, *dmi_sys_vendor; 440 441 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 442 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 443 if (!dmi_product_name || !dmi_sys_vendor) 444 return false; 445 446 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 447 return false; 448 449 if (strstr(dmi_product_name, "Z420") || 450 strstr(dmi_product_name, "Z620") || 451 strstr(dmi_product_name, "Z820") || 452 strstr(dmi_product_name, "Z1 Workstation")) 453 return true; 454 455 return false; 456 } 457 458 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 459 { 460 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 461 } 462 463 464 /* 465 * Initialize memory for HCD and xHC (one-time init). 466 * 467 * Program the PAGESIZE register, initialize the device context array, create 468 * device contexts (?), set up a command ring segment (or two?), create event 469 * ring (one for now). 470 */ 471 static int xhci_init(struct usb_hcd *hcd) 472 { 473 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 474 int retval; 475 476 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 477 spin_lock_init(&xhci->lock); 478 479 retval = xhci_mem_init(xhci, GFP_KERNEL); 480 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 481 482 /* Initializing Compliance Mode Recovery Data If Needed */ 483 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 484 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 485 compliance_mode_recovery_timer_init(xhci); 486 } 487 488 return retval; 489 } 490 491 /*-------------------------------------------------------------------------*/ 492 493 static int xhci_run_finished(struct xhci_hcd *xhci) 494 { 495 struct xhci_interrupter *ir = xhci->interrupters[0]; 496 unsigned long flags; 497 u32 temp; 498 499 /* 500 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 501 * Protect the short window before host is running with a lock 502 */ 503 spin_lock_irqsave(&xhci->lock, flags); 504 505 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 506 temp = readl(&xhci->op_regs->command); 507 temp |= (CMD_EIE); 508 writel(temp, &xhci->op_regs->command); 509 510 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 511 xhci_enable_interrupter(ir); 512 513 if (xhci_start(xhci)) { 514 xhci_halt(xhci); 515 spin_unlock_irqrestore(&xhci->lock, flags); 516 return -ENODEV; 517 } 518 519 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 520 521 if (xhci->quirks & XHCI_NEC_HOST) 522 xhci_ring_cmd_db(xhci); 523 524 spin_unlock_irqrestore(&xhci->lock, flags); 525 526 return 0; 527 } 528 529 /* 530 * Start the HC after it was halted. 531 * 532 * This function is called by the USB core when the HC driver is added. 533 * Its opposite is xhci_stop(). 534 * 535 * xhci_init() must be called once before this function can be called. 536 * Reset the HC, enable device slot contexts, program DCBAAP, and 537 * set command ring pointer and event ring pointer. 538 * 539 * Setup MSI-X vectors and enable interrupts. 540 */ 541 int xhci_run(struct usb_hcd *hcd) 542 { 543 u64 temp_64; 544 int ret; 545 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 546 struct xhci_interrupter *ir = xhci->interrupters[0]; 547 /* Start the xHCI host controller running only after the USB 2.0 roothub 548 * is setup. 549 */ 550 551 hcd->uses_new_polling = 1; 552 if (hcd->msi_enabled) 553 ir->ip_autoclear = true; 554 555 if (!usb_hcd_is_primary_hcd(hcd)) 556 return xhci_run_finished(xhci); 557 558 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 559 560 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 561 temp_64 &= ERST_PTR_MASK; 562 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 563 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 564 565 xhci_set_interrupter_moderation(ir, xhci->imod_interval); 566 567 if (xhci->quirks & XHCI_NEC_HOST) { 568 struct xhci_command *command; 569 570 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 571 if (!command) 572 return -ENOMEM; 573 574 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 575 TRB_TYPE(TRB_NEC_GET_FW)); 576 if (ret) 577 xhci_free_command(xhci, command); 578 } 579 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 580 "Finished %s for main hcd", __func__); 581 582 xhci_create_dbc_dev(xhci); 583 584 xhci_debugfs_init(xhci); 585 586 if (xhci_has_one_roothub(xhci)) 587 return xhci_run_finished(xhci); 588 589 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 590 591 return 0; 592 } 593 EXPORT_SYMBOL_GPL(xhci_run); 594 595 /* 596 * Stop xHCI driver. 597 * 598 * This function is called by the USB core when the HC driver is removed. 599 * Its opposite is xhci_run(). 600 * 601 * Disable device contexts, disable IRQs, and quiesce the HC. 602 * Reset the HC, finish any completed transactions, and cleanup memory. 603 */ 604 void xhci_stop(struct usb_hcd *hcd) 605 { 606 u32 temp; 607 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 608 struct xhci_interrupter *ir = xhci->interrupters[0]; 609 610 mutex_lock(&xhci->mutex); 611 612 /* Only halt host and free memory after both hcds are removed */ 613 if (!usb_hcd_is_primary_hcd(hcd)) { 614 mutex_unlock(&xhci->mutex); 615 return; 616 } 617 618 xhci_remove_dbc_dev(xhci); 619 620 spin_lock_irq(&xhci->lock); 621 xhci->xhc_state |= XHCI_STATE_HALTED; 622 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 623 xhci_halt(xhci); 624 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 625 spin_unlock_irq(&xhci->lock); 626 627 /* Deleting Compliance Mode Recovery Timer */ 628 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 629 (!(xhci_all_ports_seen_u0(xhci)))) { 630 del_timer_sync(&xhci->comp_mode_recovery_timer); 631 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 632 "%s: compliance mode recovery timer deleted", 633 __func__); 634 } 635 636 if (xhci->quirks & XHCI_AMD_PLL_FIX) 637 usb_amd_dev_put(); 638 639 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 640 "// Disabling event ring interrupts"); 641 temp = readl(&xhci->op_regs->status); 642 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 643 xhci_disable_interrupter(ir); 644 645 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 646 xhci_mem_cleanup(xhci); 647 xhci_debugfs_exit(xhci); 648 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 649 "xhci_stop completed - status = %x", 650 readl(&xhci->op_regs->status)); 651 mutex_unlock(&xhci->mutex); 652 } 653 EXPORT_SYMBOL_GPL(xhci_stop); 654 655 /* 656 * Shutdown HC (not bus-specific) 657 * 658 * This is called when the machine is rebooting or halting. We assume that the 659 * machine will be powered off, and the HC's internal state will be reset. 660 * Don't bother to free memory. 661 * 662 * This will only ever be called with the main usb_hcd (the USB3 roothub). 663 */ 664 void xhci_shutdown(struct usb_hcd *hcd) 665 { 666 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 667 668 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 669 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 670 671 /* Don't poll the roothubs after shutdown. */ 672 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 673 __func__, hcd->self.busnum); 674 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 675 del_timer_sync(&hcd->rh_timer); 676 677 if (xhci->shared_hcd) { 678 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 679 del_timer_sync(&xhci->shared_hcd->rh_timer); 680 } 681 682 spin_lock_irq(&xhci->lock); 683 xhci_halt(xhci); 684 685 /* 686 * Workaround for spurious wakeps at shutdown with HSW, and for boot 687 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 688 */ 689 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 690 xhci->quirks & XHCI_RESET_TO_DEFAULT) 691 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 692 693 spin_unlock_irq(&xhci->lock); 694 695 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 696 "xhci_shutdown completed - status = %x", 697 readl(&xhci->op_regs->status)); 698 } 699 EXPORT_SYMBOL_GPL(xhci_shutdown); 700 701 #ifdef CONFIG_PM 702 static void xhci_save_registers(struct xhci_hcd *xhci) 703 { 704 struct xhci_interrupter *ir; 705 unsigned int i; 706 707 xhci->s3.command = readl(&xhci->op_regs->command); 708 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 709 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 710 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 711 712 /* save both primary and all secondary interrupters */ 713 /* fixme, shold we lock to prevent race with remove secondary interrupter? */ 714 for (i = 0; i < xhci->max_interrupters; i++) { 715 ir = xhci->interrupters[i]; 716 if (!ir) 717 continue; 718 719 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 720 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 721 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 722 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending); 723 ir->s3_irq_control = readl(&ir->ir_set->irq_control); 724 } 725 } 726 727 static void xhci_restore_registers(struct xhci_hcd *xhci) 728 { 729 struct xhci_interrupter *ir; 730 unsigned int i; 731 732 writel(xhci->s3.command, &xhci->op_regs->command); 733 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 734 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 735 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 736 737 /* FIXME should we lock to protect against freeing of interrupters */ 738 for (i = 0; i < xhci->max_interrupters; i++) { 739 ir = xhci->interrupters[i]; 740 if (!ir) 741 continue; 742 743 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 744 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 745 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 746 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending); 747 writel(ir->s3_irq_control, &ir->ir_set->irq_control); 748 } 749 } 750 751 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 752 { 753 u64 val_64; 754 755 /* step 2: initialize command ring buffer */ 756 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 757 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 758 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 759 xhci->cmd_ring->dequeue) & 760 (u64) ~CMD_RING_RSVD_BITS) | 761 xhci->cmd_ring->cycle_state; 762 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 763 "// Setting command ring address to 0x%llx", 764 (long unsigned long) val_64); 765 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 766 } 767 768 /* 769 * The whole command ring must be cleared to zero when we suspend the host. 770 * 771 * The host doesn't save the command ring pointer in the suspend well, so we 772 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 773 * aligned, because of the reserved bits in the command ring dequeue pointer 774 * register. Therefore, we can't just set the dequeue pointer back in the 775 * middle of the ring (TRBs are 16-byte aligned). 776 */ 777 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 778 { 779 struct xhci_ring *ring; 780 struct xhci_segment *seg; 781 782 ring = xhci->cmd_ring; 783 xhci_for_each_ring_seg(ring->first_seg, seg) { 784 /* erase all TRBs before the link */ 785 memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 786 /* clear link cycle bit */ 787 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE); 788 } 789 790 xhci_initialize_ring_info(ring); 791 /* 792 * Reset the hardware dequeue pointer. 793 * Yes, this will need to be re-written after resume, but we're paranoid 794 * and want to make sure the hardware doesn't access bogus memory 795 * because, say, the BIOS or an SMI started the host without changing 796 * the command ring pointers. 797 */ 798 xhci_set_cmd_ring_deq(xhci); 799 } 800 801 /* 802 * Disable port wake bits if do_wakeup is not set. 803 * 804 * Also clear a possible internal port wake state left hanging for ports that 805 * detected termination but never successfully enumerated (trained to 0U). 806 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 807 * at enumeration clears this wake, force one here as well for unconnected ports 808 */ 809 810 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 811 struct xhci_hub *rhub, 812 bool do_wakeup) 813 { 814 unsigned long flags; 815 u32 t1, t2, portsc; 816 int i; 817 818 spin_lock_irqsave(&xhci->lock, flags); 819 820 for (i = 0; i < rhub->num_ports; i++) { 821 portsc = readl(rhub->ports[i]->addr); 822 t1 = xhci_port_state_to_neutral(portsc); 823 t2 = t1; 824 825 /* clear wake bits if do_wake is not set */ 826 if (!do_wakeup) 827 t2 &= ~PORT_WAKE_BITS; 828 829 /* Don't touch csc bit if connected or connect change is set */ 830 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 831 t2 |= PORT_CSC; 832 833 if (t1 != t2) { 834 writel(t2, rhub->ports[i]->addr); 835 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 836 rhub->hcd->self.busnum, i + 1, portsc, t2); 837 } 838 } 839 spin_unlock_irqrestore(&xhci->lock, flags); 840 } 841 842 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 843 { 844 struct xhci_port **ports; 845 int port_index; 846 u32 status; 847 u32 portsc; 848 849 status = readl(&xhci->op_regs->status); 850 if (status & STS_EINT) 851 return true; 852 /* 853 * Checking STS_EINT is not enough as there is a lag between a change 854 * bit being set and the Port Status Change Event that it generated 855 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 856 */ 857 858 port_index = xhci->usb2_rhub.num_ports; 859 ports = xhci->usb2_rhub.ports; 860 while (port_index--) { 861 portsc = readl(ports[port_index]->addr); 862 if (portsc & PORT_CHANGE_MASK || 863 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 864 return true; 865 } 866 port_index = xhci->usb3_rhub.num_ports; 867 ports = xhci->usb3_rhub.ports; 868 while (port_index--) { 869 portsc = readl(ports[port_index]->addr); 870 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) || 871 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 872 return true; 873 } 874 return false; 875 } 876 877 /* 878 * Stop HC (not bus-specific) 879 * 880 * This is called when the machine transition into S3/S4 mode. 881 * 882 */ 883 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 884 { 885 int rc = 0; 886 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 887 struct usb_hcd *hcd = xhci_to_hcd(xhci); 888 u32 command; 889 u32 res; 890 891 if (!hcd->state) 892 return 0; 893 894 if (hcd->state != HC_STATE_SUSPENDED || 895 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 896 return -EINVAL; 897 898 /* Clear root port wake on bits if wakeup not allowed. */ 899 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 900 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 901 902 if (!HCD_HW_ACCESSIBLE(hcd)) 903 return 0; 904 905 xhci_dbc_suspend(xhci); 906 907 /* Don't poll the roothubs on bus suspend. */ 908 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 909 __func__, hcd->self.busnum); 910 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 911 del_timer_sync(&hcd->rh_timer); 912 if (xhci->shared_hcd) { 913 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 914 del_timer_sync(&xhci->shared_hcd->rh_timer); 915 } 916 917 if (xhci->quirks & XHCI_SUSPEND_DELAY) 918 usleep_range(1000, 1500); 919 920 spin_lock_irq(&xhci->lock); 921 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 922 if (xhci->shared_hcd) 923 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 924 /* step 1: stop endpoint */ 925 /* skipped assuming that port suspend has done */ 926 927 /* step 2: clear Run/Stop bit */ 928 command = readl(&xhci->op_regs->command); 929 command &= ~CMD_RUN; 930 writel(command, &xhci->op_regs->command); 931 932 /* Some chips from Fresco Logic need an extraordinary delay */ 933 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 934 935 if (xhci_handshake(&xhci->op_regs->status, 936 STS_HALT, STS_HALT, delay)) { 937 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 938 spin_unlock_irq(&xhci->lock); 939 return -ETIMEDOUT; 940 } 941 xhci_clear_command_ring(xhci); 942 943 /* step 3: save registers */ 944 xhci_save_registers(xhci); 945 946 /* step 4: set CSS flag */ 947 command = readl(&xhci->op_regs->command); 948 command |= CMD_CSS; 949 writel(command, &xhci->op_regs->command); 950 xhci->broken_suspend = 0; 951 if (xhci_handshake(&xhci->op_regs->status, 952 STS_SAVE, 0, 20 * 1000)) { 953 /* 954 * AMD SNPS xHC 3.0 occasionally does not clear the 955 * SSS bit of USBSTS and when driver tries to poll 956 * to see if the xHC clears BIT(8) which never happens 957 * and driver assumes that controller is not responding 958 * and times out. To workaround this, its good to check 959 * if SRE and HCE bits are not set (as per xhci 960 * Section 5.4.2) and bypass the timeout. 961 */ 962 res = readl(&xhci->op_regs->status); 963 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 964 (((res & STS_SRE) == 0) && 965 ((res & STS_HCE) == 0))) { 966 xhci->broken_suspend = 1; 967 } else { 968 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 969 spin_unlock_irq(&xhci->lock); 970 return -ETIMEDOUT; 971 } 972 } 973 spin_unlock_irq(&xhci->lock); 974 975 /* 976 * Deleting Compliance Mode Recovery Timer because the xHCI Host 977 * is about to be suspended. 978 */ 979 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 980 (!(xhci_all_ports_seen_u0(xhci)))) { 981 del_timer_sync(&xhci->comp_mode_recovery_timer); 982 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 983 "%s: compliance mode recovery timer deleted", 984 __func__); 985 } 986 987 return rc; 988 } 989 EXPORT_SYMBOL_GPL(xhci_suspend); 990 991 /* 992 * start xHC (not bus-specific) 993 * 994 * This is called when the machine transition from S3/S4 mode. 995 * 996 */ 997 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg) 998 { 999 bool hibernated = (msg.event == PM_EVENT_RESTORE); 1000 u32 command, temp = 0; 1001 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1002 int retval = 0; 1003 bool comp_timer_running = false; 1004 bool pending_portevent = false; 1005 bool suspended_usb3_devs = false; 1006 bool reinit_xhc = false; 1007 1008 if (!hcd->state) 1009 return 0; 1010 1011 /* Wait a bit if either of the roothubs need to settle from the 1012 * transition into bus suspend. 1013 */ 1014 1015 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1016 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1017 msleep(100); 1018 1019 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1020 if (xhci->shared_hcd) 1021 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1022 1023 spin_lock_irq(&xhci->lock); 1024 1025 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1026 reinit_xhc = true; 1027 1028 if (!reinit_xhc) { 1029 /* 1030 * Some controllers might lose power during suspend, so wait 1031 * for controller not ready bit to clear, just as in xHC init. 1032 */ 1033 retval = xhci_handshake(&xhci->op_regs->status, 1034 STS_CNR, 0, 10 * 1000 * 1000); 1035 if (retval) { 1036 xhci_warn(xhci, "Controller not ready at resume %d\n", 1037 retval); 1038 spin_unlock_irq(&xhci->lock); 1039 return retval; 1040 } 1041 /* step 1: restore register */ 1042 xhci_restore_registers(xhci); 1043 /* step 2: initialize command ring buffer */ 1044 xhci_set_cmd_ring_deq(xhci); 1045 /* step 3: restore state and start state*/ 1046 /* step 3: set CRS flag */ 1047 command = readl(&xhci->op_regs->command); 1048 command |= CMD_CRS; 1049 writel(command, &xhci->op_regs->command); 1050 /* 1051 * Some controllers take up to 55+ ms to complete the controller 1052 * restore so setting the timeout to 100ms. Xhci specification 1053 * doesn't mention any timeout value. 1054 */ 1055 if (xhci_handshake(&xhci->op_regs->status, 1056 STS_RESTORE, 0, 100 * 1000)) { 1057 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1058 spin_unlock_irq(&xhci->lock); 1059 return -ETIMEDOUT; 1060 } 1061 } 1062 1063 temp = readl(&xhci->op_regs->status); 1064 1065 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1066 if ((temp & (STS_SRE | STS_HCE)) && 1067 !(xhci->xhc_state & XHCI_STATE_REMOVING)) { 1068 reinit_xhc = true; 1069 if (!xhci->broken_suspend) 1070 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1071 } 1072 1073 if (reinit_xhc) { 1074 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1075 !(xhci_all_ports_seen_u0(xhci))) { 1076 del_timer_sync(&xhci->comp_mode_recovery_timer); 1077 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1078 "Compliance Mode Recovery Timer deleted!"); 1079 } 1080 1081 /* Let the USB core know _both_ roothubs lost power. */ 1082 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1083 if (xhci->shared_hcd) 1084 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1085 1086 xhci_dbg(xhci, "Stop HCD\n"); 1087 xhci_halt(xhci); 1088 xhci_zero_64b_regs(xhci); 1089 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1090 spin_unlock_irq(&xhci->lock); 1091 if (retval) 1092 return retval; 1093 1094 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1095 temp = readl(&xhci->op_regs->status); 1096 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1097 xhci_disable_interrupter(xhci->interrupters[0]); 1098 1099 xhci_dbg(xhci, "cleaning up memory\n"); 1100 xhci_mem_cleanup(xhci); 1101 xhci_debugfs_exit(xhci); 1102 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1103 readl(&xhci->op_regs->status)); 1104 1105 /* USB core calls the PCI reinit and start functions twice: 1106 * first with the primary HCD, and then with the secondary HCD. 1107 * If we don't do the same, the host will never be started. 1108 */ 1109 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1110 retval = xhci_init(hcd); 1111 if (retval) 1112 return retval; 1113 comp_timer_running = true; 1114 1115 xhci_dbg(xhci, "Start the primary HCD\n"); 1116 retval = xhci_run(hcd); 1117 if (!retval && xhci->shared_hcd) { 1118 xhci_dbg(xhci, "Start the secondary HCD\n"); 1119 retval = xhci_run(xhci->shared_hcd); 1120 } 1121 if (retval) 1122 return retval; 1123 /* 1124 * Resume roothubs unconditionally as PORTSC change bits are not 1125 * immediately visible after xHC reset 1126 */ 1127 hcd->state = HC_STATE_SUSPENDED; 1128 1129 if (xhci->shared_hcd) { 1130 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1131 usb_hcd_resume_root_hub(xhci->shared_hcd); 1132 } 1133 usb_hcd_resume_root_hub(hcd); 1134 1135 goto done; 1136 } 1137 1138 /* step 4: set Run/Stop bit */ 1139 command = readl(&xhci->op_regs->command); 1140 command |= CMD_RUN; 1141 writel(command, &xhci->op_regs->command); 1142 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1143 0, 250 * 1000); 1144 1145 /* step 5: walk topology and initialize portsc, 1146 * portpmsc and portli 1147 */ 1148 /* this is done in bus_resume */ 1149 1150 /* step 6: restart each of the previously 1151 * Running endpoints by ringing their doorbells 1152 */ 1153 1154 spin_unlock_irq(&xhci->lock); 1155 1156 xhci_dbc_resume(xhci); 1157 1158 if (retval == 0) { 1159 /* 1160 * Resume roothubs only if there are pending events. 1161 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1162 * the first wake signalling failed, give it that chance if 1163 * there are suspended USB 3 devices. 1164 */ 1165 if (xhci->usb3_rhub.bus_state.suspended_ports || 1166 xhci->usb3_rhub.bus_state.bus_suspended) 1167 suspended_usb3_devs = true; 1168 1169 pending_portevent = xhci_pending_portevent(xhci); 1170 1171 if (suspended_usb3_devs && !pending_portevent && 1172 msg.event == PM_EVENT_AUTO_RESUME) { 1173 msleep(120); 1174 pending_portevent = xhci_pending_portevent(xhci); 1175 } 1176 1177 if (pending_portevent) { 1178 if (xhci->shared_hcd) 1179 usb_hcd_resume_root_hub(xhci->shared_hcd); 1180 usb_hcd_resume_root_hub(hcd); 1181 } 1182 } 1183 done: 1184 /* 1185 * If system is subject to the Quirk, Compliance Mode Timer needs to 1186 * be re-initialized Always after a system resume. Ports are subject 1187 * to suffer the Compliance Mode issue again. It doesn't matter if 1188 * ports have entered previously to U0 before system's suspension. 1189 */ 1190 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1191 compliance_mode_recovery_timer_init(xhci); 1192 1193 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1194 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1195 1196 /* Re-enable port polling. */ 1197 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1198 __func__, hcd->self.busnum); 1199 if (xhci->shared_hcd) { 1200 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1201 usb_hcd_poll_rh_status(xhci->shared_hcd); 1202 } 1203 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1204 usb_hcd_poll_rh_status(hcd); 1205 1206 return retval; 1207 } 1208 EXPORT_SYMBOL_GPL(xhci_resume); 1209 #endif /* CONFIG_PM */ 1210 1211 /*-------------------------------------------------------------------------*/ 1212 1213 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1214 { 1215 void *temp; 1216 int ret = 0; 1217 unsigned int buf_len; 1218 enum dma_data_direction dir; 1219 1220 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1221 buf_len = urb->transfer_buffer_length; 1222 1223 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1224 dev_to_node(hcd->self.sysdev)); 1225 if (!temp) 1226 return -ENOMEM; 1227 1228 if (usb_urb_dir_out(urb)) 1229 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1230 temp, buf_len, 0); 1231 1232 urb->transfer_buffer = temp; 1233 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1234 urb->transfer_buffer, 1235 urb->transfer_buffer_length, 1236 dir); 1237 1238 if (dma_mapping_error(hcd->self.sysdev, 1239 urb->transfer_dma)) { 1240 ret = -EAGAIN; 1241 kfree(temp); 1242 } else { 1243 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1244 } 1245 1246 return ret; 1247 } 1248 1249 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1250 struct urb *urb) 1251 { 1252 bool ret = false; 1253 unsigned int i; 1254 unsigned int len = 0; 1255 unsigned int trb_size; 1256 unsigned int max_pkt; 1257 struct scatterlist *sg; 1258 struct scatterlist *tail_sg; 1259 1260 tail_sg = urb->sg; 1261 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1262 1263 if (!urb->num_sgs) 1264 return ret; 1265 1266 if (urb->dev->speed >= USB_SPEED_SUPER) 1267 trb_size = TRB_CACHE_SIZE_SS; 1268 else 1269 trb_size = TRB_CACHE_SIZE_HS; 1270 1271 if (urb->transfer_buffer_length != 0 && 1272 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1273 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1274 len = len + sg->length; 1275 if (i > trb_size - 2) { 1276 len = len - tail_sg->length; 1277 if (len < max_pkt) { 1278 ret = true; 1279 break; 1280 } 1281 1282 tail_sg = sg_next(tail_sg); 1283 } 1284 } 1285 } 1286 return ret; 1287 } 1288 1289 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1290 { 1291 unsigned int len; 1292 unsigned int buf_len; 1293 enum dma_data_direction dir; 1294 1295 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1296 1297 buf_len = urb->transfer_buffer_length; 1298 1299 if (IS_ENABLED(CONFIG_HAS_DMA) && 1300 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1301 dma_unmap_single(hcd->self.sysdev, 1302 urb->transfer_dma, 1303 urb->transfer_buffer_length, 1304 dir); 1305 1306 if (usb_urb_dir_in(urb)) { 1307 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1308 urb->transfer_buffer, 1309 buf_len, 1310 0); 1311 if (len != buf_len) { 1312 xhci_dbg(hcd_to_xhci(hcd), 1313 "Copy from tmp buf to urb sg list failed\n"); 1314 urb->actual_length = len; 1315 } 1316 } 1317 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1318 kfree(urb->transfer_buffer); 1319 urb->transfer_buffer = NULL; 1320 } 1321 1322 /* 1323 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1324 * we'll copy the actual data into the TRB address register. This is limited to 1325 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1326 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1327 */ 1328 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1329 gfp_t mem_flags) 1330 { 1331 struct xhci_hcd *xhci; 1332 1333 xhci = hcd_to_xhci(hcd); 1334 1335 if (xhci_urb_suitable_for_idt(urb)) 1336 return 0; 1337 1338 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1339 if (xhci_urb_temp_buffer_required(hcd, urb)) 1340 return xhci_map_temp_buffer(hcd, urb); 1341 } 1342 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1343 } 1344 1345 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1346 { 1347 struct xhci_hcd *xhci; 1348 bool unmap_temp_buf = false; 1349 1350 xhci = hcd_to_xhci(hcd); 1351 1352 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1353 unmap_temp_buf = true; 1354 1355 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1356 xhci_unmap_temp_buf(hcd, urb); 1357 else 1358 usb_hcd_unmap_urb_for_dma(hcd, urb); 1359 } 1360 1361 /** 1362 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1363 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1364 * value to right shift 1 for the bitmask. 1365 * 1366 * Index = (epnum * 2) + direction - 1, 1367 * where direction = 0 for OUT, 1 for IN. 1368 * For control endpoints, the IN index is used (OUT index is unused), so 1369 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1370 */ 1371 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1372 { 1373 unsigned int index; 1374 if (usb_endpoint_xfer_control(desc)) 1375 index = (unsigned int) (usb_endpoint_num(desc)*2); 1376 else 1377 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1378 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1379 return index; 1380 } 1381 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1382 1383 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1384 * address from the XHCI endpoint index. 1385 */ 1386 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1387 { 1388 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1389 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1390 return direction | number; 1391 } 1392 1393 /* Find the flag for this endpoint (for use in the control context). Use the 1394 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1395 * bit 1, etc. 1396 */ 1397 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1398 { 1399 return 1 << (xhci_get_endpoint_index(desc) + 1); 1400 } 1401 1402 /* Compute the last valid endpoint context index. Basically, this is the 1403 * endpoint index plus one. For slot contexts with more than valid endpoint, 1404 * we find the most significant bit set in the added contexts flags. 1405 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1406 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1407 */ 1408 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1409 { 1410 return fls(added_ctxs) - 1; 1411 } 1412 1413 /* Returns 1 if the arguments are OK; 1414 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1415 */ 1416 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1417 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1418 const char *func) { 1419 struct xhci_hcd *xhci; 1420 struct xhci_virt_device *virt_dev; 1421 1422 if (!hcd || (check_ep && !ep) || !udev) { 1423 pr_debug("xHCI %s called with invalid args\n", func); 1424 return -EINVAL; 1425 } 1426 if (!udev->parent) { 1427 pr_debug("xHCI %s called for root hub\n", func); 1428 return 0; 1429 } 1430 1431 xhci = hcd_to_xhci(hcd); 1432 if (check_virt_dev) { 1433 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1434 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1435 func); 1436 return -EINVAL; 1437 } 1438 1439 virt_dev = xhci->devs[udev->slot_id]; 1440 if (virt_dev->udev != udev) { 1441 xhci_dbg(xhci, "xHCI %s called with udev and " 1442 "virt_dev does not match\n", func); 1443 return -EINVAL; 1444 } 1445 } 1446 1447 if (xhci->xhc_state & XHCI_STATE_HALTED) 1448 return -ENODEV; 1449 1450 return 1; 1451 } 1452 1453 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1454 struct usb_device *udev, struct xhci_command *command, 1455 bool ctx_change, bool must_succeed); 1456 1457 /* 1458 * Full speed devices may have a max packet size greater than 8 bytes, but the 1459 * USB core doesn't know that until it reads the first 8 bytes of the 1460 * descriptor. If the usb_device's max packet size changes after that point, 1461 * we need to issue an evaluate context command and wait on it. 1462 */ 1463 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev) 1464 { 1465 struct xhci_input_control_ctx *ctrl_ctx; 1466 struct xhci_ep_ctx *ep_ctx; 1467 struct xhci_command *command; 1468 int max_packet_size; 1469 int hw_max_packet_size; 1470 int ret = 0; 1471 1472 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0); 1473 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1474 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc); 1475 1476 if (hw_max_packet_size == max_packet_size) 1477 return 0; 1478 1479 switch (max_packet_size) { 1480 case 8: case 16: case 32: case 64: case 9: 1481 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1482 "Max Packet Size for ep 0 changed."); 1483 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1484 "Max packet size in usb_device = %d", 1485 max_packet_size); 1486 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1487 "Max packet size in xHCI HW = %d", 1488 hw_max_packet_size); 1489 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1490 "Issuing evaluate context command."); 1491 1492 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1493 if (!command) 1494 return -ENOMEM; 1495 1496 command->in_ctx = vdev->in_ctx; 1497 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1498 if (!ctrl_ctx) { 1499 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1500 __func__); 1501 ret = -ENOMEM; 1502 break; 1503 } 1504 /* Set up the modified control endpoint 0 */ 1505 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0); 1506 1507 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0); 1508 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1509 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1510 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1511 1512 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1513 ctrl_ctx->drop_flags = 0; 1514 1515 ret = xhci_configure_endpoint(xhci, vdev->udev, command, 1516 true, false); 1517 /* Clean up the input context for later use by bandwidth functions */ 1518 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1519 break; 1520 default: 1521 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n", 1522 max_packet_size); 1523 return -EINVAL; 1524 } 1525 1526 kfree(command->completion); 1527 kfree(command); 1528 1529 return ret; 1530 } 1531 1532 /* 1533 * non-error returns are a promise to giveback() the urb later 1534 * we drop ownership so next owner (or urb unlink) can get it 1535 */ 1536 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1537 { 1538 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1539 unsigned long flags; 1540 int ret = 0; 1541 unsigned int slot_id, ep_index; 1542 unsigned int *ep_state; 1543 struct urb_priv *urb_priv; 1544 int num_tds; 1545 1546 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1547 1548 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1549 num_tds = urb->number_of_packets; 1550 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1551 urb->transfer_buffer_length > 0 && 1552 urb->transfer_flags & URB_ZERO_PACKET && 1553 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1554 num_tds = 2; 1555 else 1556 num_tds = 1; 1557 1558 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1559 if (!urb_priv) 1560 return -ENOMEM; 1561 1562 urb_priv->num_tds = num_tds; 1563 urb_priv->num_tds_done = 0; 1564 urb->hcpriv = urb_priv; 1565 1566 trace_xhci_urb_enqueue(urb); 1567 1568 spin_lock_irqsave(&xhci->lock, flags); 1569 1570 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1571 true, true, __func__); 1572 if (ret <= 0) { 1573 ret = ret ? ret : -EINVAL; 1574 goto free_priv; 1575 } 1576 1577 slot_id = urb->dev->slot_id; 1578 1579 if (!HCD_HW_ACCESSIBLE(hcd)) { 1580 ret = -ESHUTDOWN; 1581 goto free_priv; 1582 } 1583 1584 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1585 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1586 ret = -ENODEV; 1587 goto free_priv; 1588 } 1589 1590 if (xhci->xhc_state & XHCI_STATE_DYING) { 1591 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1592 urb->ep->desc.bEndpointAddress, urb); 1593 ret = -ESHUTDOWN; 1594 goto free_priv; 1595 } 1596 1597 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1598 1599 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1600 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1601 *ep_state); 1602 ret = -EINVAL; 1603 goto free_priv; 1604 } 1605 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1606 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1607 ret = -EINVAL; 1608 goto free_priv; 1609 } 1610 1611 switch (usb_endpoint_type(&urb->ep->desc)) { 1612 1613 case USB_ENDPOINT_XFER_CONTROL: 1614 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1615 slot_id, ep_index); 1616 break; 1617 case USB_ENDPOINT_XFER_BULK: 1618 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1619 slot_id, ep_index); 1620 break; 1621 case USB_ENDPOINT_XFER_INT: 1622 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1623 slot_id, ep_index); 1624 break; 1625 case USB_ENDPOINT_XFER_ISOC: 1626 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1627 slot_id, ep_index); 1628 } 1629 1630 if (ret) { 1631 free_priv: 1632 xhci_urb_free_priv(urb_priv); 1633 urb->hcpriv = NULL; 1634 } 1635 spin_unlock_irqrestore(&xhci->lock, flags); 1636 return ret; 1637 } 1638 1639 /* 1640 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1641 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1642 * should pick up where it left off in the TD, unless a Set Transfer Ring 1643 * Dequeue Pointer is issued. 1644 * 1645 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1646 * the ring. Since the ring is a contiguous structure, they can't be physically 1647 * removed. Instead, there are two options: 1648 * 1649 * 1) If the HC is in the middle of processing the URB to be canceled, we 1650 * simply move the ring's dequeue pointer past those TRBs using the Set 1651 * Transfer Ring Dequeue Pointer command. This will be the common case, 1652 * when drivers timeout on the last submitted URB and attempt to cancel. 1653 * 1654 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1655 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1656 * HC will need to invalidate the any TRBs it has cached after the stop 1657 * endpoint command, as noted in the xHCI 0.95 errata. 1658 * 1659 * 3) The TD may have completed by the time the Stop Endpoint Command 1660 * completes, so software needs to handle that case too. 1661 * 1662 * This function should protect against the TD enqueueing code ringing the 1663 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1664 * It also needs to account for multiple cancellations on happening at the same 1665 * time for the same endpoint. 1666 * 1667 * Note that this function can be called in any context, or so says 1668 * usb_hcd_unlink_urb() 1669 */ 1670 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1671 { 1672 unsigned long flags; 1673 int ret, i; 1674 u32 temp; 1675 struct xhci_hcd *xhci; 1676 struct urb_priv *urb_priv; 1677 struct xhci_td *td; 1678 unsigned int ep_index; 1679 struct xhci_ring *ep_ring; 1680 struct xhci_virt_ep *ep; 1681 struct xhci_command *command; 1682 struct xhci_virt_device *vdev; 1683 1684 xhci = hcd_to_xhci(hcd); 1685 spin_lock_irqsave(&xhci->lock, flags); 1686 1687 trace_xhci_urb_dequeue(urb); 1688 1689 /* Make sure the URB hasn't completed or been unlinked already */ 1690 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1691 if (ret) 1692 goto done; 1693 1694 /* give back URB now if we can't queue it for cancel */ 1695 vdev = xhci->devs[urb->dev->slot_id]; 1696 urb_priv = urb->hcpriv; 1697 if (!vdev || !urb_priv) 1698 goto err_giveback; 1699 1700 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1701 ep = &vdev->eps[ep_index]; 1702 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1703 if (!ep || !ep_ring) 1704 goto err_giveback; 1705 1706 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1707 temp = readl(&xhci->op_regs->status); 1708 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1709 xhci_hc_died(xhci); 1710 goto done; 1711 } 1712 1713 /* 1714 * check ring is not re-allocated since URB was enqueued. If it is, then 1715 * make sure none of the ring related pointers in this URB private data 1716 * are touched, such as td_list, otherwise we overwrite freed data 1717 */ 1718 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1719 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1720 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1721 td = &urb_priv->td[i]; 1722 if (!list_empty(&td->cancelled_td_list)) 1723 list_del_init(&td->cancelled_td_list); 1724 } 1725 goto err_giveback; 1726 } 1727 1728 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1729 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1730 "HC halted, freeing TD manually."); 1731 for (i = urb_priv->num_tds_done; 1732 i < urb_priv->num_tds; 1733 i++) { 1734 td = &urb_priv->td[i]; 1735 if (!list_empty(&td->td_list)) 1736 list_del_init(&td->td_list); 1737 if (!list_empty(&td->cancelled_td_list)) 1738 list_del_init(&td->cancelled_td_list); 1739 } 1740 goto err_giveback; 1741 } 1742 1743 i = urb_priv->num_tds_done; 1744 if (i < urb_priv->num_tds) 1745 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1746 "Cancel URB %p, dev %s, ep 0x%x, " 1747 "starting at offset 0x%llx", 1748 urb, urb->dev->devpath, 1749 urb->ep->desc.bEndpointAddress, 1750 (unsigned long long) xhci_trb_virt_to_dma( 1751 urb_priv->td[i].start_seg, 1752 urb_priv->td[i].start_trb)); 1753 1754 for (; i < urb_priv->num_tds; i++) { 1755 td = &urb_priv->td[i]; 1756 /* TD can already be on cancelled list if ep halted on it */ 1757 if (list_empty(&td->cancelled_td_list)) { 1758 td->cancel_status = TD_DIRTY; 1759 list_add_tail(&td->cancelled_td_list, 1760 &ep->cancelled_td_list); 1761 } 1762 } 1763 1764 /* These completion handlers will sort out cancelled TDs for us */ 1765 if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) { 1766 xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n", 1767 urb->dev->slot_id, ep_index, ep->ep_state); 1768 goto done; 1769 } 1770 1771 /* In this case no commands are pending but the endpoint is stopped */ 1772 if (ep->ep_state & EP_CLEARING_TT) { 1773 /* and cancelled TDs can be given back right away */ 1774 xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n", 1775 urb->dev->slot_id, ep_index, ep->ep_state); 1776 xhci_process_cancelled_tds(ep); 1777 } else { 1778 /* Otherwise, queue a new Stop Endpoint command */ 1779 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1780 if (!command) { 1781 ret = -ENOMEM; 1782 goto done; 1783 } 1784 ep->stop_time = jiffies; 1785 ep->ep_state |= EP_STOP_CMD_PENDING; 1786 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1787 ep_index, 0); 1788 xhci_ring_cmd_db(xhci); 1789 } 1790 done: 1791 spin_unlock_irqrestore(&xhci->lock, flags); 1792 return ret; 1793 1794 err_giveback: 1795 if (urb_priv) 1796 xhci_urb_free_priv(urb_priv); 1797 usb_hcd_unlink_urb_from_ep(hcd, urb); 1798 spin_unlock_irqrestore(&xhci->lock, flags); 1799 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1800 return ret; 1801 } 1802 1803 /* Drop an endpoint from a new bandwidth configuration for this device. 1804 * Only one call to this function is allowed per endpoint before 1805 * check_bandwidth() or reset_bandwidth() must be called. 1806 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1807 * add the endpoint to the schedule with possibly new parameters denoted by a 1808 * different endpoint descriptor in usb_host_endpoint. 1809 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1810 * not allowed. 1811 * 1812 * The USB core will not allow URBs to be queued to an endpoint that is being 1813 * disabled, so there's no need for mutual exclusion to protect 1814 * the xhci->devs[slot_id] structure. 1815 */ 1816 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1817 struct usb_host_endpoint *ep) 1818 { 1819 struct xhci_hcd *xhci; 1820 struct xhci_container_ctx *in_ctx, *out_ctx; 1821 struct xhci_input_control_ctx *ctrl_ctx; 1822 unsigned int ep_index; 1823 struct xhci_ep_ctx *ep_ctx; 1824 u32 drop_flag; 1825 u32 new_add_flags, new_drop_flags; 1826 int ret; 1827 1828 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1829 if (ret <= 0) 1830 return ret; 1831 xhci = hcd_to_xhci(hcd); 1832 if (xhci->xhc_state & XHCI_STATE_DYING) 1833 return -ENODEV; 1834 1835 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1836 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1837 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1838 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1839 __func__, drop_flag); 1840 return 0; 1841 } 1842 1843 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1844 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1845 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1846 if (!ctrl_ctx) { 1847 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1848 __func__); 1849 return 0; 1850 } 1851 1852 ep_index = xhci_get_endpoint_index(&ep->desc); 1853 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1854 /* If the HC already knows the endpoint is disabled, 1855 * or the HCD has noted it is disabled, ignore this request 1856 */ 1857 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1858 le32_to_cpu(ctrl_ctx->drop_flags) & 1859 xhci_get_endpoint_flag(&ep->desc)) { 1860 /* Do not warn when called after a usb_device_reset */ 1861 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1862 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1863 __func__, ep); 1864 return 0; 1865 } 1866 1867 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1868 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1869 1870 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1871 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1872 1873 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1874 1875 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1876 1877 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1878 (unsigned int) ep->desc.bEndpointAddress, 1879 udev->slot_id, 1880 (unsigned int) new_drop_flags, 1881 (unsigned int) new_add_flags); 1882 return 0; 1883 } 1884 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1885 1886 /* Add an endpoint to a new possible bandwidth configuration for this device. 1887 * Only one call to this function is allowed per endpoint before 1888 * check_bandwidth() or reset_bandwidth() must be called. 1889 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1890 * add the endpoint to the schedule with possibly new parameters denoted by a 1891 * different endpoint descriptor in usb_host_endpoint. 1892 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1893 * not allowed. 1894 * 1895 * The USB core will not allow URBs to be queued to an endpoint until the 1896 * configuration or alt setting is installed in the device, so there's no need 1897 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1898 */ 1899 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1900 struct usb_host_endpoint *ep) 1901 { 1902 struct xhci_hcd *xhci; 1903 struct xhci_container_ctx *in_ctx; 1904 unsigned int ep_index; 1905 struct xhci_input_control_ctx *ctrl_ctx; 1906 struct xhci_ep_ctx *ep_ctx; 1907 u32 added_ctxs; 1908 u32 new_add_flags, new_drop_flags; 1909 struct xhci_virt_device *virt_dev; 1910 int ret = 0; 1911 1912 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1913 if (ret <= 0) { 1914 /* So we won't queue a reset ep command for a root hub */ 1915 ep->hcpriv = NULL; 1916 return ret; 1917 } 1918 xhci = hcd_to_xhci(hcd); 1919 if (xhci->xhc_state & XHCI_STATE_DYING) 1920 return -ENODEV; 1921 1922 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1923 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1924 /* FIXME when we have to issue an evaluate endpoint command to 1925 * deal with ep0 max packet size changing once we get the 1926 * descriptors 1927 */ 1928 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1929 __func__, added_ctxs); 1930 return 0; 1931 } 1932 1933 virt_dev = xhci->devs[udev->slot_id]; 1934 in_ctx = virt_dev->in_ctx; 1935 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1936 if (!ctrl_ctx) { 1937 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1938 __func__); 1939 return 0; 1940 } 1941 1942 ep_index = xhci_get_endpoint_index(&ep->desc); 1943 /* If this endpoint is already in use, and the upper layers are trying 1944 * to add it again without dropping it, reject the addition. 1945 */ 1946 if (virt_dev->eps[ep_index].ring && 1947 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1948 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1949 "without dropping it.\n", 1950 (unsigned int) ep->desc.bEndpointAddress); 1951 return -EINVAL; 1952 } 1953 1954 /* If the HCD has already noted the endpoint is enabled, 1955 * ignore this request. 1956 */ 1957 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1958 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1959 __func__, ep); 1960 return 0; 1961 } 1962 1963 /* 1964 * Configuration and alternate setting changes must be done in 1965 * process context, not interrupt context (or so documenation 1966 * for usb_set_interface() and usb_set_configuration() claim). 1967 */ 1968 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1969 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1970 __func__, ep->desc.bEndpointAddress); 1971 return -ENOMEM; 1972 } 1973 1974 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1975 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1976 1977 /* If xhci_endpoint_disable() was called for this endpoint, but the 1978 * xHC hasn't been notified yet through the check_bandwidth() call, 1979 * this re-adds a new state for the endpoint from the new endpoint 1980 * descriptors. We must drop and re-add this endpoint, so we leave the 1981 * drop flags alone. 1982 */ 1983 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1984 1985 /* Store the usb_device pointer for later use */ 1986 ep->hcpriv = udev; 1987 1988 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1989 trace_xhci_add_endpoint(ep_ctx); 1990 1991 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1992 (unsigned int) ep->desc.bEndpointAddress, 1993 udev->slot_id, 1994 (unsigned int) new_drop_flags, 1995 (unsigned int) new_add_flags); 1996 return 0; 1997 } 1998 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 1999 2000 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2001 { 2002 struct xhci_input_control_ctx *ctrl_ctx; 2003 struct xhci_ep_ctx *ep_ctx; 2004 struct xhci_slot_ctx *slot_ctx; 2005 int i; 2006 2007 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2008 if (!ctrl_ctx) { 2009 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2010 __func__); 2011 return; 2012 } 2013 2014 /* When a device's add flag and drop flag are zero, any subsequent 2015 * configure endpoint command will leave that endpoint's state 2016 * untouched. Make sure we don't leave any old state in the input 2017 * endpoint contexts. 2018 */ 2019 ctrl_ctx->drop_flags = 0; 2020 ctrl_ctx->add_flags = 0; 2021 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2022 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2023 /* Endpoint 0 is always valid */ 2024 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2025 for (i = 1; i < 31; i++) { 2026 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2027 ep_ctx->ep_info = 0; 2028 ep_ctx->ep_info2 = 0; 2029 ep_ctx->deq = 0; 2030 ep_ctx->tx_info = 0; 2031 } 2032 } 2033 2034 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2035 struct usb_device *udev, u32 *cmd_status) 2036 { 2037 int ret; 2038 2039 switch (*cmd_status) { 2040 case COMP_COMMAND_ABORTED: 2041 case COMP_COMMAND_RING_STOPPED: 2042 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2043 ret = -ETIME; 2044 break; 2045 case COMP_RESOURCE_ERROR: 2046 dev_warn(&udev->dev, 2047 "Not enough host controller resources for new device state.\n"); 2048 ret = -ENOMEM; 2049 /* FIXME: can we allocate more resources for the HC? */ 2050 break; 2051 case COMP_BANDWIDTH_ERROR: 2052 case COMP_SECONDARY_BANDWIDTH_ERROR: 2053 dev_warn(&udev->dev, 2054 "Not enough bandwidth for new device state.\n"); 2055 ret = -ENOSPC; 2056 /* FIXME: can we go back to the old state? */ 2057 break; 2058 case COMP_TRB_ERROR: 2059 /* the HCD set up something wrong */ 2060 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2061 "add flag = 1, " 2062 "and endpoint is not disabled.\n"); 2063 ret = -EINVAL; 2064 break; 2065 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2066 dev_warn(&udev->dev, 2067 "ERROR: Incompatible device for endpoint configure command.\n"); 2068 ret = -ENODEV; 2069 break; 2070 case COMP_SUCCESS: 2071 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2072 "Successful Endpoint Configure command"); 2073 ret = 0; 2074 break; 2075 default: 2076 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2077 *cmd_status); 2078 ret = -EINVAL; 2079 break; 2080 } 2081 return ret; 2082 } 2083 2084 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2085 struct usb_device *udev, u32 *cmd_status) 2086 { 2087 int ret; 2088 2089 switch (*cmd_status) { 2090 case COMP_COMMAND_ABORTED: 2091 case COMP_COMMAND_RING_STOPPED: 2092 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2093 ret = -ETIME; 2094 break; 2095 case COMP_PARAMETER_ERROR: 2096 dev_warn(&udev->dev, 2097 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2098 ret = -EINVAL; 2099 break; 2100 case COMP_SLOT_NOT_ENABLED_ERROR: 2101 dev_warn(&udev->dev, 2102 "WARN: slot not enabled for evaluate context command.\n"); 2103 ret = -EINVAL; 2104 break; 2105 case COMP_CONTEXT_STATE_ERROR: 2106 dev_warn(&udev->dev, 2107 "WARN: invalid context state for evaluate context command.\n"); 2108 ret = -EINVAL; 2109 break; 2110 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2111 dev_warn(&udev->dev, 2112 "ERROR: Incompatible device for evaluate context command.\n"); 2113 ret = -ENODEV; 2114 break; 2115 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2116 /* Max Exit Latency too large error */ 2117 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2118 ret = -EINVAL; 2119 break; 2120 case COMP_SUCCESS: 2121 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2122 "Successful evaluate context command"); 2123 ret = 0; 2124 break; 2125 default: 2126 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2127 *cmd_status); 2128 ret = -EINVAL; 2129 break; 2130 } 2131 return ret; 2132 } 2133 2134 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2135 struct xhci_input_control_ctx *ctrl_ctx) 2136 { 2137 u32 valid_add_flags; 2138 u32 valid_drop_flags; 2139 2140 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2141 * (bit 1). The default control endpoint is added during the Address 2142 * Device command and is never removed until the slot is disabled. 2143 */ 2144 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2145 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2146 2147 /* Use hweight32 to count the number of ones in the add flags, or 2148 * number of endpoints added. Don't count endpoints that are changed 2149 * (both added and dropped). 2150 */ 2151 return hweight32(valid_add_flags) - 2152 hweight32(valid_add_flags & valid_drop_flags); 2153 } 2154 2155 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2156 struct xhci_input_control_ctx *ctrl_ctx) 2157 { 2158 u32 valid_add_flags; 2159 u32 valid_drop_flags; 2160 2161 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2162 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2163 2164 return hweight32(valid_drop_flags) - 2165 hweight32(valid_add_flags & valid_drop_flags); 2166 } 2167 2168 /* 2169 * We need to reserve the new number of endpoints before the configure endpoint 2170 * command completes. We can't subtract the dropped endpoints from the number 2171 * of active endpoints until the command completes because we can oversubscribe 2172 * the host in this case: 2173 * 2174 * - the first configure endpoint command drops more endpoints than it adds 2175 * - a second configure endpoint command that adds more endpoints is queued 2176 * - the first configure endpoint command fails, so the config is unchanged 2177 * - the second command may succeed, even though there isn't enough resources 2178 * 2179 * Must be called with xhci->lock held. 2180 */ 2181 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2182 struct xhci_input_control_ctx *ctrl_ctx) 2183 { 2184 u32 added_eps; 2185 2186 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2187 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2188 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2189 "Not enough ep ctxs: " 2190 "%u active, need to add %u, limit is %u.", 2191 xhci->num_active_eps, added_eps, 2192 xhci->limit_active_eps); 2193 return -ENOMEM; 2194 } 2195 xhci->num_active_eps += added_eps; 2196 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2197 "Adding %u ep ctxs, %u now active.", added_eps, 2198 xhci->num_active_eps); 2199 return 0; 2200 } 2201 2202 /* 2203 * The configure endpoint was failed by the xHC for some other reason, so we 2204 * need to revert the resources that failed configuration would have used. 2205 * 2206 * Must be called with xhci->lock held. 2207 */ 2208 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2209 struct xhci_input_control_ctx *ctrl_ctx) 2210 { 2211 u32 num_failed_eps; 2212 2213 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2214 xhci->num_active_eps -= num_failed_eps; 2215 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2216 "Removing %u failed ep ctxs, %u now active.", 2217 num_failed_eps, 2218 xhci->num_active_eps); 2219 } 2220 2221 /* 2222 * Now that the command has completed, clean up the active endpoint count by 2223 * subtracting out the endpoints that were dropped (but not changed). 2224 * 2225 * Must be called with xhci->lock held. 2226 */ 2227 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2228 struct xhci_input_control_ctx *ctrl_ctx) 2229 { 2230 u32 num_dropped_eps; 2231 2232 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2233 xhci->num_active_eps -= num_dropped_eps; 2234 if (num_dropped_eps) 2235 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2236 "Removing %u dropped ep ctxs, %u now active.", 2237 num_dropped_eps, 2238 xhci->num_active_eps); 2239 } 2240 2241 static unsigned int xhci_get_block_size(struct usb_device *udev) 2242 { 2243 switch (udev->speed) { 2244 case USB_SPEED_LOW: 2245 case USB_SPEED_FULL: 2246 return FS_BLOCK; 2247 case USB_SPEED_HIGH: 2248 return HS_BLOCK; 2249 case USB_SPEED_SUPER: 2250 case USB_SPEED_SUPER_PLUS: 2251 return SS_BLOCK; 2252 case USB_SPEED_UNKNOWN: 2253 default: 2254 /* Should never happen */ 2255 return 1; 2256 } 2257 } 2258 2259 static unsigned int 2260 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2261 { 2262 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2263 return LS_OVERHEAD; 2264 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2265 return FS_OVERHEAD; 2266 return HS_OVERHEAD; 2267 } 2268 2269 /* If we are changing a LS/FS device under a HS hub, 2270 * make sure (if we are activating a new TT) that the HS bus has enough 2271 * bandwidth for this new TT. 2272 */ 2273 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2274 struct xhci_virt_device *virt_dev, 2275 int old_active_eps) 2276 { 2277 struct xhci_interval_bw_table *bw_table; 2278 struct xhci_tt_bw_info *tt_info; 2279 2280 /* Find the bandwidth table for the root port this TT is attached to. */ 2281 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table; 2282 tt_info = virt_dev->tt_info; 2283 /* If this TT already had active endpoints, the bandwidth for this TT 2284 * has already been added. Removing all periodic endpoints (and thus 2285 * making the TT enactive) will only decrease the bandwidth used. 2286 */ 2287 if (old_active_eps) 2288 return 0; 2289 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2290 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2291 return -ENOMEM; 2292 return 0; 2293 } 2294 /* Not sure why we would have no new active endpoints... 2295 * 2296 * Maybe because of an Evaluate Context change for a hub update or a 2297 * control endpoint 0 max packet size change? 2298 * FIXME: skip the bandwidth calculation in that case. 2299 */ 2300 return 0; 2301 } 2302 2303 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2304 struct xhci_virt_device *virt_dev) 2305 { 2306 unsigned int bw_reserved; 2307 2308 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2309 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2310 return -ENOMEM; 2311 2312 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2313 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2314 return -ENOMEM; 2315 2316 return 0; 2317 } 2318 2319 /* 2320 * This algorithm is a very conservative estimate of the worst-case scheduling 2321 * scenario for any one interval. The hardware dynamically schedules the 2322 * packets, so we can't tell which microframe could be the limiting factor in 2323 * the bandwidth scheduling. This only takes into account periodic endpoints. 2324 * 2325 * Obviously, we can't solve an NP complete problem to find the minimum worst 2326 * case scenario. Instead, we come up with an estimate that is no less than 2327 * the worst case bandwidth used for any one microframe, but may be an 2328 * over-estimate. 2329 * 2330 * We walk the requirements for each endpoint by interval, starting with the 2331 * smallest interval, and place packets in the schedule where there is only one 2332 * possible way to schedule packets for that interval. In order to simplify 2333 * this algorithm, we record the largest max packet size for each interval, and 2334 * assume all packets will be that size. 2335 * 2336 * For interval 0, we obviously must schedule all packets for each interval. 2337 * The bandwidth for interval 0 is just the amount of data to be transmitted 2338 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2339 * the number of packets). 2340 * 2341 * For interval 1, we have two possible microframes to schedule those packets 2342 * in. For this algorithm, if we can schedule the same number of packets for 2343 * each possible scheduling opportunity (each microframe), we will do so. The 2344 * remaining number of packets will be saved to be transmitted in the gaps in 2345 * the next interval's scheduling sequence. 2346 * 2347 * As we move those remaining packets to be scheduled with interval 2 packets, 2348 * we have to double the number of remaining packets to transmit. This is 2349 * because the intervals are actually powers of 2, and we would be transmitting 2350 * the previous interval's packets twice in this interval. We also have to be 2351 * sure that when we look at the largest max packet size for this interval, we 2352 * also look at the largest max packet size for the remaining packets and take 2353 * the greater of the two. 2354 * 2355 * The algorithm continues to evenly distribute packets in each scheduling 2356 * opportunity, and push the remaining packets out, until we get to the last 2357 * interval. Then those packets and their associated overhead are just added 2358 * to the bandwidth used. 2359 */ 2360 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2361 struct xhci_virt_device *virt_dev, 2362 int old_active_eps) 2363 { 2364 unsigned int bw_reserved; 2365 unsigned int max_bandwidth; 2366 unsigned int bw_used; 2367 unsigned int block_size; 2368 struct xhci_interval_bw_table *bw_table; 2369 unsigned int packet_size = 0; 2370 unsigned int overhead = 0; 2371 unsigned int packets_transmitted = 0; 2372 unsigned int packets_remaining = 0; 2373 unsigned int i; 2374 2375 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2376 return xhci_check_ss_bw(xhci, virt_dev); 2377 2378 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2379 max_bandwidth = HS_BW_LIMIT; 2380 /* Convert percent of bus BW reserved to blocks reserved */ 2381 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2382 } else { 2383 max_bandwidth = FS_BW_LIMIT; 2384 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2385 } 2386 2387 bw_table = virt_dev->bw_table; 2388 /* We need to translate the max packet size and max ESIT payloads into 2389 * the units the hardware uses. 2390 */ 2391 block_size = xhci_get_block_size(virt_dev->udev); 2392 2393 /* If we are manipulating a LS/FS device under a HS hub, double check 2394 * that the HS bus has enough bandwidth if we are activing a new TT. 2395 */ 2396 if (virt_dev->tt_info) { 2397 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2398 "Recalculating BW for rootport %u", 2399 virt_dev->rhub_port->hw_portnum + 1); 2400 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2401 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2402 "newly activated TT.\n"); 2403 return -ENOMEM; 2404 } 2405 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2406 "Recalculating BW for TT slot %u port %u", 2407 virt_dev->tt_info->slot_id, 2408 virt_dev->tt_info->ttport); 2409 } else { 2410 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2411 "Recalculating BW for rootport %u", 2412 virt_dev->rhub_port->hw_portnum + 1); 2413 } 2414 2415 /* Add in how much bandwidth will be used for interval zero, or the 2416 * rounded max ESIT payload + number of packets * largest overhead. 2417 */ 2418 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2419 bw_table->interval_bw[0].num_packets * 2420 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2421 2422 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2423 unsigned int bw_added; 2424 unsigned int largest_mps; 2425 unsigned int interval_overhead; 2426 2427 /* 2428 * How many packets could we transmit in this interval? 2429 * If packets didn't fit in the previous interval, we will need 2430 * to transmit that many packets twice within this interval. 2431 */ 2432 packets_remaining = 2 * packets_remaining + 2433 bw_table->interval_bw[i].num_packets; 2434 2435 /* Find the largest max packet size of this or the previous 2436 * interval. 2437 */ 2438 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2439 largest_mps = 0; 2440 else { 2441 struct xhci_virt_ep *virt_ep; 2442 struct list_head *ep_entry; 2443 2444 ep_entry = bw_table->interval_bw[i].endpoints.next; 2445 virt_ep = list_entry(ep_entry, 2446 struct xhci_virt_ep, bw_endpoint_list); 2447 /* Convert to blocks, rounding up */ 2448 largest_mps = DIV_ROUND_UP( 2449 virt_ep->bw_info.max_packet_size, 2450 block_size); 2451 } 2452 if (largest_mps > packet_size) 2453 packet_size = largest_mps; 2454 2455 /* Use the larger overhead of this or the previous interval. */ 2456 interval_overhead = xhci_get_largest_overhead( 2457 &bw_table->interval_bw[i]); 2458 if (interval_overhead > overhead) 2459 overhead = interval_overhead; 2460 2461 /* How many packets can we evenly distribute across 2462 * (1 << (i + 1)) possible scheduling opportunities? 2463 */ 2464 packets_transmitted = packets_remaining >> (i + 1); 2465 2466 /* Add in the bandwidth used for those scheduled packets */ 2467 bw_added = packets_transmitted * (overhead + packet_size); 2468 2469 /* How many packets do we have remaining to transmit? */ 2470 packets_remaining = packets_remaining % (1 << (i + 1)); 2471 2472 /* What largest max packet size should those packets have? */ 2473 /* If we've transmitted all packets, don't carry over the 2474 * largest packet size. 2475 */ 2476 if (packets_remaining == 0) { 2477 packet_size = 0; 2478 overhead = 0; 2479 } else if (packets_transmitted > 0) { 2480 /* Otherwise if we do have remaining packets, and we've 2481 * scheduled some packets in this interval, take the 2482 * largest max packet size from endpoints with this 2483 * interval. 2484 */ 2485 packet_size = largest_mps; 2486 overhead = interval_overhead; 2487 } 2488 /* Otherwise carry over packet_size and overhead from the last 2489 * time we had a remainder. 2490 */ 2491 bw_used += bw_added; 2492 if (bw_used > max_bandwidth) { 2493 xhci_warn(xhci, "Not enough bandwidth. " 2494 "Proposed: %u, Max: %u\n", 2495 bw_used, max_bandwidth); 2496 return -ENOMEM; 2497 } 2498 } 2499 /* 2500 * Ok, we know we have some packets left over after even-handedly 2501 * scheduling interval 15. We don't know which microframes they will 2502 * fit into, so we over-schedule and say they will be scheduled every 2503 * microframe. 2504 */ 2505 if (packets_remaining > 0) 2506 bw_used += overhead + packet_size; 2507 2508 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2509 /* OK, we're manipulating a HS device attached to a 2510 * root port bandwidth domain. Include the number of active TTs 2511 * in the bandwidth used. 2512 */ 2513 bw_used += TT_HS_OVERHEAD * 2514 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts; 2515 } 2516 2517 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2518 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2519 "Available: %u " "percent", 2520 bw_used, max_bandwidth, bw_reserved, 2521 (max_bandwidth - bw_used - bw_reserved) * 100 / 2522 max_bandwidth); 2523 2524 bw_used += bw_reserved; 2525 if (bw_used > max_bandwidth) { 2526 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2527 bw_used, max_bandwidth); 2528 return -ENOMEM; 2529 } 2530 2531 bw_table->bw_used = bw_used; 2532 return 0; 2533 } 2534 2535 static bool xhci_is_async_ep(unsigned int ep_type) 2536 { 2537 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2538 ep_type != ISOC_IN_EP && 2539 ep_type != INT_IN_EP); 2540 } 2541 2542 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2543 { 2544 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2545 } 2546 2547 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2548 { 2549 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2550 2551 if (ep_bw->ep_interval == 0) 2552 return SS_OVERHEAD_BURST + 2553 (ep_bw->mult * ep_bw->num_packets * 2554 (SS_OVERHEAD + mps)); 2555 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2556 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2557 1 << ep_bw->ep_interval); 2558 2559 } 2560 2561 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2562 struct xhci_bw_info *ep_bw, 2563 struct xhci_interval_bw_table *bw_table, 2564 struct usb_device *udev, 2565 struct xhci_virt_ep *virt_ep, 2566 struct xhci_tt_bw_info *tt_info) 2567 { 2568 struct xhci_interval_bw *interval_bw; 2569 int normalized_interval; 2570 2571 if (xhci_is_async_ep(ep_bw->type)) 2572 return; 2573 2574 if (udev->speed >= USB_SPEED_SUPER) { 2575 if (xhci_is_sync_in_ep(ep_bw->type)) 2576 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2577 xhci_get_ss_bw_consumed(ep_bw); 2578 else 2579 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2580 xhci_get_ss_bw_consumed(ep_bw); 2581 return; 2582 } 2583 2584 /* SuperSpeed endpoints never get added to intervals in the table, so 2585 * this check is only valid for HS/FS/LS devices. 2586 */ 2587 if (list_empty(&virt_ep->bw_endpoint_list)) 2588 return; 2589 /* For LS/FS devices, we need to translate the interval expressed in 2590 * microframes to frames. 2591 */ 2592 if (udev->speed == USB_SPEED_HIGH) 2593 normalized_interval = ep_bw->ep_interval; 2594 else 2595 normalized_interval = ep_bw->ep_interval - 3; 2596 2597 if (normalized_interval == 0) 2598 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2599 interval_bw = &bw_table->interval_bw[normalized_interval]; 2600 interval_bw->num_packets -= ep_bw->num_packets; 2601 switch (udev->speed) { 2602 case USB_SPEED_LOW: 2603 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2604 break; 2605 case USB_SPEED_FULL: 2606 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2607 break; 2608 case USB_SPEED_HIGH: 2609 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2610 break; 2611 default: 2612 /* Should never happen because only LS/FS/HS endpoints will get 2613 * added to the endpoint list. 2614 */ 2615 return; 2616 } 2617 if (tt_info) 2618 tt_info->active_eps -= 1; 2619 list_del_init(&virt_ep->bw_endpoint_list); 2620 } 2621 2622 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2623 struct xhci_bw_info *ep_bw, 2624 struct xhci_interval_bw_table *bw_table, 2625 struct usb_device *udev, 2626 struct xhci_virt_ep *virt_ep, 2627 struct xhci_tt_bw_info *tt_info) 2628 { 2629 struct xhci_interval_bw *interval_bw; 2630 struct xhci_virt_ep *smaller_ep; 2631 int normalized_interval; 2632 2633 if (xhci_is_async_ep(ep_bw->type)) 2634 return; 2635 2636 if (udev->speed == USB_SPEED_SUPER) { 2637 if (xhci_is_sync_in_ep(ep_bw->type)) 2638 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2639 xhci_get_ss_bw_consumed(ep_bw); 2640 else 2641 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2642 xhci_get_ss_bw_consumed(ep_bw); 2643 return; 2644 } 2645 2646 /* For LS/FS devices, we need to translate the interval expressed in 2647 * microframes to frames. 2648 */ 2649 if (udev->speed == USB_SPEED_HIGH) 2650 normalized_interval = ep_bw->ep_interval; 2651 else 2652 normalized_interval = ep_bw->ep_interval - 3; 2653 2654 if (normalized_interval == 0) 2655 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2656 interval_bw = &bw_table->interval_bw[normalized_interval]; 2657 interval_bw->num_packets += ep_bw->num_packets; 2658 switch (udev->speed) { 2659 case USB_SPEED_LOW: 2660 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2661 break; 2662 case USB_SPEED_FULL: 2663 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2664 break; 2665 case USB_SPEED_HIGH: 2666 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2667 break; 2668 default: 2669 /* Should never happen because only LS/FS/HS endpoints will get 2670 * added to the endpoint list. 2671 */ 2672 return; 2673 } 2674 2675 if (tt_info) 2676 tt_info->active_eps += 1; 2677 /* Insert the endpoint into the list, largest max packet size first. */ 2678 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2679 bw_endpoint_list) { 2680 if (ep_bw->max_packet_size >= 2681 smaller_ep->bw_info.max_packet_size) { 2682 /* Add the new ep before the smaller endpoint */ 2683 list_add_tail(&virt_ep->bw_endpoint_list, 2684 &smaller_ep->bw_endpoint_list); 2685 return; 2686 } 2687 } 2688 /* Add the new endpoint at the end of the list. */ 2689 list_add_tail(&virt_ep->bw_endpoint_list, 2690 &interval_bw->endpoints); 2691 } 2692 2693 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2694 struct xhci_virt_device *virt_dev, 2695 int old_active_eps) 2696 { 2697 struct xhci_root_port_bw_info *rh_bw_info; 2698 if (!virt_dev->tt_info) 2699 return; 2700 2701 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum]; 2702 if (old_active_eps == 0 && 2703 virt_dev->tt_info->active_eps != 0) { 2704 rh_bw_info->num_active_tts += 1; 2705 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2706 } else if (old_active_eps != 0 && 2707 virt_dev->tt_info->active_eps == 0) { 2708 rh_bw_info->num_active_tts -= 1; 2709 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2710 } 2711 } 2712 2713 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2714 struct xhci_virt_device *virt_dev, 2715 struct xhci_container_ctx *in_ctx) 2716 { 2717 struct xhci_bw_info ep_bw_info[31]; 2718 int i; 2719 struct xhci_input_control_ctx *ctrl_ctx; 2720 int old_active_eps = 0; 2721 2722 if (virt_dev->tt_info) 2723 old_active_eps = virt_dev->tt_info->active_eps; 2724 2725 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2726 if (!ctrl_ctx) { 2727 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2728 __func__); 2729 return -ENOMEM; 2730 } 2731 2732 for (i = 0; i < 31; i++) { 2733 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2734 continue; 2735 2736 /* Make a copy of the BW info in case we need to revert this */ 2737 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2738 sizeof(ep_bw_info[i])); 2739 /* Drop the endpoint from the interval table if the endpoint is 2740 * being dropped or changed. 2741 */ 2742 if (EP_IS_DROPPED(ctrl_ctx, i)) 2743 xhci_drop_ep_from_interval_table(xhci, 2744 &virt_dev->eps[i].bw_info, 2745 virt_dev->bw_table, 2746 virt_dev->udev, 2747 &virt_dev->eps[i], 2748 virt_dev->tt_info); 2749 } 2750 /* Overwrite the information stored in the endpoints' bw_info */ 2751 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2752 for (i = 0; i < 31; i++) { 2753 /* Add any changed or added endpoints to the interval table */ 2754 if (EP_IS_ADDED(ctrl_ctx, i)) 2755 xhci_add_ep_to_interval_table(xhci, 2756 &virt_dev->eps[i].bw_info, 2757 virt_dev->bw_table, 2758 virt_dev->udev, 2759 &virt_dev->eps[i], 2760 virt_dev->tt_info); 2761 } 2762 2763 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2764 /* Ok, this fits in the bandwidth we have. 2765 * Update the number of active TTs. 2766 */ 2767 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2768 return 0; 2769 } 2770 2771 /* We don't have enough bandwidth for this, revert the stored info. */ 2772 for (i = 0; i < 31; i++) { 2773 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2774 continue; 2775 2776 /* Drop the new copies of any added or changed endpoints from 2777 * the interval table. 2778 */ 2779 if (EP_IS_ADDED(ctrl_ctx, i)) { 2780 xhci_drop_ep_from_interval_table(xhci, 2781 &virt_dev->eps[i].bw_info, 2782 virt_dev->bw_table, 2783 virt_dev->udev, 2784 &virt_dev->eps[i], 2785 virt_dev->tt_info); 2786 } 2787 /* Revert the endpoint back to its old information */ 2788 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2789 sizeof(ep_bw_info[i])); 2790 /* Add any changed or dropped endpoints back into the table */ 2791 if (EP_IS_DROPPED(ctrl_ctx, i)) 2792 xhci_add_ep_to_interval_table(xhci, 2793 &virt_dev->eps[i].bw_info, 2794 virt_dev->bw_table, 2795 virt_dev->udev, 2796 &virt_dev->eps[i], 2797 virt_dev->tt_info); 2798 } 2799 return -ENOMEM; 2800 } 2801 2802 /* 2803 * Synchronous XHCI stop endpoint helper. Issues the stop endpoint command and 2804 * waits for the command completion before returning. This does not call 2805 * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error' 2806 * cases, along with transfer ring cleanup. 2807 * 2808 * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage 2809 * their own transfer ring, such as offload situations. 2810 */ 2811 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend, 2812 gfp_t gfp_flags) 2813 { 2814 struct xhci_command *command; 2815 unsigned long flags; 2816 int ret; 2817 2818 command = xhci_alloc_command(xhci, true, gfp_flags); 2819 if (!command) 2820 return -ENOMEM; 2821 2822 spin_lock_irqsave(&xhci->lock, flags); 2823 ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id, 2824 ep->ep_index, suspend); 2825 if (ret < 0) { 2826 spin_unlock_irqrestore(&xhci->lock, flags); 2827 goto out; 2828 } 2829 2830 xhci_ring_cmd_db(xhci); 2831 spin_unlock_irqrestore(&xhci->lock, flags); 2832 2833 wait_for_completion(command->completion); 2834 2835 /* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/ 2836 if (command->status == COMP_COMMAND_ABORTED || 2837 command->status == COMP_COMMAND_RING_STOPPED) { 2838 xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n"); 2839 ret = -ETIME; 2840 } 2841 out: 2842 xhci_free_command(xhci, command); 2843 2844 return ret; 2845 } 2846 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync); 2847 2848 /* Issue a configure endpoint command or evaluate context command 2849 * and wait for it to finish. 2850 */ 2851 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2852 struct usb_device *udev, 2853 struct xhci_command *command, 2854 bool ctx_change, bool must_succeed) 2855 { 2856 int ret; 2857 unsigned long flags; 2858 struct xhci_input_control_ctx *ctrl_ctx; 2859 struct xhci_virt_device *virt_dev; 2860 struct xhci_slot_ctx *slot_ctx; 2861 2862 if (!command) 2863 return -EINVAL; 2864 2865 spin_lock_irqsave(&xhci->lock, flags); 2866 2867 if (xhci->xhc_state & XHCI_STATE_DYING) { 2868 spin_unlock_irqrestore(&xhci->lock, flags); 2869 return -ESHUTDOWN; 2870 } 2871 2872 virt_dev = xhci->devs[udev->slot_id]; 2873 2874 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2875 if (!ctrl_ctx) { 2876 spin_unlock_irqrestore(&xhci->lock, flags); 2877 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2878 __func__); 2879 return -ENOMEM; 2880 } 2881 2882 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2883 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2884 spin_unlock_irqrestore(&xhci->lock, flags); 2885 xhci_warn(xhci, "Not enough host resources, " 2886 "active endpoint contexts = %u\n", 2887 xhci->num_active_eps); 2888 return -ENOMEM; 2889 } 2890 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change && 2891 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2892 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2893 xhci_free_host_resources(xhci, ctrl_ctx); 2894 spin_unlock_irqrestore(&xhci->lock, flags); 2895 xhci_warn(xhci, "Not enough bandwidth\n"); 2896 return -ENOMEM; 2897 } 2898 2899 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2900 2901 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2902 trace_xhci_configure_endpoint(slot_ctx); 2903 2904 if (!ctx_change) 2905 ret = xhci_queue_configure_endpoint(xhci, command, 2906 command->in_ctx->dma, 2907 udev->slot_id, must_succeed); 2908 else 2909 ret = xhci_queue_evaluate_context(xhci, command, 2910 command->in_ctx->dma, 2911 udev->slot_id, must_succeed); 2912 if (ret < 0) { 2913 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2914 xhci_free_host_resources(xhci, ctrl_ctx); 2915 spin_unlock_irqrestore(&xhci->lock, flags); 2916 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2917 "FIXME allocate a new ring segment"); 2918 return -ENOMEM; 2919 } 2920 xhci_ring_cmd_db(xhci); 2921 spin_unlock_irqrestore(&xhci->lock, flags); 2922 2923 /* Wait for the configure endpoint command to complete */ 2924 wait_for_completion(command->completion); 2925 2926 if (!ctx_change) 2927 ret = xhci_configure_endpoint_result(xhci, udev, 2928 &command->status); 2929 else 2930 ret = xhci_evaluate_context_result(xhci, udev, 2931 &command->status); 2932 2933 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2934 spin_lock_irqsave(&xhci->lock, flags); 2935 /* If the command failed, remove the reserved resources. 2936 * Otherwise, clean up the estimate to include dropped eps. 2937 */ 2938 if (ret) 2939 xhci_free_host_resources(xhci, ctrl_ctx); 2940 else 2941 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2942 spin_unlock_irqrestore(&xhci->lock, flags); 2943 } 2944 return ret; 2945 } 2946 2947 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2948 struct xhci_virt_device *vdev, int i) 2949 { 2950 struct xhci_virt_ep *ep = &vdev->eps[i]; 2951 2952 if (ep->ep_state & EP_HAS_STREAMS) { 2953 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2954 xhci_get_endpoint_address(i)); 2955 xhci_free_stream_info(xhci, ep->stream_info); 2956 ep->stream_info = NULL; 2957 ep->ep_state &= ~EP_HAS_STREAMS; 2958 } 2959 } 2960 2961 /* Called after one or more calls to xhci_add_endpoint() or 2962 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2963 * to call xhci_reset_bandwidth(). 2964 * 2965 * Since we are in the middle of changing either configuration or 2966 * installing a new alt setting, the USB core won't allow URBs to be 2967 * enqueued for any endpoint on the old config or interface. Nothing 2968 * else should be touching the xhci->devs[slot_id] structure, so we 2969 * don't need to take the xhci->lock for manipulating that. 2970 */ 2971 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2972 { 2973 int i; 2974 int ret = 0; 2975 struct xhci_hcd *xhci; 2976 struct xhci_virt_device *virt_dev; 2977 struct xhci_input_control_ctx *ctrl_ctx; 2978 struct xhci_slot_ctx *slot_ctx; 2979 struct xhci_command *command; 2980 2981 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2982 if (ret <= 0) 2983 return ret; 2984 xhci = hcd_to_xhci(hcd); 2985 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2986 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2987 return -ENODEV; 2988 2989 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2990 virt_dev = xhci->devs[udev->slot_id]; 2991 2992 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2993 if (!command) 2994 return -ENOMEM; 2995 2996 command->in_ctx = virt_dev->in_ctx; 2997 2998 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2999 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3000 if (!ctrl_ctx) { 3001 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3002 __func__); 3003 ret = -ENOMEM; 3004 goto command_cleanup; 3005 } 3006 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3007 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3008 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3009 3010 /* Don't issue the command if there's no endpoints to update. */ 3011 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3012 ctrl_ctx->drop_flags == 0) { 3013 ret = 0; 3014 goto command_cleanup; 3015 } 3016 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3017 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3018 for (i = 31; i >= 1; i--) { 3019 __le32 le32 = cpu_to_le32(BIT(i)); 3020 3021 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3022 || (ctrl_ctx->add_flags & le32) || i == 1) { 3023 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3024 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3025 break; 3026 } 3027 } 3028 3029 ret = xhci_configure_endpoint(xhci, udev, command, 3030 false, false); 3031 if (ret) 3032 /* Callee should call reset_bandwidth() */ 3033 goto command_cleanup; 3034 3035 /* Free any rings that were dropped, but not changed. */ 3036 for (i = 1; i < 31; i++) { 3037 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3038 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3039 xhci_free_endpoint_ring(xhci, virt_dev, i); 3040 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3041 } 3042 } 3043 xhci_zero_in_ctx(xhci, virt_dev); 3044 /* 3045 * Install any rings for completely new endpoints or changed endpoints, 3046 * and free any old rings from changed endpoints. 3047 */ 3048 for (i = 1; i < 31; i++) { 3049 if (!virt_dev->eps[i].new_ring) 3050 continue; 3051 /* Only free the old ring if it exists. 3052 * It may not if this is the first add of an endpoint. 3053 */ 3054 if (virt_dev->eps[i].ring) { 3055 xhci_free_endpoint_ring(xhci, virt_dev, i); 3056 } 3057 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3058 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3059 virt_dev->eps[i].new_ring = NULL; 3060 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3061 } 3062 command_cleanup: 3063 kfree(command->completion); 3064 kfree(command); 3065 3066 return ret; 3067 } 3068 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3069 3070 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3071 { 3072 struct xhci_hcd *xhci; 3073 struct xhci_virt_device *virt_dev; 3074 int i, ret; 3075 3076 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3077 if (ret <= 0) 3078 return; 3079 xhci = hcd_to_xhci(hcd); 3080 3081 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3082 virt_dev = xhci->devs[udev->slot_id]; 3083 /* Free any rings allocated for added endpoints */ 3084 for (i = 0; i < 31; i++) { 3085 if (virt_dev->eps[i].new_ring) { 3086 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3087 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3088 virt_dev->eps[i].new_ring = NULL; 3089 } 3090 } 3091 xhci_zero_in_ctx(xhci, virt_dev); 3092 } 3093 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3094 3095 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3096 struct xhci_container_ctx *in_ctx, 3097 struct xhci_container_ctx *out_ctx, 3098 struct xhci_input_control_ctx *ctrl_ctx, 3099 u32 add_flags, u32 drop_flags) 3100 { 3101 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3102 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3103 xhci_slot_copy(xhci, in_ctx, out_ctx); 3104 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3105 } 3106 3107 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3108 struct usb_host_endpoint *host_ep) 3109 { 3110 struct xhci_hcd *xhci; 3111 struct xhci_virt_device *vdev; 3112 struct xhci_virt_ep *ep; 3113 struct usb_device *udev; 3114 unsigned long flags; 3115 unsigned int ep_index; 3116 3117 xhci = hcd_to_xhci(hcd); 3118 rescan: 3119 spin_lock_irqsave(&xhci->lock, flags); 3120 3121 udev = (struct usb_device *)host_ep->hcpriv; 3122 if (!udev || !udev->slot_id) 3123 goto done; 3124 3125 vdev = xhci->devs[udev->slot_id]; 3126 if (!vdev) 3127 goto done; 3128 3129 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3130 ep = &vdev->eps[ep_index]; 3131 3132 /* wait for hub_tt_work to finish clearing hub TT */ 3133 if (ep->ep_state & EP_CLEARING_TT) { 3134 spin_unlock_irqrestore(&xhci->lock, flags); 3135 schedule_timeout_uninterruptible(1); 3136 goto rescan; 3137 } 3138 3139 if (ep->ep_state) 3140 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3141 ep->ep_state); 3142 done: 3143 host_ep->hcpriv = NULL; 3144 spin_unlock_irqrestore(&xhci->lock, flags); 3145 } 3146 3147 /* 3148 * Called after usb core issues a clear halt control message. 3149 * The host side of the halt should already be cleared by a reset endpoint 3150 * command issued when the STALL event was received. 3151 * 3152 * The reset endpoint command may only be issued to endpoints in the halted 3153 * state. For software that wishes to reset the data toggle or sequence number 3154 * of an endpoint that isn't in the halted state this function will issue a 3155 * configure endpoint command with the Drop and Add bits set for the target 3156 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3157 * 3158 * vdev may be lost due to xHC restore error and re-initialization during S3/S4 3159 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device() 3160 */ 3161 3162 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3163 struct usb_host_endpoint *host_ep) 3164 { 3165 struct xhci_hcd *xhci; 3166 struct usb_device *udev; 3167 struct xhci_virt_device *vdev; 3168 struct xhci_virt_ep *ep; 3169 struct xhci_input_control_ctx *ctrl_ctx; 3170 struct xhci_command *stop_cmd, *cfg_cmd; 3171 unsigned int ep_index; 3172 unsigned long flags; 3173 u32 ep_flag; 3174 int err; 3175 3176 xhci = hcd_to_xhci(hcd); 3177 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3178 3179 /* 3180 * Usb core assumes a max packet value for ep0 on FS devices until the 3181 * real value is read from the descriptor. Core resets Ep0 if values 3182 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case 3183 */ 3184 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) { 3185 3186 udev = container_of(host_ep, struct usb_device, ep0); 3187 if (udev->speed != USB_SPEED_FULL || !udev->slot_id) 3188 return; 3189 3190 vdev = xhci->devs[udev->slot_id]; 3191 if (!vdev || vdev->udev != udev) 3192 return; 3193 3194 xhci_check_ep0_maxpacket(xhci, vdev); 3195 3196 /* Nothing else should be done here for ep0 during ep reset */ 3197 return; 3198 } 3199 3200 if (!host_ep->hcpriv) 3201 return; 3202 udev = (struct usb_device *) host_ep->hcpriv; 3203 vdev = xhci->devs[udev->slot_id]; 3204 3205 if (!udev->slot_id || !vdev) 3206 return; 3207 3208 ep = &vdev->eps[ep_index]; 3209 3210 /* Bail out if toggle is already being cleared by a endpoint reset */ 3211 spin_lock_irqsave(&xhci->lock, flags); 3212 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3213 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3214 spin_unlock_irqrestore(&xhci->lock, flags); 3215 return; 3216 } 3217 spin_unlock_irqrestore(&xhci->lock, flags); 3218 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3219 if (usb_endpoint_xfer_control(&host_ep->desc) || 3220 usb_endpoint_xfer_isoc(&host_ep->desc)) 3221 return; 3222 3223 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3224 3225 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3226 return; 3227 3228 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3229 if (!stop_cmd) 3230 return; 3231 3232 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3233 if (!cfg_cmd) 3234 goto cleanup; 3235 3236 spin_lock_irqsave(&xhci->lock, flags); 3237 3238 /* block queuing new trbs and ringing ep doorbell */ 3239 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3240 3241 /* 3242 * Make sure endpoint ring is empty before resetting the toggle/seq. 3243 * Driver is required to synchronously cancel all transfer request. 3244 * Stop the endpoint to force xHC to update the output context 3245 */ 3246 3247 if (!list_empty(&ep->ring->td_list)) { 3248 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3249 spin_unlock_irqrestore(&xhci->lock, flags); 3250 xhci_free_command(xhci, cfg_cmd); 3251 goto cleanup; 3252 } 3253 3254 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3255 ep_index, 0); 3256 if (err < 0) { 3257 spin_unlock_irqrestore(&xhci->lock, flags); 3258 xhci_free_command(xhci, cfg_cmd); 3259 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3260 __func__, err); 3261 goto cleanup; 3262 } 3263 3264 xhci_ring_cmd_db(xhci); 3265 spin_unlock_irqrestore(&xhci->lock, flags); 3266 3267 wait_for_completion(stop_cmd->completion); 3268 3269 spin_lock_irqsave(&xhci->lock, flags); 3270 3271 /* config ep command clears toggle if add and drop ep flags are set */ 3272 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3273 if (!ctrl_ctx) { 3274 spin_unlock_irqrestore(&xhci->lock, flags); 3275 xhci_free_command(xhci, cfg_cmd); 3276 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3277 __func__); 3278 goto cleanup; 3279 } 3280 3281 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3282 ctrl_ctx, ep_flag, ep_flag); 3283 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3284 3285 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3286 udev->slot_id, false); 3287 if (err < 0) { 3288 spin_unlock_irqrestore(&xhci->lock, flags); 3289 xhci_free_command(xhci, cfg_cmd); 3290 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3291 __func__, err); 3292 goto cleanup; 3293 } 3294 3295 xhci_ring_cmd_db(xhci); 3296 spin_unlock_irqrestore(&xhci->lock, flags); 3297 3298 wait_for_completion(cfg_cmd->completion); 3299 3300 xhci_free_command(xhci, cfg_cmd); 3301 cleanup: 3302 xhci_free_command(xhci, stop_cmd); 3303 spin_lock_irqsave(&xhci->lock, flags); 3304 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3305 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3306 spin_unlock_irqrestore(&xhci->lock, flags); 3307 } 3308 3309 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3310 struct usb_device *udev, struct usb_host_endpoint *ep, 3311 unsigned int slot_id) 3312 { 3313 int ret; 3314 unsigned int ep_index; 3315 unsigned int ep_state; 3316 3317 if (!ep) 3318 return -EINVAL; 3319 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3320 if (ret <= 0) 3321 return ret ? ret : -EINVAL; 3322 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3323 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3324 " descriptor for ep 0x%x does not support streams\n", 3325 ep->desc.bEndpointAddress); 3326 return -EINVAL; 3327 } 3328 3329 ep_index = xhci_get_endpoint_index(&ep->desc); 3330 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3331 if (ep_state & EP_HAS_STREAMS || 3332 ep_state & EP_GETTING_STREAMS) { 3333 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3334 "already has streams set up.\n", 3335 ep->desc.bEndpointAddress); 3336 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3337 "dynamic stream context array reallocation.\n"); 3338 return -EINVAL; 3339 } 3340 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3341 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3342 "endpoint 0x%x; URBs are pending.\n", 3343 ep->desc.bEndpointAddress); 3344 return -EINVAL; 3345 } 3346 return 0; 3347 } 3348 3349 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3350 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3351 { 3352 unsigned int max_streams; 3353 3354 /* The stream context array size must be a power of two */ 3355 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3356 /* 3357 * Find out how many primary stream array entries the host controller 3358 * supports. Later we may use secondary stream arrays (similar to 2nd 3359 * level page entries), but that's an optional feature for xHCI host 3360 * controllers. xHCs must support at least 4 stream IDs. 3361 */ 3362 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3363 if (*num_stream_ctxs > max_streams) { 3364 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3365 max_streams); 3366 *num_stream_ctxs = max_streams; 3367 *num_streams = max_streams; 3368 } 3369 } 3370 3371 /* Returns an error code if one of the endpoint already has streams. 3372 * This does not change any data structures, it only checks and gathers 3373 * information. 3374 */ 3375 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3376 struct usb_device *udev, 3377 struct usb_host_endpoint **eps, unsigned int num_eps, 3378 unsigned int *num_streams, u32 *changed_ep_bitmask) 3379 { 3380 unsigned int max_streams; 3381 unsigned int endpoint_flag; 3382 int i; 3383 int ret; 3384 3385 for (i = 0; i < num_eps; i++) { 3386 ret = xhci_check_streams_endpoint(xhci, udev, 3387 eps[i], udev->slot_id); 3388 if (ret < 0) 3389 return ret; 3390 3391 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3392 if (max_streams < (*num_streams - 1)) { 3393 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3394 eps[i]->desc.bEndpointAddress, 3395 max_streams); 3396 *num_streams = max_streams+1; 3397 } 3398 3399 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3400 if (*changed_ep_bitmask & endpoint_flag) 3401 return -EINVAL; 3402 *changed_ep_bitmask |= endpoint_flag; 3403 } 3404 return 0; 3405 } 3406 3407 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3408 struct usb_device *udev, 3409 struct usb_host_endpoint **eps, unsigned int num_eps) 3410 { 3411 u32 changed_ep_bitmask = 0; 3412 unsigned int slot_id; 3413 unsigned int ep_index; 3414 unsigned int ep_state; 3415 int i; 3416 3417 slot_id = udev->slot_id; 3418 if (!xhci->devs[slot_id]) 3419 return 0; 3420 3421 for (i = 0; i < num_eps; i++) { 3422 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3423 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3424 /* Are streams already being freed for the endpoint? */ 3425 if (ep_state & EP_GETTING_NO_STREAMS) { 3426 xhci_warn(xhci, "WARN Can't disable streams for " 3427 "endpoint 0x%x, " 3428 "streams are being disabled already\n", 3429 eps[i]->desc.bEndpointAddress); 3430 return 0; 3431 } 3432 /* Are there actually any streams to free? */ 3433 if (!(ep_state & EP_HAS_STREAMS) && 3434 !(ep_state & EP_GETTING_STREAMS)) { 3435 xhci_warn(xhci, "WARN Can't disable streams for " 3436 "endpoint 0x%x, " 3437 "streams are already disabled!\n", 3438 eps[i]->desc.bEndpointAddress); 3439 xhci_warn(xhci, "WARN xhci_free_streams() called " 3440 "with non-streams endpoint\n"); 3441 return 0; 3442 } 3443 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3444 } 3445 return changed_ep_bitmask; 3446 } 3447 3448 /* 3449 * The USB device drivers use this function (through the HCD interface in USB 3450 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3451 * coordinate mass storage command queueing across multiple endpoints (basically 3452 * a stream ID == a task ID). 3453 * 3454 * Setting up streams involves allocating the same size stream context array 3455 * for each endpoint and issuing a configure endpoint command for all endpoints. 3456 * 3457 * Don't allow the call to succeed if one endpoint only supports one stream 3458 * (which means it doesn't support streams at all). 3459 * 3460 * Drivers may get less stream IDs than they asked for, if the host controller 3461 * hardware or endpoints claim they can't support the number of requested 3462 * stream IDs. 3463 */ 3464 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3465 struct usb_host_endpoint **eps, unsigned int num_eps, 3466 unsigned int num_streams, gfp_t mem_flags) 3467 { 3468 int i, ret; 3469 struct xhci_hcd *xhci; 3470 struct xhci_virt_device *vdev; 3471 struct xhci_command *config_cmd; 3472 struct xhci_input_control_ctx *ctrl_ctx; 3473 unsigned int ep_index; 3474 unsigned int num_stream_ctxs; 3475 unsigned int max_packet; 3476 unsigned long flags; 3477 u32 changed_ep_bitmask = 0; 3478 3479 if (!eps) 3480 return -EINVAL; 3481 3482 /* Add one to the number of streams requested to account for 3483 * stream 0 that is reserved for xHCI usage. 3484 */ 3485 num_streams += 1; 3486 xhci = hcd_to_xhci(hcd); 3487 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3488 num_streams); 3489 3490 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3491 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3492 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3493 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3494 return -ENOSYS; 3495 } 3496 3497 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3498 if (!config_cmd) 3499 return -ENOMEM; 3500 3501 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3502 if (!ctrl_ctx) { 3503 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3504 __func__); 3505 xhci_free_command(xhci, config_cmd); 3506 return -ENOMEM; 3507 } 3508 3509 /* Check to make sure all endpoints are not already configured for 3510 * streams. While we're at it, find the maximum number of streams that 3511 * all the endpoints will support and check for duplicate endpoints. 3512 */ 3513 spin_lock_irqsave(&xhci->lock, flags); 3514 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3515 num_eps, &num_streams, &changed_ep_bitmask); 3516 if (ret < 0) { 3517 xhci_free_command(xhci, config_cmd); 3518 spin_unlock_irqrestore(&xhci->lock, flags); 3519 return ret; 3520 } 3521 if (num_streams <= 1) { 3522 xhci_warn(xhci, "WARN: endpoints can't handle " 3523 "more than one stream.\n"); 3524 xhci_free_command(xhci, config_cmd); 3525 spin_unlock_irqrestore(&xhci->lock, flags); 3526 return -EINVAL; 3527 } 3528 vdev = xhci->devs[udev->slot_id]; 3529 /* Mark each endpoint as being in transition, so 3530 * xhci_urb_enqueue() will reject all URBs. 3531 */ 3532 for (i = 0; i < num_eps; i++) { 3533 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3534 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3535 } 3536 spin_unlock_irqrestore(&xhci->lock, flags); 3537 3538 /* Setup internal data structures and allocate HW data structures for 3539 * streams (but don't install the HW structures in the input context 3540 * until we're sure all memory allocation succeeded). 3541 */ 3542 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3543 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3544 num_stream_ctxs, num_streams); 3545 3546 for (i = 0; i < num_eps; i++) { 3547 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3548 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3549 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3550 num_stream_ctxs, 3551 num_streams, 3552 max_packet, mem_flags); 3553 if (!vdev->eps[ep_index].stream_info) 3554 goto cleanup; 3555 /* Set maxPstreams in endpoint context and update deq ptr to 3556 * point to stream context array. FIXME 3557 */ 3558 } 3559 3560 /* Set up the input context for a configure endpoint command. */ 3561 for (i = 0; i < num_eps; i++) { 3562 struct xhci_ep_ctx *ep_ctx; 3563 3564 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3565 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3566 3567 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3568 vdev->out_ctx, ep_index); 3569 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3570 vdev->eps[ep_index].stream_info); 3571 } 3572 /* Tell the HW to drop its old copy of the endpoint context info 3573 * and add the updated copy from the input context. 3574 */ 3575 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3576 vdev->out_ctx, ctrl_ctx, 3577 changed_ep_bitmask, changed_ep_bitmask); 3578 3579 /* Issue and wait for the configure endpoint command */ 3580 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3581 false, false); 3582 3583 /* xHC rejected the configure endpoint command for some reason, so we 3584 * leave the old ring intact and free our internal streams data 3585 * structure. 3586 */ 3587 if (ret < 0) 3588 goto cleanup; 3589 3590 spin_lock_irqsave(&xhci->lock, flags); 3591 for (i = 0; i < num_eps; i++) { 3592 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3593 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3594 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3595 udev->slot_id, ep_index); 3596 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3597 } 3598 xhci_free_command(xhci, config_cmd); 3599 spin_unlock_irqrestore(&xhci->lock, flags); 3600 3601 for (i = 0; i < num_eps; i++) { 3602 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3603 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3604 } 3605 /* Subtract 1 for stream 0, which drivers can't use */ 3606 return num_streams - 1; 3607 3608 cleanup: 3609 /* If it didn't work, free the streams! */ 3610 for (i = 0; i < num_eps; i++) { 3611 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3612 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3613 vdev->eps[ep_index].stream_info = NULL; 3614 /* FIXME Unset maxPstreams in endpoint context and 3615 * update deq ptr to point to normal string ring. 3616 */ 3617 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3618 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3619 xhci_endpoint_zero(xhci, vdev, eps[i]); 3620 } 3621 xhci_free_command(xhci, config_cmd); 3622 return -ENOMEM; 3623 } 3624 3625 /* Transition the endpoint from using streams to being a "normal" endpoint 3626 * without streams. 3627 * 3628 * Modify the endpoint context state, submit a configure endpoint command, 3629 * and free all endpoint rings for streams if that completes successfully. 3630 */ 3631 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3632 struct usb_host_endpoint **eps, unsigned int num_eps, 3633 gfp_t mem_flags) 3634 { 3635 int i, ret; 3636 struct xhci_hcd *xhci; 3637 struct xhci_virt_device *vdev; 3638 struct xhci_command *command; 3639 struct xhci_input_control_ctx *ctrl_ctx; 3640 unsigned int ep_index; 3641 unsigned long flags; 3642 u32 changed_ep_bitmask; 3643 3644 xhci = hcd_to_xhci(hcd); 3645 vdev = xhci->devs[udev->slot_id]; 3646 3647 /* Set up a configure endpoint command to remove the streams rings */ 3648 spin_lock_irqsave(&xhci->lock, flags); 3649 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3650 udev, eps, num_eps); 3651 if (changed_ep_bitmask == 0) { 3652 spin_unlock_irqrestore(&xhci->lock, flags); 3653 return -EINVAL; 3654 } 3655 3656 /* Use the xhci_command structure from the first endpoint. We may have 3657 * allocated too many, but the driver may call xhci_free_streams() for 3658 * each endpoint it grouped into one call to xhci_alloc_streams(). 3659 */ 3660 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3661 command = vdev->eps[ep_index].stream_info->free_streams_command; 3662 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3663 if (!ctrl_ctx) { 3664 spin_unlock_irqrestore(&xhci->lock, flags); 3665 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3666 __func__); 3667 return -EINVAL; 3668 } 3669 3670 for (i = 0; i < num_eps; i++) { 3671 struct xhci_ep_ctx *ep_ctx; 3672 3673 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3674 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3675 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3676 EP_GETTING_NO_STREAMS; 3677 3678 xhci_endpoint_copy(xhci, command->in_ctx, 3679 vdev->out_ctx, ep_index); 3680 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3681 &vdev->eps[ep_index]); 3682 } 3683 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3684 vdev->out_ctx, ctrl_ctx, 3685 changed_ep_bitmask, changed_ep_bitmask); 3686 spin_unlock_irqrestore(&xhci->lock, flags); 3687 3688 /* Issue and wait for the configure endpoint command, 3689 * which must succeed. 3690 */ 3691 ret = xhci_configure_endpoint(xhci, udev, command, 3692 false, true); 3693 3694 /* xHC rejected the configure endpoint command for some reason, so we 3695 * leave the streams rings intact. 3696 */ 3697 if (ret < 0) 3698 return ret; 3699 3700 spin_lock_irqsave(&xhci->lock, flags); 3701 for (i = 0; i < num_eps; i++) { 3702 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3703 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3704 vdev->eps[ep_index].stream_info = NULL; 3705 /* FIXME Unset maxPstreams in endpoint context and 3706 * update deq ptr to point to normal string ring. 3707 */ 3708 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3709 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3710 } 3711 spin_unlock_irqrestore(&xhci->lock, flags); 3712 3713 return 0; 3714 } 3715 3716 /* 3717 * Deletes endpoint resources for endpoints that were active before a Reset 3718 * Device command, or a Disable Slot command. The Reset Device command leaves 3719 * the control endpoint intact, whereas the Disable Slot command deletes it. 3720 * 3721 * Must be called with xhci->lock held. 3722 */ 3723 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3724 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3725 { 3726 int i; 3727 unsigned int num_dropped_eps = 0; 3728 unsigned int drop_flags = 0; 3729 3730 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3731 if (virt_dev->eps[i].ring) { 3732 drop_flags |= 1 << i; 3733 num_dropped_eps++; 3734 } 3735 } 3736 xhci->num_active_eps -= num_dropped_eps; 3737 if (num_dropped_eps) 3738 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3739 "Dropped %u ep ctxs, flags = 0x%x, " 3740 "%u now active.", 3741 num_dropped_eps, drop_flags, 3742 xhci->num_active_eps); 3743 } 3744 3745 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev); 3746 3747 /* 3748 * This submits a Reset Device Command, which will set the device state to 0, 3749 * set the device address to 0, and disable all the endpoints except the default 3750 * control endpoint. The USB core should come back and call 3751 * xhci_address_device(), and then re-set up the configuration. If this is 3752 * called because of a usb_reset_and_verify_device(), then the old alternate 3753 * settings will be re-installed through the normal bandwidth allocation 3754 * functions. 3755 * 3756 * Wait for the Reset Device command to finish. Remove all structures 3757 * associated with the endpoints that were disabled. Clear the input device 3758 * structure? Reset the control endpoint 0 max packet size? 3759 * 3760 * If the virt_dev to be reset does not exist or does not match the udev, 3761 * it means the device is lost, possibly due to the xHC restore error and 3762 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3763 * re-allocate the device. 3764 */ 3765 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3766 struct usb_device *udev) 3767 { 3768 int ret, i; 3769 unsigned long flags; 3770 struct xhci_hcd *xhci; 3771 unsigned int slot_id; 3772 struct xhci_virt_device *virt_dev; 3773 struct xhci_command *reset_device_cmd; 3774 struct xhci_slot_ctx *slot_ctx; 3775 int old_active_eps = 0; 3776 3777 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3778 if (ret <= 0) 3779 return ret; 3780 xhci = hcd_to_xhci(hcd); 3781 slot_id = udev->slot_id; 3782 virt_dev = xhci->devs[slot_id]; 3783 if (!virt_dev) { 3784 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3785 "not exist. Re-allocate the device\n", slot_id); 3786 ret = xhci_alloc_dev(hcd, udev); 3787 if (ret == 1) 3788 return 0; 3789 else 3790 return -EINVAL; 3791 } 3792 3793 if (virt_dev->tt_info) 3794 old_active_eps = virt_dev->tt_info->active_eps; 3795 3796 if (virt_dev->udev != udev) { 3797 /* If the virt_dev and the udev does not match, this virt_dev 3798 * may belong to another udev. 3799 * Re-allocate the device. 3800 */ 3801 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3802 "not match the udev. Re-allocate the device\n", 3803 slot_id); 3804 ret = xhci_alloc_dev(hcd, udev); 3805 if (ret == 1) 3806 return 0; 3807 else 3808 return -EINVAL; 3809 } 3810 3811 /* If device is not setup, there is no point in resetting it */ 3812 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3813 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3814 SLOT_STATE_DISABLED) 3815 return 0; 3816 3817 if (xhci->quirks & XHCI_ETRON_HOST) { 3818 /* 3819 * Obtaining a new device slot to inform the xHCI host that 3820 * the USB device has been reset. 3821 */ 3822 ret = xhci_disable_slot(xhci, udev->slot_id); 3823 xhci_free_virt_device(xhci, udev->slot_id); 3824 if (!ret) { 3825 ret = xhci_alloc_dev(hcd, udev); 3826 if (ret == 1) 3827 ret = 0; 3828 else 3829 ret = -EINVAL; 3830 } 3831 return ret; 3832 } 3833 3834 trace_xhci_discover_or_reset_device(slot_ctx); 3835 3836 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3837 /* Allocate the command structure that holds the struct completion. 3838 * Assume we're in process context, since the normal device reset 3839 * process has to wait for the device anyway. Storage devices are 3840 * reset as part of error handling, so use GFP_NOIO instead of 3841 * GFP_KERNEL. 3842 */ 3843 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3844 if (!reset_device_cmd) { 3845 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3846 return -ENOMEM; 3847 } 3848 3849 /* Attempt to submit the Reset Device command to the command ring */ 3850 spin_lock_irqsave(&xhci->lock, flags); 3851 3852 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3853 if (ret) { 3854 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3855 spin_unlock_irqrestore(&xhci->lock, flags); 3856 goto command_cleanup; 3857 } 3858 xhci_ring_cmd_db(xhci); 3859 spin_unlock_irqrestore(&xhci->lock, flags); 3860 3861 /* Wait for the Reset Device command to finish */ 3862 wait_for_completion(reset_device_cmd->completion); 3863 3864 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3865 * unless we tried to reset a slot ID that wasn't enabled, 3866 * or the device wasn't in the addressed or configured state. 3867 */ 3868 ret = reset_device_cmd->status; 3869 switch (ret) { 3870 case COMP_COMMAND_ABORTED: 3871 case COMP_COMMAND_RING_STOPPED: 3872 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3873 ret = -ETIME; 3874 goto command_cleanup; 3875 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3876 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3877 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3878 slot_id, 3879 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3880 xhci_dbg(xhci, "Not freeing device rings.\n"); 3881 /* Don't treat this as an error. May change my mind later. */ 3882 ret = 0; 3883 goto command_cleanup; 3884 case COMP_SUCCESS: 3885 xhci_dbg(xhci, "Successful reset device command.\n"); 3886 break; 3887 default: 3888 if (xhci_is_vendor_info_code(xhci, ret)) 3889 break; 3890 xhci_warn(xhci, "Unknown completion code %u for " 3891 "reset device command.\n", ret); 3892 ret = -EINVAL; 3893 goto command_cleanup; 3894 } 3895 3896 /* Free up host controller endpoint resources */ 3897 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3898 spin_lock_irqsave(&xhci->lock, flags); 3899 /* Don't delete the default control endpoint resources */ 3900 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3901 spin_unlock_irqrestore(&xhci->lock, flags); 3902 } 3903 3904 /* Everything but endpoint 0 is disabled, so free the rings. */ 3905 for (i = 1; i < 31; i++) { 3906 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3907 3908 if (ep->ep_state & EP_HAS_STREAMS) { 3909 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3910 xhci_get_endpoint_address(i)); 3911 xhci_free_stream_info(xhci, ep->stream_info); 3912 ep->stream_info = NULL; 3913 ep->ep_state &= ~EP_HAS_STREAMS; 3914 } 3915 3916 if (ep->ring) { 3917 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3918 xhci_free_endpoint_ring(xhci, virt_dev, i); 3919 } 3920 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3921 xhci_drop_ep_from_interval_table(xhci, 3922 &virt_dev->eps[i].bw_info, 3923 virt_dev->bw_table, 3924 udev, 3925 &virt_dev->eps[i], 3926 virt_dev->tt_info); 3927 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3928 } 3929 /* If necessary, update the number of active TTs on this root port */ 3930 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3931 virt_dev->flags = 0; 3932 ret = 0; 3933 3934 command_cleanup: 3935 xhci_free_command(xhci, reset_device_cmd); 3936 return ret; 3937 } 3938 3939 /* 3940 * At this point, the struct usb_device is about to go away, the device has 3941 * disconnected, and all traffic has been stopped and the endpoints have been 3942 * disabled. Free any HC data structures associated with that device. 3943 */ 3944 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3945 { 3946 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3947 struct xhci_virt_device *virt_dev; 3948 struct xhci_slot_ctx *slot_ctx; 3949 unsigned long flags; 3950 int i, ret; 3951 3952 /* 3953 * We called pm_runtime_get_noresume when the device was attached. 3954 * Decrement the counter here to allow controller to runtime suspend 3955 * if no devices remain. 3956 */ 3957 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3958 pm_runtime_put_noidle(hcd->self.controller); 3959 3960 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3961 /* If the host is halted due to driver unload, we still need to free the 3962 * device. 3963 */ 3964 if (ret <= 0 && ret != -ENODEV) 3965 return; 3966 3967 virt_dev = xhci->devs[udev->slot_id]; 3968 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3969 trace_xhci_free_dev(slot_ctx); 3970 3971 /* Stop any wayward timer functions (which may grab the lock) */ 3972 for (i = 0; i < 31; i++) 3973 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3974 virt_dev->udev = NULL; 3975 xhci_disable_slot(xhci, udev->slot_id); 3976 3977 spin_lock_irqsave(&xhci->lock, flags); 3978 xhci_free_virt_device(xhci, udev->slot_id); 3979 spin_unlock_irqrestore(&xhci->lock, flags); 3980 3981 } 3982 3983 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3984 { 3985 struct xhci_command *command; 3986 unsigned long flags; 3987 u32 state; 3988 int ret; 3989 3990 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3991 if (!command) 3992 return -ENOMEM; 3993 3994 xhci_debugfs_remove_slot(xhci, slot_id); 3995 3996 spin_lock_irqsave(&xhci->lock, flags); 3997 /* Don't disable the slot if the host controller is dead. */ 3998 state = readl(&xhci->op_regs->status); 3999 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 4000 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4001 spin_unlock_irqrestore(&xhci->lock, flags); 4002 kfree(command); 4003 return -ENODEV; 4004 } 4005 4006 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 4007 slot_id); 4008 if (ret) { 4009 spin_unlock_irqrestore(&xhci->lock, flags); 4010 kfree(command); 4011 return ret; 4012 } 4013 xhci_ring_cmd_db(xhci); 4014 spin_unlock_irqrestore(&xhci->lock, flags); 4015 4016 wait_for_completion(command->completion); 4017 4018 if (command->status != COMP_SUCCESS) 4019 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4020 slot_id, command->status); 4021 4022 xhci_free_command(xhci, command); 4023 4024 return 0; 4025 } 4026 4027 /* 4028 * Checks if we have enough host controller resources for the default control 4029 * endpoint. 4030 * 4031 * Must be called with xhci->lock held. 4032 */ 4033 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4034 { 4035 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4036 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4037 "Not enough ep ctxs: " 4038 "%u active, need to add 1, limit is %u.", 4039 xhci->num_active_eps, xhci->limit_active_eps); 4040 return -ENOMEM; 4041 } 4042 xhci->num_active_eps += 1; 4043 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4044 "Adding 1 ep ctx, %u now active.", 4045 xhci->num_active_eps); 4046 return 0; 4047 } 4048 4049 4050 /* 4051 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4052 * timed out, or allocating memory failed. Returns 1 on success. 4053 */ 4054 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4055 { 4056 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4057 struct xhci_virt_device *vdev; 4058 struct xhci_slot_ctx *slot_ctx; 4059 unsigned long flags; 4060 int ret, slot_id; 4061 struct xhci_command *command; 4062 4063 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4064 if (!command) 4065 return 0; 4066 4067 spin_lock_irqsave(&xhci->lock, flags); 4068 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4069 if (ret) { 4070 spin_unlock_irqrestore(&xhci->lock, flags); 4071 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4072 xhci_free_command(xhci, command); 4073 return 0; 4074 } 4075 xhci_ring_cmd_db(xhci); 4076 spin_unlock_irqrestore(&xhci->lock, flags); 4077 4078 wait_for_completion(command->completion); 4079 slot_id = command->slot_id; 4080 4081 if (!slot_id || command->status != COMP_SUCCESS) { 4082 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 4083 xhci_trb_comp_code_string(command->status)); 4084 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4085 HCS_MAX_SLOTS( 4086 readl(&xhci->cap_regs->hcs_params1))); 4087 xhci_free_command(xhci, command); 4088 return 0; 4089 } 4090 4091 xhci_free_command(xhci, command); 4092 4093 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4094 spin_lock_irqsave(&xhci->lock, flags); 4095 ret = xhci_reserve_host_control_ep_resources(xhci); 4096 if (ret) { 4097 spin_unlock_irqrestore(&xhci->lock, flags); 4098 xhci_warn(xhci, "Not enough host resources, " 4099 "active endpoint contexts = %u\n", 4100 xhci->num_active_eps); 4101 goto disable_slot; 4102 } 4103 spin_unlock_irqrestore(&xhci->lock, flags); 4104 } 4105 /* Use GFP_NOIO, since this function can be called from 4106 * xhci_discover_or_reset_device(), which may be called as part of 4107 * mass storage driver error handling. 4108 */ 4109 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4110 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4111 goto disable_slot; 4112 } 4113 vdev = xhci->devs[slot_id]; 4114 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4115 trace_xhci_alloc_dev(slot_ctx); 4116 4117 udev->slot_id = slot_id; 4118 4119 xhci_debugfs_create_slot(xhci, slot_id); 4120 4121 /* 4122 * If resetting upon resume, we can't put the controller into runtime 4123 * suspend if there is a device attached. 4124 */ 4125 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4126 pm_runtime_get_noresume(hcd->self.controller); 4127 4128 /* Is this a LS or FS device under a HS hub? */ 4129 /* Hub or peripherial? */ 4130 return 1; 4131 4132 disable_slot: 4133 xhci_disable_slot(xhci, udev->slot_id); 4134 xhci_free_virt_device(xhci, udev->slot_id); 4135 4136 return 0; 4137 } 4138 4139 /** 4140 * xhci_setup_device - issues an Address Device command to assign a unique 4141 * USB bus address. 4142 * @hcd: USB host controller data structure. 4143 * @udev: USB dev structure representing the connected device. 4144 * @setup: Enum specifying setup mode: address only or with context. 4145 * @timeout_ms: Max wait time (ms) for the command operation to complete. 4146 * 4147 * Return: 0 if successful; otherwise, negative error code. 4148 */ 4149 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4150 enum xhci_setup_dev setup, unsigned int timeout_ms) 4151 { 4152 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4153 unsigned long flags; 4154 struct xhci_virt_device *virt_dev; 4155 int ret = 0; 4156 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4157 struct xhci_slot_ctx *slot_ctx; 4158 struct xhci_input_control_ctx *ctrl_ctx; 4159 u64 temp_64; 4160 struct xhci_command *command = NULL; 4161 4162 mutex_lock(&xhci->mutex); 4163 4164 if (xhci->xhc_state) { /* dying, removing or halted */ 4165 ret = -ESHUTDOWN; 4166 goto out; 4167 } 4168 4169 if (!udev->slot_id) { 4170 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4171 "Bad Slot ID %d", udev->slot_id); 4172 ret = -EINVAL; 4173 goto out; 4174 } 4175 4176 virt_dev = xhci->devs[udev->slot_id]; 4177 4178 if (WARN_ON(!virt_dev)) { 4179 /* 4180 * In plug/unplug torture test with an NEC controller, 4181 * a zero-dereference was observed once due to virt_dev = 0. 4182 * Print useful debug rather than crash if it is observed again! 4183 */ 4184 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4185 udev->slot_id); 4186 ret = -EINVAL; 4187 goto out; 4188 } 4189 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4190 trace_xhci_setup_device_slot(slot_ctx); 4191 4192 if (setup == SETUP_CONTEXT_ONLY) { 4193 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4194 SLOT_STATE_DEFAULT) { 4195 xhci_dbg(xhci, "Slot already in default state\n"); 4196 goto out; 4197 } 4198 } 4199 4200 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4201 if (!command) { 4202 ret = -ENOMEM; 4203 goto out; 4204 } 4205 4206 command->in_ctx = virt_dev->in_ctx; 4207 command->timeout_ms = timeout_ms; 4208 4209 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4210 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4211 if (!ctrl_ctx) { 4212 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4213 __func__); 4214 ret = -EINVAL; 4215 goto out; 4216 } 4217 /* 4218 * If this is the first Set Address since device plug-in or 4219 * virt_device realloaction after a resume with an xHCI power loss, 4220 * then set up the slot context. 4221 */ 4222 if (!slot_ctx->dev_info) 4223 xhci_setup_addressable_virt_dev(xhci, udev); 4224 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4225 else 4226 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4227 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4228 ctrl_ctx->drop_flags = 0; 4229 4230 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4231 le32_to_cpu(slot_ctx->dev_info) >> 27); 4232 4233 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4234 spin_lock_irqsave(&xhci->lock, flags); 4235 trace_xhci_setup_device(virt_dev); 4236 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4237 udev->slot_id, setup); 4238 if (ret) { 4239 spin_unlock_irqrestore(&xhci->lock, flags); 4240 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4241 "FIXME: allocate a command ring segment"); 4242 goto out; 4243 } 4244 xhci_ring_cmd_db(xhci); 4245 spin_unlock_irqrestore(&xhci->lock, flags); 4246 4247 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4248 wait_for_completion(command->completion); 4249 4250 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4251 * the SetAddress() "recovery interval" required by USB and aborting the 4252 * command on a timeout. 4253 */ 4254 switch (command->status) { 4255 case COMP_COMMAND_ABORTED: 4256 case COMP_COMMAND_RING_STOPPED: 4257 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4258 ret = -ETIME; 4259 break; 4260 case COMP_CONTEXT_STATE_ERROR: 4261 case COMP_SLOT_NOT_ENABLED_ERROR: 4262 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4263 act, udev->slot_id); 4264 ret = -EINVAL; 4265 break; 4266 case COMP_USB_TRANSACTION_ERROR: 4267 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4268 4269 mutex_unlock(&xhci->mutex); 4270 ret = xhci_disable_slot(xhci, udev->slot_id); 4271 xhci_free_virt_device(xhci, udev->slot_id); 4272 if (!ret) { 4273 if (xhci_alloc_dev(hcd, udev) == 1) 4274 xhci_setup_addressable_virt_dev(xhci, udev); 4275 } 4276 kfree(command->completion); 4277 kfree(command); 4278 return -EPROTO; 4279 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4280 dev_warn(&udev->dev, 4281 "ERROR: Incompatible device for setup %s command\n", act); 4282 ret = -ENODEV; 4283 break; 4284 case COMP_SUCCESS: 4285 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4286 "Successful setup %s command", act); 4287 break; 4288 default: 4289 xhci_err(xhci, 4290 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4291 act, command->status); 4292 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4293 ret = -EINVAL; 4294 break; 4295 } 4296 if (ret) 4297 goto out; 4298 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4299 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4300 "Op regs DCBAA ptr = %#016llx", temp_64); 4301 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4302 "Slot ID %d dcbaa entry @%p = %#016llx", 4303 udev->slot_id, 4304 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4305 (unsigned long long) 4306 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4307 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4308 "Output Context DMA address = %#08llx", 4309 (unsigned long long)virt_dev->out_ctx->dma); 4310 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4311 le32_to_cpu(slot_ctx->dev_info) >> 27); 4312 /* 4313 * USB core uses address 1 for the roothubs, so we add one to the 4314 * address given back to us by the HC. 4315 */ 4316 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4317 le32_to_cpu(slot_ctx->dev_info) >> 27); 4318 /* Zero the input context control for later use */ 4319 ctrl_ctx->add_flags = 0; 4320 ctrl_ctx->drop_flags = 0; 4321 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4322 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4323 4324 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4325 "Internal device address = %d", 4326 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4327 out: 4328 mutex_unlock(&xhci->mutex); 4329 if (command) { 4330 kfree(command->completion); 4331 kfree(command); 4332 } 4333 return ret; 4334 } 4335 4336 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev, 4337 unsigned int timeout_ms) 4338 { 4339 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms); 4340 } 4341 4342 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4343 { 4344 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY, 4345 XHCI_CMD_DEFAULT_TIMEOUT); 4346 } 4347 4348 /* 4349 * Transfer the port index into real index in the HW port status 4350 * registers. Caculate offset between the port's PORTSC register 4351 * and port status base. Divide the number of per port register 4352 * to get the real index. The raw port number bases 1. 4353 */ 4354 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4355 { 4356 struct xhci_hub *rhub; 4357 4358 rhub = xhci_get_rhub(hcd); 4359 return rhub->ports[port1 - 1]->hw_portnum + 1; 4360 } 4361 4362 /* 4363 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4364 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4365 */ 4366 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4367 struct usb_device *udev, u16 max_exit_latency) 4368 { 4369 struct xhci_virt_device *virt_dev; 4370 struct xhci_command *command; 4371 struct xhci_input_control_ctx *ctrl_ctx; 4372 struct xhci_slot_ctx *slot_ctx; 4373 unsigned long flags; 4374 int ret; 4375 4376 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4377 if (!command) 4378 return -ENOMEM; 4379 4380 spin_lock_irqsave(&xhci->lock, flags); 4381 4382 virt_dev = xhci->devs[udev->slot_id]; 4383 4384 /* 4385 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4386 * xHC was re-initialized. Exit latency will be set later after 4387 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4388 */ 4389 4390 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4391 spin_unlock_irqrestore(&xhci->lock, flags); 4392 xhci_free_command(xhci, command); 4393 return 0; 4394 } 4395 4396 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4397 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4398 if (!ctrl_ctx) { 4399 spin_unlock_irqrestore(&xhci->lock, flags); 4400 xhci_free_command(xhci, command); 4401 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4402 __func__); 4403 return -ENOMEM; 4404 } 4405 4406 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4407 spin_unlock_irqrestore(&xhci->lock, flags); 4408 4409 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4410 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4411 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4412 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4413 slot_ctx->dev_state = 0; 4414 4415 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4416 "Set up evaluate context for LPM MEL change."); 4417 4418 /* Issue and wait for the evaluate context command. */ 4419 ret = xhci_configure_endpoint(xhci, udev, command, 4420 true, true); 4421 4422 if (!ret) { 4423 spin_lock_irqsave(&xhci->lock, flags); 4424 virt_dev->current_mel = max_exit_latency; 4425 spin_unlock_irqrestore(&xhci->lock, flags); 4426 } 4427 4428 xhci_free_command(xhci, command); 4429 4430 return ret; 4431 } 4432 4433 #ifdef CONFIG_PM 4434 4435 /* BESL to HIRD Encoding array for USB2 LPM */ 4436 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4437 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4438 4439 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4440 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4441 struct usb_device *udev) 4442 { 4443 int u2del, besl, besl_host; 4444 int besl_device = 0; 4445 u32 field; 4446 4447 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4448 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4449 4450 if (field & USB_BESL_SUPPORT) { 4451 for (besl_host = 0; besl_host < 16; besl_host++) { 4452 if (xhci_besl_encoding[besl_host] >= u2del) 4453 break; 4454 } 4455 /* Use baseline BESL value as default */ 4456 if (field & USB_BESL_BASELINE_VALID) 4457 besl_device = USB_GET_BESL_BASELINE(field); 4458 else if (field & USB_BESL_DEEP_VALID) 4459 besl_device = USB_GET_BESL_DEEP(field); 4460 } else { 4461 if (u2del <= 50) 4462 besl_host = 0; 4463 else 4464 besl_host = (u2del - 51) / 75 + 1; 4465 } 4466 4467 besl = besl_host + besl_device; 4468 if (besl > 15) 4469 besl = 15; 4470 4471 return besl; 4472 } 4473 4474 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4475 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4476 { 4477 u32 field; 4478 int l1; 4479 int besld = 0; 4480 int hirdm = 0; 4481 4482 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4483 4484 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4485 l1 = udev->l1_params.timeout / 256; 4486 4487 /* device has preferred BESLD */ 4488 if (field & USB_BESL_DEEP_VALID) { 4489 besld = USB_GET_BESL_DEEP(field); 4490 hirdm = 1; 4491 } 4492 4493 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4494 } 4495 4496 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4497 struct usb_device *udev, int enable) 4498 { 4499 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4500 struct xhci_port **ports; 4501 __le32 __iomem *pm_addr, *hlpm_addr; 4502 u32 pm_val, hlpm_val, field; 4503 unsigned int port_num; 4504 unsigned long flags; 4505 int hird, exit_latency; 4506 int ret; 4507 4508 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4509 return -EPERM; 4510 4511 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4512 !udev->lpm_capable) 4513 return -EPERM; 4514 4515 if (!udev->parent || udev->parent->parent || 4516 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4517 return -EPERM; 4518 4519 if (udev->usb2_hw_lpm_capable != 1) 4520 return -EPERM; 4521 4522 spin_lock_irqsave(&xhci->lock, flags); 4523 4524 ports = xhci->usb2_rhub.ports; 4525 port_num = udev->portnum - 1; 4526 pm_addr = ports[port_num]->addr + PORTPMSC; 4527 pm_val = readl(pm_addr); 4528 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4529 4530 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4531 str_enable_disable(enable), port_num + 1); 4532 4533 if (enable) { 4534 /* Host supports BESL timeout instead of HIRD */ 4535 if (udev->usb2_hw_lpm_besl_capable) { 4536 /* if device doesn't have a preferred BESL value use a 4537 * default one which works with mixed HIRD and BESL 4538 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4539 */ 4540 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4541 if ((field & USB_BESL_SUPPORT) && 4542 (field & USB_BESL_BASELINE_VALID)) 4543 hird = USB_GET_BESL_BASELINE(field); 4544 else 4545 hird = udev->l1_params.besl; 4546 4547 exit_latency = xhci_besl_encoding[hird]; 4548 spin_unlock_irqrestore(&xhci->lock, flags); 4549 4550 ret = xhci_change_max_exit_latency(xhci, udev, 4551 exit_latency); 4552 if (ret < 0) 4553 return ret; 4554 spin_lock_irqsave(&xhci->lock, flags); 4555 4556 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4557 writel(hlpm_val, hlpm_addr); 4558 /* flush write */ 4559 readl(hlpm_addr); 4560 } else { 4561 hird = xhci_calculate_hird_besl(xhci, udev); 4562 } 4563 4564 pm_val &= ~PORT_HIRD_MASK; 4565 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4566 writel(pm_val, pm_addr); 4567 pm_val = readl(pm_addr); 4568 pm_val |= PORT_HLE; 4569 writel(pm_val, pm_addr); 4570 /* flush write */ 4571 readl(pm_addr); 4572 } else { 4573 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4574 writel(pm_val, pm_addr); 4575 /* flush write */ 4576 readl(pm_addr); 4577 if (udev->usb2_hw_lpm_besl_capable) { 4578 spin_unlock_irqrestore(&xhci->lock, flags); 4579 xhci_change_max_exit_latency(xhci, udev, 0); 4580 readl_poll_timeout(ports[port_num]->addr, pm_val, 4581 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4582 100, 10000); 4583 return 0; 4584 } 4585 } 4586 4587 spin_unlock_irqrestore(&xhci->lock, flags); 4588 return 0; 4589 } 4590 4591 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4592 { 4593 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4594 struct xhci_port *port; 4595 u32 capability; 4596 4597 /* Check if USB3 device at root port is tunneled over USB4 */ 4598 if (hcd->speed >= HCD_USB3 && !udev->parent->parent) { 4599 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 4600 4601 udev->tunnel_mode = xhci_port_is_tunneled(xhci, port); 4602 if (udev->tunnel_mode == USB_LINK_UNKNOWN) 4603 dev_dbg(&udev->dev, "link tunnel state unknown\n"); 4604 else if (udev->tunnel_mode == USB_LINK_TUNNELED) 4605 dev_dbg(&udev->dev, "tunneled over USB4 link\n"); 4606 else if (udev->tunnel_mode == USB_LINK_NATIVE) 4607 dev_dbg(&udev->dev, "native USB 3.x link\n"); 4608 return 0; 4609 } 4610 4611 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support) 4612 return 0; 4613 4614 /* we only support lpm for non-hub device connected to root hub yet */ 4615 if (!udev->parent || udev->parent->parent || 4616 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4617 return 0; 4618 4619 port = xhci->usb2_rhub.ports[udev->portnum - 1]; 4620 capability = port->port_cap->protocol_caps; 4621 4622 if (capability & XHCI_HLC) { 4623 udev->usb2_hw_lpm_capable = 1; 4624 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4625 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4626 if (capability & XHCI_BLC) 4627 udev->usb2_hw_lpm_besl_capable = 1; 4628 } 4629 4630 return 0; 4631 } 4632 4633 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4634 4635 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4636 static unsigned long long xhci_service_interval_to_ns( 4637 struct usb_endpoint_descriptor *desc) 4638 { 4639 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4640 } 4641 4642 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4643 enum usb3_link_state state) 4644 { 4645 unsigned long long sel; 4646 unsigned long long pel; 4647 unsigned int max_sel_pel; 4648 char *state_name; 4649 4650 switch (state) { 4651 case USB3_LPM_U1: 4652 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4653 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4654 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4655 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4656 state_name = "U1"; 4657 break; 4658 case USB3_LPM_U2: 4659 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4660 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4661 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4662 state_name = "U2"; 4663 break; 4664 default: 4665 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4666 __func__); 4667 return USB3_LPM_DISABLED; 4668 } 4669 4670 if (sel <= max_sel_pel && pel <= max_sel_pel) 4671 return USB3_LPM_DEVICE_INITIATED; 4672 4673 if (sel > max_sel_pel) 4674 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4675 "due to long SEL %llu ms\n", 4676 state_name, sel); 4677 else 4678 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4679 "due to long PEL %llu ms\n", 4680 state_name, pel); 4681 return USB3_LPM_DISABLED; 4682 } 4683 4684 /* The U1 timeout should be the maximum of the following values: 4685 * - For control endpoints, U1 system exit latency (SEL) * 3 4686 * - For bulk endpoints, U1 SEL * 5 4687 * - For interrupt endpoints: 4688 * - Notification EPs, U1 SEL * 3 4689 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4690 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4691 */ 4692 static unsigned long long xhci_calculate_intel_u1_timeout( 4693 struct usb_device *udev, 4694 struct usb_endpoint_descriptor *desc) 4695 { 4696 unsigned long long timeout_ns; 4697 int ep_type; 4698 int intr_type; 4699 4700 ep_type = usb_endpoint_type(desc); 4701 switch (ep_type) { 4702 case USB_ENDPOINT_XFER_CONTROL: 4703 timeout_ns = udev->u1_params.sel * 3; 4704 break; 4705 case USB_ENDPOINT_XFER_BULK: 4706 timeout_ns = udev->u1_params.sel * 5; 4707 break; 4708 case USB_ENDPOINT_XFER_INT: 4709 intr_type = usb_endpoint_interrupt_type(desc); 4710 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4711 timeout_ns = udev->u1_params.sel * 3; 4712 break; 4713 } 4714 /* Otherwise the calculation is the same as isoc eps */ 4715 fallthrough; 4716 case USB_ENDPOINT_XFER_ISOC: 4717 timeout_ns = xhci_service_interval_to_ns(desc); 4718 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4719 if (timeout_ns < udev->u1_params.sel * 2) 4720 timeout_ns = udev->u1_params.sel * 2; 4721 break; 4722 default: 4723 return 0; 4724 } 4725 4726 return timeout_ns; 4727 } 4728 4729 /* Returns the hub-encoded U1 timeout value. */ 4730 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4731 struct usb_device *udev, 4732 struct usb_endpoint_descriptor *desc) 4733 { 4734 unsigned long long timeout_ns; 4735 4736 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4737 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4738 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4739 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4740 return USB3_LPM_DISABLED; 4741 } 4742 } 4743 4744 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4745 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4746 else 4747 timeout_ns = udev->u1_params.sel; 4748 4749 /* The U1 timeout is encoded in 1us intervals. 4750 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4751 */ 4752 if (timeout_ns == USB3_LPM_DISABLED) 4753 timeout_ns = 1; 4754 else 4755 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4756 4757 /* If the necessary timeout value is bigger than what we can set in the 4758 * USB 3.0 hub, we have to disable hub-initiated U1. 4759 */ 4760 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4761 return timeout_ns; 4762 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4763 "due to long timeout %llu ms\n", timeout_ns); 4764 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4765 } 4766 4767 /* The U2 timeout should be the maximum of: 4768 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4769 * - largest bInterval of any active periodic endpoint (to avoid going 4770 * into lower power link states between intervals). 4771 * - the U2 Exit Latency of the device 4772 */ 4773 static unsigned long long xhci_calculate_intel_u2_timeout( 4774 struct usb_device *udev, 4775 struct usb_endpoint_descriptor *desc) 4776 { 4777 unsigned long long timeout_ns; 4778 unsigned long long u2_del_ns; 4779 4780 timeout_ns = 10 * 1000 * 1000; 4781 4782 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4783 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4784 timeout_ns = xhci_service_interval_to_ns(desc); 4785 4786 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4787 if (u2_del_ns > timeout_ns) 4788 timeout_ns = u2_del_ns; 4789 4790 return timeout_ns; 4791 } 4792 4793 /* Returns the hub-encoded U2 timeout value. */ 4794 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4795 struct usb_device *udev, 4796 struct usb_endpoint_descriptor *desc) 4797 { 4798 unsigned long long timeout_ns; 4799 4800 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4801 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4802 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4803 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4804 return USB3_LPM_DISABLED; 4805 } 4806 } 4807 4808 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4809 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4810 else 4811 timeout_ns = udev->u2_params.sel; 4812 4813 /* The U2 timeout is encoded in 256us intervals */ 4814 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4815 /* If the necessary timeout value is bigger than what we can set in the 4816 * USB 3.0 hub, we have to disable hub-initiated U2. 4817 */ 4818 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4819 return timeout_ns; 4820 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4821 "due to long timeout %llu ms\n", timeout_ns); 4822 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4823 } 4824 4825 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4826 struct usb_device *udev, 4827 struct usb_endpoint_descriptor *desc, 4828 enum usb3_link_state state, 4829 u16 *timeout) 4830 { 4831 if (state == USB3_LPM_U1) 4832 return xhci_calculate_u1_timeout(xhci, udev, desc); 4833 else if (state == USB3_LPM_U2) 4834 return xhci_calculate_u2_timeout(xhci, udev, desc); 4835 4836 return USB3_LPM_DISABLED; 4837 } 4838 4839 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4840 struct usb_device *udev, 4841 struct usb_endpoint_descriptor *desc, 4842 enum usb3_link_state state, 4843 u16 *timeout) 4844 { 4845 u16 alt_timeout; 4846 4847 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4848 desc, state, timeout); 4849 4850 /* If we found we can't enable hub-initiated LPM, and 4851 * the U1 or U2 exit latency was too high to allow 4852 * device-initiated LPM as well, then we will disable LPM 4853 * for this device, so stop searching any further. 4854 */ 4855 if (alt_timeout == USB3_LPM_DISABLED) { 4856 *timeout = alt_timeout; 4857 return -E2BIG; 4858 } 4859 if (alt_timeout > *timeout) 4860 *timeout = alt_timeout; 4861 return 0; 4862 } 4863 4864 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4865 struct usb_device *udev, 4866 struct usb_host_interface *alt, 4867 enum usb3_link_state state, 4868 u16 *timeout) 4869 { 4870 int j; 4871 4872 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4873 if (xhci_update_timeout_for_endpoint(xhci, udev, 4874 &alt->endpoint[j].desc, state, timeout)) 4875 return -E2BIG; 4876 } 4877 return 0; 4878 } 4879 4880 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4881 struct usb_device *udev, 4882 enum usb3_link_state state) 4883 { 4884 struct usb_device *parent = udev->parent; 4885 int tier = 1; /* roothub is tier1 */ 4886 4887 while (parent) { 4888 parent = parent->parent; 4889 tier++; 4890 } 4891 4892 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3) 4893 goto fail; 4894 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2) 4895 goto fail; 4896 4897 return 0; 4898 fail: 4899 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n", 4900 tier); 4901 return -E2BIG; 4902 } 4903 4904 /* Returns the U1 or U2 timeout that should be enabled. 4905 * If the tier check or timeout setting functions return with a non-zero exit 4906 * code, that means the timeout value has been finalized and we shouldn't look 4907 * at any more endpoints. 4908 */ 4909 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4910 struct usb_device *udev, enum usb3_link_state state) 4911 { 4912 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4913 struct usb_host_config *config; 4914 char *state_name; 4915 int i; 4916 u16 timeout = USB3_LPM_DISABLED; 4917 4918 if (state == USB3_LPM_U1) 4919 state_name = "U1"; 4920 else if (state == USB3_LPM_U2) 4921 state_name = "U2"; 4922 else { 4923 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4924 state); 4925 return timeout; 4926 } 4927 4928 /* Gather some information about the currently installed configuration 4929 * and alternate interface settings. 4930 */ 4931 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4932 state, &timeout)) 4933 return timeout; 4934 4935 config = udev->actconfig; 4936 if (!config) 4937 return timeout; 4938 4939 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4940 struct usb_driver *driver; 4941 struct usb_interface *intf = config->interface[i]; 4942 4943 if (!intf) 4944 continue; 4945 4946 /* Check if any currently bound drivers want hub-initiated LPM 4947 * disabled. 4948 */ 4949 if (intf->dev.driver) { 4950 driver = to_usb_driver(intf->dev.driver); 4951 if (driver && driver->disable_hub_initiated_lpm) { 4952 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4953 state_name, driver->name); 4954 timeout = xhci_get_timeout_no_hub_lpm(udev, 4955 state); 4956 if (timeout == USB3_LPM_DISABLED) 4957 return timeout; 4958 } 4959 } 4960 4961 /* Not sure how this could happen... */ 4962 if (!intf->cur_altsetting) 4963 continue; 4964 4965 if (xhci_update_timeout_for_interface(xhci, udev, 4966 intf->cur_altsetting, 4967 state, &timeout)) 4968 return timeout; 4969 } 4970 return timeout; 4971 } 4972 4973 static int calculate_max_exit_latency(struct usb_device *udev, 4974 enum usb3_link_state state_changed, 4975 u16 hub_encoded_timeout) 4976 { 4977 unsigned long long u1_mel_us = 0; 4978 unsigned long long u2_mel_us = 0; 4979 unsigned long long mel_us = 0; 4980 bool disabling_u1; 4981 bool disabling_u2; 4982 bool enabling_u1; 4983 bool enabling_u2; 4984 4985 disabling_u1 = (state_changed == USB3_LPM_U1 && 4986 hub_encoded_timeout == USB3_LPM_DISABLED); 4987 disabling_u2 = (state_changed == USB3_LPM_U2 && 4988 hub_encoded_timeout == USB3_LPM_DISABLED); 4989 4990 enabling_u1 = (state_changed == USB3_LPM_U1 && 4991 hub_encoded_timeout != USB3_LPM_DISABLED); 4992 enabling_u2 = (state_changed == USB3_LPM_U2 && 4993 hub_encoded_timeout != USB3_LPM_DISABLED); 4994 4995 /* If U1 was already enabled and we're not disabling it, 4996 * or we're going to enable U1, account for the U1 max exit latency. 4997 */ 4998 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4999 enabling_u1) 5000 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 5001 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 5002 enabling_u2) 5003 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5004 5005 mel_us = max(u1_mel_us, u2_mel_us); 5006 5007 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5008 if (mel_us > MAX_EXIT) { 5009 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5010 "is too big.\n", mel_us); 5011 return -E2BIG; 5012 } 5013 return mel_us; 5014 } 5015 5016 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5017 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5018 struct usb_device *udev, enum usb3_link_state state) 5019 { 5020 struct xhci_hcd *xhci; 5021 struct xhci_port *port; 5022 u16 hub_encoded_timeout; 5023 int mel; 5024 int ret; 5025 5026 xhci = hcd_to_xhci(hcd); 5027 /* The LPM timeout values are pretty host-controller specific, so don't 5028 * enable hub-initiated timeouts unless the vendor has provided 5029 * information about their timeout algorithm. 5030 */ 5031 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5032 !xhci->devs[udev->slot_id]) 5033 return USB3_LPM_DISABLED; 5034 5035 if (xhci_check_tier_policy(xhci, udev, state) < 0) 5036 return USB3_LPM_DISABLED; 5037 5038 /* If connected to root port then check port can handle lpm */ 5039 if (udev->parent && !udev->parent->parent) { 5040 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 5041 if (port->lpm_incapable) 5042 return USB3_LPM_DISABLED; 5043 } 5044 5045 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5046 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5047 if (mel < 0) { 5048 /* Max Exit Latency is too big, disable LPM. */ 5049 hub_encoded_timeout = USB3_LPM_DISABLED; 5050 mel = 0; 5051 } 5052 5053 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5054 if (ret) 5055 return ret; 5056 return hub_encoded_timeout; 5057 } 5058 5059 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5060 struct usb_device *udev, enum usb3_link_state state) 5061 { 5062 struct xhci_hcd *xhci; 5063 u16 mel; 5064 5065 xhci = hcd_to_xhci(hcd); 5066 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5067 !xhci->devs[udev->slot_id]) 5068 return 0; 5069 5070 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5071 return xhci_change_max_exit_latency(xhci, udev, mel); 5072 } 5073 #else /* CONFIG_PM */ 5074 5075 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5076 struct usb_device *udev, int enable) 5077 { 5078 return 0; 5079 } 5080 5081 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5082 { 5083 return 0; 5084 } 5085 5086 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5087 struct usb_device *udev, enum usb3_link_state state) 5088 { 5089 return USB3_LPM_DISABLED; 5090 } 5091 5092 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5093 struct usb_device *udev, enum usb3_link_state state) 5094 { 5095 return 0; 5096 } 5097 #endif /* CONFIG_PM */ 5098 5099 /*-------------------------------------------------------------------------*/ 5100 5101 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5102 * internal data structures for the device. 5103 */ 5104 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5105 struct usb_tt *tt, gfp_t mem_flags) 5106 { 5107 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5108 struct xhci_virt_device *vdev; 5109 struct xhci_command *config_cmd; 5110 struct xhci_input_control_ctx *ctrl_ctx; 5111 struct xhci_slot_ctx *slot_ctx; 5112 unsigned long flags; 5113 unsigned think_time; 5114 int ret; 5115 5116 /* Ignore root hubs */ 5117 if (!hdev->parent) 5118 return 0; 5119 5120 vdev = xhci->devs[hdev->slot_id]; 5121 if (!vdev) { 5122 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5123 return -EINVAL; 5124 } 5125 5126 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5127 if (!config_cmd) 5128 return -ENOMEM; 5129 5130 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5131 if (!ctrl_ctx) { 5132 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5133 __func__); 5134 xhci_free_command(xhci, config_cmd); 5135 return -ENOMEM; 5136 } 5137 5138 spin_lock_irqsave(&xhci->lock, flags); 5139 if (hdev->speed == USB_SPEED_HIGH && 5140 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5141 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5142 xhci_free_command(xhci, config_cmd); 5143 spin_unlock_irqrestore(&xhci->lock, flags); 5144 return -ENOMEM; 5145 } 5146 5147 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5148 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5149 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5150 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5151 /* 5152 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5153 * but it may be already set to 1 when setup an xHCI virtual 5154 * device, so clear it anyway. 5155 */ 5156 if (tt->multi) 5157 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5158 else if (hdev->speed == USB_SPEED_FULL) 5159 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5160 5161 if (xhci->hci_version > 0x95) { 5162 xhci_dbg(xhci, "xHCI version %x needs hub " 5163 "TT think time and number of ports\n", 5164 (unsigned int) xhci->hci_version); 5165 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5166 /* Set TT think time - convert from ns to FS bit times. 5167 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5168 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5169 * 5170 * xHCI 1.0: this field shall be 0 if the device is not a 5171 * High-spped hub. 5172 */ 5173 think_time = tt->think_time; 5174 if (think_time != 0) 5175 think_time = (think_time / 666) - 1; 5176 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5177 slot_ctx->tt_info |= 5178 cpu_to_le32(TT_THINK_TIME(think_time)); 5179 } else { 5180 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5181 "TT think time or number of ports\n", 5182 (unsigned int) xhci->hci_version); 5183 } 5184 slot_ctx->dev_state = 0; 5185 spin_unlock_irqrestore(&xhci->lock, flags); 5186 5187 xhci_dbg(xhci, "Set up %s for hub device.\n", 5188 (xhci->hci_version > 0x95) ? 5189 "configure endpoint" : "evaluate context"); 5190 5191 /* Issue and wait for the configure endpoint or 5192 * evaluate context command. 5193 */ 5194 if (xhci->hci_version > 0x95) 5195 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5196 false, false); 5197 else 5198 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5199 true, false); 5200 5201 xhci_free_command(xhci, config_cmd); 5202 return ret; 5203 } 5204 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5205 5206 static int xhci_get_frame(struct usb_hcd *hcd) 5207 { 5208 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5209 /* EHCI mods by the periodic size. Why? */ 5210 return readl(&xhci->run_regs->microframe_index) >> 3; 5211 } 5212 5213 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5214 { 5215 xhci->usb2_rhub.hcd = hcd; 5216 hcd->speed = HCD_USB2; 5217 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5218 /* 5219 * USB 2.0 roothub under xHCI has an integrated TT, 5220 * (rate matching hub) as opposed to having an OHCI/UHCI 5221 * companion controller. 5222 */ 5223 hcd->has_tt = 1; 5224 } 5225 5226 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5227 { 5228 unsigned int minor_rev; 5229 5230 /* 5231 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5232 * should return 0x31 for sbrn, or that the minor revision 5233 * is a two digit BCD containig minor and sub-minor numbers. 5234 * This was later clarified in xHCI 1.2. 5235 * 5236 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5237 * minor revision set to 0x1 instead of 0x10. 5238 */ 5239 if (xhci->usb3_rhub.min_rev == 0x1) 5240 minor_rev = 1; 5241 else 5242 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5243 5244 switch (minor_rev) { 5245 case 2: 5246 hcd->speed = HCD_USB32; 5247 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5248 hcd->self.root_hub->rx_lanes = 2; 5249 hcd->self.root_hub->tx_lanes = 2; 5250 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5251 break; 5252 case 1: 5253 hcd->speed = HCD_USB31; 5254 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5255 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5256 break; 5257 } 5258 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5259 minor_rev, minor_rev ? "Enhanced " : ""); 5260 5261 xhci->usb3_rhub.hcd = hcd; 5262 } 5263 5264 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5265 { 5266 struct xhci_hcd *xhci; 5267 /* 5268 * TODO: Check with DWC3 clients for sysdev according to 5269 * quirks 5270 */ 5271 struct device *dev = hcd->self.sysdev; 5272 int retval; 5273 5274 /* Accept arbitrarily long scatter-gather lists */ 5275 hcd->self.sg_tablesize = ~0; 5276 5277 /* support to build packet from discontinuous buffers */ 5278 hcd->self.no_sg_constraint = 1; 5279 5280 /* XHCI controllers don't stop the ep queue on short packets :| */ 5281 hcd->self.no_stop_on_short = 1; 5282 5283 xhci = hcd_to_xhci(hcd); 5284 5285 if (!usb_hcd_is_primary_hcd(hcd)) { 5286 xhci_hcd_init_usb3_data(xhci, hcd); 5287 return 0; 5288 } 5289 5290 mutex_init(&xhci->mutex); 5291 xhci->main_hcd = hcd; 5292 xhci->cap_regs = hcd->regs; 5293 xhci->op_regs = hcd->regs + 5294 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5295 xhci->run_regs = hcd->regs + 5296 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5297 /* Cache read-only capability registers */ 5298 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5299 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5300 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5301 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5302 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5303 if (xhci->hci_version > 0x100) 5304 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5305 5306 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5307 if ((!xhci->max_interrupters) || 5308 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1)) 5309 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1); 5310 5311 xhci->quirks |= quirks; 5312 5313 if (get_quirks) 5314 get_quirks(dev, xhci); 5315 5316 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5317 * success event after a short transfer. This quirk will ignore such 5318 * spurious event. 5319 */ 5320 if (xhci->hci_version > 0x96) 5321 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5322 5323 if (xhci->hci_version == 0x95 && link_quirk) { 5324 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits"); 5325 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 5326 } 5327 5328 /* Make sure the HC is halted. */ 5329 retval = xhci_halt(xhci); 5330 if (retval) 5331 return retval; 5332 5333 xhci_zero_64b_regs(xhci); 5334 5335 xhci_dbg(xhci, "Resetting HCD\n"); 5336 /* Reset the internal HC memory state and registers. */ 5337 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5338 if (retval) 5339 return retval; 5340 xhci_dbg(xhci, "Reset complete\n"); 5341 5342 /* 5343 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5344 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5345 * address memory pointers actually. So, this driver clears the AC64 5346 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5347 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5348 */ 5349 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5350 xhci->hcc_params &= ~BIT(0); 5351 5352 /* Set dma_mask and coherent_dma_mask to 64-bits, 5353 * if xHC supports 64-bit addressing */ 5354 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5355 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5356 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5357 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5358 } else { 5359 /* 5360 * This is to avoid error in cases where a 32-bit USB 5361 * controller is used on a 64-bit capable system. 5362 */ 5363 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5364 if (retval) 5365 return retval; 5366 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5367 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5368 } 5369 5370 xhci_dbg(xhci, "Calling HCD init\n"); 5371 /* Initialize HCD and host controller data structures. */ 5372 retval = xhci_init(hcd); 5373 if (retval) 5374 return retval; 5375 xhci_dbg(xhci, "Called HCD init\n"); 5376 5377 if (xhci_hcd_is_usb3(hcd)) 5378 xhci_hcd_init_usb3_data(xhci, hcd); 5379 else 5380 xhci_hcd_init_usb2_data(xhci, hcd); 5381 5382 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5383 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5384 5385 return 0; 5386 } 5387 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5388 5389 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5390 struct usb_host_endpoint *ep) 5391 { 5392 struct xhci_hcd *xhci; 5393 struct usb_device *udev; 5394 unsigned int slot_id; 5395 unsigned int ep_index; 5396 unsigned long flags; 5397 5398 xhci = hcd_to_xhci(hcd); 5399 5400 spin_lock_irqsave(&xhci->lock, flags); 5401 udev = (struct usb_device *)ep->hcpriv; 5402 slot_id = udev->slot_id; 5403 ep_index = xhci_get_endpoint_index(&ep->desc); 5404 5405 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5406 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5407 spin_unlock_irqrestore(&xhci->lock, flags); 5408 } 5409 5410 static const struct hc_driver xhci_hc_driver = { 5411 .description = "xhci-hcd", 5412 .product_desc = "xHCI Host Controller", 5413 .hcd_priv_size = sizeof(struct xhci_hcd), 5414 5415 /* 5416 * generic hardware linkage 5417 */ 5418 .irq = xhci_irq, 5419 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5420 HCD_BH, 5421 5422 /* 5423 * basic lifecycle operations 5424 */ 5425 .reset = NULL, /* set in xhci_init_driver() */ 5426 .start = xhci_run, 5427 .stop = xhci_stop, 5428 .shutdown = xhci_shutdown, 5429 5430 /* 5431 * managing i/o requests and associated device resources 5432 */ 5433 .map_urb_for_dma = xhci_map_urb_for_dma, 5434 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5435 .urb_enqueue = xhci_urb_enqueue, 5436 .urb_dequeue = xhci_urb_dequeue, 5437 .alloc_dev = xhci_alloc_dev, 5438 .free_dev = xhci_free_dev, 5439 .alloc_streams = xhci_alloc_streams, 5440 .free_streams = xhci_free_streams, 5441 .add_endpoint = xhci_add_endpoint, 5442 .drop_endpoint = xhci_drop_endpoint, 5443 .endpoint_disable = xhci_endpoint_disable, 5444 .endpoint_reset = xhci_endpoint_reset, 5445 .check_bandwidth = xhci_check_bandwidth, 5446 .reset_bandwidth = xhci_reset_bandwidth, 5447 .address_device = xhci_address_device, 5448 .enable_device = xhci_enable_device, 5449 .update_hub_device = xhci_update_hub_device, 5450 .reset_device = xhci_discover_or_reset_device, 5451 5452 /* 5453 * scheduling support 5454 */ 5455 .get_frame_number = xhci_get_frame, 5456 5457 /* 5458 * root hub support 5459 */ 5460 .hub_control = xhci_hub_control, 5461 .hub_status_data = xhci_hub_status_data, 5462 .bus_suspend = xhci_bus_suspend, 5463 .bus_resume = xhci_bus_resume, 5464 .get_resuming_ports = xhci_get_resuming_ports, 5465 5466 /* 5467 * call back when device connected and addressed 5468 */ 5469 .update_device = xhci_update_device, 5470 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5471 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5472 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5473 .find_raw_port_number = xhci_find_raw_port_number, 5474 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5475 }; 5476 5477 void xhci_init_driver(struct hc_driver *drv, 5478 const struct xhci_driver_overrides *over) 5479 { 5480 BUG_ON(!over); 5481 5482 /* Copy the generic table to drv then apply the overrides */ 5483 *drv = xhci_hc_driver; 5484 5485 if (over) { 5486 drv->hcd_priv_size += over->extra_priv_size; 5487 if (over->reset) 5488 drv->reset = over->reset; 5489 if (over->start) 5490 drv->start = over->start; 5491 if (over->add_endpoint) 5492 drv->add_endpoint = over->add_endpoint; 5493 if (over->drop_endpoint) 5494 drv->drop_endpoint = over->drop_endpoint; 5495 if (over->check_bandwidth) 5496 drv->check_bandwidth = over->check_bandwidth; 5497 if (over->reset_bandwidth) 5498 drv->reset_bandwidth = over->reset_bandwidth; 5499 if (over->update_hub_device) 5500 drv->update_hub_device = over->update_hub_device; 5501 if (over->hub_control) 5502 drv->hub_control = over->hub_control; 5503 } 5504 } 5505 EXPORT_SYMBOL_GPL(xhci_init_driver); 5506 5507 MODULE_DESCRIPTION(DRIVER_DESC); 5508 MODULE_AUTHOR(DRIVER_AUTHOR); 5509 MODULE_LICENSE("GPL"); 5510 5511 static int __init xhci_hcd_init(void) 5512 { 5513 /* 5514 * Check the compiler generated sizes of structures that must be laid 5515 * out in specific ways for hardware access. 5516 */ 5517 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5518 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5519 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5520 /* xhci_device_control has eight fields, and also 5521 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5522 */ 5523 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5524 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5525 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5526 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5527 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5528 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5529 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5530 5531 if (usb_disabled()) 5532 return -ENODEV; 5533 5534 xhci_debugfs_create_root(); 5535 xhci_dbc_init(); 5536 5537 return 0; 5538 } 5539 5540 /* 5541 * If an init function is provided, an exit function must also be provided 5542 * to allow module unload. 5543 */ 5544 static void __exit xhci_hcd_fini(void) 5545 { 5546 xhci_debugfs_remove_root(); 5547 xhci_dbc_exit(); 5548 } 5549 5550 module_init(xhci_hcd_init); 5551 module_exit(xhci_hcd_fini); 5552