1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/jiffies.h> 56 #include <linux/scatterlist.h> 57 #include <linux/slab.h> 58 #include <linux/string_choices.h> 59 #include <linux/dma-mapping.h> 60 #include "xhci.h" 61 #include "xhci-trace.h" 62 63 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 64 u32 field1, u32 field2, 65 u32 field3, u32 field4, bool command_must_succeed); 66 67 /* 68 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 69 * address of the TRB. 70 */ 71 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 72 union xhci_trb *trb) 73 { 74 unsigned long segment_offset; 75 76 if (!seg || !trb || trb < seg->trbs) 77 return 0; 78 /* offset in TRBs */ 79 segment_offset = trb - seg->trbs; 80 if (segment_offset >= TRBS_PER_SEGMENT) 81 return 0; 82 return seg->dma + (segment_offset * sizeof(*trb)); 83 } 84 85 static bool trb_is_noop(union xhci_trb *trb) 86 { 87 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 88 } 89 90 static bool trb_is_link(union xhci_trb *trb) 91 { 92 return TRB_TYPE_LINK_LE32(trb->link.control); 93 } 94 95 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 96 { 97 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 98 } 99 100 static bool last_trb_on_ring(struct xhci_ring *ring, 101 struct xhci_segment *seg, union xhci_trb *trb) 102 { 103 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 104 } 105 106 static bool link_trb_toggles_cycle(union xhci_trb *trb) 107 { 108 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 109 } 110 111 static bool last_td_in_urb(struct xhci_td *td) 112 { 113 struct urb_priv *urb_priv = td->urb->hcpriv; 114 115 return urb_priv->num_tds_done == urb_priv->num_tds; 116 } 117 118 static bool unhandled_event_trb(struct xhci_ring *ring) 119 { 120 return ((le32_to_cpu(ring->dequeue->event_cmd.flags) & TRB_CYCLE) == 121 ring->cycle_state); 122 } 123 124 static void inc_td_cnt(struct urb *urb) 125 { 126 struct urb_priv *urb_priv = urb->hcpriv; 127 128 urb_priv->num_tds_done++; 129 } 130 131 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 132 { 133 if (trb_is_link(trb)) { 134 /* unchain chained link TRBs */ 135 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 136 } else { 137 trb->generic.field[0] = 0; 138 trb->generic.field[1] = 0; 139 trb->generic.field[2] = 0; 140 /* Preserve only the cycle bit of this TRB */ 141 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 142 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 143 } 144 } 145 146 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 147 * TRB is in a new segment. This does not skip over link TRBs, and it does not 148 * effect the ring dequeue or enqueue pointers. 149 */ 150 static void next_trb(struct xhci_segment **seg, 151 union xhci_trb **trb) 152 { 153 if (trb_is_link(*trb) || last_trb_on_seg(*seg, *trb)) { 154 *seg = (*seg)->next; 155 *trb = ((*seg)->trbs); 156 } else { 157 (*trb)++; 158 } 159 } 160 161 /* 162 * See Cycle bit rules. SW is the consumer for the event ring only. 163 */ 164 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 165 { 166 unsigned int link_trb_count = 0; 167 168 /* event ring doesn't have link trbs, check for last trb */ 169 if (ring->type == TYPE_EVENT) { 170 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 171 ring->dequeue++; 172 return; 173 } 174 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 175 ring->cycle_state ^= 1; 176 ring->deq_seg = ring->deq_seg->next; 177 ring->dequeue = ring->deq_seg->trbs; 178 179 trace_xhci_inc_deq(ring); 180 181 return; 182 } 183 184 /* All other rings have link trbs */ 185 if (!trb_is_link(ring->dequeue)) { 186 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) 187 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 188 else 189 ring->dequeue++; 190 } 191 192 while (trb_is_link(ring->dequeue)) { 193 ring->deq_seg = ring->deq_seg->next; 194 ring->dequeue = ring->deq_seg->trbs; 195 196 trace_xhci_inc_deq(ring); 197 198 if (link_trb_count++ > ring->num_segs) { 199 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 200 break; 201 } 202 } 203 return; 204 } 205 206 /* 207 * See Cycle bit rules. SW is the consumer for the event ring only. 208 * 209 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 210 * chain bit is set), then set the chain bit in all the following link TRBs. 211 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 212 * have their chain bit cleared (so that each Link TRB is a separate TD). 213 * 214 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 215 * set, but other sections talk about dealing with the chain bit set. This was 216 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 217 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 218 * 219 * @more_trbs_coming: Will you enqueue more TRBs before calling 220 * prepare_transfer()? 221 */ 222 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 223 bool more_trbs_coming) 224 { 225 u32 chain; 226 union xhci_trb *next; 227 unsigned int link_trb_count = 0; 228 229 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 230 231 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 232 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 233 return; 234 } 235 236 next = ++(ring->enqueue); 237 238 /* Update the dequeue pointer further if that was a link TRB */ 239 while (trb_is_link(next)) { 240 241 /* 242 * If the caller doesn't plan on enqueueing more TDs before 243 * ringing the doorbell, then we don't want to give the link TRB 244 * to the hardware just yet. We'll give the link TRB back in 245 * prepare_ring() just before we enqueue the TD at the top of 246 * the ring. 247 */ 248 if (!chain && !more_trbs_coming) 249 break; 250 251 /* If we're not dealing with 0.95 hardware or isoc rings on 252 * AMD 0.96 host, carry over the chain bit of the previous TRB 253 * (which may mean the chain bit is cleared). 254 */ 255 if (!xhci_link_chain_quirk(xhci, ring->type)) { 256 next->link.control &= cpu_to_le32(~TRB_CHAIN); 257 next->link.control |= cpu_to_le32(chain); 258 } 259 /* Give this link TRB to the hardware */ 260 wmb(); 261 next->link.control ^= cpu_to_le32(TRB_CYCLE); 262 263 /* Toggle the cycle bit after the last ring segment. */ 264 if (link_trb_toggles_cycle(next)) 265 ring->cycle_state ^= 1; 266 267 ring->enq_seg = ring->enq_seg->next; 268 ring->enqueue = ring->enq_seg->trbs; 269 next = ring->enqueue; 270 271 trace_xhci_inc_enq(ring); 272 273 if (link_trb_count++ > ring->num_segs) { 274 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 275 break; 276 } 277 } 278 } 279 280 /* 281 * Return number of free normal TRBs from enqueue to dequeue pointer on ring. 282 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. 283 * Only for transfer and command rings where driver is the producer, not for 284 * event rings. 285 */ 286 static unsigned int xhci_num_trbs_free(struct xhci_ring *ring) 287 { 288 struct xhci_segment *enq_seg = ring->enq_seg; 289 union xhci_trb *enq = ring->enqueue; 290 union xhci_trb *last_on_seg; 291 unsigned int free = 0; 292 int i = 0; 293 294 /* Ring might be empty even if enq != deq if enq is left on a link trb */ 295 if (trb_is_link(enq)) { 296 enq_seg = enq_seg->next; 297 enq = enq_seg->trbs; 298 } 299 300 /* Empty ring, common case, don't walk the segments */ 301 if (enq == ring->dequeue) 302 return ring->num_segs * (TRBS_PER_SEGMENT - 1); 303 304 do { 305 if (ring->deq_seg == enq_seg && ring->dequeue >= enq) 306 return free + (ring->dequeue - enq); 307 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; 308 free += last_on_seg - enq; 309 enq_seg = enq_seg->next; 310 enq = enq_seg->trbs; 311 } while (i++ < ring->num_segs); 312 313 return free; 314 } 315 316 /* 317 * Check to see if there's room to enqueue num_trbs on the ring and make sure 318 * enqueue pointer will not advance into dequeue segment. See rules above. 319 * return number of new segments needed to ensure this. 320 */ 321 322 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, 323 unsigned int num_trbs) 324 { 325 struct xhci_segment *seg; 326 int trbs_past_seg; 327 int enq_used; 328 int new_segs; 329 330 enq_used = ring->enqueue - ring->enq_seg->trbs; 331 332 /* how many trbs will be queued past the enqueue segment? */ 333 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); 334 335 /* 336 * Consider expanding the ring already if num_trbs fills the current 337 * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into 338 * the next segment. Avoids confusing full ring with special empty ring 339 * case below 340 */ 341 if (trbs_past_seg < 0) 342 return 0; 343 344 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ 345 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) 346 return 0; 347 348 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); 349 seg = ring->enq_seg; 350 351 while (new_segs > 0) { 352 seg = seg->next; 353 if (seg == ring->deq_seg) { 354 xhci_dbg(xhci, "Adding %d trbs requires expanding ring by %d segments\n", 355 num_trbs, new_segs); 356 return new_segs; 357 } 358 new_segs--; 359 } 360 361 return 0; 362 } 363 364 /* Ring the host controller doorbell after placing a command on the ring */ 365 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 366 { 367 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 368 return; 369 370 xhci_dbg(xhci, "// Ding dong!\n"); 371 372 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 373 374 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 375 /* Flush PCI posted writes */ 376 readl(&xhci->dba->doorbell[0]); 377 } 378 379 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci) 380 { 381 return mod_delayed_work(system_wq, &xhci->cmd_timer, 382 msecs_to_jiffies(xhci->current_cmd->timeout_ms)); 383 } 384 385 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 386 { 387 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 388 cmd_list); 389 } 390 391 /* 392 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 393 * If there are other commands waiting then restart the ring and kick the timer. 394 * This must be called with command ring stopped and xhci->lock held. 395 */ 396 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 397 struct xhci_command *cur_cmd) 398 { 399 struct xhci_command *i_cmd; 400 401 /* Turn all aborted commands in list to no-ops, then restart */ 402 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 403 404 if (i_cmd->status != COMP_COMMAND_ABORTED) 405 continue; 406 407 i_cmd->status = COMP_COMMAND_RING_STOPPED; 408 409 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 410 i_cmd->command_trb); 411 412 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 413 414 /* 415 * caller waiting for completion is called when command 416 * completion event is received for these no-op commands 417 */ 418 } 419 420 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 421 422 /* ring command ring doorbell to restart the command ring */ 423 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 424 !(xhci->xhc_state & XHCI_STATE_DYING)) { 425 xhci->current_cmd = cur_cmd; 426 if (cur_cmd) 427 xhci_mod_cmd_timer(xhci); 428 xhci_ring_cmd_db(xhci); 429 } 430 } 431 432 /* Must be called with xhci->lock held, releases and acquires lock back */ 433 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 434 { 435 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 436 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 437 u64 crcr; 438 int ret; 439 440 xhci_dbg(xhci, "Abort command ring\n"); 441 442 reinit_completion(&xhci->cmd_ring_stop_completion); 443 444 /* 445 * The control bits like command stop, abort are located in lower 446 * dword of the command ring control register. 447 * Some controllers require all 64 bits to be written to abort the ring. 448 * Make sure the upper dword is valid, pointing to the next command, 449 * avoiding corrupting the command ring pointer in case the command ring 450 * is stopped by the time the upper dword is written. 451 */ 452 next_trb(&new_seg, &new_deq); 453 if (trb_is_link(new_deq)) 454 next_trb(&new_seg, &new_deq); 455 456 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 457 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 458 459 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 460 * completion of the Command Abort operation. If CRR is not negated in 5 461 * seconds then driver handles it as if host died (-ENODEV). 462 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 463 * and try to recover a -ETIMEDOUT with a host controller reset. 464 */ 465 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->cmd_ring, 466 CMD_RING_RUNNING, 0, 5 * 1000 * 1000, 467 XHCI_STATE_REMOVING); 468 if (ret < 0) { 469 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 470 xhci_halt(xhci); 471 xhci_hc_died(xhci); 472 return ret; 473 } 474 /* 475 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 476 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 477 * but the completion event in never sent. Wait 2 secs (arbitrary 478 * number) to handle those cases after negation of CMD_RING_RUNNING. 479 */ 480 spin_unlock_irqrestore(&xhci->lock, flags); 481 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 482 msecs_to_jiffies(2000)); 483 spin_lock_irqsave(&xhci->lock, flags); 484 if (!ret) { 485 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 486 xhci_cleanup_command_queue(xhci); 487 } else { 488 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 489 } 490 return 0; 491 } 492 493 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 494 unsigned int slot_id, 495 unsigned int ep_index, 496 unsigned int stream_id) 497 { 498 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 499 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 500 unsigned int ep_state = ep->ep_state; 501 502 /* Don't ring the doorbell for this endpoint if there are pending 503 * cancellations because we don't want to interrupt processing. 504 * We don't want to restart any stream rings if there's a set dequeue 505 * pointer command pending because the device can choose to start any 506 * stream once the endpoint is on the HW schedule. 507 */ 508 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 509 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 510 return; 511 512 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 513 514 writel(DB_VALUE(ep_index, stream_id), db_addr); 515 /* flush the write */ 516 readl(db_addr); 517 } 518 519 /* Ring the doorbell for any rings with pending URBs */ 520 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 521 unsigned int slot_id, 522 unsigned int ep_index) 523 { 524 unsigned int stream_id; 525 struct xhci_virt_ep *ep; 526 527 ep = &xhci->devs[slot_id]->eps[ep_index]; 528 529 /* A ring has pending URBs if its TD list is not empty */ 530 if (!(ep->ep_state & EP_HAS_STREAMS)) { 531 if (ep->ring && !(list_empty(&ep->ring->td_list))) 532 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 533 return; 534 } 535 536 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 537 stream_id++) { 538 struct xhci_stream_info *stream_info = ep->stream_info; 539 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 540 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 541 stream_id); 542 } 543 } 544 545 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 546 unsigned int slot_id, 547 unsigned int ep_index) 548 { 549 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 550 } 551 552 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 553 unsigned int slot_id, 554 unsigned int ep_index) 555 { 556 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 557 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 558 return NULL; 559 } 560 if (ep_index >= EP_CTX_PER_DEV) { 561 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 562 return NULL; 563 } 564 if (!xhci->devs[slot_id]) { 565 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 566 return NULL; 567 } 568 569 return &xhci->devs[slot_id]->eps[ep_index]; 570 } 571 572 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 573 struct xhci_virt_ep *ep, 574 unsigned int stream_id) 575 { 576 /* common case, no streams */ 577 if (!(ep->ep_state & EP_HAS_STREAMS)) 578 return ep->ring; 579 580 if (!ep->stream_info) 581 return NULL; 582 583 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 584 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 585 stream_id, ep->vdev->slot_id, ep->ep_index); 586 return NULL; 587 } 588 589 return ep->stream_info->stream_rings[stream_id]; 590 } 591 592 /* Get the right ring for the given slot_id, ep_index and stream_id. 593 * If the endpoint supports streams, boundary check the URB's stream ID. 594 * If the endpoint doesn't support streams, return the singular endpoint ring. 595 */ 596 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 597 unsigned int slot_id, unsigned int ep_index, 598 unsigned int stream_id) 599 { 600 struct xhci_virt_ep *ep; 601 602 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 603 if (!ep) 604 return NULL; 605 606 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 607 } 608 609 610 /* 611 * Get the hw dequeue pointer xHC stopped on, either directly from the 612 * endpoint context, or if streams are in use from the stream context. 613 * The returned hw_dequeue contains the lowest four bits with cycle state 614 * and possbile stream context type. 615 */ 616 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 617 unsigned int ep_index, unsigned int stream_id) 618 { 619 struct xhci_ep_ctx *ep_ctx; 620 struct xhci_stream_ctx *st_ctx; 621 struct xhci_virt_ep *ep; 622 623 ep = &vdev->eps[ep_index]; 624 625 if (ep->ep_state & EP_HAS_STREAMS) { 626 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 627 return le64_to_cpu(st_ctx->stream_ring); 628 } 629 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 630 return le64_to_cpu(ep_ctx->deq); 631 } 632 633 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 634 unsigned int slot_id, unsigned int ep_index, 635 unsigned int stream_id, struct xhci_td *td) 636 { 637 struct xhci_virt_device *dev = xhci->devs[slot_id]; 638 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 639 struct xhci_ring *ep_ring; 640 struct xhci_command *cmd; 641 struct xhci_segment *new_seg; 642 union xhci_trb *new_deq; 643 int new_cycle; 644 dma_addr_t addr; 645 u64 hw_dequeue; 646 bool cycle_found = false; 647 bool td_last_trb_found = false; 648 u32 trb_sct = 0; 649 int ret; 650 651 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 652 ep_index, stream_id); 653 if (!ep_ring) { 654 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 655 stream_id); 656 return -ENODEV; 657 } 658 659 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 660 new_seg = ep_ring->deq_seg; 661 new_deq = ep_ring->dequeue; 662 new_cycle = hw_dequeue & 0x1; 663 664 /* 665 * We want to find the pointer, segment and cycle state of the new trb 666 * (the one after current TD's end_trb). We know the cycle state at 667 * hw_dequeue, so walk the ring until both hw_dequeue and end_trb are 668 * found. 669 */ 670 do { 671 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 672 == (dma_addr_t)(hw_dequeue & ~0xf)) { 673 cycle_found = true; 674 if (td_last_trb_found) 675 break; 676 } 677 if (new_deq == td->end_trb) 678 td_last_trb_found = true; 679 680 if (cycle_found && trb_is_link(new_deq) && 681 link_trb_toggles_cycle(new_deq)) 682 new_cycle ^= 0x1; 683 684 next_trb(&new_seg, &new_deq); 685 686 /* Search wrapped around, bail out */ 687 if (new_deq == ep->ring->dequeue) { 688 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 689 return -EINVAL; 690 } 691 692 } while (!cycle_found || !td_last_trb_found); 693 694 /* Don't update the ring cycle state for the producer (us). */ 695 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 696 if (addr == 0) { 697 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 698 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 699 return -EINVAL; 700 } 701 702 if ((ep->ep_state & SET_DEQ_PENDING)) { 703 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 704 &addr); 705 return -EBUSY; 706 } 707 708 /* This function gets called from contexts where it cannot sleep */ 709 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 710 if (!cmd) { 711 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 712 return -ENOMEM; 713 } 714 715 if (stream_id) 716 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 717 ret = queue_command(xhci, cmd, 718 lower_32_bits(addr) | trb_sct | new_cycle, 719 upper_32_bits(addr), 720 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 721 EP_INDEX_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 722 if (ret < 0) { 723 xhci_free_command(xhci, cmd); 724 return ret; 725 } 726 ep->queued_deq_seg = new_seg; 727 ep->queued_deq_ptr = new_deq; 728 729 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 730 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 731 732 /* Stop the TD queueing code from ringing the doorbell until 733 * this command completes. The HC won't set the dequeue pointer 734 * if the ring is running, and ringing the doorbell starts the 735 * ring running. 736 */ 737 ep->ep_state |= SET_DEQ_PENDING; 738 xhci_ring_cmd_db(xhci); 739 return 0; 740 } 741 742 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 743 * (The last TRB actually points to the ring enqueue pointer, which is not part 744 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 745 */ 746 static void td_to_noop(struct xhci_td *td, bool flip_cycle) 747 { 748 struct xhci_segment *seg = td->start_seg; 749 union xhci_trb *trb = td->start_trb; 750 751 while (1) { 752 trb_to_noop(trb, TRB_TR_NOOP); 753 754 /* flip cycle if asked to */ 755 if (flip_cycle && trb != td->start_trb && trb != td->end_trb) 756 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 757 758 if (trb == td->end_trb) 759 break; 760 761 next_trb(&seg, &trb); 762 } 763 } 764 765 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 766 struct xhci_td *cur_td, int status) 767 { 768 struct urb *urb = cur_td->urb; 769 struct urb_priv *urb_priv = urb->hcpriv; 770 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 771 772 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 773 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 774 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 775 if (xhci->quirks & XHCI_AMD_PLL_FIX) 776 usb_amd_quirk_pll_enable(); 777 } 778 } 779 xhci_urb_free_priv(urb_priv); 780 usb_hcd_unlink_urb_from_ep(hcd, urb); 781 trace_xhci_urb_giveback(urb); 782 usb_hcd_giveback_urb(hcd, urb, status); 783 } 784 785 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 786 struct xhci_ring *ring, struct xhci_td *td) 787 { 788 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 789 struct xhci_segment *seg = td->bounce_seg; 790 struct urb *urb = td->urb; 791 size_t len; 792 793 if (!ring || !seg || !urb) 794 return; 795 796 if (usb_urb_dir_out(urb)) { 797 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 798 DMA_TO_DEVICE); 799 return; 800 } 801 802 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 803 DMA_FROM_DEVICE); 804 /* for in transfers we need to copy the data from bounce to sg */ 805 if (urb->num_sgs) { 806 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 807 seg->bounce_len, seg->bounce_offs); 808 if (len != seg->bounce_len) 809 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 810 len, seg->bounce_len); 811 } else { 812 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 813 seg->bounce_len); 814 } 815 seg->bounce_len = 0; 816 seg->bounce_offs = 0; 817 } 818 819 static void xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 820 struct xhci_ring *ep_ring, int status) 821 { 822 struct urb *urb = NULL; 823 824 /* Clean up the endpoint's TD list */ 825 urb = td->urb; 826 827 /* if a bounce buffer was used to align this td then unmap it */ 828 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 829 830 /* Do one last check of the actual transfer length. 831 * If the host controller said we transferred more data than the buffer 832 * length, urb->actual_length will be a very big number (since it's 833 * unsigned). Play it safe and say we didn't transfer anything. 834 */ 835 if (urb->actual_length > urb->transfer_buffer_length) { 836 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 837 urb->transfer_buffer_length, urb->actual_length); 838 urb->actual_length = 0; 839 status = 0; 840 } 841 /* TD might be removed from td_list if we are giving back a cancelled URB */ 842 if (!list_empty(&td->td_list)) 843 list_del_init(&td->td_list); 844 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 845 if (!list_empty(&td->cancelled_td_list)) 846 list_del_init(&td->cancelled_td_list); 847 848 inc_td_cnt(urb); 849 /* Giveback the urb when all the tds are completed */ 850 if (last_td_in_urb(td)) { 851 if ((urb->actual_length != urb->transfer_buffer_length && 852 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 853 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 854 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 855 urb, urb->actual_length, 856 urb->transfer_buffer_length, status); 857 858 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 859 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 860 status = 0; 861 xhci_giveback_urb_in_irq(xhci, td, status); 862 } 863 } 864 865 /* Give back previous TD and move on to the next TD. */ 866 static void xhci_dequeue_td(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_ring *ring, 867 u32 status) 868 { 869 ring->dequeue = td->end_trb; 870 ring->deq_seg = td->end_seg; 871 inc_deq(xhci, ring); 872 873 xhci_td_cleanup(xhci, td, ring, status); 874 } 875 876 /* Complete the cancelled URBs we unlinked from td_list. */ 877 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 878 { 879 struct xhci_ring *ring; 880 struct xhci_td *td, *tmp_td; 881 882 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 883 cancelled_td_list) { 884 885 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 886 887 if (td->cancel_status == TD_CLEARED) { 888 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 889 __func__, td->urb); 890 xhci_td_cleanup(ep->xhci, td, ring, td->status); 891 } else { 892 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 893 __func__, td->urb, td->cancel_status); 894 } 895 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 896 return; 897 } 898 } 899 900 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 901 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 902 { 903 struct xhci_command *command; 904 int ret = 0; 905 906 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 907 if (!command) { 908 ret = -ENOMEM; 909 goto done; 910 } 911 912 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 913 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 914 ep_index, slot_id); 915 916 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 917 done: 918 if (ret) 919 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 920 slot_id, ep_index, ret); 921 return ret; 922 } 923 924 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 925 struct xhci_virt_ep *ep, 926 struct xhci_td *td, 927 enum xhci_ep_reset_type reset_type) 928 { 929 unsigned int slot_id = ep->vdev->slot_id; 930 int err; 931 932 /* 933 * Avoid resetting endpoint if link is inactive. Can cause host hang. 934 * Device will be reset soon to recover the link so don't do anything 935 */ 936 if (ep->vdev->flags & VDEV_PORT_ERROR) 937 return -ENODEV; 938 939 /* add td to cancelled list and let reset ep handler take care of it */ 940 if (reset_type == EP_HARD_RESET) { 941 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 942 if (td && list_empty(&td->cancelled_td_list)) { 943 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 944 td->cancel_status = TD_HALTED; 945 } 946 } 947 948 if (ep->ep_state & EP_HALTED) { 949 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 950 ep->ep_index); 951 return 0; 952 } 953 954 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 955 if (err) 956 return err; 957 958 ep->ep_state |= EP_HALTED; 959 960 xhci_ring_cmd_db(xhci); 961 962 return 0; 963 } 964 965 /* 966 * Fix up the ep ring first, so HW stops executing cancelled TDs. 967 * We have the xHCI lock, so nothing can modify this list until we drop it. 968 * We're also in the event handler, so we can't get re-interrupted if another 969 * Stop Endpoint command completes. 970 * 971 * only call this when ring is not in a running state 972 */ 973 974 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 975 { 976 struct xhci_hcd *xhci; 977 struct xhci_td *td = NULL; 978 struct xhci_td *tmp_td = NULL; 979 struct xhci_td *cached_td = NULL; 980 struct xhci_ring *ring; 981 u64 hw_deq; 982 unsigned int slot_id = ep->vdev->slot_id; 983 int err; 984 985 /* 986 * This is not going to work if the hardware is changing its dequeue 987 * pointers as we look at them. Completion handler will call us later. 988 */ 989 if (ep->ep_state & SET_DEQ_PENDING) 990 return 0; 991 992 xhci = ep->xhci; 993 994 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 995 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 996 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 997 (unsigned long long)xhci_trb_virt_to_dma( 998 td->start_seg, td->start_trb), 999 td->urb->stream_id, td->urb); 1000 list_del_init(&td->td_list); 1001 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 1002 if (!ring) { 1003 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 1004 td->urb, td->urb->stream_id); 1005 continue; 1006 } 1007 /* 1008 * If a ring stopped on the TD we need to cancel then we have to 1009 * move the xHC endpoint ring dequeue pointer past this TD. 1010 * Rings halted due to STALL may show hw_deq is past the stalled 1011 * TD, but still require a set TR Deq command to flush xHC cache. 1012 */ 1013 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 1014 td->urb->stream_id); 1015 hw_deq &= ~0xf; 1016 1017 if (td->cancel_status == TD_HALTED || trb_in_td(xhci, td, hw_deq, false)) { 1018 switch (td->cancel_status) { 1019 case TD_CLEARED: /* TD is already no-op */ 1020 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 1021 break; 1022 case TD_DIRTY: /* TD is cached, clear it */ 1023 case TD_HALTED: 1024 case TD_CLEARING_CACHE_DEFERRED: 1025 if (cached_td) { 1026 if (cached_td->urb->stream_id != td->urb->stream_id) { 1027 /* Multiple streams case, defer move dq */ 1028 xhci_dbg(xhci, 1029 "Move dq deferred: stream %u URB %p\n", 1030 td->urb->stream_id, td->urb); 1031 td->cancel_status = TD_CLEARING_CACHE_DEFERRED; 1032 break; 1033 } 1034 1035 /* Should never happen, but clear the TD if it does */ 1036 xhci_warn(xhci, 1037 "Found multiple active URBs %p and %p in stream %u?\n", 1038 td->urb, cached_td->urb, 1039 td->urb->stream_id); 1040 td_to_noop(cached_td, false); 1041 cached_td->cancel_status = TD_CLEARED; 1042 } 1043 td_to_noop(td, false); 1044 td->cancel_status = TD_CLEARING_CACHE; 1045 cached_td = td; 1046 break; 1047 } 1048 } else { 1049 td_to_noop(td, false); 1050 td->cancel_status = TD_CLEARED; 1051 } 1052 } 1053 1054 /* If there's no need to move the dequeue pointer then we're done */ 1055 if (!cached_td) 1056 return 0; 1057 1058 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1059 cached_td->urb->stream_id, 1060 cached_td); 1061 if (err) { 1062 /* Failed to move past cached td, just set cached TDs to no-op */ 1063 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1064 /* 1065 * Deferred TDs need to have the deq pointer set after the above command 1066 * completes, so if that failed we just give up on all of them (and 1067 * complain loudly since this could cause issues due to caching). 1068 */ 1069 if (td->cancel_status != TD_CLEARING_CACHE && 1070 td->cancel_status != TD_CLEARING_CACHE_DEFERRED) 1071 continue; 1072 xhci_warn(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1073 td->urb); 1074 td_to_noop(td, false); 1075 td->cancel_status = TD_CLEARED; 1076 } 1077 } 1078 return 0; 1079 } 1080 1081 /* 1082 * Erase queued TDs from transfer ring(s) and give back those the xHC didn't 1083 * stop on. If necessary, queue commands to move the xHC off cancelled TDs it 1084 * stopped on. Those will be given back later when the commands complete. 1085 * 1086 * Call under xhci->lock on a stopped endpoint. 1087 */ 1088 void xhci_process_cancelled_tds(struct xhci_virt_ep *ep) 1089 { 1090 xhci_invalidate_cancelled_tds(ep); 1091 xhci_giveback_invalidated_tds(ep); 1092 } 1093 1094 /* 1095 * Returns the TD the endpoint ring halted on. 1096 * Only call for non-running rings without streams. 1097 */ 1098 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1099 { 1100 struct xhci_td *td; 1101 u64 hw_deq; 1102 1103 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1104 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1105 hw_deq &= ~0xf; 1106 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1107 if (trb_in_td(ep->xhci, td, hw_deq, false)) 1108 return td; 1109 } 1110 return NULL; 1111 } 1112 1113 /* 1114 * When we get a command completion for a Stop Endpoint Command, we need to 1115 * unlink any cancelled TDs from the ring. There are two ways to do that: 1116 * 1117 * 1. If the HW was in the middle of processing the TD that needs to be 1118 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1119 * in the TD with a Set Dequeue Pointer Command. 1120 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1121 * bit cleared) so that the HW will skip over them. 1122 */ 1123 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1124 union xhci_trb *trb, u32 comp_code) 1125 { 1126 unsigned int ep_index; 1127 struct xhci_virt_ep *ep; 1128 struct xhci_ep_ctx *ep_ctx; 1129 struct xhci_td *td = NULL; 1130 enum xhci_ep_reset_type reset_type; 1131 struct xhci_command *command; 1132 int err; 1133 1134 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1135 if (!xhci->devs[slot_id]) 1136 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1137 slot_id); 1138 return; 1139 } 1140 1141 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1142 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1143 if (!ep) 1144 return; 1145 1146 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1147 1148 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1149 1150 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1151 /* 1152 * If stop endpoint command raced with a halting endpoint we need to 1153 * reset the host side endpoint first. 1154 * If the TD we halted on isn't cancelled the TD should be given back 1155 * with a proper error code, and the ring dequeue moved past the TD. 1156 * If streams case we can't find hw_deq, or the TD we halted on so do a 1157 * soft reset. 1158 * 1159 * Proper error code is unknown here, it would be -EPIPE if device side 1160 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1161 * We use -EPROTO, if device is stalled it should return a stall error on 1162 * next transfer, which then will return -EPIPE, and device side stall is 1163 * noted and cleared by class driver. 1164 */ 1165 switch (GET_EP_CTX_STATE(ep_ctx)) { 1166 case EP_STATE_HALTED: 1167 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1168 if (ep->ep_state & EP_HAS_STREAMS) { 1169 reset_type = EP_SOFT_RESET; 1170 } else { 1171 reset_type = EP_HARD_RESET; 1172 td = find_halted_td(ep); 1173 if (td) 1174 td->status = -EPROTO; 1175 } 1176 /* reset ep, reset handler cleans up cancelled tds */ 1177 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1178 if (err) 1179 break; 1180 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1181 return; 1182 case EP_STATE_STOPPED: 1183 /* 1184 * Per xHCI 4.6.9, Stop Endpoint command on a Stopped 1185 * EP is a Context State Error, and EP stays Stopped. 1186 * 1187 * But maybe it failed on Halted, and somebody ran Reset 1188 * Endpoint later. EP state is now Stopped and EP_HALTED 1189 * still set because Reset EP handler will run after us. 1190 */ 1191 if (ep->ep_state & EP_HALTED) 1192 break; 1193 /* 1194 * On some HCs EP state remains Stopped for some tens of 1195 * us to a few ms or more after a doorbell ring, and any 1196 * new Stop Endpoint fails without aborting the restart. 1197 * This handler may run quickly enough to still see this 1198 * Stopped state, but it will soon change to Running. 1199 * 1200 * Assume this bug on unexpected Stop Endpoint failures. 1201 * Keep retrying until the EP starts and stops again, on 1202 * chips where this is known to help. Wait for 100ms. 1203 */ 1204 if (time_is_before_jiffies(ep->stop_time + msecs_to_jiffies(100))) 1205 break; 1206 fallthrough; 1207 case EP_STATE_RUNNING: 1208 /* Race, HW handled stop ep cmd before ep was running */ 1209 xhci_dbg(xhci, "Stop ep completion ctx error, ctx_state %d\n", 1210 GET_EP_CTX_STATE(ep_ctx)); 1211 1212 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1213 if (!command) { 1214 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1215 return; 1216 } 1217 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1218 xhci_ring_cmd_db(xhci); 1219 1220 return; 1221 default: 1222 break; 1223 } 1224 } 1225 1226 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1227 xhci_invalidate_cancelled_tds(ep); 1228 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1229 1230 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1231 xhci_giveback_invalidated_tds(ep); 1232 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1233 } 1234 1235 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1236 { 1237 struct xhci_td *cur_td; 1238 struct xhci_td *tmp; 1239 1240 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1241 list_del_init(&cur_td->td_list); 1242 1243 if (!list_empty(&cur_td->cancelled_td_list)) 1244 list_del_init(&cur_td->cancelled_td_list); 1245 1246 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1247 1248 inc_td_cnt(cur_td->urb); 1249 if (last_td_in_urb(cur_td)) 1250 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1251 } 1252 } 1253 1254 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1255 int slot_id, int ep_index) 1256 { 1257 struct xhci_td *cur_td; 1258 struct xhci_td *tmp; 1259 struct xhci_virt_ep *ep; 1260 struct xhci_ring *ring; 1261 1262 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1263 if (!ep) 1264 return; 1265 1266 if ((ep->ep_state & EP_HAS_STREAMS) || 1267 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1268 int stream_id; 1269 1270 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1271 stream_id++) { 1272 ring = ep->stream_info->stream_rings[stream_id]; 1273 if (!ring) 1274 continue; 1275 1276 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1277 "Killing URBs for slot ID %u, ep index %u, stream %u", 1278 slot_id, ep_index, stream_id); 1279 xhci_kill_ring_urbs(xhci, ring); 1280 } 1281 } else { 1282 ring = ep->ring; 1283 if (!ring) 1284 return; 1285 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1286 "Killing URBs for slot ID %u, ep index %u", 1287 slot_id, ep_index); 1288 xhci_kill_ring_urbs(xhci, ring); 1289 } 1290 1291 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1292 cancelled_td_list) { 1293 list_del_init(&cur_td->cancelled_td_list); 1294 inc_td_cnt(cur_td->urb); 1295 1296 if (last_td_in_urb(cur_td)) 1297 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1298 } 1299 } 1300 1301 /* 1302 * host controller died, register read returns 0xffffffff 1303 * Complete pending commands, mark them ABORTED. 1304 * URBs need to be given back as usb core might be waiting with device locks 1305 * held for the URBs to finish during device disconnect, blocking host remove. 1306 * 1307 * Call with xhci->lock held. 1308 * lock is relased and re-acquired while giving back urb. 1309 */ 1310 void xhci_hc_died(struct xhci_hcd *xhci) 1311 { 1312 int i, j; 1313 1314 if (xhci->xhc_state & XHCI_STATE_DYING) 1315 return; 1316 1317 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1318 xhci->xhc_state |= XHCI_STATE_DYING; 1319 1320 xhci_cleanup_command_queue(xhci); 1321 1322 /* return any pending urbs, remove may be waiting for them */ 1323 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1324 if (!xhci->devs[i]) 1325 continue; 1326 for (j = 0; j < 31; j++) 1327 xhci_kill_endpoint_urbs(xhci, i, j); 1328 } 1329 1330 /* inform usb core hc died if PCI remove isn't already handling it */ 1331 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1332 usb_hc_died(xhci_to_hcd(xhci)); 1333 } 1334 1335 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1336 struct xhci_virt_device *dev, 1337 struct xhci_ring *ep_ring, 1338 unsigned int ep_index) 1339 { 1340 union xhci_trb *dequeue_temp; 1341 1342 dequeue_temp = ep_ring->dequeue; 1343 1344 /* If we get two back-to-back stalls, and the first stalled transfer 1345 * ends just before a link TRB, the dequeue pointer will be left on 1346 * the link TRB by the code in the while loop. So we have to update 1347 * the dequeue pointer one segment further, or we'll jump off 1348 * the segment into la-la-land. 1349 */ 1350 if (trb_is_link(ep_ring->dequeue)) { 1351 ep_ring->deq_seg = ep_ring->deq_seg->next; 1352 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1353 } 1354 1355 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1356 /* We have more usable TRBs */ 1357 ep_ring->dequeue++; 1358 if (trb_is_link(ep_ring->dequeue)) { 1359 if (ep_ring->dequeue == 1360 dev->eps[ep_index].queued_deq_ptr) 1361 break; 1362 ep_ring->deq_seg = ep_ring->deq_seg->next; 1363 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1364 } 1365 if (ep_ring->dequeue == dequeue_temp) { 1366 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1367 break; 1368 } 1369 } 1370 } 1371 1372 /* 1373 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1374 * we need to clear the set deq pending flag in the endpoint ring state, so that 1375 * the TD queueing code can ring the doorbell again. We also need to ring the 1376 * endpoint doorbell to restart the ring, but only if there aren't more 1377 * cancellations pending. 1378 */ 1379 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1380 union xhci_trb *trb, u32 cmd_comp_code) 1381 { 1382 unsigned int ep_index; 1383 unsigned int stream_id; 1384 struct xhci_ring *ep_ring; 1385 struct xhci_virt_ep *ep; 1386 struct xhci_ep_ctx *ep_ctx; 1387 struct xhci_slot_ctx *slot_ctx; 1388 struct xhci_stream_ctx *stream_ctx; 1389 struct xhci_td *td, *tmp_td; 1390 1391 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1392 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1393 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1394 if (!ep) 1395 return; 1396 1397 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1398 if (!ep_ring) { 1399 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1400 stream_id); 1401 /* XXX: Harmless??? */ 1402 goto cleanup; 1403 } 1404 1405 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1406 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1407 trace_xhci_handle_cmd_set_deq(slot_ctx); 1408 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1409 1410 if (ep->ep_state & EP_HAS_STREAMS) { 1411 stream_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 1412 trace_xhci_handle_cmd_set_deq_stream(ep->stream_info, stream_id); 1413 } 1414 1415 if (cmd_comp_code != COMP_SUCCESS) { 1416 unsigned int ep_state; 1417 unsigned int slot_state; 1418 1419 switch (cmd_comp_code) { 1420 case COMP_TRB_ERROR: 1421 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1422 break; 1423 case COMP_CONTEXT_STATE_ERROR: 1424 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1425 ep_state = GET_EP_CTX_STATE(ep_ctx); 1426 slot_state = le32_to_cpu(slot_ctx->dev_state); 1427 slot_state = GET_SLOT_STATE(slot_state); 1428 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1429 "Slot state = %u, EP state = %u", 1430 slot_state, ep_state); 1431 break; 1432 case COMP_SLOT_NOT_ENABLED_ERROR: 1433 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1434 slot_id); 1435 break; 1436 default: 1437 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1438 cmd_comp_code); 1439 break; 1440 } 1441 /* OK what do we do now? The endpoint state is hosed, and we 1442 * should never get to this point if the synchronization between 1443 * queueing, and endpoint state are correct. This might happen 1444 * if the device gets disconnected after we've finished 1445 * cancelling URBs, which might not be an error... 1446 */ 1447 } else { 1448 u64 deq; 1449 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1450 if (ep->ep_state & EP_HAS_STREAMS) { 1451 deq = le64_to_cpu(stream_ctx->stream_ring) & SCTX_DEQ_MASK; 1452 1453 /* 1454 * Cadence xHCI controllers store some endpoint state 1455 * information within Rsvd0 fields of Stream Endpoint 1456 * context. This field is not cleared during Set TR 1457 * Dequeue Pointer command which causes XDMA to skip 1458 * over transfer ring and leads to data loss on stream 1459 * pipe. 1460 * To fix this issue driver must clear Rsvd0 field. 1461 */ 1462 if (xhci->quirks & XHCI_CDNS_SCTX_QUIRK) { 1463 stream_ctx->reserved[0] = 0; 1464 stream_ctx->reserved[1] = 0; 1465 } 1466 } else { 1467 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1468 } 1469 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1470 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1471 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1472 ep->queued_deq_ptr) == deq) { 1473 /* Update the ring's dequeue segment and dequeue pointer 1474 * to reflect the new position. 1475 */ 1476 update_ring_for_set_deq_completion(xhci, ep->vdev, 1477 ep_ring, ep_index); 1478 } else { 1479 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1480 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1481 ep->queued_deq_seg, ep->queued_deq_ptr); 1482 } 1483 } 1484 /* HW cached TDs cleared from cache, give them back */ 1485 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1486 cancelled_td_list) { 1487 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1488 if (td->cancel_status == TD_CLEARING_CACHE) { 1489 td->cancel_status = TD_CLEARED; 1490 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1491 __func__, td->urb); 1492 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1493 } else { 1494 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1495 __func__, td->urb, td->cancel_status); 1496 } 1497 } 1498 cleanup: 1499 ep->ep_state &= ~SET_DEQ_PENDING; 1500 ep->queued_deq_seg = NULL; 1501 ep->queued_deq_ptr = NULL; 1502 1503 /* Check for deferred or newly cancelled TDs */ 1504 if (!list_empty(&ep->cancelled_td_list)) { 1505 xhci_dbg(ep->xhci, "%s: Pending TDs to clear, continuing with invalidation\n", 1506 __func__); 1507 xhci_invalidate_cancelled_tds(ep); 1508 /* Try to restart the endpoint if all is done */ 1509 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1510 /* Start giving back any TDs invalidated above */ 1511 xhci_giveback_invalidated_tds(ep); 1512 } else { 1513 /* Restart any rings with pending URBs */ 1514 xhci_dbg(ep->xhci, "%s: All TDs cleared, ring doorbell\n", __func__); 1515 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1516 } 1517 } 1518 1519 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1520 union xhci_trb *trb, u32 cmd_comp_code) 1521 { 1522 struct xhci_virt_ep *ep; 1523 struct xhci_ep_ctx *ep_ctx; 1524 unsigned int ep_index; 1525 1526 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1527 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1528 if (!ep) 1529 return; 1530 1531 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1532 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1533 1534 /* This command will only fail if the endpoint wasn't halted, 1535 * but we don't care. 1536 */ 1537 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1538 "Ignoring reset ep completion code of %u", cmd_comp_code); 1539 1540 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1541 xhci_invalidate_cancelled_tds(ep); 1542 1543 /* Clear our internal halted state */ 1544 ep->ep_state &= ~EP_HALTED; 1545 1546 xhci_giveback_invalidated_tds(ep); 1547 1548 /* if this was a soft reset, then restart */ 1549 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1550 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1551 } 1552 1553 static void xhci_handle_cmd_enable_slot(int slot_id, struct xhci_command *command, 1554 u32 cmd_comp_code) 1555 { 1556 if (cmd_comp_code == COMP_SUCCESS) 1557 command->slot_id = slot_id; 1558 else 1559 command->slot_id = 0; 1560 } 1561 1562 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1563 { 1564 struct xhci_virt_device *virt_dev; 1565 struct xhci_slot_ctx *slot_ctx; 1566 1567 virt_dev = xhci->devs[slot_id]; 1568 if (!virt_dev) 1569 return; 1570 1571 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1572 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1573 1574 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1575 /* Delete default control endpoint resources */ 1576 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1577 } 1578 1579 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id) 1580 { 1581 struct xhci_virt_device *virt_dev; 1582 struct xhci_input_control_ctx *ctrl_ctx; 1583 struct xhci_ep_ctx *ep_ctx; 1584 unsigned int ep_index; 1585 u32 add_flags; 1586 1587 /* 1588 * Configure endpoint commands can come from the USB core configuration 1589 * or alt setting changes, or when streams were being configured. 1590 */ 1591 1592 virt_dev = xhci->devs[slot_id]; 1593 if (!virt_dev) 1594 return; 1595 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1596 if (!ctrl_ctx) { 1597 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1598 return; 1599 } 1600 1601 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1602 1603 /* Input ctx add_flags are the endpoint index plus one */ 1604 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1605 1606 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1607 trace_xhci_handle_cmd_config_ep(ep_ctx); 1608 1609 return; 1610 } 1611 1612 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1613 { 1614 struct xhci_virt_device *vdev; 1615 struct xhci_slot_ctx *slot_ctx; 1616 1617 vdev = xhci->devs[slot_id]; 1618 if (!vdev) 1619 return; 1620 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1621 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1622 } 1623 1624 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1625 { 1626 struct xhci_virt_device *vdev; 1627 struct xhci_slot_ctx *slot_ctx; 1628 1629 vdev = xhci->devs[slot_id]; 1630 if (!vdev) { 1631 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1632 slot_id); 1633 return; 1634 } 1635 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1636 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1637 1638 xhci_dbg(xhci, "Completed reset device command.\n"); 1639 } 1640 1641 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1642 struct xhci_event_cmd *event) 1643 { 1644 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1645 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1646 return; 1647 } 1648 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1649 "NEC firmware version %2x.%02x", 1650 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1651 NEC_FW_MINOR(le32_to_cpu(event->status))); 1652 } 1653 1654 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 comp_code, u32 comp_param) 1655 { 1656 list_del(&cmd->cmd_list); 1657 1658 if (cmd->completion) { 1659 cmd->status = comp_code; 1660 cmd->comp_param = comp_param; 1661 complete(cmd->completion); 1662 } else { 1663 kfree(cmd); 1664 } 1665 } 1666 1667 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1668 { 1669 struct xhci_command *cur_cmd, *tmp_cmd; 1670 xhci->current_cmd = NULL; 1671 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1672 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED, 0); 1673 } 1674 1675 void xhci_handle_command_timeout(struct work_struct *work) 1676 { 1677 struct xhci_hcd *xhci; 1678 unsigned long flags; 1679 char str[XHCI_MSG_MAX]; 1680 u64 hw_ring_state; 1681 u32 cmd_field3; 1682 u32 usbsts; 1683 1684 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1685 1686 spin_lock_irqsave(&xhci->lock, flags); 1687 1688 /* 1689 * If timeout work is pending, or current_cmd is NULL, it means we 1690 * raced with command completion. Command is handled so just return. 1691 */ 1692 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1693 spin_unlock_irqrestore(&xhci->lock, flags); 1694 return; 1695 } 1696 1697 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1698 usbsts = readl(&xhci->op_regs->status); 1699 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1700 1701 /* Bail out and tear down xhci if a stop endpoint command failed */ 1702 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1703 struct xhci_virt_ep *ep; 1704 1705 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1706 1707 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1708 TRB_TO_EP_INDEX(cmd_field3)); 1709 if (ep) 1710 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1711 1712 xhci_halt(xhci); 1713 xhci_hc_died(xhci); 1714 goto time_out_completed; 1715 } 1716 1717 /* mark this command to be cancelled */ 1718 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1719 1720 /* Make sure command ring is running before aborting it */ 1721 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1722 if (hw_ring_state == ~(u64)0) { 1723 xhci_hc_died(xhci); 1724 goto time_out_completed; 1725 } 1726 1727 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1728 (hw_ring_state & CMD_RING_RUNNING)) { 1729 /* Prevent new doorbell, and start command abort */ 1730 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1731 xhci_dbg(xhci, "Command timeout\n"); 1732 xhci_abort_cmd_ring(xhci, flags); 1733 goto time_out_completed; 1734 } 1735 1736 /* host removed. Bail out */ 1737 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1738 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1739 xhci_cleanup_command_queue(xhci); 1740 1741 goto time_out_completed; 1742 } 1743 1744 /* command timeout on stopped ring, ring can't be aborted */ 1745 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1746 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1747 1748 time_out_completed: 1749 spin_unlock_irqrestore(&xhci->lock, flags); 1750 return; 1751 } 1752 1753 static void handle_cmd_completion(struct xhci_hcd *xhci, 1754 struct xhci_event_cmd *event) 1755 { 1756 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1757 u32 status = le32_to_cpu(event->status); 1758 u64 cmd_dma; 1759 dma_addr_t cmd_dequeue_dma; 1760 u32 cmd_comp_code; 1761 union xhci_trb *cmd_trb; 1762 struct xhci_command *cmd; 1763 u32 cmd_type; 1764 1765 if (slot_id >= MAX_HC_SLOTS) { 1766 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1767 return; 1768 } 1769 1770 cmd_dma = le64_to_cpu(event->cmd_trb); 1771 cmd_trb = xhci->cmd_ring->dequeue; 1772 1773 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic, cmd_dma); 1774 1775 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1776 1777 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1778 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1779 complete_all(&xhci->cmd_ring_stop_completion); 1780 return; 1781 } 1782 1783 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1784 cmd_trb); 1785 /* 1786 * Check whether the completion event is for our internal kept 1787 * command. 1788 */ 1789 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1790 xhci_warn(xhci, 1791 "ERROR mismatched command completion event\n"); 1792 return; 1793 } 1794 1795 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1796 1797 cancel_delayed_work(&xhci->cmd_timer); 1798 1799 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1800 xhci_err(xhci, 1801 "Command completion event does not match command\n"); 1802 return; 1803 } 1804 1805 /* 1806 * Host aborted the command ring, check if the current command was 1807 * supposed to be aborted, otherwise continue normally. 1808 * The command ring is stopped now, but the xHC will issue a Command 1809 * Ring Stopped event which will cause us to restart it. 1810 */ 1811 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1812 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1813 if (cmd->status == COMP_COMMAND_ABORTED) { 1814 if (xhci->current_cmd == cmd) 1815 xhci->current_cmd = NULL; 1816 goto event_handled; 1817 } 1818 } 1819 1820 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1821 switch (cmd_type) { 1822 case TRB_ENABLE_SLOT: 1823 xhci_handle_cmd_enable_slot(slot_id, cmd, cmd_comp_code); 1824 break; 1825 case TRB_DISABLE_SLOT: 1826 xhci_handle_cmd_disable_slot(xhci, slot_id); 1827 break; 1828 case TRB_CONFIG_EP: 1829 if (!cmd->completion) 1830 xhci_handle_cmd_config_ep(xhci, slot_id); 1831 break; 1832 case TRB_EVAL_CONTEXT: 1833 break; 1834 case TRB_ADDR_DEV: 1835 xhci_handle_cmd_addr_dev(xhci, slot_id); 1836 break; 1837 case TRB_STOP_RING: 1838 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1839 le32_to_cpu(cmd_trb->generic.field[3]))); 1840 if (!cmd->completion) 1841 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1842 cmd_comp_code); 1843 break; 1844 case TRB_SET_DEQ: 1845 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1846 le32_to_cpu(cmd_trb->generic.field[3]))); 1847 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1848 break; 1849 case TRB_CMD_NOOP: 1850 /* Is this an aborted command turned to NO-OP? */ 1851 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1852 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1853 break; 1854 case TRB_RESET_EP: 1855 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1856 le32_to_cpu(cmd_trb->generic.field[3]))); 1857 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1858 break; 1859 case TRB_RESET_DEV: 1860 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1861 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1862 */ 1863 slot_id = TRB_TO_SLOT_ID( 1864 le32_to_cpu(cmd_trb->generic.field[3])); 1865 xhci_handle_cmd_reset_dev(xhci, slot_id); 1866 break; 1867 case TRB_NEC_GET_FW: 1868 xhci_handle_cmd_nec_get_fw(xhci, event); 1869 break; 1870 default: 1871 /* Skip over unknown commands on the event ring */ 1872 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1873 break; 1874 } 1875 1876 /* restart timer if this wasn't the last command */ 1877 if (!list_is_singular(&xhci->cmd_list)) { 1878 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1879 struct xhci_command, cmd_list); 1880 xhci_mod_cmd_timer(xhci); 1881 } else if (xhci->current_cmd == cmd) { 1882 xhci->current_cmd = NULL; 1883 } 1884 1885 event_handled: 1886 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code, COMP_PARAM(status)); 1887 1888 inc_deq(xhci, xhci->cmd_ring); 1889 } 1890 1891 static void handle_vendor_event(struct xhci_hcd *xhci, 1892 union xhci_trb *event, u32 trb_type) 1893 { 1894 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1895 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1896 handle_cmd_completion(xhci, &event->event_cmd); 1897 } 1898 1899 static void handle_device_notification(struct xhci_hcd *xhci, 1900 union xhci_trb *event) 1901 { 1902 u32 slot_id; 1903 struct usb_device *udev; 1904 1905 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1906 if (!xhci->devs[slot_id]) { 1907 xhci_warn(xhci, "Device Notification event for " 1908 "unused slot %u\n", slot_id); 1909 return; 1910 } 1911 1912 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1913 slot_id); 1914 udev = xhci->devs[slot_id]->udev; 1915 if (udev && udev->parent) 1916 usb_wakeup_notification(udev->parent, udev->portnum); 1917 } 1918 1919 /* 1920 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1921 * Controller. 1922 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1923 * If a connection to a USB 1 device is followed by another connection 1924 * to a USB 2 device. 1925 * 1926 * Reset the PHY after the USB device is disconnected if device speed 1927 * is less than HCD_USB3. 1928 * Retry the reset sequence max of 4 times checking the PLL lock status. 1929 * 1930 */ 1931 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1932 { 1933 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1934 u32 pll_lock_check; 1935 u32 retry_count = 4; 1936 1937 do { 1938 /* Assert PHY reset */ 1939 writel(0x6F, hcd->regs + 0x1048); 1940 udelay(10); 1941 /* De-assert the PHY reset */ 1942 writel(0x7F, hcd->regs + 0x1048); 1943 udelay(200); 1944 pll_lock_check = readl(hcd->regs + 0x1070); 1945 } while (!(pll_lock_check & 0x1) && --retry_count); 1946 } 1947 1948 static void handle_port_status(struct xhci_hcd *xhci, union xhci_trb *event) 1949 { 1950 struct usb_hcd *hcd; 1951 u32 port_id; 1952 u32 portsc, cmd_reg; 1953 int max_ports; 1954 unsigned int hcd_portnum; 1955 struct xhci_bus_state *bus_state; 1956 bool bogus_port_status = false; 1957 struct xhci_port *port; 1958 1959 /* Port status change events always have a successful completion code */ 1960 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1961 xhci_warn(xhci, 1962 "WARN: xHC returned failed port status event\n"); 1963 1964 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1965 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1966 1967 if ((port_id <= 0) || (port_id > max_ports)) { 1968 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1969 port_id); 1970 return; 1971 } 1972 1973 port = &xhci->hw_ports[port_id - 1]; 1974 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1975 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1976 port_id); 1977 bogus_port_status = true; 1978 goto cleanup; 1979 } 1980 1981 /* We might get interrupts after shared_hcd is removed */ 1982 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1983 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1984 bogus_port_status = true; 1985 goto cleanup; 1986 } 1987 1988 hcd = port->rhub->hcd; 1989 bus_state = &port->rhub->bus_state; 1990 hcd_portnum = port->hcd_portnum; 1991 portsc = readl(port->addr); 1992 1993 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1994 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1995 1996 trace_xhci_handle_port_status(port, portsc); 1997 1998 if (hcd->state == HC_STATE_SUSPENDED) { 1999 xhci_dbg(xhci, "resume root hub\n"); 2000 usb_hcd_resume_root_hub(hcd); 2001 } 2002 2003 if (hcd->speed >= HCD_USB3 && 2004 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 2005 if (port->slot_id && xhci->devs[port->slot_id]) 2006 xhci->devs[port->slot_id]->flags |= VDEV_PORT_ERROR; 2007 } 2008 2009 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 2010 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 2011 2012 cmd_reg = readl(&xhci->op_regs->command); 2013 if (!(cmd_reg & CMD_RUN)) { 2014 xhci_warn(xhci, "xHC is not running.\n"); 2015 goto cleanup; 2016 } 2017 2018 if (DEV_SUPERSPEED_ANY(portsc)) { 2019 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 2020 /* Set a flag to say the port signaled remote wakeup, 2021 * so we can tell the difference between the end of 2022 * device and host initiated resume. 2023 */ 2024 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 2025 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2026 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2027 xhci_set_link_state(xhci, port, XDEV_U0); 2028 /* Need to wait until the next link state change 2029 * indicates the device is actually in U0. 2030 */ 2031 bogus_port_status = true; 2032 goto cleanup; 2033 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 2034 xhci_dbg(xhci, "resume HS port %d\n", port_id); 2035 port->resume_timestamp = jiffies + 2036 msecs_to_jiffies(USB_RESUME_TIMEOUT); 2037 set_bit(hcd_portnum, &bus_state->resuming_ports); 2038 /* Do the rest in GetPortStatus after resume time delay. 2039 * Avoid polling roothub status before that so that a 2040 * usb device auto-resume latency around ~40ms. 2041 */ 2042 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2043 mod_timer(&hcd->rh_timer, 2044 port->resume_timestamp); 2045 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2046 bogus_port_status = true; 2047 } 2048 } 2049 2050 if ((portsc & PORT_PLC) && 2051 DEV_SUPERSPEED_ANY(portsc) && 2052 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 2053 (portsc & PORT_PLS_MASK) == XDEV_U1 || 2054 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 2055 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 2056 complete(&port->u3exit_done); 2057 /* We've just brought the device into U0/1/2 through either the 2058 * Resume state after a device remote wakeup, or through the 2059 * U3Exit state after a host-initiated resume. If it's a device 2060 * initiated remote wake, don't pass up the link state change, 2061 * so the roothub behavior is consistent with external 2062 * USB 3.0 hub behavior. 2063 */ 2064 if (port->slot_id && xhci->devs[port->slot_id]) 2065 xhci_ring_device(xhci, port->slot_id); 2066 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 2067 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2068 usb_wakeup_notification(hcd->self.root_hub, 2069 hcd_portnum + 1); 2070 bogus_port_status = true; 2071 goto cleanup; 2072 } 2073 } 2074 2075 /* 2076 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 2077 * RExit to a disconnect state). If so, let the driver know it's 2078 * out of the RExit state. 2079 */ 2080 if (hcd->speed < HCD_USB3 && port->rexit_active) { 2081 complete(&port->rexit_done); 2082 port->rexit_active = false; 2083 bogus_port_status = true; 2084 goto cleanup; 2085 } 2086 2087 if (hcd->speed < HCD_USB3) { 2088 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2089 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2090 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2091 xhci_cavium_reset_phy_quirk(xhci); 2092 } 2093 2094 cleanup: 2095 2096 /* Don't make the USB core poll the roothub if we got a bad port status 2097 * change event. Besides, at that point we can't tell which roothub 2098 * (USB 2.0 or USB 3.0) to kick. 2099 */ 2100 if (bogus_port_status) 2101 return; 2102 2103 /* 2104 * xHCI port-status-change events occur when the "or" of all the 2105 * status-change bits in the portsc register changes from 0 to 1. 2106 * New status changes won't cause an event if any other change 2107 * bits are still set. When an event occurs, switch over to 2108 * polling to avoid losing status changes. 2109 */ 2110 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2111 __func__, hcd->self.busnum); 2112 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2113 spin_unlock(&xhci->lock); 2114 /* Pass this up to the core */ 2115 usb_hcd_poll_rh_status(hcd); 2116 spin_lock(&xhci->lock); 2117 } 2118 2119 /* 2120 * If the suspect DMA address is a TRB in this TD, this function returns that 2121 * TRB's segment. Otherwise it returns 0. 2122 */ 2123 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, struct xhci_td *td, dma_addr_t suspect_dma, 2124 bool debug) 2125 { 2126 dma_addr_t start_dma; 2127 dma_addr_t end_seg_dma; 2128 dma_addr_t end_trb_dma; 2129 struct xhci_segment *cur_seg; 2130 2131 start_dma = xhci_trb_virt_to_dma(td->start_seg, td->start_trb); 2132 cur_seg = td->start_seg; 2133 2134 do { 2135 if (start_dma == 0) 2136 return NULL; 2137 /* We may get an event for a Link TRB in the middle of a TD */ 2138 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2139 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2140 /* If the end TRB isn't in this segment, this is set to 0 */ 2141 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, td->end_trb); 2142 2143 if (debug) 2144 xhci_warn(xhci, 2145 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2146 (unsigned long long)suspect_dma, 2147 (unsigned long long)start_dma, 2148 (unsigned long long)end_trb_dma, 2149 (unsigned long long)cur_seg->dma, 2150 (unsigned long long)end_seg_dma); 2151 2152 if (end_trb_dma > 0) { 2153 /* The end TRB is in this segment, so suspect should be here */ 2154 if (start_dma <= end_trb_dma) { 2155 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2156 return cur_seg; 2157 } else { 2158 /* Case for one segment with 2159 * a TD wrapped around to the top 2160 */ 2161 if ((suspect_dma >= start_dma && 2162 suspect_dma <= end_seg_dma) || 2163 (suspect_dma >= cur_seg->dma && 2164 suspect_dma <= end_trb_dma)) 2165 return cur_seg; 2166 } 2167 return NULL; 2168 } else { 2169 /* Might still be somewhere in this segment */ 2170 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2171 return cur_seg; 2172 } 2173 cur_seg = cur_seg->next; 2174 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2175 } while (cur_seg != td->start_seg); 2176 2177 return NULL; 2178 } 2179 2180 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2181 struct xhci_virt_ep *ep) 2182 { 2183 /* 2184 * As part of low/full-speed endpoint-halt processing 2185 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2186 */ 2187 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2188 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2189 !(ep->ep_state & EP_CLEARING_TT)) { 2190 ep->ep_state |= EP_CLEARING_TT; 2191 td->urb->ep->hcpriv = td->urb->dev; 2192 if (usb_hub_clear_tt_buffer(td->urb)) 2193 ep->ep_state &= ~EP_CLEARING_TT; 2194 } 2195 } 2196 2197 /* 2198 * Check if xhci internal endpoint state has gone to a "halt" state due to an 2199 * error or stall, including default control pipe protocol stall. 2200 * The internal halt needs to be cleared with a reset endpoint command. 2201 * 2202 * External device side is also halted in functional stall cases. Class driver 2203 * will clear the device halt with a CLEAR_FEATURE(ENDPOINT_HALT) request later. 2204 */ 2205 static bool xhci_halted_host_endpoint(struct xhci_ep_ctx *ep_ctx, unsigned int comp_code) 2206 { 2207 /* Stall halts both internal and device side endpoint */ 2208 if (comp_code == COMP_STALL_ERROR) 2209 return true; 2210 2211 /* TRB completion codes that may require internal halt cleanup */ 2212 if (comp_code == COMP_USB_TRANSACTION_ERROR || 2213 comp_code == COMP_BABBLE_DETECTED_ERROR || 2214 comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2215 /* 2216 * The 0.95 spec says a babbling control endpoint is not halted. 2217 * The 0.96 spec says it is. Some HW claims to be 0.95 2218 * compliant, but it halts the control endpoint anyway. 2219 * Check endpoint context if endpoint is halted. 2220 */ 2221 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2222 return true; 2223 2224 return false; 2225 } 2226 2227 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2228 { 2229 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2230 /* Vendor defined "informational" completion code, 2231 * treat as not-an-error. 2232 */ 2233 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2234 trb_comp_code); 2235 xhci_dbg(xhci, "Treating code as success.\n"); 2236 return 1; 2237 } 2238 return 0; 2239 } 2240 2241 static void finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2242 struct xhci_ring *ep_ring, struct xhci_td *td, 2243 u32 trb_comp_code) 2244 { 2245 struct xhci_ep_ctx *ep_ctx; 2246 2247 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2248 2249 switch (trb_comp_code) { 2250 case COMP_STOPPED_LENGTH_INVALID: 2251 case COMP_STOPPED_SHORT_PACKET: 2252 case COMP_STOPPED: 2253 /* 2254 * The "Stop Endpoint" completion will take care of any 2255 * stopped TDs. A stopped TD may be restarted, so don't update 2256 * the ring dequeue pointer or take this TD off any lists yet. 2257 */ 2258 return; 2259 case COMP_USB_TRANSACTION_ERROR: 2260 case COMP_BABBLE_DETECTED_ERROR: 2261 case COMP_SPLIT_TRANSACTION_ERROR: 2262 /* 2263 * If endpoint context state is not halted we might be 2264 * racing with a reset endpoint command issued by a unsuccessful 2265 * stop endpoint completion (context error). In that case the 2266 * td should be on the cancelled list, and EP_HALTED flag set. 2267 * 2268 * Or then it's not halted due to the 0.95 spec stating that a 2269 * babbling control endpoint should not halt. The 0.96 spec 2270 * again says it should. Some HW claims to be 0.95 compliant, 2271 * but it halts the control endpoint anyway. 2272 */ 2273 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2274 /* 2275 * If EP_HALTED is set and TD is on the cancelled list 2276 * the TD and dequeue pointer will be handled by reset 2277 * ep command completion 2278 */ 2279 if ((ep->ep_state & EP_HALTED) && 2280 !list_empty(&td->cancelled_td_list)) { 2281 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2282 (unsigned long long)xhci_trb_virt_to_dma( 2283 td->start_seg, td->start_trb)); 2284 return; 2285 } 2286 /* endpoint not halted, don't reset it */ 2287 break; 2288 } 2289 /* Almost same procedure as for STALL_ERROR below */ 2290 xhci_clear_hub_tt_buffer(xhci, td, ep); 2291 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2292 return; 2293 case COMP_STALL_ERROR: 2294 /* 2295 * xhci internal endpoint state will go to a "halt" state for 2296 * any stall, including default control pipe protocol stall. 2297 * To clear the host side halt we need to issue a reset endpoint 2298 * command, followed by a set dequeue command to move past the 2299 * TD. 2300 * Class drivers clear the device side halt from a functional 2301 * stall later. Hub TT buffer should only be cleared for FS/LS 2302 * devices behind HS hubs for functional stalls. 2303 */ 2304 if (ep->ep_index != 0) 2305 xhci_clear_hub_tt_buffer(xhci, td, ep); 2306 2307 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2308 2309 return; /* xhci_handle_halted_endpoint marked td cancelled */ 2310 default: 2311 break; 2312 } 2313 2314 xhci_dequeue_td(xhci, td, ep_ring, td->status); 2315 } 2316 2317 /* sum trb lengths from the first trb up to stop_trb, _excluding_ stop_trb */ 2318 static u32 sum_trb_lengths(struct xhci_td *td, union xhci_trb *stop_trb) 2319 { 2320 u32 sum; 2321 union xhci_trb *trb = td->start_trb; 2322 struct xhci_segment *seg = td->start_seg; 2323 2324 for (sum = 0; trb != stop_trb; next_trb(&seg, &trb)) { 2325 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2326 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2327 } 2328 return sum; 2329 } 2330 2331 /* 2332 * Process control tds, update urb status and actual_length. 2333 */ 2334 static void process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2335 struct xhci_ring *ep_ring, struct xhci_td *td, 2336 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2337 { 2338 struct xhci_ep_ctx *ep_ctx; 2339 u32 trb_comp_code; 2340 u32 remaining, requested; 2341 u32 trb_type; 2342 2343 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2344 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2345 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2346 requested = td->urb->transfer_buffer_length; 2347 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2348 2349 switch (trb_comp_code) { 2350 case COMP_SUCCESS: 2351 if (trb_type != TRB_STATUS) { 2352 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2353 (trb_type == TRB_DATA) ? "data" : "setup"); 2354 td->status = -ESHUTDOWN; 2355 break; 2356 } 2357 td->status = 0; 2358 break; 2359 case COMP_SHORT_PACKET: 2360 td->status = 0; 2361 break; 2362 case COMP_STOPPED_SHORT_PACKET: 2363 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2364 td->urb->actual_length = remaining; 2365 else 2366 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2367 goto finish_td; 2368 case COMP_STOPPED: 2369 switch (trb_type) { 2370 case TRB_SETUP: 2371 td->urb->actual_length = 0; 2372 goto finish_td; 2373 case TRB_DATA: 2374 case TRB_NORMAL: 2375 td->urb->actual_length = requested - remaining; 2376 goto finish_td; 2377 case TRB_STATUS: 2378 td->urb->actual_length = requested; 2379 goto finish_td; 2380 default: 2381 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2382 trb_type); 2383 goto finish_td; 2384 } 2385 case COMP_STOPPED_LENGTH_INVALID: 2386 goto finish_td; 2387 default: 2388 if (!xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) 2389 break; 2390 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2391 trb_comp_code, ep->ep_index); 2392 fallthrough; 2393 case COMP_STALL_ERROR: 2394 /* Did we transfer part of the data (middle) phase? */ 2395 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2396 td->urb->actual_length = requested - remaining; 2397 else if (!td->urb_length_set) 2398 td->urb->actual_length = 0; 2399 goto finish_td; 2400 } 2401 2402 /* stopped at setup stage, no data transferred */ 2403 if (trb_type == TRB_SETUP) 2404 goto finish_td; 2405 2406 /* 2407 * if on data stage then update the actual_length of the URB and flag it 2408 * as set, so it won't be overwritten in the event for the last TRB. 2409 */ 2410 if (trb_type == TRB_DATA || 2411 trb_type == TRB_NORMAL) { 2412 td->urb_length_set = true; 2413 td->urb->actual_length = requested - remaining; 2414 xhci_dbg(xhci, "Waiting for status stage event\n"); 2415 return; 2416 } 2417 2418 /* at status stage */ 2419 if (!td->urb_length_set) 2420 td->urb->actual_length = requested; 2421 2422 finish_td: 2423 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2424 } 2425 2426 /* 2427 * Process isochronous tds, update urb packet status and actual_length. 2428 */ 2429 static void process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2430 struct xhci_ring *ep_ring, struct xhci_td *td, 2431 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2432 { 2433 struct urb_priv *urb_priv; 2434 int idx; 2435 struct usb_iso_packet_descriptor *frame; 2436 u32 trb_comp_code; 2437 bool sum_trbs_for_length = false; 2438 u32 remaining, requested, ep_trb_len; 2439 int short_framestatus; 2440 2441 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2442 urb_priv = td->urb->hcpriv; 2443 idx = urb_priv->num_tds_done; 2444 frame = &td->urb->iso_frame_desc[idx]; 2445 requested = frame->length; 2446 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2447 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2448 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2449 -EREMOTEIO : 0; 2450 2451 /* handle completion code */ 2452 switch (trb_comp_code) { 2453 case COMP_SUCCESS: 2454 /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ 2455 if (td->error_mid_td) 2456 break; 2457 if (remaining) { 2458 frame->status = short_framestatus; 2459 sum_trbs_for_length = true; 2460 break; 2461 } 2462 frame->status = 0; 2463 break; 2464 case COMP_SHORT_PACKET: 2465 frame->status = short_framestatus; 2466 sum_trbs_for_length = true; 2467 break; 2468 case COMP_BANDWIDTH_OVERRUN_ERROR: 2469 frame->status = -ECOMM; 2470 break; 2471 case COMP_BABBLE_DETECTED_ERROR: 2472 sum_trbs_for_length = true; 2473 fallthrough; 2474 case COMP_ISOCH_BUFFER_OVERRUN: 2475 frame->status = -EOVERFLOW; 2476 if (ep_trb != td->end_trb) 2477 td->error_mid_td = true; 2478 break; 2479 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2480 case COMP_STALL_ERROR: 2481 frame->status = -EPROTO; 2482 break; 2483 case COMP_USB_TRANSACTION_ERROR: 2484 frame->status = -EPROTO; 2485 sum_trbs_for_length = true; 2486 if (ep_trb != td->end_trb) 2487 td->error_mid_td = true; 2488 break; 2489 case COMP_STOPPED: 2490 sum_trbs_for_length = true; 2491 break; 2492 case COMP_STOPPED_SHORT_PACKET: 2493 /* field normally containing residue now contains transferred */ 2494 frame->status = short_framestatus; 2495 requested = remaining; 2496 break; 2497 case COMP_STOPPED_LENGTH_INVALID: 2498 /* exclude stopped trb with invalid length from length sum */ 2499 sum_trbs_for_length = true; 2500 ep_trb_len = 0; 2501 remaining = 0; 2502 break; 2503 default: 2504 sum_trbs_for_length = true; 2505 frame->status = -1; 2506 break; 2507 } 2508 2509 if (td->urb_length_set) 2510 goto finish_td; 2511 2512 if (sum_trbs_for_length) 2513 frame->actual_length = sum_trb_lengths(td, ep_trb) + 2514 ep_trb_len - remaining; 2515 else 2516 frame->actual_length = requested; 2517 2518 td->urb->actual_length += frame->actual_length; 2519 2520 finish_td: 2521 /* Don't give back TD yet if we encountered an error mid TD */ 2522 if (td->error_mid_td && ep_trb != td->end_trb) { 2523 xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); 2524 td->urb_length_set = true; 2525 return; 2526 } 2527 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2528 } 2529 2530 static void skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2531 struct xhci_virt_ep *ep, int status) 2532 { 2533 struct urb_priv *urb_priv; 2534 struct usb_iso_packet_descriptor *frame; 2535 int idx; 2536 2537 urb_priv = td->urb->hcpriv; 2538 idx = urb_priv->num_tds_done; 2539 frame = &td->urb->iso_frame_desc[idx]; 2540 2541 /* The transfer is partly done. */ 2542 frame->status = -EXDEV; 2543 2544 /* calc actual length */ 2545 frame->actual_length = 0; 2546 2547 xhci_dequeue_td(xhci, td, ep->ring, status); 2548 } 2549 2550 /* 2551 * Process bulk and interrupt tds, update urb status and actual_length. 2552 */ 2553 static void process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2554 struct xhci_ring *ep_ring, struct xhci_td *td, 2555 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2556 { 2557 struct xhci_slot_ctx *slot_ctx; 2558 u32 trb_comp_code; 2559 u32 remaining, requested, ep_trb_len; 2560 2561 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2562 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2563 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2564 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2565 requested = td->urb->transfer_buffer_length; 2566 2567 switch (trb_comp_code) { 2568 case COMP_SUCCESS: 2569 ep->err_count = 0; 2570 /* handle success with untransferred data as short packet */ 2571 if (ep_trb != td->end_trb || remaining) { 2572 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2573 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2574 td->urb->ep->desc.bEndpointAddress, 2575 requested, remaining); 2576 } 2577 td->status = 0; 2578 break; 2579 case COMP_SHORT_PACKET: 2580 td->status = 0; 2581 break; 2582 case COMP_STOPPED_SHORT_PACKET: 2583 td->urb->actual_length = remaining; 2584 goto finish_td; 2585 case COMP_STOPPED_LENGTH_INVALID: 2586 /* stopped on ep trb with invalid length, exclude it */ 2587 td->urb->actual_length = sum_trb_lengths(td, ep_trb); 2588 goto finish_td; 2589 case COMP_USB_TRANSACTION_ERROR: 2590 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2591 (ep->err_count++ > MAX_SOFT_RETRY) || 2592 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2593 break; 2594 2595 td->status = 0; 2596 2597 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2598 return; 2599 default: 2600 /* do nothing */ 2601 break; 2602 } 2603 2604 if (ep_trb == td->end_trb) 2605 td->urb->actual_length = requested - remaining; 2606 else 2607 td->urb->actual_length = 2608 sum_trb_lengths(td, ep_trb) + 2609 ep_trb_len - remaining; 2610 finish_td: 2611 if (remaining > requested) { 2612 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2613 remaining); 2614 td->urb->actual_length = 0; 2615 } 2616 2617 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2618 } 2619 2620 /* Transfer events which don't point to a transfer TRB, see xhci 4.17.4 */ 2621 static int handle_transferless_tx_event(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2622 u32 trb_comp_code) 2623 { 2624 switch (trb_comp_code) { 2625 case COMP_STALL_ERROR: 2626 case COMP_USB_TRANSACTION_ERROR: 2627 case COMP_INVALID_STREAM_TYPE_ERROR: 2628 case COMP_INVALID_STREAM_ID_ERROR: 2629 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", ep->ep_index); 2630 if (ep->err_count++ > MAX_SOFT_RETRY) 2631 xhci_handle_halted_endpoint(xhci, ep, NULL, EP_HARD_RESET); 2632 else 2633 xhci_handle_halted_endpoint(xhci, ep, NULL, EP_SOFT_RESET); 2634 break; 2635 case COMP_RING_UNDERRUN: 2636 case COMP_RING_OVERRUN: 2637 case COMP_STOPPED_LENGTH_INVALID: 2638 break; 2639 default: 2640 xhci_err(xhci, "Transfer event %u for unknown stream ring slot %u ep %u\n", 2641 trb_comp_code, ep->vdev->slot_id, ep->ep_index); 2642 return -ENODEV; 2643 } 2644 return 0; 2645 } 2646 2647 /* 2648 * If this function returns an error condition, it means it got a Transfer 2649 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2650 * At this point, the host controller is probably hosed and should be reset. 2651 */ 2652 static int handle_tx_event(struct xhci_hcd *xhci, 2653 struct xhci_interrupter *ir, 2654 struct xhci_transfer_event *event) 2655 { 2656 struct xhci_virt_ep *ep; 2657 struct xhci_ring *ep_ring; 2658 unsigned int slot_id; 2659 int ep_index; 2660 struct xhci_td *td = NULL; 2661 dma_addr_t ep_trb_dma; 2662 struct xhci_segment *ep_seg; 2663 union xhci_trb *ep_trb; 2664 int status = -EINPROGRESS; 2665 struct xhci_ep_ctx *ep_ctx; 2666 u32 trb_comp_code; 2667 2668 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2669 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2670 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2671 ep_trb_dma = le64_to_cpu(event->buffer); 2672 2673 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2674 if (!ep) { 2675 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2676 goto err_out; 2677 } 2678 2679 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2680 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2681 2682 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2683 xhci_err(xhci, 2684 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2685 slot_id, ep_index); 2686 goto err_out; 2687 } 2688 2689 if (!ep_ring) 2690 return handle_transferless_tx_event(xhci, ep, trb_comp_code); 2691 2692 /* Look for common error cases */ 2693 switch (trb_comp_code) { 2694 /* Skip codes that require special handling depending on 2695 * transfer type 2696 */ 2697 case COMP_SUCCESS: 2698 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2699 trb_comp_code = COMP_SHORT_PACKET; 2700 xhci_dbg(xhci, "Successful completion on short TX for slot %u ep %u with last td short %d\n", 2701 slot_id, ep_index, ep_ring->last_td_was_short); 2702 } 2703 break; 2704 case COMP_SHORT_PACKET: 2705 break; 2706 /* Completion codes for endpoint stopped state */ 2707 case COMP_STOPPED: 2708 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2709 slot_id, ep_index); 2710 break; 2711 case COMP_STOPPED_LENGTH_INVALID: 2712 xhci_dbg(xhci, 2713 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2714 slot_id, ep_index); 2715 break; 2716 case COMP_STOPPED_SHORT_PACKET: 2717 xhci_dbg(xhci, 2718 "Stopped with short packet transfer detected for slot %u ep %u\n", 2719 slot_id, ep_index); 2720 break; 2721 /* Completion codes for endpoint halted state */ 2722 case COMP_STALL_ERROR: 2723 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2724 ep_index); 2725 status = -EPIPE; 2726 break; 2727 case COMP_SPLIT_TRANSACTION_ERROR: 2728 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2729 slot_id, ep_index); 2730 status = -EPROTO; 2731 break; 2732 case COMP_USB_TRANSACTION_ERROR: 2733 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2734 slot_id, ep_index); 2735 status = -EPROTO; 2736 break; 2737 case COMP_BABBLE_DETECTED_ERROR: 2738 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2739 slot_id, ep_index); 2740 status = -EOVERFLOW; 2741 break; 2742 /* Completion codes for endpoint error state */ 2743 case COMP_TRB_ERROR: 2744 xhci_warn(xhci, 2745 "WARN: TRB error for slot %u ep %u on endpoint\n", 2746 slot_id, ep_index); 2747 status = -EILSEQ; 2748 break; 2749 /* completion codes not indicating endpoint state change */ 2750 case COMP_DATA_BUFFER_ERROR: 2751 xhci_warn(xhci, 2752 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2753 slot_id, ep_index); 2754 status = -ENOSR; 2755 break; 2756 case COMP_BANDWIDTH_OVERRUN_ERROR: 2757 xhci_warn(xhci, 2758 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2759 slot_id, ep_index); 2760 break; 2761 case COMP_ISOCH_BUFFER_OVERRUN: 2762 xhci_warn(xhci, 2763 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2764 slot_id, ep_index); 2765 break; 2766 case COMP_RING_UNDERRUN: 2767 /* 2768 * When the Isoch ring is empty, the xHC will generate 2769 * a Ring Overrun Event for IN Isoch endpoint or Ring 2770 * Underrun Event for OUT Isoch endpoint. 2771 */ 2772 xhci_dbg(xhci, "Underrun event on slot %u ep %u\n", slot_id, ep_index); 2773 if (ep->skip) 2774 break; 2775 return 0; 2776 case COMP_RING_OVERRUN: 2777 xhci_dbg(xhci, "Overrun event on slot %u ep %u\n", slot_id, ep_index); 2778 if (ep->skip) 2779 break; 2780 return 0; 2781 case COMP_MISSED_SERVICE_ERROR: 2782 /* 2783 * When encounter missed service error, one or more isoc tds 2784 * may be missed by xHC. 2785 * Set skip flag of the ep_ring; Complete the missed tds as 2786 * short transfer when process the ep_ring next time. 2787 */ 2788 ep->skip = true; 2789 xhci_dbg(xhci, 2790 "Miss service interval error for slot %u ep %u, set skip flag\n", 2791 slot_id, ep_index); 2792 return 0; 2793 case COMP_NO_PING_RESPONSE_ERROR: 2794 ep->skip = true; 2795 xhci_dbg(xhci, 2796 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2797 slot_id, ep_index); 2798 return 0; 2799 2800 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2801 /* needs disable slot command to recover */ 2802 xhci_warn(xhci, 2803 "WARN: detect an incompatible device for slot %u ep %u", 2804 slot_id, ep_index); 2805 status = -EPROTO; 2806 break; 2807 default: 2808 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2809 status = 0; 2810 break; 2811 } 2812 xhci_warn(xhci, 2813 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2814 trb_comp_code, slot_id, ep_index); 2815 if (ep->skip) 2816 break; 2817 return 0; 2818 } 2819 2820 /* 2821 * xhci 4.10.2 states isoc endpoints should continue 2822 * processing the next TD if there was an error mid TD. 2823 * So host like NEC don't generate an event for the last 2824 * isoc TRB even if the IOC flag is set. 2825 * xhci 4.9.1 states that if there are errors in mult-TRB 2826 * TDs xHC should generate an error for that TRB, and if xHC 2827 * proceeds to the next TD it should genete an event for 2828 * any TRB with IOC flag on the way. Other host follow this. 2829 * 2830 * We wait for the final IOC event, but if we get an event 2831 * anywhere outside this TD, just give it back already. 2832 */ 2833 td = list_first_entry_or_null(&ep_ring->td_list, struct xhci_td, td_list); 2834 2835 if (td && td->error_mid_td && !trb_in_td(xhci, td, ep_trb_dma, false)) { 2836 xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); 2837 xhci_dequeue_td(xhci, td, ep_ring, td->status); 2838 } 2839 2840 if (list_empty(&ep_ring->td_list)) { 2841 /* 2842 * Don't print wanings if ring is empty due to a stopped endpoint generating an 2843 * extra completion event if the device was suspended. Or, a event for the last TRB 2844 * of a short TD we already got a short event for. The short TD is already removed 2845 * from the TD list. 2846 */ 2847 if (trb_comp_code != COMP_STOPPED && 2848 trb_comp_code != COMP_STOPPED_LENGTH_INVALID && 2849 !ep_ring->last_td_was_short) { 2850 xhci_warn(xhci, "Event TRB for slot %u ep %u with no TDs queued\n", 2851 slot_id, ep_index); 2852 } 2853 2854 ep->skip = false; 2855 goto check_endpoint_halted; 2856 } 2857 2858 do { 2859 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2860 td_list); 2861 2862 /* Is this a TRB in the currently executing TD? */ 2863 ep_seg = trb_in_td(xhci, td, ep_trb_dma, false); 2864 2865 if (!ep_seg) { 2866 2867 if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2868 skip_isoc_td(xhci, td, ep, status); 2869 if (!list_empty(&ep_ring->td_list)) 2870 continue; 2871 2872 xhci_dbg(xhci, "All TDs skipped for slot %u ep %u. Clear skip flag.\n", 2873 slot_id, ep_index); 2874 ep->skip = false; 2875 td = NULL; 2876 goto check_endpoint_halted; 2877 } 2878 2879 /* 2880 * Skip the Force Stopped Event. The 'ep_trb' of FSE is not in the current 2881 * TD pointed by 'ep_ring->dequeue' because that the hardware dequeue 2882 * pointer still at the previous TRB of the current TD. The previous TRB 2883 * maybe a Link TD or the last TRB of the previous TD. The command 2884 * completion handle will take care the rest. 2885 */ 2886 if (trb_comp_code == COMP_STOPPED || 2887 trb_comp_code == COMP_STOPPED_LENGTH_INVALID) { 2888 return 0; 2889 } 2890 2891 /* 2892 * Some hosts give a spurious success event after a short 2893 * transfer. Ignore it. 2894 */ 2895 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2896 ep_ring->last_td_was_short) { 2897 ep_ring->last_td_was_short = false; 2898 return 0; 2899 } 2900 2901 /* HC is busted, give up! */ 2902 xhci_err(xhci, 2903 "ERROR Transfer event TRB DMA ptr not part of current TD ep_index %d comp_code %u\n", 2904 ep_index, trb_comp_code); 2905 trb_in_td(xhci, td, ep_trb_dma, true); 2906 2907 return -ESHUTDOWN; 2908 } 2909 2910 if (ep->skip) { 2911 xhci_dbg(xhci, 2912 "Found td. Clear skip flag for slot %u ep %u.\n", 2913 slot_id, ep_index); 2914 ep->skip = false; 2915 } 2916 2917 /* 2918 * If ep->skip is set, it means there are missed tds on the 2919 * endpoint ring need to take care of. 2920 * Process them as short transfer until reach the td pointed by 2921 * the event. 2922 */ 2923 } while (ep->skip); 2924 2925 if (trb_comp_code == COMP_SHORT_PACKET) 2926 ep_ring->last_td_was_short = true; 2927 else 2928 ep_ring->last_td_was_short = false; 2929 2930 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / sizeof(*ep_trb)]; 2931 trace_xhci_handle_transfer(ep_ring, (struct xhci_generic_trb *) ep_trb, ep_trb_dma); 2932 2933 /* 2934 * No-op TRB could trigger interrupts in a case where a URB was killed 2935 * and a STALL_ERROR happens right after the endpoint ring stopped. 2936 * Reset the halted endpoint. Otherwise, the endpoint remains stalled 2937 * indefinitely. 2938 */ 2939 2940 if (trb_is_noop(ep_trb)) 2941 goto check_endpoint_halted; 2942 2943 td->status = status; 2944 2945 /* update the urb's actual_length and give back to the core */ 2946 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2947 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2948 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2949 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2950 else 2951 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2952 return 0; 2953 2954 check_endpoint_halted: 2955 if (xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) 2956 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2957 2958 return 0; 2959 2960 err_out: 2961 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2962 (unsigned long long) xhci_trb_virt_to_dma( 2963 ir->event_ring->deq_seg, 2964 ir->event_ring->dequeue), 2965 lower_32_bits(le64_to_cpu(event->buffer)), 2966 upper_32_bits(le64_to_cpu(event->buffer)), 2967 le32_to_cpu(event->transfer_len), 2968 le32_to_cpu(event->flags)); 2969 return -ENODEV; 2970 } 2971 2972 /* 2973 * This function handles one OS-owned event on the event ring. It may drop 2974 * xhci->lock between event processing (e.g. to pass up port status changes). 2975 */ 2976 static int xhci_handle_event_trb(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 2977 union xhci_trb *event) 2978 { 2979 u32 trb_type; 2980 2981 trace_xhci_handle_event(ir->event_ring, &event->generic, 2982 xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 2983 ir->event_ring->dequeue)); 2984 2985 /* 2986 * Barrier between reading the TRB_CYCLE (valid) flag before, and any 2987 * speculative reads of the event's flags/data below. 2988 */ 2989 rmb(); 2990 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 2991 /* FIXME: Handle more event types. */ 2992 2993 switch (trb_type) { 2994 case TRB_COMPLETION: 2995 handle_cmd_completion(xhci, &event->event_cmd); 2996 break; 2997 case TRB_PORT_STATUS: 2998 handle_port_status(xhci, event); 2999 break; 3000 case TRB_TRANSFER: 3001 handle_tx_event(xhci, ir, &event->trans_event); 3002 break; 3003 case TRB_DEV_NOTE: 3004 handle_device_notification(xhci, event); 3005 break; 3006 default: 3007 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 3008 handle_vendor_event(xhci, event, trb_type); 3009 else 3010 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 3011 } 3012 /* Any of the above functions may drop and re-acquire the lock, so check 3013 * to make sure a watchdog timer didn't mark the host as non-responsive. 3014 */ 3015 if (xhci->xhc_state & XHCI_STATE_DYING) { 3016 xhci_dbg(xhci, "xHCI host dying, returning from event handler.\n"); 3017 return -ENODEV; 3018 } 3019 3020 return 0; 3021 } 3022 3023 /* 3024 * Update Event Ring Dequeue Pointer: 3025 * - When all events have finished 3026 * - To avoid "Event Ring Full Error" condition 3027 */ 3028 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 3029 struct xhci_interrupter *ir, 3030 bool clear_ehb) 3031 { 3032 u64 temp_64; 3033 dma_addr_t deq; 3034 3035 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3036 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3037 ir->event_ring->dequeue); 3038 if (deq == 0) 3039 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 3040 /* 3041 * Per 4.9.4, Software writes to the ERDP register shall always advance 3042 * the Event Ring Dequeue Pointer value. 3043 */ 3044 if ((temp_64 & ERST_PTR_MASK) == (deq & ERST_PTR_MASK) && !clear_ehb) 3045 return; 3046 3047 /* Update HC event ring dequeue pointer */ 3048 temp_64 = ir->event_ring->deq_seg->num & ERST_DESI_MASK; 3049 temp_64 |= deq & ERST_PTR_MASK; 3050 3051 /* Clear the event handler busy flag (RW1C) */ 3052 if (clear_ehb) 3053 temp_64 |= ERST_EHB; 3054 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3055 } 3056 3057 /* Clear the interrupt pending bit for a specific interrupter. */ 3058 static void xhci_clear_interrupt_pending(struct xhci_interrupter *ir) 3059 { 3060 if (!ir->ip_autoclear) { 3061 u32 irq_pending; 3062 3063 irq_pending = readl(&ir->ir_set->irq_pending); 3064 irq_pending |= IMAN_IP; 3065 writel(irq_pending, &ir->ir_set->irq_pending); 3066 } 3067 } 3068 3069 /* 3070 * Handle all OS-owned events on an interrupter event ring. It may drop 3071 * and reaquire xhci->lock between event processing. 3072 */ 3073 static int xhci_handle_events(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 3074 { 3075 int event_loop = 0; 3076 int err; 3077 u64 temp; 3078 3079 xhci_clear_interrupt_pending(ir); 3080 3081 /* Event ring hasn't been allocated yet. */ 3082 if (!ir->event_ring || !ir->event_ring->dequeue) { 3083 xhci_err(xhci, "ERROR interrupter event ring not ready\n"); 3084 return -ENOMEM; 3085 } 3086 3087 if (xhci->xhc_state & XHCI_STATE_DYING || 3088 xhci->xhc_state & XHCI_STATE_HALTED) { 3089 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. Shouldn't IRQs be disabled?\n"); 3090 3091 /* Clear the event handler busy flag (RW1C) */ 3092 temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3093 xhci_write_64(xhci, temp | ERST_EHB, &ir->ir_set->erst_dequeue); 3094 return -ENODEV; 3095 } 3096 3097 /* Process all OS owned event TRBs on this event ring */ 3098 while (unhandled_event_trb(ir->event_ring)) { 3099 err = xhci_handle_event_trb(xhci, ir, ir->event_ring->dequeue); 3100 3101 /* 3102 * If half a segment of events have been handled in one go then 3103 * update ERDP, and force isoc trbs to interrupt more often 3104 */ 3105 if (event_loop++ > TRBS_PER_SEGMENT / 2) { 3106 xhci_update_erst_dequeue(xhci, ir, false); 3107 3108 if (ir->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3109 ir->isoc_bei_interval = ir->isoc_bei_interval / 2; 3110 3111 event_loop = 0; 3112 } 3113 3114 /* Update SW event ring dequeue pointer */ 3115 inc_deq(xhci, ir->event_ring); 3116 3117 if (err) 3118 break; 3119 } 3120 3121 xhci_update_erst_dequeue(xhci, ir, true); 3122 3123 return 0; 3124 } 3125 3126 /* 3127 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3128 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3129 * indicators of an event TRB error, but we check the status *first* to be safe. 3130 */ 3131 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3132 { 3133 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3134 irqreturn_t ret = IRQ_HANDLED; 3135 u32 status; 3136 3137 spin_lock(&xhci->lock); 3138 /* Check if the xHC generated the interrupt, or the irq is shared */ 3139 status = readl(&xhci->op_regs->status); 3140 if (status == ~(u32)0) { 3141 xhci_hc_died(xhci); 3142 goto out; 3143 } 3144 3145 if (!(status & STS_EINT)) { 3146 ret = IRQ_NONE; 3147 goto out; 3148 } 3149 3150 if (status & STS_HCE) { 3151 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3152 goto out; 3153 } 3154 3155 if (status & STS_FATAL) { 3156 xhci_warn(xhci, "WARNING: Host System Error\n"); 3157 xhci_halt(xhci); 3158 goto out; 3159 } 3160 3161 /* 3162 * Clear the op reg interrupt status first, 3163 * so we can receive interrupts from other MSI-X interrupters. 3164 * Write 1 to clear the interrupt status. 3165 */ 3166 status |= STS_EINT; 3167 writel(status, &xhci->op_regs->status); 3168 3169 /* This is the handler of the primary interrupter */ 3170 xhci_handle_events(xhci, xhci->interrupters[0]); 3171 out: 3172 spin_unlock(&xhci->lock); 3173 3174 return ret; 3175 } 3176 3177 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3178 { 3179 return xhci_irq(hcd); 3180 } 3181 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3182 3183 /**** Endpoint Ring Operations ****/ 3184 3185 /* 3186 * Generic function for queueing a TRB on a ring. 3187 * The caller must have checked to make sure there's room on the ring. 3188 * 3189 * @more_trbs_coming: Will you enqueue more TRBs before calling 3190 * prepare_transfer()? 3191 */ 3192 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3193 bool more_trbs_coming, 3194 u32 field1, u32 field2, u32 field3, u32 field4) 3195 { 3196 struct xhci_generic_trb *trb; 3197 3198 trb = &ring->enqueue->generic; 3199 trb->field[0] = cpu_to_le32(field1); 3200 trb->field[1] = cpu_to_le32(field2); 3201 trb->field[2] = cpu_to_le32(field3); 3202 /* make sure TRB is fully written before giving it to the controller */ 3203 wmb(); 3204 trb->field[3] = cpu_to_le32(field4); 3205 3206 trace_xhci_queue_trb(ring, trb, 3207 xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue)); 3208 3209 inc_enq(xhci, ring, more_trbs_coming); 3210 } 3211 3212 /* 3213 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3214 * expand ring if it start to be full. 3215 */ 3216 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3217 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3218 { 3219 unsigned int link_trb_count = 0; 3220 unsigned int new_segs = 0; 3221 3222 /* Make sure the endpoint has been added to xHC schedule */ 3223 switch (ep_state) { 3224 case EP_STATE_DISABLED: 3225 /* 3226 * USB core changed config/interfaces without notifying us, 3227 * or hardware is reporting the wrong state. 3228 */ 3229 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3230 return -ENOENT; 3231 case EP_STATE_ERROR: 3232 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3233 /* FIXME event handling code for error needs to clear it */ 3234 /* XXX not sure if this should be -ENOENT or not */ 3235 return -EINVAL; 3236 case EP_STATE_HALTED: 3237 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3238 break; 3239 case EP_STATE_STOPPED: 3240 case EP_STATE_RUNNING: 3241 break; 3242 default: 3243 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3244 /* 3245 * FIXME issue Configure Endpoint command to try to get the HC 3246 * back into a known state. 3247 */ 3248 return -EINVAL; 3249 } 3250 3251 if (ep_ring != xhci->cmd_ring) { 3252 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); 3253 } else if (xhci_num_trbs_free(ep_ring) <= num_trbs) { 3254 xhci_err(xhci, "Do not support expand command ring\n"); 3255 return -ENOMEM; 3256 } 3257 3258 if (new_segs) { 3259 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3260 "ERROR no room on ep ring, try ring expansion"); 3261 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { 3262 xhci_err(xhci, "Ring expansion failed\n"); 3263 return -ENOMEM; 3264 } 3265 } 3266 3267 while (trb_is_link(ep_ring->enqueue)) { 3268 /* If we're not dealing with 0.95 hardware or isoc rings 3269 * on AMD 0.96 host, clear the chain bit. 3270 */ 3271 if (!xhci_link_chain_quirk(xhci, ep_ring->type)) 3272 ep_ring->enqueue->link.control &= 3273 cpu_to_le32(~TRB_CHAIN); 3274 else 3275 ep_ring->enqueue->link.control |= 3276 cpu_to_le32(TRB_CHAIN); 3277 3278 wmb(); 3279 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3280 3281 /* Toggle the cycle bit after the last ring segment. */ 3282 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3283 ep_ring->cycle_state ^= 1; 3284 3285 ep_ring->enq_seg = ep_ring->enq_seg->next; 3286 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3287 3288 /* prevent infinite loop if all first trbs are link trbs */ 3289 if (link_trb_count++ > ep_ring->num_segs) { 3290 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3291 return -EINVAL; 3292 } 3293 } 3294 3295 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3296 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3297 return -EINVAL; 3298 } 3299 3300 return 0; 3301 } 3302 3303 static int prepare_transfer(struct xhci_hcd *xhci, 3304 struct xhci_virt_device *xdev, 3305 unsigned int ep_index, 3306 unsigned int stream_id, 3307 unsigned int num_trbs, 3308 struct urb *urb, 3309 unsigned int td_index, 3310 gfp_t mem_flags) 3311 { 3312 int ret; 3313 struct urb_priv *urb_priv; 3314 struct xhci_td *td; 3315 struct xhci_ring *ep_ring; 3316 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3317 3318 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3319 stream_id); 3320 if (!ep_ring) { 3321 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3322 stream_id); 3323 return -EINVAL; 3324 } 3325 3326 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3327 num_trbs, mem_flags); 3328 if (ret) 3329 return ret; 3330 3331 urb_priv = urb->hcpriv; 3332 td = &urb_priv->td[td_index]; 3333 3334 INIT_LIST_HEAD(&td->td_list); 3335 INIT_LIST_HEAD(&td->cancelled_td_list); 3336 3337 if (td_index == 0) { 3338 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3339 if (unlikely(ret)) 3340 return ret; 3341 } 3342 3343 td->urb = urb; 3344 /* Add this TD to the tail of the endpoint ring's TD list */ 3345 list_add_tail(&td->td_list, &ep_ring->td_list); 3346 td->start_seg = ep_ring->enq_seg; 3347 td->start_trb = ep_ring->enqueue; 3348 3349 return 0; 3350 } 3351 3352 unsigned int count_trbs(u64 addr, u64 len) 3353 { 3354 unsigned int num_trbs; 3355 3356 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3357 TRB_MAX_BUFF_SIZE); 3358 if (num_trbs == 0) 3359 num_trbs++; 3360 3361 return num_trbs; 3362 } 3363 3364 static inline unsigned int count_trbs_needed(struct urb *urb) 3365 { 3366 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3367 } 3368 3369 static unsigned int count_sg_trbs_needed(struct urb *urb) 3370 { 3371 struct scatterlist *sg; 3372 unsigned int i, len, full_len, num_trbs = 0; 3373 3374 full_len = urb->transfer_buffer_length; 3375 3376 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3377 len = sg_dma_len(sg); 3378 num_trbs += count_trbs(sg_dma_address(sg), len); 3379 len = min_t(unsigned int, len, full_len); 3380 full_len -= len; 3381 if (full_len == 0) 3382 break; 3383 } 3384 3385 return num_trbs; 3386 } 3387 3388 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3389 { 3390 u64 addr, len; 3391 3392 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3393 len = urb->iso_frame_desc[i].length; 3394 3395 return count_trbs(addr, len); 3396 } 3397 3398 static void check_trb_math(struct urb *urb, int running_total) 3399 { 3400 if (unlikely(running_total != urb->transfer_buffer_length)) 3401 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3402 "queued %#x (%d), asked for %#x (%d)\n", 3403 __func__, 3404 urb->ep->desc.bEndpointAddress, 3405 running_total, running_total, 3406 urb->transfer_buffer_length, 3407 urb->transfer_buffer_length); 3408 } 3409 3410 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3411 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3412 struct xhci_generic_trb *start_trb) 3413 { 3414 /* 3415 * Pass all the TRBs to the hardware at once and make sure this write 3416 * isn't reordered. 3417 */ 3418 wmb(); 3419 if (start_cycle) 3420 start_trb->field[3] |= cpu_to_le32(start_cycle); 3421 else 3422 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3423 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3424 } 3425 3426 static void check_interval(struct urb *urb, struct xhci_ep_ctx *ep_ctx) 3427 { 3428 int xhci_interval; 3429 int ep_interval; 3430 3431 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3432 ep_interval = urb->interval; 3433 3434 /* Convert to microframes */ 3435 if (urb->dev->speed == USB_SPEED_LOW || 3436 urb->dev->speed == USB_SPEED_FULL) 3437 ep_interval *= 8; 3438 3439 /* FIXME change this to a warning and a suggestion to use the new API 3440 * to set the polling interval (once the API is added). 3441 */ 3442 if (xhci_interval != ep_interval) { 3443 dev_dbg_ratelimited(&urb->dev->dev, 3444 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3445 ep_interval, str_plural(ep_interval), 3446 xhci_interval, str_plural(xhci_interval)); 3447 urb->interval = xhci_interval; 3448 /* Convert back to frames for LS/FS devices */ 3449 if (urb->dev->speed == USB_SPEED_LOW || 3450 urb->dev->speed == USB_SPEED_FULL) 3451 urb->interval /= 8; 3452 } 3453 } 3454 3455 /* 3456 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3457 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3458 * (comprised of sg list entries) can take several service intervals to 3459 * transmit. 3460 */ 3461 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3462 struct urb *urb, int slot_id, unsigned int ep_index) 3463 { 3464 struct xhci_ep_ctx *ep_ctx; 3465 3466 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3467 check_interval(urb, ep_ctx); 3468 3469 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3470 } 3471 3472 /* 3473 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3474 * packets remaining in the TD (*not* including this TRB). 3475 * 3476 * Total TD packet count = total_packet_count = 3477 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3478 * 3479 * Packets transferred up to and including this TRB = packets_transferred = 3480 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3481 * 3482 * TD size = total_packet_count - packets_transferred 3483 * 3484 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3485 * including this TRB, right shifted by 10 3486 * 3487 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3488 * This is taken care of in the TRB_TD_SIZE() macro 3489 * 3490 * The last TRB in a TD must have the TD size set to zero. 3491 */ 3492 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3493 int trb_buff_len, unsigned int td_total_len, 3494 struct urb *urb, bool more_trbs_coming) 3495 { 3496 u32 maxp, total_packet_count; 3497 3498 /* MTK xHCI 0.96 contains some features from 1.0 */ 3499 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3500 return ((td_total_len - transferred) >> 10); 3501 3502 /* One TRB with a zero-length data packet. */ 3503 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3504 trb_buff_len == td_total_len) 3505 return 0; 3506 3507 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3508 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3509 trb_buff_len = 0; 3510 3511 maxp = usb_endpoint_maxp(&urb->ep->desc); 3512 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3513 3514 /* Queueing functions don't count the current TRB into transferred */ 3515 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3516 } 3517 3518 3519 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3520 u32 *trb_buff_len, struct xhci_segment *seg) 3521 { 3522 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 3523 unsigned int unalign; 3524 unsigned int max_pkt; 3525 u32 new_buff_len; 3526 size_t len; 3527 3528 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3529 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3530 3531 /* we got lucky, last normal TRB data on segment is packet aligned */ 3532 if (unalign == 0) 3533 return 0; 3534 3535 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3536 unalign, *trb_buff_len); 3537 3538 /* is the last nornal TRB alignable by splitting it */ 3539 if (*trb_buff_len > unalign) { 3540 *trb_buff_len -= unalign; 3541 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3542 return 0; 3543 } 3544 3545 /* 3546 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3547 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3548 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3549 */ 3550 new_buff_len = max_pkt - (enqd_len % max_pkt); 3551 3552 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3553 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3554 3555 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3556 if (usb_urb_dir_out(urb)) { 3557 if (urb->num_sgs) { 3558 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3559 seg->bounce_buf, new_buff_len, enqd_len); 3560 if (len != new_buff_len) 3561 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3562 len, new_buff_len); 3563 } else { 3564 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3565 } 3566 3567 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3568 max_pkt, DMA_TO_DEVICE); 3569 } else { 3570 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3571 max_pkt, DMA_FROM_DEVICE); 3572 } 3573 3574 if (dma_mapping_error(dev, seg->bounce_dma)) { 3575 /* try without aligning. Some host controllers survive */ 3576 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3577 return 0; 3578 } 3579 *trb_buff_len = new_buff_len; 3580 seg->bounce_len = new_buff_len; 3581 seg->bounce_offs = enqd_len; 3582 3583 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3584 3585 return 1; 3586 } 3587 3588 /* This is very similar to what ehci-q.c qtd_fill() does */ 3589 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3590 struct urb *urb, int slot_id, unsigned int ep_index) 3591 { 3592 struct xhci_ring *ring; 3593 struct urb_priv *urb_priv; 3594 struct xhci_td *td; 3595 struct xhci_generic_trb *start_trb; 3596 struct scatterlist *sg = NULL; 3597 bool more_trbs_coming = true; 3598 bool need_zero_pkt = false; 3599 bool first_trb = true; 3600 unsigned int num_trbs; 3601 unsigned int start_cycle, num_sgs = 0; 3602 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3603 int sent_len, ret; 3604 u32 field, length_field, remainder; 3605 u64 addr, send_addr; 3606 3607 ring = xhci_urb_to_transfer_ring(xhci, urb); 3608 if (!ring) 3609 return -EINVAL; 3610 3611 full_len = urb->transfer_buffer_length; 3612 /* If we have scatter/gather list, we use it. */ 3613 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3614 num_sgs = urb->num_mapped_sgs; 3615 sg = urb->sg; 3616 addr = (u64) sg_dma_address(sg); 3617 block_len = sg_dma_len(sg); 3618 num_trbs = count_sg_trbs_needed(urb); 3619 } else { 3620 num_trbs = count_trbs_needed(urb); 3621 addr = (u64) urb->transfer_dma; 3622 block_len = full_len; 3623 } 3624 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3625 ep_index, urb->stream_id, 3626 num_trbs, urb, 0, mem_flags); 3627 if (unlikely(ret < 0)) 3628 return ret; 3629 3630 urb_priv = urb->hcpriv; 3631 3632 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3633 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3634 need_zero_pkt = true; 3635 3636 td = &urb_priv->td[0]; 3637 3638 /* 3639 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3640 * until we've finished creating all the other TRBs. The ring's cycle 3641 * state may change as we enqueue the other TRBs, so save it too. 3642 */ 3643 start_trb = &ring->enqueue->generic; 3644 start_cycle = ring->cycle_state; 3645 send_addr = addr; 3646 3647 /* Queue the TRBs, even if they are zero-length */ 3648 for (enqd_len = 0; first_trb || enqd_len < full_len; 3649 enqd_len += trb_buff_len) { 3650 field = TRB_TYPE(TRB_NORMAL); 3651 3652 /* TRB buffer should not cross 64KB boundaries */ 3653 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3654 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3655 3656 if (enqd_len + trb_buff_len > full_len) 3657 trb_buff_len = full_len - enqd_len; 3658 3659 /* Don't change the cycle bit of the first TRB until later */ 3660 if (first_trb) { 3661 first_trb = false; 3662 if (start_cycle == 0) 3663 field |= TRB_CYCLE; 3664 } else 3665 field |= ring->cycle_state; 3666 3667 /* Chain all the TRBs together; clear the chain bit in the last 3668 * TRB to indicate it's the last TRB in the chain. 3669 */ 3670 if (enqd_len + trb_buff_len < full_len) { 3671 field |= TRB_CHAIN; 3672 if (trb_is_link(ring->enqueue + 1)) { 3673 if (xhci_align_td(xhci, urb, enqd_len, 3674 &trb_buff_len, 3675 ring->enq_seg)) { 3676 send_addr = ring->enq_seg->bounce_dma; 3677 /* assuming TD won't span 2 segs */ 3678 td->bounce_seg = ring->enq_seg; 3679 } 3680 } 3681 } 3682 if (enqd_len + trb_buff_len >= full_len) { 3683 field &= ~TRB_CHAIN; 3684 field |= TRB_IOC; 3685 more_trbs_coming = false; 3686 td->end_trb = ring->enqueue; 3687 td->end_seg = ring->enq_seg; 3688 if (xhci_urb_suitable_for_idt(urb)) { 3689 memcpy(&send_addr, urb->transfer_buffer, 3690 trb_buff_len); 3691 le64_to_cpus(&send_addr); 3692 field |= TRB_IDT; 3693 } 3694 } 3695 3696 /* Only set interrupt on short packet for IN endpoints */ 3697 if (usb_urb_dir_in(urb)) 3698 field |= TRB_ISP; 3699 3700 /* Set the TRB length, TD size, and interrupter fields. */ 3701 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3702 full_len, urb, more_trbs_coming); 3703 3704 length_field = TRB_LEN(trb_buff_len) | 3705 TRB_TD_SIZE(remainder) | 3706 TRB_INTR_TARGET(0); 3707 3708 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3709 lower_32_bits(send_addr), 3710 upper_32_bits(send_addr), 3711 length_field, 3712 field); 3713 addr += trb_buff_len; 3714 sent_len = trb_buff_len; 3715 3716 while (sg && sent_len >= block_len) { 3717 /* New sg entry */ 3718 --num_sgs; 3719 sent_len -= block_len; 3720 sg = sg_next(sg); 3721 if (num_sgs != 0 && sg) { 3722 block_len = sg_dma_len(sg); 3723 addr = (u64) sg_dma_address(sg); 3724 addr += sent_len; 3725 } 3726 } 3727 block_len -= sent_len; 3728 send_addr = addr; 3729 } 3730 3731 if (need_zero_pkt) { 3732 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3733 ep_index, urb->stream_id, 3734 1, urb, 1, mem_flags); 3735 urb_priv->td[1].end_trb = ring->enqueue; 3736 urb_priv->td[1].end_seg = ring->enq_seg; 3737 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3738 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3739 } 3740 3741 check_trb_math(urb, enqd_len); 3742 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3743 start_cycle, start_trb); 3744 return 0; 3745 } 3746 3747 /* Caller must have locked xhci->lock */ 3748 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3749 struct urb *urb, int slot_id, unsigned int ep_index) 3750 { 3751 struct xhci_ring *ep_ring; 3752 int num_trbs; 3753 int ret; 3754 struct usb_ctrlrequest *setup; 3755 struct xhci_generic_trb *start_trb; 3756 int start_cycle; 3757 u32 field; 3758 struct urb_priv *urb_priv; 3759 struct xhci_td *td; 3760 3761 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3762 if (!ep_ring) 3763 return -EINVAL; 3764 3765 /* 3766 * Need to copy setup packet into setup TRB, so we can't use the setup 3767 * DMA address. 3768 */ 3769 if (!urb->setup_packet) 3770 return -EINVAL; 3771 3772 if ((xhci->quirks & XHCI_ETRON_HOST) && 3773 urb->dev->speed >= USB_SPEED_SUPER) { 3774 /* 3775 * If next available TRB is the Link TRB in the ring segment then 3776 * enqueue a No Op TRB, this can prevent the Setup and Data Stage 3777 * TRB to be breaked by the Link TRB. 3778 */ 3779 if (trb_is_link(ep_ring->enqueue + 1)) { 3780 field = TRB_TYPE(TRB_TR_NOOP) | ep_ring->cycle_state; 3781 queue_trb(xhci, ep_ring, false, 0, 0, 3782 TRB_INTR_TARGET(0), field); 3783 } 3784 } 3785 3786 /* 1 TRB for setup, 1 for status */ 3787 num_trbs = 2; 3788 /* 3789 * Don't need to check if we need additional event data and normal TRBs, 3790 * since data in control transfers will never get bigger than 16MB 3791 * XXX: can we get a buffer that crosses 64KB boundaries? 3792 */ 3793 if (urb->transfer_buffer_length > 0) 3794 num_trbs++; 3795 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3796 ep_index, urb->stream_id, 3797 num_trbs, urb, 0, mem_flags); 3798 if (ret < 0) 3799 return ret; 3800 3801 urb_priv = urb->hcpriv; 3802 td = &urb_priv->td[0]; 3803 3804 /* 3805 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3806 * until we've finished creating all the other TRBs. The ring's cycle 3807 * state may change as we enqueue the other TRBs, so save it too. 3808 */ 3809 start_trb = &ep_ring->enqueue->generic; 3810 start_cycle = ep_ring->cycle_state; 3811 3812 /* Queue setup TRB - see section 6.4.1.2.1 */ 3813 /* FIXME better way to translate setup_packet into two u32 fields? */ 3814 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3815 field = 0; 3816 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3817 if (start_cycle == 0) 3818 field |= 0x1; 3819 3820 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3821 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3822 if (urb->transfer_buffer_length > 0) { 3823 if (setup->bRequestType & USB_DIR_IN) 3824 field |= TRB_TX_TYPE(TRB_DATA_IN); 3825 else 3826 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3827 } 3828 } 3829 3830 queue_trb(xhci, ep_ring, true, 3831 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3832 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3833 TRB_LEN(8) | TRB_INTR_TARGET(0), 3834 /* Immediate data in pointer */ 3835 field); 3836 3837 /* If there's data, queue data TRBs */ 3838 /* Only set interrupt on short packet for IN endpoints */ 3839 if (usb_urb_dir_in(urb)) 3840 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3841 else 3842 field = TRB_TYPE(TRB_DATA); 3843 3844 if (urb->transfer_buffer_length > 0) { 3845 u32 length_field, remainder; 3846 u64 addr; 3847 3848 if (xhci_urb_suitable_for_idt(urb)) { 3849 memcpy(&addr, urb->transfer_buffer, 3850 urb->transfer_buffer_length); 3851 le64_to_cpus(&addr); 3852 field |= TRB_IDT; 3853 } else { 3854 addr = (u64) urb->transfer_dma; 3855 } 3856 3857 remainder = xhci_td_remainder(xhci, 0, 3858 urb->transfer_buffer_length, 3859 urb->transfer_buffer_length, 3860 urb, 1); 3861 length_field = TRB_LEN(urb->transfer_buffer_length) | 3862 TRB_TD_SIZE(remainder) | 3863 TRB_INTR_TARGET(0); 3864 if (setup->bRequestType & USB_DIR_IN) 3865 field |= TRB_DIR_IN; 3866 queue_trb(xhci, ep_ring, true, 3867 lower_32_bits(addr), 3868 upper_32_bits(addr), 3869 length_field, 3870 field | ep_ring->cycle_state); 3871 } 3872 3873 /* Save the DMA address of the last TRB in the TD */ 3874 td->end_trb = ep_ring->enqueue; 3875 td->end_seg = ep_ring->enq_seg; 3876 3877 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3878 /* If the device sent data, the status stage is an OUT transfer */ 3879 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3880 field = 0; 3881 else 3882 field = TRB_DIR_IN; 3883 queue_trb(xhci, ep_ring, false, 3884 0, 3885 0, 3886 TRB_INTR_TARGET(0), 3887 /* Event on completion */ 3888 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3889 3890 giveback_first_trb(xhci, slot_id, ep_index, 0, 3891 start_cycle, start_trb); 3892 return 0; 3893 } 3894 3895 /* 3896 * The transfer burst count field of the isochronous TRB defines the number of 3897 * bursts that are required to move all packets in this TD. Only SuperSpeed 3898 * devices can burst up to bMaxBurst number of packets per service interval. 3899 * This field is zero based, meaning a value of zero in the field means one 3900 * burst. Basically, for everything but SuperSpeed devices, this field will be 3901 * zero. Only xHCI 1.0 host controllers support this field. 3902 */ 3903 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3904 struct urb *urb, unsigned int total_packet_count) 3905 { 3906 unsigned int max_burst; 3907 3908 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3909 return 0; 3910 3911 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3912 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3913 } 3914 3915 /* 3916 * Returns the number of packets in the last "burst" of packets. This field is 3917 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3918 * the last burst packet count is equal to the total number of packets in the 3919 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3920 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3921 * contain 1 to (bMaxBurst + 1) packets. 3922 */ 3923 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3924 struct urb *urb, unsigned int total_packet_count) 3925 { 3926 unsigned int max_burst; 3927 unsigned int residue; 3928 3929 if (xhci->hci_version < 0x100) 3930 return 0; 3931 3932 if (urb->dev->speed >= USB_SPEED_SUPER) { 3933 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3934 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3935 residue = total_packet_count % (max_burst + 1); 3936 /* If residue is zero, the last burst contains (max_burst + 1) 3937 * number of packets, but the TLBPC field is zero-based. 3938 */ 3939 if (residue == 0) 3940 return max_burst; 3941 return residue - 1; 3942 } 3943 if (total_packet_count == 0) 3944 return 0; 3945 return total_packet_count - 1; 3946 } 3947 3948 /* 3949 * Calculates Frame ID field of the isochronous TRB identifies the 3950 * target frame that the Interval associated with this Isochronous 3951 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3952 * 3953 * Returns actual frame id on success, negative value on error. 3954 */ 3955 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3956 struct urb *urb, int index) 3957 { 3958 int start_frame, ist, ret = 0; 3959 int start_frame_id, end_frame_id, current_frame_id; 3960 3961 if (urb->dev->speed == USB_SPEED_LOW || 3962 urb->dev->speed == USB_SPEED_FULL) 3963 start_frame = urb->start_frame + index * urb->interval; 3964 else 3965 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3966 3967 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3968 * 3969 * If bit [3] of IST is cleared to '0', software can add a TRB no 3970 * later than IST[2:0] Microframes before that TRB is scheduled to 3971 * be executed. 3972 * If bit [3] of IST is set to '1', software can add a TRB no later 3973 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3974 */ 3975 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3976 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3977 ist <<= 3; 3978 3979 /* Software shall not schedule an Isoch TD with a Frame ID value that 3980 * is less than the Start Frame ID or greater than the End Frame ID, 3981 * where: 3982 * 3983 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3984 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3985 * 3986 * Both the End Frame ID and Start Frame ID values are calculated 3987 * in microframes. When software determines the valid Frame ID value; 3988 * The End Frame ID value should be rounded down to the nearest Frame 3989 * boundary, and the Start Frame ID value should be rounded up to the 3990 * nearest Frame boundary. 3991 */ 3992 current_frame_id = readl(&xhci->run_regs->microframe_index); 3993 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3994 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3995 3996 start_frame &= 0x7ff; 3997 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3998 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3999 4000 if (start_frame_id < end_frame_id) { 4001 if (start_frame > end_frame_id || 4002 start_frame < start_frame_id) 4003 ret = -EINVAL; 4004 } else if (start_frame_id > end_frame_id) { 4005 if ((start_frame > end_frame_id && 4006 start_frame < start_frame_id)) 4007 ret = -EINVAL; 4008 } else { 4009 ret = -EINVAL; 4010 } 4011 4012 if (index == 0) { 4013 if (ret == -EINVAL || start_frame == start_frame_id) { 4014 start_frame = start_frame_id + 1; 4015 if (urb->dev->speed == USB_SPEED_LOW || 4016 urb->dev->speed == USB_SPEED_FULL) 4017 urb->start_frame = start_frame; 4018 else 4019 urb->start_frame = start_frame << 3; 4020 ret = 0; 4021 } 4022 } 4023 4024 if (ret) { 4025 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 4026 start_frame, current_frame_id, index, 4027 start_frame_id, end_frame_id); 4028 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 4029 return ret; 4030 } 4031 4032 return start_frame; 4033 } 4034 4035 /* Check if we should generate event interrupt for a TD in an isoc URB */ 4036 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i, 4037 struct xhci_interrupter *ir) 4038 { 4039 if (xhci->hci_version < 0x100) 4040 return false; 4041 /* always generate an event interrupt for the last TD */ 4042 if (i == num_tds - 1) 4043 return false; 4044 /* 4045 * If AVOID_BEI is set the host handles full event rings poorly, 4046 * generate an event at least every 8th TD to clear the event ring 4047 */ 4048 if (i && ir->isoc_bei_interval && xhci->quirks & XHCI_AVOID_BEI) 4049 return !!(i % ir->isoc_bei_interval); 4050 4051 return true; 4052 } 4053 4054 /* This is for isoc transfer */ 4055 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 4056 struct urb *urb, int slot_id, unsigned int ep_index) 4057 { 4058 struct xhci_interrupter *ir; 4059 struct xhci_ring *ep_ring; 4060 struct urb_priv *urb_priv; 4061 struct xhci_td *td; 4062 int num_tds, trbs_per_td; 4063 struct xhci_generic_trb *start_trb; 4064 bool first_trb; 4065 int start_cycle; 4066 u32 field, length_field; 4067 int running_total, trb_buff_len, td_len, td_remain_len, ret; 4068 u64 start_addr, addr; 4069 int i, j; 4070 bool more_trbs_coming; 4071 struct xhci_virt_ep *xep; 4072 int frame_id; 4073 4074 xep = &xhci->devs[slot_id]->eps[ep_index]; 4075 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4076 ir = xhci->interrupters[0]; 4077 4078 num_tds = urb->number_of_packets; 4079 if (num_tds < 1) { 4080 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4081 return -EINVAL; 4082 } 4083 start_addr = (u64) urb->transfer_dma; 4084 start_trb = &ep_ring->enqueue->generic; 4085 start_cycle = ep_ring->cycle_state; 4086 4087 urb_priv = urb->hcpriv; 4088 /* Queue the TRBs for each TD, even if they are zero-length */ 4089 for (i = 0; i < num_tds; i++) { 4090 unsigned int total_pkt_count, max_pkt; 4091 unsigned int burst_count, last_burst_pkt_count; 4092 u32 sia_frame_id; 4093 4094 first_trb = true; 4095 running_total = 0; 4096 addr = start_addr + urb->iso_frame_desc[i].offset; 4097 td_len = urb->iso_frame_desc[i].length; 4098 td_remain_len = td_len; 4099 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4100 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4101 4102 /* A zero-length transfer still involves at least one packet. */ 4103 if (total_pkt_count == 0) 4104 total_pkt_count++; 4105 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4106 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4107 urb, total_pkt_count); 4108 4109 trbs_per_td = count_isoc_trbs_needed(urb, i); 4110 4111 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4112 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4113 if (ret < 0) { 4114 if (i == 0) 4115 return ret; 4116 goto cleanup; 4117 } 4118 td = &urb_priv->td[i]; 4119 /* use SIA as default, if frame id is used overwrite it */ 4120 sia_frame_id = TRB_SIA; 4121 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4122 HCC_CFC(xhci->hcc_params)) { 4123 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4124 if (frame_id >= 0) 4125 sia_frame_id = TRB_FRAME_ID(frame_id); 4126 } 4127 /* 4128 * Set isoc specific data for the first TRB in a TD. 4129 * Prevent HW from getting the TRBs by keeping the cycle state 4130 * inverted in the first TDs isoc TRB. 4131 */ 4132 field = TRB_TYPE(TRB_ISOC) | 4133 TRB_TLBPC(last_burst_pkt_count) | 4134 sia_frame_id | 4135 (i ? ep_ring->cycle_state : !start_cycle); 4136 4137 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4138 if (!xep->use_extended_tbc) 4139 field |= TRB_TBC(burst_count); 4140 4141 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4142 for (j = 0; j < trbs_per_td; j++) { 4143 u32 remainder = 0; 4144 4145 /* only first TRB is isoc, overwrite otherwise */ 4146 if (!first_trb) 4147 field = TRB_TYPE(TRB_NORMAL) | 4148 ep_ring->cycle_state; 4149 4150 /* Only set interrupt on short packet for IN EPs */ 4151 if (usb_urb_dir_in(urb)) 4152 field |= TRB_ISP; 4153 4154 /* Set the chain bit for all except the last TRB */ 4155 if (j < trbs_per_td - 1) { 4156 more_trbs_coming = true; 4157 field |= TRB_CHAIN; 4158 } else { 4159 more_trbs_coming = false; 4160 td->end_trb = ep_ring->enqueue; 4161 td->end_seg = ep_ring->enq_seg; 4162 field |= TRB_IOC; 4163 if (trb_block_event_intr(xhci, num_tds, i, ir)) 4164 field |= TRB_BEI; 4165 } 4166 /* Calculate TRB length */ 4167 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4168 if (trb_buff_len > td_remain_len) 4169 trb_buff_len = td_remain_len; 4170 4171 /* Set the TRB length, TD size, & interrupter fields. */ 4172 remainder = xhci_td_remainder(xhci, running_total, 4173 trb_buff_len, td_len, 4174 urb, more_trbs_coming); 4175 4176 length_field = TRB_LEN(trb_buff_len) | 4177 TRB_INTR_TARGET(0); 4178 4179 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4180 if (first_trb && xep->use_extended_tbc) 4181 length_field |= TRB_TD_SIZE_TBC(burst_count); 4182 else 4183 length_field |= TRB_TD_SIZE(remainder); 4184 first_trb = false; 4185 4186 queue_trb(xhci, ep_ring, more_trbs_coming, 4187 lower_32_bits(addr), 4188 upper_32_bits(addr), 4189 length_field, 4190 field); 4191 running_total += trb_buff_len; 4192 4193 addr += trb_buff_len; 4194 td_remain_len -= trb_buff_len; 4195 } 4196 4197 /* Check TD length */ 4198 if (running_total != td_len) { 4199 xhci_err(xhci, "ISOC TD length unmatch\n"); 4200 ret = -EINVAL; 4201 goto cleanup; 4202 } 4203 } 4204 4205 /* store the next frame id */ 4206 if (HCC_CFC(xhci->hcc_params)) 4207 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4208 4209 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4210 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4211 usb_amd_quirk_pll_disable(); 4212 } 4213 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4214 4215 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4216 start_cycle, start_trb); 4217 return 0; 4218 cleanup: 4219 /* Clean up a partially enqueued isoc transfer. */ 4220 4221 for (i--; i >= 0; i--) 4222 list_del_init(&urb_priv->td[i].td_list); 4223 4224 /* Use the first TD as a temporary variable to turn the TDs we've queued 4225 * into No-ops with a software-owned cycle bit. That way the hardware 4226 * won't accidentally start executing bogus TDs when we partially 4227 * overwrite them. td->start_trb and td->start_seg are already set. 4228 */ 4229 urb_priv->td[0].end_trb = ep_ring->enqueue; 4230 /* Every TRB except the first & last will have its cycle bit flipped. */ 4231 td_to_noop(&urb_priv->td[0], true); 4232 4233 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4234 ep_ring->enqueue = urb_priv->td[0].start_trb; 4235 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4236 ep_ring->cycle_state = start_cycle; 4237 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4238 return ret; 4239 } 4240 4241 /* 4242 * Check transfer ring to guarantee there is enough room for the urb. 4243 * Update ISO URB start_frame and interval. 4244 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4245 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4246 * Contiguous Frame ID is not supported by HC. 4247 */ 4248 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4249 struct urb *urb, int slot_id, unsigned int ep_index) 4250 { 4251 struct xhci_virt_device *xdev; 4252 struct xhci_ring *ep_ring; 4253 struct xhci_ep_ctx *ep_ctx; 4254 int start_frame; 4255 int num_tds, num_trbs, i; 4256 int ret; 4257 struct xhci_virt_ep *xep; 4258 int ist; 4259 4260 xdev = xhci->devs[slot_id]; 4261 xep = &xhci->devs[slot_id]->eps[ep_index]; 4262 ep_ring = xdev->eps[ep_index].ring; 4263 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4264 4265 num_trbs = 0; 4266 num_tds = urb->number_of_packets; 4267 for (i = 0; i < num_tds; i++) 4268 num_trbs += count_isoc_trbs_needed(urb, i); 4269 4270 /* Check the ring to guarantee there is enough room for the whole urb. 4271 * Do not insert any td of the urb to the ring if the check failed. 4272 */ 4273 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4274 num_trbs, mem_flags); 4275 if (ret) 4276 return ret; 4277 4278 /* 4279 * Check interval value. This should be done before we start to 4280 * calculate the start frame value. 4281 */ 4282 check_interval(urb, ep_ctx); 4283 4284 /* Calculate the start frame and put it in urb->start_frame. */ 4285 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4286 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4287 urb->start_frame = xep->next_frame_id; 4288 goto skip_start_over; 4289 } 4290 } 4291 4292 start_frame = readl(&xhci->run_regs->microframe_index); 4293 start_frame &= 0x3fff; 4294 /* 4295 * Round up to the next frame and consider the time before trb really 4296 * gets scheduled by hardare. 4297 */ 4298 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4299 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4300 ist <<= 3; 4301 start_frame += ist + XHCI_CFC_DELAY; 4302 start_frame = roundup(start_frame, 8); 4303 4304 /* 4305 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4306 * is greate than 8 microframes. 4307 */ 4308 if (urb->dev->speed == USB_SPEED_LOW || 4309 urb->dev->speed == USB_SPEED_FULL) { 4310 start_frame = roundup(start_frame, urb->interval << 3); 4311 urb->start_frame = start_frame >> 3; 4312 } else { 4313 start_frame = roundup(start_frame, urb->interval); 4314 urb->start_frame = start_frame; 4315 } 4316 4317 skip_start_over: 4318 4319 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4320 } 4321 4322 /**** Command Ring Operations ****/ 4323 4324 /* Generic function for queueing a command TRB on the command ring. 4325 * Check to make sure there's room on the command ring for one command TRB. 4326 * Also check that there's room reserved for commands that must not fail. 4327 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4328 * then only check for the number of reserved spots. 4329 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4330 * because the command event handler may want to resubmit a failed command. 4331 */ 4332 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4333 u32 field1, u32 field2, 4334 u32 field3, u32 field4, bool command_must_succeed) 4335 { 4336 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4337 int ret; 4338 4339 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4340 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4341 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4342 return -ESHUTDOWN; 4343 } 4344 4345 if (!command_must_succeed) 4346 reserved_trbs++; 4347 4348 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4349 reserved_trbs, GFP_ATOMIC); 4350 if (ret < 0) { 4351 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4352 if (command_must_succeed) 4353 xhci_err(xhci, "ERR: Reserved TRB counting for " 4354 "unfailable commands failed.\n"); 4355 return ret; 4356 } 4357 4358 cmd->command_trb = xhci->cmd_ring->enqueue; 4359 4360 /* if there are no other commands queued we start the timeout timer */ 4361 if (list_empty(&xhci->cmd_list)) { 4362 xhci->current_cmd = cmd; 4363 xhci_mod_cmd_timer(xhci); 4364 } 4365 4366 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4367 4368 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4369 field4 | xhci->cmd_ring->cycle_state); 4370 return 0; 4371 } 4372 4373 /* Queue a slot enable or disable request on the command ring */ 4374 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4375 u32 trb_type, u32 slot_id) 4376 { 4377 return queue_command(xhci, cmd, 0, 0, 0, 4378 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4379 } 4380 4381 /* Queue an address device command TRB */ 4382 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4383 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4384 { 4385 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4386 upper_32_bits(in_ctx_ptr), 0, 4387 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4388 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4389 } 4390 4391 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4392 u32 field1, u32 field2, u32 field3, u32 field4) 4393 { 4394 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4395 } 4396 4397 /* Queue a reset device command TRB */ 4398 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4399 u32 slot_id) 4400 { 4401 return queue_command(xhci, cmd, 0, 0, 0, 4402 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4403 false); 4404 } 4405 4406 /* Queue a configure endpoint command TRB */ 4407 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4408 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4409 u32 slot_id, bool command_must_succeed) 4410 { 4411 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4412 upper_32_bits(in_ctx_ptr), 0, 4413 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4414 command_must_succeed); 4415 } 4416 4417 /* Queue an evaluate context command TRB */ 4418 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4419 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4420 { 4421 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4422 upper_32_bits(in_ctx_ptr), 0, 4423 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4424 command_must_succeed); 4425 } 4426 4427 /* 4428 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4429 * activity on an endpoint that is about to be suspended. 4430 */ 4431 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4432 int slot_id, unsigned int ep_index, int suspend) 4433 { 4434 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4435 u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); 4436 u32 type = TRB_TYPE(TRB_STOP_RING); 4437 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4438 4439 return queue_command(xhci, cmd, 0, 0, 0, 4440 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4441 } 4442 4443 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4444 int slot_id, unsigned int ep_index, 4445 enum xhci_ep_reset_type reset_type) 4446 { 4447 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4448 u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); 4449 u32 type = TRB_TYPE(TRB_RESET_EP); 4450 4451 if (reset_type == EP_SOFT_RESET) 4452 type |= TRB_TSP; 4453 4454 return queue_command(xhci, cmd, 0, 0, 0, 4455 trb_slot_id | trb_ep_index | type, false); 4456 } 4457