1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/jiffies.h> 56 #include <linux/scatterlist.h> 57 #include <linux/slab.h> 58 #include <linux/dma-mapping.h> 59 #include "xhci.h" 60 #include "xhci-trace.h" 61 62 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 63 u32 field1, u32 field2, 64 u32 field3, u32 field4, bool command_must_succeed); 65 66 /* 67 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 68 * address of the TRB. 69 */ 70 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 71 union xhci_trb *trb) 72 { 73 unsigned long segment_offset; 74 75 if (!seg || !trb || trb < seg->trbs) 76 return 0; 77 /* offset in TRBs */ 78 segment_offset = trb - seg->trbs; 79 if (segment_offset >= TRBS_PER_SEGMENT) 80 return 0; 81 return seg->dma + (segment_offset * sizeof(*trb)); 82 } 83 84 static bool trb_is_noop(union xhci_trb *trb) 85 { 86 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 87 } 88 89 static bool trb_is_link(union xhci_trb *trb) 90 { 91 return TRB_TYPE_LINK_LE32(trb->link.control); 92 } 93 94 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 95 { 96 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 97 } 98 99 static bool last_trb_on_ring(struct xhci_ring *ring, 100 struct xhci_segment *seg, union xhci_trb *trb) 101 { 102 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 103 } 104 105 static bool link_trb_toggles_cycle(union xhci_trb *trb) 106 { 107 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 108 } 109 110 static bool last_td_in_urb(struct xhci_td *td) 111 { 112 struct urb_priv *urb_priv = td->urb->hcpriv; 113 114 return urb_priv->num_tds_done == urb_priv->num_tds; 115 } 116 117 static bool unhandled_event_trb(struct xhci_ring *ring) 118 { 119 return ((le32_to_cpu(ring->dequeue->event_cmd.flags) & TRB_CYCLE) == 120 ring->cycle_state); 121 } 122 123 static void inc_td_cnt(struct urb *urb) 124 { 125 struct urb_priv *urb_priv = urb->hcpriv; 126 127 urb_priv->num_tds_done++; 128 } 129 130 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 131 { 132 if (trb_is_link(trb)) { 133 /* unchain chained link TRBs */ 134 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 135 } else { 136 trb->generic.field[0] = 0; 137 trb->generic.field[1] = 0; 138 trb->generic.field[2] = 0; 139 /* Preserve only the cycle bit of this TRB */ 140 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 141 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 142 } 143 } 144 145 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 146 * TRB is in a new segment. This does not skip over link TRBs, and it does not 147 * effect the ring dequeue or enqueue pointers. 148 */ 149 static void next_trb(struct xhci_segment **seg, 150 union xhci_trb **trb) 151 { 152 if (trb_is_link(*trb) || last_trb_on_seg(*seg, *trb)) { 153 *seg = (*seg)->next; 154 *trb = ((*seg)->trbs); 155 } else { 156 (*trb)++; 157 } 158 } 159 160 /* 161 * See Cycle bit rules. SW is the consumer for the event ring only. 162 */ 163 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 164 { 165 unsigned int link_trb_count = 0; 166 167 /* event ring doesn't have link trbs, check for last trb */ 168 if (ring->type == TYPE_EVENT) { 169 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 170 ring->dequeue++; 171 return; 172 } 173 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 174 ring->cycle_state ^= 1; 175 ring->deq_seg = ring->deq_seg->next; 176 ring->dequeue = ring->deq_seg->trbs; 177 178 trace_xhci_inc_deq(ring); 179 180 return; 181 } 182 183 /* All other rings have link trbs */ 184 if (!trb_is_link(ring->dequeue)) { 185 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) 186 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 187 else 188 ring->dequeue++; 189 } 190 191 while (trb_is_link(ring->dequeue)) { 192 ring->deq_seg = ring->deq_seg->next; 193 ring->dequeue = ring->deq_seg->trbs; 194 195 trace_xhci_inc_deq(ring); 196 197 if (link_trb_count++ > ring->num_segs) { 198 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 199 break; 200 } 201 } 202 return; 203 } 204 205 /* 206 * See Cycle bit rules. SW is the consumer for the event ring only. 207 * 208 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 209 * chain bit is set), then set the chain bit in all the following link TRBs. 210 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 211 * have their chain bit cleared (so that each Link TRB is a separate TD). 212 * 213 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 214 * set, but other sections talk about dealing with the chain bit set. This was 215 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 216 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 217 * 218 * @more_trbs_coming: Will you enqueue more TRBs before calling 219 * prepare_transfer()? 220 */ 221 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 222 bool more_trbs_coming) 223 { 224 u32 chain; 225 union xhci_trb *next; 226 unsigned int link_trb_count = 0; 227 228 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 229 230 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 231 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 232 return; 233 } 234 235 next = ++(ring->enqueue); 236 237 /* Update the dequeue pointer further if that was a link TRB */ 238 while (trb_is_link(next)) { 239 240 /* 241 * If the caller doesn't plan on enqueueing more TDs before 242 * ringing the doorbell, then we don't want to give the link TRB 243 * to the hardware just yet. We'll give the link TRB back in 244 * prepare_ring() just before we enqueue the TD at the top of 245 * the ring. 246 */ 247 if (!chain && !more_trbs_coming) 248 break; 249 250 /* If we're not dealing with 0.95 hardware or isoc rings on 251 * AMD 0.96 host, carry over the chain bit of the previous TRB 252 * (which may mean the chain bit is cleared). 253 */ 254 if (!xhci_link_chain_quirk(xhci, ring->type)) { 255 next->link.control &= cpu_to_le32(~TRB_CHAIN); 256 next->link.control |= cpu_to_le32(chain); 257 } 258 /* Give this link TRB to the hardware */ 259 wmb(); 260 next->link.control ^= cpu_to_le32(TRB_CYCLE); 261 262 /* Toggle the cycle bit after the last ring segment. */ 263 if (link_trb_toggles_cycle(next)) 264 ring->cycle_state ^= 1; 265 266 ring->enq_seg = ring->enq_seg->next; 267 ring->enqueue = ring->enq_seg->trbs; 268 next = ring->enqueue; 269 270 trace_xhci_inc_enq(ring); 271 272 if (link_trb_count++ > ring->num_segs) { 273 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 274 break; 275 } 276 } 277 } 278 279 /* 280 * Return number of free normal TRBs from enqueue to dequeue pointer on ring. 281 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. 282 * Only for transfer and command rings where driver is the producer, not for 283 * event rings. 284 */ 285 static unsigned int xhci_num_trbs_free(struct xhci_ring *ring) 286 { 287 struct xhci_segment *enq_seg = ring->enq_seg; 288 union xhci_trb *enq = ring->enqueue; 289 union xhci_trb *last_on_seg; 290 unsigned int free = 0; 291 int i = 0; 292 293 /* Ring might be empty even if enq != deq if enq is left on a link trb */ 294 if (trb_is_link(enq)) { 295 enq_seg = enq_seg->next; 296 enq = enq_seg->trbs; 297 } 298 299 /* Empty ring, common case, don't walk the segments */ 300 if (enq == ring->dequeue) 301 return ring->num_segs * (TRBS_PER_SEGMENT - 1); 302 303 do { 304 if (ring->deq_seg == enq_seg && ring->dequeue >= enq) 305 return free + (ring->dequeue - enq); 306 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; 307 free += last_on_seg - enq; 308 enq_seg = enq_seg->next; 309 enq = enq_seg->trbs; 310 } while (i++ < ring->num_segs); 311 312 return free; 313 } 314 315 /* 316 * Check to see if there's room to enqueue num_trbs on the ring and make sure 317 * enqueue pointer will not advance into dequeue segment. See rules above. 318 * return number of new segments needed to ensure this. 319 */ 320 321 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, 322 unsigned int num_trbs) 323 { 324 struct xhci_segment *seg; 325 int trbs_past_seg; 326 int enq_used; 327 int new_segs; 328 329 enq_used = ring->enqueue - ring->enq_seg->trbs; 330 331 /* how many trbs will be queued past the enqueue segment? */ 332 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); 333 334 /* 335 * Consider expanding the ring already if num_trbs fills the current 336 * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into 337 * the next segment. Avoids confusing full ring with special empty ring 338 * case below 339 */ 340 if (trbs_past_seg < 0) 341 return 0; 342 343 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ 344 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) 345 return 0; 346 347 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); 348 seg = ring->enq_seg; 349 350 while (new_segs > 0) { 351 seg = seg->next; 352 if (seg == ring->deq_seg) { 353 xhci_dbg(xhci, "Adding %d trbs requires expanding ring by %d segments\n", 354 num_trbs, new_segs); 355 return new_segs; 356 } 357 new_segs--; 358 } 359 360 return 0; 361 } 362 363 /* Ring the host controller doorbell after placing a command on the ring */ 364 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 365 { 366 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 367 return; 368 369 xhci_dbg(xhci, "// Ding dong!\n"); 370 371 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 372 373 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 374 /* Flush PCI posted writes */ 375 readl(&xhci->dba->doorbell[0]); 376 } 377 378 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci) 379 { 380 return mod_delayed_work(system_wq, &xhci->cmd_timer, 381 msecs_to_jiffies(xhci->current_cmd->timeout_ms)); 382 } 383 384 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 385 { 386 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 387 cmd_list); 388 } 389 390 /* 391 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 392 * If there are other commands waiting then restart the ring and kick the timer. 393 * This must be called with command ring stopped and xhci->lock held. 394 */ 395 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 396 struct xhci_command *cur_cmd) 397 { 398 struct xhci_command *i_cmd; 399 400 /* Turn all aborted commands in list to no-ops, then restart */ 401 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 402 403 if (i_cmd->status != COMP_COMMAND_ABORTED) 404 continue; 405 406 i_cmd->status = COMP_COMMAND_RING_STOPPED; 407 408 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 409 i_cmd->command_trb); 410 411 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 412 413 /* 414 * caller waiting for completion is called when command 415 * completion event is received for these no-op commands 416 */ 417 } 418 419 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 420 421 /* ring command ring doorbell to restart the command ring */ 422 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 423 !(xhci->xhc_state & XHCI_STATE_DYING)) { 424 xhci->current_cmd = cur_cmd; 425 xhci_mod_cmd_timer(xhci); 426 xhci_ring_cmd_db(xhci); 427 } 428 } 429 430 /* Must be called with xhci->lock held, releases and acquires lock back */ 431 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 432 { 433 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 434 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 435 u64 crcr; 436 int ret; 437 438 xhci_dbg(xhci, "Abort command ring\n"); 439 440 reinit_completion(&xhci->cmd_ring_stop_completion); 441 442 /* 443 * The control bits like command stop, abort are located in lower 444 * dword of the command ring control register. 445 * Some controllers require all 64 bits to be written to abort the ring. 446 * Make sure the upper dword is valid, pointing to the next command, 447 * avoiding corrupting the command ring pointer in case the command ring 448 * is stopped by the time the upper dword is written. 449 */ 450 next_trb(&new_seg, &new_deq); 451 if (trb_is_link(new_deq)) 452 next_trb(&new_seg, &new_deq); 453 454 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 455 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 456 457 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 458 * completion of the Command Abort operation. If CRR is not negated in 5 459 * seconds then driver handles it as if host died (-ENODEV). 460 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 461 * and try to recover a -ETIMEDOUT with a host controller reset. 462 */ 463 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->cmd_ring, 464 CMD_RING_RUNNING, 0, 5 * 1000 * 1000, 465 XHCI_STATE_REMOVING); 466 if (ret < 0) { 467 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 468 xhci_halt(xhci); 469 xhci_hc_died(xhci); 470 return ret; 471 } 472 /* 473 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 474 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 475 * but the completion event in never sent. Wait 2 secs (arbitrary 476 * number) to handle those cases after negation of CMD_RING_RUNNING. 477 */ 478 spin_unlock_irqrestore(&xhci->lock, flags); 479 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 480 msecs_to_jiffies(2000)); 481 spin_lock_irqsave(&xhci->lock, flags); 482 if (!ret) { 483 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 484 xhci_cleanup_command_queue(xhci); 485 } else { 486 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 487 } 488 return 0; 489 } 490 491 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 492 unsigned int slot_id, 493 unsigned int ep_index, 494 unsigned int stream_id) 495 { 496 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 497 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 498 unsigned int ep_state = ep->ep_state; 499 500 /* Don't ring the doorbell for this endpoint if there are pending 501 * cancellations because we don't want to interrupt processing. 502 * We don't want to restart any stream rings if there's a set dequeue 503 * pointer command pending because the device can choose to start any 504 * stream once the endpoint is on the HW schedule. 505 */ 506 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 507 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 508 return; 509 510 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 511 512 writel(DB_VALUE(ep_index, stream_id), db_addr); 513 /* flush the write */ 514 readl(db_addr); 515 } 516 517 /* Ring the doorbell for any rings with pending URBs */ 518 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 519 unsigned int slot_id, 520 unsigned int ep_index) 521 { 522 unsigned int stream_id; 523 struct xhci_virt_ep *ep; 524 525 ep = &xhci->devs[slot_id]->eps[ep_index]; 526 527 /* A ring has pending URBs if its TD list is not empty */ 528 if (!(ep->ep_state & EP_HAS_STREAMS)) { 529 if (ep->ring && !(list_empty(&ep->ring->td_list))) 530 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 531 return; 532 } 533 534 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 535 stream_id++) { 536 struct xhci_stream_info *stream_info = ep->stream_info; 537 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 538 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 539 stream_id); 540 } 541 } 542 543 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 544 unsigned int slot_id, 545 unsigned int ep_index) 546 { 547 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 548 } 549 550 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 551 unsigned int slot_id, 552 unsigned int ep_index) 553 { 554 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 555 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 556 return NULL; 557 } 558 if (ep_index >= EP_CTX_PER_DEV) { 559 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 560 return NULL; 561 } 562 if (!xhci->devs[slot_id]) { 563 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 564 return NULL; 565 } 566 567 return &xhci->devs[slot_id]->eps[ep_index]; 568 } 569 570 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 571 struct xhci_virt_ep *ep, 572 unsigned int stream_id) 573 { 574 /* common case, no streams */ 575 if (!(ep->ep_state & EP_HAS_STREAMS)) 576 return ep->ring; 577 578 if (!ep->stream_info) 579 return NULL; 580 581 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 582 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 583 stream_id, ep->vdev->slot_id, ep->ep_index); 584 return NULL; 585 } 586 587 return ep->stream_info->stream_rings[stream_id]; 588 } 589 590 /* Get the right ring for the given slot_id, ep_index and stream_id. 591 * If the endpoint supports streams, boundary check the URB's stream ID. 592 * If the endpoint doesn't support streams, return the singular endpoint ring. 593 */ 594 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 595 unsigned int slot_id, unsigned int ep_index, 596 unsigned int stream_id) 597 { 598 struct xhci_virt_ep *ep; 599 600 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 601 if (!ep) 602 return NULL; 603 604 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 605 } 606 607 608 /* 609 * Get the hw dequeue pointer xHC stopped on, either directly from the 610 * endpoint context, or if streams are in use from the stream context. 611 * The returned hw_dequeue contains the lowest four bits with cycle state 612 * and possbile stream context type. 613 */ 614 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 615 unsigned int ep_index, unsigned int stream_id) 616 { 617 struct xhci_ep_ctx *ep_ctx; 618 struct xhci_stream_ctx *st_ctx; 619 struct xhci_virt_ep *ep; 620 621 ep = &vdev->eps[ep_index]; 622 623 if (ep->ep_state & EP_HAS_STREAMS) { 624 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 625 return le64_to_cpu(st_ctx->stream_ring); 626 } 627 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 628 return le64_to_cpu(ep_ctx->deq); 629 } 630 631 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 632 unsigned int slot_id, unsigned int ep_index, 633 unsigned int stream_id, struct xhci_td *td) 634 { 635 struct xhci_virt_device *dev = xhci->devs[slot_id]; 636 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 637 struct xhci_ring *ep_ring; 638 struct xhci_command *cmd; 639 struct xhci_segment *new_seg; 640 union xhci_trb *new_deq; 641 int new_cycle; 642 dma_addr_t addr; 643 u64 hw_dequeue; 644 bool cycle_found = false; 645 bool td_last_trb_found = false; 646 u32 trb_sct = 0; 647 int ret; 648 649 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 650 ep_index, stream_id); 651 if (!ep_ring) { 652 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 653 stream_id); 654 return -ENODEV; 655 } 656 657 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 658 new_seg = ep_ring->deq_seg; 659 new_deq = ep_ring->dequeue; 660 new_cycle = hw_dequeue & 0x1; 661 662 /* 663 * We want to find the pointer, segment and cycle state of the new trb 664 * (the one after current TD's end_trb). We know the cycle state at 665 * hw_dequeue, so walk the ring until both hw_dequeue and end_trb are 666 * found. 667 */ 668 do { 669 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 670 == (dma_addr_t)(hw_dequeue & ~0xf)) { 671 cycle_found = true; 672 if (td_last_trb_found) 673 break; 674 } 675 if (new_deq == td->end_trb) 676 td_last_trb_found = true; 677 678 if (cycle_found && trb_is_link(new_deq) && 679 link_trb_toggles_cycle(new_deq)) 680 new_cycle ^= 0x1; 681 682 next_trb(&new_seg, &new_deq); 683 684 /* Search wrapped around, bail out */ 685 if (new_deq == ep->ring->dequeue) { 686 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 687 return -EINVAL; 688 } 689 690 } while (!cycle_found || !td_last_trb_found); 691 692 /* Don't update the ring cycle state for the producer (us). */ 693 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 694 if (addr == 0) { 695 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 696 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 697 return -EINVAL; 698 } 699 700 if ((ep->ep_state & SET_DEQ_PENDING)) { 701 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 702 &addr); 703 return -EBUSY; 704 } 705 706 /* This function gets called from contexts where it cannot sleep */ 707 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 708 if (!cmd) { 709 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 710 return -ENOMEM; 711 } 712 713 if (stream_id) 714 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 715 ret = queue_command(xhci, cmd, 716 lower_32_bits(addr) | trb_sct | new_cycle, 717 upper_32_bits(addr), 718 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 719 EP_INDEX_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 720 if (ret < 0) { 721 xhci_free_command(xhci, cmd); 722 return ret; 723 } 724 ep->queued_deq_seg = new_seg; 725 ep->queued_deq_ptr = new_deq; 726 727 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 728 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 729 730 /* Stop the TD queueing code from ringing the doorbell until 731 * this command completes. The HC won't set the dequeue pointer 732 * if the ring is running, and ringing the doorbell starts the 733 * ring running. 734 */ 735 ep->ep_state |= SET_DEQ_PENDING; 736 xhci_ring_cmd_db(xhci); 737 return 0; 738 } 739 740 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 741 * (The last TRB actually points to the ring enqueue pointer, which is not part 742 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 743 */ 744 static void td_to_noop(struct xhci_td *td, bool flip_cycle) 745 { 746 struct xhci_segment *seg = td->start_seg; 747 union xhci_trb *trb = td->start_trb; 748 749 while (1) { 750 trb_to_noop(trb, TRB_TR_NOOP); 751 752 /* flip cycle if asked to */ 753 if (flip_cycle && trb != td->start_trb && trb != td->end_trb) 754 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 755 756 if (trb == td->end_trb) 757 break; 758 759 next_trb(&seg, &trb); 760 } 761 } 762 763 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 764 struct xhci_td *cur_td, int status) 765 { 766 struct urb *urb = cur_td->urb; 767 struct urb_priv *urb_priv = urb->hcpriv; 768 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 769 770 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 771 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 772 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 773 if (xhci->quirks & XHCI_AMD_PLL_FIX) 774 usb_amd_quirk_pll_enable(); 775 } 776 } 777 xhci_urb_free_priv(urb_priv); 778 usb_hcd_unlink_urb_from_ep(hcd, urb); 779 trace_xhci_urb_giveback(urb); 780 usb_hcd_giveback_urb(hcd, urb, status); 781 } 782 783 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 784 struct xhci_ring *ring, struct xhci_td *td) 785 { 786 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 787 struct xhci_segment *seg = td->bounce_seg; 788 struct urb *urb = td->urb; 789 size_t len; 790 791 if (!ring || !seg || !urb) 792 return; 793 794 if (usb_urb_dir_out(urb)) { 795 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 796 DMA_TO_DEVICE); 797 return; 798 } 799 800 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 801 DMA_FROM_DEVICE); 802 /* for in transfers we need to copy the data from bounce to sg */ 803 if (urb->num_sgs) { 804 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 805 seg->bounce_len, seg->bounce_offs); 806 if (len != seg->bounce_len) 807 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 808 len, seg->bounce_len); 809 } else { 810 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 811 seg->bounce_len); 812 } 813 seg->bounce_len = 0; 814 seg->bounce_offs = 0; 815 } 816 817 static void xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 818 struct xhci_ring *ep_ring, int status) 819 { 820 struct urb *urb = NULL; 821 822 /* Clean up the endpoint's TD list */ 823 urb = td->urb; 824 825 /* if a bounce buffer was used to align this td then unmap it */ 826 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 827 828 /* Do one last check of the actual transfer length. 829 * If the host controller said we transferred more data than the buffer 830 * length, urb->actual_length will be a very big number (since it's 831 * unsigned). Play it safe and say we didn't transfer anything. 832 */ 833 if (urb->actual_length > urb->transfer_buffer_length) { 834 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 835 urb->transfer_buffer_length, urb->actual_length); 836 urb->actual_length = 0; 837 status = 0; 838 } 839 /* TD might be removed from td_list if we are giving back a cancelled URB */ 840 if (!list_empty(&td->td_list)) 841 list_del_init(&td->td_list); 842 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 843 if (!list_empty(&td->cancelled_td_list)) 844 list_del_init(&td->cancelled_td_list); 845 846 inc_td_cnt(urb); 847 /* Giveback the urb when all the tds are completed */ 848 if (last_td_in_urb(td)) { 849 if ((urb->actual_length != urb->transfer_buffer_length && 850 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 851 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 852 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 853 urb, urb->actual_length, 854 urb->transfer_buffer_length, status); 855 856 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 857 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 858 status = 0; 859 xhci_giveback_urb_in_irq(xhci, td, status); 860 } 861 } 862 863 /* Give back previous TD and move on to the next TD. */ 864 static void xhci_dequeue_td(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_ring *ring, 865 u32 status) 866 { 867 ring->dequeue = td->end_trb; 868 ring->deq_seg = td->end_seg; 869 inc_deq(xhci, ring); 870 871 xhci_td_cleanup(xhci, td, ring, status); 872 } 873 874 /* Complete the cancelled URBs we unlinked from td_list. */ 875 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 876 { 877 struct xhci_ring *ring; 878 struct xhci_td *td, *tmp_td; 879 880 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 881 cancelled_td_list) { 882 883 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 884 885 if (td->cancel_status == TD_CLEARED) { 886 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 887 __func__, td->urb); 888 xhci_td_cleanup(ep->xhci, td, ring, td->status); 889 } else { 890 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 891 __func__, td->urb, td->cancel_status); 892 } 893 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 894 return; 895 } 896 } 897 898 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 899 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 900 { 901 struct xhci_command *command; 902 int ret = 0; 903 904 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 905 if (!command) { 906 ret = -ENOMEM; 907 goto done; 908 } 909 910 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 911 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 912 ep_index, slot_id); 913 914 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 915 done: 916 if (ret) 917 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 918 slot_id, ep_index, ret); 919 return ret; 920 } 921 922 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 923 struct xhci_virt_ep *ep, 924 struct xhci_td *td, 925 enum xhci_ep_reset_type reset_type) 926 { 927 unsigned int slot_id = ep->vdev->slot_id; 928 int err; 929 930 /* 931 * Avoid resetting endpoint if link is inactive. Can cause host hang. 932 * Device will be reset soon to recover the link so don't do anything 933 */ 934 if (ep->vdev->flags & VDEV_PORT_ERROR) 935 return -ENODEV; 936 937 /* add td to cancelled list and let reset ep handler take care of it */ 938 if (reset_type == EP_HARD_RESET) { 939 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 940 if (td && list_empty(&td->cancelled_td_list)) { 941 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 942 td->cancel_status = TD_HALTED; 943 } 944 } 945 946 if (ep->ep_state & EP_HALTED) { 947 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 948 ep->ep_index); 949 return 0; 950 } 951 952 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 953 if (err) 954 return err; 955 956 ep->ep_state |= EP_HALTED; 957 958 xhci_ring_cmd_db(xhci); 959 960 return 0; 961 } 962 963 /* 964 * Fix up the ep ring first, so HW stops executing cancelled TDs. 965 * We have the xHCI lock, so nothing can modify this list until we drop it. 966 * We're also in the event handler, so we can't get re-interrupted if another 967 * Stop Endpoint command completes. 968 * 969 * only call this when ring is not in a running state 970 */ 971 972 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 973 { 974 struct xhci_hcd *xhci; 975 struct xhci_td *td = NULL; 976 struct xhci_td *tmp_td = NULL; 977 struct xhci_td *cached_td = NULL; 978 struct xhci_ring *ring; 979 u64 hw_deq; 980 unsigned int slot_id = ep->vdev->slot_id; 981 int err; 982 983 /* 984 * This is not going to work if the hardware is changing its dequeue 985 * pointers as we look at them. Completion handler will call us later. 986 */ 987 if (ep->ep_state & SET_DEQ_PENDING) 988 return 0; 989 990 xhci = ep->xhci; 991 992 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 993 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 994 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 995 (unsigned long long)xhci_trb_virt_to_dma( 996 td->start_seg, td->start_trb), 997 td->urb->stream_id, td->urb); 998 list_del_init(&td->td_list); 999 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 1000 if (!ring) { 1001 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 1002 td->urb, td->urb->stream_id); 1003 continue; 1004 } 1005 /* 1006 * If a ring stopped on the TD we need to cancel then we have to 1007 * move the xHC endpoint ring dequeue pointer past this TD. 1008 * Rings halted due to STALL may show hw_deq is past the stalled 1009 * TD, but still require a set TR Deq command to flush xHC cache. 1010 */ 1011 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 1012 td->urb->stream_id); 1013 hw_deq &= ~0xf; 1014 1015 if (td->cancel_status == TD_HALTED || trb_in_td(xhci, td, hw_deq, false)) { 1016 switch (td->cancel_status) { 1017 case TD_CLEARED: /* TD is already no-op */ 1018 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 1019 break; 1020 case TD_DIRTY: /* TD is cached, clear it */ 1021 case TD_HALTED: 1022 case TD_CLEARING_CACHE_DEFERRED: 1023 if (cached_td) { 1024 if (cached_td->urb->stream_id != td->urb->stream_id) { 1025 /* Multiple streams case, defer move dq */ 1026 xhci_dbg(xhci, 1027 "Move dq deferred: stream %u URB %p\n", 1028 td->urb->stream_id, td->urb); 1029 td->cancel_status = TD_CLEARING_CACHE_DEFERRED; 1030 break; 1031 } 1032 1033 /* Should never happen, but clear the TD if it does */ 1034 xhci_warn(xhci, 1035 "Found multiple active URBs %p and %p in stream %u?\n", 1036 td->urb, cached_td->urb, 1037 td->urb->stream_id); 1038 td_to_noop(cached_td, false); 1039 cached_td->cancel_status = TD_CLEARED; 1040 } 1041 td_to_noop(td, false); 1042 td->cancel_status = TD_CLEARING_CACHE; 1043 cached_td = td; 1044 break; 1045 } 1046 } else { 1047 td_to_noop(td, false); 1048 td->cancel_status = TD_CLEARED; 1049 } 1050 } 1051 1052 /* If there's no need to move the dequeue pointer then we're done */ 1053 if (!cached_td) 1054 return 0; 1055 1056 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1057 cached_td->urb->stream_id, 1058 cached_td); 1059 if (err) { 1060 /* Failed to move past cached td, just set cached TDs to no-op */ 1061 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1062 /* 1063 * Deferred TDs need to have the deq pointer set after the above command 1064 * completes, so if that failed we just give up on all of them (and 1065 * complain loudly since this could cause issues due to caching). 1066 */ 1067 if (td->cancel_status != TD_CLEARING_CACHE && 1068 td->cancel_status != TD_CLEARING_CACHE_DEFERRED) 1069 continue; 1070 xhci_warn(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1071 td->urb); 1072 td_to_noop(td, false); 1073 td->cancel_status = TD_CLEARED; 1074 } 1075 } 1076 return 0; 1077 } 1078 1079 /* 1080 * Erase queued TDs from transfer ring(s) and give back those the xHC didn't 1081 * stop on. If necessary, queue commands to move the xHC off cancelled TDs it 1082 * stopped on. Those will be given back later when the commands complete. 1083 * 1084 * Call under xhci->lock on a stopped endpoint. 1085 */ 1086 void xhci_process_cancelled_tds(struct xhci_virt_ep *ep) 1087 { 1088 xhci_invalidate_cancelled_tds(ep); 1089 xhci_giveback_invalidated_tds(ep); 1090 } 1091 1092 /* 1093 * Returns the TD the endpoint ring halted on. 1094 * Only call for non-running rings without streams. 1095 */ 1096 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1097 { 1098 struct xhci_td *td; 1099 u64 hw_deq; 1100 1101 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1102 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1103 hw_deq &= ~0xf; 1104 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1105 if (trb_in_td(ep->xhci, td, hw_deq, false)) 1106 return td; 1107 } 1108 return NULL; 1109 } 1110 1111 /* 1112 * When we get a command completion for a Stop Endpoint Command, we need to 1113 * unlink any cancelled TDs from the ring. There are two ways to do that: 1114 * 1115 * 1. If the HW was in the middle of processing the TD that needs to be 1116 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1117 * in the TD with a Set Dequeue Pointer Command. 1118 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1119 * bit cleared) so that the HW will skip over them. 1120 */ 1121 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1122 union xhci_trb *trb, u32 comp_code) 1123 { 1124 unsigned int ep_index; 1125 struct xhci_virt_ep *ep; 1126 struct xhci_ep_ctx *ep_ctx; 1127 struct xhci_td *td = NULL; 1128 enum xhci_ep_reset_type reset_type; 1129 struct xhci_command *command; 1130 int err; 1131 1132 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1133 if (!xhci->devs[slot_id]) 1134 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1135 slot_id); 1136 return; 1137 } 1138 1139 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1140 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1141 if (!ep) 1142 return; 1143 1144 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1145 1146 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1147 1148 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1149 /* 1150 * If stop endpoint command raced with a halting endpoint we need to 1151 * reset the host side endpoint first. 1152 * If the TD we halted on isn't cancelled the TD should be given back 1153 * with a proper error code, and the ring dequeue moved past the TD. 1154 * If streams case we can't find hw_deq, or the TD we halted on so do a 1155 * soft reset. 1156 * 1157 * Proper error code is unknown here, it would be -EPIPE if device side 1158 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1159 * We use -EPROTO, if device is stalled it should return a stall error on 1160 * next transfer, which then will return -EPIPE, and device side stall is 1161 * noted and cleared by class driver. 1162 */ 1163 switch (GET_EP_CTX_STATE(ep_ctx)) { 1164 case EP_STATE_HALTED: 1165 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1166 if (ep->ep_state & EP_HAS_STREAMS) { 1167 reset_type = EP_SOFT_RESET; 1168 } else { 1169 reset_type = EP_HARD_RESET; 1170 td = find_halted_td(ep); 1171 if (td) 1172 td->status = -EPROTO; 1173 } 1174 /* reset ep, reset handler cleans up cancelled tds */ 1175 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1176 if (err) 1177 break; 1178 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1179 return; 1180 case EP_STATE_STOPPED: 1181 /* 1182 * Per xHCI 4.6.9, Stop Endpoint command on a Stopped 1183 * EP is a Context State Error, and EP stays Stopped. 1184 * 1185 * But maybe it failed on Halted, and somebody ran Reset 1186 * Endpoint later. EP state is now Stopped and EP_HALTED 1187 * still set because Reset EP handler will run after us. 1188 */ 1189 if (ep->ep_state & EP_HALTED) 1190 break; 1191 /* 1192 * On some HCs EP state remains Stopped for some tens of 1193 * us to a few ms or more after a doorbell ring, and any 1194 * new Stop Endpoint fails without aborting the restart. 1195 * This handler may run quickly enough to still see this 1196 * Stopped state, but it will soon change to Running. 1197 * 1198 * Assume this bug on unexpected Stop Endpoint failures. 1199 * Keep retrying until the EP starts and stops again, on 1200 * chips where this is known to help. Wait for 100ms. 1201 */ 1202 if (time_is_before_jiffies(ep->stop_time + msecs_to_jiffies(100))) 1203 break; 1204 fallthrough; 1205 case EP_STATE_RUNNING: 1206 /* Race, HW handled stop ep cmd before ep was running */ 1207 xhci_dbg(xhci, "Stop ep completion ctx error, ctx_state %d\n", 1208 GET_EP_CTX_STATE(ep_ctx)); 1209 1210 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1211 if (!command) { 1212 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1213 return; 1214 } 1215 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1216 xhci_ring_cmd_db(xhci); 1217 1218 return; 1219 default: 1220 break; 1221 } 1222 } 1223 1224 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1225 xhci_invalidate_cancelled_tds(ep); 1226 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1227 1228 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1229 xhci_giveback_invalidated_tds(ep); 1230 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1231 } 1232 1233 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1234 { 1235 struct xhci_td *cur_td; 1236 struct xhci_td *tmp; 1237 1238 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1239 list_del_init(&cur_td->td_list); 1240 1241 if (!list_empty(&cur_td->cancelled_td_list)) 1242 list_del_init(&cur_td->cancelled_td_list); 1243 1244 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1245 1246 inc_td_cnt(cur_td->urb); 1247 if (last_td_in_urb(cur_td)) 1248 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1249 } 1250 } 1251 1252 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1253 int slot_id, int ep_index) 1254 { 1255 struct xhci_td *cur_td; 1256 struct xhci_td *tmp; 1257 struct xhci_virt_ep *ep; 1258 struct xhci_ring *ring; 1259 1260 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1261 if (!ep) 1262 return; 1263 1264 if ((ep->ep_state & EP_HAS_STREAMS) || 1265 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1266 int stream_id; 1267 1268 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1269 stream_id++) { 1270 ring = ep->stream_info->stream_rings[stream_id]; 1271 if (!ring) 1272 continue; 1273 1274 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1275 "Killing URBs for slot ID %u, ep index %u, stream %u", 1276 slot_id, ep_index, stream_id); 1277 xhci_kill_ring_urbs(xhci, ring); 1278 } 1279 } else { 1280 ring = ep->ring; 1281 if (!ring) 1282 return; 1283 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1284 "Killing URBs for slot ID %u, ep index %u", 1285 slot_id, ep_index); 1286 xhci_kill_ring_urbs(xhci, ring); 1287 } 1288 1289 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1290 cancelled_td_list) { 1291 list_del_init(&cur_td->cancelled_td_list); 1292 inc_td_cnt(cur_td->urb); 1293 1294 if (last_td_in_urb(cur_td)) 1295 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1296 } 1297 } 1298 1299 /* 1300 * host controller died, register read returns 0xffffffff 1301 * Complete pending commands, mark them ABORTED. 1302 * URBs need to be given back as usb core might be waiting with device locks 1303 * held for the URBs to finish during device disconnect, blocking host remove. 1304 * 1305 * Call with xhci->lock held. 1306 * lock is relased and re-acquired while giving back urb. 1307 */ 1308 void xhci_hc_died(struct xhci_hcd *xhci) 1309 { 1310 int i, j; 1311 1312 if (xhci->xhc_state & XHCI_STATE_DYING) 1313 return; 1314 1315 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1316 xhci->xhc_state |= XHCI_STATE_DYING; 1317 1318 xhci_cleanup_command_queue(xhci); 1319 1320 /* return any pending urbs, remove may be waiting for them */ 1321 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1322 if (!xhci->devs[i]) 1323 continue; 1324 for (j = 0; j < 31; j++) 1325 xhci_kill_endpoint_urbs(xhci, i, j); 1326 } 1327 1328 /* inform usb core hc died if PCI remove isn't already handling it */ 1329 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1330 usb_hc_died(xhci_to_hcd(xhci)); 1331 } 1332 1333 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1334 struct xhci_virt_device *dev, 1335 struct xhci_ring *ep_ring, 1336 unsigned int ep_index) 1337 { 1338 union xhci_trb *dequeue_temp; 1339 1340 dequeue_temp = ep_ring->dequeue; 1341 1342 /* If we get two back-to-back stalls, and the first stalled transfer 1343 * ends just before a link TRB, the dequeue pointer will be left on 1344 * the link TRB by the code in the while loop. So we have to update 1345 * the dequeue pointer one segment further, or we'll jump off 1346 * the segment into la-la-land. 1347 */ 1348 if (trb_is_link(ep_ring->dequeue)) { 1349 ep_ring->deq_seg = ep_ring->deq_seg->next; 1350 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1351 } 1352 1353 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1354 /* We have more usable TRBs */ 1355 ep_ring->dequeue++; 1356 if (trb_is_link(ep_ring->dequeue)) { 1357 if (ep_ring->dequeue == 1358 dev->eps[ep_index].queued_deq_ptr) 1359 break; 1360 ep_ring->deq_seg = ep_ring->deq_seg->next; 1361 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1362 } 1363 if (ep_ring->dequeue == dequeue_temp) { 1364 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1365 break; 1366 } 1367 } 1368 } 1369 1370 /* 1371 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1372 * we need to clear the set deq pending flag in the endpoint ring state, so that 1373 * the TD queueing code can ring the doorbell again. We also need to ring the 1374 * endpoint doorbell to restart the ring, but only if there aren't more 1375 * cancellations pending. 1376 */ 1377 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1378 union xhci_trb *trb, u32 cmd_comp_code) 1379 { 1380 unsigned int ep_index; 1381 unsigned int stream_id; 1382 struct xhci_ring *ep_ring; 1383 struct xhci_virt_ep *ep; 1384 struct xhci_ep_ctx *ep_ctx; 1385 struct xhci_slot_ctx *slot_ctx; 1386 struct xhci_stream_ctx *stream_ctx; 1387 struct xhci_td *td, *tmp_td; 1388 1389 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1390 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1391 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1392 if (!ep) 1393 return; 1394 1395 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1396 if (!ep_ring) { 1397 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1398 stream_id); 1399 /* XXX: Harmless??? */ 1400 goto cleanup; 1401 } 1402 1403 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1404 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1405 trace_xhci_handle_cmd_set_deq(slot_ctx); 1406 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1407 1408 if (ep->ep_state & EP_HAS_STREAMS) { 1409 stream_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 1410 trace_xhci_handle_cmd_set_deq_stream(ep->stream_info, stream_id); 1411 } 1412 1413 if (cmd_comp_code != COMP_SUCCESS) { 1414 unsigned int ep_state; 1415 unsigned int slot_state; 1416 1417 switch (cmd_comp_code) { 1418 case COMP_TRB_ERROR: 1419 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1420 break; 1421 case COMP_CONTEXT_STATE_ERROR: 1422 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1423 ep_state = GET_EP_CTX_STATE(ep_ctx); 1424 slot_state = le32_to_cpu(slot_ctx->dev_state); 1425 slot_state = GET_SLOT_STATE(slot_state); 1426 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1427 "Slot state = %u, EP state = %u", 1428 slot_state, ep_state); 1429 break; 1430 case COMP_SLOT_NOT_ENABLED_ERROR: 1431 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1432 slot_id); 1433 break; 1434 default: 1435 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1436 cmd_comp_code); 1437 break; 1438 } 1439 /* OK what do we do now? The endpoint state is hosed, and we 1440 * should never get to this point if the synchronization between 1441 * queueing, and endpoint state are correct. This might happen 1442 * if the device gets disconnected after we've finished 1443 * cancelling URBs, which might not be an error... 1444 */ 1445 } else { 1446 u64 deq; 1447 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1448 if (ep->ep_state & EP_HAS_STREAMS) { 1449 deq = le64_to_cpu(stream_ctx->stream_ring) & SCTX_DEQ_MASK; 1450 1451 /* 1452 * Cadence xHCI controllers store some endpoint state 1453 * information within Rsvd0 fields of Stream Endpoint 1454 * context. This field is not cleared during Set TR 1455 * Dequeue Pointer command which causes XDMA to skip 1456 * over transfer ring and leads to data loss on stream 1457 * pipe. 1458 * To fix this issue driver must clear Rsvd0 field. 1459 */ 1460 if (xhci->quirks & XHCI_CDNS_SCTX_QUIRK) { 1461 stream_ctx->reserved[0] = 0; 1462 stream_ctx->reserved[1] = 0; 1463 } 1464 } else { 1465 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1466 } 1467 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1468 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1469 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1470 ep->queued_deq_ptr) == deq) { 1471 /* Update the ring's dequeue segment and dequeue pointer 1472 * to reflect the new position. 1473 */ 1474 update_ring_for_set_deq_completion(xhci, ep->vdev, 1475 ep_ring, ep_index); 1476 } else { 1477 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1478 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1479 ep->queued_deq_seg, ep->queued_deq_ptr); 1480 } 1481 } 1482 /* HW cached TDs cleared from cache, give them back */ 1483 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1484 cancelled_td_list) { 1485 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1486 if (td->cancel_status == TD_CLEARING_CACHE) { 1487 td->cancel_status = TD_CLEARED; 1488 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1489 __func__, td->urb); 1490 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1491 } else { 1492 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1493 __func__, td->urb, td->cancel_status); 1494 } 1495 } 1496 cleanup: 1497 ep->ep_state &= ~SET_DEQ_PENDING; 1498 ep->queued_deq_seg = NULL; 1499 ep->queued_deq_ptr = NULL; 1500 1501 /* Check for deferred or newly cancelled TDs */ 1502 if (!list_empty(&ep->cancelled_td_list)) { 1503 xhci_dbg(ep->xhci, "%s: Pending TDs to clear, continuing with invalidation\n", 1504 __func__); 1505 xhci_invalidate_cancelled_tds(ep); 1506 /* Try to restart the endpoint if all is done */ 1507 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1508 /* Start giving back any TDs invalidated above */ 1509 xhci_giveback_invalidated_tds(ep); 1510 } else { 1511 /* Restart any rings with pending URBs */ 1512 xhci_dbg(ep->xhci, "%s: All TDs cleared, ring doorbell\n", __func__); 1513 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1514 } 1515 } 1516 1517 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1518 union xhci_trb *trb, u32 cmd_comp_code) 1519 { 1520 struct xhci_virt_ep *ep; 1521 struct xhci_ep_ctx *ep_ctx; 1522 unsigned int ep_index; 1523 1524 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1525 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1526 if (!ep) 1527 return; 1528 1529 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1530 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1531 1532 /* This command will only fail if the endpoint wasn't halted, 1533 * but we don't care. 1534 */ 1535 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1536 "Ignoring reset ep completion code of %u", cmd_comp_code); 1537 1538 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1539 xhci_invalidate_cancelled_tds(ep); 1540 1541 /* Clear our internal halted state */ 1542 ep->ep_state &= ~EP_HALTED; 1543 1544 xhci_giveback_invalidated_tds(ep); 1545 1546 /* if this was a soft reset, then restart */ 1547 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1548 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1549 } 1550 1551 static void xhci_handle_cmd_enable_slot(int slot_id, struct xhci_command *command, 1552 u32 cmd_comp_code) 1553 { 1554 if (cmd_comp_code == COMP_SUCCESS) 1555 command->slot_id = slot_id; 1556 else 1557 command->slot_id = 0; 1558 } 1559 1560 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1561 { 1562 struct xhci_virt_device *virt_dev; 1563 struct xhci_slot_ctx *slot_ctx; 1564 1565 virt_dev = xhci->devs[slot_id]; 1566 if (!virt_dev) 1567 return; 1568 1569 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1570 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1571 1572 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1573 /* Delete default control endpoint resources */ 1574 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1575 } 1576 1577 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id) 1578 { 1579 struct xhci_virt_device *virt_dev; 1580 struct xhci_input_control_ctx *ctrl_ctx; 1581 struct xhci_ep_ctx *ep_ctx; 1582 unsigned int ep_index; 1583 u32 add_flags; 1584 1585 /* 1586 * Configure endpoint commands can come from the USB core configuration 1587 * or alt setting changes, or when streams were being configured. 1588 */ 1589 1590 virt_dev = xhci->devs[slot_id]; 1591 if (!virt_dev) 1592 return; 1593 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1594 if (!ctrl_ctx) { 1595 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1596 return; 1597 } 1598 1599 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1600 1601 /* Input ctx add_flags are the endpoint index plus one */ 1602 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1603 1604 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1605 trace_xhci_handle_cmd_config_ep(ep_ctx); 1606 1607 return; 1608 } 1609 1610 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1611 { 1612 struct xhci_virt_device *vdev; 1613 struct xhci_slot_ctx *slot_ctx; 1614 1615 vdev = xhci->devs[slot_id]; 1616 if (!vdev) 1617 return; 1618 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1619 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1620 } 1621 1622 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1623 { 1624 struct xhci_virt_device *vdev; 1625 struct xhci_slot_ctx *slot_ctx; 1626 1627 vdev = xhci->devs[slot_id]; 1628 if (!vdev) { 1629 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1630 slot_id); 1631 return; 1632 } 1633 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1634 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1635 1636 xhci_dbg(xhci, "Completed reset device command.\n"); 1637 } 1638 1639 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1640 struct xhci_event_cmd *event) 1641 { 1642 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1643 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1644 return; 1645 } 1646 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1647 "NEC firmware version %2x.%02x", 1648 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1649 NEC_FW_MINOR(le32_to_cpu(event->status))); 1650 } 1651 1652 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1653 { 1654 list_del(&cmd->cmd_list); 1655 1656 if (cmd->completion) { 1657 cmd->status = status; 1658 complete(cmd->completion); 1659 } else { 1660 kfree(cmd); 1661 } 1662 } 1663 1664 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1665 { 1666 struct xhci_command *cur_cmd, *tmp_cmd; 1667 xhci->current_cmd = NULL; 1668 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1669 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1670 } 1671 1672 void xhci_handle_command_timeout(struct work_struct *work) 1673 { 1674 struct xhci_hcd *xhci; 1675 unsigned long flags; 1676 char str[XHCI_MSG_MAX]; 1677 u64 hw_ring_state; 1678 u32 cmd_field3; 1679 u32 usbsts; 1680 1681 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1682 1683 spin_lock_irqsave(&xhci->lock, flags); 1684 1685 /* 1686 * If timeout work is pending, or current_cmd is NULL, it means we 1687 * raced with command completion. Command is handled so just return. 1688 */ 1689 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1690 spin_unlock_irqrestore(&xhci->lock, flags); 1691 return; 1692 } 1693 1694 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1695 usbsts = readl(&xhci->op_regs->status); 1696 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1697 1698 /* Bail out and tear down xhci if a stop endpoint command failed */ 1699 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1700 struct xhci_virt_ep *ep; 1701 1702 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1703 1704 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1705 TRB_TO_EP_INDEX(cmd_field3)); 1706 if (ep) 1707 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1708 1709 xhci_halt(xhci); 1710 xhci_hc_died(xhci); 1711 goto time_out_completed; 1712 } 1713 1714 /* mark this command to be cancelled */ 1715 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1716 1717 /* Make sure command ring is running before aborting it */ 1718 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1719 if (hw_ring_state == ~(u64)0) { 1720 xhci_hc_died(xhci); 1721 goto time_out_completed; 1722 } 1723 1724 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1725 (hw_ring_state & CMD_RING_RUNNING)) { 1726 /* Prevent new doorbell, and start command abort */ 1727 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1728 xhci_dbg(xhci, "Command timeout\n"); 1729 xhci_abort_cmd_ring(xhci, flags); 1730 goto time_out_completed; 1731 } 1732 1733 /* host removed. Bail out */ 1734 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1735 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1736 xhci_cleanup_command_queue(xhci); 1737 1738 goto time_out_completed; 1739 } 1740 1741 /* command timeout on stopped ring, ring can't be aborted */ 1742 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1743 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1744 1745 time_out_completed: 1746 spin_unlock_irqrestore(&xhci->lock, flags); 1747 return; 1748 } 1749 1750 static void handle_cmd_completion(struct xhci_hcd *xhci, 1751 struct xhci_event_cmd *event) 1752 { 1753 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1754 u64 cmd_dma; 1755 dma_addr_t cmd_dequeue_dma; 1756 u32 cmd_comp_code; 1757 union xhci_trb *cmd_trb; 1758 struct xhci_command *cmd; 1759 u32 cmd_type; 1760 1761 if (slot_id >= MAX_HC_SLOTS) { 1762 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1763 return; 1764 } 1765 1766 cmd_dma = le64_to_cpu(event->cmd_trb); 1767 cmd_trb = xhci->cmd_ring->dequeue; 1768 1769 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic, cmd_dma); 1770 1771 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1772 1773 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1774 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1775 complete_all(&xhci->cmd_ring_stop_completion); 1776 return; 1777 } 1778 1779 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1780 cmd_trb); 1781 /* 1782 * Check whether the completion event is for our internal kept 1783 * command. 1784 */ 1785 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1786 xhci_warn(xhci, 1787 "ERROR mismatched command completion event\n"); 1788 return; 1789 } 1790 1791 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1792 1793 cancel_delayed_work(&xhci->cmd_timer); 1794 1795 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1796 xhci_err(xhci, 1797 "Command completion event does not match command\n"); 1798 return; 1799 } 1800 1801 /* 1802 * Host aborted the command ring, check if the current command was 1803 * supposed to be aborted, otherwise continue normally. 1804 * The command ring is stopped now, but the xHC will issue a Command 1805 * Ring Stopped event which will cause us to restart it. 1806 */ 1807 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1808 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1809 if (cmd->status == COMP_COMMAND_ABORTED) { 1810 if (xhci->current_cmd == cmd) 1811 xhci->current_cmd = NULL; 1812 goto event_handled; 1813 } 1814 } 1815 1816 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1817 switch (cmd_type) { 1818 case TRB_ENABLE_SLOT: 1819 xhci_handle_cmd_enable_slot(slot_id, cmd, cmd_comp_code); 1820 break; 1821 case TRB_DISABLE_SLOT: 1822 xhci_handle_cmd_disable_slot(xhci, slot_id); 1823 break; 1824 case TRB_CONFIG_EP: 1825 if (!cmd->completion) 1826 xhci_handle_cmd_config_ep(xhci, slot_id); 1827 break; 1828 case TRB_EVAL_CONTEXT: 1829 break; 1830 case TRB_ADDR_DEV: 1831 xhci_handle_cmd_addr_dev(xhci, slot_id); 1832 break; 1833 case TRB_STOP_RING: 1834 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1835 le32_to_cpu(cmd_trb->generic.field[3]))); 1836 if (!cmd->completion) 1837 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1838 cmd_comp_code); 1839 break; 1840 case TRB_SET_DEQ: 1841 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1842 le32_to_cpu(cmd_trb->generic.field[3]))); 1843 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1844 break; 1845 case TRB_CMD_NOOP: 1846 /* Is this an aborted command turned to NO-OP? */ 1847 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1848 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1849 break; 1850 case TRB_RESET_EP: 1851 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1852 le32_to_cpu(cmd_trb->generic.field[3]))); 1853 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1854 break; 1855 case TRB_RESET_DEV: 1856 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1857 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1858 */ 1859 slot_id = TRB_TO_SLOT_ID( 1860 le32_to_cpu(cmd_trb->generic.field[3])); 1861 xhci_handle_cmd_reset_dev(xhci, slot_id); 1862 break; 1863 case TRB_NEC_GET_FW: 1864 xhci_handle_cmd_nec_get_fw(xhci, event); 1865 break; 1866 default: 1867 /* Skip over unknown commands on the event ring */ 1868 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1869 break; 1870 } 1871 1872 /* restart timer if this wasn't the last command */ 1873 if (!list_is_singular(&xhci->cmd_list)) { 1874 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1875 struct xhci_command, cmd_list); 1876 xhci_mod_cmd_timer(xhci); 1877 } else if (xhci->current_cmd == cmd) { 1878 xhci->current_cmd = NULL; 1879 } 1880 1881 event_handled: 1882 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1883 1884 inc_deq(xhci, xhci->cmd_ring); 1885 } 1886 1887 static void handle_vendor_event(struct xhci_hcd *xhci, 1888 union xhci_trb *event, u32 trb_type) 1889 { 1890 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1891 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1892 handle_cmd_completion(xhci, &event->event_cmd); 1893 } 1894 1895 static void handle_device_notification(struct xhci_hcd *xhci, 1896 union xhci_trb *event) 1897 { 1898 u32 slot_id; 1899 struct usb_device *udev; 1900 1901 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1902 if (!xhci->devs[slot_id]) { 1903 xhci_warn(xhci, "Device Notification event for " 1904 "unused slot %u\n", slot_id); 1905 return; 1906 } 1907 1908 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1909 slot_id); 1910 udev = xhci->devs[slot_id]->udev; 1911 if (udev && udev->parent) 1912 usb_wakeup_notification(udev->parent, udev->portnum); 1913 } 1914 1915 /* 1916 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1917 * Controller. 1918 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1919 * If a connection to a USB 1 device is followed by another connection 1920 * to a USB 2 device. 1921 * 1922 * Reset the PHY after the USB device is disconnected if device speed 1923 * is less than HCD_USB3. 1924 * Retry the reset sequence max of 4 times checking the PLL lock status. 1925 * 1926 */ 1927 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1928 { 1929 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1930 u32 pll_lock_check; 1931 u32 retry_count = 4; 1932 1933 do { 1934 /* Assert PHY reset */ 1935 writel(0x6F, hcd->regs + 0x1048); 1936 udelay(10); 1937 /* De-assert the PHY reset */ 1938 writel(0x7F, hcd->regs + 0x1048); 1939 udelay(200); 1940 pll_lock_check = readl(hcd->regs + 0x1070); 1941 } while (!(pll_lock_check & 0x1) && --retry_count); 1942 } 1943 1944 static void handle_port_status(struct xhci_hcd *xhci, union xhci_trb *event) 1945 { 1946 struct usb_hcd *hcd; 1947 u32 port_id; 1948 u32 portsc, cmd_reg; 1949 int max_ports; 1950 unsigned int hcd_portnum; 1951 struct xhci_bus_state *bus_state; 1952 bool bogus_port_status = false; 1953 struct xhci_port *port; 1954 1955 /* Port status change events always have a successful completion code */ 1956 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1957 xhci_warn(xhci, 1958 "WARN: xHC returned failed port status event\n"); 1959 1960 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1961 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1962 1963 if ((port_id <= 0) || (port_id > max_ports)) { 1964 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1965 port_id); 1966 return; 1967 } 1968 1969 port = &xhci->hw_ports[port_id - 1]; 1970 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1971 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1972 port_id); 1973 bogus_port_status = true; 1974 goto cleanup; 1975 } 1976 1977 /* We might get interrupts after shared_hcd is removed */ 1978 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1979 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1980 bogus_port_status = true; 1981 goto cleanup; 1982 } 1983 1984 hcd = port->rhub->hcd; 1985 bus_state = &port->rhub->bus_state; 1986 hcd_portnum = port->hcd_portnum; 1987 portsc = readl(port->addr); 1988 1989 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1990 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1991 1992 trace_xhci_handle_port_status(port, portsc); 1993 1994 if (hcd->state == HC_STATE_SUSPENDED) { 1995 xhci_dbg(xhci, "resume root hub\n"); 1996 usb_hcd_resume_root_hub(hcd); 1997 } 1998 1999 if (hcd->speed >= HCD_USB3 && 2000 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 2001 if (port->slot_id && xhci->devs[port->slot_id]) 2002 xhci->devs[port->slot_id]->flags |= VDEV_PORT_ERROR; 2003 } 2004 2005 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 2006 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 2007 2008 cmd_reg = readl(&xhci->op_regs->command); 2009 if (!(cmd_reg & CMD_RUN)) { 2010 xhci_warn(xhci, "xHC is not running.\n"); 2011 goto cleanup; 2012 } 2013 2014 if (DEV_SUPERSPEED_ANY(portsc)) { 2015 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 2016 /* Set a flag to say the port signaled remote wakeup, 2017 * so we can tell the difference between the end of 2018 * device and host initiated resume. 2019 */ 2020 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 2021 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2022 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2023 xhci_set_link_state(xhci, port, XDEV_U0); 2024 /* Need to wait until the next link state change 2025 * indicates the device is actually in U0. 2026 */ 2027 bogus_port_status = true; 2028 goto cleanup; 2029 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 2030 xhci_dbg(xhci, "resume HS port %d\n", port_id); 2031 port->resume_timestamp = jiffies + 2032 msecs_to_jiffies(USB_RESUME_TIMEOUT); 2033 set_bit(hcd_portnum, &bus_state->resuming_ports); 2034 /* Do the rest in GetPortStatus after resume time delay. 2035 * Avoid polling roothub status before that so that a 2036 * usb device auto-resume latency around ~40ms. 2037 */ 2038 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2039 mod_timer(&hcd->rh_timer, 2040 port->resume_timestamp); 2041 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2042 bogus_port_status = true; 2043 } 2044 } 2045 2046 if ((portsc & PORT_PLC) && 2047 DEV_SUPERSPEED_ANY(portsc) && 2048 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 2049 (portsc & PORT_PLS_MASK) == XDEV_U1 || 2050 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 2051 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 2052 complete(&port->u3exit_done); 2053 /* We've just brought the device into U0/1/2 through either the 2054 * Resume state after a device remote wakeup, or through the 2055 * U3Exit state after a host-initiated resume. If it's a device 2056 * initiated remote wake, don't pass up the link state change, 2057 * so the roothub behavior is consistent with external 2058 * USB 3.0 hub behavior. 2059 */ 2060 if (port->slot_id && xhci->devs[port->slot_id]) 2061 xhci_ring_device(xhci, port->slot_id); 2062 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 2063 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2064 usb_wakeup_notification(hcd->self.root_hub, 2065 hcd_portnum + 1); 2066 bogus_port_status = true; 2067 goto cleanup; 2068 } 2069 } 2070 2071 /* 2072 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 2073 * RExit to a disconnect state). If so, let the driver know it's 2074 * out of the RExit state. 2075 */ 2076 if (hcd->speed < HCD_USB3 && port->rexit_active) { 2077 complete(&port->rexit_done); 2078 port->rexit_active = false; 2079 bogus_port_status = true; 2080 goto cleanup; 2081 } 2082 2083 if (hcd->speed < HCD_USB3) { 2084 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2085 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2086 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2087 xhci_cavium_reset_phy_quirk(xhci); 2088 } 2089 2090 cleanup: 2091 2092 /* Don't make the USB core poll the roothub if we got a bad port status 2093 * change event. Besides, at that point we can't tell which roothub 2094 * (USB 2.0 or USB 3.0) to kick. 2095 */ 2096 if (bogus_port_status) 2097 return; 2098 2099 /* 2100 * xHCI port-status-change events occur when the "or" of all the 2101 * status-change bits in the portsc register changes from 0 to 1. 2102 * New status changes won't cause an event if any other change 2103 * bits are still set. When an event occurs, switch over to 2104 * polling to avoid losing status changes. 2105 */ 2106 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2107 __func__, hcd->self.busnum); 2108 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2109 spin_unlock(&xhci->lock); 2110 /* Pass this up to the core */ 2111 usb_hcd_poll_rh_status(hcd); 2112 spin_lock(&xhci->lock); 2113 } 2114 2115 /* 2116 * If the suspect DMA address is a TRB in this TD, this function returns that 2117 * TRB's segment. Otherwise it returns 0. 2118 */ 2119 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, struct xhci_td *td, dma_addr_t suspect_dma, 2120 bool debug) 2121 { 2122 dma_addr_t start_dma; 2123 dma_addr_t end_seg_dma; 2124 dma_addr_t end_trb_dma; 2125 struct xhci_segment *cur_seg; 2126 2127 start_dma = xhci_trb_virt_to_dma(td->start_seg, td->start_trb); 2128 cur_seg = td->start_seg; 2129 2130 do { 2131 if (start_dma == 0) 2132 return NULL; 2133 /* We may get an event for a Link TRB in the middle of a TD */ 2134 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2135 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2136 /* If the end TRB isn't in this segment, this is set to 0 */ 2137 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, td->end_trb); 2138 2139 if (debug) 2140 xhci_warn(xhci, 2141 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2142 (unsigned long long)suspect_dma, 2143 (unsigned long long)start_dma, 2144 (unsigned long long)end_trb_dma, 2145 (unsigned long long)cur_seg->dma, 2146 (unsigned long long)end_seg_dma); 2147 2148 if (end_trb_dma > 0) { 2149 /* The end TRB is in this segment, so suspect should be here */ 2150 if (start_dma <= end_trb_dma) { 2151 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2152 return cur_seg; 2153 } else { 2154 /* Case for one segment with 2155 * a TD wrapped around to the top 2156 */ 2157 if ((suspect_dma >= start_dma && 2158 suspect_dma <= end_seg_dma) || 2159 (suspect_dma >= cur_seg->dma && 2160 suspect_dma <= end_trb_dma)) 2161 return cur_seg; 2162 } 2163 return NULL; 2164 } else { 2165 /* Might still be somewhere in this segment */ 2166 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2167 return cur_seg; 2168 } 2169 cur_seg = cur_seg->next; 2170 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2171 } while (cur_seg != td->start_seg); 2172 2173 return NULL; 2174 } 2175 2176 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2177 struct xhci_virt_ep *ep) 2178 { 2179 /* 2180 * As part of low/full-speed endpoint-halt processing 2181 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2182 */ 2183 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2184 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2185 !(ep->ep_state & EP_CLEARING_TT)) { 2186 ep->ep_state |= EP_CLEARING_TT; 2187 td->urb->ep->hcpriv = td->urb->dev; 2188 if (usb_hub_clear_tt_buffer(td->urb)) 2189 ep->ep_state &= ~EP_CLEARING_TT; 2190 } 2191 } 2192 2193 /* 2194 * Check if xhci internal endpoint state has gone to a "halt" state due to an 2195 * error or stall, including default control pipe protocol stall. 2196 * The internal halt needs to be cleared with a reset endpoint command. 2197 * 2198 * External device side is also halted in functional stall cases. Class driver 2199 * will clear the device halt with a CLEAR_FEATURE(ENDPOINT_HALT) request later. 2200 */ 2201 static bool xhci_halted_host_endpoint(struct xhci_ep_ctx *ep_ctx, unsigned int comp_code) 2202 { 2203 /* Stall halts both internal and device side endpoint */ 2204 if (comp_code == COMP_STALL_ERROR) 2205 return true; 2206 2207 /* TRB completion codes that may require internal halt cleanup */ 2208 if (comp_code == COMP_USB_TRANSACTION_ERROR || 2209 comp_code == COMP_BABBLE_DETECTED_ERROR || 2210 comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2211 /* 2212 * The 0.95 spec says a babbling control endpoint is not halted. 2213 * The 0.96 spec says it is. Some HW claims to be 0.95 2214 * compliant, but it halts the control endpoint anyway. 2215 * Check endpoint context if endpoint is halted. 2216 */ 2217 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2218 return true; 2219 2220 return false; 2221 } 2222 2223 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2224 { 2225 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2226 /* Vendor defined "informational" completion code, 2227 * treat as not-an-error. 2228 */ 2229 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2230 trb_comp_code); 2231 xhci_dbg(xhci, "Treating code as success.\n"); 2232 return 1; 2233 } 2234 return 0; 2235 } 2236 2237 static void finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2238 struct xhci_ring *ep_ring, struct xhci_td *td, 2239 u32 trb_comp_code) 2240 { 2241 struct xhci_ep_ctx *ep_ctx; 2242 2243 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2244 2245 switch (trb_comp_code) { 2246 case COMP_STOPPED_LENGTH_INVALID: 2247 case COMP_STOPPED_SHORT_PACKET: 2248 case COMP_STOPPED: 2249 /* 2250 * The "Stop Endpoint" completion will take care of any 2251 * stopped TDs. A stopped TD may be restarted, so don't update 2252 * the ring dequeue pointer or take this TD off any lists yet. 2253 */ 2254 return; 2255 case COMP_USB_TRANSACTION_ERROR: 2256 case COMP_BABBLE_DETECTED_ERROR: 2257 case COMP_SPLIT_TRANSACTION_ERROR: 2258 /* 2259 * If endpoint context state is not halted we might be 2260 * racing with a reset endpoint command issued by a unsuccessful 2261 * stop endpoint completion (context error). In that case the 2262 * td should be on the cancelled list, and EP_HALTED flag set. 2263 * 2264 * Or then it's not halted due to the 0.95 spec stating that a 2265 * babbling control endpoint should not halt. The 0.96 spec 2266 * again says it should. Some HW claims to be 0.95 compliant, 2267 * but it halts the control endpoint anyway. 2268 */ 2269 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2270 /* 2271 * If EP_HALTED is set and TD is on the cancelled list 2272 * the TD and dequeue pointer will be handled by reset 2273 * ep command completion 2274 */ 2275 if ((ep->ep_state & EP_HALTED) && 2276 !list_empty(&td->cancelled_td_list)) { 2277 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2278 (unsigned long long)xhci_trb_virt_to_dma( 2279 td->start_seg, td->start_trb)); 2280 return; 2281 } 2282 /* endpoint not halted, don't reset it */ 2283 break; 2284 } 2285 /* Almost same procedure as for STALL_ERROR below */ 2286 xhci_clear_hub_tt_buffer(xhci, td, ep); 2287 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2288 return; 2289 case COMP_STALL_ERROR: 2290 /* 2291 * xhci internal endpoint state will go to a "halt" state for 2292 * any stall, including default control pipe protocol stall. 2293 * To clear the host side halt we need to issue a reset endpoint 2294 * command, followed by a set dequeue command to move past the 2295 * TD. 2296 * Class drivers clear the device side halt from a functional 2297 * stall later. Hub TT buffer should only be cleared for FS/LS 2298 * devices behind HS hubs for functional stalls. 2299 */ 2300 if (ep->ep_index != 0) 2301 xhci_clear_hub_tt_buffer(xhci, td, ep); 2302 2303 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2304 2305 return; /* xhci_handle_halted_endpoint marked td cancelled */ 2306 default: 2307 break; 2308 } 2309 2310 xhci_dequeue_td(xhci, td, ep_ring, td->status); 2311 } 2312 2313 /* sum trb lengths from the first trb up to stop_trb, _excluding_ stop_trb */ 2314 static u32 sum_trb_lengths(struct xhci_td *td, union xhci_trb *stop_trb) 2315 { 2316 u32 sum; 2317 union xhci_trb *trb = td->start_trb; 2318 struct xhci_segment *seg = td->start_seg; 2319 2320 for (sum = 0; trb != stop_trb; next_trb(&seg, &trb)) { 2321 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2322 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2323 } 2324 return sum; 2325 } 2326 2327 /* 2328 * Process control tds, update urb status and actual_length. 2329 */ 2330 static void process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2331 struct xhci_ring *ep_ring, struct xhci_td *td, 2332 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2333 { 2334 struct xhci_ep_ctx *ep_ctx; 2335 u32 trb_comp_code; 2336 u32 remaining, requested; 2337 u32 trb_type; 2338 2339 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2340 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2341 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2342 requested = td->urb->transfer_buffer_length; 2343 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2344 2345 switch (trb_comp_code) { 2346 case COMP_SUCCESS: 2347 if (trb_type != TRB_STATUS) { 2348 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2349 (trb_type == TRB_DATA) ? "data" : "setup"); 2350 td->status = -ESHUTDOWN; 2351 break; 2352 } 2353 td->status = 0; 2354 break; 2355 case COMP_SHORT_PACKET: 2356 td->status = 0; 2357 break; 2358 case COMP_STOPPED_SHORT_PACKET: 2359 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2360 td->urb->actual_length = remaining; 2361 else 2362 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2363 goto finish_td; 2364 case COMP_STOPPED: 2365 switch (trb_type) { 2366 case TRB_SETUP: 2367 td->urb->actual_length = 0; 2368 goto finish_td; 2369 case TRB_DATA: 2370 case TRB_NORMAL: 2371 td->urb->actual_length = requested - remaining; 2372 goto finish_td; 2373 case TRB_STATUS: 2374 td->urb->actual_length = requested; 2375 goto finish_td; 2376 default: 2377 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2378 trb_type); 2379 goto finish_td; 2380 } 2381 case COMP_STOPPED_LENGTH_INVALID: 2382 goto finish_td; 2383 default: 2384 if (!xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) 2385 break; 2386 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2387 trb_comp_code, ep->ep_index); 2388 fallthrough; 2389 case COMP_STALL_ERROR: 2390 /* Did we transfer part of the data (middle) phase? */ 2391 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2392 td->urb->actual_length = requested - remaining; 2393 else if (!td->urb_length_set) 2394 td->urb->actual_length = 0; 2395 goto finish_td; 2396 } 2397 2398 /* stopped at setup stage, no data transferred */ 2399 if (trb_type == TRB_SETUP) 2400 goto finish_td; 2401 2402 /* 2403 * if on data stage then update the actual_length of the URB and flag it 2404 * as set, so it won't be overwritten in the event for the last TRB. 2405 */ 2406 if (trb_type == TRB_DATA || 2407 trb_type == TRB_NORMAL) { 2408 td->urb_length_set = true; 2409 td->urb->actual_length = requested - remaining; 2410 xhci_dbg(xhci, "Waiting for status stage event\n"); 2411 return; 2412 } 2413 2414 /* at status stage */ 2415 if (!td->urb_length_set) 2416 td->urb->actual_length = requested; 2417 2418 finish_td: 2419 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2420 } 2421 2422 /* 2423 * Process isochronous tds, update urb packet status and actual_length. 2424 */ 2425 static void process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2426 struct xhci_ring *ep_ring, struct xhci_td *td, 2427 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2428 { 2429 struct urb_priv *urb_priv; 2430 int idx; 2431 struct usb_iso_packet_descriptor *frame; 2432 u32 trb_comp_code; 2433 bool sum_trbs_for_length = false; 2434 u32 remaining, requested, ep_trb_len; 2435 int short_framestatus; 2436 2437 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2438 urb_priv = td->urb->hcpriv; 2439 idx = urb_priv->num_tds_done; 2440 frame = &td->urb->iso_frame_desc[idx]; 2441 requested = frame->length; 2442 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2443 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2444 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2445 -EREMOTEIO : 0; 2446 2447 /* handle completion code */ 2448 switch (trb_comp_code) { 2449 case COMP_SUCCESS: 2450 /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ 2451 if (td->error_mid_td) 2452 break; 2453 if (remaining) { 2454 frame->status = short_framestatus; 2455 sum_trbs_for_length = true; 2456 break; 2457 } 2458 frame->status = 0; 2459 break; 2460 case COMP_SHORT_PACKET: 2461 frame->status = short_framestatus; 2462 sum_trbs_for_length = true; 2463 break; 2464 case COMP_BANDWIDTH_OVERRUN_ERROR: 2465 frame->status = -ECOMM; 2466 break; 2467 case COMP_BABBLE_DETECTED_ERROR: 2468 sum_trbs_for_length = true; 2469 fallthrough; 2470 case COMP_ISOCH_BUFFER_OVERRUN: 2471 frame->status = -EOVERFLOW; 2472 if (ep_trb != td->end_trb) 2473 td->error_mid_td = true; 2474 break; 2475 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2476 case COMP_STALL_ERROR: 2477 frame->status = -EPROTO; 2478 break; 2479 case COMP_USB_TRANSACTION_ERROR: 2480 frame->status = -EPROTO; 2481 sum_trbs_for_length = true; 2482 if (ep_trb != td->end_trb) 2483 td->error_mid_td = true; 2484 break; 2485 case COMP_STOPPED: 2486 sum_trbs_for_length = true; 2487 break; 2488 case COMP_STOPPED_SHORT_PACKET: 2489 /* field normally containing residue now contains transferred */ 2490 frame->status = short_framestatus; 2491 requested = remaining; 2492 break; 2493 case COMP_STOPPED_LENGTH_INVALID: 2494 /* exclude stopped trb with invalid length from length sum */ 2495 sum_trbs_for_length = true; 2496 ep_trb_len = 0; 2497 remaining = 0; 2498 break; 2499 default: 2500 sum_trbs_for_length = true; 2501 frame->status = -1; 2502 break; 2503 } 2504 2505 if (td->urb_length_set) 2506 goto finish_td; 2507 2508 if (sum_trbs_for_length) 2509 frame->actual_length = sum_trb_lengths(td, ep_trb) + 2510 ep_trb_len - remaining; 2511 else 2512 frame->actual_length = requested; 2513 2514 td->urb->actual_length += frame->actual_length; 2515 2516 finish_td: 2517 /* Don't give back TD yet if we encountered an error mid TD */ 2518 if (td->error_mid_td && ep_trb != td->end_trb) { 2519 xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); 2520 td->urb_length_set = true; 2521 return; 2522 } 2523 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2524 } 2525 2526 static void skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2527 struct xhci_virt_ep *ep, int status) 2528 { 2529 struct urb_priv *urb_priv; 2530 struct usb_iso_packet_descriptor *frame; 2531 int idx; 2532 2533 urb_priv = td->urb->hcpriv; 2534 idx = urb_priv->num_tds_done; 2535 frame = &td->urb->iso_frame_desc[idx]; 2536 2537 /* The transfer is partly done. */ 2538 frame->status = -EXDEV; 2539 2540 /* calc actual length */ 2541 frame->actual_length = 0; 2542 2543 xhci_dequeue_td(xhci, td, ep->ring, status); 2544 } 2545 2546 /* 2547 * Process bulk and interrupt tds, update urb status and actual_length. 2548 */ 2549 static void process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2550 struct xhci_ring *ep_ring, struct xhci_td *td, 2551 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2552 { 2553 struct xhci_slot_ctx *slot_ctx; 2554 u32 trb_comp_code; 2555 u32 remaining, requested, ep_trb_len; 2556 2557 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2558 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2559 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2560 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2561 requested = td->urb->transfer_buffer_length; 2562 2563 switch (trb_comp_code) { 2564 case COMP_SUCCESS: 2565 ep->err_count = 0; 2566 /* handle success with untransferred data as short packet */ 2567 if (ep_trb != td->end_trb || remaining) { 2568 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2569 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2570 td->urb->ep->desc.bEndpointAddress, 2571 requested, remaining); 2572 } 2573 td->status = 0; 2574 break; 2575 case COMP_SHORT_PACKET: 2576 td->status = 0; 2577 break; 2578 case COMP_STOPPED_SHORT_PACKET: 2579 td->urb->actual_length = remaining; 2580 goto finish_td; 2581 case COMP_STOPPED_LENGTH_INVALID: 2582 /* stopped on ep trb with invalid length, exclude it */ 2583 td->urb->actual_length = sum_trb_lengths(td, ep_trb); 2584 goto finish_td; 2585 case COMP_USB_TRANSACTION_ERROR: 2586 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2587 (ep->err_count++ > MAX_SOFT_RETRY) || 2588 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2589 break; 2590 2591 td->status = 0; 2592 2593 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2594 return; 2595 default: 2596 /* do nothing */ 2597 break; 2598 } 2599 2600 if (ep_trb == td->end_trb) 2601 td->urb->actual_length = requested - remaining; 2602 else 2603 td->urb->actual_length = 2604 sum_trb_lengths(td, ep_trb) + 2605 ep_trb_len - remaining; 2606 finish_td: 2607 if (remaining > requested) { 2608 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2609 remaining); 2610 td->urb->actual_length = 0; 2611 } 2612 2613 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2614 } 2615 2616 /* Transfer events which don't point to a transfer TRB, see xhci 4.17.4 */ 2617 static int handle_transferless_tx_event(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2618 u32 trb_comp_code) 2619 { 2620 switch (trb_comp_code) { 2621 case COMP_STALL_ERROR: 2622 case COMP_USB_TRANSACTION_ERROR: 2623 case COMP_INVALID_STREAM_TYPE_ERROR: 2624 case COMP_INVALID_STREAM_ID_ERROR: 2625 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", ep->ep_index); 2626 if (ep->err_count++ > MAX_SOFT_RETRY) 2627 xhci_handle_halted_endpoint(xhci, ep, NULL, EP_HARD_RESET); 2628 else 2629 xhci_handle_halted_endpoint(xhci, ep, NULL, EP_SOFT_RESET); 2630 break; 2631 case COMP_RING_UNDERRUN: 2632 case COMP_RING_OVERRUN: 2633 case COMP_STOPPED_LENGTH_INVALID: 2634 break; 2635 default: 2636 xhci_err(xhci, "Transfer event %u for unknown stream ring slot %u ep %u\n", 2637 trb_comp_code, ep->vdev->slot_id, ep->ep_index); 2638 return -ENODEV; 2639 } 2640 return 0; 2641 } 2642 2643 /* 2644 * If this function returns an error condition, it means it got a Transfer 2645 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2646 * At this point, the host controller is probably hosed and should be reset. 2647 */ 2648 static int handle_tx_event(struct xhci_hcd *xhci, 2649 struct xhci_interrupter *ir, 2650 struct xhci_transfer_event *event) 2651 { 2652 struct xhci_virt_ep *ep; 2653 struct xhci_ring *ep_ring; 2654 unsigned int slot_id; 2655 int ep_index; 2656 struct xhci_td *td = NULL; 2657 dma_addr_t ep_trb_dma; 2658 struct xhci_segment *ep_seg; 2659 union xhci_trb *ep_trb; 2660 int status = -EINPROGRESS; 2661 struct xhci_ep_ctx *ep_ctx; 2662 u32 trb_comp_code; 2663 2664 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2665 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2666 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2667 ep_trb_dma = le64_to_cpu(event->buffer); 2668 2669 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2670 if (!ep) { 2671 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2672 goto err_out; 2673 } 2674 2675 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2676 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2677 2678 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2679 xhci_err(xhci, 2680 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2681 slot_id, ep_index); 2682 goto err_out; 2683 } 2684 2685 if (!ep_ring) 2686 return handle_transferless_tx_event(xhci, ep, trb_comp_code); 2687 2688 /* Look for common error cases */ 2689 switch (trb_comp_code) { 2690 /* Skip codes that require special handling depending on 2691 * transfer type 2692 */ 2693 case COMP_SUCCESS: 2694 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2695 trb_comp_code = COMP_SHORT_PACKET; 2696 xhci_dbg(xhci, "Successful completion on short TX for slot %u ep %u with last td short %d\n", 2697 slot_id, ep_index, ep_ring->last_td_was_short); 2698 } 2699 break; 2700 case COMP_SHORT_PACKET: 2701 break; 2702 /* Completion codes for endpoint stopped state */ 2703 case COMP_STOPPED: 2704 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2705 slot_id, ep_index); 2706 break; 2707 case COMP_STOPPED_LENGTH_INVALID: 2708 xhci_dbg(xhci, 2709 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2710 slot_id, ep_index); 2711 break; 2712 case COMP_STOPPED_SHORT_PACKET: 2713 xhci_dbg(xhci, 2714 "Stopped with short packet transfer detected for slot %u ep %u\n", 2715 slot_id, ep_index); 2716 break; 2717 /* Completion codes for endpoint halted state */ 2718 case COMP_STALL_ERROR: 2719 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2720 ep_index); 2721 status = -EPIPE; 2722 break; 2723 case COMP_SPLIT_TRANSACTION_ERROR: 2724 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2725 slot_id, ep_index); 2726 status = -EPROTO; 2727 break; 2728 case COMP_USB_TRANSACTION_ERROR: 2729 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2730 slot_id, ep_index); 2731 status = -EPROTO; 2732 break; 2733 case COMP_BABBLE_DETECTED_ERROR: 2734 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2735 slot_id, ep_index); 2736 status = -EOVERFLOW; 2737 break; 2738 /* Completion codes for endpoint error state */ 2739 case COMP_TRB_ERROR: 2740 xhci_warn(xhci, 2741 "WARN: TRB error for slot %u ep %u on endpoint\n", 2742 slot_id, ep_index); 2743 status = -EILSEQ; 2744 break; 2745 /* completion codes not indicating endpoint state change */ 2746 case COMP_DATA_BUFFER_ERROR: 2747 xhci_warn(xhci, 2748 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2749 slot_id, ep_index); 2750 status = -ENOSR; 2751 break; 2752 case COMP_BANDWIDTH_OVERRUN_ERROR: 2753 xhci_warn(xhci, 2754 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2755 slot_id, ep_index); 2756 break; 2757 case COMP_ISOCH_BUFFER_OVERRUN: 2758 xhci_warn(xhci, 2759 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2760 slot_id, ep_index); 2761 break; 2762 case COMP_RING_UNDERRUN: 2763 /* 2764 * When the Isoch ring is empty, the xHC will generate 2765 * a Ring Overrun Event for IN Isoch endpoint or Ring 2766 * Underrun Event for OUT Isoch endpoint. 2767 */ 2768 xhci_dbg(xhci, "Underrun event on slot %u ep %u\n", slot_id, ep_index); 2769 if (ep->skip) 2770 break; 2771 return 0; 2772 case COMP_RING_OVERRUN: 2773 xhci_dbg(xhci, "Overrun event on slot %u ep %u\n", slot_id, ep_index); 2774 if (ep->skip) 2775 break; 2776 return 0; 2777 case COMP_MISSED_SERVICE_ERROR: 2778 /* 2779 * When encounter missed service error, one or more isoc tds 2780 * may be missed by xHC. 2781 * Set skip flag of the ep_ring; Complete the missed tds as 2782 * short transfer when process the ep_ring next time. 2783 */ 2784 ep->skip = true; 2785 xhci_dbg(xhci, 2786 "Miss service interval error for slot %u ep %u, set skip flag\n", 2787 slot_id, ep_index); 2788 return 0; 2789 case COMP_NO_PING_RESPONSE_ERROR: 2790 ep->skip = true; 2791 xhci_dbg(xhci, 2792 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2793 slot_id, ep_index); 2794 return 0; 2795 2796 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2797 /* needs disable slot command to recover */ 2798 xhci_warn(xhci, 2799 "WARN: detect an incompatible device for slot %u ep %u", 2800 slot_id, ep_index); 2801 status = -EPROTO; 2802 break; 2803 default: 2804 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2805 status = 0; 2806 break; 2807 } 2808 xhci_warn(xhci, 2809 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2810 trb_comp_code, slot_id, ep_index); 2811 if (ep->skip) 2812 break; 2813 return 0; 2814 } 2815 2816 /* 2817 * xhci 4.10.2 states isoc endpoints should continue 2818 * processing the next TD if there was an error mid TD. 2819 * So host like NEC don't generate an event for the last 2820 * isoc TRB even if the IOC flag is set. 2821 * xhci 4.9.1 states that if there are errors in mult-TRB 2822 * TDs xHC should generate an error for that TRB, and if xHC 2823 * proceeds to the next TD it should genete an event for 2824 * any TRB with IOC flag on the way. Other host follow this. 2825 * 2826 * We wait for the final IOC event, but if we get an event 2827 * anywhere outside this TD, just give it back already. 2828 */ 2829 td = list_first_entry_or_null(&ep_ring->td_list, struct xhci_td, td_list); 2830 2831 if (td && td->error_mid_td && !trb_in_td(xhci, td, ep_trb_dma, false)) { 2832 xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); 2833 xhci_dequeue_td(xhci, td, ep_ring, td->status); 2834 } 2835 2836 if (list_empty(&ep_ring->td_list)) { 2837 /* 2838 * Don't print wanings if ring is empty due to a stopped endpoint generating an 2839 * extra completion event if the device was suspended. Or, a event for the last TRB 2840 * of a short TD we already got a short event for. The short TD is already removed 2841 * from the TD list. 2842 */ 2843 if (trb_comp_code != COMP_STOPPED && 2844 trb_comp_code != COMP_STOPPED_LENGTH_INVALID && 2845 !ep_ring->last_td_was_short) { 2846 xhci_warn(xhci, "Event TRB for slot %u ep %u with no TDs queued\n", 2847 slot_id, ep_index); 2848 } 2849 2850 ep->skip = false; 2851 goto check_endpoint_halted; 2852 } 2853 2854 do { 2855 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2856 td_list); 2857 2858 /* Is this a TRB in the currently executing TD? */ 2859 ep_seg = trb_in_td(xhci, td, ep_trb_dma, false); 2860 2861 if (!ep_seg) { 2862 2863 if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2864 skip_isoc_td(xhci, td, ep, status); 2865 if (!list_empty(&ep_ring->td_list)) 2866 continue; 2867 2868 xhci_dbg(xhci, "All TDs skipped for slot %u ep %u. Clear skip flag.\n", 2869 slot_id, ep_index); 2870 ep->skip = false; 2871 td = NULL; 2872 goto check_endpoint_halted; 2873 } 2874 2875 /* 2876 * Skip the Force Stopped Event. The 'ep_trb' of FSE is not in the current 2877 * TD pointed by 'ep_ring->dequeue' because that the hardware dequeue 2878 * pointer still at the previous TRB of the current TD. The previous TRB 2879 * maybe a Link TD or the last TRB of the previous TD. The command 2880 * completion handle will take care the rest. 2881 */ 2882 if (trb_comp_code == COMP_STOPPED || 2883 trb_comp_code == COMP_STOPPED_LENGTH_INVALID) { 2884 return 0; 2885 } 2886 2887 /* 2888 * Some hosts give a spurious success event after a short 2889 * transfer. Ignore it. 2890 */ 2891 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2892 ep_ring->last_td_was_short) { 2893 ep_ring->last_td_was_short = false; 2894 return 0; 2895 } 2896 2897 /* HC is busted, give up! */ 2898 xhci_err(xhci, 2899 "ERROR Transfer event TRB DMA ptr not part of current TD ep_index %d comp_code %u\n", 2900 ep_index, trb_comp_code); 2901 trb_in_td(xhci, td, ep_trb_dma, true); 2902 2903 return -ESHUTDOWN; 2904 } 2905 2906 if (ep->skip) { 2907 xhci_dbg(xhci, 2908 "Found td. Clear skip flag for slot %u ep %u.\n", 2909 slot_id, ep_index); 2910 ep->skip = false; 2911 } 2912 2913 /* 2914 * If ep->skip is set, it means there are missed tds on the 2915 * endpoint ring need to take care of. 2916 * Process them as short transfer until reach the td pointed by 2917 * the event. 2918 */ 2919 } while (ep->skip); 2920 2921 if (trb_comp_code == COMP_SHORT_PACKET) 2922 ep_ring->last_td_was_short = true; 2923 else 2924 ep_ring->last_td_was_short = false; 2925 2926 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / sizeof(*ep_trb)]; 2927 trace_xhci_handle_transfer(ep_ring, (struct xhci_generic_trb *) ep_trb, ep_trb_dma); 2928 2929 /* 2930 * No-op TRB could trigger interrupts in a case where a URB was killed 2931 * and a STALL_ERROR happens right after the endpoint ring stopped. 2932 * Reset the halted endpoint. Otherwise, the endpoint remains stalled 2933 * indefinitely. 2934 */ 2935 2936 if (trb_is_noop(ep_trb)) 2937 goto check_endpoint_halted; 2938 2939 td->status = status; 2940 2941 /* update the urb's actual_length and give back to the core */ 2942 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2943 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2944 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2945 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2946 else 2947 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2948 return 0; 2949 2950 check_endpoint_halted: 2951 if (xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) 2952 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2953 2954 return 0; 2955 2956 err_out: 2957 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2958 (unsigned long long) xhci_trb_virt_to_dma( 2959 ir->event_ring->deq_seg, 2960 ir->event_ring->dequeue), 2961 lower_32_bits(le64_to_cpu(event->buffer)), 2962 upper_32_bits(le64_to_cpu(event->buffer)), 2963 le32_to_cpu(event->transfer_len), 2964 le32_to_cpu(event->flags)); 2965 return -ENODEV; 2966 } 2967 2968 /* 2969 * This function handles one OS-owned event on the event ring. It may drop 2970 * xhci->lock between event processing (e.g. to pass up port status changes). 2971 */ 2972 static int xhci_handle_event_trb(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 2973 union xhci_trb *event) 2974 { 2975 u32 trb_type; 2976 2977 trace_xhci_handle_event(ir->event_ring, &event->generic, 2978 xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 2979 ir->event_ring->dequeue)); 2980 2981 /* 2982 * Barrier between reading the TRB_CYCLE (valid) flag before, and any 2983 * speculative reads of the event's flags/data below. 2984 */ 2985 rmb(); 2986 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 2987 /* FIXME: Handle more event types. */ 2988 2989 switch (trb_type) { 2990 case TRB_COMPLETION: 2991 handle_cmd_completion(xhci, &event->event_cmd); 2992 break; 2993 case TRB_PORT_STATUS: 2994 handle_port_status(xhci, event); 2995 break; 2996 case TRB_TRANSFER: 2997 handle_tx_event(xhci, ir, &event->trans_event); 2998 break; 2999 case TRB_DEV_NOTE: 3000 handle_device_notification(xhci, event); 3001 break; 3002 default: 3003 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 3004 handle_vendor_event(xhci, event, trb_type); 3005 else 3006 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 3007 } 3008 /* Any of the above functions may drop and re-acquire the lock, so check 3009 * to make sure a watchdog timer didn't mark the host as non-responsive. 3010 */ 3011 if (xhci->xhc_state & XHCI_STATE_DYING) { 3012 xhci_dbg(xhci, "xHCI host dying, returning from event handler.\n"); 3013 return -ENODEV; 3014 } 3015 3016 return 0; 3017 } 3018 3019 /* 3020 * Update Event Ring Dequeue Pointer: 3021 * - When all events have finished 3022 * - To avoid "Event Ring Full Error" condition 3023 */ 3024 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 3025 struct xhci_interrupter *ir, 3026 bool clear_ehb) 3027 { 3028 u64 temp_64; 3029 dma_addr_t deq; 3030 3031 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3032 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3033 ir->event_ring->dequeue); 3034 if (deq == 0) 3035 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 3036 /* 3037 * Per 4.9.4, Software writes to the ERDP register shall always advance 3038 * the Event Ring Dequeue Pointer value. 3039 */ 3040 if ((temp_64 & ERST_PTR_MASK) == (deq & ERST_PTR_MASK) && !clear_ehb) 3041 return; 3042 3043 /* Update HC event ring dequeue pointer */ 3044 temp_64 = ir->event_ring->deq_seg->num & ERST_DESI_MASK; 3045 temp_64 |= deq & ERST_PTR_MASK; 3046 3047 /* Clear the event handler busy flag (RW1C) */ 3048 if (clear_ehb) 3049 temp_64 |= ERST_EHB; 3050 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3051 } 3052 3053 /* Clear the interrupt pending bit for a specific interrupter. */ 3054 static void xhci_clear_interrupt_pending(struct xhci_interrupter *ir) 3055 { 3056 if (!ir->ip_autoclear) { 3057 u32 irq_pending; 3058 3059 irq_pending = readl(&ir->ir_set->irq_pending); 3060 irq_pending |= IMAN_IP; 3061 writel(irq_pending, &ir->ir_set->irq_pending); 3062 } 3063 } 3064 3065 /* 3066 * Handle all OS-owned events on an interrupter event ring. It may drop 3067 * and reaquire xhci->lock between event processing. 3068 */ 3069 static int xhci_handle_events(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 3070 { 3071 int event_loop = 0; 3072 int err; 3073 u64 temp; 3074 3075 xhci_clear_interrupt_pending(ir); 3076 3077 /* Event ring hasn't been allocated yet. */ 3078 if (!ir->event_ring || !ir->event_ring->dequeue) { 3079 xhci_err(xhci, "ERROR interrupter event ring not ready\n"); 3080 return -ENOMEM; 3081 } 3082 3083 if (xhci->xhc_state & XHCI_STATE_DYING || 3084 xhci->xhc_state & XHCI_STATE_HALTED) { 3085 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. Shouldn't IRQs be disabled?\n"); 3086 3087 /* Clear the event handler busy flag (RW1C) */ 3088 temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3089 xhci_write_64(xhci, temp | ERST_EHB, &ir->ir_set->erst_dequeue); 3090 return -ENODEV; 3091 } 3092 3093 /* Process all OS owned event TRBs on this event ring */ 3094 while (unhandled_event_trb(ir->event_ring)) { 3095 err = xhci_handle_event_trb(xhci, ir, ir->event_ring->dequeue); 3096 3097 /* 3098 * If half a segment of events have been handled in one go then 3099 * update ERDP, and force isoc trbs to interrupt more often 3100 */ 3101 if (event_loop++ > TRBS_PER_SEGMENT / 2) { 3102 xhci_update_erst_dequeue(xhci, ir, false); 3103 3104 if (ir->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3105 ir->isoc_bei_interval = ir->isoc_bei_interval / 2; 3106 3107 event_loop = 0; 3108 } 3109 3110 /* Update SW event ring dequeue pointer */ 3111 inc_deq(xhci, ir->event_ring); 3112 3113 if (err) 3114 break; 3115 } 3116 3117 xhci_update_erst_dequeue(xhci, ir, true); 3118 3119 return 0; 3120 } 3121 3122 /* 3123 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3124 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3125 * indicators of an event TRB error, but we check the status *first* to be safe. 3126 */ 3127 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3128 { 3129 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3130 irqreturn_t ret = IRQ_HANDLED; 3131 u32 status; 3132 3133 spin_lock(&xhci->lock); 3134 /* Check if the xHC generated the interrupt, or the irq is shared */ 3135 status = readl(&xhci->op_regs->status); 3136 if (status == ~(u32)0) { 3137 xhci_hc_died(xhci); 3138 goto out; 3139 } 3140 3141 if (!(status & STS_EINT)) { 3142 ret = IRQ_NONE; 3143 goto out; 3144 } 3145 3146 if (status & STS_HCE) { 3147 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3148 goto out; 3149 } 3150 3151 if (status & STS_FATAL) { 3152 xhci_warn(xhci, "WARNING: Host System Error\n"); 3153 xhci_halt(xhci); 3154 goto out; 3155 } 3156 3157 /* 3158 * Clear the op reg interrupt status first, 3159 * so we can receive interrupts from other MSI-X interrupters. 3160 * Write 1 to clear the interrupt status. 3161 */ 3162 status |= STS_EINT; 3163 writel(status, &xhci->op_regs->status); 3164 3165 /* This is the handler of the primary interrupter */ 3166 xhci_handle_events(xhci, xhci->interrupters[0]); 3167 out: 3168 spin_unlock(&xhci->lock); 3169 3170 return ret; 3171 } 3172 3173 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3174 { 3175 return xhci_irq(hcd); 3176 } 3177 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3178 3179 /**** Endpoint Ring Operations ****/ 3180 3181 /* 3182 * Generic function for queueing a TRB on a ring. 3183 * The caller must have checked to make sure there's room on the ring. 3184 * 3185 * @more_trbs_coming: Will you enqueue more TRBs before calling 3186 * prepare_transfer()? 3187 */ 3188 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3189 bool more_trbs_coming, 3190 u32 field1, u32 field2, u32 field3, u32 field4) 3191 { 3192 struct xhci_generic_trb *trb; 3193 3194 trb = &ring->enqueue->generic; 3195 trb->field[0] = cpu_to_le32(field1); 3196 trb->field[1] = cpu_to_le32(field2); 3197 trb->field[2] = cpu_to_le32(field3); 3198 /* make sure TRB is fully written before giving it to the controller */ 3199 wmb(); 3200 trb->field[3] = cpu_to_le32(field4); 3201 3202 trace_xhci_queue_trb(ring, trb, 3203 xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue)); 3204 3205 inc_enq(xhci, ring, more_trbs_coming); 3206 } 3207 3208 /* 3209 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3210 * expand ring if it start to be full. 3211 */ 3212 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3213 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3214 { 3215 unsigned int link_trb_count = 0; 3216 unsigned int new_segs = 0; 3217 3218 /* Make sure the endpoint has been added to xHC schedule */ 3219 switch (ep_state) { 3220 case EP_STATE_DISABLED: 3221 /* 3222 * USB core changed config/interfaces without notifying us, 3223 * or hardware is reporting the wrong state. 3224 */ 3225 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3226 return -ENOENT; 3227 case EP_STATE_ERROR: 3228 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3229 /* FIXME event handling code for error needs to clear it */ 3230 /* XXX not sure if this should be -ENOENT or not */ 3231 return -EINVAL; 3232 case EP_STATE_HALTED: 3233 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3234 break; 3235 case EP_STATE_STOPPED: 3236 case EP_STATE_RUNNING: 3237 break; 3238 default: 3239 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3240 /* 3241 * FIXME issue Configure Endpoint command to try to get the HC 3242 * back into a known state. 3243 */ 3244 return -EINVAL; 3245 } 3246 3247 if (ep_ring != xhci->cmd_ring) { 3248 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); 3249 } else if (xhci_num_trbs_free(ep_ring) <= num_trbs) { 3250 xhci_err(xhci, "Do not support expand command ring\n"); 3251 return -ENOMEM; 3252 } 3253 3254 if (new_segs) { 3255 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3256 "ERROR no room on ep ring, try ring expansion"); 3257 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { 3258 xhci_err(xhci, "Ring expansion failed\n"); 3259 return -ENOMEM; 3260 } 3261 } 3262 3263 while (trb_is_link(ep_ring->enqueue)) { 3264 /* If we're not dealing with 0.95 hardware or isoc rings 3265 * on AMD 0.96 host, clear the chain bit. 3266 */ 3267 if (!xhci_link_chain_quirk(xhci, ep_ring->type)) 3268 ep_ring->enqueue->link.control &= 3269 cpu_to_le32(~TRB_CHAIN); 3270 else 3271 ep_ring->enqueue->link.control |= 3272 cpu_to_le32(TRB_CHAIN); 3273 3274 wmb(); 3275 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3276 3277 /* Toggle the cycle bit after the last ring segment. */ 3278 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3279 ep_ring->cycle_state ^= 1; 3280 3281 ep_ring->enq_seg = ep_ring->enq_seg->next; 3282 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3283 3284 /* prevent infinite loop if all first trbs are link trbs */ 3285 if (link_trb_count++ > ep_ring->num_segs) { 3286 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3287 return -EINVAL; 3288 } 3289 } 3290 3291 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3292 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3293 return -EINVAL; 3294 } 3295 3296 return 0; 3297 } 3298 3299 static int prepare_transfer(struct xhci_hcd *xhci, 3300 struct xhci_virt_device *xdev, 3301 unsigned int ep_index, 3302 unsigned int stream_id, 3303 unsigned int num_trbs, 3304 struct urb *urb, 3305 unsigned int td_index, 3306 gfp_t mem_flags) 3307 { 3308 int ret; 3309 struct urb_priv *urb_priv; 3310 struct xhci_td *td; 3311 struct xhci_ring *ep_ring; 3312 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3313 3314 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3315 stream_id); 3316 if (!ep_ring) { 3317 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3318 stream_id); 3319 return -EINVAL; 3320 } 3321 3322 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3323 num_trbs, mem_flags); 3324 if (ret) 3325 return ret; 3326 3327 urb_priv = urb->hcpriv; 3328 td = &urb_priv->td[td_index]; 3329 3330 INIT_LIST_HEAD(&td->td_list); 3331 INIT_LIST_HEAD(&td->cancelled_td_list); 3332 3333 if (td_index == 0) { 3334 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3335 if (unlikely(ret)) 3336 return ret; 3337 } 3338 3339 td->urb = urb; 3340 /* Add this TD to the tail of the endpoint ring's TD list */ 3341 list_add_tail(&td->td_list, &ep_ring->td_list); 3342 td->start_seg = ep_ring->enq_seg; 3343 td->start_trb = ep_ring->enqueue; 3344 3345 return 0; 3346 } 3347 3348 unsigned int count_trbs(u64 addr, u64 len) 3349 { 3350 unsigned int num_trbs; 3351 3352 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3353 TRB_MAX_BUFF_SIZE); 3354 if (num_trbs == 0) 3355 num_trbs++; 3356 3357 return num_trbs; 3358 } 3359 3360 static inline unsigned int count_trbs_needed(struct urb *urb) 3361 { 3362 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3363 } 3364 3365 static unsigned int count_sg_trbs_needed(struct urb *urb) 3366 { 3367 struct scatterlist *sg; 3368 unsigned int i, len, full_len, num_trbs = 0; 3369 3370 full_len = urb->transfer_buffer_length; 3371 3372 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3373 len = sg_dma_len(sg); 3374 num_trbs += count_trbs(sg_dma_address(sg), len); 3375 len = min_t(unsigned int, len, full_len); 3376 full_len -= len; 3377 if (full_len == 0) 3378 break; 3379 } 3380 3381 return num_trbs; 3382 } 3383 3384 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3385 { 3386 u64 addr, len; 3387 3388 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3389 len = urb->iso_frame_desc[i].length; 3390 3391 return count_trbs(addr, len); 3392 } 3393 3394 static void check_trb_math(struct urb *urb, int running_total) 3395 { 3396 if (unlikely(running_total != urb->transfer_buffer_length)) 3397 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3398 "queued %#x (%d), asked for %#x (%d)\n", 3399 __func__, 3400 urb->ep->desc.bEndpointAddress, 3401 running_total, running_total, 3402 urb->transfer_buffer_length, 3403 urb->transfer_buffer_length); 3404 } 3405 3406 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3407 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3408 struct xhci_generic_trb *start_trb) 3409 { 3410 /* 3411 * Pass all the TRBs to the hardware at once and make sure this write 3412 * isn't reordered. 3413 */ 3414 wmb(); 3415 if (start_cycle) 3416 start_trb->field[3] |= cpu_to_le32(start_cycle); 3417 else 3418 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3419 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3420 } 3421 3422 static void check_interval(struct urb *urb, struct xhci_ep_ctx *ep_ctx) 3423 { 3424 int xhci_interval; 3425 int ep_interval; 3426 3427 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3428 ep_interval = urb->interval; 3429 3430 /* Convert to microframes */ 3431 if (urb->dev->speed == USB_SPEED_LOW || 3432 urb->dev->speed == USB_SPEED_FULL) 3433 ep_interval *= 8; 3434 3435 /* FIXME change this to a warning and a suggestion to use the new API 3436 * to set the polling interval (once the API is added). 3437 */ 3438 if (xhci_interval != ep_interval) { 3439 dev_dbg_ratelimited(&urb->dev->dev, 3440 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3441 ep_interval, ep_interval == 1 ? "" : "s", 3442 xhci_interval, xhci_interval == 1 ? "" : "s"); 3443 urb->interval = xhci_interval; 3444 /* Convert back to frames for LS/FS devices */ 3445 if (urb->dev->speed == USB_SPEED_LOW || 3446 urb->dev->speed == USB_SPEED_FULL) 3447 urb->interval /= 8; 3448 } 3449 } 3450 3451 /* 3452 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3453 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3454 * (comprised of sg list entries) can take several service intervals to 3455 * transmit. 3456 */ 3457 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3458 struct urb *urb, int slot_id, unsigned int ep_index) 3459 { 3460 struct xhci_ep_ctx *ep_ctx; 3461 3462 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3463 check_interval(urb, ep_ctx); 3464 3465 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3466 } 3467 3468 /* 3469 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3470 * packets remaining in the TD (*not* including this TRB). 3471 * 3472 * Total TD packet count = total_packet_count = 3473 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3474 * 3475 * Packets transferred up to and including this TRB = packets_transferred = 3476 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3477 * 3478 * TD size = total_packet_count - packets_transferred 3479 * 3480 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3481 * including this TRB, right shifted by 10 3482 * 3483 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3484 * This is taken care of in the TRB_TD_SIZE() macro 3485 * 3486 * The last TRB in a TD must have the TD size set to zero. 3487 */ 3488 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3489 int trb_buff_len, unsigned int td_total_len, 3490 struct urb *urb, bool more_trbs_coming) 3491 { 3492 u32 maxp, total_packet_count; 3493 3494 /* MTK xHCI 0.96 contains some features from 1.0 */ 3495 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3496 return ((td_total_len - transferred) >> 10); 3497 3498 /* One TRB with a zero-length data packet. */ 3499 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3500 trb_buff_len == td_total_len) 3501 return 0; 3502 3503 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3504 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3505 trb_buff_len = 0; 3506 3507 maxp = usb_endpoint_maxp(&urb->ep->desc); 3508 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3509 3510 /* Queueing functions don't count the current TRB into transferred */ 3511 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3512 } 3513 3514 3515 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3516 u32 *trb_buff_len, struct xhci_segment *seg) 3517 { 3518 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 3519 unsigned int unalign; 3520 unsigned int max_pkt; 3521 u32 new_buff_len; 3522 size_t len; 3523 3524 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3525 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3526 3527 /* we got lucky, last normal TRB data on segment is packet aligned */ 3528 if (unalign == 0) 3529 return 0; 3530 3531 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3532 unalign, *trb_buff_len); 3533 3534 /* is the last nornal TRB alignable by splitting it */ 3535 if (*trb_buff_len > unalign) { 3536 *trb_buff_len -= unalign; 3537 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3538 return 0; 3539 } 3540 3541 /* 3542 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3543 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3544 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3545 */ 3546 new_buff_len = max_pkt - (enqd_len % max_pkt); 3547 3548 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3549 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3550 3551 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3552 if (usb_urb_dir_out(urb)) { 3553 if (urb->num_sgs) { 3554 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3555 seg->bounce_buf, new_buff_len, enqd_len); 3556 if (len != new_buff_len) 3557 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3558 len, new_buff_len); 3559 } else { 3560 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3561 } 3562 3563 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3564 max_pkt, DMA_TO_DEVICE); 3565 } else { 3566 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3567 max_pkt, DMA_FROM_DEVICE); 3568 } 3569 3570 if (dma_mapping_error(dev, seg->bounce_dma)) { 3571 /* try without aligning. Some host controllers survive */ 3572 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3573 return 0; 3574 } 3575 *trb_buff_len = new_buff_len; 3576 seg->bounce_len = new_buff_len; 3577 seg->bounce_offs = enqd_len; 3578 3579 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3580 3581 return 1; 3582 } 3583 3584 /* This is very similar to what ehci-q.c qtd_fill() does */ 3585 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3586 struct urb *urb, int slot_id, unsigned int ep_index) 3587 { 3588 struct xhci_ring *ring; 3589 struct urb_priv *urb_priv; 3590 struct xhci_td *td; 3591 struct xhci_generic_trb *start_trb; 3592 struct scatterlist *sg = NULL; 3593 bool more_trbs_coming = true; 3594 bool need_zero_pkt = false; 3595 bool first_trb = true; 3596 unsigned int num_trbs; 3597 unsigned int start_cycle, num_sgs = 0; 3598 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3599 int sent_len, ret; 3600 u32 field, length_field, remainder; 3601 u64 addr, send_addr; 3602 3603 ring = xhci_urb_to_transfer_ring(xhci, urb); 3604 if (!ring) 3605 return -EINVAL; 3606 3607 full_len = urb->transfer_buffer_length; 3608 /* If we have scatter/gather list, we use it. */ 3609 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3610 num_sgs = urb->num_mapped_sgs; 3611 sg = urb->sg; 3612 addr = (u64) sg_dma_address(sg); 3613 block_len = sg_dma_len(sg); 3614 num_trbs = count_sg_trbs_needed(urb); 3615 } else { 3616 num_trbs = count_trbs_needed(urb); 3617 addr = (u64) urb->transfer_dma; 3618 block_len = full_len; 3619 } 3620 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3621 ep_index, urb->stream_id, 3622 num_trbs, urb, 0, mem_flags); 3623 if (unlikely(ret < 0)) 3624 return ret; 3625 3626 urb_priv = urb->hcpriv; 3627 3628 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3629 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3630 need_zero_pkt = true; 3631 3632 td = &urb_priv->td[0]; 3633 3634 /* 3635 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3636 * until we've finished creating all the other TRBs. The ring's cycle 3637 * state may change as we enqueue the other TRBs, so save it too. 3638 */ 3639 start_trb = &ring->enqueue->generic; 3640 start_cycle = ring->cycle_state; 3641 send_addr = addr; 3642 3643 /* Queue the TRBs, even if they are zero-length */ 3644 for (enqd_len = 0; first_trb || enqd_len < full_len; 3645 enqd_len += trb_buff_len) { 3646 field = TRB_TYPE(TRB_NORMAL); 3647 3648 /* TRB buffer should not cross 64KB boundaries */ 3649 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3650 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3651 3652 if (enqd_len + trb_buff_len > full_len) 3653 trb_buff_len = full_len - enqd_len; 3654 3655 /* Don't change the cycle bit of the first TRB until later */ 3656 if (first_trb) { 3657 first_trb = false; 3658 if (start_cycle == 0) 3659 field |= TRB_CYCLE; 3660 } else 3661 field |= ring->cycle_state; 3662 3663 /* Chain all the TRBs together; clear the chain bit in the last 3664 * TRB to indicate it's the last TRB in the chain. 3665 */ 3666 if (enqd_len + trb_buff_len < full_len) { 3667 field |= TRB_CHAIN; 3668 if (trb_is_link(ring->enqueue + 1)) { 3669 if (xhci_align_td(xhci, urb, enqd_len, 3670 &trb_buff_len, 3671 ring->enq_seg)) { 3672 send_addr = ring->enq_seg->bounce_dma; 3673 /* assuming TD won't span 2 segs */ 3674 td->bounce_seg = ring->enq_seg; 3675 } 3676 } 3677 } 3678 if (enqd_len + trb_buff_len >= full_len) { 3679 field &= ~TRB_CHAIN; 3680 field |= TRB_IOC; 3681 more_trbs_coming = false; 3682 td->end_trb = ring->enqueue; 3683 td->end_seg = ring->enq_seg; 3684 if (xhci_urb_suitable_for_idt(urb)) { 3685 memcpy(&send_addr, urb->transfer_buffer, 3686 trb_buff_len); 3687 le64_to_cpus(&send_addr); 3688 field |= TRB_IDT; 3689 } 3690 } 3691 3692 /* Only set interrupt on short packet for IN endpoints */ 3693 if (usb_urb_dir_in(urb)) 3694 field |= TRB_ISP; 3695 3696 /* Set the TRB length, TD size, and interrupter fields. */ 3697 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3698 full_len, urb, more_trbs_coming); 3699 3700 length_field = TRB_LEN(trb_buff_len) | 3701 TRB_TD_SIZE(remainder) | 3702 TRB_INTR_TARGET(0); 3703 3704 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3705 lower_32_bits(send_addr), 3706 upper_32_bits(send_addr), 3707 length_field, 3708 field); 3709 addr += trb_buff_len; 3710 sent_len = trb_buff_len; 3711 3712 while (sg && sent_len >= block_len) { 3713 /* New sg entry */ 3714 --num_sgs; 3715 sent_len -= block_len; 3716 sg = sg_next(sg); 3717 if (num_sgs != 0 && sg) { 3718 block_len = sg_dma_len(sg); 3719 addr = (u64) sg_dma_address(sg); 3720 addr += sent_len; 3721 } 3722 } 3723 block_len -= sent_len; 3724 send_addr = addr; 3725 } 3726 3727 if (need_zero_pkt) { 3728 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3729 ep_index, urb->stream_id, 3730 1, urb, 1, mem_flags); 3731 urb_priv->td[1].end_trb = ring->enqueue; 3732 urb_priv->td[1].end_seg = ring->enq_seg; 3733 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3734 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3735 } 3736 3737 check_trb_math(urb, enqd_len); 3738 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3739 start_cycle, start_trb); 3740 return 0; 3741 } 3742 3743 /* Caller must have locked xhci->lock */ 3744 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3745 struct urb *urb, int slot_id, unsigned int ep_index) 3746 { 3747 struct xhci_ring *ep_ring; 3748 int num_trbs; 3749 int ret; 3750 struct usb_ctrlrequest *setup; 3751 struct xhci_generic_trb *start_trb; 3752 int start_cycle; 3753 u32 field; 3754 struct urb_priv *urb_priv; 3755 struct xhci_td *td; 3756 3757 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3758 if (!ep_ring) 3759 return -EINVAL; 3760 3761 /* 3762 * Need to copy setup packet into setup TRB, so we can't use the setup 3763 * DMA address. 3764 */ 3765 if (!urb->setup_packet) 3766 return -EINVAL; 3767 3768 if ((xhci->quirks & XHCI_ETRON_HOST) && 3769 urb->dev->speed >= USB_SPEED_SUPER) { 3770 /* 3771 * If next available TRB is the Link TRB in the ring segment then 3772 * enqueue a No Op TRB, this can prevent the Setup and Data Stage 3773 * TRB to be breaked by the Link TRB. 3774 */ 3775 if (trb_is_link(ep_ring->enqueue + 1)) { 3776 field = TRB_TYPE(TRB_TR_NOOP) | ep_ring->cycle_state; 3777 queue_trb(xhci, ep_ring, false, 0, 0, 3778 TRB_INTR_TARGET(0), field); 3779 } 3780 } 3781 3782 /* 1 TRB for setup, 1 for status */ 3783 num_trbs = 2; 3784 /* 3785 * Don't need to check if we need additional event data and normal TRBs, 3786 * since data in control transfers will never get bigger than 16MB 3787 * XXX: can we get a buffer that crosses 64KB boundaries? 3788 */ 3789 if (urb->transfer_buffer_length > 0) 3790 num_trbs++; 3791 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3792 ep_index, urb->stream_id, 3793 num_trbs, urb, 0, mem_flags); 3794 if (ret < 0) 3795 return ret; 3796 3797 urb_priv = urb->hcpriv; 3798 td = &urb_priv->td[0]; 3799 3800 /* 3801 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3802 * until we've finished creating all the other TRBs. The ring's cycle 3803 * state may change as we enqueue the other TRBs, so save it too. 3804 */ 3805 start_trb = &ep_ring->enqueue->generic; 3806 start_cycle = ep_ring->cycle_state; 3807 3808 /* Queue setup TRB - see section 6.4.1.2.1 */ 3809 /* FIXME better way to translate setup_packet into two u32 fields? */ 3810 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3811 field = 0; 3812 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3813 if (start_cycle == 0) 3814 field |= 0x1; 3815 3816 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3817 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3818 if (urb->transfer_buffer_length > 0) { 3819 if (setup->bRequestType & USB_DIR_IN) 3820 field |= TRB_TX_TYPE(TRB_DATA_IN); 3821 else 3822 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3823 } 3824 } 3825 3826 queue_trb(xhci, ep_ring, true, 3827 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3828 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3829 TRB_LEN(8) | TRB_INTR_TARGET(0), 3830 /* Immediate data in pointer */ 3831 field); 3832 3833 /* If there's data, queue data TRBs */ 3834 /* Only set interrupt on short packet for IN endpoints */ 3835 if (usb_urb_dir_in(urb)) 3836 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3837 else 3838 field = TRB_TYPE(TRB_DATA); 3839 3840 if (urb->transfer_buffer_length > 0) { 3841 u32 length_field, remainder; 3842 u64 addr; 3843 3844 if (xhci_urb_suitable_for_idt(urb)) { 3845 memcpy(&addr, urb->transfer_buffer, 3846 urb->transfer_buffer_length); 3847 le64_to_cpus(&addr); 3848 field |= TRB_IDT; 3849 } else { 3850 addr = (u64) urb->transfer_dma; 3851 } 3852 3853 remainder = xhci_td_remainder(xhci, 0, 3854 urb->transfer_buffer_length, 3855 urb->transfer_buffer_length, 3856 urb, 1); 3857 length_field = TRB_LEN(urb->transfer_buffer_length) | 3858 TRB_TD_SIZE(remainder) | 3859 TRB_INTR_TARGET(0); 3860 if (setup->bRequestType & USB_DIR_IN) 3861 field |= TRB_DIR_IN; 3862 queue_trb(xhci, ep_ring, true, 3863 lower_32_bits(addr), 3864 upper_32_bits(addr), 3865 length_field, 3866 field | ep_ring->cycle_state); 3867 } 3868 3869 /* Save the DMA address of the last TRB in the TD */ 3870 td->end_trb = ep_ring->enqueue; 3871 td->end_seg = ep_ring->enq_seg; 3872 3873 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3874 /* If the device sent data, the status stage is an OUT transfer */ 3875 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3876 field = 0; 3877 else 3878 field = TRB_DIR_IN; 3879 queue_trb(xhci, ep_ring, false, 3880 0, 3881 0, 3882 TRB_INTR_TARGET(0), 3883 /* Event on completion */ 3884 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3885 3886 giveback_first_trb(xhci, slot_id, ep_index, 0, 3887 start_cycle, start_trb); 3888 return 0; 3889 } 3890 3891 /* 3892 * The transfer burst count field of the isochronous TRB defines the number of 3893 * bursts that are required to move all packets in this TD. Only SuperSpeed 3894 * devices can burst up to bMaxBurst number of packets per service interval. 3895 * This field is zero based, meaning a value of zero in the field means one 3896 * burst. Basically, for everything but SuperSpeed devices, this field will be 3897 * zero. Only xHCI 1.0 host controllers support this field. 3898 */ 3899 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3900 struct urb *urb, unsigned int total_packet_count) 3901 { 3902 unsigned int max_burst; 3903 3904 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3905 return 0; 3906 3907 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3908 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3909 } 3910 3911 /* 3912 * Returns the number of packets in the last "burst" of packets. This field is 3913 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3914 * the last burst packet count is equal to the total number of packets in the 3915 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3916 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3917 * contain 1 to (bMaxBurst + 1) packets. 3918 */ 3919 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3920 struct urb *urb, unsigned int total_packet_count) 3921 { 3922 unsigned int max_burst; 3923 unsigned int residue; 3924 3925 if (xhci->hci_version < 0x100) 3926 return 0; 3927 3928 if (urb->dev->speed >= USB_SPEED_SUPER) { 3929 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3930 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3931 residue = total_packet_count % (max_burst + 1); 3932 /* If residue is zero, the last burst contains (max_burst + 1) 3933 * number of packets, but the TLBPC field is zero-based. 3934 */ 3935 if (residue == 0) 3936 return max_burst; 3937 return residue - 1; 3938 } 3939 if (total_packet_count == 0) 3940 return 0; 3941 return total_packet_count - 1; 3942 } 3943 3944 /* 3945 * Calculates Frame ID field of the isochronous TRB identifies the 3946 * target frame that the Interval associated with this Isochronous 3947 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3948 * 3949 * Returns actual frame id on success, negative value on error. 3950 */ 3951 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3952 struct urb *urb, int index) 3953 { 3954 int start_frame, ist, ret = 0; 3955 int start_frame_id, end_frame_id, current_frame_id; 3956 3957 if (urb->dev->speed == USB_SPEED_LOW || 3958 urb->dev->speed == USB_SPEED_FULL) 3959 start_frame = urb->start_frame + index * urb->interval; 3960 else 3961 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3962 3963 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3964 * 3965 * If bit [3] of IST is cleared to '0', software can add a TRB no 3966 * later than IST[2:0] Microframes before that TRB is scheduled to 3967 * be executed. 3968 * If bit [3] of IST is set to '1', software can add a TRB no later 3969 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3970 */ 3971 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3972 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3973 ist <<= 3; 3974 3975 /* Software shall not schedule an Isoch TD with a Frame ID value that 3976 * is less than the Start Frame ID or greater than the End Frame ID, 3977 * where: 3978 * 3979 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3980 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3981 * 3982 * Both the End Frame ID and Start Frame ID values are calculated 3983 * in microframes. When software determines the valid Frame ID value; 3984 * The End Frame ID value should be rounded down to the nearest Frame 3985 * boundary, and the Start Frame ID value should be rounded up to the 3986 * nearest Frame boundary. 3987 */ 3988 current_frame_id = readl(&xhci->run_regs->microframe_index); 3989 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3990 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3991 3992 start_frame &= 0x7ff; 3993 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3994 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3995 3996 if (start_frame_id < end_frame_id) { 3997 if (start_frame > end_frame_id || 3998 start_frame < start_frame_id) 3999 ret = -EINVAL; 4000 } else if (start_frame_id > end_frame_id) { 4001 if ((start_frame > end_frame_id && 4002 start_frame < start_frame_id)) 4003 ret = -EINVAL; 4004 } else { 4005 ret = -EINVAL; 4006 } 4007 4008 if (index == 0) { 4009 if (ret == -EINVAL || start_frame == start_frame_id) { 4010 start_frame = start_frame_id + 1; 4011 if (urb->dev->speed == USB_SPEED_LOW || 4012 urb->dev->speed == USB_SPEED_FULL) 4013 urb->start_frame = start_frame; 4014 else 4015 urb->start_frame = start_frame << 3; 4016 ret = 0; 4017 } 4018 } 4019 4020 if (ret) { 4021 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 4022 start_frame, current_frame_id, index, 4023 start_frame_id, end_frame_id); 4024 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 4025 return ret; 4026 } 4027 4028 return start_frame; 4029 } 4030 4031 /* Check if we should generate event interrupt for a TD in an isoc URB */ 4032 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i, 4033 struct xhci_interrupter *ir) 4034 { 4035 if (xhci->hci_version < 0x100) 4036 return false; 4037 /* always generate an event interrupt for the last TD */ 4038 if (i == num_tds - 1) 4039 return false; 4040 /* 4041 * If AVOID_BEI is set the host handles full event rings poorly, 4042 * generate an event at least every 8th TD to clear the event ring 4043 */ 4044 if (i && ir->isoc_bei_interval && xhci->quirks & XHCI_AVOID_BEI) 4045 return !!(i % ir->isoc_bei_interval); 4046 4047 return true; 4048 } 4049 4050 /* This is for isoc transfer */ 4051 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 4052 struct urb *urb, int slot_id, unsigned int ep_index) 4053 { 4054 struct xhci_interrupter *ir; 4055 struct xhci_ring *ep_ring; 4056 struct urb_priv *urb_priv; 4057 struct xhci_td *td; 4058 int num_tds, trbs_per_td; 4059 struct xhci_generic_trb *start_trb; 4060 bool first_trb; 4061 int start_cycle; 4062 u32 field, length_field; 4063 int running_total, trb_buff_len, td_len, td_remain_len, ret; 4064 u64 start_addr, addr; 4065 int i, j; 4066 bool more_trbs_coming; 4067 struct xhci_virt_ep *xep; 4068 int frame_id; 4069 4070 xep = &xhci->devs[slot_id]->eps[ep_index]; 4071 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4072 ir = xhci->interrupters[0]; 4073 4074 num_tds = urb->number_of_packets; 4075 if (num_tds < 1) { 4076 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4077 return -EINVAL; 4078 } 4079 start_addr = (u64) urb->transfer_dma; 4080 start_trb = &ep_ring->enqueue->generic; 4081 start_cycle = ep_ring->cycle_state; 4082 4083 urb_priv = urb->hcpriv; 4084 /* Queue the TRBs for each TD, even if they are zero-length */ 4085 for (i = 0; i < num_tds; i++) { 4086 unsigned int total_pkt_count, max_pkt; 4087 unsigned int burst_count, last_burst_pkt_count; 4088 u32 sia_frame_id; 4089 4090 first_trb = true; 4091 running_total = 0; 4092 addr = start_addr + urb->iso_frame_desc[i].offset; 4093 td_len = urb->iso_frame_desc[i].length; 4094 td_remain_len = td_len; 4095 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4096 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4097 4098 /* A zero-length transfer still involves at least one packet. */ 4099 if (total_pkt_count == 0) 4100 total_pkt_count++; 4101 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4102 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4103 urb, total_pkt_count); 4104 4105 trbs_per_td = count_isoc_trbs_needed(urb, i); 4106 4107 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4108 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4109 if (ret < 0) { 4110 if (i == 0) 4111 return ret; 4112 goto cleanup; 4113 } 4114 td = &urb_priv->td[i]; 4115 /* use SIA as default, if frame id is used overwrite it */ 4116 sia_frame_id = TRB_SIA; 4117 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4118 HCC_CFC(xhci->hcc_params)) { 4119 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4120 if (frame_id >= 0) 4121 sia_frame_id = TRB_FRAME_ID(frame_id); 4122 } 4123 /* 4124 * Set isoc specific data for the first TRB in a TD. 4125 * Prevent HW from getting the TRBs by keeping the cycle state 4126 * inverted in the first TDs isoc TRB. 4127 */ 4128 field = TRB_TYPE(TRB_ISOC) | 4129 TRB_TLBPC(last_burst_pkt_count) | 4130 sia_frame_id | 4131 (i ? ep_ring->cycle_state : !start_cycle); 4132 4133 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4134 if (!xep->use_extended_tbc) 4135 field |= TRB_TBC(burst_count); 4136 4137 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4138 for (j = 0; j < trbs_per_td; j++) { 4139 u32 remainder = 0; 4140 4141 /* only first TRB is isoc, overwrite otherwise */ 4142 if (!first_trb) 4143 field = TRB_TYPE(TRB_NORMAL) | 4144 ep_ring->cycle_state; 4145 4146 /* Only set interrupt on short packet for IN EPs */ 4147 if (usb_urb_dir_in(urb)) 4148 field |= TRB_ISP; 4149 4150 /* Set the chain bit for all except the last TRB */ 4151 if (j < trbs_per_td - 1) { 4152 more_trbs_coming = true; 4153 field |= TRB_CHAIN; 4154 } else { 4155 more_trbs_coming = false; 4156 td->end_trb = ep_ring->enqueue; 4157 td->end_seg = ep_ring->enq_seg; 4158 field |= TRB_IOC; 4159 if (trb_block_event_intr(xhci, num_tds, i, ir)) 4160 field |= TRB_BEI; 4161 } 4162 /* Calculate TRB length */ 4163 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4164 if (trb_buff_len > td_remain_len) 4165 trb_buff_len = td_remain_len; 4166 4167 /* Set the TRB length, TD size, & interrupter fields. */ 4168 remainder = xhci_td_remainder(xhci, running_total, 4169 trb_buff_len, td_len, 4170 urb, more_trbs_coming); 4171 4172 length_field = TRB_LEN(trb_buff_len) | 4173 TRB_INTR_TARGET(0); 4174 4175 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4176 if (first_trb && xep->use_extended_tbc) 4177 length_field |= TRB_TD_SIZE_TBC(burst_count); 4178 else 4179 length_field |= TRB_TD_SIZE(remainder); 4180 first_trb = false; 4181 4182 queue_trb(xhci, ep_ring, more_trbs_coming, 4183 lower_32_bits(addr), 4184 upper_32_bits(addr), 4185 length_field, 4186 field); 4187 running_total += trb_buff_len; 4188 4189 addr += trb_buff_len; 4190 td_remain_len -= trb_buff_len; 4191 } 4192 4193 /* Check TD length */ 4194 if (running_total != td_len) { 4195 xhci_err(xhci, "ISOC TD length unmatch\n"); 4196 ret = -EINVAL; 4197 goto cleanup; 4198 } 4199 } 4200 4201 /* store the next frame id */ 4202 if (HCC_CFC(xhci->hcc_params)) 4203 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4204 4205 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4206 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4207 usb_amd_quirk_pll_disable(); 4208 } 4209 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4210 4211 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4212 start_cycle, start_trb); 4213 return 0; 4214 cleanup: 4215 /* Clean up a partially enqueued isoc transfer. */ 4216 4217 for (i--; i >= 0; i--) 4218 list_del_init(&urb_priv->td[i].td_list); 4219 4220 /* Use the first TD as a temporary variable to turn the TDs we've queued 4221 * into No-ops with a software-owned cycle bit. That way the hardware 4222 * won't accidentally start executing bogus TDs when we partially 4223 * overwrite them. td->start_trb and td->start_seg are already set. 4224 */ 4225 urb_priv->td[0].end_trb = ep_ring->enqueue; 4226 /* Every TRB except the first & last will have its cycle bit flipped. */ 4227 td_to_noop(&urb_priv->td[0], true); 4228 4229 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4230 ep_ring->enqueue = urb_priv->td[0].start_trb; 4231 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4232 ep_ring->cycle_state = start_cycle; 4233 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4234 return ret; 4235 } 4236 4237 /* 4238 * Check transfer ring to guarantee there is enough room for the urb. 4239 * Update ISO URB start_frame and interval. 4240 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4241 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4242 * Contiguous Frame ID is not supported by HC. 4243 */ 4244 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4245 struct urb *urb, int slot_id, unsigned int ep_index) 4246 { 4247 struct xhci_virt_device *xdev; 4248 struct xhci_ring *ep_ring; 4249 struct xhci_ep_ctx *ep_ctx; 4250 int start_frame; 4251 int num_tds, num_trbs, i; 4252 int ret; 4253 struct xhci_virt_ep *xep; 4254 int ist; 4255 4256 xdev = xhci->devs[slot_id]; 4257 xep = &xhci->devs[slot_id]->eps[ep_index]; 4258 ep_ring = xdev->eps[ep_index].ring; 4259 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4260 4261 num_trbs = 0; 4262 num_tds = urb->number_of_packets; 4263 for (i = 0; i < num_tds; i++) 4264 num_trbs += count_isoc_trbs_needed(urb, i); 4265 4266 /* Check the ring to guarantee there is enough room for the whole urb. 4267 * Do not insert any td of the urb to the ring if the check failed. 4268 */ 4269 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4270 num_trbs, mem_flags); 4271 if (ret) 4272 return ret; 4273 4274 /* 4275 * Check interval value. This should be done before we start to 4276 * calculate the start frame value. 4277 */ 4278 check_interval(urb, ep_ctx); 4279 4280 /* Calculate the start frame and put it in urb->start_frame. */ 4281 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4282 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4283 urb->start_frame = xep->next_frame_id; 4284 goto skip_start_over; 4285 } 4286 } 4287 4288 start_frame = readl(&xhci->run_regs->microframe_index); 4289 start_frame &= 0x3fff; 4290 /* 4291 * Round up to the next frame and consider the time before trb really 4292 * gets scheduled by hardare. 4293 */ 4294 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4295 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4296 ist <<= 3; 4297 start_frame += ist + XHCI_CFC_DELAY; 4298 start_frame = roundup(start_frame, 8); 4299 4300 /* 4301 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4302 * is greate than 8 microframes. 4303 */ 4304 if (urb->dev->speed == USB_SPEED_LOW || 4305 urb->dev->speed == USB_SPEED_FULL) { 4306 start_frame = roundup(start_frame, urb->interval << 3); 4307 urb->start_frame = start_frame >> 3; 4308 } else { 4309 start_frame = roundup(start_frame, urb->interval); 4310 urb->start_frame = start_frame; 4311 } 4312 4313 skip_start_over: 4314 4315 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4316 } 4317 4318 /**** Command Ring Operations ****/ 4319 4320 /* Generic function for queueing a command TRB on the command ring. 4321 * Check to make sure there's room on the command ring for one command TRB. 4322 * Also check that there's room reserved for commands that must not fail. 4323 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4324 * then only check for the number of reserved spots. 4325 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4326 * because the command event handler may want to resubmit a failed command. 4327 */ 4328 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4329 u32 field1, u32 field2, 4330 u32 field3, u32 field4, bool command_must_succeed) 4331 { 4332 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4333 int ret; 4334 4335 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4336 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4337 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4338 return -ESHUTDOWN; 4339 } 4340 4341 if (!command_must_succeed) 4342 reserved_trbs++; 4343 4344 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4345 reserved_trbs, GFP_ATOMIC); 4346 if (ret < 0) { 4347 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4348 if (command_must_succeed) 4349 xhci_err(xhci, "ERR: Reserved TRB counting for " 4350 "unfailable commands failed.\n"); 4351 return ret; 4352 } 4353 4354 cmd->command_trb = xhci->cmd_ring->enqueue; 4355 4356 /* if there are no other commands queued we start the timeout timer */ 4357 if (list_empty(&xhci->cmd_list)) { 4358 xhci->current_cmd = cmd; 4359 xhci_mod_cmd_timer(xhci); 4360 } 4361 4362 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4363 4364 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4365 field4 | xhci->cmd_ring->cycle_state); 4366 return 0; 4367 } 4368 4369 /* Queue a slot enable or disable request on the command ring */ 4370 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4371 u32 trb_type, u32 slot_id) 4372 { 4373 return queue_command(xhci, cmd, 0, 0, 0, 4374 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4375 } 4376 4377 /* Queue an address device command TRB */ 4378 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4379 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4380 { 4381 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4382 upper_32_bits(in_ctx_ptr), 0, 4383 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4384 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4385 } 4386 4387 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4388 u32 field1, u32 field2, u32 field3, u32 field4) 4389 { 4390 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4391 } 4392 4393 /* Queue a reset device command TRB */ 4394 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4395 u32 slot_id) 4396 { 4397 return queue_command(xhci, cmd, 0, 0, 0, 4398 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4399 false); 4400 } 4401 4402 /* Queue a configure endpoint command TRB */ 4403 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4404 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4405 u32 slot_id, bool command_must_succeed) 4406 { 4407 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4408 upper_32_bits(in_ctx_ptr), 0, 4409 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4410 command_must_succeed); 4411 } 4412 4413 /* Queue an evaluate context command TRB */ 4414 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4415 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4416 { 4417 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4418 upper_32_bits(in_ctx_ptr), 0, 4419 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4420 command_must_succeed); 4421 } 4422 4423 /* 4424 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4425 * activity on an endpoint that is about to be suspended. 4426 */ 4427 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4428 int slot_id, unsigned int ep_index, int suspend) 4429 { 4430 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4431 u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); 4432 u32 type = TRB_TYPE(TRB_STOP_RING); 4433 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4434 4435 return queue_command(xhci, cmd, 0, 0, 0, 4436 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4437 } 4438 4439 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4440 int slot_id, unsigned int ep_index, 4441 enum xhci_ep_reset_type reset_type) 4442 { 4443 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4444 u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); 4445 u32 type = TRB_TYPE(TRB_RESET_EP); 4446 4447 if (reset_type == EP_SOFT_RESET) 4448 type |= TRB_TSP; 4449 4450 return queue_command(xhci, cmd, 0, 0, 0, 4451 trb_slot_id | trb_ep_index | type, false); 4452 } 4453