1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include <linux/dma-mapping.h> 70 #include "xhci.h" 71 #include "xhci-trace.h" 72 #include "xhci-mtk.h" 73 74 /* 75 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 76 * address of the TRB. 77 */ 78 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 79 union xhci_trb *trb) 80 { 81 unsigned long segment_offset; 82 83 if (!seg || !trb || trb < seg->trbs) 84 return 0; 85 /* offset in TRBs */ 86 segment_offset = trb - seg->trbs; 87 if (segment_offset >= TRBS_PER_SEGMENT) 88 return 0; 89 return seg->dma + (segment_offset * sizeof(*trb)); 90 } 91 92 static bool trb_is_noop(union xhci_trb *trb) 93 { 94 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 95 } 96 97 static bool trb_is_link(union xhci_trb *trb) 98 { 99 return TRB_TYPE_LINK_LE32(trb->link.control); 100 } 101 102 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 103 { 104 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 105 } 106 107 static bool last_trb_on_ring(struct xhci_ring *ring, 108 struct xhci_segment *seg, union xhci_trb *trb) 109 { 110 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 111 } 112 113 static bool link_trb_toggles_cycle(union xhci_trb *trb) 114 { 115 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 116 } 117 118 static bool last_td_in_urb(struct xhci_td *td) 119 { 120 struct urb_priv *urb_priv = td->urb->hcpriv; 121 122 return urb_priv->num_tds_done == urb_priv->num_tds; 123 } 124 125 static void inc_td_cnt(struct urb *urb) 126 { 127 struct urb_priv *urb_priv = urb->hcpriv; 128 129 urb_priv->num_tds_done++; 130 } 131 132 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 133 { 134 if (trb_is_link(trb)) { 135 /* unchain chained link TRBs */ 136 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 137 } else { 138 trb->generic.field[0] = 0; 139 trb->generic.field[1] = 0; 140 trb->generic.field[2] = 0; 141 /* Preserve only the cycle bit of this TRB */ 142 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 143 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 144 } 145 } 146 147 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 148 * TRB is in a new segment. This does not skip over link TRBs, and it does not 149 * effect the ring dequeue or enqueue pointers. 150 */ 151 static void next_trb(struct xhci_hcd *xhci, 152 struct xhci_ring *ring, 153 struct xhci_segment **seg, 154 union xhci_trb **trb) 155 { 156 if (trb_is_link(*trb)) { 157 *seg = (*seg)->next; 158 *trb = ((*seg)->trbs); 159 } else { 160 (*trb)++; 161 } 162 } 163 164 /* 165 * See Cycle bit rules. SW is the consumer for the event ring only. 166 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 167 */ 168 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 169 { 170 ring->deq_updates++; 171 172 /* event ring doesn't have link trbs, check for last trb */ 173 if (ring->type == TYPE_EVENT) { 174 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 175 ring->dequeue++; 176 return; 177 } 178 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 179 ring->cycle_state ^= 1; 180 ring->deq_seg = ring->deq_seg->next; 181 ring->dequeue = ring->deq_seg->trbs; 182 return; 183 } 184 185 /* All other rings have link trbs */ 186 if (!trb_is_link(ring->dequeue)) { 187 ring->dequeue++; 188 ring->num_trbs_free++; 189 } 190 while (trb_is_link(ring->dequeue)) { 191 ring->deq_seg = ring->deq_seg->next; 192 ring->dequeue = ring->deq_seg->trbs; 193 } 194 return; 195 } 196 197 /* 198 * See Cycle bit rules. SW is the consumer for the event ring only. 199 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 200 * 201 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 202 * chain bit is set), then set the chain bit in all the following link TRBs. 203 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 204 * have their chain bit cleared (so that each Link TRB is a separate TD). 205 * 206 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 207 * set, but other sections talk about dealing with the chain bit set. This was 208 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 209 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 210 * 211 * @more_trbs_coming: Will you enqueue more TRBs before calling 212 * prepare_transfer()? 213 */ 214 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 215 bool more_trbs_coming) 216 { 217 u32 chain; 218 union xhci_trb *next; 219 220 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 221 /* If this is not event ring, there is one less usable TRB */ 222 if (!trb_is_link(ring->enqueue)) 223 ring->num_trbs_free--; 224 next = ++(ring->enqueue); 225 226 ring->enq_updates++; 227 /* Update the dequeue pointer further if that was a link TRB */ 228 while (trb_is_link(next)) { 229 230 /* 231 * If the caller doesn't plan on enqueueing more TDs before 232 * ringing the doorbell, then we don't want to give the link TRB 233 * to the hardware just yet. We'll give the link TRB back in 234 * prepare_ring() just before we enqueue the TD at the top of 235 * the ring. 236 */ 237 if (!chain && !more_trbs_coming) 238 break; 239 240 /* If we're not dealing with 0.95 hardware or isoc rings on 241 * AMD 0.96 host, carry over the chain bit of the previous TRB 242 * (which may mean the chain bit is cleared). 243 */ 244 if (!(ring->type == TYPE_ISOC && 245 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 246 !xhci_link_trb_quirk(xhci)) { 247 next->link.control &= cpu_to_le32(~TRB_CHAIN); 248 next->link.control |= cpu_to_le32(chain); 249 } 250 /* Give this link TRB to the hardware */ 251 wmb(); 252 next->link.control ^= cpu_to_le32(TRB_CYCLE); 253 254 /* Toggle the cycle bit after the last ring segment. */ 255 if (link_trb_toggles_cycle(next)) 256 ring->cycle_state ^= 1; 257 258 ring->enq_seg = ring->enq_seg->next; 259 ring->enqueue = ring->enq_seg->trbs; 260 next = ring->enqueue; 261 } 262 } 263 264 /* 265 * Check to see if there's room to enqueue num_trbs on the ring and make sure 266 * enqueue pointer will not advance into dequeue segment. See rules above. 267 */ 268 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 269 unsigned int num_trbs) 270 { 271 int num_trbs_in_deq_seg; 272 273 if (ring->num_trbs_free < num_trbs) 274 return 0; 275 276 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 277 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 278 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 279 return 0; 280 } 281 282 return 1; 283 } 284 285 /* Ring the host controller doorbell after placing a command on the ring */ 286 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 287 { 288 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 289 return; 290 291 xhci_dbg(xhci, "// Ding dong!\n"); 292 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 293 /* Flush PCI posted writes */ 294 readl(&xhci->dba->doorbell[0]); 295 } 296 297 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 298 { 299 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 300 } 301 302 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 303 { 304 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 305 cmd_list); 306 } 307 308 /* 309 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 310 * If there are other commands waiting then restart the ring and kick the timer. 311 * This must be called with command ring stopped and xhci->lock held. 312 */ 313 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 314 struct xhci_command *cur_cmd) 315 { 316 struct xhci_command *i_cmd; 317 318 /* Turn all aborted commands in list to no-ops, then restart */ 319 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 320 321 if (i_cmd->status != COMP_COMMAND_ABORTED) 322 continue; 323 324 i_cmd->status = COMP_STOPPED; 325 326 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 327 i_cmd->command_trb); 328 329 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 330 331 /* 332 * caller waiting for completion is called when command 333 * completion event is received for these no-op commands 334 */ 335 } 336 337 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 338 339 /* ring command ring doorbell to restart the command ring */ 340 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 341 !(xhci->xhc_state & XHCI_STATE_DYING)) { 342 xhci->current_cmd = cur_cmd; 343 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 344 xhci_ring_cmd_db(xhci); 345 } 346 } 347 348 /* Must be called with xhci->lock held, releases and aquires lock back */ 349 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 350 { 351 u64 temp_64; 352 int ret; 353 354 xhci_dbg(xhci, "Abort command ring\n"); 355 356 reinit_completion(&xhci->cmd_ring_stop_completion); 357 358 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 359 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 360 &xhci->op_regs->cmd_ring); 361 362 /* Section 4.6.1.2 of xHCI 1.0 spec says software should 363 * time the completion od all xHCI commands, including 364 * the Command Abort operation. If software doesn't see 365 * CRR negated in a timely manner (e.g. longer than 5 366 * seconds), then it should assume that the there are 367 * larger problems with the xHC and assert HCRST. 368 */ 369 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 370 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 371 if (ret < 0) { 372 xhci_err(xhci, 373 "Stop command ring failed, maybe the host is dead\n"); 374 xhci->xhc_state |= XHCI_STATE_DYING; 375 xhci_halt(xhci); 376 return -ESHUTDOWN; 377 } 378 /* 379 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 380 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 381 * but the completion event in never sent. Wait 2 secs (arbitrary 382 * number) to handle those cases after negation of CMD_RING_RUNNING. 383 */ 384 spin_unlock_irqrestore(&xhci->lock, flags); 385 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 386 msecs_to_jiffies(2000)); 387 spin_lock_irqsave(&xhci->lock, flags); 388 if (!ret) { 389 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 390 xhci_cleanup_command_queue(xhci); 391 } else { 392 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 393 } 394 return 0; 395 } 396 397 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 398 unsigned int slot_id, 399 unsigned int ep_index, 400 unsigned int stream_id) 401 { 402 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 403 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 404 unsigned int ep_state = ep->ep_state; 405 406 /* Don't ring the doorbell for this endpoint if there are pending 407 * cancellations because we don't want to interrupt processing. 408 * We don't want to restart any stream rings if there's a set dequeue 409 * pointer command pending because the device can choose to start any 410 * stream once the endpoint is on the HW schedule. 411 */ 412 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 413 (ep_state & EP_HALTED)) 414 return; 415 writel(DB_VALUE(ep_index, stream_id), db_addr); 416 /* The CPU has better things to do at this point than wait for a 417 * write-posting flush. It'll get there soon enough. 418 */ 419 } 420 421 /* Ring the doorbell for any rings with pending URBs */ 422 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 423 unsigned int slot_id, 424 unsigned int ep_index) 425 { 426 unsigned int stream_id; 427 struct xhci_virt_ep *ep; 428 429 ep = &xhci->devs[slot_id]->eps[ep_index]; 430 431 /* A ring has pending URBs if its TD list is not empty */ 432 if (!(ep->ep_state & EP_HAS_STREAMS)) { 433 if (ep->ring && !(list_empty(&ep->ring->td_list))) 434 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 435 return; 436 } 437 438 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 439 stream_id++) { 440 struct xhci_stream_info *stream_info = ep->stream_info; 441 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 442 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 443 stream_id); 444 } 445 } 446 447 /* Get the right ring for the given slot_id, ep_index and stream_id. 448 * If the endpoint supports streams, boundary check the URB's stream ID. 449 * If the endpoint doesn't support streams, return the singular endpoint ring. 450 */ 451 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 452 unsigned int slot_id, unsigned int ep_index, 453 unsigned int stream_id) 454 { 455 struct xhci_virt_ep *ep; 456 457 ep = &xhci->devs[slot_id]->eps[ep_index]; 458 /* Common case: no streams */ 459 if (!(ep->ep_state & EP_HAS_STREAMS)) 460 return ep->ring; 461 462 if (stream_id == 0) { 463 xhci_warn(xhci, 464 "WARN: Slot ID %u, ep index %u has streams, " 465 "but URB has no stream ID.\n", 466 slot_id, ep_index); 467 return NULL; 468 } 469 470 if (stream_id < ep->stream_info->num_streams) 471 return ep->stream_info->stream_rings[stream_id]; 472 473 xhci_warn(xhci, 474 "WARN: Slot ID %u, ep index %u has " 475 "stream IDs 1 to %u allocated, " 476 "but stream ID %u is requested.\n", 477 slot_id, ep_index, 478 ep->stream_info->num_streams - 1, 479 stream_id); 480 return NULL; 481 } 482 483 /* 484 * Move the xHC's endpoint ring dequeue pointer past cur_td. 485 * Record the new state of the xHC's endpoint ring dequeue segment, 486 * dequeue pointer, and new consumer cycle state in state. 487 * Update our internal representation of the ring's dequeue pointer. 488 * 489 * We do this in three jumps: 490 * - First we update our new ring state to be the same as when the xHC stopped. 491 * - Then we traverse the ring to find the segment that contains 492 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 493 * any link TRBs with the toggle cycle bit set. 494 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 495 * if we've moved it past a link TRB with the toggle cycle bit set. 496 * 497 * Some of the uses of xhci_generic_trb are grotty, but if they're done 498 * with correct __le32 accesses they should work fine. Only users of this are 499 * in here. 500 */ 501 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 502 unsigned int slot_id, unsigned int ep_index, 503 unsigned int stream_id, struct xhci_td *cur_td, 504 struct xhci_dequeue_state *state) 505 { 506 struct xhci_virt_device *dev = xhci->devs[slot_id]; 507 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 508 struct xhci_ring *ep_ring; 509 struct xhci_segment *new_seg; 510 union xhci_trb *new_deq; 511 dma_addr_t addr; 512 u64 hw_dequeue; 513 bool cycle_found = false; 514 bool td_last_trb_found = false; 515 516 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 517 ep_index, stream_id); 518 if (!ep_ring) { 519 xhci_warn(xhci, "WARN can't find new dequeue state " 520 "for invalid stream ID %u.\n", 521 stream_id); 522 return; 523 } 524 525 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 526 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 527 "Finding endpoint context"); 528 /* 4.6.9 the css flag is written to the stream context for streams */ 529 if (ep->ep_state & EP_HAS_STREAMS) { 530 struct xhci_stream_ctx *ctx = 531 &ep->stream_info->stream_ctx_array[stream_id]; 532 hw_dequeue = le64_to_cpu(ctx->stream_ring); 533 } else { 534 struct xhci_ep_ctx *ep_ctx 535 = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 536 hw_dequeue = le64_to_cpu(ep_ctx->deq); 537 } 538 539 new_seg = ep_ring->deq_seg; 540 new_deq = ep_ring->dequeue; 541 state->new_cycle_state = hw_dequeue & 0x1; 542 543 /* 544 * We want to find the pointer, segment and cycle state of the new trb 545 * (the one after current TD's last_trb). We know the cycle state at 546 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 547 * found. 548 */ 549 do { 550 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 551 == (dma_addr_t)(hw_dequeue & ~0xf)) { 552 cycle_found = true; 553 if (td_last_trb_found) 554 break; 555 } 556 if (new_deq == cur_td->last_trb) 557 td_last_trb_found = true; 558 559 if (cycle_found && trb_is_link(new_deq) && 560 link_trb_toggles_cycle(new_deq)) 561 state->new_cycle_state ^= 0x1; 562 563 next_trb(xhci, ep_ring, &new_seg, &new_deq); 564 565 /* Search wrapped around, bail out */ 566 if (new_deq == ep->ring->dequeue) { 567 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 568 state->new_deq_seg = NULL; 569 state->new_deq_ptr = NULL; 570 return; 571 } 572 573 } while (!cycle_found || !td_last_trb_found); 574 575 state->new_deq_seg = new_seg; 576 state->new_deq_ptr = new_deq; 577 578 /* Don't update the ring cycle state for the producer (us). */ 579 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 580 "Cycle state = 0x%x", state->new_cycle_state); 581 582 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 583 "New dequeue segment = %p (virtual)", 584 state->new_deq_seg); 585 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 586 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 587 "New dequeue pointer = 0x%llx (DMA)", 588 (unsigned long long) addr); 589 } 590 591 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 592 * (The last TRB actually points to the ring enqueue pointer, which is not part 593 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 594 */ 595 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 596 struct xhci_td *td, bool flip_cycle) 597 { 598 struct xhci_segment *seg = td->start_seg; 599 union xhci_trb *trb = td->first_trb; 600 601 while (1) { 602 trb_to_noop(trb, TRB_TR_NOOP); 603 604 /* flip cycle if asked to */ 605 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 606 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 607 608 if (trb == td->last_trb) 609 break; 610 611 next_trb(xhci, ep_ring, &seg, &trb); 612 } 613 } 614 615 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 616 struct xhci_virt_ep *ep) 617 { 618 ep->ep_state &= ~EP_STOP_CMD_PENDING; 619 /* Can't del_timer_sync in interrupt */ 620 del_timer(&ep->stop_cmd_timer); 621 } 622 623 /* 624 * Must be called with xhci->lock held in interrupt context, 625 * releases and re-acquires xhci->lock 626 */ 627 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 628 struct xhci_td *cur_td, int status) 629 { 630 struct urb *urb = cur_td->urb; 631 struct urb_priv *urb_priv = urb->hcpriv; 632 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 633 634 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 635 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 636 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 637 if (xhci->quirks & XHCI_AMD_PLL_FIX) 638 usb_amd_quirk_pll_enable(); 639 } 640 } 641 xhci_urb_free_priv(urb_priv); 642 usb_hcd_unlink_urb_from_ep(hcd, urb); 643 spin_unlock(&xhci->lock); 644 usb_hcd_giveback_urb(hcd, urb, status); 645 trace_xhci_urb_giveback(urb); 646 spin_lock(&xhci->lock); 647 } 648 649 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 650 struct xhci_ring *ring, struct xhci_td *td) 651 { 652 struct device *dev = xhci_to_hcd(xhci)->self.controller; 653 struct xhci_segment *seg = td->bounce_seg; 654 struct urb *urb = td->urb; 655 656 if (!ring || !seg || !urb) 657 return; 658 659 if (usb_urb_dir_out(urb)) { 660 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 661 DMA_TO_DEVICE); 662 return; 663 } 664 665 /* for in tranfers we need to copy the data from bounce to sg */ 666 sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf, 667 seg->bounce_len, seg->bounce_offs); 668 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 669 DMA_FROM_DEVICE); 670 seg->bounce_len = 0; 671 seg->bounce_offs = 0; 672 } 673 674 /* 675 * When we get a command completion for a Stop Endpoint Command, we need to 676 * unlink any cancelled TDs from the ring. There are two ways to do that: 677 * 678 * 1. If the HW was in the middle of processing the TD that needs to be 679 * cancelled, then we must move the ring's dequeue pointer past the last TRB 680 * in the TD with a Set Dequeue Pointer Command. 681 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 682 * bit cleared) so that the HW will skip over them. 683 */ 684 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 685 union xhci_trb *trb, struct xhci_event_cmd *event) 686 { 687 unsigned int ep_index; 688 struct xhci_ring *ep_ring; 689 struct xhci_virt_ep *ep; 690 struct xhci_td *cur_td = NULL; 691 struct xhci_td *last_unlinked_td; 692 693 struct xhci_dequeue_state deq_state; 694 695 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 696 if (!xhci->devs[slot_id]) 697 xhci_warn(xhci, "Stop endpoint command " 698 "completion for disabled slot %u\n", 699 slot_id); 700 return; 701 } 702 703 memset(&deq_state, 0, sizeof(deq_state)); 704 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 705 ep = &xhci->devs[slot_id]->eps[ep_index]; 706 last_unlinked_td = list_last_entry(&ep->cancelled_td_list, 707 struct xhci_td, cancelled_td_list); 708 709 if (list_empty(&ep->cancelled_td_list)) { 710 xhci_stop_watchdog_timer_in_irq(xhci, ep); 711 ep->stopped_td = NULL; 712 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 713 return; 714 } 715 716 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 717 * We have the xHCI lock, so nothing can modify this list until we drop 718 * it. We're also in the event handler, so we can't get re-interrupted 719 * if another Stop Endpoint command completes 720 */ 721 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) { 722 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 723 "Removing canceled TD starting at 0x%llx (dma).", 724 (unsigned long long)xhci_trb_virt_to_dma( 725 cur_td->start_seg, cur_td->first_trb)); 726 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 727 if (!ep_ring) { 728 /* This shouldn't happen unless a driver is mucking 729 * with the stream ID after submission. This will 730 * leave the TD on the hardware ring, and the hardware 731 * will try to execute it, and may access a buffer 732 * that has already been freed. In the best case, the 733 * hardware will execute it, and the event handler will 734 * ignore the completion event for that TD, since it was 735 * removed from the td_list for that endpoint. In 736 * short, don't muck with the stream ID after 737 * submission. 738 */ 739 xhci_warn(xhci, "WARN Cancelled URB %p " 740 "has invalid stream ID %u.\n", 741 cur_td->urb, 742 cur_td->urb->stream_id); 743 goto remove_finished_td; 744 } 745 /* 746 * If we stopped on the TD we need to cancel, then we have to 747 * move the xHC endpoint ring dequeue pointer past this TD. 748 */ 749 if (cur_td == ep->stopped_td) 750 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 751 cur_td->urb->stream_id, 752 cur_td, &deq_state); 753 else 754 td_to_noop(xhci, ep_ring, cur_td, false); 755 remove_finished_td: 756 /* 757 * The event handler won't see a completion for this TD anymore, 758 * so remove it from the endpoint ring's TD list. Keep it in 759 * the cancelled TD list for URB completion later. 760 */ 761 list_del_init(&cur_td->td_list); 762 } 763 764 xhci_stop_watchdog_timer_in_irq(xhci, ep); 765 766 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 767 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 768 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 769 ep->stopped_td->urb->stream_id, &deq_state); 770 xhci_ring_cmd_db(xhci); 771 } else { 772 /* Otherwise ring the doorbell(s) to restart queued transfers */ 773 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 774 } 775 776 ep->stopped_td = NULL; 777 778 /* 779 * Drop the lock and complete the URBs in the cancelled TD list. 780 * New TDs to be cancelled might be added to the end of the list before 781 * we can complete all the URBs for the TDs we already unlinked. 782 * So stop when we've completed the URB for the last TD we unlinked. 783 */ 784 do { 785 cur_td = list_first_entry(&ep->cancelled_td_list, 786 struct xhci_td, cancelled_td_list); 787 list_del_init(&cur_td->cancelled_td_list); 788 789 /* Clean up the cancelled URB */ 790 /* Doesn't matter what we pass for status, since the core will 791 * just overwrite it (because the URB has been unlinked). 792 */ 793 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 794 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td); 795 inc_td_cnt(cur_td->urb); 796 if (last_td_in_urb(cur_td)) 797 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 798 799 /* Stop processing the cancelled list if the watchdog timer is 800 * running. 801 */ 802 if (xhci->xhc_state & XHCI_STATE_DYING) 803 return; 804 } while (cur_td != last_unlinked_td); 805 806 /* Return to the event handler with xhci->lock re-acquired */ 807 } 808 809 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 810 { 811 struct xhci_td *cur_td; 812 struct xhci_td *tmp; 813 814 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 815 list_del_init(&cur_td->td_list); 816 817 if (!list_empty(&cur_td->cancelled_td_list)) 818 list_del_init(&cur_td->cancelled_td_list); 819 820 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 821 822 inc_td_cnt(cur_td->urb); 823 if (last_td_in_urb(cur_td)) 824 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 825 } 826 } 827 828 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 829 int slot_id, int ep_index) 830 { 831 struct xhci_td *cur_td; 832 struct xhci_td *tmp; 833 struct xhci_virt_ep *ep; 834 struct xhci_ring *ring; 835 836 ep = &xhci->devs[slot_id]->eps[ep_index]; 837 if ((ep->ep_state & EP_HAS_STREAMS) || 838 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 839 int stream_id; 840 841 for (stream_id = 0; stream_id < ep->stream_info->num_streams; 842 stream_id++) { 843 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 844 "Killing URBs for slot ID %u, ep index %u, stream %u", 845 slot_id, ep_index, stream_id + 1); 846 xhci_kill_ring_urbs(xhci, 847 ep->stream_info->stream_rings[stream_id]); 848 } 849 } else { 850 ring = ep->ring; 851 if (!ring) 852 return; 853 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 854 "Killing URBs for slot ID %u, ep index %u", 855 slot_id, ep_index); 856 xhci_kill_ring_urbs(xhci, ring); 857 } 858 859 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 860 cancelled_td_list) { 861 list_del_init(&cur_td->cancelled_td_list); 862 inc_td_cnt(cur_td->urb); 863 864 if (last_td_in_urb(cur_td)) 865 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 866 } 867 } 868 869 /* Watchdog timer function for when a stop endpoint command fails to complete. 870 * In this case, we assume the host controller is broken or dying or dead. The 871 * host may still be completing some other events, so we have to be careful to 872 * let the event ring handler and the URB dequeueing/enqueueing functions know 873 * through xhci->state. 874 * 875 * The timer may also fire if the host takes a very long time to respond to the 876 * command, and the stop endpoint command completion handler cannot delete the 877 * timer before the timer function is called. Another endpoint cancellation may 878 * sneak in before the timer function can grab the lock, and that may queue 879 * another stop endpoint command and add the timer back. So we cannot use a 880 * simple flag to say whether there is a pending stop endpoint command for a 881 * particular endpoint. 882 * 883 * Instead we use a combination of that flag and checking if a new timer is 884 * pending. 885 */ 886 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 887 { 888 struct xhci_hcd *xhci; 889 struct xhci_virt_ep *ep; 890 int ret, i, j; 891 unsigned long flags; 892 893 ep = (struct xhci_virt_ep *) arg; 894 xhci = ep->xhci; 895 896 spin_lock_irqsave(&xhci->lock, flags); 897 898 /* bail out if cmd completed but raced with stop ep watchdog timer.*/ 899 if (!(ep->ep_state & EP_STOP_CMD_PENDING) || 900 timer_pending(&ep->stop_cmd_timer)) { 901 spin_unlock_irqrestore(&xhci->lock, flags); 902 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit"); 903 return; 904 } 905 906 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 907 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 908 /* Oops, HC is dead or dying or at least not responding to the stop 909 * endpoint command. 910 */ 911 912 xhci->xhc_state |= XHCI_STATE_DYING; 913 ep->ep_state &= ~EP_STOP_CMD_PENDING; 914 915 /* Disable interrupts from the host controller and start halting it */ 916 xhci_quiesce(xhci); 917 spin_unlock_irqrestore(&xhci->lock, flags); 918 919 ret = xhci_halt(xhci); 920 921 spin_lock_irqsave(&xhci->lock, flags); 922 if (ret < 0) { 923 /* This is bad; the host is not responding to commands and it's 924 * not allowing itself to be halted. At least interrupts are 925 * disabled. If we call usb_hc_died(), it will attempt to 926 * disconnect all device drivers under this host. Those 927 * disconnect() methods will wait for all URBs to be unlinked, 928 * so we must complete them. 929 */ 930 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 931 xhci_warn(xhci, "Completing active URBs anyway.\n"); 932 /* We could turn all TDs on the rings to no-ops. This won't 933 * help if the host has cached part of the ring, and is slow if 934 * we want to preserve the cycle bit. Skip it and hope the host 935 * doesn't touch the memory. 936 */ 937 } 938 for (i = 0; i < MAX_HC_SLOTS; i++) { 939 if (!xhci->devs[i]) 940 continue; 941 for (j = 0; j < 31; j++) 942 xhci_kill_endpoint_urbs(xhci, i, j); 943 } 944 spin_unlock_irqrestore(&xhci->lock, flags); 945 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 946 "Calling usb_hc_died()"); 947 usb_hc_died(xhci_to_hcd(xhci)); 948 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 949 "xHCI host controller is dead."); 950 } 951 952 953 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 954 struct xhci_virt_device *dev, 955 struct xhci_ring *ep_ring, 956 unsigned int ep_index) 957 { 958 union xhci_trb *dequeue_temp; 959 int num_trbs_free_temp; 960 bool revert = false; 961 962 num_trbs_free_temp = ep_ring->num_trbs_free; 963 dequeue_temp = ep_ring->dequeue; 964 965 /* If we get two back-to-back stalls, and the first stalled transfer 966 * ends just before a link TRB, the dequeue pointer will be left on 967 * the link TRB by the code in the while loop. So we have to update 968 * the dequeue pointer one segment further, or we'll jump off 969 * the segment into la-la-land. 970 */ 971 if (trb_is_link(ep_ring->dequeue)) { 972 ep_ring->deq_seg = ep_ring->deq_seg->next; 973 ep_ring->dequeue = ep_ring->deq_seg->trbs; 974 } 975 976 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 977 /* We have more usable TRBs */ 978 ep_ring->num_trbs_free++; 979 ep_ring->dequeue++; 980 if (trb_is_link(ep_ring->dequeue)) { 981 if (ep_ring->dequeue == 982 dev->eps[ep_index].queued_deq_ptr) 983 break; 984 ep_ring->deq_seg = ep_ring->deq_seg->next; 985 ep_ring->dequeue = ep_ring->deq_seg->trbs; 986 } 987 if (ep_ring->dequeue == dequeue_temp) { 988 revert = true; 989 break; 990 } 991 } 992 993 if (revert) { 994 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 995 ep_ring->num_trbs_free = num_trbs_free_temp; 996 } 997 } 998 999 /* 1000 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1001 * we need to clear the set deq pending flag in the endpoint ring state, so that 1002 * the TD queueing code can ring the doorbell again. We also need to ring the 1003 * endpoint doorbell to restart the ring, but only if there aren't more 1004 * cancellations pending. 1005 */ 1006 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1007 union xhci_trb *trb, u32 cmd_comp_code) 1008 { 1009 unsigned int ep_index; 1010 unsigned int stream_id; 1011 struct xhci_ring *ep_ring; 1012 struct xhci_virt_device *dev; 1013 struct xhci_virt_ep *ep; 1014 struct xhci_ep_ctx *ep_ctx; 1015 struct xhci_slot_ctx *slot_ctx; 1016 1017 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1018 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1019 dev = xhci->devs[slot_id]; 1020 ep = &dev->eps[ep_index]; 1021 1022 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1023 if (!ep_ring) { 1024 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1025 stream_id); 1026 /* XXX: Harmless??? */ 1027 goto cleanup; 1028 } 1029 1030 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1031 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1032 1033 if (cmd_comp_code != COMP_SUCCESS) { 1034 unsigned int ep_state; 1035 unsigned int slot_state; 1036 1037 switch (cmd_comp_code) { 1038 case COMP_TRB_ERROR: 1039 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1040 break; 1041 case COMP_CONTEXT_STATE_ERROR: 1042 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1043 ep_state = GET_EP_CTX_STATE(ep_ctx); 1044 slot_state = le32_to_cpu(slot_ctx->dev_state); 1045 slot_state = GET_SLOT_STATE(slot_state); 1046 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1047 "Slot state = %u, EP state = %u", 1048 slot_state, ep_state); 1049 break; 1050 case COMP_SLOT_NOT_ENABLED_ERROR: 1051 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1052 slot_id); 1053 break; 1054 default: 1055 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1056 cmd_comp_code); 1057 break; 1058 } 1059 /* OK what do we do now? The endpoint state is hosed, and we 1060 * should never get to this point if the synchronization between 1061 * queueing, and endpoint state are correct. This might happen 1062 * if the device gets disconnected after we've finished 1063 * cancelling URBs, which might not be an error... 1064 */ 1065 } else { 1066 u64 deq; 1067 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1068 if (ep->ep_state & EP_HAS_STREAMS) { 1069 struct xhci_stream_ctx *ctx = 1070 &ep->stream_info->stream_ctx_array[stream_id]; 1071 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1072 } else { 1073 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1074 } 1075 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1076 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1077 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1078 ep->queued_deq_ptr) == deq) { 1079 /* Update the ring's dequeue segment and dequeue pointer 1080 * to reflect the new position. 1081 */ 1082 update_ring_for_set_deq_completion(xhci, dev, 1083 ep_ring, ep_index); 1084 } else { 1085 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1086 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1087 ep->queued_deq_seg, ep->queued_deq_ptr); 1088 } 1089 } 1090 1091 cleanup: 1092 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1093 dev->eps[ep_index].queued_deq_seg = NULL; 1094 dev->eps[ep_index].queued_deq_ptr = NULL; 1095 /* Restart any rings with pending URBs */ 1096 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1097 } 1098 1099 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1100 union xhci_trb *trb, u32 cmd_comp_code) 1101 { 1102 unsigned int ep_index; 1103 1104 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1105 /* This command will only fail if the endpoint wasn't halted, 1106 * but we don't care. 1107 */ 1108 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1109 "Ignoring reset ep completion code of %u", cmd_comp_code); 1110 1111 /* HW with the reset endpoint quirk needs to have a configure endpoint 1112 * command complete before the endpoint can be used. Queue that here 1113 * because the HW can't handle two commands being queued in a row. 1114 */ 1115 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1116 struct xhci_command *command; 1117 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1118 if (!command) { 1119 xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n"); 1120 return; 1121 } 1122 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1123 "Queueing configure endpoint command"); 1124 xhci_queue_configure_endpoint(xhci, command, 1125 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1126 false); 1127 xhci_ring_cmd_db(xhci); 1128 } else { 1129 /* Clear our internal halted state */ 1130 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1131 } 1132 } 1133 1134 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1135 struct xhci_command *command, u32 cmd_comp_code) 1136 { 1137 if (cmd_comp_code == COMP_SUCCESS) 1138 command->slot_id = slot_id; 1139 else 1140 command->slot_id = 0; 1141 } 1142 1143 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1144 { 1145 struct xhci_virt_device *virt_dev; 1146 1147 virt_dev = xhci->devs[slot_id]; 1148 if (!virt_dev) 1149 return; 1150 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1151 /* Delete default control endpoint resources */ 1152 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1153 xhci_free_virt_device(xhci, slot_id); 1154 } 1155 1156 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1157 struct xhci_event_cmd *event, u32 cmd_comp_code) 1158 { 1159 struct xhci_virt_device *virt_dev; 1160 struct xhci_input_control_ctx *ctrl_ctx; 1161 unsigned int ep_index; 1162 unsigned int ep_state; 1163 u32 add_flags, drop_flags; 1164 1165 /* 1166 * Configure endpoint commands can come from the USB core 1167 * configuration or alt setting changes, or because the HW 1168 * needed an extra configure endpoint command after a reset 1169 * endpoint command or streams were being configured. 1170 * If the command was for a halted endpoint, the xHCI driver 1171 * is not waiting on the configure endpoint command. 1172 */ 1173 virt_dev = xhci->devs[slot_id]; 1174 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1175 if (!ctrl_ctx) { 1176 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1177 return; 1178 } 1179 1180 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1181 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1182 /* Input ctx add_flags are the endpoint index plus one */ 1183 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1184 1185 /* A usb_set_interface() call directly after clearing a halted 1186 * condition may race on this quirky hardware. Not worth 1187 * worrying about, since this is prototype hardware. Not sure 1188 * if this will work for streams, but streams support was 1189 * untested on this prototype. 1190 */ 1191 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1192 ep_index != (unsigned int) -1 && 1193 add_flags - SLOT_FLAG == drop_flags) { 1194 ep_state = virt_dev->eps[ep_index].ep_state; 1195 if (!(ep_state & EP_HALTED)) 1196 return; 1197 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1198 "Completed config ep cmd - " 1199 "last ep index = %d, state = %d", 1200 ep_index, ep_state); 1201 /* Clear internal halted state and restart ring(s) */ 1202 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1203 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1204 return; 1205 } 1206 return; 1207 } 1208 1209 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1210 struct xhci_event_cmd *event) 1211 { 1212 xhci_dbg(xhci, "Completed reset device command.\n"); 1213 if (!xhci->devs[slot_id]) 1214 xhci_warn(xhci, "Reset device command completion " 1215 "for disabled slot %u\n", slot_id); 1216 } 1217 1218 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1219 struct xhci_event_cmd *event) 1220 { 1221 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1222 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1223 return; 1224 } 1225 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1226 "NEC firmware version %2x.%02x", 1227 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1228 NEC_FW_MINOR(le32_to_cpu(event->status))); 1229 } 1230 1231 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1232 { 1233 list_del(&cmd->cmd_list); 1234 1235 if (cmd->completion) { 1236 cmd->status = status; 1237 complete(cmd->completion); 1238 } else { 1239 kfree(cmd); 1240 } 1241 } 1242 1243 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1244 { 1245 struct xhci_command *cur_cmd, *tmp_cmd; 1246 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1247 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1248 } 1249 1250 void xhci_handle_command_timeout(struct work_struct *work) 1251 { 1252 struct xhci_hcd *xhci; 1253 int ret; 1254 unsigned long flags; 1255 u64 hw_ring_state; 1256 1257 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1258 1259 spin_lock_irqsave(&xhci->lock, flags); 1260 1261 /* 1262 * If timeout work is pending, or current_cmd is NULL, it means we 1263 * raced with command completion. Command is handled so just return. 1264 */ 1265 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1266 spin_unlock_irqrestore(&xhci->lock, flags); 1267 return; 1268 } 1269 /* mark this command to be cancelled */ 1270 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1271 1272 /* Make sure command ring is running before aborting it */ 1273 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1274 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1275 (hw_ring_state & CMD_RING_RUNNING)) { 1276 /* Prevent new doorbell, and start command abort */ 1277 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1278 xhci_dbg(xhci, "Command timeout\n"); 1279 ret = xhci_abort_cmd_ring(xhci, flags); 1280 if (unlikely(ret == -ESHUTDOWN)) { 1281 xhci_err(xhci, "Abort command ring failed\n"); 1282 xhci_cleanup_command_queue(xhci); 1283 spin_unlock_irqrestore(&xhci->lock, flags); 1284 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 1285 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 1286 1287 return; 1288 } 1289 1290 goto time_out_completed; 1291 } 1292 1293 /* host removed. Bail out */ 1294 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1295 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1296 xhci_cleanup_command_queue(xhci); 1297 1298 goto time_out_completed; 1299 } 1300 1301 /* command timeout on stopped ring, ring can't be aborted */ 1302 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1303 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1304 1305 time_out_completed: 1306 spin_unlock_irqrestore(&xhci->lock, flags); 1307 return; 1308 } 1309 1310 static void handle_cmd_completion(struct xhci_hcd *xhci, 1311 struct xhci_event_cmd *event) 1312 { 1313 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1314 u64 cmd_dma; 1315 dma_addr_t cmd_dequeue_dma; 1316 u32 cmd_comp_code; 1317 union xhci_trb *cmd_trb; 1318 struct xhci_command *cmd; 1319 u32 cmd_type; 1320 1321 cmd_dma = le64_to_cpu(event->cmd_trb); 1322 cmd_trb = xhci->cmd_ring->dequeue; 1323 1324 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1325 1326 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1327 cmd_trb); 1328 /* 1329 * Check whether the completion event is for our internal kept 1330 * command. 1331 */ 1332 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1333 xhci_warn(xhci, 1334 "ERROR mismatched command completion event\n"); 1335 return; 1336 } 1337 1338 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1339 1340 cancel_delayed_work(&xhci->cmd_timer); 1341 1342 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1343 1344 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1345 if (cmd_comp_code == COMP_STOPPED) { 1346 complete_all(&xhci->cmd_ring_stop_completion); 1347 return; 1348 } 1349 1350 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1351 xhci_err(xhci, 1352 "Command completion event does not match command\n"); 1353 return; 1354 } 1355 1356 /* 1357 * Host aborted the command ring, check if the current command was 1358 * supposed to be aborted, otherwise continue normally. 1359 * The command ring is stopped now, but the xHC will issue a Command 1360 * Ring Stopped event which will cause us to restart it. 1361 */ 1362 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1363 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1364 if (cmd->status == COMP_COMMAND_ABORTED) { 1365 if (xhci->current_cmd == cmd) 1366 xhci->current_cmd = NULL; 1367 goto event_handled; 1368 } 1369 } 1370 1371 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1372 switch (cmd_type) { 1373 case TRB_ENABLE_SLOT: 1374 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1375 break; 1376 case TRB_DISABLE_SLOT: 1377 xhci_handle_cmd_disable_slot(xhci, slot_id); 1378 break; 1379 case TRB_CONFIG_EP: 1380 if (!cmd->completion) 1381 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1382 cmd_comp_code); 1383 break; 1384 case TRB_EVAL_CONTEXT: 1385 break; 1386 case TRB_ADDR_DEV: 1387 break; 1388 case TRB_STOP_RING: 1389 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1390 le32_to_cpu(cmd_trb->generic.field[3]))); 1391 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1392 break; 1393 case TRB_SET_DEQ: 1394 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1395 le32_to_cpu(cmd_trb->generic.field[3]))); 1396 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1397 break; 1398 case TRB_CMD_NOOP: 1399 /* Is this an aborted command turned to NO-OP? */ 1400 if (cmd->status == COMP_STOPPED) 1401 cmd_comp_code = COMP_STOPPED; 1402 break; 1403 case TRB_RESET_EP: 1404 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1405 le32_to_cpu(cmd_trb->generic.field[3]))); 1406 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1407 break; 1408 case TRB_RESET_DEV: 1409 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1410 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1411 */ 1412 slot_id = TRB_TO_SLOT_ID( 1413 le32_to_cpu(cmd_trb->generic.field[3])); 1414 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1415 break; 1416 case TRB_NEC_GET_FW: 1417 xhci_handle_cmd_nec_get_fw(xhci, event); 1418 break; 1419 default: 1420 /* Skip over unknown commands on the event ring */ 1421 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1422 break; 1423 } 1424 1425 /* restart timer if this wasn't the last command */ 1426 if (!list_is_singular(&xhci->cmd_list)) { 1427 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1428 struct xhci_command, cmd_list); 1429 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1430 } else if (xhci->current_cmd == cmd) { 1431 xhci->current_cmd = NULL; 1432 } 1433 1434 event_handled: 1435 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1436 1437 inc_deq(xhci, xhci->cmd_ring); 1438 } 1439 1440 static void handle_vendor_event(struct xhci_hcd *xhci, 1441 union xhci_trb *event) 1442 { 1443 u32 trb_type; 1444 1445 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1446 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1447 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1448 handle_cmd_completion(xhci, &event->event_cmd); 1449 } 1450 1451 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1452 * port registers -- USB 3.0 and USB 2.0). 1453 * 1454 * Returns a zero-based port number, which is suitable for indexing into each of 1455 * the split roothubs' port arrays and bus state arrays. 1456 * Add one to it in order to call xhci_find_slot_id_by_port. 1457 */ 1458 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1459 struct xhci_hcd *xhci, u32 port_id) 1460 { 1461 unsigned int i; 1462 unsigned int num_similar_speed_ports = 0; 1463 1464 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1465 * and usb2_ports are 0-based indexes. Count the number of similar 1466 * speed ports, up to 1 port before this port. 1467 */ 1468 for (i = 0; i < (port_id - 1); i++) { 1469 u8 port_speed = xhci->port_array[i]; 1470 1471 /* 1472 * Skip ports that don't have known speeds, or have duplicate 1473 * Extended Capabilities port speed entries. 1474 */ 1475 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1476 continue; 1477 1478 /* 1479 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1480 * 1.1 ports are under the USB 2.0 hub. If the port speed 1481 * matches the device speed, it's a similar speed port. 1482 */ 1483 if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3)) 1484 num_similar_speed_ports++; 1485 } 1486 return num_similar_speed_ports; 1487 } 1488 1489 static void handle_device_notification(struct xhci_hcd *xhci, 1490 union xhci_trb *event) 1491 { 1492 u32 slot_id; 1493 struct usb_device *udev; 1494 1495 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1496 if (!xhci->devs[slot_id]) { 1497 xhci_warn(xhci, "Device Notification event for " 1498 "unused slot %u\n", slot_id); 1499 return; 1500 } 1501 1502 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1503 slot_id); 1504 udev = xhci->devs[slot_id]->udev; 1505 if (udev && udev->parent) 1506 usb_wakeup_notification(udev->parent, udev->portnum); 1507 } 1508 1509 static void handle_port_status(struct xhci_hcd *xhci, 1510 union xhci_trb *event) 1511 { 1512 struct usb_hcd *hcd; 1513 u32 port_id; 1514 u32 temp, temp1; 1515 int max_ports; 1516 int slot_id; 1517 unsigned int faked_port_index; 1518 u8 major_revision; 1519 struct xhci_bus_state *bus_state; 1520 __le32 __iomem **port_array; 1521 bool bogus_port_status = false; 1522 1523 /* Port status change events always have a successful completion code */ 1524 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1525 xhci_warn(xhci, 1526 "WARN: xHC returned failed port status event\n"); 1527 1528 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1529 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1530 1531 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1532 if ((port_id <= 0) || (port_id > max_ports)) { 1533 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1534 inc_deq(xhci, xhci->event_ring); 1535 return; 1536 } 1537 1538 /* Figure out which usb_hcd this port is attached to: 1539 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1540 */ 1541 major_revision = xhci->port_array[port_id - 1]; 1542 1543 /* Find the right roothub. */ 1544 hcd = xhci_to_hcd(xhci); 1545 if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3)) 1546 hcd = xhci->shared_hcd; 1547 1548 if (major_revision == 0) { 1549 xhci_warn(xhci, "Event for port %u not in " 1550 "Extended Capabilities, ignoring.\n", 1551 port_id); 1552 bogus_port_status = true; 1553 goto cleanup; 1554 } 1555 if (major_revision == DUPLICATE_ENTRY) { 1556 xhci_warn(xhci, "Event for port %u duplicated in" 1557 "Extended Capabilities, ignoring.\n", 1558 port_id); 1559 bogus_port_status = true; 1560 goto cleanup; 1561 } 1562 1563 /* 1564 * Hardware port IDs reported by a Port Status Change Event include USB 1565 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1566 * resume event, but we first need to translate the hardware port ID 1567 * into the index into the ports on the correct split roothub, and the 1568 * correct bus_state structure. 1569 */ 1570 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1571 if (hcd->speed >= HCD_USB3) 1572 port_array = xhci->usb3_ports; 1573 else 1574 port_array = xhci->usb2_ports; 1575 /* Find the faked port hub number */ 1576 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1577 port_id); 1578 1579 temp = readl(port_array[faked_port_index]); 1580 if (hcd->state == HC_STATE_SUSPENDED) { 1581 xhci_dbg(xhci, "resume root hub\n"); 1582 usb_hcd_resume_root_hub(hcd); 1583 } 1584 1585 if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE) 1586 bus_state->port_remote_wakeup &= ~(1 << faked_port_index); 1587 1588 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1589 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1590 1591 temp1 = readl(&xhci->op_regs->command); 1592 if (!(temp1 & CMD_RUN)) { 1593 xhci_warn(xhci, "xHC is not running.\n"); 1594 goto cleanup; 1595 } 1596 1597 if (DEV_SUPERSPEED_ANY(temp)) { 1598 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1599 /* Set a flag to say the port signaled remote wakeup, 1600 * so we can tell the difference between the end of 1601 * device and host initiated resume. 1602 */ 1603 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1604 xhci_test_and_clear_bit(xhci, port_array, 1605 faked_port_index, PORT_PLC); 1606 xhci_set_link_state(xhci, port_array, faked_port_index, 1607 XDEV_U0); 1608 /* Need to wait until the next link state change 1609 * indicates the device is actually in U0. 1610 */ 1611 bogus_port_status = true; 1612 goto cleanup; 1613 } else if (!test_bit(faked_port_index, 1614 &bus_state->resuming_ports)) { 1615 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1616 bus_state->resume_done[faked_port_index] = jiffies + 1617 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1618 set_bit(faked_port_index, &bus_state->resuming_ports); 1619 mod_timer(&hcd->rh_timer, 1620 bus_state->resume_done[faked_port_index]); 1621 /* Do the rest in GetPortStatus */ 1622 } 1623 } 1624 1625 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1626 DEV_SUPERSPEED_ANY(temp)) { 1627 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1628 /* We've just brought the device into U0 through either the 1629 * Resume state after a device remote wakeup, or through the 1630 * U3Exit state after a host-initiated resume. If it's a device 1631 * initiated remote wake, don't pass up the link state change, 1632 * so the roothub behavior is consistent with external 1633 * USB 3.0 hub behavior. 1634 */ 1635 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1636 faked_port_index + 1); 1637 if (slot_id && xhci->devs[slot_id]) 1638 xhci_ring_device(xhci, slot_id); 1639 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1640 bus_state->port_remote_wakeup &= 1641 ~(1 << faked_port_index); 1642 xhci_test_and_clear_bit(xhci, port_array, 1643 faked_port_index, PORT_PLC); 1644 usb_wakeup_notification(hcd->self.root_hub, 1645 faked_port_index + 1); 1646 bogus_port_status = true; 1647 goto cleanup; 1648 } 1649 } 1650 1651 /* 1652 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1653 * RExit to a disconnect state). If so, let the the driver know it's 1654 * out of the RExit state. 1655 */ 1656 if (!DEV_SUPERSPEED_ANY(temp) && 1657 test_and_clear_bit(faked_port_index, 1658 &bus_state->rexit_ports)) { 1659 complete(&bus_state->rexit_done[faked_port_index]); 1660 bogus_port_status = true; 1661 goto cleanup; 1662 } 1663 1664 if (hcd->speed < HCD_USB3) 1665 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1666 PORT_PLC); 1667 1668 cleanup: 1669 /* Update event ring dequeue pointer before dropping the lock */ 1670 inc_deq(xhci, xhci->event_ring); 1671 1672 /* Don't make the USB core poll the roothub if we got a bad port status 1673 * change event. Besides, at that point we can't tell which roothub 1674 * (USB 2.0 or USB 3.0) to kick. 1675 */ 1676 if (bogus_port_status) 1677 return; 1678 1679 /* 1680 * xHCI port-status-change events occur when the "or" of all the 1681 * status-change bits in the portsc register changes from 0 to 1. 1682 * New status changes won't cause an event if any other change 1683 * bits are still set. When an event occurs, switch over to 1684 * polling to avoid losing status changes. 1685 */ 1686 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1687 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1688 spin_unlock(&xhci->lock); 1689 /* Pass this up to the core */ 1690 usb_hcd_poll_rh_status(hcd); 1691 spin_lock(&xhci->lock); 1692 } 1693 1694 /* 1695 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1696 * at end_trb, which may be in another segment. If the suspect DMA address is a 1697 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1698 * returns 0. 1699 */ 1700 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1701 struct xhci_segment *start_seg, 1702 union xhci_trb *start_trb, 1703 union xhci_trb *end_trb, 1704 dma_addr_t suspect_dma, 1705 bool debug) 1706 { 1707 dma_addr_t start_dma; 1708 dma_addr_t end_seg_dma; 1709 dma_addr_t end_trb_dma; 1710 struct xhci_segment *cur_seg; 1711 1712 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1713 cur_seg = start_seg; 1714 1715 do { 1716 if (start_dma == 0) 1717 return NULL; 1718 /* We may get an event for a Link TRB in the middle of a TD */ 1719 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1720 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1721 /* If the end TRB isn't in this segment, this is set to 0 */ 1722 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1723 1724 if (debug) 1725 xhci_warn(xhci, 1726 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1727 (unsigned long long)suspect_dma, 1728 (unsigned long long)start_dma, 1729 (unsigned long long)end_trb_dma, 1730 (unsigned long long)cur_seg->dma, 1731 (unsigned long long)end_seg_dma); 1732 1733 if (end_trb_dma > 0) { 1734 /* The end TRB is in this segment, so suspect should be here */ 1735 if (start_dma <= end_trb_dma) { 1736 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1737 return cur_seg; 1738 } else { 1739 /* Case for one segment with 1740 * a TD wrapped around to the top 1741 */ 1742 if ((suspect_dma >= start_dma && 1743 suspect_dma <= end_seg_dma) || 1744 (suspect_dma >= cur_seg->dma && 1745 suspect_dma <= end_trb_dma)) 1746 return cur_seg; 1747 } 1748 return NULL; 1749 } else { 1750 /* Might still be somewhere in this segment */ 1751 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1752 return cur_seg; 1753 } 1754 cur_seg = cur_seg->next; 1755 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1756 } while (cur_seg != start_seg); 1757 1758 return NULL; 1759 } 1760 1761 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1762 unsigned int slot_id, unsigned int ep_index, 1763 unsigned int stream_id, 1764 struct xhci_td *td, union xhci_trb *ep_trb) 1765 { 1766 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1767 struct xhci_command *command; 1768 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1769 if (!command) 1770 return; 1771 1772 ep->ep_state |= EP_HALTED; 1773 ep->stopped_stream = stream_id; 1774 1775 xhci_queue_reset_ep(xhci, command, slot_id, ep_index); 1776 xhci_cleanup_stalled_ring(xhci, ep_index, td); 1777 1778 ep->stopped_stream = 0; 1779 1780 xhci_ring_cmd_db(xhci); 1781 } 1782 1783 /* Check if an error has halted the endpoint ring. The class driver will 1784 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1785 * However, a babble and other errors also halt the endpoint ring, and the class 1786 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1787 * Ring Dequeue Pointer command manually. 1788 */ 1789 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1790 struct xhci_ep_ctx *ep_ctx, 1791 unsigned int trb_comp_code) 1792 { 1793 /* TRB completion codes that may require a manual halt cleanup */ 1794 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 1795 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 1796 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 1797 /* The 0.95 spec says a babbling control endpoint 1798 * is not halted. The 0.96 spec says it is. Some HW 1799 * claims to be 0.95 compliant, but it halts the control 1800 * endpoint anyway. Check if a babble halted the 1801 * endpoint. 1802 */ 1803 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 1804 return 1; 1805 1806 return 0; 1807 } 1808 1809 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1810 { 1811 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1812 /* Vendor defined "informational" completion code, 1813 * treat as not-an-error. 1814 */ 1815 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1816 trb_comp_code); 1817 xhci_dbg(xhci, "Treating code as success.\n"); 1818 return 1; 1819 } 1820 return 0; 1821 } 1822 1823 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 1824 struct xhci_ring *ep_ring, int *status) 1825 { 1826 struct urb_priv *urb_priv; 1827 struct urb *urb = NULL; 1828 1829 /* Clean up the endpoint's TD list */ 1830 urb = td->urb; 1831 urb_priv = urb->hcpriv; 1832 1833 /* if a bounce buffer was used to align this td then unmap it */ 1834 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 1835 1836 /* Do one last check of the actual transfer length. 1837 * If the host controller said we transferred more data than the buffer 1838 * length, urb->actual_length will be a very big number (since it's 1839 * unsigned). Play it safe and say we didn't transfer anything. 1840 */ 1841 if (urb->actual_length > urb->transfer_buffer_length) { 1842 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 1843 urb->transfer_buffer_length, urb->actual_length); 1844 urb->actual_length = 0; 1845 *status = 0; 1846 } 1847 list_del_init(&td->td_list); 1848 /* Was this TD slated to be cancelled but completed anyway? */ 1849 if (!list_empty(&td->cancelled_td_list)) 1850 list_del_init(&td->cancelled_td_list); 1851 1852 inc_td_cnt(urb); 1853 /* Giveback the urb when all the tds are completed */ 1854 if (last_td_in_urb(td)) { 1855 if ((urb->actual_length != urb->transfer_buffer_length && 1856 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 1857 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 1858 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 1859 urb, urb->actual_length, 1860 urb->transfer_buffer_length, *status); 1861 1862 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 1863 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 1864 *status = 0; 1865 xhci_giveback_urb_in_irq(xhci, td, *status); 1866 } 1867 1868 return 0; 1869 } 1870 1871 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1872 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 1873 struct xhci_virt_ep *ep, int *status, bool skip) 1874 { 1875 struct xhci_virt_device *xdev; 1876 struct xhci_ep_ctx *ep_ctx; 1877 struct xhci_ring *ep_ring; 1878 unsigned int slot_id; 1879 u32 trb_comp_code; 1880 int ep_index; 1881 1882 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1883 xdev = xhci->devs[slot_id]; 1884 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1885 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1886 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1887 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1888 1889 if (skip) 1890 goto td_cleanup; 1891 1892 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 1893 trb_comp_code == COMP_STOPPED || 1894 trb_comp_code == COMP_STOPPED_SHORT_PACKET) { 1895 /* The Endpoint Stop Command completion will take care of any 1896 * stopped TDs. A stopped TD may be restarted, so don't update 1897 * the ring dequeue pointer or take this TD off any lists yet. 1898 */ 1899 ep->stopped_td = td; 1900 return 0; 1901 } 1902 if (trb_comp_code == COMP_STALL_ERROR || 1903 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 1904 trb_comp_code)) { 1905 /* Issue a reset endpoint command to clear the host side 1906 * halt, followed by a set dequeue command to move the 1907 * dequeue pointer past the TD. 1908 * The class driver clears the device side halt later. 1909 */ 1910 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 1911 ep_ring->stream_id, td, ep_trb); 1912 } else { 1913 /* Update ring dequeue pointer */ 1914 while (ep_ring->dequeue != td->last_trb) 1915 inc_deq(xhci, ep_ring); 1916 inc_deq(xhci, ep_ring); 1917 } 1918 1919 td_cleanup: 1920 return xhci_td_cleanup(xhci, td, ep_ring, status); 1921 } 1922 1923 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 1924 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 1925 union xhci_trb *stop_trb) 1926 { 1927 u32 sum; 1928 union xhci_trb *trb = ring->dequeue; 1929 struct xhci_segment *seg = ring->deq_seg; 1930 1931 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 1932 if (!trb_is_noop(trb) && !trb_is_link(trb)) 1933 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 1934 } 1935 return sum; 1936 } 1937 1938 /* 1939 * Process control tds, update urb status and actual_length. 1940 */ 1941 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1942 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 1943 struct xhci_virt_ep *ep, int *status) 1944 { 1945 struct xhci_virt_device *xdev; 1946 struct xhci_ring *ep_ring; 1947 unsigned int slot_id; 1948 int ep_index; 1949 struct xhci_ep_ctx *ep_ctx; 1950 u32 trb_comp_code; 1951 u32 remaining, requested; 1952 u32 trb_type; 1953 1954 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 1955 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1956 xdev = xhci->devs[slot_id]; 1957 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1958 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1959 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1960 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1961 requested = td->urb->transfer_buffer_length; 1962 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1963 1964 switch (trb_comp_code) { 1965 case COMP_SUCCESS: 1966 if (trb_type != TRB_STATUS) { 1967 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 1968 (trb_type == TRB_DATA) ? "data" : "setup"); 1969 *status = -ESHUTDOWN; 1970 break; 1971 } 1972 *status = 0; 1973 break; 1974 case COMP_SHORT_PACKET: 1975 *status = 0; 1976 break; 1977 case COMP_STOPPED_SHORT_PACKET: 1978 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 1979 td->urb->actual_length = remaining; 1980 else 1981 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 1982 goto finish_td; 1983 case COMP_STOPPED: 1984 switch (trb_type) { 1985 case TRB_SETUP: 1986 td->urb->actual_length = 0; 1987 goto finish_td; 1988 case TRB_DATA: 1989 case TRB_NORMAL: 1990 td->urb->actual_length = requested - remaining; 1991 goto finish_td; 1992 case TRB_STATUS: 1993 td->urb->actual_length = requested; 1994 goto finish_td; 1995 default: 1996 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 1997 trb_type); 1998 goto finish_td; 1999 } 2000 case COMP_STOPPED_LENGTH_INVALID: 2001 goto finish_td; 2002 default: 2003 if (!xhci_requires_manual_halt_cleanup(xhci, 2004 ep_ctx, trb_comp_code)) 2005 break; 2006 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2007 trb_comp_code, ep_index); 2008 /* else fall through */ 2009 case COMP_STALL_ERROR: 2010 /* Did we transfer part of the data (middle) phase? */ 2011 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2012 td->urb->actual_length = requested - remaining; 2013 else if (!td->urb_length_set) 2014 td->urb->actual_length = 0; 2015 goto finish_td; 2016 } 2017 2018 /* stopped at setup stage, no data transferred */ 2019 if (trb_type == TRB_SETUP) 2020 goto finish_td; 2021 2022 /* 2023 * if on data stage then update the actual_length of the URB and flag it 2024 * as set, so it won't be overwritten in the event for the last TRB. 2025 */ 2026 if (trb_type == TRB_DATA || 2027 trb_type == TRB_NORMAL) { 2028 td->urb_length_set = true; 2029 td->urb->actual_length = requested - remaining; 2030 xhci_dbg(xhci, "Waiting for status stage event\n"); 2031 return 0; 2032 } 2033 2034 /* at status stage */ 2035 if (!td->urb_length_set) 2036 td->urb->actual_length = requested; 2037 2038 finish_td: 2039 return finish_td(xhci, td, ep_trb, event, ep, status, false); 2040 } 2041 2042 /* 2043 * Process isochronous tds, update urb packet status and actual_length. 2044 */ 2045 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2046 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2047 struct xhci_virt_ep *ep, int *status) 2048 { 2049 struct xhci_ring *ep_ring; 2050 struct urb_priv *urb_priv; 2051 int idx; 2052 struct usb_iso_packet_descriptor *frame; 2053 u32 trb_comp_code; 2054 bool sum_trbs_for_length = false; 2055 u32 remaining, requested, ep_trb_len; 2056 int short_framestatus; 2057 2058 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2059 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2060 urb_priv = td->urb->hcpriv; 2061 idx = urb_priv->num_tds_done; 2062 frame = &td->urb->iso_frame_desc[idx]; 2063 requested = frame->length; 2064 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2065 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2066 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2067 -EREMOTEIO : 0; 2068 2069 /* handle completion code */ 2070 switch (trb_comp_code) { 2071 case COMP_SUCCESS: 2072 if (remaining) { 2073 frame->status = short_framestatus; 2074 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2075 sum_trbs_for_length = true; 2076 break; 2077 } 2078 frame->status = 0; 2079 break; 2080 case COMP_SHORT_PACKET: 2081 frame->status = short_framestatus; 2082 sum_trbs_for_length = true; 2083 break; 2084 case COMP_BANDWIDTH_OVERRUN_ERROR: 2085 frame->status = -ECOMM; 2086 break; 2087 case COMP_ISOCH_BUFFER_OVERRUN: 2088 case COMP_BABBLE_DETECTED_ERROR: 2089 frame->status = -EOVERFLOW; 2090 break; 2091 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2092 case COMP_STALL_ERROR: 2093 frame->status = -EPROTO; 2094 break; 2095 case COMP_USB_TRANSACTION_ERROR: 2096 frame->status = -EPROTO; 2097 if (ep_trb != td->last_trb) 2098 return 0; 2099 break; 2100 case COMP_STOPPED: 2101 sum_trbs_for_length = true; 2102 break; 2103 case COMP_STOPPED_SHORT_PACKET: 2104 /* field normally containing residue now contains tranferred */ 2105 frame->status = short_framestatus; 2106 requested = remaining; 2107 break; 2108 case COMP_STOPPED_LENGTH_INVALID: 2109 requested = 0; 2110 remaining = 0; 2111 break; 2112 default: 2113 sum_trbs_for_length = true; 2114 frame->status = -1; 2115 break; 2116 } 2117 2118 if (sum_trbs_for_length) 2119 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) + 2120 ep_trb_len - remaining; 2121 else 2122 frame->actual_length = requested; 2123 2124 td->urb->actual_length += frame->actual_length; 2125 2126 return finish_td(xhci, td, ep_trb, event, ep, status, false); 2127 } 2128 2129 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2130 struct xhci_transfer_event *event, 2131 struct xhci_virt_ep *ep, int *status) 2132 { 2133 struct xhci_ring *ep_ring; 2134 struct urb_priv *urb_priv; 2135 struct usb_iso_packet_descriptor *frame; 2136 int idx; 2137 2138 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2139 urb_priv = td->urb->hcpriv; 2140 idx = urb_priv->num_tds_done; 2141 frame = &td->urb->iso_frame_desc[idx]; 2142 2143 /* The transfer is partly done. */ 2144 frame->status = -EXDEV; 2145 2146 /* calc actual length */ 2147 frame->actual_length = 0; 2148 2149 /* Update ring dequeue pointer */ 2150 while (ep_ring->dequeue != td->last_trb) 2151 inc_deq(xhci, ep_ring); 2152 inc_deq(xhci, ep_ring); 2153 2154 return finish_td(xhci, td, NULL, event, ep, status, true); 2155 } 2156 2157 /* 2158 * Process bulk and interrupt tds, update urb status and actual_length. 2159 */ 2160 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2161 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2162 struct xhci_virt_ep *ep, int *status) 2163 { 2164 struct xhci_ring *ep_ring; 2165 u32 trb_comp_code; 2166 u32 remaining, requested, ep_trb_len; 2167 2168 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2169 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2170 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2171 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2172 requested = td->urb->transfer_buffer_length; 2173 2174 switch (trb_comp_code) { 2175 case COMP_SUCCESS: 2176 /* handle success with untransferred data as short packet */ 2177 if (ep_trb != td->last_trb || remaining) { 2178 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2179 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2180 td->urb->ep->desc.bEndpointAddress, 2181 requested, remaining); 2182 } 2183 *status = 0; 2184 break; 2185 case COMP_SHORT_PACKET: 2186 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2187 td->urb->ep->desc.bEndpointAddress, 2188 requested, remaining); 2189 *status = 0; 2190 break; 2191 case COMP_STOPPED_SHORT_PACKET: 2192 td->urb->actual_length = remaining; 2193 goto finish_td; 2194 case COMP_STOPPED_LENGTH_INVALID: 2195 /* stopped on ep trb with invalid length, exclude it */ 2196 ep_trb_len = 0; 2197 remaining = 0; 2198 break; 2199 default: 2200 /* do nothing */ 2201 break; 2202 } 2203 2204 if (ep_trb == td->last_trb) 2205 td->urb->actual_length = requested - remaining; 2206 else 2207 td->urb->actual_length = 2208 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2209 ep_trb_len - remaining; 2210 finish_td: 2211 if (remaining > requested) { 2212 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2213 remaining); 2214 td->urb->actual_length = 0; 2215 } 2216 return finish_td(xhci, td, ep_trb, event, ep, status, false); 2217 } 2218 2219 /* 2220 * If this function returns an error condition, it means it got a Transfer 2221 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2222 * At this point, the host controller is probably hosed and should be reset. 2223 */ 2224 static int handle_tx_event(struct xhci_hcd *xhci, 2225 struct xhci_transfer_event *event) 2226 { 2227 struct xhci_virt_device *xdev; 2228 struct xhci_virt_ep *ep; 2229 struct xhci_ring *ep_ring; 2230 unsigned int slot_id; 2231 int ep_index; 2232 struct xhci_td *td = NULL; 2233 dma_addr_t ep_trb_dma; 2234 struct xhci_segment *ep_seg; 2235 union xhci_trb *ep_trb; 2236 int status = -EINPROGRESS; 2237 struct xhci_ep_ctx *ep_ctx; 2238 struct list_head *tmp; 2239 u32 trb_comp_code; 2240 int td_num = 0; 2241 bool handling_skipped_tds = false; 2242 2243 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2244 xdev = xhci->devs[slot_id]; 2245 if (!xdev) { 2246 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2247 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2248 (unsigned long long) xhci_trb_virt_to_dma( 2249 xhci->event_ring->deq_seg, 2250 xhci->event_ring->dequeue), 2251 lower_32_bits(le64_to_cpu(event->buffer)), 2252 upper_32_bits(le64_to_cpu(event->buffer)), 2253 le32_to_cpu(event->transfer_len), 2254 le32_to_cpu(event->flags)); 2255 xhci_dbg(xhci, "Event ring:\n"); 2256 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2257 return -ENODEV; 2258 } 2259 2260 /* Endpoint ID is 1 based, our index is zero based */ 2261 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2262 ep = &xdev->eps[ep_index]; 2263 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2264 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2265 if (!ep_ring || GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2266 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2267 "or incorrect stream ring\n"); 2268 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2269 (unsigned long long) xhci_trb_virt_to_dma( 2270 xhci->event_ring->deq_seg, 2271 xhci->event_ring->dequeue), 2272 lower_32_bits(le64_to_cpu(event->buffer)), 2273 upper_32_bits(le64_to_cpu(event->buffer)), 2274 le32_to_cpu(event->transfer_len), 2275 le32_to_cpu(event->flags)); 2276 xhci_dbg(xhci, "Event ring:\n"); 2277 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2278 return -ENODEV; 2279 } 2280 2281 /* Count current td numbers if ep->skip is set */ 2282 if (ep->skip) { 2283 list_for_each(tmp, &ep_ring->td_list) 2284 td_num++; 2285 } 2286 2287 ep_trb_dma = le64_to_cpu(event->buffer); 2288 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2289 /* Look for common error cases */ 2290 switch (trb_comp_code) { 2291 /* Skip codes that require special handling depending on 2292 * transfer type 2293 */ 2294 case COMP_SUCCESS: 2295 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2296 break; 2297 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2298 trb_comp_code = COMP_SHORT_PACKET; 2299 else 2300 xhci_warn_ratelimited(xhci, 2301 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); 2302 case COMP_SHORT_PACKET: 2303 break; 2304 case COMP_STOPPED: 2305 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2306 break; 2307 case COMP_STOPPED_LENGTH_INVALID: 2308 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2309 break; 2310 case COMP_STOPPED_SHORT_PACKET: 2311 xhci_dbg(xhci, "Stopped with short packet transfer detected\n"); 2312 break; 2313 case COMP_STALL_ERROR: 2314 xhci_dbg(xhci, "Stalled endpoint\n"); 2315 ep->ep_state |= EP_HALTED; 2316 status = -EPIPE; 2317 break; 2318 case COMP_TRB_ERROR: 2319 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2320 status = -EILSEQ; 2321 break; 2322 case COMP_SPLIT_TRANSACTION_ERROR: 2323 case COMP_USB_TRANSACTION_ERROR: 2324 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2325 status = -EPROTO; 2326 break; 2327 case COMP_BABBLE_DETECTED_ERROR: 2328 xhci_dbg(xhci, "Babble error on endpoint\n"); 2329 status = -EOVERFLOW; 2330 break; 2331 case COMP_DATA_BUFFER_ERROR: 2332 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2333 status = -ENOSR; 2334 break; 2335 case COMP_BANDWIDTH_OVERRUN_ERROR: 2336 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2337 break; 2338 case COMP_ISOCH_BUFFER_OVERRUN: 2339 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2340 break; 2341 case COMP_RING_UNDERRUN: 2342 /* 2343 * When the Isoch ring is empty, the xHC will generate 2344 * a Ring Overrun Event for IN Isoch endpoint or Ring 2345 * Underrun Event for OUT Isoch endpoint. 2346 */ 2347 xhci_dbg(xhci, "underrun event on endpoint\n"); 2348 if (!list_empty(&ep_ring->td_list)) 2349 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2350 "still with TDs queued?\n", 2351 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2352 ep_index); 2353 goto cleanup; 2354 case COMP_RING_OVERRUN: 2355 xhci_dbg(xhci, "overrun event on endpoint\n"); 2356 if (!list_empty(&ep_ring->td_list)) 2357 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2358 "still with TDs queued?\n", 2359 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2360 ep_index); 2361 goto cleanup; 2362 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2363 xhci_warn(xhci, "WARN: detect an incompatible device"); 2364 status = -EPROTO; 2365 break; 2366 case COMP_MISSED_SERVICE_ERROR: 2367 /* 2368 * When encounter missed service error, one or more isoc tds 2369 * may be missed by xHC. 2370 * Set skip flag of the ep_ring; Complete the missed tds as 2371 * short transfer when process the ep_ring next time. 2372 */ 2373 ep->skip = true; 2374 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2375 goto cleanup; 2376 case COMP_NO_PING_RESPONSE_ERROR: 2377 ep->skip = true; 2378 xhci_dbg(xhci, "No Ping response error, Skip one Isoc TD\n"); 2379 goto cleanup; 2380 default: 2381 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2382 status = 0; 2383 break; 2384 } 2385 xhci_warn(xhci, "ERROR Unknown event condition %u, HC probably busted\n", 2386 trb_comp_code); 2387 goto cleanup; 2388 } 2389 2390 do { 2391 /* This TRB should be in the TD at the head of this ring's 2392 * TD list. 2393 */ 2394 if (list_empty(&ep_ring->td_list)) { 2395 /* 2396 * A stopped endpoint may generate an extra completion 2397 * event if the device was suspended. Don't print 2398 * warnings. 2399 */ 2400 if (!(trb_comp_code == COMP_STOPPED || 2401 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2402 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2403 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2404 ep_index); 2405 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2406 (le32_to_cpu(event->flags) & 2407 TRB_TYPE_BITMASK)>>10); 2408 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2409 } 2410 if (ep->skip) { 2411 ep->skip = false; 2412 xhci_dbg(xhci, "td_list is empty while skip " 2413 "flag set. Clear skip flag.\n"); 2414 } 2415 goto cleanup; 2416 } 2417 2418 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2419 if (ep->skip && td_num == 0) { 2420 ep->skip = false; 2421 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2422 "Clear skip flag.\n"); 2423 goto cleanup; 2424 } 2425 2426 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2427 td_list); 2428 if (ep->skip) 2429 td_num--; 2430 2431 /* Is this a TRB in the currently executing TD? */ 2432 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2433 td->last_trb, ep_trb_dma, false); 2434 2435 /* 2436 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2437 * is not in the current TD pointed by ep_ring->dequeue because 2438 * that the hardware dequeue pointer still at the previous TRB 2439 * of the current TD. The previous TRB maybe a Link TD or the 2440 * last TRB of the previous TD. The command completion handle 2441 * will take care the rest. 2442 */ 2443 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2444 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2445 goto cleanup; 2446 } 2447 2448 if (!ep_seg) { 2449 if (!ep->skip || 2450 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2451 /* Some host controllers give a spurious 2452 * successful event after a short transfer. 2453 * Ignore it. 2454 */ 2455 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2456 ep_ring->last_td_was_short) { 2457 ep_ring->last_td_was_short = false; 2458 goto cleanup; 2459 } 2460 /* HC is busted, give up! */ 2461 xhci_err(xhci, 2462 "ERROR Transfer event TRB DMA ptr not " 2463 "part of current TD ep_index %d " 2464 "comp_code %u\n", ep_index, 2465 trb_comp_code); 2466 trb_in_td(xhci, ep_ring->deq_seg, 2467 ep_ring->dequeue, td->last_trb, 2468 ep_trb_dma, true); 2469 return -ESHUTDOWN; 2470 } 2471 2472 skip_isoc_td(xhci, td, event, ep, &status); 2473 goto cleanup; 2474 } 2475 if (trb_comp_code == COMP_SHORT_PACKET) 2476 ep_ring->last_td_was_short = true; 2477 else 2478 ep_ring->last_td_was_short = false; 2479 2480 if (ep->skip) { 2481 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2482 ep->skip = false; 2483 } 2484 2485 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2486 sizeof(*ep_trb)]; 2487 2488 trace_xhci_handle_transfer(ep_ring, 2489 (struct xhci_generic_trb *) ep_trb); 2490 2491 /* 2492 * No-op TRB should not trigger interrupts. 2493 * If ep_trb is a no-op TRB, it means the 2494 * corresponding TD has been cancelled. Just ignore 2495 * the TD. 2496 */ 2497 if (trb_is_noop(ep_trb)) { 2498 xhci_dbg(xhci, "ep_trb is a no-op TRB. Skip it\n"); 2499 goto cleanup; 2500 } 2501 2502 /* update the urb's actual_length and give back to the core */ 2503 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2504 process_ctrl_td(xhci, td, ep_trb, event, ep, &status); 2505 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2506 process_isoc_td(xhci, td, ep_trb, event, ep, &status); 2507 else 2508 process_bulk_intr_td(xhci, td, ep_trb, event, ep, 2509 &status); 2510 cleanup: 2511 handling_skipped_tds = ep->skip && 2512 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2513 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2514 2515 /* 2516 * Do not update event ring dequeue pointer if we're in a loop 2517 * processing missed tds. 2518 */ 2519 if (!handling_skipped_tds) 2520 inc_deq(xhci, xhci->event_ring); 2521 2522 /* 2523 * If ep->skip is set, it means there are missed tds on the 2524 * endpoint ring need to take care of. 2525 * Process them as short transfer until reach the td pointed by 2526 * the event. 2527 */ 2528 } while (handling_skipped_tds); 2529 2530 return 0; 2531 } 2532 2533 /* 2534 * This function handles all OS-owned events on the event ring. It may drop 2535 * xhci->lock between event processing (e.g. to pass up port status changes). 2536 * Returns >0 for "possibly more events to process" (caller should call again), 2537 * otherwise 0 if done. In future, <0 returns should indicate error code. 2538 */ 2539 static int xhci_handle_event(struct xhci_hcd *xhci) 2540 { 2541 union xhci_trb *event; 2542 int update_ptrs = 1; 2543 int ret; 2544 2545 /* Event ring hasn't been allocated yet. */ 2546 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2547 xhci_err(xhci, "ERROR event ring not ready\n"); 2548 return -ENOMEM; 2549 } 2550 2551 event = xhci->event_ring->dequeue; 2552 /* Does the HC or OS own the TRB? */ 2553 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2554 xhci->event_ring->cycle_state) 2555 return 0; 2556 2557 trace_xhci_handle_event(xhci->event_ring, &event->generic); 2558 2559 /* 2560 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2561 * speculative reads of the event's flags/data below. 2562 */ 2563 rmb(); 2564 /* FIXME: Handle more event types. */ 2565 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) { 2566 case TRB_TYPE(TRB_COMPLETION): 2567 handle_cmd_completion(xhci, &event->event_cmd); 2568 break; 2569 case TRB_TYPE(TRB_PORT_STATUS): 2570 handle_port_status(xhci, event); 2571 update_ptrs = 0; 2572 break; 2573 case TRB_TYPE(TRB_TRANSFER): 2574 ret = handle_tx_event(xhci, &event->trans_event); 2575 if (ret >= 0) 2576 update_ptrs = 0; 2577 break; 2578 case TRB_TYPE(TRB_DEV_NOTE): 2579 handle_device_notification(xhci, event); 2580 break; 2581 default: 2582 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2583 TRB_TYPE(48)) 2584 handle_vendor_event(xhci, event); 2585 else 2586 xhci_warn(xhci, "ERROR unknown event type %d\n", 2587 TRB_FIELD_TO_TYPE( 2588 le32_to_cpu(event->event_cmd.flags))); 2589 } 2590 /* Any of the above functions may drop and re-acquire the lock, so check 2591 * to make sure a watchdog timer didn't mark the host as non-responsive. 2592 */ 2593 if (xhci->xhc_state & XHCI_STATE_DYING) { 2594 xhci_dbg(xhci, "xHCI host dying, returning from " 2595 "event handler.\n"); 2596 return 0; 2597 } 2598 2599 if (update_ptrs) 2600 /* Update SW event ring dequeue pointer */ 2601 inc_deq(xhci, xhci->event_ring); 2602 2603 /* Are there more items on the event ring? Caller will call us again to 2604 * check. 2605 */ 2606 return 1; 2607 } 2608 2609 /* 2610 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2611 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2612 * indicators of an event TRB error, but we check the status *first* to be safe. 2613 */ 2614 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2615 { 2616 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2617 union xhci_trb *event_ring_deq; 2618 irqreturn_t ret = IRQ_NONE; 2619 dma_addr_t deq; 2620 u64 temp_64; 2621 u32 status; 2622 2623 spin_lock(&xhci->lock); 2624 /* Check if the xHC generated the interrupt, or the irq is shared */ 2625 status = readl(&xhci->op_regs->status); 2626 if (status == 0xffffffff) { 2627 ret = IRQ_HANDLED; 2628 goto out; 2629 } 2630 2631 if (!(status & STS_EINT)) 2632 goto out; 2633 2634 if (status & STS_FATAL) { 2635 xhci_warn(xhci, "WARNING: Host System Error\n"); 2636 xhci_halt(xhci); 2637 ret = IRQ_HANDLED; 2638 goto out; 2639 } 2640 2641 /* 2642 * Clear the op reg interrupt status first, 2643 * so we can receive interrupts from other MSI-X interrupters. 2644 * Write 1 to clear the interrupt status. 2645 */ 2646 status |= STS_EINT; 2647 writel(status, &xhci->op_regs->status); 2648 /* FIXME when MSI-X is supported and there are multiple vectors */ 2649 /* Clear the MSI-X event interrupt status */ 2650 2651 if (hcd->irq) { 2652 u32 irq_pending; 2653 /* Acknowledge the PCI interrupt */ 2654 irq_pending = readl(&xhci->ir_set->irq_pending); 2655 irq_pending |= IMAN_IP; 2656 writel(irq_pending, &xhci->ir_set->irq_pending); 2657 } 2658 2659 if (xhci->xhc_state & XHCI_STATE_DYING || 2660 xhci->xhc_state & XHCI_STATE_HALTED) { 2661 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2662 "Shouldn't IRQs be disabled?\n"); 2663 /* Clear the event handler busy flag (RW1C); 2664 * the event ring should be empty. 2665 */ 2666 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2667 xhci_write_64(xhci, temp_64 | ERST_EHB, 2668 &xhci->ir_set->erst_dequeue); 2669 ret = IRQ_HANDLED; 2670 goto out; 2671 } 2672 2673 event_ring_deq = xhci->event_ring->dequeue; 2674 /* FIXME this should be a delayed service routine 2675 * that clears the EHB. 2676 */ 2677 while (xhci_handle_event(xhci) > 0) {} 2678 2679 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2680 /* If necessary, update the HW's version of the event ring deq ptr. */ 2681 if (event_ring_deq != xhci->event_ring->dequeue) { 2682 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2683 xhci->event_ring->dequeue); 2684 if (deq == 0) 2685 xhci_warn(xhci, "WARN something wrong with SW event " 2686 "ring dequeue ptr.\n"); 2687 /* Update HC event ring dequeue pointer */ 2688 temp_64 &= ERST_PTR_MASK; 2689 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2690 } 2691 2692 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2693 temp_64 |= ERST_EHB; 2694 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2695 ret = IRQ_HANDLED; 2696 2697 out: 2698 spin_unlock(&xhci->lock); 2699 2700 return ret; 2701 } 2702 2703 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2704 { 2705 return xhci_irq(hcd); 2706 } 2707 2708 /**** Endpoint Ring Operations ****/ 2709 2710 /* 2711 * Generic function for queueing a TRB on a ring. 2712 * The caller must have checked to make sure there's room on the ring. 2713 * 2714 * @more_trbs_coming: Will you enqueue more TRBs before calling 2715 * prepare_transfer()? 2716 */ 2717 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2718 bool more_trbs_coming, 2719 u32 field1, u32 field2, u32 field3, u32 field4) 2720 { 2721 struct xhci_generic_trb *trb; 2722 2723 trb = &ring->enqueue->generic; 2724 trb->field[0] = cpu_to_le32(field1); 2725 trb->field[1] = cpu_to_le32(field2); 2726 trb->field[2] = cpu_to_le32(field3); 2727 trb->field[3] = cpu_to_le32(field4); 2728 2729 trace_xhci_queue_trb(ring, trb); 2730 2731 inc_enq(xhci, ring, more_trbs_coming); 2732 } 2733 2734 /* 2735 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2736 * FIXME allocate segments if the ring is full. 2737 */ 2738 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2739 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2740 { 2741 unsigned int num_trbs_needed; 2742 2743 /* Make sure the endpoint has been added to xHC schedule */ 2744 switch (ep_state) { 2745 case EP_STATE_DISABLED: 2746 /* 2747 * USB core changed config/interfaces without notifying us, 2748 * or hardware is reporting the wrong state. 2749 */ 2750 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2751 return -ENOENT; 2752 case EP_STATE_ERROR: 2753 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2754 /* FIXME event handling code for error needs to clear it */ 2755 /* XXX not sure if this should be -ENOENT or not */ 2756 return -EINVAL; 2757 case EP_STATE_HALTED: 2758 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2759 case EP_STATE_STOPPED: 2760 case EP_STATE_RUNNING: 2761 break; 2762 default: 2763 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2764 /* 2765 * FIXME issue Configure Endpoint command to try to get the HC 2766 * back into a known state. 2767 */ 2768 return -EINVAL; 2769 } 2770 2771 while (1) { 2772 if (room_on_ring(xhci, ep_ring, num_trbs)) 2773 break; 2774 2775 if (ep_ring == xhci->cmd_ring) { 2776 xhci_err(xhci, "Do not support expand command ring\n"); 2777 return -ENOMEM; 2778 } 2779 2780 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2781 "ERROR no room on ep ring, try ring expansion"); 2782 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2783 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2784 mem_flags)) { 2785 xhci_err(xhci, "Ring expansion failed\n"); 2786 return -ENOMEM; 2787 } 2788 } 2789 2790 while (trb_is_link(ep_ring->enqueue)) { 2791 /* If we're not dealing with 0.95 hardware or isoc rings 2792 * on AMD 0.96 host, clear the chain bit. 2793 */ 2794 if (!xhci_link_trb_quirk(xhci) && 2795 !(ep_ring->type == TYPE_ISOC && 2796 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2797 ep_ring->enqueue->link.control &= 2798 cpu_to_le32(~TRB_CHAIN); 2799 else 2800 ep_ring->enqueue->link.control |= 2801 cpu_to_le32(TRB_CHAIN); 2802 2803 wmb(); 2804 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 2805 2806 /* Toggle the cycle bit after the last ring segment. */ 2807 if (link_trb_toggles_cycle(ep_ring->enqueue)) 2808 ep_ring->cycle_state ^= 1; 2809 2810 ep_ring->enq_seg = ep_ring->enq_seg->next; 2811 ep_ring->enqueue = ep_ring->enq_seg->trbs; 2812 } 2813 return 0; 2814 } 2815 2816 static int prepare_transfer(struct xhci_hcd *xhci, 2817 struct xhci_virt_device *xdev, 2818 unsigned int ep_index, 2819 unsigned int stream_id, 2820 unsigned int num_trbs, 2821 struct urb *urb, 2822 unsigned int td_index, 2823 gfp_t mem_flags) 2824 { 2825 int ret; 2826 struct urb_priv *urb_priv; 2827 struct xhci_td *td; 2828 struct xhci_ring *ep_ring; 2829 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2830 2831 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2832 if (!ep_ring) { 2833 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2834 stream_id); 2835 return -EINVAL; 2836 } 2837 2838 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 2839 num_trbs, mem_flags); 2840 if (ret) 2841 return ret; 2842 2843 urb_priv = urb->hcpriv; 2844 td = &urb_priv->td[td_index]; 2845 2846 INIT_LIST_HEAD(&td->td_list); 2847 INIT_LIST_HEAD(&td->cancelled_td_list); 2848 2849 if (td_index == 0) { 2850 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2851 if (unlikely(ret)) 2852 return ret; 2853 } 2854 2855 td->urb = urb; 2856 /* Add this TD to the tail of the endpoint ring's TD list */ 2857 list_add_tail(&td->td_list, &ep_ring->td_list); 2858 td->start_seg = ep_ring->enq_seg; 2859 td->first_trb = ep_ring->enqueue; 2860 2861 return 0; 2862 } 2863 2864 static unsigned int count_trbs(u64 addr, u64 len) 2865 { 2866 unsigned int num_trbs; 2867 2868 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 2869 TRB_MAX_BUFF_SIZE); 2870 if (num_trbs == 0) 2871 num_trbs++; 2872 2873 return num_trbs; 2874 } 2875 2876 static inline unsigned int count_trbs_needed(struct urb *urb) 2877 { 2878 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 2879 } 2880 2881 static unsigned int count_sg_trbs_needed(struct urb *urb) 2882 { 2883 struct scatterlist *sg; 2884 unsigned int i, len, full_len, num_trbs = 0; 2885 2886 full_len = urb->transfer_buffer_length; 2887 2888 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 2889 len = sg_dma_len(sg); 2890 num_trbs += count_trbs(sg_dma_address(sg), len); 2891 len = min_t(unsigned int, len, full_len); 2892 full_len -= len; 2893 if (full_len == 0) 2894 break; 2895 } 2896 2897 return num_trbs; 2898 } 2899 2900 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 2901 { 2902 u64 addr, len; 2903 2904 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 2905 len = urb->iso_frame_desc[i].length; 2906 2907 return count_trbs(addr, len); 2908 } 2909 2910 static void check_trb_math(struct urb *urb, int running_total) 2911 { 2912 if (unlikely(running_total != urb->transfer_buffer_length)) 2913 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 2914 "queued %#x (%d), asked for %#x (%d)\n", 2915 __func__, 2916 urb->ep->desc.bEndpointAddress, 2917 running_total, running_total, 2918 urb->transfer_buffer_length, 2919 urb->transfer_buffer_length); 2920 } 2921 2922 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 2923 unsigned int ep_index, unsigned int stream_id, int start_cycle, 2924 struct xhci_generic_trb *start_trb) 2925 { 2926 /* 2927 * Pass all the TRBs to the hardware at once and make sure this write 2928 * isn't reordered. 2929 */ 2930 wmb(); 2931 if (start_cycle) 2932 start_trb->field[3] |= cpu_to_le32(start_cycle); 2933 else 2934 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 2935 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 2936 } 2937 2938 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 2939 struct xhci_ep_ctx *ep_ctx) 2940 { 2941 int xhci_interval; 2942 int ep_interval; 2943 2944 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 2945 ep_interval = urb->interval; 2946 2947 /* Convert to microframes */ 2948 if (urb->dev->speed == USB_SPEED_LOW || 2949 urb->dev->speed == USB_SPEED_FULL) 2950 ep_interval *= 8; 2951 2952 /* FIXME change this to a warning and a suggestion to use the new API 2953 * to set the polling interval (once the API is added). 2954 */ 2955 if (xhci_interval != ep_interval) { 2956 dev_dbg_ratelimited(&urb->dev->dev, 2957 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 2958 ep_interval, ep_interval == 1 ? "" : "s", 2959 xhci_interval, xhci_interval == 1 ? "" : "s"); 2960 urb->interval = xhci_interval; 2961 /* Convert back to frames for LS/FS devices */ 2962 if (urb->dev->speed == USB_SPEED_LOW || 2963 urb->dev->speed == USB_SPEED_FULL) 2964 urb->interval /= 8; 2965 } 2966 } 2967 2968 /* 2969 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 2970 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 2971 * (comprised of sg list entries) can take several service intervals to 2972 * transmit. 2973 */ 2974 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2975 struct urb *urb, int slot_id, unsigned int ep_index) 2976 { 2977 struct xhci_ep_ctx *ep_ctx; 2978 2979 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 2980 check_interval(xhci, urb, ep_ctx); 2981 2982 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 2983 } 2984 2985 /* 2986 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 2987 * packets remaining in the TD (*not* including this TRB). 2988 * 2989 * Total TD packet count = total_packet_count = 2990 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 2991 * 2992 * Packets transferred up to and including this TRB = packets_transferred = 2993 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 2994 * 2995 * TD size = total_packet_count - packets_transferred 2996 * 2997 * For xHCI 0.96 and older, TD size field should be the remaining bytes 2998 * including this TRB, right shifted by 10 2999 * 3000 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3001 * This is taken care of in the TRB_TD_SIZE() macro 3002 * 3003 * The last TRB in a TD must have the TD size set to zero. 3004 */ 3005 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3006 int trb_buff_len, unsigned int td_total_len, 3007 struct urb *urb, bool more_trbs_coming) 3008 { 3009 u32 maxp, total_packet_count; 3010 3011 /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */ 3012 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3013 return ((td_total_len - transferred) >> 10); 3014 3015 /* One TRB with a zero-length data packet. */ 3016 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3017 trb_buff_len == td_total_len) 3018 return 0; 3019 3020 /* for MTK xHCI, TD size doesn't include this TRB */ 3021 if (xhci->quirks & XHCI_MTK_HOST) 3022 trb_buff_len = 0; 3023 3024 maxp = usb_endpoint_maxp(&urb->ep->desc); 3025 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3026 3027 /* Queueing functions don't count the current TRB into transferred */ 3028 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3029 } 3030 3031 3032 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3033 u32 *trb_buff_len, struct xhci_segment *seg) 3034 { 3035 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3036 unsigned int unalign; 3037 unsigned int max_pkt; 3038 u32 new_buff_len; 3039 3040 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3041 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3042 3043 /* we got lucky, last normal TRB data on segment is packet aligned */ 3044 if (unalign == 0) 3045 return 0; 3046 3047 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3048 unalign, *trb_buff_len); 3049 3050 /* is the last nornal TRB alignable by splitting it */ 3051 if (*trb_buff_len > unalign) { 3052 *trb_buff_len -= unalign; 3053 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3054 return 0; 3055 } 3056 3057 /* 3058 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3059 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3060 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3061 */ 3062 new_buff_len = max_pkt - (enqd_len % max_pkt); 3063 3064 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3065 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3066 3067 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3068 if (usb_urb_dir_out(urb)) { 3069 sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs, 3070 seg->bounce_buf, new_buff_len, enqd_len); 3071 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3072 max_pkt, DMA_TO_DEVICE); 3073 } else { 3074 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3075 max_pkt, DMA_FROM_DEVICE); 3076 } 3077 3078 if (dma_mapping_error(dev, seg->bounce_dma)) { 3079 /* try without aligning. Some host controllers survive */ 3080 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3081 return 0; 3082 } 3083 *trb_buff_len = new_buff_len; 3084 seg->bounce_len = new_buff_len; 3085 seg->bounce_offs = enqd_len; 3086 3087 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3088 3089 return 1; 3090 } 3091 3092 /* This is very similar to what ehci-q.c qtd_fill() does */ 3093 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3094 struct urb *urb, int slot_id, unsigned int ep_index) 3095 { 3096 struct xhci_ring *ring; 3097 struct urb_priv *urb_priv; 3098 struct xhci_td *td; 3099 struct xhci_generic_trb *start_trb; 3100 struct scatterlist *sg = NULL; 3101 bool more_trbs_coming = true; 3102 bool need_zero_pkt = false; 3103 bool first_trb = true; 3104 unsigned int num_trbs; 3105 unsigned int start_cycle, num_sgs = 0; 3106 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3107 int sent_len, ret; 3108 u32 field, length_field, remainder; 3109 u64 addr, send_addr; 3110 3111 ring = xhci_urb_to_transfer_ring(xhci, urb); 3112 if (!ring) 3113 return -EINVAL; 3114 3115 full_len = urb->transfer_buffer_length; 3116 /* If we have scatter/gather list, we use it. */ 3117 if (urb->num_sgs) { 3118 num_sgs = urb->num_mapped_sgs; 3119 sg = urb->sg; 3120 addr = (u64) sg_dma_address(sg); 3121 block_len = sg_dma_len(sg); 3122 num_trbs = count_sg_trbs_needed(urb); 3123 } else { 3124 num_trbs = count_trbs_needed(urb); 3125 addr = (u64) urb->transfer_dma; 3126 block_len = full_len; 3127 } 3128 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3129 ep_index, urb->stream_id, 3130 num_trbs, urb, 0, mem_flags); 3131 if (unlikely(ret < 0)) 3132 return ret; 3133 3134 urb_priv = urb->hcpriv; 3135 3136 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3137 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3138 need_zero_pkt = true; 3139 3140 td = &urb_priv->td[0]; 3141 3142 /* 3143 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3144 * until we've finished creating all the other TRBs. The ring's cycle 3145 * state may change as we enqueue the other TRBs, so save it too. 3146 */ 3147 start_trb = &ring->enqueue->generic; 3148 start_cycle = ring->cycle_state; 3149 send_addr = addr; 3150 3151 /* Queue the TRBs, even if they are zero-length */ 3152 for (enqd_len = 0; first_trb || enqd_len < full_len; 3153 enqd_len += trb_buff_len) { 3154 field = TRB_TYPE(TRB_NORMAL); 3155 3156 /* TRB buffer should not cross 64KB boundaries */ 3157 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3158 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3159 3160 if (enqd_len + trb_buff_len > full_len) 3161 trb_buff_len = full_len - enqd_len; 3162 3163 /* Don't change the cycle bit of the first TRB until later */ 3164 if (first_trb) { 3165 first_trb = false; 3166 if (start_cycle == 0) 3167 field |= TRB_CYCLE; 3168 } else 3169 field |= ring->cycle_state; 3170 3171 /* Chain all the TRBs together; clear the chain bit in the last 3172 * TRB to indicate it's the last TRB in the chain. 3173 */ 3174 if (enqd_len + trb_buff_len < full_len) { 3175 field |= TRB_CHAIN; 3176 if (trb_is_link(ring->enqueue + 1)) { 3177 if (xhci_align_td(xhci, urb, enqd_len, 3178 &trb_buff_len, 3179 ring->enq_seg)) { 3180 send_addr = ring->enq_seg->bounce_dma; 3181 /* assuming TD won't span 2 segs */ 3182 td->bounce_seg = ring->enq_seg; 3183 } 3184 } 3185 } 3186 if (enqd_len + trb_buff_len >= full_len) { 3187 field &= ~TRB_CHAIN; 3188 field |= TRB_IOC; 3189 more_trbs_coming = false; 3190 td->last_trb = ring->enqueue; 3191 } 3192 3193 /* Only set interrupt on short packet for IN endpoints */ 3194 if (usb_urb_dir_in(urb)) 3195 field |= TRB_ISP; 3196 3197 /* Set the TRB length, TD size, and interrupter fields. */ 3198 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3199 full_len, urb, more_trbs_coming); 3200 3201 length_field = TRB_LEN(trb_buff_len) | 3202 TRB_TD_SIZE(remainder) | 3203 TRB_INTR_TARGET(0); 3204 3205 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3206 lower_32_bits(send_addr), 3207 upper_32_bits(send_addr), 3208 length_field, 3209 field); 3210 3211 addr += trb_buff_len; 3212 sent_len = trb_buff_len; 3213 3214 while (sg && sent_len >= block_len) { 3215 /* New sg entry */ 3216 --num_sgs; 3217 sent_len -= block_len; 3218 if (num_sgs != 0) { 3219 sg = sg_next(sg); 3220 block_len = sg_dma_len(sg); 3221 addr = (u64) sg_dma_address(sg); 3222 addr += sent_len; 3223 } 3224 } 3225 block_len -= sent_len; 3226 send_addr = addr; 3227 } 3228 3229 if (need_zero_pkt) { 3230 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3231 ep_index, urb->stream_id, 3232 1, urb, 1, mem_flags); 3233 urb_priv->td[1].last_trb = ring->enqueue; 3234 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3235 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3236 } 3237 3238 check_trb_math(urb, enqd_len); 3239 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3240 start_cycle, start_trb); 3241 return 0; 3242 } 3243 3244 /* Caller must have locked xhci->lock */ 3245 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3246 struct urb *urb, int slot_id, unsigned int ep_index) 3247 { 3248 struct xhci_ring *ep_ring; 3249 int num_trbs; 3250 int ret; 3251 struct usb_ctrlrequest *setup; 3252 struct xhci_generic_trb *start_trb; 3253 int start_cycle; 3254 u32 field; 3255 struct urb_priv *urb_priv; 3256 struct xhci_td *td; 3257 3258 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3259 if (!ep_ring) 3260 return -EINVAL; 3261 3262 /* 3263 * Need to copy setup packet into setup TRB, so we can't use the setup 3264 * DMA address. 3265 */ 3266 if (!urb->setup_packet) 3267 return -EINVAL; 3268 3269 /* 1 TRB for setup, 1 for status */ 3270 num_trbs = 2; 3271 /* 3272 * Don't need to check if we need additional event data and normal TRBs, 3273 * since data in control transfers will never get bigger than 16MB 3274 * XXX: can we get a buffer that crosses 64KB boundaries? 3275 */ 3276 if (urb->transfer_buffer_length > 0) 3277 num_trbs++; 3278 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3279 ep_index, urb->stream_id, 3280 num_trbs, urb, 0, mem_flags); 3281 if (ret < 0) 3282 return ret; 3283 3284 urb_priv = urb->hcpriv; 3285 td = &urb_priv->td[0]; 3286 3287 /* 3288 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3289 * until we've finished creating all the other TRBs. The ring's cycle 3290 * state may change as we enqueue the other TRBs, so save it too. 3291 */ 3292 start_trb = &ep_ring->enqueue->generic; 3293 start_cycle = ep_ring->cycle_state; 3294 3295 /* Queue setup TRB - see section 6.4.1.2.1 */ 3296 /* FIXME better way to translate setup_packet into two u32 fields? */ 3297 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3298 field = 0; 3299 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3300 if (start_cycle == 0) 3301 field |= 0x1; 3302 3303 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3304 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3305 if (urb->transfer_buffer_length > 0) { 3306 if (setup->bRequestType & USB_DIR_IN) 3307 field |= TRB_TX_TYPE(TRB_DATA_IN); 3308 else 3309 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3310 } 3311 } 3312 3313 queue_trb(xhci, ep_ring, true, 3314 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3315 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3316 TRB_LEN(8) | TRB_INTR_TARGET(0), 3317 /* Immediate data in pointer */ 3318 field); 3319 3320 /* If there's data, queue data TRBs */ 3321 /* Only set interrupt on short packet for IN endpoints */ 3322 if (usb_urb_dir_in(urb)) 3323 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3324 else 3325 field = TRB_TYPE(TRB_DATA); 3326 3327 if (urb->transfer_buffer_length > 0) { 3328 u32 length_field, remainder; 3329 3330 remainder = xhci_td_remainder(xhci, 0, 3331 urb->transfer_buffer_length, 3332 urb->transfer_buffer_length, 3333 urb, 1); 3334 length_field = TRB_LEN(urb->transfer_buffer_length) | 3335 TRB_TD_SIZE(remainder) | 3336 TRB_INTR_TARGET(0); 3337 if (setup->bRequestType & USB_DIR_IN) 3338 field |= TRB_DIR_IN; 3339 queue_trb(xhci, ep_ring, true, 3340 lower_32_bits(urb->transfer_dma), 3341 upper_32_bits(urb->transfer_dma), 3342 length_field, 3343 field | ep_ring->cycle_state); 3344 } 3345 3346 /* Save the DMA address of the last TRB in the TD */ 3347 td->last_trb = ep_ring->enqueue; 3348 3349 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3350 /* If the device sent data, the status stage is an OUT transfer */ 3351 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3352 field = 0; 3353 else 3354 field = TRB_DIR_IN; 3355 queue_trb(xhci, ep_ring, false, 3356 0, 3357 0, 3358 TRB_INTR_TARGET(0), 3359 /* Event on completion */ 3360 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3361 3362 giveback_first_trb(xhci, slot_id, ep_index, 0, 3363 start_cycle, start_trb); 3364 return 0; 3365 } 3366 3367 /* 3368 * The transfer burst count field of the isochronous TRB defines the number of 3369 * bursts that are required to move all packets in this TD. Only SuperSpeed 3370 * devices can burst up to bMaxBurst number of packets per service interval. 3371 * This field is zero based, meaning a value of zero in the field means one 3372 * burst. Basically, for everything but SuperSpeed devices, this field will be 3373 * zero. Only xHCI 1.0 host controllers support this field. 3374 */ 3375 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3376 struct urb *urb, unsigned int total_packet_count) 3377 { 3378 unsigned int max_burst; 3379 3380 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3381 return 0; 3382 3383 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3384 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3385 } 3386 3387 /* 3388 * Returns the number of packets in the last "burst" of packets. This field is 3389 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3390 * the last burst packet count is equal to the total number of packets in the 3391 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3392 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3393 * contain 1 to (bMaxBurst + 1) packets. 3394 */ 3395 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3396 struct urb *urb, unsigned int total_packet_count) 3397 { 3398 unsigned int max_burst; 3399 unsigned int residue; 3400 3401 if (xhci->hci_version < 0x100) 3402 return 0; 3403 3404 if (urb->dev->speed >= USB_SPEED_SUPER) { 3405 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3406 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3407 residue = total_packet_count % (max_burst + 1); 3408 /* If residue is zero, the last burst contains (max_burst + 1) 3409 * number of packets, but the TLBPC field is zero-based. 3410 */ 3411 if (residue == 0) 3412 return max_burst; 3413 return residue - 1; 3414 } 3415 if (total_packet_count == 0) 3416 return 0; 3417 return total_packet_count - 1; 3418 } 3419 3420 /* 3421 * Calculates Frame ID field of the isochronous TRB identifies the 3422 * target frame that the Interval associated with this Isochronous 3423 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3424 * 3425 * Returns actual frame id on success, negative value on error. 3426 */ 3427 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3428 struct urb *urb, int index) 3429 { 3430 int start_frame, ist, ret = 0; 3431 int start_frame_id, end_frame_id, current_frame_id; 3432 3433 if (urb->dev->speed == USB_SPEED_LOW || 3434 urb->dev->speed == USB_SPEED_FULL) 3435 start_frame = urb->start_frame + index * urb->interval; 3436 else 3437 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3438 3439 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3440 * 3441 * If bit [3] of IST is cleared to '0', software can add a TRB no 3442 * later than IST[2:0] Microframes before that TRB is scheduled to 3443 * be executed. 3444 * If bit [3] of IST is set to '1', software can add a TRB no later 3445 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3446 */ 3447 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3448 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3449 ist <<= 3; 3450 3451 /* Software shall not schedule an Isoch TD with a Frame ID value that 3452 * is less than the Start Frame ID or greater than the End Frame ID, 3453 * where: 3454 * 3455 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3456 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3457 * 3458 * Both the End Frame ID and Start Frame ID values are calculated 3459 * in microframes. When software determines the valid Frame ID value; 3460 * The End Frame ID value should be rounded down to the nearest Frame 3461 * boundary, and the Start Frame ID value should be rounded up to the 3462 * nearest Frame boundary. 3463 */ 3464 current_frame_id = readl(&xhci->run_regs->microframe_index); 3465 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3466 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3467 3468 start_frame &= 0x7ff; 3469 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3470 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3471 3472 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3473 __func__, index, readl(&xhci->run_regs->microframe_index), 3474 start_frame_id, end_frame_id, start_frame); 3475 3476 if (start_frame_id < end_frame_id) { 3477 if (start_frame > end_frame_id || 3478 start_frame < start_frame_id) 3479 ret = -EINVAL; 3480 } else if (start_frame_id > end_frame_id) { 3481 if ((start_frame > end_frame_id && 3482 start_frame < start_frame_id)) 3483 ret = -EINVAL; 3484 } else { 3485 ret = -EINVAL; 3486 } 3487 3488 if (index == 0) { 3489 if (ret == -EINVAL || start_frame == start_frame_id) { 3490 start_frame = start_frame_id + 1; 3491 if (urb->dev->speed == USB_SPEED_LOW || 3492 urb->dev->speed == USB_SPEED_FULL) 3493 urb->start_frame = start_frame; 3494 else 3495 urb->start_frame = start_frame << 3; 3496 ret = 0; 3497 } 3498 } 3499 3500 if (ret) { 3501 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3502 start_frame, current_frame_id, index, 3503 start_frame_id, end_frame_id); 3504 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3505 return ret; 3506 } 3507 3508 return start_frame; 3509 } 3510 3511 /* This is for isoc transfer */ 3512 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3513 struct urb *urb, int slot_id, unsigned int ep_index) 3514 { 3515 struct xhci_ring *ep_ring; 3516 struct urb_priv *urb_priv; 3517 struct xhci_td *td; 3518 int num_tds, trbs_per_td; 3519 struct xhci_generic_trb *start_trb; 3520 bool first_trb; 3521 int start_cycle; 3522 u32 field, length_field; 3523 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3524 u64 start_addr, addr; 3525 int i, j; 3526 bool more_trbs_coming; 3527 struct xhci_virt_ep *xep; 3528 int frame_id; 3529 3530 xep = &xhci->devs[slot_id]->eps[ep_index]; 3531 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3532 3533 num_tds = urb->number_of_packets; 3534 if (num_tds < 1) { 3535 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3536 return -EINVAL; 3537 } 3538 start_addr = (u64) urb->transfer_dma; 3539 start_trb = &ep_ring->enqueue->generic; 3540 start_cycle = ep_ring->cycle_state; 3541 3542 urb_priv = urb->hcpriv; 3543 /* Queue the TRBs for each TD, even if they are zero-length */ 3544 for (i = 0; i < num_tds; i++) { 3545 unsigned int total_pkt_count, max_pkt; 3546 unsigned int burst_count, last_burst_pkt_count; 3547 u32 sia_frame_id; 3548 3549 first_trb = true; 3550 running_total = 0; 3551 addr = start_addr + urb->iso_frame_desc[i].offset; 3552 td_len = urb->iso_frame_desc[i].length; 3553 td_remain_len = td_len; 3554 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3555 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 3556 3557 /* A zero-length transfer still involves at least one packet. */ 3558 if (total_pkt_count == 0) 3559 total_pkt_count++; 3560 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 3561 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 3562 urb, total_pkt_count); 3563 3564 trbs_per_td = count_isoc_trbs_needed(urb, i); 3565 3566 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3567 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3568 if (ret < 0) { 3569 if (i == 0) 3570 return ret; 3571 goto cleanup; 3572 } 3573 td = &urb_priv->td[i]; 3574 3575 /* use SIA as default, if frame id is used overwrite it */ 3576 sia_frame_id = TRB_SIA; 3577 if (!(urb->transfer_flags & URB_ISO_ASAP) && 3578 HCC_CFC(xhci->hcc_params)) { 3579 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 3580 if (frame_id >= 0) 3581 sia_frame_id = TRB_FRAME_ID(frame_id); 3582 } 3583 /* 3584 * Set isoc specific data for the first TRB in a TD. 3585 * Prevent HW from getting the TRBs by keeping the cycle state 3586 * inverted in the first TDs isoc TRB. 3587 */ 3588 field = TRB_TYPE(TRB_ISOC) | 3589 TRB_TLBPC(last_burst_pkt_count) | 3590 sia_frame_id | 3591 (i ? ep_ring->cycle_state : !start_cycle); 3592 3593 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 3594 if (!xep->use_extended_tbc) 3595 field |= TRB_TBC(burst_count); 3596 3597 /* fill the rest of the TRB fields, and remaining normal TRBs */ 3598 for (j = 0; j < trbs_per_td; j++) { 3599 u32 remainder = 0; 3600 3601 /* only first TRB is isoc, overwrite otherwise */ 3602 if (!first_trb) 3603 field = TRB_TYPE(TRB_NORMAL) | 3604 ep_ring->cycle_state; 3605 3606 /* Only set interrupt on short packet for IN EPs */ 3607 if (usb_urb_dir_in(urb)) 3608 field |= TRB_ISP; 3609 3610 /* Set the chain bit for all except the last TRB */ 3611 if (j < trbs_per_td - 1) { 3612 more_trbs_coming = true; 3613 field |= TRB_CHAIN; 3614 } else { 3615 more_trbs_coming = false; 3616 td->last_trb = ep_ring->enqueue; 3617 field |= TRB_IOC; 3618 /* set BEI, except for the last TD */ 3619 if (xhci->hci_version >= 0x100 && 3620 !(xhci->quirks & XHCI_AVOID_BEI) && 3621 i < num_tds - 1) 3622 field |= TRB_BEI; 3623 } 3624 /* Calculate TRB length */ 3625 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3626 if (trb_buff_len > td_remain_len) 3627 trb_buff_len = td_remain_len; 3628 3629 /* Set the TRB length, TD size, & interrupter fields. */ 3630 remainder = xhci_td_remainder(xhci, running_total, 3631 trb_buff_len, td_len, 3632 urb, more_trbs_coming); 3633 3634 length_field = TRB_LEN(trb_buff_len) | 3635 TRB_INTR_TARGET(0); 3636 3637 /* xhci 1.1 with ETE uses TD Size field for TBC */ 3638 if (first_trb && xep->use_extended_tbc) 3639 length_field |= TRB_TD_SIZE_TBC(burst_count); 3640 else 3641 length_field |= TRB_TD_SIZE(remainder); 3642 first_trb = false; 3643 3644 queue_trb(xhci, ep_ring, more_trbs_coming, 3645 lower_32_bits(addr), 3646 upper_32_bits(addr), 3647 length_field, 3648 field); 3649 running_total += trb_buff_len; 3650 3651 addr += trb_buff_len; 3652 td_remain_len -= trb_buff_len; 3653 } 3654 3655 /* Check TD length */ 3656 if (running_total != td_len) { 3657 xhci_err(xhci, "ISOC TD length unmatch\n"); 3658 ret = -EINVAL; 3659 goto cleanup; 3660 } 3661 } 3662 3663 /* store the next frame id */ 3664 if (HCC_CFC(xhci->hcc_params)) 3665 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 3666 3667 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3668 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3669 usb_amd_quirk_pll_disable(); 3670 } 3671 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3672 3673 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3674 start_cycle, start_trb); 3675 return 0; 3676 cleanup: 3677 /* Clean up a partially enqueued isoc transfer. */ 3678 3679 for (i--; i >= 0; i--) 3680 list_del_init(&urb_priv->td[i].td_list); 3681 3682 /* Use the first TD as a temporary variable to turn the TDs we've queued 3683 * into No-ops with a software-owned cycle bit. That way the hardware 3684 * won't accidentally start executing bogus TDs when we partially 3685 * overwrite them. td->first_trb and td->start_seg are already set. 3686 */ 3687 urb_priv->td[0].last_trb = ep_ring->enqueue; 3688 /* Every TRB except the first & last will have its cycle bit flipped. */ 3689 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 3690 3691 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3692 ep_ring->enqueue = urb_priv->td[0].first_trb; 3693 ep_ring->enq_seg = urb_priv->td[0].start_seg; 3694 ep_ring->cycle_state = start_cycle; 3695 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3696 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3697 return ret; 3698 } 3699 3700 /* 3701 * Check transfer ring to guarantee there is enough room for the urb. 3702 * Update ISO URB start_frame and interval. 3703 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 3704 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 3705 * Contiguous Frame ID is not supported by HC. 3706 */ 3707 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3708 struct urb *urb, int slot_id, unsigned int ep_index) 3709 { 3710 struct xhci_virt_device *xdev; 3711 struct xhci_ring *ep_ring; 3712 struct xhci_ep_ctx *ep_ctx; 3713 int start_frame; 3714 int num_tds, num_trbs, i; 3715 int ret; 3716 struct xhci_virt_ep *xep; 3717 int ist; 3718 3719 xdev = xhci->devs[slot_id]; 3720 xep = &xhci->devs[slot_id]->eps[ep_index]; 3721 ep_ring = xdev->eps[ep_index].ring; 3722 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3723 3724 num_trbs = 0; 3725 num_tds = urb->number_of_packets; 3726 for (i = 0; i < num_tds; i++) 3727 num_trbs += count_isoc_trbs_needed(urb, i); 3728 3729 /* Check the ring to guarantee there is enough room for the whole urb. 3730 * Do not insert any td of the urb to the ring if the check failed. 3731 */ 3732 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3733 num_trbs, mem_flags); 3734 if (ret) 3735 return ret; 3736 3737 /* 3738 * Check interval value. This should be done before we start to 3739 * calculate the start frame value. 3740 */ 3741 check_interval(xhci, urb, ep_ctx); 3742 3743 /* Calculate the start frame and put it in urb->start_frame. */ 3744 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 3745 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 3746 urb->start_frame = xep->next_frame_id; 3747 goto skip_start_over; 3748 } 3749 } 3750 3751 start_frame = readl(&xhci->run_regs->microframe_index); 3752 start_frame &= 0x3fff; 3753 /* 3754 * Round up to the next frame and consider the time before trb really 3755 * gets scheduled by hardare. 3756 */ 3757 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3758 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3759 ist <<= 3; 3760 start_frame += ist + XHCI_CFC_DELAY; 3761 start_frame = roundup(start_frame, 8); 3762 3763 /* 3764 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 3765 * is greate than 8 microframes. 3766 */ 3767 if (urb->dev->speed == USB_SPEED_LOW || 3768 urb->dev->speed == USB_SPEED_FULL) { 3769 start_frame = roundup(start_frame, urb->interval << 3); 3770 urb->start_frame = start_frame >> 3; 3771 } else { 3772 start_frame = roundup(start_frame, urb->interval); 3773 urb->start_frame = start_frame; 3774 } 3775 3776 skip_start_over: 3777 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3778 3779 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3780 } 3781 3782 /**** Command Ring Operations ****/ 3783 3784 /* Generic function for queueing a command TRB on the command ring. 3785 * Check to make sure there's room on the command ring for one command TRB. 3786 * Also check that there's room reserved for commands that must not fail. 3787 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3788 * then only check for the number of reserved spots. 3789 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3790 * because the command event handler may want to resubmit a failed command. 3791 */ 3792 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3793 u32 field1, u32 field2, 3794 u32 field3, u32 field4, bool command_must_succeed) 3795 { 3796 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3797 int ret; 3798 3799 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3800 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3801 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 3802 return -ESHUTDOWN; 3803 } 3804 3805 if (!command_must_succeed) 3806 reserved_trbs++; 3807 3808 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3809 reserved_trbs, GFP_ATOMIC); 3810 if (ret < 0) { 3811 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3812 if (command_must_succeed) 3813 xhci_err(xhci, "ERR: Reserved TRB counting for " 3814 "unfailable commands failed.\n"); 3815 return ret; 3816 } 3817 3818 cmd->command_trb = xhci->cmd_ring->enqueue; 3819 3820 /* if there are no other commands queued we start the timeout timer */ 3821 if (list_empty(&xhci->cmd_list)) { 3822 xhci->current_cmd = cmd; 3823 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 3824 } 3825 3826 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 3827 3828 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3829 field4 | xhci->cmd_ring->cycle_state); 3830 return 0; 3831 } 3832 3833 /* Queue a slot enable or disable request on the command ring */ 3834 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 3835 u32 trb_type, u32 slot_id) 3836 { 3837 return queue_command(xhci, cmd, 0, 0, 0, 3838 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3839 } 3840 3841 /* Queue an address device command TRB */ 3842 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3843 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 3844 { 3845 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3846 upper_32_bits(in_ctx_ptr), 0, 3847 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 3848 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 3849 } 3850 3851 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3852 u32 field1, u32 field2, u32 field3, u32 field4) 3853 { 3854 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 3855 } 3856 3857 /* Queue a reset device command TRB */ 3858 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3859 u32 slot_id) 3860 { 3861 return queue_command(xhci, cmd, 0, 0, 0, 3862 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3863 false); 3864 } 3865 3866 /* Queue a configure endpoint command TRB */ 3867 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 3868 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 3869 u32 slot_id, bool command_must_succeed) 3870 { 3871 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3872 upper_32_bits(in_ctx_ptr), 0, 3873 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3874 command_must_succeed); 3875 } 3876 3877 /* Queue an evaluate context command TRB */ 3878 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 3879 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 3880 { 3881 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3882 upper_32_bits(in_ctx_ptr), 0, 3883 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3884 command_must_succeed); 3885 } 3886 3887 /* 3888 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3889 * activity on an endpoint that is about to be suspended. 3890 */ 3891 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 3892 int slot_id, unsigned int ep_index, int suspend) 3893 { 3894 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3895 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3896 u32 type = TRB_TYPE(TRB_STOP_RING); 3897 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3898 3899 return queue_command(xhci, cmd, 0, 0, 0, 3900 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3901 } 3902 3903 /* Set Transfer Ring Dequeue Pointer command */ 3904 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 3905 unsigned int slot_id, unsigned int ep_index, 3906 unsigned int stream_id, 3907 struct xhci_dequeue_state *deq_state) 3908 { 3909 dma_addr_t addr; 3910 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3911 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3912 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 3913 u32 trb_sct = 0; 3914 u32 type = TRB_TYPE(TRB_SET_DEQ); 3915 struct xhci_virt_ep *ep; 3916 struct xhci_command *cmd; 3917 int ret; 3918 3919 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 3920 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 3921 deq_state->new_deq_seg, 3922 (unsigned long long)deq_state->new_deq_seg->dma, 3923 deq_state->new_deq_ptr, 3924 (unsigned long long)xhci_trb_virt_to_dma( 3925 deq_state->new_deq_seg, deq_state->new_deq_ptr), 3926 deq_state->new_cycle_state); 3927 3928 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 3929 deq_state->new_deq_ptr); 3930 if (addr == 0) { 3931 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3932 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 3933 deq_state->new_deq_seg, deq_state->new_deq_ptr); 3934 return; 3935 } 3936 ep = &xhci->devs[slot_id]->eps[ep_index]; 3937 if ((ep->ep_state & SET_DEQ_PENDING)) { 3938 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3939 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 3940 return; 3941 } 3942 3943 /* This function gets called from contexts where it cannot sleep */ 3944 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 3945 if (!cmd) { 3946 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n"); 3947 return; 3948 } 3949 3950 ep->queued_deq_seg = deq_state->new_deq_seg; 3951 ep->queued_deq_ptr = deq_state->new_deq_ptr; 3952 if (stream_id) 3953 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 3954 ret = queue_command(xhci, cmd, 3955 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 3956 upper_32_bits(addr), trb_stream_id, 3957 trb_slot_id | trb_ep_index | type, false); 3958 if (ret < 0) { 3959 xhci_free_command(xhci, cmd); 3960 return; 3961 } 3962 3963 /* Stop the TD queueing code from ringing the doorbell until 3964 * this command completes. The HC won't set the dequeue pointer 3965 * if the ring is running, and ringing the doorbell starts the 3966 * ring running. 3967 */ 3968 ep->ep_state |= SET_DEQ_PENDING; 3969 } 3970 3971 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 3972 int slot_id, unsigned int ep_index) 3973 { 3974 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3975 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3976 u32 type = TRB_TYPE(TRB_RESET_EP); 3977 3978 return queue_command(xhci, cmd, 0, 0, 0, 3979 trb_slot_id | trb_ep_index | type, false); 3980 } 3981