xref: /linux/drivers/usb/host/xhci-ring.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 /*
24  * Ring initialization rules:
25  * 1. Each segment is initialized to zero, except for link TRBs.
26  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or
27  *    Consumer Cycle State (CCS), depending on ring function.
28  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29  *
30  * Ring behavior rules:
31  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at
32  *    least one free TRB in the ring.  This is useful if you want to turn that
33  *    into a link TRB and expand the ring.
34  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35  *    link TRB, then load the pointer with the address in the link TRB.  If the
36  *    link TRB had its toggle bit set, you may need to update the ring cycle
37  *    state (see cycle bit rules).  You may have to do this multiple times
38  *    until you reach a non-link TRB.
39  * 3. A ring is full if enqueue++ (for the definition of increment above)
40  *    equals the dequeue pointer.
41  *
42  * Cycle bit rules:
43  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44  *    in a link TRB, it must toggle the ring cycle state.
45  * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46  *    in a link TRB, it must toggle the ring cycle state.
47  *
48  * Producer rules:
49  * 1. Check if ring is full before you enqueue.
50  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51  *    Update enqueue pointer between each write (which may update the ring
52  *    cycle state).
53  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command
54  *    and endpoint rings.  If HC is the producer for the event ring,
55  *    and it generates an interrupt according to interrupt modulation rules.
56  *
57  * Consumer rules:
58  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state,
59  *    the TRB is owned by the consumer.
60  * 2. Update dequeue pointer (which may update the ring cycle state) and
61  *    continue processing TRBs until you reach a TRB which is not owned by you.
62  * 3. Notify the producer.  SW is the consumer for the event ring, and it
63  *   updates event ring dequeue pointer.  HC is the consumer for the command and
64  *   endpoint rings; it generates events on the event ring for these.
65  */
66 
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include <linux/dma-mapping.h>
70 #include "xhci.h"
71 #include "xhci-trace.h"
72 #include "xhci-mtk.h"
73 
74 /*
75  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
76  * address of the TRB.
77  */
78 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
79 		union xhci_trb *trb)
80 {
81 	unsigned long segment_offset;
82 
83 	if (!seg || !trb || trb < seg->trbs)
84 		return 0;
85 	/* offset in TRBs */
86 	segment_offset = trb - seg->trbs;
87 	if (segment_offset >= TRBS_PER_SEGMENT)
88 		return 0;
89 	return seg->dma + (segment_offset * sizeof(*trb));
90 }
91 
92 static bool trb_is_noop(union xhci_trb *trb)
93 {
94 	return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
95 }
96 
97 static bool trb_is_link(union xhci_trb *trb)
98 {
99 	return TRB_TYPE_LINK_LE32(trb->link.control);
100 }
101 
102 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
103 {
104 	return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
105 }
106 
107 static bool last_trb_on_ring(struct xhci_ring *ring,
108 			struct xhci_segment *seg, union xhci_trb *trb)
109 {
110 	return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
111 }
112 
113 static bool link_trb_toggles_cycle(union xhci_trb *trb)
114 {
115 	return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
116 }
117 
118 static bool last_td_in_urb(struct xhci_td *td)
119 {
120 	struct urb_priv *urb_priv = td->urb->hcpriv;
121 
122 	return urb_priv->num_tds_done == urb_priv->num_tds;
123 }
124 
125 static void inc_td_cnt(struct urb *urb)
126 {
127 	struct urb_priv *urb_priv = urb->hcpriv;
128 
129 	urb_priv->num_tds_done++;
130 }
131 
132 static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
133 {
134 	if (trb_is_link(trb)) {
135 		/* unchain chained link TRBs */
136 		trb->link.control &= cpu_to_le32(~TRB_CHAIN);
137 	} else {
138 		trb->generic.field[0] = 0;
139 		trb->generic.field[1] = 0;
140 		trb->generic.field[2] = 0;
141 		/* Preserve only the cycle bit of this TRB */
142 		trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
143 		trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
144 	}
145 }
146 
147 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
148  * TRB is in a new segment.  This does not skip over link TRBs, and it does not
149  * effect the ring dequeue or enqueue pointers.
150  */
151 static void next_trb(struct xhci_hcd *xhci,
152 		struct xhci_ring *ring,
153 		struct xhci_segment **seg,
154 		union xhci_trb **trb)
155 {
156 	if (trb_is_link(*trb)) {
157 		*seg = (*seg)->next;
158 		*trb = ((*seg)->trbs);
159 	} else {
160 		(*trb)++;
161 	}
162 }
163 
164 /*
165  * See Cycle bit rules. SW is the consumer for the event ring only.
166  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
167  */
168 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
169 {
170 	ring->deq_updates++;
171 
172 	/* event ring doesn't have link trbs, check for last trb */
173 	if (ring->type == TYPE_EVENT) {
174 		if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
175 			ring->dequeue++;
176 			return;
177 		}
178 		if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
179 			ring->cycle_state ^= 1;
180 		ring->deq_seg = ring->deq_seg->next;
181 		ring->dequeue = ring->deq_seg->trbs;
182 		return;
183 	}
184 
185 	/* All other rings have link trbs */
186 	if (!trb_is_link(ring->dequeue)) {
187 		ring->dequeue++;
188 		ring->num_trbs_free++;
189 	}
190 	while (trb_is_link(ring->dequeue)) {
191 		ring->deq_seg = ring->deq_seg->next;
192 		ring->dequeue = ring->deq_seg->trbs;
193 	}
194 	return;
195 }
196 
197 /*
198  * See Cycle bit rules. SW is the consumer for the event ring only.
199  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
200  *
201  * If we've just enqueued a TRB that is in the middle of a TD (meaning the
202  * chain bit is set), then set the chain bit in all the following link TRBs.
203  * If we've enqueued the last TRB in a TD, make sure the following link TRBs
204  * have their chain bit cleared (so that each Link TRB is a separate TD).
205  *
206  * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
207  * set, but other sections talk about dealing with the chain bit set.  This was
208  * fixed in the 0.96 specification errata, but we have to assume that all 0.95
209  * xHCI hardware can't handle the chain bit being cleared on a link TRB.
210  *
211  * @more_trbs_coming:	Will you enqueue more TRBs before calling
212  *			prepare_transfer()?
213  */
214 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
215 			bool more_trbs_coming)
216 {
217 	u32 chain;
218 	union xhci_trb *next;
219 
220 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
221 	/* If this is not event ring, there is one less usable TRB */
222 	if (!trb_is_link(ring->enqueue))
223 		ring->num_trbs_free--;
224 	next = ++(ring->enqueue);
225 
226 	ring->enq_updates++;
227 	/* Update the dequeue pointer further if that was a link TRB */
228 	while (trb_is_link(next)) {
229 
230 		/*
231 		 * If the caller doesn't plan on enqueueing more TDs before
232 		 * ringing the doorbell, then we don't want to give the link TRB
233 		 * to the hardware just yet. We'll give the link TRB back in
234 		 * prepare_ring() just before we enqueue the TD at the top of
235 		 * the ring.
236 		 */
237 		if (!chain && !more_trbs_coming)
238 			break;
239 
240 		/* If we're not dealing with 0.95 hardware or isoc rings on
241 		 * AMD 0.96 host, carry over the chain bit of the previous TRB
242 		 * (which may mean the chain bit is cleared).
243 		 */
244 		if (!(ring->type == TYPE_ISOC &&
245 		      (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
246 		    !xhci_link_trb_quirk(xhci)) {
247 			next->link.control &= cpu_to_le32(~TRB_CHAIN);
248 			next->link.control |= cpu_to_le32(chain);
249 		}
250 		/* Give this link TRB to the hardware */
251 		wmb();
252 		next->link.control ^= cpu_to_le32(TRB_CYCLE);
253 
254 		/* Toggle the cycle bit after the last ring segment. */
255 		if (link_trb_toggles_cycle(next))
256 			ring->cycle_state ^= 1;
257 
258 		ring->enq_seg = ring->enq_seg->next;
259 		ring->enqueue = ring->enq_seg->trbs;
260 		next = ring->enqueue;
261 	}
262 }
263 
264 /*
265  * Check to see if there's room to enqueue num_trbs on the ring and make sure
266  * enqueue pointer will not advance into dequeue segment. See rules above.
267  */
268 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
269 		unsigned int num_trbs)
270 {
271 	int num_trbs_in_deq_seg;
272 
273 	if (ring->num_trbs_free < num_trbs)
274 		return 0;
275 
276 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
277 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
278 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
279 			return 0;
280 	}
281 
282 	return 1;
283 }
284 
285 /* Ring the host controller doorbell after placing a command on the ring */
286 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
287 {
288 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
289 		return;
290 
291 	xhci_dbg(xhci, "// Ding dong!\n");
292 	writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
293 	/* Flush PCI posted writes */
294 	readl(&xhci->dba->doorbell[0]);
295 }
296 
297 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
298 {
299 	return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
300 }
301 
302 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
303 {
304 	return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
305 					cmd_list);
306 }
307 
308 /*
309  * Turn all commands on command ring with status set to "aborted" to no-op trbs.
310  * If there are other commands waiting then restart the ring and kick the timer.
311  * This must be called with command ring stopped and xhci->lock held.
312  */
313 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
314 					 struct xhci_command *cur_cmd)
315 {
316 	struct xhci_command *i_cmd;
317 
318 	/* Turn all aborted commands in list to no-ops, then restart */
319 	list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
320 
321 		if (i_cmd->status != COMP_COMMAND_ABORTED)
322 			continue;
323 
324 		i_cmd->status = COMP_STOPPED;
325 
326 		xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
327 			 i_cmd->command_trb);
328 
329 		trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
330 
331 		/*
332 		 * caller waiting for completion is called when command
333 		 *  completion event is received for these no-op commands
334 		 */
335 	}
336 
337 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
338 
339 	/* ring command ring doorbell to restart the command ring */
340 	if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
341 	    !(xhci->xhc_state & XHCI_STATE_DYING)) {
342 		xhci->current_cmd = cur_cmd;
343 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
344 		xhci_ring_cmd_db(xhci);
345 	}
346 }
347 
348 /* Must be called with xhci->lock held, releases and aquires lock back */
349 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
350 {
351 	u64 temp_64;
352 	int ret;
353 
354 	xhci_dbg(xhci, "Abort command ring\n");
355 
356 	reinit_completion(&xhci->cmd_ring_stop_completion);
357 
358 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
359 	xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
360 			&xhci->op_regs->cmd_ring);
361 
362 	/* Section 4.6.1.2 of xHCI 1.0 spec says software should
363 	 * time the completion od all xHCI commands, including
364 	 * the Command Abort operation. If software doesn't see
365 	 * CRR negated in a timely manner (e.g. longer than 5
366 	 * seconds), then it should assume that the there are
367 	 * larger problems with the xHC and assert HCRST.
368 	 */
369 	ret = xhci_handshake(&xhci->op_regs->cmd_ring,
370 			CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
371 	if (ret < 0) {
372 		xhci_err(xhci,
373 			 "Stop command ring failed, maybe the host is dead\n");
374 		xhci->xhc_state |= XHCI_STATE_DYING;
375 		xhci_halt(xhci);
376 		return -ESHUTDOWN;
377 	}
378 	/*
379 	 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
380 	 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
381 	 * but the completion event in never sent. Wait 2 secs (arbitrary
382 	 * number) to handle those cases after negation of CMD_RING_RUNNING.
383 	 */
384 	spin_unlock_irqrestore(&xhci->lock, flags);
385 	ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
386 					  msecs_to_jiffies(2000));
387 	spin_lock_irqsave(&xhci->lock, flags);
388 	if (!ret) {
389 		xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
390 		xhci_cleanup_command_queue(xhci);
391 	} else {
392 		xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
393 	}
394 	return 0;
395 }
396 
397 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
398 		unsigned int slot_id,
399 		unsigned int ep_index,
400 		unsigned int stream_id)
401 {
402 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
403 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
404 	unsigned int ep_state = ep->ep_state;
405 
406 	/* Don't ring the doorbell for this endpoint if there are pending
407 	 * cancellations because we don't want to interrupt processing.
408 	 * We don't want to restart any stream rings if there's a set dequeue
409 	 * pointer command pending because the device can choose to start any
410 	 * stream once the endpoint is on the HW schedule.
411 	 */
412 	if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
413 	    (ep_state & EP_HALTED))
414 		return;
415 	writel(DB_VALUE(ep_index, stream_id), db_addr);
416 	/* The CPU has better things to do at this point than wait for a
417 	 * write-posting flush.  It'll get there soon enough.
418 	 */
419 }
420 
421 /* Ring the doorbell for any rings with pending URBs */
422 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
423 		unsigned int slot_id,
424 		unsigned int ep_index)
425 {
426 	unsigned int stream_id;
427 	struct xhci_virt_ep *ep;
428 
429 	ep = &xhci->devs[slot_id]->eps[ep_index];
430 
431 	/* A ring has pending URBs if its TD list is not empty */
432 	if (!(ep->ep_state & EP_HAS_STREAMS)) {
433 		if (ep->ring && !(list_empty(&ep->ring->td_list)))
434 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
435 		return;
436 	}
437 
438 	for (stream_id = 1; stream_id < ep->stream_info->num_streams;
439 			stream_id++) {
440 		struct xhci_stream_info *stream_info = ep->stream_info;
441 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
442 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
443 						stream_id);
444 	}
445 }
446 
447 /* Get the right ring for the given slot_id, ep_index and stream_id.
448  * If the endpoint supports streams, boundary check the URB's stream ID.
449  * If the endpoint doesn't support streams, return the singular endpoint ring.
450  */
451 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
452 		unsigned int slot_id, unsigned int ep_index,
453 		unsigned int stream_id)
454 {
455 	struct xhci_virt_ep *ep;
456 
457 	ep = &xhci->devs[slot_id]->eps[ep_index];
458 	/* Common case: no streams */
459 	if (!(ep->ep_state & EP_HAS_STREAMS))
460 		return ep->ring;
461 
462 	if (stream_id == 0) {
463 		xhci_warn(xhci,
464 				"WARN: Slot ID %u, ep index %u has streams, "
465 				"but URB has no stream ID.\n",
466 				slot_id, ep_index);
467 		return NULL;
468 	}
469 
470 	if (stream_id < ep->stream_info->num_streams)
471 		return ep->stream_info->stream_rings[stream_id];
472 
473 	xhci_warn(xhci,
474 			"WARN: Slot ID %u, ep index %u has "
475 			"stream IDs 1 to %u allocated, "
476 			"but stream ID %u is requested.\n",
477 			slot_id, ep_index,
478 			ep->stream_info->num_streams - 1,
479 			stream_id);
480 	return NULL;
481 }
482 
483 /*
484  * Move the xHC's endpoint ring dequeue pointer past cur_td.
485  * Record the new state of the xHC's endpoint ring dequeue segment,
486  * dequeue pointer, and new consumer cycle state in state.
487  * Update our internal representation of the ring's dequeue pointer.
488  *
489  * We do this in three jumps:
490  *  - First we update our new ring state to be the same as when the xHC stopped.
491  *  - Then we traverse the ring to find the segment that contains
492  *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass
493  *    any link TRBs with the toggle cycle bit set.
494  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
495  *    if we've moved it past a link TRB with the toggle cycle bit set.
496  *
497  * Some of the uses of xhci_generic_trb are grotty, but if they're done
498  * with correct __le32 accesses they should work fine.  Only users of this are
499  * in here.
500  */
501 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
502 		unsigned int slot_id, unsigned int ep_index,
503 		unsigned int stream_id, struct xhci_td *cur_td,
504 		struct xhci_dequeue_state *state)
505 {
506 	struct xhci_virt_device *dev = xhci->devs[slot_id];
507 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
508 	struct xhci_ring *ep_ring;
509 	struct xhci_segment *new_seg;
510 	union xhci_trb *new_deq;
511 	dma_addr_t addr;
512 	u64 hw_dequeue;
513 	bool cycle_found = false;
514 	bool td_last_trb_found = false;
515 
516 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
517 			ep_index, stream_id);
518 	if (!ep_ring) {
519 		xhci_warn(xhci, "WARN can't find new dequeue state "
520 				"for invalid stream ID %u.\n",
521 				stream_id);
522 		return;
523 	}
524 
525 	/* Dig out the cycle state saved by the xHC during the stop ep cmd */
526 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
527 			"Finding endpoint context");
528 	/* 4.6.9 the css flag is written to the stream context for streams */
529 	if (ep->ep_state & EP_HAS_STREAMS) {
530 		struct xhci_stream_ctx *ctx =
531 			&ep->stream_info->stream_ctx_array[stream_id];
532 		hw_dequeue = le64_to_cpu(ctx->stream_ring);
533 	} else {
534 		struct xhci_ep_ctx *ep_ctx
535 			= xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
536 		hw_dequeue = le64_to_cpu(ep_ctx->deq);
537 	}
538 
539 	new_seg = ep_ring->deq_seg;
540 	new_deq = ep_ring->dequeue;
541 	state->new_cycle_state = hw_dequeue & 0x1;
542 
543 	/*
544 	 * We want to find the pointer, segment and cycle state of the new trb
545 	 * (the one after current TD's last_trb). We know the cycle state at
546 	 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
547 	 * found.
548 	 */
549 	do {
550 		if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
551 		    == (dma_addr_t)(hw_dequeue & ~0xf)) {
552 			cycle_found = true;
553 			if (td_last_trb_found)
554 				break;
555 		}
556 		if (new_deq == cur_td->last_trb)
557 			td_last_trb_found = true;
558 
559 		if (cycle_found && trb_is_link(new_deq) &&
560 		    link_trb_toggles_cycle(new_deq))
561 			state->new_cycle_state ^= 0x1;
562 
563 		next_trb(xhci, ep_ring, &new_seg, &new_deq);
564 
565 		/* Search wrapped around, bail out */
566 		if (new_deq == ep->ring->dequeue) {
567 			xhci_err(xhci, "Error: Failed finding new dequeue state\n");
568 			state->new_deq_seg = NULL;
569 			state->new_deq_ptr = NULL;
570 			return;
571 		}
572 
573 	} while (!cycle_found || !td_last_trb_found);
574 
575 	state->new_deq_seg = new_seg;
576 	state->new_deq_ptr = new_deq;
577 
578 	/* Don't update the ring cycle state for the producer (us). */
579 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
580 			"Cycle state = 0x%x", state->new_cycle_state);
581 
582 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
583 			"New dequeue segment = %p (virtual)",
584 			state->new_deq_seg);
585 	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
586 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
587 			"New dequeue pointer = 0x%llx (DMA)",
588 			(unsigned long long) addr);
589 }
590 
591 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
592  * (The last TRB actually points to the ring enqueue pointer, which is not part
593  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring.
594  */
595 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
596 		       struct xhci_td *td, bool flip_cycle)
597 {
598 	struct xhci_segment *seg	= td->start_seg;
599 	union xhci_trb *trb		= td->first_trb;
600 
601 	while (1) {
602 		trb_to_noop(trb, TRB_TR_NOOP);
603 
604 		/* flip cycle if asked to */
605 		if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
606 			trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
607 
608 		if (trb == td->last_trb)
609 			break;
610 
611 		next_trb(xhci, ep_ring, &seg, &trb);
612 	}
613 }
614 
615 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
616 		struct xhci_virt_ep *ep)
617 {
618 	ep->ep_state &= ~EP_STOP_CMD_PENDING;
619 	/* Can't del_timer_sync in interrupt */
620 	del_timer(&ep->stop_cmd_timer);
621 }
622 
623 /*
624  * Must be called with xhci->lock held in interrupt context,
625  * releases and re-acquires xhci->lock
626  */
627 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
628 				     struct xhci_td *cur_td, int status)
629 {
630 	struct urb	*urb		= cur_td->urb;
631 	struct urb_priv	*urb_priv	= urb->hcpriv;
632 	struct usb_hcd	*hcd		= bus_to_hcd(urb->dev->bus);
633 
634 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
635 		xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
636 		if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) {
637 			if (xhci->quirks & XHCI_AMD_PLL_FIX)
638 				usb_amd_quirk_pll_enable();
639 		}
640 	}
641 	xhci_urb_free_priv(urb_priv);
642 	usb_hcd_unlink_urb_from_ep(hcd, urb);
643 	spin_unlock(&xhci->lock);
644 	usb_hcd_giveback_urb(hcd, urb, status);
645 	trace_xhci_urb_giveback(urb);
646 	spin_lock(&xhci->lock);
647 }
648 
649 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
650 		struct xhci_ring *ring, struct xhci_td *td)
651 {
652 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
653 	struct xhci_segment *seg = td->bounce_seg;
654 	struct urb *urb = td->urb;
655 
656 	if (!ring || !seg || !urb)
657 		return;
658 
659 	if (usb_urb_dir_out(urb)) {
660 		dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
661 				 DMA_TO_DEVICE);
662 		return;
663 	}
664 
665 	/* for in tranfers we need to copy the data from bounce to sg */
666 	sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
667 			     seg->bounce_len, seg->bounce_offs);
668 	dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
669 			 DMA_FROM_DEVICE);
670 	seg->bounce_len = 0;
671 	seg->bounce_offs = 0;
672 }
673 
674 /*
675  * When we get a command completion for a Stop Endpoint Command, we need to
676  * unlink any cancelled TDs from the ring.  There are two ways to do that:
677  *
678  *  1. If the HW was in the middle of processing the TD that needs to be
679  *     cancelled, then we must move the ring's dequeue pointer past the last TRB
680  *     in the TD with a Set Dequeue Pointer Command.
681  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
682  *     bit cleared) so that the HW will skip over them.
683  */
684 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
685 		union xhci_trb *trb, struct xhci_event_cmd *event)
686 {
687 	unsigned int ep_index;
688 	struct xhci_ring *ep_ring;
689 	struct xhci_virt_ep *ep;
690 	struct xhci_td *cur_td = NULL;
691 	struct xhci_td *last_unlinked_td;
692 
693 	struct xhci_dequeue_state deq_state;
694 
695 	if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
696 		if (!xhci->devs[slot_id])
697 			xhci_warn(xhci, "Stop endpoint command "
698 				"completion for disabled slot %u\n",
699 				slot_id);
700 		return;
701 	}
702 
703 	memset(&deq_state, 0, sizeof(deq_state));
704 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
705 	ep = &xhci->devs[slot_id]->eps[ep_index];
706 	last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
707 			struct xhci_td, cancelled_td_list);
708 
709 	if (list_empty(&ep->cancelled_td_list)) {
710 		xhci_stop_watchdog_timer_in_irq(xhci, ep);
711 		ep->stopped_td = NULL;
712 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
713 		return;
714 	}
715 
716 	/* Fix up the ep ring first, so HW stops executing cancelled TDs.
717 	 * We have the xHCI lock, so nothing can modify this list until we drop
718 	 * it.  We're also in the event handler, so we can't get re-interrupted
719 	 * if another Stop Endpoint command completes
720 	 */
721 	list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
722 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
723 				"Removing canceled TD starting at 0x%llx (dma).",
724 				(unsigned long long)xhci_trb_virt_to_dma(
725 					cur_td->start_seg, cur_td->first_trb));
726 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
727 		if (!ep_ring) {
728 			/* This shouldn't happen unless a driver is mucking
729 			 * with the stream ID after submission.  This will
730 			 * leave the TD on the hardware ring, and the hardware
731 			 * will try to execute it, and may access a buffer
732 			 * that has already been freed.  In the best case, the
733 			 * hardware will execute it, and the event handler will
734 			 * ignore the completion event for that TD, since it was
735 			 * removed from the td_list for that endpoint.  In
736 			 * short, don't muck with the stream ID after
737 			 * submission.
738 			 */
739 			xhci_warn(xhci, "WARN Cancelled URB %p "
740 					"has invalid stream ID %u.\n",
741 					cur_td->urb,
742 					cur_td->urb->stream_id);
743 			goto remove_finished_td;
744 		}
745 		/*
746 		 * If we stopped on the TD we need to cancel, then we have to
747 		 * move the xHC endpoint ring dequeue pointer past this TD.
748 		 */
749 		if (cur_td == ep->stopped_td)
750 			xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
751 					cur_td->urb->stream_id,
752 					cur_td, &deq_state);
753 		else
754 			td_to_noop(xhci, ep_ring, cur_td, false);
755 remove_finished_td:
756 		/*
757 		 * The event handler won't see a completion for this TD anymore,
758 		 * so remove it from the endpoint ring's TD list.  Keep it in
759 		 * the cancelled TD list for URB completion later.
760 		 */
761 		list_del_init(&cur_td->td_list);
762 	}
763 
764 	xhci_stop_watchdog_timer_in_irq(xhci, ep);
765 
766 	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
767 	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
768 		xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
769 				ep->stopped_td->urb->stream_id, &deq_state);
770 		xhci_ring_cmd_db(xhci);
771 	} else {
772 		/* Otherwise ring the doorbell(s) to restart queued transfers */
773 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
774 	}
775 
776 	ep->stopped_td = NULL;
777 
778 	/*
779 	 * Drop the lock and complete the URBs in the cancelled TD list.
780 	 * New TDs to be cancelled might be added to the end of the list before
781 	 * we can complete all the URBs for the TDs we already unlinked.
782 	 * So stop when we've completed the URB for the last TD we unlinked.
783 	 */
784 	do {
785 		cur_td = list_first_entry(&ep->cancelled_td_list,
786 				struct xhci_td, cancelled_td_list);
787 		list_del_init(&cur_td->cancelled_td_list);
788 
789 		/* Clean up the cancelled URB */
790 		/* Doesn't matter what we pass for status, since the core will
791 		 * just overwrite it (because the URB has been unlinked).
792 		 */
793 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
794 		xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
795 		inc_td_cnt(cur_td->urb);
796 		if (last_td_in_urb(cur_td))
797 			xhci_giveback_urb_in_irq(xhci, cur_td, 0);
798 
799 		/* Stop processing the cancelled list if the watchdog timer is
800 		 * running.
801 		 */
802 		if (xhci->xhc_state & XHCI_STATE_DYING)
803 			return;
804 	} while (cur_td != last_unlinked_td);
805 
806 	/* Return to the event handler with xhci->lock re-acquired */
807 }
808 
809 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
810 {
811 	struct xhci_td *cur_td;
812 	struct xhci_td *tmp;
813 
814 	list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
815 		list_del_init(&cur_td->td_list);
816 
817 		if (!list_empty(&cur_td->cancelled_td_list))
818 			list_del_init(&cur_td->cancelled_td_list);
819 
820 		xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
821 
822 		inc_td_cnt(cur_td->urb);
823 		if (last_td_in_urb(cur_td))
824 			xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
825 	}
826 }
827 
828 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
829 		int slot_id, int ep_index)
830 {
831 	struct xhci_td *cur_td;
832 	struct xhci_td *tmp;
833 	struct xhci_virt_ep *ep;
834 	struct xhci_ring *ring;
835 
836 	ep = &xhci->devs[slot_id]->eps[ep_index];
837 	if ((ep->ep_state & EP_HAS_STREAMS) ||
838 			(ep->ep_state & EP_GETTING_NO_STREAMS)) {
839 		int stream_id;
840 
841 		for (stream_id = 0; stream_id < ep->stream_info->num_streams;
842 				stream_id++) {
843 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
844 					"Killing URBs for slot ID %u, ep index %u, stream %u",
845 					slot_id, ep_index, stream_id + 1);
846 			xhci_kill_ring_urbs(xhci,
847 					ep->stream_info->stream_rings[stream_id]);
848 		}
849 	} else {
850 		ring = ep->ring;
851 		if (!ring)
852 			return;
853 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
854 				"Killing URBs for slot ID %u, ep index %u",
855 				slot_id, ep_index);
856 		xhci_kill_ring_urbs(xhci, ring);
857 	}
858 
859 	list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
860 			cancelled_td_list) {
861 		list_del_init(&cur_td->cancelled_td_list);
862 		inc_td_cnt(cur_td->urb);
863 
864 		if (last_td_in_urb(cur_td))
865 			xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
866 	}
867 }
868 
869 /* Watchdog timer function for when a stop endpoint command fails to complete.
870  * In this case, we assume the host controller is broken or dying or dead.  The
871  * host may still be completing some other events, so we have to be careful to
872  * let the event ring handler and the URB dequeueing/enqueueing functions know
873  * through xhci->state.
874  *
875  * The timer may also fire if the host takes a very long time to respond to the
876  * command, and the stop endpoint command completion handler cannot delete the
877  * timer before the timer function is called.  Another endpoint cancellation may
878  * sneak in before the timer function can grab the lock, and that may queue
879  * another stop endpoint command and add the timer back.  So we cannot use a
880  * simple flag to say whether there is a pending stop endpoint command for a
881  * particular endpoint.
882  *
883  * Instead we use a combination of that flag and checking if a new timer is
884  * pending.
885  */
886 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
887 {
888 	struct xhci_hcd *xhci;
889 	struct xhci_virt_ep *ep;
890 	int ret, i, j;
891 	unsigned long flags;
892 
893 	ep = (struct xhci_virt_ep *) arg;
894 	xhci = ep->xhci;
895 
896 	spin_lock_irqsave(&xhci->lock, flags);
897 
898 	/* bail out if cmd completed but raced with stop ep watchdog timer.*/
899 	if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
900 	    timer_pending(&ep->stop_cmd_timer)) {
901 		spin_unlock_irqrestore(&xhci->lock, flags);
902 		xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
903 		return;
904 	}
905 
906 	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
907 	xhci_warn(xhci, "Assuming host is dying, halting host.\n");
908 	/* Oops, HC is dead or dying or at least not responding to the stop
909 	 * endpoint command.
910 	 */
911 
912 	xhci->xhc_state |= XHCI_STATE_DYING;
913 	ep->ep_state &= ~EP_STOP_CMD_PENDING;
914 
915 	/* Disable interrupts from the host controller and start halting it */
916 	xhci_quiesce(xhci);
917 	spin_unlock_irqrestore(&xhci->lock, flags);
918 
919 	ret = xhci_halt(xhci);
920 
921 	spin_lock_irqsave(&xhci->lock, flags);
922 	if (ret < 0) {
923 		/* This is bad; the host is not responding to commands and it's
924 		 * not allowing itself to be halted.  At least interrupts are
925 		 * disabled. If we call usb_hc_died(), it will attempt to
926 		 * disconnect all device drivers under this host.  Those
927 		 * disconnect() methods will wait for all URBs to be unlinked,
928 		 * so we must complete them.
929 		 */
930 		xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
931 		xhci_warn(xhci, "Completing active URBs anyway.\n");
932 		/* We could turn all TDs on the rings to no-ops.  This won't
933 		 * help if the host has cached part of the ring, and is slow if
934 		 * we want to preserve the cycle bit.  Skip it and hope the host
935 		 * doesn't touch the memory.
936 		 */
937 	}
938 	for (i = 0; i < MAX_HC_SLOTS; i++) {
939 		if (!xhci->devs[i])
940 			continue;
941 		for (j = 0; j < 31; j++)
942 			xhci_kill_endpoint_urbs(xhci, i, j);
943 	}
944 	spin_unlock_irqrestore(&xhci->lock, flags);
945 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
946 			"Calling usb_hc_died()");
947 	usb_hc_died(xhci_to_hcd(xhci));
948 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
949 			"xHCI host controller is dead.");
950 }
951 
952 
953 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
954 		struct xhci_virt_device *dev,
955 		struct xhci_ring *ep_ring,
956 		unsigned int ep_index)
957 {
958 	union xhci_trb *dequeue_temp;
959 	int num_trbs_free_temp;
960 	bool revert = false;
961 
962 	num_trbs_free_temp = ep_ring->num_trbs_free;
963 	dequeue_temp = ep_ring->dequeue;
964 
965 	/* If we get two back-to-back stalls, and the first stalled transfer
966 	 * ends just before a link TRB, the dequeue pointer will be left on
967 	 * the link TRB by the code in the while loop.  So we have to update
968 	 * the dequeue pointer one segment further, or we'll jump off
969 	 * the segment into la-la-land.
970 	 */
971 	if (trb_is_link(ep_ring->dequeue)) {
972 		ep_ring->deq_seg = ep_ring->deq_seg->next;
973 		ep_ring->dequeue = ep_ring->deq_seg->trbs;
974 	}
975 
976 	while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
977 		/* We have more usable TRBs */
978 		ep_ring->num_trbs_free++;
979 		ep_ring->dequeue++;
980 		if (trb_is_link(ep_ring->dequeue)) {
981 			if (ep_ring->dequeue ==
982 					dev->eps[ep_index].queued_deq_ptr)
983 				break;
984 			ep_ring->deq_seg = ep_ring->deq_seg->next;
985 			ep_ring->dequeue = ep_ring->deq_seg->trbs;
986 		}
987 		if (ep_ring->dequeue == dequeue_temp) {
988 			revert = true;
989 			break;
990 		}
991 	}
992 
993 	if (revert) {
994 		xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
995 		ep_ring->num_trbs_free = num_trbs_free_temp;
996 	}
997 }
998 
999 /*
1000  * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1001  * we need to clear the set deq pending flag in the endpoint ring state, so that
1002  * the TD queueing code can ring the doorbell again.  We also need to ring the
1003  * endpoint doorbell to restart the ring, but only if there aren't more
1004  * cancellations pending.
1005  */
1006 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1007 		union xhci_trb *trb, u32 cmd_comp_code)
1008 {
1009 	unsigned int ep_index;
1010 	unsigned int stream_id;
1011 	struct xhci_ring *ep_ring;
1012 	struct xhci_virt_device *dev;
1013 	struct xhci_virt_ep *ep;
1014 	struct xhci_ep_ctx *ep_ctx;
1015 	struct xhci_slot_ctx *slot_ctx;
1016 
1017 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1018 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1019 	dev = xhci->devs[slot_id];
1020 	ep = &dev->eps[ep_index];
1021 
1022 	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1023 	if (!ep_ring) {
1024 		xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1025 				stream_id);
1026 		/* XXX: Harmless??? */
1027 		goto cleanup;
1028 	}
1029 
1030 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1031 	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1032 
1033 	if (cmd_comp_code != COMP_SUCCESS) {
1034 		unsigned int ep_state;
1035 		unsigned int slot_state;
1036 
1037 		switch (cmd_comp_code) {
1038 		case COMP_TRB_ERROR:
1039 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1040 			break;
1041 		case COMP_CONTEXT_STATE_ERROR:
1042 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1043 			ep_state = GET_EP_CTX_STATE(ep_ctx);
1044 			slot_state = le32_to_cpu(slot_ctx->dev_state);
1045 			slot_state = GET_SLOT_STATE(slot_state);
1046 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1047 					"Slot state = %u, EP state = %u",
1048 					slot_state, ep_state);
1049 			break;
1050 		case COMP_SLOT_NOT_ENABLED_ERROR:
1051 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1052 					slot_id);
1053 			break;
1054 		default:
1055 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1056 					cmd_comp_code);
1057 			break;
1058 		}
1059 		/* OK what do we do now?  The endpoint state is hosed, and we
1060 		 * should never get to this point if the synchronization between
1061 		 * queueing, and endpoint state are correct.  This might happen
1062 		 * if the device gets disconnected after we've finished
1063 		 * cancelling URBs, which might not be an error...
1064 		 */
1065 	} else {
1066 		u64 deq;
1067 		/* 4.6.10 deq ptr is written to the stream ctx for streams */
1068 		if (ep->ep_state & EP_HAS_STREAMS) {
1069 			struct xhci_stream_ctx *ctx =
1070 				&ep->stream_info->stream_ctx_array[stream_id];
1071 			deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1072 		} else {
1073 			deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1074 		}
1075 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1076 			"Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1077 		if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1078 					 ep->queued_deq_ptr) == deq) {
1079 			/* Update the ring's dequeue segment and dequeue pointer
1080 			 * to reflect the new position.
1081 			 */
1082 			update_ring_for_set_deq_completion(xhci, dev,
1083 				ep_ring, ep_index);
1084 		} else {
1085 			xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1086 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1087 				  ep->queued_deq_seg, ep->queued_deq_ptr);
1088 		}
1089 	}
1090 
1091 cleanup:
1092 	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1093 	dev->eps[ep_index].queued_deq_seg = NULL;
1094 	dev->eps[ep_index].queued_deq_ptr = NULL;
1095 	/* Restart any rings with pending URBs */
1096 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1097 }
1098 
1099 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1100 		union xhci_trb *trb, u32 cmd_comp_code)
1101 {
1102 	unsigned int ep_index;
1103 
1104 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1105 	/* This command will only fail if the endpoint wasn't halted,
1106 	 * but we don't care.
1107 	 */
1108 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1109 		"Ignoring reset ep completion code of %u", cmd_comp_code);
1110 
1111 	/* HW with the reset endpoint quirk needs to have a configure endpoint
1112 	 * command complete before the endpoint can be used.  Queue that here
1113 	 * because the HW can't handle two commands being queued in a row.
1114 	 */
1115 	if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1116 		struct xhci_command *command;
1117 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1118 		if (!command) {
1119 			xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n");
1120 			return;
1121 		}
1122 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1123 				"Queueing configure endpoint command");
1124 		xhci_queue_configure_endpoint(xhci, command,
1125 				xhci->devs[slot_id]->in_ctx->dma, slot_id,
1126 				false);
1127 		xhci_ring_cmd_db(xhci);
1128 	} else {
1129 		/* Clear our internal halted state */
1130 		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1131 	}
1132 }
1133 
1134 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1135 		struct xhci_command *command, u32 cmd_comp_code)
1136 {
1137 	if (cmd_comp_code == COMP_SUCCESS)
1138 		command->slot_id = slot_id;
1139 	else
1140 		command->slot_id = 0;
1141 }
1142 
1143 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1144 {
1145 	struct xhci_virt_device *virt_dev;
1146 
1147 	virt_dev = xhci->devs[slot_id];
1148 	if (!virt_dev)
1149 		return;
1150 	if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1151 		/* Delete default control endpoint resources */
1152 		xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1153 	xhci_free_virt_device(xhci, slot_id);
1154 }
1155 
1156 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1157 		struct xhci_event_cmd *event, u32 cmd_comp_code)
1158 {
1159 	struct xhci_virt_device *virt_dev;
1160 	struct xhci_input_control_ctx *ctrl_ctx;
1161 	unsigned int ep_index;
1162 	unsigned int ep_state;
1163 	u32 add_flags, drop_flags;
1164 
1165 	/*
1166 	 * Configure endpoint commands can come from the USB core
1167 	 * configuration or alt setting changes, or because the HW
1168 	 * needed an extra configure endpoint command after a reset
1169 	 * endpoint command or streams were being configured.
1170 	 * If the command was for a halted endpoint, the xHCI driver
1171 	 * is not waiting on the configure endpoint command.
1172 	 */
1173 	virt_dev = xhci->devs[slot_id];
1174 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1175 	if (!ctrl_ctx) {
1176 		xhci_warn(xhci, "Could not get input context, bad type.\n");
1177 		return;
1178 	}
1179 
1180 	add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1181 	drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1182 	/* Input ctx add_flags are the endpoint index plus one */
1183 	ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1184 
1185 	/* A usb_set_interface() call directly after clearing a halted
1186 	 * condition may race on this quirky hardware.  Not worth
1187 	 * worrying about, since this is prototype hardware.  Not sure
1188 	 * if this will work for streams, but streams support was
1189 	 * untested on this prototype.
1190 	 */
1191 	if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1192 			ep_index != (unsigned int) -1 &&
1193 			add_flags - SLOT_FLAG == drop_flags) {
1194 		ep_state = virt_dev->eps[ep_index].ep_state;
1195 		if (!(ep_state & EP_HALTED))
1196 			return;
1197 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1198 				"Completed config ep cmd - "
1199 				"last ep index = %d, state = %d",
1200 				ep_index, ep_state);
1201 		/* Clear internal halted state and restart ring(s) */
1202 		virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1203 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1204 		return;
1205 	}
1206 	return;
1207 }
1208 
1209 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1210 		struct xhci_event_cmd *event)
1211 {
1212 	xhci_dbg(xhci, "Completed reset device command.\n");
1213 	if (!xhci->devs[slot_id])
1214 		xhci_warn(xhci, "Reset device command completion "
1215 				"for disabled slot %u\n", slot_id);
1216 }
1217 
1218 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1219 		struct xhci_event_cmd *event)
1220 {
1221 	if (!(xhci->quirks & XHCI_NEC_HOST)) {
1222 		xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
1223 		return;
1224 	}
1225 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1226 			"NEC firmware version %2x.%02x",
1227 			NEC_FW_MAJOR(le32_to_cpu(event->status)),
1228 			NEC_FW_MINOR(le32_to_cpu(event->status)));
1229 }
1230 
1231 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1232 {
1233 	list_del(&cmd->cmd_list);
1234 
1235 	if (cmd->completion) {
1236 		cmd->status = status;
1237 		complete(cmd->completion);
1238 	} else {
1239 		kfree(cmd);
1240 	}
1241 }
1242 
1243 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1244 {
1245 	struct xhci_command *cur_cmd, *tmp_cmd;
1246 	list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1247 		xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
1248 }
1249 
1250 void xhci_handle_command_timeout(struct work_struct *work)
1251 {
1252 	struct xhci_hcd *xhci;
1253 	int ret;
1254 	unsigned long flags;
1255 	u64 hw_ring_state;
1256 
1257 	xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
1258 
1259 	spin_lock_irqsave(&xhci->lock, flags);
1260 
1261 	/*
1262 	 * If timeout work is pending, or current_cmd is NULL, it means we
1263 	 * raced with command completion. Command is handled so just return.
1264 	 */
1265 	if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
1266 		spin_unlock_irqrestore(&xhci->lock, flags);
1267 		return;
1268 	}
1269 	/* mark this command to be cancelled */
1270 	xhci->current_cmd->status = COMP_COMMAND_ABORTED;
1271 
1272 	/* Make sure command ring is running before aborting it */
1273 	hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1274 	if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1275 	    (hw_ring_state & CMD_RING_RUNNING))  {
1276 		/* Prevent new doorbell, and start command abort */
1277 		xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
1278 		xhci_dbg(xhci, "Command timeout\n");
1279 		ret = xhci_abort_cmd_ring(xhci, flags);
1280 		if (unlikely(ret == -ESHUTDOWN)) {
1281 			xhci_err(xhci, "Abort command ring failed\n");
1282 			xhci_cleanup_command_queue(xhci);
1283 			spin_unlock_irqrestore(&xhci->lock, flags);
1284 			usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1285 			xhci_dbg(xhci, "xHCI host controller is dead.\n");
1286 
1287 			return;
1288 		}
1289 
1290 		goto time_out_completed;
1291 	}
1292 
1293 	/* host removed. Bail out */
1294 	if (xhci->xhc_state & XHCI_STATE_REMOVING) {
1295 		xhci_dbg(xhci, "host removed, ring start fail?\n");
1296 		xhci_cleanup_command_queue(xhci);
1297 
1298 		goto time_out_completed;
1299 	}
1300 
1301 	/* command timeout on stopped ring, ring can't be aborted */
1302 	xhci_dbg(xhci, "Command timeout on stopped ring\n");
1303 	xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1304 
1305 time_out_completed:
1306 	spin_unlock_irqrestore(&xhci->lock, flags);
1307 	return;
1308 }
1309 
1310 static void handle_cmd_completion(struct xhci_hcd *xhci,
1311 		struct xhci_event_cmd *event)
1312 {
1313 	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1314 	u64 cmd_dma;
1315 	dma_addr_t cmd_dequeue_dma;
1316 	u32 cmd_comp_code;
1317 	union xhci_trb *cmd_trb;
1318 	struct xhci_command *cmd;
1319 	u32 cmd_type;
1320 
1321 	cmd_dma = le64_to_cpu(event->cmd_trb);
1322 	cmd_trb = xhci->cmd_ring->dequeue;
1323 
1324 	trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
1325 
1326 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1327 			cmd_trb);
1328 	/*
1329 	 * Check whether the completion event is for our internal kept
1330 	 * command.
1331 	 */
1332 	if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
1333 		xhci_warn(xhci,
1334 			  "ERROR mismatched command completion event\n");
1335 		return;
1336 	}
1337 
1338 	cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
1339 
1340 	cancel_delayed_work(&xhci->cmd_timer);
1341 
1342 	cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1343 
1344 	/* If CMD ring stopped we own the trbs between enqueue and dequeue */
1345 	if (cmd_comp_code == COMP_STOPPED) {
1346 		complete_all(&xhci->cmd_ring_stop_completion);
1347 		return;
1348 	}
1349 
1350 	if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1351 		xhci_err(xhci,
1352 			 "Command completion event does not match command\n");
1353 		return;
1354 	}
1355 
1356 	/*
1357 	 * Host aborted the command ring, check if the current command was
1358 	 * supposed to be aborted, otherwise continue normally.
1359 	 * The command ring is stopped now, but the xHC will issue a Command
1360 	 * Ring Stopped event which will cause us to restart it.
1361 	 */
1362 	if (cmd_comp_code == COMP_COMMAND_ABORTED) {
1363 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1364 		if (cmd->status == COMP_COMMAND_ABORTED) {
1365 			if (xhci->current_cmd == cmd)
1366 				xhci->current_cmd = NULL;
1367 			goto event_handled;
1368 		}
1369 	}
1370 
1371 	cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1372 	switch (cmd_type) {
1373 	case TRB_ENABLE_SLOT:
1374 		xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
1375 		break;
1376 	case TRB_DISABLE_SLOT:
1377 		xhci_handle_cmd_disable_slot(xhci, slot_id);
1378 		break;
1379 	case TRB_CONFIG_EP:
1380 		if (!cmd->completion)
1381 			xhci_handle_cmd_config_ep(xhci, slot_id, event,
1382 						  cmd_comp_code);
1383 		break;
1384 	case TRB_EVAL_CONTEXT:
1385 		break;
1386 	case TRB_ADDR_DEV:
1387 		break;
1388 	case TRB_STOP_RING:
1389 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1390 				le32_to_cpu(cmd_trb->generic.field[3])));
1391 		xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1392 		break;
1393 	case TRB_SET_DEQ:
1394 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1395 				le32_to_cpu(cmd_trb->generic.field[3])));
1396 		xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1397 		break;
1398 	case TRB_CMD_NOOP:
1399 		/* Is this an aborted command turned to NO-OP? */
1400 		if (cmd->status == COMP_STOPPED)
1401 			cmd_comp_code = COMP_STOPPED;
1402 		break;
1403 	case TRB_RESET_EP:
1404 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1405 				le32_to_cpu(cmd_trb->generic.field[3])));
1406 		xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1407 		break;
1408 	case TRB_RESET_DEV:
1409 		/* SLOT_ID field in reset device cmd completion event TRB is 0.
1410 		 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1411 		 */
1412 		slot_id = TRB_TO_SLOT_ID(
1413 				le32_to_cpu(cmd_trb->generic.field[3]));
1414 		xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1415 		break;
1416 	case TRB_NEC_GET_FW:
1417 		xhci_handle_cmd_nec_get_fw(xhci, event);
1418 		break;
1419 	default:
1420 		/* Skip over unknown commands on the event ring */
1421 		xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
1422 		break;
1423 	}
1424 
1425 	/* restart timer if this wasn't the last command */
1426 	if (!list_is_singular(&xhci->cmd_list)) {
1427 		xhci->current_cmd = list_first_entry(&cmd->cmd_list,
1428 						struct xhci_command, cmd_list);
1429 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
1430 	} else if (xhci->current_cmd == cmd) {
1431 		xhci->current_cmd = NULL;
1432 	}
1433 
1434 event_handled:
1435 	xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1436 
1437 	inc_deq(xhci, xhci->cmd_ring);
1438 }
1439 
1440 static void handle_vendor_event(struct xhci_hcd *xhci,
1441 		union xhci_trb *event)
1442 {
1443 	u32 trb_type;
1444 
1445 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1446 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1447 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1448 		handle_cmd_completion(xhci, &event->event_cmd);
1449 }
1450 
1451 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1452  * port registers -- USB 3.0 and USB 2.0).
1453  *
1454  * Returns a zero-based port number, which is suitable for indexing into each of
1455  * the split roothubs' port arrays and bus state arrays.
1456  * Add one to it in order to call xhci_find_slot_id_by_port.
1457  */
1458 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1459 		struct xhci_hcd *xhci, u32 port_id)
1460 {
1461 	unsigned int i;
1462 	unsigned int num_similar_speed_ports = 0;
1463 
1464 	/* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1465 	 * and usb2_ports are 0-based indexes.  Count the number of similar
1466 	 * speed ports, up to 1 port before this port.
1467 	 */
1468 	for (i = 0; i < (port_id - 1); i++) {
1469 		u8 port_speed = xhci->port_array[i];
1470 
1471 		/*
1472 		 * Skip ports that don't have known speeds, or have duplicate
1473 		 * Extended Capabilities port speed entries.
1474 		 */
1475 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1476 			continue;
1477 
1478 		/*
1479 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1480 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1481 		 * matches the device speed, it's a similar speed port.
1482 		 */
1483 		if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
1484 			num_similar_speed_ports++;
1485 	}
1486 	return num_similar_speed_ports;
1487 }
1488 
1489 static void handle_device_notification(struct xhci_hcd *xhci,
1490 		union xhci_trb *event)
1491 {
1492 	u32 slot_id;
1493 	struct usb_device *udev;
1494 
1495 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1496 	if (!xhci->devs[slot_id]) {
1497 		xhci_warn(xhci, "Device Notification event for "
1498 				"unused slot %u\n", slot_id);
1499 		return;
1500 	}
1501 
1502 	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1503 			slot_id);
1504 	udev = xhci->devs[slot_id]->udev;
1505 	if (udev && udev->parent)
1506 		usb_wakeup_notification(udev->parent, udev->portnum);
1507 }
1508 
1509 static void handle_port_status(struct xhci_hcd *xhci,
1510 		union xhci_trb *event)
1511 {
1512 	struct usb_hcd *hcd;
1513 	u32 port_id;
1514 	u32 temp, temp1;
1515 	int max_ports;
1516 	int slot_id;
1517 	unsigned int faked_port_index;
1518 	u8 major_revision;
1519 	struct xhci_bus_state *bus_state;
1520 	__le32 __iomem **port_array;
1521 	bool bogus_port_status = false;
1522 
1523 	/* Port status change events always have a successful completion code */
1524 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
1525 		xhci_warn(xhci,
1526 			  "WARN: xHC returned failed port status event\n");
1527 
1528 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1529 	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1530 
1531 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1532 	if ((port_id <= 0) || (port_id > max_ports)) {
1533 		xhci_warn(xhci, "Invalid port id %d\n", port_id);
1534 		inc_deq(xhci, xhci->event_ring);
1535 		return;
1536 	}
1537 
1538 	/* Figure out which usb_hcd this port is attached to:
1539 	 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1540 	 */
1541 	major_revision = xhci->port_array[port_id - 1];
1542 
1543 	/* Find the right roothub. */
1544 	hcd = xhci_to_hcd(xhci);
1545 	if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
1546 		hcd = xhci->shared_hcd;
1547 
1548 	if (major_revision == 0) {
1549 		xhci_warn(xhci, "Event for port %u not in "
1550 				"Extended Capabilities, ignoring.\n",
1551 				port_id);
1552 		bogus_port_status = true;
1553 		goto cleanup;
1554 	}
1555 	if (major_revision == DUPLICATE_ENTRY) {
1556 		xhci_warn(xhci, "Event for port %u duplicated in"
1557 				"Extended Capabilities, ignoring.\n",
1558 				port_id);
1559 		bogus_port_status = true;
1560 		goto cleanup;
1561 	}
1562 
1563 	/*
1564 	 * Hardware port IDs reported by a Port Status Change Event include USB
1565 	 * 3.0 and USB 2.0 ports.  We want to check if the port has reported a
1566 	 * resume event, but we first need to translate the hardware port ID
1567 	 * into the index into the ports on the correct split roothub, and the
1568 	 * correct bus_state structure.
1569 	 */
1570 	bus_state = &xhci->bus_state[hcd_index(hcd)];
1571 	if (hcd->speed >= HCD_USB3)
1572 		port_array = xhci->usb3_ports;
1573 	else
1574 		port_array = xhci->usb2_ports;
1575 	/* Find the faked port hub number */
1576 	faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1577 			port_id);
1578 
1579 	temp = readl(port_array[faked_port_index]);
1580 	if (hcd->state == HC_STATE_SUSPENDED) {
1581 		xhci_dbg(xhci, "resume root hub\n");
1582 		usb_hcd_resume_root_hub(hcd);
1583 	}
1584 
1585 	if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE)
1586 		bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
1587 
1588 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1589 		xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1590 
1591 		temp1 = readl(&xhci->op_regs->command);
1592 		if (!(temp1 & CMD_RUN)) {
1593 			xhci_warn(xhci, "xHC is not running.\n");
1594 			goto cleanup;
1595 		}
1596 
1597 		if (DEV_SUPERSPEED_ANY(temp)) {
1598 			xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1599 			/* Set a flag to say the port signaled remote wakeup,
1600 			 * so we can tell the difference between the end of
1601 			 * device and host initiated resume.
1602 			 */
1603 			bus_state->port_remote_wakeup |= 1 << faked_port_index;
1604 			xhci_test_and_clear_bit(xhci, port_array,
1605 					faked_port_index, PORT_PLC);
1606 			xhci_set_link_state(xhci, port_array, faked_port_index,
1607 						XDEV_U0);
1608 			/* Need to wait until the next link state change
1609 			 * indicates the device is actually in U0.
1610 			 */
1611 			bogus_port_status = true;
1612 			goto cleanup;
1613 		} else if (!test_bit(faked_port_index,
1614 				     &bus_state->resuming_ports)) {
1615 			xhci_dbg(xhci, "resume HS port %d\n", port_id);
1616 			bus_state->resume_done[faked_port_index] = jiffies +
1617 				msecs_to_jiffies(USB_RESUME_TIMEOUT);
1618 			set_bit(faked_port_index, &bus_state->resuming_ports);
1619 			mod_timer(&hcd->rh_timer,
1620 				  bus_state->resume_done[faked_port_index]);
1621 			/* Do the rest in GetPortStatus */
1622 		}
1623 	}
1624 
1625 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1626 			DEV_SUPERSPEED_ANY(temp)) {
1627 		xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1628 		/* We've just brought the device into U0 through either the
1629 		 * Resume state after a device remote wakeup, or through the
1630 		 * U3Exit state after a host-initiated resume.  If it's a device
1631 		 * initiated remote wake, don't pass up the link state change,
1632 		 * so the roothub behavior is consistent with external
1633 		 * USB 3.0 hub behavior.
1634 		 */
1635 		slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1636 				faked_port_index + 1);
1637 		if (slot_id && xhci->devs[slot_id])
1638 			xhci_ring_device(xhci, slot_id);
1639 		if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1640 			bus_state->port_remote_wakeup &=
1641 				~(1 << faked_port_index);
1642 			xhci_test_and_clear_bit(xhci, port_array,
1643 					faked_port_index, PORT_PLC);
1644 			usb_wakeup_notification(hcd->self.root_hub,
1645 					faked_port_index + 1);
1646 			bogus_port_status = true;
1647 			goto cleanup;
1648 		}
1649 	}
1650 
1651 	/*
1652 	 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1653 	 * RExit to a disconnect state).  If so, let the the driver know it's
1654 	 * out of the RExit state.
1655 	 */
1656 	if (!DEV_SUPERSPEED_ANY(temp) &&
1657 			test_and_clear_bit(faked_port_index,
1658 				&bus_state->rexit_ports)) {
1659 		complete(&bus_state->rexit_done[faked_port_index]);
1660 		bogus_port_status = true;
1661 		goto cleanup;
1662 	}
1663 
1664 	if (hcd->speed < HCD_USB3)
1665 		xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1666 					PORT_PLC);
1667 
1668 cleanup:
1669 	/* Update event ring dequeue pointer before dropping the lock */
1670 	inc_deq(xhci, xhci->event_ring);
1671 
1672 	/* Don't make the USB core poll the roothub if we got a bad port status
1673 	 * change event.  Besides, at that point we can't tell which roothub
1674 	 * (USB 2.0 or USB 3.0) to kick.
1675 	 */
1676 	if (bogus_port_status)
1677 		return;
1678 
1679 	/*
1680 	 * xHCI port-status-change events occur when the "or" of all the
1681 	 * status-change bits in the portsc register changes from 0 to 1.
1682 	 * New status changes won't cause an event if any other change
1683 	 * bits are still set.  When an event occurs, switch over to
1684 	 * polling to avoid losing status changes.
1685 	 */
1686 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1687 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1688 	spin_unlock(&xhci->lock);
1689 	/* Pass this up to the core */
1690 	usb_hcd_poll_rh_status(hcd);
1691 	spin_lock(&xhci->lock);
1692 }
1693 
1694 /*
1695  * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1696  * at end_trb, which may be in another segment.  If the suspect DMA address is a
1697  * TRB in this TD, this function returns that TRB's segment.  Otherwise it
1698  * returns 0.
1699  */
1700 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1701 		struct xhci_segment *start_seg,
1702 		union xhci_trb	*start_trb,
1703 		union xhci_trb	*end_trb,
1704 		dma_addr_t	suspect_dma,
1705 		bool		debug)
1706 {
1707 	dma_addr_t start_dma;
1708 	dma_addr_t end_seg_dma;
1709 	dma_addr_t end_trb_dma;
1710 	struct xhci_segment *cur_seg;
1711 
1712 	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1713 	cur_seg = start_seg;
1714 
1715 	do {
1716 		if (start_dma == 0)
1717 			return NULL;
1718 		/* We may get an event for a Link TRB in the middle of a TD */
1719 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1720 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1721 		/* If the end TRB isn't in this segment, this is set to 0 */
1722 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1723 
1724 		if (debug)
1725 			xhci_warn(xhci,
1726 				"Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1727 				(unsigned long long)suspect_dma,
1728 				(unsigned long long)start_dma,
1729 				(unsigned long long)end_trb_dma,
1730 				(unsigned long long)cur_seg->dma,
1731 				(unsigned long long)end_seg_dma);
1732 
1733 		if (end_trb_dma > 0) {
1734 			/* The end TRB is in this segment, so suspect should be here */
1735 			if (start_dma <= end_trb_dma) {
1736 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1737 					return cur_seg;
1738 			} else {
1739 				/* Case for one segment with
1740 				 * a TD wrapped around to the top
1741 				 */
1742 				if ((suspect_dma >= start_dma &&
1743 							suspect_dma <= end_seg_dma) ||
1744 						(suspect_dma >= cur_seg->dma &&
1745 						 suspect_dma <= end_trb_dma))
1746 					return cur_seg;
1747 			}
1748 			return NULL;
1749 		} else {
1750 			/* Might still be somewhere in this segment */
1751 			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1752 				return cur_seg;
1753 		}
1754 		cur_seg = cur_seg->next;
1755 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1756 	} while (cur_seg != start_seg);
1757 
1758 	return NULL;
1759 }
1760 
1761 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1762 		unsigned int slot_id, unsigned int ep_index,
1763 		unsigned int stream_id,
1764 		struct xhci_td *td, union xhci_trb *ep_trb)
1765 {
1766 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1767 	struct xhci_command *command;
1768 	command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1769 	if (!command)
1770 		return;
1771 
1772 	ep->ep_state |= EP_HALTED;
1773 	ep->stopped_stream = stream_id;
1774 
1775 	xhci_queue_reset_ep(xhci, command, slot_id, ep_index);
1776 	xhci_cleanup_stalled_ring(xhci, ep_index, td);
1777 
1778 	ep->stopped_stream = 0;
1779 
1780 	xhci_ring_cmd_db(xhci);
1781 }
1782 
1783 /* Check if an error has halted the endpoint ring.  The class driver will
1784  * cleanup the halt for a non-default control endpoint if we indicate a stall.
1785  * However, a babble and other errors also halt the endpoint ring, and the class
1786  * driver won't clear the halt in that case, so we need to issue a Set Transfer
1787  * Ring Dequeue Pointer command manually.
1788  */
1789 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1790 		struct xhci_ep_ctx *ep_ctx,
1791 		unsigned int trb_comp_code)
1792 {
1793 	/* TRB completion codes that may require a manual halt cleanup */
1794 	if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
1795 			trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
1796 			trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
1797 		/* The 0.95 spec says a babbling control endpoint
1798 		 * is not halted. The 0.96 spec says it is.  Some HW
1799 		 * claims to be 0.95 compliant, but it halts the control
1800 		 * endpoint anyway.  Check if a babble halted the
1801 		 * endpoint.
1802 		 */
1803 		if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
1804 			return 1;
1805 
1806 	return 0;
1807 }
1808 
1809 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1810 {
1811 	if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1812 		/* Vendor defined "informational" completion code,
1813 		 * treat as not-an-error.
1814 		 */
1815 		xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1816 				trb_comp_code);
1817 		xhci_dbg(xhci, "Treating code as success.\n");
1818 		return 1;
1819 	}
1820 	return 0;
1821 }
1822 
1823 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
1824 		struct xhci_ring *ep_ring, int *status)
1825 {
1826 	struct urb_priv	*urb_priv;
1827 	struct urb *urb = NULL;
1828 
1829 	/* Clean up the endpoint's TD list */
1830 	urb = td->urb;
1831 	urb_priv = urb->hcpriv;
1832 
1833 	/* if a bounce buffer was used to align this td then unmap it */
1834 	xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
1835 
1836 	/* Do one last check of the actual transfer length.
1837 	 * If the host controller said we transferred more data than the buffer
1838 	 * length, urb->actual_length will be a very big number (since it's
1839 	 * unsigned).  Play it safe and say we didn't transfer anything.
1840 	 */
1841 	if (urb->actual_length > urb->transfer_buffer_length) {
1842 		xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
1843 			  urb->transfer_buffer_length, urb->actual_length);
1844 		urb->actual_length = 0;
1845 		*status = 0;
1846 	}
1847 	list_del_init(&td->td_list);
1848 	/* Was this TD slated to be cancelled but completed anyway? */
1849 	if (!list_empty(&td->cancelled_td_list))
1850 		list_del_init(&td->cancelled_td_list);
1851 
1852 	inc_td_cnt(urb);
1853 	/* Giveback the urb when all the tds are completed */
1854 	if (last_td_in_urb(td)) {
1855 		if ((urb->actual_length != urb->transfer_buffer_length &&
1856 		     (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
1857 		    (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
1858 			xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
1859 				 urb, urb->actual_length,
1860 				 urb->transfer_buffer_length, *status);
1861 
1862 		/* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
1863 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
1864 			*status = 0;
1865 		xhci_giveback_urb_in_irq(xhci, td, *status);
1866 	}
1867 
1868 	return 0;
1869 }
1870 
1871 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1872 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
1873 	struct xhci_virt_ep *ep, int *status, bool skip)
1874 {
1875 	struct xhci_virt_device *xdev;
1876 	struct xhci_ep_ctx *ep_ctx;
1877 	struct xhci_ring *ep_ring;
1878 	unsigned int slot_id;
1879 	u32 trb_comp_code;
1880 	int ep_index;
1881 
1882 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1883 	xdev = xhci->devs[slot_id];
1884 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1885 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1886 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1887 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1888 
1889 	if (skip)
1890 		goto td_cleanup;
1891 
1892 	if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
1893 			trb_comp_code == COMP_STOPPED ||
1894 			trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
1895 		/* The Endpoint Stop Command completion will take care of any
1896 		 * stopped TDs.  A stopped TD may be restarted, so don't update
1897 		 * the ring dequeue pointer or take this TD off any lists yet.
1898 		 */
1899 		ep->stopped_td = td;
1900 		return 0;
1901 	}
1902 	if (trb_comp_code == COMP_STALL_ERROR ||
1903 		xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1904 						trb_comp_code)) {
1905 		/* Issue a reset endpoint command to clear the host side
1906 		 * halt, followed by a set dequeue command to move the
1907 		 * dequeue pointer past the TD.
1908 		 * The class driver clears the device side halt later.
1909 		 */
1910 		xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1911 					ep_ring->stream_id, td, ep_trb);
1912 	} else {
1913 		/* Update ring dequeue pointer */
1914 		while (ep_ring->dequeue != td->last_trb)
1915 			inc_deq(xhci, ep_ring);
1916 		inc_deq(xhci, ep_ring);
1917 	}
1918 
1919 td_cleanup:
1920 	return xhci_td_cleanup(xhci, td, ep_ring, status);
1921 }
1922 
1923 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
1924 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
1925 			   union xhci_trb *stop_trb)
1926 {
1927 	u32 sum;
1928 	union xhci_trb *trb = ring->dequeue;
1929 	struct xhci_segment *seg = ring->deq_seg;
1930 
1931 	for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
1932 		if (!trb_is_noop(trb) && !trb_is_link(trb))
1933 			sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
1934 	}
1935 	return sum;
1936 }
1937 
1938 /*
1939  * Process control tds, update urb status and actual_length.
1940  */
1941 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1942 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
1943 	struct xhci_virt_ep *ep, int *status)
1944 {
1945 	struct xhci_virt_device *xdev;
1946 	struct xhci_ring *ep_ring;
1947 	unsigned int slot_id;
1948 	int ep_index;
1949 	struct xhci_ep_ctx *ep_ctx;
1950 	u32 trb_comp_code;
1951 	u32 remaining, requested;
1952 	u32 trb_type;
1953 
1954 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
1955 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1956 	xdev = xhci->devs[slot_id];
1957 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1958 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1959 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1960 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1961 	requested = td->urb->transfer_buffer_length;
1962 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1963 
1964 	switch (trb_comp_code) {
1965 	case COMP_SUCCESS:
1966 		if (trb_type != TRB_STATUS) {
1967 			xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
1968 				  (trb_type == TRB_DATA) ? "data" : "setup");
1969 			*status = -ESHUTDOWN;
1970 			break;
1971 		}
1972 		*status = 0;
1973 		break;
1974 	case COMP_SHORT_PACKET:
1975 		*status = 0;
1976 		break;
1977 	case COMP_STOPPED_SHORT_PACKET:
1978 		if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
1979 			td->urb->actual_length = remaining;
1980 		else
1981 			xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
1982 		goto finish_td;
1983 	case COMP_STOPPED:
1984 		switch (trb_type) {
1985 		case TRB_SETUP:
1986 			td->urb->actual_length = 0;
1987 			goto finish_td;
1988 		case TRB_DATA:
1989 		case TRB_NORMAL:
1990 			td->urb->actual_length = requested - remaining;
1991 			goto finish_td;
1992 		case TRB_STATUS:
1993 			td->urb->actual_length = requested;
1994 			goto finish_td;
1995 		default:
1996 			xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
1997 				  trb_type);
1998 			goto finish_td;
1999 		}
2000 	case COMP_STOPPED_LENGTH_INVALID:
2001 		goto finish_td;
2002 	default:
2003 		if (!xhci_requires_manual_halt_cleanup(xhci,
2004 						       ep_ctx, trb_comp_code))
2005 			break;
2006 		xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
2007 			 trb_comp_code, ep_index);
2008 		/* else fall through */
2009 	case COMP_STALL_ERROR:
2010 		/* Did we transfer part of the data (middle) phase? */
2011 		if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2012 			td->urb->actual_length = requested - remaining;
2013 		else if (!td->urb_length_set)
2014 			td->urb->actual_length = 0;
2015 		goto finish_td;
2016 	}
2017 
2018 	/* stopped at setup stage, no data transferred */
2019 	if (trb_type == TRB_SETUP)
2020 		goto finish_td;
2021 
2022 	/*
2023 	 * if on data stage then update the actual_length of the URB and flag it
2024 	 * as set, so it won't be overwritten in the event for the last TRB.
2025 	 */
2026 	if (trb_type == TRB_DATA ||
2027 		trb_type == TRB_NORMAL) {
2028 		td->urb_length_set = true;
2029 		td->urb->actual_length = requested - remaining;
2030 		xhci_dbg(xhci, "Waiting for status stage event\n");
2031 		return 0;
2032 	}
2033 
2034 	/* at status stage */
2035 	if (!td->urb_length_set)
2036 		td->urb->actual_length = requested;
2037 
2038 finish_td:
2039 	return finish_td(xhci, td, ep_trb, event, ep, status, false);
2040 }
2041 
2042 /*
2043  * Process isochronous tds, update urb packet status and actual_length.
2044  */
2045 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2046 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2047 	struct xhci_virt_ep *ep, int *status)
2048 {
2049 	struct xhci_ring *ep_ring;
2050 	struct urb_priv *urb_priv;
2051 	int idx;
2052 	struct usb_iso_packet_descriptor *frame;
2053 	u32 trb_comp_code;
2054 	bool sum_trbs_for_length = false;
2055 	u32 remaining, requested, ep_trb_len;
2056 	int short_framestatus;
2057 
2058 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2059 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2060 	urb_priv = td->urb->hcpriv;
2061 	idx = urb_priv->num_tds_done;
2062 	frame = &td->urb->iso_frame_desc[idx];
2063 	requested = frame->length;
2064 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2065 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2066 	short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2067 		-EREMOTEIO : 0;
2068 
2069 	/* handle completion code */
2070 	switch (trb_comp_code) {
2071 	case COMP_SUCCESS:
2072 		if (remaining) {
2073 			frame->status = short_framestatus;
2074 			if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2075 				sum_trbs_for_length = true;
2076 			break;
2077 		}
2078 		frame->status = 0;
2079 		break;
2080 	case COMP_SHORT_PACKET:
2081 		frame->status = short_framestatus;
2082 		sum_trbs_for_length = true;
2083 		break;
2084 	case COMP_BANDWIDTH_OVERRUN_ERROR:
2085 		frame->status = -ECOMM;
2086 		break;
2087 	case COMP_ISOCH_BUFFER_OVERRUN:
2088 	case COMP_BABBLE_DETECTED_ERROR:
2089 		frame->status = -EOVERFLOW;
2090 		break;
2091 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2092 	case COMP_STALL_ERROR:
2093 		frame->status = -EPROTO;
2094 		break;
2095 	case COMP_USB_TRANSACTION_ERROR:
2096 		frame->status = -EPROTO;
2097 		if (ep_trb != td->last_trb)
2098 			return 0;
2099 		break;
2100 	case COMP_STOPPED:
2101 		sum_trbs_for_length = true;
2102 		break;
2103 	case COMP_STOPPED_SHORT_PACKET:
2104 		/* field normally containing residue now contains tranferred */
2105 		frame->status = short_framestatus;
2106 		requested = remaining;
2107 		break;
2108 	case COMP_STOPPED_LENGTH_INVALID:
2109 		requested = 0;
2110 		remaining = 0;
2111 		break;
2112 	default:
2113 		sum_trbs_for_length = true;
2114 		frame->status = -1;
2115 		break;
2116 	}
2117 
2118 	if (sum_trbs_for_length)
2119 		frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
2120 			ep_trb_len - remaining;
2121 	else
2122 		frame->actual_length = requested;
2123 
2124 	td->urb->actual_length += frame->actual_length;
2125 
2126 	return finish_td(xhci, td, ep_trb, event, ep, status, false);
2127 }
2128 
2129 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2130 			struct xhci_transfer_event *event,
2131 			struct xhci_virt_ep *ep, int *status)
2132 {
2133 	struct xhci_ring *ep_ring;
2134 	struct urb_priv *urb_priv;
2135 	struct usb_iso_packet_descriptor *frame;
2136 	int idx;
2137 
2138 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2139 	urb_priv = td->urb->hcpriv;
2140 	idx = urb_priv->num_tds_done;
2141 	frame = &td->urb->iso_frame_desc[idx];
2142 
2143 	/* The transfer is partly done. */
2144 	frame->status = -EXDEV;
2145 
2146 	/* calc actual length */
2147 	frame->actual_length = 0;
2148 
2149 	/* Update ring dequeue pointer */
2150 	while (ep_ring->dequeue != td->last_trb)
2151 		inc_deq(xhci, ep_ring);
2152 	inc_deq(xhci, ep_ring);
2153 
2154 	return finish_td(xhci, td, NULL, event, ep, status, true);
2155 }
2156 
2157 /*
2158  * Process bulk and interrupt tds, update urb status and actual_length.
2159  */
2160 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2161 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2162 	struct xhci_virt_ep *ep, int *status)
2163 {
2164 	struct xhci_ring *ep_ring;
2165 	u32 trb_comp_code;
2166 	u32 remaining, requested, ep_trb_len;
2167 
2168 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2169 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2170 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2171 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2172 	requested = td->urb->transfer_buffer_length;
2173 
2174 	switch (trb_comp_code) {
2175 	case COMP_SUCCESS:
2176 		/* handle success with untransferred data as short packet */
2177 		if (ep_trb != td->last_trb || remaining) {
2178 			xhci_warn(xhci, "WARN Successful completion on short TX\n");
2179 			xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2180 				 td->urb->ep->desc.bEndpointAddress,
2181 				 requested, remaining);
2182 		}
2183 		*status = 0;
2184 		break;
2185 	case COMP_SHORT_PACKET:
2186 		xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2187 			 td->urb->ep->desc.bEndpointAddress,
2188 			 requested, remaining);
2189 		*status = 0;
2190 		break;
2191 	case COMP_STOPPED_SHORT_PACKET:
2192 		td->urb->actual_length = remaining;
2193 		goto finish_td;
2194 	case COMP_STOPPED_LENGTH_INVALID:
2195 		/* stopped on ep trb with invalid length, exclude it */
2196 		ep_trb_len	= 0;
2197 		remaining	= 0;
2198 		break;
2199 	default:
2200 		/* do nothing */
2201 		break;
2202 	}
2203 
2204 	if (ep_trb == td->last_trb)
2205 		td->urb->actual_length = requested - remaining;
2206 	else
2207 		td->urb->actual_length =
2208 			sum_trb_lengths(xhci, ep_ring, ep_trb) +
2209 			ep_trb_len - remaining;
2210 finish_td:
2211 	if (remaining > requested) {
2212 		xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
2213 			  remaining);
2214 		td->urb->actual_length = 0;
2215 	}
2216 	return finish_td(xhci, td, ep_trb, event, ep, status, false);
2217 }
2218 
2219 /*
2220  * If this function returns an error condition, it means it got a Transfer
2221  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2222  * At this point, the host controller is probably hosed and should be reset.
2223  */
2224 static int handle_tx_event(struct xhci_hcd *xhci,
2225 		struct xhci_transfer_event *event)
2226 {
2227 	struct xhci_virt_device *xdev;
2228 	struct xhci_virt_ep *ep;
2229 	struct xhci_ring *ep_ring;
2230 	unsigned int slot_id;
2231 	int ep_index;
2232 	struct xhci_td *td = NULL;
2233 	dma_addr_t ep_trb_dma;
2234 	struct xhci_segment *ep_seg;
2235 	union xhci_trb *ep_trb;
2236 	int status = -EINPROGRESS;
2237 	struct xhci_ep_ctx *ep_ctx;
2238 	struct list_head *tmp;
2239 	u32 trb_comp_code;
2240 	int td_num = 0;
2241 	bool handling_skipped_tds = false;
2242 
2243 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2244 	xdev = xhci->devs[slot_id];
2245 	if (!xdev) {
2246 		xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2247 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2248 			 (unsigned long long) xhci_trb_virt_to_dma(
2249 				 xhci->event_ring->deq_seg,
2250 				 xhci->event_ring->dequeue),
2251 			 lower_32_bits(le64_to_cpu(event->buffer)),
2252 			 upper_32_bits(le64_to_cpu(event->buffer)),
2253 			 le32_to_cpu(event->transfer_len),
2254 			 le32_to_cpu(event->flags));
2255 		xhci_dbg(xhci, "Event ring:\n");
2256 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2257 		return -ENODEV;
2258 	}
2259 
2260 	/* Endpoint ID is 1 based, our index is zero based */
2261 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2262 	ep = &xdev->eps[ep_index];
2263 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2264 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2265 	if (!ep_ring ||  GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
2266 		xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2267 				"or incorrect stream ring\n");
2268 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2269 			 (unsigned long long) xhci_trb_virt_to_dma(
2270 				 xhci->event_ring->deq_seg,
2271 				 xhci->event_ring->dequeue),
2272 			 lower_32_bits(le64_to_cpu(event->buffer)),
2273 			 upper_32_bits(le64_to_cpu(event->buffer)),
2274 			 le32_to_cpu(event->transfer_len),
2275 			 le32_to_cpu(event->flags));
2276 		xhci_dbg(xhci, "Event ring:\n");
2277 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2278 		return -ENODEV;
2279 	}
2280 
2281 	/* Count current td numbers if ep->skip is set */
2282 	if (ep->skip) {
2283 		list_for_each(tmp, &ep_ring->td_list)
2284 			td_num++;
2285 	}
2286 
2287 	ep_trb_dma = le64_to_cpu(event->buffer);
2288 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2289 	/* Look for common error cases */
2290 	switch (trb_comp_code) {
2291 	/* Skip codes that require special handling depending on
2292 	 * transfer type
2293 	 */
2294 	case COMP_SUCCESS:
2295 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2296 			break;
2297 		if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2298 			trb_comp_code = COMP_SHORT_PACKET;
2299 		else
2300 			xhci_warn_ratelimited(xhci,
2301 					"WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2302 	case COMP_SHORT_PACKET:
2303 		break;
2304 	case COMP_STOPPED:
2305 		xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2306 		break;
2307 	case COMP_STOPPED_LENGTH_INVALID:
2308 		xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2309 		break;
2310 	case COMP_STOPPED_SHORT_PACKET:
2311 		xhci_dbg(xhci, "Stopped with short packet transfer detected\n");
2312 		break;
2313 	case COMP_STALL_ERROR:
2314 		xhci_dbg(xhci, "Stalled endpoint\n");
2315 		ep->ep_state |= EP_HALTED;
2316 		status = -EPIPE;
2317 		break;
2318 	case COMP_TRB_ERROR:
2319 		xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2320 		status = -EILSEQ;
2321 		break;
2322 	case COMP_SPLIT_TRANSACTION_ERROR:
2323 	case COMP_USB_TRANSACTION_ERROR:
2324 		xhci_dbg(xhci, "Transfer error on endpoint\n");
2325 		status = -EPROTO;
2326 		break;
2327 	case COMP_BABBLE_DETECTED_ERROR:
2328 		xhci_dbg(xhci, "Babble error on endpoint\n");
2329 		status = -EOVERFLOW;
2330 		break;
2331 	case COMP_DATA_BUFFER_ERROR:
2332 		xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2333 		status = -ENOSR;
2334 		break;
2335 	case COMP_BANDWIDTH_OVERRUN_ERROR:
2336 		xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2337 		break;
2338 	case COMP_ISOCH_BUFFER_OVERRUN:
2339 		xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2340 		break;
2341 	case COMP_RING_UNDERRUN:
2342 		/*
2343 		 * When the Isoch ring is empty, the xHC will generate
2344 		 * a Ring Overrun Event for IN Isoch endpoint or Ring
2345 		 * Underrun Event for OUT Isoch endpoint.
2346 		 */
2347 		xhci_dbg(xhci, "underrun event on endpoint\n");
2348 		if (!list_empty(&ep_ring->td_list))
2349 			xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2350 					"still with TDs queued?\n",
2351 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2352 				 ep_index);
2353 		goto cleanup;
2354 	case COMP_RING_OVERRUN:
2355 		xhci_dbg(xhci, "overrun event on endpoint\n");
2356 		if (!list_empty(&ep_ring->td_list))
2357 			xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2358 					"still with TDs queued?\n",
2359 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2360 				 ep_index);
2361 		goto cleanup;
2362 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2363 		xhci_warn(xhci, "WARN: detect an incompatible device");
2364 		status = -EPROTO;
2365 		break;
2366 	case COMP_MISSED_SERVICE_ERROR:
2367 		/*
2368 		 * When encounter missed service error, one or more isoc tds
2369 		 * may be missed by xHC.
2370 		 * Set skip flag of the ep_ring; Complete the missed tds as
2371 		 * short transfer when process the ep_ring next time.
2372 		 */
2373 		ep->skip = true;
2374 		xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2375 		goto cleanup;
2376 	case COMP_NO_PING_RESPONSE_ERROR:
2377 		ep->skip = true;
2378 		xhci_dbg(xhci, "No Ping response error, Skip one Isoc TD\n");
2379 		goto cleanup;
2380 	default:
2381 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2382 			status = 0;
2383 			break;
2384 		}
2385 		xhci_warn(xhci, "ERROR Unknown event condition %u, HC probably busted\n",
2386 			  trb_comp_code);
2387 		goto cleanup;
2388 	}
2389 
2390 	do {
2391 		/* This TRB should be in the TD at the head of this ring's
2392 		 * TD list.
2393 		 */
2394 		if (list_empty(&ep_ring->td_list)) {
2395 			/*
2396 			 * A stopped endpoint may generate an extra completion
2397 			 * event if the device was suspended.  Don't print
2398 			 * warnings.
2399 			 */
2400 			if (!(trb_comp_code == COMP_STOPPED ||
2401 				trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2402 				xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2403 						TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2404 						ep_index);
2405 				xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2406 						(le32_to_cpu(event->flags) &
2407 						 TRB_TYPE_BITMASK)>>10);
2408 				xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2409 			}
2410 			if (ep->skip) {
2411 				ep->skip = false;
2412 				xhci_dbg(xhci, "td_list is empty while skip "
2413 						"flag set. Clear skip flag.\n");
2414 			}
2415 			goto cleanup;
2416 		}
2417 
2418 		/* We've skipped all the TDs on the ep ring when ep->skip set */
2419 		if (ep->skip && td_num == 0) {
2420 			ep->skip = false;
2421 			xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2422 						"Clear skip flag.\n");
2423 			goto cleanup;
2424 		}
2425 
2426 		td = list_first_entry(&ep_ring->td_list, struct xhci_td,
2427 				      td_list);
2428 		if (ep->skip)
2429 			td_num--;
2430 
2431 		/* Is this a TRB in the currently executing TD? */
2432 		ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2433 				td->last_trb, ep_trb_dma, false);
2434 
2435 		/*
2436 		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2437 		 * is not in the current TD pointed by ep_ring->dequeue because
2438 		 * that the hardware dequeue pointer still at the previous TRB
2439 		 * of the current TD. The previous TRB maybe a Link TD or the
2440 		 * last TRB of the previous TD. The command completion handle
2441 		 * will take care the rest.
2442 		 */
2443 		if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
2444 			   trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2445 			goto cleanup;
2446 		}
2447 
2448 		if (!ep_seg) {
2449 			if (!ep->skip ||
2450 			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2451 				/* Some host controllers give a spurious
2452 				 * successful event after a short transfer.
2453 				 * Ignore it.
2454 				 */
2455 				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2456 						ep_ring->last_td_was_short) {
2457 					ep_ring->last_td_was_short = false;
2458 					goto cleanup;
2459 				}
2460 				/* HC is busted, give up! */
2461 				xhci_err(xhci,
2462 					"ERROR Transfer event TRB DMA ptr not "
2463 					"part of current TD ep_index %d "
2464 					"comp_code %u\n", ep_index,
2465 					trb_comp_code);
2466 				trb_in_td(xhci, ep_ring->deq_seg,
2467 					  ep_ring->dequeue, td->last_trb,
2468 					  ep_trb_dma, true);
2469 				return -ESHUTDOWN;
2470 			}
2471 
2472 			skip_isoc_td(xhci, td, event, ep, &status);
2473 			goto cleanup;
2474 		}
2475 		if (trb_comp_code == COMP_SHORT_PACKET)
2476 			ep_ring->last_td_was_short = true;
2477 		else
2478 			ep_ring->last_td_was_short = false;
2479 
2480 		if (ep->skip) {
2481 			xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2482 			ep->skip = false;
2483 		}
2484 
2485 		ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
2486 						sizeof(*ep_trb)];
2487 
2488 		trace_xhci_handle_transfer(ep_ring,
2489 				(struct xhci_generic_trb *) ep_trb);
2490 
2491 		/*
2492 		 * No-op TRB should not trigger interrupts.
2493 		 * If ep_trb is a no-op TRB, it means the
2494 		 * corresponding TD has been cancelled. Just ignore
2495 		 * the TD.
2496 		 */
2497 		if (trb_is_noop(ep_trb)) {
2498 			xhci_dbg(xhci, "ep_trb is a no-op TRB. Skip it\n");
2499 			goto cleanup;
2500 		}
2501 
2502 		/* update the urb's actual_length and give back to the core */
2503 		if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2504 			process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
2505 		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2506 			process_isoc_td(xhci, td, ep_trb, event, ep, &status);
2507 		else
2508 			process_bulk_intr_td(xhci, td, ep_trb, event, ep,
2509 					     &status);
2510 cleanup:
2511 		handling_skipped_tds = ep->skip &&
2512 			trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
2513 			trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
2514 
2515 		/*
2516 		 * Do not update event ring dequeue pointer if we're in a loop
2517 		 * processing missed tds.
2518 		 */
2519 		if (!handling_skipped_tds)
2520 			inc_deq(xhci, xhci->event_ring);
2521 
2522 	/*
2523 	 * If ep->skip is set, it means there are missed tds on the
2524 	 * endpoint ring need to take care of.
2525 	 * Process them as short transfer until reach the td pointed by
2526 	 * the event.
2527 	 */
2528 	} while (handling_skipped_tds);
2529 
2530 	return 0;
2531 }
2532 
2533 /*
2534  * This function handles all OS-owned events on the event ring.  It may drop
2535  * xhci->lock between event processing (e.g. to pass up port status changes).
2536  * Returns >0 for "possibly more events to process" (caller should call again),
2537  * otherwise 0 if done.  In future, <0 returns should indicate error code.
2538  */
2539 static int xhci_handle_event(struct xhci_hcd *xhci)
2540 {
2541 	union xhci_trb *event;
2542 	int update_ptrs = 1;
2543 	int ret;
2544 
2545 	/* Event ring hasn't been allocated yet. */
2546 	if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2547 		xhci_err(xhci, "ERROR event ring not ready\n");
2548 		return -ENOMEM;
2549 	}
2550 
2551 	event = xhci->event_ring->dequeue;
2552 	/* Does the HC or OS own the TRB? */
2553 	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2554 	    xhci->event_ring->cycle_state)
2555 		return 0;
2556 
2557 	trace_xhci_handle_event(xhci->event_ring, &event->generic);
2558 
2559 	/*
2560 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2561 	 * speculative reads of the event's flags/data below.
2562 	 */
2563 	rmb();
2564 	/* FIXME: Handle more event types. */
2565 	switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
2566 	case TRB_TYPE(TRB_COMPLETION):
2567 		handle_cmd_completion(xhci, &event->event_cmd);
2568 		break;
2569 	case TRB_TYPE(TRB_PORT_STATUS):
2570 		handle_port_status(xhci, event);
2571 		update_ptrs = 0;
2572 		break;
2573 	case TRB_TYPE(TRB_TRANSFER):
2574 		ret = handle_tx_event(xhci, &event->trans_event);
2575 		if (ret >= 0)
2576 			update_ptrs = 0;
2577 		break;
2578 	case TRB_TYPE(TRB_DEV_NOTE):
2579 		handle_device_notification(xhci, event);
2580 		break;
2581 	default:
2582 		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2583 		    TRB_TYPE(48))
2584 			handle_vendor_event(xhci, event);
2585 		else
2586 			xhci_warn(xhci, "ERROR unknown event type %d\n",
2587 				  TRB_FIELD_TO_TYPE(
2588 				  le32_to_cpu(event->event_cmd.flags)));
2589 	}
2590 	/* Any of the above functions may drop and re-acquire the lock, so check
2591 	 * to make sure a watchdog timer didn't mark the host as non-responsive.
2592 	 */
2593 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2594 		xhci_dbg(xhci, "xHCI host dying, returning from "
2595 				"event handler.\n");
2596 		return 0;
2597 	}
2598 
2599 	if (update_ptrs)
2600 		/* Update SW event ring dequeue pointer */
2601 		inc_deq(xhci, xhci->event_ring);
2602 
2603 	/* Are there more items on the event ring?  Caller will call us again to
2604 	 * check.
2605 	 */
2606 	return 1;
2607 }
2608 
2609 /*
2610  * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2611  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
2612  * indicators of an event TRB error, but we check the status *first* to be safe.
2613  */
2614 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2615 {
2616 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2617 	union xhci_trb *event_ring_deq;
2618 	irqreturn_t ret = IRQ_NONE;
2619 	dma_addr_t deq;
2620 	u64 temp_64;
2621 	u32 status;
2622 
2623 	spin_lock(&xhci->lock);
2624 	/* Check if the xHC generated the interrupt, or the irq is shared */
2625 	status = readl(&xhci->op_regs->status);
2626 	if (status == 0xffffffff) {
2627 		ret = IRQ_HANDLED;
2628 		goto out;
2629 	}
2630 
2631 	if (!(status & STS_EINT))
2632 		goto out;
2633 
2634 	if (status & STS_FATAL) {
2635 		xhci_warn(xhci, "WARNING: Host System Error\n");
2636 		xhci_halt(xhci);
2637 		ret = IRQ_HANDLED;
2638 		goto out;
2639 	}
2640 
2641 	/*
2642 	 * Clear the op reg interrupt status first,
2643 	 * so we can receive interrupts from other MSI-X interrupters.
2644 	 * Write 1 to clear the interrupt status.
2645 	 */
2646 	status |= STS_EINT;
2647 	writel(status, &xhci->op_regs->status);
2648 	/* FIXME when MSI-X is supported and there are multiple vectors */
2649 	/* Clear the MSI-X event interrupt status */
2650 
2651 	if (hcd->irq) {
2652 		u32 irq_pending;
2653 		/* Acknowledge the PCI interrupt */
2654 		irq_pending = readl(&xhci->ir_set->irq_pending);
2655 		irq_pending |= IMAN_IP;
2656 		writel(irq_pending, &xhci->ir_set->irq_pending);
2657 	}
2658 
2659 	if (xhci->xhc_state & XHCI_STATE_DYING ||
2660 	    xhci->xhc_state & XHCI_STATE_HALTED) {
2661 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2662 				"Shouldn't IRQs be disabled?\n");
2663 		/* Clear the event handler busy flag (RW1C);
2664 		 * the event ring should be empty.
2665 		 */
2666 		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2667 		xhci_write_64(xhci, temp_64 | ERST_EHB,
2668 				&xhci->ir_set->erst_dequeue);
2669 		ret = IRQ_HANDLED;
2670 		goto out;
2671 	}
2672 
2673 	event_ring_deq = xhci->event_ring->dequeue;
2674 	/* FIXME this should be a delayed service routine
2675 	 * that clears the EHB.
2676 	 */
2677 	while (xhci_handle_event(xhci) > 0) {}
2678 
2679 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2680 	/* If necessary, update the HW's version of the event ring deq ptr. */
2681 	if (event_ring_deq != xhci->event_ring->dequeue) {
2682 		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2683 				xhci->event_ring->dequeue);
2684 		if (deq == 0)
2685 			xhci_warn(xhci, "WARN something wrong with SW event "
2686 					"ring dequeue ptr.\n");
2687 		/* Update HC event ring dequeue pointer */
2688 		temp_64 &= ERST_PTR_MASK;
2689 		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2690 	}
2691 
2692 	/* Clear the event handler busy flag (RW1C); event ring is empty. */
2693 	temp_64 |= ERST_EHB;
2694 	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2695 	ret = IRQ_HANDLED;
2696 
2697 out:
2698 	spin_unlock(&xhci->lock);
2699 
2700 	return ret;
2701 }
2702 
2703 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2704 {
2705 	return xhci_irq(hcd);
2706 }
2707 
2708 /****		Endpoint Ring Operations	****/
2709 
2710 /*
2711  * Generic function for queueing a TRB on a ring.
2712  * The caller must have checked to make sure there's room on the ring.
2713  *
2714  * @more_trbs_coming:	Will you enqueue more TRBs before calling
2715  *			prepare_transfer()?
2716  */
2717 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2718 		bool more_trbs_coming,
2719 		u32 field1, u32 field2, u32 field3, u32 field4)
2720 {
2721 	struct xhci_generic_trb *trb;
2722 
2723 	trb = &ring->enqueue->generic;
2724 	trb->field[0] = cpu_to_le32(field1);
2725 	trb->field[1] = cpu_to_le32(field2);
2726 	trb->field[2] = cpu_to_le32(field3);
2727 	trb->field[3] = cpu_to_le32(field4);
2728 
2729 	trace_xhci_queue_trb(ring, trb);
2730 
2731 	inc_enq(xhci, ring, more_trbs_coming);
2732 }
2733 
2734 /*
2735  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2736  * FIXME allocate segments if the ring is full.
2737  */
2738 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2739 		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2740 {
2741 	unsigned int num_trbs_needed;
2742 
2743 	/* Make sure the endpoint has been added to xHC schedule */
2744 	switch (ep_state) {
2745 	case EP_STATE_DISABLED:
2746 		/*
2747 		 * USB core changed config/interfaces without notifying us,
2748 		 * or hardware is reporting the wrong state.
2749 		 */
2750 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2751 		return -ENOENT;
2752 	case EP_STATE_ERROR:
2753 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2754 		/* FIXME event handling code for error needs to clear it */
2755 		/* XXX not sure if this should be -ENOENT or not */
2756 		return -EINVAL;
2757 	case EP_STATE_HALTED:
2758 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2759 	case EP_STATE_STOPPED:
2760 	case EP_STATE_RUNNING:
2761 		break;
2762 	default:
2763 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2764 		/*
2765 		 * FIXME issue Configure Endpoint command to try to get the HC
2766 		 * back into a known state.
2767 		 */
2768 		return -EINVAL;
2769 	}
2770 
2771 	while (1) {
2772 		if (room_on_ring(xhci, ep_ring, num_trbs))
2773 			break;
2774 
2775 		if (ep_ring == xhci->cmd_ring) {
2776 			xhci_err(xhci, "Do not support expand command ring\n");
2777 			return -ENOMEM;
2778 		}
2779 
2780 		xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2781 				"ERROR no room on ep ring, try ring expansion");
2782 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2783 		if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2784 					mem_flags)) {
2785 			xhci_err(xhci, "Ring expansion failed\n");
2786 			return -ENOMEM;
2787 		}
2788 	}
2789 
2790 	while (trb_is_link(ep_ring->enqueue)) {
2791 		/* If we're not dealing with 0.95 hardware or isoc rings
2792 		 * on AMD 0.96 host, clear the chain bit.
2793 		 */
2794 		if (!xhci_link_trb_quirk(xhci) &&
2795 		    !(ep_ring->type == TYPE_ISOC &&
2796 		      (xhci->quirks & XHCI_AMD_0x96_HOST)))
2797 			ep_ring->enqueue->link.control &=
2798 				cpu_to_le32(~TRB_CHAIN);
2799 		else
2800 			ep_ring->enqueue->link.control |=
2801 				cpu_to_le32(TRB_CHAIN);
2802 
2803 		wmb();
2804 		ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
2805 
2806 		/* Toggle the cycle bit after the last ring segment. */
2807 		if (link_trb_toggles_cycle(ep_ring->enqueue))
2808 			ep_ring->cycle_state ^= 1;
2809 
2810 		ep_ring->enq_seg = ep_ring->enq_seg->next;
2811 		ep_ring->enqueue = ep_ring->enq_seg->trbs;
2812 	}
2813 	return 0;
2814 }
2815 
2816 static int prepare_transfer(struct xhci_hcd *xhci,
2817 		struct xhci_virt_device *xdev,
2818 		unsigned int ep_index,
2819 		unsigned int stream_id,
2820 		unsigned int num_trbs,
2821 		struct urb *urb,
2822 		unsigned int td_index,
2823 		gfp_t mem_flags)
2824 {
2825 	int ret;
2826 	struct urb_priv *urb_priv;
2827 	struct xhci_td	*td;
2828 	struct xhci_ring *ep_ring;
2829 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2830 
2831 	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2832 	if (!ep_ring) {
2833 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2834 				stream_id);
2835 		return -EINVAL;
2836 	}
2837 
2838 	ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
2839 			   num_trbs, mem_flags);
2840 	if (ret)
2841 		return ret;
2842 
2843 	urb_priv = urb->hcpriv;
2844 	td = &urb_priv->td[td_index];
2845 
2846 	INIT_LIST_HEAD(&td->td_list);
2847 	INIT_LIST_HEAD(&td->cancelled_td_list);
2848 
2849 	if (td_index == 0) {
2850 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2851 		if (unlikely(ret))
2852 			return ret;
2853 	}
2854 
2855 	td->urb = urb;
2856 	/* Add this TD to the tail of the endpoint ring's TD list */
2857 	list_add_tail(&td->td_list, &ep_ring->td_list);
2858 	td->start_seg = ep_ring->enq_seg;
2859 	td->first_trb = ep_ring->enqueue;
2860 
2861 	return 0;
2862 }
2863 
2864 static unsigned int count_trbs(u64 addr, u64 len)
2865 {
2866 	unsigned int num_trbs;
2867 
2868 	num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
2869 			TRB_MAX_BUFF_SIZE);
2870 	if (num_trbs == 0)
2871 		num_trbs++;
2872 
2873 	return num_trbs;
2874 }
2875 
2876 static inline unsigned int count_trbs_needed(struct urb *urb)
2877 {
2878 	return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
2879 }
2880 
2881 static unsigned int count_sg_trbs_needed(struct urb *urb)
2882 {
2883 	struct scatterlist *sg;
2884 	unsigned int i, len, full_len, num_trbs = 0;
2885 
2886 	full_len = urb->transfer_buffer_length;
2887 
2888 	for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
2889 		len = sg_dma_len(sg);
2890 		num_trbs += count_trbs(sg_dma_address(sg), len);
2891 		len = min_t(unsigned int, len, full_len);
2892 		full_len -= len;
2893 		if (full_len == 0)
2894 			break;
2895 	}
2896 
2897 	return num_trbs;
2898 }
2899 
2900 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
2901 {
2902 	u64 addr, len;
2903 
2904 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
2905 	len = urb->iso_frame_desc[i].length;
2906 
2907 	return count_trbs(addr, len);
2908 }
2909 
2910 static void check_trb_math(struct urb *urb, int running_total)
2911 {
2912 	if (unlikely(running_total != urb->transfer_buffer_length))
2913 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2914 				"queued %#x (%d), asked for %#x (%d)\n",
2915 				__func__,
2916 				urb->ep->desc.bEndpointAddress,
2917 				running_total, running_total,
2918 				urb->transfer_buffer_length,
2919 				urb->transfer_buffer_length);
2920 }
2921 
2922 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2923 		unsigned int ep_index, unsigned int stream_id, int start_cycle,
2924 		struct xhci_generic_trb *start_trb)
2925 {
2926 	/*
2927 	 * Pass all the TRBs to the hardware at once and make sure this write
2928 	 * isn't reordered.
2929 	 */
2930 	wmb();
2931 	if (start_cycle)
2932 		start_trb->field[3] |= cpu_to_le32(start_cycle);
2933 	else
2934 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2935 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2936 }
2937 
2938 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
2939 						struct xhci_ep_ctx *ep_ctx)
2940 {
2941 	int xhci_interval;
2942 	int ep_interval;
2943 
2944 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2945 	ep_interval = urb->interval;
2946 
2947 	/* Convert to microframes */
2948 	if (urb->dev->speed == USB_SPEED_LOW ||
2949 			urb->dev->speed == USB_SPEED_FULL)
2950 		ep_interval *= 8;
2951 
2952 	/* FIXME change this to a warning and a suggestion to use the new API
2953 	 * to set the polling interval (once the API is added).
2954 	 */
2955 	if (xhci_interval != ep_interval) {
2956 		dev_dbg_ratelimited(&urb->dev->dev,
2957 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
2958 				ep_interval, ep_interval == 1 ? "" : "s",
2959 				xhci_interval, xhci_interval == 1 ? "" : "s");
2960 		urb->interval = xhci_interval;
2961 		/* Convert back to frames for LS/FS devices */
2962 		if (urb->dev->speed == USB_SPEED_LOW ||
2963 				urb->dev->speed == USB_SPEED_FULL)
2964 			urb->interval /= 8;
2965 	}
2966 }
2967 
2968 /*
2969  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt
2970  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD
2971  * (comprised of sg list entries) can take several service intervals to
2972  * transmit.
2973  */
2974 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2975 		struct urb *urb, int slot_id, unsigned int ep_index)
2976 {
2977 	struct xhci_ep_ctx *ep_ctx;
2978 
2979 	ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
2980 	check_interval(xhci, urb, ep_ctx);
2981 
2982 	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
2983 }
2984 
2985 /*
2986  * For xHCI 1.0 host controllers, TD size is the number of max packet sized
2987  * packets remaining in the TD (*not* including this TRB).
2988  *
2989  * Total TD packet count = total_packet_count =
2990  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
2991  *
2992  * Packets transferred up to and including this TRB = packets_transferred =
2993  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2994  *
2995  * TD size = total_packet_count - packets_transferred
2996  *
2997  * For xHCI 0.96 and older, TD size field should be the remaining bytes
2998  * including this TRB, right shifted by 10
2999  *
3000  * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3001  * This is taken care of in the TRB_TD_SIZE() macro
3002  *
3003  * The last TRB in a TD must have the TD size set to zero.
3004  */
3005 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3006 			      int trb_buff_len, unsigned int td_total_len,
3007 			      struct urb *urb, bool more_trbs_coming)
3008 {
3009 	u32 maxp, total_packet_count;
3010 
3011 	/* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
3012 	if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3013 		return ((td_total_len - transferred) >> 10);
3014 
3015 	/* One TRB with a zero-length data packet. */
3016 	if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3017 	    trb_buff_len == td_total_len)
3018 		return 0;
3019 
3020 	/* for MTK xHCI, TD size doesn't include this TRB */
3021 	if (xhci->quirks & XHCI_MTK_HOST)
3022 		trb_buff_len = 0;
3023 
3024 	maxp = usb_endpoint_maxp(&urb->ep->desc);
3025 	total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3026 
3027 	/* Queueing functions don't count the current TRB into transferred */
3028 	return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3029 }
3030 
3031 
3032 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3033 			 u32 *trb_buff_len, struct xhci_segment *seg)
3034 {
3035 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
3036 	unsigned int unalign;
3037 	unsigned int max_pkt;
3038 	u32 new_buff_len;
3039 
3040 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3041 	unalign = (enqd_len + *trb_buff_len) % max_pkt;
3042 
3043 	/* we got lucky, last normal TRB data on segment is packet aligned */
3044 	if (unalign == 0)
3045 		return 0;
3046 
3047 	xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3048 		 unalign, *trb_buff_len);
3049 
3050 	/* is the last nornal TRB alignable by splitting it */
3051 	if (*trb_buff_len > unalign) {
3052 		*trb_buff_len -= unalign;
3053 		xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3054 		return 0;
3055 	}
3056 
3057 	/*
3058 	 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3059 	 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3060 	 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3061 	 */
3062 	new_buff_len = max_pkt - (enqd_len % max_pkt);
3063 
3064 	if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3065 		new_buff_len = (urb->transfer_buffer_length - enqd_len);
3066 
3067 	/* create a max max_pkt sized bounce buffer pointed to by last trb */
3068 	if (usb_urb_dir_out(urb)) {
3069 		sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
3070 				   seg->bounce_buf, new_buff_len, enqd_len);
3071 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3072 						 max_pkt, DMA_TO_DEVICE);
3073 	} else {
3074 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3075 						 max_pkt, DMA_FROM_DEVICE);
3076 	}
3077 
3078 	if (dma_mapping_error(dev, seg->bounce_dma)) {
3079 		/* try without aligning. Some host controllers survive */
3080 		xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3081 		return 0;
3082 	}
3083 	*trb_buff_len = new_buff_len;
3084 	seg->bounce_len = new_buff_len;
3085 	seg->bounce_offs = enqd_len;
3086 
3087 	xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3088 
3089 	return 1;
3090 }
3091 
3092 /* This is very similar to what ehci-q.c qtd_fill() does */
3093 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3094 		struct urb *urb, int slot_id, unsigned int ep_index)
3095 {
3096 	struct xhci_ring *ring;
3097 	struct urb_priv *urb_priv;
3098 	struct xhci_td *td;
3099 	struct xhci_generic_trb *start_trb;
3100 	struct scatterlist *sg = NULL;
3101 	bool more_trbs_coming = true;
3102 	bool need_zero_pkt = false;
3103 	bool first_trb = true;
3104 	unsigned int num_trbs;
3105 	unsigned int start_cycle, num_sgs = 0;
3106 	unsigned int enqd_len, block_len, trb_buff_len, full_len;
3107 	int sent_len, ret;
3108 	u32 field, length_field, remainder;
3109 	u64 addr, send_addr;
3110 
3111 	ring = xhci_urb_to_transfer_ring(xhci, urb);
3112 	if (!ring)
3113 		return -EINVAL;
3114 
3115 	full_len = urb->transfer_buffer_length;
3116 	/* If we have scatter/gather list, we use it. */
3117 	if (urb->num_sgs) {
3118 		num_sgs = urb->num_mapped_sgs;
3119 		sg = urb->sg;
3120 		addr = (u64) sg_dma_address(sg);
3121 		block_len = sg_dma_len(sg);
3122 		num_trbs = count_sg_trbs_needed(urb);
3123 	} else {
3124 		num_trbs = count_trbs_needed(urb);
3125 		addr = (u64) urb->transfer_dma;
3126 		block_len = full_len;
3127 	}
3128 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3129 			ep_index, urb->stream_id,
3130 			num_trbs, urb, 0, mem_flags);
3131 	if (unlikely(ret < 0))
3132 		return ret;
3133 
3134 	urb_priv = urb->hcpriv;
3135 
3136 	/* Deal with URB_ZERO_PACKET - need one more td/trb */
3137 	if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
3138 		need_zero_pkt = true;
3139 
3140 	td = &urb_priv->td[0];
3141 
3142 	/*
3143 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3144 	 * until we've finished creating all the other TRBs.  The ring's cycle
3145 	 * state may change as we enqueue the other TRBs, so save it too.
3146 	 */
3147 	start_trb = &ring->enqueue->generic;
3148 	start_cycle = ring->cycle_state;
3149 	send_addr = addr;
3150 
3151 	/* Queue the TRBs, even if they are zero-length */
3152 	for (enqd_len = 0; first_trb || enqd_len < full_len;
3153 			enqd_len += trb_buff_len) {
3154 		field = TRB_TYPE(TRB_NORMAL);
3155 
3156 		/* TRB buffer should not cross 64KB boundaries */
3157 		trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3158 		trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3159 
3160 		if (enqd_len + trb_buff_len > full_len)
3161 			trb_buff_len = full_len - enqd_len;
3162 
3163 		/* Don't change the cycle bit of the first TRB until later */
3164 		if (first_trb) {
3165 			first_trb = false;
3166 			if (start_cycle == 0)
3167 				field |= TRB_CYCLE;
3168 		} else
3169 			field |= ring->cycle_state;
3170 
3171 		/* Chain all the TRBs together; clear the chain bit in the last
3172 		 * TRB to indicate it's the last TRB in the chain.
3173 		 */
3174 		if (enqd_len + trb_buff_len < full_len) {
3175 			field |= TRB_CHAIN;
3176 			if (trb_is_link(ring->enqueue + 1)) {
3177 				if (xhci_align_td(xhci, urb, enqd_len,
3178 						  &trb_buff_len,
3179 						  ring->enq_seg)) {
3180 					send_addr = ring->enq_seg->bounce_dma;
3181 					/* assuming TD won't span 2 segs */
3182 					td->bounce_seg = ring->enq_seg;
3183 				}
3184 			}
3185 		}
3186 		if (enqd_len + trb_buff_len >= full_len) {
3187 			field &= ~TRB_CHAIN;
3188 			field |= TRB_IOC;
3189 			more_trbs_coming = false;
3190 			td->last_trb = ring->enqueue;
3191 		}
3192 
3193 		/* Only set interrupt on short packet for IN endpoints */
3194 		if (usb_urb_dir_in(urb))
3195 			field |= TRB_ISP;
3196 
3197 		/* Set the TRB length, TD size, and interrupter fields. */
3198 		remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3199 					      full_len, urb, more_trbs_coming);
3200 
3201 		length_field = TRB_LEN(trb_buff_len) |
3202 			TRB_TD_SIZE(remainder) |
3203 			TRB_INTR_TARGET(0);
3204 
3205 		queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3206 				lower_32_bits(send_addr),
3207 				upper_32_bits(send_addr),
3208 				length_field,
3209 				field);
3210 
3211 		addr += trb_buff_len;
3212 		sent_len = trb_buff_len;
3213 
3214 		while (sg && sent_len >= block_len) {
3215 			/* New sg entry */
3216 			--num_sgs;
3217 			sent_len -= block_len;
3218 			if (num_sgs != 0) {
3219 				sg = sg_next(sg);
3220 				block_len = sg_dma_len(sg);
3221 				addr = (u64) sg_dma_address(sg);
3222 				addr += sent_len;
3223 			}
3224 		}
3225 		block_len -= sent_len;
3226 		send_addr = addr;
3227 	}
3228 
3229 	if (need_zero_pkt) {
3230 		ret = prepare_transfer(xhci, xhci->devs[slot_id],
3231 				       ep_index, urb->stream_id,
3232 				       1, urb, 1, mem_flags);
3233 		urb_priv->td[1].last_trb = ring->enqueue;
3234 		field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3235 		queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3236 	}
3237 
3238 	check_trb_math(urb, enqd_len);
3239 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3240 			start_cycle, start_trb);
3241 	return 0;
3242 }
3243 
3244 /* Caller must have locked xhci->lock */
3245 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3246 		struct urb *urb, int slot_id, unsigned int ep_index)
3247 {
3248 	struct xhci_ring *ep_ring;
3249 	int num_trbs;
3250 	int ret;
3251 	struct usb_ctrlrequest *setup;
3252 	struct xhci_generic_trb *start_trb;
3253 	int start_cycle;
3254 	u32 field;
3255 	struct urb_priv *urb_priv;
3256 	struct xhci_td *td;
3257 
3258 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3259 	if (!ep_ring)
3260 		return -EINVAL;
3261 
3262 	/*
3263 	 * Need to copy setup packet into setup TRB, so we can't use the setup
3264 	 * DMA address.
3265 	 */
3266 	if (!urb->setup_packet)
3267 		return -EINVAL;
3268 
3269 	/* 1 TRB for setup, 1 for status */
3270 	num_trbs = 2;
3271 	/*
3272 	 * Don't need to check if we need additional event data and normal TRBs,
3273 	 * since data in control transfers will never get bigger than 16MB
3274 	 * XXX: can we get a buffer that crosses 64KB boundaries?
3275 	 */
3276 	if (urb->transfer_buffer_length > 0)
3277 		num_trbs++;
3278 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3279 			ep_index, urb->stream_id,
3280 			num_trbs, urb, 0, mem_flags);
3281 	if (ret < 0)
3282 		return ret;
3283 
3284 	urb_priv = urb->hcpriv;
3285 	td = &urb_priv->td[0];
3286 
3287 	/*
3288 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3289 	 * until we've finished creating all the other TRBs.  The ring's cycle
3290 	 * state may change as we enqueue the other TRBs, so save it too.
3291 	 */
3292 	start_trb = &ep_ring->enqueue->generic;
3293 	start_cycle = ep_ring->cycle_state;
3294 
3295 	/* Queue setup TRB - see section 6.4.1.2.1 */
3296 	/* FIXME better way to translate setup_packet into two u32 fields? */
3297 	setup = (struct usb_ctrlrequest *) urb->setup_packet;
3298 	field = 0;
3299 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3300 	if (start_cycle == 0)
3301 		field |= 0x1;
3302 
3303 	/* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3304 	if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3305 		if (urb->transfer_buffer_length > 0) {
3306 			if (setup->bRequestType & USB_DIR_IN)
3307 				field |= TRB_TX_TYPE(TRB_DATA_IN);
3308 			else
3309 				field |= TRB_TX_TYPE(TRB_DATA_OUT);
3310 		}
3311 	}
3312 
3313 	queue_trb(xhci, ep_ring, true,
3314 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3315 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3316 		  TRB_LEN(8) | TRB_INTR_TARGET(0),
3317 		  /* Immediate data in pointer */
3318 		  field);
3319 
3320 	/* If there's data, queue data TRBs */
3321 	/* Only set interrupt on short packet for IN endpoints */
3322 	if (usb_urb_dir_in(urb))
3323 		field = TRB_ISP | TRB_TYPE(TRB_DATA);
3324 	else
3325 		field = TRB_TYPE(TRB_DATA);
3326 
3327 	if (urb->transfer_buffer_length > 0) {
3328 		u32 length_field, remainder;
3329 
3330 		remainder = xhci_td_remainder(xhci, 0,
3331 				urb->transfer_buffer_length,
3332 				urb->transfer_buffer_length,
3333 				urb, 1);
3334 		length_field = TRB_LEN(urb->transfer_buffer_length) |
3335 				TRB_TD_SIZE(remainder) |
3336 				TRB_INTR_TARGET(0);
3337 		if (setup->bRequestType & USB_DIR_IN)
3338 			field |= TRB_DIR_IN;
3339 		queue_trb(xhci, ep_ring, true,
3340 				lower_32_bits(urb->transfer_dma),
3341 				upper_32_bits(urb->transfer_dma),
3342 				length_field,
3343 				field | ep_ring->cycle_state);
3344 	}
3345 
3346 	/* Save the DMA address of the last TRB in the TD */
3347 	td->last_trb = ep_ring->enqueue;
3348 
3349 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3350 	/* If the device sent data, the status stage is an OUT transfer */
3351 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3352 		field = 0;
3353 	else
3354 		field = TRB_DIR_IN;
3355 	queue_trb(xhci, ep_ring, false,
3356 			0,
3357 			0,
3358 			TRB_INTR_TARGET(0),
3359 			/* Event on completion */
3360 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3361 
3362 	giveback_first_trb(xhci, slot_id, ep_index, 0,
3363 			start_cycle, start_trb);
3364 	return 0;
3365 }
3366 
3367 /*
3368  * The transfer burst count field of the isochronous TRB defines the number of
3369  * bursts that are required to move all packets in this TD.  Only SuperSpeed
3370  * devices can burst up to bMaxBurst number of packets per service interval.
3371  * This field is zero based, meaning a value of zero in the field means one
3372  * burst.  Basically, for everything but SuperSpeed devices, this field will be
3373  * zero.  Only xHCI 1.0 host controllers support this field.
3374  */
3375 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3376 		struct urb *urb, unsigned int total_packet_count)
3377 {
3378 	unsigned int max_burst;
3379 
3380 	if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3381 		return 0;
3382 
3383 	max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3384 	return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3385 }
3386 
3387 /*
3388  * Returns the number of packets in the last "burst" of packets.  This field is
3389  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so
3390  * the last burst packet count is equal to the total number of packets in the
3391  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst
3392  * must contain (bMaxBurst + 1) number of packets, but the last burst can
3393  * contain 1 to (bMaxBurst + 1) packets.
3394  */
3395 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3396 		struct urb *urb, unsigned int total_packet_count)
3397 {
3398 	unsigned int max_burst;
3399 	unsigned int residue;
3400 
3401 	if (xhci->hci_version < 0x100)
3402 		return 0;
3403 
3404 	if (urb->dev->speed >= USB_SPEED_SUPER) {
3405 		/* bMaxBurst is zero based: 0 means 1 packet per burst */
3406 		max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3407 		residue = total_packet_count % (max_burst + 1);
3408 		/* If residue is zero, the last burst contains (max_burst + 1)
3409 		 * number of packets, but the TLBPC field is zero-based.
3410 		 */
3411 		if (residue == 0)
3412 			return max_burst;
3413 		return residue - 1;
3414 	}
3415 	if (total_packet_count == 0)
3416 		return 0;
3417 	return total_packet_count - 1;
3418 }
3419 
3420 /*
3421  * Calculates Frame ID field of the isochronous TRB identifies the
3422  * target frame that the Interval associated with this Isochronous
3423  * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3424  *
3425  * Returns actual frame id on success, negative value on error.
3426  */
3427 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3428 		struct urb *urb, int index)
3429 {
3430 	int start_frame, ist, ret = 0;
3431 	int start_frame_id, end_frame_id, current_frame_id;
3432 
3433 	if (urb->dev->speed == USB_SPEED_LOW ||
3434 			urb->dev->speed == USB_SPEED_FULL)
3435 		start_frame = urb->start_frame + index * urb->interval;
3436 	else
3437 		start_frame = (urb->start_frame + index * urb->interval) >> 3;
3438 
3439 	/* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3440 	 *
3441 	 * If bit [3] of IST is cleared to '0', software can add a TRB no
3442 	 * later than IST[2:0] Microframes before that TRB is scheduled to
3443 	 * be executed.
3444 	 * If bit [3] of IST is set to '1', software can add a TRB no later
3445 	 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3446 	 */
3447 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3448 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3449 		ist <<= 3;
3450 
3451 	/* Software shall not schedule an Isoch TD with a Frame ID value that
3452 	 * is less than the Start Frame ID or greater than the End Frame ID,
3453 	 * where:
3454 	 *
3455 	 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3456 	 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3457 	 *
3458 	 * Both the End Frame ID and Start Frame ID values are calculated
3459 	 * in microframes. When software determines the valid Frame ID value;
3460 	 * The End Frame ID value should be rounded down to the nearest Frame
3461 	 * boundary, and the Start Frame ID value should be rounded up to the
3462 	 * nearest Frame boundary.
3463 	 */
3464 	current_frame_id = readl(&xhci->run_regs->microframe_index);
3465 	start_frame_id = roundup(current_frame_id + ist + 1, 8);
3466 	end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3467 
3468 	start_frame &= 0x7ff;
3469 	start_frame_id = (start_frame_id >> 3) & 0x7ff;
3470 	end_frame_id = (end_frame_id >> 3) & 0x7ff;
3471 
3472 	xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3473 		 __func__, index, readl(&xhci->run_regs->microframe_index),
3474 		 start_frame_id, end_frame_id, start_frame);
3475 
3476 	if (start_frame_id < end_frame_id) {
3477 		if (start_frame > end_frame_id ||
3478 				start_frame < start_frame_id)
3479 			ret = -EINVAL;
3480 	} else if (start_frame_id > end_frame_id) {
3481 		if ((start_frame > end_frame_id &&
3482 				start_frame < start_frame_id))
3483 			ret = -EINVAL;
3484 	} else {
3485 			ret = -EINVAL;
3486 	}
3487 
3488 	if (index == 0) {
3489 		if (ret == -EINVAL || start_frame == start_frame_id) {
3490 			start_frame = start_frame_id + 1;
3491 			if (urb->dev->speed == USB_SPEED_LOW ||
3492 					urb->dev->speed == USB_SPEED_FULL)
3493 				urb->start_frame = start_frame;
3494 			else
3495 				urb->start_frame = start_frame << 3;
3496 			ret = 0;
3497 		}
3498 	}
3499 
3500 	if (ret) {
3501 		xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3502 				start_frame, current_frame_id, index,
3503 				start_frame_id, end_frame_id);
3504 		xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3505 		return ret;
3506 	}
3507 
3508 	return start_frame;
3509 }
3510 
3511 /* This is for isoc transfer */
3512 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3513 		struct urb *urb, int slot_id, unsigned int ep_index)
3514 {
3515 	struct xhci_ring *ep_ring;
3516 	struct urb_priv *urb_priv;
3517 	struct xhci_td *td;
3518 	int num_tds, trbs_per_td;
3519 	struct xhci_generic_trb *start_trb;
3520 	bool first_trb;
3521 	int start_cycle;
3522 	u32 field, length_field;
3523 	int running_total, trb_buff_len, td_len, td_remain_len, ret;
3524 	u64 start_addr, addr;
3525 	int i, j;
3526 	bool more_trbs_coming;
3527 	struct xhci_virt_ep *xep;
3528 	int frame_id;
3529 
3530 	xep = &xhci->devs[slot_id]->eps[ep_index];
3531 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3532 
3533 	num_tds = urb->number_of_packets;
3534 	if (num_tds < 1) {
3535 		xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3536 		return -EINVAL;
3537 	}
3538 	start_addr = (u64) urb->transfer_dma;
3539 	start_trb = &ep_ring->enqueue->generic;
3540 	start_cycle = ep_ring->cycle_state;
3541 
3542 	urb_priv = urb->hcpriv;
3543 	/* Queue the TRBs for each TD, even if they are zero-length */
3544 	for (i = 0; i < num_tds; i++) {
3545 		unsigned int total_pkt_count, max_pkt;
3546 		unsigned int burst_count, last_burst_pkt_count;
3547 		u32 sia_frame_id;
3548 
3549 		first_trb = true;
3550 		running_total = 0;
3551 		addr = start_addr + urb->iso_frame_desc[i].offset;
3552 		td_len = urb->iso_frame_desc[i].length;
3553 		td_remain_len = td_len;
3554 		max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3555 		total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3556 
3557 		/* A zero-length transfer still involves at least one packet. */
3558 		if (total_pkt_count == 0)
3559 			total_pkt_count++;
3560 		burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3561 		last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3562 							urb, total_pkt_count);
3563 
3564 		trbs_per_td = count_isoc_trbs_needed(urb, i);
3565 
3566 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3567 				urb->stream_id, trbs_per_td, urb, i, mem_flags);
3568 		if (ret < 0) {
3569 			if (i == 0)
3570 				return ret;
3571 			goto cleanup;
3572 		}
3573 		td = &urb_priv->td[i];
3574 
3575 		/* use SIA as default, if frame id is used overwrite it */
3576 		sia_frame_id = TRB_SIA;
3577 		if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3578 		    HCC_CFC(xhci->hcc_params)) {
3579 			frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3580 			if (frame_id >= 0)
3581 				sia_frame_id = TRB_FRAME_ID(frame_id);
3582 		}
3583 		/*
3584 		 * Set isoc specific data for the first TRB in a TD.
3585 		 * Prevent HW from getting the TRBs by keeping the cycle state
3586 		 * inverted in the first TDs isoc TRB.
3587 		 */
3588 		field = TRB_TYPE(TRB_ISOC) |
3589 			TRB_TLBPC(last_burst_pkt_count) |
3590 			sia_frame_id |
3591 			(i ? ep_ring->cycle_state : !start_cycle);
3592 
3593 		/* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3594 		if (!xep->use_extended_tbc)
3595 			field |= TRB_TBC(burst_count);
3596 
3597 		/* fill the rest of the TRB fields, and remaining normal TRBs */
3598 		for (j = 0; j < trbs_per_td; j++) {
3599 			u32 remainder = 0;
3600 
3601 			/* only first TRB is isoc, overwrite otherwise */
3602 			if (!first_trb)
3603 				field = TRB_TYPE(TRB_NORMAL) |
3604 					ep_ring->cycle_state;
3605 
3606 			/* Only set interrupt on short packet for IN EPs */
3607 			if (usb_urb_dir_in(urb))
3608 				field |= TRB_ISP;
3609 
3610 			/* Set the chain bit for all except the last TRB  */
3611 			if (j < trbs_per_td - 1) {
3612 				more_trbs_coming = true;
3613 				field |= TRB_CHAIN;
3614 			} else {
3615 				more_trbs_coming = false;
3616 				td->last_trb = ep_ring->enqueue;
3617 				field |= TRB_IOC;
3618 				/* set BEI, except for the last TD */
3619 				if (xhci->hci_version >= 0x100 &&
3620 				    !(xhci->quirks & XHCI_AVOID_BEI) &&
3621 				    i < num_tds - 1)
3622 					field |= TRB_BEI;
3623 			}
3624 			/* Calculate TRB length */
3625 			trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3626 			if (trb_buff_len > td_remain_len)
3627 				trb_buff_len = td_remain_len;
3628 
3629 			/* Set the TRB length, TD size, & interrupter fields. */
3630 			remainder = xhci_td_remainder(xhci, running_total,
3631 						   trb_buff_len, td_len,
3632 						   urb, more_trbs_coming);
3633 
3634 			length_field = TRB_LEN(trb_buff_len) |
3635 				TRB_INTR_TARGET(0);
3636 
3637 			/* xhci 1.1 with ETE uses TD Size field for TBC */
3638 			if (first_trb && xep->use_extended_tbc)
3639 				length_field |= TRB_TD_SIZE_TBC(burst_count);
3640 			else
3641 				length_field |= TRB_TD_SIZE(remainder);
3642 			first_trb = false;
3643 
3644 			queue_trb(xhci, ep_ring, more_trbs_coming,
3645 				lower_32_bits(addr),
3646 				upper_32_bits(addr),
3647 				length_field,
3648 				field);
3649 			running_total += trb_buff_len;
3650 
3651 			addr += trb_buff_len;
3652 			td_remain_len -= trb_buff_len;
3653 		}
3654 
3655 		/* Check TD length */
3656 		if (running_total != td_len) {
3657 			xhci_err(xhci, "ISOC TD length unmatch\n");
3658 			ret = -EINVAL;
3659 			goto cleanup;
3660 		}
3661 	}
3662 
3663 	/* store the next frame id */
3664 	if (HCC_CFC(xhci->hcc_params))
3665 		xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3666 
3667 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3668 		if (xhci->quirks & XHCI_AMD_PLL_FIX)
3669 			usb_amd_quirk_pll_disable();
3670 	}
3671 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3672 
3673 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3674 			start_cycle, start_trb);
3675 	return 0;
3676 cleanup:
3677 	/* Clean up a partially enqueued isoc transfer. */
3678 
3679 	for (i--; i >= 0; i--)
3680 		list_del_init(&urb_priv->td[i].td_list);
3681 
3682 	/* Use the first TD as a temporary variable to turn the TDs we've queued
3683 	 * into No-ops with a software-owned cycle bit. That way the hardware
3684 	 * won't accidentally start executing bogus TDs when we partially
3685 	 * overwrite them.  td->first_trb and td->start_seg are already set.
3686 	 */
3687 	urb_priv->td[0].last_trb = ep_ring->enqueue;
3688 	/* Every TRB except the first & last will have its cycle bit flipped. */
3689 	td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
3690 
3691 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
3692 	ep_ring->enqueue = urb_priv->td[0].first_trb;
3693 	ep_ring->enq_seg = urb_priv->td[0].start_seg;
3694 	ep_ring->cycle_state = start_cycle;
3695 	ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3696 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3697 	return ret;
3698 }
3699 
3700 /*
3701  * Check transfer ring to guarantee there is enough room for the urb.
3702  * Update ISO URB start_frame and interval.
3703  * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3704  * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3705  * Contiguous Frame ID is not supported by HC.
3706  */
3707 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3708 		struct urb *urb, int slot_id, unsigned int ep_index)
3709 {
3710 	struct xhci_virt_device *xdev;
3711 	struct xhci_ring *ep_ring;
3712 	struct xhci_ep_ctx *ep_ctx;
3713 	int start_frame;
3714 	int num_tds, num_trbs, i;
3715 	int ret;
3716 	struct xhci_virt_ep *xep;
3717 	int ist;
3718 
3719 	xdev = xhci->devs[slot_id];
3720 	xep = &xhci->devs[slot_id]->eps[ep_index];
3721 	ep_ring = xdev->eps[ep_index].ring;
3722 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3723 
3724 	num_trbs = 0;
3725 	num_tds = urb->number_of_packets;
3726 	for (i = 0; i < num_tds; i++)
3727 		num_trbs += count_isoc_trbs_needed(urb, i);
3728 
3729 	/* Check the ring to guarantee there is enough room for the whole urb.
3730 	 * Do not insert any td of the urb to the ring if the check failed.
3731 	 */
3732 	ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3733 			   num_trbs, mem_flags);
3734 	if (ret)
3735 		return ret;
3736 
3737 	/*
3738 	 * Check interval value. This should be done before we start to
3739 	 * calculate the start frame value.
3740 	 */
3741 	check_interval(xhci, urb, ep_ctx);
3742 
3743 	/* Calculate the start frame and put it in urb->start_frame. */
3744 	if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3745 		if (GET_EP_CTX_STATE(ep_ctx) ==	EP_STATE_RUNNING) {
3746 			urb->start_frame = xep->next_frame_id;
3747 			goto skip_start_over;
3748 		}
3749 	}
3750 
3751 	start_frame = readl(&xhci->run_regs->microframe_index);
3752 	start_frame &= 0x3fff;
3753 	/*
3754 	 * Round up to the next frame and consider the time before trb really
3755 	 * gets scheduled by hardare.
3756 	 */
3757 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3758 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3759 		ist <<= 3;
3760 	start_frame += ist + XHCI_CFC_DELAY;
3761 	start_frame = roundup(start_frame, 8);
3762 
3763 	/*
3764 	 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3765 	 * is greate than 8 microframes.
3766 	 */
3767 	if (urb->dev->speed == USB_SPEED_LOW ||
3768 			urb->dev->speed == USB_SPEED_FULL) {
3769 		start_frame = roundup(start_frame, urb->interval << 3);
3770 		urb->start_frame = start_frame >> 3;
3771 	} else {
3772 		start_frame = roundup(start_frame, urb->interval);
3773 		urb->start_frame = start_frame;
3774 	}
3775 
3776 skip_start_over:
3777 	ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3778 
3779 	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3780 }
3781 
3782 /****		Command Ring Operations		****/
3783 
3784 /* Generic function for queueing a command TRB on the command ring.
3785  * Check to make sure there's room on the command ring for one command TRB.
3786  * Also check that there's room reserved for commands that must not fail.
3787  * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3788  * then only check for the number of reserved spots.
3789  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3790  * because the command event handler may want to resubmit a failed command.
3791  */
3792 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3793 			 u32 field1, u32 field2,
3794 			 u32 field3, u32 field4, bool command_must_succeed)
3795 {
3796 	int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3797 	int ret;
3798 
3799 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3800 		(xhci->xhc_state & XHCI_STATE_HALTED)) {
3801 		xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3802 		return -ESHUTDOWN;
3803 	}
3804 
3805 	if (!command_must_succeed)
3806 		reserved_trbs++;
3807 
3808 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3809 			reserved_trbs, GFP_ATOMIC);
3810 	if (ret < 0) {
3811 		xhci_err(xhci, "ERR: No room for command on command ring\n");
3812 		if (command_must_succeed)
3813 			xhci_err(xhci, "ERR: Reserved TRB counting for "
3814 					"unfailable commands failed.\n");
3815 		return ret;
3816 	}
3817 
3818 	cmd->command_trb = xhci->cmd_ring->enqueue;
3819 
3820 	/* if there are no other commands queued we start the timeout timer */
3821 	if (list_empty(&xhci->cmd_list)) {
3822 		xhci->current_cmd = cmd;
3823 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
3824 	}
3825 
3826 	list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3827 
3828 	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3829 			field4 | xhci->cmd_ring->cycle_state);
3830 	return 0;
3831 }
3832 
3833 /* Queue a slot enable or disable request on the command ring */
3834 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3835 		u32 trb_type, u32 slot_id)
3836 {
3837 	return queue_command(xhci, cmd, 0, 0, 0,
3838 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3839 }
3840 
3841 /* Queue an address device command TRB */
3842 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3843 		dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3844 {
3845 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3846 			upper_32_bits(in_ctx_ptr), 0,
3847 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3848 			| (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3849 }
3850 
3851 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3852 		u32 field1, u32 field2, u32 field3, u32 field4)
3853 {
3854 	return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3855 }
3856 
3857 /* Queue a reset device command TRB */
3858 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3859 		u32 slot_id)
3860 {
3861 	return queue_command(xhci, cmd, 0, 0, 0,
3862 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3863 			false);
3864 }
3865 
3866 /* Queue a configure endpoint command TRB */
3867 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3868 		struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3869 		u32 slot_id, bool command_must_succeed)
3870 {
3871 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3872 			upper_32_bits(in_ctx_ptr), 0,
3873 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3874 			command_must_succeed);
3875 }
3876 
3877 /* Queue an evaluate context command TRB */
3878 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3879 		dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3880 {
3881 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3882 			upper_32_bits(in_ctx_ptr), 0,
3883 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3884 			command_must_succeed);
3885 }
3886 
3887 /*
3888  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3889  * activity on an endpoint that is about to be suspended.
3890  */
3891 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
3892 			     int slot_id, unsigned int ep_index, int suspend)
3893 {
3894 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3895 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3896 	u32 type = TRB_TYPE(TRB_STOP_RING);
3897 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3898 
3899 	return queue_command(xhci, cmd, 0, 0, 0,
3900 			trb_slot_id | trb_ep_index | type | trb_suspend, false);
3901 }
3902 
3903 /* Set Transfer Ring Dequeue Pointer command */
3904 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
3905 		unsigned int slot_id, unsigned int ep_index,
3906 		unsigned int stream_id,
3907 		struct xhci_dequeue_state *deq_state)
3908 {
3909 	dma_addr_t addr;
3910 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3911 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3912 	u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3913 	u32 trb_sct = 0;
3914 	u32 type = TRB_TYPE(TRB_SET_DEQ);
3915 	struct xhci_virt_ep *ep;
3916 	struct xhci_command *cmd;
3917 	int ret;
3918 
3919 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
3920 		"Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
3921 		deq_state->new_deq_seg,
3922 		(unsigned long long)deq_state->new_deq_seg->dma,
3923 		deq_state->new_deq_ptr,
3924 		(unsigned long long)xhci_trb_virt_to_dma(
3925 			deq_state->new_deq_seg, deq_state->new_deq_ptr),
3926 		deq_state->new_cycle_state);
3927 
3928 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3929 				    deq_state->new_deq_ptr);
3930 	if (addr == 0) {
3931 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3932 		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3933 			  deq_state->new_deq_seg, deq_state->new_deq_ptr);
3934 		return;
3935 	}
3936 	ep = &xhci->devs[slot_id]->eps[ep_index];
3937 	if ((ep->ep_state & SET_DEQ_PENDING)) {
3938 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3939 		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3940 		return;
3941 	}
3942 
3943 	/* This function gets called from contexts where it cannot sleep */
3944 	cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
3945 	if (!cmd) {
3946 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n");
3947 		return;
3948 	}
3949 
3950 	ep->queued_deq_seg = deq_state->new_deq_seg;
3951 	ep->queued_deq_ptr = deq_state->new_deq_ptr;
3952 	if (stream_id)
3953 		trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
3954 	ret = queue_command(xhci, cmd,
3955 		lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
3956 		upper_32_bits(addr), trb_stream_id,
3957 		trb_slot_id | trb_ep_index | type, false);
3958 	if (ret < 0) {
3959 		xhci_free_command(xhci, cmd);
3960 		return;
3961 	}
3962 
3963 	/* Stop the TD queueing code from ringing the doorbell until
3964 	 * this command completes.  The HC won't set the dequeue pointer
3965 	 * if the ring is running, and ringing the doorbell starts the
3966 	 * ring running.
3967 	 */
3968 	ep->ep_state |= SET_DEQ_PENDING;
3969 }
3970 
3971 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
3972 			int slot_id, unsigned int ep_index)
3973 {
3974 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3975 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3976 	u32 type = TRB_TYPE(TRB_RESET_EP);
3977 
3978 	return queue_command(xhci, cmd, 0, 0, 0,
3979 			trb_slot_id | trb_ep_index | type, false);
3980 }
3981