1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 #include "xhci-trace.h" 71 72 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 73 struct xhci_virt_device *virt_dev, 74 struct xhci_event_cmd *event); 75 76 /* 77 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 78 * address of the TRB. 79 */ 80 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 81 union xhci_trb *trb) 82 { 83 unsigned long segment_offset; 84 85 if (!seg || !trb || trb < seg->trbs) 86 return 0; 87 /* offset in TRBs */ 88 segment_offset = trb - seg->trbs; 89 if (segment_offset > TRBS_PER_SEGMENT) 90 return 0; 91 return seg->dma + (segment_offset * sizeof(*trb)); 92 } 93 94 /* Does this link TRB point to the first segment in a ring, 95 * or was the previous TRB the last TRB on the last segment in the ERST? 96 */ 97 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 98 struct xhci_segment *seg, union xhci_trb *trb) 99 { 100 if (ring == xhci->event_ring) 101 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 102 (seg->next == xhci->event_ring->first_seg); 103 else 104 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 105 } 106 107 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 108 * segment? I.e. would the updated event TRB pointer step off the end of the 109 * event seg? 110 */ 111 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 112 struct xhci_segment *seg, union xhci_trb *trb) 113 { 114 if (ring == xhci->event_ring) 115 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 116 else 117 return TRB_TYPE_LINK_LE32(trb->link.control); 118 } 119 120 static int enqueue_is_link_trb(struct xhci_ring *ring) 121 { 122 struct xhci_link_trb *link = &ring->enqueue->link; 123 return TRB_TYPE_LINK_LE32(link->control); 124 } 125 126 union xhci_trb *xhci_find_next_enqueue(struct xhci_ring *ring) 127 { 128 /* Enqueue pointer can be left pointing to the link TRB, 129 * we must handle that 130 */ 131 if (TRB_TYPE_LINK_LE32(ring->enqueue->link.control)) 132 return ring->enq_seg->next->trbs; 133 return ring->enqueue; 134 } 135 136 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 137 * TRB is in a new segment. This does not skip over link TRBs, and it does not 138 * effect the ring dequeue or enqueue pointers. 139 */ 140 static void next_trb(struct xhci_hcd *xhci, 141 struct xhci_ring *ring, 142 struct xhci_segment **seg, 143 union xhci_trb **trb) 144 { 145 if (last_trb(xhci, ring, *seg, *trb)) { 146 *seg = (*seg)->next; 147 *trb = ((*seg)->trbs); 148 } else { 149 (*trb)++; 150 } 151 } 152 153 /* 154 * See Cycle bit rules. SW is the consumer for the event ring only. 155 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 156 */ 157 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 158 { 159 ring->deq_updates++; 160 161 /* 162 * If this is not event ring, and the dequeue pointer 163 * is not on a link TRB, there is one more usable TRB 164 */ 165 if (ring->type != TYPE_EVENT && 166 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) 167 ring->num_trbs_free++; 168 169 do { 170 /* 171 * Update the dequeue pointer further if that was a link TRB or 172 * we're at the end of an event ring segment (which doesn't have 173 * link TRBS) 174 */ 175 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) { 176 if (ring->type == TYPE_EVENT && 177 last_trb_on_last_seg(xhci, ring, 178 ring->deq_seg, ring->dequeue)) { 179 ring->cycle_state ^= 1; 180 } 181 ring->deq_seg = ring->deq_seg->next; 182 ring->dequeue = ring->deq_seg->trbs; 183 } else { 184 ring->dequeue++; 185 } 186 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)); 187 } 188 189 /* 190 * See Cycle bit rules. SW is the consumer for the event ring only. 191 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 192 * 193 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 194 * chain bit is set), then set the chain bit in all the following link TRBs. 195 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 196 * have their chain bit cleared (so that each Link TRB is a separate TD). 197 * 198 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 199 * set, but other sections talk about dealing with the chain bit set. This was 200 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 201 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 202 * 203 * @more_trbs_coming: Will you enqueue more TRBs before calling 204 * prepare_transfer()? 205 */ 206 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 207 bool more_trbs_coming) 208 { 209 u32 chain; 210 union xhci_trb *next; 211 212 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 213 /* If this is not event ring, there is one less usable TRB */ 214 if (ring->type != TYPE_EVENT && 215 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue)) 216 ring->num_trbs_free--; 217 next = ++(ring->enqueue); 218 219 ring->enq_updates++; 220 /* Update the dequeue pointer further if that was a link TRB or we're at 221 * the end of an event ring segment (which doesn't have link TRBS) 222 */ 223 while (last_trb(xhci, ring, ring->enq_seg, next)) { 224 if (ring->type != TYPE_EVENT) { 225 /* 226 * If the caller doesn't plan on enqueueing more 227 * TDs before ringing the doorbell, then we 228 * don't want to give the link TRB to the 229 * hardware just yet. We'll give the link TRB 230 * back in prepare_ring() just before we enqueue 231 * the TD at the top of the ring. 232 */ 233 if (!chain && !more_trbs_coming) 234 break; 235 236 /* If we're not dealing with 0.95 hardware or 237 * isoc rings on AMD 0.96 host, 238 * carry over the chain bit of the previous TRB 239 * (which may mean the chain bit is cleared). 240 */ 241 if (!(ring->type == TYPE_ISOC && 242 (xhci->quirks & XHCI_AMD_0x96_HOST)) 243 && !xhci_link_trb_quirk(xhci)) { 244 next->link.control &= 245 cpu_to_le32(~TRB_CHAIN); 246 next->link.control |= 247 cpu_to_le32(chain); 248 } 249 /* Give this link TRB to the hardware */ 250 wmb(); 251 next->link.control ^= cpu_to_le32(TRB_CYCLE); 252 253 /* Toggle the cycle bit after the last ring segment. */ 254 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 255 ring->cycle_state = (ring->cycle_state ? 0 : 1); 256 } 257 } 258 ring->enq_seg = ring->enq_seg->next; 259 ring->enqueue = ring->enq_seg->trbs; 260 next = ring->enqueue; 261 } 262 } 263 264 /* 265 * Check to see if there's room to enqueue num_trbs on the ring and make sure 266 * enqueue pointer will not advance into dequeue segment. See rules above. 267 */ 268 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 269 unsigned int num_trbs) 270 { 271 int num_trbs_in_deq_seg; 272 273 if (ring->num_trbs_free < num_trbs) 274 return 0; 275 276 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 277 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 278 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 279 return 0; 280 } 281 282 return 1; 283 } 284 285 /* Ring the host controller doorbell after placing a command on the ring */ 286 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 287 { 288 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 289 return; 290 291 xhci_dbg(xhci, "// Ding dong!\n"); 292 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 293 /* Flush PCI posted writes */ 294 readl(&xhci->dba->doorbell[0]); 295 } 296 297 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci) 298 { 299 u64 temp_64; 300 int ret; 301 302 xhci_dbg(xhci, "Abort command ring\n"); 303 304 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) { 305 xhci_dbg(xhci, "The command ring isn't running, " 306 "Have the command ring been stopped?\n"); 307 return 0; 308 } 309 310 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 311 if (!(temp_64 & CMD_RING_RUNNING)) { 312 xhci_dbg(xhci, "Command ring had been stopped\n"); 313 return 0; 314 } 315 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 316 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 317 &xhci->op_regs->cmd_ring); 318 319 /* Section 4.6.1.2 of xHCI 1.0 spec says software should 320 * time the completion od all xHCI commands, including 321 * the Command Abort operation. If software doesn't see 322 * CRR negated in a timely manner (e.g. longer than 5 323 * seconds), then it should assume that the there are 324 * larger problems with the xHC and assert HCRST. 325 */ 326 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring, 327 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 328 if (ret < 0) { 329 xhci_err(xhci, "Stopped the command ring failed, " 330 "maybe the host is dead\n"); 331 xhci->xhc_state |= XHCI_STATE_DYING; 332 xhci_quiesce(xhci); 333 xhci_halt(xhci); 334 return -ESHUTDOWN; 335 } 336 337 return 0; 338 } 339 340 static int xhci_queue_cd(struct xhci_hcd *xhci, 341 struct xhci_command *command, 342 union xhci_trb *cmd_trb) 343 { 344 struct xhci_cd *cd; 345 cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC); 346 if (!cd) 347 return -ENOMEM; 348 INIT_LIST_HEAD(&cd->cancel_cmd_list); 349 350 cd->command = command; 351 cd->cmd_trb = cmd_trb; 352 list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list); 353 354 return 0; 355 } 356 357 /* 358 * Cancel the command which has issue. 359 * 360 * Some commands may hang due to waiting for acknowledgement from 361 * usb device. It is outside of the xHC's ability to control and 362 * will cause the command ring is blocked. When it occurs software 363 * should intervene to recover the command ring. 364 * See Section 4.6.1.1 and 4.6.1.2 365 */ 366 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command, 367 union xhci_trb *cmd_trb) 368 { 369 int retval = 0; 370 unsigned long flags; 371 372 spin_lock_irqsave(&xhci->lock, flags); 373 374 if (xhci->xhc_state & XHCI_STATE_DYING) { 375 xhci_warn(xhci, "Abort the command ring," 376 " but the xHCI is dead.\n"); 377 retval = -ESHUTDOWN; 378 goto fail; 379 } 380 381 /* queue the cmd desriptor to cancel_cmd_list */ 382 retval = xhci_queue_cd(xhci, command, cmd_trb); 383 if (retval) { 384 xhci_warn(xhci, "Queuing command descriptor failed.\n"); 385 goto fail; 386 } 387 388 /* abort command ring */ 389 retval = xhci_abort_cmd_ring(xhci); 390 if (retval) { 391 xhci_err(xhci, "Abort command ring failed\n"); 392 if (unlikely(retval == -ESHUTDOWN)) { 393 spin_unlock_irqrestore(&xhci->lock, flags); 394 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 395 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 396 return retval; 397 } 398 } 399 400 fail: 401 spin_unlock_irqrestore(&xhci->lock, flags); 402 return retval; 403 } 404 405 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 406 unsigned int slot_id, 407 unsigned int ep_index, 408 unsigned int stream_id) 409 { 410 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 411 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 412 unsigned int ep_state = ep->ep_state; 413 414 /* Don't ring the doorbell for this endpoint if there are pending 415 * cancellations because we don't want to interrupt processing. 416 * We don't want to restart any stream rings if there's a set dequeue 417 * pointer command pending because the device can choose to start any 418 * stream once the endpoint is on the HW schedule. 419 * FIXME - check all the stream rings for pending cancellations. 420 */ 421 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 422 (ep_state & EP_HALTED)) 423 return; 424 writel(DB_VALUE(ep_index, stream_id), db_addr); 425 /* The CPU has better things to do at this point than wait for a 426 * write-posting flush. It'll get there soon enough. 427 */ 428 } 429 430 /* Ring the doorbell for any rings with pending URBs */ 431 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 432 unsigned int slot_id, 433 unsigned int ep_index) 434 { 435 unsigned int stream_id; 436 struct xhci_virt_ep *ep; 437 438 ep = &xhci->devs[slot_id]->eps[ep_index]; 439 440 /* A ring has pending URBs if its TD list is not empty */ 441 if (!(ep->ep_state & EP_HAS_STREAMS)) { 442 if (ep->ring && !(list_empty(&ep->ring->td_list))) 443 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 444 return; 445 } 446 447 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 448 stream_id++) { 449 struct xhci_stream_info *stream_info = ep->stream_info; 450 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 451 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 452 stream_id); 453 } 454 } 455 456 /* 457 * Find the segment that trb is in. Start searching in start_seg. 458 * If we must move past a segment that has a link TRB with a toggle cycle state 459 * bit set, then we will toggle the value pointed at by cycle_state. 460 */ 461 static struct xhci_segment *find_trb_seg( 462 struct xhci_segment *start_seg, 463 union xhci_trb *trb, int *cycle_state) 464 { 465 struct xhci_segment *cur_seg = start_seg; 466 struct xhci_generic_trb *generic_trb; 467 468 while (cur_seg->trbs > trb || 469 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { 470 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; 471 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE)) 472 *cycle_state ^= 0x1; 473 cur_seg = cur_seg->next; 474 if (cur_seg == start_seg) 475 /* Looped over the entire list. Oops! */ 476 return NULL; 477 } 478 return cur_seg; 479 } 480 481 482 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 483 unsigned int slot_id, unsigned int ep_index, 484 unsigned int stream_id) 485 { 486 struct xhci_virt_ep *ep; 487 488 ep = &xhci->devs[slot_id]->eps[ep_index]; 489 /* Common case: no streams */ 490 if (!(ep->ep_state & EP_HAS_STREAMS)) 491 return ep->ring; 492 493 if (stream_id == 0) { 494 xhci_warn(xhci, 495 "WARN: Slot ID %u, ep index %u has streams, " 496 "but URB has no stream ID.\n", 497 slot_id, ep_index); 498 return NULL; 499 } 500 501 if (stream_id < ep->stream_info->num_streams) 502 return ep->stream_info->stream_rings[stream_id]; 503 504 xhci_warn(xhci, 505 "WARN: Slot ID %u, ep index %u has " 506 "stream IDs 1 to %u allocated, " 507 "but stream ID %u is requested.\n", 508 slot_id, ep_index, 509 ep->stream_info->num_streams - 1, 510 stream_id); 511 return NULL; 512 } 513 514 /* Get the right ring for the given URB. 515 * If the endpoint supports streams, boundary check the URB's stream ID. 516 * If the endpoint doesn't support streams, return the singular endpoint ring. 517 */ 518 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 519 struct urb *urb) 520 { 521 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 522 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 523 } 524 525 /* 526 * Move the xHC's endpoint ring dequeue pointer past cur_td. 527 * Record the new state of the xHC's endpoint ring dequeue segment, 528 * dequeue pointer, and new consumer cycle state in state. 529 * Update our internal representation of the ring's dequeue pointer. 530 * 531 * We do this in three jumps: 532 * - First we update our new ring state to be the same as when the xHC stopped. 533 * - Then we traverse the ring to find the segment that contains 534 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 535 * any link TRBs with the toggle cycle bit set. 536 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 537 * if we've moved it past a link TRB with the toggle cycle bit set. 538 * 539 * Some of the uses of xhci_generic_trb are grotty, but if they're done 540 * with correct __le32 accesses they should work fine. Only users of this are 541 * in here. 542 */ 543 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 544 unsigned int slot_id, unsigned int ep_index, 545 unsigned int stream_id, struct xhci_td *cur_td, 546 struct xhci_dequeue_state *state) 547 { 548 struct xhci_virt_device *dev = xhci->devs[slot_id]; 549 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 550 struct xhci_ring *ep_ring; 551 struct xhci_generic_trb *trb; 552 dma_addr_t addr; 553 u64 hw_dequeue; 554 555 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 556 ep_index, stream_id); 557 if (!ep_ring) { 558 xhci_warn(xhci, "WARN can't find new dequeue state " 559 "for invalid stream ID %u.\n", 560 stream_id); 561 return; 562 } 563 564 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 565 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 566 "Finding endpoint context"); 567 /* 4.6.9 the css flag is written to the stream context for streams */ 568 if (ep->ep_state & EP_HAS_STREAMS) { 569 struct xhci_stream_ctx *ctx = 570 &ep->stream_info->stream_ctx_array[stream_id]; 571 hw_dequeue = le64_to_cpu(ctx->stream_ring); 572 } else { 573 struct xhci_ep_ctx *ep_ctx 574 = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 575 hw_dequeue = le64_to_cpu(ep_ctx->deq); 576 } 577 578 /* Find virtual address and segment of hardware dequeue pointer */ 579 state->new_deq_seg = ep_ring->deq_seg; 580 state->new_deq_ptr = ep_ring->dequeue; 581 while (xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr) 582 != (dma_addr_t)(hw_dequeue & ~0xf)) { 583 next_trb(xhci, ep_ring, &state->new_deq_seg, 584 &state->new_deq_ptr); 585 if (state->new_deq_ptr == ep_ring->dequeue) { 586 WARN_ON(1); 587 return; 588 } 589 } 590 /* 591 * Find cycle state for last_trb, starting at old cycle state of 592 * hw_dequeue. If there is only one segment ring, find_trb_seg() will 593 * return immediately and cannot toggle the cycle state if this search 594 * wraps around, so add one more toggle manually in that case. 595 */ 596 state->new_cycle_state = hw_dequeue & 0x1; 597 if (ep_ring->first_seg == ep_ring->first_seg->next && 598 cur_td->last_trb < state->new_deq_ptr) 599 state->new_cycle_state ^= 0x1; 600 601 state->new_deq_ptr = cur_td->last_trb; 602 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 603 "Finding segment containing last TRB in TD."); 604 state->new_deq_seg = find_trb_seg(state->new_deq_seg, 605 state->new_deq_ptr, &state->new_cycle_state); 606 if (!state->new_deq_seg) { 607 WARN_ON(1); 608 return; 609 } 610 611 /* Increment to find next TRB after last_trb. Cycle if appropriate. */ 612 trb = &state->new_deq_ptr->generic; 613 if (TRB_TYPE_LINK_LE32(trb->field[3]) && 614 (trb->field[3] & cpu_to_le32(LINK_TOGGLE))) 615 state->new_cycle_state ^= 0x1; 616 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); 617 618 /* Don't update the ring cycle state for the producer (us). */ 619 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 620 "Cycle state = 0x%x", state->new_cycle_state); 621 622 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 623 "New dequeue segment = %p (virtual)", 624 state->new_deq_seg); 625 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 626 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 627 "New dequeue pointer = 0x%llx (DMA)", 628 (unsigned long long) addr); 629 } 630 631 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 632 * (The last TRB actually points to the ring enqueue pointer, which is not part 633 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 634 */ 635 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 636 struct xhci_td *cur_td, bool flip_cycle) 637 { 638 struct xhci_segment *cur_seg; 639 union xhci_trb *cur_trb; 640 641 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 642 true; 643 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 644 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 645 /* Unchain any chained Link TRBs, but 646 * leave the pointers intact. 647 */ 648 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 649 /* Flip the cycle bit (link TRBs can't be the first 650 * or last TRB). 651 */ 652 if (flip_cycle) 653 cur_trb->generic.field[3] ^= 654 cpu_to_le32(TRB_CYCLE); 655 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 656 "Cancel (unchain) link TRB"); 657 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 658 "Address = %p (0x%llx dma); " 659 "in seg %p (0x%llx dma)", 660 cur_trb, 661 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 662 cur_seg, 663 (unsigned long long)cur_seg->dma); 664 } else { 665 cur_trb->generic.field[0] = 0; 666 cur_trb->generic.field[1] = 0; 667 cur_trb->generic.field[2] = 0; 668 /* Preserve only the cycle bit of this TRB */ 669 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 670 /* Flip the cycle bit except on the first or last TRB */ 671 if (flip_cycle && cur_trb != cur_td->first_trb && 672 cur_trb != cur_td->last_trb) 673 cur_trb->generic.field[3] ^= 674 cpu_to_le32(TRB_CYCLE); 675 cur_trb->generic.field[3] |= cpu_to_le32( 676 TRB_TYPE(TRB_TR_NOOP)); 677 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 678 "TRB to noop at offset 0x%llx", 679 (unsigned long long) 680 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 681 } 682 if (cur_trb == cur_td->last_trb) 683 break; 684 } 685 } 686 687 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 688 unsigned int ep_index, unsigned int stream_id, 689 struct xhci_segment *deq_seg, 690 union xhci_trb *deq_ptr, u32 cycle_state); 691 692 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 693 unsigned int slot_id, unsigned int ep_index, 694 unsigned int stream_id, 695 struct xhci_dequeue_state *deq_state) 696 { 697 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 698 699 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 700 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " 701 "new deq ptr = %p (0x%llx dma), new cycle = %u", 702 deq_state->new_deq_seg, 703 (unsigned long long)deq_state->new_deq_seg->dma, 704 deq_state->new_deq_ptr, 705 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), 706 deq_state->new_cycle_state); 707 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id, 708 deq_state->new_deq_seg, 709 deq_state->new_deq_ptr, 710 (u32) deq_state->new_cycle_state); 711 /* Stop the TD queueing code from ringing the doorbell until 712 * this command completes. The HC won't set the dequeue pointer 713 * if the ring is running, and ringing the doorbell starts the 714 * ring running. 715 */ 716 ep->ep_state |= SET_DEQ_PENDING; 717 } 718 719 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 720 struct xhci_virt_ep *ep) 721 { 722 ep->ep_state &= ~EP_HALT_PENDING; 723 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 724 * timer is running on another CPU, we don't decrement stop_cmds_pending 725 * (since we didn't successfully stop the watchdog timer). 726 */ 727 if (del_timer(&ep->stop_cmd_timer)) 728 ep->stop_cmds_pending--; 729 } 730 731 /* Must be called with xhci->lock held in interrupt context */ 732 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 733 struct xhci_td *cur_td, int status) 734 { 735 struct usb_hcd *hcd; 736 struct urb *urb; 737 struct urb_priv *urb_priv; 738 739 urb = cur_td->urb; 740 urb_priv = urb->hcpriv; 741 urb_priv->td_cnt++; 742 hcd = bus_to_hcd(urb->dev->bus); 743 744 /* Only giveback urb when this is the last td in urb */ 745 if (urb_priv->td_cnt == urb_priv->length) { 746 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 747 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 748 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 749 if (xhci->quirks & XHCI_AMD_PLL_FIX) 750 usb_amd_quirk_pll_enable(); 751 } 752 } 753 usb_hcd_unlink_urb_from_ep(hcd, urb); 754 755 spin_unlock(&xhci->lock); 756 usb_hcd_giveback_urb(hcd, urb, status); 757 xhci_urb_free_priv(xhci, urb_priv); 758 spin_lock(&xhci->lock); 759 } 760 } 761 762 /* 763 * When we get a command completion for a Stop Endpoint Command, we need to 764 * unlink any cancelled TDs from the ring. There are two ways to do that: 765 * 766 * 1. If the HW was in the middle of processing the TD that needs to be 767 * cancelled, then we must move the ring's dequeue pointer past the last TRB 768 * in the TD with a Set Dequeue Pointer Command. 769 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 770 * bit cleared) so that the HW will skip over them. 771 */ 772 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 773 union xhci_trb *trb, struct xhci_event_cmd *event) 774 { 775 unsigned int ep_index; 776 struct xhci_virt_device *virt_dev; 777 struct xhci_ring *ep_ring; 778 struct xhci_virt_ep *ep; 779 struct list_head *entry; 780 struct xhci_td *cur_td = NULL; 781 struct xhci_td *last_unlinked_td; 782 783 struct xhci_dequeue_state deq_state; 784 785 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 786 virt_dev = xhci->devs[slot_id]; 787 if (virt_dev) 788 handle_cmd_in_cmd_wait_list(xhci, virt_dev, 789 event); 790 else 791 xhci_warn(xhci, "Stop endpoint command " 792 "completion for disabled slot %u\n", 793 slot_id); 794 return; 795 } 796 797 memset(&deq_state, 0, sizeof(deq_state)); 798 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 799 ep = &xhci->devs[slot_id]->eps[ep_index]; 800 801 if (list_empty(&ep->cancelled_td_list)) { 802 xhci_stop_watchdog_timer_in_irq(xhci, ep); 803 ep->stopped_td = NULL; 804 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 805 return; 806 } 807 808 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 809 * We have the xHCI lock, so nothing can modify this list until we drop 810 * it. We're also in the event handler, so we can't get re-interrupted 811 * if another Stop Endpoint command completes 812 */ 813 list_for_each(entry, &ep->cancelled_td_list) { 814 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 815 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 816 "Removing canceled TD starting at 0x%llx (dma).", 817 (unsigned long long)xhci_trb_virt_to_dma( 818 cur_td->start_seg, cur_td->first_trb)); 819 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 820 if (!ep_ring) { 821 /* This shouldn't happen unless a driver is mucking 822 * with the stream ID after submission. This will 823 * leave the TD on the hardware ring, and the hardware 824 * will try to execute it, and may access a buffer 825 * that has already been freed. In the best case, the 826 * hardware will execute it, and the event handler will 827 * ignore the completion event for that TD, since it was 828 * removed from the td_list for that endpoint. In 829 * short, don't muck with the stream ID after 830 * submission. 831 */ 832 xhci_warn(xhci, "WARN Cancelled URB %p " 833 "has invalid stream ID %u.\n", 834 cur_td->urb, 835 cur_td->urb->stream_id); 836 goto remove_finished_td; 837 } 838 /* 839 * If we stopped on the TD we need to cancel, then we have to 840 * move the xHC endpoint ring dequeue pointer past this TD. 841 */ 842 if (cur_td == ep->stopped_td) 843 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 844 cur_td->urb->stream_id, 845 cur_td, &deq_state); 846 else 847 td_to_noop(xhci, ep_ring, cur_td, false); 848 remove_finished_td: 849 /* 850 * The event handler won't see a completion for this TD anymore, 851 * so remove it from the endpoint ring's TD list. Keep it in 852 * the cancelled TD list for URB completion later. 853 */ 854 list_del_init(&cur_td->td_list); 855 } 856 last_unlinked_td = cur_td; 857 xhci_stop_watchdog_timer_in_irq(xhci, ep); 858 859 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 860 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 861 xhci_queue_new_dequeue_state(xhci, 862 slot_id, ep_index, 863 ep->stopped_td->urb->stream_id, 864 &deq_state); 865 xhci_ring_cmd_db(xhci); 866 } else { 867 /* Otherwise ring the doorbell(s) to restart queued transfers */ 868 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 869 } 870 871 /* Clear stopped_td if endpoint is not halted */ 872 if (!(ep->ep_state & EP_HALTED)) 873 ep->stopped_td = NULL; 874 875 /* 876 * Drop the lock and complete the URBs in the cancelled TD list. 877 * New TDs to be cancelled might be added to the end of the list before 878 * we can complete all the URBs for the TDs we already unlinked. 879 * So stop when we've completed the URB for the last TD we unlinked. 880 */ 881 do { 882 cur_td = list_entry(ep->cancelled_td_list.next, 883 struct xhci_td, cancelled_td_list); 884 list_del_init(&cur_td->cancelled_td_list); 885 886 /* Clean up the cancelled URB */ 887 /* Doesn't matter what we pass for status, since the core will 888 * just overwrite it (because the URB has been unlinked). 889 */ 890 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 891 892 /* Stop processing the cancelled list if the watchdog timer is 893 * running. 894 */ 895 if (xhci->xhc_state & XHCI_STATE_DYING) 896 return; 897 } while (cur_td != last_unlinked_td); 898 899 /* Return to the event handler with xhci->lock re-acquired */ 900 } 901 902 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 903 { 904 struct xhci_td *cur_td; 905 906 while (!list_empty(&ring->td_list)) { 907 cur_td = list_first_entry(&ring->td_list, 908 struct xhci_td, td_list); 909 list_del_init(&cur_td->td_list); 910 if (!list_empty(&cur_td->cancelled_td_list)) 911 list_del_init(&cur_td->cancelled_td_list); 912 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 913 } 914 } 915 916 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 917 int slot_id, int ep_index) 918 { 919 struct xhci_td *cur_td; 920 struct xhci_virt_ep *ep; 921 struct xhci_ring *ring; 922 923 ep = &xhci->devs[slot_id]->eps[ep_index]; 924 if ((ep->ep_state & EP_HAS_STREAMS) || 925 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 926 int stream_id; 927 928 for (stream_id = 0; stream_id < ep->stream_info->num_streams; 929 stream_id++) { 930 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 931 "Killing URBs for slot ID %u, ep index %u, stream %u", 932 slot_id, ep_index, stream_id + 1); 933 xhci_kill_ring_urbs(xhci, 934 ep->stream_info->stream_rings[stream_id]); 935 } 936 } else { 937 ring = ep->ring; 938 if (!ring) 939 return; 940 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 941 "Killing URBs for slot ID %u, ep index %u", 942 slot_id, ep_index); 943 xhci_kill_ring_urbs(xhci, ring); 944 } 945 while (!list_empty(&ep->cancelled_td_list)) { 946 cur_td = list_first_entry(&ep->cancelled_td_list, 947 struct xhci_td, cancelled_td_list); 948 list_del_init(&cur_td->cancelled_td_list); 949 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 950 } 951 } 952 953 /* Watchdog timer function for when a stop endpoint command fails to complete. 954 * In this case, we assume the host controller is broken or dying or dead. The 955 * host may still be completing some other events, so we have to be careful to 956 * let the event ring handler and the URB dequeueing/enqueueing functions know 957 * through xhci->state. 958 * 959 * The timer may also fire if the host takes a very long time to respond to the 960 * command, and the stop endpoint command completion handler cannot delete the 961 * timer before the timer function is called. Another endpoint cancellation may 962 * sneak in before the timer function can grab the lock, and that may queue 963 * another stop endpoint command and add the timer back. So we cannot use a 964 * simple flag to say whether there is a pending stop endpoint command for a 965 * particular endpoint. 966 * 967 * Instead we use a combination of that flag and a counter for the number of 968 * pending stop endpoint commands. If the timer is the tail end of the last 969 * stop endpoint command, and the endpoint's command is still pending, we assume 970 * the host is dying. 971 */ 972 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 973 { 974 struct xhci_hcd *xhci; 975 struct xhci_virt_ep *ep; 976 int ret, i, j; 977 unsigned long flags; 978 979 ep = (struct xhci_virt_ep *) arg; 980 xhci = ep->xhci; 981 982 spin_lock_irqsave(&xhci->lock, flags); 983 984 ep->stop_cmds_pending--; 985 if (xhci->xhc_state & XHCI_STATE_DYING) { 986 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 987 "Stop EP timer ran, but another timer marked " 988 "xHCI as DYING, exiting."); 989 spin_unlock_irqrestore(&xhci->lock, flags); 990 return; 991 } 992 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 993 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 994 "Stop EP timer ran, but no command pending, " 995 "exiting."); 996 spin_unlock_irqrestore(&xhci->lock, flags); 997 return; 998 } 999 1000 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 1001 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 1002 /* Oops, HC is dead or dying or at least not responding to the stop 1003 * endpoint command. 1004 */ 1005 xhci->xhc_state |= XHCI_STATE_DYING; 1006 /* Disable interrupts from the host controller and start halting it */ 1007 xhci_quiesce(xhci); 1008 spin_unlock_irqrestore(&xhci->lock, flags); 1009 1010 ret = xhci_halt(xhci); 1011 1012 spin_lock_irqsave(&xhci->lock, flags); 1013 if (ret < 0) { 1014 /* This is bad; the host is not responding to commands and it's 1015 * not allowing itself to be halted. At least interrupts are 1016 * disabled. If we call usb_hc_died(), it will attempt to 1017 * disconnect all device drivers under this host. Those 1018 * disconnect() methods will wait for all URBs to be unlinked, 1019 * so we must complete them. 1020 */ 1021 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 1022 xhci_warn(xhci, "Completing active URBs anyway.\n"); 1023 /* We could turn all TDs on the rings to no-ops. This won't 1024 * help if the host has cached part of the ring, and is slow if 1025 * we want to preserve the cycle bit. Skip it and hope the host 1026 * doesn't touch the memory. 1027 */ 1028 } 1029 for (i = 0; i < MAX_HC_SLOTS; i++) { 1030 if (!xhci->devs[i]) 1031 continue; 1032 for (j = 0; j < 31; j++) 1033 xhci_kill_endpoint_urbs(xhci, i, j); 1034 } 1035 spin_unlock_irqrestore(&xhci->lock, flags); 1036 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1037 "Calling usb_hc_died()"); 1038 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 1039 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1040 "xHCI host controller is dead."); 1041 } 1042 1043 1044 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1045 struct xhci_virt_device *dev, 1046 struct xhci_ring *ep_ring, 1047 unsigned int ep_index) 1048 { 1049 union xhci_trb *dequeue_temp; 1050 int num_trbs_free_temp; 1051 bool revert = false; 1052 1053 num_trbs_free_temp = ep_ring->num_trbs_free; 1054 dequeue_temp = ep_ring->dequeue; 1055 1056 /* If we get two back-to-back stalls, and the first stalled transfer 1057 * ends just before a link TRB, the dequeue pointer will be left on 1058 * the link TRB by the code in the while loop. So we have to update 1059 * the dequeue pointer one segment further, or we'll jump off 1060 * the segment into la-la-land. 1061 */ 1062 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { 1063 ep_ring->deq_seg = ep_ring->deq_seg->next; 1064 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1065 } 1066 1067 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1068 /* We have more usable TRBs */ 1069 ep_ring->num_trbs_free++; 1070 ep_ring->dequeue++; 1071 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, 1072 ep_ring->dequeue)) { 1073 if (ep_ring->dequeue == 1074 dev->eps[ep_index].queued_deq_ptr) 1075 break; 1076 ep_ring->deq_seg = ep_ring->deq_seg->next; 1077 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1078 } 1079 if (ep_ring->dequeue == dequeue_temp) { 1080 revert = true; 1081 break; 1082 } 1083 } 1084 1085 if (revert) { 1086 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1087 ep_ring->num_trbs_free = num_trbs_free_temp; 1088 } 1089 } 1090 1091 /* 1092 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1093 * we need to clear the set deq pending flag in the endpoint ring state, so that 1094 * the TD queueing code can ring the doorbell again. We also need to ring the 1095 * endpoint doorbell to restart the ring, but only if there aren't more 1096 * cancellations pending. 1097 */ 1098 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1099 union xhci_trb *trb, u32 cmd_comp_code) 1100 { 1101 unsigned int ep_index; 1102 unsigned int stream_id; 1103 struct xhci_ring *ep_ring; 1104 struct xhci_virt_device *dev; 1105 struct xhci_virt_ep *ep; 1106 struct xhci_ep_ctx *ep_ctx; 1107 struct xhci_slot_ctx *slot_ctx; 1108 1109 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1110 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1111 dev = xhci->devs[slot_id]; 1112 ep = &dev->eps[ep_index]; 1113 1114 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1115 if (!ep_ring) { 1116 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1117 stream_id); 1118 /* XXX: Harmless??? */ 1119 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1120 return; 1121 } 1122 1123 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1124 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1125 1126 if (cmd_comp_code != COMP_SUCCESS) { 1127 unsigned int ep_state; 1128 unsigned int slot_state; 1129 1130 switch (cmd_comp_code) { 1131 case COMP_TRB_ERR: 1132 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1133 break; 1134 case COMP_CTX_STATE: 1135 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1136 ep_state = le32_to_cpu(ep_ctx->ep_info); 1137 ep_state &= EP_STATE_MASK; 1138 slot_state = le32_to_cpu(slot_ctx->dev_state); 1139 slot_state = GET_SLOT_STATE(slot_state); 1140 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1141 "Slot state = %u, EP state = %u", 1142 slot_state, ep_state); 1143 break; 1144 case COMP_EBADSLT: 1145 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1146 slot_id); 1147 break; 1148 default: 1149 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1150 cmd_comp_code); 1151 break; 1152 } 1153 /* OK what do we do now? The endpoint state is hosed, and we 1154 * should never get to this point if the synchronization between 1155 * queueing, and endpoint state are correct. This might happen 1156 * if the device gets disconnected after we've finished 1157 * cancelling URBs, which might not be an error... 1158 */ 1159 } else { 1160 u64 deq; 1161 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1162 if (ep->ep_state & EP_HAS_STREAMS) { 1163 struct xhci_stream_ctx *ctx = 1164 &ep->stream_info->stream_ctx_array[stream_id]; 1165 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1166 } else { 1167 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1168 } 1169 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1170 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1171 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1172 ep->queued_deq_ptr) == deq) { 1173 /* Update the ring's dequeue segment and dequeue pointer 1174 * to reflect the new position. 1175 */ 1176 update_ring_for_set_deq_completion(xhci, dev, 1177 ep_ring, ep_index); 1178 } else { 1179 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1180 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1181 ep->queued_deq_seg, ep->queued_deq_ptr); 1182 } 1183 } 1184 1185 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1186 dev->eps[ep_index].queued_deq_seg = NULL; 1187 dev->eps[ep_index].queued_deq_ptr = NULL; 1188 /* Restart any rings with pending URBs */ 1189 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1190 } 1191 1192 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1193 union xhci_trb *trb, u32 cmd_comp_code) 1194 { 1195 unsigned int ep_index; 1196 1197 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1198 /* This command will only fail if the endpoint wasn't halted, 1199 * but we don't care. 1200 */ 1201 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1202 "Ignoring reset ep completion code of %u", cmd_comp_code); 1203 1204 /* HW with the reset endpoint quirk needs to have a configure endpoint 1205 * command complete before the endpoint can be used. Queue that here 1206 * because the HW can't handle two commands being queued in a row. 1207 */ 1208 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1209 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1210 "Queueing configure endpoint command"); 1211 xhci_queue_configure_endpoint(xhci, 1212 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1213 false); 1214 xhci_ring_cmd_db(xhci); 1215 } else { 1216 /* Clear our internal halted state and restart the ring(s) */ 1217 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1218 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1219 } 1220 } 1221 1222 /* Complete the command and detele it from the devcie's command queue. 1223 */ 1224 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1225 struct xhci_command *command, u32 status) 1226 { 1227 command->status = status; 1228 list_del(&command->cmd_list); 1229 if (command->completion) 1230 complete(command->completion); 1231 else 1232 xhci_free_command(xhci, command); 1233 } 1234 1235 1236 /* Check to see if a command in the device's command queue matches this one. 1237 * Signal the completion or free the command, and return 1. Return 0 if the 1238 * completed command isn't at the head of the command list. 1239 */ 1240 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1241 struct xhci_virt_device *virt_dev, 1242 struct xhci_event_cmd *event) 1243 { 1244 struct xhci_command *command; 1245 1246 if (list_empty(&virt_dev->cmd_list)) 1247 return 0; 1248 1249 command = list_entry(virt_dev->cmd_list.next, 1250 struct xhci_command, cmd_list); 1251 if (xhci->cmd_ring->dequeue != command->command_trb) 1252 return 0; 1253 1254 xhci_complete_cmd_in_cmd_wait_list(xhci, command, 1255 GET_COMP_CODE(le32_to_cpu(event->status))); 1256 return 1; 1257 } 1258 1259 /* 1260 * Finding the command trb need to be cancelled and modifying it to 1261 * NO OP command. And if the command is in device's command wait 1262 * list, finishing and freeing it. 1263 * 1264 * If we can't find the command trb, we think it had already been 1265 * executed. 1266 */ 1267 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd) 1268 { 1269 struct xhci_segment *cur_seg; 1270 union xhci_trb *cmd_trb; 1271 u32 cycle_state; 1272 1273 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue) 1274 return; 1275 1276 /* find the current segment of command ring */ 1277 cur_seg = find_trb_seg(xhci->cmd_ring->first_seg, 1278 xhci->cmd_ring->dequeue, &cycle_state); 1279 1280 if (!cur_seg) { 1281 xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n", 1282 xhci->cmd_ring->dequeue, 1283 (unsigned long long) 1284 xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1285 xhci->cmd_ring->dequeue)); 1286 xhci_debug_ring(xhci, xhci->cmd_ring); 1287 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 1288 return; 1289 } 1290 1291 /* find the command trb matched by cd from command ring */ 1292 for (cmd_trb = xhci->cmd_ring->dequeue; 1293 cmd_trb != xhci->cmd_ring->enqueue; 1294 next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) { 1295 /* If the trb is link trb, continue */ 1296 if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3])) 1297 continue; 1298 1299 if (cur_cd->cmd_trb == cmd_trb) { 1300 1301 /* If the command in device's command list, we should 1302 * finish it and free the command structure. 1303 */ 1304 if (cur_cd->command) 1305 xhci_complete_cmd_in_cmd_wait_list(xhci, 1306 cur_cd->command, COMP_CMD_STOP); 1307 1308 /* get cycle state from the origin command trb */ 1309 cycle_state = le32_to_cpu(cmd_trb->generic.field[3]) 1310 & TRB_CYCLE; 1311 1312 /* modify the command trb to NO OP command */ 1313 cmd_trb->generic.field[0] = 0; 1314 cmd_trb->generic.field[1] = 0; 1315 cmd_trb->generic.field[2] = 0; 1316 cmd_trb->generic.field[3] = cpu_to_le32( 1317 TRB_TYPE(TRB_CMD_NOOP) | cycle_state); 1318 break; 1319 } 1320 } 1321 } 1322 1323 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci) 1324 { 1325 struct xhci_cd *cur_cd, *next_cd; 1326 1327 if (list_empty(&xhci->cancel_cmd_list)) 1328 return; 1329 1330 list_for_each_entry_safe(cur_cd, next_cd, 1331 &xhci->cancel_cmd_list, cancel_cmd_list) { 1332 xhci_cmd_to_noop(xhci, cur_cd); 1333 list_del(&cur_cd->cancel_cmd_list); 1334 kfree(cur_cd); 1335 } 1336 } 1337 1338 /* 1339 * traversing the cancel_cmd_list. If the command descriptor according 1340 * to cmd_trb is found, the function free it and return 1, otherwise 1341 * return 0. 1342 */ 1343 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci, 1344 union xhci_trb *cmd_trb) 1345 { 1346 struct xhci_cd *cur_cd, *next_cd; 1347 1348 if (list_empty(&xhci->cancel_cmd_list)) 1349 return 0; 1350 1351 list_for_each_entry_safe(cur_cd, next_cd, 1352 &xhci->cancel_cmd_list, cancel_cmd_list) { 1353 if (cur_cd->cmd_trb == cmd_trb) { 1354 if (cur_cd->command) 1355 xhci_complete_cmd_in_cmd_wait_list(xhci, 1356 cur_cd->command, COMP_CMD_STOP); 1357 list_del(&cur_cd->cancel_cmd_list); 1358 kfree(cur_cd); 1359 return 1; 1360 } 1361 } 1362 1363 return 0; 1364 } 1365 1366 /* 1367 * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the 1368 * trb pointed by the command ring dequeue pointer is the trb we want to 1369 * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will 1370 * traverse the cancel_cmd_list to trun the all of the commands according 1371 * to command descriptor to NO-OP trb. 1372 */ 1373 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci, 1374 int cmd_trb_comp_code) 1375 { 1376 int cur_trb_is_good = 0; 1377 1378 /* Searching the cmd trb pointed by the command ring dequeue 1379 * pointer in command descriptor list. If it is found, free it. 1380 */ 1381 cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci, 1382 xhci->cmd_ring->dequeue); 1383 1384 if (cmd_trb_comp_code == COMP_CMD_ABORT) 1385 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1386 else if (cmd_trb_comp_code == COMP_CMD_STOP) { 1387 /* traversing the cancel_cmd_list and canceling 1388 * the command according to command descriptor 1389 */ 1390 xhci_cancel_cmd_in_cd_list(xhci); 1391 1392 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 1393 /* 1394 * ring command ring doorbell again to restart the 1395 * command ring 1396 */ 1397 if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) 1398 xhci_ring_cmd_db(xhci); 1399 } 1400 return cur_trb_is_good; 1401 } 1402 1403 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1404 u32 cmd_comp_code) 1405 { 1406 if (cmd_comp_code == COMP_SUCCESS) 1407 xhci->slot_id = slot_id; 1408 else 1409 xhci->slot_id = 0; 1410 complete(&xhci->addr_dev); 1411 } 1412 1413 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1414 { 1415 struct xhci_virt_device *virt_dev; 1416 1417 virt_dev = xhci->devs[slot_id]; 1418 if (!virt_dev) 1419 return; 1420 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1421 /* Delete default control endpoint resources */ 1422 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1423 xhci_free_virt_device(xhci, slot_id); 1424 } 1425 1426 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1427 struct xhci_event_cmd *event, u32 cmd_comp_code) 1428 { 1429 struct xhci_virt_device *virt_dev; 1430 struct xhci_input_control_ctx *ctrl_ctx; 1431 unsigned int ep_index; 1432 unsigned int ep_state; 1433 u32 add_flags, drop_flags; 1434 1435 virt_dev = xhci->devs[slot_id]; 1436 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1437 return; 1438 /* 1439 * Configure endpoint commands can come from the USB core 1440 * configuration or alt setting changes, or because the HW 1441 * needed an extra configure endpoint command after a reset 1442 * endpoint command or streams were being configured. 1443 * If the command was for a halted endpoint, the xHCI driver 1444 * is not waiting on the configure endpoint command. 1445 */ 1446 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1447 if (!ctrl_ctx) { 1448 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1449 return; 1450 } 1451 1452 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1453 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1454 /* Input ctx add_flags are the endpoint index plus one */ 1455 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1456 1457 /* A usb_set_interface() call directly after clearing a halted 1458 * condition may race on this quirky hardware. Not worth 1459 * worrying about, since this is prototype hardware. Not sure 1460 * if this will work for streams, but streams support was 1461 * untested on this prototype. 1462 */ 1463 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1464 ep_index != (unsigned int) -1 && 1465 add_flags - SLOT_FLAG == drop_flags) { 1466 ep_state = virt_dev->eps[ep_index].ep_state; 1467 if (!(ep_state & EP_HALTED)) 1468 goto bandwidth_change; 1469 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1470 "Completed config ep cmd - " 1471 "last ep index = %d, state = %d", 1472 ep_index, ep_state); 1473 /* Clear internal halted state and restart ring(s) */ 1474 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1475 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1476 return; 1477 } 1478 bandwidth_change: 1479 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1480 "Completed config ep cmd"); 1481 virt_dev->cmd_status = cmd_comp_code; 1482 complete(&virt_dev->cmd_completion); 1483 return; 1484 } 1485 1486 static void xhci_handle_cmd_eval_ctx(struct xhci_hcd *xhci, int slot_id, 1487 struct xhci_event_cmd *event, u32 cmd_comp_code) 1488 { 1489 struct xhci_virt_device *virt_dev; 1490 1491 virt_dev = xhci->devs[slot_id]; 1492 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1493 return; 1494 virt_dev->cmd_status = cmd_comp_code; 1495 complete(&virt_dev->cmd_completion); 1496 } 1497 1498 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id, 1499 u32 cmd_comp_code) 1500 { 1501 xhci->devs[slot_id]->cmd_status = cmd_comp_code; 1502 complete(&xhci->addr_dev); 1503 } 1504 1505 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1506 struct xhci_event_cmd *event) 1507 { 1508 struct xhci_virt_device *virt_dev; 1509 1510 xhci_dbg(xhci, "Completed reset device command.\n"); 1511 virt_dev = xhci->devs[slot_id]; 1512 if (virt_dev) 1513 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event); 1514 else 1515 xhci_warn(xhci, "Reset device command completion " 1516 "for disabled slot %u\n", slot_id); 1517 } 1518 1519 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1520 struct xhci_event_cmd *event) 1521 { 1522 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1523 xhci->error_bitmask |= 1 << 6; 1524 return; 1525 } 1526 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1527 "NEC firmware version %2x.%02x", 1528 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1529 NEC_FW_MINOR(le32_to_cpu(event->status))); 1530 } 1531 1532 static void handle_cmd_completion(struct xhci_hcd *xhci, 1533 struct xhci_event_cmd *event) 1534 { 1535 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1536 u64 cmd_dma; 1537 dma_addr_t cmd_dequeue_dma; 1538 u32 cmd_comp_code; 1539 union xhci_trb *cmd_trb; 1540 u32 cmd_type; 1541 1542 cmd_dma = le64_to_cpu(event->cmd_trb); 1543 cmd_trb = xhci->cmd_ring->dequeue; 1544 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1545 cmd_trb); 1546 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1547 if (cmd_dequeue_dma == 0) { 1548 xhci->error_bitmask |= 1 << 4; 1549 return; 1550 } 1551 /* Does the DMA address match our internal dequeue pointer address? */ 1552 if (cmd_dma != (u64) cmd_dequeue_dma) { 1553 xhci->error_bitmask |= 1 << 5; 1554 return; 1555 } 1556 1557 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event); 1558 1559 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1560 if (cmd_comp_code == COMP_CMD_ABORT || cmd_comp_code == COMP_CMD_STOP) { 1561 /* If the return value is 0, we think the trb pointed by 1562 * command ring dequeue pointer is a good trb. The good 1563 * trb means we don't want to cancel the trb, but it have 1564 * been stopped by host. So we should handle it normally. 1565 * Otherwise, driver should invoke inc_deq() and return. 1566 */ 1567 if (handle_stopped_cmd_ring(xhci, cmd_comp_code)) { 1568 inc_deq(xhci, xhci->cmd_ring); 1569 return; 1570 } 1571 /* There is no command to handle if we get a stop event when the 1572 * command ring is empty, event->cmd_trb points to the next 1573 * unset command 1574 */ 1575 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue) 1576 return; 1577 } 1578 1579 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1580 switch (cmd_type) { 1581 case TRB_ENABLE_SLOT: 1582 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code); 1583 break; 1584 case TRB_DISABLE_SLOT: 1585 xhci_handle_cmd_disable_slot(xhci, slot_id); 1586 break; 1587 case TRB_CONFIG_EP: 1588 xhci_handle_cmd_config_ep(xhci, slot_id, event, cmd_comp_code); 1589 break; 1590 case TRB_EVAL_CONTEXT: 1591 xhci_handle_cmd_eval_ctx(xhci, slot_id, event, cmd_comp_code); 1592 break; 1593 case TRB_ADDR_DEV: 1594 xhci_handle_cmd_addr_dev(xhci, slot_id, cmd_comp_code); 1595 break; 1596 case TRB_STOP_RING: 1597 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1598 le32_to_cpu(cmd_trb->generic.field[3]))); 1599 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1600 break; 1601 case TRB_SET_DEQ: 1602 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1603 le32_to_cpu(cmd_trb->generic.field[3]))); 1604 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1605 break; 1606 case TRB_CMD_NOOP: 1607 break; 1608 case TRB_RESET_EP: 1609 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1610 le32_to_cpu(cmd_trb->generic.field[3]))); 1611 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1612 break; 1613 case TRB_RESET_DEV: 1614 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1615 le32_to_cpu(cmd_trb->generic.field[3]))); 1616 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1617 break; 1618 case TRB_NEC_GET_FW: 1619 xhci_handle_cmd_nec_get_fw(xhci, event); 1620 break; 1621 default: 1622 /* Skip over unknown commands on the event ring */ 1623 xhci->error_bitmask |= 1 << 6; 1624 break; 1625 } 1626 inc_deq(xhci, xhci->cmd_ring); 1627 } 1628 1629 static void handle_vendor_event(struct xhci_hcd *xhci, 1630 union xhci_trb *event) 1631 { 1632 u32 trb_type; 1633 1634 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1635 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1636 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1637 handle_cmd_completion(xhci, &event->event_cmd); 1638 } 1639 1640 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1641 * port registers -- USB 3.0 and USB 2.0). 1642 * 1643 * Returns a zero-based port number, which is suitable for indexing into each of 1644 * the split roothubs' port arrays and bus state arrays. 1645 * Add one to it in order to call xhci_find_slot_id_by_port. 1646 */ 1647 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1648 struct xhci_hcd *xhci, u32 port_id) 1649 { 1650 unsigned int i; 1651 unsigned int num_similar_speed_ports = 0; 1652 1653 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1654 * and usb2_ports are 0-based indexes. Count the number of similar 1655 * speed ports, up to 1 port before this port. 1656 */ 1657 for (i = 0; i < (port_id - 1); i++) { 1658 u8 port_speed = xhci->port_array[i]; 1659 1660 /* 1661 * Skip ports that don't have known speeds, or have duplicate 1662 * Extended Capabilities port speed entries. 1663 */ 1664 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1665 continue; 1666 1667 /* 1668 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1669 * 1.1 ports are under the USB 2.0 hub. If the port speed 1670 * matches the device speed, it's a similar speed port. 1671 */ 1672 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1673 num_similar_speed_ports++; 1674 } 1675 return num_similar_speed_ports; 1676 } 1677 1678 static void handle_device_notification(struct xhci_hcd *xhci, 1679 union xhci_trb *event) 1680 { 1681 u32 slot_id; 1682 struct usb_device *udev; 1683 1684 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1685 if (!xhci->devs[slot_id]) { 1686 xhci_warn(xhci, "Device Notification event for " 1687 "unused slot %u\n", slot_id); 1688 return; 1689 } 1690 1691 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1692 slot_id); 1693 udev = xhci->devs[slot_id]->udev; 1694 if (udev && udev->parent) 1695 usb_wakeup_notification(udev->parent, udev->portnum); 1696 } 1697 1698 static void handle_port_status(struct xhci_hcd *xhci, 1699 union xhci_trb *event) 1700 { 1701 struct usb_hcd *hcd; 1702 u32 port_id; 1703 u32 temp, temp1; 1704 int max_ports; 1705 int slot_id; 1706 unsigned int faked_port_index; 1707 u8 major_revision; 1708 struct xhci_bus_state *bus_state; 1709 __le32 __iomem **port_array; 1710 bool bogus_port_status = false; 1711 1712 /* Port status change events always have a successful completion code */ 1713 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1714 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1715 xhci->error_bitmask |= 1 << 8; 1716 } 1717 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1718 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1719 1720 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1721 if ((port_id <= 0) || (port_id > max_ports)) { 1722 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1723 inc_deq(xhci, xhci->event_ring); 1724 return; 1725 } 1726 1727 /* Figure out which usb_hcd this port is attached to: 1728 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1729 */ 1730 major_revision = xhci->port_array[port_id - 1]; 1731 1732 /* Find the right roothub. */ 1733 hcd = xhci_to_hcd(xhci); 1734 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1735 hcd = xhci->shared_hcd; 1736 1737 if (major_revision == 0) { 1738 xhci_warn(xhci, "Event for port %u not in " 1739 "Extended Capabilities, ignoring.\n", 1740 port_id); 1741 bogus_port_status = true; 1742 goto cleanup; 1743 } 1744 if (major_revision == DUPLICATE_ENTRY) { 1745 xhci_warn(xhci, "Event for port %u duplicated in" 1746 "Extended Capabilities, ignoring.\n", 1747 port_id); 1748 bogus_port_status = true; 1749 goto cleanup; 1750 } 1751 1752 /* 1753 * Hardware port IDs reported by a Port Status Change Event include USB 1754 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1755 * resume event, but we first need to translate the hardware port ID 1756 * into the index into the ports on the correct split roothub, and the 1757 * correct bus_state structure. 1758 */ 1759 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1760 if (hcd->speed == HCD_USB3) 1761 port_array = xhci->usb3_ports; 1762 else 1763 port_array = xhci->usb2_ports; 1764 /* Find the faked port hub number */ 1765 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1766 port_id); 1767 1768 temp = readl(port_array[faked_port_index]); 1769 if (hcd->state == HC_STATE_SUSPENDED) { 1770 xhci_dbg(xhci, "resume root hub\n"); 1771 usb_hcd_resume_root_hub(hcd); 1772 } 1773 1774 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1775 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1776 1777 temp1 = readl(&xhci->op_regs->command); 1778 if (!(temp1 & CMD_RUN)) { 1779 xhci_warn(xhci, "xHC is not running.\n"); 1780 goto cleanup; 1781 } 1782 1783 if (DEV_SUPERSPEED(temp)) { 1784 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1785 /* Set a flag to say the port signaled remote wakeup, 1786 * so we can tell the difference between the end of 1787 * device and host initiated resume. 1788 */ 1789 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1790 xhci_test_and_clear_bit(xhci, port_array, 1791 faked_port_index, PORT_PLC); 1792 xhci_set_link_state(xhci, port_array, faked_port_index, 1793 XDEV_U0); 1794 /* Need to wait until the next link state change 1795 * indicates the device is actually in U0. 1796 */ 1797 bogus_port_status = true; 1798 goto cleanup; 1799 } else { 1800 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1801 bus_state->resume_done[faked_port_index] = jiffies + 1802 msecs_to_jiffies(20); 1803 set_bit(faked_port_index, &bus_state->resuming_ports); 1804 mod_timer(&hcd->rh_timer, 1805 bus_state->resume_done[faked_port_index]); 1806 /* Do the rest in GetPortStatus */ 1807 } 1808 } 1809 1810 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1811 DEV_SUPERSPEED(temp)) { 1812 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1813 /* We've just brought the device into U0 through either the 1814 * Resume state after a device remote wakeup, or through the 1815 * U3Exit state after a host-initiated resume. If it's a device 1816 * initiated remote wake, don't pass up the link state change, 1817 * so the roothub behavior is consistent with external 1818 * USB 3.0 hub behavior. 1819 */ 1820 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1821 faked_port_index + 1); 1822 if (slot_id && xhci->devs[slot_id]) 1823 xhci_ring_device(xhci, slot_id); 1824 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1825 bus_state->port_remote_wakeup &= 1826 ~(1 << faked_port_index); 1827 xhci_test_and_clear_bit(xhci, port_array, 1828 faked_port_index, PORT_PLC); 1829 usb_wakeup_notification(hcd->self.root_hub, 1830 faked_port_index + 1); 1831 bogus_port_status = true; 1832 goto cleanup; 1833 } 1834 } 1835 1836 /* 1837 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1838 * RExit to a disconnect state). If so, let the the driver know it's 1839 * out of the RExit state. 1840 */ 1841 if (!DEV_SUPERSPEED(temp) && 1842 test_and_clear_bit(faked_port_index, 1843 &bus_state->rexit_ports)) { 1844 complete(&bus_state->rexit_done[faked_port_index]); 1845 bogus_port_status = true; 1846 goto cleanup; 1847 } 1848 1849 if (hcd->speed != HCD_USB3) 1850 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1851 PORT_PLC); 1852 1853 cleanup: 1854 /* Update event ring dequeue pointer before dropping the lock */ 1855 inc_deq(xhci, xhci->event_ring); 1856 1857 /* Don't make the USB core poll the roothub if we got a bad port status 1858 * change event. Besides, at that point we can't tell which roothub 1859 * (USB 2.0 or USB 3.0) to kick. 1860 */ 1861 if (bogus_port_status) 1862 return; 1863 1864 /* 1865 * xHCI port-status-change events occur when the "or" of all the 1866 * status-change bits in the portsc register changes from 0 to 1. 1867 * New status changes won't cause an event if any other change 1868 * bits are still set. When an event occurs, switch over to 1869 * polling to avoid losing status changes. 1870 */ 1871 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1872 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1873 spin_unlock(&xhci->lock); 1874 /* Pass this up to the core */ 1875 usb_hcd_poll_rh_status(hcd); 1876 spin_lock(&xhci->lock); 1877 } 1878 1879 /* 1880 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1881 * at end_trb, which may be in another segment. If the suspect DMA address is a 1882 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1883 * returns 0. 1884 */ 1885 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, 1886 union xhci_trb *start_trb, 1887 union xhci_trb *end_trb, 1888 dma_addr_t suspect_dma) 1889 { 1890 dma_addr_t start_dma; 1891 dma_addr_t end_seg_dma; 1892 dma_addr_t end_trb_dma; 1893 struct xhci_segment *cur_seg; 1894 1895 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1896 cur_seg = start_seg; 1897 1898 do { 1899 if (start_dma == 0) 1900 return NULL; 1901 /* We may get an event for a Link TRB in the middle of a TD */ 1902 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1903 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1904 /* If the end TRB isn't in this segment, this is set to 0 */ 1905 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1906 1907 if (end_trb_dma > 0) { 1908 /* The end TRB is in this segment, so suspect should be here */ 1909 if (start_dma <= end_trb_dma) { 1910 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1911 return cur_seg; 1912 } else { 1913 /* Case for one segment with 1914 * a TD wrapped around to the top 1915 */ 1916 if ((suspect_dma >= start_dma && 1917 suspect_dma <= end_seg_dma) || 1918 (suspect_dma >= cur_seg->dma && 1919 suspect_dma <= end_trb_dma)) 1920 return cur_seg; 1921 } 1922 return NULL; 1923 } else { 1924 /* Might still be somewhere in this segment */ 1925 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1926 return cur_seg; 1927 } 1928 cur_seg = cur_seg->next; 1929 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1930 } while (cur_seg != start_seg); 1931 1932 return NULL; 1933 } 1934 1935 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1936 unsigned int slot_id, unsigned int ep_index, 1937 unsigned int stream_id, 1938 struct xhci_td *td, union xhci_trb *event_trb) 1939 { 1940 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1941 ep->ep_state |= EP_HALTED; 1942 ep->stopped_td = td; 1943 ep->stopped_stream = stream_id; 1944 1945 xhci_queue_reset_ep(xhci, slot_id, ep_index); 1946 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); 1947 1948 ep->stopped_td = NULL; 1949 ep->stopped_stream = 0; 1950 1951 xhci_ring_cmd_db(xhci); 1952 } 1953 1954 /* Check if an error has halted the endpoint ring. The class driver will 1955 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1956 * However, a babble and other errors also halt the endpoint ring, and the class 1957 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1958 * Ring Dequeue Pointer command manually. 1959 */ 1960 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1961 struct xhci_ep_ctx *ep_ctx, 1962 unsigned int trb_comp_code) 1963 { 1964 /* TRB completion codes that may require a manual halt cleanup */ 1965 if (trb_comp_code == COMP_TX_ERR || 1966 trb_comp_code == COMP_BABBLE || 1967 trb_comp_code == COMP_SPLIT_ERR) 1968 /* The 0.96 spec says a babbling control endpoint 1969 * is not halted. The 0.96 spec says it is. Some HW 1970 * claims to be 0.95 compliant, but it halts the control 1971 * endpoint anyway. Check if a babble halted the 1972 * endpoint. 1973 */ 1974 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1975 cpu_to_le32(EP_STATE_HALTED)) 1976 return 1; 1977 1978 return 0; 1979 } 1980 1981 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1982 { 1983 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1984 /* Vendor defined "informational" completion code, 1985 * treat as not-an-error. 1986 */ 1987 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1988 trb_comp_code); 1989 xhci_dbg(xhci, "Treating code as success.\n"); 1990 return 1; 1991 } 1992 return 0; 1993 } 1994 1995 /* 1996 * Finish the td processing, remove the td from td list; 1997 * Return 1 if the urb can be given back. 1998 */ 1999 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 2000 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2001 struct xhci_virt_ep *ep, int *status, bool skip) 2002 { 2003 struct xhci_virt_device *xdev; 2004 struct xhci_ring *ep_ring; 2005 unsigned int slot_id; 2006 int ep_index; 2007 struct urb *urb = NULL; 2008 struct xhci_ep_ctx *ep_ctx; 2009 int ret = 0; 2010 struct urb_priv *urb_priv; 2011 u32 trb_comp_code; 2012 2013 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2014 xdev = xhci->devs[slot_id]; 2015 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2016 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2017 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2018 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2019 2020 if (skip) 2021 goto td_cleanup; 2022 2023 if (trb_comp_code == COMP_STOP_INVAL || 2024 trb_comp_code == COMP_STOP) { 2025 /* The Endpoint Stop Command completion will take care of any 2026 * stopped TDs. A stopped TD may be restarted, so don't update 2027 * the ring dequeue pointer or take this TD off any lists yet. 2028 */ 2029 ep->stopped_td = td; 2030 return 0; 2031 } else { 2032 if (trb_comp_code == COMP_STALL) { 2033 /* The transfer is completed from the driver's 2034 * perspective, but we need to issue a set dequeue 2035 * command for this stalled endpoint to move the dequeue 2036 * pointer past the TD. We can't do that here because 2037 * the halt condition must be cleared first. Let the 2038 * USB class driver clear the stall later. 2039 */ 2040 ep->stopped_td = td; 2041 ep->stopped_stream = ep_ring->stream_id; 2042 } else if (xhci_requires_manual_halt_cleanup(xhci, 2043 ep_ctx, trb_comp_code)) { 2044 /* Other types of errors halt the endpoint, but the 2045 * class driver doesn't call usb_reset_endpoint() unless 2046 * the error is -EPIPE. Clear the halted status in the 2047 * xHCI hardware manually. 2048 */ 2049 xhci_cleanup_halted_endpoint(xhci, 2050 slot_id, ep_index, ep_ring->stream_id, 2051 td, event_trb); 2052 } else { 2053 /* Update ring dequeue pointer */ 2054 while (ep_ring->dequeue != td->last_trb) 2055 inc_deq(xhci, ep_ring); 2056 inc_deq(xhci, ep_ring); 2057 } 2058 2059 td_cleanup: 2060 /* Clean up the endpoint's TD list */ 2061 urb = td->urb; 2062 urb_priv = urb->hcpriv; 2063 2064 /* Do one last check of the actual transfer length. 2065 * If the host controller said we transferred more data than 2066 * the buffer length, urb->actual_length will be a very big 2067 * number (since it's unsigned). Play it safe and say we didn't 2068 * transfer anything. 2069 */ 2070 if (urb->actual_length > urb->transfer_buffer_length) { 2071 xhci_warn(xhci, "URB transfer length is wrong, " 2072 "xHC issue? req. len = %u, " 2073 "act. len = %u\n", 2074 urb->transfer_buffer_length, 2075 urb->actual_length); 2076 urb->actual_length = 0; 2077 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2078 *status = -EREMOTEIO; 2079 else 2080 *status = 0; 2081 } 2082 list_del_init(&td->td_list); 2083 /* Was this TD slated to be cancelled but completed anyway? */ 2084 if (!list_empty(&td->cancelled_td_list)) 2085 list_del_init(&td->cancelled_td_list); 2086 2087 urb_priv->td_cnt++; 2088 /* Giveback the urb when all the tds are completed */ 2089 if (urb_priv->td_cnt == urb_priv->length) { 2090 ret = 1; 2091 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 2092 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 2093 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs 2094 == 0) { 2095 if (xhci->quirks & XHCI_AMD_PLL_FIX) 2096 usb_amd_quirk_pll_enable(); 2097 } 2098 } 2099 } 2100 } 2101 2102 return ret; 2103 } 2104 2105 /* 2106 * Process control tds, update urb status and actual_length. 2107 */ 2108 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 2109 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2110 struct xhci_virt_ep *ep, int *status) 2111 { 2112 struct xhci_virt_device *xdev; 2113 struct xhci_ring *ep_ring; 2114 unsigned int slot_id; 2115 int ep_index; 2116 struct xhci_ep_ctx *ep_ctx; 2117 u32 trb_comp_code; 2118 2119 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2120 xdev = xhci->devs[slot_id]; 2121 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2122 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2123 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2124 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2125 2126 switch (trb_comp_code) { 2127 case COMP_SUCCESS: 2128 if (event_trb == ep_ring->dequeue) { 2129 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 2130 "without IOC set??\n"); 2131 *status = -ESHUTDOWN; 2132 } else if (event_trb != td->last_trb) { 2133 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 2134 "without IOC set??\n"); 2135 *status = -ESHUTDOWN; 2136 } else { 2137 *status = 0; 2138 } 2139 break; 2140 case COMP_SHORT_TX: 2141 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2142 *status = -EREMOTEIO; 2143 else 2144 *status = 0; 2145 break; 2146 case COMP_STOP_INVAL: 2147 case COMP_STOP: 2148 return finish_td(xhci, td, event_trb, event, ep, status, false); 2149 default: 2150 if (!xhci_requires_manual_halt_cleanup(xhci, 2151 ep_ctx, trb_comp_code)) 2152 break; 2153 xhci_dbg(xhci, "TRB error code %u, " 2154 "halted endpoint index = %u\n", 2155 trb_comp_code, ep_index); 2156 /* else fall through */ 2157 case COMP_STALL: 2158 /* Did we transfer part of the data (middle) phase? */ 2159 if (event_trb != ep_ring->dequeue && 2160 event_trb != td->last_trb) 2161 td->urb->actual_length = 2162 td->urb->transfer_buffer_length - 2163 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2164 else 2165 td->urb->actual_length = 0; 2166 2167 xhci_cleanup_halted_endpoint(xhci, 2168 slot_id, ep_index, 0, td, event_trb); 2169 return finish_td(xhci, td, event_trb, event, ep, status, true); 2170 } 2171 /* 2172 * Did we transfer any data, despite the errors that might have 2173 * happened? I.e. did we get past the setup stage? 2174 */ 2175 if (event_trb != ep_ring->dequeue) { 2176 /* The event was for the status stage */ 2177 if (event_trb == td->last_trb) { 2178 if (td->urb->actual_length != 0) { 2179 /* Don't overwrite a previously set error code 2180 */ 2181 if ((*status == -EINPROGRESS || *status == 0) && 2182 (td->urb->transfer_flags 2183 & URB_SHORT_NOT_OK)) 2184 /* Did we already see a short data 2185 * stage? */ 2186 *status = -EREMOTEIO; 2187 } else { 2188 td->urb->actual_length = 2189 td->urb->transfer_buffer_length; 2190 } 2191 } else { 2192 /* Maybe the event was for the data stage? */ 2193 td->urb->actual_length = 2194 td->urb->transfer_buffer_length - 2195 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2196 xhci_dbg(xhci, "Waiting for status " 2197 "stage event\n"); 2198 return 0; 2199 } 2200 } 2201 2202 return finish_td(xhci, td, event_trb, event, ep, status, false); 2203 } 2204 2205 /* 2206 * Process isochronous tds, update urb packet status and actual_length. 2207 */ 2208 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2209 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2210 struct xhci_virt_ep *ep, int *status) 2211 { 2212 struct xhci_ring *ep_ring; 2213 struct urb_priv *urb_priv; 2214 int idx; 2215 int len = 0; 2216 union xhci_trb *cur_trb; 2217 struct xhci_segment *cur_seg; 2218 struct usb_iso_packet_descriptor *frame; 2219 u32 trb_comp_code; 2220 bool skip_td = false; 2221 2222 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2223 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2224 urb_priv = td->urb->hcpriv; 2225 idx = urb_priv->td_cnt; 2226 frame = &td->urb->iso_frame_desc[idx]; 2227 2228 /* handle completion code */ 2229 switch (trb_comp_code) { 2230 case COMP_SUCCESS: 2231 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { 2232 frame->status = 0; 2233 break; 2234 } 2235 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2236 trb_comp_code = COMP_SHORT_TX; 2237 case COMP_SHORT_TX: 2238 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2239 -EREMOTEIO : 0; 2240 break; 2241 case COMP_BW_OVER: 2242 frame->status = -ECOMM; 2243 skip_td = true; 2244 break; 2245 case COMP_BUFF_OVER: 2246 case COMP_BABBLE: 2247 frame->status = -EOVERFLOW; 2248 skip_td = true; 2249 break; 2250 case COMP_DEV_ERR: 2251 case COMP_STALL: 2252 case COMP_TX_ERR: 2253 frame->status = -EPROTO; 2254 skip_td = true; 2255 break; 2256 case COMP_STOP: 2257 case COMP_STOP_INVAL: 2258 break; 2259 default: 2260 frame->status = -1; 2261 break; 2262 } 2263 2264 if (trb_comp_code == COMP_SUCCESS || skip_td) { 2265 frame->actual_length = frame->length; 2266 td->urb->actual_length += frame->length; 2267 } else { 2268 for (cur_trb = ep_ring->dequeue, 2269 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 2270 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2271 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2272 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2273 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2274 } 2275 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2276 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2277 2278 if (trb_comp_code != COMP_STOP_INVAL) { 2279 frame->actual_length = len; 2280 td->urb->actual_length += len; 2281 } 2282 } 2283 2284 return finish_td(xhci, td, event_trb, event, ep, status, false); 2285 } 2286 2287 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2288 struct xhci_transfer_event *event, 2289 struct xhci_virt_ep *ep, int *status) 2290 { 2291 struct xhci_ring *ep_ring; 2292 struct urb_priv *urb_priv; 2293 struct usb_iso_packet_descriptor *frame; 2294 int idx; 2295 2296 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2297 urb_priv = td->urb->hcpriv; 2298 idx = urb_priv->td_cnt; 2299 frame = &td->urb->iso_frame_desc[idx]; 2300 2301 /* The transfer is partly done. */ 2302 frame->status = -EXDEV; 2303 2304 /* calc actual length */ 2305 frame->actual_length = 0; 2306 2307 /* Update ring dequeue pointer */ 2308 while (ep_ring->dequeue != td->last_trb) 2309 inc_deq(xhci, ep_ring); 2310 inc_deq(xhci, ep_ring); 2311 2312 return finish_td(xhci, td, NULL, event, ep, status, true); 2313 } 2314 2315 /* 2316 * Process bulk and interrupt tds, update urb status and actual_length. 2317 */ 2318 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2319 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2320 struct xhci_virt_ep *ep, int *status) 2321 { 2322 struct xhci_ring *ep_ring; 2323 union xhci_trb *cur_trb; 2324 struct xhci_segment *cur_seg; 2325 u32 trb_comp_code; 2326 2327 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2328 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2329 2330 switch (trb_comp_code) { 2331 case COMP_SUCCESS: 2332 /* Double check that the HW transferred everything. */ 2333 if (event_trb != td->last_trb || 2334 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2335 xhci_warn(xhci, "WARN Successful completion " 2336 "on short TX\n"); 2337 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2338 *status = -EREMOTEIO; 2339 else 2340 *status = 0; 2341 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2342 trb_comp_code = COMP_SHORT_TX; 2343 } else { 2344 *status = 0; 2345 } 2346 break; 2347 case COMP_SHORT_TX: 2348 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2349 *status = -EREMOTEIO; 2350 else 2351 *status = 0; 2352 break; 2353 default: 2354 /* Others already handled above */ 2355 break; 2356 } 2357 if (trb_comp_code == COMP_SHORT_TX) 2358 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 2359 "%d bytes untransferred\n", 2360 td->urb->ep->desc.bEndpointAddress, 2361 td->urb->transfer_buffer_length, 2362 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2363 /* Fast path - was this the last TRB in the TD for this URB? */ 2364 if (event_trb == td->last_trb) { 2365 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2366 td->urb->actual_length = 2367 td->urb->transfer_buffer_length - 2368 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2369 if (td->urb->transfer_buffer_length < 2370 td->urb->actual_length) { 2371 xhci_warn(xhci, "HC gave bad length " 2372 "of %d bytes left\n", 2373 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2374 td->urb->actual_length = 0; 2375 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2376 *status = -EREMOTEIO; 2377 else 2378 *status = 0; 2379 } 2380 /* Don't overwrite a previously set error code */ 2381 if (*status == -EINPROGRESS) { 2382 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2383 *status = -EREMOTEIO; 2384 else 2385 *status = 0; 2386 } 2387 } else { 2388 td->urb->actual_length = 2389 td->urb->transfer_buffer_length; 2390 /* Ignore a short packet completion if the 2391 * untransferred length was zero. 2392 */ 2393 if (*status == -EREMOTEIO) 2394 *status = 0; 2395 } 2396 } else { 2397 /* Slow path - walk the list, starting from the dequeue 2398 * pointer, to get the actual length transferred. 2399 */ 2400 td->urb->actual_length = 0; 2401 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 2402 cur_trb != event_trb; 2403 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2404 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2405 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2406 td->urb->actual_length += 2407 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2408 } 2409 /* If the ring didn't stop on a Link or No-op TRB, add 2410 * in the actual bytes transferred from the Normal TRB 2411 */ 2412 if (trb_comp_code != COMP_STOP_INVAL) 2413 td->urb->actual_length += 2414 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2415 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2416 } 2417 2418 return finish_td(xhci, td, event_trb, event, ep, status, false); 2419 } 2420 2421 /* 2422 * If this function returns an error condition, it means it got a Transfer 2423 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2424 * At this point, the host controller is probably hosed and should be reset. 2425 */ 2426 static int handle_tx_event(struct xhci_hcd *xhci, 2427 struct xhci_transfer_event *event) 2428 __releases(&xhci->lock) 2429 __acquires(&xhci->lock) 2430 { 2431 struct xhci_virt_device *xdev; 2432 struct xhci_virt_ep *ep; 2433 struct xhci_ring *ep_ring; 2434 unsigned int slot_id; 2435 int ep_index; 2436 struct xhci_td *td = NULL; 2437 dma_addr_t event_dma; 2438 struct xhci_segment *event_seg; 2439 union xhci_trb *event_trb; 2440 struct urb *urb = NULL; 2441 int status = -EINPROGRESS; 2442 struct urb_priv *urb_priv; 2443 struct xhci_ep_ctx *ep_ctx; 2444 struct list_head *tmp; 2445 u32 trb_comp_code; 2446 int ret = 0; 2447 int td_num = 0; 2448 2449 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2450 xdev = xhci->devs[slot_id]; 2451 if (!xdev) { 2452 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2453 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2454 (unsigned long long) xhci_trb_virt_to_dma( 2455 xhci->event_ring->deq_seg, 2456 xhci->event_ring->dequeue), 2457 lower_32_bits(le64_to_cpu(event->buffer)), 2458 upper_32_bits(le64_to_cpu(event->buffer)), 2459 le32_to_cpu(event->transfer_len), 2460 le32_to_cpu(event->flags)); 2461 xhci_dbg(xhci, "Event ring:\n"); 2462 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2463 return -ENODEV; 2464 } 2465 2466 /* Endpoint ID is 1 based, our index is zero based */ 2467 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2468 ep = &xdev->eps[ep_index]; 2469 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2470 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2471 if (!ep_ring || 2472 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 2473 EP_STATE_DISABLED) { 2474 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2475 "or incorrect stream ring\n"); 2476 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2477 (unsigned long long) xhci_trb_virt_to_dma( 2478 xhci->event_ring->deq_seg, 2479 xhci->event_ring->dequeue), 2480 lower_32_bits(le64_to_cpu(event->buffer)), 2481 upper_32_bits(le64_to_cpu(event->buffer)), 2482 le32_to_cpu(event->transfer_len), 2483 le32_to_cpu(event->flags)); 2484 xhci_dbg(xhci, "Event ring:\n"); 2485 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2486 return -ENODEV; 2487 } 2488 2489 /* Count current td numbers if ep->skip is set */ 2490 if (ep->skip) { 2491 list_for_each(tmp, &ep_ring->td_list) 2492 td_num++; 2493 } 2494 2495 event_dma = le64_to_cpu(event->buffer); 2496 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2497 /* Look for common error cases */ 2498 switch (trb_comp_code) { 2499 /* Skip codes that require special handling depending on 2500 * transfer type 2501 */ 2502 case COMP_SUCCESS: 2503 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2504 break; 2505 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2506 trb_comp_code = COMP_SHORT_TX; 2507 else 2508 xhci_warn_ratelimited(xhci, 2509 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); 2510 case COMP_SHORT_TX: 2511 break; 2512 case COMP_STOP: 2513 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2514 break; 2515 case COMP_STOP_INVAL: 2516 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2517 break; 2518 case COMP_STALL: 2519 xhci_dbg(xhci, "Stalled endpoint\n"); 2520 ep->ep_state |= EP_HALTED; 2521 status = -EPIPE; 2522 break; 2523 case COMP_TRB_ERR: 2524 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2525 status = -EILSEQ; 2526 break; 2527 case COMP_SPLIT_ERR: 2528 case COMP_TX_ERR: 2529 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2530 status = -EPROTO; 2531 break; 2532 case COMP_BABBLE: 2533 xhci_dbg(xhci, "Babble error on endpoint\n"); 2534 status = -EOVERFLOW; 2535 break; 2536 case COMP_DB_ERR: 2537 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2538 status = -ENOSR; 2539 break; 2540 case COMP_BW_OVER: 2541 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2542 break; 2543 case COMP_BUFF_OVER: 2544 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2545 break; 2546 case COMP_UNDERRUN: 2547 /* 2548 * When the Isoch ring is empty, the xHC will generate 2549 * a Ring Overrun Event for IN Isoch endpoint or Ring 2550 * Underrun Event for OUT Isoch endpoint. 2551 */ 2552 xhci_dbg(xhci, "underrun event on endpoint\n"); 2553 if (!list_empty(&ep_ring->td_list)) 2554 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2555 "still with TDs queued?\n", 2556 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2557 ep_index); 2558 goto cleanup; 2559 case COMP_OVERRUN: 2560 xhci_dbg(xhci, "overrun event on endpoint\n"); 2561 if (!list_empty(&ep_ring->td_list)) 2562 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2563 "still with TDs queued?\n", 2564 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2565 ep_index); 2566 goto cleanup; 2567 case COMP_DEV_ERR: 2568 xhci_warn(xhci, "WARN: detect an incompatible device"); 2569 status = -EPROTO; 2570 break; 2571 case COMP_MISSED_INT: 2572 /* 2573 * When encounter missed service error, one or more isoc tds 2574 * may be missed by xHC. 2575 * Set skip flag of the ep_ring; Complete the missed tds as 2576 * short transfer when process the ep_ring next time. 2577 */ 2578 ep->skip = true; 2579 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2580 goto cleanup; 2581 default: 2582 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2583 status = 0; 2584 break; 2585 } 2586 xhci_warn(xhci, "ERROR Unknown event condition, HC probably " 2587 "busted\n"); 2588 goto cleanup; 2589 } 2590 2591 do { 2592 /* This TRB should be in the TD at the head of this ring's 2593 * TD list. 2594 */ 2595 if (list_empty(&ep_ring->td_list)) { 2596 /* 2597 * A stopped endpoint may generate an extra completion 2598 * event if the device was suspended. Don't print 2599 * warnings. 2600 */ 2601 if (!(trb_comp_code == COMP_STOP || 2602 trb_comp_code == COMP_STOP_INVAL)) { 2603 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2604 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2605 ep_index); 2606 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2607 (le32_to_cpu(event->flags) & 2608 TRB_TYPE_BITMASK)>>10); 2609 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2610 } 2611 if (ep->skip) { 2612 ep->skip = false; 2613 xhci_dbg(xhci, "td_list is empty while skip " 2614 "flag set. Clear skip flag.\n"); 2615 } 2616 ret = 0; 2617 goto cleanup; 2618 } 2619 2620 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2621 if (ep->skip && td_num == 0) { 2622 ep->skip = false; 2623 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2624 "Clear skip flag.\n"); 2625 ret = 0; 2626 goto cleanup; 2627 } 2628 2629 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2630 if (ep->skip) 2631 td_num--; 2632 2633 /* Is this a TRB in the currently executing TD? */ 2634 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, 2635 td->last_trb, event_dma); 2636 2637 /* 2638 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2639 * is not in the current TD pointed by ep_ring->dequeue because 2640 * that the hardware dequeue pointer still at the previous TRB 2641 * of the current TD. The previous TRB maybe a Link TD or the 2642 * last TRB of the previous TD. The command completion handle 2643 * will take care the rest. 2644 */ 2645 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) { 2646 ret = 0; 2647 goto cleanup; 2648 } 2649 2650 if (!event_seg) { 2651 if (!ep->skip || 2652 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2653 /* Some host controllers give a spurious 2654 * successful event after a short transfer. 2655 * Ignore it. 2656 */ 2657 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2658 ep_ring->last_td_was_short) { 2659 ep_ring->last_td_was_short = false; 2660 ret = 0; 2661 goto cleanup; 2662 } 2663 /* HC is busted, give up! */ 2664 xhci_err(xhci, 2665 "ERROR Transfer event TRB DMA ptr not " 2666 "part of current TD\n"); 2667 return -ESHUTDOWN; 2668 } 2669 2670 ret = skip_isoc_td(xhci, td, event, ep, &status); 2671 goto cleanup; 2672 } 2673 if (trb_comp_code == COMP_SHORT_TX) 2674 ep_ring->last_td_was_short = true; 2675 else 2676 ep_ring->last_td_was_short = false; 2677 2678 if (ep->skip) { 2679 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2680 ep->skip = false; 2681 } 2682 2683 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2684 sizeof(*event_trb)]; 2685 /* 2686 * No-op TRB should not trigger interrupts. 2687 * If event_trb is a no-op TRB, it means the 2688 * corresponding TD has been cancelled. Just ignore 2689 * the TD. 2690 */ 2691 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2692 xhci_dbg(xhci, 2693 "event_trb is a no-op TRB. Skip it\n"); 2694 goto cleanup; 2695 } 2696 2697 /* Now update the urb's actual_length and give back to 2698 * the core 2699 */ 2700 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2701 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2702 &status); 2703 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2704 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2705 &status); 2706 else 2707 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2708 ep, &status); 2709 2710 cleanup: 2711 /* 2712 * Do not update event ring dequeue pointer if ep->skip is set. 2713 * Will roll back to continue process missed tds. 2714 */ 2715 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2716 inc_deq(xhci, xhci->event_ring); 2717 } 2718 2719 if (ret) { 2720 urb = td->urb; 2721 urb_priv = urb->hcpriv; 2722 /* Leave the TD around for the reset endpoint function 2723 * to use(but only if it's not a control endpoint, 2724 * since we already queued the Set TR dequeue pointer 2725 * command for stalled control endpoints). 2726 */ 2727 if (usb_endpoint_xfer_control(&urb->ep->desc) || 2728 (trb_comp_code != COMP_STALL && 2729 trb_comp_code != COMP_BABBLE)) 2730 xhci_urb_free_priv(xhci, urb_priv); 2731 else 2732 kfree(urb_priv); 2733 2734 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2735 if ((urb->actual_length != urb->transfer_buffer_length && 2736 (urb->transfer_flags & 2737 URB_SHORT_NOT_OK)) || 2738 (status != 0 && 2739 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2740 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2741 "expected = %d, status = %d\n", 2742 urb, urb->actual_length, 2743 urb->transfer_buffer_length, 2744 status); 2745 spin_unlock(&xhci->lock); 2746 /* EHCI, UHCI, and OHCI always unconditionally set the 2747 * urb->status of an isochronous endpoint to 0. 2748 */ 2749 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2750 status = 0; 2751 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2752 spin_lock(&xhci->lock); 2753 } 2754 2755 /* 2756 * If ep->skip is set, it means there are missed tds on the 2757 * endpoint ring need to take care of. 2758 * Process them as short transfer until reach the td pointed by 2759 * the event. 2760 */ 2761 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2762 2763 return 0; 2764 } 2765 2766 /* 2767 * This function handles all OS-owned events on the event ring. It may drop 2768 * xhci->lock between event processing (e.g. to pass up port status changes). 2769 * Returns >0 for "possibly more events to process" (caller should call again), 2770 * otherwise 0 if done. In future, <0 returns should indicate error code. 2771 */ 2772 static int xhci_handle_event(struct xhci_hcd *xhci) 2773 { 2774 union xhci_trb *event; 2775 int update_ptrs = 1; 2776 int ret; 2777 2778 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2779 xhci->error_bitmask |= 1 << 1; 2780 return 0; 2781 } 2782 2783 event = xhci->event_ring->dequeue; 2784 /* Does the HC or OS own the TRB? */ 2785 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2786 xhci->event_ring->cycle_state) { 2787 xhci->error_bitmask |= 1 << 2; 2788 return 0; 2789 } 2790 2791 /* 2792 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2793 * speculative reads of the event's flags/data below. 2794 */ 2795 rmb(); 2796 /* FIXME: Handle more event types. */ 2797 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2798 case TRB_TYPE(TRB_COMPLETION): 2799 handle_cmd_completion(xhci, &event->event_cmd); 2800 break; 2801 case TRB_TYPE(TRB_PORT_STATUS): 2802 handle_port_status(xhci, event); 2803 update_ptrs = 0; 2804 break; 2805 case TRB_TYPE(TRB_TRANSFER): 2806 ret = handle_tx_event(xhci, &event->trans_event); 2807 if (ret < 0) 2808 xhci->error_bitmask |= 1 << 9; 2809 else 2810 update_ptrs = 0; 2811 break; 2812 case TRB_TYPE(TRB_DEV_NOTE): 2813 handle_device_notification(xhci, event); 2814 break; 2815 default: 2816 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2817 TRB_TYPE(48)) 2818 handle_vendor_event(xhci, event); 2819 else 2820 xhci->error_bitmask |= 1 << 3; 2821 } 2822 /* Any of the above functions may drop and re-acquire the lock, so check 2823 * to make sure a watchdog timer didn't mark the host as non-responsive. 2824 */ 2825 if (xhci->xhc_state & XHCI_STATE_DYING) { 2826 xhci_dbg(xhci, "xHCI host dying, returning from " 2827 "event handler.\n"); 2828 return 0; 2829 } 2830 2831 if (update_ptrs) 2832 /* Update SW event ring dequeue pointer */ 2833 inc_deq(xhci, xhci->event_ring); 2834 2835 /* Are there more items on the event ring? Caller will call us again to 2836 * check. 2837 */ 2838 return 1; 2839 } 2840 2841 /* 2842 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2843 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2844 * indicators of an event TRB error, but we check the status *first* to be safe. 2845 */ 2846 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2847 { 2848 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2849 u32 status; 2850 u64 temp_64; 2851 union xhci_trb *event_ring_deq; 2852 dma_addr_t deq; 2853 2854 spin_lock(&xhci->lock); 2855 /* Check if the xHC generated the interrupt, or the irq is shared */ 2856 status = readl(&xhci->op_regs->status); 2857 if (status == 0xffffffff) 2858 goto hw_died; 2859 2860 if (!(status & STS_EINT)) { 2861 spin_unlock(&xhci->lock); 2862 return IRQ_NONE; 2863 } 2864 if (status & STS_FATAL) { 2865 xhci_warn(xhci, "WARNING: Host System Error\n"); 2866 xhci_halt(xhci); 2867 hw_died: 2868 spin_unlock(&xhci->lock); 2869 return -ESHUTDOWN; 2870 } 2871 2872 /* 2873 * Clear the op reg interrupt status first, 2874 * so we can receive interrupts from other MSI-X interrupters. 2875 * Write 1 to clear the interrupt status. 2876 */ 2877 status |= STS_EINT; 2878 writel(status, &xhci->op_regs->status); 2879 /* FIXME when MSI-X is supported and there are multiple vectors */ 2880 /* Clear the MSI-X event interrupt status */ 2881 2882 if (hcd->irq) { 2883 u32 irq_pending; 2884 /* Acknowledge the PCI interrupt */ 2885 irq_pending = readl(&xhci->ir_set->irq_pending); 2886 irq_pending |= IMAN_IP; 2887 writel(irq_pending, &xhci->ir_set->irq_pending); 2888 } 2889 2890 if (xhci->xhc_state & XHCI_STATE_DYING) { 2891 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2892 "Shouldn't IRQs be disabled?\n"); 2893 /* Clear the event handler busy flag (RW1C); 2894 * the event ring should be empty. 2895 */ 2896 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2897 xhci_write_64(xhci, temp_64 | ERST_EHB, 2898 &xhci->ir_set->erst_dequeue); 2899 spin_unlock(&xhci->lock); 2900 2901 return IRQ_HANDLED; 2902 } 2903 2904 event_ring_deq = xhci->event_ring->dequeue; 2905 /* FIXME this should be a delayed service routine 2906 * that clears the EHB. 2907 */ 2908 while (xhci_handle_event(xhci) > 0) {} 2909 2910 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2911 /* If necessary, update the HW's version of the event ring deq ptr. */ 2912 if (event_ring_deq != xhci->event_ring->dequeue) { 2913 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2914 xhci->event_ring->dequeue); 2915 if (deq == 0) 2916 xhci_warn(xhci, "WARN something wrong with SW event " 2917 "ring dequeue ptr.\n"); 2918 /* Update HC event ring dequeue pointer */ 2919 temp_64 &= ERST_PTR_MASK; 2920 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2921 } 2922 2923 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2924 temp_64 |= ERST_EHB; 2925 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2926 2927 spin_unlock(&xhci->lock); 2928 2929 return IRQ_HANDLED; 2930 } 2931 2932 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2933 { 2934 return xhci_irq(hcd); 2935 } 2936 2937 /**** Endpoint Ring Operations ****/ 2938 2939 /* 2940 * Generic function for queueing a TRB on a ring. 2941 * The caller must have checked to make sure there's room on the ring. 2942 * 2943 * @more_trbs_coming: Will you enqueue more TRBs before calling 2944 * prepare_transfer()? 2945 */ 2946 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2947 bool more_trbs_coming, 2948 u32 field1, u32 field2, u32 field3, u32 field4) 2949 { 2950 struct xhci_generic_trb *trb; 2951 2952 trb = &ring->enqueue->generic; 2953 trb->field[0] = cpu_to_le32(field1); 2954 trb->field[1] = cpu_to_le32(field2); 2955 trb->field[2] = cpu_to_le32(field3); 2956 trb->field[3] = cpu_to_le32(field4); 2957 inc_enq(xhci, ring, more_trbs_coming); 2958 } 2959 2960 /* 2961 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2962 * FIXME allocate segments if the ring is full. 2963 */ 2964 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2965 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2966 { 2967 unsigned int num_trbs_needed; 2968 2969 /* Make sure the endpoint has been added to xHC schedule */ 2970 switch (ep_state) { 2971 case EP_STATE_DISABLED: 2972 /* 2973 * USB core changed config/interfaces without notifying us, 2974 * or hardware is reporting the wrong state. 2975 */ 2976 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2977 return -ENOENT; 2978 case EP_STATE_ERROR: 2979 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2980 /* FIXME event handling code for error needs to clear it */ 2981 /* XXX not sure if this should be -ENOENT or not */ 2982 return -EINVAL; 2983 case EP_STATE_HALTED: 2984 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2985 case EP_STATE_STOPPED: 2986 case EP_STATE_RUNNING: 2987 break; 2988 default: 2989 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2990 /* 2991 * FIXME issue Configure Endpoint command to try to get the HC 2992 * back into a known state. 2993 */ 2994 return -EINVAL; 2995 } 2996 2997 while (1) { 2998 if (room_on_ring(xhci, ep_ring, num_trbs)) 2999 break; 3000 3001 if (ep_ring == xhci->cmd_ring) { 3002 xhci_err(xhci, "Do not support expand command ring\n"); 3003 return -ENOMEM; 3004 } 3005 3006 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3007 "ERROR no room on ep ring, try ring expansion"); 3008 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 3009 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 3010 mem_flags)) { 3011 xhci_err(xhci, "Ring expansion failed\n"); 3012 return -ENOMEM; 3013 } 3014 } 3015 3016 if (enqueue_is_link_trb(ep_ring)) { 3017 struct xhci_ring *ring = ep_ring; 3018 union xhci_trb *next; 3019 3020 next = ring->enqueue; 3021 3022 while (last_trb(xhci, ring, ring->enq_seg, next)) { 3023 /* If we're not dealing with 0.95 hardware or isoc rings 3024 * on AMD 0.96 host, clear the chain bit. 3025 */ 3026 if (!xhci_link_trb_quirk(xhci) && 3027 !(ring->type == TYPE_ISOC && 3028 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3029 next->link.control &= cpu_to_le32(~TRB_CHAIN); 3030 else 3031 next->link.control |= cpu_to_le32(TRB_CHAIN); 3032 3033 wmb(); 3034 next->link.control ^= cpu_to_le32(TRB_CYCLE); 3035 3036 /* Toggle the cycle bit after the last ring segment. */ 3037 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 3038 ring->cycle_state = (ring->cycle_state ? 0 : 1); 3039 } 3040 ring->enq_seg = ring->enq_seg->next; 3041 ring->enqueue = ring->enq_seg->trbs; 3042 next = ring->enqueue; 3043 } 3044 } 3045 3046 return 0; 3047 } 3048 3049 static int prepare_transfer(struct xhci_hcd *xhci, 3050 struct xhci_virt_device *xdev, 3051 unsigned int ep_index, 3052 unsigned int stream_id, 3053 unsigned int num_trbs, 3054 struct urb *urb, 3055 unsigned int td_index, 3056 gfp_t mem_flags) 3057 { 3058 int ret; 3059 struct urb_priv *urb_priv; 3060 struct xhci_td *td; 3061 struct xhci_ring *ep_ring; 3062 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3063 3064 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 3065 if (!ep_ring) { 3066 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3067 stream_id); 3068 return -EINVAL; 3069 } 3070 3071 ret = prepare_ring(xhci, ep_ring, 3072 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3073 num_trbs, mem_flags); 3074 if (ret) 3075 return ret; 3076 3077 urb_priv = urb->hcpriv; 3078 td = urb_priv->td[td_index]; 3079 3080 INIT_LIST_HEAD(&td->td_list); 3081 INIT_LIST_HEAD(&td->cancelled_td_list); 3082 3083 if (td_index == 0) { 3084 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3085 if (unlikely(ret)) 3086 return ret; 3087 } 3088 3089 td->urb = urb; 3090 /* Add this TD to the tail of the endpoint ring's TD list */ 3091 list_add_tail(&td->td_list, &ep_ring->td_list); 3092 td->start_seg = ep_ring->enq_seg; 3093 td->first_trb = ep_ring->enqueue; 3094 3095 urb_priv->td[td_index] = td; 3096 3097 return 0; 3098 } 3099 3100 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 3101 { 3102 int num_sgs, num_trbs, running_total, temp, i; 3103 struct scatterlist *sg; 3104 3105 sg = NULL; 3106 num_sgs = urb->num_mapped_sgs; 3107 temp = urb->transfer_buffer_length; 3108 3109 num_trbs = 0; 3110 for_each_sg(urb->sg, sg, num_sgs, i) { 3111 unsigned int len = sg_dma_len(sg); 3112 3113 /* Scatter gather list entries may cross 64KB boundaries */ 3114 running_total = TRB_MAX_BUFF_SIZE - 3115 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 3116 running_total &= TRB_MAX_BUFF_SIZE - 1; 3117 if (running_total != 0) 3118 num_trbs++; 3119 3120 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3121 while (running_total < sg_dma_len(sg) && running_total < temp) { 3122 num_trbs++; 3123 running_total += TRB_MAX_BUFF_SIZE; 3124 } 3125 len = min_t(int, len, temp); 3126 temp -= len; 3127 if (temp == 0) 3128 break; 3129 } 3130 return num_trbs; 3131 } 3132 3133 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 3134 { 3135 if (num_trbs != 0) 3136 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 3137 "TRBs, %d left\n", __func__, 3138 urb->ep->desc.bEndpointAddress, num_trbs); 3139 if (running_total != urb->transfer_buffer_length) 3140 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3141 "queued %#x (%d), asked for %#x (%d)\n", 3142 __func__, 3143 urb->ep->desc.bEndpointAddress, 3144 running_total, running_total, 3145 urb->transfer_buffer_length, 3146 urb->transfer_buffer_length); 3147 } 3148 3149 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3150 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3151 struct xhci_generic_trb *start_trb) 3152 { 3153 /* 3154 * Pass all the TRBs to the hardware at once and make sure this write 3155 * isn't reordered. 3156 */ 3157 wmb(); 3158 if (start_cycle) 3159 start_trb->field[3] |= cpu_to_le32(start_cycle); 3160 else 3161 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3162 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3163 } 3164 3165 /* 3166 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3167 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3168 * (comprised of sg list entries) can take several service intervals to 3169 * transmit. 3170 */ 3171 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3172 struct urb *urb, int slot_id, unsigned int ep_index) 3173 { 3174 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 3175 xhci->devs[slot_id]->out_ctx, ep_index); 3176 int xhci_interval; 3177 int ep_interval; 3178 3179 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3180 ep_interval = urb->interval; 3181 /* Convert to microframes */ 3182 if (urb->dev->speed == USB_SPEED_LOW || 3183 urb->dev->speed == USB_SPEED_FULL) 3184 ep_interval *= 8; 3185 /* FIXME change this to a warning and a suggestion to use the new API 3186 * to set the polling interval (once the API is added). 3187 */ 3188 if (xhci_interval != ep_interval) { 3189 dev_dbg_ratelimited(&urb->dev->dev, 3190 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3191 ep_interval, ep_interval == 1 ? "" : "s", 3192 xhci_interval, xhci_interval == 1 ? "" : "s"); 3193 urb->interval = xhci_interval; 3194 /* Convert back to frames for LS/FS devices */ 3195 if (urb->dev->speed == USB_SPEED_LOW || 3196 urb->dev->speed == USB_SPEED_FULL) 3197 urb->interval /= 8; 3198 } 3199 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3200 } 3201 3202 /* 3203 * The TD size is the number of bytes remaining in the TD (including this TRB), 3204 * right shifted by 10. 3205 * It must fit in bits 21:17, so it can't be bigger than 31. 3206 */ 3207 static u32 xhci_td_remainder(unsigned int remainder) 3208 { 3209 u32 max = (1 << (21 - 17 + 1)) - 1; 3210 3211 if ((remainder >> 10) >= max) 3212 return max << 17; 3213 else 3214 return (remainder >> 10) << 17; 3215 } 3216 3217 /* 3218 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3219 * packets remaining in the TD (*not* including this TRB). 3220 * 3221 * Total TD packet count = total_packet_count = 3222 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3223 * 3224 * Packets transferred up to and including this TRB = packets_transferred = 3225 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3226 * 3227 * TD size = total_packet_count - packets_transferred 3228 * 3229 * It must fit in bits 21:17, so it can't be bigger than 31. 3230 * The last TRB in a TD must have the TD size set to zero. 3231 */ 3232 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 3233 unsigned int total_packet_count, struct urb *urb, 3234 unsigned int num_trbs_left) 3235 { 3236 int packets_transferred; 3237 3238 /* One TRB with a zero-length data packet. */ 3239 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0)) 3240 return 0; 3241 3242 /* All the TRB queueing functions don't count the current TRB in 3243 * running_total. 3244 */ 3245 packets_transferred = (running_total + trb_buff_len) / 3246 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); 3247 3248 if ((total_packet_count - packets_transferred) > 31) 3249 return 31 << 17; 3250 return (total_packet_count - packets_transferred) << 17; 3251 } 3252 3253 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3254 struct urb *urb, int slot_id, unsigned int ep_index) 3255 { 3256 struct xhci_ring *ep_ring; 3257 unsigned int num_trbs; 3258 struct urb_priv *urb_priv; 3259 struct xhci_td *td; 3260 struct scatterlist *sg; 3261 int num_sgs; 3262 int trb_buff_len, this_sg_len, running_total; 3263 unsigned int total_packet_count; 3264 bool first_trb; 3265 u64 addr; 3266 bool more_trbs_coming; 3267 3268 struct xhci_generic_trb *start_trb; 3269 int start_cycle; 3270 3271 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3272 if (!ep_ring) 3273 return -EINVAL; 3274 3275 num_trbs = count_sg_trbs_needed(xhci, urb); 3276 num_sgs = urb->num_mapped_sgs; 3277 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3278 usb_endpoint_maxp(&urb->ep->desc)); 3279 3280 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 3281 ep_index, urb->stream_id, 3282 num_trbs, urb, 0, mem_flags); 3283 if (trb_buff_len < 0) 3284 return trb_buff_len; 3285 3286 urb_priv = urb->hcpriv; 3287 td = urb_priv->td[0]; 3288 3289 /* 3290 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3291 * until we've finished creating all the other TRBs. The ring's cycle 3292 * state may change as we enqueue the other TRBs, so save it too. 3293 */ 3294 start_trb = &ep_ring->enqueue->generic; 3295 start_cycle = ep_ring->cycle_state; 3296 3297 running_total = 0; 3298 /* 3299 * How much data is in the first TRB? 3300 * 3301 * There are three forces at work for TRB buffer pointers and lengths: 3302 * 1. We don't want to walk off the end of this sg-list entry buffer. 3303 * 2. The transfer length that the driver requested may be smaller than 3304 * the amount of memory allocated for this scatter-gather list. 3305 * 3. TRBs buffers can't cross 64KB boundaries. 3306 */ 3307 sg = urb->sg; 3308 addr = (u64) sg_dma_address(sg); 3309 this_sg_len = sg_dma_len(sg); 3310 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 3311 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3312 if (trb_buff_len > urb->transfer_buffer_length) 3313 trb_buff_len = urb->transfer_buffer_length; 3314 3315 first_trb = true; 3316 /* Queue the first TRB, even if it's zero-length */ 3317 do { 3318 u32 field = 0; 3319 u32 length_field = 0; 3320 u32 remainder = 0; 3321 3322 /* Don't change the cycle bit of the first TRB until later */ 3323 if (first_trb) { 3324 first_trb = false; 3325 if (start_cycle == 0) 3326 field |= 0x1; 3327 } else 3328 field |= ep_ring->cycle_state; 3329 3330 /* Chain all the TRBs together; clear the chain bit in the last 3331 * TRB to indicate it's the last TRB in the chain. 3332 */ 3333 if (num_trbs > 1) { 3334 field |= TRB_CHAIN; 3335 } else { 3336 /* FIXME - add check for ZERO_PACKET flag before this */ 3337 td->last_trb = ep_ring->enqueue; 3338 field |= TRB_IOC; 3339 } 3340 3341 /* Only set interrupt on short packet for IN endpoints */ 3342 if (usb_urb_dir_in(urb)) 3343 field |= TRB_ISP; 3344 3345 if (TRB_MAX_BUFF_SIZE - 3346 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 3347 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 3348 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 3349 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 3350 (unsigned int) addr + trb_buff_len); 3351 } 3352 3353 /* Set the TRB length, TD size, and interrupter fields. */ 3354 if (xhci->hci_version < 0x100) { 3355 remainder = xhci_td_remainder( 3356 urb->transfer_buffer_length - 3357 running_total); 3358 } else { 3359 remainder = xhci_v1_0_td_remainder(running_total, 3360 trb_buff_len, total_packet_count, urb, 3361 num_trbs - 1); 3362 } 3363 length_field = TRB_LEN(trb_buff_len) | 3364 remainder | 3365 TRB_INTR_TARGET(0); 3366 3367 if (num_trbs > 1) 3368 more_trbs_coming = true; 3369 else 3370 more_trbs_coming = false; 3371 queue_trb(xhci, ep_ring, more_trbs_coming, 3372 lower_32_bits(addr), 3373 upper_32_bits(addr), 3374 length_field, 3375 field | TRB_TYPE(TRB_NORMAL)); 3376 --num_trbs; 3377 running_total += trb_buff_len; 3378 3379 /* Calculate length for next transfer -- 3380 * Are we done queueing all the TRBs for this sg entry? 3381 */ 3382 this_sg_len -= trb_buff_len; 3383 if (this_sg_len == 0) { 3384 --num_sgs; 3385 if (num_sgs == 0) 3386 break; 3387 sg = sg_next(sg); 3388 addr = (u64) sg_dma_address(sg); 3389 this_sg_len = sg_dma_len(sg); 3390 } else { 3391 addr += trb_buff_len; 3392 } 3393 3394 trb_buff_len = TRB_MAX_BUFF_SIZE - 3395 (addr & (TRB_MAX_BUFF_SIZE - 1)); 3396 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3397 if (running_total + trb_buff_len > urb->transfer_buffer_length) 3398 trb_buff_len = 3399 urb->transfer_buffer_length - running_total; 3400 } while (running_total < urb->transfer_buffer_length); 3401 3402 check_trb_math(urb, num_trbs, running_total); 3403 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3404 start_cycle, start_trb); 3405 return 0; 3406 } 3407 3408 /* This is very similar to what ehci-q.c qtd_fill() does */ 3409 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3410 struct urb *urb, int slot_id, unsigned int ep_index) 3411 { 3412 struct xhci_ring *ep_ring; 3413 struct urb_priv *urb_priv; 3414 struct xhci_td *td; 3415 int num_trbs; 3416 struct xhci_generic_trb *start_trb; 3417 bool first_trb; 3418 bool more_trbs_coming; 3419 int start_cycle; 3420 u32 field, length_field; 3421 3422 int running_total, trb_buff_len, ret; 3423 unsigned int total_packet_count; 3424 u64 addr; 3425 3426 if (urb->num_sgs) 3427 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 3428 3429 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3430 if (!ep_ring) 3431 return -EINVAL; 3432 3433 num_trbs = 0; 3434 /* How much data is (potentially) left before the 64KB boundary? */ 3435 running_total = TRB_MAX_BUFF_SIZE - 3436 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3437 running_total &= TRB_MAX_BUFF_SIZE - 1; 3438 3439 /* If there's some data on this 64KB chunk, or we have to send a 3440 * zero-length transfer, we need at least one TRB 3441 */ 3442 if (running_total != 0 || urb->transfer_buffer_length == 0) 3443 num_trbs++; 3444 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3445 while (running_total < urb->transfer_buffer_length) { 3446 num_trbs++; 3447 running_total += TRB_MAX_BUFF_SIZE; 3448 } 3449 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 3450 3451 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3452 ep_index, urb->stream_id, 3453 num_trbs, urb, 0, mem_flags); 3454 if (ret < 0) 3455 return ret; 3456 3457 urb_priv = urb->hcpriv; 3458 td = urb_priv->td[0]; 3459 3460 /* 3461 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3462 * until we've finished creating all the other TRBs. The ring's cycle 3463 * state may change as we enqueue the other TRBs, so save it too. 3464 */ 3465 start_trb = &ep_ring->enqueue->generic; 3466 start_cycle = ep_ring->cycle_state; 3467 3468 running_total = 0; 3469 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3470 usb_endpoint_maxp(&urb->ep->desc)); 3471 /* How much data is in the first TRB? */ 3472 addr = (u64) urb->transfer_dma; 3473 trb_buff_len = TRB_MAX_BUFF_SIZE - 3474 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3475 if (trb_buff_len > urb->transfer_buffer_length) 3476 trb_buff_len = urb->transfer_buffer_length; 3477 3478 first_trb = true; 3479 3480 /* Queue the first TRB, even if it's zero-length */ 3481 do { 3482 u32 remainder = 0; 3483 field = 0; 3484 3485 /* Don't change the cycle bit of the first TRB until later */ 3486 if (first_trb) { 3487 first_trb = false; 3488 if (start_cycle == 0) 3489 field |= 0x1; 3490 } else 3491 field |= ep_ring->cycle_state; 3492 3493 /* Chain all the TRBs together; clear the chain bit in the last 3494 * TRB to indicate it's the last TRB in the chain. 3495 */ 3496 if (num_trbs > 1) { 3497 field |= TRB_CHAIN; 3498 } else { 3499 /* FIXME - add check for ZERO_PACKET flag before this */ 3500 td->last_trb = ep_ring->enqueue; 3501 field |= TRB_IOC; 3502 } 3503 3504 /* Only set interrupt on short packet for IN endpoints */ 3505 if (usb_urb_dir_in(urb)) 3506 field |= TRB_ISP; 3507 3508 /* Set the TRB length, TD size, and interrupter fields. */ 3509 if (xhci->hci_version < 0x100) { 3510 remainder = xhci_td_remainder( 3511 urb->transfer_buffer_length - 3512 running_total); 3513 } else { 3514 remainder = xhci_v1_0_td_remainder(running_total, 3515 trb_buff_len, total_packet_count, urb, 3516 num_trbs - 1); 3517 } 3518 length_field = TRB_LEN(trb_buff_len) | 3519 remainder | 3520 TRB_INTR_TARGET(0); 3521 3522 if (num_trbs > 1) 3523 more_trbs_coming = true; 3524 else 3525 more_trbs_coming = false; 3526 queue_trb(xhci, ep_ring, more_trbs_coming, 3527 lower_32_bits(addr), 3528 upper_32_bits(addr), 3529 length_field, 3530 field | TRB_TYPE(TRB_NORMAL)); 3531 --num_trbs; 3532 running_total += trb_buff_len; 3533 3534 /* Calculate length for next transfer */ 3535 addr += trb_buff_len; 3536 trb_buff_len = urb->transfer_buffer_length - running_total; 3537 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 3538 trb_buff_len = TRB_MAX_BUFF_SIZE; 3539 } while (running_total < urb->transfer_buffer_length); 3540 3541 check_trb_math(urb, num_trbs, running_total); 3542 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3543 start_cycle, start_trb); 3544 return 0; 3545 } 3546 3547 /* Caller must have locked xhci->lock */ 3548 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3549 struct urb *urb, int slot_id, unsigned int ep_index) 3550 { 3551 struct xhci_ring *ep_ring; 3552 int num_trbs; 3553 int ret; 3554 struct usb_ctrlrequest *setup; 3555 struct xhci_generic_trb *start_trb; 3556 int start_cycle; 3557 u32 field, length_field; 3558 struct urb_priv *urb_priv; 3559 struct xhci_td *td; 3560 3561 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3562 if (!ep_ring) 3563 return -EINVAL; 3564 3565 /* 3566 * Need to copy setup packet into setup TRB, so we can't use the setup 3567 * DMA address. 3568 */ 3569 if (!urb->setup_packet) 3570 return -EINVAL; 3571 3572 /* 1 TRB for setup, 1 for status */ 3573 num_trbs = 2; 3574 /* 3575 * Don't need to check if we need additional event data and normal TRBs, 3576 * since data in control transfers will never get bigger than 16MB 3577 * XXX: can we get a buffer that crosses 64KB boundaries? 3578 */ 3579 if (urb->transfer_buffer_length > 0) 3580 num_trbs++; 3581 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3582 ep_index, urb->stream_id, 3583 num_trbs, urb, 0, mem_flags); 3584 if (ret < 0) 3585 return ret; 3586 3587 urb_priv = urb->hcpriv; 3588 td = urb_priv->td[0]; 3589 3590 /* 3591 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3592 * until we've finished creating all the other TRBs. The ring's cycle 3593 * state may change as we enqueue the other TRBs, so save it too. 3594 */ 3595 start_trb = &ep_ring->enqueue->generic; 3596 start_cycle = ep_ring->cycle_state; 3597 3598 /* Queue setup TRB - see section 6.4.1.2.1 */ 3599 /* FIXME better way to translate setup_packet into two u32 fields? */ 3600 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3601 field = 0; 3602 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3603 if (start_cycle == 0) 3604 field |= 0x1; 3605 3606 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ 3607 if (xhci->hci_version == 0x100) { 3608 if (urb->transfer_buffer_length > 0) { 3609 if (setup->bRequestType & USB_DIR_IN) 3610 field |= TRB_TX_TYPE(TRB_DATA_IN); 3611 else 3612 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3613 } 3614 } 3615 3616 queue_trb(xhci, ep_ring, true, 3617 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3618 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3619 TRB_LEN(8) | TRB_INTR_TARGET(0), 3620 /* Immediate data in pointer */ 3621 field); 3622 3623 /* If there's data, queue data TRBs */ 3624 /* Only set interrupt on short packet for IN endpoints */ 3625 if (usb_urb_dir_in(urb)) 3626 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3627 else 3628 field = TRB_TYPE(TRB_DATA); 3629 3630 length_field = TRB_LEN(urb->transfer_buffer_length) | 3631 xhci_td_remainder(urb->transfer_buffer_length) | 3632 TRB_INTR_TARGET(0); 3633 if (urb->transfer_buffer_length > 0) { 3634 if (setup->bRequestType & USB_DIR_IN) 3635 field |= TRB_DIR_IN; 3636 queue_trb(xhci, ep_ring, true, 3637 lower_32_bits(urb->transfer_dma), 3638 upper_32_bits(urb->transfer_dma), 3639 length_field, 3640 field | ep_ring->cycle_state); 3641 } 3642 3643 /* Save the DMA address of the last TRB in the TD */ 3644 td->last_trb = ep_ring->enqueue; 3645 3646 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3647 /* If the device sent data, the status stage is an OUT transfer */ 3648 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3649 field = 0; 3650 else 3651 field = TRB_DIR_IN; 3652 queue_trb(xhci, ep_ring, false, 3653 0, 3654 0, 3655 TRB_INTR_TARGET(0), 3656 /* Event on completion */ 3657 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3658 3659 giveback_first_trb(xhci, slot_id, ep_index, 0, 3660 start_cycle, start_trb); 3661 return 0; 3662 } 3663 3664 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3665 struct urb *urb, int i) 3666 { 3667 int num_trbs = 0; 3668 u64 addr, td_len; 3669 3670 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3671 td_len = urb->iso_frame_desc[i].length; 3672 3673 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3674 TRB_MAX_BUFF_SIZE); 3675 if (num_trbs == 0) 3676 num_trbs++; 3677 3678 return num_trbs; 3679 } 3680 3681 /* 3682 * The transfer burst count field of the isochronous TRB defines the number of 3683 * bursts that are required to move all packets in this TD. Only SuperSpeed 3684 * devices can burst up to bMaxBurst number of packets per service interval. 3685 * This field is zero based, meaning a value of zero in the field means one 3686 * burst. Basically, for everything but SuperSpeed devices, this field will be 3687 * zero. Only xHCI 1.0 host controllers support this field. 3688 */ 3689 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3690 struct usb_device *udev, 3691 struct urb *urb, unsigned int total_packet_count) 3692 { 3693 unsigned int max_burst; 3694 3695 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3696 return 0; 3697 3698 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3699 return roundup(total_packet_count, max_burst + 1) - 1; 3700 } 3701 3702 /* 3703 * Returns the number of packets in the last "burst" of packets. This field is 3704 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3705 * the last burst packet count is equal to the total number of packets in the 3706 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3707 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3708 * contain 1 to (bMaxBurst + 1) packets. 3709 */ 3710 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3711 struct usb_device *udev, 3712 struct urb *urb, unsigned int total_packet_count) 3713 { 3714 unsigned int max_burst; 3715 unsigned int residue; 3716 3717 if (xhci->hci_version < 0x100) 3718 return 0; 3719 3720 switch (udev->speed) { 3721 case USB_SPEED_SUPER: 3722 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3723 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3724 residue = total_packet_count % (max_burst + 1); 3725 /* If residue is zero, the last burst contains (max_burst + 1) 3726 * number of packets, but the TLBPC field is zero-based. 3727 */ 3728 if (residue == 0) 3729 return max_burst; 3730 return residue - 1; 3731 default: 3732 if (total_packet_count == 0) 3733 return 0; 3734 return total_packet_count - 1; 3735 } 3736 } 3737 3738 /* This is for isoc transfer */ 3739 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3740 struct urb *urb, int slot_id, unsigned int ep_index) 3741 { 3742 struct xhci_ring *ep_ring; 3743 struct urb_priv *urb_priv; 3744 struct xhci_td *td; 3745 int num_tds, trbs_per_td; 3746 struct xhci_generic_trb *start_trb; 3747 bool first_trb; 3748 int start_cycle; 3749 u32 field, length_field; 3750 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3751 u64 start_addr, addr; 3752 int i, j; 3753 bool more_trbs_coming; 3754 3755 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3756 3757 num_tds = urb->number_of_packets; 3758 if (num_tds < 1) { 3759 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3760 return -EINVAL; 3761 } 3762 3763 start_addr = (u64) urb->transfer_dma; 3764 start_trb = &ep_ring->enqueue->generic; 3765 start_cycle = ep_ring->cycle_state; 3766 3767 urb_priv = urb->hcpriv; 3768 /* Queue the first TRB, even if it's zero-length */ 3769 for (i = 0; i < num_tds; i++) { 3770 unsigned int total_packet_count; 3771 unsigned int burst_count; 3772 unsigned int residue; 3773 3774 first_trb = true; 3775 running_total = 0; 3776 addr = start_addr + urb->iso_frame_desc[i].offset; 3777 td_len = urb->iso_frame_desc[i].length; 3778 td_remain_len = td_len; 3779 total_packet_count = DIV_ROUND_UP(td_len, 3780 GET_MAX_PACKET( 3781 usb_endpoint_maxp(&urb->ep->desc))); 3782 /* A zero-length transfer still involves at least one packet. */ 3783 if (total_packet_count == 0) 3784 total_packet_count++; 3785 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3786 total_packet_count); 3787 residue = xhci_get_last_burst_packet_count(xhci, 3788 urb->dev, urb, total_packet_count); 3789 3790 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3791 3792 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3793 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3794 if (ret < 0) { 3795 if (i == 0) 3796 return ret; 3797 goto cleanup; 3798 } 3799 3800 td = urb_priv->td[i]; 3801 for (j = 0; j < trbs_per_td; j++) { 3802 u32 remainder = 0; 3803 field = 0; 3804 3805 if (first_trb) { 3806 field = TRB_TBC(burst_count) | 3807 TRB_TLBPC(residue); 3808 /* Queue the isoc TRB */ 3809 field |= TRB_TYPE(TRB_ISOC); 3810 /* Assume URB_ISO_ASAP is set */ 3811 field |= TRB_SIA; 3812 if (i == 0) { 3813 if (start_cycle == 0) 3814 field |= 0x1; 3815 } else 3816 field |= ep_ring->cycle_state; 3817 first_trb = false; 3818 } else { 3819 /* Queue other normal TRBs */ 3820 field |= TRB_TYPE(TRB_NORMAL); 3821 field |= ep_ring->cycle_state; 3822 } 3823 3824 /* Only set interrupt on short packet for IN EPs */ 3825 if (usb_urb_dir_in(urb)) 3826 field |= TRB_ISP; 3827 3828 /* Chain all the TRBs together; clear the chain bit in 3829 * the last TRB to indicate it's the last TRB in the 3830 * chain. 3831 */ 3832 if (j < trbs_per_td - 1) { 3833 field |= TRB_CHAIN; 3834 more_trbs_coming = true; 3835 } else { 3836 td->last_trb = ep_ring->enqueue; 3837 field |= TRB_IOC; 3838 if (xhci->hci_version == 0x100 && 3839 !(xhci->quirks & 3840 XHCI_AVOID_BEI)) { 3841 /* Set BEI bit except for the last td */ 3842 if (i < num_tds - 1) 3843 field |= TRB_BEI; 3844 } 3845 more_trbs_coming = false; 3846 } 3847 3848 /* Calculate TRB length */ 3849 trb_buff_len = TRB_MAX_BUFF_SIZE - 3850 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3851 if (trb_buff_len > td_remain_len) 3852 trb_buff_len = td_remain_len; 3853 3854 /* Set the TRB length, TD size, & interrupter fields. */ 3855 if (xhci->hci_version < 0x100) { 3856 remainder = xhci_td_remainder( 3857 td_len - running_total); 3858 } else { 3859 remainder = xhci_v1_0_td_remainder( 3860 running_total, trb_buff_len, 3861 total_packet_count, urb, 3862 (trbs_per_td - j - 1)); 3863 } 3864 length_field = TRB_LEN(trb_buff_len) | 3865 remainder | 3866 TRB_INTR_TARGET(0); 3867 3868 queue_trb(xhci, ep_ring, more_trbs_coming, 3869 lower_32_bits(addr), 3870 upper_32_bits(addr), 3871 length_field, 3872 field); 3873 running_total += trb_buff_len; 3874 3875 addr += trb_buff_len; 3876 td_remain_len -= trb_buff_len; 3877 } 3878 3879 /* Check TD length */ 3880 if (running_total != td_len) { 3881 xhci_err(xhci, "ISOC TD length unmatch\n"); 3882 ret = -EINVAL; 3883 goto cleanup; 3884 } 3885 } 3886 3887 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3888 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3889 usb_amd_quirk_pll_disable(); 3890 } 3891 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3892 3893 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3894 start_cycle, start_trb); 3895 return 0; 3896 cleanup: 3897 /* Clean up a partially enqueued isoc transfer. */ 3898 3899 for (i--; i >= 0; i--) 3900 list_del_init(&urb_priv->td[i]->td_list); 3901 3902 /* Use the first TD as a temporary variable to turn the TDs we've queued 3903 * into No-ops with a software-owned cycle bit. That way the hardware 3904 * won't accidentally start executing bogus TDs when we partially 3905 * overwrite them. td->first_trb and td->start_seg are already set. 3906 */ 3907 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3908 /* Every TRB except the first & last will have its cycle bit flipped. */ 3909 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3910 3911 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3912 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3913 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3914 ep_ring->cycle_state = start_cycle; 3915 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3916 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3917 return ret; 3918 } 3919 3920 /* 3921 * Check transfer ring to guarantee there is enough room for the urb. 3922 * Update ISO URB start_frame and interval. 3923 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3924 * update the urb->start_frame by now. 3925 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3926 */ 3927 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3928 struct urb *urb, int slot_id, unsigned int ep_index) 3929 { 3930 struct xhci_virt_device *xdev; 3931 struct xhci_ring *ep_ring; 3932 struct xhci_ep_ctx *ep_ctx; 3933 int start_frame; 3934 int xhci_interval; 3935 int ep_interval; 3936 int num_tds, num_trbs, i; 3937 int ret; 3938 3939 xdev = xhci->devs[slot_id]; 3940 ep_ring = xdev->eps[ep_index].ring; 3941 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3942 3943 num_trbs = 0; 3944 num_tds = urb->number_of_packets; 3945 for (i = 0; i < num_tds; i++) 3946 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3947 3948 /* Check the ring to guarantee there is enough room for the whole urb. 3949 * Do not insert any td of the urb to the ring if the check failed. 3950 */ 3951 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3952 num_trbs, mem_flags); 3953 if (ret) 3954 return ret; 3955 3956 start_frame = readl(&xhci->run_regs->microframe_index); 3957 start_frame &= 0x3fff; 3958 3959 urb->start_frame = start_frame; 3960 if (urb->dev->speed == USB_SPEED_LOW || 3961 urb->dev->speed == USB_SPEED_FULL) 3962 urb->start_frame >>= 3; 3963 3964 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3965 ep_interval = urb->interval; 3966 /* Convert to microframes */ 3967 if (urb->dev->speed == USB_SPEED_LOW || 3968 urb->dev->speed == USB_SPEED_FULL) 3969 ep_interval *= 8; 3970 /* FIXME change this to a warning and a suggestion to use the new API 3971 * to set the polling interval (once the API is added). 3972 */ 3973 if (xhci_interval != ep_interval) { 3974 dev_dbg_ratelimited(&urb->dev->dev, 3975 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3976 ep_interval, ep_interval == 1 ? "" : "s", 3977 xhci_interval, xhci_interval == 1 ? "" : "s"); 3978 urb->interval = xhci_interval; 3979 /* Convert back to frames for LS/FS devices */ 3980 if (urb->dev->speed == USB_SPEED_LOW || 3981 urb->dev->speed == USB_SPEED_FULL) 3982 urb->interval /= 8; 3983 } 3984 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3985 3986 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3987 } 3988 3989 /**** Command Ring Operations ****/ 3990 3991 /* Generic function for queueing a command TRB on the command ring. 3992 * Check to make sure there's room on the command ring for one command TRB. 3993 * Also check that there's room reserved for commands that must not fail. 3994 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3995 * then only check for the number of reserved spots. 3996 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3997 * because the command event handler may want to resubmit a failed command. 3998 */ 3999 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, 4000 u32 field3, u32 field4, bool command_must_succeed) 4001 { 4002 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4003 int ret; 4004 4005 if (!command_must_succeed) 4006 reserved_trbs++; 4007 4008 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4009 reserved_trbs, GFP_ATOMIC); 4010 if (ret < 0) { 4011 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4012 if (command_must_succeed) 4013 xhci_err(xhci, "ERR: Reserved TRB counting for " 4014 "unfailable commands failed.\n"); 4015 return ret; 4016 } 4017 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4018 field4 | xhci->cmd_ring->cycle_state); 4019 return 0; 4020 } 4021 4022 /* Queue a slot enable or disable request on the command ring */ 4023 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) 4024 { 4025 return queue_command(xhci, 0, 0, 0, 4026 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4027 } 4028 4029 /* Queue an address device command TRB */ 4030 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 4031 u32 slot_id, enum xhci_setup_dev setup) 4032 { 4033 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 4034 upper_32_bits(in_ctx_ptr), 0, 4035 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4036 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4037 } 4038 4039 int xhci_queue_vendor_command(struct xhci_hcd *xhci, 4040 u32 field1, u32 field2, u32 field3, u32 field4) 4041 { 4042 return queue_command(xhci, field1, field2, field3, field4, false); 4043 } 4044 4045 /* Queue a reset device command TRB */ 4046 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id) 4047 { 4048 return queue_command(xhci, 0, 0, 0, 4049 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4050 false); 4051 } 4052 4053 /* Queue a configure endpoint command TRB */ 4054 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 4055 u32 slot_id, bool command_must_succeed) 4056 { 4057 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 4058 upper_32_bits(in_ctx_ptr), 0, 4059 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4060 command_must_succeed); 4061 } 4062 4063 /* Queue an evaluate context command TRB */ 4064 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 4065 u32 slot_id, bool command_must_succeed) 4066 { 4067 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 4068 upper_32_bits(in_ctx_ptr), 0, 4069 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4070 command_must_succeed); 4071 } 4072 4073 /* 4074 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4075 * activity on an endpoint that is about to be suspended. 4076 */ 4077 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, 4078 unsigned int ep_index, int suspend) 4079 { 4080 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4081 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4082 u32 type = TRB_TYPE(TRB_STOP_RING); 4083 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4084 4085 return queue_command(xhci, 0, 0, 0, 4086 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4087 } 4088 4089 /* Set Transfer Ring Dequeue Pointer command. 4090 * This should not be used for endpoints that have streams enabled. 4091 */ 4092 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 4093 unsigned int ep_index, unsigned int stream_id, 4094 struct xhci_segment *deq_seg, 4095 union xhci_trb *deq_ptr, u32 cycle_state) 4096 { 4097 dma_addr_t addr; 4098 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4099 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4100 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 4101 u32 trb_sct = 0; 4102 u32 type = TRB_TYPE(TRB_SET_DEQ); 4103 struct xhci_virt_ep *ep; 4104 4105 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); 4106 if (addr == 0) { 4107 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4108 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4109 deq_seg, deq_ptr); 4110 return 0; 4111 } 4112 ep = &xhci->devs[slot_id]->eps[ep_index]; 4113 if ((ep->ep_state & SET_DEQ_PENDING)) { 4114 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4115 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4116 return 0; 4117 } 4118 ep->queued_deq_seg = deq_seg; 4119 ep->queued_deq_ptr = deq_ptr; 4120 if (stream_id) 4121 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 4122 return queue_command(xhci, lower_32_bits(addr) | trb_sct | cycle_state, 4123 upper_32_bits(addr), trb_stream_id, 4124 trb_slot_id | trb_ep_index | type, false); 4125 } 4126 4127 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, 4128 unsigned int ep_index) 4129 { 4130 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4131 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4132 u32 type = TRB_TYPE(TRB_RESET_EP); 4133 4134 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, 4135 false); 4136 } 4137