1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 72 struct xhci_virt_device *virt_dev, 73 struct xhci_event_cmd *event); 74 75 /* 76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 77 * address of the TRB. 78 */ 79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 80 union xhci_trb *trb) 81 { 82 unsigned long segment_offset; 83 84 if (!seg || !trb || trb < seg->trbs) 85 return 0; 86 /* offset in TRBs */ 87 segment_offset = trb - seg->trbs; 88 if (segment_offset > TRBS_PER_SEGMENT) 89 return 0; 90 return seg->dma + (segment_offset * sizeof(*trb)); 91 } 92 93 /* Does this link TRB point to the first segment in a ring, 94 * or was the previous TRB the last TRB on the last segment in the ERST? 95 */ 96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 97 struct xhci_segment *seg, union xhci_trb *trb) 98 { 99 if (ring == xhci->event_ring) 100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 101 (seg->next == xhci->event_ring->first_seg); 102 else 103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 104 } 105 106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 107 * segment? I.e. would the updated event TRB pointer step off the end of the 108 * event seg? 109 */ 110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 111 struct xhci_segment *seg, union xhci_trb *trb) 112 { 113 if (ring == xhci->event_ring) 114 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 115 else 116 return TRB_TYPE_LINK_LE32(trb->link.control); 117 } 118 119 static int enqueue_is_link_trb(struct xhci_ring *ring) 120 { 121 struct xhci_link_trb *link = &ring->enqueue->link; 122 return TRB_TYPE_LINK_LE32(link->control); 123 } 124 125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 126 * TRB is in a new segment. This does not skip over link TRBs, and it does not 127 * effect the ring dequeue or enqueue pointers. 128 */ 129 static void next_trb(struct xhci_hcd *xhci, 130 struct xhci_ring *ring, 131 struct xhci_segment **seg, 132 union xhci_trb **trb) 133 { 134 if (last_trb(xhci, ring, *seg, *trb)) { 135 *seg = (*seg)->next; 136 *trb = ((*seg)->trbs); 137 } else { 138 (*trb)++; 139 } 140 } 141 142 /* 143 * See Cycle bit rules. SW is the consumer for the event ring only. 144 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 145 */ 146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 147 { 148 union xhci_trb *next; 149 unsigned long long addr; 150 151 ring->deq_updates++; 152 153 /* If this is not event ring, there is one more usable TRB */ 154 if (ring->type != TYPE_EVENT && 155 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) 156 ring->num_trbs_free++; 157 next = ++(ring->dequeue); 158 159 /* Update the dequeue pointer further if that was a link TRB or we're at 160 * the end of an event ring segment (which doesn't have link TRBS) 161 */ 162 while (last_trb(xhci, ring, ring->deq_seg, next)) { 163 if (ring->type == TYPE_EVENT && last_trb_on_last_seg(xhci, 164 ring, ring->deq_seg, next)) { 165 ring->cycle_state = (ring->cycle_state ? 0 : 1); 166 } 167 ring->deq_seg = ring->deq_seg->next; 168 ring->dequeue = ring->deq_seg->trbs; 169 next = ring->dequeue; 170 } 171 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue); 172 } 173 174 /* 175 * See Cycle bit rules. SW is the consumer for the event ring only. 176 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 177 * 178 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 179 * chain bit is set), then set the chain bit in all the following link TRBs. 180 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 181 * have their chain bit cleared (so that each Link TRB is a separate TD). 182 * 183 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 184 * set, but other sections talk about dealing with the chain bit set. This was 185 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 186 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 187 * 188 * @more_trbs_coming: Will you enqueue more TRBs before calling 189 * prepare_transfer()? 190 */ 191 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 192 bool more_trbs_coming) 193 { 194 u32 chain; 195 union xhci_trb *next; 196 unsigned long long addr; 197 198 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 199 /* If this is not event ring, there is one less usable TRB */ 200 if (ring->type != TYPE_EVENT && 201 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue)) 202 ring->num_trbs_free--; 203 next = ++(ring->enqueue); 204 205 ring->enq_updates++; 206 /* Update the dequeue pointer further if that was a link TRB or we're at 207 * the end of an event ring segment (which doesn't have link TRBS) 208 */ 209 while (last_trb(xhci, ring, ring->enq_seg, next)) { 210 if (ring->type != TYPE_EVENT) { 211 /* 212 * If the caller doesn't plan on enqueueing more 213 * TDs before ringing the doorbell, then we 214 * don't want to give the link TRB to the 215 * hardware just yet. We'll give the link TRB 216 * back in prepare_ring() just before we enqueue 217 * the TD at the top of the ring. 218 */ 219 if (!chain && !more_trbs_coming) 220 break; 221 222 /* If we're not dealing with 0.95 hardware or 223 * isoc rings on AMD 0.96 host, 224 * carry over the chain bit of the previous TRB 225 * (which may mean the chain bit is cleared). 226 */ 227 if (!(ring->type == TYPE_ISOC && 228 (xhci->quirks & XHCI_AMD_0x96_HOST)) 229 && !xhci_link_trb_quirk(xhci)) { 230 next->link.control &= 231 cpu_to_le32(~TRB_CHAIN); 232 next->link.control |= 233 cpu_to_le32(chain); 234 } 235 /* Give this link TRB to the hardware */ 236 wmb(); 237 next->link.control ^= cpu_to_le32(TRB_CYCLE); 238 239 /* Toggle the cycle bit after the last ring segment. */ 240 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 241 ring->cycle_state = (ring->cycle_state ? 0 : 1); 242 } 243 } 244 ring->enq_seg = ring->enq_seg->next; 245 ring->enqueue = ring->enq_seg->trbs; 246 next = ring->enqueue; 247 } 248 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue); 249 } 250 251 /* 252 * Check to see if there's room to enqueue num_trbs on the ring and make sure 253 * enqueue pointer will not advance into dequeue segment. See rules above. 254 */ 255 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 256 unsigned int num_trbs) 257 { 258 int num_trbs_in_deq_seg; 259 260 if (ring->num_trbs_free < num_trbs) 261 return 0; 262 263 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 264 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 265 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 266 return 0; 267 } 268 269 return 1; 270 } 271 272 /* Ring the host controller doorbell after placing a command on the ring */ 273 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 274 { 275 xhci_dbg(xhci, "// Ding dong!\n"); 276 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]); 277 /* Flush PCI posted writes */ 278 xhci_readl(xhci, &xhci->dba->doorbell[0]); 279 } 280 281 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 282 unsigned int slot_id, 283 unsigned int ep_index, 284 unsigned int stream_id) 285 { 286 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 287 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 288 unsigned int ep_state = ep->ep_state; 289 290 /* Don't ring the doorbell for this endpoint if there are pending 291 * cancellations because we don't want to interrupt processing. 292 * We don't want to restart any stream rings if there's a set dequeue 293 * pointer command pending because the device can choose to start any 294 * stream once the endpoint is on the HW schedule. 295 * FIXME - check all the stream rings for pending cancellations. 296 */ 297 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 298 (ep_state & EP_HALTED)) 299 return; 300 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr); 301 /* The CPU has better things to do at this point than wait for a 302 * write-posting flush. It'll get there soon enough. 303 */ 304 } 305 306 /* Ring the doorbell for any rings with pending URBs */ 307 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 308 unsigned int slot_id, 309 unsigned int ep_index) 310 { 311 unsigned int stream_id; 312 struct xhci_virt_ep *ep; 313 314 ep = &xhci->devs[slot_id]->eps[ep_index]; 315 316 /* A ring has pending URBs if its TD list is not empty */ 317 if (!(ep->ep_state & EP_HAS_STREAMS)) { 318 if (!(list_empty(&ep->ring->td_list))) 319 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 320 return; 321 } 322 323 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 324 stream_id++) { 325 struct xhci_stream_info *stream_info = ep->stream_info; 326 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 327 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 328 stream_id); 329 } 330 } 331 332 /* 333 * Find the segment that trb is in. Start searching in start_seg. 334 * If we must move past a segment that has a link TRB with a toggle cycle state 335 * bit set, then we will toggle the value pointed at by cycle_state. 336 */ 337 static struct xhci_segment *find_trb_seg( 338 struct xhci_segment *start_seg, 339 union xhci_trb *trb, int *cycle_state) 340 { 341 struct xhci_segment *cur_seg = start_seg; 342 struct xhci_generic_trb *generic_trb; 343 344 while (cur_seg->trbs > trb || 345 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { 346 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; 347 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE)) 348 *cycle_state ^= 0x1; 349 cur_seg = cur_seg->next; 350 if (cur_seg == start_seg) 351 /* Looped over the entire list. Oops! */ 352 return NULL; 353 } 354 return cur_seg; 355 } 356 357 358 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 359 unsigned int slot_id, unsigned int ep_index, 360 unsigned int stream_id) 361 { 362 struct xhci_virt_ep *ep; 363 364 ep = &xhci->devs[slot_id]->eps[ep_index]; 365 /* Common case: no streams */ 366 if (!(ep->ep_state & EP_HAS_STREAMS)) 367 return ep->ring; 368 369 if (stream_id == 0) { 370 xhci_warn(xhci, 371 "WARN: Slot ID %u, ep index %u has streams, " 372 "but URB has no stream ID.\n", 373 slot_id, ep_index); 374 return NULL; 375 } 376 377 if (stream_id < ep->stream_info->num_streams) 378 return ep->stream_info->stream_rings[stream_id]; 379 380 xhci_warn(xhci, 381 "WARN: Slot ID %u, ep index %u has " 382 "stream IDs 1 to %u allocated, " 383 "but stream ID %u is requested.\n", 384 slot_id, ep_index, 385 ep->stream_info->num_streams - 1, 386 stream_id); 387 return NULL; 388 } 389 390 /* Get the right ring for the given URB. 391 * If the endpoint supports streams, boundary check the URB's stream ID. 392 * If the endpoint doesn't support streams, return the singular endpoint ring. 393 */ 394 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 395 struct urb *urb) 396 { 397 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 398 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 399 } 400 401 /* 402 * Move the xHC's endpoint ring dequeue pointer past cur_td. 403 * Record the new state of the xHC's endpoint ring dequeue segment, 404 * dequeue pointer, and new consumer cycle state in state. 405 * Update our internal representation of the ring's dequeue pointer. 406 * 407 * We do this in three jumps: 408 * - First we update our new ring state to be the same as when the xHC stopped. 409 * - Then we traverse the ring to find the segment that contains 410 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 411 * any link TRBs with the toggle cycle bit set. 412 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 413 * if we've moved it past a link TRB with the toggle cycle bit set. 414 * 415 * Some of the uses of xhci_generic_trb are grotty, but if they're done 416 * with correct __le32 accesses they should work fine. Only users of this are 417 * in here. 418 */ 419 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 420 unsigned int slot_id, unsigned int ep_index, 421 unsigned int stream_id, struct xhci_td *cur_td, 422 struct xhci_dequeue_state *state) 423 { 424 struct xhci_virt_device *dev = xhci->devs[slot_id]; 425 struct xhci_ring *ep_ring; 426 struct xhci_generic_trb *trb; 427 struct xhci_ep_ctx *ep_ctx; 428 dma_addr_t addr; 429 430 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 431 ep_index, stream_id); 432 if (!ep_ring) { 433 xhci_warn(xhci, "WARN can't find new dequeue state " 434 "for invalid stream ID %u.\n", 435 stream_id); 436 return; 437 } 438 state->new_cycle_state = 0; 439 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n"); 440 state->new_deq_seg = find_trb_seg(cur_td->start_seg, 441 dev->eps[ep_index].stopped_trb, 442 &state->new_cycle_state); 443 if (!state->new_deq_seg) { 444 WARN_ON(1); 445 return; 446 } 447 448 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 449 xhci_dbg(xhci, "Finding endpoint context\n"); 450 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 451 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq); 452 453 state->new_deq_ptr = cur_td->last_trb; 454 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n"); 455 state->new_deq_seg = find_trb_seg(state->new_deq_seg, 456 state->new_deq_ptr, 457 &state->new_cycle_state); 458 if (!state->new_deq_seg) { 459 WARN_ON(1); 460 return; 461 } 462 463 trb = &state->new_deq_ptr->generic; 464 if (TRB_TYPE_LINK_LE32(trb->field[3]) && 465 (trb->field[3] & cpu_to_le32(LINK_TOGGLE))) 466 state->new_cycle_state ^= 0x1; 467 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); 468 469 /* 470 * If there is only one segment in a ring, find_trb_seg()'s while loop 471 * will not run, and it will return before it has a chance to see if it 472 * needs to toggle the cycle bit. It can't tell if the stalled transfer 473 * ended just before the link TRB on a one-segment ring, or if the TD 474 * wrapped around the top of the ring, because it doesn't have the TD in 475 * question. Look for the one-segment case where stalled TRB's address 476 * is greater than the new dequeue pointer address. 477 */ 478 if (ep_ring->first_seg == ep_ring->first_seg->next && 479 state->new_deq_ptr < dev->eps[ep_index].stopped_trb) 480 state->new_cycle_state ^= 0x1; 481 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state); 482 483 /* Don't update the ring cycle state for the producer (us). */ 484 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n", 485 state->new_deq_seg); 486 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 487 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n", 488 (unsigned long long) addr); 489 } 490 491 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 492 * (The last TRB actually points to the ring enqueue pointer, which is not part 493 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 494 */ 495 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 496 struct xhci_td *cur_td, bool flip_cycle) 497 { 498 struct xhci_segment *cur_seg; 499 union xhci_trb *cur_trb; 500 501 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 502 true; 503 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 504 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 505 /* Unchain any chained Link TRBs, but 506 * leave the pointers intact. 507 */ 508 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 509 /* Flip the cycle bit (link TRBs can't be the first 510 * or last TRB). 511 */ 512 if (flip_cycle) 513 cur_trb->generic.field[3] ^= 514 cpu_to_le32(TRB_CYCLE); 515 xhci_dbg(xhci, "Cancel (unchain) link TRB\n"); 516 xhci_dbg(xhci, "Address = %p (0x%llx dma); " 517 "in seg %p (0x%llx dma)\n", 518 cur_trb, 519 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 520 cur_seg, 521 (unsigned long long)cur_seg->dma); 522 } else { 523 cur_trb->generic.field[0] = 0; 524 cur_trb->generic.field[1] = 0; 525 cur_trb->generic.field[2] = 0; 526 /* Preserve only the cycle bit of this TRB */ 527 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 528 /* Flip the cycle bit except on the first or last TRB */ 529 if (flip_cycle && cur_trb != cur_td->first_trb && 530 cur_trb != cur_td->last_trb) 531 cur_trb->generic.field[3] ^= 532 cpu_to_le32(TRB_CYCLE); 533 cur_trb->generic.field[3] |= cpu_to_le32( 534 TRB_TYPE(TRB_TR_NOOP)); 535 xhci_dbg(xhci, "TRB to noop at offset 0x%llx\n", 536 (unsigned long long) 537 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 538 } 539 if (cur_trb == cur_td->last_trb) 540 break; 541 } 542 } 543 544 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 545 unsigned int ep_index, unsigned int stream_id, 546 struct xhci_segment *deq_seg, 547 union xhci_trb *deq_ptr, u32 cycle_state); 548 549 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 550 unsigned int slot_id, unsigned int ep_index, 551 unsigned int stream_id, 552 struct xhci_dequeue_state *deq_state) 553 { 554 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 555 556 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " 557 "new deq ptr = %p (0x%llx dma), new cycle = %u\n", 558 deq_state->new_deq_seg, 559 (unsigned long long)deq_state->new_deq_seg->dma, 560 deq_state->new_deq_ptr, 561 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), 562 deq_state->new_cycle_state); 563 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id, 564 deq_state->new_deq_seg, 565 deq_state->new_deq_ptr, 566 (u32) deq_state->new_cycle_state); 567 /* Stop the TD queueing code from ringing the doorbell until 568 * this command completes. The HC won't set the dequeue pointer 569 * if the ring is running, and ringing the doorbell starts the 570 * ring running. 571 */ 572 ep->ep_state |= SET_DEQ_PENDING; 573 } 574 575 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 576 struct xhci_virt_ep *ep) 577 { 578 ep->ep_state &= ~EP_HALT_PENDING; 579 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 580 * timer is running on another CPU, we don't decrement stop_cmds_pending 581 * (since we didn't successfully stop the watchdog timer). 582 */ 583 if (del_timer(&ep->stop_cmd_timer)) 584 ep->stop_cmds_pending--; 585 } 586 587 /* Must be called with xhci->lock held in interrupt context */ 588 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 589 struct xhci_td *cur_td, int status, char *adjective) 590 { 591 struct usb_hcd *hcd; 592 struct urb *urb; 593 struct urb_priv *urb_priv; 594 595 urb = cur_td->urb; 596 urb_priv = urb->hcpriv; 597 urb_priv->td_cnt++; 598 hcd = bus_to_hcd(urb->dev->bus); 599 600 /* Only giveback urb when this is the last td in urb */ 601 if (urb_priv->td_cnt == urb_priv->length) { 602 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 603 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 604 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 605 if (xhci->quirks & XHCI_AMD_PLL_FIX) 606 usb_amd_quirk_pll_enable(); 607 } 608 } 609 usb_hcd_unlink_urb_from_ep(hcd, urb); 610 611 spin_unlock(&xhci->lock); 612 usb_hcd_giveback_urb(hcd, urb, status); 613 xhci_urb_free_priv(xhci, urb_priv); 614 spin_lock(&xhci->lock); 615 } 616 } 617 618 /* 619 * When we get a command completion for a Stop Endpoint Command, we need to 620 * unlink any cancelled TDs from the ring. There are two ways to do that: 621 * 622 * 1. If the HW was in the middle of processing the TD that needs to be 623 * cancelled, then we must move the ring's dequeue pointer past the last TRB 624 * in the TD with a Set Dequeue Pointer Command. 625 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 626 * bit cleared) so that the HW will skip over them. 627 */ 628 static void handle_stopped_endpoint(struct xhci_hcd *xhci, 629 union xhci_trb *trb, struct xhci_event_cmd *event) 630 { 631 unsigned int slot_id; 632 unsigned int ep_index; 633 struct xhci_virt_device *virt_dev; 634 struct xhci_ring *ep_ring; 635 struct xhci_virt_ep *ep; 636 struct list_head *entry; 637 struct xhci_td *cur_td = NULL; 638 struct xhci_td *last_unlinked_td; 639 640 struct xhci_dequeue_state deq_state; 641 642 if (unlikely(TRB_TO_SUSPEND_PORT( 643 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) { 644 slot_id = TRB_TO_SLOT_ID( 645 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 646 virt_dev = xhci->devs[slot_id]; 647 if (virt_dev) 648 handle_cmd_in_cmd_wait_list(xhci, virt_dev, 649 event); 650 else 651 xhci_warn(xhci, "Stop endpoint command " 652 "completion for disabled slot %u\n", 653 slot_id); 654 return; 655 } 656 657 memset(&deq_state, 0, sizeof(deq_state)); 658 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 659 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 660 ep = &xhci->devs[slot_id]->eps[ep_index]; 661 662 if (list_empty(&ep->cancelled_td_list)) { 663 xhci_stop_watchdog_timer_in_irq(xhci, ep); 664 ep->stopped_td = NULL; 665 ep->stopped_trb = NULL; 666 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 667 return; 668 } 669 670 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 671 * We have the xHCI lock, so nothing can modify this list until we drop 672 * it. We're also in the event handler, so we can't get re-interrupted 673 * if another Stop Endpoint command completes 674 */ 675 list_for_each(entry, &ep->cancelled_td_list) { 676 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 677 xhci_dbg(xhci, "Removing canceled TD starting at 0x%llx (dma).\n", 678 (unsigned long long)xhci_trb_virt_to_dma( 679 cur_td->start_seg, cur_td->first_trb)); 680 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 681 if (!ep_ring) { 682 /* This shouldn't happen unless a driver is mucking 683 * with the stream ID after submission. This will 684 * leave the TD on the hardware ring, and the hardware 685 * will try to execute it, and may access a buffer 686 * that has already been freed. In the best case, the 687 * hardware will execute it, and the event handler will 688 * ignore the completion event for that TD, since it was 689 * removed from the td_list for that endpoint. In 690 * short, don't muck with the stream ID after 691 * submission. 692 */ 693 xhci_warn(xhci, "WARN Cancelled URB %p " 694 "has invalid stream ID %u.\n", 695 cur_td->urb, 696 cur_td->urb->stream_id); 697 goto remove_finished_td; 698 } 699 /* 700 * If we stopped on the TD we need to cancel, then we have to 701 * move the xHC endpoint ring dequeue pointer past this TD. 702 */ 703 if (cur_td == ep->stopped_td) 704 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 705 cur_td->urb->stream_id, 706 cur_td, &deq_state); 707 else 708 td_to_noop(xhci, ep_ring, cur_td, false); 709 remove_finished_td: 710 /* 711 * The event handler won't see a completion for this TD anymore, 712 * so remove it from the endpoint ring's TD list. Keep it in 713 * the cancelled TD list for URB completion later. 714 */ 715 list_del_init(&cur_td->td_list); 716 } 717 last_unlinked_td = cur_td; 718 xhci_stop_watchdog_timer_in_irq(xhci, ep); 719 720 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 721 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 722 xhci_queue_new_dequeue_state(xhci, 723 slot_id, ep_index, 724 ep->stopped_td->urb->stream_id, 725 &deq_state); 726 xhci_ring_cmd_db(xhci); 727 } else { 728 /* Otherwise ring the doorbell(s) to restart queued transfers */ 729 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 730 } 731 ep->stopped_td = NULL; 732 ep->stopped_trb = NULL; 733 734 /* 735 * Drop the lock and complete the URBs in the cancelled TD list. 736 * New TDs to be cancelled might be added to the end of the list before 737 * we can complete all the URBs for the TDs we already unlinked. 738 * So stop when we've completed the URB for the last TD we unlinked. 739 */ 740 do { 741 cur_td = list_entry(ep->cancelled_td_list.next, 742 struct xhci_td, cancelled_td_list); 743 list_del_init(&cur_td->cancelled_td_list); 744 745 /* Clean up the cancelled URB */ 746 /* Doesn't matter what we pass for status, since the core will 747 * just overwrite it (because the URB has been unlinked). 748 */ 749 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled"); 750 751 /* Stop processing the cancelled list if the watchdog timer is 752 * running. 753 */ 754 if (xhci->xhc_state & XHCI_STATE_DYING) 755 return; 756 } while (cur_td != last_unlinked_td); 757 758 /* Return to the event handler with xhci->lock re-acquired */ 759 } 760 761 /* Watchdog timer function for when a stop endpoint command fails to complete. 762 * In this case, we assume the host controller is broken or dying or dead. The 763 * host may still be completing some other events, so we have to be careful to 764 * let the event ring handler and the URB dequeueing/enqueueing functions know 765 * through xhci->state. 766 * 767 * The timer may also fire if the host takes a very long time to respond to the 768 * command, and the stop endpoint command completion handler cannot delete the 769 * timer before the timer function is called. Another endpoint cancellation may 770 * sneak in before the timer function can grab the lock, and that may queue 771 * another stop endpoint command and add the timer back. So we cannot use a 772 * simple flag to say whether there is a pending stop endpoint command for a 773 * particular endpoint. 774 * 775 * Instead we use a combination of that flag and a counter for the number of 776 * pending stop endpoint commands. If the timer is the tail end of the last 777 * stop endpoint command, and the endpoint's command is still pending, we assume 778 * the host is dying. 779 */ 780 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 781 { 782 struct xhci_hcd *xhci; 783 struct xhci_virt_ep *ep; 784 struct xhci_virt_ep *temp_ep; 785 struct xhci_ring *ring; 786 struct xhci_td *cur_td; 787 int ret, i, j; 788 unsigned long flags; 789 790 ep = (struct xhci_virt_ep *) arg; 791 xhci = ep->xhci; 792 793 spin_lock_irqsave(&xhci->lock, flags); 794 795 ep->stop_cmds_pending--; 796 if (xhci->xhc_state & XHCI_STATE_DYING) { 797 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked " 798 "xHCI as DYING, exiting.\n"); 799 spin_unlock_irqrestore(&xhci->lock, flags); 800 return; 801 } 802 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 803 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, " 804 "exiting.\n"); 805 spin_unlock_irqrestore(&xhci->lock, flags); 806 return; 807 } 808 809 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 810 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 811 /* Oops, HC is dead or dying or at least not responding to the stop 812 * endpoint command. 813 */ 814 xhci->xhc_state |= XHCI_STATE_DYING; 815 /* Disable interrupts from the host controller and start halting it */ 816 xhci_quiesce(xhci); 817 spin_unlock_irqrestore(&xhci->lock, flags); 818 819 ret = xhci_halt(xhci); 820 821 spin_lock_irqsave(&xhci->lock, flags); 822 if (ret < 0) { 823 /* This is bad; the host is not responding to commands and it's 824 * not allowing itself to be halted. At least interrupts are 825 * disabled. If we call usb_hc_died(), it will attempt to 826 * disconnect all device drivers under this host. Those 827 * disconnect() methods will wait for all URBs to be unlinked, 828 * so we must complete them. 829 */ 830 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 831 xhci_warn(xhci, "Completing active URBs anyway.\n"); 832 /* We could turn all TDs on the rings to no-ops. This won't 833 * help if the host has cached part of the ring, and is slow if 834 * we want to preserve the cycle bit. Skip it and hope the host 835 * doesn't touch the memory. 836 */ 837 } 838 for (i = 0; i < MAX_HC_SLOTS; i++) { 839 if (!xhci->devs[i]) 840 continue; 841 for (j = 0; j < 31; j++) { 842 temp_ep = &xhci->devs[i]->eps[j]; 843 ring = temp_ep->ring; 844 if (!ring) 845 continue; 846 xhci_dbg(xhci, "Killing URBs for slot ID %u, " 847 "ep index %u\n", i, j); 848 while (!list_empty(&ring->td_list)) { 849 cur_td = list_first_entry(&ring->td_list, 850 struct xhci_td, 851 td_list); 852 list_del_init(&cur_td->td_list); 853 if (!list_empty(&cur_td->cancelled_td_list)) 854 list_del_init(&cur_td->cancelled_td_list); 855 xhci_giveback_urb_in_irq(xhci, cur_td, 856 -ESHUTDOWN, "killed"); 857 } 858 while (!list_empty(&temp_ep->cancelled_td_list)) { 859 cur_td = list_first_entry( 860 &temp_ep->cancelled_td_list, 861 struct xhci_td, 862 cancelled_td_list); 863 list_del_init(&cur_td->cancelled_td_list); 864 xhci_giveback_urb_in_irq(xhci, cur_td, 865 -ESHUTDOWN, "killed"); 866 } 867 } 868 } 869 spin_unlock_irqrestore(&xhci->lock, flags); 870 xhci_dbg(xhci, "Calling usb_hc_died()\n"); 871 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 872 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 873 } 874 875 876 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 877 struct xhci_virt_device *dev, 878 struct xhci_ring *ep_ring, 879 unsigned int ep_index) 880 { 881 union xhci_trb *dequeue_temp; 882 int num_trbs_free_temp; 883 bool revert = false; 884 885 num_trbs_free_temp = ep_ring->num_trbs_free; 886 dequeue_temp = ep_ring->dequeue; 887 888 /* If we get two back-to-back stalls, and the first stalled transfer 889 * ends just before a link TRB, the dequeue pointer will be left on 890 * the link TRB by the code in the while loop. So we have to update 891 * the dequeue pointer one segment further, or we'll jump off 892 * the segment into la-la-land. 893 */ 894 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { 895 ep_ring->deq_seg = ep_ring->deq_seg->next; 896 ep_ring->dequeue = ep_ring->deq_seg->trbs; 897 } 898 899 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 900 /* We have more usable TRBs */ 901 ep_ring->num_trbs_free++; 902 ep_ring->dequeue++; 903 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, 904 ep_ring->dequeue)) { 905 if (ep_ring->dequeue == 906 dev->eps[ep_index].queued_deq_ptr) 907 break; 908 ep_ring->deq_seg = ep_ring->deq_seg->next; 909 ep_ring->dequeue = ep_ring->deq_seg->trbs; 910 } 911 if (ep_ring->dequeue == dequeue_temp) { 912 revert = true; 913 break; 914 } 915 } 916 917 if (revert) { 918 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 919 ep_ring->num_trbs_free = num_trbs_free_temp; 920 } 921 } 922 923 /* 924 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 925 * we need to clear the set deq pending flag in the endpoint ring state, so that 926 * the TD queueing code can ring the doorbell again. We also need to ring the 927 * endpoint doorbell to restart the ring, but only if there aren't more 928 * cancellations pending. 929 */ 930 static void handle_set_deq_completion(struct xhci_hcd *xhci, 931 struct xhci_event_cmd *event, 932 union xhci_trb *trb) 933 { 934 unsigned int slot_id; 935 unsigned int ep_index; 936 unsigned int stream_id; 937 struct xhci_ring *ep_ring; 938 struct xhci_virt_device *dev; 939 struct xhci_ep_ctx *ep_ctx; 940 struct xhci_slot_ctx *slot_ctx; 941 942 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 943 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 944 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 945 dev = xhci->devs[slot_id]; 946 947 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 948 if (!ep_ring) { 949 xhci_warn(xhci, "WARN Set TR deq ptr command for " 950 "freed stream ID %u\n", 951 stream_id); 952 /* XXX: Harmless??? */ 953 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 954 return; 955 } 956 957 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 958 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 959 960 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) { 961 unsigned int ep_state; 962 unsigned int slot_state; 963 964 switch (GET_COMP_CODE(le32_to_cpu(event->status))) { 965 case COMP_TRB_ERR: 966 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because " 967 "of stream ID configuration\n"); 968 break; 969 case COMP_CTX_STATE: 970 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due " 971 "to incorrect slot or ep state.\n"); 972 ep_state = le32_to_cpu(ep_ctx->ep_info); 973 ep_state &= EP_STATE_MASK; 974 slot_state = le32_to_cpu(slot_ctx->dev_state); 975 slot_state = GET_SLOT_STATE(slot_state); 976 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n", 977 slot_state, ep_state); 978 break; 979 case COMP_EBADSLT: 980 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because " 981 "slot %u was not enabled.\n", slot_id); 982 break; 983 default: 984 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown " 985 "completion code of %u.\n", 986 GET_COMP_CODE(le32_to_cpu(event->status))); 987 break; 988 } 989 /* OK what do we do now? The endpoint state is hosed, and we 990 * should never get to this point if the synchronization between 991 * queueing, and endpoint state are correct. This might happen 992 * if the device gets disconnected after we've finished 993 * cancelling URBs, which might not be an error... 994 */ 995 } else { 996 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n", 997 le64_to_cpu(ep_ctx->deq)); 998 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg, 999 dev->eps[ep_index].queued_deq_ptr) == 1000 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) { 1001 /* Update the ring's dequeue segment and dequeue pointer 1002 * to reflect the new position. 1003 */ 1004 update_ring_for_set_deq_completion(xhci, dev, 1005 ep_ring, ep_index); 1006 } else { 1007 xhci_warn(xhci, "Mismatch between completed Set TR Deq " 1008 "Ptr command & xHCI internal state.\n"); 1009 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1010 dev->eps[ep_index].queued_deq_seg, 1011 dev->eps[ep_index].queued_deq_ptr); 1012 } 1013 } 1014 1015 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1016 dev->eps[ep_index].queued_deq_seg = NULL; 1017 dev->eps[ep_index].queued_deq_ptr = NULL; 1018 /* Restart any rings with pending URBs */ 1019 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1020 } 1021 1022 static void handle_reset_ep_completion(struct xhci_hcd *xhci, 1023 struct xhci_event_cmd *event, 1024 union xhci_trb *trb) 1025 { 1026 int slot_id; 1027 unsigned int ep_index; 1028 1029 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 1030 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1031 /* This command will only fail if the endpoint wasn't halted, 1032 * but we don't care. 1033 */ 1034 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n", 1035 GET_COMP_CODE(le32_to_cpu(event->status))); 1036 1037 /* HW with the reset endpoint quirk needs to have a configure endpoint 1038 * command complete before the endpoint can be used. Queue that here 1039 * because the HW can't handle two commands being queued in a row. 1040 */ 1041 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1042 xhci_dbg(xhci, "Queueing configure endpoint command\n"); 1043 xhci_queue_configure_endpoint(xhci, 1044 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1045 false); 1046 xhci_ring_cmd_db(xhci); 1047 } else { 1048 /* Clear our internal halted state and restart the ring(s) */ 1049 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1050 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1051 } 1052 } 1053 1054 /* Check to see if a command in the device's command queue matches this one. 1055 * Signal the completion or free the command, and return 1. Return 0 if the 1056 * completed command isn't at the head of the command list. 1057 */ 1058 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1059 struct xhci_virt_device *virt_dev, 1060 struct xhci_event_cmd *event) 1061 { 1062 struct xhci_command *command; 1063 1064 if (list_empty(&virt_dev->cmd_list)) 1065 return 0; 1066 1067 command = list_entry(virt_dev->cmd_list.next, 1068 struct xhci_command, cmd_list); 1069 if (xhci->cmd_ring->dequeue != command->command_trb) 1070 return 0; 1071 1072 command->status = GET_COMP_CODE(le32_to_cpu(event->status)); 1073 list_del(&command->cmd_list); 1074 if (command->completion) 1075 complete(command->completion); 1076 else 1077 xhci_free_command(xhci, command); 1078 return 1; 1079 } 1080 1081 static void handle_cmd_completion(struct xhci_hcd *xhci, 1082 struct xhci_event_cmd *event) 1083 { 1084 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1085 u64 cmd_dma; 1086 dma_addr_t cmd_dequeue_dma; 1087 struct xhci_input_control_ctx *ctrl_ctx; 1088 struct xhci_virt_device *virt_dev; 1089 unsigned int ep_index; 1090 struct xhci_ring *ep_ring; 1091 unsigned int ep_state; 1092 1093 cmd_dma = le64_to_cpu(event->cmd_trb); 1094 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1095 xhci->cmd_ring->dequeue); 1096 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1097 if (cmd_dequeue_dma == 0) { 1098 xhci->error_bitmask |= 1 << 4; 1099 return; 1100 } 1101 /* Does the DMA address match our internal dequeue pointer address? */ 1102 if (cmd_dma != (u64) cmd_dequeue_dma) { 1103 xhci->error_bitmask |= 1 << 5; 1104 return; 1105 } 1106 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]) 1107 & TRB_TYPE_BITMASK) { 1108 case TRB_TYPE(TRB_ENABLE_SLOT): 1109 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS) 1110 xhci->slot_id = slot_id; 1111 else 1112 xhci->slot_id = 0; 1113 complete(&xhci->addr_dev); 1114 break; 1115 case TRB_TYPE(TRB_DISABLE_SLOT): 1116 if (xhci->devs[slot_id]) { 1117 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1118 /* Delete default control endpoint resources */ 1119 xhci_free_device_endpoint_resources(xhci, 1120 xhci->devs[slot_id], true); 1121 xhci_free_virt_device(xhci, slot_id); 1122 } 1123 break; 1124 case TRB_TYPE(TRB_CONFIG_EP): 1125 virt_dev = xhci->devs[slot_id]; 1126 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1127 break; 1128 /* 1129 * Configure endpoint commands can come from the USB core 1130 * configuration or alt setting changes, or because the HW 1131 * needed an extra configure endpoint command after a reset 1132 * endpoint command or streams were being configured. 1133 * If the command was for a halted endpoint, the xHCI driver 1134 * is not waiting on the configure endpoint command. 1135 */ 1136 ctrl_ctx = xhci_get_input_control_ctx(xhci, 1137 virt_dev->in_ctx); 1138 /* Input ctx add_flags are the endpoint index plus one */ 1139 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1; 1140 /* A usb_set_interface() call directly after clearing a halted 1141 * condition may race on this quirky hardware. Not worth 1142 * worrying about, since this is prototype hardware. Not sure 1143 * if this will work for streams, but streams support was 1144 * untested on this prototype. 1145 */ 1146 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1147 ep_index != (unsigned int) -1 && 1148 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG == 1149 le32_to_cpu(ctrl_ctx->drop_flags)) { 1150 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 1151 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1152 if (!(ep_state & EP_HALTED)) 1153 goto bandwidth_change; 1154 xhci_dbg(xhci, "Completed config ep cmd - " 1155 "last ep index = %d, state = %d\n", 1156 ep_index, ep_state); 1157 /* Clear internal halted state and restart ring(s) */ 1158 xhci->devs[slot_id]->eps[ep_index].ep_state &= 1159 ~EP_HALTED; 1160 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1161 break; 1162 } 1163 bandwidth_change: 1164 xhci_dbg(xhci, "Completed config ep cmd\n"); 1165 xhci->devs[slot_id]->cmd_status = 1166 GET_COMP_CODE(le32_to_cpu(event->status)); 1167 complete(&xhci->devs[slot_id]->cmd_completion); 1168 break; 1169 case TRB_TYPE(TRB_EVAL_CONTEXT): 1170 virt_dev = xhci->devs[slot_id]; 1171 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1172 break; 1173 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1174 complete(&xhci->devs[slot_id]->cmd_completion); 1175 break; 1176 case TRB_TYPE(TRB_ADDR_DEV): 1177 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1178 complete(&xhci->addr_dev); 1179 break; 1180 case TRB_TYPE(TRB_STOP_RING): 1181 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event); 1182 break; 1183 case TRB_TYPE(TRB_SET_DEQ): 1184 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue); 1185 break; 1186 case TRB_TYPE(TRB_CMD_NOOP): 1187 break; 1188 case TRB_TYPE(TRB_RESET_EP): 1189 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue); 1190 break; 1191 case TRB_TYPE(TRB_RESET_DEV): 1192 xhci_dbg(xhci, "Completed reset device command.\n"); 1193 slot_id = TRB_TO_SLOT_ID( 1194 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 1195 virt_dev = xhci->devs[slot_id]; 1196 if (virt_dev) 1197 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event); 1198 else 1199 xhci_warn(xhci, "Reset device command completion " 1200 "for disabled slot %u\n", slot_id); 1201 break; 1202 case TRB_TYPE(TRB_NEC_GET_FW): 1203 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1204 xhci->error_bitmask |= 1 << 6; 1205 break; 1206 } 1207 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n", 1208 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1209 NEC_FW_MINOR(le32_to_cpu(event->status))); 1210 break; 1211 default: 1212 /* Skip over unknown commands on the event ring */ 1213 xhci->error_bitmask |= 1 << 6; 1214 break; 1215 } 1216 inc_deq(xhci, xhci->cmd_ring); 1217 } 1218 1219 static void handle_vendor_event(struct xhci_hcd *xhci, 1220 union xhci_trb *event) 1221 { 1222 u32 trb_type; 1223 1224 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1225 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1226 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1227 handle_cmd_completion(xhci, &event->event_cmd); 1228 } 1229 1230 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1231 * port registers -- USB 3.0 and USB 2.0). 1232 * 1233 * Returns a zero-based port number, which is suitable for indexing into each of 1234 * the split roothubs' port arrays and bus state arrays. 1235 * Add one to it in order to call xhci_find_slot_id_by_port. 1236 */ 1237 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1238 struct xhci_hcd *xhci, u32 port_id) 1239 { 1240 unsigned int i; 1241 unsigned int num_similar_speed_ports = 0; 1242 1243 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1244 * and usb2_ports are 0-based indexes. Count the number of similar 1245 * speed ports, up to 1 port before this port. 1246 */ 1247 for (i = 0; i < (port_id - 1); i++) { 1248 u8 port_speed = xhci->port_array[i]; 1249 1250 /* 1251 * Skip ports that don't have known speeds, or have duplicate 1252 * Extended Capabilities port speed entries. 1253 */ 1254 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1255 continue; 1256 1257 /* 1258 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1259 * 1.1 ports are under the USB 2.0 hub. If the port speed 1260 * matches the device speed, it's a similar speed port. 1261 */ 1262 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1263 num_similar_speed_ports++; 1264 } 1265 return num_similar_speed_ports; 1266 } 1267 1268 static void handle_device_notification(struct xhci_hcd *xhci, 1269 union xhci_trb *event) 1270 { 1271 u32 slot_id; 1272 struct usb_device *udev; 1273 1274 slot_id = TRB_TO_SLOT_ID(event->generic.field[3]); 1275 if (!xhci->devs[slot_id]) { 1276 xhci_warn(xhci, "Device Notification event for " 1277 "unused slot %u\n", slot_id); 1278 return; 1279 } 1280 1281 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1282 slot_id); 1283 udev = xhci->devs[slot_id]->udev; 1284 if (udev && udev->parent) 1285 usb_wakeup_notification(udev->parent, udev->portnum); 1286 } 1287 1288 static void handle_port_status(struct xhci_hcd *xhci, 1289 union xhci_trb *event) 1290 { 1291 struct usb_hcd *hcd; 1292 u32 port_id; 1293 u32 temp, temp1; 1294 int max_ports; 1295 int slot_id; 1296 unsigned int faked_port_index; 1297 u8 major_revision; 1298 struct xhci_bus_state *bus_state; 1299 __le32 __iomem **port_array; 1300 bool bogus_port_status = false; 1301 1302 /* Port status change events always have a successful completion code */ 1303 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1304 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1305 xhci->error_bitmask |= 1 << 8; 1306 } 1307 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1308 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1309 1310 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1311 if ((port_id <= 0) || (port_id > max_ports)) { 1312 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1313 bogus_port_status = true; 1314 goto cleanup; 1315 } 1316 1317 /* Figure out which usb_hcd this port is attached to: 1318 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1319 */ 1320 major_revision = xhci->port_array[port_id - 1]; 1321 if (major_revision == 0) { 1322 xhci_warn(xhci, "Event for port %u not in " 1323 "Extended Capabilities, ignoring.\n", 1324 port_id); 1325 bogus_port_status = true; 1326 goto cleanup; 1327 } 1328 if (major_revision == DUPLICATE_ENTRY) { 1329 xhci_warn(xhci, "Event for port %u duplicated in" 1330 "Extended Capabilities, ignoring.\n", 1331 port_id); 1332 bogus_port_status = true; 1333 goto cleanup; 1334 } 1335 1336 /* 1337 * Hardware port IDs reported by a Port Status Change Event include USB 1338 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1339 * resume event, but we first need to translate the hardware port ID 1340 * into the index into the ports on the correct split roothub, and the 1341 * correct bus_state structure. 1342 */ 1343 /* Find the right roothub. */ 1344 hcd = xhci_to_hcd(xhci); 1345 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1346 hcd = xhci->shared_hcd; 1347 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1348 if (hcd->speed == HCD_USB3) 1349 port_array = xhci->usb3_ports; 1350 else 1351 port_array = xhci->usb2_ports; 1352 /* Find the faked port hub number */ 1353 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1354 port_id); 1355 1356 temp = xhci_readl(xhci, port_array[faked_port_index]); 1357 if (hcd->state == HC_STATE_SUSPENDED) { 1358 xhci_dbg(xhci, "resume root hub\n"); 1359 usb_hcd_resume_root_hub(hcd); 1360 } 1361 1362 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1363 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1364 1365 temp1 = xhci_readl(xhci, &xhci->op_regs->command); 1366 if (!(temp1 & CMD_RUN)) { 1367 xhci_warn(xhci, "xHC is not running.\n"); 1368 goto cleanup; 1369 } 1370 1371 if (DEV_SUPERSPEED(temp)) { 1372 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1373 /* Set a flag to say the port signaled remote wakeup, 1374 * so we can tell the difference between the end of 1375 * device and host initiated resume. 1376 */ 1377 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1378 xhci_test_and_clear_bit(xhci, port_array, 1379 faked_port_index, PORT_PLC); 1380 xhci_set_link_state(xhci, port_array, faked_port_index, 1381 XDEV_U0); 1382 /* Need to wait until the next link state change 1383 * indicates the device is actually in U0. 1384 */ 1385 bogus_port_status = true; 1386 goto cleanup; 1387 } else { 1388 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1389 bus_state->resume_done[faked_port_index] = jiffies + 1390 msecs_to_jiffies(20); 1391 set_bit(faked_port_index, &bus_state->resuming_ports); 1392 mod_timer(&hcd->rh_timer, 1393 bus_state->resume_done[faked_port_index]); 1394 /* Do the rest in GetPortStatus */ 1395 } 1396 } 1397 1398 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1399 DEV_SUPERSPEED(temp)) { 1400 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1401 /* We've just brought the device into U0 through either the 1402 * Resume state after a device remote wakeup, or through the 1403 * U3Exit state after a host-initiated resume. If it's a device 1404 * initiated remote wake, don't pass up the link state change, 1405 * so the roothub behavior is consistent with external 1406 * USB 3.0 hub behavior. 1407 */ 1408 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1409 faked_port_index + 1); 1410 if (slot_id && xhci->devs[slot_id]) 1411 xhci_ring_device(xhci, slot_id); 1412 if (bus_state->port_remote_wakeup && (1 << faked_port_index)) { 1413 bus_state->port_remote_wakeup &= 1414 ~(1 << faked_port_index); 1415 xhci_test_and_clear_bit(xhci, port_array, 1416 faked_port_index, PORT_PLC); 1417 usb_wakeup_notification(hcd->self.root_hub, 1418 faked_port_index + 1); 1419 bogus_port_status = true; 1420 goto cleanup; 1421 } 1422 } 1423 1424 if (hcd->speed != HCD_USB3) 1425 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1426 PORT_PLC); 1427 1428 cleanup: 1429 /* Update event ring dequeue pointer before dropping the lock */ 1430 inc_deq(xhci, xhci->event_ring); 1431 1432 /* Don't make the USB core poll the roothub if we got a bad port status 1433 * change event. Besides, at that point we can't tell which roothub 1434 * (USB 2.0 or USB 3.0) to kick. 1435 */ 1436 if (bogus_port_status) 1437 return; 1438 1439 spin_unlock(&xhci->lock); 1440 /* Pass this up to the core */ 1441 usb_hcd_poll_rh_status(hcd); 1442 spin_lock(&xhci->lock); 1443 } 1444 1445 /* 1446 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1447 * at end_trb, which may be in another segment. If the suspect DMA address is a 1448 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1449 * returns 0. 1450 */ 1451 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, 1452 union xhci_trb *start_trb, 1453 union xhci_trb *end_trb, 1454 dma_addr_t suspect_dma) 1455 { 1456 dma_addr_t start_dma; 1457 dma_addr_t end_seg_dma; 1458 dma_addr_t end_trb_dma; 1459 struct xhci_segment *cur_seg; 1460 1461 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1462 cur_seg = start_seg; 1463 1464 do { 1465 if (start_dma == 0) 1466 return NULL; 1467 /* We may get an event for a Link TRB in the middle of a TD */ 1468 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1469 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1470 /* If the end TRB isn't in this segment, this is set to 0 */ 1471 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1472 1473 if (end_trb_dma > 0) { 1474 /* The end TRB is in this segment, so suspect should be here */ 1475 if (start_dma <= end_trb_dma) { 1476 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1477 return cur_seg; 1478 } else { 1479 /* Case for one segment with 1480 * a TD wrapped around to the top 1481 */ 1482 if ((suspect_dma >= start_dma && 1483 suspect_dma <= end_seg_dma) || 1484 (suspect_dma >= cur_seg->dma && 1485 suspect_dma <= end_trb_dma)) 1486 return cur_seg; 1487 } 1488 return NULL; 1489 } else { 1490 /* Might still be somewhere in this segment */ 1491 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1492 return cur_seg; 1493 } 1494 cur_seg = cur_seg->next; 1495 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1496 } while (cur_seg != start_seg); 1497 1498 return NULL; 1499 } 1500 1501 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1502 unsigned int slot_id, unsigned int ep_index, 1503 unsigned int stream_id, 1504 struct xhci_td *td, union xhci_trb *event_trb) 1505 { 1506 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1507 ep->ep_state |= EP_HALTED; 1508 ep->stopped_td = td; 1509 ep->stopped_trb = event_trb; 1510 ep->stopped_stream = stream_id; 1511 1512 xhci_queue_reset_ep(xhci, slot_id, ep_index); 1513 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); 1514 1515 ep->stopped_td = NULL; 1516 ep->stopped_trb = NULL; 1517 ep->stopped_stream = 0; 1518 1519 xhci_ring_cmd_db(xhci); 1520 } 1521 1522 /* Check if an error has halted the endpoint ring. The class driver will 1523 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1524 * However, a babble and other errors also halt the endpoint ring, and the class 1525 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1526 * Ring Dequeue Pointer command manually. 1527 */ 1528 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1529 struct xhci_ep_ctx *ep_ctx, 1530 unsigned int trb_comp_code) 1531 { 1532 /* TRB completion codes that may require a manual halt cleanup */ 1533 if (trb_comp_code == COMP_TX_ERR || 1534 trb_comp_code == COMP_BABBLE || 1535 trb_comp_code == COMP_SPLIT_ERR) 1536 /* The 0.96 spec says a babbling control endpoint 1537 * is not halted. The 0.96 spec says it is. Some HW 1538 * claims to be 0.95 compliant, but it halts the control 1539 * endpoint anyway. Check if a babble halted the 1540 * endpoint. 1541 */ 1542 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1543 cpu_to_le32(EP_STATE_HALTED)) 1544 return 1; 1545 1546 return 0; 1547 } 1548 1549 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1550 { 1551 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1552 /* Vendor defined "informational" completion code, 1553 * treat as not-an-error. 1554 */ 1555 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1556 trb_comp_code); 1557 xhci_dbg(xhci, "Treating code as success.\n"); 1558 return 1; 1559 } 1560 return 0; 1561 } 1562 1563 /* 1564 * Finish the td processing, remove the td from td list; 1565 * Return 1 if the urb can be given back. 1566 */ 1567 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1568 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1569 struct xhci_virt_ep *ep, int *status, bool skip) 1570 { 1571 struct xhci_virt_device *xdev; 1572 struct xhci_ring *ep_ring; 1573 unsigned int slot_id; 1574 int ep_index; 1575 struct urb *urb = NULL; 1576 struct xhci_ep_ctx *ep_ctx; 1577 int ret = 0; 1578 struct urb_priv *urb_priv; 1579 u32 trb_comp_code; 1580 1581 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1582 xdev = xhci->devs[slot_id]; 1583 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1584 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1585 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1586 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1587 1588 if (skip) 1589 goto td_cleanup; 1590 1591 if (trb_comp_code == COMP_STOP_INVAL || 1592 trb_comp_code == COMP_STOP) { 1593 /* The Endpoint Stop Command completion will take care of any 1594 * stopped TDs. A stopped TD may be restarted, so don't update 1595 * the ring dequeue pointer or take this TD off any lists yet. 1596 */ 1597 ep->stopped_td = td; 1598 ep->stopped_trb = event_trb; 1599 return 0; 1600 } else { 1601 if (trb_comp_code == COMP_STALL) { 1602 /* The transfer is completed from the driver's 1603 * perspective, but we need to issue a set dequeue 1604 * command for this stalled endpoint to move the dequeue 1605 * pointer past the TD. We can't do that here because 1606 * the halt condition must be cleared first. Let the 1607 * USB class driver clear the stall later. 1608 */ 1609 ep->stopped_td = td; 1610 ep->stopped_trb = event_trb; 1611 ep->stopped_stream = ep_ring->stream_id; 1612 } else if (xhci_requires_manual_halt_cleanup(xhci, 1613 ep_ctx, trb_comp_code)) { 1614 /* Other types of errors halt the endpoint, but the 1615 * class driver doesn't call usb_reset_endpoint() unless 1616 * the error is -EPIPE. Clear the halted status in the 1617 * xHCI hardware manually. 1618 */ 1619 xhci_cleanup_halted_endpoint(xhci, 1620 slot_id, ep_index, ep_ring->stream_id, 1621 td, event_trb); 1622 } else { 1623 /* Update ring dequeue pointer */ 1624 while (ep_ring->dequeue != td->last_trb) 1625 inc_deq(xhci, ep_ring); 1626 inc_deq(xhci, ep_ring); 1627 } 1628 1629 td_cleanup: 1630 /* Clean up the endpoint's TD list */ 1631 urb = td->urb; 1632 urb_priv = urb->hcpriv; 1633 1634 /* Do one last check of the actual transfer length. 1635 * If the host controller said we transferred more data than 1636 * the buffer length, urb->actual_length will be a very big 1637 * number (since it's unsigned). Play it safe and say we didn't 1638 * transfer anything. 1639 */ 1640 if (urb->actual_length > urb->transfer_buffer_length) { 1641 xhci_warn(xhci, "URB transfer length is wrong, " 1642 "xHC issue? req. len = %u, " 1643 "act. len = %u\n", 1644 urb->transfer_buffer_length, 1645 urb->actual_length); 1646 urb->actual_length = 0; 1647 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1648 *status = -EREMOTEIO; 1649 else 1650 *status = 0; 1651 } 1652 list_del_init(&td->td_list); 1653 /* Was this TD slated to be cancelled but completed anyway? */ 1654 if (!list_empty(&td->cancelled_td_list)) 1655 list_del_init(&td->cancelled_td_list); 1656 1657 urb_priv->td_cnt++; 1658 /* Giveback the urb when all the tds are completed */ 1659 if (urb_priv->td_cnt == urb_priv->length) { 1660 ret = 1; 1661 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 1662 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 1663 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs 1664 == 0) { 1665 if (xhci->quirks & XHCI_AMD_PLL_FIX) 1666 usb_amd_quirk_pll_enable(); 1667 } 1668 } 1669 } 1670 } 1671 1672 return ret; 1673 } 1674 1675 /* 1676 * Process control tds, update urb status and actual_length. 1677 */ 1678 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1679 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1680 struct xhci_virt_ep *ep, int *status) 1681 { 1682 struct xhci_virt_device *xdev; 1683 struct xhci_ring *ep_ring; 1684 unsigned int slot_id; 1685 int ep_index; 1686 struct xhci_ep_ctx *ep_ctx; 1687 u32 trb_comp_code; 1688 1689 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1690 xdev = xhci->devs[slot_id]; 1691 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1692 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1693 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1694 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1695 1696 switch (trb_comp_code) { 1697 case COMP_SUCCESS: 1698 if (event_trb == ep_ring->dequeue) { 1699 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 1700 "without IOC set??\n"); 1701 *status = -ESHUTDOWN; 1702 } else if (event_trb != td->last_trb) { 1703 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 1704 "without IOC set??\n"); 1705 *status = -ESHUTDOWN; 1706 } else { 1707 *status = 0; 1708 } 1709 break; 1710 case COMP_SHORT_TX: 1711 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1712 *status = -EREMOTEIO; 1713 else 1714 *status = 0; 1715 break; 1716 case COMP_STOP_INVAL: 1717 case COMP_STOP: 1718 return finish_td(xhci, td, event_trb, event, ep, status, false); 1719 default: 1720 if (!xhci_requires_manual_halt_cleanup(xhci, 1721 ep_ctx, trb_comp_code)) 1722 break; 1723 xhci_dbg(xhci, "TRB error code %u, " 1724 "halted endpoint index = %u\n", 1725 trb_comp_code, ep_index); 1726 /* else fall through */ 1727 case COMP_STALL: 1728 /* Did we transfer part of the data (middle) phase? */ 1729 if (event_trb != ep_ring->dequeue && 1730 event_trb != td->last_trb) 1731 td->urb->actual_length = 1732 td->urb->transfer_buffer_length 1733 - TRB_LEN(le32_to_cpu(event->transfer_len)); 1734 else 1735 td->urb->actual_length = 0; 1736 1737 xhci_cleanup_halted_endpoint(xhci, 1738 slot_id, ep_index, 0, td, event_trb); 1739 return finish_td(xhci, td, event_trb, event, ep, status, true); 1740 } 1741 /* 1742 * Did we transfer any data, despite the errors that might have 1743 * happened? I.e. did we get past the setup stage? 1744 */ 1745 if (event_trb != ep_ring->dequeue) { 1746 /* The event was for the status stage */ 1747 if (event_trb == td->last_trb) { 1748 if (td->urb->actual_length != 0) { 1749 /* Don't overwrite a previously set error code 1750 */ 1751 if ((*status == -EINPROGRESS || *status == 0) && 1752 (td->urb->transfer_flags 1753 & URB_SHORT_NOT_OK)) 1754 /* Did we already see a short data 1755 * stage? */ 1756 *status = -EREMOTEIO; 1757 } else { 1758 td->urb->actual_length = 1759 td->urb->transfer_buffer_length; 1760 } 1761 } else { 1762 /* Maybe the event was for the data stage? */ 1763 td->urb->actual_length = 1764 td->urb->transfer_buffer_length - 1765 TRB_LEN(le32_to_cpu(event->transfer_len)); 1766 xhci_dbg(xhci, "Waiting for status " 1767 "stage event\n"); 1768 return 0; 1769 } 1770 } 1771 1772 return finish_td(xhci, td, event_trb, event, ep, status, false); 1773 } 1774 1775 /* 1776 * Process isochronous tds, update urb packet status and actual_length. 1777 */ 1778 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 1779 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1780 struct xhci_virt_ep *ep, int *status) 1781 { 1782 struct xhci_ring *ep_ring; 1783 struct urb_priv *urb_priv; 1784 int idx; 1785 int len = 0; 1786 union xhci_trb *cur_trb; 1787 struct xhci_segment *cur_seg; 1788 struct usb_iso_packet_descriptor *frame; 1789 u32 trb_comp_code; 1790 bool skip_td = false; 1791 1792 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1793 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1794 urb_priv = td->urb->hcpriv; 1795 idx = urb_priv->td_cnt; 1796 frame = &td->urb->iso_frame_desc[idx]; 1797 1798 /* handle completion code */ 1799 switch (trb_comp_code) { 1800 case COMP_SUCCESS: 1801 if (TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { 1802 frame->status = 0; 1803 break; 1804 } 1805 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 1806 trb_comp_code = COMP_SHORT_TX; 1807 case COMP_SHORT_TX: 1808 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 1809 -EREMOTEIO : 0; 1810 break; 1811 case COMP_BW_OVER: 1812 frame->status = -ECOMM; 1813 skip_td = true; 1814 break; 1815 case COMP_BUFF_OVER: 1816 case COMP_BABBLE: 1817 frame->status = -EOVERFLOW; 1818 skip_td = true; 1819 break; 1820 case COMP_DEV_ERR: 1821 case COMP_STALL: 1822 case COMP_TX_ERR: 1823 frame->status = -EPROTO; 1824 skip_td = true; 1825 break; 1826 case COMP_STOP: 1827 case COMP_STOP_INVAL: 1828 break; 1829 default: 1830 frame->status = -1; 1831 break; 1832 } 1833 1834 if (trb_comp_code == COMP_SUCCESS || skip_td) { 1835 frame->actual_length = frame->length; 1836 td->urb->actual_length += frame->length; 1837 } else { 1838 for (cur_trb = ep_ring->dequeue, 1839 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 1840 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 1841 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 1842 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 1843 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 1844 } 1845 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 1846 TRB_LEN(le32_to_cpu(event->transfer_len)); 1847 1848 if (trb_comp_code != COMP_STOP_INVAL) { 1849 frame->actual_length = len; 1850 td->urb->actual_length += len; 1851 } 1852 } 1853 1854 return finish_td(xhci, td, event_trb, event, ep, status, false); 1855 } 1856 1857 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 1858 struct xhci_transfer_event *event, 1859 struct xhci_virt_ep *ep, int *status) 1860 { 1861 struct xhci_ring *ep_ring; 1862 struct urb_priv *urb_priv; 1863 struct usb_iso_packet_descriptor *frame; 1864 int idx; 1865 1866 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1867 urb_priv = td->urb->hcpriv; 1868 idx = urb_priv->td_cnt; 1869 frame = &td->urb->iso_frame_desc[idx]; 1870 1871 /* The transfer is partly done. */ 1872 frame->status = -EXDEV; 1873 1874 /* calc actual length */ 1875 frame->actual_length = 0; 1876 1877 /* Update ring dequeue pointer */ 1878 while (ep_ring->dequeue != td->last_trb) 1879 inc_deq(xhci, ep_ring); 1880 inc_deq(xhci, ep_ring); 1881 1882 return finish_td(xhci, td, NULL, event, ep, status, true); 1883 } 1884 1885 /* 1886 * Process bulk and interrupt tds, update urb status and actual_length. 1887 */ 1888 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 1889 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1890 struct xhci_virt_ep *ep, int *status) 1891 { 1892 struct xhci_ring *ep_ring; 1893 union xhci_trb *cur_trb; 1894 struct xhci_segment *cur_seg; 1895 u32 trb_comp_code; 1896 1897 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1898 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1899 1900 switch (trb_comp_code) { 1901 case COMP_SUCCESS: 1902 /* Double check that the HW transferred everything. */ 1903 if (event_trb != td->last_trb || 1904 TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 1905 xhci_warn(xhci, "WARN Successful completion " 1906 "on short TX\n"); 1907 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1908 *status = -EREMOTEIO; 1909 else 1910 *status = 0; 1911 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 1912 trb_comp_code = COMP_SHORT_TX; 1913 } else { 1914 *status = 0; 1915 } 1916 break; 1917 case COMP_SHORT_TX: 1918 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1919 *status = -EREMOTEIO; 1920 else 1921 *status = 0; 1922 break; 1923 default: 1924 /* Others already handled above */ 1925 break; 1926 } 1927 if (trb_comp_code == COMP_SHORT_TX) 1928 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 1929 "%d bytes untransferred\n", 1930 td->urb->ep->desc.bEndpointAddress, 1931 td->urb->transfer_buffer_length, 1932 TRB_LEN(le32_to_cpu(event->transfer_len))); 1933 /* Fast path - was this the last TRB in the TD for this URB? */ 1934 if (event_trb == td->last_trb) { 1935 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 1936 td->urb->actual_length = 1937 td->urb->transfer_buffer_length - 1938 TRB_LEN(le32_to_cpu(event->transfer_len)); 1939 if (td->urb->transfer_buffer_length < 1940 td->urb->actual_length) { 1941 xhci_warn(xhci, "HC gave bad length " 1942 "of %d bytes left\n", 1943 TRB_LEN(le32_to_cpu(event->transfer_len))); 1944 td->urb->actual_length = 0; 1945 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1946 *status = -EREMOTEIO; 1947 else 1948 *status = 0; 1949 } 1950 /* Don't overwrite a previously set error code */ 1951 if (*status == -EINPROGRESS) { 1952 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1953 *status = -EREMOTEIO; 1954 else 1955 *status = 0; 1956 } 1957 } else { 1958 td->urb->actual_length = 1959 td->urb->transfer_buffer_length; 1960 /* Ignore a short packet completion if the 1961 * untransferred length was zero. 1962 */ 1963 if (*status == -EREMOTEIO) 1964 *status = 0; 1965 } 1966 } else { 1967 /* Slow path - walk the list, starting from the dequeue 1968 * pointer, to get the actual length transferred. 1969 */ 1970 td->urb->actual_length = 0; 1971 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 1972 cur_trb != event_trb; 1973 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 1974 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 1975 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 1976 td->urb->actual_length += 1977 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 1978 } 1979 /* If the ring didn't stop on a Link or No-op TRB, add 1980 * in the actual bytes transferred from the Normal TRB 1981 */ 1982 if (trb_comp_code != COMP_STOP_INVAL) 1983 td->urb->actual_length += 1984 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 1985 TRB_LEN(le32_to_cpu(event->transfer_len)); 1986 } 1987 1988 return finish_td(xhci, td, event_trb, event, ep, status, false); 1989 } 1990 1991 /* 1992 * If this function returns an error condition, it means it got a Transfer 1993 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 1994 * At this point, the host controller is probably hosed and should be reset. 1995 */ 1996 static int handle_tx_event(struct xhci_hcd *xhci, 1997 struct xhci_transfer_event *event) 1998 { 1999 struct xhci_virt_device *xdev; 2000 struct xhci_virt_ep *ep; 2001 struct xhci_ring *ep_ring; 2002 unsigned int slot_id; 2003 int ep_index; 2004 struct xhci_td *td = NULL; 2005 dma_addr_t event_dma; 2006 struct xhci_segment *event_seg; 2007 union xhci_trb *event_trb; 2008 struct urb *urb = NULL; 2009 int status = -EINPROGRESS; 2010 struct urb_priv *urb_priv; 2011 struct xhci_ep_ctx *ep_ctx; 2012 struct list_head *tmp; 2013 u32 trb_comp_code; 2014 int ret = 0; 2015 int td_num = 0; 2016 2017 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2018 xdev = xhci->devs[slot_id]; 2019 if (!xdev) { 2020 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2021 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2022 (unsigned long long) xhci_trb_virt_to_dma( 2023 xhci->event_ring->deq_seg, 2024 xhci->event_ring->dequeue), 2025 lower_32_bits(le64_to_cpu(event->buffer)), 2026 upper_32_bits(le64_to_cpu(event->buffer)), 2027 le32_to_cpu(event->transfer_len), 2028 le32_to_cpu(event->flags)); 2029 xhci_dbg(xhci, "Event ring:\n"); 2030 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2031 return -ENODEV; 2032 } 2033 2034 /* Endpoint ID is 1 based, our index is zero based */ 2035 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2036 ep = &xdev->eps[ep_index]; 2037 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2038 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2039 if (!ep_ring || 2040 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 2041 EP_STATE_DISABLED) { 2042 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2043 "or incorrect stream ring\n"); 2044 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2045 (unsigned long long) xhci_trb_virt_to_dma( 2046 xhci->event_ring->deq_seg, 2047 xhci->event_ring->dequeue), 2048 lower_32_bits(le64_to_cpu(event->buffer)), 2049 upper_32_bits(le64_to_cpu(event->buffer)), 2050 le32_to_cpu(event->transfer_len), 2051 le32_to_cpu(event->flags)); 2052 xhci_dbg(xhci, "Event ring:\n"); 2053 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2054 return -ENODEV; 2055 } 2056 2057 /* Count current td numbers if ep->skip is set */ 2058 if (ep->skip) { 2059 list_for_each(tmp, &ep_ring->td_list) 2060 td_num++; 2061 } 2062 2063 event_dma = le64_to_cpu(event->buffer); 2064 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2065 /* Look for common error cases */ 2066 switch (trb_comp_code) { 2067 /* Skip codes that require special handling depending on 2068 * transfer type 2069 */ 2070 case COMP_SUCCESS: 2071 if (TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2072 break; 2073 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2074 trb_comp_code = COMP_SHORT_TX; 2075 else 2076 xhci_warn(xhci, "WARN Successful completion on short TX: " 2077 "needs XHCI_TRUST_TX_LENGTH quirk?\n"); 2078 case COMP_SHORT_TX: 2079 break; 2080 case COMP_STOP: 2081 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2082 break; 2083 case COMP_STOP_INVAL: 2084 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2085 break; 2086 case COMP_STALL: 2087 xhci_dbg(xhci, "Stalled endpoint\n"); 2088 ep->ep_state |= EP_HALTED; 2089 status = -EPIPE; 2090 break; 2091 case COMP_TRB_ERR: 2092 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2093 status = -EILSEQ; 2094 break; 2095 case COMP_SPLIT_ERR: 2096 case COMP_TX_ERR: 2097 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2098 status = -EPROTO; 2099 break; 2100 case COMP_BABBLE: 2101 xhci_dbg(xhci, "Babble error on endpoint\n"); 2102 status = -EOVERFLOW; 2103 break; 2104 case COMP_DB_ERR: 2105 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2106 status = -ENOSR; 2107 break; 2108 case COMP_BW_OVER: 2109 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2110 break; 2111 case COMP_BUFF_OVER: 2112 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2113 break; 2114 case COMP_UNDERRUN: 2115 /* 2116 * When the Isoch ring is empty, the xHC will generate 2117 * a Ring Overrun Event for IN Isoch endpoint or Ring 2118 * Underrun Event for OUT Isoch endpoint. 2119 */ 2120 xhci_dbg(xhci, "underrun event on endpoint\n"); 2121 if (!list_empty(&ep_ring->td_list)) 2122 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2123 "still with TDs queued?\n", 2124 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2125 ep_index); 2126 goto cleanup; 2127 case COMP_OVERRUN: 2128 xhci_dbg(xhci, "overrun event on endpoint\n"); 2129 if (!list_empty(&ep_ring->td_list)) 2130 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2131 "still with TDs queued?\n", 2132 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2133 ep_index); 2134 goto cleanup; 2135 case COMP_DEV_ERR: 2136 xhci_warn(xhci, "WARN: detect an incompatible device"); 2137 status = -EPROTO; 2138 break; 2139 case COMP_MISSED_INT: 2140 /* 2141 * When encounter missed service error, one or more isoc tds 2142 * may be missed by xHC. 2143 * Set skip flag of the ep_ring; Complete the missed tds as 2144 * short transfer when process the ep_ring next time. 2145 */ 2146 ep->skip = true; 2147 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2148 goto cleanup; 2149 default: 2150 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2151 status = 0; 2152 break; 2153 } 2154 xhci_warn(xhci, "ERROR Unknown event condition, HC probably " 2155 "busted\n"); 2156 goto cleanup; 2157 } 2158 2159 do { 2160 /* This TRB should be in the TD at the head of this ring's 2161 * TD list. 2162 */ 2163 if (list_empty(&ep_ring->td_list)) { 2164 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d " 2165 "with no TDs queued?\n", 2166 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2167 ep_index); 2168 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2169 (le32_to_cpu(event->flags) & 2170 TRB_TYPE_BITMASK)>>10); 2171 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2172 if (ep->skip) { 2173 ep->skip = false; 2174 xhci_dbg(xhci, "td_list is empty while skip " 2175 "flag set. Clear skip flag.\n"); 2176 } 2177 ret = 0; 2178 goto cleanup; 2179 } 2180 2181 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2182 if (ep->skip && td_num == 0) { 2183 ep->skip = false; 2184 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2185 "Clear skip flag.\n"); 2186 ret = 0; 2187 goto cleanup; 2188 } 2189 2190 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2191 if (ep->skip) 2192 td_num--; 2193 2194 /* Is this a TRB in the currently executing TD? */ 2195 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, 2196 td->last_trb, event_dma); 2197 2198 /* 2199 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2200 * is not in the current TD pointed by ep_ring->dequeue because 2201 * that the hardware dequeue pointer still at the previous TRB 2202 * of the current TD. The previous TRB maybe a Link TD or the 2203 * last TRB of the previous TD. The command completion handle 2204 * will take care the rest. 2205 */ 2206 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) { 2207 ret = 0; 2208 goto cleanup; 2209 } 2210 2211 if (!event_seg) { 2212 if (!ep->skip || 2213 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2214 /* Some host controllers give a spurious 2215 * successful event after a short transfer. 2216 * Ignore it. 2217 */ 2218 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2219 ep_ring->last_td_was_short) { 2220 ep_ring->last_td_was_short = false; 2221 ret = 0; 2222 goto cleanup; 2223 } 2224 /* HC is busted, give up! */ 2225 xhci_err(xhci, 2226 "ERROR Transfer event TRB DMA ptr not " 2227 "part of current TD\n"); 2228 return -ESHUTDOWN; 2229 } 2230 2231 ret = skip_isoc_td(xhci, td, event, ep, &status); 2232 goto cleanup; 2233 } 2234 if (trb_comp_code == COMP_SHORT_TX) 2235 ep_ring->last_td_was_short = true; 2236 else 2237 ep_ring->last_td_was_short = false; 2238 2239 if (ep->skip) { 2240 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2241 ep->skip = false; 2242 } 2243 2244 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2245 sizeof(*event_trb)]; 2246 /* 2247 * No-op TRB should not trigger interrupts. 2248 * If event_trb is a no-op TRB, it means the 2249 * corresponding TD has been cancelled. Just ignore 2250 * the TD. 2251 */ 2252 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2253 xhci_dbg(xhci, 2254 "event_trb is a no-op TRB. Skip it\n"); 2255 goto cleanup; 2256 } 2257 2258 /* Now update the urb's actual_length and give back to 2259 * the core 2260 */ 2261 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2262 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2263 &status); 2264 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2265 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2266 &status); 2267 else 2268 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2269 ep, &status); 2270 2271 cleanup: 2272 /* 2273 * Do not update event ring dequeue pointer if ep->skip is set. 2274 * Will roll back to continue process missed tds. 2275 */ 2276 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2277 inc_deq(xhci, xhci->event_ring); 2278 } 2279 2280 if (ret) { 2281 urb = td->urb; 2282 urb_priv = urb->hcpriv; 2283 /* Leave the TD around for the reset endpoint function 2284 * to use(but only if it's not a control endpoint, 2285 * since we already queued the Set TR dequeue pointer 2286 * command for stalled control endpoints). 2287 */ 2288 if (usb_endpoint_xfer_control(&urb->ep->desc) || 2289 (trb_comp_code != COMP_STALL && 2290 trb_comp_code != COMP_BABBLE)) 2291 xhci_urb_free_priv(xhci, urb_priv); 2292 2293 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2294 if ((urb->actual_length != urb->transfer_buffer_length && 2295 (urb->transfer_flags & 2296 URB_SHORT_NOT_OK)) || 2297 (status != 0 && 2298 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2299 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2300 "expected = %d, status = %d\n", 2301 urb, urb->actual_length, 2302 urb->transfer_buffer_length, 2303 status); 2304 spin_unlock(&xhci->lock); 2305 /* EHCI, UHCI, and OHCI always unconditionally set the 2306 * urb->status of an isochronous endpoint to 0. 2307 */ 2308 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2309 status = 0; 2310 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2311 spin_lock(&xhci->lock); 2312 } 2313 2314 /* 2315 * If ep->skip is set, it means there are missed tds on the 2316 * endpoint ring need to take care of. 2317 * Process them as short transfer until reach the td pointed by 2318 * the event. 2319 */ 2320 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2321 2322 return 0; 2323 } 2324 2325 /* 2326 * This function handles all OS-owned events on the event ring. It may drop 2327 * xhci->lock between event processing (e.g. to pass up port status changes). 2328 * Returns >0 for "possibly more events to process" (caller should call again), 2329 * otherwise 0 if done. In future, <0 returns should indicate error code. 2330 */ 2331 static int xhci_handle_event(struct xhci_hcd *xhci) 2332 { 2333 union xhci_trb *event; 2334 int update_ptrs = 1; 2335 int ret; 2336 2337 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2338 xhci->error_bitmask |= 1 << 1; 2339 return 0; 2340 } 2341 2342 event = xhci->event_ring->dequeue; 2343 /* Does the HC or OS own the TRB? */ 2344 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2345 xhci->event_ring->cycle_state) { 2346 xhci->error_bitmask |= 1 << 2; 2347 return 0; 2348 } 2349 2350 /* 2351 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2352 * speculative reads of the event's flags/data below. 2353 */ 2354 rmb(); 2355 /* FIXME: Handle more event types. */ 2356 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2357 case TRB_TYPE(TRB_COMPLETION): 2358 handle_cmd_completion(xhci, &event->event_cmd); 2359 break; 2360 case TRB_TYPE(TRB_PORT_STATUS): 2361 handle_port_status(xhci, event); 2362 update_ptrs = 0; 2363 break; 2364 case TRB_TYPE(TRB_TRANSFER): 2365 ret = handle_tx_event(xhci, &event->trans_event); 2366 if (ret < 0) 2367 xhci->error_bitmask |= 1 << 9; 2368 else 2369 update_ptrs = 0; 2370 break; 2371 case TRB_TYPE(TRB_DEV_NOTE): 2372 handle_device_notification(xhci, event); 2373 break; 2374 default: 2375 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2376 TRB_TYPE(48)) 2377 handle_vendor_event(xhci, event); 2378 else 2379 xhci->error_bitmask |= 1 << 3; 2380 } 2381 /* Any of the above functions may drop and re-acquire the lock, so check 2382 * to make sure a watchdog timer didn't mark the host as non-responsive. 2383 */ 2384 if (xhci->xhc_state & XHCI_STATE_DYING) { 2385 xhci_dbg(xhci, "xHCI host dying, returning from " 2386 "event handler.\n"); 2387 return 0; 2388 } 2389 2390 if (update_ptrs) 2391 /* Update SW event ring dequeue pointer */ 2392 inc_deq(xhci, xhci->event_ring); 2393 2394 /* Are there more items on the event ring? Caller will call us again to 2395 * check. 2396 */ 2397 return 1; 2398 } 2399 2400 /* 2401 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2402 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2403 * indicators of an event TRB error, but we check the status *first* to be safe. 2404 */ 2405 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2406 { 2407 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2408 u32 status; 2409 union xhci_trb *trb; 2410 u64 temp_64; 2411 union xhci_trb *event_ring_deq; 2412 dma_addr_t deq; 2413 2414 spin_lock(&xhci->lock); 2415 trb = xhci->event_ring->dequeue; 2416 /* Check if the xHC generated the interrupt, or the irq is shared */ 2417 status = xhci_readl(xhci, &xhci->op_regs->status); 2418 if (status == 0xffffffff) 2419 goto hw_died; 2420 2421 if (!(status & STS_EINT)) { 2422 spin_unlock(&xhci->lock); 2423 return IRQ_NONE; 2424 } 2425 if (status & STS_FATAL) { 2426 xhci_warn(xhci, "WARNING: Host System Error\n"); 2427 xhci_halt(xhci); 2428 hw_died: 2429 spin_unlock(&xhci->lock); 2430 return -ESHUTDOWN; 2431 } 2432 2433 /* 2434 * Clear the op reg interrupt status first, 2435 * so we can receive interrupts from other MSI-X interrupters. 2436 * Write 1 to clear the interrupt status. 2437 */ 2438 status |= STS_EINT; 2439 xhci_writel(xhci, status, &xhci->op_regs->status); 2440 /* FIXME when MSI-X is supported and there are multiple vectors */ 2441 /* Clear the MSI-X event interrupt status */ 2442 2443 if (hcd->irq) { 2444 u32 irq_pending; 2445 /* Acknowledge the PCI interrupt */ 2446 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 2447 irq_pending |= IMAN_IP; 2448 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending); 2449 } 2450 2451 if (xhci->xhc_state & XHCI_STATE_DYING) { 2452 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2453 "Shouldn't IRQs be disabled?\n"); 2454 /* Clear the event handler busy flag (RW1C); 2455 * the event ring should be empty. 2456 */ 2457 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2458 xhci_write_64(xhci, temp_64 | ERST_EHB, 2459 &xhci->ir_set->erst_dequeue); 2460 spin_unlock(&xhci->lock); 2461 2462 return IRQ_HANDLED; 2463 } 2464 2465 event_ring_deq = xhci->event_ring->dequeue; 2466 /* FIXME this should be a delayed service routine 2467 * that clears the EHB. 2468 */ 2469 while (xhci_handle_event(xhci) > 0) {} 2470 2471 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2472 /* If necessary, update the HW's version of the event ring deq ptr. */ 2473 if (event_ring_deq != xhci->event_ring->dequeue) { 2474 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2475 xhci->event_ring->dequeue); 2476 if (deq == 0) 2477 xhci_warn(xhci, "WARN something wrong with SW event " 2478 "ring dequeue ptr.\n"); 2479 /* Update HC event ring dequeue pointer */ 2480 temp_64 &= ERST_PTR_MASK; 2481 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2482 } 2483 2484 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2485 temp_64 |= ERST_EHB; 2486 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2487 2488 spin_unlock(&xhci->lock); 2489 2490 return IRQ_HANDLED; 2491 } 2492 2493 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd) 2494 { 2495 return xhci_irq(hcd); 2496 } 2497 2498 /**** Endpoint Ring Operations ****/ 2499 2500 /* 2501 * Generic function for queueing a TRB on a ring. 2502 * The caller must have checked to make sure there's room on the ring. 2503 * 2504 * @more_trbs_coming: Will you enqueue more TRBs before calling 2505 * prepare_transfer()? 2506 */ 2507 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2508 bool more_trbs_coming, 2509 u32 field1, u32 field2, u32 field3, u32 field4) 2510 { 2511 struct xhci_generic_trb *trb; 2512 2513 trb = &ring->enqueue->generic; 2514 trb->field[0] = cpu_to_le32(field1); 2515 trb->field[1] = cpu_to_le32(field2); 2516 trb->field[2] = cpu_to_le32(field3); 2517 trb->field[3] = cpu_to_le32(field4); 2518 inc_enq(xhci, ring, more_trbs_coming); 2519 } 2520 2521 /* 2522 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2523 * FIXME allocate segments if the ring is full. 2524 */ 2525 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2526 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2527 { 2528 unsigned int num_trbs_needed; 2529 2530 /* Make sure the endpoint has been added to xHC schedule */ 2531 switch (ep_state) { 2532 case EP_STATE_DISABLED: 2533 /* 2534 * USB core changed config/interfaces without notifying us, 2535 * or hardware is reporting the wrong state. 2536 */ 2537 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2538 return -ENOENT; 2539 case EP_STATE_ERROR: 2540 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2541 /* FIXME event handling code for error needs to clear it */ 2542 /* XXX not sure if this should be -ENOENT or not */ 2543 return -EINVAL; 2544 case EP_STATE_HALTED: 2545 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2546 case EP_STATE_STOPPED: 2547 case EP_STATE_RUNNING: 2548 break; 2549 default: 2550 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2551 /* 2552 * FIXME issue Configure Endpoint command to try to get the HC 2553 * back into a known state. 2554 */ 2555 return -EINVAL; 2556 } 2557 2558 while (1) { 2559 if (room_on_ring(xhci, ep_ring, num_trbs)) 2560 break; 2561 2562 if (ep_ring == xhci->cmd_ring) { 2563 xhci_err(xhci, "Do not support expand command ring\n"); 2564 return -ENOMEM; 2565 } 2566 2567 xhci_dbg(xhci, "ERROR no room on ep ring, " 2568 "try ring expansion\n"); 2569 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2570 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2571 mem_flags)) { 2572 xhci_err(xhci, "Ring expansion failed\n"); 2573 return -ENOMEM; 2574 } 2575 }; 2576 2577 if (enqueue_is_link_trb(ep_ring)) { 2578 struct xhci_ring *ring = ep_ring; 2579 union xhci_trb *next; 2580 2581 next = ring->enqueue; 2582 2583 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2584 /* If we're not dealing with 0.95 hardware or isoc rings 2585 * on AMD 0.96 host, clear the chain bit. 2586 */ 2587 if (!xhci_link_trb_quirk(xhci) && 2588 !(ring->type == TYPE_ISOC && 2589 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2590 next->link.control &= cpu_to_le32(~TRB_CHAIN); 2591 else 2592 next->link.control |= cpu_to_le32(TRB_CHAIN); 2593 2594 wmb(); 2595 next->link.control ^= cpu_to_le32(TRB_CYCLE); 2596 2597 /* Toggle the cycle bit after the last ring segment. */ 2598 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 2599 ring->cycle_state = (ring->cycle_state ? 0 : 1); 2600 } 2601 ring->enq_seg = ring->enq_seg->next; 2602 ring->enqueue = ring->enq_seg->trbs; 2603 next = ring->enqueue; 2604 } 2605 } 2606 2607 return 0; 2608 } 2609 2610 static int prepare_transfer(struct xhci_hcd *xhci, 2611 struct xhci_virt_device *xdev, 2612 unsigned int ep_index, 2613 unsigned int stream_id, 2614 unsigned int num_trbs, 2615 struct urb *urb, 2616 unsigned int td_index, 2617 gfp_t mem_flags) 2618 { 2619 int ret; 2620 struct urb_priv *urb_priv; 2621 struct xhci_td *td; 2622 struct xhci_ring *ep_ring; 2623 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2624 2625 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2626 if (!ep_ring) { 2627 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2628 stream_id); 2629 return -EINVAL; 2630 } 2631 2632 ret = prepare_ring(xhci, ep_ring, 2633 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 2634 num_trbs, mem_flags); 2635 if (ret) 2636 return ret; 2637 2638 urb_priv = urb->hcpriv; 2639 td = urb_priv->td[td_index]; 2640 2641 INIT_LIST_HEAD(&td->td_list); 2642 INIT_LIST_HEAD(&td->cancelled_td_list); 2643 2644 if (td_index == 0) { 2645 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2646 if (unlikely(ret)) 2647 return ret; 2648 } 2649 2650 td->urb = urb; 2651 /* Add this TD to the tail of the endpoint ring's TD list */ 2652 list_add_tail(&td->td_list, &ep_ring->td_list); 2653 td->start_seg = ep_ring->enq_seg; 2654 td->first_trb = ep_ring->enqueue; 2655 2656 urb_priv->td[td_index] = td; 2657 2658 return 0; 2659 } 2660 2661 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 2662 { 2663 int num_sgs, num_trbs, running_total, temp, i; 2664 struct scatterlist *sg; 2665 2666 sg = NULL; 2667 num_sgs = urb->num_mapped_sgs; 2668 temp = urb->transfer_buffer_length; 2669 2670 num_trbs = 0; 2671 for_each_sg(urb->sg, sg, num_sgs, i) { 2672 unsigned int len = sg_dma_len(sg); 2673 2674 /* Scatter gather list entries may cross 64KB boundaries */ 2675 running_total = TRB_MAX_BUFF_SIZE - 2676 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 2677 running_total &= TRB_MAX_BUFF_SIZE - 1; 2678 if (running_total != 0) 2679 num_trbs++; 2680 2681 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2682 while (running_total < sg_dma_len(sg) && running_total < temp) { 2683 num_trbs++; 2684 running_total += TRB_MAX_BUFF_SIZE; 2685 } 2686 len = min_t(int, len, temp); 2687 temp -= len; 2688 if (temp == 0) 2689 break; 2690 } 2691 return num_trbs; 2692 } 2693 2694 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 2695 { 2696 if (num_trbs != 0) 2697 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 2698 "TRBs, %d left\n", __func__, 2699 urb->ep->desc.bEndpointAddress, num_trbs); 2700 if (running_total != urb->transfer_buffer_length) 2701 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 2702 "queued %#x (%d), asked for %#x (%d)\n", 2703 __func__, 2704 urb->ep->desc.bEndpointAddress, 2705 running_total, running_total, 2706 urb->transfer_buffer_length, 2707 urb->transfer_buffer_length); 2708 } 2709 2710 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 2711 unsigned int ep_index, unsigned int stream_id, int start_cycle, 2712 struct xhci_generic_trb *start_trb) 2713 { 2714 /* 2715 * Pass all the TRBs to the hardware at once and make sure this write 2716 * isn't reordered. 2717 */ 2718 wmb(); 2719 if (start_cycle) 2720 start_trb->field[3] |= cpu_to_le32(start_cycle); 2721 else 2722 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 2723 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 2724 } 2725 2726 /* 2727 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 2728 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 2729 * (comprised of sg list entries) can take several service intervals to 2730 * transmit. 2731 */ 2732 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2733 struct urb *urb, int slot_id, unsigned int ep_index) 2734 { 2735 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 2736 xhci->devs[slot_id]->out_ctx, ep_index); 2737 int xhci_interval; 2738 int ep_interval; 2739 2740 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 2741 ep_interval = urb->interval; 2742 /* Convert to microframes */ 2743 if (urb->dev->speed == USB_SPEED_LOW || 2744 urb->dev->speed == USB_SPEED_FULL) 2745 ep_interval *= 8; 2746 /* FIXME change this to a warning and a suggestion to use the new API 2747 * to set the polling interval (once the API is added). 2748 */ 2749 if (xhci_interval != ep_interval) { 2750 if (printk_ratelimit()) 2751 dev_dbg(&urb->dev->dev, "Driver uses different interval" 2752 " (%d microframe%s) than xHCI " 2753 "(%d microframe%s)\n", 2754 ep_interval, 2755 ep_interval == 1 ? "" : "s", 2756 xhci_interval, 2757 xhci_interval == 1 ? "" : "s"); 2758 urb->interval = xhci_interval; 2759 /* Convert back to frames for LS/FS devices */ 2760 if (urb->dev->speed == USB_SPEED_LOW || 2761 urb->dev->speed == USB_SPEED_FULL) 2762 urb->interval /= 8; 2763 } 2764 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 2765 } 2766 2767 /* 2768 * The TD size is the number of bytes remaining in the TD (including this TRB), 2769 * right shifted by 10. 2770 * It must fit in bits 21:17, so it can't be bigger than 31. 2771 */ 2772 static u32 xhci_td_remainder(unsigned int remainder) 2773 { 2774 u32 max = (1 << (21 - 17 + 1)) - 1; 2775 2776 if ((remainder >> 10) >= max) 2777 return max << 17; 2778 else 2779 return (remainder >> 10) << 17; 2780 } 2781 2782 /* 2783 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in 2784 * the TD (*not* including this TRB). 2785 * 2786 * Total TD packet count = total_packet_count = 2787 * roundup(TD size in bytes / wMaxPacketSize) 2788 * 2789 * Packets transferred up to and including this TRB = packets_transferred = 2790 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 2791 * 2792 * TD size = total_packet_count - packets_transferred 2793 * 2794 * It must fit in bits 21:17, so it can't be bigger than 31. 2795 */ 2796 2797 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 2798 unsigned int total_packet_count, struct urb *urb) 2799 { 2800 int packets_transferred; 2801 2802 /* One TRB with a zero-length data packet. */ 2803 if (running_total == 0 && trb_buff_len == 0) 2804 return 0; 2805 2806 /* All the TRB queueing functions don't count the current TRB in 2807 * running_total. 2808 */ 2809 packets_transferred = (running_total + trb_buff_len) / 2810 usb_endpoint_maxp(&urb->ep->desc); 2811 2812 return xhci_td_remainder(total_packet_count - packets_transferred); 2813 } 2814 2815 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2816 struct urb *urb, int slot_id, unsigned int ep_index) 2817 { 2818 struct xhci_ring *ep_ring; 2819 unsigned int num_trbs; 2820 struct urb_priv *urb_priv; 2821 struct xhci_td *td; 2822 struct scatterlist *sg; 2823 int num_sgs; 2824 int trb_buff_len, this_sg_len, running_total; 2825 unsigned int total_packet_count; 2826 bool first_trb; 2827 u64 addr; 2828 bool more_trbs_coming; 2829 2830 struct xhci_generic_trb *start_trb; 2831 int start_cycle; 2832 2833 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 2834 if (!ep_ring) 2835 return -EINVAL; 2836 2837 num_trbs = count_sg_trbs_needed(xhci, urb); 2838 num_sgs = urb->num_mapped_sgs; 2839 total_packet_count = roundup(urb->transfer_buffer_length, 2840 usb_endpoint_maxp(&urb->ep->desc)); 2841 2842 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 2843 ep_index, urb->stream_id, 2844 num_trbs, urb, 0, mem_flags); 2845 if (trb_buff_len < 0) 2846 return trb_buff_len; 2847 2848 urb_priv = urb->hcpriv; 2849 td = urb_priv->td[0]; 2850 2851 /* 2852 * Don't give the first TRB to the hardware (by toggling the cycle bit) 2853 * until we've finished creating all the other TRBs. The ring's cycle 2854 * state may change as we enqueue the other TRBs, so save it too. 2855 */ 2856 start_trb = &ep_ring->enqueue->generic; 2857 start_cycle = ep_ring->cycle_state; 2858 2859 running_total = 0; 2860 /* 2861 * How much data is in the first TRB? 2862 * 2863 * There are three forces at work for TRB buffer pointers and lengths: 2864 * 1. We don't want to walk off the end of this sg-list entry buffer. 2865 * 2. The transfer length that the driver requested may be smaller than 2866 * the amount of memory allocated for this scatter-gather list. 2867 * 3. TRBs buffers can't cross 64KB boundaries. 2868 */ 2869 sg = urb->sg; 2870 addr = (u64) sg_dma_address(sg); 2871 this_sg_len = sg_dma_len(sg); 2872 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 2873 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 2874 if (trb_buff_len > urb->transfer_buffer_length) 2875 trb_buff_len = urb->transfer_buffer_length; 2876 2877 first_trb = true; 2878 /* Queue the first TRB, even if it's zero-length */ 2879 do { 2880 u32 field = 0; 2881 u32 length_field = 0; 2882 u32 remainder = 0; 2883 2884 /* Don't change the cycle bit of the first TRB until later */ 2885 if (first_trb) { 2886 first_trb = false; 2887 if (start_cycle == 0) 2888 field |= 0x1; 2889 } else 2890 field |= ep_ring->cycle_state; 2891 2892 /* Chain all the TRBs together; clear the chain bit in the last 2893 * TRB to indicate it's the last TRB in the chain. 2894 */ 2895 if (num_trbs > 1) { 2896 field |= TRB_CHAIN; 2897 } else { 2898 /* FIXME - add check for ZERO_PACKET flag before this */ 2899 td->last_trb = ep_ring->enqueue; 2900 field |= TRB_IOC; 2901 } 2902 2903 /* Only set interrupt on short packet for IN endpoints */ 2904 if (usb_urb_dir_in(urb)) 2905 field |= TRB_ISP; 2906 2907 if (TRB_MAX_BUFF_SIZE - 2908 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 2909 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 2910 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 2911 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 2912 (unsigned int) addr + trb_buff_len); 2913 } 2914 2915 /* Set the TRB length, TD size, and interrupter fields. */ 2916 if (xhci->hci_version < 0x100) { 2917 remainder = xhci_td_remainder( 2918 urb->transfer_buffer_length - 2919 running_total); 2920 } else { 2921 remainder = xhci_v1_0_td_remainder(running_total, 2922 trb_buff_len, total_packet_count, urb); 2923 } 2924 length_field = TRB_LEN(trb_buff_len) | 2925 remainder | 2926 TRB_INTR_TARGET(0); 2927 2928 if (num_trbs > 1) 2929 more_trbs_coming = true; 2930 else 2931 more_trbs_coming = false; 2932 queue_trb(xhci, ep_ring, more_trbs_coming, 2933 lower_32_bits(addr), 2934 upper_32_bits(addr), 2935 length_field, 2936 field | TRB_TYPE(TRB_NORMAL)); 2937 --num_trbs; 2938 running_total += trb_buff_len; 2939 2940 /* Calculate length for next transfer -- 2941 * Are we done queueing all the TRBs for this sg entry? 2942 */ 2943 this_sg_len -= trb_buff_len; 2944 if (this_sg_len == 0) { 2945 --num_sgs; 2946 if (num_sgs == 0) 2947 break; 2948 sg = sg_next(sg); 2949 addr = (u64) sg_dma_address(sg); 2950 this_sg_len = sg_dma_len(sg); 2951 } else { 2952 addr += trb_buff_len; 2953 } 2954 2955 trb_buff_len = TRB_MAX_BUFF_SIZE - 2956 (addr & (TRB_MAX_BUFF_SIZE - 1)); 2957 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 2958 if (running_total + trb_buff_len > urb->transfer_buffer_length) 2959 trb_buff_len = 2960 urb->transfer_buffer_length - running_total; 2961 } while (running_total < urb->transfer_buffer_length); 2962 2963 check_trb_math(urb, num_trbs, running_total); 2964 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 2965 start_cycle, start_trb); 2966 return 0; 2967 } 2968 2969 /* This is very similar to what ehci-q.c qtd_fill() does */ 2970 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2971 struct urb *urb, int slot_id, unsigned int ep_index) 2972 { 2973 struct xhci_ring *ep_ring; 2974 struct urb_priv *urb_priv; 2975 struct xhci_td *td; 2976 int num_trbs; 2977 struct xhci_generic_trb *start_trb; 2978 bool first_trb; 2979 bool more_trbs_coming; 2980 int start_cycle; 2981 u32 field, length_field; 2982 2983 int running_total, trb_buff_len, ret; 2984 unsigned int total_packet_count; 2985 u64 addr; 2986 2987 if (urb->num_sgs) 2988 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 2989 2990 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 2991 if (!ep_ring) 2992 return -EINVAL; 2993 2994 num_trbs = 0; 2995 /* How much data is (potentially) left before the 64KB boundary? */ 2996 running_total = TRB_MAX_BUFF_SIZE - 2997 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 2998 running_total &= TRB_MAX_BUFF_SIZE - 1; 2999 3000 /* If there's some data on this 64KB chunk, or we have to send a 3001 * zero-length transfer, we need at least one TRB 3002 */ 3003 if (running_total != 0 || urb->transfer_buffer_length == 0) 3004 num_trbs++; 3005 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3006 while (running_total < urb->transfer_buffer_length) { 3007 num_trbs++; 3008 running_total += TRB_MAX_BUFF_SIZE; 3009 } 3010 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 3011 3012 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3013 ep_index, urb->stream_id, 3014 num_trbs, urb, 0, mem_flags); 3015 if (ret < 0) 3016 return ret; 3017 3018 urb_priv = urb->hcpriv; 3019 td = urb_priv->td[0]; 3020 3021 /* 3022 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3023 * until we've finished creating all the other TRBs. The ring's cycle 3024 * state may change as we enqueue the other TRBs, so save it too. 3025 */ 3026 start_trb = &ep_ring->enqueue->generic; 3027 start_cycle = ep_ring->cycle_state; 3028 3029 running_total = 0; 3030 total_packet_count = roundup(urb->transfer_buffer_length, 3031 usb_endpoint_maxp(&urb->ep->desc)); 3032 /* How much data is in the first TRB? */ 3033 addr = (u64) urb->transfer_dma; 3034 trb_buff_len = TRB_MAX_BUFF_SIZE - 3035 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3036 if (trb_buff_len > urb->transfer_buffer_length) 3037 trb_buff_len = urb->transfer_buffer_length; 3038 3039 first_trb = true; 3040 3041 /* Queue the first TRB, even if it's zero-length */ 3042 do { 3043 u32 remainder = 0; 3044 field = 0; 3045 3046 /* Don't change the cycle bit of the first TRB until later */ 3047 if (first_trb) { 3048 first_trb = false; 3049 if (start_cycle == 0) 3050 field |= 0x1; 3051 } else 3052 field |= ep_ring->cycle_state; 3053 3054 /* Chain all the TRBs together; clear the chain bit in the last 3055 * TRB to indicate it's the last TRB in the chain. 3056 */ 3057 if (num_trbs > 1) { 3058 field |= TRB_CHAIN; 3059 } else { 3060 /* FIXME - add check for ZERO_PACKET flag before this */ 3061 td->last_trb = ep_ring->enqueue; 3062 field |= TRB_IOC; 3063 } 3064 3065 /* Only set interrupt on short packet for IN endpoints */ 3066 if (usb_urb_dir_in(urb)) 3067 field |= TRB_ISP; 3068 3069 /* Set the TRB length, TD size, and interrupter fields. */ 3070 if (xhci->hci_version < 0x100) { 3071 remainder = xhci_td_remainder( 3072 urb->transfer_buffer_length - 3073 running_total); 3074 } else { 3075 remainder = xhci_v1_0_td_remainder(running_total, 3076 trb_buff_len, total_packet_count, urb); 3077 } 3078 length_field = TRB_LEN(trb_buff_len) | 3079 remainder | 3080 TRB_INTR_TARGET(0); 3081 3082 if (num_trbs > 1) 3083 more_trbs_coming = true; 3084 else 3085 more_trbs_coming = false; 3086 queue_trb(xhci, ep_ring, more_trbs_coming, 3087 lower_32_bits(addr), 3088 upper_32_bits(addr), 3089 length_field, 3090 field | TRB_TYPE(TRB_NORMAL)); 3091 --num_trbs; 3092 running_total += trb_buff_len; 3093 3094 /* Calculate length for next transfer */ 3095 addr += trb_buff_len; 3096 trb_buff_len = urb->transfer_buffer_length - running_total; 3097 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 3098 trb_buff_len = TRB_MAX_BUFF_SIZE; 3099 } while (running_total < urb->transfer_buffer_length); 3100 3101 check_trb_math(urb, num_trbs, running_total); 3102 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3103 start_cycle, start_trb); 3104 return 0; 3105 } 3106 3107 /* Caller must have locked xhci->lock */ 3108 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3109 struct urb *urb, int slot_id, unsigned int ep_index) 3110 { 3111 struct xhci_ring *ep_ring; 3112 int num_trbs; 3113 int ret; 3114 struct usb_ctrlrequest *setup; 3115 struct xhci_generic_trb *start_trb; 3116 int start_cycle; 3117 u32 field, length_field; 3118 struct urb_priv *urb_priv; 3119 struct xhci_td *td; 3120 3121 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3122 if (!ep_ring) 3123 return -EINVAL; 3124 3125 /* 3126 * Need to copy setup packet into setup TRB, so we can't use the setup 3127 * DMA address. 3128 */ 3129 if (!urb->setup_packet) 3130 return -EINVAL; 3131 3132 /* 1 TRB for setup, 1 for status */ 3133 num_trbs = 2; 3134 /* 3135 * Don't need to check if we need additional event data and normal TRBs, 3136 * since data in control transfers will never get bigger than 16MB 3137 * XXX: can we get a buffer that crosses 64KB boundaries? 3138 */ 3139 if (urb->transfer_buffer_length > 0) 3140 num_trbs++; 3141 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3142 ep_index, urb->stream_id, 3143 num_trbs, urb, 0, mem_flags); 3144 if (ret < 0) 3145 return ret; 3146 3147 urb_priv = urb->hcpriv; 3148 td = urb_priv->td[0]; 3149 3150 /* 3151 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3152 * until we've finished creating all the other TRBs. The ring's cycle 3153 * state may change as we enqueue the other TRBs, so save it too. 3154 */ 3155 start_trb = &ep_ring->enqueue->generic; 3156 start_cycle = ep_ring->cycle_state; 3157 3158 /* Queue setup TRB - see section 6.4.1.2.1 */ 3159 /* FIXME better way to translate setup_packet into two u32 fields? */ 3160 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3161 field = 0; 3162 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3163 if (start_cycle == 0) 3164 field |= 0x1; 3165 3166 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ 3167 if (xhci->hci_version == 0x100) { 3168 if (urb->transfer_buffer_length > 0) { 3169 if (setup->bRequestType & USB_DIR_IN) 3170 field |= TRB_TX_TYPE(TRB_DATA_IN); 3171 else 3172 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3173 } 3174 } 3175 3176 queue_trb(xhci, ep_ring, true, 3177 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3178 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3179 TRB_LEN(8) | TRB_INTR_TARGET(0), 3180 /* Immediate data in pointer */ 3181 field); 3182 3183 /* If there's data, queue data TRBs */ 3184 /* Only set interrupt on short packet for IN endpoints */ 3185 if (usb_urb_dir_in(urb)) 3186 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3187 else 3188 field = TRB_TYPE(TRB_DATA); 3189 3190 length_field = TRB_LEN(urb->transfer_buffer_length) | 3191 xhci_td_remainder(urb->transfer_buffer_length) | 3192 TRB_INTR_TARGET(0); 3193 if (urb->transfer_buffer_length > 0) { 3194 if (setup->bRequestType & USB_DIR_IN) 3195 field |= TRB_DIR_IN; 3196 queue_trb(xhci, ep_ring, true, 3197 lower_32_bits(urb->transfer_dma), 3198 upper_32_bits(urb->transfer_dma), 3199 length_field, 3200 field | ep_ring->cycle_state); 3201 } 3202 3203 /* Save the DMA address of the last TRB in the TD */ 3204 td->last_trb = ep_ring->enqueue; 3205 3206 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3207 /* If the device sent data, the status stage is an OUT transfer */ 3208 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3209 field = 0; 3210 else 3211 field = TRB_DIR_IN; 3212 queue_trb(xhci, ep_ring, false, 3213 0, 3214 0, 3215 TRB_INTR_TARGET(0), 3216 /* Event on completion */ 3217 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3218 3219 giveback_first_trb(xhci, slot_id, ep_index, 0, 3220 start_cycle, start_trb); 3221 return 0; 3222 } 3223 3224 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3225 struct urb *urb, int i) 3226 { 3227 int num_trbs = 0; 3228 u64 addr, td_len; 3229 3230 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3231 td_len = urb->iso_frame_desc[i].length; 3232 3233 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3234 TRB_MAX_BUFF_SIZE); 3235 if (num_trbs == 0) 3236 num_trbs++; 3237 3238 return num_trbs; 3239 } 3240 3241 /* 3242 * The transfer burst count field of the isochronous TRB defines the number of 3243 * bursts that are required to move all packets in this TD. Only SuperSpeed 3244 * devices can burst up to bMaxBurst number of packets per service interval. 3245 * This field is zero based, meaning a value of zero in the field means one 3246 * burst. Basically, for everything but SuperSpeed devices, this field will be 3247 * zero. Only xHCI 1.0 host controllers support this field. 3248 */ 3249 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3250 struct usb_device *udev, 3251 struct urb *urb, unsigned int total_packet_count) 3252 { 3253 unsigned int max_burst; 3254 3255 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3256 return 0; 3257 3258 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3259 return roundup(total_packet_count, max_burst + 1) - 1; 3260 } 3261 3262 /* 3263 * Returns the number of packets in the last "burst" of packets. This field is 3264 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3265 * the last burst packet count is equal to the total number of packets in the 3266 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3267 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3268 * contain 1 to (bMaxBurst + 1) packets. 3269 */ 3270 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3271 struct usb_device *udev, 3272 struct urb *urb, unsigned int total_packet_count) 3273 { 3274 unsigned int max_burst; 3275 unsigned int residue; 3276 3277 if (xhci->hci_version < 0x100) 3278 return 0; 3279 3280 switch (udev->speed) { 3281 case USB_SPEED_SUPER: 3282 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3283 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3284 residue = total_packet_count % (max_burst + 1); 3285 /* If residue is zero, the last burst contains (max_burst + 1) 3286 * number of packets, but the TLBPC field is zero-based. 3287 */ 3288 if (residue == 0) 3289 return max_burst; 3290 return residue - 1; 3291 default: 3292 if (total_packet_count == 0) 3293 return 0; 3294 return total_packet_count - 1; 3295 } 3296 } 3297 3298 /* This is for isoc transfer */ 3299 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3300 struct urb *urb, int slot_id, unsigned int ep_index) 3301 { 3302 struct xhci_ring *ep_ring; 3303 struct urb_priv *urb_priv; 3304 struct xhci_td *td; 3305 int num_tds, trbs_per_td; 3306 struct xhci_generic_trb *start_trb; 3307 bool first_trb; 3308 int start_cycle; 3309 u32 field, length_field; 3310 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3311 u64 start_addr, addr; 3312 int i, j; 3313 bool more_trbs_coming; 3314 3315 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3316 3317 num_tds = urb->number_of_packets; 3318 if (num_tds < 1) { 3319 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3320 return -EINVAL; 3321 } 3322 3323 start_addr = (u64) urb->transfer_dma; 3324 start_trb = &ep_ring->enqueue->generic; 3325 start_cycle = ep_ring->cycle_state; 3326 3327 urb_priv = urb->hcpriv; 3328 /* Queue the first TRB, even if it's zero-length */ 3329 for (i = 0; i < num_tds; i++) { 3330 unsigned int total_packet_count; 3331 unsigned int burst_count; 3332 unsigned int residue; 3333 3334 first_trb = true; 3335 running_total = 0; 3336 addr = start_addr + urb->iso_frame_desc[i].offset; 3337 td_len = urb->iso_frame_desc[i].length; 3338 td_remain_len = td_len; 3339 total_packet_count = roundup(td_len, 3340 usb_endpoint_maxp(&urb->ep->desc)); 3341 /* A zero-length transfer still involves at least one packet. */ 3342 if (total_packet_count == 0) 3343 total_packet_count++; 3344 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3345 total_packet_count); 3346 residue = xhci_get_last_burst_packet_count(xhci, 3347 urb->dev, urb, total_packet_count); 3348 3349 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3350 3351 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3352 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3353 if (ret < 0) { 3354 if (i == 0) 3355 return ret; 3356 goto cleanup; 3357 } 3358 3359 td = urb_priv->td[i]; 3360 for (j = 0; j < trbs_per_td; j++) { 3361 u32 remainder = 0; 3362 field = TRB_TBC(burst_count) | TRB_TLBPC(residue); 3363 3364 if (first_trb) { 3365 /* Queue the isoc TRB */ 3366 field |= TRB_TYPE(TRB_ISOC); 3367 /* Assume URB_ISO_ASAP is set */ 3368 field |= TRB_SIA; 3369 if (i == 0) { 3370 if (start_cycle == 0) 3371 field |= 0x1; 3372 } else 3373 field |= ep_ring->cycle_state; 3374 first_trb = false; 3375 } else { 3376 /* Queue other normal TRBs */ 3377 field |= TRB_TYPE(TRB_NORMAL); 3378 field |= ep_ring->cycle_state; 3379 } 3380 3381 /* Only set interrupt on short packet for IN EPs */ 3382 if (usb_urb_dir_in(urb)) 3383 field |= TRB_ISP; 3384 3385 /* Chain all the TRBs together; clear the chain bit in 3386 * the last TRB to indicate it's the last TRB in the 3387 * chain. 3388 */ 3389 if (j < trbs_per_td - 1) { 3390 field |= TRB_CHAIN; 3391 more_trbs_coming = true; 3392 } else { 3393 td->last_trb = ep_ring->enqueue; 3394 field |= TRB_IOC; 3395 if (xhci->hci_version == 0x100) { 3396 /* Set BEI bit except for the last td */ 3397 if (i < num_tds - 1) 3398 field |= TRB_BEI; 3399 } 3400 more_trbs_coming = false; 3401 } 3402 3403 /* Calculate TRB length */ 3404 trb_buff_len = TRB_MAX_BUFF_SIZE - 3405 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3406 if (trb_buff_len > td_remain_len) 3407 trb_buff_len = td_remain_len; 3408 3409 /* Set the TRB length, TD size, & interrupter fields. */ 3410 if (xhci->hci_version < 0x100) { 3411 remainder = xhci_td_remainder( 3412 td_len - running_total); 3413 } else { 3414 remainder = xhci_v1_0_td_remainder( 3415 running_total, trb_buff_len, 3416 total_packet_count, urb); 3417 } 3418 length_field = TRB_LEN(trb_buff_len) | 3419 remainder | 3420 TRB_INTR_TARGET(0); 3421 3422 queue_trb(xhci, ep_ring, more_trbs_coming, 3423 lower_32_bits(addr), 3424 upper_32_bits(addr), 3425 length_field, 3426 field); 3427 running_total += trb_buff_len; 3428 3429 addr += trb_buff_len; 3430 td_remain_len -= trb_buff_len; 3431 } 3432 3433 /* Check TD length */ 3434 if (running_total != td_len) { 3435 xhci_err(xhci, "ISOC TD length unmatch\n"); 3436 ret = -EINVAL; 3437 goto cleanup; 3438 } 3439 } 3440 3441 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3442 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3443 usb_amd_quirk_pll_disable(); 3444 } 3445 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3446 3447 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3448 start_cycle, start_trb); 3449 return 0; 3450 cleanup: 3451 /* Clean up a partially enqueued isoc transfer. */ 3452 3453 for (i--; i >= 0; i--) 3454 list_del_init(&urb_priv->td[i]->td_list); 3455 3456 /* Use the first TD as a temporary variable to turn the TDs we've queued 3457 * into No-ops with a software-owned cycle bit. That way the hardware 3458 * won't accidentally start executing bogus TDs when we partially 3459 * overwrite them. td->first_trb and td->start_seg are already set. 3460 */ 3461 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3462 /* Every TRB except the first & last will have its cycle bit flipped. */ 3463 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3464 3465 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3466 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3467 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3468 ep_ring->cycle_state = start_cycle; 3469 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3470 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3471 return ret; 3472 } 3473 3474 /* 3475 * Check transfer ring to guarantee there is enough room for the urb. 3476 * Update ISO URB start_frame and interval. 3477 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3478 * update the urb->start_frame by now. 3479 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3480 */ 3481 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3482 struct urb *urb, int slot_id, unsigned int ep_index) 3483 { 3484 struct xhci_virt_device *xdev; 3485 struct xhci_ring *ep_ring; 3486 struct xhci_ep_ctx *ep_ctx; 3487 int start_frame; 3488 int xhci_interval; 3489 int ep_interval; 3490 int num_tds, num_trbs, i; 3491 int ret; 3492 3493 xdev = xhci->devs[slot_id]; 3494 ep_ring = xdev->eps[ep_index].ring; 3495 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3496 3497 num_trbs = 0; 3498 num_tds = urb->number_of_packets; 3499 for (i = 0; i < num_tds; i++) 3500 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3501 3502 /* Check the ring to guarantee there is enough room for the whole urb. 3503 * Do not insert any td of the urb to the ring if the check failed. 3504 */ 3505 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3506 num_trbs, mem_flags); 3507 if (ret) 3508 return ret; 3509 3510 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index); 3511 start_frame &= 0x3fff; 3512 3513 urb->start_frame = start_frame; 3514 if (urb->dev->speed == USB_SPEED_LOW || 3515 urb->dev->speed == USB_SPEED_FULL) 3516 urb->start_frame >>= 3; 3517 3518 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3519 ep_interval = urb->interval; 3520 /* Convert to microframes */ 3521 if (urb->dev->speed == USB_SPEED_LOW || 3522 urb->dev->speed == USB_SPEED_FULL) 3523 ep_interval *= 8; 3524 /* FIXME change this to a warning and a suggestion to use the new API 3525 * to set the polling interval (once the API is added). 3526 */ 3527 if (xhci_interval != ep_interval) { 3528 if (printk_ratelimit()) 3529 dev_dbg(&urb->dev->dev, "Driver uses different interval" 3530 " (%d microframe%s) than xHCI " 3531 "(%d microframe%s)\n", 3532 ep_interval, 3533 ep_interval == 1 ? "" : "s", 3534 xhci_interval, 3535 xhci_interval == 1 ? "" : "s"); 3536 urb->interval = xhci_interval; 3537 /* Convert back to frames for LS/FS devices */ 3538 if (urb->dev->speed == USB_SPEED_LOW || 3539 urb->dev->speed == USB_SPEED_FULL) 3540 urb->interval /= 8; 3541 } 3542 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3543 3544 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3545 } 3546 3547 /**** Command Ring Operations ****/ 3548 3549 /* Generic function for queueing a command TRB on the command ring. 3550 * Check to make sure there's room on the command ring for one command TRB. 3551 * Also check that there's room reserved for commands that must not fail. 3552 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3553 * then only check for the number of reserved spots. 3554 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3555 * because the command event handler may want to resubmit a failed command. 3556 */ 3557 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, 3558 u32 field3, u32 field4, bool command_must_succeed) 3559 { 3560 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3561 int ret; 3562 3563 if (!command_must_succeed) 3564 reserved_trbs++; 3565 3566 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3567 reserved_trbs, GFP_ATOMIC); 3568 if (ret < 0) { 3569 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3570 if (command_must_succeed) 3571 xhci_err(xhci, "ERR: Reserved TRB counting for " 3572 "unfailable commands failed.\n"); 3573 return ret; 3574 } 3575 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3576 field4 | xhci->cmd_ring->cycle_state); 3577 return 0; 3578 } 3579 3580 /* Queue a slot enable or disable request on the command ring */ 3581 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) 3582 { 3583 return queue_command(xhci, 0, 0, 0, 3584 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3585 } 3586 3587 /* Queue an address device command TRB */ 3588 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3589 u32 slot_id) 3590 { 3591 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3592 upper_32_bits(in_ctx_ptr), 0, 3593 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id), 3594 false); 3595 } 3596 3597 int xhci_queue_vendor_command(struct xhci_hcd *xhci, 3598 u32 field1, u32 field2, u32 field3, u32 field4) 3599 { 3600 return queue_command(xhci, field1, field2, field3, field4, false); 3601 } 3602 3603 /* Queue a reset device command TRB */ 3604 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id) 3605 { 3606 return queue_command(xhci, 0, 0, 0, 3607 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3608 false); 3609 } 3610 3611 /* Queue a configure endpoint command TRB */ 3612 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3613 u32 slot_id, bool command_must_succeed) 3614 { 3615 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3616 upper_32_bits(in_ctx_ptr), 0, 3617 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3618 command_must_succeed); 3619 } 3620 3621 /* Queue an evaluate context command TRB */ 3622 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3623 u32 slot_id, bool command_must_succeed) 3624 { 3625 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3626 upper_32_bits(in_ctx_ptr), 0, 3627 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3628 command_must_succeed); 3629 } 3630 3631 /* 3632 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3633 * activity on an endpoint that is about to be suspended. 3634 */ 3635 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, 3636 unsigned int ep_index, int suspend) 3637 { 3638 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3639 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3640 u32 type = TRB_TYPE(TRB_STOP_RING); 3641 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3642 3643 return queue_command(xhci, 0, 0, 0, 3644 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3645 } 3646 3647 /* Set Transfer Ring Dequeue Pointer command. 3648 * This should not be used for endpoints that have streams enabled. 3649 */ 3650 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 3651 unsigned int ep_index, unsigned int stream_id, 3652 struct xhci_segment *deq_seg, 3653 union xhci_trb *deq_ptr, u32 cycle_state) 3654 { 3655 dma_addr_t addr; 3656 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3657 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3658 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 3659 u32 type = TRB_TYPE(TRB_SET_DEQ); 3660 struct xhci_virt_ep *ep; 3661 3662 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); 3663 if (addr == 0) { 3664 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3665 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 3666 deq_seg, deq_ptr); 3667 return 0; 3668 } 3669 ep = &xhci->devs[slot_id]->eps[ep_index]; 3670 if ((ep->ep_state & SET_DEQ_PENDING)) { 3671 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3672 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 3673 return 0; 3674 } 3675 ep->queued_deq_seg = deq_seg; 3676 ep->queued_deq_ptr = deq_ptr; 3677 return queue_command(xhci, lower_32_bits(addr) | cycle_state, 3678 upper_32_bits(addr), trb_stream_id, 3679 trb_slot_id | trb_ep_index | type, false); 3680 } 3681 3682 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, 3683 unsigned int ep_index) 3684 { 3685 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3686 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3687 u32 type = TRB_TYPE(TRB_RESET_EP); 3688 3689 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, 3690 false); 3691 } 3692