1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/jiffies.h> 56 #include <linux/scatterlist.h> 57 #include <linux/slab.h> 58 #include <linux/string_choices.h> 59 #include <linux/dma-mapping.h> 60 #include "xhci.h" 61 #include "xhci-trace.h" 62 63 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 64 u32 field1, u32 field2, 65 u32 field3, u32 field4, bool command_must_succeed); 66 67 /* 68 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 69 * address of the TRB. 70 */ 71 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 72 union xhci_trb *trb) 73 { 74 unsigned long segment_offset; 75 76 if (!seg || !trb || trb < seg->trbs) 77 return 0; 78 /* offset in TRBs */ 79 segment_offset = trb - seg->trbs; 80 if (segment_offset >= TRBS_PER_SEGMENT) 81 return 0; 82 return seg->dma + (segment_offset * sizeof(*trb)); 83 } 84 85 static bool trb_is_noop(union xhci_trb *trb) 86 { 87 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 88 } 89 90 static bool trb_is_link(union xhci_trb *trb) 91 { 92 return TRB_TYPE_LINK_LE32(trb->link.control); 93 } 94 95 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 96 { 97 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 98 } 99 100 static bool last_trb_on_ring(struct xhci_ring *ring, 101 struct xhci_segment *seg, union xhci_trb *trb) 102 { 103 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 104 } 105 106 static bool link_trb_toggles_cycle(union xhci_trb *trb) 107 { 108 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 109 } 110 111 static bool last_td_in_urb(struct xhci_td *td) 112 { 113 struct urb_priv *urb_priv = td->urb->hcpriv; 114 115 return urb_priv->num_tds_done == urb_priv->num_tds; 116 } 117 118 static bool unhandled_event_trb(struct xhci_ring *ring) 119 { 120 return ((le32_to_cpu(ring->dequeue->event_cmd.flags) & TRB_CYCLE) == 121 ring->cycle_state); 122 } 123 124 static void inc_td_cnt(struct urb *urb) 125 { 126 struct urb_priv *urb_priv = urb->hcpriv; 127 128 urb_priv->num_tds_done++; 129 } 130 131 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 132 { 133 if (trb_is_link(trb)) { 134 /* unchain chained link TRBs */ 135 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 136 } else { 137 trb->generic.field[0] = 0; 138 trb->generic.field[1] = 0; 139 trb->generic.field[2] = 0; 140 /* Preserve only the cycle bit of this TRB */ 141 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 142 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 143 } 144 } 145 146 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 147 * TRB is in a new segment. This does not skip over link TRBs, and it does not 148 * effect the ring dequeue or enqueue pointers. 149 */ 150 static void next_trb(struct xhci_segment **seg, 151 union xhci_trb **trb) 152 { 153 if (trb_is_link(*trb) || last_trb_on_seg(*seg, *trb)) { 154 *seg = (*seg)->next; 155 *trb = ((*seg)->trbs); 156 } else { 157 (*trb)++; 158 } 159 } 160 161 /* 162 * See Cycle bit rules. SW is the consumer for the event ring only. 163 */ 164 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 165 { 166 unsigned int link_trb_count = 0; 167 168 /* event ring doesn't have link trbs, check for last trb */ 169 if (ring->type == TYPE_EVENT) { 170 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 171 ring->dequeue++; 172 return; 173 } 174 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 175 ring->cycle_state ^= 1; 176 ring->deq_seg = ring->deq_seg->next; 177 ring->dequeue = ring->deq_seg->trbs; 178 179 trace_xhci_inc_deq(ring); 180 181 return; 182 } 183 184 /* All other rings have link trbs */ 185 if (!trb_is_link(ring->dequeue)) { 186 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) 187 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 188 else 189 ring->dequeue++; 190 } 191 192 while (trb_is_link(ring->dequeue)) { 193 ring->deq_seg = ring->deq_seg->next; 194 ring->dequeue = ring->deq_seg->trbs; 195 196 trace_xhci_inc_deq(ring); 197 198 if (link_trb_count++ > ring->num_segs) { 199 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 200 break; 201 } 202 } 203 return; 204 } 205 206 /* 207 * If enqueue points at a link TRB, follow links until an ordinary TRB is reached. 208 * Toggle the cycle bit of passed link TRBs and optionally chain them. 209 */ 210 static void inc_enq_past_link(struct xhci_hcd *xhci, struct xhci_ring *ring, u32 chain) 211 { 212 unsigned int link_trb_count = 0; 213 214 while (trb_is_link(ring->enqueue)) { 215 216 /* 217 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 218 * set, but other sections talk about dealing with the chain bit set. This was 219 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 220 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 221 * 222 * On 0.95 and some 0.96 HCs the chain bit is set once at segment initalization 223 * and never changed here. On all others, modify it as requested by the caller. 224 */ 225 if (!xhci_link_chain_quirk(xhci, ring->type)) { 226 ring->enqueue->link.control &= cpu_to_le32(~TRB_CHAIN); 227 ring->enqueue->link.control |= cpu_to_le32(chain); 228 } 229 230 /* Give this link TRB to the hardware */ 231 wmb(); 232 ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 233 234 /* Toggle the cycle bit after the last ring segment. */ 235 if (link_trb_toggles_cycle(ring->enqueue)) 236 ring->cycle_state ^= 1; 237 238 ring->enq_seg = ring->enq_seg->next; 239 ring->enqueue = ring->enq_seg->trbs; 240 241 trace_xhci_inc_enq(ring); 242 243 if (link_trb_count++ > ring->num_segs) { 244 xhci_warn(xhci, "Link TRB loop at enqueue\n"); 245 break; 246 } 247 } 248 } 249 250 /* 251 * See Cycle bit rules. SW is the consumer for the event ring only. 252 * 253 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 254 * chain bit is set), then set the chain bit in all the following link TRBs. 255 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 256 * have their chain bit cleared (so that each Link TRB is a separate TD). 257 * 258 * @more_trbs_coming: Will you enqueue more TRBs before calling 259 * prepare_transfer()? 260 */ 261 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 262 bool more_trbs_coming) 263 { 264 u32 chain; 265 266 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 267 268 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 269 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 270 return; 271 } 272 273 ring->enqueue++; 274 275 /* 276 * If we are in the middle of a TD or the caller plans to enqueue more 277 * TDs as one transfer (eg. control), traverse any link TRBs right now. 278 * Otherwise, enqueue can stay on a link until the next prepare_ring(). 279 * This avoids enqueue entering deq_seg and simplifies ring expansion. 280 */ 281 if (trb_is_link(ring->enqueue) && (chain || more_trbs_coming)) 282 inc_enq_past_link(xhci, ring, chain); 283 } 284 285 /* 286 * If the suspect DMA address is a TRB in this TD, this function returns that 287 * TRB's segment. Otherwise it returns 0. 288 */ 289 static struct xhci_segment *trb_in_td(struct xhci_td *td, dma_addr_t suspect_dma) 290 { 291 dma_addr_t start_dma; 292 dma_addr_t end_seg_dma; 293 dma_addr_t end_trb_dma; 294 struct xhci_segment *cur_seg; 295 296 start_dma = xhci_trb_virt_to_dma(td->start_seg, td->start_trb); 297 cur_seg = td->start_seg; 298 299 do { 300 if (start_dma == 0) 301 return NULL; 302 /* We may get an event for a Link TRB in the middle of a TD */ 303 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 304 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 305 /* If the end TRB isn't in this segment, this is set to 0 */ 306 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, td->end_trb); 307 308 if (end_trb_dma > 0) { 309 /* The end TRB is in this segment, so suspect should be here */ 310 if (start_dma <= end_trb_dma) { 311 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 312 return cur_seg; 313 } else { 314 /* Case for one segment with 315 * a TD wrapped around to the top 316 */ 317 if ((suspect_dma >= start_dma && 318 suspect_dma <= end_seg_dma) || 319 (suspect_dma >= cur_seg->dma && 320 suspect_dma <= end_trb_dma)) 321 return cur_seg; 322 } 323 return NULL; 324 } 325 /* Might still be somewhere in this segment */ 326 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 327 return cur_seg; 328 329 cur_seg = cur_seg->next; 330 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 331 } while (cur_seg != td->start_seg); 332 333 return NULL; 334 } 335 336 /* 337 * Return number of free normal TRBs from enqueue to dequeue pointer on ring. 338 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. 339 * Only for transfer and command rings where driver is the producer, not for 340 * event rings. 341 */ 342 static unsigned int xhci_num_trbs_free(struct xhci_ring *ring) 343 { 344 struct xhci_segment *enq_seg = ring->enq_seg; 345 union xhci_trb *enq = ring->enqueue; 346 union xhci_trb *last_on_seg; 347 unsigned int free = 0; 348 int i = 0; 349 350 /* Ring might be empty even if enq != deq if enq is left on a link trb */ 351 if (trb_is_link(enq)) { 352 enq_seg = enq_seg->next; 353 enq = enq_seg->trbs; 354 } 355 356 /* Empty ring, common case, don't walk the segments */ 357 if (enq == ring->dequeue) 358 return ring->num_segs * (TRBS_PER_SEGMENT - 1); 359 360 do { 361 if (ring->deq_seg == enq_seg && ring->dequeue >= enq) 362 return free + (ring->dequeue - enq); 363 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; 364 free += last_on_seg - enq; 365 enq_seg = enq_seg->next; 366 enq = enq_seg->trbs; 367 } while (i++ < ring->num_segs); 368 369 return free; 370 } 371 372 /* 373 * Check to see if there's room to enqueue num_trbs on the ring and make sure 374 * enqueue pointer will not advance into dequeue segment. See rules above. 375 * return number of new segments needed to ensure this. 376 */ 377 378 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, 379 unsigned int num_trbs) 380 { 381 struct xhci_segment *seg; 382 int trbs_past_seg; 383 int enq_used; 384 int new_segs; 385 386 enq_used = ring->enqueue - ring->enq_seg->trbs; 387 388 /* how many trbs will be queued past the enqueue segment? */ 389 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); 390 391 /* 392 * Consider expanding the ring already if num_trbs fills the current 393 * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into 394 * the next segment. Avoids confusing full ring with special empty ring 395 * case below 396 */ 397 if (trbs_past_seg < 0) 398 return 0; 399 400 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ 401 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) 402 return 0; 403 404 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); 405 seg = ring->enq_seg; 406 407 while (new_segs > 0) { 408 seg = seg->next; 409 if (seg == ring->deq_seg) { 410 xhci_dbg(xhci, "Adding %d trbs requires expanding ring by %d segments\n", 411 num_trbs, new_segs); 412 return new_segs; 413 } 414 new_segs--; 415 } 416 417 return 0; 418 } 419 420 /* Ring the host controller doorbell after placing a command on the ring */ 421 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 422 { 423 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 424 return; 425 426 xhci_dbg(xhci, "// Ding dong!\n"); 427 428 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 429 430 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 431 /* Flush PCI posted writes */ 432 readl(&xhci->dba->doorbell[0]); 433 } 434 435 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci) 436 { 437 return mod_delayed_work(system_wq, &xhci->cmd_timer, 438 msecs_to_jiffies(xhci->current_cmd->timeout_ms)); 439 } 440 441 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 442 { 443 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 444 cmd_list); 445 } 446 447 /* 448 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 449 * If there are other commands waiting then restart the ring and kick the timer. 450 * This must be called with command ring stopped and xhci->lock held. 451 */ 452 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 453 struct xhci_command *cur_cmd) 454 { 455 struct xhci_command *i_cmd; 456 457 /* Turn all aborted commands in list to no-ops, then restart */ 458 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 459 460 if (i_cmd->status != COMP_COMMAND_ABORTED) 461 continue; 462 463 i_cmd->status = COMP_COMMAND_RING_STOPPED; 464 465 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 466 i_cmd->command_trb); 467 468 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 469 470 /* 471 * caller waiting for completion is called when command 472 * completion event is received for these no-op commands 473 */ 474 } 475 476 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 477 478 /* ring command ring doorbell to restart the command ring */ 479 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 480 !(xhci->xhc_state & XHCI_STATE_DYING)) { 481 xhci->current_cmd = cur_cmd; 482 if (cur_cmd) 483 xhci_mod_cmd_timer(xhci); 484 xhci_ring_cmd_db(xhci); 485 } 486 } 487 488 /* Must be called with xhci->lock held, releases and acquires lock back */ 489 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 490 { 491 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 492 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 493 u64 crcr; 494 int ret; 495 496 xhci_dbg(xhci, "Abort command ring\n"); 497 498 reinit_completion(&xhci->cmd_ring_stop_completion); 499 500 /* 501 * The control bits like command stop, abort are located in lower 502 * dword of the command ring control register. 503 * Some controllers require all 64 bits to be written to abort the ring. 504 * Make sure the upper dword is valid, pointing to the next command, 505 * avoiding corrupting the command ring pointer in case the command ring 506 * is stopped by the time the upper dword is written. 507 */ 508 next_trb(&new_seg, &new_deq); 509 if (trb_is_link(new_deq)) 510 next_trb(&new_seg, &new_deq); 511 512 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 513 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 514 515 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 516 * completion of the Command Abort operation. If CRR is not negated in 5 517 * seconds then driver handles it as if host died (-ENODEV). 518 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 519 * and try to recover a -ETIMEDOUT with a host controller reset. 520 */ 521 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 522 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 523 if (ret < 0) { 524 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 525 xhci_halt(xhci); 526 xhci_hc_died(xhci); 527 return ret; 528 } 529 /* 530 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 531 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 532 * but the completion event in never sent. Wait 2 secs (arbitrary 533 * number) to handle those cases after negation of CMD_RING_RUNNING. 534 */ 535 spin_unlock_irqrestore(&xhci->lock, flags); 536 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 537 msecs_to_jiffies(2000)); 538 spin_lock_irqsave(&xhci->lock, flags); 539 if (!ret) { 540 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 541 xhci_cleanup_command_queue(xhci); 542 } else { 543 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 544 } 545 return 0; 546 } 547 548 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 549 unsigned int slot_id, 550 unsigned int ep_index, 551 unsigned int stream_id) 552 { 553 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 554 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 555 unsigned int ep_state = ep->ep_state; 556 557 /* Don't ring the doorbell for this endpoint if there are pending 558 * cancellations because we don't want to interrupt processing. 559 * We don't want to restart any stream rings if there's a set dequeue 560 * pointer command pending because the device can choose to start any 561 * stream once the endpoint is on the HW schedule. 562 */ 563 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 564 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 565 return; 566 567 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 568 569 writel(DB_VALUE(ep_index, stream_id), db_addr); 570 /* flush the write */ 571 readl(db_addr); 572 } 573 574 /* Ring the doorbell for any rings with pending URBs */ 575 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 576 unsigned int slot_id, 577 unsigned int ep_index) 578 { 579 unsigned int stream_id; 580 struct xhci_virt_ep *ep; 581 582 ep = &xhci->devs[slot_id]->eps[ep_index]; 583 584 /* A ring has pending URBs if its TD list is not empty */ 585 if (!(ep->ep_state & EP_HAS_STREAMS)) { 586 if (ep->ring && !(list_empty(&ep->ring->td_list))) 587 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 588 return; 589 } 590 591 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 592 stream_id++) { 593 struct xhci_stream_info *stream_info = ep->stream_info; 594 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 595 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 596 stream_id); 597 } 598 } 599 600 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 601 unsigned int slot_id, 602 unsigned int ep_index) 603 { 604 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 605 } 606 607 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 608 unsigned int slot_id, 609 unsigned int ep_index) 610 { 611 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 612 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 613 return NULL; 614 } 615 if (ep_index >= EP_CTX_PER_DEV) { 616 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 617 return NULL; 618 } 619 if (!xhci->devs[slot_id]) { 620 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 621 return NULL; 622 } 623 624 return &xhci->devs[slot_id]->eps[ep_index]; 625 } 626 627 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 628 struct xhci_virt_ep *ep, 629 unsigned int stream_id) 630 { 631 /* common case, no streams */ 632 if (!(ep->ep_state & EP_HAS_STREAMS)) 633 return ep->ring; 634 635 if (!ep->stream_info) 636 return NULL; 637 638 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 639 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 640 stream_id, ep->vdev->slot_id, ep->ep_index); 641 return NULL; 642 } 643 644 return ep->stream_info->stream_rings[stream_id]; 645 } 646 647 /* Get the right ring for the given slot_id, ep_index and stream_id. 648 * If the endpoint supports streams, boundary check the URB's stream ID. 649 * If the endpoint doesn't support streams, return the singular endpoint ring. 650 */ 651 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 652 unsigned int slot_id, unsigned int ep_index, 653 unsigned int stream_id) 654 { 655 struct xhci_virt_ep *ep; 656 657 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 658 if (!ep) 659 return NULL; 660 661 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 662 } 663 664 665 /* 666 * Get the hw dequeue pointer xHC stopped on, either directly from the 667 * endpoint context, or if streams are in use from the stream context. 668 * The returned hw_dequeue contains the lowest four bits with cycle state 669 * and possbile stream context type. 670 */ 671 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 672 unsigned int ep_index, unsigned int stream_id) 673 { 674 struct xhci_ep_ctx *ep_ctx; 675 struct xhci_stream_ctx *st_ctx; 676 struct xhci_virt_ep *ep; 677 678 ep = &vdev->eps[ep_index]; 679 680 if (ep->ep_state & EP_HAS_STREAMS) { 681 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 682 return le64_to_cpu(st_ctx->stream_ring); 683 } 684 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 685 return le64_to_cpu(ep_ctx->deq); 686 } 687 688 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 689 unsigned int slot_id, unsigned int ep_index, 690 unsigned int stream_id, struct xhci_td *td) 691 { 692 struct xhci_virt_device *dev = xhci->devs[slot_id]; 693 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 694 struct xhci_ring *ep_ring; 695 struct xhci_command *cmd; 696 struct xhci_segment *new_seg; 697 union xhci_trb *new_deq; 698 int new_cycle; 699 dma_addr_t addr; 700 u64 hw_dequeue; 701 bool hw_dequeue_found = false; 702 bool td_last_trb_found = false; 703 u32 trb_sct = 0; 704 int ret; 705 706 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 707 ep_index, stream_id); 708 if (!ep_ring) { 709 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 710 stream_id); 711 return -ENODEV; 712 } 713 714 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 715 new_seg = ep_ring->deq_seg; 716 new_deq = ep_ring->dequeue; 717 new_cycle = le32_to_cpu(td->end_trb->generic.field[3]) & TRB_CYCLE; 718 719 /* 720 * Walk the ring until both the next TRB and hw_dequeue are found (don't 721 * move hw_dequeue back if it went forward due to a HW bug). Cycle state 722 * is loaded from a known good TRB, track later toggles to maintain it. 723 */ 724 do { 725 if (!hw_dequeue_found && xhci_trb_virt_to_dma(new_seg, new_deq) 726 == (dma_addr_t)(hw_dequeue & ~0xf)) { 727 hw_dequeue_found = true; 728 if (td_last_trb_found) 729 break; 730 } 731 if (new_deq == td->end_trb) 732 td_last_trb_found = true; 733 734 if (td_last_trb_found && trb_is_link(new_deq) && 735 link_trb_toggles_cycle(new_deq)) 736 new_cycle ^= 0x1; 737 738 next_trb(&new_seg, &new_deq); 739 740 /* Search wrapped around, bail out */ 741 if (new_deq == ep->ring->dequeue) { 742 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 743 return -EINVAL; 744 } 745 746 } while (!hw_dequeue_found || !td_last_trb_found); 747 748 /* Don't update the ring cycle state for the producer (us). */ 749 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 750 if (addr == 0) { 751 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 752 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 753 return -EINVAL; 754 } 755 756 if ((ep->ep_state & SET_DEQ_PENDING)) { 757 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 758 &addr); 759 return -EBUSY; 760 } 761 762 /* This function gets called from contexts where it cannot sleep */ 763 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 764 if (!cmd) { 765 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 766 return -ENOMEM; 767 } 768 769 if (stream_id) 770 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 771 ret = queue_command(xhci, cmd, 772 lower_32_bits(addr) | trb_sct | new_cycle, 773 upper_32_bits(addr), 774 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 775 EP_INDEX_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 776 if (ret < 0) { 777 xhci_free_command(xhci, cmd); 778 return ret; 779 } 780 ep->queued_deq_seg = new_seg; 781 ep->queued_deq_ptr = new_deq; 782 783 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 784 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 785 786 /* Stop the TD queueing code from ringing the doorbell until 787 * this command completes. The HC won't set the dequeue pointer 788 * if the ring is running, and ringing the doorbell starts the 789 * ring running. 790 */ 791 ep->ep_state |= SET_DEQ_PENDING; 792 xhci_ring_cmd_db(xhci); 793 return 0; 794 } 795 796 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 797 * (The last TRB actually points to the ring enqueue pointer, which is not part 798 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 799 */ 800 static void td_to_noop(struct xhci_td *td, bool flip_cycle) 801 { 802 struct xhci_segment *seg = td->start_seg; 803 union xhci_trb *trb = td->start_trb; 804 805 while (1) { 806 trb_to_noop(trb, TRB_TR_NOOP); 807 808 /* flip cycle if asked to */ 809 if (flip_cycle && trb != td->start_trb && trb != td->end_trb) 810 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 811 812 if (trb == td->end_trb) 813 break; 814 815 next_trb(&seg, &trb); 816 } 817 } 818 819 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 820 struct xhci_td *cur_td, int status) 821 { 822 struct urb *urb = cur_td->urb; 823 struct urb_priv *urb_priv = urb->hcpriv; 824 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 825 826 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 827 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 828 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 829 if (xhci->quirks & XHCI_AMD_PLL_FIX) 830 usb_amd_quirk_pll_enable(); 831 } 832 } 833 xhci_urb_free_priv(urb_priv); 834 usb_hcd_unlink_urb_from_ep(hcd, urb); 835 trace_xhci_urb_giveback(urb); 836 usb_hcd_giveback_urb(hcd, urb, status); 837 } 838 839 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 840 struct xhci_ring *ring, struct xhci_td *td) 841 { 842 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 843 struct xhci_segment *seg = td->bounce_seg; 844 struct urb *urb = td->urb; 845 size_t len; 846 847 if (!ring || !seg || !urb) 848 return; 849 850 if (usb_urb_dir_out(urb)) { 851 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 852 DMA_TO_DEVICE); 853 return; 854 } 855 856 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 857 DMA_FROM_DEVICE); 858 /* for in transfers we need to copy the data from bounce to sg */ 859 if (urb->num_sgs) { 860 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 861 seg->bounce_len, seg->bounce_offs); 862 if (len != seg->bounce_len) 863 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 864 len, seg->bounce_len); 865 } else { 866 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 867 seg->bounce_len); 868 } 869 seg->bounce_len = 0; 870 seg->bounce_offs = 0; 871 } 872 873 static void xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 874 struct xhci_ring *ep_ring, int status) 875 { 876 struct urb *urb = NULL; 877 878 /* Clean up the endpoint's TD list */ 879 urb = td->urb; 880 881 /* if a bounce buffer was used to align this td then unmap it */ 882 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 883 884 /* Do one last check of the actual transfer length. 885 * If the host controller said we transferred more data than the buffer 886 * length, urb->actual_length will be a very big number (since it's 887 * unsigned). Play it safe and say we didn't transfer anything. 888 */ 889 if (urb->actual_length > urb->transfer_buffer_length) { 890 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 891 urb->transfer_buffer_length, urb->actual_length); 892 urb->actual_length = 0; 893 status = 0; 894 } 895 /* TD might be removed from td_list if we are giving back a cancelled URB */ 896 if (!list_empty(&td->td_list)) 897 list_del_init(&td->td_list); 898 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 899 if (!list_empty(&td->cancelled_td_list)) 900 list_del_init(&td->cancelled_td_list); 901 902 inc_td_cnt(urb); 903 /* Giveback the urb when all the tds are completed */ 904 if (last_td_in_urb(td)) { 905 if ((urb->actual_length != urb->transfer_buffer_length && 906 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 907 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 908 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 909 urb, urb->actual_length, 910 urb->transfer_buffer_length, status); 911 912 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 913 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 914 status = 0; 915 xhci_giveback_urb_in_irq(xhci, td, status); 916 } 917 } 918 919 /* Give back previous TD and move on to the next TD. */ 920 static void xhci_dequeue_td(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_ring *ring, 921 u32 status) 922 { 923 ring->dequeue = td->end_trb; 924 ring->deq_seg = td->end_seg; 925 inc_deq(xhci, ring); 926 927 xhci_td_cleanup(xhci, td, ring, status); 928 } 929 930 /* Complete the cancelled URBs we unlinked from td_list. */ 931 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 932 { 933 struct xhci_ring *ring; 934 struct xhci_td *td, *tmp_td; 935 936 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 937 cancelled_td_list) { 938 939 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 940 941 if (td->cancel_status == TD_CLEARED) { 942 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 943 __func__, td->urb); 944 xhci_td_cleanup(ep->xhci, td, ring, td->status); 945 } else { 946 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 947 __func__, td->urb, td->cancel_status); 948 } 949 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 950 return; 951 } 952 } 953 954 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 955 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 956 { 957 struct xhci_command *command; 958 int ret = 0; 959 960 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 961 if (!command) { 962 ret = -ENOMEM; 963 goto done; 964 } 965 966 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 967 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 968 ep_index, slot_id); 969 970 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 971 done: 972 if (ret) 973 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 974 slot_id, ep_index, ret); 975 return ret; 976 } 977 978 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 979 struct xhci_virt_ep *ep, 980 struct xhci_td *td, 981 enum xhci_ep_reset_type reset_type) 982 { 983 unsigned int slot_id = ep->vdev->slot_id; 984 int err; 985 986 /* 987 * Avoid resetting endpoint if link is inactive. Can cause host hang. 988 * Device will be reset soon to recover the link so don't do anything 989 */ 990 if (ep->vdev->flags & VDEV_PORT_ERROR) 991 return -ENODEV; 992 993 /* add td to cancelled list and let reset ep handler take care of it */ 994 if (reset_type == EP_HARD_RESET) { 995 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 996 if (td && list_empty(&td->cancelled_td_list)) { 997 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 998 td->cancel_status = TD_HALTED; 999 } 1000 } 1001 1002 if (ep->ep_state & EP_HALTED) { 1003 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 1004 ep->ep_index); 1005 return 0; 1006 } 1007 1008 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 1009 if (err) 1010 return err; 1011 1012 ep->ep_state |= EP_HALTED; 1013 1014 xhci_ring_cmd_db(xhci); 1015 1016 return 0; 1017 } 1018 1019 /* 1020 * Fix up the ep ring first, so HW stops executing cancelled TDs. 1021 * We have the xHCI lock, so nothing can modify this list until we drop it. 1022 * We're also in the event handler, so we can't get re-interrupted if another 1023 * Stop Endpoint command completes. 1024 * 1025 * only call this when ring is not in a running state 1026 */ 1027 1028 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 1029 { 1030 struct xhci_hcd *xhci; 1031 struct xhci_td *td = NULL; 1032 struct xhci_td *tmp_td = NULL; 1033 struct xhci_td *cached_td = NULL; 1034 struct xhci_ring *ring; 1035 u64 hw_deq; 1036 unsigned int slot_id = ep->vdev->slot_id; 1037 int err; 1038 1039 /* 1040 * This is not going to work if the hardware is changing its dequeue 1041 * pointers as we look at them. Completion handler will call us later. 1042 */ 1043 if (ep->ep_state & SET_DEQ_PENDING) 1044 return 0; 1045 1046 xhci = ep->xhci; 1047 1048 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1049 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1050 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 1051 (unsigned long long)xhci_trb_virt_to_dma( 1052 td->start_seg, td->start_trb), 1053 td->urb->stream_id, td->urb); 1054 list_del_init(&td->td_list); 1055 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 1056 if (!ring) { 1057 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 1058 td->urb, td->urb->stream_id); 1059 continue; 1060 } 1061 /* 1062 * If a ring stopped on the TD we need to cancel then we have to 1063 * move the xHC endpoint ring dequeue pointer past this TD. 1064 * Rings halted due to STALL may show hw_deq is past the stalled 1065 * TD, but still require a set TR Deq command to flush xHC cache. 1066 */ 1067 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 1068 td->urb->stream_id); 1069 hw_deq &= ~0xf; 1070 1071 if (td->cancel_status == TD_HALTED || trb_in_td(td, hw_deq)) { 1072 switch (td->cancel_status) { 1073 case TD_CLEARED: /* TD is already no-op */ 1074 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 1075 break; 1076 case TD_DIRTY: /* TD is cached, clear it */ 1077 case TD_HALTED: 1078 case TD_CLEARING_CACHE_DEFERRED: 1079 if (cached_td) { 1080 if (cached_td->urb->stream_id != td->urb->stream_id) { 1081 /* Multiple streams case, defer move dq */ 1082 xhci_dbg(xhci, 1083 "Move dq deferred: stream %u URB %p\n", 1084 td->urb->stream_id, td->urb); 1085 td->cancel_status = TD_CLEARING_CACHE_DEFERRED; 1086 break; 1087 } 1088 1089 /* Should never happen, but clear the TD if it does */ 1090 xhci_warn(xhci, 1091 "Found multiple active URBs %p and %p in stream %u?\n", 1092 td->urb, cached_td->urb, 1093 td->urb->stream_id); 1094 td_to_noop(cached_td, false); 1095 cached_td->cancel_status = TD_CLEARED; 1096 } 1097 td_to_noop(td, false); 1098 td->cancel_status = TD_CLEARING_CACHE; 1099 cached_td = td; 1100 break; 1101 } 1102 } else { 1103 td_to_noop(td, false); 1104 td->cancel_status = TD_CLEARED; 1105 } 1106 } 1107 1108 /* If there's no need to move the dequeue pointer then we're done */ 1109 if (!cached_td) 1110 return 0; 1111 1112 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1113 cached_td->urb->stream_id, 1114 cached_td); 1115 if (err) { 1116 /* Failed to move past cached td, just set cached TDs to no-op */ 1117 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1118 /* 1119 * Deferred TDs need to have the deq pointer set after the above command 1120 * completes, so if that failed we just give up on all of them (and 1121 * complain loudly since this could cause issues due to caching). 1122 */ 1123 if (td->cancel_status != TD_CLEARING_CACHE && 1124 td->cancel_status != TD_CLEARING_CACHE_DEFERRED) 1125 continue; 1126 xhci_warn(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1127 td->urb); 1128 td_to_noop(td, false); 1129 td->cancel_status = TD_CLEARED; 1130 } 1131 } 1132 return 0; 1133 } 1134 1135 /* 1136 * Erase queued TDs from transfer ring(s) and give back those the xHC didn't 1137 * stop on. If necessary, queue commands to move the xHC off cancelled TDs it 1138 * stopped on. Those will be given back later when the commands complete. 1139 * 1140 * Call under xhci->lock on a stopped endpoint. 1141 */ 1142 void xhci_process_cancelled_tds(struct xhci_virt_ep *ep) 1143 { 1144 xhci_invalidate_cancelled_tds(ep); 1145 xhci_giveback_invalidated_tds(ep); 1146 } 1147 1148 /* 1149 * Returns the TD the endpoint ring halted on. 1150 * Only call for non-running rings without streams. 1151 */ 1152 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1153 { 1154 struct xhci_td *td; 1155 u64 hw_deq; 1156 1157 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1158 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1159 hw_deq &= ~0xf; 1160 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1161 if (trb_in_td(td, hw_deq)) 1162 return td; 1163 } 1164 return NULL; 1165 } 1166 1167 /* 1168 * When we get a command completion for a Stop Endpoint Command, we need to 1169 * unlink any cancelled TDs from the ring. There are two ways to do that: 1170 * 1171 * 1. If the HW was in the middle of processing the TD that needs to be 1172 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1173 * in the TD with a Set Dequeue Pointer Command. 1174 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1175 * bit cleared) so that the HW will skip over them. 1176 */ 1177 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1178 union xhci_trb *trb, u32 comp_code) 1179 { 1180 unsigned int ep_index; 1181 struct xhci_virt_ep *ep; 1182 struct xhci_ep_ctx *ep_ctx; 1183 struct xhci_td *td = NULL; 1184 enum xhci_ep_reset_type reset_type; 1185 struct xhci_command *command; 1186 int err; 1187 1188 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1189 if (!xhci->devs[slot_id]) 1190 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1191 slot_id); 1192 return; 1193 } 1194 1195 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1196 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1197 if (!ep) 1198 return; 1199 1200 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1201 1202 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1203 1204 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1205 /* 1206 * If stop endpoint command raced with a halting endpoint we need to 1207 * reset the host side endpoint first. 1208 * If the TD we halted on isn't cancelled the TD should be given back 1209 * with a proper error code, and the ring dequeue moved past the TD. 1210 * If streams case we can't find hw_deq, or the TD we halted on so do a 1211 * soft reset. 1212 * 1213 * Proper error code is unknown here, it would be -EPIPE if device side 1214 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1215 * We use -EPROTO, if device is stalled it should return a stall error on 1216 * next transfer, which then will return -EPIPE, and device side stall is 1217 * noted and cleared by class driver. 1218 */ 1219 switch (GET_EP_CTX_STATE(ep_ctx)) { 1220 case EP_STATE_HALTED: 1221 xhci_dbg(xhci, "Stop ep completion raced with stall\n"); 1222 /* 1223 * If the halt happened before Stop Endpoint failed, its transfer event 1224 * should have already been handled and Reset Endpoint should be pending. 1225 */ 1226 if (ep->ep_state & EP_HALTED) 1227 goto reset_done; 1228 1229 if (ep->ep_state & EP_HAS_STREAMS) { 1230 reset_type = EP_SOFT_RESET; 1231 } else { 1232 reset_type = EP_HARD_RESET; 1233 td = find_halted_td(ep); 1234 if (td) 1235 td->status = -EPROTO; 1236 } 1237 /* reset ep, reset handler cleans up cancelled tds */ 1238 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1239 xhci_dbg(xhci, "Stop ep completion resetting ep, status %d\n", err); 1240 if (err) 1241 break; 1242 reset_done: 1243 /* Reset EP handler will clean up cancelled TDs */ 1244 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1245 return; 1246 case EP_STATE_STOPPED: 1247 /* 1248 * Per xHCI 4.6.9, Stop Endpoint command on a Stopped 1249 * EP is a Context State Error, and EP stays Stopped. 1250 * 1251 * But maybe it failed on Halted, and somebody ran Reset 1252 * Endpoint later. EP state is now Stopped and EP_HALTED 1253 * still set because Reset EP handler will run after us. 1254 */ 1255 if (ep->ep_state & EP_HALTED) 1256 break; 1257 /* 1258 * On some HCs EP state remains Stopped for some tens of 1259 * us to a few ms or more after a doorbell ring, and any 1260 * new Stop Endpoint fails without aborting the restart. 1261 * This handler may run quickly enough to still see this 1262 * Stopped state, but it will soon change to Running. 1263 * 1264 * Assume this bug on unexpected Stop Endpoint failures. 1265 * Keep retrying until the EP starts and stops again. 1266 */ 1267 fallthrough; 1268 case EP_STATE_RUNNING: 1269 /* Race, HW handled stop ep cmd before ep was running */ 1270 xhci_dbg(xhci, "Stop ep completion ctx error, ctx_state %d\n", 1271 GET_EP_CTX_STATE(ep_ctx)); 1272 /* 1273 * Don't retry forever if we guessed wrong or a defective HC never starts 1274 * the EP or says 'Running' but fails the command. We must give back TDs. 1275 */ 1276 if (time_is_before_jiffies(ep->stop_time + msecs_to_jiffies(100))) 1277 break; 1278 1279 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1280 if (!command) { 1281 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1282 return; 1283 } 1284 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1285 xhci_ring_cmd_db(xhci); 1286 1287 return; 1288 default: 1289 break; 1290 } 1291 } 1292 1293 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1294 xhci_invalidate_cancelled_tds(ep); 1295 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1296 1297 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1298 xhci_giveback_invalidated_tds(ep); 1299 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1300 } 1301 1302 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1303 { 1304 struct xhci_td *cur_td; 1305 struct xhci_td *tmp; 1306 1307 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1308 list_del_init(&cur_td->td_list); 1309 1310 if (!list_empty(&cur_td->cancelled_td_list)) 1311 list_del_init(&cur_td->cancelled_td_list); 1312 1313 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1314 1315 inc_td_cnt(cur_td->urb); 1316 if (last_td_in_urb(cur_td)) 1317 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1318 } 1319 } 1320 1321 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1322 int slot_id, int ep_index) 1323 { 1324 struct xhci_td *cur_td; 1325 struct xhci_td *tmp; 1326 struct xhci_virt_ep *ep; 1327 struct xhci_ring *ring; 1328 1329 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1330 if (!ep) 1331 return; 1332 1333 if ((ep->ep_state & EP_HAS_STREAMS) || 1334 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1335 int stream_id; 1336 1337 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1338 stream_id++) { 1339 ring = ep->stream_info->stream_rings[stream_id]; 1340 if (!ring) 1341 continue; 1342 1343 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1344 "Killing URBs for slot ID %u, ep index %u, stream %u", 1345 slot_id, ep_index, stream_id); 1346 xhci_kill_ring_urbs(xhci, ring); 1347 } 1348 } else { 1349 ring = ep->ring; 1350 if (!ring) 1351 return; 1352 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1353 "Killing URBs for slot ID %u, ep index %u", 1354 slot_id, ep_index); 1355 xhci_kill_ring_urbs(xhci, ring); 1356 } 1357 1358 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1359 cancelled_td_list) { 1360 list_del_init(&cur_td->cancelled_td_list); 1361 inc_td_cnt(cur_td->urb); 1362 1363 if (last_td_in_urb(cur_td)) 1364 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1365 } 1366 } 1367 1368 /* 1369 * host controller died, register read returns 0xffffffff 1370 * Complete pending commands, mark them ABORTED. 1371 * URBs need to be given back as usb core might be waiting with device locks 1372 * held for the URBs to finish during device disconnect, blocking host remove. 1373 * 1374 * Call with xhci->lock held. 1375 * lock is relased and re-acquired while giving back urb. 1376 */ 1377 void xhci_hc_died(struct xhci_hcd *xhci) 1378 { 1379 bool notify; 1380 int i, j; 1381 1382 if (xhci->xhc_state & XHCI_STATE_DYING) 1383 return; 1384 1385 notify = !(xhci->xhc_state & XHCI_STATE_REMOVING); 1386 if (notify) 1387 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1388 xhci->xhc_state |= XHCI_STATE_DYING; 1389 1390 xhci_cleanup_command_queue(xhci); 1391 1392 /* return any pending urbs, remove may be waiting for them */ 1393 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1394 if (!xhci->devs[i]) 1395 continue; 1396 for (j = 0; j < 31; j++) 1397 xhci_kill_endpoint_urbs(xhci, i, j); 1398 } 1399 1400 /* inform usb core hc died if PCI remove isn't already handling it */ 1401 if (notify) 1402 usb_hc_died(xhci_to_hcd(xhci)); 1403 } 1404 1405 /* 1406 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1407 * we need to clear the set deq pending flag in the endpoint ring state, so that 1408 * the TD queueing code can ring the doorbell again. We also need to ring the 1409 * endpoint doorbell to restart the ring, but only if there aren't more 1410 * cancellations pending. 1411 */ 1412 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1413 union xhci_trb *trb, u32 cmd_comp_code) 1414 { 1415 unsigned int ep_index; 1416 unsigned int stream_id; 1417 struct xhci_ring *ep_ring; 1418 struct xhci_virt_ep *ep; 1419 struct xhci_ep_ctx *ep_ctx; 1420 struct xhci_slot_ctx *slot_ctx; 1421 struct xhci_stream_ctx *stream_ctx; 1422 struct xhci_td *td, *tmp_td; 1423 1424 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1425 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1426 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1427 if (!ep) 1428 return; 1429 1430 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1431 if (!ep_ring) { 1432 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1433 stream_id); 1434 /* XXX: Harmless??? */ 1435 goto cleanup; 1436 } 1437 1438 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1439 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1440 trace_xhci_handle_cmd_set_deq(slot_ctx); 1441 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1442 1443 if (ep->ep_state & EP_HAS_STREAMS) { 1444 stream_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 1445 trace_xhci_handle_cmd_set_deq_stream(ep->stream_info, stream_id); 1446 } 1447 1448 if (cmd_comp_code != COMP_SUCCESS) { 1449 unsigned int ep_state; 1450 unsigned int slot_state; 1451 1452 switch (cmd_comp_code) { 1453 case COMP_TRB_ERROR: 1454 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1455 break; 1456 case COMP_CONTEXT_STATE_ERROR: 1457 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1458 ep_state = GET_EP_CTX_STATE(ep_ctx); 1459 slot_state = le32_to_cpu(slot_ctx->dev_state); 1460 slot_state = GET_SLOT_STATE(slot_state); 1461 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1462 "Slot state = %u, EP state = %u", 1463 slot_state, ep_state); 1464 break; 1465 case COMP_SLOT_NOT_ENABLED_ERROR: 1466 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1467 slot_id); 1468 break; 1469 default: 1470 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1471 cmd_comp_code); 1472 break; 1473 } 1474 /* OK what do we do now? The endpoint state is hosed, and we 1475 * should never get to this point if the synchronization between 1476 * queueing, and endpoint state are correct. This might happen 1477 * if the device gets disconnected after we've finished 1478 * cancelling URBs, which might not be an error... 1479 */ 1480 } else { 1481 u64 deq; 1482 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1483 if (ep->ep_state & EP_HAS_STREAMS) { 1484 deq = le64_to_cpu(stream_ctx->stream_ring) & SCTX_DEQ_MASK; 1485 1486 /* 1487 * Cadence xHCI controllers store some endpoint state 1488 * information within Rsvd0 fields of Stream Endpoint 1489 * context. This field is not cleared during Set TR 1490 * Dequeue Pointer command which causes XDMA to skip 1491 * over transfer ring and leads to data loss on stream 1492 * pipe. 1493 * To fix this issue driver must clear Rsvd0 field. 1494 */ 1495 if (xhci->quirks & XHCI_CDNS_SCTX_QUIRK) { 1496 stream_ctx->reserved[0] = 0; 1497 stream_ctx->reserved[1] = 0; 1498 } 1499 } else { 1500 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1501 } 1502 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1503 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1504 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1505 ep->queued_deq_ptr) == deq) { 1506 /* Update the ring's dequeue segment and dequeue pointer 1507 * to reflect the new position. 1508 */ 1509 ep_ring->deq_seg = ep->queued_deq_seg; 1510 ep_ring->dequeue = ep->queued_deq_ptr; 1511 } else { 1512 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1513 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1514 ep->queued_deq_seg, ep->queued_deq_ptr); 1515 } 1516 } 1517 /* HW cached TDs cleared from cache, give them back */ 1518 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1519 cancelled_td_list) { 1520 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1521 if (td->cancel_status == TD_CLEARING_CACHE) { 1522 td->cancel_status = TD_CLEARED; 1523 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1524 __func__, td->urb); 1525 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1526 } else { 1527 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1528 __func__, td->urb, td->cancel_status); 1529 } 1530 } 1531 cleanup: 1532 ep->ep_state &= ~SET_DEQ_PENDING; 1533 ep->queued_deq_seg = NULL; 1534 ep->queued_deq_ptr = NULL; 1535 1536 /* Check for deferred or newly cancelled TDs */ 1537 if (!list_empty(&ep->cancelled_td_list)) { 1538 xhci_dbg(ep->xhci, "%s: Pending TDs to clear, continuing with invalidation\n", 1539 __func__); 1540 xhci_invalidate_cancelled_tds(ep); 1541 /* Try to restart the endpoint if all is done */ 1542 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1543 /* Start giving back any TDs invalidated above */ 1544 xhci_giveback_invalidated_tds(ep); 1545 } else { 1546 /* Restart any rings with pending URBs */ 1547 xhci_dbg(ep->xhci, "%s: All TDs cleared, ring doorbell\n", __func__); 1548 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1549 } 1550 } 1551 1552 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1553 union xhci_trb *trb, u32 cmd_comp_code) 1554 { 1555 struct xhci_virt_ep *ep; 1556 struct xhci_ep_ctx *ep_ctx; 1557 unsigned int ep_index; 1558 1559 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1560 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1561 if (!ep) 1562 return; 1563 1564 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1565 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1566 1567 /* This command will only fail if the endpoint wasn't halted, 1568 * but we don't care. 1569 */ 1570 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1571 "Ignoring reset ep completion code of %u", cmd_comp_code); 1572 1573 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1574 xhci_invalidate_cancelled_tds(ep); 1575 1576 /* Clear our internal halted state */ 1577 ep->ep_state &= ~EP_HALTED; 1578 1579 xhci_giveback_invalidated_tds(ep); 1580 1581 /* if this was a soft reset, then restart */ 1582 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1583 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1584 } 1585 1586 static void xhci_handle_cmd_enable_slot(int slot_id, struct xhci_command *command, 1587 u32 cmd_comp_code) 1588 { 1589 if (cmd_comp_code == COMP_SUCCESS) 1590 command->slot_id = slot_id; 1591 else 1592 command->slot_id = 0; 1593 } 1594 1595 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id, 1596 u32 cmd_comp_code) 1597 { 1598 struct xhci_virt_device *virt_dev; 1599 struct xhci_slot_ctx *slot_ctx; 1600 1601 virt_dev = xhci->devs[slot_id]; 1602 if (!virt_dev) 1603 return; 1604 1605 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1606 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1607 1608 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1609 /* Delete default control endpoint resources */ 1610 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1611 if (cmd_comp_code == COMP_SUCCESS) { 1612 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 1613 xhci->devs[slot_id] = NULL; 1614 } 1615 } 1616 1617 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id) 1618 { 1619 struct xhci_virt_device *virt_dev; 1620 struct xhci_input_control_ctx *ctrl_ctx; 1621 struct xhci_ep_ctx *ep_ctx; 1622 unsigned int ep_index; 1623 u32 add_flags; 1624 1625 /* 1626 * Configure endpoint commands can come from the USB core configuration 1627 * or alt setting changes, or when streams were being configured. 1628 */ 1629 1630 virt_dev = xhci->devs[slot_id]; 1631 if (!virt_dev) 1632 return; 1633 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1634 if (!ctrl_ctx) { 1635 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1636 return; 1637 } 1638 1639 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1640 1641 /* Input ctx add_flags are the endpoint index plus one */ 1642 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1643 1644 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1645 trace_xhci_handle_cmd_config_ep(ep_ctx); 1646 1647 return; 1648 } 1649 1650 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1651 { 1652 struct xhci_virt_device *vdev; 1653 struct xhci_slot_ctx *slot_ctx; 1654 1655 vdev = xhci->devs[slot_id]; 1656 if (!vdev) 1657 return; 1658 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1659 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1660 } 1661 1662 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1663 { 1664 struct xhci_virt_device *vdev; 1665 struct xhci_slot_ctx *slot_ctx; 1666 1667 vdev = xhci->devs[slot_id]; 1668 if (!vdev) { 1669 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1670 slot_id); 1671 return; 1672 } 1673 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1674 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1675 1676 xhci_dbg(xhci, "Completed reset device command.\n"); 1677 } 1678 1679 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1680 struct xhci_event_cmd *event) 1681 { 1682 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1683 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1684 return; 1685 } 1686 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1687 "NEC firmware version %2x.%02x", 1688 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1689 NEC_FW_MINOR(le32_to_cpu(event->status))); 1690 } 1691 1692 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 comp_code, u32 comp_param) 1693 { 1694 list_del(&cmd->cmd_list); 1695 1696 if (cmd->completion) { 1697 cmd->status = comp_code; 1698 cmd->comp_param = comp_param; 1699 complete(cmd->completion); 1700 } else { 1701 kfree(cmd); 1702 } 1703 } 1704 1705 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1706 { 1707 struct xhci_command *cur_cmd, *tmp_cmd; 1708 xhci->current_cmd = NULL; 1709 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1710 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED, 0); 1711 } 1712 1713 void xhci_handle_command_timeout(struct work_struct *work) 1714 { 1715 struct xhci_hcd *xhci; 1716 unsigned long flags; 1717 char str[XHCI_MSG_MAX]; 1718 u64 hw_ring_state; 1719 u32 cmd_field3; 1720 u32 usbsts; 1721 1722 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1723 1724 spin_lock_irqsave(&xhci->lock, flags); 1725 1726 /* 1727 * If timeout work is pending, or current_cmd is NULL, it means we 1728 * raced with command completion. Command is handled so just return. 1729 */ 1730 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1731 spin_unlock_irqrestore(&xhci->lock, flags); 1732 return; 1733 } 1734 1735 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1736 usbsts = readl(&xhci->op_regs->status); 1737 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1738 1739 /* Bail out and tear down xhci if a stop endpoint command failed */ 1740 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1741 struct xhci_virt_ep *ep; 1742 1743 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1744 1745 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1746 TRB_TO_EP_INDEX(cmd_field3)); 1747 if (ep) 1748 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1749 1750 xhci_halt(xhci); 1751 xhci_hc_died(xhci); 1752 goto time_out_completed; 1753 } 1754 1755 /* mark this command to be cancelled */ 1756 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1757 1758 /* Make sure command ring is running before aborting it */ 1759 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1760 if (hw_ring_state == ~(u64)0) { 1761 xhci_hc_died(xhci); 1762 goto time_out_completed; 1763 } 1764 1765 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1766 (hw_ring_state & CMD_RING_RUNNING)) { 1767 /* Prevent new doorbell, and start command abort */ 1768 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1769 xhci_dbg(xhci, "Command timeout\n"); 1770 xhci_abort_cmd_ring(xhci, flags); 1771 goto time_out_completed; 1772 } 1773 1774 /* host removed. Bail out */ 1775 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1776 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1777 xhci_cleanup_command_queue(xhci); 1778 1779 goto time_out_completed; 1780 } 1781 1782 /* command timeout on stopped ring, ring can't be aborted */ 1783 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1784 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1785 1786 time_out_completed: 1787 spin_unlock_irqrestore(&xhci->lock, flags); 1788 return; 1789 } 1790 1791 static void handle_cmd_completion(struct xhci_hcd *xhci, 1792 struct xhci_event_cmd *event) 1793 { 1794 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1795 u32 status = le32_to_cpu(event->status); 1796 u64 cmd_dma; 1797 dma_addr_t cmd_dequeue_dma; 1798 u32 cmd_comp_code; 1799 union xhci_trb *cmd_trb; 1800 struct xhci_command *cmd; 1801 u32 cmd_type; 1802 1803 if (slot_id >= MAX_HC_SLOTS) { 1804 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1805 return; 1806 } 1807 1808 cmd_dma = le64_to_cpu(event->cmd_trb); 1809 cmd_trb = xhci->cmd_ring->dequeue; 1810 1811 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic, cmd_dma); 1812 1813 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1814 1815 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1816 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1817 complete_all(&xhci->cmd_ring_stop_completion); 1818 return; 1819 } 1820 1821 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1822 cmd_trb); 1823 /* 1824 * Check whether the completion event is for our internal kept 1825 * command. 1826 */ 1827 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1828 xhci_warn(xhci, 1829 "ERROR mismatched command completion event\n"); 1830 return; 1831 } 1832 1833 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1834 1835 cancel_delayed_work(&xhci->cmd_timer); 1836 1837 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1838 xhci_err(xhci, 1839 "Command completion event does not match command\n"); 1840 return; 1841 } 1842 1843 /* 1844 * Host aborted the command ring, check if the current command was 1845 * supposed to be aborted, otherwise continue normally. 1846 * The command ring is stopped now, but the xHC will issue a Command 1847 * Ring Stopped event which will cause us to restart it. 1848 */ 1849 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1850 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1851 if (cmd->status == COMP_COMMAND_ABORTED) { 1852 if (xhci->current_cmd == cmd) 1853 xhci->current_cmd = NULL; 1854 goto event_handled; 1855 } 1856 } 1857 1858 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1859 switch (cmd_type) { 1860 case TRB_ENABLE_SLOT: 1861 xhci_handle_cmd_enable_slot(slot_id, cmd, cmd_comp_code); 1862 break; 1863 case TRB_DISABLE_SLOT: 1864 xhci_handle_cmd_disable_slot(xhci, slot_id, cmd_comp_code); 1865 break; 1866 case TRB_CONFIG_EP: 1867 if (!cmd->completion) 1868 xhci_handle_cmd_config_ep(xhci, slot_id); 1869 break; 1870 case TRB_EVAL_CONTEXT: 1871 break; 1872 case TRB_ADDR_DEV: 1873 xhci_handle_cmd_addr_dev(xhci, slot_id); 1874 break; 1875 case TRB_STOP_RING: 1876 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1877 le32_to_cpu(cmd_trb->generic.field[3]))); 1878 if (!cmd->completion) 1879 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1880 cmd_comp_code); 1881 break; 1882 case TRB_SET_DEQ: 1883 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1884 le32_to_cpu(cmd_trb->generic.field[3]))); 1885 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1886 break; 1887 case TRB_CMD_NOOP: 1888 /* Is this an aborted command turned to NO-OP? */ 1889 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1890 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1891 break; 1892 case TRB_RESET_EP: 1893 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1894 le32_to_cpu(cmd_trb->generic.field[3]))); 1895 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1896 break; 1897 case TRB_RESET_DEV: 1898 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1899 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1900 */ 1901 slot_id = TRB_TO_SLOT_ID( 1902 le32_to_cpu(cmd_trb->generic.field[3])); 1903 xhci_handle_cmd_reset_dev(xhci, slot_id); 1904 break; 1905 case TRB_NEC_GET_FW: 1906 xhci_handle_cmd_nec_get_fw(xhci, event); 1907 break; 1908 case TRB_GET_BW: 1909 break; 1910 default: 1911 /* Skip over unknown commands on the event ring */ 1912 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1913 break; 1914 } 1915 1916 /* restart timer if this wasn't the last command */ 1917 if (!list_is_singular(&xhci->cmd_list)) { 1918 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1919 struct xhci_command, cmd_list); 1920 xhci_mod_cmd_timer(xhci); 1921 } else if (xhci->current_cmd == cmd) { 1922 xhci->current_cmd = NULL; 1923 } 1924 1925 event_handled: 1926 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code, COMP_PARAM(status)); 1927 1928 inc_deq(xhci, xhci->cmd_ring); 1929 } 1930 1931 static void handle_vendor_event(struct xhci_hcd *xhci, 1932 union xhci_trb *event, u32 trb_type) 1933 { 1934 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1935 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1936 handle_cmd_completion(xhci, &event->event_cmd); 1937 } 1938 1939 static void handle_device_notification(struct xhci_hcd *xhci, 1940 union xhci_trb *event) 1941 { 1942 u32 slot_id; 1943 struct usb_device *udev; 1944 1945 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1946 if (!xhci->devs[slot_id]) { 1947 xhci_warn(xhci, "Device Notification event for " 1948 "unused slot %u\n", slot_id); 1949 return; 1950 } 1951 1952 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1953 slot_id); 1954 udev = xhci->devs[slot_id]->udev; 1955 if (udev && udev->parent) 1956 usb_wakeup_notification(udev->parent, udev->portnum); 1957 } 1958 1959 /* 1960 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1961 * Controller. 1962 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1963 * If a connection to a USB 1 device is followed by another connection 1964 * to a USB 2 device. 1965 * 1966 * Reset the PHY after the USB device is disconnected if device speed 1967 * is less than HCD_USB3. 1968 * Retry the reset sequence max of 4 times checking the PLL lock status. 1969 * 1970 */ 1971 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1972 { 1973 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1974 u32 pll_lock_check; 1975 u32 retry_count = 4; 1976 1977 do { 1978 /* Assert PHY reset */ 1979 writel(0x6F, hcd->regs + 0x1048); 1980 udelay(10); 1981 /* De-assert the PHY reset */ 1982 writel(0x7F, hcd->regs + 0x1048); 1983 udelay(200); 1984 pll_lock_check = readl(hcd->regs + 0x1070); 1985 } while (!(pll_lock_check & 0x1) && --retry_count); 1986 } 1987 1988 static void handle_port_status(struct xhci_hcd *xhci, union xhci_trb *event) 1989 { 1990 struct usb_hcd *hcd; 1991 u32 port_id; 1992 u32 portsc, cmd_reg; 1993 int max_ports; 1994 unsigned int hcd_portnum; 1995 struct xhci_bus_state *bus_state; 1996 bool bogus_port_status = false; 1997 struct xhci_port *port; 1998 1999 /* Port status change events always have a successful completion code */ 2000 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 2001 xhci_warn(xhci, 2002 "WARN: xHC returned failed port status event\n"); 2003 2004 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 2005 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2006 2007 if ((port_id <= 0) || (port_id > max_ports)) { 2008 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 2009 port_id); 2010 return; 2011 } 2012 2013 port = &xhci->hw_ports[port_id - 1]; 2014 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 2015 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 2016 port_id); 2017 bogus_port_status = true; 2018 goto cleanup; 2019 } 2020 2021 /* We might get interrupts after shared_hcd is removed */ 2022 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 2023 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 2024 bogus_port_status = true; 2025 goto cleanup; 2026 } 2027 2028 hcd = port->rhub->hcd; 2029 bus_state = &port->rhub->bus_state; 2030 hcd_portnum = port->hcd_portnum; 2031 portsc = readl(port->addr); 2032 2033 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 2034 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 2035 2036 trace_xhci_handle_port_status(port, portsc); 2037 2038 if (hcd->state == HC_STATE_SUSPENDED) { 2039 xhci_dbg(xhci, "resume root hub\n"); 2040 usb_hcd_resume_root_hub(hcd); 2041 } 2042 2043 if (hcd->speed >= HCD_USB3 && 2044 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 2045 if (port->slot_id && xhci->devs[port->slot_id]) 2046 xhci->devs[port->slot_id]->flags |= VDEV_PORT_ERROR; 2047 } 2048 2049 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 2050 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 2051 2052 cmd_reg = readl(&xhci->op_regs->command); 2053 if (!(cmd_reg & CMD_RUN)) { 2054 xhci_warn(xhci, "xHC is not running.\n"); 2055 goto cleanup; 2056 } 2057 2058 if (DEV_SUPERSPEED_ANY(portsc)) { 2059 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 2060 /* Set a flag to say the port signaled remote wakeup, 2061 * so we can tell the difference between the end of 2062 * device and host initiated resume. 2063 */ 2064 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 2065 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2066 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2067 xhci_set_link_state(xhci, port, XDEV_U0); 2068 /* Need to wait until the next link state change 2069 * indicates the device is actually in U0. 2070 */ 2071 bogus_port_status = true; 2072 goto cleanup; 2073 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 2074 xhci_dbg(xhci, "resume HS port %d\n", port_id); 2075 port->resume_timestamp = jiffies + 2076 msecs_to_jiffies(USB_RESUME_TIMEOUT); 2077 set_bit(hcd_portnum, &bus_state->resuming_ports); 2078 /* Do the rest in GetPortStatus after resume time delay. 2079 * Avoid polling roothub status before that so that a 2080 * usb device auto-resume latency around ~40ms. 2081 */ 2082 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2083 mod_timer(&hcd->rh_timer, 2084 port->resume_timestamp); 2085 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2086 bogus_port_status = true; 2087 } 2088 } 2089 2090 if ((portsc & PORT_PLC) && 2091 DEV_SUPERSPEED_ANY(portsc) && 2092 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 2093 (portsc & PORT_PLS_MASK) == XDEV_U1 || 2094 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 2095 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 2096 complete(&port->u3exit_done); 2097 /* We've just brought the device into U0/1/2 through either the 2098 * Resume state after a device remote wakeup, or through the 2099 * U3Exit state after a host-initiated resume. If it's a device 2100 * initiated remote wake, don't pass up the link state change, 2101 * so the roothub behavior is consistent with external 2102 * USB 3.0 hub behavior. 2103 */ 2104 if (port->slot_id && xhci->devs[port->slot_id]) 2105 xhci_ring_device(xhci, port->slot_id); 2106 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 2107 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2108 usb_wakeup_notification(hcd->self.root_hub, 2109 hcd_portnum + 1); 2110 bogus_port_status = true; 2111 goto cleanup; 2112 } 2113 } 2114 2115 /* 2116 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 2117 * RExit to a disconnect state). If so, let the driver know it's 2118 * out of the RExit state. 2119 */ 2120 if (hcd->speed < HCD_USB3 && port->rexit_active) { 2121 complete(&port->rexit_done); 2122 port->rexit_active = false; 2123 bogus_port_status = true; 2124 goto cleanup; 2125 } 2126 2127 if (hcd->speed < HCD_USB3) { 2128 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2129 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2130 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2131 xhci_cavium_reset_phy_quirk(xhci); 2132 } 2133 2134 cleanup: 2135 2136 /* Don't make the USB core poll the roothub if we got a bad port status 2137 * change event. Besides, at that point we can't tell which roothub 2138 * (USB 2.0 or USB 3.0) to kick. 2139 */ 2140 if (bogus_port_status) 2141 return; 2142 2143 /* 2144 * xHCI port-status-change events occur when the "or" of all the 2145 * status-change bits in the portsc register changes from 0 to 1. 2146 * New status changes won't cause an event if any other change 2147 * bits are still set. When an event occurs, switch over to 2148 * polling to avoid losing status changes. 2149 */ 2150 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2151 __func__, hcd->self.busnum); 2152 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2153 spin_unlock(&xhci->lock); 2154 /* Pass this up to the core */ 2155 usb_hcd_poll_rh_status(hcd); 2156 spin_lock(&xhci->lock); 2157 } 2158 2159 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2160 struct xhci_virt_ep *ep) 2161 { 2162 /* 2163 * As part of low/full-speed endpoint-halt processing 2164 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2165 */ 2166 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2167 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2168 !(ep->ep_state & EP_CLEARING_TT)) { 2169 ep->ep_state |= EP_CLEARING_TT; 2170 td->urb->ep->hcpriv = td->urb->dev; 2171 if (usb_hub_clear_tt_buffer(td->urb)) 2172 ep->ep_state &= ~EP_CLEARING_TT; 2173 } 2174 } 2175 2176 /* 2177 * Check if xhci internal endpoint state has gone to a "halt" state due to an 2178 * error or stall, including default control pipe protocol stall. 2179 * The internal halt needs to be cleared with a reset endpoint command. 2180 * 2181 * External device side is also halted in functional stall cases. Class driver 2182 * will clear the device halt with a CLEAR_FEATURE(ENDPOINT_HALT) request later. 2183 */ 2184 static bool xhci_halted_host_endpoint(struct xhci_ep_ctx *ep_ctx, unsigned int comp_code) 2185 { 2186 /* Stall halts both internal and device side endpoint */ 2187 if (comp_code == COMP_STALL_ERROR) 2188 return true; 2189 2190 /* TRB completion codes that may require internal halt cleanup */ 2191 if (comp_code == COMP_USB_TRANSACTION_ERROR || 2192 comp_code == COMP_BABBLE_DETECTED_ERROR || 2193 comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2194 /* 2195 * The 0.95 spec says a babbling control endpoint is not halted. 2196 * The 0.96 spec says it is. Some HW claims to be 0.95 2197 * compliant, but it halts the control endpoint anyway. 2198 * Check endpoint context if endpoint is halted. 2199 */ 2200 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2201 return true; 2202 2203 return false; 2204 } 2205 2206 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2207 { 2208 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2209 /* Vendor defined "informational" completion code, 2210 * treat as not-an-error. 2211 */ 2212 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2213 trb_comp_code); 2214 xhci_dbg(xhci, "Treating code as success.\n"); 2215 return 1; 2216 } 2217 return 0; 2218 } 2219 2220 static void finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2221 struct xhci_ring *ep_ring, struct xhci_td *td, 2222 u32 trb_comp_code) 2223 { 2224 struct xhci_ep_ctx *ep_ctx; 2225 2226 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2227 2228 switch (trb_comp_code) { 2229 case COMP_STOPPED_LENGTH_INVALID: 2230 case COMP_STOPPED_SHORT_PACKET: 2231 case COMP_STOPPED: 2232 /* 2233 * The "Stop Endpoint" completion will take care of any 2234 * stopped TDs. A stopped TD may be restarted, so don't update 2235 * the ring dequeue pointer or take this TD off any lists yet. 2236 */ 2237 return; 2238 case COMP_USB_TRANSACTION_ERROR: 2239 case COMP_BABBLE_DETECTED_ERROR: 2240 case COMP_SPLIT_TRANSACTION_ERROR: 2241 /* 2242 * If endpoint context state is not halted we might be 2243 * racing with a reset endpoint command issued by a unsuccessful 2244 * stop endpoint completion (context error). In that case the 2245 * td should be on the cancelled list, and EP_HALTED flag set. 2246 * 2247 * Or then it's not halted due to the 0.95 spec stating that a 2248 * babbling control endpoint should not halt. The 0.96 spec 2249 * again says it should. Some HW claims to be 0.95 compliant, 2250 * but it halts the control endpoint anyway. 2251 */ 2252 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2253 /* 2254 * If EP_HALTED is set and TD is on the cancelled list 2255 * the TD and dequeue pointer will be handled by reset 2256 * ep command completion 2257 */ 2258 if ((ep->ep_state & EP_HALTED) && 2259 !list_empty(&td->cancelled_td_list)) { 2260 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2261 (unsigned long long)xhci_trb_virt_to_dma( 2262 td->start_seg, td->start_trb)); 2263 return; 2264 } 2265 /* endpoint not halted, don't reset it */ 2266 break; 2267 } 2268 /* Almost same procedure as for STALL_ERROR below */ 2269 xhci_clear_hub_tt_buffer(xhci, td, ep); 2270 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2271 return; 2272 case COMP_STALL_ERROR: 2273 /* 2274 * xhci internal endpoint state will go to a "halt" state for 2275 * any stall, including default control pipe protocol stall. 2276 * To clear the host side halt we need to issue a reset endpoint 2277 * command, followed by a set dequeue command to move past the 2278 * TD. 2279 * Class drivers clear the device side halt from a functional 2280 * stall later. Hub TT buffer should only be cleared for FS/LS 2281 * devices behind HS hubs for functional stalls. 2282 */ 2283 if (ep->ep_index != 0) 2284 xhci_clear_hub_tt_buffer(xhci, td, ep); 2285 2286 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2287 2288 return; /* xhci_handle_halted_endpoint marked td cancelled */ 2289 default: 2290 break; 2291 } 2292 2293 xhci_dequeue_td(xhci, td, ep_ring, td->status); 2294 } 2295 2296 /* sum trb lengths from the first trb up to stop_trb, _excluding_ stop_trb */ 2297 static u32 sum_trb_lengths(struct xhci_td *td, union xhci_trb *stop_trb) 2298 { 2299 u32 sum; 2300 union xhci_trb *trb = td->start_trb; 2301 struct xhci_segment *seg = td->start_seg; 2302 2303 for (sum = 0; trb != stop_trb; next_trb(&seg, &trb)) { 2304 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2305 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2306 } 2307 return sum; 2308 } 2309 2310 /* 2311 * Process control tds, update urb status and actual_length. 2312 */ 2313 static void process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2314 struct xhci_ring *ep_ring, struct xhci_td *td, 2315 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2316 { 2317 struct xhci_ep_ctx *ep_ctx; 2318 u32 trb_comp_code; 2319 u32 remaining, requested; 2320 u32 trb_type; 2321 2322 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2323 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2324 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2325 requested = td->urb->transfer_buffer_length; 2326 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2327 2328 switch (trb_comp_code) { 2329 case COMP_SUCCESS: 2330 if (trb_type != TRB_STATUS) { 2331 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2332 (trb_type == TRB_DATA) ? "data" : "setup"); 2333 td->status = -ESHUTDOWN; 2334 break; 2335 } 2336 td->status = 0; 2337 break; 2338 case COMP_SHORT_PACKET: 2339 td->status = 0; 2340 break; 2341 case COMP_STOPPED_SHORT_PACKET: 2342 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2343 td->urb->actual_length = remaining; 2344 else 2345 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2346 goto finish_td; 2347 case COMP_STOPPED: 2348 switch (trb_type) { 2349 case TRB_SETUP: 2350 td->urb->actual_length = 0; 2351 goto finish_td; 2352 case TRB_DATA: 2353 case TRB_NORMAL: 2354 td->urb->actual_length = requested - remaining; 2355 goto finish_td; 2356 case TRB_STATUS: 2357 td->urb->actual_length = requested; 2358 goto finish_td; 2359 default: 2360 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2361 trb_type); 2362 goto finish_td; 2363 } 2364 case COMP_STOPPED_LENGTH_INVALID: 2365 goto finish_td; 2366 default: 2367 if (!xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) 2368 break; 2369 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2370 trb_comp_code, ep->ep_index); 2371 fallthrough; 2372 case COMP_STALL_ERROR: 2373 /* Did we transfer part of the data (middle) phase? */ 2374 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2375 td->urb->actual_length = requested - remaining; 2376 else if (!td->urb_length_set) 2377 td->urb->actual_length = 0; 2378 goto finish_td; 2379 } 2380 2381 /* stopped at setup stage, no data transferred */ 2382 if (trb_type == TRB_SETUP) 2383 goto finish_td; 2384 2385 /* 2386 * if on data stage then update the actual_length of the URB and flag it 2387 * as set, so it won't be overwritten in the event for the last TRB. 2388 */ 2389 if (trb_type == TRB_DATA || 2390 trb_type == TRB_NORMAL) { 2391 td->urb_length_set = true; 2392 td->urb->actual_length = requested - remaining; 2393 xhci_dbg(xhci, "Waiting for status stage event\n"); 2394 return; 2395 } 2396 2397 /* at status stage */ 2398 if (!td->urb_length_set) 2399 td->urb->actual_length = requested; 2400 2401 finish_td: 2402 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2403 } 2404 2405 /* 2406 * Process isochronous tds, update urb packet status and actual_length. 2407 */ 2408 static void process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2409 struct xhci_ring *ep_ring, struct xhci_td *td, 2410 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2411 { 2412 struct urb_priv *urb_priv; 2413 int idx; 2414 struct usb_iso_packet_descriptor *frame; 2415 u32 trb_comp_code; 2416 bool sum_trbs_for_length = false; 2417 u32 remaining, requested, ep_trb_len; 2418 int short_framestatus; 2419 2420 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2421 urb_priv = td->urb->hcpriv; 2422 idx = urb_priv->num_tds_done; 2423 frame = &td->urb->iso_frame_desc[idx]; 2424 requested = frame->length; 2425 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2426 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2427 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2428 -EREMOTEIO : 0; 2429 2430 /* handle completion code */ 2431 switch (trb_comp_code) { 2432 case COMP_SUCCESS: 2433 /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ 2434 if (td->error_mid_td) 2435 break; 2436 if (remaining) { 2437 frame->status = short_framestatus; 2438 sum_trbs_for_length = true; 2439 break; 2440 } 2441 frame->status = 0; 2442 break; 2443 case COMP_SHORT_PACKET: 2444 frame->status = short_framestatus; 2445 sum_trbs_for_length = true; 2446 break; 2447 case COMP_BANDWIDTH_OVERRUN_ERROR: 2448 frame->status = -ECOMM; 2449 break; 2450 case COMP_BABBLE_DETECTED_ERROR: 2451 sum_trbs_for_length = true; 2452 fallthrough; 2453 case COMP_ISOCH_BUFFER_OVERRUN: 2454 frame->status = -EOVERFLOW; 2455 if (ep_trb != td->end_trb) 2456 td->error_mid_td = true; 2457 break; 2458 case COMP_MISSED_SERVICE_ERROR: 2459 frame->status = -EXDEV; 2460 sum_trbs_for_length = true; 2461 if (ep_trb != td->end_trb) 2462 td->error_mid_td = true; 2463 break; 2464 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2465 case COMP_STALL_ERROR: 2466 frame->status = -EPROTO; 2467 break; 2468 case COMP_USB_TRANSACTION_ERROR: 2469 frame->status = -EPROTO; 2470 sum_trbs_for_length = true; 2471 if (ep_trb != td->end_trb) 2472 td->error_mid_td = true; 2473 break; 2474 case COMP_STOPPED: 2475 sum_trbs_for_length = true; 2476 break; 2477 case COMP_STOPPED_SHORT_PACKET: 2478 /* field normally containing residue now contains transferred */ 2479 frame->status = short_framestatus; 2480 requested = remaining; 2481 break; 2482 case COMP_STOPPED_LENGTH_INVALID: 2483 /* exclude stopped trb with invalid length from length sum */ 2484 sum_trbs_for_length = true; 2485 ep_trb_len = 0; 2486 remaining = 0; 2487 break; 2488 default: 2489 sum_trbs_for_length = true; 2490 frame->status = -1; 2491 break; 2492 } 2493 2494 if (td->urb_length_set) 2495 goto finish_td; 2496 2497 if (sum_trbs_for_length) 2498 frame->actual_length = sum_trb_lengths(td, ep_trb) + 2499 ep_trb_len - remaining; 2500 else 2501 frame->actual_length = requested; 2502 2503 td->urb->actual_length += frame->actual_length; 2504 2505 finish_td: 2506 /* Don't give back TD yet if we encountered an error mid TD */ 2507 if (td->error_mid_td && ep_trb != td->end_trb) { 2508 xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); 2509 td->urb_length_set = true; 2510 return; 2511 } 2512 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2513 } 2514 2515 static void skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2516 struct xhci_virt_ep *ep, int status) 2517 { 2518 struct urb_priv *urb_priv; 2519 struct usb_iso_packet_descriptor *frame; 2520 int idx; 2521 2522 urb_priv = td->urb->hcpriv; 2523 idx = urb_priv->num_tds_done; 2524 frame = &td->urb->iso_frame_desc[idx]; 2525 2526 /* The transfer is partly done. */ 2527 frame->status = -EXDEV; 2528 2529 /* calc actual length */ 2530 frame->actual_length = 0; 2531 2532 xhci_dequeue_td(xhci, td, ep->ring, status); 2533 } 2534 2535 /* 2536 * Process bulk and interrupt tds, update urb status and actual_length. 2537 */ 2538 static void process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2539 struct xhci_ring *ep_ring, struct xhci_td *td, 2540 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2541 { 2542 struct xhci_slot_ctx *slot_ctx; 2543 u32 trb_comp_code; 2544 u32 remaining, requested, ep_trb_len; 2545 2546 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2547 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2548 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2549 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2550 requested = td->urb->transfer_buffer_length; 2551 2552 switch (trb_comp_code) { 2553 case COMP_SUCCESS: 2554 ep->err_count = 0; 2555 /* handle success with untransferred data as short packet */ 2556 if (ep_trb != td->end_trb || remaining) { 2557 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2558 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2559 td->urb->ep->desc.bEndpointAddress, 2560 requested, remaining); 2561 } 2562 td->status = 0; 2563 break; 2564 case COMP_SHORT_PACKET: 2565 td->status = 0; 2566 break; 2567 case COMP_STOPPED_SHORT_PACKET: 2568 td->urb->actual_length = remaining; 2569 goto finish_td; 2570 case COMP_STOPPED_LENGTH_INVALID: 2571 /* stopped on ep trb with invalid length, exclude it */ 2572 td->urb->actual_length = sum_trb_lengths(td, ep_trb); 2573 goto finish_td; 2574 case COMP_USB_TRANSACTION_ERROR: 2575 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2576 (ep->err_count++ > MAX_SOFT_RETRY) || 2577 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2578 break; 2579 2580 td->status = 0; 2581 2582 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2583 return; 2584 default: 2585 /* do nothing */ 2586 break; 2587 } 2588 2589 if (ep_trb == td->end_trb) 2590 td->urb->actual_length = requested - remaining; 2591 else 2592 td->urb->actual_length = 2593 sum_trb_lengths(td, ep_trb) + 2594 ep_trb_len - remaining; 2595 finish_td: 2596 if (remaining > requested) { 2597 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2598 remaining); 2599 td->urb->actual_length = 0; 2600 } 2601 2602 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2603 } 2604 2605 /* Transfer events which don't point to a transfer TRB, see xhci 4.17.4 */ 2606 static int handle_transferless_tx_event(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2607 u32 trb_comp_code) 2608 { 2609 switch (trb_comp_code) { 2610 case COMP_STALL_ERROR: 2611 case COMP_USB_TRANSACTION_ERROR: 2612 case COMP_INVALID_STREAM_TYPE_ERROR: 2613 case COMP_INVALID_STREAM_ID_ERROR: 2614 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", ep->ep_index); 2615 if (ep->err_count++ > MAX_SOFT_RETRY) 2616 xhci_handle_halted_endpoint(xhci, ep, NULL, EP_HARD_RESET); 2617 else 2618 xhci_handle_halted_endpoint(xhci, ep, NULL, EP_SOFT_RESET); 2619 break; 2620 case COMP_RING_UNDERRUN: 2621 case COMP_RING_OVERRUN: 2622 case COMP_STOPPED_LENGTH_INVALID: 2623 break; 2624 default: 2625 xhci_err(xhci, "Transfer event %u for unknown stream ring slot %u ep %u\n", 2626 trb_comp_code, ep->vdev->slot_id, ep->ep_index); 2627 return -ENODEV; 2628 } 2629 return 0; 2630 } 2631 2632 static bool xhci_spurious_success_tx_event(struct xhci_hcd *xhci, 2633 struct xhci_ring *ring) 2634 { 2635 switch (ring->old_trb_comp_code) { 2636 case COMP_SHORT_PACKET: 2637 return xhci->quirks & XHCI_SPURIOUS_SUCCESS; 2638 case COMP_USB_TRANSACTION_ERROR: 2639 case COMP_BABBLE_DETECTED_ERROR: 2640 case COMP_ISOCH_BUFFER_OVERRUN: 2641 return xhci->quirks & XHCI_ETRON_HOST && 2642 ring->type == TYPE_ISOC; 2643 default: 2644 return false; 2645 } 2646 } 2647 2648 /* 2649 * If this function returns an error condition, it means it got a Transfer 2650 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2651 * At this point, the host controller is probably hosed and should be reset. 2652 */ 2653 static int handle_tx_event(struct xhci_hcd *xhci, 2654 struct xhci_interrupter *ir, 2655 struct xhci_transfer_event *event) 2656 { 2657 struct xhci_virt_ep *ep; 2658 struct xhci_ring *ep_ring; 2659 unsigned int slot_id; 2660 int ep_index; 2661 struct xhci_td *td = NULL; 2662 dma_addr_t ep_trb_dma; 2663 struct xhci_segment *ep_seg; 2664 union xhci_trb *ep_trb; 2665 int status = -EINPROGRESS; 2666 struct xhci_ep_ctx *ep_ctx; 2667 u32 trb_comp_code; 2668 bool ring_xrun_event = false; 2669 2670 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2671 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2672 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2673 ep_trb_dma = le64_to_cpu(event->buffer); 2674 2675 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2676 if (!ep) { 2677 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2678 goto err_out; 2679 } 2680 2681 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2682 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2683 2684 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2685 xhci_err(xhci, 2686 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2687 slot_id, ep_index); 2688 goto err_out; 2689 } 2690 2691 if (!ep_ring) 2692 return handle_transferless_tx_event(xhci, ep, trb_comp_code); 2693 2694 /* Look for common error cases */ 2695 switch (trb_comp_code) { 2696 /* Skip codes that require special handling depending on 2697 * transfer type 2698 */ 2699 case COMP_SUCCESS: 2700 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2701 trb_comp_code = COMP_SHORT_PACKET; 2702 xhci_dbg(xhci, "Successful completion on short TX for slot %u ep %u with last td comp code %d\n", 2703 slot_id, ep_index, ep_ring->old_trb_comp_code); 2704 } 2705 break; 2706 case COMP_SHORT_PACKET: 2707 break; 2708 /* Completion codes for endpoint stopped state */ 2709 case COMP_STOPPED: 2710 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2711 slot_id, ep_index); 2712 break; 2713 case COMP_STOPPED_LENGTH_INVALID: 2714 xhci_dbg(xhci, 2715 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2716 slot_id, ep_index); 2717 break; 2718 case COMP_STOPPED_SHORT_PACKET: 2719 xhci_dbg(xhci, 2720 "Stopped with short packet transfer detected for slot %u ep %u\n", 2721 slot_id, ep_index); 2722 break; 2723 /* Completion codes for endpoint halted state */ 2724 case COMP_STALL_ERROR: 2725 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2726 ep_index); 2727 status = -EPIPE; 2728 break; 2729 case COMP_SPLIT_TRANSACTION_ERROR: 2730 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2731 slot_id, ep_index); 2732 status = -EPROTO; 2733 break; 2734 case COMP_USB_TRANSACTION_ERROR: 2735 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2736 slot_id, ep_index); 2737 status = -EPROTO; 2738 break; 2739 case COMP_BABBLE_DETECTED_ERROR: 2740 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2741 slot_id, ep_index); 2742 status = -EOVERFLOW; 2743 break; 2744 /* Completion codes for endpoint error state */ 2745 case COMP_TRB_ERROR: 2746 xhci_warn(xhci, 2747 "WARN: TRB error for slot %u ep %u on endpoint\n", 2748 slot_id, ep_index); 2749 status = -EILSEQ; 2750 break; 2751 /* completion codes not indicating endpoint state change */ 2752 case COMP_DATA_BUFFER_ERROR: 2753 xhci_warn(xhci, 2754 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2755 slot_id, ep_index); 2756 status = -ENOSR; 2757 break; 2758 case COMP_BANDWIDTH_OVERRUN_ERROR: 2759 xhci_warn(xhci, 2760 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2761 slot_id, ep_index); 2762 break; 2763 case COMP_ISOCH_BUFFER_OVERRUN: 2764 xhci_warn(xhci, 2765 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2766 slot_id, ep_index); 2767 break; 2768 case COMP_RING_UNDERRUN: 2769 /* 2770 * When the Isoch ring is empty, the xHC will generate 2771 * a Ring Overrun Event for IN Isoch endpoint or Ring 2772 * Underrun Event for OUT Isoch endpoint. 2773 */ 2774 xhci_dbg(xhci, "Underrun event on slot %u ep %u\n", slot_id, ep_index); 2775 ring_xrun_event = true; 2776 break; 2777 case COMP_RING_OVERRUN: 2778 xhci_dbg(xhci, "Overrun event on slot %u ep %u\n", slot_id, ep_index); 2779 ring_xrun_event = true; 2780 break; 2781 case COMP_MISSED_SERVICE_ERROR: 2782 /* 2783 * When encounter missed service error, one or more isoc tds 2784 * may be missed by xHC. 2785 * Set skip flag of the ep_ring; Complete the missed tds as 2786 * short transfer when process the ep_ring next time. 2787 */ 2788 ep->skip = true; 2789 xhci_dbg(xhci, 2790 "Miss service interval error for slot %u ep %u, set skip flag%s\n", 2791 slot_id, ep_index, ep_trb_dma ? ", skip now" : ""); 2792 break; 2793 case COMP_NO_PING_RESPONSE_ERROR: 2794 ep->skip = true; 2795 xhci_dbg(xhci, 2796 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2797 slot_id, ep_index); 2798 return 0; 2799 2800 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2801 /* needs disable slot command to recover */ 2802 xhci_warn(xhci, 2803 "WARN: detect an incompatible device for slot %u ep %u", 2804 slot_id, ep_index); 2805 status = -EPROTO; 2806 break; 2807 default: 2808 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2809 status = 0; 2810 break; 2811 } 2812 xhci_warn(xhci, 2813 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2814 trb_comp_code, slot_id, ep_index); 2815 if (ep->skip) 2816 break; 2817 return 0; 2818 } 2819 2820 /* 2821 * xhci 4.10.2 states isoc endpoints should continue 2822 * processing the next TD if there was an error mid TD. 2823 * So host like NEC don't generate an event for the last 2824 * isoc TRB even if the IOC flag is set. 2825 * xhci 4.9.1 states that if there are errors in mult-TRB 2826 * TDs xHC should generate an error for that TRB, and if xHC 2827 * proceeds to the next TD it should genete an event for 2828 * any TRB with IOC flag on the way. Other host follow this. 2829 * 2830 * We wait for the final IOC event, but if we get an event 2831 * anywhere outside this TD, just give it back already. 2832 */ 2833 td = list_first_entry_or_null(&ep_ring->td_list, struct xhci_td, td_list); 2834 2835 if (td && td->error_mid_td && !trb_in_td(td, ep_trb_dma)) { 2836 xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); 2837 xhci_dequeue_td(xhci, td, ep_ring, td->status); 2838 } 2839 2840 /* If the TRB pointer is NULL, missed TDs will be skipped on the next event */ 2841 if (trb_comp_code == COMP_MISSED_SERVICE_ERROR && !ep_trb_dma) 2842 return 0; 2843 2844 if (list_empty(&ep_ring->td_list)) { 2845 /* 2846 * Don't print wanings if ring is empty due to a stopped endpoint generating an 2847 * extra completion event if the device was suspended. Or, a event for the last TRB 2848 * of a short TD we already got a short event for. The short TD is already removed 2849 * from the TD list. 2850 */ 2851 if (trb_comp_code != COMP_STOPPED && 2852 trb_comp_code != COMP_STOPPED_LENGTH_INVALID && 2853 !ring_xrun_event && 2854 !xhci_spurious_success_tx_event(xhci, ep_ring)) { 2855 xhci_warn(xhci, "Event TRB for slot %u ep %u with no TDs queued\n", 2856 slot_id, ep_index); 2857 } 2858 2859 ep->skip = false; 2860 goto check_endpoint_halted; 2861 } 2862 2863 do { 2864 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2865 td_list); 2866 2867 /* Is this a TRB in the currently executing TD? */ 2868 ep_seg = trb_in_td(td, ep_trb_dma); 2869 2870 if (!ep_seg) { 2871 2872 if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2873 /* this event is unlikely to match any TD, don't skip them all */ 2874 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID) 2875 return 0; 2876 2877 skip_isoc_td(xhci, td, ep, status); 2878 2879 if (!list_empty(&ep_ring->td_list)) { 2880 if (ring_xrun_event) { 2881 /* 2882 * If we are here, we are on xHCI 1.0 host with no 2883 * idea how many TDs were missed or where the xrun 2884 * occurred. New TDs may have been added after the 2885 * xrun, so skip only one TD to be safe. 2886 */ 2887 xhci_dbg(xhci, "Skipped one TD for slot %u ep %u", 2888 slot_id, ep_index); 2889 return 0; 2890 } 2891 continue; 2892 } 2893 2894 xhci_dbg(xhci, "All TDs skipped for slot %u ep %u. Clear skip flag.\n", 2895 slot_id, ep_index); 2896 ep->skip = false; 2897 td = NULL; 2898 goto check_endpoint_halted; 2899 } 2900 2901 /* TD was queued after xrun, maybe xrun was on a link, don't panic yet */ 2902 if (ring_xrun_event) 2903 return 0; 2904 2905 /* 2906 * Skip the Force Stopped Event. The 'ep_trb' of FSE is not in the current 2907 * TD pointed by 'ep_ring->dequeue' because that the hardware dequeue 2908 * pointer still at the previous TRB of the current TD. The previous TRB 2909 * maybe a Link TD or the last TRB of the previous TD. The command 2910 * completion handle will take care the rest. 2911 */ 2912 if (trb_comp_code == COMP_STOPPED || 2913 trb_comp_code == COMP_STOPPED_LENGTH_INVALID) { 2914 return 0; 2915 } 2916 2917 /* 2918 * Some hosts give a spurious success event after a short 2919 * transfer or error on last TRB. Ignore it. 2920 */ 2921 if (xhci_spurious_success_tx_event(xhci, ep_ring)) { 2922 xhci_dbg(xhci, "Spurious event dma %pad, comp_code %u after %u\n", 2923 &ep_trb_dma, trb_comp_code, ep_ring->old_trb_comp_code); 2924 ep_ring->old_trb_comp_code = 0; 2925 return 0; 2926 } 2927 2928 /* HC is busted, give up! */ 2929 goto debug_finding_td; 2930 } 2931 2932 if (ep->skip) { 2933 xhci_dbg(xhci, 2934 "Found td. Clear skip flag for slot %u ep %u.\n", 2935 slot_id, ep_index); 2936 ep->skip = false; 2937 } 2938 2939 /* 2940 * If ep->skip is set, it means there are missed tds on the 2941 * endpoint ring need to take care of. 2942 * Process them as short transfer until reach the td pointed by 2943 * the event. 2944 */ 2945 } while (ep->skip); 2946 2947 ep_ring->old_trb_comp_code = trb_comp_code; 2948 2949 /* Get out if a TD was queued at enqueue after the xrun occurred */ 2950 if (ring_xrun_event) 2951 return 0; 2952 2953 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / sizeof(*ep_trb)]; 2954 trace_xhci_handle_transfer(ep_ring, (struct xhci_generic_trb *) ep_trb, ep_trb_dma); 2955 2956 /* 2957 * No-op TRB could trigger interrupts in a case where a URB was killed 2958 * and a STALL_ERROR happens right after the endpoint ring stopped. 2959 * Reset the halted endpoint. Otherwise, the endpoint remains stalled 2960 * indefinitely. 2961 */ 2962 2963 if (trb_is_noop(ep_trb)) 2964 goto check_endpoint_halted; 2965 2966 td->status = status; 2967 2968 /* update the urb's actual_length and give back to the core */ 2969 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2970 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2971 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2972 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2973 else 2974 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2975 return 0; 2976 2977 check_endpoint_halted: 2978 if (xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) 2979 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2980 2981 return 0; 2982 2983 debug_finding_td: 2984 xhci_err(xhci, "Event dma %pad for ep %d status %d not part of TD at %016llx - %016llx\n", 2985 &ep_trb_dma, ep_index, trb_comp_code, 2986 (unsigned long long)xhci_trb_virt_to_dma(td->start_seg, td->start_trb), 2987 (unsigned long long)xhci_trb_virt_to_dma(td->end_seg, td->end_trb)); 2988 2989 return -ESHUTDOWN; 2990 2991 err_out: 2992 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2993 (unsigned long long) xhci_trb_virt_to_dma( 2994 ir->event_ring->deq_seg, 2995 ir->event_ring->dequeue), 2996 lower_32_bits(le64_to_cpu(event->buffer)), 2997 upper_32_bits(le64_to_cpu(event->buffer)), 2998 le32_to_cpu(event->transfer_len), 2999 le32_to_cpu(event->flags)); 3000 return -ENODEV; 3001 } 3002 3003 /* 3004 * This function handles one OS-owned event on the event ring. It may drop 3005 * xhci->lock between event processing (e.g. to pass up port status changes). 3006 */ 3007 static int xhci_handle_event_trb(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 3008 union xhci_trb *event) 3009 { 3010 u32 trb_type; 3011 3012 trace_xhci_handle_event(ir->event_ring, &event->generic, 3013 xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3014 ir->event_ring->dequeue)); 3015 3016 /* 3017 * Barrier between reading the TRB_CYCLE (valid) flag before, and any 3018 * speculative reads of the event's flags/data below. 3019 */ 3020 rmb(); 3021 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 3022 /* FIXME: Handle more event types. */ 3023 3024 switch (trb_type) { 3025 case TRB_COMPLETION: 3026 handle_cmd_completion(xhci, &event->event_cmd); 3027 break; 3028 case TRB_PORT_STATUS: 3029 handle_port_status(xhci, event); 3030 break; 3031 case TRB_TRANSFER: 3032 handle_tx_event(xhci, ir, &event->trans_event); 3033 break; 3034 case TRB_DEV_NOTE: 3035 handle_device_notification(xhci, event); 3036 break; 3037 default: 3038 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 3039 handle_vendor_event(xhci, event, trb_type); 3040 else 3041 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 3042 } 3043 /* Any of the above functions may drop and re-acquire the lock, so check 3044 * to make sure a watchdog timer didn't mark the host as non-responsive. 3045 */ 3046 if (xhci->xhc_state & XHCI_STATE_DYING) { 3047 xhci_dbg(xhci, "xHCI host dying, returning from event handler.\n"); 3048 return -ENODEV; 3049 } 3050 3051 return 0; 3052 } 3053 3054 /* 3055 * Update Event Ring Dequeue Pointer: 3056 * - When all events have finished 3057 * - To avoid "Event Ring Full Error" condition 3058 */ 3059 void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 3060 struct xhci_interrupter *ir, 3061 bool clear_ehb) 3062 { 3063 u64 temp_64; 3064 dma_addr_t deq; 3065 3066 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3067 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3068 ir->event_ring->dequeue); 3069 if (deq == 0) 3070 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 3071 /* 3072 * Per 4.9.4, Software writes to the ERDP register shall always advance 3073 * the Event Ring Dequeue Pointer value. 3074 */ 3075 if ((temp_64 & ERST_PTR_MASK) == (deq & ERST_PTR_MASK) && !clear_ehb) 3076 return; 3077 3078 /* Update HC event ring dequeue pointer */ 3079 temp_64 = ir->event_ring->deq_seg->num & ERST_DESI_MASK; 3080 temp_64 |= deq & ERST_PTR_MASK; 3081 3082 /* Clear the event handler busy flag (RW1C) */ 3083 if (clear_ehb) 3084 temp_64 |= ERST_EHB; 3085 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3086 } 3087 3088 /* Clear the interrupt pending bit for a specific interrupter. */ 3089 static void xhci_clear_interrupt_pending(struct xhci_interrupter *ir) 3090 { 3091 if (!ir->ip_autoclear) { 3092 u32 iman; 3093 3094 iman = readl(&ir->ir_set->iman); 3095 iman |= IMAN_IP; 3096 writel(iman, &ir->ir_set->iman); 3097 3098 /* Read operation to guarantee the write has been flushed from posted buffers */ 3099 readl(&ir->ir_set->iman); 3100 } 3101 } 3102 3103 /* 3104 * Handle all OS-owned events on an interrupter event ring. It may drop 3105 * and reaquire xhci->lock between event processing. 3106 */ 3107 static int xhci_handle_events(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 3108 bool skip_events) 3109 { 3110 int event_loop = 0; 3111 int err = 0; 3112 u64 temp; 3113 3114 xhci_clear_interrupt_pending(ir); 3115 3116 /* Event ring hasn't been allocated yet. */ 3117 if (!ir->event_ring || !ir->event_ring->dequeue) { 3118 xhci_err(xhci, "ERROR interrupter event ring not ready\n"); 3119 return -ENOMEM; 3120 } 3121 3122 if (xhci->xhc_state & XHCI_STATE_DYING || 3123 xhci->xhc_state & XHCI_STATE_HALTED) { 3124 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. Shouldn't IRQs be disabled?\n"); 3125 3126 /* Clear the event handler busy flag (RW1C) */ 3127 temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3128 xhci_write_64(xhci, temp | ERST_EHB, &ir->ir_set->erst_dequeue); 3129 return -ENODEV; 3130 } 3131 3132 /* Process all OS owned event TRBs on this event ring */ 3133 while (unhandled_event_trb(ir->event_ring)) { 3134 if (!skip_events) 3135 err = xhci_handle_event_trb(xhci, ir, ir->event_ring->dequeue); 3136 3137 /* 3138 * If half a segment of events have been handled in one go then 3139 * update ERDP, and force isoc trbs to interrupt more often 3140 */ 3141 if (event_loop++ > TRBS_PER_SEGMENT / 2) { 3142 xhci_update_erst_dequeue(xhci, ir, false); 3143 3144 if (ir->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3145 ir->isoc_bei_interval = ir->isoc_bei_interval / 2; 3146 3147 event_loop = 0; 3148 } 3149 3150 /* Update SW event ring dequeue pointer */ 3151 inc_deq(xhci, ir->event_ring); 3152 3153 if (err) 3154 break; 3155 } 3156 3157 xhci_update_erst_dequeue(xhci, ir, true); 3158 3159 return 0; 3160 } 3161 3162 /* 3163 * Move the event ring dequeue pointer to skip events kept in the secondary 3164 * event ring. This is used to ensure that pending events in the ring are 3165 * acknowledged, so the xHCI HCD can properly enter suspend/resume. The 3166 * secondary ring is typically maintained by an external component. 3167 */ 3168 void xhci_skip_sec_intr_events(struct xhci_hcd *xhci, 3169 struct xhci_ring *ring, struct xhci_interrupter *ir) 3170 { 3171 union xhci_trb *current_trb; 3172 u64 erdp_reg; 3173 dma_addr_t deq; 3174 3175 /* disable irq, ack pending interrupt and ack all pending events */ 3176 xhci_disable_interrupter(xhci, ir); 3177 3178 /* last acked event trb is in erdp reg */ 3179 erdp_reg = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3180 deq = (dma_addr_t)(erdp_reg & ERST_PTR_MASK); 3181 if (!deq) { 3182 xhci_err(xhci, "event ring handling not required\n"); 3183 return; 3184 } 3185 3186 current_trb = ir->event_ring->dequeue; 3187 /* read cycle state of the last acked trb to find out CCS */ 3188 ring->cycle_state = le32_to_cpu(current_trb->event_cmd.flags) & TRB_CYCLE; 3189 3190 xhci_handle_events(xhci, ir, true); 3191 } 3192 3193 /* 3194 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3195 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3196 * indicators of an event TRB error, but we check the status *first* to be safe. 3197 */ 3198 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3199 { 3200 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3201 irqreturn_t ret = IRQ_HANDLED; 3202 u32 status; 3203 3204 spin_lock(&xhci->lock); 3205 /* Check if the xHC generated the interrupt, or the irq is shared */ 3206 status = readl(&xhci->op_regs->status); 3207 if (status == ~(u32)0) { 3208 xhci_hc_died(xhci); 3209 goto out; 3210 } 3211 3212 if (!(status & STS_EINT)) { 3213 ret = IRQ_NONE; 3214 goto out; 3215 } 3216 3217 if (status & STS_HCE) { 3218 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3219 goto out; 3220 } 3221 3222 if (status & STS_FATAL) { 3223 xhci_warn(xhci, "WARNING: Host System Error\n"); 3224 xhci_halt(xhci); 3225 goto out; 3226 } 3227 3228 /* 3229 * Clear the op reg interrupt status first, 3230 * so we can receive interrupts from other MSI-X interrupters. 3231 * Write 1 to clear the interrupt status. 3232 */ 3233 status |= STS_EINT; 3234 writel(status, &xhci->op_regs->status); 3235 3236 /* This is the handler of the primary interrupter */ 3237 xhci_handle_events(xhci, xhci->interrupters[0], false); 3238 out: 3239 spin_unlock(&xhci->lock); 3240 3241 return ret; 3242 } 3243 3244 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3245 { 3246 return xhci_irq(hcd); 3247 } 3248 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3249 3250 /**** Endpoint Ring Operations ****/ 3251 3252 /* 3253 * Generic function for queueing a TRB on a ring. 3254 * The caller must have checked to make sure there's room on the ring. 3255 * 3256 * @more_trbs_coming: Will you enqueue more TRBs before calling 3257 * prepare_transfer()? 3258 */ 3259 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3260 bool more_trbs_coming, 3261 u32 field1, u32 field2, u32 field3, u32 field4) 3262 { 3263 struct xhci_generic_trb *trb; 3264 3265 trb = &ring->enqueue->generic; 3266 trb->field[0] = cpu_to_le32(field1); 3267 trb->field[1] = cpu_to_le32(field2); 3268 trb->field[2] = cpu_to_le32(field3); 3269 /* make sure TRB is fully written before giving it to the controller */ 3270 wmb(); 3271 trb->field[3] = cpu_to_le32(field4); 3272 3273 trace_xhci_queue_trb(ring, trb, 3274 xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue)); 3275 3276 inc_enq(xhci, ring, more_trbs_coming); 3277 } 3278 3279 /* 3280 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3281 * expand ring if it start to be full. 3282 */ 3283 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3284 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3285 { 3286 unsigned int new_segs = 0; 3287 3288 /* Make sure the endpoint has been added to xHC schedule */ 3289 switch (ep_state) { 3290 case EP_STATE_DISABLED: 3291 /* 3292 * USB core changed config/interfaces without notifying us, 3293 * or hardware is reporting the wrong state. 3294 */ 3295 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3296 return -ENOENT; 3297 case EP_STATE_ERROR: 3298 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3299 /* FIXME event handling code for error needs to clear it */ 3300 /* XXX not sure if this should be -ENOENT or not */ 3301 return -EINVAL; 3302 case EP_STATE_HALTED: 3303 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3304 break; 3305 case EP_STATE_STOPPED: 3306 case EP_STATE_RUNNING: 3307 break; 3308 default: 3309 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3310 /* 3311 * FIXME issue Configure Endpoint command to try to get the HC 3312 * back into a known state. 3313 */ 3314 return -EINVAL; 3315 } 3316 3317 if (ep_ring != xhci->cmd_ring) { 3318 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); 3319 } else if (xhci_num_trbs_free(ep_ring) <= num_trbs) { 3320 xhci_err(xhci, "Do not support expand command ring\n"); 3321 return -ENOMEM; 3322 } 3323 3324 if (new_segs) { 3325 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3326 "ERROR no room on ep ring, try ring expansion"); 3327 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { 3328 xhci_err(xhci, "Ring expansion failed\n"); 3329 return -ENOMEM; 3330 } 3331 } 3332 3333 /* Ensure that new TRBs won't overwrite a link */ 3334 if (trb_is_link(ep_ring->enqueue)) 3335 inc_enq_past_link(xhci, ep_ring, 0); 3336 3337 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3338 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3339 return -EINVAL; 3340 } 3341 3342 return 0; 3343 } 3344 3345 static int prepare_transfer(struct xhci_hcd *xhci, 3346 struct xhci_virt_device *xdev, 3347 unsigned int ep_index, 3348 unsigned int stream_id, 3349 unsigned int num_trbs, 3350 struct urb *urb, 3351 unsigned int td_index, 3352 gfp_t mem_flags) 3353 { 3354 int ret; 3355 struct urb_priv *urb_priv; 3356 struct xhci_td *td; 3357 struct xhci_ring *ep_ring; 3358 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3359 3360 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3361 stream_id); 3362 if (!ep_ring) { 3363 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3364 stream_id); 3365 return -EINVAL; 3366 } 3367 3368 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3369 num_trbs, mem_flags); 3370 if (ret) 3371 return ret; 3372 3373 urb_priv = urb->hcpriv; 3374 td = &urb_priv->td[td_index]; 3375 3376 INIT_LIST_HEAD(&td->td_list); 3377 INIT_LIST_HEAD(&td->cancelled_td_list); 3378 3379 if (td_index == 0) { 3380 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3381 if (unlikely(ret)) 3382 return ret; 3383 } 3384 3385 td->urb = urb; 3386 /* Add this TD to the tail of the endpoint ring's TD list */ 3387 list_add_tail(&td->td_list, &ep_ring->td_list); 3388 td->start_seg = ep_ring->enq_seg; 3389 td->start_trb = ep_ring->enqueue; 3390 3391 return 0; 3392 } 3393 3394 unsigned int count_trbs(u64 addr, u64 len) 3395 { 3396 unsigned int num_trbs; 3397 3398 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3399 TRB_MAX_BUFF_SIZE); 3400 if (num_trbs == 0) 3401 num_trbs++; 3402 3403 return num_trbs; 3404 } 3405 3406 static inline unsigned int count_trbs_needed(struct urb *urb) 3407 { 3408 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3409 } 3410 3411 static unsigned int count_sg_trbs_needed(struct urb *urb) 3412 { 3413 struct scatterlist *sg; 3414 unsigned int i, len, full_len, num_trbs = 0; 3415 3416 full_len = urb->transfer_buffer_length; 3417 3418 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3419 len = sg_dma_len(sg); 3420 num_trbs += count_trbs(sg_dma_address(sg), len); 3421 len = min_t(unsigned int, len, full_len); 3422 full_len -= len; 3423 if (full_len == 0) 3424 break; 3425 } 3426 3427 return num_trbs; 3428 } 3429 3430 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3431 { 3432 u64 addr, len; 3433 3434 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3435 len = urb->iso_frame_desc[i].length; 3436 3437 return count_trbs(addr, len); 3438 } 3439 3440 static void check_trb_math(struct urb *urb, int running_total) 3441 { 3442 if (unlikely(running_total != urb->transfer_buffer_length)) 3443 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3444 "queued %#x (%d), asked for %#x (%d)\n", 3445 __func__, 3446 urb->ep->desc.bEndpointAddress, 3447 running_total, running_total, 3448 urb->transfer_buffer_length, 3449 urb->transfer_buffer_length); 3450 } 3451 3452 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3453 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3454 struct xhci_generic_trb *start_trb) 3455 { 3456 /* 3457 * Pass all the TRBs to the hardware at once and make sure this write 3458 * isn't reordered. 3459 */ 3460 wmb(); 3461 if (start_cycle) 3462 start_trb->field[3] |= cpu_to_le32(start_cycle); 3463 else 3464 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3465 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3466 } 3467 3468 static void check_interval(struct urb *urb, struct xhci_ep_ctx *ep_ctx) 3469 { 3470 int xhci_interval; 3471 int ep_interval; 3472 3473 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3474 ep_interval = urb->interval; 3475 3476 /* Convert to microframes */ 3477 if (urb->dev->speed == USB_SPEED_LOW || 3478 urb->dev->speed == USB_SPEED_FULL) 3479 ep_interval *= 8; 3480 3481 /* FIXME change this to a warning and a suggestion to use the new API 3482 * to set the polling interval (once the API is added). 3483 */ 3484 if (xhci_interval != ep_interval) { 3485 dev_dbg_ratelimited(&urb->dev->dev, 3486 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3487 ep_interval, str_plural(ep_interval), 3488 xhci_interval, str_plural(xhci_interval)); 3489 urb->interval = xhci_interval; 3490 /* Convert back to frames for LS/FS devices */ 3491 if (urb->dev->speed == USB_SPEED_LOW || 3492 urb->dev->speed == USB_SPEED_FULL) 3493 urb->interval /= 8; 3494 } 3495 } 3496 3497 /* 3498 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3499 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3500 * (comprised of sg list entries) can take several service intervals to 3501 * transmit. 3502 */ 3503 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3504 struct urb *urb, int slot_id, unsigned int ep_index) 3505 { 3506 struct xhci_ep_ctx *ep_ctx; 3507 3508 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3509 check_interval(urb, ep_ctx); 3510 3511 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3512 } 3513 3514 /* 3515 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3516 * packets remaining in the TD (*not* including this TRB). 3517 * 3518 * Total TD packet count = total_packet_count = 3519 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3520 * 3521 * Packets transferred up to and including this TRB = packets_transferred = 3522 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3523 * 3524 * TD size = total_packet_count - packets_transferred 3525 * 3526 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3527 * including this TRB, right shifted by 10 3528 * 3529 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3530 * This is taken care of in the TRB_TD_SIZE() macro 3531 * 3532 * The last TRB in a TD must have the TD size set to zero. 3533 */ 3534 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3535 int trb_buff_len, unsigned int td_total_len, 3536 struct urb *urb, bool more_trbs_coming) 3537 { 3538 u32 maxp, total_packet_count; 3539 3540 /* MTK xHCI 0.96 contains some features from 1.0 */ 3541 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3542 return ((td_total_len - transferred) >> 10); 3543 3544 /* One TRB with a zero-length data packet. */ 3545 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3546 trb_buff_len == td_total_len) 3547 return 0; 3548 3549 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3550 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3551 trb_buff_len = 0; 3552 3553 maxp = usb_endpoint_maxp(&urb->ep->desc); 3554 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3555 3556 /* Queueing functions don't count the current TRB into transferred */ 3557 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3558 } 3559 3560 3561 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3562 u32 *trb_buff_len, struct xhci_segment *seg) 3563 { 3564 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 3565 unsigned int unalign; 3566 unsigned int max_pkt; 3567 u32 new_buff_len; 3568 size_t len; 3569 3570 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3571 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3572 3573 /* we got lucky, last normal TRB data on segment is packet aligned */ 3574 if (unalign == 0) 3575 return 0; 3576 3577 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3578 unalign, *trb_buff_len); 3579 3580 /* is the last nornal TRB alignable by splitting it */ 3581 if (*trb_buff_len > unalign) { 3582 *trb_buff_len -= unalign; 3583 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3584 return 0; 3585 } 3586 3587 /* 3588 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3589 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3590 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3591 */ 3592 new_buff_len = max_pkt - (enqd_len % max_pkt); 3593 3594 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3595 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3596 3597 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3598 if (usb_urb_dir_out(urb)) { 3599 if (urb->num_sgs) { 3600 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3601 seg->bounce_buf, new_buff_len, enqd_len); 3602 if (len != new_buff_len) 3603 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3604 len, new_buff_len); 3605 } else { 3606 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3607 } 3608 3609 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3610 max_pkt, DMA_TO_DEVICE); 3611 } else { 3612 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3613 max_pkt, DMA_FROM_DEVICE); 3614 } 3615 3616 if (dma_mapping_error(dev, seg->bounce_dma)) { 3617 /* try without aligning. Some host controllers survive */ 3618 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3619 return 0; 3620 } 3621 *trb_buff_len = new_buff_len; 3622 seg->bounce_len = new_buff_len; 3623 seg->bounce_offs = enqd_len; 3624 3625 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3626 3627 return 1; 3628 } 3629 3630 /* This is very similar to what ehci-q.c qtd_fill() does */ 3631 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3632 struct urb *urb, int slot_id, unsigned int ep_index) 3633 { 3634 struct xhci_ring *ring; 3635 struct urb_priv *urb_priv; 3636 struct xhci_td *td; 3637 struct xhci_generic_trb *start_trb; 3638 struct scatterlist *sg = NULL; 3639 bool more_trbs_coming = true; 3640 bool need_zero_pkt = false; 3641 bool first_trb = true; 3642 unsigned int num_trbs; 3643 unsigned int start_cycle, num_sgs = 0; 3644 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3645 int sent_len, ret; 3646 u32 field, length_field, remainder; 3647 u64 addr, send_addr; 3648 3649 ring = xhci_urb_to_transfer_ring(xhci, urb); 3650 if (!ring) 3651 return -EINVAL; 3652 3653 full_len = urb->transfer_buffer_length; 3654 /* If we have scatter/gather list, we use it. */ 3655 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3656 num_sgs = urb->num_mapped_sgs; 3657 sg = urb->sg; 3658 addr = (u64) sg_dma_address(sg); 3659 block_len = sg_dma_len(sg); 3660 num_trbs = count_sg_trbs_needed(urb); 3661 } else { 3662 num_trbs = count_trbs_needed(urb); 3663 addr = (u64) urb->transfer_dma; 3664 block_len = full_len; 3665 } 3666 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3667 ep_index, urb->stream_id, 3668 num_trbs, urb, 0, mem_flags); 3669 if (unlikely(ret < 0)) 3670 return ret; 3671 3672 urb_priv = urb->hcpriv; 3673 3674 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3675 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3676 need_zero_pkt = true; 3677 3678 td = &urb_priv->td[0]; 3679 3680 /* 3681 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3682 * until we've finished creating all the other TRBs. The ring's cycle 3683 * state may change as we enqueue the other TRBs, so save it too. 3684 */ 3685 start_trb = &ring->enqueue->generic; 3686 start_cycle = ring->cycle_state; 3687 send_addr = addr; 3688 3689 /* Queue the TRBs, even if they are zero-length */ 3690 for (enqd_len = 0; first_trb || enqd_len < full_len; 3691 enqd_len += trb_buff_len) { 3692 field = TRB_TYPE(TRB_NORMAL); 3693 3694 /* TRB buffer should not cross 64KB boundaries */ 3695 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3696 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3697 3698 if (enqd_len + trb_buff_len > full_len) 3699 trb_buff_len = full_len - enqd_len; 3700 3701 /* Don't change the cycle bit of the first TRB until later */ 3702 if (first_trb) { 3703 first_trb = false; 3704 if (start_cycle == 0) 3705 field |= TRB_CYCLE; 3706 } else 3707 field |= ring->cycle_state; 3708 3709 /* Chain all the TRBs together; clear the chain bit in the last 3710 * TRB to indicate it's the last TRB in the chain. 3711 */ 3712 if (enqd_len + trb_buff_len < full_len) { 3713 field |= TRB_CHAIN; 3714 if (trb_is_link(ring->enqueue + 1)) { 3715 if (xhci_align_td(xhci, urb, enqd_len, 3716 &trb_buff_len, 3717 ring->enq_seg)) { 3718 send_addr = ring->enq_seg->bounce_dma; 3719 /* assuming TD won't span 2 segs */ 3720 td->bounce_seg = ring->enq_seg; 3721 } 3722 } 3723 } 3724 if (enqd_len + trb_buff_len >= full_len) { 3725 field &= ~TRB_CHAIN; 3726 field |= TRB_IOC; 3727 more_trbs_coming = false; 3728 td->end_trb = ring->enqueue; 3729 td->end_seg = ring->enq_seg; 3730 if (xhci_urb_suitable_for_idt(urb)) { 3731 memcpy(&send_addr, urb->transfer_buffer, 3732 trb_buff_len); 3733 le64_to_cpus(&send_addr); 3734 field |= TRB_IDT; 3735 } 3736 } 3737 3738 /* Only set interrupt on short packet for IN endpoints */ 3739 if (usb_urb_dir_in(urb)) 3740 field |= TRB_ISP; 3741 3742 /* Set the TRB length, TD size, and interrupter fields. */ 3743 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3744 full_len, urb, more_trbs_coming); 3745 3746 length_field = TRB_LEN(trb_buff_len) | 3747 TRB_TD_SIZE(remainder) | 3748 TRB_INTR_TARGET(0); 3749 3750 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3751 lower_32_bits(send_addr), 3752 upper_32_bits(send_addr), 3753 length_field, 3754 field); 3755 addr += trb_buff_len; 3756 sent_len = trb_buff_len; 3757 3758 while (sg && sent_len >= block_len) { 3759 /* New sg entry */ 3760 --num_sgs; 3761 sent_len -= block_len; 3762 sg = sg_next(sg); 3763 if (num_sgs != 0 && sg) { 3764 block_len = sg_dma_len(sg); 3765 addr = (u64) sg_dma_address(sg); 3766 addr += sent_len; 3767 } 3768 } 3769 block_len -= sent_len; 3770 send_addr = addr; 3771 } 3772 3773 if (need_zero_pkt) { 3774 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3775 ep_index, urb->stream_id, 3776 1, urb, 1, mem_flags); 3777 urb_priv->td[1].end_trb = ring->enqueue; 3778 urb_priv->td[1].end_seg = ring->enq_seg; 3779 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3780 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3781 } 3782 3783 check_trb_math(urb, enqd_len); 3784 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3785 start_cycle, start_trb); 3786 return 0; 3787 } 3788 3789 /* Caller must have locked xhci->lock */ 3790 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3791 struct urb *urb, int slot_id, unsigned int ep_index) 3792 { 3793 struct xhci_ring *ep_ring; 3794 int num_trbs; 3795 int ret; 3796 struct usb_ctrlrequest *setup; 3797 struct xhci_generic_trb *start_trb; 3798 int start_cycle; 3799 u32 field; 3800 struct urb_priv *urb_priv; 3801 struct xhci_td *td; 3802 3803 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3804 if (!ep_ring) 3805 return -EINVAL; 3806 3807 /* 3808 * Need to copy setup packet into setup TRB, so we can't use the setup 3809 * DMA address. 3810 */ 3811 if (!urb->setup_packet) 3812 return -EINVAL; 3813 3814 if ((xhci->quirks & XHCI_ETRON_HOST) && 3815 urb->dev->speed >= USB_SPEED_SUPER) { 3816 /* 3817 * If next available TRB is the Link TRB in the ring segment then 3818 * enqueue a No Op TRB, this can prevent the Setup and Data Stage 3819 * TRB to be breaked by the Link TRB. 3820 */ 3821 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue + 1)) { 3822 field = TRB_TYPE(TRB_TR_NOOP) | ep_ring->cycle_state; 3823 queue_trb(xhci, ep_ring, false, 0, 0, 3824 TRB_INTR_TARGET(0), field); 3825 } 3826 } 3827 3828 /* 1 TRB for setup, 1 for status */ 3829 num_trbs = 2; 3830 /* 3831 * Don't need to check if we need additional event data and normal TRBs, 3832 * since data in control transfers will never get bigger than 16MB 3833 * XXX: can we get a buffer that crosses 64KB boundaries? 3834 */ 3835 if (urb->transfer_buffer_length > 0) 3836 num_trbs++; 3837 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3838 ep_index, urb->stream_id, 3839 num_trbs, urb, 0, mem_flags); 3840 if (ret < 0) 3841 return ret; 3842 3843 urb_priv = urb->hcpriv; 3844 td = &urb_priv->td[0]; 3845 3846 /* 3847 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3848 * until we've finished creating all the other TRBs. The ring's cycle 3849 * state may change as we enqueue the other TRBs, so save it too. 3850 */ 3851 start_trb = &ep_ring->enqueue->generic; 3852 start_cycle = ep_ring->cycle_state; 3853 3854 /* Queue setup TRB - see section 6.4.1.2.1 */ 3855 /* FIXME better way to translate setup_packet into two u32 fields? */ 3856 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3857 field = 0; 3858 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3859 if (start_cycle == 0) 3860 field |= 0x1; 3861 3862 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3863 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3864 if (urb->transfer_buffer_length > 0) { 3865 if (setup->bRequestType & USB_DIR_IN) 3866 field |= TRB_TX_TYPE(TRB_DATA_IN); 3867 else 3868 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3869 } 3870 } 3871 3872 queue_trb(xhci, ep_ring, true, 3873 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3874 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3875 TRB_LEN(8) | TRB_INTR_TARGET(0), 3876 /* Immediate data in pointer */ 3877 field); 3878 3879 /* If there's data, queue data TRBs */ 3880 /* Only set interrupt on short packet for IN endpoints */ 3881 if (usb_urb_dir_in(urb)) 3882 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3883 else 3884 field = TRB_TYPE(TRB_DATA); 3885 3886 if (urb->transfer_buffer_length > 0) { 3887 u32 length_field, remainder; 3888 u64 addr; 3889 3890 if (xhci_urb_suitable_for_idt(urb)) { 3891 memcpy(&addr, urb->transfer_buffer, 3892 urb->transfer_buffer_length); 3893 le64_to_cpus(&addr); 3894 field |= TRB_IDT; 3895 } else { 3896 addr = (u64) urb->transfer_dma; 3897 } 3898 3899 remainder = xhci_td_remainder(xhci, 0, 3900 urb->transfer_buffer_length, 3901 urb->transfer_buffer_length, 3902 urb, 1); 3903 length_field = TRB_LEN(urb->transfer_buffer_length) | 3904 TRB_TD_SIZE(remainder) | 3905 TRB_INTR_TARGET(0); 3906 if (setup->bRequestType & USB_DIR_IN) 3907 field |= TRB_DIR_IN; 3908 queue_trb(xhci, ep_ring, true, 3909 lower_32_bits(addr), 3910 upper_32_bits(addr), 3911 length_field, 3912 field | ep_ring->cycle_state); 3913 } 3914 3915 /* Save the DMA address of the last TRB in the TD */ 3916 td->end_trb = ep_ring->enqueue; 3917 td->end_seg = ep_ring->enq_seg; 3918 3919 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3920 /* If the device sent data, the status stage is an OUT transfer */ 3921 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3922 field = 0; 3923 else 3924 field = TRB_DIR_IN; 3925 queue_trb(xhci, ep_ring, false, 3926 0, 3927 0, 3928 TRB_INTR_TARGET(0), 3929 /* Event on completion */ 3930 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3931 3932 giveback_first_trb(xhci, slot_id, ep_index, 0, 3933 start_cycle, start_trb); 3934 return 0; 3935 } 3936 3937 /* 3938 * The transfer burst count field of the isochronous TRB defines the number of 3939 * bursts that are required to move all packets in this TD. Only SuperSpeed 3940 * devices can burst up to bMaxBurst number of packets per service interval. 3941 * This field is zero based, meaning a value of zero in the field means one 3942 * burst. Basically, for everything but SuperSpeed devices, this field will be 3943 * zero. Only xHCI 1.0 host controllers support this field. 3944 */ 3945 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3946 struct urb *urb, unsigned int total_packet_count) 3947 { 3948 unsigned int max_burst; 3949 3950 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3951 return 0; 3952 3953 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3954 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3955 } 3956 3957 /* 3958 * Returns the number of packets in the last "burst" of packets. This field is 3959 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3960 * the last burst packet count is equal to the total number of packets in the 3961 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3962 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3963 * contain 1 to (bMaxBurst + 1) packets. 3964 */ 3965 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3966 struct urb *urb, unsigned int total_packet_count) 3967 { 3968 unsigned int max_burst; 3969 unsigned int residue; 3970 3971 if (xhci->hci_version < 0x100) 3972 return 0; 3973 3974 if (urb->dev->speed >= USB_SPEED_SUPER) { 3975 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3976 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3977 residue = total_packet_count % (max_burst + 1); 3978 /* If residue is zero, the last burst contains (max_burst + 1) 3979 * number of packets, but the TLBPC field is zero-based. 3980 */ 3981 if (residue == 0) 3982 return max_burst; 3983 return residue - 1; 3984 } 3985 if (total_packet_count == 0) 3986 return 0; 3987 return total_packet_count - 1; 3988 } 3989 3990 /* 3991 * Calculates Frame ID field of the isochronous TRB identifies the 3992 * target frame that the Interval associated with this Isochronous 3993 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3994 * 3995 * Returns actual frame id on success, negative value on error. 3996 */ 3997 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3998 struct urb *urb, int index) 3999 { 4000 int start_frame, ist, ret = 0; 4001 int start_frame_id, end_frame_id, current_frame_id; 4002 4003 if (urb->dev->speed == USB_SPEED_LOW || 4004 urb->dev->speed == USB_SPEED_FULL) 4005 start_frame = urb->start_frame + index * urb->interval; 4006 else 4007 start_frame = (urb->start_frame + index * urb->interval) >> 3; 4008 4009 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 4010 * 4011 * If bit [3] of IST is cleared to '0', software can add a TRB no 4012 * later than IST[2:0] Microframes before that TRB is scheduled to 4013 * be executed. 4014 * If bit [3] of IST is set to '1', software can add a TRB no later 4015 * than IST[2:0] Frames before that TRB is scheduled to be executed. 4016 */ 4017 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4018 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4019 ist <<= 3; 4020 4021 /* Software shall not schedule an Isoch TD with a Frame ID value that 4022 * is less than the Start Frame ID or greater than the End Frame ID, 4023 * where: 4024 * 4025 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 4026 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 4027 * 4028 * Both the End Frame ID and Start Frame ID values are calculated 4029 * in microframes. When software determines the valid Frame ID value; 4030 * The End Frame ID value should be rounded down to the nearest Frame 4031 * boundary, and the Start Frame ID value should be rounded up to the 4032 * nearest Frame boundary. 4033 */ 4034 current_frame_id = readl(&xhci->run_regs->microframe_index); 4035 start_frame_id = roundup(current_frame_id + ist + 1, 8); 4036 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 4037 4038 start_frame &= 0x7ff; 4039 start_frame_id = (start_frame_id >> 3) & 0x7ff; 4040 end_frame_id = (end_frame_id >> 3) & 0x7ff; 4041 4042 if (start_frame_id < end_frame_id) { 4043 if (start_frame > end_frame_id || 4044 start_frame < start_frame_id) 4045 ret = -EINVAL; 4046 } else if (start_frame_id > end_frame_id) { 4047 if ((start_frame > end_frame_id && 4048 start_frame < start_frame_id)) 4049 ret = -EINVAL; 4050 } else { 4051 ret = -EINVAL; 4052 } 4053 4054 if (index == 0) { 4055 if (ret == -EINVAL || start_frame == start_frame_id) { 4056 start_frame = start_frame_id + 1; 4057 if (urb->dev->speed == USB_SPEED_LOW || 4058 urb->dev->speed == USB_SPEED_FULL) 4059 urb->start_frame = start_frame; 4060 else 4061 urb->start_frame = start_frame << 3; 4062 ret = 0; 4063 } 4064 } 4065 4066 if (ret) { 4067 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 4068 start_frame, current_frame_id, index, 4069 start_frame_id, end_frame_id); 4070 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 4071 return ret; 4072 } 4073 4074 return start_frame; 4075 } 4076 4077 /* Check if we should generate event interrupt for a TD in an isoc URB */ 4078 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i, 4079 struct xhci_interrupter *ir) 4080 { 4081 if (xhci->hci_version < 0x100) 4082 return false; 4083 /* always generate an event interrupt for the last TD */ 4084 if (i == num_tds - 1) 4085 return false; 4086 /* 4087 * If AVOID_BEI is set the host handles full event rings poorly, 4088 * generate an event at least every 8th TD to clear the event ring 4089 */ 4090 if (i && ir->isoc_bei_interval && xhci->quirks & XHCI_AVOID_BEI) 4091 return !!(i % ir->isoc_bei_interval); 4092 4093 return true; 4094 } 4095 4096 /* This is for isoc transfer */ 4097 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 4098 struct urb *urb, int slot_id, unsigned int ep_index) 4099 { 4100 struct xhci_interrupter *ir; 4101 struct xhci_ring *ep_ring; 4102 struct urb_priv *urb_priv; 4103 struct xhci_td *td; 4104 int num_tds, trbs_per_td; 4105 struct xhci_generic_trb *start_trb; 4106 bool first_trb; 4107 int start_cycle; 4108 u32 field, length_field; 4109 int running_total, trb_buff_len, td_len, td_remain_len, ret; 4110 u64 start_addr, addr; 4111 int i, j; 4112 bool more_trbs_coming; 4113 struct xhci_virt_ep *xep; 4114 int frame_id; 4115 4116 xep = &xhci->devs[slot_id]->eps[ep_index]; 4117 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4118 ir = xhci->interrupters[0]; 4119 4120 num_tds = urb->number_of_packets; 4121 if (num_tds < 1) { 4122 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4123 return -EINVAL; 4124 } 4125 start_addr = (u64) urb->transfer_dma; 4126 start_trb = &ep_ring->enqueue->generic; 4127 start_cycle = ep_ring->cycle_state; 4128 4129 urb_priv = urb->hcpriv; 4130 /* Queue the TRBs for each TD, even if they are zero-length */ 4131 for (i = 0; i < num_tds; i++) { 4132 unsigned int total_pkt_count, max_pkt; 4133 unsigned int burst_count, last_burst_pkt_count; 4134 u32 sia_frame_id; 4135 4136 first_trb = true; 4137 running_total = 0; 4138 addr = start_addr + urb->iso_frame_desc[i].offset; 4139 td_len = urb->iso_frame_desc[i].length; 4140 td_remain_len = td_len; 4141 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4142 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4143 4144 /* A zero-length transfer still involves at least one packet. */ 4145 if (total_pkt_count == 0) 4146 total_pkt_count++; 4147 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4148 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4149 urb, total_pkt_count); 4150 4151 trbs_per_td = count_isoc_trbs_needed(urb, i); 4152 4153 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4154 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4155 if (ret < 0) { 4156 if (i == 0) 4157 return ret; 4158 goto cleanup; 4159 } 4160 td = &urb_priv->td[i]; 4161 /* use SIA as default, if frame id is used overwrite it */ 4162 sia_frame_id = TRB_SIA; 4163 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4164 HCC_CFC(xhci->hcc_params)) { 4165 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4166 if (frame_id >= 0) 4167 sia_frame_id = TRB_FRAME_ID(frame_id); 4168 } 4169 /* 4170 * Set isoc specific data for the first TRB in a TD. 4171 * Prevent HW from getting the TRBs by keeping the cycle state 4172 * inverted in the first TDs isoc TRB. 4173 */ 4174 field = TRB_TYPE(TRB_ISOC) | 4175 TRB_TLBPC(last_burst_pkt_count) | 4176 sia_frame_id | 4177 (i ? ep_ring->cycle_state : !start_cycle); 4178 4179 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4180 if (!xep->use_extended_tbc) 4181 field |= TRB_TBC(burst_count); 4182 4183 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4184 for (j = 0; j < trbs_per_td; j++) { 4185 u32 remainder = 0; 4186 4187 /* only first TRB is isoc, overwrite otherwise */ 4188 if (!first_trb) 4189 field = TRB_TYPE(TRB_NORMAL) | 4190 ep_ring->cycle_state; 4191 4192 /* Only set interrupt on short packet for IN EPs */ 4193 if (usb_urb_dir_in(urb)) 4194 field |= TRB_ISP; 4195 4196 /* Set the chain bit for all except the last TRB */ 4197 if (j < trbs_per_td - 1) { 4198 more_trbs_coming = true; 4199 field |= TRB_CHAIN; 4200 } else { 4201 more_trbs_coming = false; 4202 td->end_trb = ep_ring->enqueue; 4203 td->end_seg = ep_ring->enq_seg; 4204 field |= TRB_IOC; 4205 if (trb_block_event_intr(xhci, num_tds, i, ir)) 4206 field |= TRB_BEI; 4207 } 4208 /* Calculate TRB length */ 4209 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4210 if (trb_buff_len > td_remain_len) 4211 trb_buff_len = td_remain_len; 4212 4213 /* Set the TRB length, TD size, & interrupter fields. */ 4214 remainder = xhci_td_remainder(xhci, running_total, 4215 trb_buff_len, td_len, 4216 urb, more_trbs_coming); 4217 4218 length_field = TRB_LEN(trb_buff_len) | 4219 TRB_INTR_TARGET(0); 4220 4221 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4222 if (first_trb && xep->use_extended_tbc) 4223 length_field |= TRB_TD_SIZE_TBC(burst_count); 4224 else 4225 length_field |= TRB_TD_SIZE(remainder); 4226 first_trb = false; 4227 4228 queue_trb(xhci, ep_ring, more_trbs_coming, 4229 lower_32_bits(addr), 4230 upper_32_bits(addr), 4231 length_field, 4232 field); 4233 running_total += trb_buff_len; 4234 4235 addr += trb_buff_len; 4236 td_remain_len -= trb_buff_len; 4237 } 4238 4239 /* Check TD length */ 4240 if (running_total != td_len) { 4241 xhci_err(xhci, "ISOC TD length unmatch\n"); 4242 ret = -EINVAL; 4243 goto cleanup; 4244 } 4245 } 4246 4247 /* store the next frame id */ 4248 if (HCC_CFC(xhci->hcc_params)) 4249 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4250 4251 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4252 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4253 usb_amd_quirk_pll_disable(); 4254 } 4255 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4256 4257 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4258 start_cycle, start_trb); 4259 return 0; 4260 cleanup: 4261 /* Clean up a partially enqueued isoc transfer. */ 4262 4263 for (i--; i >= 0; i--) 4264 list_del_init(&urb_priv->td[i].td_list); 4265 4266 /* Use the first TD as a temporary variable to turn the TDs we've queued 4267 * into No-ops with a software-owned cycle bit. That way the hardware 4268 * won't accidentally start executing bogus TDs when we partially 4269 * overwrite them. td->start_trb and td->start_seg are already set. 4270 */ 4271 urb_priv->td[0].end_trb = ep_ring->enqueue; 4272 /* Every TRB except the first & last will have its cycle bit flipped. */ 4273 td_to_noop(&urb_priv->td[0], true); 4274 4275 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4276 ep_ring->enqueue = urb_priv->td[0].start_trb; 4277 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4278 ep_ring->cycle_state = start_cycle; 4279 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4280 return ret; 4281 } 4282 4283 /* 4284 * Check transfer ring to guarantee there is enough room for the urb. 4285 * Update ISO URB start_frame and interval. 4286 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4287 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4288 * Contiguous Frame ID is not supported by HC. 4289 */ 4290 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4291 struct urb *urb, int slot_id, unsigned int ep_index) 4292 { 4293 struct xhci_virt_device *xdev; 4294 struct xhci_ring *ep_ring; 4295 struct xhci_ep_ctx *ep_ctx; 4296 int start_frame; 4297 int num_tds, num_trbs, i; 4298 int ret; 4299 struct xhci_virt_ep *xep; 4300 int ist; 4301 4302 xdev = xhci->devs[slot_id]; 4303 xep = &xhci->devs[slot_id]->eps[ep_index]; 4304 ep_ring = xdev->eps[ep_index].ring; 4305 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4306 4307 num_trbs = 0; 4308 num_tds = urb->number_of_packets; 4309 for (i = 0; i < num_tds; i++) 4310 num_trbs += count_isoc_trbs_needed(urb, i); 4311 4312 /* Check the ring to guarantee there is enough room for the whole urb. 4313 * Do not insert any td of the urb to the ring if the check failed. 4314 */ 4315 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4316 num_trbs, mem_flags); 4317 if (ret) 4318 return ret; 4319 4320 /* 4321 * Check interval value. This should be done before we start to 4322 * calculate the start frame value. 4323 */ 4324 check_interval(urb, ep_ctx); 4325 4326 /* Calculate the start frame and put it in urb->start_frame. */ 4327 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4328 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4329 urb->start_frame = xep->next_frame_id; 4330 goto skip_start_over; 4331 } 4332 } 4333 4334 start_frame = readl(&xhci->run_regs->microframe_index); 4335 start_frame &= 0x3fff; 4336 /* 4337 * Round up to the next frame and consider the time before trb really 4338 * gets scheduled by hardare. 4339 */ 4340 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4341 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4342 ist <<= 3; 4343 start_frame += ist + XHCI_CFC_DELAY; 4344 start_frame = roundup(start_frame, 8); 4345 4346 /* 4347 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4348 * is greate than 8 microframes. 4349 */ 4350 if (urb->dev->speed == USB_SPEED_LOW || 4351 urb->dev->speed == USB_SPEED_FULL) { 4352 start_frame = roundup(start_frame, urb->interval << 3); 4353 urb->start_frame = start_frame >> 3; 4354 } else { 4355 start_frame = roundup(start_frame, urb->interval); 4356 urb->start_frame = start_frame; 4357 } 4358 4359 skip_start_over: 4360 4361 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4362 } 4363 4364 /**** Command Ring Operations ****/ 4365 4366 /* Generic function for queueing a command TRB on the command ring. 4367 * Check to make sure there's room on the command ring for one command TRB. 4368 * Also check that there's room reserved for commands that must not fail. 4369 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4370 * then only check for the number of reserved spots. 4371 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4372 * because the command event handler may want to resubmit a failed command. 4373 */ 4374 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4375 u32 field1, u32 field2, 4376 u32 field3, u32 field4, bool command_must_succeed) 4377 { 4378 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4379 int ret; 4380 4381 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4382 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4383 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command. state: 0x%x\n", 4384 xhci->xhc_state); 4385 return -ESHUTDOWN; 4386 } 4387 4388 if (!command_must_succeed) 4389 reserved_trbs++; 4390 4391 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4392 reserved_trbs, GFP_ATOMIC); 4393 if (ret < 0) { 4394 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4395 if (command_must_succeed) 4396 xhci_err(xhci, "ERR: Reserved TRB counting for " 4397 "unfailable commands failed.\n"); 4398 return ret; 4399 } 4400 4401 cmd->command_trb = xhci->cmd_ring->enqueue; 4402 4403 /* if there are no other commands queued we start the timeout timer */ 4404 if (list_empty(&xhci->cmd_list)) { 4405 xhci->current_cmd = cmd; 4406 xhci_mod_cmd_timer(xhci); 4407 } 4408 4409 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4410 4411 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4412 field4 | xhci->cmd_ring->cycle_state); 4413 return 0; 4414 } 4415 4416 /* Queue a slot enable or disable request on the command ring */ 4417 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4418 u32 trb_type, u32 slot_id) 4419 { 4420 return queue_command(xhci, cmd, 0, 0, 0, 4421 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4422 } 4423 4424 /* Queue an address device command TRB */ 4425 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4426 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4427 { 4428 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4429 upper_32_bits(in_ctx_ptr), 0, 4430 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4431 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4432 } 4433 4434 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4435 u32 field1, u32 field2, u32 field3, u32 field4) 4436 { 4437 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4438 } 4439 4440 /* Queue a reset device command TRB */ 4441 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4442 u32 slot_id) 4443 { 4444 return queue_command(xhci, cmd, 0, 0, 0, 4445 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4446 false); 4447 } 4448 4449 /* Queue a configure endpoint command TRB */ 4450 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4451 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4452 u32 slot_id, bool command_must_succeed) 4453 { 4454 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4455 upper_32_bits(in_ctx_ptr), 0, 4456 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4457 command_must_succeed); 4458 } 4459 4460 /* Queue a get root hub port bandwidth command TRB */ 4461 int xhci_queue_get_port_bw(struct xhci_hcd *xhci, 4462 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4463 u8 dev_speed, bool command_must_succeed) 4464 { 4465 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4466 upper_32_bits(in_ctx_ptr), 0, 4467 TRB_TYPE(TRB_GET_BW) | DEV_SPEED_FOR_TRB(dev_speed), 4468 command_must_succeed); 4469 } 4470 4471 /* Queue an evaluate context command TRB */ 4472 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4473 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4474 { 4475 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4476 upper_32_bits(in_ctx_ptr), 0, 4477 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4478 command_must_succeed); 4479 } 4480 4481 /* 4482 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4483 * activity on an endpoint that is about to be suspended. 4484 */ 4485 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4486 int slot_id, unsigned int ep_index, int suspend) 4487 { 4488 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4489 u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); 4490 u32 type = TRB_TYPE(TRB_STOP_RING); 4491 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4492 4493 return queue_command(xhci, cmd, 0, 0, 0, 4494 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4495 } 4496 4497 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4498 int slot_id, unsigned int ep_index, 4499 enum xhci_ep_reset_type reset_type) 4500 { 4501 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4502 u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); 4503 u32 type = TRB_TYPE(TRB_RESET_EP); 4504 4505 if (reset_type == EP_SOFT_RESET) 4506 type |= TRB_TSP; 4507 4508 return queue_command(xhci, cmd, 0, 0, 0, 4509 trb_slot_id | trb_ep_index | type, false); 4510 } 4511